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ABSTRACT 

 

 

Holocene relative sea-level (RSL) changes from four sites along the Cumbrian 

coastline have been reconstructed. A multiproxy approach including 

lithostratigraphical, biostratigraphical combined with radiocarbon dating, enabled the 

production of ten sea-level index points (SLIPs). The SLIPs constrained Holocene RSL 

changes in the region between 8324 cal BP and 6018 cal BP. All four sites appear to 

have recorded the Main Postglacial Transgression, with Allonby, Cowgate Farm and 

Pelutho potentially also recording the earlier glacial Lake Agassiz-Ojibway flood event. 

All SLIPs were corrected for post-depositional lowering using a geotechnical model. 

The ten SLIPs produced in this study have refined the trend of Holocene RSL changes 

for the coastal region situated between the southern Solway Firth and central 

Cumbria, a region where only four SLIPs were available prior to this study. Changes 

in the palaeo-tidal range in the Solway Firth were also modelled for the last 10000 

year and corrections were applied to the SLIPs produced in this study, as well as for 

the 88 existing SLIPs from the Solway Firth allowing a comparison of these data to 

glacio-isostatic adjustment model predictions. Examination of the data from the 

northern and southern shores of the Solway Firth indicated that differential isostatic 

uplift had occurred in this region.  

 

Pollen analysis was undertaken at Cowgate Farm and Herd Hill, to provide a record 

on vegetation and coastal changes and act as a chronostratigraphic marker when 

compared to the published pollen records of the region. In addition, a local, 

foraminifera-based transfer function was developed from three contemporary 

saltmarshes located on the southern Solway Firth to aid in the reconstruction of sea-

level changes. However, the lack of preservation of calcareous foraminiferal species 

at the four study sites led to a bias in the species assemblage of the fossil data and 

therefore, the transfer function was deemed unreliable.   
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CHAPTER 1 

 

CONTEXT OF THE RESEARCH 

 

 

1.0 Introduction  

 

Cumbria is located on the northwest coast of England, bordered to the north by 

Dumfries and Galloway in Scotland, to the west by the Irish Sea, to the south by 

Lancashire, to the southeast by North Yorkshire and the east by County Durham and 

Northumberland (Figure 1.1). The northwest region of Cumbria consists of farmed 

and coastal landscapes, including raised beaches, e.g. the oldest marine deposit 

observed adjacent to the Black Dub north of Allonby, dated at 10151-9009 cal BP 

(Eastwood et al., 1968), lowland raised mires and bogs (e.g. Bowness Common, 

Wedholme Flow and Drumburgh Moss, Glasson Moss, Salta Moss), sand dunes, 

saltmarshes and intertidal flats at the Solway Firth and Moricambe Bay. Grune Point 

is the western limit of the intertidal flats and saltmarshes located in Moricambe Bay 

and along the southern Solway Firth. The coastal areas between Grune Point and 

Maryport are directly exposed to the Irish Sea, subjected to a northerly longshore 

drift and characterised by high energy wave and tidal activities. Sand dune systems 

can be found along the northwest Cumbrian coastline from Grune Point to Maryport, 

with the most extensive and undisturbed sand dune system situated between Wolsty 

Bank and Dubmill Point (Solway Coast AONB, 2010).  

 

1.1 Climate 

 

The coastline of northwest Cumbria located on the southern Solway Firth experiences 

a temperate maritime climate. The mean annual temperature varies dependent on 

the altitude and to some extent the proximity of the location to the coast. The low-

lying areas of the Solway Lowlands and Carlisle recorded a mean annual temperature 

of approximately 9 °C, with an approximate 0.5 °C temperature decrease with every 

100 metres increase in altitude (Met Office, 2018). Temperature in the study region 

located in northwest of Cumbria shows both diurnal and seasonal variation, with 

February the coldest month with an average minimum temperature of 0.9 °C, and 

the warmest month July with an average maximum temperature of 19.1 °C. The 
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annual rainfall recorded at Carlisle (the nearest weather station to the study area) 

was 1318.9 mm a-1, with the highest average annual rainfall of 148.6 mm a-1 recorded 

in October, and the lowest average annual rainfall recorded in May with 77 mm a-1 

(Met Office, 2018). 

 

1.2 Vegetation  

 

Areas of saltmarshes, along with relatively small but important areas of dune 

grasslands and heaths, cover the majority of the coastal margin of northwest 

Cumbria. Salt-resistant grasses including marram (Ammophila spp.) and sand couch 

(Elymus farctus) are common on the sand dunes, with sea spurge (Euphorbia 

paralias) and sea holly (Eryngium maritimum) also present, more commonly on the 

sheltered leeward zone. A distinct zonation is observed in the saltmarshes, with the 

upper marsh almost devoid of halophytic species (Walker, 1966). Most of the 

saltmarshes in the region have been heavily grazed by domestic livestock, which has 

limited the presence of the natural vegetation communities. The presence of gorse 

(Ulex spp.) is also common in the region, and is usually present at the uppermost 

extent of the saltmarshes.  

 

The vegetation of the raised peat bogs is one of the only near-natural plant 

communities that remain in the region, although most of the raised bogs and mires 

have been subjected to drainage associated with agriculture or through peat cutting 

for fuel (Walker, 1966; Solway Coast AONB, 2010). The bogs are associated with the 

presence of cotton grass (Eriophorum angustifolium) and bog rosemary (Andromeda 

polifolia), with moss (Sphagnum spp.), cross-leaved heath (Erica tetralix), heather 

(Calluna vulgaris) and purple moor grass (Molinia caerulea) also noted in the drier 

part of the bogs forming part of the regenerating communities (Walker, 1966; Solway 

Coast AONB, 2010). The wetter part of the raised bogs has developed an outer margin 

comprised of wet birch scrub (Betula spp.) and willow carr (Salix spp.), e.g. at Glasson 

Moss and Bowness Common.  
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Figure 1.1: Location map of Cumbria, England with the study sites marked in red  

 

1.3 Geology  

 

Most of the southern Solway Firth, in particular the inner estuary, is surrounded by 

coastal lowlands which are comprised of unconsolidated sediments of Devensian and 

Holocene origins (Lloyd et al., 1999; British Geological Survey, 2018). The bedrock 

geology along the southern Solway Firth and the northwest Cumbrian coastline is 

mainly made up of mudstone, siltstone, sandstone and occasional interbedded 

conglomerate of Permo-Triassic age (British Geological Survey, 2018). The relatively 

subdued relief for the areas in the inner Solway Firth is partly attributed to the 

underlying bedrock comprising of New Red Sandstone. In comparison, the western 

part of north Solway Firth is comprised of more resistant Carboniferous rocks, 

resulting in a rugged cliffed coastline (British Geological Survey, 2018). Glaciofluvial 

outwash from the Devensian ice sheet is usually present overlying the bedrock, which 

is then overlain by Holocene sediments (Walker, 1966; Lloyd et al., 1999; British 
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Geological Survey, 2018). The bedrock geology for the study region and surrounding 

areas is shown in Figure 1.2. 

 

 

 

Figure 1.2: Bedrock geology of the study region and surrounding areas. Full geological 

key available at: http://digimap.edina.ac.uk/roam/geology. Image and key modified 

and adapted from Digimap (2018) (Service Layer Credit: Geological Map Data, BGS) 

© Crown Copyright and Database Right (2018) Ordnance Survey (Digimap Licence) 

 

The superficial geology overlying the bedrock in the areas located close to the shores 

of Moricambe Bay and Solway Firth is mainly comprised of raised marine deposits of 

silt, clay and sand, with sand and gravel forming the sand dunes located along the 

coastline between Grune Point and Maryport. In some areas, peat has developed 

upon the glaciofluvial deposits and bedrock (British Geological Survey, 2018), as 

shown in Figure 1.3. Extensive saltmarshes are present on the coast of Moricambe 

Bay and the southern Solway Firth, with occasional relict sand bars observed in areas 

located behind the saltmarshes. Raised freshwater mires and bogs are also abundant 

on the southern shore of the Solway Firth, and this includes Bowness Common, 

Drumburgh Moss, Glasson Moss and Wedholme Flow. 
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Figure 1.3: Superficial deposits of the study region and surrounding areas. Image and 

key modified and adapted from Digimap (2018) (Service Layer Credit: Geological Map 

Data, BGS) © Crown Copyright and Database Right (2018) Ordnance Survey 

(Digimap Licence) 

 

1.4 Justification of the Research 

 

Despite being one of the largest macrotidal estuarine systems in the United Kingdom, 

the Solway Firth, in particular its southern shore, is still relatively understudied with 

respect to Holocene sea-level reconstruction. Holocene relative sea-level 

reconstruction has been undertaken at several sites on the southern shore of the 

Solway Firth, namely Drumburgh Moss and Boustead Hill (Lloyd et al., 1999), the 

raised bog of Bowness Common and Wedholme Flow (Walker, 1966; Tooley, 1974; 

1978; Huddart et al., 1977) and at Crosscanonby (Huddart et al., 1977). The 

reconstruction of Late Devensian and Holocene sea level was also undertaken in the 

Ravenglass Estuary and sites in central Cumbria by Huddart et al. (1977); Tooley 

(1985); Auton et al. (1998); Balson (2010) and Lloyd et al. (2013). Further south in 

Morecambe Bay, extensive studies on the history of Late Devensian and Holocene 

sea level were undertaken, and these include those of Smith (1959); Oldfield (1960a, 

b); Oldfield and Statham (1963); Barnes (1975); Birks (1982); Tooley (1987) and 

Zong & Tooley (1996). However limited data is available on Holocene relative sea-

level change for the area located between the southern shore of the Solway Firth and 

central Cumbria in particular. The only sites studied to date are Wedholme Flow and 
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Crosscanonby, which provided records of Holocene marine transgression and 

regression, and two sea-level index points from Wedholme Flow.  

 

The Holocene sea-level record in the Solway Firth is a result of the combined effects 

of eustatic and isostatic changes. The region was affected by the British and Irish Ice 

Sheet (BIIS) during the Last Glacial Maximum (LGM) as well as the subsequent local 

ice re-advances centred in Scotland (Bradley et al., 2011), resulting in isostatic re-

adjustment and land uplift following decay of the ice mass. The relative sea-level 

record for the region located south of the Solway Firth in northwest Cumbria may 

potentially be further complicated due to the effect of the local Lake District ice mass. 

Therefore, different records of relative sea level between sites located on the northern 

and southern Solway Firth may be observed.  

 

Previously, the study undertaken by Lloyd et al. (1999) have highlighted the potential 

differential crustal movement between the northern and southern Solway Firth, which 

resulted in different records of relative sea-level change between the two localities. 

However, the southern Solway Firth at present is still understudied compared to the 

northern side, particularly for the region located between the southern shore of the 

Solway Firth and central Cumbria, and previous research was focused on the inner 

part of the estuary and the raised bogs (e.g. Lloyd et al., 1999). As a comparison, 

there are 75 sea-level index points (SLIPs) presently available along the northern 

coastline of the Solway Firth, with only 13 SLIPs available for the southern shore of 

the Solway Firth. The clear difference in number of data points available at each 

location may potentially lead to bias in the data when testing the variation in changes 

of relative sea-level between the two localities. The lack of data from a particular 

region may also contribute to the existing mismatch between geological field data 

and relative sea-level predictions produced from glacio-isostatic adjustment (GIA) 

models e.g. Bradley et al. (2011), Kuchar et al. (2012) and Shennan et al. (2018) 

(Edwards et al., 2017). 

 

To ascribe an indicative meaning for the calculation of SLIPs, contemporary data 

which acts as a representation of the fossil samples are needed. The indicative 

meaning of a sea-level proxy describes its relationship to elevations within the tidal 

frame and is comprised of a tidal datum midpoint (the reference water level) and a 

vertical range (the indicative range) (Horton & Edwards, 2006; Horton et al., 2013). 
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To date, there is only one set of contemporary data available from the Solway Firth. 

This was obtained from the Nith Estuary located on the northern Solway Firth, which 

comprised of 13 contemporary samples (Horton & Edwards, 2006). No contemporary 

data is available from the southern Solway Firth. To enable the development of a 

local transfer function and also to ascribe the indicative meaning of the fossil samples 

obtained in this study from sites located on the southern Solway Firth, a survey of 

the contemporary saltmarshes located near to the palaeo study sites is crucial.   

 

In addition, the effect of changes in palaeo-tidal range in the Solway Firth throughout 

the Holocene was not previously taken into consideration when calculating most of 

the existing 88 sea-level index points from sites located on the northern and southern 

coastline of the Solway Firth. If tidal range at the study sites was greater in the past, 

the reference water level assigned to the SLIPs would also be greater, resulting in a 

lower relative sea level than calculated by the SLIPs. Failing to account for the 

changes or increase in tidal range through time would therefore lead to an 

underestimation of the altitude of relative sea level during the study period (Horton 

et al., 2013). The development of numerical palaeotidal models, e.g. Hill et al. (2011); 

for the Caribbean Sea, Gulf of Mexico and western Atlantic and Hall et al. (2013); for 

Delaware Bay, USA, has resulted in the prediction of temporal tidal-range changes 

throughout the Holocene in the respective studies. For the United Kingdom, 

palaeotidal changes have been modelled for the Humber Estuary (Shennan et al., 

2003) and the western North Sea region (Shennan et al., 2000). These have, and will 

enable, the refinement of the reference water level and the indicative range ascribed 

to the SLIPs produced, resulting in more precise data.  

 

The other significant vertical uncertainties that should be quantified is the effect of 

post-depositional lowering of sediments. SLIPs obtained from intercalated samples 

are most likely to have been subjected to post-depositional compaction, and this 

should be quantified to provide the most accurate sea-level reconstruction (Shennan 

& Horton, 2002; Edwards, 2006; Massey et al., 2006; Horton & Shennan, 2009; Brain 

et al., 2011; 2012; 2015; Horton et al., 2013; Barlow et al., 2013; Brain, 2016). 

 

The overall aim of this research is therefore to reconstruct Holocene relative sea-level 

changes obtained through detailed lithostratigraphical and biostratigraphical analyses 

and interpretation of data obtained from four sites located on the currently 
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understudied southern shore of the Solway Firth. The correction of changes in the 

palaeo-tidal range in the Solway Firth will also be incorporated in the calculation of 

SLIPs produced in this study, along with the presently available SLIPs from the region. 

This will ultimately contribute and lead to the improvement of the whole dataset 

available for the region, and allow investigation of the variation in relative sea-level 

changes between the northern and southern Solway Firth and therefore the drivers 

of these changes. 

 

1.5 Objectives of the Research 

 

Several objectives were identified in this study: 

 

1. To generate SLIPs from sites located along the currently understudied southern 

shore of the Solway Firth 

 

2. To define the timing of sea-level and broader environmental changes recorded 

at each site using microfossil analyses and radiocarbon dating  

 

3. To establish the contemporary distribution of foraminifera from three saltmarshes 

located in the study region 

 

4. To examine, and correct for palaeo-tidal changes of the SLIPs produced in this 

study, and the ones that currently exist for the northern and southern Solway 

Firth 

 

5. To compare the corrected SLIPs with relative sea-level values produced from 

glacio-isostatic models 

 

1.6 Location of the Study Sites  

 

Three coastal sites at Allonby (NY 0949 4410), Cowgate Farm (NY 0967 4737), 

Pelutho (NY 1202 4920), and one inner estuary site at Herd Hill (NY 1794 6010) were 

investigated in this study (Figure 1.1). Pasture House (NY 1861 6030) was included 

to provide additional geomorphological information of the area around Herd Hill. 

Several other sites were also visited and sampled, however after initial analyses these 
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sites were deemed unsuitable for further study (discussed in Chapter 3; Section 

3.1.1). The selection of the coastal and inner estuary sites was intended to identify 

and compare different coastal settings as well as Holocene relative sea-level changes.   

 

1.7 Structure of the Thesis 

 

Chapter 1 presents an introduction to the environment in the study region located 

on the southern shore of the Solway Firth and outlines the main hypothesis and 

objectives of the research. Chapter 2 is a literature review which summarises the 

glacial history and relative sea level changes in the study region. An overview of the 

regional vegetation history, along with the methods and techniques used for the 

reconstruction of relative sea level are also presented. Chapter 3 outlines the specific 

methods and techniques used in this study.  

 

The research on the contemporary foraminifera and saltmarsh environment located 

along the coast of Moricambe Bay and southern Solway Firth is presented in Chapter 

4. The main aim of this chapter is to define the distribution of modern foraminifera 

from contemporary intertidal and saltmarsh environments, which can then be used 

to aid in the interpretation of the fossil records observed at each site.  

 

The findings and results obtained from each of the sites investigated in this study are 

presented in Chapter 5 (Allonby), Chapter 6 (Cowgate Farm), Chapter 7 

(Pelutho), Chapter 8 (Herd Hill) and Chapter 9 (Pasture House). The results 

presented include lithostratigraphical work, altitudinal data from the boreholes 

records and from the sample cores, loss on ignition and particle size analyses, 

microfossil analyses and interpretation, the chronology and the development of the 

SLIPs. Post-depositional correction for each SLIPs are also presented in each of the 

result chapters.  

 

All SLIPs produced in this study, along with the existing SLIPs available from the 

northern and southern Solway Firth are corrected for palaeotidal changes in Chapter 

10.  

 

Chapter 11 presents a critique of the methods used to reconstruct sea-level changes 

including an assessment of the contemporary foraminiferal and saltmarsh 
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environments investigated. A review of the methods and techniques used to 

reconstruct Holocene relative sea-level changes in the study area are also discussed. 

This chapter also combines the results obtained from the four main sites and 

summarises the Holocene relative sea-level changes of the region. The SLIPs prior 

to, and after, the correction of changes in palaeo-tidal changes plotted separately 

against relative sea-level predictions obtained from different geophysical models, to 

highlight the importance of correcting for palaeo-tidal changes are then presented. 

Data produced in this study along with the existing SLIPs from the southern Solway 

Firth was compared to reconstructions from the northern Solway Firth, enabling the 

identification of variations of relative sea-level records between the two localities. A 

review on the palaeogeography of the Solway Firth from 10 ka BP to 1 ka BP is also 

presented in this chapter.  

 

The main conclusions of this study are outlined in Chapter 12, highlighting the 

contributions and wider implications of this research. Recommendations for potential 

future work on Holocene relative sea level in the area is also considered. 

 

1.8 Summary 

 

This chapter introduced the background and justification of the research, along with 

the identification of the research aims and objectives. A summary of the thesis 

structure was also presented.  
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

2.0 Introduction  

 

This chapter summarises the glacial and relative sea-level history of the United 

Kingdom and specifically that of the study region in Cumbria. An overview of the 

Holocene relative sea-level changes in the Solway Firth is presented, and set within 

the broader context of Holocene relative sea-level changes along the coast of 

England. The Solway Firth coastline was affected by ice growth and decay during the 

Devensian that resulted in relative sea-level changes in the region. A summary of the 

available literature on the vegetation history of Cumbria for the Devensian and 

Holocene is also presented in this chapter. Finally, the methods and techniques that 

can be utilised in the reconstruction and interpretation of relative sea-level changes 

are described. 

 

2.1 Summary of the Glacial History of the United Kingdom 

 

The British and Irish Ice Sheet (BIIS) was a long-lived feature that existed throughout 

most of the last glacial period, with records of glacial advances evidenced through 

dating of glacial boulders and glaciated surfaces, covering most of the British Isles 

and the surrounding continental shelf (Clark et al., 2018). The most recent glacial 

advance, the Devensian, reached its maximum at approximately 23 to 21 ka BP (Clark 

et al., 2018; Figure 2.1) and was reported to have lasted until approximately 13 ka 

BP in Scotland (Bradley et al., 2011) as shown in Figure 2.2.  
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     (a)                                                          (b) 

Figure 2.1: (a) Reconstructions of the retreat pattern of the BIIS adapted from Clark 

et al. (2012) in Clark et al. (2018) which includes meltwater channels, eskers, 

moraines and subglacial bedforms (b) Maximum extent of the different sectors of BIIS 

with dates adapted from Clark et al. (2012). Red line is the long-standing view of a 

more restricted extent of the ice mass, white-shaded area is the extent at 27 ka BP 

and black lines are the subsequent advances in the southern margin of the BIIS (Clark 

et al., 2018) 

 

 

 



30 
 

 

Figure 2.2: Maps showing the extent and thickness of the BIIS model (Bradley et al., 

2011). (a) 32 ka BP (b) 26 ka BP (c) 24 ka BP (d) 21 ka BP (e) 20 ka BP (f) 19 ka BP 

(g) 18 ka BP (h) 17 ka BP (i) 16 ka BP and (j) 13 ka BP 

 

It was inferred that the BIIS and Scandinavian Ice Sheet (SIS) were confluent at least 

on two occasions in the North Sea during the Devensian, with the period of maximum 

confluence occurring at approximately 34.2 to 29.3 ka BP. This was later followed by 

an extensive period of large ice sheet reorganisation (Ehlers and Wingfield, 1991; 

Bowen et al., 2002; Carr et al., 2006). Bradwell et al. (2008) concluded that the zone 

of contact between BIIS and SIS probably occurred across the north of the Orkney 

Islands, Scotland, and that the SIS was reported to have confined the BIIS during 

the Dimlington Stadial in the Late Devensian (Davies, 2008). At 22 ka BP, the BIIS 

and SIS were no longer in contact with each other (Bowen et al., 2002), and this is 

in agreement with the model developed by Bradley et al. (2011) which illustrated that 

the BIIS and the SIS were confluent between 32 to 27 ka BP.  

 

An initial pulse of deglaciation of the BIIS was recorded at approximately 22.7 ka BP 

and the collapse of the BIIS across northern Britain started at approximately 20.6 ka 

BP (Bowen et al., 2002; Clark et al., 2012). This was followed by an extensive 

deglaciation at approximately 17.8 ka BP (Bowen et al., 2002) although Bradley et al. 

(2011) modelled the deglaciation to have started at approximately 20 ka BP, with a 
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rapid thinning and retreat of the Irish Ice sheet starting at 19 ka BP (Figure 2.2). The 

Irish Ice Sheet re-advanced across Northern Ireland to record the ‘Killard point stadial’ 

starting from approximately 17 ka BP, with complete ice retreat from Ireland recorded 

by approximately 16.5 to 16 ka BP (Bradley et al., 2011, Finlayson et al., 2014). 

 

Retreat of the BIIS occurred from a number of different and separate ice caps, rather 

than reduction from a single mass (Clark et al., 2012; 2018). At 27.5 ka BP, the ice 

sheet retreated along the northern boundaries of the BIIS. At the same time the 

southern margins began to expand, including transient ice streaming down the Irish 

Sea and expansion of ice domes in the Vale of York, Cheshire Basin and east coast 

of England. At 23.1 ka BP, the BIIS deteriorated with major and widespread loss of 

marine based ice, especially in the Irish Sea and North Sea. At 20.6 ka BP, the final 

collapse of all marine based ice occurred, and most marine margins started to retreat 

onshore. Although not confirmed, the North Sea ‘ice bridge’ that connected Britain 

and Norway was speculated to disintegrate at approximately 20.6 ka BP (Clark et al., 

2012), however this bridge was already absent at 26 ka BP in the model developed 

by Bradley et al. (2011). At 19.5 ka BP, the Irish Sea and North Channel ice streams 

cleaved the ice sheet into two separate sheets comprising the Irish ice sheet and 

Scottish ice sheet (Clark et al., 2012).  

 

Several smaller scale ice growths and re-advances have been recorded in Scotland. 

This includes the Perth re-advance and the Wester Ross re-advance that occurred 

approximately between 15 to 13 ka BP during the Late Glacial (Sissons et al., 1966; 

Sissons, 1967; Robinson & Ballantyne, 1979; Ballantyne, 1986; Everest et al., 2006; 

Ballantyne & Stone, 2009; Ballantyne, 2010). The ice re-advance during the Loch 

Lomond Stadial was also localised and occurred between 15.4 to 13.4 ka BP, e.g. at 

sites studied in the Outer Hebrides, the North-West Highlands, Orkney, Caithness and 

Buchan (Wilson et al., 2002; Ballantyne, 2010), with the final deglaciation occurring 

sometime after 11.7 ka BP when climate warmed at the start of the Holocene (Lowe 

et al., 2008; Walker et al., 2009). 
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2.2 Summary of the Glacial History of Cumbria 

 

During the Devensian maximum that occurred approximately 23 to 21 ka BP, the 

northwest of England was covered in ice originating from the Lake District and 

Scotland (Delaney, 2003; Bradley et al., 2011; Clark et al., 2012; 2018). The Solway 

Lowlands, Stainmore, Vale of Eden and the Tyne Gap regions were located at the 

centre of the BIIS, and therefore were highly affected by the complex interactions 

between several upland ice dispersal centres, such as the Lake District, north 

Pennines and Southern Uplands. The Solway Lowlands in Cumbria were also affected 

by ice divides, and the migration and impact of the Irish Sea and Tyne Gap ice streams 

(Livingston et al., 2008; 2012) (Figure 2.3). 

 

 

Figure 2.3: Map showing generalised ice flow directions in northern England and 

southern Scotland (from Livingstone et al., 2012) 

 

Research undertaken on Scottish ice re-advances in the Solway Lowlands was 

summarised in Livingstone et al. (2010), and is described briefly here. Site locations 

mentioned in this section are shown in Figure 2.4 The first evidence to support a 
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glacial re-advance into the Solway Lowlands comprising of a thin upper till horizon 

overlying a series of sands and laminated clays horizons was presented by Trotter 

(1922; 1923; 1929). These minerogenic units were comprised of the Scottish erratics 

identified in Dixon et al. (1926) and Trotter & Hollingworth (1932). Several eskers 

which were believed to have flowed in a northwest to southeast direction were 

identified at Thursby, Cummertrees and Gretna (Figure 2.3), with outwash deltas 

deposited in association with the esker formation at Gretna further supporting a 

Scottish glacial re-advance into the area (Dixon et al., 1926; Charlesworth, 1926; 

Trotter, 1929). 

 

The ice limit from the Scottish re-advance reached as far as Lanercost, Brampton and 

Cumwhitton in the east and Foulbridge and Bolton Low Houses in the south (Trotter, 

1929). At the maximum extent of the Scottish re-advance, Lake Carlisle and Lake 

Lyne formed against the reverse slope of the Tyne Gap, and water drained in an 

eastward direction via the Gilsland meltwater channel. When ice retreated westwards, 

Lake Caldew formed initially, followed by the development of Lake Wigton. Meltwater 

escaped westwards as ice retreated via overspill channels which flowed into the lakes, 

depositing a series of deltas (Trotter, 1929).  

 

Re-evaluation of the Scottish ice re-advance into the Solway Lowlands was 

undertaken by Huddart (1970; 1971a; 1971b; 1991; 1994), Huddart & Tooley (1972), 

Huddart et al., (1977) and Huddart & Glasser (2002). Huddart (1970) stated that the 

Scottish ice did not extend far beyond Carlisle, and most of the stratigraphic evidence 

previously presented by Trotter (1922; 1923; 1929) was patchy or could instead be 

re-interpreted as debris flow deposits. Huddart (1970; 1991; 1994) also stated that 

the Scottish re-advance limits were most likely defined by the esker deposits at 

Thursby, a thin upper till located west of Carlisle and a major glaciofluvial deltaic 

complex found at Holme St Cuthbert. The St Bees push moraine situated on the west 

Cumbrian coastline was attributed to have originated from the Scottish re-advance 

as reported by Huddart (1994) and Merritt & Auton (2000). 

 

Fluctuations of small radially flowing ice caps occurred before 34.2 ka BP in the Lake 

District. At approximately 23.6 ka BP the Lake District ice sheet grew, producing a 

triangular and elongated dome over northwest England and southwest Scotland 

during the Devensian. During the recession which happened after 22.5 ka BP, a 
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complex pattern of significant ice flow developed, switching directions over a 

relatively short period (Evans et al., 2009). The central sector of the BIIS became a 

major dispersal centre for the duration of 2500 years after the Devensian. The ice 

sheet that developed over Cumbria had no stable or steady state, and was made up 

mainly of constantly moving ice divides and dispersal centres. The subglacial 

streamlining that occurred was also completed over a short period of time, with flow 

reversals happening in less than 300 years (Evans et al., 2009). 

 

Figure 2.4: Location map of areas in Cumbria mentioned in the text  
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Ballantyne et al. (2009) suggested that an independent ice dispersal centre formed 

in the Lake District during the Devensian, based on the distribution of Borrowdale 

Volcanic erratics, absence of allochthonous erratics and the orientation of striae in 

the Lake District’s mountains. Based on the evidence, it was suggested that the Lake 

District ice dome deflected ice moving south from Scotland towards two areas: further 

south into the Irish Sea basin and eastward into northern England (Ballantyne et al., 

2009; Livingstone et al., 2012), as illustrated in Figure 2.3. 

 

Cosmogenic 36Cl exposure dating showed that the summit plateau of Scafell Pike (at 

978 metres above sea level) in the southwest of Lake District escaped ice erosion 

during the Devensian. Ice moulded bedrock on an adjacent col (at 750-765 metres, 

exposure age of 24 to 18.6 ka BP) confirmed erosion and over-riding of bedrock by 

warm based Devensian ice, consistent with other high-level sites in the British Isles 

(Ballantyne et al., 2009). This suggests substantial (although not complete) retreat 

of the BIIS at approximately 20.6 ka BP. Ballantyne et al. (2009) also suggested that 

the final stage of local glaciation in the Lake District occurred during the Loch Lomond 

Stadial at approximately 15.6-13.6 ka BP, based on an exposure age of 17.3 to 13.0 

ka BP which was obtained from a glacially transported rockfall boulder within the 

limits of later corrie glaciation.  

 

The glacial geomorphology of the southwest Lake District was mapped by Brown et 

al. (2011; 2013). It was assumed that Upper Eskdale located in the southwest Lake 

District, did not nourish ice during the Younger Dryas prior to the mapping done by 

Brown et al. (2011). The authors however concluded that this was unlikely to be true 

as Upper Eskdale is one of the highest elevation cirques (valley formed by glacial 

erosion). The eastern part of the Scafell Pike range in the Lake District was inundated 

by ice during the Younger Dryas, which then supplied ice to the major part of the 

Upper Eskdale valley. This would therefore explain the lack of moraines within and 

around the Upper Eskdale, which would have been more evident when ice was 

confined within the cirques themselves rather than spread down-valley from Scafell 

Pike (Brown et al., 2011; 2013).  

 

Lamb and Ballantyne (1998) suggested that Late Devensian glacial ice crossed the 

high ridges linking Crinkle Crags (859 metres), Esk Pike (885 metres), Great End (910 

metres) and Bow Fell (902 metres). Only small areas around Bow Fell, Esk Pike and 
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Great End were free of evidence of Late Devensian glaciation. The high-level striae 

and roches mountonnées in these areas confirmed that the lower zones of peaks and 

cols were over-run by ice that moved westwards or south-westwards, which is 

consistent with the movement of ice away from the ice-free domes located in the 

central Lake District (Lamb and Ballantyne, 1998). Clark (1999) echoed the findings 

of Lamb and Ballantyne (1998) and stated that the area around Great End was free 

from ice cover, including the top of Scafell Pike. The top of Great Gable (height of 

899 metres) was also identified to have escaped ice cover during the Devensian. It 

was also concluded that the ice in Lake District moved west and southwest during its 

retreat (Clark, 1999, Clark et al., 2018).  

 

Lamb and Ballantyne (1998) reported that the mountains in the southwest of the 

Lake District have a high weathering limit separating the upper zone of shattered 

blockfields, bedrock and tors from the lower zone of bedrock moulded by glaciers, 

with the weathering limit declining from approximately 870 metres (on the eastern 

side) and approximately 800-830 metres (on the north-western side). The weathering 

limit represents the approximate altitude of the last BIIS surface at its maximum 

thickness. The maximum BIIS surface altitude based on these ridges is estimated to 

be approximately 870 m OD adjacent to the Bow Fell summit, and about 

approximately 830 m OD near Scafell Pike (Clark, 1999).  

 

At Widdygill Foot, Blindtarn Moss and Cotra which are located in the south-central 

Lake District, moraine ridges and mounds have been mapped and based on their 

location and morphology, were found to have been formed during the Loch Lomond 

Stadial. Patterns of moraines at all sites showed that the Lake District glaciers 

underwent active retreat of 0.2-0.8 km occurring approximately between 19.5 to 16.8 

ka BP, suggesting that glaciation during the subsequent Loch Lomond Stadial in the 

Lake District was more extensive than previously accepted (Wilson, 2002; 2004). 

Although the moraines were not dated, patterns of moraine ridges show that ice-

removal from the valley during the Loch Lomond Stadial involved active retreat or 

stillstands and possible re-advances rather than in-situ decay (Wilson, 2004; 

Livingston et al., 2012).  
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McDougall (2001) also presented evidence of the development of plateau icefields in 

the central fells of the Lake District during the Loch Lomond Stadial, which occurred 

at approximately 15.4 to 13.4 ka BP (Wilson et al., 2002; Ballantyne, 2010). The 

largest was centred on High Raise and covered an area of approximately 55 km2 

including the outlet glaciers. To the west of High Raise fell, smaller plateau icefields 

were found on Grey Knotts/Brandreth and Dale Head, covering 7 km2 and 3 km2 

respectively. Debris that accumulated in the hills at the centre of Knott in the northern 

Lake District resulted from glacial deposition during the Loch Lomond Stadial (Wilson 

and Clark, 1999). 

 

More recently, Livingstone et al. (2012) suggested that there were six stages of glacial 

advance in the central sector of the last BIIS, affecting the areas in Cumbria. These 

consisted of: (i) eastward flow through the north Pennines; (ii) termination of 

Stainmore ice flow pathway and migration of the North Irish Sea basin ice divide; (iii) 

cessation and retreat of Tyne Gap ice stream; (iv) Blackhall Wood-Gosforth Oscillation 

which occurred at approximately 23.7 ka BP; (v) Solway Lowland ice deglaciation; 

(vi) the re-advance of Scottish ice, prior to the final retreat of ice out of the central 

sector of BIIS. The last phase of ice deglaciation then occurred between 

approximately 16.5 ka BP to 8.2 ka BP (Bradley et al., 2011).  

 

2.3 Sea-Level Change 

 

Relative sea-level change is a result of various contributing factors at a global, 

regional and local spatial scales, which can be driven by either variations in volume 

of the ocean (i.e. eustatic changes) or through changes of the land with respect to 

the surface of the sea (i.e. isostatic changes) at varying temporal scales (Gehrels & 

Long, 2008; Rovere et al., 2016). Factors contributing to changes in sea level include 

melting of land-based ice (e.g. polar ice sheets, ice caps and mountain glaciers), 

thermal expansion or contraction of the upper layer of the ocean, ocean siphoning 

(where equatorial ocean water flows towards the collapsing forebulges of the mid 

and high latitudes) and continental levering (rebound of the coast as a result of water 

loading in continental shelf) (Gehrels & Long, 2008; Mitrovica & Milne, 2003).  

 

More local factors contributing to sea-level change includes changes in tidal range in 

an area (i.e. which may lead to changes in height and impact of storm waves, storm 
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surges and height of high tides), sediment compaction, tectonic processes (e.g. 

earthquakes; Hamilton and Shennan (2005)) and the vertical land movement in 

response to unloading of ice masses, referred to as glacio-isostatic adjustment (GIA) 

of the land (Gehrels & Long, 2008; Shennan et al., 2012). 

 

Relative sea level can be defined as the change in sea relative to the land at a given 

location, as a result of the combined eustatic, isostatic, tectonic and other local factors 

(Shennan et al., 2012). Shennan et al. (2012) expressed the change in relative sea 

level (ΔRSL) of a specific geographical location (ɸ), at time t, where t is the time 

relative to present, as: 

 

ΔRSL = ΔEUS(t) + ΔISO(ɸ,t) + ΔTECT(ɸ,t) + ΔLOCAL(ɸ,t) + ΔUNSP(ɸ,t) 

 

Where ΔEUS(t)  is the time-dependent eustatic sea level as a result of meltwater 

distribution; ΔISO(ɸ,t) is the total isostatic effect (glacio-isostatic and hydro-isostatic) 

and rotational contributions of ocean mass redistribution; ΔTECT(ɸ,t) is the tectonic 

effect (although deemed negligible in the British Isles during the Holocene); 

ΔLOCAL(ɸ,t) is the total effect of local processes within the coastal system of the 

location (a combined effect of changes in tidal regime, ΔTIDE(ɸ,t) and sediment 

elevation, ΔSED(ɸ,t)); and ΔUNSP(ɸ,t) is the total unspecified factors (Shennan et 

al., 2012).  
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2.3.1 Abrupt Eustatic Sea-Level Rise and the 8.2 ka Event 

 

Eustatic sea-level changes occur at a global scale and are caused by processes that 

alter the volume or mass of the world’s ocean (Fleming et al., 1998; Shennan et al., 

2012; Rovere et al., 2016). The mass of the ocean can change due to the melting or 

accumulation of continental ice sheets over time (glacio-eustasy) and as a result of 

water moving between different reservoirs (hydro-eustasy). Changes in volume of 

the world ocean are due to variations in ocean water density and changes in salinity. 

Changes in the volume of ocean basins can also cause eustatic sea-level changes 

(e.g. tectono-eustasy). Eustatic sea-level changes can vary temporally and although  

usually defined as the change in sea level that has occurred in a uniform manner 

globally, the loading and unloading of water mass and volume over time leads to 

deformation, gravitational and rotational disturbances of the solid Earth leading to 

spatial variations in eustatic sea-level changes (Rovere et al., 2016).  

