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I. ABSTRACT 

 

The inflammasome is a multi-protein intracellular complex formed following detection 

of immune ‘danger’ signals (pathogen-associated and damage-associated molecular 

patterns) that lead to the release of pro-inflammatory cytokines in the presence or 

absence of pyroptosis. 

 Protein phosphorylation, a reversible post-translational modification of proteins that 

results in the addition or removal of the phosphoryl group to a specific amino acid 

residue(s), is important in regulating cellular processes. Tyrosine phosphorylation 

has been shown to be essential in the regulation of the inflammasome and occurs at 

the level of the receptors (e.g., NLRP3, AIM2, and NLRC4) and adaptor protein, 

apoptosis-associated Speck-like protein with a CARD domain (ASC).  

  To identify the role of protein tyrosine phosphatases involved in 

inflammasome function, the protein tyrosine phosphatase inhibitor, phenylarsine 

oxide (PAO) was used to assess the activation of NLRP3, AIM2 and NLRC4 

inflammasomes. We have found that PAO perturbs the formation of the 

inflammasome assessed by nucleation of ASC specks, and the processing and 

release of caspase-1 and IL-1β in both human and murine cells. Furthermore, we 

have demonstrated that PAO inhibits nigericin-induced global tyrosine 

dephosphorylation and ASC dephosphorylation implicating tyrosine 

dephosphorylation of the inflammasome and ASC as a necessary step in 

inflammasome activation.  

Furthermore, by utilising site-directed mutagenesis, we identified putative 

tyrosine residues on ASC required for its function. The mutation of tyrosine residues 

to a non-phosphorylatable tyrosine mimic, phenylalanine, at residues Y60 and Y137 
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of ASC results in attenuated IL-1β release but not at Y36. Taken together, we have 

shown that PAO is a potent inhibitor of ASC dephosphorylation and consequently the 

NLRP3 and AIM2 inflammasomes suggesting an important role for tyrosine 

dephosphorylation in the activation of the inflammasome. In addition, we have 

demonstrated that phosphorylation of ASC at Y60 and Y137 is required for 

inflammasome function. However, more work is required to identify putative 

kinases/phosphatases involved in inflammasome regulation. 
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1.1 Introduction  

 

The human body is subjected to a host of attacks such as invading microorganisms, 

allergens and tissue injury. Invading microorganisms (such as bacteria and viruses), 

allergens and tissue injury are known to result in disruption of homeostatic functions 

leading to various diseases and disorders. It is, therefore, imperative that the body 

has a way of clearing invasion by microorganisms or tissue injury to maintain 

homeostasis. Clearing of pathogens or repair of damaged tissue is carried out by the 

immune system, which is the host defence mechanism that comprises of various 

biological processes and structures. The immune system comprises of two layers of 

defence that are named the adaptive and innate immune system (Sattler, 2017, 

Medzhitov, 2007). The adaptive immune system responds specifically to the invading 

pathogen and mounts a complex immunological response involving the activation of 

various cell types (e.g.  B and T lymphocytes). Furthermore, the adaptive immune 

system is responsible for conveying immunological memory, where the immune 

system ‘remembers’ antigens previously encountered which consequently enables 

the body to quickly respond to repeated invasion by the pathogen (Pancer and 

Cooper, 2006). On the other hand, the innate immune system is an immediate, non-

specific defence mechanism against host invaders or tissue injury (Medzhitov, 2007). 

The innate immune system consists of physical barriers such as skin, chemicals in 

the blood and various immune cells which all function to prevent or eliminate 

invasion of pathogens and tissue damage. When microorganisms breach the skin or 

tissue damage occurs, the innate immune system recognises these as danger 

signals and provides a non-specific response by recognising molecular patterns 

associated with invading pathogens or tissue damage. Recognition of these 

molecular patterns precedes the activation of an innate immune system process 
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called inflammation. Inflammation is defined as a physiological response to invading 

pathogens or damage signals and a vital component of the innate immune system in 

responding to invading pathogens and/or tissue damage (Medzhitov, 2008). The 

ultimate goal of activating the inflammatory response is to defend against microbial 

invasion or mitigating tissue damage by mounting a host defence against infection or 

activating the tissue repair pathway, all leading to homeostatic state restoration 

(Ashley et al., 2012).  There are two types of inflammation namely acute and chronic 

inflammation. Acute inflammation is transient and is resolved following clearance of 

the pathogenic/non-pathogenic invasion or cellular damage (Ashley et al., 2012, 

Medzhitov, 2008). On the other hand, chronic inflammation is the persistence of 

acute inflammation where the inflammatory response is not resolved resulting in 

prolonged activation of inflammation. Chronic inflammation is implicated in the 

pathology of a host of diseases and disorders such as neurodegenerative diseases, 

obesity, cancer and many more (Amor et al., 2010, Monteiro and Azevedo, 2010, 

Coussens and Werb, 2002). Therefore, understanding the mechanisms underlying 

inflammation activation is vital in the development of therapies that help to mitigate 

the inflammatory component of these disorders and thus slow progression of the 

disease.  

 

1.1.1 Inflammation Inducers 

Inflammation inducers are classified into exogenous and endogenous inducers of 

inflammation (Ashley et al., 2012, Okin and Medzhitov, 2012) . 
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Exogenous inducers of inflammation are non-host generated “danger” signals 

that include microbes such as bacteria and non-microbial inducers such as 

allergens. A subset of microbial inducers possess pathogen-associated molecular 

patterns (PAMPs) that are detected by dedicated sensor proteins known as pattern 

recognition receptors (PRRs) (Okin and Medzhitov, 2012). Pattern recognition 

receptors can be classified into two groups, namely membrane-bound and 

cytoplasmic pattern recognition receptors. Membrane-bound PRRs mainly consist of 

receptors that are tethered to the plasma membrane and recognise extracellular 

stimuli. This receptor class consists of toll-like receptors (e.g. TLR4 involved in 

bacterial lipopolysaccharide detection) and C-type lectin receptors (e.g. Dectin1) 

(Takeuchi and Akira, 2010).  

 

Cytoplasmic PRRs, on the other hand, are non-membrane tethered receptors 

that recognise intracellular/cytoplasmic damage associated molecular patterns 

(DAMPs) or PAMPs. They are subdivided into the NOD-like receptors and the Rig-I-

like receptors. NOD-like (nucleotide binding oligomerisation domain-like) receptors 

structurally consist of a C-terminal leucine rich domain, central NACHT domain and a 

variable N-terminal domain involved in protein-protein interactions. There are various 

NOD-like receptors that recognise a host of different DAMPs and PAMPs (discussed 

later). On the other hand, Rig-I-like (retinoic acid-inducible gene-I-like) receptors also 

known as RLRs are mainly involved in the recognition of intracellular viruses. These 

receptors possess a C terminal domain (CTD) involved in viral RNA binding, a 

central helicase core domain and an N-terminal caspase recruitment domain (CARD) 

(Takeuchi and Akira, 2010).  
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Virulence factors also serve as inducers of inflammation but are not directly 

detected by PRRs. Instead, the effects of the virulence activity are detected. For 

instance, the exotoxins produced by Gram-positive bacteria form pores in the cell 

membrane of the cell and lead to K+ efflux. This efflux consequently triggers the 

NLRP3 (NACHT- leucine-rich-repeat and pyrin domain containing protein) 

inflammasome leading to release of pro-inflammatory cytokines. Non-microbial 

inducers such as irritants and toxic chemicals similarly activate the inflammatory 

response as virulence factors by the detection of the activities elicited and not the 

inducer itself (Mogensen, 2009, Ashley et al., 2012) .  

 

Endogenous stimuli of inflammation are signals produced in the event of 

tissue stress, damage or malfunction.  These signals can include intracellular 

constituents released upon necrotic cell death (e.g. ATP, calcium and HMGB1) and 

tissue damage signals such as Hageman factor (factor XII) in vascular endothelial 

damage. Furthermore, there are other inducers of inflammation that are associated 

with chronic inflammation such as the formation of crystals like monosodium urate 

crystals or advanced glycation end products (AGEs) in gout and type 1/2 diabetes, 

respectively (Ashley et al., 2012) . 

 

1.1.2 Inflammation Mediators  

The inducers of inflammation, exogenous or endogenous, trigger the production of 

various inflammatory mediators. The inflammatory mediators in turn lead to the 

alteration of the activity and functionality of tissues and organs downstream of 

inflammation activation. The mediators are either produced by cells or derived from 
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plasma proteins. For instance, pro-inflammatory cytokines such as TNF, IL-1 and IL-

6 are predominantly produced by tissue-resident macrophages and mast cells and 

function to lead to the recruitment and activation of leukocytes such as neutrophils, 

monocytes and macrophages to the site of damage or infection. This recruitment is 

required to result in the resolution of the infection. For example, macrophages can 

function primarily as a “clean-up” cell, engulfing pathogens or cellular debris through 

a process called phagocytosis. In addition, macrophages can also produce cytokines 

that aid in the recruitment of more immune cells to the site of damage or infection 

leading to resolution of the danger (Varol et al., 2015). However, persistent 

unregulated production of pro-inflammatory cytokines by various cell types and the 

recruitment of more immune cells to the site of infection/damage can result in a 

pathological inflammatory response.  
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1.2 Inflammation in Disease 

 

The insights gained in understanding the inflammatory response has been to a large 

degree in aid of finding treatments to a host of disease/disorders. Chronic 

inflammation contributes to the pathology of neurodegenerative diseases, type 2 

diabetes, autoimmune disorders and many more (Amor et al., 2010). 

Neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease are 

characterised by activation of the inflammatory pathway in the central nervous 

system (CNS). In Alzheimer’s disease, there is an increase in TLR2 and TLR4 

expression on microglial cells and increase in pro-inflammatory cytokines around 

amyloid-beta (Aβ) plaques. These characteristics consequently result in progressive 

neurodegeneration via the recruitment of T- cells. Similarly, Parkinson’s disease is 

characterised by the increased expression of PRRs TLR2, TLR5 and CD14 in the 

CNS, activation of Natural killer (NK) cells and microglia. The pro-inflammatory 

cytokine TNFα, produced by adipocytes (in high amounts in obesity) can modulate 

and attenuate carbohydrate metabolism in a local or systematic fashion (Amor et al., 

2010). This has been shown to contribute to the progression of type 2 diabetes, 

insulin resistance and obesity (Cefalu, 2009).  

 

Understanding the mechanisms underlying the activation of inflammation is 

incredibly vital in producing treatments for various disorders and diseases where 

inflammation contributes greatly to the pathology. Part of the inflammatory response 

is an intracellular multi-protein complex called the inflammasome that forms after 

detecting inflammation inducers intracellularly.  

 



8 
    

1.3 The inflammasome 

 

The inflammasome (name derived from inflammation and ’soma’ meaning body) is a 

large cytosolic multi-protein complex. It is involved in the innate immune response to 

two groups of ‘danger signals’ namely, pathogen-associated molecular patterns 

(PAMPs) and damage-associated molecular patterns (DAMPs) leading to the 

maturation and secretion of pro-inflammatory cytokines specifically IL-1β and IL-18.  

 

The inflammasome comprises receptor proteins, an adaptor protein and an 

effector protein that together interact leading to maturation and secretion of IL-1β 

and IL-18. Host and pathogen-derived ‘danger signals’ are potent agonists for 

inflammasome activating receptors resulting in recruitment of an adaptor protein 

which further recruits the inactive form of the effector protein, pro-caspase-1. Pro-

caspase-1 undergoes catalytic cleavage into the active form, which in turn results in 

the cleavage of pro-IL-1β and pro-IL-18 to the active forms. The active IL-1β and 

IL-18 are then secreted into the extracellular matrix (Laudisi et al., 2014, Hara et al., 

2013b, Cullen et al., 2015) (Laudisi et al., 2014, Hara et al., 2013b, Cullen et al., 

2015), usually accompanied by a type of cell death called pyroptosis. 

 

The release of IL-1β following inflammasome activation is not fully understood 

but was initially suggested to be a consequence of pyroptotic cells (Miao et al., 

2011). Necrosis has also been shown to be a mechanism responsible for cytokine 

release (Cullen et al., 2015). It has been proposed that the release of IL-1β is 

dependent on stimulus strength and the extracellular requirement of IL-1β (Lopez-



9 
    

Castejon and Brough, 2011) which would also predict whether cells enter the 

pyroptotic pathway.  

 

1.3.1 Inflammasome-mediated cell death  

Apart from pro-inflammatory cytokine release, another consequence of 

inflammasome activation is pyroptosis which has been observed to be caused by an 

infection with pathogenic bacterial, viral and fungal species (Bergsbaken et al., 

2009). Much like apoptosis, pyroptosis is a type of programmed cell death but is 

dependent on caspase-1(Figure 1-1), caspase-4/5 and caspase-11 in mice rather 

than on apoptotic caspases. Some caspase-1 dependent processes can occur 

without the activation of pyroptosis such as cytokine release. However, the activation 

of the pyroptotic pathway is inherently inflammatory (pro-inflammatory cytokine 

release) and would be determined by the cell type, and the type and magnitude of 

the stimulus (Fink and Cookson, 2005, Bergsbaken et al., 2009). 

 

Activation of pyroptotic cell death has recently been attributed to inflammatory 

caspase mediated cleavage of the protein gasdermin D (Ramos-Junior and 

Morandini, 2017). Gasdermin D (GSDMD) is a substrate of inflammatory caspases-

1, -4, -5 and -11 (Kayagaki et al., 2015, Shi et al., 2017) which is encoded by the 

GSDMD gene. The GSDMD protein consists of an N-terminal 31kDa domain 

(GSDMD-NT) and a 22kDa C-terminal domain (GSDMD-CT). The inflammatory 

caspases not only mediate the processing of the pro-inflammatory cytokines but also 

the processing of GSDMD by cleaving the GSDMD-CT and GSDMD-NT thus 

removing the auto-inhibition mediated by GSDMD-CT. GSDMD-NT, the active 

fragment, has been observed to mediate an increase in membrane permeability by 
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oligomerising and forming pores in the plasma membrane by binding to 

phosphatidylinositol phosphatase (PIP) and phosphatidylserine which in turn leads to 

cell swelling and lysis (Liu et al., 2016). GSDMD-NT can also form pores by binding 

to plasma membrane lipids in bacteria and therefore able to mediate bacterial death 

in vitro, implicating a direct bactericidal effect on intracellular bacteria. In mammalian 

cells, GSDMD-mediated cell swelling and lysis takes place as a means of preventing 

the replication of intracellular pathogens as well as the release of pro-inflammatory 

cytokines (Liu et al., 2016).  
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Figure 1-1: Inflammasome Activation Pathway 
Activation of the inflammasome by various damage-associated molecular patterns (DAMPs) and 
pathogen-associated molecular patterns (PAMPs) leads to the cleavage of pro-caspase-1 into the 
active form which in turn results in the cleavage of pro-cytokines and the activation of pyroptosis 
via gasdermin D.  
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1.4 Types of Inflammasomes 

 

There exist several different types of inflammasomes that undergo stimuli-dependent 

activation within the cell. Canonical inflammasomes are predominantly divided into 

two main subsets according to the receptor proteins that detect danger signals 

intracellularly. The majority of canonical inflammasomes currently studied fall within 

the nucleotide oligomerisation domain (NOD)-like receptor (NLR) subset and the 

non-NOD-like receptor subset, also called absent in melanoma 2. As such, NLRs are 

a specialized group of intracellular proteins that play a critical role in the regulation of 

the host innate immune response (Rathinam et al., 2012). Non-canonical 

inflammasome activation has also been identified where receptor and adaptor 

proteins are not involved in pro-inflammatory cytokine release. For instance, 

cytosolic LPS (e.g. from phagocytosed bacteria) is directly detected by caspase 4/5 

(human) and caspase 11 (murine) leading to the recruitment of pro-IL-1β and its 

subsequent processing and release (Hagar et al., 2013, Viganò et al., 2015).   

 

1.4.1 NLR inflammasomes 

At least 34 genes encoding NLRs exist in the human genome, and several of these 

have been shown to form inflammasomes in response to various stimuli while the 

function of the others has not been demonstrated (Rathinam et al., 2012). NLRs are 

classed into two main subfamilies, which are the NLRs with a pyrin recruitment 

domain (NLRPs) and NLRs with a CARD recruitment domain (NLRCs). Generally, all 

NLRs consist of a common C- terminus leucine-rich repeat (LRR) domain and a 

central nucleotide-binding/oligomerisation (NACHT) domain. However, NLRPs 

possess an N-terminus pyrin domain (PYD domain) while NLRCs possess an N-
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terminus caspase recruitment domain or CARD domain (Figure 1-2). During the 

activation of the inflammasome, the LRR domain seems to be implicated in ligand 

recognition. The NACHT domain is required for the oligomerisation of the activated 

receptor (Rathinam et al., 2012). Following detection of the ligand, the N-terminal 

domains, either PYD or CARD domains, function to allow the recruitment of the 

effector protein, pro-caspase-1 to enable it to be proteolytically cleaved.   

 

The N-terminal domains as stated above are necessary to recruit pro-

caspase-1. For instance, following injury or infection, the activated NLRP that 

possess the pyrin domain, such as NLRP1 or NLRP3, recruits the adaptor protein 

apoptosis-associated speck-like protein containing CARD domain (ASC) via a 

homotypic PYD-PYD interaction, to recruit pro-caspase-1. ASC is encoded by the 

pycard gene and consists of a pyrin and CARD domain. Its main function in the 

context of the inflammasome is to serve as an adaptor protein between the pyrin-

containing NLRs and the CARD domain-possessing caspase. Thus, following 

detection of an inflammasome activator, the same NLRP receptors will oligomerise 

via the NACHT-NACHT domain interactions and followed by recruitment of ASC 

forming an ASC speck of oligomerised ASC protein. ASC oligomerisation serves as 

a platform for the recruitment of pro-caspases through their CARD domain (Figure 

1-2) (Zambetti et al., 2012). 

 

Initial studies reported that ASC was dispensable in NLRC signalling as 

observed in NLRC4 inflammasome formation and function. However, later it has 

been proposed that ASC is required to enhance the NLRC4 inflammasome 

activation in response to Legionella pneumophila (Case and Roy, 2011). These 
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results suggest that there is a stimuli/activator-dependant participation of ASC in the 

formation of a functional inflammasome in NLRC4 signalling where some NLRC4 

activators also involve ASC for a full-blown activation. 

 

In 2014, Si Ming Man et al. reported that ASC, in fact, forms a single ASC 

speck within the cell to which both NLRC4 and NLRP3 co-localise in a concentric 

filament-like structure with both NLRC4 and NLRP3 within a single circular ASC 

speck (Man et al., 2014). This is particularly interesting as it shows that the activation 

of different types of inflammasomes (in this case NLRP3 and NLRC4) does not 

proceed independently from one another but converges into the same ASC speck. 

Other NOD-like receptors have not been shown to interact in the ‘single speck’ and 

thus would be interesting to see whether the ‘single speck’ is a convergent point for 

all inflammasome related receptors. 

 

In some experimental conditions, it has been noted that bacterial 

lipopolysaccharide (LPS) plays a priming role via the Toll-like receptor 4 (TLR4) and 

NF-κB pathway that triggers the expression of the inflammasome receptors and 

cytokine precursors. This has given rise to the two-signal or biphasic model of 

activation where the initial extracellular signal (Signal 1) by LPS involves the 

upregulation pro-inflammatory cytokines (pro-IL-1β and pro-IL-18). The second 

intracellular signal (Signal 2) by inflammasome stimuli, leads to the activation of the 

inflammasome and maturation of caspase-1 following the cellular internalisation of 

bacterial components (Bauernfeind et al., 2009, Baroja-Mazo et al., 2014). 
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The mechanism of action of inflammasome activation is poorly understood. 

The most extensively studied inflammasome is the one containing NLRP3 which has 

a range of activators (or stimuli) as shown in Table 1-1 (Baroja-Mazo et al., 2014). 

While various activators of this inflammasome exist, it remains unclear how 

structurally different stimuli can converge to elicit the activation of the NLRP3 

inflammasome. It has been suggested the occurrence of a particular cellular event(s) 

is responsible for the subsequent activation of the inflammasome. In 2013, it was 

reported that most, if not all, of the NLRP3 inflammasome activators (nigericin, silica, 

Alum, MSU and ATP) initially lead to K+ efflux and proposed this cellular event as 

possible convergent point triggering the activation of the NLRP3 inflammasome 

(Muñoz-Planillo et al., 2013). 

 

In the case of the NLRC4 inflammasome, the activation step is preceded by 

the direct interaction of bacterial components (Type III secretion systems (T3SS) and 

flagellin) with co-receptor proteins, known as NOD-like receptor family apoptosis 

inhibitory proteins (NAIP). The NAIP receptors are a subfamily of the NLR proteins 

that possess an N-terminal LRR domain and three C-terminal Baculovirus Inhibitor of 

apoptosis protein Repeat (BIR) domains including a central NOD domain. It has 

been shown that some NAIPs directly bind to their ligand, for example, NAIP5 

receptor binds to flagellin and T3SS components. Consequently NAIP5 associates to 

the NLRC4 receptor leading to the activation of the NLRC4 inflammasome (Gong 

and Shao, 2012). 
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1.4.2 AIM2 inflammasome 

The receptor absent in melanoma 2 (AIM2), an interferon-inducible HIN-200 

member, has been shown to recruit ASC and subsequently caspase-1 to form an 

inflammasome in response to cytosolic double-stranded DNA from viral and bacterial 

sources (Table 1-1). The AIM2 receptor consists of an N-terminal PYD domain and a 

C-terminal HIN-200 domain involved in DNA binding (Figure 1-2) (Hornung et al., 

2009).  

 

In experimental conditions, the presence of double-stranded DNA such as 

poly (dA:dT) in the cytosol results in the activation of the AIM2 receptor. This leads to 

the recruitment and formation of the ASC protein speck subsequently recruiting pro-

caspase-1 via its CARD domain resulting in cytokine release (Hornung et al., 2009). 

Therefore, unlike NLRP3 and NLRC4, there is a direct interaction between the 

receptor and its ligand thus leading to activation of the AIM2 inflammasome. 

However, in contrast to the above mentioned NLRs, AIM2 has not yet been shown to 

be recruited within a single speck. 

 

1.4.3 Pyrin inflammasome 

The pyrin inflammasome consists of the receptor protein pyrin, ASC and caspase-1. 

Pyrin is encoded by the MEFV gene and is classified as part of the TRIM protein 

family that consists of a Bbox, coiled-coil and B30.2 domains (Heilig and Broz, 

2018). Furthermore, it possesses the N-terminal pyrin (PYD) domain indicating that 

upon detection of a stimuli (such as bile analogues and bacterial toxins such as 

Clostridial TcdB) (Table1-1), the pyrin receptor can recruit the adaptor protein ASC 
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leading to caspase-1 processing and IL-1β release and pyroptotic death (Heilig and 

Broz, 2018).  
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Figure 1-2: Schematic structures of the NOD-like receptors, AIM2 and ASC 
NOD-like receptors possess a C- terminal leucine rich repeat (LRR) domain, a central nucleotide binding 
NACHT domain and either a PYRIN or CARD (caspase recruitment) domain at the N-terminal. On the 
other hand, the AIM2 receptor lacks the NACHT domain but possess a DNA-binding HIN-200 and a 
PYRIN domain. Apoptosis-associated speck-like protein with CARD (ASC) has two domains, a C-
terminal CARD and an N-terminal PYRIN domain. 
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Table 1-1: Summary of elements involved in inflammasome activation 

 COMPONENTS STIMULI 

NLRP1 

inflammasome 

NLRP1 

ASC 

Pro-caspase 1 

 

Anthrax lethal toxin 

NLRP3 

inflammasome 

NLRP3 

ASC 

Pro-caspase-1 

Nigericin 

ATP 

Silica 

Alum 

Decrease in extracellular pH 

Monosodium urate (MSU)  

dsRNA  

Lysosomal damage 

Reactive Oxygen Species 

NLRC4 

inflammasome 

NLRC4 

Pro-caspase-1 

ASC* 

Bacterial Flagellin 

Bacterial Type III secretion systems (T3SS) 

AIM2 

inflammasome 

AIM2 

ASC 

Pro-Caspase-1 

Bacterial and viral dsDNA  

Pyrin 

inflammasome  

Pyrin  

ASC 

Pro-Caspase-1 

Bacterial toxins:  

Clostridium difficile TcdB 

Histophilus somni IbpA 

Burkhoderia cenocepacia TecA 

*ASC is dispensable for NLRC4 inflammasome but some NLRC4 activators also involve ASC for a 
full-blown activation. 
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1.5 The inflammasome and disease 

 

Inflammatory involvement is well established in pathogenic as well as non-

pathogenic disease processes. The production and activity of pro-inflammatory 

cytokines IL-1β and IL-18 have been shown to play vital roles in the progression of 

various diseases. Pro-inflammatory cytokines have been implicated in the 

progression of neurodegenerative diseases, for instance, Parkinson’s disease (Yan 

et al., 2015, Codolo et al., 2013).  

 

Mutations in the NLRP3 (also known as cryopyrin) have been identified to be 

the cause of rare autoimmune disorders collectively known as cryopyrinopathies. 

Chronic infantile neurologic cutaneous articular syndrome, familial cold 

autoinflammatory syndrome and Muckle-Wells Syndrome are examples of 

cryopyrinopathies that have been identified to be caused by mutations in the NLRP3 

gene. There disorders are characterised by exacerbated pro-inflammatory cytokine 

levels and IL-1β targeted therapies have been the treatments of choice 

(Aksentijevich et al., 2007, Neven et al., 2008).  

 

Inflammasome malfunction is also implicated in neurodegenerative diseases. 

Parkinson’s disease is characterised by a loss of dopaminergic neurons in the 

substantia nigra of the brain. It is further characterised by the presence of Lewy 

bodies made up of fibrillar α-synuclein (α-Syn), a protein that has been shown to be 

involved in inflammasome activation and consequent pro-inflammatory cytokine 

production. α-Syn aggregates and activates the NLRP3 inflammasome in a 

phagolysosome disruption-dependent manner leading to the release of IL-1β similar 
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to crystalline and particulate matter, such as MSU, imject alum and silica (Codolo et 

al., 2013). 

 

Furthermore, the loss of dopaminergic neurons also contributes to the 

activation of the NLRP3 inflammasome as dopamine negatively regulates the 

NLRP3 inflammasome via the dopamine D1 receptor (DRD1). Dopamine-induced 

activation of the DRD1 receptor leads to the production of cAMP, which binds to 

NLRP3 and promotes its ubiquitination by the E3 ubiquitin ligase, MARCH7 thus 

leading to NLRP3 degradation (Yan et al., 2015). 

 

In addition, similar to Parkinson’s disease, Alzheimer’s disease characterised 

by amyloid-beta deposition was shown to have enhanced caspase-1 activation as a 

result of the protein aggregate-induced inflammasome (Tan et al., 2013). 

 

Some cancers have inflammasome involvement embedded in some of the 

disease processes and progression (Kolb et al., 2014). Various inflammasomes have 

been shown to confer protection against tumorigenesis in colon cancers. For 

instance, the activation of the NLRP3 inflammasome leading to IL-18 production 

protects against colorectal cancer (Zaki et al., 2010) and similarly, the NLRP12 

receptor negatively regulates colon tumorigenesis via the NF-κβ signalling pathway 

(Allen et al., 2012). Furthermore, also the NLRP6 and NLRC4 inflammasomes have 

been implicated in tumorigenesis and carcinogenesis (Chen et al., 2011, Normand et 

al., 2011, Hu et al., 2010). Inflammasome involvement in cancer is of particular 

importance therapeutically, that is targeting the inflammasomes can be carried out to 

elicit a protective effect and thus slow proliferation and progression of cancer. 
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Therefore, an in-depth understanding of the regulation of the inflammasome would 

be vital in developing the appropriate inflammasome-targeted cancer therapies. 

 

The malfunction of the inflammasome is fast being established as a 

contributing factor in an array of diseases and disorder processes that include the 

above but also obesity and diabetes (Ting et al., 2006, Vandanmagsar et al., 2011, 

Dixit, 2013). Understanding the regulation of the inflammasome would be of great 

importance when considering treatments for any of the diseases discussed here not 

forgetting the others which may have implicated inflammasome function or 

malfunction intrinsic to the disease process such as fibrosis (Artlett, 2012).  
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1.6 Regulation of the Inflammasome 

 

The dysregulation or lack thereof, of a cellular process results in gain or loss of 

function that often leads to disease and the inflammasome is not exempted. 

Regulation of the inflammasome can take place at various points within the 

inflammasome pathway; from activation, transduction of the activation signal and 

transcription to cytokine processing and secretion. 

 

The regulation of the inflammasome can be carried out by two mechanisms; 

cell-extrinsic and intrinsic regulatory mechanisms.  

 

1.6.1 Cell-extrinsic regulatory mechanisms 

Cell-extrinsic mechanisms are regulatory mechanisms utilised by extracellular 

organisms such as viruses and bacteria to evade the inflammasome-mediated 

inflammatory response. 

 

Viruses express molecules that possess anti-inflammasome properties. For 

instance, the Myxoma and Shope Fibroma virus express M013 and gp013L 

respectively which bind and inhibit the inflammasome adaptor protein ASC. 

Furthermore, viruses can also express proteins such as serpins that alter the 

proteolytic activity and thus inhibit proteolytic cleavage of inflammasome proteins 

such as pro-caspase-1 to its cleaved active form (Figure 1-3) (Rathinam et al., 

2012). 
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Conversely, bacteria utilise various mechanisms to manipulate the activation 

of the inflammasome. Yersinia pseudotuberculosis, as an example, produces the 

protein YopK which binds to the translocon of the Type III Secretion System (T3SS). 

This binding masks the recognition site and thus inhibits the detection of the 

pathogen by the NLRP3 inflammasome (Zwack et al., 2015). Another strategy 

employed by bacteria is to differentially express proteins that can be detected by the 

inflammasome. Salmonella species utilise this strategy by down-regulating NLRC4-

detectable flagellin and up-regulating the non-NLRC4 detectable SPI-1 T3SS which 

does not possess the motif required for detection by NLRC4 (Broz and Monack, 

2011). Furthermore, enzymes such as phospholipases, cysteine protease, zinc 

metalloproteases and Rho GTPases are used by bacteria to alter the expression 

and/or activity of various components of the inflammasome (such as ASC and 

caspase-1) (Rathinam et al., 2012).  

 

Cell-extrinsic mechanisms of regulation serve as a means of rendering the 

inflammasome ineffective against the micro-organism as observed in various 

bacteria and viruses thus preventing inflammasome activation and/or formation 

(Figure 1-3). 

 

1.6.2 Cell-intrinsic regulatory mechanisms 

Aside from the microbial-mediated regulatory mechanisms, cell-intrinsic mechanisms 

can control the activation and/or deactivation of the inflammasome. The cell-intrinsic 

mechanisms include the activation of signalling pathways as well as cellular 

processes. For instance, the activation of the AIM2 inflammasome in response to 

Francisella tularensis infection requires a functional Type I interferon (IFN) pathway 
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to boost IL-1β secretion. On the other hand, IFN signalling has been shown to inhibit 

NLRP3 inflammasome function via STAT1 leading to diminished IL-1β. 

 

Other signalling pathways also modulate the inflammasome response and 

often include the use of second messengers, such as cAMP. Lee et al. (2012) 

reported that the activation of the mouse NLRP3 inflammasome is regulated by the 

murine calcium-sensing receptor (CASR) in a calcium ion (Ca2+) and cAMP-

dependent manner. The decrease in intracellular cAMP results in the activation of 

CASR which in turn leads to an increase of intracellular Ca2+ via phospholipase C 

and inositol-1, 4, 5-trisphosphate production and this increase in intracellular Ca2+ 

causes the assembly of the inflammasome. Furthermore, cAMP can negatively 

regulate the NLRP3 inflammasome by directly binding to NLRP3, and cAMP 

decrease removes this inhibition (Lee et al., 2012). 

 

Another important process involved in regulation of the inflammasome is 

autophagy. Autophagy is a catabolic process involved in the degradation and 

renewal of intracellular components. The absence of the autophagic processing has 

been shown to augment the production of IL-1β and IL-18. Autophagy, therefore, is a 

negative regulator of the inflammasome (Rathinam et al., 2012).  

 

Of particular interest are the biochemical regulatory mechanisms observed to 

take place in inflammasome function regulation. Ubiquitination is a post-translation 

modification of proteins that involves the conjugation of ubiquitin molecules to 

proteins that serves as a means of targeting a protein for transport, translocation or 

degradation (Mukhopadhyay and Riezman, 2007). Ubiquitination is carried out by 
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ubiquitin ligases in a ubiquitination cascade involving numerous enzymes, while 

deubiquitination is the removal of the ubiquitin molecules by enzymes called 

Deubiquitinating enzymes (DUBs) (Py et al., 2013). The NLRP3 receptor has been 

shown to be deubiquitinated in the NACHT and LRR domains following sensing of 

the stimuli of the NLRP3 inflammasome (Stutz et al., 2014). The murine protein 

BRCC3 protein (BRCC36 in the human) is a deubiquitinating enzyme that 

deubiquitinates NLRP3 upon activation leading to the assembly of the NLRP3 

inflammasome (Py et al., 2013). Upon dopamine-induced activation of DRD1, cAMP 

can bind to NLRP3 and this leads to NLRP3 ubiquitination by the E3 ubiquitin ligase 

MARCH7 (Yan et al., 2015). 
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Figure 1-3: Summary of inflammasome regulatory mechanisms 
Cell-intrinsic regulatory mechanisms ensure that activation of the inflammasome takes place normally 
while cell-extrinsic mechanisms elicited by microorganisms are utilised to evade the inflammasome.  
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1.7 Inflammasome regulation: the role of phosphorylation 

 

Protein phosphorylation is a common post-translational modification that regulates 

most processes in the cell; it involves the addition of one or more phosphoryl groups 

to specific amino acid residues on a protein post-translationally. This can act as an 

activation or inhibitory modification of the target protein by causing conformational 

changes of the overall protein structure. Reversible phosphorylation is carried out by 

kinases and by phosphatases (Cohen, 2002). This vital cellular mechanism has been 

implicated in various pathways and cell processes. 

 

1.7.1 Amino acid phosphorylation 

 

Phosphorylation of proteins is a post-translational modification that takes place on 

various amino acid residues. The amino acids commonly modified in this manner 

include serine (S), threonine (T), tyrosine (Y) and histidine (H) (Cohen, 2002, 

Attwood et al., 2007). 
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1.8 Receptor phosphorylation 

1.8.1 NLRC4 phosphorylation 

The phosphorylation of NLRC4 at serine 533 (S533) takes place following cytosolic 

exposure to bacterial flagellin and type III secretion systems (T3SS).This leads to the 

formation of the NLRC4 inflammasome and maturation of caspase-1 (Qu et al., 

2012). Matusiak et al. (2015) demonstrated that, upon infection with Salmonella 

enterica serovar typhimurium, S533 phosphorylation of NLRC4 follows a biphasic 

mechanism in which S533 phosphorylation initially serves as a priming step followed 

by the interaction of the flagellin carboxyl-terminus of NLRC4 with NAIP5 to form the 

inflammasome complex and lead to caspase-1 maturation, cytokine release and 

pyroptosis (Matusiak et al., 2015). 

 

In another study, Qu Y et al. (2012) identified protein kinase C delta (PRKCD 

or PKCδ) as a candidate kinase for the serine 533 phosphorylation of NLRC4 in a 

kinase inhibitor screen. PRKCD is a ubiquitously expressed kinase involved in 

various cellular pathways, such as cell growth and cell death (Kikkawa et al., 2002). 

Prkcd-/- macrophages infected by Salmonella typhimurium (known to activate the 

NLRC4 inflammasome) showed a reduction of NLRC4 phosphorylation at S533 

which resulted in the attenuated maturation of caspase-1 and IL-1β release (Qu et 

al., 2012). 

 

The PKCδ-mediated phosphorylation of NLRC4 at serine 533 highlights a vital 

step in activation of the NLRC4 inflammasome following infection with bacteria. An 

indispensable step of receptor phosphorylation is seen to take place here. One can 

postulate that this post-translational modification, following cytosolic sensing of 
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inflammasome stimuli, may occur in other inflammasomes, such as the NLRP1, 

NLRP3, NLRP6 and AIM2.  

 

1.8.2 NLRP3 phosphorylation 

The NLRP3 protein activity is regulated by various kinases and phosphatases. It has 

been shown that NLRP3 can physically interact with the Bruton’s tyrosine kinase 

(BTK), a cytoplasmic protein tyrosine kinase. The BTK-NLRP3 interaction was 

enhanced by nigericin treatment (signal 2) which led to inflammasome activation. 

Pharmacological and genetic inhibition of BTK activity resulted in attenuation of 

NLRP3 inflammasome function but not the AIM2 inflammasome suggesting NLRP3-

specific regulation by BTK (Ito et al., 2015). Although the exact mechanism and 

target has not been elucidated, this result indicates that tyrosine kinase activity on 

NLRP3 is necessary for NLRP3 inflammasome activation and that BTK could serve 

as a potential therapeutic target, particularly in the reduction of ischaemic strokes 

induced by brain tissue injury.  

 

Much like tyrosine phosphorylation, serine phosphorylation of NLRP3 by 

protein kinase D (PKD) results in NLRP3 inflammasome activation. Prior to 

activation, NLRP3 localises to the mitochondria-associated endoplasmic reticulum 

membranes (MAMs) but in response to inflammasome activators, the MAMs-NLRP3 

complex seems to relocate to the Golgi apparatus. PKD is also recruited to the Golgi 

apparatus due to an increase in diacylglycerol (DAG) which consequently leads to 

phosphorylation of NLRP3 by PKD at serine 293 (S293). As a result, NLRP3 is 

released from the MAMs to form a functional inflammasome. The pharmacological 
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inhibition of PKD resulted in the suppression of the NLRP3 inflammasome activation 

(Zhang et al., 2017).  

 

On the other hand, protein tyrosine phosphatase non-receptor 22 (PTPN22) 

has been shown to interact with NLRP3 upon inflammasome induction, which in turn 

dephosphorylates NLRP3 at tyrosine 861 (Y861). Loss of PTPN22 resulted in 

NLRP3 phosphorylation and little to no induction of mature IL-1β release. The 

presence of the PTPN22 619W is associated with an autoimmune phenotype 

characterized by overt IL-1β release similar to that observed in Crohn’s disease, 

rheumatoid arthritis, type 1 diabetes and systemic lupus erythematosus (Spalinger et 

al., 2016). 

 

Similarly, PP2A, a serine/threonine phosphatase, targets serine 5 (S5) in the 

pyrin domain of NLRP3. Okadaic acid-mediated inhibition of PP2A resulted in 

NLRP3 inflammasome inhibition (Stutz et al., 2017), revealing a dual role of PP2A in 

inflammasome activation by regulating NLRP3 activation and ASC localisation (see 

1.6.3 ASC phosphorylation) (Martin et al., 2014). 

 

In conclusion, both phosphorylation and dephosphorylation of the NLRP3 

receptor protein are required for inflammasome formation and activation. However, 

the involvement of these opposing mechanisms appears contradictory, indicating 

that a complex system of regulation of the NLRP3 inflammasome exists where 

kinases and phosphatases simultaneously function to regulate the activation of the 

inflammasome. 
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1.8.3 ASC phosphorylation 

Spleen Tyrosine kinase (Syk) and c-Jun N-terminal kinase (JNK) have been shown 

to take part in the regulation of the inflammasome by facilitating the formation of the 

ASC protein specks upon stimulation (Lin et al., 2015, Okada et al., 2014). 

 

The murine adaptor protein, ASC, is phosphorylated at tyrosine 144 (Y144), a 

tyrosine residue residing in the CARD domain of ASC. In a kinase inhibitor screen, 

inhibitors of Syk and JNK led to the attenuation of the maturation of caspase-1 and 

production of IL-1β and IL-18. Furthermore, knockout of syk and mapk8–mapk9 in 

peritoneal macrophages induced a decrease of IL-18 release and inhibited caspase-

1 maturation following treatment with nigericin (NLRP3 activator) and dsDNA 

(poly(dA:dT), AIM2 activator), suggesting that the NLRP3 and AIM2 inflammasomes 

require Syk and JNK pathways for normal function. However, stimulation with S. 

typhimurium following Syk and JNK inhibition did not show a reduction in IL-18 

production, suggesting that these kinases are dispensable for NLRC4 

inflammasome-mediated IL-18 release. Syk and JNK knockout was sufficient to 

inhibit the formation of ASC specks, but the NLRP3-ASC interaction was unaffected 

indicating the requirement for ASC phosphorylation at Y144 in speck formation and 

caspase-1 activation (Hara et al., 2013a). Although Syk and JNK were shown to be 

necessary for ASC phosphorylation, they were not shown to physically interact with 

ASC. Consequently, pharmacological and knock down studies of the protein tyrosine 

kinase Pyk2 revealed the missing link between Syk/JNK and ASC. In 2016, Chung et 

al. found that Syk-mediated Pyk2 localisation to the ASC specks directly resulted in 

phosphorylation of ASC at Y144/6. (Chung et al., 2016).  
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While Pyk2-mediated phosphorylation of ASC via Syk positively regulates the 

activation of the NLRP3 inflammasome, Martin et al. (2014) reported that Iκβ kinase 

α (IKKα) activity is required to negatively regulate the NLRP3, NLRC4 and AIM2 

inflammasome. In resting state macrophages, IKKα forms an intra-nuclear complex 

with ASC which functions to sequester ASC in the nucleus prior to activation. The 

phosphorylation of the serine residues S193 and S16 was shown to be vital for the 

IKKα-ASC interaction. In the biphasic activation mechanism of NLRP3 activation, the 

initial step of LPS priming resulted in the IKKα/ASC complex translocating into the 

perinuclear area facilitated by IKKi (IKK-related kinase). The second signal that is 

exposure to cytosolic ATP or nigericin, leads to NLRP3 inflammasome activation 

and, by inhibiting the activity of IKKα, the recruitment of PP2A to the perinuclear 

ASC/IKKα complex thereby causing the dissociation of ASC and IKKα. This allows 

ASC to interact with the other components of the inflammasome including caspase-1 

(Martin et al., 2014).  