 

At approximately 21 ka BP, during the Devensian glaciation eustatic sea-level 

minimum of approximately 130-135 m was recorded as ice cover was at its maximum 

(Fleming et al., 1998; Peltier, 2002; Clark et al., 2018). A rapid rate of sea-level rise 

followed the Devensian deglaciation, with two episodes of further sea-level rise 

accelerations recorded at approximately 14 and 11.5 ka BP, which were assumed to 

reflect the increased rates of global ice melt during those periods. The event at 14 ka 

BP is known as the meltwater pulse (MWP) 1a, with the less pronounced sea-level 

rise acceleration at 11.5 ka BP associated with the MWP 1b (Alley et al., 2005; Peltier, 

2005).  

 

The rate of Holocene eustatic sea-level rise then decreased significantly after 5 ka 

BP, as continental ice sheets have melted to small residuals remnants. Eustatic sea-

level then broadly stabilised between the periods of 3 to 2 ka BP (IPCC, 2007). During 

the late Holocene, eustatic sea-level may have fallen slightly as a result of ocean 

siphoning, but the process has been reversed in more recent centuries, where sea 

level rose again from the early 1800s as a result of anthropogenic activities. Data 

from the east coast of the USA provided evidence of an eustatic sea-level rise of 

approximately 1.7 mm a-1 in the twentieth century (Gehrels et al., 2004; 2006; 

Engelhart et al., 2011).  
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Sea-level fingerprinting can be defined as the attribution of past episodes of sea-level 

rise to meltwater sources that were constrained spatially (Kendall et al., 2008; 

Törnqvist & Hijma, 2012). As an ice sheet melts, the meltwater is distributed in a 

distinct pattern known as a ‘fingerprint’ (Kendall et al., 2008; Törnqvist & Hijma, 

2012). This unique signature results from the gravitational pull that ice sheets and 

glaciers have on the water that surrounds them, increasing sea level on the 

peripheries. Upon deglaciation, the gravitational pull decreases and sea level falls. 

This change in the gravitational field of the earth results in a movement of water 

away from the ice sheets and the sea-level rise caused by this movement is known 

as the sea-level fingerprint (Hay et al., 2017), e.g. the input of freshwater following 

the decay of the glacial Lakes Agassiz-Ojibway in North America. 

 

A brief and rapid episode of marine transgression and increased relative sea level as 

a result of the discharge of Lakes Agassiz-Ojibway in North America due to the 

collapse of the Laurentide Ice Sheet (LIS), has been increasingly recognised in 

stratigraphic sequences from a number of locations. It was reported that the collapse 

of the LIS discharged more than 1014 m3 of fresh water into the Labrador Sea, 

resulting in a significant reduction in the sea surface salinity and temperature (Barber 

et al., 1999; Li et al., 2012). This event occurred at approximately 8470 to 8000 cal 

BP (Barber et al., 1999; Törnqvist & Hijma, 2012), and the massive input of 

freshwater altered the ocean’s circulation and led to a cooling event at 8200 BP with 

a significant drop in temperature recorded in Greenland and the North Atlantic Ocean 

(Barber et al., 1999).  

 

Several researches have potentially recorded the marine transgression resulting from 

the drainage of Lakes Agassiz-Ojibway (e.g. Long et al., 2006; Turney & Brown, 2007; 

Yu et al., 2007; Kendall et al., 2008; Hijma & Cohen, 2010; Li et al., 2012; Törnqvist 

& Hijma, 2012; Selby & Smith, 2016). An increase in sea level occurring between 

8310 to 8180 cal BP in the Mississippi Delta attributed to the final drainage of 

proglacial Lake Agassiz–Ojibway was documented by Li et al. (2012), and Yu et al. 

(2007) reported a later increased sea level at approximately 7600 cal BP on the 

southeastern Swedish Baltic coast, also attributed to the collapse of the ice sheet. At 

Talisker Bay, Isle of Skye, a marine transgression was recorded between 8373 to 

7793 cal BP, and was suggested to have potentially resulted from the Lake Agassiz-

Ojibway flood (Selby & Smith, 2016).  
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Jennings et al. (2015) developed a detailed history of the timing of ice-sheet 

discharge events from the Hudson Strait outlet of the LIS throughout the Holocene, 

which included events associated with the drainage of Lake Agassiz-Ojibway. Based 

on the stratigraphic evidence and the modelled ages of Hudson Strait/Bay 

deglaciation events, the authors identified three separate episodes associated with 

the 8.2 ka cooling, the retreat of Hudson Strait ice stream, the opening of the Tyrell 

Sea and the drainage of the glacial lakes Agassiz and Ojibway, which have been 

combined in previous estimates (Jennings et al., 2015).  

 

Research undertaken by Hijma & Cohen (2010) in the Rhine-Meuse Delta, 

Netherlands, Li et al. (2012) in the Mississippi Delta, USA and by Smith et al. (2013) 

in the Ythan Estuary, United Kingdom provides three well-dated relative sea-level 

records (through dating of basal peat samples) which have captured the sea-level 

jump prior to the 8.2 ka event. An eustatic sea-level jump of 3.0 ± 1.5 m at 8590-

8350 cal BP and 1.2 ± 0.2 m at 8310-8180 cal BP was recorded at Rhine-Meuse Delta 

(Hijma & Cohen, 2010) and Mississippi Delta (Li et al., 2012) respectively. Based on 

the differences in timing and magnitude at the two sites, it was suggested that the 

Rhine-Meuse Delta sea-level jump contained two separate events while the data from 

Mississippi Delta captured only a final event relating to the lake drainage (Hijma & 

Cohen, 2010; Li et al., 2012). In the Ythan Estuary a single jump between 2.56 m 

and 4.77 m was recorded, dated between 8366-8177 cal BP and 8637-8445 cal BP 

(2σ ranges) (Smith et al., 2013).  

 

The studies in the Rhine-Meuse Delta, Mississippi Delta and Ythan Estuary therefore 

lacked lithostratigraphic and biostratigraphic evidence of more than one sea-level 

jump in a continuous stratigraphic sequence. The data obtained from these three 

studies are unable to illustrate and test the three-stage meltwater model presented 

in Jennings et al. (2015) associated with the drainage of the glacial lakes and the 

other two events (Lawrence et al., 2016).  

 

Evidence of abrupt sea-level rise as a result of the Lake Agassiz-Ojibway drainage 

was obtained from the Cree Estuary, located in southwest Scotland on the northern 

shore of the Solway Firth (Lawrence et al., 2016). The authors presented a 

stratigraphically continuous record of relative sea level in the Cree Estuary, which was 

not evidenced in the studies undertaken by Hijma & Cohen (2010), Li et al. (2012) 



42 
 

and Smith et al. (2013). The study in the Cree Estuary recorded three accelerations 

in the rate of relative sea-level rise based on lithostratigraphic and biostratigraphic 

evidence, which occurred between 8760-8640 cal BP (sea-level jump of 0.24 to 0.45 

m), between 8595-8465 cal BP (0.67 to 0.73 m) and a final event recorded between 

8320-8235 cal BP (0.37 to 0.43 m) (Lawrence et al., 2016).   

 

It is possible that the sites studied in this research may have the potential to record 

a sea-level rise associated with the Lake Agassiz-Ojibway drainage based on the study 

conducted in the Cree Estuary (Lawrence et al., 2016).  

 

2.4 Relative Sea-Level History of the United Kingdom 

 

The United Kingdom has been the focus of much Quaternary sea-level research over 

the years, resulting in many reconstructions of Late Devensian and Holocene relative 

sea-level changes. The relative sea-level history of the United Kingdom in the Late 

Devensian and Holocene is highly complex and variable due to the differences in 

isostatic rebound associated with the spatial and temporal changes of the Devensian 

glaciation (Peltier, 1998; Shennan & Horton, 2002; Shennan et al., 2000; 2006; 2012; 

Lowe & Walker, 2015). The variation in glacial and hydro isostasy experienced along 

the coastline of United Kingdom was attributed mainly to the presence of ice centred 

in the north, with most of southern Britain ice free during the Devensian (Evans et 

al., 2009; Clark et al., 2012; Bradley et al., 2011). Areas located closer to the centre 

of the ice mass across Scotland would have generally experienced relative land uplift, 

with land areas further away from the centre of the ice mass experiencing subsidence 

(Figure 2.5), as shown by field evidence and GIA models (e.g. Shennan et al., 2012; 

2018). The GIA model of Shennan et al. (2012) included two key inputs, which 

comprised of a Late Quaternary ice model from approximately 120 ka BP and an Earth 

model that was utilised to reproduce the solid Earth deformation that had resulted 

from surface mass redistribution between the ocean and ice sheets, resulting in the 

prediction of relative sea-level changes. 
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Figure 2.5: Rate of relative land-level change (mm a-1) from 1000 BP to the present 

day for the United Kingdom. Relative land uplift is marked as positive and relative 

subsidence is marked as negative (Shennan et al., 2012) 

 

Models have been developed to predict changes in relative sea level (e.g. Bradley et 

al., 2011; Shennan et al., 2012; Shennan et al., 2018), as well as numerous studies 

undertaken to reconstruct past relative sea-level changes along the coast of Britain 

(e.g. Firth & Haggart, 1989; Haggart, 1989; Shennan et al., 1994; Long & Tooley, 

1995; Long et al., 1996; Long et al., 1999; Plater et al., 2000; Edwards, 2001; Waller 

& Long, 2003; Shennan et al., 2005; Massey & Taylor, 2007; Selby & Smith, 2007; 

Massey et al., 2008; Gehrels et al., 2011; Smith et al., 2012; Selby & Smith, 2016). 

The relative sea-level changes recorded around the coast of United Kingdom reflect 

the variation of isostatic and eustatic changes in sea level (Figure 2.6). 
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Figure 2.6: Reconstructions and model predictions of relative sea level around the 

United Kingdom. Figures modified and adapted from Shennan et al. (2018) 

 

The relative sea-level predictions of Shennan et al. (2012) were based on three 

different ice models comprised of the Shennan et al. (2006) thin ice model, Shennan 

et al. (2006) thick ice model and Bradley et al. (2011) as shown in Figure 2.7a. More 

recently, Shennan et al. (2018) provided an updated prediction for relative sea-level 
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changes in the United Kingdom which included in excess of 2100 data points from 86 

regions across the United Kingdom and new data points from Ireland. The relative 

sea-level predictions in Shennan et al. (2018) utilised three different GIA models: 

BRADLEY2011; the final version of the model developed in Bradley et al. (2011), 

KUCHAR2012; the first model that used quantitative models of climate-driven 

glaciological processes for the reconstruction of the Celtic ice sheet (Kuchar et al., 

2012) and BRADLEY2017; an updated BRADLEY2011 model with higher grid 

resolution than the previous one (of ~70 km) to ~35 km (Shennan et al., 2018). The 

relative sea-level changes based on the model predictions were plotted against the 

available geological records for the respective regions, and the predicted patterns of 

relative sea-level changes are consistent and in good agreement with the field data 

for relative sea level (Shennan et al., 2012; 2018).  

 

The trend of relative sea-level changes of sites located in northern England in 

particular varied from those located in southern England. In Scotland, variation in the 

pattern of relative sea level was also observed, for example between the Shetland 

Islands and sites located on the west coast of Scotland (Figure 2.7). This can be 

attributed mainly to the re-advances of the ice sheet in Scotland, and in part to the 

effects of the Celtic ice sheet in Ireland during the Devensian (Shennan et al., 2018). 

Several episodes of alternating increase and decrease in relative sea level were 

observed through studies undertaken in Scotland (e.g. Sissons, 1966; Firth & 

Haggart, 1989; Shennan et al., 1994; Dawson & Smith, 1997; Shennan et al., 2005; 

Selby & Smith, 2007; 2016). A decrease in relative sea level at sites located in 

Scotland was observed at approximately 12 ka BP, and this was attributed to the 

formation of the more localised ice sheet during the Loch Lomond Stadial, which led 

to disturbance and variation in the GIA of the land and the resultant change in relative 

sea level, although spatial variability between the sites was also present as evidenced 

by the studies undertaken. 
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Figure 2.7: The spatial variability of relative sea level across the United Kingdom. The 

numbered sites were divided into five groups A to E, based on the broad pattern of 

predicted relative sea level change using the BRADLEY2011 model (from Shennan et 

al., 2018) 

 

During the Main Postglacial Transgression which occurred in the early to middle 

Holocene at approximately 8000 to 6000 BP, a general increase in relative sea level 

was observed at sites studied along the coast of United Kingdom, although 

fluctuations and regressions in relative sea level were observed in some parts of 

Scotland (Figure 2.6; e.g. graph B and C). After this increase in relative sea level, 

relative sea level fell to present level in areas experiencing land uplift, while relative 

sea level continued to increase until present day level for areas experiencing land 

subsidence in southern England. An increased relative sea level was also recorded at 

several sites in Scotland and England in the late Holocene (e.g. Wells, 1997; Zong & 
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Tooley, 1996; Long et al., 1996; 1999; Plater et al., 2000; Edwards, 2001; Smith et 

al., 2002; Selby & Smith, 2007; 2016).  

 

Records of more recent and contemporary (from approximately the last 200 years 

until present day) relative sea-level changes can be obtained through instrumental 

data obtained from tide gauges (e.g. Shennan & Woodwoorth, 1992; Woodworth et 

al., 1999; Woodworth et al., 2009; Gehrels & Woodworth, 2013; Ezer et al., 2015). 

For the past 150 years, eustatic sea level in the United Kingdom and western Europe 

has risen at a rate of approximately 0.012±0.004 mm a-1 (Ezer et al., 2015). However, 

spatial variability in the sea level recorded from tide gauges is evident, as well as 

variations on inter-annual and decadal timescales (Woodworth et al., 2009).  

 

2.5 Relative Sea-Level History of Cumbria 

 

Studies of relative sea-level changes in the inner part of southern Solway Firth in 

Cumbria have been carried out previously at Boustead Hill and Drumburgh Moss 

(Lloyd et al., 1999). Holocene relative sea-level changes were also recorded from two 

raised bog sites, Wedholme Flow and Bowness Common (Walker, 1966; Huddart et 

al., 1977), and a site at Crosscanonby investigated by Huddart et al. (1977) also 

revealed a brief episode of marine transgression. In central Cumbria, studies on 

Holocene relative sea-level changes were undertaken by Huddart et al. (1977), Tooley 

(1985), Auton et al. (1998), Balson (2010) and are summarised in Lloyd et al. (2013). 

In southern Cumbria, in particular Morecambe Bay, a record of Holocene relative sea-

level changes was presented by Zong & Tooley (1996), including previous work 

undertaken by Tooley (1987), Smith (1959), Barnes (1975), Oldfield & Statham 

(1963), Oldfield (1960a; b) and Birks (1982).  

 

The oldest marine deposit identified along the northwest Cumbrian coastline was 

recorded adjacent to the Black Dub, north of Allonby (NY 0813 4324). Alternating 

bands of peat, clay and sand are exposed beneath the surface of the ~7.6 metres 

raised beach identified by Eastwood et al. (1968). Pollen analysis undertaken on the 

peat unit revealed a halophile-rich assemblage suggesting an early Holocene sand 

dune system dated at 10151-9009 cal BP. It is probable that the organic lenses are 

fossil dune slacks resulting from an episode of increased relative sea level (Jelgersma 

et al., 1970).  
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At Drumburgh Moss (NY 2551 5863), a limiting basal date of 8545 cal BP was obtained 

at 4.44 m OD, a transgressive overlap was dated at 8125 cal BP at 4.55 m OD, and 

a regressive overlap at 6.85 m OD at 2428 cal BP. At Boustead Hill (NY 2913 5780) 

located east of Drumburgh Moss, a limiting basal date of 8065 cal BP was obtained 

at 6.19 m OD, a transgressive overlap was dated at 7394 cal BP at 6.68 m OD, and 

a regressive overlap was dated at 7090 cal BP (7.16 m OD) (Lloyd et al., 1999). At 

Bowness Common (NY 2050 6011) and Wedholme Flow (NY 2187 5301), marine 

transgressions were dated at 7634 cal BP (4.73 m OD) and 7647 cal BP (4.66 m OD) 

respectively, while marine regressions at Bowness Common and Wedholme Flow 

were dated at 6722 cal BP (5.95 m OD) and 6189 cal BP (6.17 m OD) respectively 

(Huddart et al., 1977).  

 

A marine transgression recorded at 7678 cal BP at 3.71 m OD was also revealed at 

Crosscanonby (NY 0655 3971) (Huddart et al., 1977). It was suggested that during 

the period of increased relative sea level correlated with the Main Postglacial 

Transgression, the seaward part of the drumlin of Swarthy Hill (NY 0644 3978) which 

protected the inter-drumlin depression where the sample was collected, was eroded. 

The lowest point of the drumlin was then breached as sea level continued to increase, 

inundating the freshwater lagoon, and this was evidenced by the presence of silts, 

clays, sands and shingle from the borehole taken at Crosscanonby. The marine 

transgression at Crosscanonby which ended at 7402 cal BP at an altitude of 4.44 m 

OD was brief (lasting for 276 years), and this was attributed to the accumulation of 

sand and shingle at Swarthy Hill which ultimately sealed the initial breach point 

(Huddart et al., 1977).  

 

The evidence from the Ravenglass estuary (SD 0867 9676) showed a clear Late 

Devensian relative sea-level highstand at approximately 2.3 m OD at 17 to 15 ka cal 

BP, which was followed by a rapid relative sea-level fall to below -5 m OD at 

approximately 10.5 ka cal BP. Relative sea level in the Ravenglass estuary then rose 

rapidly again during the early Holocence from below 7 m OD at approximately 8500 

cal BP, to approximately 1.2 m OD at 8000 to 7800 cal BP as a result of ice melt. This 

culminated in a highstand during the mid-Holocene of approximately 1 m OD at 

approximately 6000 cal BP. Since then, relative sea level in the area has been 

gradually falling until the present day (Lloyd et al., 2013). 
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Relative sea level in Skelwith Pool (SD 3407 8227), Morecambe Bay, rose rapidly at 

approximately 8847 cal BP until 8567 cal BP, with a maximum rate of increase of 

+36.7 mm a-1 (although this may have been exaggerated by the issue of old carbon 

contamination and changes in palaeo-tidal range, and varied between -8 mm a-1 and 

+12 mm a-1 subsequently. The effect of isostatic uplift can be observed evidenced by 

the change in biostratigraphy (diatoms assemblages) at the site at approximately 

8567 cal BP but reduced soon after this, as glacio-isostatic recovery of the area was 

minimal from approximately 5767 cal BP. Crustal movements and uplift in Morecambe 

Bay area have been minimal since 5767 cal BP (Zong & Tooley, 1996). For Skelwith 

Pool, a rate of approximately +4 mm a-1 of relative sea-level change was found to be 

the critical threshold for retreat of the coastline, and rates greater than +4 mm a-1 

may have resulted in extensive inundation over the coastal lowlands. A rise of sea 

level at a rate lower than 2 mm a-1 was not likely to have caused widespread 

inundation as intertidal deposition and saltmarsh accretion would have kept pace 

(Zong & Tooley, 1996). 

 

A reduced rate of sea-level rise at approximately 8567 cal BP to 8091 cal BP was 

observed at Roudsea Wood (SD 3455 8067), Leven Estuary following the rapid rise 

of sea level that occurred before 8567 cal BP (Zong & Tooley, 1996; Zong, 1998). A 

period of sea-level fall was then recorded between 6887 cal BP to 5721 cal BP (3.43 

to 3.99 m OD) based on the variation in diatom assemblages. This is in contrast to 

the sea-level trend in the area which predicted a sea-level increase at that particular 

time. This reversal in sea level was attributed to the enclosure of a sand barrier across 

the mouth of the valley causing the valley to dry out (Zong, 1998). There were also 

periodic inputs of sand-mudflat diatoms that were interpreted as signatures of storm 

tides which washed over the sand barrier and brought in marine and brackish diatoms 

to the study site. After approximately 5721 cal BP (2.99 m OD), relative sea level 

became stable and then started to fall. At approximately 5316 cal BP (4.18 m OD), a 

rise in sea level of approximately 1 m OD was recorded and was followed by a gradual 

fall in sea level, with another increase in relative sea level recorded at approximately 

2516 cal BP (5.16 m OD). From approximately 1500 cal BP sea level fell slightly or 

has been stable until it attained present day level (Zong, 1998). The relative sea-level 

curve and reconstruction from the Solway Firth, central Cumbria and Morecambe Bay 

respectively are shown in Figure 2.8 below. 
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Figure 2.8: Relative sea-level curves from the Solway Firth, central Cumbria and 

Morecambe Bay (from Lloyd et al., 2013) 

 

The effects of differential GIA along the Cumbrian coastline is possible, as the 

evidence for a marine transgression in the late Holocene was mainly recorded at sites 

located in southern Cumbria. It is therefore possible that the land uplift at the 

northern sites which are closer to the centre of land uplift in Scotland had outpaced 

the increase in eustatic sea level that occurred during the late Holocene. This 

differential effect has been previously noted in the Solway Firth by Lloyd et al. (1999), 

who demonstrated that different rates of isostatic rebound exist between the shores 

located to the north and south of the Solway Firth.  

 

To test whether differential GIA had occurred, a third order polynomial best fit line 

was drawn through the complete datasets and sea-level index points for the study 

sites on the north and south of the Solway Firth by Lloyd et al. (1999). If there was 

no variation in crustal movements between the north and south, a random scatter of 

values would have been observed, with some positives and negatives for each 

dataset. However, it was clear that there was a distinction between the two sets of 

data with all data points from the southern Solway Firth recording negative residuals 

and falling below the best fit line. Most of the northern Solway Firth datasets plotted 

above the best fit line (Figure 2.9). The negative residuals from the northern Solway 
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Firth before 8000 cal BP demonstrated the inadequacy of the best fit line at a period 

when only datasets from the north are available (Lloyd et al., 1999).  

 

 

Figure 2.9: Differential crustal movement between the north and south Solway Firth. 

Black line is the third order polynomial best fit line for the dataset. Data from north 

Solway Firth shown by ■, data from south Solway Firth are marked by x (from Lloyd 

et al., 1999) 

 

2.6 Vegetation History of Cumbria  

 

Pollen grains that have accumulated over time are representative of past vegetation 

in the area, and are commonly found in in stratigraphic sequence in peats and lake 

sediments (Turner, 1979). Analysis of the pollen grain in combination with 

radiocarbon dating alloqs a geographical and chronological pattern of vegetation 

changes to be established. During the late Quaternary the northern region of Cumbria 

consisted of various topographic zones including coastal and estuarine areas, 

undulating glaciated lowlands, major river catchments, piedmont zones and uplands 

(McCarthy, 1995). This significant variation in topography resulted in a great variety 

of habitats, settlement density and land use at different periods during the Late 

Devensian and Holocene. 
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The vegetation history of the Cumberland Lowlands in Cumbria has been extensively 

studied by Walker (1966) including sites at Scaleby Moss, Oulton Moss, Abbot Moss, 

Moorthwaite Moss, Ehenside Tarn, St. Bees, Glasson Moss and Bowness Common. 

The sites were selected as they may have been affected by the re-advance of Scottish 

ice sheet (Scaleby Moss and Oulton Moss), the Main Lakeland Glaciation (Abbot Moss 

and Moorthwaite Moss), coastal sites (Ehenside Tarn and St. Bees) and because they 

had the potential to illustrate the relationship between relative sea-level changes and 

land uplift (Bowness Common and Glasson Moss). A brief summary of the findings by 

Walker (1966) are presented here. 

 

The occurrence of pioneer vegetation in the Cumberland Lowlands occurred between 

the onset of deglaciation in the area and prior to the start of the establishment of 

thermophilous woodland, which was preceded by the major expansion of Corylus 

avellana (Walker, 1966). Between the Devensian deglaciation and the onset of the 

Scottish Re-advance into the area, the basins at some of the sites investigated had 

accumulated silt and clay with very low organic content and little coarse-grained 

inorganic material. This suggests that there was little vegetation development around 

the periglacial lakes formed during this period, with the vegetation dominated by 

herbaceous pollen sedges and grass, and the presence of Sphagnum, Filipendula, 

Artemisia, with low frequencies of tree pollen. The presence of aquatic pollen (e.g. 

Myriophyllum alterniflorum) was also common (Walker, 1966).  

 

The post-glacial woodland was characterised by the rapid expansion of Corylus into 

the woodland previously dominated by Betula at approximately 9000 BP, followed by 

the expansion of Ulmus and Quercus. The expansion of the mixed woodland 

dominated by Betula came to an end soon after approximately 7000 BP as woodland 

cover decreased, although the expansion of Alnus was observed at some of the sites 

during episodes of increased relative sea level due to alder’s ability to grow on poor, 

waterlogged soils (Walker, 1966). Pinus was observed at Bowness Common, on the 

beaches and spits composed of sand and gravel as the coastline provided a habitat 

where Pinus had a competitive advantage over the other tree species (Walker, 1966).  
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The period of decreased woodland cover in the Cumberland Lowland was recorded 

from approximately 6000 BP at the coastal sites, and at approximately 5000 BP at 

sites located further inland. Early woodland clearances as a result of anthropogenic 

activities resulted in regional vegetation changes, which accentuated the natural 

decline of Ulmus, and resulted in the increased dominance of Betula and Corylus as 

well as the establishment of Quercus (Walker, 1966). The effect of human settlement 

in the area was not significant until approximately 3800 BP, and intensive until 3400 

BP evidenced by the occurrence of polished stone axes from the late Neolithic. 

Extensive woodland clearance occurred during the Neolithic, and was suggested to 

have ceased soon after the Romans withdrew from the area (Walker, 1966). 

 

Evidence from sites located in the Lake District, Cumbria also suggest a strong 

indication of the extension of early post-glacial woodland up to an altitude of 550 

metres (Pennington, 1964). An Ulmus decline was observed in the sites investigated 

at approximately 5000 BP, with a later decline of Ulmus during the early Neolithic 

more evident at sites close to the stone-axe factories. Further woodland clearances 

during the Bronze Age were also observed, corresponding to human settlement and 

anthropogenic activities in the area (Pennington, 1964).  

 

Bolton Fell Moss and Walton Moss in northern Cumbria were studied to reconstruct 

Holocene vegetation history, and particularly the time from the Bronze Age to the 

present day (Dumayne-Peaty and Barber, 1998). The pollen records between the two 

sites are broadly similar, however there were some notable differences especially 

during the Iron Age and Medieval times. At both sites during the Bronze Age and 

Early Iron Age (2800 to 2100 BP) notable changes in Corylus and Avena/Triticum 

(oats and wheat) were recorded, showing that there were pastoral or arable 

agriculture practices in the areas. In the late and pre-Roman Iron Age (2100 to 1900 

BP), there was rapid deforestation at Walton Moss represented by the decrease of 

arboreal pollen and replacement by sedges. These data suggest that woodland 

clearances had occurred close to the sites, and/or that there was an increase in 

population growth and settlement in the area. At Bolton Fell Moss, only a gradual 

decrease in arboreal pollen was observed within the same time period. The impact of 

the Roman invasion (1900 to 1730 BP) was less pronounced at Bolton Fell Moss as 

opposed to Walton Moss, due to its location which lies approximately 3.5 kilometres 

further away from the Stanegate frontier. Deforestation at both sites continued 
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throughout the Roman occupation, with woodland regeneration noted following the 

Roman withdrawal (Dumayne-Peaty and Barber, 1998).   

 

The pollen analysis from Foulshaw Moss, southern Cumbria showed a series of small-

scale but significant woodland clearance episodes throughout the Bronze Age, which 

were later followed by a reduced clearance activity during the early Iron Age (Wimble 

et al., 2000). The first major woodland clearance was recorded in the late Iron Age 

(corresponding to the Roman occupation in the region), and was succeeded by 

woodland regeneration in the post-Roman/early Medieval periods. In the late 

Medieval period, woodland clearances were more significant, resulting in large areas 

of permanently open landscape (Wimble et al., 2000). 

 

The reconstruction of vegetation and land use history from the late Neolithic (5200 

BP) to the present was undertaken at Butterburn Flow, Cumbria (Yeloff et al., 2006). 

Three late Neolithic/Bronze Age woodland clearances were identified, with the first 

commencing at approximately 4300 BP indicating pastoral activities and limited arable 

agriculture. At approximately 4300 BP an intensified woodland clearance was 

observed, which culminated at approximately 2000 BP. Farmlands were then 

abandoned coinciding with the Roman occupation in the region (approximately 1900 

to 1500 BP), with a resurgence of agricultural activities following the Roman 

withdrawal. A later decline in agricultural practices can be accounted for by climatic 

deterioration, political instability and disease in the region (Yeloff et al., 2006).  

 

Coombes et al. (2009) reported that the most substantial periods of deforestation 

had occurred in the late Neolithic/early Bronze Age period and then in the middle Iron 

Age, creating a patchwork of woodland, heather moorland, pasture and arable land 

during the Roman period based on sites studied at Deer Dyke Moss and Hulleter Moss 

in southern Cumbria. The main changes recorded in the Roman period were a decline 

in the extent of Betula woodland and the local introduction of Secale cereale 

cultivation in the region. A shift into pastoral land-use and abandonment of less 

favourable agricultural land were minor effects that could be related to the end of the 

Roman period, but the later shifts in land use could be better related to climate 

variability of the region (Coombes et al., 2009). 
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2.7 Reconstruction of Palaeo Relative Sea Level  

 

The methods and techniques employed in this research to reconstruct sea level are 

summarised below. Traditionally geomorphological and field evidence have been used 

to reconstruct sea-level changes, including features such as sand dunes, raised 

beaches and shorelines (Tooley, 1974; Tooley, 1976; Huddart et al., 1977; Horton & 

Edwards, 2005). Lithostratigraphy has also been relied upon to reconstruct past sea 

levels as the alternation between organic and inorganic sediments observed in a 

sediment sequence has the potential of recording the changes from terrestrial to 

marine environment related to fluctuations in sea level. However the reliance solely 

on the lithostratigraphic changes can significantly restrict the resolution of the 

potential changes that can be examined (Horton & Edwards, 2005).  

 

A marine transgression results in the landward expansion of marine conditions and 

saltmarsh environment at the site, and is reflected in the lithostratigraphy and 

biostratigraphy of the sediments. A succession of sediment from terrestrial origin, to 

fen or reedswamp peats and intertidal or marine sediments may be recorded 

therefore in a transgressive overlap. A reverse in the sequence may be observed 

when there is reduced marine influence at the site, resulting in a regressive overlap 

(Tooley, 1978; Shennan, 1986).  

 

Accommodation is defined as the space available for potential sediment accumulation 

and deposition (Schlager, 1993). The rate of change of accommodation on the 

shoreline and the rate of sediment supply are the two primary factors that determine 

the recording of transgressions and regressions in a stratigraphic sequence, and 

therefore the retreat and advance of a coastal depositional system (Muto & Steel, 

1997). Falling sea level does not create the inland accommodation space for sea-level 

archives to be preserved well compared to that of increased sea level, resulting in a 

lack of regressive data points in comparison to the records of transgressive data 

points.   

 

The high resolution reconstruction of palaeo sea-level changes based on 

geomorphological and lithostratigraphical changes at a site may not be feasible due 

to the slow accumulation of sediment and response times of the coastal feature, and 

the variation in the spatial or temporal distribution of the sediment and 
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geomorphological features (Edwards & Horton, 2000). The reduced accumulation of 

organic materials in the late Holocene has also prevented attempts to reconstruct 

sea-level changes in some coastal regions in the United Kingdom (Edwards, 2001; 

Horton & Edwards, 2005). The development of laboratory analyses which combine 

both lithostratigraphical and biostratigraphical changes (e.g. foraminifera and 

diatoms) observed in sediment sequences therefore increases the quality of data for 

high resolution relative sea-level reconstruction, in addition to the information 

obtained based on lithostratigraphic changes.  

 

2.7.1 Foraminifera as Sea-Level Proxies 

 

Foraminifera are unicellular testate organisms that are found only in brackish and 

marine environments. Foraminifera occupy almost every marine habitat, from the 

high water level mark to the deep ocean and comprise of benthic and planktonic 

species. Foraminifera are a useful proxy in the reconstruction of past sea levels, and 

commonly preserve well in the fossil record (Scott et al., 2001).  

 

Saltmarsh foraminifera are widely acknowledged as a useful proxy for the 

reconstruction of Holocene sea-level changes. Foraminifera have a distinct vertical 

zonation related to the elevation they occupy within the tidal frame (Scott, 1976). 

The duration and length of intertidal exposure is said to be the most significant 

controlling factor of foraminiferal distribution. By studying the relationship of these 

parameters to the foraminiferal assemblages in contemporary samples, it is possible 

to use this information as an analogue to reconstruct past sea-level changes (e.g. 

Gehrels, 1994; 1999; Gehrels et al., 2001; Edwards, 2001; Horton and Edwards, 

2006; Kemp et al., 2009; 2013; Stephan et al., 2015; Barnett et al., 2016). Saltmarsh 

and intertidal foraminiferal species commonly occur in relatively high abundances 

with low species diversity, and are therefore a useful proxy for the reconstruction of 

high resolution sea-level records. The vertical zonation of saltmarsh in relation to the 

tidal datum has been demonstrated to show the strongest relationship with the 

variation in foraminiferal assemblages, although other environmental factors such as 

pH and salinity may also influence the species variation (Horton et al., 1999; Horton 

& Edwards, 2006).  
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2.7.2 Transfer Functions 

 

Most Quaternary palaeo-ecological research aims to reconstruct the past environment 

based on the preserved microfossil assemblage (i.e. foraminifera, diatoms, pollens, 

ostracods) in sediments, lakes or bogs. In the early studies, although these fossil 

assemblages were studied quantitatively, the resultant environmental reconstructions 

were however mostly qualitative and only presented in terms such as temperate, 

cool, moist and dry (Birks, 1995). A procedure to quantitatively reconstruct palaeo-

environment parameters based on the fossil assemblages utilising transfer functions 

was first presented by Imbrie and Kipp (1971). The variation of marine foraminifera 

was explained based on their relation to ocean salinity and surface temperature 

(Imbrie & Kipp, 1971). Since that time the approach of quantitative palaeo-

environmental reconstruction has been adopted (Birks, 1995).  

 

The purpose of a transfer function is to express the value of an environmental 

parameter (e.g. pH or salinity) as a function of the biological data (i.e. foraminiferal 

assemblages), also known as the environmental proxy data. This is achieved through 

two stages; regression calculations that are utilised to model the response of the 

contemporary microfossil species as a function of the environmental parameter and 

a calibration procedure which then applies this response function to predict the past 

environmental parameter based on the fossil counterpart of the utilised microfossil 

(Birks, 1995).  

 

The response function through the regression calculations can either result in a linear 

or unimodal response model (Birks, 1995; Horton & Edwards, 2006). Normalised 

clustering around the environmental parameter is assumed in a unimodal response 

model, with the optimum value of the environmental parameter represented by the 

highest abundance of the foraminiferal species (Birks, 1995). A unimodal distribution 

of microfossil assemblages would have been recorded previously (e.g. Zong & Horton, 

1999; Horton & Edwards, 2006), and the statistical technique commonly employed to 

produce a unimodal response model is the weighted-averaging partial-least-squares 

(WA-PLS). The application of the WA-PLS technique in the development of a transfer 

function is detailed in Chapter 3 (Section 3.7.2).  
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Other techniques for sea-level reconstruction include the utilisation of a locally 

weighted model and Bayesian modelling (Kemp et al., 2015). The locally weighted 

model or transfer function utilises the training set dynamically to generate specific 

model for an individual fossil sample. This results in a balance between the precise, 

small and local dataset in sea-level reconstruction and the wide range of the modern 

analogues available in a larger regional training set (Kemp et al., 2015). The Bayesian 

modelling presents an alternative and new approach in the development and 

application of transfer functions for sea-level reconstructions. This approach is based 

on probability modelling associated with the fossil data, environmental parameters 

and all model parameters. Bayesian modelling involves forward modelling of the 

relationship between the model taxa and the environmental parameter of interest 

(e.g. elevation), and a backward modelling that then generates the relationship 

consistent with the fossil data (Kemp et al., 2015). 