 

Similar to PKCδ-induced NLRC4 phosphorylation, the activity of Syk and JNK 

kinases is required for normal ASC speck formation. However, whilst PKCδ was 

required to positively regulate the NLRC4 inflammasome, the IKKα activity negatively 

regulates the inflammasome and therefore revealed a dual role of kinases activity in 

regulating the inflammasome. Thus, a phosphorylation event could either be an 

activation or inhibitory modification of an inflammasome component. 

 

The involvement of PP2A in inflammasome regulation has shown that 

phosphatases are also involved in inflammasome regulation and serve to allow 

inflammasome activation. Martin et al. (2014) showed that PP2A was vital in ASC 
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speck formation following activation of the NLRP3 inflammasome (Martin et al., 

2014). It will be interesting to investigate further roles of PP2A other than the 

observed negative regulation of the IKKα-ASC interaction, as well as elucidate the 

role of other kinases and phosphatases involved. 
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1.9 Other kinases involved in inflammasome function  

 

1.9.1 PKR role in inflammasome  

Protein Kinase R is a double-stranded RNA (dsRNA)-dependent kinase that is 

activated by auto-phosphorylation when exposed to dsRNA (Yim and Williams, 

2014). 

 

Lu B. and colleagues (2012) had initially observed that HMGB1, a nuclear 

protein involved in DNA organisation and transcription, was released in response to 

poly (I:C) a PKR agonist and NLRP3 inflammasome activator (Lu et al., 2012, Rajan 

et al., 2010). In addition, they observed that PKR was phosphorylated and further 

determined that knockout and pharmacological inhibition of PKR perturbed the 

inflammasome response of caspase-1 maturation, and IL-1β and HMGB1 release. 

PKR knockout and inhibition with the PKR-specific inhibitors 2- aminopurine and 

C13H8N4OS (CNS) in LPS-primed and NLRP3-activated macrophages significantly 

disrupted caspase-1 maturation and cytokine release. Further, NLRP1, NLRP3, 

NLRC4 and AIM2 were shown to physically interact with PKR in a co-expression 

system, suggesting a regulatory role for PKR; however, no further information about 

the phosphorylation states of the receptors was reported (Lu et al., 2012). 

 

In contrast, He et al. found that PKR was dispensable for NLRP3, NLRC4 and 

AIM2 inflammasome activation. They showed that inflammasome stimulation of 

macrophages obtained from two different strains of PKR knockout mice was not 

diminished compared to wild type. A clear explanation for the difference is not 

provided but they have suggested that differences in experimental conditions could 
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account for this differences and more work would be required to elucidate the role of 

PKR in inflammasome function (He et al., 2013). 

 

Although the interaction between PKR and the various inflammasome 

receptors has been shown (Figure 1-4), there remains the question of the function 

and mechanism of this interaction. Yim and Williams (2014) proposed that the 

various receptor ligands could possibly interact with PKR first. Following the 

interaction, PKR would undergo auto-phosphorylation leading to PKR activation and 

interaction with the receptors. As consequence, the recruitment of ASC takes place 

(Yim and Williams, 2014). However, this model warrants further investigation. 

 

1.9.2 The role of AMP-activated kinase 

The AMP-activated protein kinase (AMPK) is a serine/threonine kinase activated by 

an increase in the intracellular AMP:ATP ratio in various conditions, such as hypoxia 

and exercise, and it possesses anti-inflammatory properties (Onyenwoke et al., 

2012). 

 

AMPK was shown to play a vital role in the monosodium urate (MSU)-

mediated inflammatory (Figure 1-4) response in macrophages (Wang et al., 2014). 

MSU crystals inhibited AMPK phosphorylation at threonine 172 residue and thus led 

to an increased inflammasome response. Soluble urate is one of the hallmarks of 

gout which was able to give an insight into the inflammatory response as observed in 

this disease (Wang et al., 2014). In addition, the AMPKα1 knockout in bone marrow-

derived macrophages (BMDMs) resulted in an enhanced inflammatory response to 

MSU crystals (Wang et al., 2014). Thus, AMPK phosphorylation, as for IKKα, 



37 
    

negatively regulates the activation of the inflammasome and that the loss and/or 

inhibition of AMPK showed exacerbation in the inflammatory response. 

 

AMPK is known to interact with the phosphotransferase nucleoside 

diphosphate kinase (NDPK), a known histidine kinase (Onyenwoke et al., 2012, 

Attwood et al., 2007). AMPK inhibits the function of NDPK by phosphorylation of the 

serine 120 (Ser120) residue. Wang et al. (2014) reported that urate (either soluble or 

MSU crystals) inhibited the function of AMPK (Wang et al., 2014), suggesting that its 

inhibitory effect on NDPK could also be attenuated and thus NDPK would be active. 

As NDPK is a histidine kinase, this would warrant further study to establish the role, 

if present, of histidine phosphorylation in inflammasome activation and function. 
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Table 1-2: What is known in inflammasome component regulation by 
phosphorylation 

Inflammasome 
component 

What is known Effect on 
inflammasome 

References 

NLRP1 Interacts with Protein Kinase R 
(PKR) 

Unclear* Lu et al2012, He 
et al 2013, Yim 
and Williams 
2014 

 
 

 
 
NLRP3 

Interacts with PKR Unclear* 

Dephosphorylated by PTPN22 at 
Y861 

NLRP3 Activation (Spalinger et al., 
2016) 

Interacts with BTK NLRP3 Activation (Ito et al., 2015) 

Ligand (MSU crystals) AMPK 
kinase inhibition 

NLRP3 Activation (Wang et al., 
2014) 

Serine 5 dephosphorylation by 
PP2A 

NLRP3 Activation (Stutz et al., 
2017) 

 
Interacts with PKR 

Unclear* (Yim and 
Williams, 2014, 
He et al., 2013) 

 
NLRC4 

Phosphorylated by PRKCD at 
serine 533 

 NLRC4 Activation (Matusiak et al., 
2015) 

 
Interacts with PKR 

Unclear* (Yim and 
Williams, 2014, 
He et al., 2013) 

AIM2   
Interacts with PKR 

Unclear* (Yim and 
Williams, 2014, 
He et al., 2013) 

 
 

ASC 

Phosphorylated at Y144/6 by Pyk2 
in a Syk/JNK-dependent manner 

Speck formation (Chung et al., 
2016) 

Interaction with IKK requires 
serines 16 and 193 

Inhibition by 
sequestration to 

intra-nuclear 
complex 

 
 
(Martin et al., 
2014) 
 PP2A mediates IKK –ASC 

dissociations 

ASC free to interact 
with NLRP3 

*The data presently available regarding the role of PKR in inflammasome function is contradictory, 
where Lu et al (2012) showed PKR interacted with NLRP1, NLRP3, & NLRC4, and was indispensable 
for NLRP3 inflammasome activation and He at al (2013) showed it was dispensable for NLRP3, 
NLRC4 and AIM2 inflammasome’s.  (He et al., 2013, Yim and Williams, 2014, Lu et al., 2012) 
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Figure 1-4: Kinases and phosphatases in inflammasome complex regulation 

Although there are clearly defined pathways in the regulation of the inflammasome by 
phosphorylation, there still remain unknown kinases and phosphatases involved in the 
modulation of the inflammasome at various points of the inflammasome pathway such as 
at receptor activation, adaptor recruitment or proteolytic cleavage of pro-caspase 1 and 
pro-IL-1β.  
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1.10 Research Project 

 

A number of studies have shown that kinase and phosphatase activities take place 

on inflammasome components thereby regulating the NLRP3 inflammasome. 

Although phosphorylation plays a pivotal role in inflammasome complex formation 

and function (Table 1-2), it is evident that there are substantial gaps in our current 

understanding. Several pathways involved in the phosphorylative regulation of the 

inflammasome are yet to be fully defined (Figure 1-4).  

 

In order to address these gaps, some studies have elucidated kinase and 

phosphatase-mediated regulation of inflammasome activation. For instance, the 

NLRP3 protein has been shown to be dephosphorylated by PP2A upon signal 1 

detection then phosphorylated by PKD upon signal 2 detection. Furthermore, NLRP3 

has also been shown to interact with tyrosine kinase BTK on upon nigericin 

treatment and is also dephosphorylated by PTPN22, essential steps in NLRP3 

inflammasome assembly (Spalinger et al., 2016, Stutz et al., 2017, Ito et al., 2015). 

This revealed that kinase and phosphatase activity can control inflammasome 

component activation. Therefore, it stands to reason that similar mechanisms of 

regulation could also take place on other inflammasome components such as ASC. 

ASC has already been shown to be a target for tyrosine phosphorylation but no 

tyrosine dephosphorylation has been shown. In this regard, we hypothesise that 

tyrosine dephosphorylation plays an important role in the regulation of the adaptor 

protein, ASC.  
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ASC is a convergent point for several receptors (NLRP3, AIM2, NLRC4) and 

effectors (caspase-1) and its absence results in complete abrogation of the 

downstream process (Kamo et al., 2013, Hanamsagar et al., 2011). Therefore, 

closing of the gaps in ASC phospho-regulation would aid in understanding 

inflammasome activation and thus lead to the development of treatments targeting 

inflammasome related diseases.  

 

1.10.1 Project Aims 

The main objective of this project is to provide a better understanding of the 

regulatory role of tyrosine phosphorylation of ASC in inflammasome complex 

formation and function.  

 

As such, the aims of this project are: 

• Determine the overall effect of tyrosine phosphatase inhibition on the NLRP3 

inflammasome. 

• Determine the impact of tyrosine phosphatase inhibition on ASC tyrosine 

phosphorylation, inflammasome formation and function 

• Identify the putative tyrosine residues of ASC crucial for the formation and 

activation of the NLRP3 inflammasome. 
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2. Materials and Methods 
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2.1 Reagents  

All the reagents used in this project are listed in Table 2-1. 

Table 2-1: Materials and Reagents  

Protocol Name Product Code Company 

Western Blot 

IL-1β antibody H-153 
Santa Cruz 

Biotechnology 

ASC antibody 

N-15 
Santa Cruz 

Biotechnology 

N-15-R 
Santa Cruz 

Biotechnology 

B-3 
Santa Cruz 

Biotechnology 

AL177 Adipogen 

04-147 Clone 

2EI-7 
Millipore 

GAPDH antibody MAB374 Millipore 

NLRP3 antibody AG-20B-0014 Adipogen 

Anti-FLAG antibody 147935 Cell Signalling 

Caspase-1 antibody 
C-20 

Santa Cruz 

Biotechnology 

M-20 Cell signalling 

Goat X Rabbit HRP 

secondary 
AP307P Millipore 
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Goat X Mouse HRP 

secondary 
AP124P Millipore 

Anti-GFP antibody PA146326 Thermo Scientific 

Phosphotyrosine antibody 

(pY99) 
sc-7020 

Santa Cruz 

Biotechnology 

PP2A Y307 antibody sc-12615 
Santa Cruz 

Biotechnology 

Precision Plus Protein™ Dual 

Color Standards 
1610374 Bio-rad 

        

ELISA 

IL-1β human ELISA capture 

antibody 
14-7018-85 ebioscience 

IL-18 human ELISA capture 

antibody 
D044-3 MBL 

TNFα human ELISA capture 

antibody 
502802 Biolegend 

IL-6 human ELISA capture 

antibody 
501102 Biolegend 

TNFα mouse ELISA capture 

antibody 
14-7423-85 ebioscience 

IL-6 mouse ELISA capture 

antibody 
504502 Biolegend 

IL-1β mouse ELISA capture 

antibody 
840134 R&D 
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IL-18 human ELISA detection 

antibody 
D045-6 MBL 

IL-1β human ELISA detection 

antibody 
13-7016-85 ebioscience 

IL-6 human ELISA detection 

antibody 
501202 Biolegend 

TNFα human ELISA 

detection antibody 
502904 Biolegend 

TNFα mouse ELISA detection 

antibody 
13-7341-85 ebioscience 

IL-6 mouse ELISA detection 

antibody 
504602 Biolegend 

IL-1β mouse ELISA detection 

antibody 
840135 R&D 

Streptavidin-HRP 18-4100-51 ebioscience 

3,3',5,5'-

Tetramethylbenzidine (TMB) 
00-4201-56 ebioscience 

        

Cell Culture & 

Treatment 

Phenylarsine oxide P3075 Sigma 

Sodium orthovanadate S6508 Sigma 

RPMI-1640 

11554516 Gibco 

BE12-702F Lonza 

R8758 Sigma 

DMEM media 11965-084 Gibco 



46 
    

Sodium Pyruvate  11360-070 Gibco 

Foetal bovine serum (FBS) S181B-500 Biowest 

Phorbol 12-myristate 13-

acetate (PMA) 
P8139-10MG Sigma 

IMDM media 12440046 Gibco 

Penicillin/Streptomycin 15140-122 Gibco 

Phosphate Buffered Saline 

(PBS) 
SH30256.01 GE Healthcare 

Medium 199 media M3769 Sigma 

Lipofectamine 2000 11668019 Invitrogen 

Opti-Mem media 31985-070 Gibco 

Lipopolysaccharide from 

E.coli O55:B5 

ALX-581-013-

L002 
Enzo 

Nigericin sodium salt 
J61349 Alfa Aesar 

N7143-10MG Sigma 

Poly(dA:dT) tlrl-patn-1 Invivogen 

Monosodium urate (MSU) - In house (SIgN) 

        

Confocal 

Microscopy 

Alexa Fluoro 488 (Goat X 

Rabbit) 
A11034 Life Technologies 

Alexa Fluoro 488 (Goat X 

Mouse) 
A11001 Life Technologies 

Alexa Fluoro 568 (Donkey X 

Mouse) 
A10037 Invitrogen  
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Alexa Fluoro 568 (Goat X 

Rabbit) 
A11011 Life Technologies  

Alexa Fluoro 633 (Goat X 

Mouse) 
A21050 Invitrogen  

Alexa Fluoro 555 (Goat X 

Rabbit) 
A21428 Life Technologies 

4’,6-Diamidino-2-

Phenylindole (DAPI) 
D1306 Life Technologies 

        

Other 

reagents 

Q5 site-directed mutagenesis 

kit  
E0554S New England Biolabs 

Protein G Sepharose 6511-5 Biovision  

Qiagen RNeasy kit 74104 Qiagen 

Cytox96® Non-radioactive 

Cytotoxicity assay 
G1782/G1781 Promega 

TRI Reagent T9424-100ML Sigma 

RNA-to-cDNA Reverse 

Transcription Kit 
4387406 Applied Biosystems 

SsoAdvancedTM Universal 

SYBR® Green Supermix  
172-5270 Bio-Rad 

Dimethylsulfoxide (DMSO)   Sigma 

Bovine Serum Albumin (BSA)   Sigma 
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2.2 Cell culture 

 

The cells used in this investigation are the murine bone marrow-derived 

macrophages (BMDMs), THP1 and HEK293 cell lines. THP1 cells are a monocytic 

cell line derived from a leukaemia patient (Tsuchiya et al., 1980). HEK293 cells are 

an immortalised human embryonic kidney cell line (Graham et al., 1977) commonly 

used in in vitro studies involving transfection of plasmids due to the ease with which 

they can be transfected.  

 

2.2.1 Generation of BMDMs 

Ethical permission for the use of experimental animals from the Institutional Animal 

Care and Use Committee (IACUC) was obtained in order to work with C57BL/6J 

mice as outlined by the National Advisory Committee on Laboratory Animal 

Research (NACLAR) guidelines in Singapore. The mice were euthanized by 

increasing carbon dioxide (CO2) concentration. Both the tibias and femurs of each 

mouse were surgically excised, and the bone marrow was isolated by centrifugation 

at 5000 x g for 5 minutes. The isolated bone marrow was then cultured in Iscove’s 

Modified Dulbecco’s Medium (IMDM) supplemented with 10% fetal bovine serum, 

1% penicillin/streptomycin and 20% macrophage colony-stimulating factor (M-CSF) 

for 8 days to induce progenitor maturation towards the macrophage lineage. In 

experiments involving an ELISA, lactate dehydrogenase (LDH) or qPCR read-out, 

the BMDMs were cultured in a 96-well plate at 100,000 cells per well to normalise for 

the number of cells. For western blot experiments, 10cm dishes were used at a 

confluence of 80-100% to maximise lysate yields. 
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2.2.2 THP1 cell differentiation 

THP1 monocytic cells were differentiated into macrophage-like cells with 100 nM 

phorbol 12-myristate13-acetate (PMA) in RPMI 1640 medium (RPMI-1640) 

supplemented with 10% fetal bovine serum, 1% penicillin/streptomycin, 1% sodium 

pyruvate and 1% L-glutamine cultured at 37 °C in 5% CO2. The THP1 cells (at 80-

90% confluence in suspension) were initially treated with PMA overnight (treatment 

phase) followed by a day in PMA-free media (resting phase). On the third day, 

THP1-derived macrophages (THP1DMs) were used for inflammasome-activating 

treatments. In experiments involving an ELISA, lactate dehydrogenase (LDH) assay 

or qPCR read-out, the THP1DMs were cultured in a 96-well plate at 100,000 cells 

per well, normalising by the number of cells. For western blot experiments, 10cm 

dishes were used at a confluence of 80-100% to maximise lysate yields. 

 

 

2.2.3 HEK293 cells culture 

HEK293 cells were cultured in Dulbecco’s Modified Eagles Medium (DMEM) with 

10% fetal bovine serum, 1% sodium pyruvate, 1% penicillin/streptomycin and 1% L-

Glutamine.  
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2.3 Inflammasome Activation 

 

2.3.1 NLRP3 inflammasome activation 

The NLRP3 inflammasome was activated by treatment with nigericin, monosodium 

urate (MSU) crystals and ouabain (Oua). Prior to nigericin, MSU or Oua treatment, 

THP1-derived macrophages (THP1DMs) or bone marrow-derived macrophages 

(BMDMs) were treated with E. coli LPS (1 µg/ml) for 2.5 – 3 hours. Nigericin (10 µM) 

or ouabain (125 μM) was added to the cells for up to 60 minutes while MSU crystals 

(200-400 µg/ml) was added for 6 hours before harvesting of cell-free supernatant 

and lysate for further analysis.  

 

2.3.2 Absent in melanoma 2 (AIM2) inflammasome activation 

The AIM2 inflammasome was activated by treatment with poly(dA:dT). Prior to 

poly(dA:dT) treatment, the differentiated THP1DMs or BMDMs were treated with E. 

coli LPS (1 µg/ml) for 2.5 – 3 hours. Poly(dA:dT) (1 µg/ml) was transfected (with 1 µl 

Lipofectamine 2000) into the cells for 6 hours before harvesting of cell-free 

supernatant and lysate for further analysis. 

 

2.3.3 NLRC4 inflammasome activation 

 

The NLRC4 inflammasome was activated by infection with Salmonella enterica 

serovar typhimurium (S. typhimurium) at multiplicity of infection 10 (MOI10). The 

THP1DMs and BMDMs were cultured in antibiotic-free medium followed by the 

addition of S. typhimurium for 1 hour. Gentamycin (100 µg/ml) was then added and 
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the cells were incubated overnight, and cell-free supernatant was harvested for 

ELISA analysis.  

 

2.3.4 MSU-induced peritonitis mouse model 

MSU-induced peritonitis in C57BL/6 mice was carried out in collaboration with Dr. 

Hanif Javanmard Khameneh (SIgN).  Age-matched mice were intraperitoneally 

injected with 3.5 mg in-house made MSU crystals, after 5 hours peritoneal cells were 

harvested by peritoneal lavage. Phenylarsine oxide (1 mg/kg) was injected 2 hours 

before MSU crystal injection (N=1). The mice were euthanized by increasing carbon 

dioxide (CO2) concentration. Permission for the use of experimental animals from the 

Institutional Animal Care and Use Committee (IACUC) was obtained in order to work 

with C57BL/6J mice as outlined by the National Advisory Committee on Laboratory 

Animal Research (NACLAR) guidelines in Singapore.  