 

Several assumptions are made in the utilisation of transfer functions. Firstly, it is 

assumed that the environmental parameter of interest for the reconstruction 

consistently explains the variation in species assemblages, with other environmental 

parameters not having any influence on the distribution (Birks, 1995; Horton & 

Edwards, 2006). The second assumption is that the distribution of the fossil 

assemblages is represented by their contemporary counterparts (Birks, 1995). The 

composition of the contemporary assemblages therefore can have implications on the 

precision and accuracy of the resultant transfer function (Gehrels et al., 2001; Horton 

& Edwards, 2006). The practicality of both assumptions must therefore be assessed 

in the evaluation of the reliability of the developed transfer functions and the resultant 

reconstruction. The development and utilisation of a local, regional or national 

transfer function may also affect the accuracy and precision of the sea-level 

reconstructions (Gehrels et al., 2001), e.g. as the inclusion of regional and national 

data may cover a bigger tidal range than the local transfer function developed as well 

as including a greater range or environmental parameters, which is more applicable 

to a greater range of palaeoenvironments (Shennan et al., 2015).  
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2.8 Sea-Level Index Points 

 

Sea-level index points (SLIPs) are individual sea-level reconstructions based on 

quantified ages and vertical uncertainties. They are an estimation of the relative sea-

level position in space and time. SLIPs can be used to describe the overall trends and 

patterns of relative sea level in the region (Horton et al., 2013). They are established 

through the combination of lithostratigraphic, chronostratigraphic and 

biostratigraphic data (Edwards, 2006). To establish a SLIP, information on the 

sample’s location, age, altitude, tendency and indicative meaning are needed (Preuss, 

1979; Devoy, 1982; Heyworth and Kidson, 1982; Shennan, 1982; Gehrels et al., 

1996; Shennan et al., 2000; Massey et al., 2008; Horton & Edwards, 2006; Barlow et 

al., 2013; van de Plassche, 2013). The lithostratigraphical approach is mainly 

restricted to establishing SLIPs at the point of contacts between organic (i.e. 

terrestrial peat) and minerogenic (i.e. marine silt, clay and sand) sediments, which 

occur around the elevation of mean high water of spring tides (Edwards & Horton, 

2006). SLIPs that are obtained at these point of contacts are therefore representative 

of the marine transgressions and regressions that occurred at the site (Gehrels, 

2007).  

 

A multi-proxy approach that employs radiocarbon dated lithostratigraphic and 

biostratigraphic sea-level proxies is now widely used, as this provides a more detailed 

and higher resolution reconstruction as microfossils respond rapidly to changes in sea 

level (Edwards & Horton, 2000; Gehrels, 2007). Relative sea-level reconstructions are 

based on sea-level proxies and their indicative meaning, derived from analogous 

modern counterparts. The indicative meaning of the sea-level proxies describe their 

relationship to respective elevations in the tidal frame, comprised of a tidal datum 

midpoint (the reference water level) and a vertical range (the indicative range). 

Indicative range is therefore defined as the altitudinal range over which the index 

point’s proxy could have formed (Horton & Edwards, 2006; Horton et al., 2013). 

Several sources of error should be taken into consideration when calculating SLIPs, 

including altitude, core collection and sampling errors (Chapter 3; Section 3.9).  
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2.9 Summary 

 

This chapter has summarised the glacial, relative sea-level and vegetation history of 

Cumbria in particular, and more broadly for other sites located in the United Kingdom. 

A summary of the global, regional and local processes driving the changes in sea level 

was also presented. Variation in the patterns of relative sea level in particular are 

observed between sites located closer to the centre of isostatic uplift across Scotland 

and those located further away. An overview of the techniques and proxies utilised 

to reconstruct relative sea-level changes in this study was also described.  
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CHAPTER 3 

 

METHODOLOGY 

 

 

3.0 Introduction  

 

This chapter describes the methods and techniques used in this research to 

reconstruct Holocene sea-level and environmental changes including fieldwork, 

laboratory techniques and microfossil analyses.  

 

3.1 Selection of Palaeo Study Sites 

 

Several key criteria were taken into consideration when looking for and selecting 

suitable sites to reconstruct Holocene sea-level changes. Isobase models from Sissons 

(1983), Firth et al. (1993), Smith et al. (2000) and Smith et al. (2012) and glacial 

isostatic adjustment (GIA) models from Peltier et al. (2002), Shennan et al. (2002), 

Shennan et al. (2006) and Bradley et al. (2011), along with relative sea-level 

predictions from Shennan et al. (2012; 2018) were referred to in order to identify at 

what altitude Holocene shorelines were likely to occur. As a result, sites with an 

altitude below 10 m relative to Ordnance Datum (OD) were sought for Holocene sea-

level reconstruction.  

 

A literature review was undertaken focused on the southern shore of the Solway Firth 

to identify potential new sites for investigation that contained a preserved record of 

Holocene sea-level and environmental changes. Information about the altitudes, 

stratigraphy and microfossils found at the studied sites, was used to identify potential 

areas. The study locations needed to be conducive to the preservation of microfossils, 

as they are a key proxy used in the reconstruction of past sea levels. Areas such as 

peat bogs that have anaerobic conditions, and thus low microbial activity which 

results in better microfossil preservation were therefore sought.  

 

Borehole records from the British Geological Survey (2018), Ordnance Survey (OS) 

maps and Google Earth maps of the region were also accessed during the process of 

identification of potential sites, as they provide additional stratigraphical data, altitude 



62 
 

and topographical information about the area. For example, Google Earth provided 

information on possible contemporary marsh sites in the area, where different marsh 

zonation could be observed through satellite imagery and aerial photography. The 

historic OS maps (Seventh series, from the 1960s), provided information on former 

lowlands or marsh areas before any land reclamation occurred.  

 

Potential sites (Section 3.1.1) were subsequently visited and initial coring undertaken 

to identify the stratigraphy of the area. Spot samples were also taken back to the 

laboratory to undertake a preliminary assessment of the microfossils at the site. 

Fifteen potential sites in the region were investigated (Section 3.1.1) and four sites 

(Allonby, Pelutho, Cowgate Farm and Herd Hill) were chosen subsequently and 

deemed the most suitable for reconstruction of Holocene sea level of the region.  

 

3.1.1 Selection Criteria for Palaeo Study Sites 

 

The selection of sites where Holocene sediment sequences are well preserved and 

undisturbed is crucial in studies attempting to reconstruct past environmental 

changes. The inner part of the Solway Firth estuary has been studied previously (e.g. 

Drumburgh Moss and Boustead Hill; Lloyd et al., 1999), as well as the raised bog 

(e.g. Bowness Common and Wedholme Flow; Huddart et al., 1977). Eleven other 

potential sites were investigated in the area (Figure 3.1; marked in black), and this 

resulted in four palaeo study sites (marked in red), which were investigated further 

for the reconstruction of Holocene sea-level and environmental changes.  



63 
 

 

Figure 3.1: All sites investigated in this study, with the four main sites marked in red 

 

In the field, the alternation between organic and inorganic sediments was sought as 

this has the potential to represent changes from terrestrial to marine environments 

related to fluctuations in relative sea level. Microfossils preserved in the cores were 

then used to identify the origin of the sediment deposited, based on the 

environmental preferences of the microfossil species. The microfossils present were 

also used as a proxy to provide an estimate of past sea level through the development 

of transfer function.  

 

The main issues encountered when investigating potential sites in the area was the 

lack of well-preserved and suitable sediment sequences, and the high sand content 

within the sediment units which led to poor preservation of microfossils. Most of the 

low lying areas (below 10 m OD) are presently utilised as farmland, and the 

construction of roads connecting the villages and farmland may have disturbed the 

upper sections of the sediment. The sites located closer to the Moricambe Bay estuary 

(e.g. Calvo, Raby Cote, Newton Arlosh) may have experienced erosional, increased 

turbidity and sediment reworking when relative sea level was higher in the past, 

resulting in a lack of preserved sediment and high sand content within the 

minerogenic units.  
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Four palaeo sites (Allonby, Cowgate Farm, Pelutho and Herd Hill) with generally good 

preservation of microfossil and sediment sequences, were successfully identified and 

utilised in this study. All the other sites investigated were eliminated, apart from 

Pasture House, which was included to provide additional geomorphological context 

of the area around Herd Hill. A summary of the sediment description at the sites not 

utilised in this study are summarised in Table 3.1. Past sea-level and environmental 

changes along the Cumbrian coastline of the four selected sites were then 

reconstructed through detailed lithostratigraphical and biostratigraphical analyses in 

combination with radiocarbon dating undertaken on representative cores from each 

site. 

 

Table 3.1: Summary of sediment description for all the other sites investigated 

Site Summary of Sediment Description 

Raby Cote 

(NY 1783 5207) 

Dense, very sandy brown and blue/grey silt-clay with 

mottling, overlain by top soil 

Calvo 

(NY 1439 5457) 

Brown silty sand, overlain by grey silty sand and top soil 

Newton Arlosh  

(NY 2009 5473) 

Dense, very sandy brown silt-clay with mottling, overlain by 

top soil 

Balladoyle 

(NY 1212 5133) 

Dense, very sandy brown silt-clay with mottling, overlain by 

top soil 

Wolsty 

(NY 1058 5028) 

Dense, very sandy brown and blue/grey silt-clay with 

mottling, some gravel, overlain by top soil 

Parkhead-Highlaws 

(NY 1385 5070) 

Dense, very sandy brown silt-clay with mottling, overlain by 

top soil 

Kingside Hill 

(NY 1504 5103) 

Red sand and gravel overlain by very sandy brown and 

blue/grey silt-clay with mottling, overlain by top soil 

Kelsickhouse Farm 

(NY 1825 4909) 

Basal gravel unit, overlain by sandy grey silt-clay with 

gravel, peat and top soil 

Common Moss 

(NY 15422 47700) 

Pink/brown clay overlain by very sandy grey silt-clay, 

organic brown silt-clay, peat and top soil.  

Salta Moss 

(NY 0813 4488) 

Silty grey sand with gravel overlain by brown sand with 

gravel and some shell fragments, peat and top soil. In some 

boreholes, the alternation between the sand and peat unit 
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was observed, possibly indicating the presence of relict sand 

dunes.  

 

3.1.2 Selection Criteria for Contemporary Saltmarsh Study Sites 

 

Three contemporary saltmarsh sites (Skinburness, Cardurnock and Bowness Point) 

were selected for contemporary surface sample collection. Saltmarshes located in 

different parts of Moricambe Bay and the southern Solway Firth nearest to the palaeo 

study sites were selected, to provide the best representation of the fossil samples.  

 

3.2 Fieldwork 

 

Field investigations were undertaken at each site to determine the lithostratigraphy 

of the area and to collect representative sample cores. Detailed surveying was also 

undertaken at each site. 

 

3.2.1 Determining the Stratigraphy and Sampling of the Palaeo Sites 

 

A 1 metre long, 2 cm diameter Eijelkamp gouge was used to test the stratigraphy of 

the site. A grid system with an interval of 30, 60, 90 and 120 m was established for 

the sites depending on the size of the site investigated, with closer spaced boreholes 

undertaken where the stratigraphy was seen to be variable. The stratigraphy of all 

the boreholes cored at each site was described following the Tröels-Smith (1955) 

classification system. The stratigraphy was drawn up using TILIA 2.0.41 and 

TILIA*Graph (Grimm, 1991; 2004). 

 

A 50 cm long, 5 cm diameter Russian corer was used to extract a representative 

sample core, in order to obtain the most complete stratigraphical record of 

environmental changes. Two parallel boreholes were cored using the Russian corer 

to provide an overlapping sequence and to minimise any loss, contamination or 

compression of the sediment. Sample cores were transferred into P.V.C pipes, 

wrapped in plastic cling film and aluminium foil and carefully labelled. The cores were 

stored in the cold storage room (temperature below 5 ºC) at the University of York 
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until required. Freezing was avoided as it is known to cause damage to foraminiferal 

tests. 

 

3.2.2 Collection of Contemporary Surface Samples 

 

Contemporary surface samples were collected from three saltmarshes along transects 

that covered the entire sub-environments, from high marsh areas to tidal flats (Barlow 

et al., 2013; Horton and Edwards, 2006). For Skinburness Marsh, samples were taken 

at 30 metre intervals (with the last point located 5 metres away from the previous 

one). For Cardurnock and Bownes Point marshes, samples were taken along transects 

at 5 metre intervals. Samples were taken at larger intervals at Skinburness Marsh as 

the marsh spans a longer transect length (~750 metres) compared to Cardurnock 

Marsh and Bowness Marsh (both covering ~150 metres). Samples were collected at 

equal distances along the transect to cover the entire environmental range present 

within the saltmarsh (i.e. high saltmarsh to intertidal mudflat). Samples were also 

collected from sub-environment present within the saltmarsh (i.e. tidal creeks), where 

possible. The upper ~1 cm of surface sediments from the marsh were collected by 

carefully removing the sediment with a serrated knife and placing it into plastic 

sample jars for foraminifera, loss on ignition and particle size analyses. A pH 

measurement (using CyberScan pH 310 hand-held pH/mV/Temperature meter) on 

each sample was undertaken in the field. The pH value for surface sediment at all 

contemporary marshes was obtained by mixing a small amount of the surface sample 

with deionised water in a plastic centrifuge tube and placing the pH probe in the tube. 

The measurement was recorded when the reading on the meter had stabilised. The 

pH probe was cleaned with deionised water after each measurement and the pH 

meter was calibrated every day prior to using it in the field. The pH data were plotted 

against altitude (m OD) for each site. Once sampled, sediments in their respective 

plastic sample jars were labelled and refrigerated (while still at fieldwork site) and 

stored in the cold storage room (temperature below 5 ºC) upon return to University 

of York.  
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3.2.3 Surveying 

 

All boreholes, sample cores, contemporary sample points and geomorphological 

features at the study sites were first marked using plastic marker flags and the 

locations of each were noted using a handheld global positioning system (GPS) 

device. Each site was then surveyed using a Trimble (Model R8 GNSS/R6/5800) 

differential global positioning system (δGPS) to obtain the precise coordinate and 

elevation of the boreholes, sample cores, contemporary sample points and any 

geomorphological features related to m OD.  

 

3.2.4 Tidal Measurements at Contemporary Saltmarsh Study Sites 

 

The funnel shape and macrotidal characteristic of the Solway Firth results in a 

significant tidal level variations between the sites located along the estuary. On the 

southern shore of the Solway Firth and for the northwest Cumbrian region, the 

nearest publicly accessible tidal gauge station is located at Workington. To relate the 

contemporary samples elevations recorded at the Skinburness Marsh, Cardurnock 

Marsh and Bowness Marsh to a reference tidal frame, repeated measurements of the 

high tide limit at each contemporary sites was made. Each high tide level 

measurement recoded at the three contemporary sites was levelled relative to OD 

using a Trimble (Model R8 GNSS/R6/5800) differential global positioning system 

(δGPS). The measurements of the local high tides at each contemporary sites were 

then compared to the same high tide level on the same day measured at the tide 

gauge station in Workington, which had been verified and corrected for atmospheric 

pressure, available approximately a month after the data were recorded (NTSLF, 

2018). The tidal measurements taken at each contemporary saltmarsh site allow the 

surface samples collected to be related to a standardised tide level, and also highlight 

the spatial variation in tidal range along the Solway Firth and Moricambe Bay.  

 

3.3 Laboratory Analyses 

 

A multi-proxy approach was adapted to reconstruct Holocene sea-level changes and 

environmental changes of the study sites. A combination of loss on ignition, particle 

size and foraminiferal analyses were undertaken on sample cores from Allonby, 

Cowgate Farm, Pelutho and Herd Hill. Pollen analysis was undertaken on samples 
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from Cowgate Farm and Herd Hill to provide additional information on the vegetation 

and environmental changes for the region. Loss on ignition, particle size and 

foraminiferal analyses were also undertaken on all 72 contemporary surface samples 

collected from Skinburness Marsh, Cardurnock Marsh and Bowness Marsh to define 

the contemporary foraminiferal distribution in the region, and for the development of 

a transfer function.  

 

3.3.1 Loss on Ignition  

 

Loss on ignition (LOI) is a simple, common and widely used method to estimate the 

organic and carbonate content in sediments, using the linear relationship between 

LOI values and organic and inorganic carbon content (Heiri et al., 2001; Santisteban 

et al., 2004). In the first reaction, organic matter was oxidised at 550 °C to carbon 

dioxide and ash. In the second reaction, carbon dioxide was evolved from carbonate 

at 950 °C, leaving oxide. The weight loss during the reactions was measured by 

weighing the samples before and after each burn and these values were correlated 

to the organic matter and carbonate content of the sediment (Heiri et al., 2001). 

 

3.3.1.1 Preparation for Loss on Ignition  

 

Samples were prepared using the method described by Heiri et al. (2001). After oven-

drying of the sediment to constant weight (usually 12–24 hours at approximately 105 

°C) organic matter was combusted in the first step to ash and carbon dioxide at a 

temperature of 550 °C for approximately four hours. Organic matter begins to ignite 

at about 200 °C and is completely depleted at about 550 °C (Santisteban et al., 2004). 

The LOI was then calculated using the following equation: 

 

LOI 550 = [((DW105-CW) – (DW550-CW))/(DW105-CW)]*100 

 

Where LOI 550 represents LOI at 550 °C (as a percentage), DW105 represents the 

dry weight of the sample before combustion and DW550 the dry weight of the sample 

after heating to 550 °C.  

 

 



69 
 

In the second step, the residual samples were combusted at 950 °C as most 

carbonate minerals are destroyed at higher temperatures; calcite between 800 and 

850 °C and dolomite between 700 and 750 °C (Santisteban et al., 2004). Carbon 

dioxide is evolved from carbonate, leaving oxide and the LOI was calculated as: 

 

LOI 950 = [((DW550-CW) – (DW950-CW))/DW105-CW)]*100 

 

Where LOI 950 is the LOI at 950 °C (as a percentage), DW550 is the dry weight of 

the sample after combustion of organic matter at 550 °C, DW950 represents the dry 

weight of the sample after heating to 950 °C, and DW105 is the initial dry weight of 

the sample before the organic carbon combustion. 

 

Assuming a respective weight of 44 g mol–1 for carbon dioxide and 60 g mol–1 for 

carbonate (CO3
2–), the weight loss by LOI at 950 °C multiplied by 1.36 should then 

theoretically equal the weight of the carbonate in the original sample. This implies 

that inorganic carbon (IC) = 0.273 x LOI950 (Heiri et al., 2001; Santisteban et al., 

2004). The LOI data were plotted against altitude (m OD) for both fossil and 

contemporary samples using TILIA 2.0.41 and TILIA*Graph (Grimm, 1991; 2004), 

C2 Version 1.7.7 (Juggins, 2007) and PAST Version 3.17 (Hammer et al., 2001). 

 

3.3.2 Particle Size Analysis 

 

Samples were also analysed to determine their particle size composition, to enable a 

more complete description of the lithostratigraphy and to better understand the 

depositional processes acting upon the sediment within the study area. Particle size, 

along with organic content (LOI 550) analyses can also provide additional information 

when assessing the preservation and distribution of foraminifera (Zong & Horton, 

1999; Edward & Horton, 2006).  

 

3.3.2.1 Preparation for Particle Size Analysis 

 

Approximately 1 g of sediment was treated with 30% hydrogen peroxide (H2O2) and 

heated on a hotplate to remove any organic material. H2O2 was continually added in 

small volumes to the samples until the reaction stopped, indicating that all the organic 

material had been oxidised. Samples were then washed with distilled water and 
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transferred into test tubes for analysis. All samples were then analysed using the 

Malvern Mastersizer Hydro 2000 laser granulometer, following the standard operating 

procedures of the equipment. Prior to analysing the samples, the granulometer was 

calibrated with standard sand (0.152-0.422 mm in size) to confirm the consistency 

and reliability of the granulometer. Each sample was also sonicated for five seconds 

to obtain an even dispersion before analysis. Measurements for each sample were 

undertaken in triplicates and averaged from the values. The data was then subdivided 

into clay, silt and sand fractions (Wentworth, 1922; Friedman & Sanders, 1978), and 

plotted against altitude (m OD) for both fossil and contemporary samples using TILIA 

2.0.41 and TILIA*Graph (Grimm, 1991; 2004), C2 Version 1.7.7 (Juggins, 2007) and 

PAST Version 3.17 (Hammer et al., 2001).  

 

3.3.3 Foraminiferal Analysis 

 

The following sections summarise the techniques used for foraminiferal analysis, 

including the sample preparation, counting and identification. 

 

3.3.3.1 Preparation of Foraminiferal Samples  

 

Foraminiferal samples preparation followed standard techniques (e.g. Scott & Medioli, 

1980; Gehrels et al., 2001 and Horton & Edwards, 2006). Samples with a volume of 

2 cm3 (measured through water displacement) were sub-sampled from the cores and 

sieved through a 250 µm sieve above a 63 µm sieve. The material collected in the 

250 µm sieve was discarded, and that collected in the 63 µm sieve was washed with 

distilled water and transferred into a 250 ml beaker for analysis. Samples were stored 

in test tubes with two drops of 30% ethanol to prevent any fungal growth. If the 

abundance of foraminifera per sample was deemed to be too high, a wet splitter was 

used to divide the sample into eight smaller parts to avoid errors in counting and 

identification.  

 

Contemporary surface samples were prepared for analysis within several days of 

returning from fieldwork to preserve the living and dead assemblages. 2 cm3 of the 

contemporary surface sample (consistent with the fossil samples analysed) was 

prepared. Two drops of 30% ethanol were added to the samples to prevent any 

fungal growth and a few drops of Rose Bengal solution added to stain the living 
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foraminifera. Only the dead foraminiferal counts were used in the data analysis as 

they reduce the effect of seasonal fluctuations which may affect the final assemblage 

distributions (Edward & Horton, 2006).  

 

3.3.3.2 Counting and Identification of Foraminiferal Samples 

 

Foraminiferal samples were wet counted using a spiral counting tray under a low-

powered microscope (magnification between 32x and 120x) with adjustable 

magnification (ZEISS AxioZoom V16). A minimum count of 200 specimens, where 

possible, was undertaken for each sample. Foraminiferal individuals of interest were 

picked out and placed on a glued slide to assist in further identification or for 

photographic purposes. Foraminiferal species were identified following the taxonomy 

in Murray (1971; 2000) and Horton & Edwards (2006).  

 

3.3.4 Pollen and Spore Analysis 

 

Pollen and spore analyses were used in this research to investigate past vegetation 

changes of the study sites, providing an environmental context and general 

chronology for the time the sediments were deposited. Pollen grains that have 

accumulated over time are representative of past vegetation in the area and can often 

be found in peat in stratigraphic sequence. Combined with radiocarbon dating, 

geographical patterns of vegetation change can then be established and this can be 

related to broader environmental changes in the area.   

 

3.3.4.1 Preparation of Pollen and Spore Samples 

 

Samples were prepared using the procedures described by Moore et al. (1991). One 

Lycopodium tablet was added into each test tube and dissolved with 5 ml of distilled 

water. Approximately 1 cm3 of sediment (measured through water displacement) was 

added into each test tube. Samples were centrifuged and excess liquid was decanted 

off. 5 ml of 10% potassium hydroxide was added into each test tube, heated in a 

boiling water bath for 20 minutes and stirred occasionally to prevent clumping. After 

cooling, the samples were centrifuged and excess liquid was decanted. Samples were 

sieved through a 180 µm and 10 µm mesh, discarding the residual in the 180 µm 

sieve and retaining any material collected in the 10 µm mesh. Samples were washed 
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with a small amount of 10% hydrochloric acid (HCl) to remove any carbonates 

present. Samples were then washed with distilled water and poured back into their 

respective test tubes.  

 

Samples were centrifuged and excess liquid was decanted. 5 ml of glacial acetic acid 

was added into each test tube to rehydrate the samples and the samples were then 

centrifuged and decanted again. A mixture of acetic anhydride and concentrated 

sulphuric acid in a 9:1 ratio was added into each test tube and placed in a boiling 

water bath for a maximum of 3 minutes. Samples were centrifuged, decanted and 

washed with 5 ml glacial acetic acid. The centrifuging and decanting process with the 

glacial acetic acid was repeated to remove any residual acid. Samples were then 

washed, centrifuged and decanted with distilled water for a further three times.  

 

For very minerogenic samples, density separation was undertaken. 5 ml of a 1.95 mL-

1 low toxicity sodium heteropolytungstate dissolved in water was measured into each 

sample and agitated with a vortex mixer. Samples were centrifuged at 1800 rpm for 

20 minutes and the supernatant (pollen sample) decanted carefully into another 

labelled test tube. Both samples and residue were washed three times with distilled 

water and centrifuged. To aid counting, samples were stained with one drop of 

saffranine and centrifuged and decanted to remove excess liquid. Samples were then 

pipetted into epindorfs and liquid glycerol added to cover the sample. The pollen 

sample was then mounted onto a slide for counting. 

 

3.3.4.2 Counting and Identification of Pollen and Spore Samples  

 

Pollen grains and spores were counted using a high powered microscope with x400 

magnification (Olympus BX43). A total of 300 pollen grains and spores were counted 

and identification of pollen grains followed Faegri & Iversen (1989) and Moore et al. 

(1991). 
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3.4 Fossil Foraminiferal and Pollen Data Analyses 

 

Foraminiferal and pollen distribution plots for each palaeo site were drawn using C2 

Version 1.7.7 (Juggins, 2007) and TILIA 2.0.41 and TILIA*Graph (Grimm, 1991; 

2004). For both foraminifera and pollen, only species that exceeded 5% and 3% 

abundance respectively in at least one sample were included in the final analysis to 

avoid effects of insignificant species on the statistics (Horton & Edward, 2006). For 

foraminifera, samples with fewer than 40 individuals were also excluded from data 

analysis for both fossil and contemporary samples to avoid the effects of the low 

counts on the statistical analysis undertaken, as they may not be fully representative 

of the assemblage composition of the area (Horton & Edwards 2006).  

 

The zonation of the pollen assemblages was calculated using Constrained Incremental 

Sum of Squares (CONISS) cluster analysis using TILIA 2.0.41 and TILIA*Graph 

(Grimm, 1991; 2004). CONISS divides the microfossil assemblages stratigraphically 

and statistically into zones, eliminating any subjectivity (Bennett, 1999). CONISS 

analyses were undertaken using no data transformation (Euclidean distance) for the 

data transformation/dissimilarity coefficient. CONISS analyses undertaken on fossil 

microfossil data were constrained by sample depths which divided the assemblages 

into zones throughout the core. 

 

3.5 Radiocarbon Dating 

 

Radiocarbon dating was used to develop a chronology for the reconstruction of 

Holocene sea-level and environmental changes at the study sites. Samples for 

radiocarbon dating were selected mainly based on biostratigraphical and 

lithostratigraphical changes. All samples submitted for radiocarbon dating were in the 

form of bulk sediment, obtained from ~1 cm thick slices and ~2 g in wet weight of 

the sediment apart from sample CGF-136/141 which was dated on a piece of wood 

present in the sediment. Radiocarbon ages were analysed at DirectAMS Radiocarbon 

Dating Service in Washington, USA using accelerator mass spectrometers (AMS) 

designed specifically for radiocarbon. Radiocarbon ages obtained were then calibrated 

using OxCal v.4.3 (Ramsey, 2009) and the IntCal13 atmospheric curve (Reimer et al., 

2013). All dates were calibrated to cal BP.  



74 
 

Chronologies and age-depth models for each palaeo site were established based upon 

the dated samples in respective sediment cores using the software package Bacon 

v.2.3.4 in R. Bacon is a Bayesian age-depth model that uses the Bayesian statistical 

method for the reconstruction of accumulation history of the sediment core and its 

age estimates (Blaauw & Christen, 2011). As opposed to linear or polynomial 

regression and weighted splines provided by software such as Clam (Blaauw, 2010), 

Bayesian age-depth modelling is considered to be a more detailed approach which 

takes into consideration the changes in sedimentation.  

 

Markov Chain Monte-Carlo (MCMC) methods computed by Bacon provide analysis of 

the age-depth model (Blaauw & Christen, 2011). For all the palaeo sites investigated, 

the age-depth models were only established between dated horizons, and did not 

extend to the uppermost date and the core surface due to the unknown deposition 

rates as no age information is available for the core surface as there is the potential 

for erosion or reworking of the land surface.  

 

3.5.1 Sources of Errors in Radiocarbon Dating  

 

Lowe & Walker (2015) identified several possible sources of error when utilising 

radiocarbon as a dating method which include: temporal variation in 14C production, 

circulation of marine carbon and contamination. 

 

The most important assumption in radiocarbon dating is that the concentration of 14C 

carbon in the atmosphere is consistent (or changed minimally) over time. However, 

this is untrue as previously evidenced by the age comparison of dating methods 

between radiocarbon and dendrochronology and it has been found that 

concentrations of 14C in the atmospheric have fluctuated during the Holocene (Reimer 

et al., 2004). Therefore, it is necessary to differentiate between ‘radiocarbon years’ 

and ‘calendar years’ when explaining the age of a sample, and ultimately calibrating 

the radiocarbon ages is required.  

 

The marine reservoir effect occurs when samples from the deeper part of the ocean 

have an older date compared to those on or near the surface. 14C is transferred from 

the atmosphere into the ocean through the ocean’s surface, and mixing between 

warm, surface water and cold, deeper water is very slow. This causes the 14C in the 
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deeper part of the ocean to decay without replenishment (Lowe & Walker, 2015). 

Therefore, terrestrial and marine samples must not be compared directly without first 

correcting for the marine reservoir effect.  

 

Factors such as glacial melt and the hardwater effect may also contribute to 

contamination of older carbon during radiocarbon dating resulting in ages older than 

they actually are. Contamination of younger radiocarbon ages are also possible 

through, for example, roots penetrating into deeper sediments, infiltration of younger 

humic acid through sediment horizons and bioturbation (Törnqvist, 1992; Lowe & 

Walker, 2015).  

 

For organic rich sediments (e.g. peat), dating bulk samples have been shown to 

produce less accurate ages with larger uncertainties when compared to the dating of 

plant macrofossils (Törnqvist, 1992; Björck et al., 1998; Nilsson et al., 2001). Fluvial 

input of older and reworked organic debris into siliciclastic material at the site 

investigated may also result in an aging effect of the dated sample (Törnqvist, 1992). 

For comparison in the accuracy between the dating of organic rich bulk samples and 

macrofossils, Hu (2010) conducted statistical analyses on the 14C ages obtained from 

bulk samples and macrofossils in Törnqvist (1992). Based on the result obtained by 

Hu (2010), an additional error of ±100 14C was applied to organic rich bulk samples 

from Törnqvist (1992), in order to account for uncertainties associated with various 

types of samples contamination has been recorded previously (Lowe & Walker, 2015).  

 

3.6 Contemporary Foraminiferal Distribution 

 

Transfer functions are a quantitative approach that estimate the optimum value of a 

fossil sample against an environmental variable, by comparison of the same variable 

against a contemporary sample collected from the present day environment. To 

reconstruct Holocene sea-level changes at each palaeo study site in this study, a 

foraminifera-based transfer function was developed to provide the palaeo marsh 

surface elevation (PMSE) of the fossil samples based on the sample’s contemporary 

counterpart obtained from three saltmarshes located near to the palaeo study sites. 

A series of statistical analyses were undertaken on the contemporary surface data 

prior to the development of foraminiferal transfer function. 
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3.6.1 Vertical Distribution of Contemporary Foraminiferal Samples 

 

Multivariate methods of unconstrained cluster analysis based on unweighted 

Euclidean distance, using no transformation or standardisation of the percentage data 

was undertaken to describe and classify the vertical distribution of foraminifera at 

each of the modern marsh sites based on the species assemblage (i.e. classifying the 

foraminiferal distribution into high saltmarsh environment, low saltmarsh 

environment or intertidal mudflat/tidal flats environment). The unconstrained cluster 

analysis classifies the contemporary foraminiferal samples into clusters or zones along 

each transect (e.g. Avnaim-Katav et al., 2017). Cluster analysis was undertaken using 

TILIA 2.0.41 and TILIA*Graph (Grimm, 1991; 2004). 

 

3.6.2 Influence of Elevation on Foraminiferal Assemblages  

 

Canonical Correspondence Analysis (CCA) and partial CCA were undertaken on the 

contemporary surface samples with their respective environmental variables which 

included elevation, LOI 550, silt and sand fractions (particle size) and pH (in line with 

Horton & Edwards, 2006; Zong & Horton, 1999). CCA is a multivariate analysis 

method used to explain and measure the relationships between the foraminiferal 

species assemblages and their measured environmental variables (ter Braak, 2014). 

The ordination axes produced are a linear combination of the environmental variables 

and the species’ assemblages variations are directly related to changes in these 

environmental variables (Horton & Edwards, 2006). The lengths and positions of the 

arrows in a CCA biplot provide information on the relationship between the original 

environmental variables and the derived axes. Arrows that are parallel to an axis 

indicate a correlation and the length of the arrow shows the strength of that 

correlation. CCA was also undertaken to show the total percentage of variation within 

the foraminiferal species assemblages that can be explained by the measured 

environmental variables.  

 

A series of partial CCAs were then undertaken to divide the total variation of 

contemporary data into three components: contribution of individual measured 

environmental variables; the intercorrelation between the measured environmental 

variables and the unexplained variance (Edwards & Horton, 2006). Intercorrelation 

between the measured environmental variables is represented by the remainder 
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variance after the cumulative variance (explained from individual measured 

environmental variables) was extracted from the total explained variations. CCA and 

partial CCAs were undertaken using CANOCO 5 (ter Braak and Smilauer, 2002). 

 

3.6.3 Determination between Linear or Unimodal Methods 

 

Foraminiferal taxa or assemblages that exhibit a unimodal response have a Gaussian 

distribution along an environmental gradient, with peaked abundance at a preferred 

or optimum environmental variable, while those exhibiting a linear response show 

that the foraminiferal abundance increases or decreases with the environmental 

gradient. It is therefore crucial to select the appropriate model which best describes 

the distribution of foraminifera within the training sets (contemporary data that are 

used to develop a transfer function).  

 

Detrended canonical correspondence analysis (DCCA) was used to provide 

information on how species assemblage composition changes along the 

environmental gradient. The detrending by segments and using nonlinear rescaling, 

resulted in length of resulting DCCA axis one as an estimate of gradient length 

expressed in standard deviation (SD) units. If the gradient length of axis one is more 

than two standard deviations, a unimodal response method or model are deemed the 

most appropriate method to describe the training sets (Birks, 1995; Horton & 

Edwards, 2006; Barlow et al., 2013).  

 

DCCA analysis was undertaken using the CANOCO 5 software (ter Braak and 

Smilauer, 2003), with elevation as the only environmental variable (Birks, 1995; 

Horton & Edwards, 2006). For DCCA analysis and the resulting development of the 

transfer function (Section 3.7), the only environmental variable considered was 

elevation. This is because foraminiferal assemblages are ultimately related to 

elevation, a proxy of the frequency of tidal flooding in the area. All other 

environmental variables (e.g. salinity, pH, organic content and particle size) that 

determine the distribution of foraminifera are essentially related to tidal submergence 

of the area (Horton & Edwards, 2006), and are therefore also partially correlated with 

the elevation of the marsh. The distribution of foraminifera in a saltmarsh can be 

identified in different vertical zones, which depends on the dominant species 

assemblages found at each zone identified at respective marsh.  
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Transfer function regression and calibration as well as the assessment of modern 

analogue were then undertaken using the software C2 Version 1.7.7 (Juggins, 2007) 

to establish a numerical value of the variable in question (elevation for this study), 

based on the elevation optima of foraminifera found in the three contemporary 

saltmarshes. 

 

3.7 Development of Transfer Function 

 

The transfer function used in this study was developed using C2 Version 1.7.7 

(Juggins, 2007). A local training set was developed from the contemporary samples 

collected in this study, obtained from Skinburness Marsh, Cardurnock Marsh and 

Bowness Marsh. A summary of the steps in the development of the transfer function 

(explained further in the following Section 3.7.1) is shown in Figure 3.2 below: 

Figure 3.2: Summary of steps in the development of the transfer function. 

Abbreviations: SWLI = standardised water level index, DCCA = detrended canonical 

correspondence analysis, WA-PLS = weighted-averaging partial-least-squares, MAT 

= modern analogue technique  
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DCCA for the training
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default (Section 3.7.2)
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suitability of the 
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undertaken using the 
selected component 
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3.7.1 Considerations for Transfer Function 

 

It was important when combining the datasets to be taxonomically consistent (using 

the complete taxonomic name for each species). Initial data screening was 

undertaken to remove samples with low counts (samples with fewer than 40 

individuals), insignificant species (species that occur fewer than 5% in at least one 

sample) and shelf species (not agglutinated or calcareous saltmarsh species) that can 

be deposited into the marsh area by tidal wash and therefore wrongly classified as 

marsh species.  

 

The different tidal ranges measured at the three contemporary saltmarshes were 

converted into sea water level index (SWLI) thus eliminating the variation in tidal 

range between the different locations. The SWLI equation used in this study followed 

Zong & Horton (1999): 

 

SWLIab = [((Aab – MTLb) / (MHWSTb – MTLb) x 100) + 200] 

 

Where SWLIab is the SWLI of sample a at site b; A is the altitude (m OD) of sample a 

at site b; MTLb is the mean tide level of site b (m OD); MHWSTb is the mean high 

water spring tide value at site b (m OD). The addition of the constant (200) is to 

ensure that all SWLI calculated are positive. Using this equation, if altitude of the 

sample point is equal to MTL and MHWST, the SWLIs value will be 200 and 300 

respectively. This SWLI equation was used in this study as it produced all positive 

SWLI values when combining tidal values from all the sites, as opposed to those in 

Horton & Edwards (2006) and Barlow et al. (2013). The relationship of the different 

tidal level is shown in Figure 3.3 below. 
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Figure 3.3: Tidal-level definitions used in this study. Abbreviations: HAT = highest 

astronomical tide, MHWST = mean high water spring tide, MHW = mean high water, 

MHWNT = mean high water neap tide, MTL = mean tide level (calculated as average 

of MHWST, MLWST, MLWNT and MLWST), MLWNT = mean low water neap tide, 

MLW = mean low water, MLWST = mean low water spring tide and LAT = lowest 

astronomical tide  

 

3.7.2 Response Model and Transfer Function Selection 

 

Based on the results of DCCA gradient length of > 2.0 obtained in this study (Table 

3.2), a unimodal response model was selected for the development of all of the 

transfer functions in this study. The technique used to develop the transfer functions 

was weighted-averaging partial-least-squares (WA-PLS) with bootstrapping. The local 

Solway training set was used to develop the transfer function for this study, consisting 

of foraminiferal and elevation data from the three contemporary saltmarshes.  

 

Table 3.2: Results of DCCA analysis for individual and the complete training set 

Training Set DCCA Axis 1 Length 

Skinburness Marsh 2.25 

Cardurnock Marsh  2.23 

Bowness Marsh 2.52 

Solway Training Set 2.60 
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The basic concept of the weighted-averaging method is that individual species will 

have their highest distribution at points where the environmental condition is 

optimum and lowest where the environmental condition is unfavourable. The 

optimum value is calculated as the average of the environmental variable’s value 

where each individual species occurs, based or weighted by the species abundance. 

Weighted averaging method has previously been employed to develop foraminifera-

based transfer functions for sea-level studies in Britain (Horton et al., 1999; Edwards 

& Horton, 2000; Gehrels et al., 2001; Horton & Edwards, 2006). 

 

However, some correlations remain between the observed and predicted 

environmental values which will not be taken into consideration when using the 

weighted-averaging (WA) method. When a different environmental variable, pH for 

example, has an influence on foraminiferal species distribution, scatter will occur 

when the observed SWLI is plotted against the predicted SWLI, as opposed to an 

ideal linear relationship. This departure from the linear relationship between observed 

and predicted SWLI is termed the prediction residual (Horton & Edwards, 2006). The 

partial-least-squares (PLS) method uses these residuals to improve the correlation 

between the environmental variable and species abundance (Shennan et al., 2015).  

 

The coefficient of determination (r2) and the root mean squared error (RMSE) utilises 

the whole dataset when developing the transfer function and when testing its 

performance. Bootstrapping (1000 cycles) is employed to assess the predictive 

abilities of the transfer functions developed by using the cross validation resampling 

method. Bootstrapping cross validation produces root-mean-square error of 

prediction (RMSEP) values, which are the predicted vertical errors for individual 

samples (Barlow et al., 2013). The model outputs were therefore firstly assessed to 

determine the best performing component out of the first five components produced 

in C2 Version 1.7.7 (Juggins, 2007).  

 

Improved performance between the components can generally be defined as a 

reduction of 5% in root-mean-square error of prediction (RMSEP) values and an 

increase in the bootstrapped coefficient of determination (r2
boot). The bootstrapped r2 

value is considered to improve confidence in the value as it is based upon 1000 cycles 

of pseudo-replicate datasets (Barlow et al., 2013). Each transfer function developed 

would ideally consist of the component with the lowest RMSEP value (which suggest 
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improved model performance) and the highest bootstrapped coefficient of 

determination (r2
boot) values for the most accurate estimation of SWLIs. 

 

The training set data can be screened again if desired to improve the model 

performance by removing samples that may cause less accurate reconstructions. 

Some samples may show a poor relationship with SWLI for several reasons including 

stronger effects of other environmental variables (e.g. pH or LOI) on the 

assemblage’s distribution (Horton & Edwards, 2006). Samples with a poor fit with 

absolute residual SWLI (observed SWLI minus predicted SWLI) values greater than 

the standard deviation of all SWLI in the training set may also be removed from the 

training set (Edwards et al., 2004; Gehrels et al., 2005; Horton & Edwards, 2006).  

 

3.8 Modern Analogue Technique 

 

Values of RMSEP and r2
boot are used to measure the performance of components and 

the transfer function developed. These values do not confirm or explain how reliable 

or realistic the estimated PMSE produced for each sample are (Horton & Edwards, 

2006). Reconstruction of the estimated PMSE for fossil samples can be done within 

the transfer function, derived from the measured elevation of the training set (by 

comparing the fossil assemblages’ distribution and the training set assemblages’ 

distribution). It is therefore important to assess how suitable the estimated fossil 

PMSE values are.  

 

The greater the dissimilarity between the fossil sample’s species distribution to the 

training set’s species distribution, the greater the error in the resultant estimated 

PMSE for the fossil sample will be, as the transfer function was forced to extrapolate 

more of the training set data. In this study for example, all the calcareous species in 

the fossil samples were dissolved by the acidic pore waters (leaving only the test 

linings behind), making identification impossible. The lack of calcareous species in 

the fossil samples therefore might have resulted in a larger extrapolation of the 

training set data to provide an estimate of PMSE for the fossil samples. The resulting 

PMSE estimates should therefore be treated with caution (Edwards & Horton, 2000; 

Horton & Edwards, 2006).  
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Dissimilarity between the fossil samples and the contemporary foraminiferal samples 

were calculated using the Modern Analogue Technique (MAT) using C2 Version 1.7.7 

(Juggins, 2007). In this study, MAT was used to calculate the dissimilarity between 

the fossil sample and the ten most similar modern samples using the squared chord 

distance method as the dissimilarity coefficient. The squared chord method was used 

as it maximises the signal to noise ratio when used with percentage data (Birks, 1995; 

Edwards & Horton, 2000; Horton & Edwards, 2006). Samples with coefficient values 

below the 10th percentile were considered to have good modern analogues, those 

with coefficient values below the 20th percentile were considered to have close 

modern analogues, and those with coefficient values above the 20th percentile were 

considered to have poor modern analogues (Edwards & Horton, 2000; Horton & 

Edwards, 2006; Shennan et al., 2015). 

 

3.9 Sea-Level Index Points 

 

Sea-level index points (SLIPs) are individual sea-level reconstructions based on 

quantified age and vertical uncertainties. They are an estimation of the relative sea-

level (RSL) positions in space and time. SLIPs can be used to describe the overall 

trends and patterns of RSL in a region (Horton et al., 2013) and are established 

through a combination of lithostratigraphic, chronostratigraphic and biostratigraphic 

data (Edwards, 2006).  

 

RSL reconstructions are based on sea-level proxies (foraminiferal distribution and 

lithology for this study) and their indicative meaning can be derived from modern 

analogues within a transfer function or through the combined information on 

lithostratigraphy and biostratigraphy of a sample. The indicative meanings of the sea-

level proxies describe their relationship to elevation within the tidal frame. The 

indicative meaning is comprised of a tidal datum midpoint (the reference water level) 

and a vertical range (the indicative range). Indicative range is the altitudinal range 

over which the index point’s proxy could have occurred (Lloyd et al., 1999; Horton et 

al., 2013).  

 

Samples used to calculate SLIPs in this study are based on either the presence, 

absence or changes in the distribution of the saltmarsh foraminiferal species observed 

in the fossil core, combined with the lithology observed in the core. If the predicted 
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reference water level and indicative range produced from the transfer function are 

deemed not suitable (e.g. high number of samples with poor modern analogues in 

the training set), the reference water level and indicative meaning for the sample can 

be estimated based on the zonation of foraminiferal assemblages with reference to 

tidal submergence of the respective contemporary sites combined with the changes 

in lithostratigraphy related to the respective sample. A general schematic 

representation of the indicative meaning is shown in Figure 3.4 (based on Engelhart 

& Horton, 2012). 

 

 

Figure 3.4: Schematic representation of the indicative meaning of foraminiferal 

species found at different marsh zones. Abbreviations: MHWST=Mean high water 

spring tide; MHWNT =Mean high water neap tide; MTL=Mean tide level; 

HAT=Highest astronomical tide 

 

SLIPs are calculated following the equation in Horton et al. (2013): 

 

RSL (m) = H (m OD) – RWL (m OD) 

 

Where H is the altitude of the sample (subtracted from surface altitude of the core, 

based on depth of the sample down the core) and RWL is the altitude of reference 

water level of the sample (mid-point of the indicative range).  
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Several sources of error need to be taken into consideration when calculating the 

SLIP of a sample. Barlow et al. (2013) summarised the possible errors: surveying; 

angle of the borehole; measuring sample depth; overlying sediment compaction; core 

compaction; extrapolating tidal range estimates over large distances or in an area 

with a large tidal range; changes in the water table; uncertainty in identifying the 

correct tidal datum for the indicator of interest and changes in tidal regime and 

change in vegetation types over time.  Some of the vertical errors are not relevant 

when calculating SLIPs from only one saltmarsh (e.g. tidal range correction). 

However, if SLIPs from several study sites, or from sites located within an estuary or 

different regions with varying tidal range are plotted on a single sea-level curve, 

vertical errors needs to be considered to avoid misinterpretation of RSL change, to 

provide consistency and to allow correlation between sites (Barlow et al., 2013).  

 

The total error is calculated using the equation: 

 

E = (e1
2 + e2

2 + e3
2 + en

2)1/2, 

 

Where E is the total error for a sample, and e1-en are individual sources of errors for 

the sample (Barlow et al., 2013; Engelhart & Horton, 2012). Each SLIP in this study 

was calculated including the errors shown in Table 3.3 (based on Barlow et al., 2013; 

Engelhart & Horton, 2012; Lloyd et al., 1999).  

 

Table 3.3: Sources of vertical error for the SLIPs in this study 

Source of Error Example Magnitude 

Altitude High precision surveying  

(e.g. total station) 

± 0.05 m 

 

Core collection Angle of borehole 

Sampling error 

Compaction due to coring 

(for Russian hand corer) 

± 1% overburden 

± 0.01 m 

± 0.01 m 

Sample Thickness of sample Half of sample thickness 
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3.9.1 Correction for Post-Depositional Lowering of Sediments 

 

Post-depositional lowering caused by the compression of sediments under their own 

weight (when samples are obtained from unconsolidated peat sequences) is also an 

important vertical error that needs to be considered. SLIPs that are affected by 

compaction are displaced and lowered from their original altitude, consequently 

lowering the RSL reconstruction and overestimating the rate of increased RSL 

(Edwards, 2006; Tornqvist et al., 2008; Horton & Shennan, 2009; Horton et al., 2013; 

Brain et al., 2011; 2012 and 2015). Discrepancies between geological reconstructions 

and model estimations of RSL can be explained by the effect of sediment compaction 

on the SLIPs (Shennan et al., 2000; Shennan & Horton, 2002; Edwards, 2006). 

Sediment compaction is more common for intercalated samples from organic 

sediment that is easily compressible and enclosed between two clastic units. Basal 

samples from organic sediment sequences that overlay an incompressible substrate 

(i.e. bedrock) have minor or negligible effect of sediment compaction (Brain et al., 

2017). Methods to estimate and potentially correct sediment compaction require 

quantitative information about the sediment type overlying and underlying the dated 

sample, which was not available for other SLIPs in the region. Post-depositional 

lowering corrections are therefore only applied to SLIPs produced in this study when 

plotted against the other available SLIPs in the region.  

 

To correct for errors resulting from sediment compaction, this study employed the 

geotechnical modelling framework developed by Brain et al. (2011, 2012) to provide 

estimates of compaction-induced post-depositional lowering (PDL) downcore. The 

geotechnical decompaction approach employed here used the relationships between 

LOI and sediment compression properties reported by Brain et al. (2012) for three 

saltmarsh sites in the United Kingdom. On the basis of downcore measurements (0.02 

m layer thickness) of LOI, it is possible to assign compression properties to each layer 

in the core and, subsequently, run decompaction algorithms to provide depth-specific 

estimates of PDL, which is the height correction that is added to the in situ elevation 

of each sample used to reconstruct RSL. The modelling employs a Monte-Carlo 

framework (5000 model runs) and specified uncertainties in input parameters to 

determine errors in each of these model outputs. LOI of each layer in each model run 

was sampled from a uniform probability distribution defined by the median value in 

each lithostratigraphic unit observed in the core; uncertainty was expressed as ± half 
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the range of observed values in each unit. Yield stress in each layer in each model 

run was sampled from a triangular probability distribution using values reported for 

Roudsea Marsh, UK, by Brain et al. (2012), since this site is geographically located 

close to the sites studied here. The specific gravity, Gs, in each modelled layer was 

estimated using the relationship with LOI provided by Hobbs (1986) (Brain, personal 

communication 23rd May 2018).  

 

3.9.2 Correction for Changes in Palaeo-Tidal Range  

 

If tidal range at the study sites was greater in the past, the reference water level 

assigned to the sea-level index points would also be greater, resulting in a lower 

relative sea-level of the calculated SLIPs. Failing to account for the changes or 

increase in tidal range through time would therefore lead to an underestimation of 

the altitude of relative sea level during the study period (Horton et al., 2013).  

 

Palaeo-tidal data for the study area was predicted using the Fluidity model, a highly 

flexible finite element or control volume modelling framework which allows for the 

numerical solution of a number of equation sets (Piggott et al., 2008). Fluidity was 

used to model the tidal range using a palaeobathymetry constructed from General 

Bathymetric Chart of the Ocean (GEBCO) modern bathymetry/topographic data and 

accounting for relative sea-level change using the GIA model of Bradley et al. (2011), 

following Hill et al. (2014). Tides were calculated for the selected locations along the 

coastline of the Solway Firth and northwest Cumbrian region, in time slices at 1000 

year intervals from 10 to 1 ka BP and the model forced at the continental shelf 

boundary using modern tidal data. Model simulations were spun-up for 30 days and 

then tidal range calculated using a further 30 days simulation time (Hill, personal 

communication 8th May 2018).  

 

All SLIPs produced in this study were corrected for palaeo-tidal changes from the 

model developed by Hill (Personal communication 8th May 2018). The existing SLIPs 

from the northern and southern shore of the Solway Firth (from Shennan et al., 2018) 

were also corrected for palaeo-tidal change throughout the Holocene, to refine the 

RSL data observed and to highlight the importance of quantifying the change in tidal 

range over time (Chapter 10).  
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3.10 Summary  

 

This chapter has summarised the methods and techniques employed in this study, 

including the selection of the study sites, field, laboratory and microfossil analyses. 

Methods for the reconstruction of Holocene relative sea level through the 

development of transfer function and calculation of sea-level index points were also 

presented.  
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CHAPTER 4 

 

CONTEMPORARY FORAMINIFERAL DISTRIBUTION  

 

 

4.0 Introduction 

 

This chapter details the foraminiferal distribution and the environmental parameters 

of the surface samples collected from contemporary saltmarshes located near to the 

palaeo study sites. The saltmarshes studied were Skinburness Marsh, Cardurnock 

Marsh and Bowness Marsh. A total of 72 contemporary surface samples were 

collected from the three marshes, with eight major species of foraminifera identified.  

 

4.1 Contemporary Marshes in the Solway Region 

 

In the Solway Firth region, saltmarshes extend along the coastline from Grune Point 

at the mouth of Moricambe Bay to Gretna, located at the most inner point of the 

Solway Firth. The marshes along this coastline include Skinburness Marsh, Calvo 

Marsh, Newton Marsh, Anthorn Marsh, Cardurnock Marsh, Bowness Marsh, Burgh 

Marsh and Rockcliffe Marsh (Figure 4.1). Most of these marshes are grazed by cattle 

during spring and summer to manage the vegetation. 
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Figure 4.1: The green shaded areas are the estimated cover of contemporary 

saltmarsh in the region, along the coastline of Moricambe Bay and the southern 

Solway Firth (Source: © Environment Agency copyright and/or database right 2015. 

All rights reserved. Available at https://data.gov.uk) 

 

4.1.1 Skinburness Marsh (NY 1630 5517) 

 

Skinburness Marsh is one of the largest areas of saltmarsh located on the southern 

bank of Moricambe Bay, spanning from Grune Point (NY 1411 5651) on the outer 

estuary to Brownrigg (NY 1764 5271) at the mouth of the River Waver (Figure 4.2). 

The origins of Skinburness Marsh can be dated to the early 19th century and possibly 

formed as early as the 14th century. In 1870-1872 John Marius Wilson’s Imperial 

Gazetteer of England and Wales (GB Historical GIS / University of Portsmouth, 2018) 

described Skinburness Marsh as: 

 

“Skinburness, a village in Holme-Cultram parish, Cumberland; on the coast, 1¾ mile 

northern northeast of Silloth railway station. It was anciently an important place, 

destroyed by an irruption of the sea about the beginning of the 14th century; and is 

now a sea-bathing resort, and a place of herring-fishery”. 
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Figure 4.2: The three contemporary marshes in this study: Skinburness Marsh (blue), 

Cardurnock Marsh (red) and Bowness Marsh (purple). Black symbol are the sample 

points at each site (Source: © Environment Agency copyright and/or database right 

2015. All rights reserved. Available at https://data.gov.uk)  

 

Skinburness Marsh covers an area of approximately 2.745 km2, including a complete 

and undisturbed marsh sequence from tidal flats to high marsh environment with the 

presence of tidal creeks. The transect sampled across Skinburness Marsh site covered 

the distance of approximately 650 metres from the back of the marsh towards the 

unvegetated tidal flats environment (Figure 4.3). Skinburness Marsh is characterised 

by a generally flat profile throughout the high to the lower marsh, ranging from 5.7 

m OD at the high marsh to 4.6 m OD at the lower marsh and 3.7 m OD at the tidal 

flats. A total of 24 contemporary samples were collected across Skinburness Marsh.  
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Figure 4.3: Skinburness Marsh transect with location of modern sample points 

indicated  

 

The back marsh is bordered by Ulex europaeus (Gorse bush) towards the terrestrial 

area and most of the marsh area is dominated by Puccinellia maritima (Saltmarsh 

Grass), Spartina anglica (Common Cord Grass) and Juncus maritimus (Sea Rush), 

with patchy presence of Sphagnum sp. (Peat Moss), Cochlearia officinalis (Common 

Scurvy Grass), Plantago maritima (Sea Plaintain) and Triglochin maritima (Sea Arrow 

Grass). In the tidal creeks, Cochlearia officinalis (Common Scurvy Grass) and 

Spergularia marina (Lesser Sea Spurrey) can be found. The lowest vegetated 

saltmarsh zone is dominated mainly by Suaeda maritima (Sea Blite), Tripolium 

pannonicum (Sea Aster) and P. maritima (Sea Plaintain). In the mainly unvegetated 

tidal flats environment, patches of Salicornia spp. (Glasswort and Sea Asparagus) can 

be found.  

 

4.1.2 Cardurnock Marsh (NY 1765 5759) 

 

Cardurnock Marsh site is located on the northern bank of Moricambe Bay (Figure 4.2), 

covering an area of approximately 0.753 km2 from Cardurnock (NY 1721 5880) to the 

mouth of the River Wampool in the inner Moricambe Bay estuary (NY 1894 5752). 
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The marsh is bordered by the construction of embankments and roads but a complete 

marsh sequence from high marsh to tidal flats is present.  

 

The transect sampled across Cardurnock Marsh covered a distance of approximately 

150 metres, from the high marsh to the mainly unvegetated tidal flats environments 

(Figure 4.4). Distinct elevation changes between areas along the saltmarsh and the 

tidal flats were observed, with the elevation decreasing south towards the estuary. 

Tidal creeks and waterlogged areas were present in the high marsh zone. The high 

marsh zone recorded an average elevation of 5 m OD, decreasing to 4 m OD in the 

mid/low marsh and 3 m OD in the tidal flats.  

 

Figure 4.4: Cardurnock Marsh transect with location of modern sample points 

indicated  

 

The back marsh is bordered by U. europaeus (Gorse bush) towards the land area and 

the high marsh zone is dominated by P. maritima (Saltmarsh Grass) and J. maritimus 

(Sea Rush). Moving down the transect from north to south, C. officinalis (Common 

Scurvy Grass), and Aster tripolium (Sea Aster) can be found, with Glaux maritima 

(Sea Milkwort) also present. This transitioned into a zone dominated mainly by A. 

tripolium (Sea Aster), P. maritima (Saltmarsh Grass) and G. maritima (Sea Milkwort). 

The presence of A. tripolium (Sea Aster), S. anglica (Cord Grass), P. maritima 
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(Saltmarsh Grass), G. maritima (Sea Milkwort) were then observed and an abundance 

of C. officinalis (Common Scurvy Grass) was noted in the tidal creeks. In the lowest 

zone of the marsh, the presence of S. anglica (Cord Grass) and patches of Zostera 

noltii (Dwarf Eelgrass) and Enteromorpha intestinalis (Gut Weed) were observed. In 

the mainly unvegetated tidal flats environment, patches of Salicornia spp. (Glasswort 

and Sea Asparagus) were also found.  

 

4.1.3 Bowness Marsh (NY 2161 6258) 

 

Bowness Marsh is located on the southern shore of the Solway Firth (Figure 4.2), 

spanning the area from North Plain (NY 1970 6167) to Bowness-on-Solway (NY 2226 

6272). The marsh is separated into two by the now abandoned and dismantled 

railway track at Herdhill Scar (NY 2123 6266), with Campfield Marsh located west of 

the dismantled railway track. Bowness Marsh covers an area of approximately 0.262 

km2. Most of the marsh area is now bordered by an embankment and roads.  

 

The transect sampled across the site at Bowness Marsh covers a distance of 

approximately 150 metres, from the high marsh zone towards the tidal flats (Figure 

4.5). The rear of the marsh is bordered by an embankment and a road. A gently 

sloping hill is found on the opposite side of the road. The marsh has minimal elevation 

changes from the high to the lower marsh zones, ranging from 6.0 m OD at the high 

marsh to 4.0 m OD at the tidal flats.  
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Figure 4.5: Bowness Marsh transect with location of modern sample points indicated  

 

The rear of the marsh is bordered by U. europaeus (Gorse bush) towards the 

embankment area. The rear marsh is waterlogged, with species such as P. maritima 

(Saltmarsh Grass), C. officinalis (Common Scurvy Grass), Festuca rubra (Red Fescue), 

T. maritima (Sea Arrow Grass) and J. maritimus (Sea Rush) present. Moving along 

the transect from north to south, P. maritima (Sea Plaintain), G. maritima (Sea 

Milkwort) and A. tripolium (Sea Aster) were also observed. Patches of Salicornia spp. 

(Glasswort and Sea Asparagus) were also found in the mainly unvegetated tidal flats.  

 

4.2 Tidal Measurements 

 

High tide was recorded on three occasions at Skinburness Marsh and on four 

occasions at Cardurnock Marsh and Bowness Marsh. The highest point of the same 

high tide at each of the contemporary sites and from the Workington tide gauge data 

obtained from National Tidal and Sea Level Facility (NTSLF, 2018) on the same day 

were taken for calculation. This enabled the calculation of the highest astronomical 

tide (HAT), mean high water spring tide (MHWST), mean high water neap tide 

(MHWNT) and mean tide level (MTL) at each of the contemporary sites studied, using 
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the best fit regression equation shown in each graph and based on the value of the 

respective tidal datum recorded at Workington (Figure 4.6).  
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Figure 4.6: Tidal observations (m OD) at Skinburness Marsh, Cardurnock Marsh and 

Bowness Marsh compared to the verified data from Workington tide gauge (NTSLF, 

2018) 

 

The high tide elevation surveyed at all three contemporary saltmarshes showed a 

good fit with the verified Workington tide gauge data. It also revealed an amplification 

of the tide level from the outer estuary into the inner estuary, as Moricambe Bay and 

the Solway Firth narrow, and dampening tidal effects at Skinburness Marsh. Table 

4.1 shows the elevation of tidal datum at Workington tide gauge, Maryport tide gauge 

and the Silloth tide gauge based on the information obtained through the Admiralty 

Tide Table (2016), along with the calculated tidal elevations at Skinburness Marsh, 

Cardurnock Marsh and Bowness Marsh. Tide levels at Maryport and Silloth were 

included to illustrate the amplification and dampening of the tide levels along the 

Solway Firth and Moricambe Bay (Figure 4.7).  

 

 

 

 

 

 

 

 

 

y = 0.7112x + 0.3082
R² = 0.9953

1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9

3.1

2 2.5 3 3.5 4

W
o

rk
in

to
n

 T
id

e
 G

au
ge

 O
b

se
rv

e
d

 
(m

 O
D

)

Bowness Marsh Observed (m OD)



98 
 

 

Figure 4.7: Tidal amplification and dampening along the Solway Firth and Moricambe 

Bay. Values are MHWST at each location (NTSLF, 2018) 

 

Table 4.1: Tidal datum (m OD) at Workington, Maryport and Silloth tide gauges 

(Admiralty Tide Table, 2016; NTSLF, 2018) and the calculated tidal datum for 

Skinburness Marsh, Cardurnock Marsh and Bowness Marsh based on the best fit 

regression equations 

Site 
HAT 

(m OD) 

MHWST 

(m OD) 

MHWNT 

(m OD) 

MTL 

(m OD) 

Workington Tide Gauge 5.1 4.1 2.2 0.4 

Maryport Tide Gauge 5.3 4.3 2.3 0.4 

Silloth Tide Gauge 5.9 4.8 2.7 0.5 

Skinburness Marsh 6.3 4.9 2.4 -0.1 

Cardurnock Marsh 7.3 5.6 2.3 -0.8 

Bowness Marsh 6.7 5.3 2.7 0.1 

 

These data were then used for the calculation of sea-water level index (SWLI; 

calculated using equation in Section 3.7.1) values for the contemporary samples 

obtained at the sites, and for the reconstructed water level at each of the palaeo sites 

investigated.  
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4.3 Vertical Distribution of Contemporary Foraminiferal Assemblages 

 

The results of the cluster analysis and detrended correspondence analysis (DCA) on 

the samples from Skinburness, Cardurnock and Bowness marshes are shown in 

Sections 4.3.1, 4.3.2 and 4.3.3 respectively and illustrated in Figures 4.8 to 4.13. 

 

4.3.1 Vertical Distribution of Contemporary Foraminiferal Assemblages: 

Skinburnes Marsh  

 

A total of six main foraminiferal species were identified from the 24 samples from 

Skinburness Marsh (Figure 4.8). The species of foraminifera identified consisted 

mainly of the agglutinated species Jadammina macrescens and Miliammina fusca in 

the high marsh environment (HAT of 6.3 m OD and MHWST of 4.9 m OD), and the 

calcareous species Haynesina germanica and Elphidium williamsoni (with the 

presence of Ammonia beccarii) in the lower marsh and tidal flats (MHWNT of 2.4 m 

OD).  

 

Figure 4.8: Foraminiferal assemblages of Skinburness Marsh contemporary samples. 

Samples with less than 40 individuals are marked with red lines. Species that 

contribute less than 5% of the dead assemblage were excluded  

 

Based on the results of the unconstrained cluster analysis on samples from 

Skinburness Marsh, two main vertical zones were identified: SM-1 and SM-2 (Figure 

4.9). Zone SM-1 corresponds to a high saltmarsh environment and is dominated 
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mainly by agglutinated species, in particular J. macrescens and M. fusca, with T. 

inflata and very low frequencies of the calcareous species H. germanica also present. 

Zone SM-2 corresponds to a lower marsh to a tidal flats environment and is dominated 

by the calcareous species H. germanica, E. williamsoni and A. beccarii. 

 

 

Figure 4.9: Unconstrained cluster analysis based on unweighted Euclidean distance 

for samples collected from Skinburness Marsh. Samples with fewer than 40 individuals 

and species that contribute less than 5% of the dead assemblage were excluded 

 

4.3.2 Vertical Distribution of Contemporary Foraminiferal Assemblages: 

Cardurnock Marsh  

 

A total of eight main species of foraminifera were identified from 30 samples collected 

from Cardurnock Marsh (Figure 4.10). All samples collected from Cardurnock Marsh 

occurred between MHWST (5.6 m OD) and MHWNT (2.3 m OD), with the HAT at 

Cardurnock Marsh calculated at 7.3 m OD. The marsh zone located at the higher 

elevation is dominated mainly by the agglutinated species J. macrescens, while the 

lower marsh and tidal flats environments are dominated mainly by the calcareous 

species A. beccarii with the presence of H. germanica and E. williamsoni.  
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Figure 4.10: Foraminiferal assemblages of Cardurnock Marsh contemporary samples. 

Samples with less than 40 individuals are marked with red lines. Species that 

contribute less than 5% of the dead assemblage were excluded  

 

Four zones were identified at Cardurnock Marsh based on the results of the 

unconstrained cluster analysis (Figure 4.11). Zone CM-1 is dominated mainly by the 

agglutinated species J. macrescens and therefore corresponds to a high saltmarsh 

environment, although falling below MHWST (5.6 m OD). The second zone CM-2 is 

dominated by the calcareous species H. germanica, E. williamsoni and A. beccarii 

corresponds to a lower saltmarsh and tidal flats environment. The third zone 

identified, CM-3 exhibits a similar foraminiferal assemblage to zone CM-2, although 

presence of the agglutinated species J. macrescens and M. fusca were also noted 

therefore also corresponding to a lower saltmarsh and tidal flats environment.  
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Figure 4.11: Unconstrained cluster analysis based on unweighted Euclidean distance 

for samples collected from Cardurnock Marsh. Samples with fewer than 40 individuals 

and species that contribute less than 5% of the dead assemblage were excluded 

 

4.3.3 Vertical Distribution of Contemporary Foraminiferal Assemblages: 

Bowness Marsh  

 

Six species of foraminifera were identified from 28 samples collected at Bowness 

Marsh, dominated mainly by the agglutinated species J. macrescens and M. fusca in 

the high marsh environment; HAT of 6.7 m OD and MHWST of 5.3 m OD (with 

increased presence of Haplophragmoides wilberti in the waterlogged marsh areas). 

The lower marsh and tidal flats environments that lie between the MHWST and 

MHWNT (5.3 and 2.7 m OD respectively) were dominated mainly by the calcareous 

species H. germanica, E. williamsoni and A. beccarii (Figure 4.12).  
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Figure 4.12: Foraminiferal assemblages of Bowness Marsh contemporary samples. 

Samples with less than 40 individuals are marked with red lines. Species that 

contribute less than 5% of the dead assemblage were excluded  

 

Four zones were identified for the surface samples collected from Bowness Marsh 

(Figure 4.13). Zone BM-1 is located in the vegetated marsh zone above MHWST of 

5.3 m OD. The high marsh zone BM-1 is dominated by the agglutinated species J. 

macrescens, with M. fusca and H. wilberti also present. Zone BM-2 is dominated by 

the calcareous species H. germanica, E. williamsoni and A. beccarii corresponds to a 

lower saltmarsh and tidal flats environment. Zone BM-3 is dominated mainly by the 

calcareous species H. germanica, E. williamsoni and A. beccarii similar to zone BM-2, 

with increased presence of J. macrescens. Zone BM-4 is dominated mainly by A. 

beccarii, followed by E. williamsoni and H. germanica and are mainly made up of 

samples that lie between MHWST and MHWNT at Bowness Marsh.  
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Figure 4.13: Unconstrained cluster analysis based on unweighted Euclidean distance 

for samples collected from Bowness Marsh. Samples with fewer than 40 individuals 

and species that contribute less than 5% of the dead assemblage were excluded 

 

All three contemporary marshes in this study show a vertical zonation based on their 

foraminiferal assemblages and tidal datum levels recorded. The less distinct 

assemblage variations between the agglutinated and calcareous species from 

Skinburness Marsh are attributed to the presence of only one tidal flats sample from 

the site, due to the nature of the site which prevented collection of more samples 

from the tidal flats environment. The three marshes studied consists of two 

environments: a vegetated high marsh environment dominated mainly by the 

agglutinated species J. macrescens and a lower marsh and tidal flats environment 

(which falls above MHWNT at all contemporary sites) dominated mainly by the 

calcareous foraminiferal species A. beccarii. At Cardurnock Marsh, the agglutinated 

species J. macrescens is also present in the lower marsh and tidal flats environment, 

showing similar assemblages patterns to those of Nith Estuary located on the northern 

shore of the Solway Firth (Horton & Edwards, 2006). At Bowness Marsh, notable 

presence of the calcareous species H. germanica and E. williamsoni were also 

observed in the samples collected between MHWST and HAT correlating to a high 

saltmarsh environment. 
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4.4 Environmental Properties of Contemporary Samples 

 

The pH of the surface sediments at the three contemporary saltmarshes were 

measured in-situ and samples were collected and analysed for organic carbon content 

(LOI 550), carbonate content (LOI 950) and particle size.  

 

4.4.1 Environmental Properties: Skinburness Marsh 

 

The organic content of sediments is highest at the back marsh, and decreases along 

the transect towards the tidal flats environment. The carbonate content is generally 

very low across the whole transect (less than 3%). The pH along the transect ranged 

between 7.07 and 8.79. High silt content was recorded in the samples collected along 

the transect, with increased sand content in the sample collected from the tidal flats 

environment (Figure 4.14). 

 

Figure 4.14: Summary plots of the analyses of contemporary surface samples from 

Skinburness Marsh including elevation, summary of foraminiferal assemblages, loss-

on-ignition and particle size analyses  
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4.4.2 Environmental Properties: Cardurnock Marsh 

 

The organic content of the sediments at Cardurnock Marsh shows a general 

decreasing trend along the transect towards the tidal flats, with the highest and 

lowest organic sediment content recorded as 17% and 3% respectively. The 

carbonate carbon content is relatively low throughout the transect sampled, with the 

highest value of 3% recorded. The minimum pH recorded was 6.51 while the highest 

level recorded was 8.42. The particle size of the surface sediments varied, with 

increased sand content observed along the transect towards the tidal flats 

environment (Figure 4.15).  

 

Figure 4.15: Summary plots of the analyses of contemporary surface samples from 

Cardurnock Marsh including elevation, summary of foraminiferal assemblages, loss-

on-ignition and particle size analyses  

 

4.4.3 Environmental Properties: Bowness Marsh  

 

The organic carbon content showed a general decreasing trend along the transect 

from high marsh to the tidal flats, while the carbonate content remained relatively 

low across the transect. The pH at Bowness Marsh ranged between 5.90 and 8.85. 

The particle size of the sediments collected at Bowness Marsh is dominated by sand 

(Figure 4.16).  
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Figure 4.16: Summary plots of the analyses of contemporary surface samples from 

Bowness Marsh including summary of foraminiferal assemblages, loss-on-ignition, pH 

and particle size analyses  

 

4.5 Influence of Environmental Parameters on Foraminiferal 

Assemblages 

 

The canonical correspondence analysis (CCA) sample-environment and species-

environment biplots for Skinburness Marsh, Cardurnock Marsh, Bowness Marsh and 

the Solway training set are described in Sections 4.5.1, 4.5.2, 4.5.3 and 4.5.4, and 

illustrated in Figures 4.17, 4.18, 4.19 and 4.20 respectively. The lengths of the 

environmental variables’ arrow illustrates the variable’s individual importance in 

explaining the variation in the foraminiferal data, while the orientation of the arrows 

illustrates the approximate correlation of the variables to ordination axes one and 

two, as well as individual correlation to other variables. 

 

4.5.1 Influence of Environmental Parameters on Foraminiferal 

Assemblages: Skinburness Marsh 

 

For Skinburness Marsh, the CCA axes one and two explain 64% of the total variation 

in the foraminiferal data. Correlations of the environmental variables with axes one 
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and two show that the elevation and LOI (organic content) are strongly correlated 

with axis one, pH is strongly correlated with axis two and the silt and sand fractions 

show a joint correlation between both the axes (Figure 4.17a). Axis one can therefore 

be deemed to reflect the major gradient change from a high marsh environment on 

the left of the graph, where high values are observed for elevation, LOI, and silt 

fraction, and low values for the sand fraction. The right of the graph therefore reflects 

the low marsh and tidal flats environment, with the opposite observed: high values 

of the sand fraction and low values of elevation, LOI and silt fraction. The pH gradient 

in Skinburness Marsh showed an increase in pH from tidal flats environment to high 

marsh environment.  

 

For Skinburness Marsh (Figure 4.17b), the agglutinated species J. macrescens, M. 

fusca and T. inflata show a preference for a high and middle marsh environment 

located on the left side of the graph (high elevation, LOI and silt fraction, low sand 

fraction) while the calcareous species H. germanica, E. williamsoni and A. beccarii 

show a preference for a low marsh and tidal flats environment located on the right 

of the graph (high sand fraction, low elevation, LOI and silt fraction). The distribution 

of T. inflata has the strongest correlation with the LOI and silt fraction composition 

in Skinburness Marsh.  
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(a) 

 

(b) 
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Figure 4.17: Canonical Correspondence Analysis biplots of (a) sample-environment 

and (b) foraminiferal species-environment from Skinburness Marsh. Species 

abbreviations: A.Bec = Ammonia beccarii; E.Wil = Elphidium williamsoni; H.Ger = 

Haynesina germanica; H.Wil = Haplophragmoides wilberti; J.Mac = Jadammina 

macrescens; M.Fus = Miliammina fusca; T.Com = Tipotrocha comprimata and T.Inf 

= Trochammina inflata. Environmental abbreviations: LOI = loss on ignition. Samples 

with fewer than 40 individuals and species that contribute less than 5% of the dead 

assemblage were excluded 

 

4.5.2 Influence of Environmental Parameters on Foraminiferal 

Assemblages: Cardurnock Marsh 

 

For Cardurnock Marsh, the CCA axes one and two explain less than half (43%) of the 

total variation in the foraminiferal data. Correlations of the environmental variables 

with axes one and two show that the pH and LOI (organic content) are strongly 

correlated with axis one and elevation, silt fraction and sand fraction show a joint 

correlation between both the axes (Figure 4.18a). Axis one is therefore deemed to 

reflect the gradient changes from a high marsh environment on the right of the graph, 

where high values are observed for elevation, LOI, and silt fraction, and low values 

of sand fraction and pH. The left of the graph therefore reflects the low marsh and 

tidal flats environment, where the opposite is observed: high values of the sand 

fraction and pH with low values of elevation, LOI and silt fraction.  