 

2.4 Cell lysis and protein quantification 

 

The treated cells were harvested from culture plates by either scrapping, 

trypsinisation or direct addition of lysis buffer to the cells. Cells lysis was performed 

using radio-immunoprecipitation Assay (RIPA) buffer (150 mM sodium chloride, 1% 

Triton X-100, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate (SDS), 50 

mM Tris-buffered saline pH 8.0 supplemented with protease inhibitors (Roche), 1 

mM phenylmethanesulfonyl fluoride (PMSF) and phosphatase inhibitor (1 mM 

sodium orthovanadate) on ice for 10 minutes. Following lysis, the lysate was 

centrifuged on in benchtop centrifuge at 16, 000 x g for 10 minutes at 4°C to remove 

insoluble and nuclear matter. The supernatant was assayed with colorimetric assays, 
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bicinchoninic acid (BCA) assay or Bradford protein assay using bovine albumin 

serum (BSA) as standard to determine protein quantity. 

 

2.5 Protein Immunoprecipitation 

 

One milligram of lysate was initially pre-cleared with protein G sepharose beads for 

one hour at 4 °C. The precleared mix was centrifuged in benchtop centrifuge at 

maximum speed for 30 seconds at 4 °C and the supernatant was collected and the 

primary antibody for the target protein was added. The antibody-supernatant mix 

was incubated for 2 hours at 4 °C with agitation. After incubation, fresh protein G 

beads were added to the supernatant-antibody complex overnight at 4 °C. Following 

incubation, the mix was centrifuged and washed twice with complete lysis buffer 

(RIPA buffer) and then incubated with 30-60 µl of Laemmli buffer for 5 minutes at 

100 °C prior to running on an SDS-PAGE. 

 

2.6 Acetone protein precipitation 

 

To assess IL-1β and caspase-1 secretion, nigericin stimulation was carried out in 

serum-free media (RPMI-1640). Equal amounts (2-3 ml) of the supernatant was 

collected from each condition and individually precipitated for 1 hour at -20 °C in 8-

12 ml acetone. The precipitated proteins were resuspended in Laemmli buffer and 

processed for SDS-PAGE. The equal volume of condition serum-free media served 

as the loading control for the SDS-PAGE. 
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2.7 Disuccinimidyl suberate (DSS)-mediated cross-linking  

 

Following cell treatment, cells were harvested by scraping in ice-cold 

ethylenediaminetetraacetic acid (EDTA; 0.5 M). Following centrifugation at ≈425 x g 

for 10 minutes at 4 °C, cells were re-suspended in 500 µl lysis buffer (20 mM HEPES 

pH 7.5, 150 mM potassium chloride (KCl) and 1% NP-40/IGEPAL CA-630 with 

protease and phosphatase inhibitors) and lysed by shearing through a 21G needle at 

least 10 times. Fifty microliters (50 µl) of the lysate were taken as the whole lysate 

loading control for the western blot. The remaining lysate was centrifuged at ≈2655  

x g for 10 minutes at 4 °C and the supernatant was transferred into a fresh tube. The 

pellet was resuspended in 500 µl PBS and freshly prepared 2 mM DSS was added 

to both supernatant and resuspended pellet and incubated for a minimum of 30 

minutes at room temperature with agitation/rotation. Following centrifugation of both 

incubations at ≈2655  x g for 10 minutes at 4 °C, the supernatants were discarded 

and the cross-linking reaction was quenched with 60 μl Laemmli buffer [60 mM Tris-

HCl (pH 6.8), 2% lithium/sodium dodecyl sulfate, 10% glycerol, 100 mM dithiothreitol 

(DTT) and 0.01% bromophenol blue] then boiled at 95 °C for 10 minutes before 

loading onto an SDS-PAGE (Khare et al., 2016). 

 

2.8 Western Blot Analysis 

 

Lysates (30-50 µg) or precipitated/oligomerised proteins were incubated in Laemmlli 

buffer [60 mM Tris-HCl (pH 6.8), 2% lithium/sodium dodecyl sulfate, 10% 

glycerol,100 mM dithiothreitol (DTT) and 0.01% bromophenol blue] for 5-10 minutes 

at 95-100 °C. The now denatured protein samples were separated by SDS-PAGE 
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followed by protein transfer to PVDF (Millipore) or nitrocellulose membranes 

(Bradford). The membrane was blocked with 5% milk in TBS-Tween-20 at room 

temperature for 1 hour and then incubated overnight with primary antibodies (Table 

2.1.1) as indicated. Following overnight incubation, the membranes were washed 6 

times for 60 minutes (10-minute washes) and then incubated with the respective 

horseradish peroxidase (HRP)-conjugated secondary antibody (Dako, Millipore) for 1 

hour at room temperature. Upon incubation, the membrane was washed 6 times for 

60 minutes (10-minute washes) and then developed with Supersignal West Pico 

chemiluminescence detection (Pierce) solution and visualised by Bio-Rad 

chemiluminescence imager (Chemidoc) or on photographic film. 

 

2.8.1 Western Blot Quantification by densitometry  

Immunoprecipitation images obtained by the Bio-Rad chemiluminescence imager 

(Chemidoc) where imported into the imageJ software and band intensities were 

obtained as raw data. In order to quantify the target phosphorylation, the total protein 

(ASC) is first normalised by dividing all the total protein values with the highest total 

protein value. This is then followed by dividing the target tyrosine phosphorylation 

band value with its corresponding normalised total protein value. Then the control 

(untreated) values from the 3 experiments are averaged and each condition value is 

divided by the average of the untreated control yielding a fold change compared to 

the untreated control.  
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2.9 Generation of ASC mutant plasmids 

 

ASC tyrosine to phenylalanine (Y>F) mutants of the pEF6-ASC-GFP plasmid (Figure 

2-1), were created using the Q5 site-directed mutagenesis kit (New England 

Biolabs). The tyrosine codons TAC or TAT were substituted to phenylalanine codons 

TTC. The primer design was carried out using the NEBbasechanger 

(http://nebasechanger.neb.com/) (Table 2-2) as recommended by the manufacturer’s 

instructions. Following primer design, the polymerase chain reaction (PCR) was 

carried out according to the manufacturer’s instructions and following the conditions 

reported in Table 2-3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://nebasechanger.neb.com/
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Table 2-2: Primers for Y36, Y60, Y64, Y137 and Y146 site-directed mutagenesis 

of ASC  

Selected Residues  Primers 

Y36 Forward- GCGCGAGGGCttcGGGCGCATCC 

Reverse- AGCGGCACCGACAGCAGC 

Y60 Forward- GGTCAGCTTCttcCTGGAGACCTA 

Reverse- AGCTTGTCGGTGAGGTCC 

Y64 Forward- CCTGGAGACCttcGGCGCCGAGC 

Reverse- TAGAAGCTGACCAGCTTGTCGGTG 

Y137 Forward- GGATGCTCTGttcGGGAAGGTCC 

Reverse- AGCAGCCACTCAACGTTTG 

Y146 Forward- GGATGAGCAGttcCAGGCAGTGC 

Reverse- GTCAGGACCTTCCCGTAC 
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Table 2-3: Mutagenesis PCR Reaction Setup 
 

STEP TEMP TIME 

Initial Denaturation 98 °C 30 seconds 

 

25 cycles 

98 °C 

72 °C 

72 °C 

10 seconds 

30 seconds 

30 seconds/kb 

Final Extension 72 °C 2 minutes 

Hold 4–10 °C 
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Figure 2-1: pEF6 ASC-GFP plasmid 
The pEF6-ASC-GFP plasmid was kindly provided by Dr. Kate Schroder of the IMB Inflammasome Lab 

at the University of Queensland, Australia. 



59 
    

2.10 Bacterial transformation by heat shock 

 

DH5α chemically competent E. coli were incubated with the plasmids encoding the 

inflammasome proteins on ice for 30 minutes followed by heat shock at 42 °C in a 

water bath for 45-60 seconds. The bacteria were then placed back on the ice for 5 

minutes before the addition of SOC media and allowed to recover for 1 hour at 37 °C 

with agitation. After incubation, the bacteria were streaked onto agar plates 

containing carbenicillin (more stable alternative to ampicillin). Colonies were picked, 

grown in 5 ml cultures and a miniprep (Qiagen) was carried out according to 

manufacturer’s instructions. The isolated plasmids were then sequenced to validate 

the site-directed mutagenesis. 

 

2.11 Transfection of HEK293T cells 

 

HEK293T cells were seeded into 24-well plates at a cell density of 200,000 cells per 

well, respectively and incubated overnight. The cells were then transfected with 100 

ng pCR3-NLRP3-FLAG, 50 ng pEF6-ASC-GFP (and validated mutants), 30 ng pro-

caspase-1, 100 ng pro-IL-1β and 720 ng empty vector (pCR3) with Lipofectamine 

2000 for 24 hours. At 24 hours, the media was changed, and the cells were 

incubated for a further 24 hours. Forty-eight hours later, the media was collected for 

ELISA analysis and the lysate for western blot analysis. 
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2.12 Confocal microscopy 

 

THP-1-derived macrophages cells were cultured in chamber microscope slides at a 

density of 150,000 per well/chamber. Following LPS priming, the cells were treated 

with nigericin for 30-45 minutes ±PAO. The cells were fixed with 1-2% 

paraformaldehyde at room temperature for 10-15 minutes. Following fixing, the cells 

underwent permeabilization (permeabilization buffer: 0.1% saponin, 0.2% gelatin, 5 

mg/ml BSA and 0.02% sodium azide in PBS) followed by three 10-minute washes 

with PBS. Blocking solution (0.01% saponin, 0.2% gelatin and 5 mg/ml BSA in PBS) 

was then added for 45-60 minutes at room temperature, following which the primary 

antibody (anti-ASC, SCBT, N-15-R) (Table 2-1) was added for an hour at room 

temperature or overnight at 4 °C. The cells were washed 3 times for 10 minutes each 

with PBS then the secondary antibody conjugated to a fluorophore was added for 1 

hour at room temperature in the dark. A final wash step was carried out with the 

addition of a DNA stain (4’,6-Diamidino-2-Phenylindole (DAPI)) on the third wash. 

The images were taken with the Olympus confocal microscopy system (FV-1000 

inverted Olympus IX81 microscope, magnification of 100X).  

 

2.13 Cytokine Enzyme-linked Immunosorbent Assay (ELISA) 

 

A 96-well plate was initially coated with the capture antibody (2 µg/ml) for the target 

cytokine (IL-1β and IL-18) for one hour at 37 °C or overnight at 4 °C. After 

incubation, the plate was washed 3 times with PBS-0.05% Tween-20 and dried, then 

blocked for 1 hour at room temperature with 1-2% BSA in PBS. The standard, a 

recombinant form of the cytokine of known concentration was added beginning at 1 
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ng/ml and serially diluted. Supernatant collected from treatment conditions was also 

added to the plate either as neat or up to a dilution factor of 10 and incubated for 2 

hours at room temperature. The plate was then washed as before, and the biotin-

conjugated detection antibody was then added for a further 1 hour 30 minutes at 

room temperature prior to washing again. Streptavidin-conjugated to horseradish 

peroxidase (HRP) was added and the plate was incubated at room temperature in 

the dark for 45-60 minutes. The plate was washed and following the wash step, 

3,3′,5,5′-Tetramethylbenzidine (TMB), an HRP substrate, was added and the 

colorimetric reaction was stopped by 1 M H2SO4. The absorbance was detected at a 

wavelength of 450 nm using a plate reader.  

 

2.14 RNA isolation  

 

Ribonucleic acid (RNA) was isolated from cells using the Qiagen RNeasy kit 

(Qiagen). Following cell treatments, the supernatant was removed and TRIzol / TRI-

reagent (to a maximum volume of 300 µl) was added to adherent cells and collected. 

Chloroform at 20% of the volume of TRIzol/TRI-reagent was added and the sample 

was centrifuged at 4 °C for 15 minutes (≈16,000 x g). The top supernatant 

(transparent) was immediately transferred into a fresh tube where 70% ethanol of 

equal volume was added. The sample-ethanol mix was then added to the RNAeasy 

mini column and centrifuged at ≈10621 x g for 60 seconds. Buffer RW1 (700 µl) was 

then added to the column and again centrifuged at ≈10621 x g for 1 minute. The 

column was washed with Buffer RPE twice before elution of the RNA with DEPC 

water at ≈10621 x g for 1 minute. RNA was then quantified by Nanodrop.  
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2.15 Reverse transcriptase-polymerase chain reaction 

 

In order to obtain cDNA, Reverse Transcriptase- PCR (RT-PCR) was carried out on 

the isolated sample RNA with the High Capacity RNA–to-cDNA Reverse 

transcription kit (Applied Biosystems) under the conditions shown in Table 2-4.  

 

 

Table 2-4: Reverse Transcriptase PCR Reaction setup 

 

 

 

 

 

 

 

 

2.16 Quantitative polymerase chain reaction 

 

The quantitative PCR (qPCR) mix was prepared with a final forward and reverse 

primer concentration of 250 nM each and 100 ng of template cDNA sample for the 

target gene (IL-1β) and housekeeping gene GAPDH. The SYBR Green supermix 

(Bio-rad), a dye-based reaction mix was added (with nuclease free water) to a final 

volume of 20 μl. The PCR was then carried out on the ABI 7900HT real-time PCR 

system with the reaction steps shown in Table 2-5. The threshold cycle (Ct) values 

obtained were processed to obtain the fold change in gene expression by calculating 

the 2-ΔΔCt. 

STEP TEMP TIME 

Elongation 37 °C 60 minutes 

Stop 95 °C 5 Minutes 

Hold 4 °C ∞ 
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Table 2-5: Quantitative PCR reaction setup 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.17 Lactate dehydrogenase assay 

 

Lactate dehydrogenase (LDH) level in cell-free supernatant was assessed using the 

CytoTox 96® Non-Radioactive Cytotoxicity kit (Promega) according to 

manufacturer’s instructions. The CytoTox® reagent (50 µl) was added to 50 µl of the 

samples and controls (whole lysate and media only) and incubated in a 96-well plate 

for 30 minutes in the dark. Then the stop solution containing acetic acid was added 

to stop the reaction. The absorbance was detected at a wavelength of 492 nm with a 

plate reader. 

STEP TEMP TIME 

Stage 1 50 °C 2 minutes 

Stage 2 95 °C 2-3 minutes 

 

40 cycles 

95 °C 15 seconds 

60 °C 1 minute 
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2.18 Flow cytometry  

 

Peritoneal lavage exudate cells were incubated for 30 minutes at 4°C with the 

following antibody cocktail: anti-mouse CD11b PerCP-Cy5, anti-mouse, CD11c PE-

Cy7, anti-mouse F4/80 Biotin, anti-mouse Ly6C FITC, anti-mouse Ly6G PE and anti-

mouse MHCII APC-Cy7. This was followed by staining with streptavidin-APC for 30 

minutes at 4°C and then DAPI was added to the samples 5 minutes prior to 

acquisition on FACS. The cells were washed and analysed on LSR II Flow cytometer 

(BD) with the following gating strategy: dendritic cells (live CD11c+ MHCIIhigh), 

macrophages (live CD11b+F4/80+), neutrophils (CD11b+F4/80-Ly6G+Ly6Clow/int), 

monocytes (CD11b+F4/80-Ly6G-Ly6Chigh). 

  

2.19 Statistical analysis 

 

Statistical analysis was carried out using the GraphPad Prism Software. All the data 

(with at least 3 experiments) was analysed by comparing the mean of each of the 

inhibitor treatment conditions to the LPS+Nig column using ordinary one-way 

ANOVA with the Dunnett post-hoc test without matching/pairing. Two-tailed paired t-

test was carried out with Gaussian distribution assumed (parametric test) to analyse 

the number of ASC specks in confocal microscopy. Two-way ANOVA was carried 

out with Sidak post-hoc test. In the experiments involving varying concentrations of 

inhibitors and varying concentrations of vehicle, two-way ANOVA was carried out by 

comparing the inhibitor treatments and the vehicle treatments.  
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3. Effect of protein phosphatase 

inhibition on inflammasome 

function 
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3.1 Introduction 

 

The inflammasome is a highly regulated complex within the cell. As already 

mentioned in this report, phosphorylation of inflammasome components is an 

indispensable regulatory mechanism that has been and is currently being studied 

extensively. Whilst much of the work has focused on kinase involvement (Lin et al., 

2015, Chung et al., 2016, Okada et al., 2014, Hara et al., 2013b, Martin et al., 2014), 

this study has sought to investigate the role of phosphatases in NLRP3 

inflammasome function. In this chapter, the involvement of protein phosphatases is 

examined with the aid of phosphatase inhibitors to identify novel effects of 

phosphatase inhibition, thereby revealing new phosphatase-mediated NLRP3 

inflammasome regulation mechanisms. The phosphatase inhibitors used are: 

• Sodium orthovanadate (OVN), a broad-spectrum protein tyrosine 

phosphatase (PTP) inhibitor. 

• Okadaic acid (OA), a selective inhibitor for the serine/threonine phosphatase, 

PP2A. 

• PTP1B inhibitor (PTP1Bi). 

• NSC-87877, a SHP1/2 dual inhibitor. 

• Phenylarsine oxide (PAO), a broad spectrum PTP inhibitor (discussed in 

detail in Chapter 4) 
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3.2 Ethanol and DMSO inhibit the NLRP3 inflammasome 

 

Most of the inhibitors used in this investigation could be dissolved in either ethanol, 

DMSO or water. It has already been reported that both ethanol and DMSO inhibit 

inflammasome activation (Ahn et al., 2014, Hoyt et al., 2016); therefore, prior to 

proceeding with our investigation, assessing and determining the effective 

concentrations of the vehicles would be vital.  

 

THP1DMs were stimulated with E. coli LPS (signal 1) for 1 hour and then 

increasing concentrations of ethanol and DMSO for 30 minutes before the addition of 

nigericin to activate the NLRP3 inflammasome. Nigericin is an antibiotic that 

functions as a potassium ionophore leading to K+ efflux, triggering the NLRP3 

inflammasome (Muñoz-Planillo et al., 2013). To assess NLRP3 inflammasome 

activation, IL-1β ELISA was carried out. We found that both ethanol and DMSO 

vehicles inhibited the nigericin-induced NLRP3 inflammasome activation with ethanol 

exerting the most notable effect at higher concentrations when compared to DMSO 

(Figure 3-1). Therefore, we decided to use DMSO as a solvent for okadaic acid, 

PTP1Bi and PAO. Water was used for OVN and NSC-87877.  
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Figure 3-1: Ethanol and DMSO inhibit the NLRP3 inflammasome in 
THP1DMs 
THP1-derived macrophages were primed with 1 µg/ml LPS for 3 hours followed by treatment with 
ethanol or DMSO (0.1% – 10%) for 30 minutes. Nigericin (10µM) was then added for 1 hour to 
activate the NLRP3 inflammasome. An ELISA of the culture media (supernatant) was carried out 
to measure IL-1β release (n=1) 
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3.3 Ouabain-induced NLRP3 inflammasome activation is inhibited by protein 

tyrosine phosphatase inhibitors 

 

Ouabain (Oua) is a sodium-potassium (Na+-K+) ATPase inhibitor that causes an 

increase in intracellular sodium and depletion of intracellular K+ which activates the 

NLRP3 inflammasome (Muñoz-Planillo et al., 2013, Kanneganti and Lamkanfi, 

2013). In initial experiments, we carried out stimulation of primed THP1DMs with 

broad spectrum PTP inhibitors, including sodium orthovanadate (OVN) and 

phenylarsine oxide (PAO), for 30 minutes prior to the addition of 125 μM Oua for 1 

hour. 

 

We initially assessed the processing and release of IL-1β in the supernatant 

of treated cells and observed that IL-1β was cleaved and released in Oua treated 

cells, but this was completely abrogated in the presence of PAO (Figure 3-2A). We 

also observed that PAO treatment resulted in an increase in extracellular pro-IL-1β 

compared to Oua treatment, possibly associated with PAO-mediated decrease in 

processing and increased membrane permeability. Similarly, OVN treatment resulted 

in similar levels of extracellular pro-IL-1β suggesting a slight OVN-mediated inhibition 

of IL-1β processing but not complete abrogation since we observed the p17 IL-1β 

band in the supernatant blot. We further investigated the effect of PAO and OVN on 

global tyrosine phosphorylation. OVN had an expected inhibitory effect on global 

tyrosine dephosphorylation (Figure 3-2B), implicating some protein tyrosine 

phosphatases in mediating Oua-induced activation of the NLRP3 inflammasome. 

Compared to OVN, PAO did not exert as marked an inhibition on PTP activity in 

Oua-induced activation of the NLRP3 inflammasome as expected. 
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Figure 3-2: Ouabain-induced inflammasome activation is inhibited by PAO 
in THP1DMs 
THP1-derived macrophages were primed with 1 µg/ml LPS for 3 hours followed by treatment with 
broad-spectrum protein tyrosine phosphatase inhibitors, phenylarsine oxide (PAO (3 µM)) or 
Sodium orthovanadate  (OVN (1 mM)) for 30 minutes. Ouabain (125 µM) was then added for 1 hour 
to activate the NLRP3 inflammasome. Immunoblot analysis of acetone precipitated supernatant or 
whole cell lysate was carried out to assess IL-1β processing and release (A) or tyrosine 
phosphorylation (B), respectively.  Representative figures of n=3. 