 

For the species-environment biplot (Figure 4.18b) of Cardurnock Marsh, the 

agglutinated species J. macrescens, M. fusca, H. wilberti, T. comprimata and T. inflata 

show a preference for a high and middle marsh environment located on the right of 

the graph (high elevation, LOI and silt fraction, low pH and sand fraction) while the 

calcareous species H. germanica, E. williamsoni and A. beccarii show a preference for 

a low marsh and tidal flats environment located on the left side of the marsh (high 

pH and sand fraction, low elevation, LOI and silt fraction). The agglutinated species 

J. macrescens show a stronger correlation with elevation and H. wilberti and T. 

comprimata show a stronger correlation with elevation and LOI. M. fusca and T. 

inflata show a stronger correlation with the silt fraction. The calcareous species, A. 

beccarii show a stronger correlation with pH, while H. germanica and E. williamsoni 

are correlated with both the pH and sand fraction.  
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(a) 

 

(b) 

Figure 4.18: Canonical Correspondence Analysis biplots of (a) sample-environment 

and (b) foraminiferal species-environment from Cardurnock Marsh. Samples with 

fewer than 40 individuals and species that contribute less than 5% of the dead 

assemblage were excluded 
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4.5.3 Influence of Environmental Parameters on Foraminiferal 

Assemblages: Bowness Marsh 

 

For Bowness Marsh, the CCA axes one and two explain approximately half (52%) of 

the total variation in the foraminiferal data. Correlations of the environmental 

variables with axes one and two show that the pH and silt fraction are strongly 

correlated with axis one, elevation is strongly correlated with axis two and the LOI 

and sand fraction show a joint correlation between both the axes (Figure 4.19a). Axis 

one is therefore deemed to reflect the gradient changes from a high marsh 

environment on the right of the graph, where high values are observed for elevation, 

LOI, and silt fraction, and low values for the sand fraction and pH. The left of the 

graph therefore reflects the low marsh and tidal flats environment, where the 

opposite is observed: high values of the sand fraction and pH with low values of 

elevation, LOI and silt fraction observed.  

 

For the species-environment biplot (Figure 4.19b) at Bowness Marsh, the 

agglutinated species J. macrescens, M. fusca and H. wilberti show a preference for a 

high and middle marsh environment located on the right of the graph (high elevation, 

LOI and silt fraction, low pH and sand fraction) while the calcareous species H. 

germanica, E. williamsoni and A. beccarii show an opposite preference for a low 

marsh and tidal flats environment located on the left side of the graph (high pH and 

sand fraction, low elevation, LOI and silt fraction). The agglutinated species J. 

macrescens and H. wilberti show a stronger correlation with the LOI and silt fraction. 

The calcareous species H. germanica show the strongest correlation with pH, and E. 

williamsoni is most strongly correlated with the sand fraction.  
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(a) 

 

 

(b) 
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Figure 4.19: Canonical Correspondence Analysis biplots of (a) sample-environment 

and (b) foraminiferal species-environment from Bowness Marsh. Samples with fewer 

than 40 individuals and species that contribute less than 5% of the dead assemblage 

were excluded 

 

4.5.4 Influence of Environmental Parameters on Foraminiferal 

Assemblages: Solway Training Set 

 

When the data from all three contemporary marshes are combined as the Solway 

training set, CCA axes one and two explain 40% of the total variation in the 

foraminiferal data, the lowest when compared to the individual marshes. A general 

trend of high to middle marsh environment (high elevation, LOI and silt fraction, low 

pH and sand fraction) on the right side of the graph and a lower marsh and tidal flats 

environment illustrated on the left side of the graph (high pH and sand fraction, low 

elevation, LOI and silt fraction) is observed. All agglutinated species are also shown 

to have a preference for the high to middle marsh environment, while the calcareous 

species are restricted to the low marsh and tidal flats environments (Figure 4.20).  

 



115 
 

 

(a) 
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(b) 

Figure 4.20: Canonical Correspondence Analysis biplots of (a) sample-environment 

and (b) foraminiferal species-environment from the Solway training set. Samples with 

fewer than 40 individuals and species that contribute less than 5% of the dead 

assemblage were excluded 

 

4.6 Individual Contributions of Environmental Variables on 

Foraminiferal Assemblages 

 

The five environmental variables investigated account for 64%, 43%, 52% and 40% 

of the variation in foraminiferal assemblages at Skinburness Marsh, Cardurnock 

Marsh, Bowness Marsh and in the Solway training set respectively (Figure 4.21). The 

partial CCAs for Skinburness Marsh showed that the total 64% explained variation is 

composed of the elevation (18%), LOI (15%), silt fraction (15%), sand fraction 

(14%), pH (16%) and intercorrelation amongst the variables (23%). The 43% 

variation of foraminiferal assemblages explained in Cardurnock Marsh is composed of 

the elevation (9%), LOI (5%), silt fraction (3%), sand fraction (3%), pH (6%) and a 

strong intercorrelation amongst the environmental variables (74%). The total 
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foraminiferal assemblage variation in Bowness Marsh explained is 52%, where 13% 

of the total variation is contributed by the elevation, 8% by the LOI, 6% by the silt 

fraction, 6% by the sand fraction, 16% by the pH and 50% of the total variation 

explained by intercorrelation amongst the variables. For the Solway training set, 40% 

of the total variation in species assemblages is accounted for by the five 

environmental variables. Only 1% of the total variation is attributed to the elevation, 

4% to the LOI, 2% to the silt fraction, 2% to the sand fraction, 8% to the pH and 

82% attributed to intercorrelation amongst the five environmental variables. 

 

For Skinburness Marsh and Cardurnock Marsh, the elevation contributed the most to 

the variation in foraminiferal species distribution, while the pH and elevation 

contributed the highest for Bowness Marsh. For the Solway training set, pH 

contributed the highest with 8% of the total variation explained, while the elevation 

explained only 1% of the variation in foraminiferal distribution. The strong 

intercorrelation amongst the variables (82%) for the Solway training set shows that 

although the elevation (the main variable affecting tidal submergence of the area) 

might be the main controlling factor in the foraminiferal assemblages’ distribution in 

the marshes, the effects of other environmental variables should also be taken into 

account. The variation of foraminiferal distribution in a marsh due to intercorrelation 

amongst the variables is common, as these variables (LOI, pH, silt and sand fractions) 

are also dependent on the frequency of tidal flooding in the marsh (Horton & 

Edwards, 2006). Intercorrelation amongst variables has also been observed in the 

other foraminifera contemporary marsh studies (Horton et al., 1999; Horton et al., 

2003; Edwards, 2001; Horton & Edwards, 2003; Horton & Edwards, 2005; Horton & 

Edwards, 2006; Best, 2016).  
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Figure 4.21: Pie charts showing the total variation of the foraminiferal training set of 

Skinburness Marsh, Cardurnock Marsh, Bowness Marsh and the Solway training set 

respectively in explained and unexplained portion components representing the 

individual contributions of elevation, LOI, silt fraction, sand fraction, pH and 

intercorrelation amongst variables 

 

4.7 Development of a Local Foraminifera-Based Transfer Function 

 

The Solway training set was used to develop the local transfer function for this study, 

consisting of all 72 foraminiferal samples from the three contemporary marshes. The 

foraminiferal data for the 72 contemporary samples of the Solway training set were 
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plotted against SWLI, which ranged from 275 to 302 (Figure 4.22). Component 

selection for the local transfer function developed was based on the prediction 

statistics (RMSEP and r2
boot) amongst the lowest five components. Based on these, 

component three was selected as it performed better than component one and two, 

with minimal improvement in the following components (Table 4.2).  

 

 

Figure 4.22: Contemporary foraminiferal samples from Skinburness Marsh, 

Cardurnock Marsh and Bowness Marsh ordered by elevation (expressed as 

standardised water level index) 

 

Table 4.2: Summary of the performance of the local transfer function developed from 

the training set (the selected component three is in bold) 

Name Component RMSEP % Change r2
boot 

L-1 1 12.09 - 0.30 

L-1 2 11.16 7.73 0.42 

L-1 3 11.04 1.04 0.46 

L-1 4 11.03 0.08 0.46 

L-1 5 11.18 -1.29 0.46 

 

The local transfer function developed showed a linear relationship between the 

observed and predicted SWLI (Figure 4.23). The r2
boot values (which showed the 

regression value for the observed SWLI and predicted SWLI of the transfer function) 

for the Solway training set component three is 0.46, with the RMSEP value of 11.04. 

The local training set produced a high scatter between the observed SWLI and 
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predicted SWLI, possibly due to the fact that the foraminiferal assemblages 

distribution in Skinburness Marsh, Cardurnock Marsh and Bowness Marsh were also 

strongly influenced by the other environmental variables (resulting in high 

intercorrelation values), as shown in Figure 4.23. In an idealised situation where the 

distribution of foraminifera in these three sites is controlled solely by elevation of the 

marsh, a linear one-to-one relationship would be observed (Horton & Edwards, 2006). 

The effect of these other variables on the foraminiferal assemblages’ distribution 

reduced the precision of the transfer function for reconstructions of the fossil samples. 

If the effect of the other environmental variables becomes more dominant than 

elevation (as shown for Bowness Marsh and the Solway training set in Figure 4.21), 

no meaningful prediction can be made using the transfer functions developed (Horton 

& Edwards, 2006).      
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Figure 4.23: Scatter plots showing the relationship between observed SWLI 

(measured during fieldwork) and predicted SWLI (produced by the WA-PLS transfer 

function) derived from the local Solway training set 
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4.8 Transfer Function Application and Assessment of Reliability: Modern 

Analogue Technique 

 

To predict the palaeo surface marsh elevation (PMSE) of fossil foraminiferal 

assemblages from the palaeo study sites, calibration was undertaken using the C2 

program (Juggins, 2007). The SWLI estimated for each fossil sample were calculated 

using the WA-PLS predictions, and the error range was derived by bootstrapping 

(1000 cycles). The ‘reliability’ of the transfer function produced were first assessed 

using the modern analogue technique (MAT) to consider the similarity/dissimilarity 

between the modern assemblages used to develop the transfer function with the 

fossil assemblages. 

 

Based on the result of MAT on the fossil samples with the local transfer function 

developed, the utilisation of the transfer function to estimate the PMSE of the fossil 

samples were deemed unfeasible due to the high number of samples with poor 

modern analogues (Table 4.3). This is due to the dissolution of the calcareous 

foraminiferal species observed in all of the cores obtained from the palaeo study sites.  

 

Table 4.3: Modern analogue technique (MAT) results for each palaeo sites 

Site 
Modern Analogues 

Good Close Poor 

Allonby 23 (44%) 7 (14%) 22 (42%) 

Cowgate Farm 14 (37%) 6 (16%) 18 (47%) 

Pelutho 29 (60%) 4 (8%) 15 (32%) 

Herd Hill 10 (46%) 3 (14%) 9 (40%) 

 

Only dead foraminiferal assemblages were included in the analyses, as dead 

assemblages show less spatial and temporal variation compared to live assemblages. 

Post-depositional changes where certain foraminiferal species are retained or 

removed from the dead population occur during the process when the foraminiferal 

assemblage dies. Modern analogues or training sets were consistently derived from 

only the dead surface foraminiferal assemblages; therefore the effect between the 

presence and absence of these species will not affect the calibration of the fossil 

material, as the foraminifera assemblages found in the fossil sample during the time 
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of deposition would have undergone similar processes as the contemporary surface 

samples (Horton & Edwards, 2006).  

 

However, if post-depositional changes occur during the process when the 

foraminiferal assemblages shift from a surface to a sub-surface environment, changes 

in the relative abundance of key foraminiferal taxa may result in errors during the 

reconstruction of relative sea level from fossil material. In sea-level research, the 

dissolution of calcareous foraminiferal species has been observed previously (e.g. 

Scott & Medioli, 1980; Jonasson & Patterson, 1992; Murray & Alve, 1999; Edwards & 

Horton, 2000) and is most common in a low pH environment where the sediment is 

rich in organic content, and there is an input of acidic runoff from nearby land areas. 

When post depositional dissolution of the calcareous foraminiferal species occur, the 

resulting fossil assemblage found in cores will be enriched with agglutinated 

foraminiferal species which would normally have a minor contribution in the lower 

marsh or tidal flats environments. This will eventually result in poor transfer function 

performance as there would be lack of modern analogues for the fossil samples 

(Horton & Edwards, 2006).  

 

The use of MAT was able to identify samples that might have experienced the effects 

of post-depositional dissolution of calcareous foraminifera, as the samples will have 

resulted in having poor modern analogues. The presence of test linings in the clastic 

units at the palaeo study sites was used as evidence for the presence of calcareous 

foraminiferal species in the fossil samples, although it was not possible to identify the 

species of the calcareous remains. In this study, fossil samples having higher 

abundance of M. fusca and H. wilberti in particular also resulted in samples having 

poor modern analogues, as the dominance might be biased due to the calcareous 

foraminiferal dissolution which were therefore absent in the fossil samples.  

 

4.9 Summary  

 

The three contemporary marshes investigated, Skinburness Marsh, Cardurnock Marsh 

and Bowness Marsh were described in this chapter, including the foraminiferal 

assemblages and zonation along with the environmental parameters of the surface 

sediment observed in each saltmarsh. A local transfer function was developed based 

on the three marshes in this study. The prediction of the PMSE value of fossil samples 
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based on the local transfer function was not feasible, as the transfer function resulted 

in a high number of fossil samples with poor modern analogues. This is due to the 

lack of the calcareous species in the fossil samples. The indicative meaning of the 

fossil samples will therefore be determined qualitatively based on the contemporary 

foraminiferal assemblages from the three saltmarshes, combined with the 

lithostratigraphy and environmental parameters of the surface sediments.   

 

The results from this study have highlighted the importance of the preservation of 

microfossils for the successful development and utilisation of a transfer function. 

Although the transfer function developed may result in a good statistical predictability, 

the high number of fossil samples with poor modern analogues (as a result of the 

dissolution of calcareous foraminifera) as observed in this study will eventually result 

in an unreliable reconstruction. The assessment of the different estuarine settings 

(i.e. microtidal, mesotidal or macrotidal) when developing a local transfer function 

should also be considered. For example, in a macrotidal estuarine setting, the 

calcareous foraminiferal species may be deposited higher on the acidic and organic 

saltmarsh environment, hence poorly preserved in the fossil assemblage. This was 

observed in other recent studies within similar estuarine settings (e.g. Elliot, 2015; 

Best, 2016). Further research on the different estuarine and coastal environment is 

therefore needed, to determine the factors affecting post-depositional preservation 

of the proxy utilised. 
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CHAPTER 5 

 

ALLONBY 

 

 

5.0 Introduction 

 

The site at Allonby (NY 0949 4410) is located on the northwest Cumbrian coastline, 

approximately 1.5 km from the present coastline, 12 km from the southern bank of 

Moricambe Bay and 22 km from the southern shore of the Solway Firth (Figure 5.1). 

The site is bordered by a gently sloping hill towards the south and the Black Dub 

stream towards the north which flows into Allonby Bay at Dubmill. Low-lying farmland 

surrounds the site to the west and east and a drainage channel separates the two 

fields investigated at this site (Figure 5.2a). The study area is currently used as 

grazing for domestic livestock and is approximately 300 m long by 200 m wide.  

 

 

Figure 5.1: Location of the study site at Allonby marked in red 
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5.1 Borehole Location and Stratigraphy 

 

Three transects of boreholes were cored across the site to establish a detailed 

stratigraphy (Figure 5.2). The first transect was cored from south to north at the site, 

and the other two transects were cored from west to east. The surface altitude of the 

boreholes ranged from 6.97 m OD and 7.69 m OD. Borehole A6 reached the maximum 

depth of 1.90 m (5.20 m OD) at the site, terminating on bedrock. Boreholes A1, A2, 

A3, A4, A5 A6 and A7 terminated on bedrock, boreholes A8, A9, A10, A11 and A12 

terminated in a stiff blue/grey silt-clay with orange mottling unit, while boreholes A12 

and A13 terminated in a sandy blue/grey silt-clay with gravel unit. The general 

lithostratigraphy of the area consisted of a basal clastic unit of organic blue/grey silt-

clay with sand and gravels deposited on the bedrock overlain by a peat with 

Phragmites unit. A second clastic unit of organic blue/grey silt-clay occurred above 

this, and this in turn was overlain by another unit of peat with Phragmites.  

 

Borehole A1 reached a depth of 1.24 m (5.85 m OD) and terminated on bedrock. A 

sandy blue/grey silt-clay with gravel unit overlaid the bedrock, with more organic 

detritus found towards the top of the unit. This was overlain by the silty peat with 

Phragmites unit and wood at a depth of 0.87 m (6.22 m OD), and surface peat unit 

at a depth of 0.20 m (6.89 m OD). 

 

Borehole A2 reached the bedrock at a depth of 1.24 m (5.89 m OD). A unit of sandy 

blue/grey silt-clay with gravel was deposited on the bedrock, which transitioned into 

the silty peat with Phragmites unit at a depth of 0.74 m (6.39 m OD) and the surface 

peat unit at a depth of 0.24 m (6.89 m OD).  

 

In borehole A3, the maximum depth reached was 1.23 m (5.94 m OD). The basal 

clastic unit overlying the bedrock consisted of a unit of organic and sandy brown silt-

clay with gravel. It was overlain by a unit of organic blue/grey silt-clay with gravel at 

a depth of 0.79 m (6.38 m OD). This transitioned into the silty peat with Phragmites 

unit at a depth of 0.60 m (6.57 m OD) and the surface peat unit at a depth of 0.21 

m (6.96 m OD). 

 

Borehole A4 reached the bedrock at a depth of 1.24 m (5.83 m OD). The bedrock 

was overlain by a unit of organic blue/grey silt-clay with gravel and transitioned into 
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the peat with Phragmites and wood remains at a depth of 0.95 m (6.12 m OD). This 

unit was overlain by a second clastic unit consisting of organic blue/grey silt-clay at 

a depth of 0.66 m (6.41 m OD) and transitioned into the silty peat with Phragmites 

unit at a depth of 0.46 m (6.61 m OD). The surface peat unit occurred at a depth of 

0.18 m (6.89 m OD).  

 

For borehole A5, the maximum depth reached was 1.40 m (5.58 m OD). The bedrock 

was overlain by the sandy blue/grey silt-clay with gravel unit and transitioned into a 

more organic blue/grey silt-clay unit at a depth of 1.30 m (5.68 m OD). This unit 

transitioned into the silty peat with Phragmites unit at a depth of 0.47 m (6.51 m OD) 

and the surface peat unit at a depth of 0.24 m (6.74 m OD).  

 

In borehole A6, the maximum depth reached was 1.90 m (5.23 m OD) and no basal 

clastic unit was observed. Instead, a peat with Phragmites unit was deposited on the 

bedrock, and was overlain by a clastic unit of organic blue/grey silt-clay unit at a 

depth of 0.75 m (6.38 m OD). This transitioned into the silty peat with Phragmites 

unit at a depth of 0.51 m (6.62 m OD) and the surface peat unit at a depth of 0.16 

m (6.97 m OD).  

 

Borehole A7 reached the maximum depth at 1.70 m (5.30 m OD), and terminated on 

bedrock. A unit which consisted of sandy organic blue/grey silt-clay with gravel 

overlaid the bedrock. This unit transitioned into organic brown silt-clay at a depth of 

1.62 m (5.38 m OD), and was overlain by a silty peat with Phragmites unit at a depth 

of 1.57 m (5.43 m OD). This unit was overlain by a second clastic unit which consisted 

of organic blue/grey silt-clay at a depth of 0.99 m (6.01 m OD) and transitioned into 

the silty peat with Phragmites unit at a depth of 0.64 m (6.36 m OD). The surface 

peat unit occurred at a depth of 0.49 m (6.51 m OD).  

 

Borehole A8 terminated on bedrock at 1.43 m (5.82 m OD). The bedrock was overlain 

by the organic blue/grey silt-clay with gravel unit, which transitioned into silty peat 

with Phragmites unit at a depth of 1.33 m (5.92 m OD). This unit was overlain by an 

organic blue/grey silt-clay unit at a depth of 1.18 m (6.07 m OD). This clastic unit 

transitioned into the silty peat with Phragmites unit at a depth of 0.65 m (6.60 m OD) 

and the surface peat unit at a depth of 0.17 m (7.08 m OD).  
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Borehole A9 reached an impenetrable depth at 1.64 m (5.42 m OD) in the stiff and 

sandy blue/grey silt-clay with orange mottling unit. The basal clastic unit was overlain 

by a more organic blue/grey silt-clay unit at a depth of 0.87 m (6.19 m OD) and 

transitioned into the peat with Phragmites unit at a depth of 0.53 m (6.53 m OD). 

This was overlain by a unit of organic brown silt-clay at a depth of 0.48 m (6.58 m 

OD) which then transitioned into the surface peat unit at a depth of 0.26 m (6.80 m 

OD). 

 

For borehole A10, the maximum depth reached was 0.78 m (6.19 m OD) in the stiff 

and sandy blue/grey silt-clay with orange mottling unit. This was overlain by the silty 

peat with Phragmites unit at a depth of 0.67 m (6.30 m OD). This organic unit was 

overlain by an organic blue/grey silt-clay unit at a depth of 0.62 m (6.35 m OD) which 

transitioned into the surface peat unit at a depth of 0.26 m (6.71 m OD).  

 

Boreholes A11 and A12 both terminated in the stiff and sandy blue/grey silt-clay with 

orange mottling unit at a depth of 0.33 m (7.00 m OD) and 0.38 m (7.24 m OD) 

respectively. This clastic unit was overlain by the surface peat unit at a depth of 0.20 

m (7.13 m OD) for borehole A11 and at a depth of 0.16 m (7.46 m OD) for borehole 

A12.  

 

Borehole A13 reached an impenetrable depth at 0.91 m (6.78 m OD) in the sandy 

blue/grey silt-clay with gravel unit. This basal clastic unit was overlain by an organic 

stiff brown clay-silt unit at a depth of 0.84 m (6.85 m OD). This unit transitioned into 

an organic blue/grey silt-clay with orange mottling unit at a depth of 0.68 m (7.01 m 

OD), and transitioned into the surface peat unit at a depth of 0.32 m (m OD).  

 

Borehole A14 reached an impenetrable depth at 0.54 m (6.77 m OD) in the sandy 

blue/grey silt-clay with gravel unit, with orange mottling towards the top of the clastic 

unit. This clastic unit was overlain by the surface peat unit at a depth of 0.36 m (6.95 

m OD).  

 

A sample core was taken at Allonby from borehole A7 as it contained all main 

stratigraphic units recorded. Core A7 was used for all laboratory analyses and to 

establish a chronology for the site. The results of laboratory analyses undertaken on 

core A7 are discussed in detail in the following sections. 
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(a) 

 

 



130 
 

 

(b) 
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(c) 

Figure 5.2: (a) Location of boreholes and sample core (A7) at Allonby with contour 

line marking the altitudes (m OD) of surrounding areas (Source: © Crown Copyright 

and Database Right (2018) Ordnance Survey, Digimap Licence) (b) The 

lithostratigraphy of the boreholes and sample core from Allonby (c) The simplified 

lithostratigraphy of the boreholes and sample core from Allonby. Sample core is 

marked by a black square 
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5.2 Sediment Composition 

 

Core A7 terminated on the bedrock at 1.70 m (5.30 m OD). The surface elevation 

recorded for core A7 was 7.00 m OD. Towards the base of the core in the basal clastic 

unit, increased sand content was recorded. The sand content decreased in the clastic 

unit and basal organic unit, and was highest towards the surface of the core. The 

sand fraction found in core A7 consisted of mainly very fine sand and fine sand. The 

sediment description of core A7 is summarised in Table 5.1. 

 

Table 5.1: Sediment description of core A7 including depth, altitude and the Tröels-

Smith (1955) sediment classification  

Depth 

(m) 

Altitude 

(m OD) 

Sediment 

Description  

Tröels-Smith Sediment 

Classification (1955) 

0 – 0.49 7.00 – 6.51 Very dark brown peat 

with roots and organic 

remains, some brown 

silt 

Th4; Ag+, 

Nig. = 4, Strf. = 0, Sicc. 

= 1, Elas. = 1 

0.49 – 0.64 6.51 – 6.36  Very dark brown peat 

with Phragmites, roots 

and organic remains, 

increased brown silt 

Th3; Ag1, 

Nig. = 4, Strf. = 0, Sicc. 

= 1, Elas. = 1, Lim. = 0 

 

0.64 – 0.99 6.36 – 6.01 Blue/grey silt-clay with 

Phragmites, roots and 

organic remains 

Ag2; As2, Th+, Dl+, 

Nig. = 2, Strf. = 0, Sicc. 

= 2, Elas. = 0, Lim. = 2 

0.99 – 1.57 6.01 – 5.43 Very dark brown peat 

with Phragmites, roots 

and organic remains 

and brown silt 

Th3; Ag1; Dl+, 

Nig. = 4, Strf. = 0, Sicc. 

= 1, Elas. = 1, Lim. = 2 

1.57 – 1.62 5.43 – 5.38 Brown silt-clay with 

Phragmites, roots and 

organic remains 

Ag2; As1; Th1; Dl+,  

Nig. = 3, Strf. = 0, Sicc. 

= 2, Elas. = 0, Lim. = 2 
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1.62 – 1.70 5.38 – 5.30  Blue/grey silt-clay with 

roots and organic 

remains, sand and 

gravel 

Ag2; As2; Dl+; Ga+; Gg+ 

(min), Nig. = 4, Strf. = 0, 

Sicc. = 3, Elas. = 0, Lim. 

= 2 

 

5.3 Loss on Ignition 

 

Loss on ignition analyses were undertaken on samples from core A7 to give an 

estimate of the organic carbon content and carbonate content of the sediment. 

Samples were taken every 8 cm throughout the core, from each stratigraphic unit 

recorded and analysed for organic carbon and carbonate content. Fluctuations can 

be noted in the percentage of organic carbon content of the samples from the Allonby 

core, with a maximum of 59% reached at a depth of 1.18 m (5.82 m OD) and a 

minimum of 4% at a depth of 1.66 m (5.34 m OD). Very low percentages of carbonate 

content were observed throughout the core, with a range of 1% to 6% recorded. A 

maximum of 6% of carbonate content was observed at 0.54 m (6.46 m OD) in the 

silty Phragmites peat unit. No correlation between the percentages of carbonate 

content with the change of stratigraphic horizons in the core was observed. The 

organic carbon and carbonate content of core A7 are shown in Figure 5.3. 
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Figure 5.3: Plot of loss on ignition analyses for Allonby showing organic carbon and 

carbonate content of the sediment throughout core CGF1 

 

5.4 Particle Size Analysis 

 

Samples for particle size analysis were taken every 8 cm throughout the core from 

each stratigraphic unit and the data were categorised into clay, silt and sand fractions 

(Figure 5.4). Particle size analysis showed fairly homogeneous sediment dominated 

mostly by silt throughout the entire core with very limited variation in the clay content. 

The percentages of clay in core A7 ranged from 1% at a depth of 0.08 m (6.92 m 

OD) to 6% at a depth of 1.20 m (5.80 m OD). The silt content in the sediment ranged 

between 59% at a depth of 0.08 m (6.92 m OD) and 95% at a depth of 1.04 m (5.96 

m OD). The sand content in core A7 showed a minimum of 0.02% at a depth of 1.04 

m (5.96 m OD) and a maximum of 40% sand was recorded towards the top of the 

core at 0.08 m (6.92 m OD), which was composed mainly of very fine sand. 
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Figure 5.4: Diagram showing particle size analysis for core A7 from Allonby  

 

5.5 Chronology 

 

The chronology for the environmental changes recorded in core A7 was established 

through accelerator mass spectrometry (AMS) radiocarbon dating of four bulk 

sediment samples undertaken at DirectAMS Radiocarbon Dating Service in 

Washington, USA. The radiocarbon ages obtained were calibrated using OxCal v.4.3 

(Ramsey, 2009) and the IntCal13 atmospheric curve (Reimer et al., 2013). All dates 

were calibrated to cal BP (Table 5.2). 
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Table 5.2: Four radiocarbon dates obtained from Allonby core A7 

Lab Code 
Code-Depth 

(cm) 

Altitude  

(m OD) 

Material 

Dated 
Fraction 

Radiocarbon Age Cal BP 

(2σ Ranges) BP 1σ Error 

D-AMS 022222 ALL-35 6.65-6.66 Peat Bulk carbon 6377 34 7418-7255 

D-AMS 025777 ALL-78 6.22-6.23 Organic clay Bulk carbon 7359 32 8306-8041 

D-AMS 025776 ALL-100 6.00-6.01 Peat Bulk carbon 7209 41 8158-7954 

D-AMS 022223 ALL-139 5.61-5.62 Peat Bulk carbon 7203 49 8160-7946 
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An age-depth model for core A7 was developed using Bacon v2.3.4 (Blaauw & 

Christen, 2011). The red dotted line shows modelled median ages along core A7 and 

the grey stippled lines indicate the 95% confidence intervals of the modelled age-

depth relationship. The transparent blue violin plots show the four calibrated AMS 14C 

dates from Allonby. The upper left graph shows the iteration history of the model. 

The middle and right graphs show prior (green lines) and posterior (grey histograms) 

density functions for accumulation rate and memory of the model (Figure 5.5).  

 

The mean 95% confidence of the age-depth model developed for core A7 covered 

354 years, with a minimum of 167 years modelled at 35 cm and a maximum of 427 

years modelled at 60 cm. 100% of the dates obtained from Allonby lie within the age-

depth model's 95% range, although samples ALL-139 and ALL-78 appear to be 

younger and older respectively when compared to the model’s prediction. It is 

therefore possible that contamination and/or sediment reworking might have 

occurred at these depths resulting in the incorporation of older carbon into sample 

ALL-139, while sample ALL-78 might have been contaminated by younger carbon 

from the upper sediment horizon. 

 

The main stratigraphic boundaries of core A7 (0.64 m and 0.99 m; 6.36 m OD and 

6.01 m OD) were included in the age-depth model (shown in the horizontal dotted 

lines across the model in Figure 5.5). The sedimentation rates were calculated based 

on the dated samples and the main stratigraphic boundaries (mean age obtained 

from the model’s prediction) and shown on the right side of Figure 5.5.  

 

 



138 
 

 

Figure 5.5: Age-depth model for core A7 based on Bacon v2.3.4 modelling routines 

(Blaauw & Christen, 2011) and calculated sedimentation rates from the AMS 14C dates 

calibrated with IntCal13 (Reimer et al., 2013). Dotted lines on the model indicates 

the main stratigraphic units in the A7 core  

 

5.6 Foraminiferal Analysis  

 

The preservation of foraminiferal tests in the samples from core A7 varied, with some 

samples containing very few foraminiferal tests. It was therefore not possible to 

obtain a minimum count of 40 individuals in some of the samples despite increasing 

the sample volume. Although the low foraminiferal counts may provide information 

on the palaeoenvironment of the site at the time of deposition (e.g. the dominance 

of Jadammina macrescens in low counts may indicate a high saltmarsh environment), 

samples with fewer than 40 individuals were consistently removed from any statistical 

analysis undertaken in this study, as the low count might contribute to an erroneous 
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and misleading species assemblage distribution for the sample. Samples were taken 

at 1 or 2 cm intervals throughout the whole core.  

 

The samples analysed from Allonby revealed five main agglutinated saltmarsh species 

comprising of J. macrescens, Miliamminia fusca, Tiphotrocha comprimata, 

Haplophragmoides wilberti and Trochammina inflata (Figure 5.6). No calcareous 

species were found in core A7, although test linings were observed in the core. The 

agglutinated saltmarsh foraminiferal species were observed between the depths of 

0.36 m (6.64 m OD) to 1.38 m (5.62 m OD) (Figure 5.6). No foraminifera were 

observed in the basal sandy organic blue/grey silt-clay with gravel unit (1.70 m to 

1.62 m; 5.30 m OD to 5.38 m OD), the organic brown silt-clay unit (1.62 m to 1.57 

m; 5.38 m OD to 5.43 m OD), deeper sections of the silty peat with Phragmites unit 

(1.57 m to 1.37 m; 5.43 m OD to 5.63 m OD) and in the surface peat unit from 0.35 

m (6.65 m OD) towards the top of the core.  

 

The foraminifera found in core A7 were dominated mainly by J. macrescens and M. 

fusca, with low frequencies of T. comprimata, H. wilberti and T. inflata. Variations 

between the dominance of J. macrescens and M. fusca were observed in the organic 

unit and minerogenic unit, with J. macrescens generally dominating the organic unit. 

The increased frequencies of M. fusca corresponded to the deposition of the organic 

blue/grey silt-clay unit. The presence of test linings was also observed where there 

was an increase of dominance in M. fusca. A small peak of T. inflata was observed at 

the depth of 1.16 m (5.84 m OD), although very low individuals counts was recorded 

for this depth.  
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Figure 5.6: Foraminiferal diagram from Allonby core A7. Foraminiferal frequencies are 

expressed as a percentage of total foraminifera. All samples including samples with 

low individual counts (below 40 individuals; marked with red lines) were included in 

this diagram. Red blocks next to the stratigraphy diagram indicates the zone where 

foraminifera was absent in the core 

 

The silty peat with Phragmites unit was dated at a depth of 1.39 m (5.61 m OD) and 

represented the first presence of foraminifera in the core. The measured age for the 

sample was 8160-7946 cal BP, although this date appear to be younger than expected 

based on the age-depth model developed (Section 5.5). The second date was 

obtained at the point of the transition from the silty peat with Phragmites unit to the 

overlying organic blue/grey silt-clay unit at a depth of 1.00 m (6.00 m OD), and 

resulted in an age of 8158-7954 cal BP. The third date at 8306-8041 cal BP obtained 

was at a depth of 0.78 m (6.22 m OD), where a change in biostratigraphy was 

observed. Sample ALL-35 which marks the absence of foraminifera from the core was 

dated at 7418-7255 cal BP.  

 

The date obtained for sample ALL-78 is out of sequence and produced an age older 

than expected, and older than both samples ALL-100 and ALL-139. Contamination 

and/or sediment reworking might have occurred at this depth through the mixing of 

the intertidal sediments which occurred during periods of flood and ebb tides, 

resulting in the incorporation of older carbon into sample ALL-78. However, the three 

oldest dates ALL-139, ALL-100 and ALL-78 produced mean ages of 8030 cal BP, 8031 

cal BP and 8170 cal BP respectively, which are in very close proximity to each other. 
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The date obtained from ALL-78 is deemed erroneous based on the microfossil 

evidence (discussed in Section 5.11), and should therefore be treated with caution.  

 

5.7 Holocene Relative Sea-Level and Environmental Changes at Allonby 

 

The interpretation of Holocene relative sea-level and environmental changes for 

Allonby is based on microfossil analyses, changes in lithostratigraphy and the 

sediment composition of core A7.  

 

5.8 Microfossil Interpretation: Foraminifera 

 

The bottom 0.31 m of the core is barren of any foraminifera (Figure 5.7). The first 

presence of foraminifera was recorded at 1.38 m (5.62 m OD) and dated at 8160-

7946 cal BP, recording marine transgression at the site. The presence of agglutinated 

foraminifera dominated mainly by J. macrescens suggest that the area may have 

developed into a high saltmarsh environment, as evidenced by the contemporary 

samples collected from Skinburness Marsh and Bowness Marsh in this study (Chapter 

4; Section 4.3.1 and Section 4.3.3).  

 

At the transition from the silty peat with Phragmites unit to the overlying organic 

blue/grey silt-clay unit at 1.00 m (6.00 m OD) dated at 8158-7954 cal BP, the 

foraminiferal assemblage is dominated mainly by M. fusca. A reduced abundance of 

J. macrescens with the presence of test linings was also noted at this transition. An 

intertidal mudflat environment may have expanded at the site, replacing the 

saltmarsh environment. The foraminiferal assemblage dominated by M. fusca and the 

presence of test linings suggests an intertidal mudflat environment close to the 

fringing saltmarsh (Lloyd et al., 1999). Occurrence of the agglutinated species M. 

fusca was also noted in the lower saltmarsh environment (between MHWST and 

MHWNT) at Cardurnock Marsh (Chapter 4; Section 4.3.2). 
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Figure 5.7: Summary diagram showing foraminifera, particle size analyses and loss on ignition undertaken on samples from core A7
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The transition from organic blue/grey silt-clay unit to the overlying silty peat with 

Phragmites unit at a depth of 0.64 m (6.36 m OD) records a species domination 

mainly by J. macrescens and M. fusca, although the abundance of M. fusca is reduced 

and no test linings were observed. The microfossil evidence combined with the 

change in lithostratigraphy in this zone would suggest that there was a negative 

tendency in sea level, and a saltmarsh environment developed at the site. Peaks of 

H. wilberti were observed at the depths of 0.38 m (6.62 m OD) and 0.36 m (6.64 m 

OD). The presence of J. macrescens and H. wilberti are associated with an 

environment occurring at the level of extreme high water (Gehrels & Long, 2008). 

The site would have therefore still supported a saltmarsh environment.  

 

From the depth of 0.35 m (6.65 m OD) towards the top of the core at 7.00 m OD, no 

foraminifera were observed in the surface peat unit. The regressive contact which 

records a negative marine tendency at the site was dated at 7418-7255 cal BP, and 

the site transitioned into a freshwater environment.  

 

5.9 Sediment Deposition and Relative Sea-Level Interpretation 

 

The site at Allonby is located on a low-lying land below 10 m OD and would have 

been inundated by increasing sea level during the period of marine transgression 

recorded. The deposition of the basal blue/grey silt-clay with gravel unit and the 

brown silt-clay unit may have resulted either from slope wash processes, fluvial 

processes or through inundation during period of marine transgression at the site. It 

is more likely that the minerogenic units were deposited at the site through slope 

wash or fluvial processes, as both units are barren of any foraminifera. The deposition 

of the basal blue/grey silt-clay with gravel unit may have resulted from glaciofluvial 

processes (Walker, 1966), while the brown silt-clay unit may have resulted from 

fluvial processes, depositing sediments in the flood plain near the site during storm 

events or extreme weather at high tide period.  

 

The site at Allonby is surrounded by higher ground to the north, south and east of 

the site (Figure 5.2a). A British Geological Survey (BGS) borehole located at 

Newtonfield Farm (NY 1078 4338), 1.4 km southeast from the site, revealed sediment 

units composed of soft sandstone with sand and gravel 5.50 m beneath the top soil, 

overlain by yellow/brown sandy clay (5.20 m below the surface top soil). A BGS 
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borehole located at Brownrigg Hall Farm (NY 1000 4370), 0.5 km southeast from the 

site at Allonby also recorded a sediment unit 27.4 metres deep composed of glacial 

sand and gravel with clay bands occurring beneath the top soil.  

 

The clastic unit was overlain by a silty peat with Phragmites unit. Between 1.57 m 

(5.43 m OD) to 1.39 m (5.61 m OD), this organic unit is barren of any foraminifera, 

and would appear to be of terrestrial origin. At a depth of 1.38 m (5.62 m OD) in the 

silty peat with Phragmites unit, the first occurrence of agglutinated foraminifera was 

observed, and this transgressive contact indicating positive sea-level tendency was 

dated at 8160-7946 cal BP. It is likely that a saltmarsh environment would have 

developed in the area, recording the initial marine transgression at the site. This date 

may indicate the first recording of the Main Postglacial Transgression at the site and 

also possibly the contribution of freshwater input into the ocean as a result of the 

drainage of the glacial Lake Agassiz-Ojibway in North America in addition to the Main 

Postglacial Transgression.   

 

The silty peat with Phragmites unit was overlain by an organic blue/grey silt-clay unit 

and was dated at 8158-7954 cal BP. Sea level would have continued to increase and 

resulted in the expansion of the intertidal mudflat environment evidenced by the 

deposition of the organic blue/grey silt-clay unit at the site, and by the change in 

biostratigraphy. At Skelwith Pool, Morecambe Bay, an increase of sea level at a rate 

≥ 0.4 cm a-1 resulted in an expansion of the intertidal environment over the coastal 

lowlands, but an increase of sea level with a rate ≤ 0.2 cm a-1 did not result in 

widespread inundation as the intertidal deposition and saltmarsh accretion kept pace 

with the rising sea level (Zong & Tooley, 1996). The rate of relative sea-level increase 

at the site during the deposition of the organic blue/grey silt-clay unit may therefore 

have been more rapid compared to the initial transgressive contact at 1.38 m (5.62 

m OD). Sedimentation rates of 0.004 cm a-1, 0.11 cm a-1 and 0.84 cm a-1 were 

recorded for the sediment accumulated between 1.39 m to 0.99 m (5.61 m OD to 

6.01 m OD), 0.99 m to 0.62 m (6.01 m OD and 6.38 m OD) and 0.62 m to 0.35 m 

(6.38 m OD to 6.65 m OD) respectively. 

 

A possible decrease in relative sea level was observed at a depth of 0.78 m (6.22 m 

OD) evidenced by the change in biostratigraphy, although the date obtained from 

sample ALL-78 at this depth produced the erroneous date of 8306-8041 cal BP. The 



145 
 

organic blue/grey silt-clay unit was overlain by another unit of peat with Phragmites 

unit, recording a negative tendency in sea level at 0.64 m (6.36 m OD). A saltmarsh 

may have developed at the site as evidenced by change in the lithostratigraphy and 

biostratigraphy.  

 

Marine regression from the site was recorded at a depth of 0.35 m (6.65 m OD) as 

the saltmarsh environment transitioned into a more freshwater environment, 

evidenced by the absence of foraminifera in the sediment sequence from 0.35 m 

(6.65 m OD) towards the top of the core. This regressive contact was dated at 7418-

7255 cal BP. No further changes in the biostratigraphy and lithostratigraphy were 

observed in the top 0.35 m of the core.  

 

5.10 Relative Sea-Level Reconstruction for Allonby 

 

A relative sea-level reconstruction for the site at Allonby was developed through a 

combination of lithostratigraphic and biostratigraphic analyses, determination of 

indicative meanings and calculation of sea-level index points. 

 

5.11 Determination of Indicative Meaning 

 

As the predicted palaeo surface marsh elevation (PMSE) values based on the transfer 

function utilised on core A7 were deemed unreliable due to the high number of fossil 

samples with poor modern analogues, the assigned reference water level based on 

the changes in lithostratigraphy and biostratigraphy (foraminiferal assemblages) was 

therefore used for the calculation of sea-level index points. 

 

Based on the lithostratigraphy and biostragraphy of samples ALL-139 and ALL-100, 

the indicative meaning associated with a high saltmarsh environment was ascribed. 

The lithostratigraphy of samples ALL-139 and ALL-100 consisted of the silty peat with 

Phragmites unit and high organic carbon content (Figure 5.3). The biostratigraphy of 

sample ALL-139 showed a dominance of the agglutinated saltmarsh species J. 

macrescens (85%) which is mostly associated with a high saltmarsh environment, as 

evidenced by the contemporary foraminifera collected from Skinburness Marsh and 

Bowness Marsh (Chapter 4; Sections 4.3.1 and 4.3.3). The biostratigraphy of sample 

ALL-100 showed an increased presence of M. fusca (83%), immediately prior to the 
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transition into the overlying organic blue/grey silt-clay unit and is also interpreted as 

a high saltmarsh environment.  

 

The reference water level for both samples ALL-139 and ALL-100 at the depths of 

1.39 m (5.61 m OD) and 1.00 m (6.00 m OD) respectively are therefore determined 

to be the midpoint between HAT and MHWST at Skinburness Marsh as the 

characteristics of samples ALL-139 and ALL-100 are reflected most closely in the 

contemporary samples collected from Skinburness Marsh (dominance of J. 

macrescens and increase of M. fusca prior to the transition). This provides the 

indicative meaning of HAT of 6.3 m OD and MHWST of 4.9 m OD (the reference water 

level as the midpoint between HAT and MHWST), with the indicative range of ±1.4 

m covering HAT and MHWST (Chapter 3; Section 3.9).  

 

Sample ALL-78 was not ascribed to an indicative meaning due to the erroneous date 

of the sample. Sample ALL-78 which recorded a possible decrease in relative sea level 

(based on the change in foraminiferal assemblage), produced a date older than 

samples ALL-100 and ALL-139, both of which recorded marine transgressions at the 

site. A sea-level index point therefore is also not calculated for sample ALL-78. 

 

Sample ALL-35 was also ascribed an indicative meaning associated with a high 

saltmarsh environment, based on the lithostratigraphy consisting of the surface peat 

unit and the biostratigraphy dominated by the agglutinated saltmarsh species J. 

macrescens. The reference water level for sample ALL-35 is therefore also determined 

to be the midpoint between HAT (6.3 m OD) and MHWST (4.9 m OD) measured at 

Skinburness Marsh, with the indicative range covering of ±1.4 m.  

 

5.12 Post-Depositional Lowering of Sediments 

 

All of the sea-level index points produced from Allonby are of intercalated samples, 

and would have been subjected to post-depositional lowering (PDL). The PDL of 

sediments in core A7 was estimated based on the geotechnical model developed by 

Brain et al. (2011, 2012), as discussed in Chapter 3 (Section 3.9.1). Minimal PDL of 

sediments is observed in core A7, which ranged between 0.001 to 0.200 m. Figure 

5.8 shows the PDL of sediments at 0.02 m intervals throughout core A7.  
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Figure 5.8: Geotechnical and physical properties showing the averaged downcore 

organic content, expressed as % loss on ignition and the model estimates of post-

depositional lowering. Abbreviations: LOI = Loss on ignition; PDL = Post-depositional 

lowering 

 

5.13 Sea-Level Index Points  

 

The sample’s age, reference water level and indicative range along with the 

associated errors and correction for each sample are required for the calculation of 

sea-level index points (Chapter 3; Section 3.9). Three sea-level index points were 

produced for Allonby site (Table 5.3). The complete SLIPs table following Shennan et 

al. (2018) is presented in the appendix of this thesis. 
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Table 5.3: Sea-level index points produced from A7 

Lab Code Latitude Longitude 

Radiocarbon Age  
Cal BP 

(2σ Ranges) Altitude 

(m OD) 

Compaction 

Correction 

(m) 

RSL  

(m) 
Tendency 

BP 
1σ 

Error 
Min Mean Max 

D-AMS 

022222 
54.783 -3.408 6377 34 7255 7320 7418 6.65 +0.010 +1.06±1.46 Negative 

D-AMS 

025776 
54.783 -3.408 7209 41 7954 8031 8158 6.00 +0.020 +0.42±1.46 Positive 

D-AMS 

022223 
54.783 -3.408 7203 49 7946 8030 8160 5.61 +0.010 +0.02±1.46 Positive 
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Samples ALL-35, ALL-100 and ALL-139 produced sea-level index points of 1.06±1.46 

m, 0.42±1.46 m and 0.02±1.46 m respectively. Figure 5.9 shows the sea-level index 

points from Allonby plotted against the relative sea-level predictions based on the 

BRADLEY2011, KUCHAR2012 and BRADLEY2017 models in Shennan et al. (2012), 

Kuchar et al. (2012) and Shennan et al. (2018) respectively for the southern Solway 

Firth at location NY 2481 5666. 

 

Figure 5.9: Graph showing two sea-level index points from Allonby. The black line is 

the modelled relative sea-level curves for southern Solway Firth based on Shennan 

et al. (2012; 2018) and Kuchar et al. (2012). All sea-level index points include 

associated individual vertical and age error bars 

 

5.14 Summary 

 

The site at Allonby has provided a record of Holocene sea-level changes as evidenced 

by the changes in lithostratigraphy and biostratigraphy of core A7. The three sea-

level index points from Allonby broadly agree with the recorded dates of marine 

transgression and marine regression of other sites located on the southern shore of 

the Solway Firth apart from the later marine regression recorded at Drumburgh Moss. 

The initial increase in relative sea-level at Allonby as a result of the Main Postglacial 

Transgression or a combination of both Main Postglacial Transgression and drainage 

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 2000 4000 6000 8000 10000

R
e

la
ti

ve
 S

e
a 

Le
ve

l (
m

)

Year (cal BP)

BRADLEY2011 KUCHAR2012 BRADLEY2017



150 
 

of Lake Agassiz-Ojibway was dated at 8031 cal BP, while a marine regression at 

Allonby was dated at 7320 cal BP.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



151 
 

CHAPTER 6 

 

COWGATE FARM 

 

 

6.0 Introduction 

 

The site at Cowgate Farm (NY 0967 4737) is located on the northwest Cumbrian 

coastline, approximately 1 km from the present coastline, 10 km from the southern 

bank of Moricambe Bay and approximately 20 km from the southern shore of the 

Solway Firth. The site is located 400 metres from Cowgate (NY 0922 4776) and is 

situated near a gently-sloping hill to the south, with flat and low-lying farmland to 

the north, east and west of the site. Drainage channels are located in the north and 

west of the site, and to the east of the site, a small road connecting the farming areas 

and town is present (Figure 6.2a). The site at Cowgate Farm is approximately 150 m 

long by 200 m wide and located within a field that is currently being used as a grazing 

area for domestic livestock. The closest contemporary saltmarsh investigated to the 

site is Skinburness Marsh (Figure 6.1). 

 

 

Figure 6.1: Location of the study site at Cowgate Farm marked in red 
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6.1 Borehole Location and Stratigraphy 

 

A detailed stratigraphy of the site was established through four transects of 

boreholes, which were cored across the study site (Figure 6.2). The surface elevation 

of the boreholes and the sample cores at Cowgate Farm ranged from 7.6 m OD to 

8.1 m OD. The maximum depth reached at Cowgate Farm was 2.18 m (5.8 m OD) in 

borehole CGF2. All boreholes terminated in impenetrable stiff pink/brown clay 

containing small gravel, except for borehole CGF11 which terminated in a grey and 

sandy fine gravel unit. The general stratigraphy recorded at Cowgate Farm was basal 

sand and silt overlain by peat with Phragmites.  

 

Borehole CGF1 reached a depth of 1.52 m (6.48 m OD) and terminated in stiff 

pink/brown clay with small gravel. It was overlain by a sandy blue/grey silt-clay at 

1.41 m (6.59 m OD). The sandy blue/grey silt-clay unit was overlain by a similar unit 

containing organic remains at 1.28 m (6.72 m OD). This organic clastic unit then 

transitioned into the peat with Phragmites unit at 1.25 m (6.75 m OD), and the 

surface peat unit at 0.25 m (7.75 m OD).  

 

Borehole CGF2 reached an impenetrable depth at 2.18 m (5.72 m OD) in the 

pink/brown clay with small gravel unit. This unit was overlain by a blue/grey silt-clay 

unit at 1.50 m (6.40 m OD), which transitioned into a sandy blue/grey silt-clay unit 

at 1.32 m (6.58 m OD). The clastic unit transitioned into the surface peat with 

Phragmites unit at 1.28 m (6.62 m OD).  

 

Borehole CGF3 terminated in the pink/brown clay with small gravel unit at 1.44 m 

(6.56 m OD). The basal clastic unit was overlain by a blue/grey silt-clay unit at 1.30 

m (6.70 m OD), which was then overlain by an organic blue/grey silt-clay unit at 1.20 

m (6.80 m OD). This transitioned into the surface peat with Phragmites unit at 1.18 

m (6.82 m OD).  

 

In borehole CGF4, the maximum depth reached was 2.01 m (6.09 m OD) which 

terminated in the pink/brown clay with small gravel unit. The basal clastic unit was 

overlain by the blue/grey silt-clay unit at 1.81 m (6.29 m OD), which was overlain by 

a more organic blue/grey silt-clay unit at 1.50 m (6.60 m OD). This clastic unit then 

transitioned into the surface peat with Phragmites unit at 1.37 m (6.73 m OD).  
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Borehole CGF5 reached an impenetrable depth at 1.68 m (6.32 m OD) in the 

pink/brown clay with small gravel unit. This was overlain by the blue/grey silt-clay 

unit at 1.50 (6.50 m OD) and a shallow peat with Phragmites unit at 1.31 m (6.69 m 

OD). This organic unit was overlain by sandy blue/grey silt-clay unit at 1.25 m (6.75 

m OD). The second clastic unit then transitioned into the surface peat with Phragmites 

unit at 1.20 m (6.80 m OD).  

 

Borehole CGF6 terminated in the pink/brown clay with small gravel unit at 1.71 m 

(6.29 m OD). This was overlain by the blue/grey silt-clay unit at 1.50 m (6.50 m OD) 

and a more organic blue/grey silt-clay unit at 1.27 m (6.73 m OD). The clastic unit 

then transitioned into the surface peat with Phragmites unit at 1.21 m (6.79 m OD).  

 

For borehole CGF7, the maximum depth reached was 1.82 m (6.28 m OD) in the 

pink/brown clay with small gravel unit. This was overlain by an organic blue/grey silt-

clay unit at 1.50 m (6.60 m OD) that transitioned into the surface peat with 

Phragmites unit at 1.38 m (6.72 m OD).  

 

Borehole CGF8 terminated in the unit of pink/brown clay with small gravel at 1.95 m 

(5.75 m OD). This was overlain by a blue/grey silt-clay unit with a large pieces of 

wood and organic materials at 1.80 m (5.90 m OD). This was overlain by an organic 

blue/grey silt-clay unit at 1.36 m (6.34 m OD) and a peat with Phragmites unit at 

1.21 m (6.49 m OD). This organic unit was overlain by another blue/grey silt-clay unit 

at 0.50 m (7.20 m OD), which then transitioned into the surface peat with Phragmites 

unit at 0.42 m (7.28 m OD).  

 

Borehole CGF9 terminated in the pink/brown clay unit at 1.45 m (6.25 m OD) and 

was overlain by the organic blue/grey silt-clay unit at 1.36 m (6.34 m OD). This then 

transitioned into the surface peat with Phragmites unit at 1.26 m (6.44 m OD). 

 

In borehole CGF10, the maximum depth reached was 1.45 m (6.55 m OD) which 

terminated in the pink/brown clay with small gravel unit. This was overlain by the 

organic blue/grey silt-clay unit at 1.36 m (6.64 m OD). The clastic unit then 

transitioned into the surface peat with Phragmites unit at 1.23 m (6.77 m OD).  
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Borehole CGF11 terminated at 0.50 m (7.50 m OD) in a unit consisting of grey and 

sandy fine gravel which was overlain by the surface peat with Phragmites unit. The 

presence of the grey gravel in the stratigraphy may be attributed to the construction 

of the drainage ditch and road found next to the site investigated, located east of 

CGF11. 

 

A sample core was taken at Cowgate Farm from borehole CGF1 as it contained all the 

major stratigraphic units recorded at the site. Core CGF1 was used for all laboratory 

analysis and to establish a chronology for the site. The results of laboratory analyses 

undertaken on core CGF1 are discussed in detail in the following sections. 

(a) 

 

 

 

 

 



155 
 

 

(b) 
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(c) 

Figure 6.2: (a) Location of boreholes and sample core (CGF1) at Cowgate Farm with 

contour line marking the altitudes (m OD) of surrounding areas (Source: © Crown 

Copyright and Database Right (2018) Ordnance Survey, Digimap Licence) (b) The 

lithostratigraphy of the boreholes and sample core from Cowgate Farm (c) The 

simplified lithostratigraphy of the boreholes and sample core from Cowgate Farm. 

Sample core is marked in a black square  
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6.2 Sediment Composition 

 

Core CGF1 terminated in the pink/brown clay unit at 1.52 m (6.48 m OD). The surface 

elevation recorded for core CGF1 was 8.00 m OD. The sand content of the sediment 

was highest towards the base of the core and decreased in the organic unit. At 

approximately 0.20 m depth from the surface of the core, the sand content increased 

again. Coarser sand was observed towards the base of the core in the blue/grey silt-

clay unit and finer sand in the overlying units. The sediment description of core CGF1 

is summarised in Table 6.1. 

 

Table 6.1: Sediment description of core CGF1 including depth, altitude and the Tröels-

Smith (1955) sediment classification  

Depth 

(m) 

Altitude 

(m OD) 

Sediment 

Description 

Tröels-Smith Sediment 

Classification (1955) 

0 – 1.25 8.00 – 

6.75 

Very dark brown peat 

with Phragmites, roots 

and organic remains 

Th4,  

Nig. = 4, Strf. = 0, Sicc. 

= 1, Elas. = 1 

1.25 – 1.28 6.75 – 

6.72 

Blue/grey silt-clay with 

Phragmites, roots, 

organic remains and 

sand 

Th2; Ag2; Ga+,  

Nig. = 2, Strf. = 0, Sicc. 

= 2, Elas. = 1, Lim. = 2 

1.28 – 1.41 6.72 – 

6.59 

Sandy blue/grey silt-

clay with wood 

fragments 

Ag2; As1; Ga1; Dl+,  

Nig. = 2, Strf. = 0, Sicc. 

= 2, Elas. = 0, Lim. = 1 

1.41 – 1.52 6.59 – 

6.48 

Blue/grey silt-clay 

transition into 

pink/brown clay with 

small gravel  

Ag; As2; Gg+ (min),  

Nig. = 2, Strf. = 0, Sicc. 

= 3, Elas. = 0, Lim. = 2 

 

 

6.3 Loss on Ignition 

 

Loss on ignition analyses were undertaken on samples from core CGF1 to give an 

estimate of the organic carbon content and carbonate content of the sediment. In 

the peat with Phragmites unit and the surface peat unit, samples were taken at 17 
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cm intervals from 0.05-1.06 m (7.95-6.94 m OD) as there was only one major 

stratigraphic unit identified, and 11 cm intervals between 1.06-1.17 m (6.94-6.83 m 

OD) as the stratigraphy changed from the peat with Phragmites unit to the clastic 

unit. Samples were then taken at 2 cm intervals between 1.17-1.50 m (6.83-6.50 m 

OD) where changes in the stratigraphy were more frequent towards the base of the 

core. Fluctuations can be observed in the percentage of organic carbon content which 

ranged from 2% to 76%, with a limited change in the percentage of carbonate 

content throughout the core (a maximum of 8%). The organic carbon content and 

carbonate content of core CGF1 are shown in Figure 6.3. 

 

 

Figure 6.3: Plot of loss on ignition analyses for Cowgate Farm showing organic carbon 

and carbonate contents of the sediment throughout core CGF1 

 

6.4 Particle Size Analysis 

 

In the peat with Phragmites unit and the surface peat unit, samples were taken at 17 

cm intervals for particle size analysis from 0.05-1.06 m (7.95-6.94 m OD) as there 

was only one major stratigraphic unit identified, and 11 cm intervals between 1.06-

1.17 m (6.94-6.83 m OD) as the stratigraphy changed from the peat with Phragmites 
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unit to the clastic unit. Samples were then taken at 2 cm intervals between 1.17-1.50 

m (6.83-6.50 m OD) where changes in the stratigraphy were more frequent towards 

the base of the core (Figure 6.4). There was minimal change in clay content 

throughout the core, with the percentage of clay content ranging between 1% at a 

depth of 1.29 m (6.71 m OD) and 7% at a depth of 1.25 m (6.75 m OD). The silt 

content remained high throughout the core, and comprised the majority of the 

sediment composition with a range between 35% at a depth of 1.29 m (6.71 m OD) 

and 94% at a depth of 0.38 m (7.62 m OD). The silt content decreased slightly closer 

to the surface at depths of 0.22 m (7.78 m OD) and 0.05 m (7.95 m OD). 

 

 

Figure 6.4: Diagram showing particle size analysis for core CGF1 from Cowgate Farm  
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6.5 Chronology 

 

The chronology for the core CGF1 was established through accelerator mass 

spectrometry (AMS) radiocarbon dating of four bulk sediment samples undertaken at 

DirectAMS Radiocarbon Dating Service in Washington, USA. The radiocarbon ages 

obtained were then calibrated using OxCal v.4.3 (Ramsey, 2009) and the IntCal13 

atmospheric curve (Reimer et al., 2013). All dates were calibrated to cal BP (Table 

6.2).  
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Table 6.2: Four radiocarbon dates obtained from Cowgate Farm core CGF1 

Lab Code 
Code-Depth 

(cm) 

Altitude  

(m OD) 

Material 

Dated 
Fraction 

Radiocarbon Age Cal BP 

(2σ Ranges) BP 1σ Error 

D-AMS 016391 CGF-29 7.71-7.70 Peat Bulk carbon 5655 50 6557-6310 

D-AMS 016392 CGF-111 6.89-6.90 Peat Bulk carbon 7521 55 8412-8200 

D-AMS 016393 CGF-127 6.73-6.74 Organic clay Bulk carbon 7345 36 8298-8028 

D-AMS 016394 CGF-135/141 6.65-6.59 Wood Bulk carbon 7583 41 8450-8334 
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An age-depth model for core CGF1 was developed using Bacon v2.3.4 (Blaauw & 

Christen, 2011). The red dotted line shows modelled median ages along core CGF1 

and the grey stippled lines indicate the 95% confidence intervals of the modelled age-

depth relationship. The transparent blue violin plots show the four calibrated AMS 14C 

dates from Cowgate Farm. The upper left graph shows the iteration history of the 

model. The middle and right graphs show prior (green lines) and posterior (grey 

histograms) density functions for accumulation rate and memory of the model (Figure 

6.5).  

 

The mean 95% confidence range of the age-depth model is 481 years, a minimum 

of 209 years at 137 cm and a maximum of 690 years at 69 cm. Based on the age-

depth model for core CGF1, 100% of the dates from core CGF1 lie within the age-

depth model's 95% range although sample CGF-111 appears to be older than 

expected. It is therefore possible that contamination and/or sediment reworking 

might have occurred at this depth resulting in the incorporation of older carbon into 

the sample.  

 

The main stratigraphic boundary of core CGF1 at 125 cm (6.75 m OD) was included 

in the age-depth model (shown in the horizontal dotted lines across the model in 

Figure 6.5). The sedimentation rates were calculated based on the dated samples 

and the main stratigraphic boundary (mean age obtained from the model’s prediction) 

and shown on the right side of Figure 6.5. The blue/grey silt-clay from 138 cm (6.62 

m OD) to 125 cm (6.75 m OD) showed a slightly higher accumulation rate when 

compared to the accumulation of the peat unit from 125 cm (6.75 m OD) to 29 cm 

(7.71 m OD).  
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Figure 6.5: Age-depth model for the CGF1 core profile based on Bacon v2.3.4 

modelling routines (Blaauw & Christen, 2011) and calculated sedimentation rates 

from the AMS 14C dates calibrated with IntCal13 (Reimer et al., 2013). Dotted line on 

the model indicates the main stratigraphic unit in the CGF1 core 

  

6.6 Foraminiferal Analysis  

 

The preservation of foraminiferal tests in the samples from core CGF1 varied. Some 

samples contained very few foraminiferal tests and it was not possible to obtain a 

minimum count of 40 individuals despite increasing the sample volume. Samples were 

taken at 1 or 2 cm intervals throughout the whole core.  

 

A total of five agglutinated saltmarsh foraminiferal species were identified in core 

CGF1 and no calcareous foraminiferal species were found (Figure 6.6). The 

agglutinated foraminifera species of Jadammina macrescens, Miliamminia fusca, 

Tiphotrocha comprimata, Haplophragmoides wilberti and Trochammina inflata were 
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only observed in the peat with Phragmites unit from 1.11 m (6.89 m OD) to 0.31 m 

(7.69 m OD). No foraminifera were observed in the pink/brown clay with small gravel 

unit (1.52 m to 1.41 m; 6.48 m OD to 6.59 m OD), the sandy blue/grey silt-clay unit 

(1.40 m to 1.28 m; 6.60 m OD to 6.72 m OD), organic sandy blue/grey silt-clay unit 

(1.27 m to 1.25 m; 6.73 m OD to 6.75 m OD), the deeper section of the peat with 

Phragmites unit (1.24 m to 1.12 m; 6.76 m OD to 6.88 m OD respectively) and from 

0.30 m (7.70 m OD) towards the top of the core in the surface peat unit. 

 

The foraminifera in core CGF1 were dominated mainly by J. macrescens and M. fusca, 

with varying abundances of H. wilberti and T. inflata and low frequencies of T. 

comprimata. Five distinct peaks of H. wilberti are observed at depths 0.46 m (7.54 m 

OD), 0.50 m (7.50 m OD), 0.80 m (7.20 m OD), 0.84 m (7.16 m OD) and 1.11 m 

(6.89 m OD). Three out of these five depths however have very low individual counts 

(below 40 individuals), and therefore the interpretation of this dominance of H. 

wilberti should be treated with caution.  

 

 

Figure 6.6: Foraminiferal diagram from Cowgate Farm core CGF1. Foraminiferal 

frequencies are expressed as a percentage of total foraminifera. All samples including 

samples with low individual counts (below 40 individuals; marked with red lines) were 

included in this diagram. Red blocks next to the stratigraphy diagram indicates the 

zone where foraminifera was absent in the core 
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6.7 Pollen Analysis and Zonation 

 

300 pollen and spore grains were counted for each sample from core CGF1. Samples 

were taken at intervals of 2 cm, 3 cm or 4 cm throughout the core, with closer 

sampling intervals at depths where greater stratigraphic changes were observed 

(Figure 6.7).  

 

 



 

166 
 

 

 

Figure 6.7: Pollen diagram from Cowgate Farm core CGF1. Pollen frequencies are expressed as a percentage of total land pollen    
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Four local pollen assemblage zones were identified (Figure 6.8). From the base of the 

core to 1.41 m (6.59 m OD) in the pink/brown clastic unit, no pollen was found. The 

pollen zonation for Cowgate Farm is summarised and tabulated in Table 6.3 below.  
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Figure 6.8: Pollen zonation for Cowgate Farm based on stratigraphically constrained cluster analysis 
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Table 6.3: Pollen zonation for Cowgate Farm based on stratigraphically constrained 

cluster analysis  

Pollen 

Zone 

Depth 

(cm) 

Altitude 

(m OD) 
Pollen Characteristics 

CGF-1 

 

126-141 6.74-6.59 A general low presence (maximum of approximately 

5%) of arboreal pollen, in particular Alnus and Betula, 

was observed throughout the zone, with the exception 

at the depth of 1.29 m (6.71 m OD) where an 

abundance of Betula increased to 13% then decreased 

again. Low frequencies of Pinus (1-6%) were observed 

throughout the zone. Minimal occurrence of Quercus 

(1.4%) at a depth of 1.41 m (6.59 m OD) and Ulmus 

(2.7%) at a depth of 1.27 m (6.73 m OD) were also 

observed in the zone. 

 

No Corylus pollen was observed in the sample at a 

depth of 1.41 m (6.59 m OD), and the presence of 

Corylus started approximately at a depth of 1.37 m 

(6.73 m OD) and continued through the zone.  

 

The zone is dominated mainly by Cyperaceae and 

Poaceae, with maximum abundance of Cyperaceae 

reaching 65% at a depth of 1.33 m (6.67 m OD) and 

Poaceae reaching 33% at a depth of 1.41 m (6.59 m 

OD). P. maritima was also present throughout the 

zone, with the abundance ranging from 1.2% to 

10.5%.  

 

The presence of spores were also observed in the 

zone, with Polypodiaceae, Polypodium and Sphagnum 

notable. The presence of Botryococcus algal spores 

was also noted in the zone.  
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CGF-2 

 

63-126 7.37-6.74 Reduced presence of Betula pollen. Presence of Alnus 

and Quercus however increased, with a maximum 

abundance of 23% at a depth of 1.09 m (6.91 m OD) 

and 14% at a depth of 1.12 m (6.88 m OD). Low 

frequencies of Pinus pollen and minimal frequencies of 

Fraxinus and Ulmus pollen were also observed in this 

zone.  

 

The presence of Corylus pollen continued in this zone, 

with increased frequencies, from 2 to 13%. Very low 

frequencies of Calluna pollen was also observed in this 

zone.  

 

The zone is dominated mainly by Poaceae, followed by 

Cyperaceae. Poaceae reached a maximum of 47% at 

a depth of 0.73 m (7.27 m OD) and Cyperaceae 

reached a maximum of 38% at a depth of 0.69 m (7.31 

m OD). Low frequencies of Chenopodiaceae, P. 

maritima, Plantago sp. and Ranunculus sp. were also 

noted.  

 

Low frequencies of spores were also recorded, notably 

Polypodiaceae, Pteridium and Sphagnum. The low 

presence of Botryococcus alga spores was also noted 

in the zone. 

CGF-3 

 

23-63 7.77-7.37 Alnus pollen abundance decreased. An increase in 

Ulmus pollen was observed with a maximum of 10% 

at a depth of 0.35 m (7.65 m OD). The presence of 

Quercus pollen was noted and low frequencies of Pinus 

and Fraxinus pollen were also recorded.  

 

The presence of Corylus pollen, with a range of 2-11% 

was recorded. No Calluna pollen was observed in this 

zone.  
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This zone was dominated mainly by Poaceae followed 

by Cyperaceae, with a maximum of 48% at a depth of 

0.37 m (7.63 m OD) for Poaceae, and 58% at a depth 

of 0.52 m (7.48 m OD) for Cyperaceae. Increased 

frequencies of Chenopodiaceae were also observed, 

with sporadic occurrence of Caryophyllaceae, 

Ranunculus sp. and Rumex.  

 

Low frequencies of spore species were recorded, 

notably Polypodiaceae and Pteridium. Polypodium 

spores were observed and low frequencies of 

Botryococcus algal spores were also noted. 

CGF-4 

 

0-23 8.00-7.7 A notable increase in arboreal pollen was observed, in 

particular Alnus and Betula pollen ranging from 7 to 

17% and 10 to 23% respectively. The presence of 

Quercus pollen decreased in this zone, with minimal 

frequencies of Fraxinus and Ulmus at the beginning of 

the zone and disappearing towards the top of the 

zone. No Pinus pollen was observed in this zone.  

 

The presence of Corylus pollen increased. Calluna 

pollen increased, reaching a maximum of 14% at a 

depth of 0.90 m (7.10 m OD). The frequency of 

Calluna pollen decreased from 0.90 m to the top of the 

zone. The sporadic occurrence of Ericaceae pollen was 

also noted in this zone. A decrease in the dominance 

of Poaceae and Cyperaceae was observed in this zone. 

A notable decrease of Cyperaceae pollen compared to 

Poaceae was also observed.  

 

Low frequencies of Polypodiaceae and Sphagnum 

were observed. No Polypodium or Botryococcus spores 

were recorded.  
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6.8 Holocene Relative Sea-Level and Environmental Changes at 

Cowgate Farm 

 

The interpretation of Holocene relative sea-level and environmental changes for 

Cowgate Farm are based on microfossil analyses, changes in lithostratigraphy and 

sediment composition, and the dated samples from core CGF1.  

 

6.9 Microfossil Interpretation: Foraminifera 

 

No foraminifera were observed in the pink/brown clay clastic unit, blue/grey silt-clay 

unit and the deepest 0.14 m section of the peat with Phragmites unit, which 

constitutes the deepest 0.41 m of the core (6.48 m OD to 6.89 m OD). The sequence 

in the deepest 0.27 m of the core corresponds to a zone where high sand content 

was observed (Figure 6.9). If the blue/grey silt-clay unit is of marine origin (as it is 

consistent with the blue/grey silt-clay unit observed at Allonby, Pelutho and Herd Hill 

where foraminifera were preserved), the absence of foraminifera in the core could be 

attributed to the increased sand content in the core (du Châtelet et al., 2009). Sandy 

environments are unfavourable for foraminifera, as their tests cannot be preserved 

in the sand. A high energy environment in the area during these periods could also 

result in the absence or removal of foraminifera in the bottom 0.27 m of the core in 

the blue/grey silt-clay unit.  
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Figure 6.9: Summary diagram showing foraminifera, particle size and loss on ignition analyses undertaken on samples from core CGF1



 

174 
 

A study on the correlation of foraminiferal assemblages with grain size was 

undertaken by du Châtelet et al. (2009). It demonstrated that when the sediment is 

coarse grained (size >195µm; classed as medium, coarse and very coarse sand in 

this study) both density and species richness of foraminifera are low (with less than 

three individuals per 50 cm3 and less than two species per station). Sediments that 

are relatively fine grained (size <95µm; classed as fine clay, silt and very fine sand 

in this study) are associated with foraminiferal assemblages with high density and 

species richness.  

 

Apart from the variation in grain sizes, the percentage of organic matter of the 

sediment has also been identified as a limiting factor influencing the distribution and 

abundance of foraminifera (du Châtelet et al., 2009). Foraminiferal density is low and 

species richness is high in sediments with lower organic matter content (content 

<2%). Conversely, when organic matter is higher in the sediments, foraminiferal 

density is high but with lower species richness. This was observed at this site where 

only five main agglutinated foraminifera were identified in the peat with Phragmites 

unit of the core (Figure 6.9).   

 

No microfossils were preserved in the deepest section of the peat with Phragmites 

unit (1.25 m to 1.11 m; 6.75 m OD to 6.89 m OD). Freshwater peat (evidenced by 

the absence of foraminifera) would have developed upon the blue/grey silt-clay unit, 

from a depth of 1.25 m to 1.11 m (6.75 m OD to 6.89 m OD). A marine transgression 

into the site was then recorded by the presence of the agglutinated saltmarsh 

foraminifera J. macrescens, M. fusca, T. comprimata, H. wilberti and T. inflata at 1.11 

m (6.89 m OD) to 0.29 m (7.71 m OD), dated at 8412-8200 cal BP. Relative sea level 

later decreased and the site transitioned into a freshwater environment, evidenced 

by the absence of foraminifera from the core. A negative marine tendency was 

recorded by sample CGF-29 (6495-6353 cal BP) at a depth of 0.29 m (7.71 m OD).  

 

J. macrescens and M. fusca are generally associated with a high saltmarsh 

environment, as evidenced by the contemporary marsh data in this study (Chapter 

4; Figure 4.8 and Figure 4.12). This may therefore suggest that the site remained as 

a saltmarsh environment throughout the period of marine transgression and 

regression recorded, as evidenced by the foraminiferal assemblages and the 

lithostratigraphy in core CGF1 where microfossils were present.  
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6.10 Microfossil Interpretation: Pollen 

 

Several possible pollen source areas were identified at Cowgate Farm. Cowgate Farm 

is located near a slope (Figure 6.2a), and runoff from the slopes could result in 

deposition of pollen grains at the site. Pollen grains that are buoyant (e.g Pinus pollen) 

could have been deposited in the area when the site was flooded, and this is common 

in wave affected sediments (Tipping, 1995). Pollen grains could also be wind 

pollinated and transported into the site from nearby areas. The interpretation for each 

pollen zone is described below.  