 



71 
    

3.4 Sodium orthovanadate treatment inhibits NLRP3 inflammasome function 

post-LPS-priming 

 

Sodium orthovanadate (OVN) is a phosphate analogue that is commonly used as a 

broad spectrum protein tyrosine phosphatase inhibitor (Huyer et al., 1997) to 

investigate tyrosine phosphorylation. A previous study in THP1DMs showed that 

OVN treatment resulted in NLRP3 inflammasome activation evaluated as IL-1 

release and pyroptosis (Ghonime et al., 2012). This study involved the treatment of 

THP1 cells with varying OVN concentrations over various durations ranging from 1 to 

26 hours. In another study, Hoyt et al (2016) demonstrated that post-LPS OVN 

treatment (1 mM) further augmented ATP-induced IL-1 secretion in murine J774 

cells (Hoyt et al., 2016), also suggesting that protein tyrosine phosphatase inhibition 

by OVN leads to inflammasome activation. 

 

We investigated the effect of OVN on THP1DMs in nigericin-mediated NLRP3 

inflammasome activation. We found that increasing OVN treatment significantly 

inhibited nigericin-induced NLRP3 inflammasome activation in LPS-primed 

THP1DMs as measured by IL-1β release by ELISA. Figure 3-3 shows reduced IL-1β 

secretion suggesting that, similarly to Oua-induced activation, nigericin-induced 

NLRP3 inflammasome activation is inhibited by OVN.  
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Figure 3-3: Sodium Orthovanadate treatment after LPS-priming inhibits 
NLRP3 inflammasome function in THP1DMs 
THP1-derived macrophages were primed with 1 µg/ml LPS for 3 hours followed by treatment with 
vehicle (water) or OVN (0.01 – 10 mM) for 30 minutes. Nigericin (10 µM) was then added for 1 hour 
to activate the NLRP3 inflammasome. An ELISA of the culture media (supernatant) was carried out 
to measure IL-1β release. All data represent the means ± standard error (SEM) Statistical analysis 
was carried out by comparing each of the inhibitor treatment conditions to the LPS+Nig column 
using Ordinary one-way ANOVA with the Dunnett test. Level of significance: *p≤0.05 **p≤0.01 (n=3).  
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3.5 Okadaic acid treatment post-LPS stimulation has no effect on NLRP3 

inflammasome function 

  

Protein Phosphatase 2A (PP2A) is a serine/threonine phosphatase that has been 

shown to regulate inflammasome activation through direct serine dephosphorylation 

of NLRP3 (Stutz et al., 2017) and indirectly ASC cytoplasmic localisation via IKKα 

(Martin et al., 2014). Okadaic acid (OA) is a selective inhibitor of PP2A that has 

previously been used in murine inflammasome studies to establish PP2A as an 

indispensable phosphatase in inflammasome activation (Stutz et al., 2017, Martin et 

al., 2014). These previous studies demonstrated that okadaic acid-mediated 

inhibition of PP2A resulted in attenuated IL-1β processing and release. 

 

The effect of PP2A inhibition by okadaic acid was explored in human 

(THP1DMs) cells in this study as opposed to previous murine studies. OA treatment 

was preceded by LPS stimulation then followed by nigericin treatment to assess the 

release of IL-1 as a measure of NLRP3 inflammasome activation. No significant 

effect on IL-1 secretion was observed following a 30-minute pre-nigericin treatment 

with varying concentrations of OA (Figure 3-4), suggesting no role for PP2A in 

human cells.  
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Figure 3-4: Okadaic acid has no effect on NLRP3 inflammasome function in 
THP1DMs 
THP1-derived macrophages were primed with 1 µg/ml LPS for 3 hours followed by treatment with 
OA (0.001 – 1 µM) or with the corresponding vehicle concentration for 30 minutes. Nigericin (10 
µM) was then added for 1 hour to activate the NLRP3 inflammasome. An ELISA of the culture media 
(supernatant) was carried out to measure IL-1β release. All data represent the means ± standard 
error (SEM) (n=3). Two-way ANOVA was carried out by comparing the inhibitor treatments and the 
vehicle (DMSO) treatments. Sidak post-hoc test was carried out. ns = not significant (p> 0.05) 
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3.6 Pharmacological PTP1B inhibition has no effect on NLRP3 inflammasome 

function 

 

The serine/threonine phosphatase PP2A is regulated by a tyrosine phosphatase 

called protein tyrosine phosphatase 1B (PTP1B) encoded by the PTPN1 gene. 

PTP1B regulates PP2A activation by dephosphorylation of PP2A at tyrosine 307 

(Y307) leading to its activation (Shimizu et al., 2003).  

 

 The investigation into PTP1B in the context of the inflammasome was to 

assess whether PTP1B plays a regulatory role in the inflammasome activation 

upstream of PP2A, as well as identify a novel function of PTP1B in the 

inflammasome complex. Therefore, 30-minutes incubation of THP1DM cells with a 

PTP1B pharmacological inhibitor (PTP1Bi) was carried out following 3 hours of LPS 

stimulation. PTP1Bi treatment resulted in attenuated function of the NLRP3 

inflammasome, as measured by IL-1 release (Figure 3-5). However, despite 

increasing concentrations of PTP1Bi, we observed that IL-1 inhibition was not due 

to loss of PTP1B activity, but instead was a general effect exerted by the DMSO 

vehicle, which is known to inhibit NLRP3 inflammasome activation (Ahn et al., 2014). 

Indeed, the difference between the corresponding PTP1Bi and DMSO 

concentrations was not significant as analysed by Two-way ANOVA. 
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Figure 3-5: Pharmacological PTP1B inhibition has no effect on NLRP3 
inflammasome function 
THP1-derived macrophages were primed with 1 µg/ml LPS for 3 hours followed by treatment with 
PTP1B inhibitor (12.5 – 100 µM) or with corresponding vehicle (DMSO) concentration for 30 
minutes. Nigericin (10 µM) was then added for 1 hour to activate the NLRP3 inflammasome. An 
ELISA of the culture media (supernatant) was carried out to measure IL-1β release. All data 
represent the means ± standard error (SEM) (n=3). Two-way ANOVA was carried out by comparing 
the inhibitor treatments and the vehicle (DMSO) treatments. Sidak post-hoc test was carried out. ns 
= not significant (p>0.05).  

U T L P S L P S

+ N ig

1 2 .5 2 5 5 0 1 0 0 0 .2 5 0 .5 1 2

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

3 -5

IL
-1


 (
p

g
/m

l)

+  P T P 1 B i (M ) +  D M S O  (% )

n s



77 
    

3.7 SHP1 and SHP2 are not involved in NLRP3 inflammasome function 

 

Prediction software and online databases are valuable tools to quickly assess 

possible protein phosphorylation sites and protein interactions. The protein sequence 

of human Pycard/ASC was sourced from uniprot.com(Q9ULZ3) and used in the 

online consensus site database called PhosphoMotif Finder 

(http://hprd.org/PhosphoMotif_finder) (Amanchy et al., 2007). The protein tyrosine 

phosphatase SHP1 was predicted as a candidate tyrosine phosphatase for tyrosine 

residues Y36, Y64 and Y146 on human ASC as shown in Table 3-1. 

 

Src homology region 2 (SH2) domain-containing phosphatase-1 (SHP1), also 

known as tyrosine-protein phosphatase non-receptor type 6, is a tyrosine 

phosphatase encoded by the PTPN6 gene that is highly expressed in 

haematopoietic cell lineages (Plutzky et al., 1992). IL-1β release in murine 

neutrophils has been attributed to SHP1 negative regulation of the TLR and IL-1R 

signalling (Croker et al., 2011), but has not been shown in other cell types such as 

macrophages. 

 

To assess whether SHP1 plays a role in NLRP3 inflammasome function in 

human macrophages (THP1DMs), pharmacological inhibition of SHP1 (and SHP2) 

was carried out using dual SHP1 and SHP2 inhibitor NSC-87877 (IC50: 0.318 µM, 

0.355 µM for SHP2 and SHP1, respectively). The NSC-87877 inhibitor (0 – 250 µM) 

did not affect IL-1β release induced by nigericin (Figure 3-6). Increasing NSC-87877 

concentrations or incubation time of up to 4 hours (Figure 3-6A-C) did not result in 

any inhibitory or synergistic effect on IL-1β release. We observed that there was a 
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trend of increase in IL-1β release by increasing NSC-87877 concentration. Since we 

observed no effect at 1, 2 and 24 hours with increasing concentration, the 

experiment was not pursued further at that time. 
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Table 3-1: ASC possesses consensus sites for SHP1 at Y36, Y64 and Y146. 
Human ASC amino acid sequence obtained from www.uniprot.com (Q9ULZ3 
accessed:23/09/2017) was queried with the PhosphoMotif Finder (Amanchy et al., 2007) on the 
Human Protein Reference Database (http://www.hprd.org/PhosphoMotif_finder) for tyrosine 
kinase and phosphatase motifs. 
 
 

Position 
in protein 

Sequence in 
protein 

Corresponding motif 
described in literature 

Motif features 
described 

in the literature 

36 EGY [E/D]XpY 
SHP1 phosphatase 

substrate motif 

64 ETY [E/D]XpY 
SHP1 phosphatase 

substrate motif 

146 EQY [E/D]XpY 
SHP1 phosphatase 

substrate motif 
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Figure 3-6: Pharmacological inhibition of SHP1 (and SHP2) has no effect on 
NLRP3 inflammasome function 
THP1-derived macrophages were primed with 1µg/ml LPS for 3 hours followed by treatment with 
NSC-87877 (0.25 – 250µM) or vehicle for 60 (A), 120 (B) and 240 (C) minutes. Nigericin (10µM) 
was then added for 1 hour to activate the NLRP3 inflammasome. An ELISA of the culture media 
(supernatant) was carried out to measure IL-1β release (n=1).  
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3.8 Discussion 

 

The overall inhibition of tyrosine phosphatases by the broad-spectrum protein 

tyrosine inhibitors, PAO and sodium orthovanadate, resulted in a decrease in NLRP3 

inflammasome-mediated IL-1 release, where PAO/OVN treatment was carried out 

after 3 hours of LPS stimulation for 30 minutes (Figure 3-1). This is in contrast to 

previous studies that have shown OVN-mediated protein tyrosine phosphatase 

inhibition resulting in enhanced IL-1β release (Ghonime et al., 2012, Hoyt et al., 

2016). Ghonime et al. (2012) observed that OVN treatment of THP1DMs required at 

least 9 hours at a concentration of 50 μM (or 6 hours at 100 μM) to elicit significant 

cell death and IL-1β release. This effect was further enhanced by the addition of LPS 

overnight. Our data shows that varying concentrations of OVN treatment for 30 

minutes sufficiently inhibited the inflammasome. On the other hand, Hoyt et al. 

(2016), showed that LPS-primed murine cells (J774 cells) treated with OVN at 1 mM 

for 1 hour prior to ATP-induced NLRP3 inflammasome stimulation released more IL-

1β (Hoyt et al., 2016). 

 

In this study, to target NLRP3 inflammasome activation directly and without 

affecting further gene transcription, inhibitor treatment was carried out 30 minutes 

prior to the addition of the NLRP3 inflammasome activator nigericin and ouabain and 

left on the cells together with the activator. As such, any effects on IL-1β release 

would be attributed to inhibition (or enhancement) of the NLRP3 inflammasome by 

the inhibition of direct protein-phosphatase interactions.  
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Differences in our experimental approach to that of Ghonime et al. and Hoyt 

et al. include cell species, OVN treatment duration and inflammasome agonist. 

Ghonime and colleagues produced THP1-derived macrophages (TDMs) with 

200/500 nM PMA for 3 hours followed by 3 days of differentiation, whilst our 

THP1DMs were differentiated by overnight PMA stimulation, then an overnight 

resting phase. This difference in differentiation techniques could account for the 

difference in responses as proposed by Daigneault et al. (Daigneault et al., 2010) 

where different differentiation protocols resulted in differences in macrophage 

markers dependent on varying treatment protocols and thus differences in proteins 

expressed. Furthermore, following differentiation, the TDM cells were treated with 

low concentrations of OVN for long periods (up to 26 hours). This sustained OVN 

treatment could affect other pathways that in turn would lead to inflammasome 

activation, including further transcriptional activity. Reproducing the Ghonime et al. 

experiments in parallel with our experiments would be an interesting avenue to take 

as this would provide insights into how differentially differentiated THP1s (expressing 

a range of promonocytic to full macrophage markers) respond to inflammasome 

stimuli and how sustained OVN treatment affects cellular pathways. 

 

In the Hoyt et al. (2016) report, various cell types were investigated for the 

effect of alcohol on inflammasome function, however only J774 cells, a murine 

macrophage cell line, were used to assess the effect of OVN on ATP induced 

NLRP3 inflammasome (Hoyt et al., 2016). Hagai et al. (2018) have reported that 

there is transcriptional variability across cell types and species. In that study bulk and 

single-cell transcriptomics in different cell types across various species were used to 

assess response to immune stimuli (Hagai et al., 2018). Therefore, although both 
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J774 and THP1DM cells similarly respond to NLRP3 stimuli, the cross-species 

transcriptome (and subsequently the proteome) may differ to allow OVN mediated 

IL-1β augmentation in ATP- stimulated murine cells and, conversely, inhibit nigericin 

induced IL-1β release in human cells. 

 

NLRP3 inflammasome activation by ATP involves the activation of P2X7 

receptors whereas nigericin functions as a potassium ionophore leading to K+ efflux 

(Muñoz-Planillo et al., 2013).  Further work is needed to elucidate the OVN sensitive 

pathways that are involved in ATP vs. nigericin induced inflammasome activation in 

both murine and human cells. 

 

Our investigation into PP2A showed that there was no reduction in IL-1β 

release in okadaic acid-treated THP1DMs, whereas previous reports have 

suggested that PP2A is required for the activation of the NLRP3 inflammasome and 

thus inhibition of PP2A would inhibit IL-1β release (Stutz et al., 2017, Martin et al., 

2014). In these reports, OA treatment was carried out prior to LPS stimulation in 

murine cells whereas OA treatment in our study was carried out post-LPS stimulation 

for 30 minutes in human cells. The difference in effect on IL-1β release to PP2A 

inhibition can be due to difference in treatment conditions (as is the case with OVN 

treatment) where the other reports would have had OA treatment lasting for the 

entirety of the experiment duration (up to 4.75 hours) (Martin et al., 2014) as 

opposed to only 1.5 hours in this investigation. Similar to OVN investigations, we 

used human cells and other reports used murine cells, which can also possibly 

account for the disparity in effect. This project’s main focus was assessing and 

determining the role of PP2A in human macrophages (as opposed to murine cells as 
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done by previous studies (Martin et al., 2014, Stutz et al., 2017)). However, an 

interesting avenue to extend the scope of this study would be to carry out a 

comparative study with our conditions in murine cells. This approach would be 

crucial in furthering the understanding of the underlying mechanisms in PP2A 

mediated control of the inflammasome and identifying any differences (if any) in 

inflammasome control in murine versus human innate immune responses.  

 

Since inhibition of PP2A yielded a different result to that previously observed 

in other reports, we hypothesized that okadaic acid was not sufficient to inhibit PP2A 

within the parameters of our experiment. Therefore, we sought to target the 

regulating tyrosine phosphatase of PP2A, PTP1B (Geraghty et al., 2013). PP2A 

activation requires dephosphorylation of tyrosine 307 (Y307) by PTP1B, therefore, 

targeting PTP1B was carried out to ultimately assess two main objectives: whether 

PTP1B is involved in regulating the NLRP3 inflammasome via PP2A and whether 

PTP1B directly regulates inflammasome complex proteins. Therefore, a PTP1B 

inhibitor was used to pharmacologically inhibit PTP1B in inflammasome–activated 

THP1DMs. As shown PTP1B inhibition with this inhibitor had no effect on the NLRP3 

inflammasome. Nigericin-mediated inflammasome activation was not inhibited or 

enhanced by treatment with this inhibitor. This, therefore, showed that PTP1Bi 

treatment has no effect on inflammasome activation implicating no role for PTP1B. 

There are currently no reports on the role of PTP1B in inflammasome function, nor 

are there any reports implicating PTP1B to regulating PP2A during inflammasome 

activation, therefore, it would be of particular interest to further investigate this. This 

can be done by using alternative pharmacological inhibitors, protein knockdown with 
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siRNA or protein knockout then assessing PTP1B activity and if there is an effect on 

inflammasome function. 

 

Phosphorylation of ASC on tyrosine residues is important for inflammasome 

function (Hara et al., 2013b, Chung et al., 2016). In a change of tack, rather than 

broadly inhibiting candidate protein tyrosine phosphatases by using broad spectrum 

inhibitors (PAO and OVN), we investigated the ASC protein for the presence of any 

consensus phosphorylation sites that have been previously identified in other 

proteins. Consequently, with the aid of the online Phospho-motif finder, we queried 

the ASC protein sequence to identify any tyrosine phosphorylation consensus sites. 

SHP1 was identified as a candidate tyrosine phosphatase for the ASC protein at 

tyrosines 36, 64 and 146. Therefore, we investigated whether SHP1 was required for 

NLRP3 inflammasome function. To achieve this, NSC-87877, a dual SHP1/2 

inhibitor was used to treat THP1DMs after priming with LPS thereby focusing on 

processes taking place immediately before NLRP3 inflammasome activation. The 

SHP dual inhibitor had no effect on NLRP3 inflammasome function as shown by no 

decrease (or increase) in IL-1β secretion despite an increase in concentration or 

duration of post-LPS treatment. Although, ASC possesses consensus sites for 

SHP1, the data obtained shows that treatment with dual SHP1/2 inhibitor NSC-

87877 in these conditions has no effect on the NLRP3 inflammasome. Croker et al. 

reported, however, that IL-1β release from murine neutrophils from SHP1Y208N/Y208N 

mice was enhanced (Croker et al., 2011). The SHP1 Y208N mutant is a substitution 

mutation of SHP1 where a tyrosine (Y) residue in the C-terminal SH2 domain is 

replaced with asparagine (N) rendering it inactive (Croker et al., 2008, Lukens and 

Kanneganti, 2014). This is a valuable tool in investigating NLRP3 inflammasome 
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function in other murine cell types of this mutant mouse such as macrophages, 

monocytes and dendritic cells. This would allow elucidation of the role of SHP1, if 

present, in inflammasome complex formation and function. 

 

Taken together, we have shown that PAO and OVN inhibit IL-1β release, but 

the other phosphatase inhibitors investigated (PTP1Bi, OA and NSC-87877) here do 

not affect NLRP3 inflammasome activation by nigericin. However, there are 

limitations in our study that should be noted: Except for PAO and OVN, we did not 

show whether the inhibitors were indeed inhibiting PP2A, PTP1B and SHP1/2 by 

assessing target engagement of the inhibitors by assessing their substrates or post-

translational modifications (such as Y307 dephosphorylation in PP2A). Positive 

controls of the phosphatase inhibitor treatments would provide further confirmation 

that our results are indeed in contrast to published data particularly with regard to the 

role of PP2A in IL-1β release as shown in murine cells (Martin et al., 2014, Stutz et 

al., 2017).  
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4. Phenylarsine oxide as an inhibitor 

of the inflammasome 
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4.1 Introduction 

 

Overall tyrosine phosphatase inhibition mediated by sodium orthovanadate (OVN) 

appeared to inhibit the function of the NLRP3 inflammasome in our conditions. OVN 

was added to the THP1DM cells for 30 minutes after 3 hours of LPS priming then 

nigericin was added for an hour; thus the cells were exposed to OVN for a total of 

1.5 hours as opposed to more prolonged periods in other studies. In parallel with the 

other inhibitor treatments, PAO, a dithiol compound, was identified to possess 

tyrosine phosphatase inhibiting activity. PAO exerts its inhibitory effect by binding to 

proximal cysteines/vicinal thiols within the active site of tyrosine phosphatases 

(Christina et al., 1992). In the only reported use in the inflammasome context, PAO 

has previously been used to inhibit ATP-mediated caspase-1 maturation and 

externalisation in human monocytes (Laliberte et al., 1999). Therefore, we sought to 

study the effect of PAO treatment on NLRP3, NLRC4 and AIM2 inflammasome 

function in THP1DM and BMDMs by measuring inflammasome activation indicators 

which include caspase-1 and IL-1β maturation and ASC speck formation. Further to 

this, we sought to elucidate the mechanism by which PAO could be acting in the 

NLRP3 inflammasome. 
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4.2 Post-LPS PAO treatment does not inhibit pro-IL-1β transcription in BMDMs 

and THP1DMs 

 

As reported in Chapter 3, PAO potently inhibited the release of IL-1β induced by 

ouabain in THP1DMs. Estrov et al (1999) described that PAO had the ability to 

inhibit NF-κB signalling (Estrov et al., 1999). However, in our treatment conditions, 

PAO treatment would not have an effect on the NF-κB mediated IL-1β transcription 

as it was carried out after LPS priming (activates the NF-κB pathway via TLR4 

signalling). Therefore, to demonstrate this, we carried out a quantitative PCR of pro-

IL-1β mRNA in BMDMs and a western blot of the protein level in THP1DMs following 

signal 1 (LPS) and signal 2 (nigericin) in the presence of PAO 30 minutes prior to 

signal 2. There was no general decrease in pro-IL-1β mRNA in the presence of PAO 

(although there is variability in the relative amount of mRNA across the different PAO 

concentrations) (Figure 4-1A). In this initial experiment, we did not observe a drastic 

decrease in IL-1β gene transcription in the presence of PAO. With this observation 

and the constraints of time, we were not able to repeat this experiment. 

 

Figure 4-1B shows that THP1DMs expressed the same amount of pro-IL-1β in 

untreated and LPS only but this was diminished in the presence of nigericin as a 

result of inflammasome induced processing. PAO restored pro-IL-1β levels 

implicating inhibition of pro-IL-1β processing and not transcription and translation. 
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Figure 4-1: Post-LPS PAO treatment does not affect pro-IL-1β transcription 
and translation 
BMDMs (A) or THP1DMs (B) were primed with 1 µg/ml LPS for 3 hours followed by treatment with 
PAO (0.01 – 10 µM) in BMDMs and 1 µM PAO in THP1DMs for 30 minutes. Nigericin (10 µM) was 
then added for 1 hour to activate the NLRP3 inflammasome. A Quantitative PCR was carried out 
on the BMDM mRNA for IL-1β (n=1) and the fold change calculated with 2-ΔΔCt. All data represent 
the means ± standard error. B Lysate from THP1DMs was assessed for pro-IL-1β protein by 
immunoblot and densitometric analysis carried out. Actin was used as the loading control for the 
immunoblot. Representative immunoblot figure of n=3.  
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4.3 PAO inhibits nigericin-induced inflammasome activation in THP1DMs 

 

To assess the effect of PAO on nigericin-induced NLRP3 inflammasome activation, 

THP1DMs were initially treated with LPS (1 g/ml) for 3 hours and then PAO (0.01 

M – 10 M) for 30 minutes prior to the addition of nigericin (10 M) for 1 hour. 

Figure 4-2A shows that PAO inhibited nigericin induced NLRP3 inflammasome 

activation demonstrated by the reduction in the IL-1β release in a concentration-

dependent manner. Caspase-1 is a cysteine protease activated by the processing of 

the precursor form into two subunits, p20 and p10. These subunits interact and form 

the active caspase-1 which then cleaves the IL-1β precursor, pro-IL-1β, to the 

bioactive ~17kDa fragment (Thornberry et al., 1992). The p10 subunit of caspase-1 

and the bioactive p17 fragment of IL-1β were released into the extracellular space 

upon inflammasome activation. The IL-1 ELISA measures IL-1β release but cannot 

distinguish between the precursor and the caspase-1 processed active form of IL-1β. 

Therefore, in order to assess the processing and release of both IL-1β and caspase-

1 (thus establishing activation of the NLRP3 inflammasome), a western blot analysis 

was carried out on acetone-precipitated supernatant from the treatments. Both IL-1β 

and caspase-1 were processed and released into the supernatant by THP1DM and 

BMDMs in the presence of nigericin, but processing was inhibited when PAO was 

added (Figure 4-2C), suggesting that PAO is affecting inflammasome activation. 

 

Another cytokine released as a consequence of inflammasome activation is 

IL-18. We observed that PAO inhibited the release of IL-18 in THP1DMs (Figure 4-

2B), further confirming the inflammasome inhibitory function of PAO. 
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Apart from caspase-1, IL-1β and IL-18 processing and release, another hallmark of 

nigericin induced inflammasome activation is the induction of cell death (Cullen et al., 

2015). We found that PAO inhibited nigericin-induced cytotoxicity in THP1DM cells 

as measured as the amount of lactate dehydrogenase (LDH) released (Figure 4-2D). 
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Figure 4-2: PAO inhibits nigericin-induced inflammasome function in 
THP1DM cells  
THP1-derived macrophages were primed with 1 µg/ml LPS for 3 hours followed by treatment with 
PAO (0.01 – 10 µM) or vehicle for 30 minutes. Nigericin (10 µM) was then added for 1 hour to 
activate the NLRP3 inflammasome. A. An ELISA of the supernatant was carried out to measure IL-
1β release from THP1DMs. B. Human IL-18 was also measured by ELISA (n=2). C. Processing of 
both IL-1β and caspase-1 were assessed by immunoblot in THP1 macrophages with 1 μM PAO. D. 
LDH measurement was carried out on THP1 macrophages supernatants to assess cell death. All 
data represent the means ± standard error (SEM). Statistical analysis was carried out by comparing 
each of the inhibitor treatment conditions to the LPS+Nig column using ordinary one-way ANOVA 

with the Dunnett test. Level of significance: *p≤0.05 (One-Way ANOVA) (n=3). 
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4.4 Nigericin-induced inflammasome activation is inhibited by PAO in BMDM 

cells 

 

To validate the effect of PAO on nigericin-induced NLRP3 inflammasome activation 

observed in THP1DMs, mouse cells (BMDMs) were initially treated with LPS (1 

g/ml) for 3 hours and then PAO (10 M - 0.01 M) for 30 minutes prior to the 

addition of nigericin (10 M) for 1 hour. PAO inhibited nigericin-induced NLRP3 

inflammasome activation in a concentration-dependent manner shown as the 

reduction in the IL-1β release (Figure 4-3). PAO drastically reduced IL-1β release in 

BMDMs but at a lower concentration of 0.1 M compared to THP1DMs (Figure 4-

3A). In addition, to assess the processing and release of IL-1β and caspase-1, 

immunoblot analysis was carried out on the acetone-precipitated supernatant. 

BMDMs were treated with LPS for 3 hours followed by 30 minutes with 0.1 M then 1 

hour with nigericin. We observed that both IL-1β and caspase-1 were processed and 

released into the supernatant in the presence of nigericin but inhibited when PAO 

was added (Figure 4-3B). 
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Figure 4-3: PAO inhibits nigericin-induced inflammasome function in 
BMDMs 
BMDMs were primed with 1 µg/ml LPS for 3 hours followed by treatment with PAO (0.01 – 10 µM) 
or (0.1 μM PAO for immunoblot analysis). Nigericin (10 µM) was then added for 1 hour to activate 
the NLRP3 inflammasome. An ELISA of the supernatant was carried out to measure IL-1β release 
(A). Processing of both IL-1β and caspase-1 were assessed by immunoblot (B) (n=3). All data 
represent the means ± standard error (SEM). Statistical analysis was carried out by comparing each 
of the inhibitor treatment conditions to the LPS+Nig column using ordinary one-way ANOVA with 

the Dunnett test. Level of significance: *p≤0.05; ***p≤0.001 (n=3). 
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4.5 PAO inhibits MSU-mediated NLRP3 inflammasome activation in human and 

murine macrophages 

 

The deposition of soluble urate crystals in joints and connective tissue is the main 

cause of gout (Martillo et al., 2014). Urate crystals deposited into these sites lead to 

a localised inflammatory response as a result of NLRP3 inflammasome activation. 

Monosodium urate (MSU) crystals function like soluble urate as an NLRP3 

inflammasome activator in vitro by mediating lysosomal destabilisation (Shi et al., 

2014). 

 

To assess the effect of PAO on MSU-induced NLRP3 inflammasome 

activation, THP1DMs were initially treated with LPS (1 g/ml) for 3 hours (signal 1) 

and then PAO (0.01 M – 10 M) for 30 minutes prior to the addition of MSU crystals 

(200 g/ml) for 6 hours. PAO inhibited MSU-induced NLRP3 inflammasome 

activation in a concentration-dependent manner demonstrated by the reduction in IL-

1β release in both THP1DMs (Figure 4-4A) and BMDMs (Figure 4-4B). 
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Figure 4-4: PAO inhibits MSU-induced inflammasome function in THP1DMs 
and BMDMs 
THP1DMs and BMDMs were primed with 1 µg/ml LPS for 3 hours followed by treatment with PAO 
(0.01 – 10 µM) or 0.1 μM PAO (for western blot analysis). MSU crystals (200 µg/ml) was then added 
for 6 hours to activate the NLRP3 inflammasome. An ELISA of the supernatant was carried out to 
measure IL-1β release in THP1DMs (A) and BMDMs (B). All data represent the means ± standard 
error (SEM). Statistical analysis was carried out by comparing each of the inhibitor treatment 
conditions to the LPS+MSU column using ordinary one-way ANOVA with the Dunnett test. Level of 

significance:  ***p≤0.001; ****p≤0.0001; nsp> 0.05 (n=3). 
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4.6 PAO abrogates poly(dA:dT)-mediated AIM2 inflammasome activation in 

human and murine macrophages 

 

The AIM2 inflammasome is formed in response to cytoplasmic double-stranded DNA 

from viral and bacterial sources (Hornung et al., 2009). Experimentally, a double-

stranded DNA agonist of the AIM2 inflammasome is poly(deoxyadenylic-

deoxythymidylic) or poly(dA:dT). Poly(dA:dT) is a repetitive synthetic double-

stranded DNA sequence that, when transfected into cells, is directly detected by 

AIM2 via its HIN-200 DNA binding domain and leads to the recruitment of ASC via 

the PYRIN domain. The oligomerisation and formation of the ASC protein speck 

subsequently take place recruiting pro-caspase-1 via its CARD domain and leading 

to cytokine release (IL-1) (Hornung et al., 2009). 

 

To assess the effect of PAO on poly(dA:dT)-induced AIM2 inflammasome 

activation, THP1DMs and BMDMs were initially treated with LPS (1 g/ml) for 3 

hours (signal 1) and then PAO (0.01 M – 10 M) for 30 minutes prior to the 

transfection of poly(dA:dT) (1 g/ml with Lipofectamine 2000; signal 2) for 6 hours. 

PAO inhibited poly(dA:dT) induced AIM2 inflammasome activation in THP1DMs 

(Figure 4-5A) and BMDMs (Figure 4-5B). Cell death induced by poly(dA:dT) 

treatment in THP1DMs is also inhibited by PAO (Figure 4-5C), although this is not 

statistically significant. 
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Figure 4-5: PAO inhibits poly(dA:dT) –induced AIM2 inflammasome function 

in THP1DMs and BMDMs  
THP1DMs and BMDMs were primed with 1 µg/ml LPS for 3 hours followed by treatment with PAO 
(0.01 – 10 µM) or vehicle (DMSO) for 30 minutes. Poly(dA:dT)(1 μg/μl) was transfected (1 μl 
Lipofectamine 2000) into the cells for 6 hours to activate the NLRP3 inflammasome. An ELISA of 
the supernatant was carried out to measure IL-1β release from THP1DMs (A) and BMDMs (B). 
LDH measurement was carried out on THP1 macrophages supernatants to assess cell death (C). 
All data represent the means ± standard error (SEM). Statistical analysis was carried out by 
comparing the mean of each of the inhibitor treatment conditions to the LPS+Poly(dA:dT) column 

using ordinary one-way ANOVA with the Dunnett test. Level of significance: *p≤0.05; **p≤0.01; 
nsp>0.05 (n=3). 
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4.7 PAO abrogates S. typhimurium-mediated inflammasome activation in 

human and murine cells 

 

Salmonella enterica serovar typhimurium (S. typhimurium) is a Gram-negative 

bacterium that is pathogenic (Coburn et al., 2007). Upon S. typhimurium infection, 

NLRP3 and NLRC4 have been shown to co-localise to form a functional 

inflammasome (Man et al., 2014) leading to IL-1β processing and release. 

 

To assess the effect of PAO on S. typhimurium-induced inflammasome 

activation, we carried out treatment of THP1DMs with S. typhimurium overnight. 

PAO was added 30 minutes prior to treatment freshly cultured S. typhimurium. We 

show that in THP1DMs, S. typhimurium induced inflammasome activation shown by 

the release of IL-1β. The addition of PAO resulted in inhibition of IL-1β release 

(Figure 4-6A). As S. typhimurium is implicated in activation of the NLRC4 

inflammasome, we sought to investigate the effect of PAO on the NLRC4 

inflammasome by removing any effect that is a result of NLRP3 inflammasome 

activation. Therefore, the NLRP3 receptor protein was inhibited by the NLRP3-

specific inhibitor MCC950 (Perera et al., 2018). We observed that inhibition of the 

NLRP3 receptor resulted in a drastic decrease in overall IL-1β release (Figure 4-6A) 

and the decrease was further augmented in the presence of PAO. S. typhimurium 

treated THP1DMs did not show marked decrease in LDH release (a measure of 

cytotoxicity) despite PAO or MCC950 treatment (Figure 4-4C), but a higher 

concentration of PAO (10 µM) induced cytotoxicity. 
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With this observation in IL-1β release and cell death inhibition as a result of 

MCC950 treatment, we sought to further validate this data by using Nlrp3-deficient 

BMDMs in our investigation. Nlrp3-deficient BMDMs had a completely attenuated 

response to S. typhimurium infection compared to wild-type BMDMs demonstrated 

by IL-1β release (Figure 4-6C). PAO, as in MCC950 untreated THP1DMs, inhibited 

IL-1β release in wild-type BMDMs (Figure 4-4B), suggesting that S. typhimurium 

infection in both human and mouse macrophages induces IL-1β release that is PAO 

sensitive. Furthermore, S. typhimurium treatment in wild-type BMDMs appears to 

have a higher basal release of LDH (Figure 4-4D) compared to Nlrp3-deficient 

BMDMs. Therefore, in both THP1DMs and BMDMs, the addition of S. typhimurium 

did not result in increased LDH release implying that this preparation of bacteria was 

not inducing cell death. 
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Figure 4-6: PAO abrogates S. typhimurium-mediated inflammasome 
activation in human and murine macrophages 
Wild-type THP1-derived macrophages were incubated with S. typhimurium (ST10; MOI10) for 1 
hour in the presence or absence of MCC950 (10 µM) ± PAO (0.01 – 10 µM) 30 minutes prior. 
Gentamycin (100 µg/ml) was then added overnight. A An ELISA of the culture media 
(supernatant) was carried out to measure IL-1β release. B LDH measurement was carried out to 
assess cell death. Wild-type or Nlrp3-deficient BMDMs were incubated with S. typhimurium 
(MOI10) for 1 hour (10 µM) ± PAO (0.01 – 10 µM) 30 minutes prior. Gentamycin (100 µg/ml) was 
then added overnight. C ELISA of IL-1β release and D LDH measurement. (n=2). 
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4.8 PAO treatment of the MSU-induced peritonitis mouse model 

 

MSU crystals are good particulate activators of the NLRP3 inflammasome in vitro by 

causing the release of IL-1β after treatment. MSU crystals have also been used as 

the go-to agonist for NLRP3 in studying the in vivo relevance of inflammasome 

activation. Injection of MSU crystals into the peritoneal cavity has been shown to 

lead to peritoneal infiltration of immune cells, particularly neutrophils, due to an 

increase in IL-1β levels (Spalinger and Scharl, 2018, Chen et al., 2006). Therefore, 

to assess the effect of PAO in an in vivo setting, in-house made MSU crystals were 

injected into the peritoneal cavities of C57BL/6 mice in the presence or absence of 

PAO. We initially injected mice with 1 mg/kg PAO dissolved in ethanol (0.05% in 

PBS) or DMSO (0.05% in PBS) to assess if PAO (ethanol vs. DMSO) would affect 

immune cells infiltration. PBS was used as the control. Using flow cytometry, we 

observed no apparent effect of PAO or the respective vehicles on the ratio of 

dendritic cells (Figure 4-7A), macrophages (Figure 4-7B), monocytes (Figure 4-7C) 

and neutrophils (Figure 4-7D). The total number of peritoneal cells (total PLF cells) 

(Figure 4-7E) was slightly reduced in the presence of the vehicle and/or PAO. The 

flow cytometry gating strategies used to measure the population of dendritic cells 

(Figure 7-1), macrophages (Figure 7-2), monocytes (Figure 7-3) and neutrophils 

(Figure 7-4) from the peritoneal lavage are shown in Appendix 1. 
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Figure 4-7: Testing DMSO and ethanol with PAO as activators of peritonitis 
Two C57BL/6 mice underwent an intraperitoneal injection with 1 mg/kg PAO or the corresponding 
ethanol or DMSO concentration for 2 hours. The mice were sacrificed, and the peritoneal cells 
were harvested by peritoneal lavage and flow cytometry was used to identify dendritic cells (A), 
macrophages (B), monocytes (C) and neutrophils (D) present within the peritoneal cavity. The 
number of live peritoneal lavage cells was counted as well (E) (n=1).  
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We observed that PAO dissolved in DMSO had a slight pro-inflammatory effect in 

the peritoneal cavity by a slight increase in neutrophils compared to PAO dissolved 

in ethanol (Figure 4-7D). Therefore, we used ethanol as the vehicle of choice in the 

peritonitis treatment. The mice were injected intra-peritoneally with PAO at 1 mg/kg 

with a final vehicle concentration of 0.05% ethanol for 2 hours. MSU crystals (3.5 

mg) were then injected into the mice for 5 hours prior to sacrifice. Cells collected by 

peritoneal lavage were then analysed by flow cytometry to assess infiltration of 

immune cells and cell viability. There were no differences between the various 

treatments in regard to the proportion of immune cells present within the peritoneal 

cavity (Figure 4-9). Interestingly, MSU crystals did not induce significant peritonitis; 

therefore, this implied that our intended MSU-induced peritonitis induction was 

unsuccessful possibly due to defective MSU crystals. The flow cytometry gating 

strategies used to measure the population of dendritic cells (Figure 7-5), 

macrophages (Figure 7-6), monocytes (Figure 7-7) and neutrophils (Figure 7-8) from 

the peritoneal lavage are shown in Appendix 1. Unfortunately, this experiment was 

not revisited due to time constraints and lack of access to mice. 
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Figure 4-8: PAO treatment of the MSU-induced peritonitis mouse model 
Two/three C57BL/6 mice underwent an intraperitoneal injection with 1 mg/kg PAO or the 

corresponding ethanol concentration for 2 hours. MSU (3.5 mg) was then injected for another 5 

hours. The mice were sacrificed, and the peritoneal cells were harvested by peritoneal lavage and 

flow cytometry was used to identify dendritic cells (A), macrophages (B), monocytes (C) and 

neutrophils (D) present within the peritoneal cavity. The number of live peritoneal lavage cells 

were counted as well (E) (n=1). 
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4.9 PAO attenuates ASC oligomerisation and speck formation 

 

Apart from cytokine release and cell death, the oligomerisation of the adaptor protein 

ASC is another hallmark of inflammasome activation (Fernandes-Alnemri et al., 

2007, Lin et al., 2015, Khare et al., 2016, Dick et al., 2016). Upon detection of a 

“danger” signal, the NLRP3 receptor oligomerises and subsequently leads to the 

recruitment and oligomerisation of ASC (Dick et al., 2016). The aggregation of ASC 

can be visualised as a single intracellular perinuclear speck by immunofluorescence 

microscopy. Therefore, THP1DM were cultured on microscope chamber slides and 

treated with LPS (1 g/ml) for 3 hours and PAO (1 M) for 30 minutes followed by 

45- 60 minutes of nigericin (10 M) treatment. The cells were fixed with 1-2% 

paraformaldehyde and stained with an anti-ASC antibody and a fluorophore-

conjugated secondary antibody and then ASC was visualised by confocal 

microscopy. The formation of a single speck per cell was inhibited by PAO treatment 

in THP1DMs as there were less visible specks (Figure 4-9A). The percentage of 

cells containing an ASC speck was assessed by counting the number of specks and 

nuclei and calculating the percentage for 100 cells. A significant (p=0.0047) 

reduction in the number of specks was observed in the presence of PAO compared 

to its absence (Figure 4-9A) indicating that the PAO target is upstream of caspase-1 

activation and affects ASC function. 