 

Zone CGF-1 (Figure 8 and Table 2) 

 

A small peak of Betula was recorded at 1.29 m (6.71 m OD), but generally low 

arboreal pollen percentages were recorded for this zone. It is likely that birch, pine 

and alder trees were present at the time in the pollen catchment area of Cowgate 

Farm. The low frequencies of arboreal pollen in zone CGF-1 correspond to the 

deposition of the minerogenic clastic unit in the core (Figure 6.10). This may suggest 

that the arboreal pollen was transported from nearby areas as development of 

woodland at Cowgate Farm site may have been restricted due to inadequate soil 

cover (Selby, 1997). Based on the isochrone map (Birks, 1989), birch was well 

established in major parts of central and northern England before 10000 cal BP, and 

further expansion of birch in other parts of England was recorded by 9750 cal BP. 

 

Alder was first observed at Cowgate Farm at a depth of 1.37 m (m OD) although at 

very low frequency. Zone CGF-1 (126-141 cm) was dated at 8334-8450 cal BP, 

obtained from sample CGF-135/141. Lloyd et al. (1999) recorded the development of 

an alder carr at the base of the sediment sequence in Boustead Hill, which was dated 

at 8304-7928 cal BP, and the first occurrence of Alnus pollen in Drumburgh Moss was 

dated at 8947-8403 cal BP. At Quick Moss, Northumberland, alder, birch, elm, pine 

and oak were first recorded at 8010 cal BP (Rowell & Turner, 1985). The first 

appearance of Betula, Quercus, Ulmus and Corylus pollen with high percentages of 

Pinus, were recorded at 8995-8483 cal BP in Skelwith Pool, Morecambe Bay (Zong & 

Tooley, 1996). A mixed woodland landscape indicated by Betula, Quercus, Ulmus, 

Alnus and Corylus was observed at Hallsenna Moor, Cumbria earlier and was dated 
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at 9406-8999 cal BP (Walker, 2004). Therefore the date of 8450-8334 cal BP obtained 

at Cowgate Farm broadly agrees with these pollen trends. 

 

This zone was characterised by high frequencies of Poaceae and Cyperaceae, 

suggesting an open grassland area dominated mainly by grass and sedges. It is 

probable that trees were growing in the pollen catchment area close to the site whilst 

the grass and sedges were confined mostly to the low lying areas of the site itself 

(Wells, 1997). The presence of P. maritima was also recorded in zone CGF-1, 

suggesting that sea plantain was present in the pollen catchment area at the time of 

sediment deposition. This might suggest a saltmarsh environment had developed in 

the surrounding or nearby areas (Tooley, 1974; Lloyd et al., 1999). 

 

The presence of Corylus pollen was recorded in zone CGF-1 (126-141 cm), suggesting 

that hazel was present in the pollen catchment area of the site. Hazel is known to 

grow in the understorey of lowland oak, ash or birch woodland (birch pollen was also 

recorded in this zone), and is also found in grasslands and hedgerows. The first rapid 

expansion of Corylus was recorded at 9500 cal BP in northwest England, western 

Scotland and in parts of coastal Wales (Birks, 1989). Zone CGF-1, which recorded the 

first presence of hazel was dated at 8450-8334 cal BP and therefore agrees with the 

date of expansion of Corylus recorded by Birks (1989). Polypodiaceae, Polypodium 

and Sphagnum spores were also present in zone CGF-1. The presence of ferns and 

peat moss are common in acidic wetlands including bogs and swamps, and these 

may have developed at the site or in nearby areas as relative sea level increased and 

marine influence expanded into the site. Polypodium is a common understorey 

element of oak and elm woodland (Tipping, 1995). 
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Figure 6.10: Summary diagram showing loss on ignition, particle size and pollen analyses undertaken on samples from core CGF1 
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Zone CGF-2 (Figure 9 and Table 2) 

 

Increased frequencies of arboreal pollen, in particular Alnus and Quercus were 

observed in zone CGF-2 with low frequencies of Betula, Fraxinus, Pinus and Ulmus.  

This suggests a mixed woodland had developed within the pollen catchment area 

(Tipping, 1995), although this was still limited as evidenced by the relatively low 

frequencies of arboreal pollen. The woodland may have been established as the 

marine influence decreased from the site and soil cover at the site increased, 

evidenced by the sediment in the core transitioning from the minerogenic clastic unit 

into the peat with Phragmites unit. This transition was dated at 8412-8200 cal BP. 

Prior to 8000 cal BP, alder might have been widely spread throughout the British 

Isles, although it would have been in small amounts (Birks, 1989).  

 

Alder expansion was recorded in Neasham Fen, Darlington soon after 7626-7968 cal 

BP, and at 8169-7694 cal BP in Red Moss, Lancashire. Alder was recorded in Valley 

Bog, Teesdale at 6750 cal BP, though not at high frequencies (Chambers, 1978). This 

might suggest the possibility of a delay in alder expansion in certain upland areas 

such as Teesdale (Chambers, 1978). A clear alder expansion was not observed at 

Cowgate Farm, although a general increase in Alnus pollen frequency was observed 

in zone CGF-2, beginning at 8412-8200 cal BP. Alder fruits are able to float and remain 

viable for a period of approximately a year, and therefore water currents are often 

suggested as the main dispersal mechanism for Alnus pollen (Birks, 1989). This could 

potentially explain the slight increase in alder recorded during the period of marine 

transgression in the area. Alder pollen is also known to be produced in abundance, 

and is well-dispersed compared to other trees (Bennett & Birks, 1990).  

 

The first presence of Quercus was recorded at Cowgate Farm at a depth of 1.25 m 

(6.65 m OD) while the first presence of Ulmus was observed at a depth of 1.27 m 

(6.73 m OD) although both occurred in low frequencies. A date of 8298-8028 cal BP 

was obtained for pollen zone CGF-2 from sample CGF-127. Oak was present in 

southwest England by 9500 cal BP and spread at a rate of approximately 350-500 m 

a-1 through England, Wales and southern Scotland until 8000 cal BP (Birks, 1989). 

The isochrone map (Birks, 1989) suggests that oak would have been established at 

the study area after 8500 cal BP, and this was observed in zone CGF-2. Elm was 

present in southern England by 9500 cal BP, and later spread through northern 
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England and major parts of Scotland at approximately 8800 cal BP (Birks, 1989). Elm 

would have been present in the study area after 9000 cal BP based on the isochrones 

maps (Birks, 1989), although local expansion of elm may have been hindered by the 

presence of acidic soils at the site.   

 

The presence of Corylus pollen was also recorded. Hazel is known to grow in the 

understorey of lowland oak, ash or birch woodland, and is found interspersed 

amongst a relatively open community of grass and sedges (Wells, 1997). The sporadic 

occurrence of Calluna pollen was also observed, and heather is known to grow in 

bogs and acidic pine and oak woodland.  

 

Zone CGF-2 is characterised mainly by Poaceae and Cyperaceae, indicating an open 

community dominated by grass and sedges. The presence of P. maritima pollen was 

also recorded in zone CGF-2, which might suggest a saltmarsh environment was 

present in the pollen catchment area near the site, due to sea plantain’s ability to 

grow in sandy soils in coastal areas. Undifferentiated Plantago sp. pollen was also 

recorded in this zone, indicating that plantains were present at the site. A low 

occurrence of Chenopodiaceae pollen was recorded, suggesting that goosefoot and 

other flowering plants, evidenced by the presence of Rosaceae pollen, were present. 

The occurrence of Aster-type and Artermisia pollen were recorded and can also 

indicate a saltmarsh environment (Lloyd et al., 1999). The low occurrence of spores 

of Polypodiaceae, Polypodium, Pteridium may represent ferns that formed the 

understorey components of the woodlands that developed at the site and the 

surrounding areas. The presence of peat moss was recorded, with Sphagnum pollen 

observed in the zone and Pteridium is known to grow on dry bog surfaces, or in the 

clearings of, or under, an open canopy woodland that would have developed in the 

area (Tipping, 1995). 

 

Zone CGF-3 (Figure 8 and Table 2) 

 

The overall increase in arboreal pollen might suggest an increased development of a 

mixed woodland in the pollen catchment area. Changes in the percentages of arboreal 

pollen are due mainly to variations in Corlyus, which may indicate secondary 

woodland near the site or the understorey component was being cleared (Dumayne-

Peaty and Barber, 1998). The environment at Cowgate Farm was still characterised 
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by an open community dominated by grasses and sedges, as recorded by the high 

percentages of Poaceae and Cyperaceae in the zone. Other herb pollen is also present 

in this zone, although in very low proportions, and would have formed elements of 

the grass and sedge environment. The presence of spores including Polypodiaceae, 

Polypodium, Pteridium although in very low frequencies, suggest that these species 

might have formed the understorey components of the mixed woodland that have 

developed in the area. Chambers (1978) suggests that the ratio between trees-herbs-

shrubs at a particular site should be treated with caution as the grasses and sedges 

may be over represented. This might explain the high frequencies of grasses and 

sedges with lower arboreal pollen frequencies observed at Cowgate Farm, as the 

arboreal pollen might be transported into the pollen catchment area rather than 

growing locally.   

 

The local presence of pine trees was widely recorded in south England at 9000 cal BP 

and by 8800 cal BP, pine had spread to the southern Lake District in Cumbria and 

much of central England (Birks, 1989). Pine trees were absent or are very rare in 

southwest England, the Cumberland lowland, the southern Scotland lowland as well 

as the lowland areas in northeast England throughout the Holocene (Birks, 1989). At 

Cowgate Farm the frequencies of Pinus pollen were low throughout the sediment 

sequence. Pollen data from northwest England (Walker, 1966) and from southern 

Scotland (Birks, 1977) indicated that the English pine populations did not reach 

Galloway, while the Scottish pine populations did not expand extensively southward 

to Galloway (Birks, 1989). 

 

At Priestside Flow, located at the northern Solway Firth however, high frequencies of 

Pinus pollen were observed in the sediment sequences dated at 8791-8992 cal BP 

and 8174-7932 cal BP (Lloyd et al., 1999). It was hypothesised that the pine found 

particularly in Galloway Hills in southwest Scotland originated from northeast Ireland, 

as pine established at Priestside Flow and Galloway Hills at the same time, around 

7500-7000 cal BP, through distant seed dispersal, although the possibility that it 

originated from northern England should not be completely dismissed (Birks, 1989).  
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Zone CGF-4 (Figure 8 and Table 2) 

 

Increased percentages of arboreal pollen throughout this zone, characterised mainly 

by Alnus and Betula, were observed. This suggests further development of the mixed 

woodland in the area (Tipping, 1995; Dumayne-Peaty and Barber, 1998), as relative 

sea level decreased and soil cover in the pollen catchment area developed. By 7500 

cal BP, alder was well established in parts of northwest England and southwest 

Scotland, and became abundant by 7000 cal BP throughout England, Wales and 

southern Scotland, in high altitude areas and parts of the northern Pennines (Birks, 

1989). The establishment of an alder carr woodland was also recorded at Walton 

Moss, Cumbria between 7540 and 7400 cal BP (Hughes et al., 2000). Zone CGF-4 (0-

23 cm) was dated at 6557-6310 cal BP (obtained from sample CGF-29; 29 cm, 7.71 

m OD), which recorded the highest occurrence of alder at a depth of 0.18 m (7.82 m 

OD). The overall increase in arboreal pollen in zone CGF-4 occurred at a later date 

compared to the other sites in northwest England and southwest Scotland, and may 

be due to the influence of marine conditions at Cowgate Farm prior to the transition 

to zone CGF-4.  

 

Although no clear elm decline was recorded at Cowgate Farm, Ulmus pollen was 

virtually absent or occurred in very low frequencies at the site soon after 6557-6310 

cal BP. The earliest record of a widespread decline in elm in the British Isles was 

recorded at 5130 cal BP in Ennerdale Water, 5100 cal BP in Blea Tarn and 5540-4860 

cal BP in Blelham Tarn in the Lake District, Cumbria (Pennington, 1964) and was 

attributed to anthropogenic effect, climatic downturn and pathogenic attack. The 

decrease in elm continued throughout the Bronze Age from 4000-2800 cal BP 

(Chiverell, 2006). Tipping (1995) recorded two episodes of elm decline in Kirkpatrick-

Fleming, southern Scotland. The first decline was abrupt and without evidence of 

human disturbance, dated at 4830 cal BP. The second elm decline was recorded 4580 

cal BP and was associated with agricultural practices.  

 

A notable increase in Corylus, Calluna and Ericaceae pollen was also observed in zone 

CGF-4. Hazel would have formed the understorey component of the lowland mixed 

woodland, as recorded by the arboreal pollen species present. Heather is known to 

grow on heaths, moors and grasslands with poor nutrients, and also in open woodland 

on acidic soils, ranging from dry exposed habitats to wet peat bogs. At Cowgate Farm 
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the increase in heather corresponds to the transition from the peat with Phragmites 

to the overlying peat unit. A shift of dominance from Eriophorum vaginatum to 

Calluna was observed at Walton Moss, indicating a change to a prolonged period of 

deep mire water tables and dry oligotrophic conditions in the area (Hughes et al., 

2000; Hughes & Barber, 2004).  

 

An increase in Poaceae and a decrease in Cyperaceae was observed. The change in 

ratios between sedges and grasses may indicate a change of environment from reed 

swamp to a more freshwater limnic sediment and turfa (Zong and Tooley, 1999), and 

possible evidence of changing groundwater table in the area (Zong and Tooley, 

1999). This hypothesis is also supported by the absence of foraminifera at the start 

of the zone CGF-4. Lloyd et al. (1999) recorded a similar pollen pattern at Priestside 

Flow, where the negative tendency of sea level was evidenced by the transition from 

the clastic unit to the surface turfa and a shift to the dominance of Poaceae in the 

area. A similar increase of Calluna and Cyperaceae pollen in Quick Moss, 

Northumberland at approximately 4900 cal BP is attributed to the probable expansion 

of blanket peat in the area as a result of marine regression (Rowell & Turner, 1985). 

At Cowgate Farm, the marine regression in the area was recorded at the start of Zone 

CGF-4 dated at 6557-6310 cal BP. Low frequencies of spores including Polypodiaceae 

were observed. Ferns would have formed the understorey components of the mixed 

woodland, although in lower abundance.  

 



 

183 
 

 

Figure 6.11: Location map of pollen sites in England mentioned in the text 

 

6.11 Sediment Deposition and Relative Sea-Level Interpretation  

 

The site at Cowgate Farm is located on low-lying land below 10 m OD, and would 

have been inundated during the period of marine transgression which is likely to 

represent the onset of the Main Postglacial Transgression or a combination of both 

the Main Postglacial Transgression and the RSL increase as a result of the drainage 

of Lake Agassiz-Ojibway in North America. The pink/brown clastic unit is barren of 

any foraminifera or pollen, and was most likely deposited through glaciofluvial 

processes (Walker, 1966).  

 

The deposition of the basal sandy blue/grey silt-clay unit and the more organic 

blue/grey silt unit may have resulted either from slope wash processes, fluvial 
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processes or through inundation during the period of marine transgression at the site. 

This unit was dated through samples CGF-138/141 and CGF-127, resulting in ages of 

8450-8334 cal BP and 8298-8028 cal BP respectively. If the absence of foraminifera 

is not due to dissolution or the increased sand content in the units, it is most probable 

that the deposition of both blue/grey silt-clay units are the result of sediment slope 

washing into the site, or through fluvial processes, although no major river system is 

located near the site at the present time. The presence of pollen taxa P. maritima 

(Section 6.7), which are known to grow in a saltmarsh environment, sea shores and 

meadows, was noted in the blue/grey silt-clay unit, although the occurrence is 

sporadic and of low frequency, and therefore the pollen might have been transported 

to the site from nearby pollen catchment areas. It is also possible that the sediment 

is lacustrine, which may explain the presence of Phragmites in the overlying unit. 

 

If the absence of foraminifera in the blue/grey silt-clay unit is attributed to poor 

preservation (due to the high sand content in the sediment), and is therefore deemed 

of marine origin, the deposition of the unit at Cowgate Farm may have been through 

marine inundation at the site during an earlier event of relative sea level rise. The 

increased sand content in the core from the base to a depth of approximately 1.25 

m (6.75 m OD), could have resulted from deposition through aeolian processes as 

the sand fraction consisted of very fine sand and fine sand. 

 

The clastic units were overlain by the peat with Phragmites unit, indicating that a 

freshwater peat environment had developed at the site, and this transition was 

recorded at a depth of 1.25 m (6.75 m OD). A saltmarsh environment would have 

then developed at the site starting at a depth of 1.11 m (m OD) evidenced by the 

first presence of foraminifera in the core (Section 6.6), with the previous freshwater 

peat environment unable to keep pace with the rising sea level. This marine 

transgression was dated at 8412-8200 cal BP. This date may indicate the first 

recording of the Main Postglacial Transgression at the site, although the date seems 

to be older than those recorded at other sites investigated in this study. It is therefore 

possible that the marine transgression at Cowgate Farm also recorded the increased 

relative sea level as a result of the final drainage of glacial Lake Agassiz-Ojibway 

located in north-central North America, due to the collapse of the Laurentide Ice 

Sheet. 
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The transition from the peat with Phragmites unit representing a saltmarsh 

environment (evidenced by the presence of microfossil), to the overlying surface peat 

unit of freshwater origin at a depth of 0.29 m (7.71 m OD), corresponds to the 

absence of foraminifera in the core. This regressive contact in the core indicating a 

negative sea-level tendency was dated at 6557-6310 cal BP. No further changes in 

the biostratigraphy and lithostratigraphy were observed in the core from 0.29 m (7.71 

m OD) to the top.  

 

6.12 Relative Sea-Level Reconstruction for Cowgate Farm 

 

Relative sea-level was reconstructed for Cowgate Farm through a combination of 

lithostratigraphic and biostratigraphic analyses, determination of indicative meanings 

and calculation of sea-level index points.  

 

6.13 Determination of Indicative Meaning 

 

As the predicted palaeo marsh surface elevation (PMSE) based on the transfer 

function utilised on core CGF1 was deemed unreliable, the assigned reference water 

level based on the changes in lithostratigraphy and biostratigraphy (foraminiferal 

assemblages) was therefore used for calculation of sea-level index points. 

 

Based upon the lithostratigraphy and biostratigraphy of two of the dated samples 

CGF-29 and CGF-111 at depths of 1.11 m and 0.29 m respectively (6.89 m OD and 

7.71 m OD), the indicative meanings associated with a saltmarsh environment were 

ascribed. The lithostratigraphy of both samples consisted of the peat with Phragmites 

unit, which is consistent with a saltmarsh environment. The ascribed indicative 

meaning of a saltmarsh environment is further supported by the occurrence of 

saltmarsh species e.g. P. maritima, Aster-type and Artemisia in core CGF1 where the 

presence of foraminifera was observed. The particle size recorded from samples 

collected in the high saltmarsh environment at all three contemporary saltmarshes 

investigated (Chapter 4; Section 4.4.1, 4.4.2 and 4.4.3) showed a high silt content (a 

minimum of 18% and a maximum of 73%) and sand content below 50%, consistent 

with the zone ascribed to a saltmarsh environment from core CGF1. High organic 

carbon content (a maximum of 76%) was observed in the samples where foraminifera 
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were observed in core CGF1, similar to the saltmarsh samples collected from higher 

elevation at Skinburness Marsh (Chapter 4; Section 4.4.1).   

 

Both samples CGF-29 and CGF-111 were also dominated by the agglutinated 

saltmarsh species, in particular J. macrescens and M. fusca, both of which are 

generally associated with the high saltmarsh environment occurring between mean 

high water spring tide (MHWST) and highest astronomical tide (HAT), as evidenced 

by the contemporary foraminiferal distribution from the Skinburness Marsh and 

Bowness Marsh (Chapter 4; Sections 4.3.1 and 4.3.3).  

 

The indicative meaning for samples CGF-29 and CGF-111 are therefore estimated to 

have occurred between the MHWST and HAT, based on the contemporary 

measurements at Skinburness Marsh (4.9 m OD and 6.3 m OD respectively), as both 

samples exhibited characteristics most similar to the contemporary samples collected 

from Skinburness Marsh. This resulted in a reference water level of 5.6 m OD with an 

indicative range of ±1.4 m for both samples. 

 

The samples CGF-127 and CGF-135/141 were not assigned to any indicative meaning 

due to the lack of microfossil evidence indicating a marine environment. Sea-level 

index points therefore were also not calculated for samples CGF-127 and CGF-

135/141. 

 

6.14 Post-Depositional Lowering of Sediments 

 

The issue of post-depositional lowering (PDL) of the sediments for the sea-level index 

points from Cowgate Farm was addressed using geotechnical model corrections 

(Chapter 3; Section 3.10.1). Minimal post-depositional lowering of sediments was 

observed in the core from Cowgate Farm, with samples CGF-29 and CGF-111 showing 

a compaction value of 0.010 m and 0.006 m respectively (Figure 6.12).  
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Figure 6.12: Geotechnical and physical properties showing the averaged downcore 

organic content, expressed as % loss on ignition and the model estimates of post-

depositional lowering for core CGF1. Abbreviations: LOI = Loss on ignition; PDL = 

Post-depositional lowering 

 

6.15 Sea-Level Index Points  

 

When calculating a sea-level index point, the age, reference water level and indicative 

range along with the associated errors for each sample are required (Chapter 3; 

Section 3.9). Two sea-level index points were produced for the Cowgate Farm site 

(Table 6.4).  
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Table 6.4: Sea-level index points produced from CGF1 

Lab Code Latitude Longitude 

Radiocarbon Age  
Cal BP 

(2σ Ranges) Altitude 

(m OD) 

Compaction 

Correction 

(m) 

RSL  

(m) 
Tendency 

BP 
1σ 

Error 
Min Mean Max 

D-AMS 

016391 
54.812 -3.405 5655 50 6310 6437 6557 7.71 +0.010 +2.12±1.46 Negative 

D-AMS 

016392 
54.812 -3.405 7521 55 8200 8324 8412 6.89 +0.006 +1.30±1.46 Positive 
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The sea-level index points for sample CGF-29 at 7.71 m OD and sample CGF-111 at 

6.89 m OD produced sea-level index points of 2.12±1.46 m and 1.30±1.46 m 

respectively. Figure 6.13 shows the sea-level index points from Cowgate Farm against 

the modelled relative sea-level curve for southern Solway Firth at the location of NY 

2481 5666 based on the BRADLEY2011, KUCHAR2012 and BRADLEY2017 models 

(Shennan et al., 2012; 2018; Kuchar et al., 2012). 

 

Figure 6.13: Graph showing two sea-level index points from Cowgate Farm. The black 

line is the modelled relative sea-level curves for southern Solway Firth based on 

Shennan et al. (2012; 2018) and Kuchar et al. (2012). All sea-level index points 

include associated individual vertical and age error bars  

  

6.16 Summary 

 

The site at Cowgate Farm has provided a record of Holocene sea-level changes as 

evidenced by the changes in lithostratigraphy and biostratigraphy of core CGF1. The 

two sea-level index points obtained from Cowgate Farm broadly agree with the 

general sea-level trend for the southern Solway Firth region, with the Holocene 

marine transgression recorded at 8324 cal BP, and the marine regression from the 

area dated at 6437 cal BP. The increased marine influence at the site, possibly as a 

result of the Main Postglacial Transgression, although it is possible that the 

transgression associated with the glacial Lake Agassiz-Ojibway flood is also 
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represented was recorded by the presence of agglutinated foraminifera and the 

presence of saltmarsh and coastal pollen taxa in the sediment. At the base of the 

sediment sequence dated at 8391 cal BP, the site was represented by an open 

grassland dominated mainly by grasses and sedges. As marine influence decreased 

and the site transitioned into a freshwater environment, a mixed woodland 

represented mainly by alder and birch would have developed. 
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CHAPTER 7 

 

PELUTHO 

 

 

7.0 Introduction 

 

The study site at Pelutho (NY 1202 4920) is located on the northwest Cumbrian 

coastline, approximately 2 km from the present coastline, 7 km from the southern 

bank of Moricambe Bay and 17 km from the southern shore of the Solway Firth 

(Figure 7.1). The site is bordered by a gently sloping hill towards the south, with low-

lying farmland surrounding the north, east and west of the site. A drainage channel 

is located west of the site, and a road lies to the east of the site (Figure 7.2a). The 

study site is approximately 200 m long by 60 m wide.  

 

 

Figure 7.1: Location of the study site at Pelutho marked in red  
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7.1 Borehole Location and Stratigraphy 

 

To establish a detailed stratigraphy of the site, three transects of boreholes were 

cored (Figure 7.2). The first transect was cored from south to north, while the other 

two transects were cored from west to east. The surface elevation of the boreholes 

in Pelutho ranged between 8.4 m OD and 9.5 m OD. Borehole P8 reached the 

maximum depth at the site, terminating on bedrock at a depth of 3.51 m (5.07 m 

OD). All boreholes terminated on bedrock, except for borehole P3 which terminated 

in a stiff pink/brown clay unit. The general stratigraphy of the study area is a basal 

clastic blue/grey clay unit that has developed on top of the underlying bedrock, and 

is overlain by a peat unit.   

 

Borehole P1 reached a depth of 1.98 m (6.42 m OD) and terminated on bedrock. A 

unit of organic blue/grey silt-clay overlaid the bedrock, and was covered by a silty 

peat unit at a depth of 1.57 m (6.83 m OD) and the surface peat unit at a depth of 

0.17 m (8.23 m OD).  

 

Borehole P2 terminated on bedrock at a depth of 3.33 m (5.07 m OD). A silty peat 

unit overlaid the bedrock, and was covered by a unit of blue/grey silt-clay at a depth 

of 2.89 m (5.51 m OD). A second silty peat unit overlaid the blue/grey silt-clay unit 

at a depth of 2.85 m (5.55 m OD) and this was overlain by an organic blue/grey silt-

clay unit at a depth of 2.13 m (6.27 m OD) and sandy blue/grey silt-clay unit at a 

depth of 1.65 m (6.75 m OD). This then transitioned into a silty peat unit at a depth 

of 1.52 m (6.88 m OD) and the surface peat unit at 0.35 m (8.05 m OD). 

 

Borehole P3 reached an impenetrable depth of 2.87 m (5.53 m OD) in a stiff 

pink/brown clay unit. A sandy blue/grey silt-clay with gravel unit overlaid the 

pink/brown clay unit at a depth of 2.75 m (5.65 m OD), transitioning into an organic 

blue/grey silt-clay unit at a depth of 2.56 m (5.84 m OD). The organic blue/grey silt-

clay unit was overlain by a silty peat unit at a depth of 2.43 m (5.97 m OD) and 

another unit of organic blue/grey silt-clay unit at 2.07 m (6.33 m OD). This then 

transitioned into a silty peat unit at a depth of 1.44 m (6.69 m OD) and the surface 

peat unit at 0.40 m (8.00 m OD). 
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Borehole P4 terminated on bedrock at a depth of 1.16 m (7.44 m OD). A unit of sandy 

blue/grey silt-clay with black mottling overlaid the bedrock, which transitioned into a 

more organic blue/grey silt-clay unit at a depth of the 0.63 m (7.97 m OD). This was 

then overlain by the surface peat unit at a depth of 0.42 m (8.18 m OD). 

 

Borehole P5 reached a depth of 1.31 m (7.29 m OD) and terminated on bedrock. The 

bedrock was overlain by a sandy blue/grey with black mottling and transitioned into 

the surface peat unit at a depth of 0.29 m (8.31 m OD). 

 

Borehole P6 terminated on bedrock at a depth of 1.86 m (6.74 m OD). A sandy 

blue/grey silt-clay unit overlaid the bedrock, and transitioned into a more organic 

blue/grey silt-clay unit at a depth of 1.41 m (7.19 m OD) and the surface peat unit 

at a depth of 0.26 m (8.34 m OD). 

 

Borehole P7 reached a depth of 2.60 m (5.90 m OD) and terminated on bedrock. The 

bedrock was overlain by a sandy blue/grey silt unit which transitioned into a more 

organic sandy blue/grey silt-unit at a depth of 1.62 m (6.88 m OD). This then 

transitioned into the surface peat unit at a depth of 0.25 m (8.25 m OD).  

 

Borehole P8 terminated on bedrock at a depth of 3.51 m (4.99 m OD). A unit of sandy 

blue/grey silt-clay overlaid the bedrock, and transitioned into an organic sandy 

blue/grey silt-clay unit at a depth of 1.34 m (7.16 m OD) and the surface peat unit 

at a depth of 0.24 m (8.26 m OD).  

 

Borehole P9 reached a maximum depth of 1.78 m (6.82 m OD) and terminated on 

the bedrock. A sandy blue/grey silt-clay unit overlaid the bedrock, which transitioned 

into the more organic sandy blue/grey silt-clay unit at 1.52 m (7.08 m OD) and the 

surface peat unit at 0.35 m (8.25 m OD). 

 

Borehole P10 terminated on bedrock at the maximum depth of 2.32 m (6.18 m OD). 

The bedrock was overlain by a sandy blue/grey silt-clay unit which transitioned into 

a more organic and sandy blue/grey silt-clay unit at 2.00 m (6.50 m OD). This was 

then overlain by the surface peat unit at 0.23 m (8.27 m OD).  
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Borehole P11 reached an impenetrable depth at 0.40 m (9.10 m OD) due to the 

presence of a small ridge at the site, hence the higher elevation of borehole P11. 

 

Borehole P12 reached a maximum depth of 3.15 m (5.25 m OD) and terminated on 

bedrock. A unit of sandy blue/grey silt-clay with gravel overlaid the bedrock, which 

transitioned into a more organic blue/grey silt-clay unit at 2.98 m (5.42 m OD). The 

clastic unit was overlain by a peat unit at 2.75 m (5.65 m OD) which transitioned into 

a silty peat unit at 2.50 m (5.90 m OD). This was overlain by another organic 

blue/grey silt-clay unit at 2.26 m (6.14 m OD) which transitioned into the silty peat 

unit at 1.55 m (6.85 m OD) and the surface peat unit at 0.45 m (7.95 m OD).  

 

A sample core was taken from borehole P12 as it contained all main stratigraphic 

units recorded. Core P12 was used for all laboratory analyses and to establish a 

chronology for the site. The results of laboratory analyses undertaken on core P12 

are discussed in detail in the following sections. 

 

 

(a) 
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(b) 
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(c) 

Figure 7.2: (a) Location of boreholes and sample core (P12) at Pelutho with contour lines marking the altitudes (m OD) of surrounding areas (b) 

The lithostratigraphy of the boreholes and sample core from Pelutho (c) The simplified lithostratigraphy of the boreholes and sample core from 

Pelutho. Sample core is marked by a black square 
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7.2 Sediment Composition 

 

Core P12 terminated on bedrock at 3.15 m (5.25 m OD). The surface elevation 

recorded for core P12 was 8.40 m OD. The sand content in the sediment was highest 

at the base of the core, in the blue/grey silt-clay unit and within the surface peat unit. 

The sand fraction found in core P12 was composed of very fine sand and fine sand. 

The sediment description of core P12 is summarised in Table 7.1. 

 

Table 7.1: Sediment description of core P12 including depth, altitude and the Tröels-

Smith (1955) sediment classification  

Depth 

(m) 

Altitude 

(m OD) 
Sediment Description 

Tröels-Smith Sediment 

Classification (1955) 

0 – 0.45 8.40 – 7.95 Very dark brown peat 

with roots and organic 

remains 

Th4, 

Nig. = 4, Strf. = 0, Sicc. 

= 1, Elas. = 1 

0.45 – 1.55 7.95 – 6.85 Very dark brown peat 

with roots and organic 

remains, incorporation 

of brown silt  

Th4; Ag+, 

Nig. = 4, Strf. = 0, Sicc. 

= 1, Elas. = 1, Lim. = 0 

 

1.55 – 2.26  6.85 – 6.14 Blue/grey silt-clay with 

roots, organic remains  

Ag2; As2; Th+; Ga+, 

Nig. = 2, Strf. = 0, Sicc. 

= 2, Elas. = 0, Lim. = 2 

2.26 – 2.70 6.14 – 5.70 Very dark brown peat 

with roots and organic 

remains, incorporation 

of brown silt 

Th4; Ag+, 

Nig. = 4, Strf. = 0, Sicc. 

= 1, Elas. = 1, Lim. = 2 

2.70 – 2.98 5.70 – 5.42 Blue/grey silt-clay with 

roots and organic 

remains 

Ag2; As2; Th+,  

Nig. = 2, Strf. = 0, Sicc. 

= 2, Elas. = 0, Lim. = 2 

2.98 – 3.15 5.42 – 5.25 Blue/grey silt-clay with 

roots and organic 

remains, sand and 

gravel 

  Ag2; As2; Dl+; Ga+; 

Gg+ (min), Nig. = 2, Strf. 

= 0, Sicc. = 3, Elas. = 0, 

Lim. = 1 
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To aid in the description of the sediment in the following sections, the different 

sediment units are numbered as follows: basal sandy blue/grey silt-clay and gravel 

unit (1), lower organic blue/grey silt-clay unit (2), lower silty peat unit (3), upper 

organic blue/grey silt-clay unit (4) and surface silty peat unit (5).  

 

7.3 Loss on Ignition 

 

Loss on ignition analyses were undertaken on samples from core P12 to give an 

estimate of the organic carbon content and carbonate content of the sediment. 

Samples were taken every 8 cm throughout the core, from each stratigraphic unit. 

The organic carbon content and carbonate content of core P12 are shown in Figure 

7.3. Fluctuations can be noted in the percentage of organic carbon content of the 

samples from the core, which showed an increase correspondence to the deposition 

of the organic peat unit in the core. A minimum and a maximum of 2% and 94% 

respectively of organic carbon content were recorded in core P12. Limited changes in 

the percentage of carbonate content throughout core P12, ranging between 1% and 

5% with no correlation between the percentages of carbonate content and the 

change of lithostratigraphy were observed. 

 

 

Figure 7.3: Plot of loss on ignition analyses for Pelutho showing organic carbon and 

carbonate contents of the sediment throughout core P12 
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7.4 Particle Size Analysis 

 

Samples for particle size analysis were taken every 8 cm throughout the core (Figure 

7.4). The particle size analysis showed very limited variation in the clay content 

throughout the core, ranging between 0.3% at a depth of 0.88 m (7.52 m OD) and 

4% at a depth of 1.92 m (6.48 m OD). The percentages of sand showed sporadic 

increase throughout the core, with notable increase in the basal sandy blue/grey silt-

clay with gravel unit (1), prior to the transition to the lower silty peat unit (3), the 

deeper part of the upper organic blue/grey silt-clay unit (4) and approximately the 

midpoint of the surface silty peat unit (5). The percentages of silt content recorded a 

minimum of 45% at a depth of 0.88 m (7.52 m OD) in the surface silty peat unit (5), 

and a maximum of 95% at a depth of 1.68 m (6.72 m OD) in the silty peat unit (5).  

 

 

Figure 7.4: Diagram showing particle size analysis for core P12 from Pelutho 
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7.5 Chronology 

 

The chronology for the core P12 was established through accelerator mass 

spectrometry (AMS) radiocarbon dating of three bulk sediment samples undertaken 

at DirectAMS Radiocarbon Dating Service in Washington, USA. The radiocarbon ages 

obtained were calibrated using OxCal v.4.3 (Ramsey, 2009) and the IntCal13 

atmospheric curve (Reimer et al., 2013). All dates were calibrated to cal BP (Table 

7.2). 
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Table 7.2: Three radiocarbon dates obtained from Pelutho core P12  

Lab Code 
Code-Depth 

(cm) 

Altitude  

(m OD) 

Material 

Dated 
Fraction 

Radiocarbon Age Cal BP 

(2σ Ranges) BP 1σ Error 

D-AMS 022226 PEL-151 6.89-6.90 Peat Bulk carbon 6231 35 7254-7016 

D-AMS 025778 PEL-240 6.00-6.01 Peat Bulk carbon 6456 45 7435-7275 

D-AMS 022227 PEL-289 5.51-5.52 Organic clay Bulk carbon 7285 36 8174-8018 
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An age-depth model for core P12 was developed using Bacon v2.3.4 (Blaauw & 

Christen, 2011). The red dotted line shows modelled median ages along core P12 and 

the grey stippled lines indicate the 95% confidence intervals of the modelled age-

depth relationship. The transparent blue violin plots show the four calibrated AMS 14C 

dates from Pelutho. The upper left graph shows the iteration history of the model. 

The middle and right graphs show prior (green lines) and posterior (grey histograms) 

density functions for the accumulation rate and memory of the model (Figure 7.5). 

The mean 95% confidence of the age-depth model covers 392 years, a minimum of 

204 years at 289 cm and a maximum of 450 years at 154 cm. Based on the age-

depth model for core P12, 100% of the dates from Pelutho lie within the age-depth 

model's 95% range.  

 

The main stratigraphic boundaries of core P12 (1.55 m, 2.26 m and 2.70 m; 6.85 m 

OD, 6.14 m OD and 5.70 m OD) were included in the age-depth model (shown in the 

horizontal dotted lines across the model in Figure 7.5). The sedimentation rates were 

calculated based on the dated samples and the main stratigraphic boundaries (mean 

age obtained from the model’s prediction) and shown on the right side of Figure 7.5. 