 

An ASC oligomerisation assay was then carried out involving the treatment of 

cell lysate with the cross-linker disuccinimidyl suberate (DSS). Disuccinimidyl 

suberate is a cross-linker that reacts with amine groups to chemically cross-link 

interacting proteins (Khare et al., 2016). Following crosslinking, the cross-linked 
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product was analysed by immunoblot for the formation of multimers of the target 

protein. THP1DMs were treated with LPS (1 g/ml) for 3 hours and PAO (1 M) for 

30 minutes followed by 60 minutes of nigericin (10 M) treatment and the cells were 

harvested, lysed and DSS treated according to Khare et al. (2016) (Khare et al., 

2016). An immunoblot shows that in the absence of PAO, nigericin treatment led to 

the formation of various multimers of the ASC protein (Figure 4-9B). PAO treatment, 

on the other hand, inhibited the formation of ASC multimers, suggesting that PAO 

targets a protein involved in allowing CARD-CARD and PYRIN-PYRIN domain 

interactions. 
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Figure 4-9: PAO inhibits ASC oligomerisation and speck formation 
THP1DMs were primed and treated with PAO (1 µM) for 30 minutes. Nigericin (10 µM) was then 

added for 30-45 minutes. Cells were fixed (2% paraformaldehyde) and immune-stained with an anti-

ASC antibody (N-15-R) and anti-Rabbit Alexa fluor-488-conjugated secondary antibody then 

visualised by confocal microscopy (magnification 100X, scale bar 20 µM) (A). B The number of 

ASC specks per nucleus (DAPI stained) were counted and calculated as a percentage. All data 

represent the means ± standard error (SEM) (n=3). Two-tailed paired t-test was carried out with 

Gaussian distribution assumed (parametric test) Level of significance**p≤0.01. DSS-mediated 

crosslinking of ASC monomers was carried out and analyzed by immunoblot (C). Representative 

figures of n=3. 
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4.10 PAO treatment inhibits nigericin-induced ASC dephosphorylation 

 

Previous work appears to suggest that the activation of the NLRP3 inflammasome 

pathway yields a variable tyrosine phosphorylation profile where there is overall 

phosphorylation and dephosphorylation of intracellular proteins (Hoyt et al., 2016). 

To determine the global tyrosine phosphorylation, immunoblot analysis of treated 

THP1DMs was carried out. Four conditions were assessed, untreated, LPS alone, 

LPS+nigericin and LPS+nigericin with 1 µM PAO. PAO treatment resulted in 

inhibition of global tyrosine dephosphorylation as observed in the OVN treatment 

(Figure 4-10A). The global tyrosine phosphorylation state of proteins increased in 

THP1DMs following LPS treatment. Nigericin treatment resulted in an overall 

reduction in phosphotyrosine whereas the addition of PAO prior to nigericin 

treatment inhibited the global tyrosine dephosphorylation as shown, thereby 

implicating that PAO exerts its inflammasome inhibitory effect by inhibiting PTPs. 

 

Since we observed that PAO affects both ASC oligomerisation and global 

tyrosine dephosphorylation, we sought to assess the phosphorylation state of ASC at 

tyrosine residues. An immunoprecipitation of ASC and phosphotyrosine proteins was 

carried out from all the different treatment conditions and investigated by 

immunoblot. Immunoprecipitated ASC (ASC IP) was phosphorylated prior to 

nigericin treatment in both untreated and LPS only conditions (Figure 4-10B). 

Dephosphorylation of ASC took place upon nigericin treatment, but this effect was 

inhibited in the presence of PAO. The densitometric analysis of the western blot data 

revealed that the observed changes were not statistically significant as analysed by 

One-Way ANOVA (Dunnett Test) by comparing all other treatment conditions to the 
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untreated control. There is, however, a trend that can be observed where the 

addition of LPS causes a reduction in ASC phosphorylation and nigericin further 

augments this reduction. PAO treatment appears to prevent ASC dephosphorylation 

observed. On the other hand, when immunoprecipitation of phosphotyrosine proteins 

with a phosphotyrosine antibody (pTyr IP) was carried out, less ASC was 

immunoprecipitated in the nigericin treatment compared to the other conditions 

implicating a reduction in tyrosine phosphorylation following nigericin treatment 

(Figure 4-10B). Furthermore, IgG isotype control revealed that there was no non-

specific binding of ASC (Figure 4-10B). Interestingly, we observed β-actin within the 

ASC IP.   
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Figure 4-10: PAO treatment inhibits nigericin-induced overall tyrosine 
dephosphorylation and ASC tyrosine dephosphorylation 
THP1DMs were primed followed by treatment with PAO (1 µM) for 30 minutes. Nigericin (10 µM) 
was then added for 1 hour. Immunoblot analysis was carried out on whole lysate for tyrosine 
phosphorylation (A). Immunoprecipitation of ASC (ASC IP) and phosphotyrosine proteins (pTyr IP) 
was carried out then immunoblot was carried out for pTyr and ASC, respectively. ASC IP was then 
re-probed to assess immunoprecipitation success and loading control. Negative IgG control showed 
no non-specific ASC binding (B). Densitometric analysis of ASC-IP was carried out (C). Statistical 
analysis was carried out by comparing the mean of each of the inhibitor treatment conditions to the 
untreated (control) column using ordinary one-way ANOVA with the Dunnett test. Level of 
significance: not significant (p>0.05) (n=3). β-Actin was used as a loading control in total lysate. 
Representative figures of n=3. 
 
 

A

p-Tyr

L
y
s
a
te

LPS

Nig

PAO

-

-

-

+

-

-

+

+

+

+

+

-

250

150

100

75

50

37

25

20

B

25 ASC

p
T
y
r

IP

p-Tyr

ASC

A
S

C
 I
P

25

β-Actin

25

46

LPS

Nig

PAO

-

-

-

+

-

-

+

+

+

+

+

-

LPS

Nig

PAO

-

-

-

+

-

-

+

+

+

+

+

-

C L N P

0 .0

0 .5

1 .0

1 .5

2 .0

C o lu m n : E n te r in g  re p lic a te  d a ta

F
o

ld
 C

h
a

n
g

e

C

ns

Fo
ld

 c
h

an
ge

(r
e

la
ti

ve
 to

 U
T)

25
20

46 β-actin

ASC
25
20 ASC

Ig
G

 I
P



113 
    

4.11 Discussion 

 

We have shown that PAO is a potent inhibitor of nigericin, MSU crystals, poly(dA:dT) 

and S. typhimurium mediated activation of the inflammasome. PAO drastically 

inhibited the release of IL-1β and IL-18 in nigericin and MSU-induced NLRP3 

inflammasome activation. Similarly, the AIM2 and NLRP3-NLRC4 (S. typhimurium) 

inflammasomes are inhibited by PAO treatment indicating that PAO affects proteins 

that are involved in the mechanisms of all the inflammasomes mentioned above. 

This is the first study to have demonstrated this effect of PAO on various 

inflammasome complexes. We also show that ASC, the adaptor protein, is 

dephosphorylated on tyrosine residue(s) upon activation of the inflammasome with 

nigericin but this dephosphorylation is inhibited by PAO. Furthermore, we have 

demonstrated that PAO inhibits global tyrosine dephosphorylation induced by 

nigericin, thus inhibiting inflammasome activation.  

 

The measure of IL-1β and IL-18 release only sheds light on the final step of 

inflammasome activation but is limited on revealing where PAO is exerting its effect. 

Therefore, working upstream from IL-1β release, we sought to investigate the effect 

of PAO. We investigated the processing of pro-IL-1β and observed that nigericin 

treatment led to a reduction in pro-IL-1β due to increased processing into its 

bioactive 17kDa form. However, pro-IL-1β is restored in the presence of PAO. This 

observation, together with the qPCR in BMDMs, reveals that PAO has no effect on 

pro-IL-1β mRNA translation where PAO is added after LPS priming. In PAO 

treatment, we observed that pro-IL-1β levels were restored to the same level as the 

LPS only treatment with PAO. Furthermore, and importantly, PAO is also inhibiting 
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processing of IL-1β by caspase-1 implying that this PAO effect occurs further 

upstream of IL-1β processing. 

 

We also observed that as with pro-IL-1β processing, pro-caspase-1 

processing was also inhibited in the presence of PAO. Due to the nature of PAO to 

bind vicinal thiols from adjacent cysteines (Christina et al., 1992), the possible 

explanation for the inhibition of caspase-1 processing is the inhibitory effect of PAO 

on IL-1β-converting enzyme (ICE)-related caspases, such as caspase-1 (which 

undergoes auto-proteolysis (Elliott et al., 2009)) implicated by Takahashi et al 

(Takahashi et al., 1997). Before concluding that PAO was directly inhibiting caspase-

1 function, we sought to investigate whether PAO was acting upstream of caspase-1. 

ASC oligomerisation and subsequent speck formation is required for pro-caspase-1 

recruitment to the inflammasome and caspase-1 processing. Furthermore, Man et al. 

revealed that ASC speck formation was not affected by direct caspase-1 inhibition 

(Man et al., 2014). We observed that ASC oligomerisation and speck formation was 

inhibited by PAO, revealing that PAO-mediated inhibition of caspase-1 processing is 

due to inhibition of ASC oligomerisation, which consequently inhibits pro-caspase-1 

recruitment to the inflammasome complex. This, therefore, reinforced the hypothesis 

that PAO is acting upstream of caspase-1. However, although it is possible that PAO 

could directly bind and inhibit caspase-1 function resulting in diminished IL-1β 

release, the inhibition of the upstream event of ASC oligomerisation and speck 

formation indicates that caspase-1 auto-processing is not activated in the first place 

as it is not recruited to form the inflammasome.  
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Hoyt et al. reported that tyrosine phosphatase inhibition, mediated by sodium 

orthovanadate, augmented ATP-induced inflammasome activation. In the same 

study, Hoyt and colleagues also reported that ethanol and small chain alcohol 

molecules activated tyrosine phosphatases, which led to the inhibition of the 

inflammasome (Hoyt et al., 2016). This is contradictory to what we have observed; 

where PAO mediated inhibition of global tyrosine dephosphorylation led to the 

inhibition of nigericin induced inflammasome function. We have shown that PAO-

mediated inhibition of cytokine release is accompanied with global inhibition of 

tyrosine phosphatases. Although PAO and OVN are both broad-spectrum PTP 

inhibitors, their mechanisms of action differ. As previously stated, PAO exerts its 

inhibitory function by binding to vicinal thiols within the site of PTPs. On the other 

hand, OVN is similar in structure to phosphate and thus exerts its function by 

competitively occupying or masking the active site (Korbecki et al., 2012). As 

discussed in chapter 3, a number of factors could account for this observed disparity 

such as cell type, cell species and NLRP3 stimuli. Furthermore, OVN and PAO exert 

different inhibitory mechanisms which could account for the difference in effect on 

inflammasome activation. However, further work is required to fully dissect the 

mechanisms involved.  

 

Alternatively, PAO has been reported to have non-PTP targets such as 

NADPH oxidase 2 (NOX2), calcineurin and RhoA GTPases that have been shown to 

affect IL-1β release. NOX2 is inhibited by PAO (Kazufumi et al., 2015, Doussiere et 

al., 1998, Cabec and Maridonneau-Parini, 1995) and regulates oxidative stress-

induced NLRP3 inflammasome activation in murine neural tissue (Ma et al., 2017). 

The calcium and calmodulin-dependent serine/threonine phosphatase calcineurin 
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(CN) is inhibited by PAO in the bovine brain with an IC50 of 3-8 μM (Bogumil et al., 

2000). Constitutively active calcineurin activates the NLRP3 inflammasome in CN 

transgenic mice implying that calcineurin plays an inflammasome activation role in 

myocardial tissue (Bracey et al., 2013). RhoA GTPase possesses the vicinal thiols 

required for PAO mediated inhibition (Gerhard et al., 2003), however, RhoA GTPase 

has only been reported to be involved in the pyrin inflammasome (Park et al., 2016) 

and not the NLRP3 inflammasome. Although NOX2, calcineurin and RhoA GTPase 

are PAO-sensitive, inhibition by PAO does not account for the observed inhibition of 

both NLRP3 and AIM2 inflammasomes in this study. Further work would, however, 

be required to determine whether PAO inhibition of the aforementioned enzymes 

would affect the NLRP3 inflammasome by utilising specific inhibitors or genetic 

interventions against the above proteins in parallel with PAO treatments.  

 

 To determine whether this inhibitory effect could be repeated in vivo, we 

utilised an established MSU induced peritonitis mouse model (Chen et al., 2006). 

However, in our first attempt, we noticed that the MSU (made in-house) used did not 

lead to increased infiltration of immune cells as expected, implying defective MSU. 

Due to time constraints and mice availability, we were unable to revisit this 

experiment using commercially available MSU crystals, however, this would be a 

crucial experiment to carry out as this will provide relevance of the in vitro model of 

PAO inflammasome inhibition. 

 

The overall tyrosine phosphorylation was reduced as a result of nigericin 

treatment but was restored in the presence of PAO. This is a vital observation in 

understanding tyrosine phosphorylation in inflammasome complex formation. With 
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the focus on tyrosine phosphorylation in the context of the inflammasome, the “PAO 

only” treatment condition was not carried out. However, this would be an 

experimentally crucial control and its lack is considered a caveat of this study.  

 

ASC tyrosine phosphorylation at Y146 is a necessary post-translational 

modification that leads to the assembly of the inflammasome (Chung et al., 2016, 

Hara et al., 2013b). In these studies, the investigators showed that mutant variants of 

the ASC protein, where phenylalanine substituted tyrosine, results in attenuated ASC 

function and consequently inflammasome activation. Furthermore, when inhibitors of 

Syk, JNK and Pyk2 were used, they were able to attenuate inflammasome function, 

suggesting that tyrosine phosphorylation of ASC (at Y146) is required; however, 

ASC dephosphorylation has not been studied. We carried out an ASC 

immunoprecipitation (IP) experiment following treatment with PAO and assessed 

tyrosine phosphorylation. Interestingly, β-actin was present in the IP of ASC which 

could suggest ASC-β-actin interaction as previously shown where Filamentous actin 

(F-actin) interacts with NLRP3 and ASC in the presence of the protein LRRFIP2. 

This was shown to be enhanced in the presence of ATP and nigericin and 

demonstrated to facilitate the inhibition of caspase-1 activation by the protein FliI 

(Burger et al., 2016). However, we saw interaction prior to activation therefore more 

work would be required to elucidate ASC – actin interactions and the role actin plays 

in inflammasome complex regulation.  

 

More importantly, we have shown that ASC tyrosine dephosphorylation takes 

place following inflammasome activation with nigericin. We observed that PAO 

inhibited ASC dephosphorylation, which suggests that tyrosine dephosphorylation is 
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also required for inflammasome activation. Since ASC forms a speck following 

inflammasome activation, it is conceivable that the reduction in immunoprecipitated 

phosphorylated ASC is due to less ASC available to immunoprecipitated since ASC 

is the speck. However, it has been shown that ASC can be immunoprecipitated 

following inflammasome activation in similar lysis and immunoprecipitation conditions 

as carried out in this study (Chung et al., 2016). Following densitometric analysis, we 

found that the decrease in ASC phosphorylation is not statistically significant, 

therefore, further work involving more precise methodologies is required to further 

determine the phosphorylation state of ASC following the treatments done here. A 

precise method to carry out this work would be mass spectrometry on 

immunoprecipitated ASC under various conditions to assess the phosphorylation 

state of tyrosine residues. This method will provide a much needed quantitative and 

precise read-out on the state of tyrosine phosphorylation on ASC. 

 

In conclusion, with the aid of PAO, we have shown that global inhibition of 

PTPs (and therefore global tyrosine dephosphorylation inhibition) inhibits NLRP3 and 

AIM2 inflammasome activation. Furthermore, we report that ASC tyrosine 

dephosphorylation is required for normal nigericin induced NLRP3 inflammasome 

activation. 
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5. Identification of the tyrosine 

phosphorylation sites on ASC 
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5.1 Introduction  

 

According to Hara et al. & Chung et al., phosphorylation at tyrosine (Y) 144/146 is an 

essential post-translational modification of ASC that leads to its ability to oligomerise 

and thus form a functional inflammasome with the receptor and the effector caspase-

1 (Hara et al., 2013b, Chung et al., 2016). Using the tyrosine phosphatase inhibitor 

PAO, we have shown in Chapter 4 that the dephosphorylation of tyrosine plays a 

crucial role in the regulation of the inflammasome as a whole and ASC specifically. 

We, therefore, next sought to identify the putative tyrosine residues that are required 

for the function of human ASC. 

 

To this aim, tyrosine residue identification was carried out based on the following 

criteria:  

• Conservation between human and mouse (Figure 5-1A) 

• Predicted phosphorylation using the phosphonet.ca web tool (Figure 5-1B). 
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Figure 5-1: ASC tyrosine residues selection criteria 
Tyrosine residues were selected based on the following criteria: A. Conservation between human 
and mouse B. Predicted phosphorylation based on the phosphonet.ca. The arrow (▼) indicates 
the identified tyrosine residues with surrounding amino acid sequence. 
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With these criteria, the tyrosine residues identified were Y36, Y64, Y60 and Y137. 

Since previous publications have shown that the Y146 residue is essential for human 

ASC function, this residue was also included as an ASC functional control (Chung et 

al., 2016, Lin et al., 2015, Hara et al., 2013a). The identified residues and Y146 were 

subjected to site-targeted mutagenesis to the non-phosphorylatable phenylalanine 

(F). Both tyrosine and phenylalanine are aromatic and slightly hydrophobic, 

therefore, structurally and chemically similar but phenylalanine lacks a reactive 

hydroxyl group (Figure 5-2) (Betts and Russell, 2003). The similarity in structure is 

advantageous in such investigations because the overall structure of the protein is 

not drastically affected. 
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Figure 5-2: Comparing the structure of tyrosine and phenylalanine 
Tyrosine (Y) possesses a hydroxyl (-OH) group on the benzene ring where the phosphoryl group 
is added during phosphorylation to generate phosphotyrosine. On the other hand, phenylalanine 
(F), although quite similar in structure to tyrosine, lacks the hydroxyl group required for 
phosphorylation and as such cannot generate phosphotyrosine. 
 

PhenylalanineTyrosine

phosphotyrosine
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5.2 Phosphorylation of tyrosine residues Y60, Y137 and Y146 are 

indispensable for NLRP3 inflammasome function 

 

The selected tyrosine residues (Y36, Y60, Y64 & Y146) on ASC were mutated using 

the Q5 site-directed mutagenesis kit (NEB) in the pEF6-ASC-GFP plasmid (kindly 

provided by Dr Kate Schroder). The tyrosine codons (TAC or TAT) were substituted 

to phenylalanine (TTC or TTT, respectively) and mutational PCR was carried out 

according to manufacturer’s (NEB) instructions. Following mutation, DH5α 

chemically competent E. coli were transformed with each of the five mutant ASC 

plasmids and a mini-prep was carried out and isolated plasmids were sent for 

sequencing (1st Base, Singapore). Figure 5-3 shows the validated mutant alignment 

of the ASC mutant against the wild-type. However, generation of the Y64F ASC 

mutant was unsuccessful using the Q5 site-directed mutagenesis kit and was not 

attempted again due to time constraints.  

 

The human NLRP3 inflammasome was reconstituted in HEK293T cells by 

transfecting the human NLRP3-Flag, ASC-GFP (wild-type and mutant variants), pro-

caspase-1 and pro-IL-1β. Following an incubation period of 48 hours, the 

supernatant and cell lysates were collected for ELISA and western blot analysis, 

respectively. The western blot confirmed that the different ASC variants were equally 

expressed in transfected HEK293T cells, as assessed by western blot. We found 

that the NLRP3 inflammasome that formed in the presence of the ASC mutants Y60, 

Y137 and Y146 had reduced IL-1β release compared to that containing the wild-type 

ASC. On the other hand, Y36 showed no significant difference in IL-1β release 
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compared to wild-type ASC (Figure 5-4). This implicates the Y60, Y137 and Y146 

residues in normal NLRP3 inflammasome activation. 
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Figure 5-3: Validated ASC mutant sequence alignment 
ASC mutant variants aligned with wild-type ASC validated by sequencing. 
 

GTG CCG CTG CGC GAG GGC TAC GGG CGC ATC CCG CGG GGC
GTG CCG CTG CGC GAG GGC TTC GGG CGC ATC CCG CGG GGCY36F

Wild-type

GAC AAG CTG GTC AGC TTC TAC CTG GAG ACC TAC GGC GCC
GAC AAG CTG GTC AGC TTC TTT CTG GAG ACC TAC GGC GCCY60F

Wild-type

TGG CTG CTG GAT GCT CTG TTC GGG AAG GTC CTG ACG GATY137F
TGG CTG CTG GAT GCT CTG TAC GGG AAG GTC CTG ACG GATWild-type

GTC CTG ACG GAT GAG CAG TTC CAG GCA GTG CGG GCC GAGY146F
GTC CTG ACG GAT GAG CAG TAC CAG GCA GTG CGG GCC GAGWild-type
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Figure 5-4: Y60, Y137 and Y146 ASC phosphorylation/dephosphorylation is 
required for NLRP3 inflammasome activation 
Site-directed mutagenesis of Y36, Y60, Y137 and Y146 to phenylalanine was carried out and the 
NLRP3 inflammasome was reconstituted in HEK293T cells by transfection of NLRP3, pro-caspase-
1, IL-1β and validated ASC variants. IL-1β ELISA was carried out to measure the reconstituted 
NLRP3 inflammasome function. GAPDH was used as loading control for the immunoblot. . All data 
represent the means ± standard error (SEM) Statistical analysis was carried out by comparing the 
mean of each of the mutant transfection conditions to the ASC-WT column using ordinary one-way 
ANOVA with the Dunnett test. Level of significance: **p≤0.01, ***p≤0.001.  Western blot 
representative images of n=3 (number of experiments). 
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5.3 Discussion 

 

We have demonstrated that successful mutagenesis of Y36, Y60, Y137 and Y146 to 

phenylalanine was carried out on the pEF6-ASC-GFP plasmid. An inflammasome 

function assay (IL-1β release by ELISA) in HEK293T cells showed that only the Y60, 

Y137 and Y146 residues in ASC caused an attenuation of the inflammasome 

function, while the Y36 mutation had no noticeable effect on inflammasome function.  

 

Phosphorylation of Y146 in human ASC has previously been shown to be vital 

in inflammasome function, where it is targeted by Pyk2 upon inflammasome 

activation (Chung et al., 2016). Since the Y146 residue is located within the CARD 

domain of ASC, this suggests that it may be critical for CARD-CARD interactions, 

including ASC oligomerisation and caspase-1 recruitment. In this study, the 

identification of Y60 and Y137 tyrosine residues that require phosphorylation in ASC 

function is novel. Mutation of Y60 and Y137 in ASC to phenylalanine resulted in 

reduced IL-1β release in the HEK293T cells. Tyrosine 60 is the first residue identified 

within the pyrin domain (Figure 5-5) to require phosphorylation for ASC function. 

Since the tyrosine-to-phenylalanine mutation mimics dephosphorylation (while 

maintaining protein integrity), the reduction in IL-1β release suggests that 

dephosphorylation of Y60 inhibits PYRIN-PYRIN interactions which are NLRP3-ASC 

and ASC-ASC interactions. Therefore, the Y60 ASC mutant may have an attenuated 

ability to interact with NLRP3 and ASC oligomerisation, both required for normal 

inflammasome complex formation. 
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Mutation of ASC at the Y60, Y137 and Y146 residues revealed that tyrosine 

phosphorylation is required for the normal function of the ASC. Closer analysis of the 

structure of ASC as obtained from the PDB entry 2KN6 (Figure 5-5) revealed that 

Y60 and Y146 residues reside within the alpha helices of the protein, whereas Y36 

and Y137 are located within the loop sections. 

 

Our data showed that phosphorylation of Y36 was not required for NLRP3 

inflammasome function but does not exclude this residue from being 

dephosphorylated (instead of requiring phosphorylation) since our mutational study 

was mimicking dephosphorylation or prevention of phosphorylation. Tyrosine 36 has 

been reported to form a hydrophobic patch with Y60 and Y64 which serves to anchor 

the H2-H3 loop to the rest of the protein. In an experiment performed to assess the 

interaction between ASC and its natural inhibitor PYD-only protein 1 (POP1), 

Srimathi et al. showed structural changes to the H2-H3 loop (such as the tyrosine-to-

alanine mutation) resulting in the inability of ASC to interact with other proteins. This 

finding indicates that the Y36 residue, though not involved in direct PYRIN–PYRIN 

interactions, was necessary for the interaction to take place. Srimathi and colleagues 

further suggested that Y36 phosphorylation is required for the dissociation of POP1 

from ASC, therefore, implying that phosphorylation of Y36 might serve as an 

inhibitory post-translational modification (Srimathi et al., 2008). Further work 

involving a constitutively phosphorylated mimic would be a valuable tool to use to 

investigate the extent to which this residue is required in mediating PYRIN-PYRIN 

interactions between ASC and other proteins, specifically NLRP3. 
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To further the understanding of ASC tyrosine phosphorylation, characterisation of 

these tyrosine mutants by assessing the ability of the mutants to interact with NLRP3 

and form specks would be important. As mentioned before, an alternate strategy 

would be to substitute tyrosine residues with a constitutively phosphorylated tyrosine 

mimic to assess the effect of constitutive phosphorylation at these tyrosine residues 

on ASC function. This will then be followed by the generation of affinity peptides for 

each of the residues to allow pull-down and identification of targeting tyrosine 

phosphatases. Previous studies have used the amino acid glutamate to mimic 

constitutive phosphorylation (Kassenbrock and Anderson, 2004). However, 

glutamate is not a true mimic of phospho-tyrosine but rather is a better and more 

accurate mimic of phospho-serine/threonine (Makwana et al., 2017) and therefore 

would not be an appropriate mimic for constitutive tyrosine phosphorylation.  

Incorporation of a constitutively phosphorylated tyrosine would require technology 

that inserts a synthetic phosphotyrosine (pTyr) analogue into the full-length protein. 

This technology is currently not widely available; some reports have shown synthetic 

pTyr analogue insertion into peptides or by expansion of the genetic code in bacteria 

(Makwana et al., 2017, Hoppmann et al., 2017) both of which currently are in the 

early stages of development.   

 

Another approach would be to generate phospho-specific antibodies against the 

tyrosine residues such as has been done for phospho-Y144 in murine ASC (Hara et 

al., 2013a). These antibodies will then serve as valuable tools in investigating the 

effect of kinase/phosphatase inhibitor libraries on ASC phosphorylation at these 

tyrosine residues, thus identifying candidate kinases/phosphatases targeting 

individual residues. 
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Figure 5-5: Localisation of the mutated tyrosine residues on ASC 
With the aid of uniprot.org, the spatial locations of the selected tyrosine residues were identified 
with ASC structure with PDB entry 2KN6. 
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6. Overall Discussion 
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The purpose of this project was to provide a further understanding of the regulatory 

role of tyrosine phosphorylation of ASC in inflammasome complex formation and 

function. We hypothesised that tyrosine dephosphorylation plays an essential role in 

the regulation of ASC and the inflammasome as a whole. 

The aims of this project were: 

• Determine the overall effect of tyrosine phosphatase inhibition on the NLRP3 

inflammasome. 

• Determine the impact of tyrosine phosphatase inhibition on ASC tyrosine 

phosphorylation, inflammasome formation and function 

• Identify the putative tyrosine residues of ASC crucial for the formation and 

activation of the NLRP3 inflammasome. 

 

6.1 Conclusions 

 

In our investigation, we initially examined the effect elicited by inhibitors of 

specific phosphatases. We observed that OA, NSC-87877 and PTP1Bi, inhibitors of 

PP2A, SHP1/2 and PTP1B, respectively, did not alter the inflammasome activity in 

macrophages under our treatment conditions. Notably, this study could have done 

with positive controls to indicate inhibition of the respective phosphatases. For 

instance, PP2A is activated following the dephosphorylation of Y307 by PTP1B 

(Geraghty et al., 2013). In order to assess whether OA or PTP1Bi were actively 

inhibiting their targets, a western blot of the Y307 residue of PP2A would have been 

carried out to assess whether PP2A or PTP1B were active.  
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Furthermore, this portion of the study did not include validation of these results in 

murine cells. Previous studies have shown that pre-LPS OA treatment in murine 

cells rendered the NLRP3 inflammasome inactive following treatment (Martin et al., 

2014, Stutz et al., 2017). These studies involved treatment with OA prior to LPS 

treatment thus implicating a possible effect of OA on LPS priming. However, these 

previous studies suggest that PP2A plays a key role in the murine inflammasome 

activation. Therefore, carrying out OA treatment in murine cells after LPS priming 

would be crucial in further understanding the PP2A mechanism of action. 

 

 We then investigated the global tyrosine phosphatase inhibition using two broad-

spectrum phosphatase inhibitors, OVN and PAO. We observed that OVN 

suppressed nigericin-induced inflammasome activation shown by IL-1β ELISA. 

Furthermore, PAO potently inhibited the activation of the NLRP3, NLRC4 and AIM2 

inflammasomes. We found that PAO-mediated NLRP3 inflammasome inhibition was 

accompanied by a suppression of global tyrosine dephosphorylation, implicating PTP 

inhibition as a possible mechanism. Therefore, we established that overall PAO-

mediated tyrosine phosphatase inhibition hinders the inflammasome in a mechanism 

that acts upstream of ASC aggregation. Although previous studies showed that 

global PTP inhibition by OVN induced inflammasome activation (Ghonime et al., 

2012, Hoyt et al., 2016), our data reveals that nigericin-induced NLRP3 

inflammasome activation in THP1DMs can be regulated by both OVN and PAO-

sensitive pathways/mechanisms. We suggest that these observed differences 

between this study and previous studies reside in the cell type, cell species and 

specific treatment conditions carried out. Due to these differences, this study would 

have benefited from comparing murine and human cells under the treatment 
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conditions used here. This could have provided a better understanding on the 

underlying mechanisms in OVN treatment and a much more comprehensive view on 

inflammasome regulation by PTPs across species.  

 

We showed that PAO inhibited tyrosine dephosphorylation of ASC mediated by 

nigericin treatment. This was carried out by immunoprecipitation and western blot of 

ASC as well as phospho-tyrosine proteins, both showing that there is a reduction in 

ASC phosphorylation. The immunoprecipitations were carried out with two different 

antibodies (anti-ASC rabbit and anti-pTyr mouse) and both immunoprecipitations 

showed that there was a decrease in phosphorylated ASC following nigericin 

treatment implying that the observed differences in ASC phosphorylation across the 

conditions are treatment-induced rather than technically generated.  As previously 

discussed, ASC phosphorylation by Pyk2 via the Syk/JNK pathway was required for 

phosphorylation of ASC at Y146 (Hara et al., 2013b, Chung et al., 2016). Therefore, 

we have shown that a tyrosine phosphatase may be involved in ASC regulation.  

 

We were unable to identify tyrosine dephosphorylation sites or the tyrosine 

phosphatase(s) involved; this would be vital to carry out in future work. We have also 

identified additional tyrosine residues that are conserved between mice and humans 

and are required for ASC function. The identification of these residues provides a 

basis to identify other tyrosine kinases involved in ASC regulation.  

 

This project has provided a base on which to build on the role of tyrosine 

phosphorylation in inflammasome complex formation and function and specifically on 

the regulation of the adaptor protein, ASC. 
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The NLRP3 inflammasome is implicated in a host of diseases and disorders 

which include (but not limited to) obesity, fibrosis, cancer, Alzheimer’s and 

autoinflammatory disorders (Aksentijevich et al., 2007, Neven et al., 2008). 

Understanding the complex role of tyrosine phosphorylation of ASC is necessary for 

the development of therapeutic interventions in these various diseases. For instance, 

targeting the ASC-targeting kinases and/or phosphatases disrupts the formation of 

an aberrant inflammasome complex and could be a valuable approach in the 

treatment of autoimmune disorders, including the cryopyrinopathies associated with 

gain-of-function mutations in the NLRP3 gene (Aksentijevich et al., 2007, Neven et 

al., 2008), to limit the excessive pro-inflammatory IL-1β release. Furthermore, since it 

has been shown that IL-1β release is dependent on caspase-1 mediated GSDMD 

cleavage ((Liu et al., 2016), targeting ASC regulation by phosphorylation could limit 

caspase-1 activation and thus prevent GSDMD-mediated membrane 

permeabilization and subsequent release of IL-1β and cell death.  
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6.2 Future Work 

 

As we have shown that PAO inhibits PTPs and ASC tyrosine 

dephosphorylation upon NLRP3 inflammasome activation, it would be vital to identify 

which PTPs are involved and are inhibited by PAO. Therefore, with the aid of mass 

spectrometry, candidate PTPs can be identified. Immunoprecipitation of ASC using 

antibodies selective for ASC; PTPs that co-immunoprecipitate with ASC following 

NLRP3 inflammasome activation in the presence and absence of PAO would then 

be identified by protein mass spectrometry. Secondly, ASC immunoprecipitation 

followed by phospho-residue mass spectrometry analysis of ASC. This would aid in 

the identification of the tyrosine residues that are dephosphorylated upon NLRP3 

inflammasome activation. Following identification of these residues, affinity ligands 

can be generated that possess a constitutively active phosphotyrosine at the site of 

the identified residue(s) to allow pull-down of candidate tyrosine phosphatases, 

which will also be identified by protein mass spectrometry. 

 

It would be vital to determine the relevancy of PAO-mediated inhibition of the 

NLRP3, NLRC4 and AIM2 inflammasomes by assessing its effect in vivo. By using 

the peritonitis mouse model as intended in this investigation, valuable data on 

whether the effect seen in vitro is relevant can be attained. This will ultimately 

expand our current understanding of inflammasome regulation in a mammalian 

organism. 

 

Although we have identified novel putative phosphorylation sites on ASC (Y60 

and Y137), we were unable to characterise the mutants or to further identify the 
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candidate kinases due to time constraints. Therefore, more work involving the 

generation of phospho-specific antibodies and kinase inhibitor library screening, 

would aid in identifying the kinases involved.  

 

In addition, the identification of putative tyrosine residues on NLRP3 would be 

vital. NLRP3 is implicated in a host of diseases/disorders (Tan et al., 2013, Ito et al., 

2015) and as the sensor protein, the direct inhibition of NLRP3 would be important in 

treatment of the various diseases. Targeted mutagenesis of conserved and 

phosphorylation predicted tyrosine residues could be essential in understanding the 

regulation of the NLRP3 protein. NLRP3 is a large protein that potentially has 

numerous phospho-targeted tyrosines. While some studies have already shown 

regulation by tyrosine kinases and phosphatases (Spalinger et al., 2016, Ito et al., 

2015), there still remain much to be explored about this large receptor protein.  
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8. Appendix 1: Gating Strategy of 

Peritoneal lavage cells 
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Figure 8-1: Gating strategy for dendritic cells in DMSO and ethanol with PAO 
as activators of peritonitis test 

Peritoneal lavage exudate cells from mice treated with PBS only(A), DMSO only (B), PAO in DMSO 
(C), ethanol only (D) and PAO in ethanol (E), were incubated for 30 minutes at 4°C with the following 
antibody cocktail: anti-mouse CD11b PerCP-Cy5, anti-mouse, CD11c PE-Cy7, anti-mouse F4/80 
Biotin, anti-mouse Ly6C FITC, anti-mouse Ly6G PE and anti-mouse MHCII APC-Cy7. This was 
followed by staining with streptavidin-APC for 30 minutes at 4°C and then DAPI was added to the 
samples 5 minutes prior to acquisition on FACS. The cells were washed and analysed on LSR II Flow 
cytometer (BD). Dendritic cells (DCs) were gated as follows: live CD11c+ MHCIIhigh.  
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Figure 8-2: Gating strategy for macrophages in DMSO and ethanol with PAO 
as activators of peritonitis test  
 
Peritoneal lavage exudate cells from mice treated with PBS only(A), DMSO only (B), PAO in 
DMSO (C), ethanol only (D) and PAO in ethanol (E), were incubated for 30 minutes at 4°C with the 
following antibody cocktail: anti-mouse CD11b PerCP-Cy5, anti-mouse, CD11c PE-Cy7, anti-
mouse F4/80 Biotin, anti-mouse Ly6C FITC, anti-mouse Ly6G PE and anti-mouse MHCII APC-
Cy7. This was followed by staining with streptavidin-APC for 30 minutes at 4°C and then DAPI 
was added to the samples 5 minutes prior to acquisition on FACS. The cells were washed and 
analysed on LSR II Flow cytometer (BD). Macrophages (Macs) were gated as follows: live 
CD11b+F4/80+. 
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Figure 8-3: Gating strategy for monocytes in DMSO and ethanol with PAO as 
activators of peritonitis test  

Peritoneal lavage exudate cells from mice treated with PBS only(A), DMSO only (B), PAO in 
DMSO (C), ethanol only (D) and PAO in ethanol (E), were incubated for 30 minutes at 4°C with the 
following antibody cocktail: anti-mouse CD11b PerCP-Cy5, anti-mouse, CD11c PE-Cy7, anti-
mouse F4/80 Biotin, anti-mouse Ly6C FITC, anti-mouse Ly6G PE and anti-mouse MHCII APC-
Cy7. This was followed by staining with streptavidin-APC for 30 minutes at 4°C and then DAPI 
was added to the samples 5 minutes prior to acquisition on FACS. The cells were washed and 
analysed on LSR II Flow cytometer (BD). Monocytes were gated as follows: CD11b+F4/80-Ly6G-

Ly6Chigh. 
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Figure 8-4: Gating strategy for neutrophils in DMSO and ethanol with PAO 
as activators of peritonitis test  
 
Peritoneal lavage exudate cells from mice treated with PBS only(A), DMSO only (B), PAO in 
DMSO (C), ethanol only (D) and PAO in ethanol (E), were incubated for 30 minutes at 4°C with the 
following antibody cocktail: anti-mouse CD11b PerCP-Cy5, anti-mouse, CD11c PE-Cy7, anti-
mouse F4/80 Biotin, anti-mouse Ly6C FITC, anti-mouse Ly6G PE and anti-mouse MHCII APC-
Cy7. This was followed by staining with streptavidin-APC for 30 minutes at 4°C and then DAPI 
was added to the samples 5 minutes prior to acquisition on FACS. The cells were washed and 
analysed on LSR II Flow cytometer (BD). Neutrophils were gated as follows: CD11b+F4/80-

Ly6G+Ly6Clow/int. 
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Figure 8-5: Gating strategy for dendritic cells in PAO treatment of the MSU-
induced peritonitis mouse model  
 
Peritoneal lavage exudate cells from mice treated with ethanol only (A), PAO in ethanol only (B), 
MSU only (C) and PAO + MSU (D) were incubated for 30 minutes at 4°C with the following antibody 
cocktail: anti-mouse CD11b PerCP-Cy5, anti-mouse, CD11c PE-Cy7, anti-mouse F4/80 Biotin, anti-
mouse Ly6C FITC, anti-mouse Ly6G PE and anti-mouse MHCII APC-Cy7. This was followed by 
staining with streptavidin-APC for 30 minutes at 4°C and then DAPI was added to the samples 5 
minutes prior to acquisition on FACS. The cells were washed and analysed on LSR II Flow cytometer 
(BD). Dendritic cells (DCs) were gated as follows: live CD11c+ MHCIIhigh.  
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Figure 8-6: Gating strategy for macrophages in PAO treatment of the MSU-
induced peritonitis mouse model  
 
Peritoneal lavage exudate cells from mice treated with ethanol only (A), PAO in ethanol only (B), 
MSU only (C) and PAO + MSU (D) were incubated for 30 minutes at 4°C with the following 
antibody cocktail: anti-mouse CD11b PerCP-Cy5, anti-mouse, CD11c PE-Cy7, anti-mouse F4/80 
Biotin, anti-mouse Ly6C FITC, anti-mouse Ly6G PE and anti-mouse MHCII APC-Cy7. This was 
followed by staining with streptavidin-APC for 30 minutes at 4°C and then DAPI was added to the 
samples 5 minutes prior to acquisition on FACS. The cells were washed and analysed on LSR II 
Flow cytometer (BD). Macrophages (Mac) were gated as follows: live CD11b+F4/80+. 
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Figure 8-7: Gating strategy for monocytes in PAO treatment of the MSU-
induced peritonitis mouse model  
 

Peritoneal lavage exudate cells from mice treated with ethanol only (A), PAO in ethanol only (B), 
MSU only (C) and PAO + MSU (D) were incubated for 30 minutes at 4°C with the following 
antibody cocktail: anti-mouse CD11b PerCP-Cy5, anti-mouse, CD11c PE-Cy7, anti-mouse F4/80 
Biotin, anti-mouse Ly6C FITC, anti-mouse Ly6G PE and anti-mouse MHCII APC-Cy7. This was 
followed by staining with streptavidin-APC for 30 minutes at 4°C and then DAPI was added to the 
samples 5 minutes prior to acquisition on FACS. The cells were washed and analysed on LSR II 
Flow cytometer (BD). Monocytes (Mono) were gated as follows: CD11b+F4/80-Ly6G-Ly6Chigh. 
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Figure 8-8: Gating strategy for neutrophils in PAO treatment of the MSU-
induced peritonitis mouse model  
 
Peritoneal lavage exudate cells from mice treated with ethanol only (A), PAO in ethanol only (B), 
MSU only (C) and PAO + MSU (D) were incubated for 30 minutes at 4°C with the following 
antibody cocktail: anti-mouse CD11b PerCP-Cy5, anti-mouse, CD11c PE-Cy7, anti-mouse F4/80 
Biotin, anti-mouse Ly6C FITC, anti-mouse Ly6G PE and anti-mouse MHCII APC-Cy7. This was 
followed by staining with streptavidin-APC for 30 minutes at 4°C and then DAPI was added to the 
samples 5 minutes prior to acquisition on FACS. The cells were washed and analysed on LSR II 
Flow cytometer (BD). Neutrophils (Neut) were gated as follows: CD11b+F4/80-Ly6G+Ly6Clow/int. 
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