Sedimentation rate increased slightly corresponding to the deposition of the upper 

organic blue/grey silt-clay unit (4) in the core.  
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Figure 7.5: Age-depth model for the P12 core profile based on Bacon v2.3.4 modelling 

routines (Blaauw & Christen, 2011) and calculated sedimentation rates from the AMS 

14C dates calibrated with IntCal13 (Reimer et al., 2013). Dotted lines on the model 

indicates the main stratigraphic units in the P12 core 

  

7.6 Foraminiferal Analysis 

  

There was variation in the preservation of foraminiferal tests in the samples from core 

P12, with some samples containing very few foraminiferal tests. It was therefore not 

possible to obtain a minimum count of 40 individuals in some of the samples despite 

increasing the sample volume. Samples were taken at 1 or 2 cm intervals throughout 

the whole core.  

 

Five main agglutinated saltmarsh species comprised of Jadammina macrescens, 

Miliamminia fusca, Tiphotrocha comprimata, Haplophragmoides wilberti and 

Trochammina inflata were observed in the samples analysed (Figure 7.6). No 
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calcareous species were found, although low frequencies of test linings were 

observed in the core.  No foraminifera were observed in the basal sandy blue/grey 

silt-clay with gravel unit (1) at the depths between 3.15 m (5.25 m OD) to 2.98 m 

(5.42 m OD). No foraminifera was observed in the deepest 0.30 m of the lower silty 

peat unit (3), and in the surface silty peat unit (5) from a depth of 1.51 m (6.89 m 

OD) towards the top of the core. 

 

The presence of a single agglutinated saltmarsh species J. macrescens in low 

frequencies was observed at the depths of 2.82 m (5.58 m OD), 2.84 m (5.56 m OD), 

2.86 m (5.54 m OD) and 2.88 m (5.52 m OD) in the lower organic blue/grey silt-clay 

unit (2). The foraminiferal assemblage was dominated mainly by J. macrescens and 

M. fusca, with low frequencies of T. inflata. A single peak of T. comprimata observed 

at a depth of 2.24 m (6.16 m OD) and sporadic occurrence of H. wilberti was also 

observed in the core. Peaks in the occurrence of H. wilberti were observed in the core 

at 2.40 m (6.00 m OD) and at 1.52 m (6.88 m OD).  

 

 

Figure 7.6: Foraminiferal diagram from Pelutho core P12. Foraminiferal frequencies 

are expressed as a percentage of total foraminifera. All samples including samples 

with low individual counts (below 40 individuals; marked with red lines) were included 

in this diagram. Red blocks next to the stratigraphy diagram indicates the zone where 

foraminifera was absent in the core 
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7.7 Holocene Relative Sea-Level and Environmental Changes at Pelutho 

 

The interpretation of Holocene relative sea-level and environmental changes for 

Pelutho are based on microfossil analyses, changes in lithostratigraphy and the 

sediment composition of core P12.  

 

7.8 Microfossil Interpretation: Foraminifera 

 

No foraminifera were observed in the basal sandy blue/grey silt-clay with gravel unit 

(1). It is most probable that the clastic unit was deposited at the site through slope 

wash or fluvial processes (discussed in Section 7.9).  

 

The first presence of foraminifera in the core recording a transgressive contact at the 

site was noted in the lower organic blue/grey silt-clay unit (2) (Figure 7.7) at a depth 

of 2.88 m (5.52 m OD) and was dominated by a single agglutinated saltmarsh species 

J. macrescens, which is mainly associated with a high saltmarsh environment, 

although the occurrence of J. macrescens in a lower saltmarsh and intertidal mudflat 

environment was also observed in the contemporary foraminifera samples from 

Cardurnock Marsh (Chapter 4; Section 4.3.2). The organic blue/grey silt-clay unit (2) 

is consistent with an intertidal mudflat environment, and therefore would have most 

likely been present at the site in a low saltmarsh environment or intertidal mudflat 

environment. However, no calcareous species or test linings were noted in the zone.  
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Figure 7.7: Summary diagram showing foraminifera, loss on ignition and particle size analyses undertaken on samples from core P12 
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A negative sea-level tendency was recorded at 2.70 m (5.70 m OD), evidenced by 

the absence of foraminifera in the deepest 0.30 m of the lower silty peat unit (3) 

overlying the organic blue/grey silt-clay unit (2). As relative sea level decreased from 

the site, a freshwater environment developed. The second presence of foraminifera 

dominated by J. macrescens was observed at a depth of 2.40 m (6.00 m OD), 

indicating that the previous freshwater environment had developed into a high 

saltmarsh environment, recording another transgressive contact at Pelutho. This is 

consistent with the dominance of J. macrescens in the sediment and distinct peaks 

of H. wilberti, which are associated with an environment occurring at the level of 

extreme high water (Horton & Edwards, 2006; Gehrels & Long, 2008).  

 

The transition from the lower silty peat unit (3) to the overlying organic blue/grey 

silt-clay unit (4) recorded another positive sea-level tendency in the core at 2.26 m 

(6.14 m OD). This zone is dominated by J. macrescens and M. fusca, with low 

frequencies of T. inflata. The previous saltmarsh environment would have been 

replaced by an intertidal mudflat environment, as relative sea level continued to 

increase. No calcareous species and test linings were noted in this zone.  

 

The occurrence of a single species of J. macrescens was observed from 1.58 m (6.82 

m OD) to 1.52 m (6.88 m OD) in the surface silty peat unit (5), although the individual 

counts were also low. The microfossil evidence along with the transition from the 

organic blue/grey silt-clay unit (4) to the overlying silty peat unit (5) recorded a 

negative sea-level tendency in the core. As relative sea-level at the site decreased, 

the site developed into a high saltmarsh environment. The absence of foraminifera 

at 1.51 m (6.89 m OD) towards the top of the core suggests that the saltmarsh 

environment transitioned into a freshwater environment, recording the regressive 

contact in the core at Pelutho. 

 

7.9 Sediment Deposition and Relative Sea-Level Interpretation  

 

The origin of the basal clastic unit could be from marine inundation, slope wash or 

fluvial processes. As the basal sandy blue/grey silt-clay with gravel unit (1) is barren 

of any microfossils indicating marine influence, the sediment is most likely deposited 

at the site through glaciofluvial processes (Walker, 1966) similar to the unit recorded 
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at Allonby (Chapter 5; Section 5.9), or through slope wash into the area as the site 

is bordered by higher grounds towards the south (Figure 7.2a). 

 

The basal sandy blue/grey silt-clay with gravel unit (1) is overlain by a more organic 

blue/grey silt-clay unit (2), where the first presence of foraminifera were observed in 

the core. The presence of the agglutinated foraminifera in this unit indicates that the 

deposition of the organic blue/grey silt-clay (2) recorded a transgressive contact at 

the site, and is consistent with an intertidal mudflat environment. The transgressive 

contact was dated at 8174-8018 cal BP, and is possibly related to the Main Postglacial 

Transgression or a combination of the Main Postglacial Transgression and the final 

drainage of glacial Lake Agassiz-Ojibway located in north-central North America 

(Törnqvist & Hijma, 2012).  

 

The organic blue/grey silt-clay unit (2) was overlain by a silty peat unit (3), recording 

a negative tendency in sea level at the site. No foraminifera were observed in the 

deepest 0.30 m of the silty peat unit (3), indicating a freshwater environment had 

developed at the site. Foraminifera were again observed in the silty peat unit (3) at 

a depth of 2.40 m (6.00 m OD), recording another transgressive contact. The 

increased relative sea level was dated at 7435-7275 cal BP, with the previous 

freshwater environment developing into a saltmarsh environment.  

 

The lower silty peat unit (3) was overlain by another unit of organic blue/grey silt-

clay (4), recording a positive sea-level tendency in the core. Relative sea level at the 

site would have continued to increase resulting in another expansion of intertidal 

mudflat environment into the site.  

 

The upper organic blue/grey silt-clay unit (4) was overlain by the surface silty peat 

unit (5), which recorded a decrease in relative sea level at the site and possible 

development of a saltmarsh. The change in lithostratigraphy and the change in 

foraminiferal assemblages are evidence of this. At a depth of 1.51 m (6.89 m OD), 

the absence of foraminifera was observed, suggesting that relative sea-level 

decreased leading to a freshwater environment. The regressive contact was dated at 

7254-7016 cal BP. No further changes in biostratigraphy (foraminifera) were observed 

from 1.51 (6.89 m OD) towards the top of the core. 
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7.10 Relative Sea-Level Reconstruction for Pelutho 

 

Relative sea-level reconstruction for the site at Pelutho was developed was developed 

through a combination of lithostratigraphic and biostratigraphic analyses, 

determination of indicative meanings and calculation of sea-level index points. 

 

7.11 Determination of Indicative Meaning 

 

As the predicted palaeo marsh surface elevation (PMSE) based on the transfer 

function utilised on core P12 were deemed unreliable, the assigned reference water 

level based on the changes in lithostratigraphy and biostratigraphy (foraminiferal 

assemblages) were therefore used for the calculation of sea-level index points. 

 

The lithostratigraphy of sample PEL-289 consisting of organic blue/grey silt-clay unit 

(2) is consistent with a lower saltmarsh or an intertidal mudflat environment, however 

only a low presence of the agglutinated species J. macrescens with no calcareous 

species or test linings was observed. An indicative meaning relating to a lower 

saltmarsh environment was therefore assigned to sample PEL-289, as dominance of 

agglutinated species J. macrescens in the intertidal mudflat environment between 

mean high water spring tide (MHWST) and mean high water neap tide (MHWNT) was 

observed at Cardurnock Marsh (Chapter 4, Section 4.3.2).  

 

For both samples PEL-240 and PEL-151, an indicative meaning associated with a high 

saltmarsh environment was assigned, consistent with the lithostratigraphy consisting 

of the silty peat unit (3 and 5) and the dominance of J. macrescens and peaks of H. 

wilberti which suggests an environment occurring at the level of extreme high water. 

The dominance of J. macrescens and peaks of H. wilberti are consistent with the high 

saltmarsh environment recorded at Skinburness Marsh and Bowness Marsh, where 

the dominance of mainly J. macrescens was observed between MHWST and highest 

astronomical tide (HAT). The foraminiferal assemblages of samples PEL-240 and PEL-

151 are more consistent with the contemporary samples from Bowness Marsh 

(Chapter 4, Section 4.3.3) as the occurrence of H. wilberti was also noted between 

MHWST and HAT at the contemporary saltmarsh site. 
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As the indicative meaning for samples PEL-289, PEL-240 and PEL-151 have been 

ascribed based on samples from two different contemporary marshes (Cardunock 

Marsh and Bowness Marsh), the complete Solway training set with elevation values 

converted to standardised water level index (SWLI) (Figure 4.22) was used to 

determine the indicative range of the samples, as this eliminates the tidal variations 

between the two contemporary sites. The SWLI values for the respective 

contemporary sample most representative of the samples PEL-289, PEL-240 and PEL-

151 were then converted back to elevation (m OD), to allow the calculation of the 

reference water level and indicative range.  

 

The contemporary sample most representative of sample PEL-289 lies between the 

SWLI of 285 and 295 in the Solway training set, which falls below MHWST (Figure 

4.22). This covers an altitude of 4.69 m OD (contemporary sample CM05) and 5.23 

m OD (contemporary sample CM01). Based on these values, the reference water level 

for sample PEL-289 is the midpoint between 4.69 m OD and 5.23 m OD, resulting in 

an indicative range of ±0.5 m. 

 

The contemporary samples most representative of samples PEL-240 and PEL-151 lies 

above MHWST with the SWLI ranging between 300 (contemporary sample BM20) 

and 310 (contemporary sample BM15) based on the Solway training set. This covers 

an altitude of 5.34 m OD and 5.83 m OD, with the reference water level for both 

samples PEL-240 and PEL-151 to be the midpoint of these altitudes, and an indicative 

range of ±0.5 m. 

 

7.12 Post-Depositional Lowering of Sediments 

 

All of the sea-level index points produced from Pelutho are of intercalated samples, 

and would have been subjected to post-depositional lowering (PDL). The PDL of 

sediments in core P12 were estimated based on the geotechnical model developed 

by Brain et al. (2011, 2012). Minimal PDL of sediments is observed in core P12. 

Samples PEL-151, PEL-240 and PEL-289 experienced a compaction of 0.010 m, 0.050 

m and 0.020 m respectively. Figure 7.8 shows the PDL of sediments at a 0.02 m 

interval throughout core P12.  
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Figure 7.8: Geotechnical and physical properties showing the averaged downcore 

organic content, expressed as % loss on ignition and the model estimates of post-

depositional lowering for core P12. Abbreviations: LOI = Loss on ignition; PDL = Post-

depositional lowering 

 

7.13 Sea-Level Index Points  

 

The sample’s age, reference water level and indicative range along with the 

associated errors for each sample are required for the calculation of sea-level index 

points (Chapter 3; Section 3.9). Three sea-level index points were produced for 

Pelutho (Table 7.3). 
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Table 7.3: Sea-level index points produced from P12 

Lab Code Latitude Longitude 

Radiocarbon Age  
Cal BP 

(2σ Ranges) Altitude 

(m OD) 

Compaction 

Correction 

(m) 

RSL  

(m) 
Tendency 

BP 
1σ 

Error 
Min Mean Max 

D-AMS 

022226 
54.829 -3.371 6231 35 7016 7146 7254 6.89 +0.010 +1.35±0.56 Negative 

D-AMS 

025778 
54.829 -3.371 6456 45 7275 7367 7435 6.00 +0.050 +0.50±0.57 Positive 

D-AMS 

022227 
54.829 -3.371 7285 36 8018 8097 8174 5.51 +0.020 +0.58±0.57 Positive 
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Samples PEL-151, PEL-240 and PEL-289 produced sea-level index points of 1.35±0.56 

m, 0.50±0.57 m and 0.58±0.57 m respectively. Errors and corrections associated 

with each sea-level index point were calculated based on the methods described in 

Chapter 3 (Section 3.9). Figure 7.9 shows the sea-level index points from Pelutho 

plotted against the modelled relative sea-level curve for southern Solway Firth at the 

location of NY 2481 5666 based on the BRADLEY2011, KUCHAR2012 and 

BRADLEY2017 models (Shennan et al., 2012; 2018; Kuchar et al., 2012). 

 

Figure 7.9: Graph showing three sea-level index points from Pelutho. The black line 

is the modelled relative sea-level curves for southern Solway Firth based on Shennan 

et al. (2012; 2018) and Kuchar et al. (2012). All sea-level index points include 

associated individual vertical and age error bars  

 

7.14 Summary 

 

The site at Pelutho has provided a record of Holocene sea-level changes. The three 

sea-level index points from Pelutho are consistent with the recorded dates of marine 

transgression and marine regression from other sites located on the southern shore 

of the Solway Firth. The transgressive contacts at Pelutho are possibly related to both 

the final drainage of glacial Lake Agassiz-Ojibway and the Main Postglacial 

Transgression in the Solway Firth, with the first and second dated at 8097 cal BP and 
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7367 cal BP respectively. The regressive contact indicating negative sea-level 

tendency at Pelutho was dated at 7146 cal BP.  
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CHAPTER 8 

 

HERD HILL 

 

 

8.0 Introduction 

 

The study site at Herd Hill (NY 1794 6010) is located on the northwest Cumbrian 

coastline, approximately 200 metres from the present coastline on the southern shore 

of the Solway Firth, and approximately 3 km away from the northern bank of 

Moricambe Bay (Figure 8.1). The site is bordered by a gently sloping hill to the north 

and west of the site, and farmland to the east and south of the site (Figure 8.2a). 

Bowness Common, a raised peat bog, is situated southeast of Herd Hill and has been 

studied previously (Walker, 1966; Huddart et al., 1977). The study area is 

approximately 100 m by 80 m.  

 

 

Figure 8.1: Location of the study site at Herd Hill marked in red 
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8.1 Borehole Location and Stratigraphy 

 

Two transects of boreholes were cored across the site to establish a detailed 

stratigraphy (Figure 8.2). The first transect was cored from north to south, and the 

second transect was cored from west to east. The surface altitude of the boreholes 

ranged from 9.4 m OD to 9.6 m OD. Borehole HH1 reached the maximum depth of 

2.58 m (6.92 m OD) at the site, terminating in a silty grey sand unit while boreholes 

HH2, HH3, HH4 and HH5 terminated on bedrock. The general lithostratigraphy at 

Herd Hill is a red sand and gravel unit over the bedrock, overlain by a silty brown 

sand and gravel unit which transitioned into a blue/grey silt-clay unit and the surface 

peat unit.  

 

Borehole HH1 reached an impenetrable depth at 2.58 m (6.82 m OD) in the silty grey 

sand unit. The silty grey sand was overlain by a more organic grey sand at a depth 

of 0.92 m (8.48 m OD), and this was overlain by a unit of peat with stiff sandy brown 

silt-clay at 0.66 m (8.74 m OD). This then transitioned into the surface peat unit at a 

depth of 0.25 m (9.15 m OD).  

 

Borehole HH2 terminated on bedrock at a depth of 1.21 m (8.19 m OD). A unit of red 

sand and gravel overlaid the bedrock and transitioned into the organic blue/grey silt-

clay unit at 1.06 m (8.34 m OD). The blue/grey silt-clay unit was overlain by an 

organic brown silt-clay unit at a depth 0.58 m (8.82 m OD) and the surface peat unit 

at 0.50 m (8.90 m OD). 

 

Borehole HH3 terminated on bedrock at a depth of 1.38 m (8.12 m OD). The bedrock 

was overlain by a unit of red sand and gravel, which transitioned into the organic 

blue/grey silt-clay unit at a depth of 1.18 m (8.32 m OD). The blue/grey silt-clay unit 

was overlain by peat incorporated with brown silt-clay at 0.51 m (8.99 m OD) which 

transitioned into the surface peat unit at 0.35 m (9.15 m OD).  

 

Borehole HH4 reached a maximum depth of 1.68 (7.82 m OD), and terminated on 

bedrock. The bedrock was overlain by degraded bedrock material composed of red 

sand and gravel, and transitioned into a unit composed of brown silty sand and gravel 

at 1.47 m (8.03 m OD). This was overlain by the sandy blue/grey silt-clay unit at 1.23 

m (8.27 m OD). The sandy blue/grey silt-clay unit was overlain by a more organic 
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blue/grey silt-clay unit at a depth of 0.89 m (8.61 m OD) and a unit composed of 

peat incorporated with brown silt-clay at 0.69 m (8.81 m OD). This transitioned into 

the surface peat unit at 0.23 m (9.27 m OD).  

 

Borehole HH5 terminated on bedrock at 1.70 m (7.70 m OD). The bedrock was 

overlain by the red sand and gravel unit, which transitioned into the sandy grey silt-

clay with gravel unit at a depth of 1.49 m (7.91 m OD), with brown silty sand and 

gravel at the bottom of the unit. This was overlain by an organic blue/grey silt-clay 

unit at 1.25 m (8.15 m OD) and peat incorporated with brown silt-clay at 0.51 m 

(8.89 m OD). This unit then transitioned into the surface peat unit at 0.16 m (9.24 m 

OD).  

 

Borehole HH6 reached a maximum depth of 1.76 m (7.84 m OD), terminating on 

bedrock. The bedrock was overlain by the red sand and gravel unit, and transitioned 

into the overlying sandy grey silt-clay with gravel unit at a depth of 1.49 m (8.11 m 

OD) with brown silty sand and gravel at the bottom of the unit. This was overlain by 

an organic blue/grey silt-clay unit at 1.28 m (8.32 m OD) and peat incorporated with 

brown silt-clay at 0.51 m (9.09 m OD). The unit then transitioned into the surface 

peat unit at 0.17 m (9.43 m OD).  

 

A sample core was taken at Herd Hill from borehole HH4 as it contained all main 

stratigraphic units recorded (Figure 8.2). Core HH4 was used for all laboratory 

analyses and to establish a chronology for the site. The results of laboratory analyses 

undertaken on core HH4 are discussed in detail in the following sections. 
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(a) 

 

(b) 
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(c) 

Figure 8.2: (a) Location of boreholes and sample core (HH4) obtained at Herd Hill 

with contour line marking the altitudes (m OD) of surrounding areas (Source: © 

Crown Copyright and Database Right (2018) Ordnance Survey, Digimap Licence) (b) 

The lithostratigraphy of the boreholes and sample core from Herd Hill (c) The 

simplified lithostratigraphy of the boreholes and sample core from Herd Hill. Sample 

core is marked in a black square 

 

8.2 Sediment Composition 

 

Core HH4 terminated on the bedrock at 1.68 m (7.82 m OD). The surface elevation 

recorded for core HH4 was 9.50 m OD. Towards the base of the core in the red sand 

and gravel unit, the overlying brown silty sand and gravel unit and sandy blue/grey 

silt-clay unit, increased sand content was recorded. The sand content decreased in 

the organic blue/grey silt-clay unit, and increased again towards the surface of the 

core in the peat unit. The sand fraction found in core HH4 consists mainly of very fine 
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sand and fine sand. The sediment description of core HH4 is summarised in Table 

8.1. 

 

Table 8.1: Sediment description of core HH4 including depth, altitude and the Tröels-

Smith (1955) sediment classification  

Depth 

(m) 

Altitude 

(m OD) 

Sediment 

Description 

Tröels-Smith Sediment 

Classification (1955) 

0 – 23 9.50 – 9.27 Very dark brown peat 

with roots and organic 

remains 

Th4; Ga+,  

Nig. = 4, Strf. = 0, Sicc. = 

1, Elas. = 1 

23 – 69 9.27 – 8.81 Very dark brown peat 

with roots and organic 

remains, some brown 

silt 

Th4; Ag+; Ga+, 

Nig. = 4, Strf. = 0, Sicc. = 

1, Elas. = 1, Lim. = 0 

 

69 – 89 8.81 – 8.61 Blue/grey silt-clay with 

roots, organic remains 

Ag2; As2; Th+, 

Nig. = 2, Strf. = 0, Sicc. = 

2, Elas. = 0, Lim. = 2 

89 – 123 8.61 – 8.27 Blue/grey silt-clay with 

roots, organic remains 

and sand  

  Ag2; As2; Dl+; Ga+, 

Nig. = 2, Strf. = 0, Sicc. = 

3, Elas. = 0, Lim. = 1 

123 – 147 8.27 – 8.03 Brown silty sand and 

gravel 

Ga3; Gg1 (min); Ag+, 

Nig. = 3, Strf. = 0, Sicc. = 

3, Elas. = 0, Lim. = 1 

147 – 168 8.03 – 7.82 Red sand and gravel Ga2; Gg2 (min), 

Nig. = 3, Strf. = 0, Sicc. = 

3, Elas. = 0, Lim. = 1 

 

8.3 Loss on Ignition 

 

Loss on ignition analyses were undertaken on samples from core HH4 to give an 

estimate of the organic carbon content and carbonate content of the sediment. 

Samples were taken at every 8 cm throughout the core, from each stratigraphic unit 

found in the core. The organic carbon content and carbonate content of core HH4 

are shown in Figure 8.3. Fluctuations was noted in the percentage of organic carbon 
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content of the samples analysed from core HH4, with a clear distinction in the 

percentages of organic carbon between the clastic unit (comprising of the red sand 

and gravel unit, the brown silty sand and gravel unit, the blue/grey silt-clay unit) and 

the overlying silty peat unit and surface peat unit. Low percentages of organic carbon 

content were observed coinciding with the deposition of the clastic unit, while 

percentages of organic carbon content increased significantly in the overlying peat 

unit ranging between 2% to 97%. There was limited change in the percentage of 

carbonate content throughout core HH4, with a range of 0% to 2% observed.  

 

 

Figure 8.3: Plot of loss on ignition analyses for Herd Hill showing organic carbon and 

carbonate content of the sediment in core HH4 

 

8.4 Particle Size Analysis 

 

Samples for particle size analysis were taken every 8 cm throughout the core from 

each stratigraphic unit. Particle size analysis in core HH4 showed sediment dominated 

mostly by silt with increased sand content observed towards the bottom and the top 

of core HH4. Where increased sand content was observed, it was dominated mainly 
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by very fine and fine sand, which ranged between 0.3% and 61%. Limited variation 

in clay content throughout the core was observed, with a maximum of 7% observed 

at a depth of 1.52 m (7.98 m OD) and a minimum of 1% observed at a depth of 0.24 

m (9.26 m OD). The percentage of silt content reached a maximum of 95% at 1.04 

m (8.46 m OD), while the minimum silt content of 37% was noted at 1.44 m (8.06 

m OD) in the brown silty sand and gravel unit.  

 

 

Figure 8.4: Diagram showing particle size analysis for core HH4 from Herd Hill 

 

8.5 Chronology 

 

The chronology for the core from Herd Hill was established through accelerator mass 

spectrometry (AMS) radiocarbon dating of three bulk sediment samples at DirectAMS 

Radiocarbon Dating Service in Washington, USA. Radiocarbon ages obtained were 

calibrated using OxCal v.4.3 (Ramsey, 2009) and the IntCal13 atmospheric curve 

(Reimer et al., 2013). All dates were calibrated to cal BP (Table 8.2).  
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Table 8.2: Three radiocarbon dates obtained from Herd Hill core HH4 

Lab Code 
Code-Depth 

(cm) 

Altitude  

(m OD) 

Material 

Dated 
Fraction 

Radiocarbon Age Cal BP 

(2σ Ranges) BP 1σ Error 

D-AMS 022224 HH-69 8.81-8.80 Peat Bulk carbon 5236 46 6179-5914 

D-AMS 022225 HH-115 8.35-8.34 Organic clay Bulk carbon 6497 36 7475-7322 

D-AMS 025779 HH-146 8.04-8.03 Silty sand Bulk carbon 5059 26 5900-5741 
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An age-depth model for core HH4 was developed using Bacon v2.3.4 (Blaauw & 

Christen, 2011). The red dotted line shows modelled median ages along core HH4 

and the grey stippled lines indicate the 95% confidence intervals of the modelled age-

depth relationship. The transparent blue violin plots show the two calibrated AMS 14C 

dates from Herd Hill (samples HH-69 and HH-115). Sample HH-146 was not included 

in the model due to the errorneous date obtained producing a date younger than 

both samples HH-69 and HH-115. The upper left graph shows the iteration history of 

the model. The middle and right graphs show prior (green lines) and posterior (grey 

histograms) density functions for accumulation rate and memory of the model (Figure 

8.5).  

 

The mean 95% confidence of the age-depth model spans 594 years, a minimum of 

330 years at 69 cm and a maximum of 707 years at 94 cm. Based on the age-depth 

model for core HH4, 100% of the dates from Herd Hill lie within the age-depth model's 

95% range. The main stratigraphic boundary of core HH4 was included in the age-

depth model (shown in the horizontal dotted line across the model in Figure 8.5 at a 

depth of 89 cm).  

 

The main stratigraphic boundary of core HH4 at 89 cm (8.61 m OD) was included in 

the age-depth model (shown in the horizontal dotted lines across the model in Figure 

8.5). The sedimentation rate was calculated based on the dated samples and the 

main stratigraphic boundary, with the mean age obtained from the model’s prediction 

and shown on the right side of Figure 8.5.  
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Figure 8.5: Age-depth model for the HH4 core profile based on Bacon v2.3.4 

modelling routines (Blaauw & Christen, 2011) and calculated sedimentation rates 

from the AMS 14C dates calibrated with IntCal13 (Reimer et al., 2013). Dotted line on 

the model indicates the main stratigraphic unit in the HH4 core 

 

8.6 Foraminiferal Analysis  

 

The preservation of foraminiferal tests in the samples from core HH4 varied, with 

some samples containing very few foraminiferal tests. It was therefore not possible 

to obtain a minimum count of 40 individuals in some of the samples despite increasing 

the sample volume. Samples were taken at 1 or 2 cm intervals throughout core HH4.  

 

The samples analysed revealed five agglutinated saltmarsh species comprised of 

Jadammina macrescens, Miliamminia fusca, Tiphotrocha comprimata, 

Haplophragmoides wilberti and Trochammina inflata. The agglutinated foraminiferal 

species were observed throughout the blue/grey silt-clay from the depths of 1.14 m 
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(8.36 m OD) to 0.70 m (8.80 m OD). No calcareous species were observed in the 

core, although presence of test linings were noted (Figure 8.6). 

 

 

Figure 8.6: Foraminiferal diagram from Herd Hill core HH4. Foraminiferal frequencies 

are expressed as a percentage of total foraminifera. All samples including samples 

with low individual counts (below 40 individuals) were included in this diagram. Red 

blocks next to the stratigraphy diagram indicates the zone where foraminifera was 

absent in the core 

 

8.7 Pollen Analysis and Zonation 

 

300 pollen and spore grains were counted for each sample from core HH4. Samples 

were taken at 4 cm intervals throughout the core (Figure 8.7).  
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Figure 8.7: Pollen diagram from Herd Hill core HH4. Pollen frequencies are expressed as a percentage of total land pollen    



 

228 
 

Four local pollen assemblage zones were identified (Figure 8.8). From the base of the 

core at 1.68 m (7.82 m OD) to 1.47 m (8.03 m OD) in the red sand and gravel unit, 

no pollen was found. The pollen zonation for Herd Hill is summarised and tabulated 

in Table 8.3 below.  
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Figure 8.8: Pollen zonation for Herd Hill based on stratigraphically constrained cluster analysis 
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Table 8.3: Pollen zonation for Herd Hill based on stratigraphically constrained cluster 

analysis  

Pollen 

Zone 

Depth 

(cm) 

Altitude 

(m OD) 
Pollen Characteristics 

HH-1 72-146 8.78-8.04 A general low presence of arboreal pollen was 

observed, apart from Alnus and Betula which occurred 

at higher frequencies in comparison to Pinus, Quercus 

and Ulmus. A minimum of 1% of Alnus was observed 

at 1.38 m (8.12 m OD), while a maximum 34% of 

Alnus occurrence was observed at 1.30 m (8.20 m 

OD). Occurrence of Betula ranged from 1% at a depth 

of 0.74 m (8.76 m OD) and 18% at 1.30 m (8.20 m 

OD). Maximum occurrence of both Pinus at 8% and 

Quercus at 10% were noted at a depth of 0.74 m 

(8.76 m OD). Occurrence of Ulmus remained below 

5% throughout the zone.  

 

Occurrence of Corylus ranged between 1% at 1.38 m 

(8.12 m OD) and 41% at 1.18 m (8.32 m OD). Three 

peaks of Corylus were observed at the depths of 1.10 

m (8.40 m OD), 1.14 m (8.36 m OD) and 1.18 m (8.32 

m OD).  

 

The zone is dominated mainly by Cyperaceae and 

Poaceae. Maximum abundance of Cyperaceae 

reaching 57% was noted at a depth of 1.46 m (8.04 

m OD), while minimum occurrence of Cyperaceae 

with 16% was noted at 1.18 m (8.32 m OD). 

Abundance of Poaceae ranged between 14% at 1.14 

m (8.36 m OD) and 35% at 1.06 m (8.44 m OD).  

 

The presence of spores was also observed, with 

Polypodiaceae, Polypodium, Pteridium and Sphagnum 

notable. The presence of Botryococcus algal spores 
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was noted, with the highest abundance occurring at 

the base of the pollen zone at 1.46 m (8.04 m OD). 

HH-2 66-72 8.84-8.78 At a depth of 0.70 m (8.80 m OD), dominance of 

Poaceae and Cyperaceae were almost equal with 21% 

and 20% respectively. At a depth of 0.70 m (8.80 m 

OD), a shift to a dominance of Poaceae with 

abundance of 45% was observed, with only 6% of 

Cyperaceae noted. 21% and 15% of Alnus abundance 

were noted at 0.70 m (8.80 m OD) and 0.66 m (8.84 

m OD) respectively.  

HH-3 22-66 9.28-8.84 A notable increase in arboreal pollen, in particular 

Alnus and Betula was noted. Presence of Alnus pollen 

ranged between 24% at 0.54 m (8.96 m OD) and 64% 

at 0.50 m (9.00 m OD). A maximum 46% occurrence 

of Betula was observed at a depth of 0.54 m (8.96 m 

OD), while the minimum Betula occurrence was noted 

at 0.62 m (8.88 m OD) at 2%.  

 

General increase in Corylus abundance was observed, 

with a maximum of 31% at 0.30 m (9.20 m OD) and 

a minimum of 2% at 0.62 m (8.88 m OD).  

 

A clear decrease in abundance of Cyperaceae and 

Poaceae was noted. A minimum of 4% at 0.50 m (9.00 

m OD) and a maximum of 21% at 0.62 m (8.88 m OD) 

were observed for Cyperaceae. Abundance of Poaceae 

ranged between 4% at 0.54 m (8.96 m OD) and 10% 

at 0.50 m (9.00 m OD). The presence of spores was 

also observed in the zone, with Polypodiaceae, 

Pteridium and Sphagnum notable. 

 

HH-4 0-22 9.50-9.28 A notable decrease in arboreal pollen was recorded. 

Highest occurrence of Alnus and Betula at a depth of 

0.18 m (9.32 m OD), with 17% and 24% respectively. 
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At a depth of 0.10 m (9.40 m OD) towards the top of 

the core, arboreal pollen occurred below 5%.  

 

Notable increase in Calluna and Ericaceae pollen were 

observed. A maximum of 33% abundance of Calluna 

pollen was noted at 0.06 m (9.44 m OD), while a 

maximum of 14% Ericaceae was observed at 0.10 m 

(9.40 m OD). Abundance of Corylus recorded a 

maximum of 28% at a depth of 0.22 m (9.28 m OD) 

and a minimum of 6% at 0.10 m (9.40 m OD) and 

0.02 (9.48 m OD).  

 

For Cyperaceae and Poaceae, a maximum of 17% and 

33% were observed at 0.10 m (9.40 m OD) and 0.02 

m (9.48 m OD) respectively.  

 

 

8.8 Holocene Relative Sea-Level and Environmental Changes at Herd Hill 

 

The interpretation of Holocene relative sea-level and environmental changes for Herd 

Hill are based on microfossil analyses, changes in lithostratigraphy and sediment 

composition of core HH4.  

 

8.9 Microfossil Interpretation: Foraminifera 

 

No foraminifera was observed in the basal red sand and gravel unit, the brown silty 

sand and gravel unit, and the deepest 0.08 m of the blue/grey silt-clay unit, which 

constituting the deepest 0.53 m of core HH4 (8.35 m OD to 7.82 m OD). The absence 

of foraminifera in the brown silty sand and gravel unit and the deepest 0.08 m of the 

blue/grey silt-clay unit may be attributed to the increased sand content in the core 

(Figure 8.9). The effect of increased sand content on absence of foraminifera is also 

discussed in Chapter 6 (Section 6.9).  

 

The foraminiferal assemblage at Herd Hill is dominated mainly by the agglutinated 

species J. macrescens, which are often associated with a high saltmarsh environment. 
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However, the presence of J. macrescens was observed in a lower saltmarsh and 

intertidal mudflat environment at the contemporary Cardurnock Marsh (Chapter 4; 

Section 4.3.2). A notable presence of M. fusca was observed in the blue/grey silt-clay 

unit, which is associated with a low saltmarsh/intertidal mudflat environment (Lloyd 

et al., 1999) and as observed in the contemporary foraminiferal samples in this study 

(Chapter 4; Section 4.3.2). Taken as a whole, the foraminiferal assemblage combined 

with the deposition of the blue/grey silt-clay unit suggests an intertidal mudflat 

environment close to the fringing saltmarsh. Test linings were also present in the 

zone where the agglutinated foraminifera were observed, further supporting the 

evidence for a lower saltmarsh/intertidal mudflat environment.  

 

No foraminifera were observed from 0.68 m (8.82 m OD) towards the top of the core, 

corresponding to the transition from the blue/grey silt-clay unit to the peat unit. This 

would suggest that a freshwater environment had developed at the site from the 

former intertidal mudflat environment.  
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Figure 8.9: Summary diagram showing foraminifera, particle size analyses and loss on ignition undertaken on samples from core HH4
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8.10 Microfossil Interpretation: Pollen 

 

Several possible pollen source areas are identified at Herd Hill. Pollen grains that are 

buoyant (e.g Pinus pollen) may have been deposited when the site was flooded, and 

this is common in wave affected sediments (Walker, 1966; Tipping, 1995). Pollen 

grains could also be wind pollinated and transported into the site from nearby pollen 

catchment areas. The interpretation for each pollen zone is described below. 

 

Zone HH-1 (Figure 8 and Table 2) 

 

Two slight peaks of Alnus were observed at the depths of 1.42 m (8.08 m OD) and 

1.30 m (8.20 m OD), while a single peak of Betula was observed at a depth of 1.30 

m (8.20 m OD). Apart from these slight increased frequencies of Alnus and Betula, 

low frequencies of arboreal pollen were observed in zone HH-1 suggesting a low 

presence of alder, birch, pine, oak and elm trees were present in the pollen catchment 

area. The development of a mixed woodland at Herd Hill may have been restricted 

due to inadequate soil cover, as the low frequencies of arboreal pollen in zone HH-1 

correspond to the deposition of the silty brown sand and gravel unit in the core 

(Figure 8.10). 

 

Alder was first observed at Herd Hill at a depth of 1.46 m (8.04 m OD), although at 

very low frequencies. The first occurrence of alder in core HH4 was dated at 5900-

5741 cal BP. The occurrence of Alnus pollen at Cowgate Farm in zone CGF-1 was 

dated at 8450-8334 cal BP, which was obtained from sample CGF-136/141 (Chapter 

6; Section 6.10). The date obtained from Cowgate Farm broadly agrees with the 

development of an alder carr at the base of the sediment sequence at Boustead Hill 

dated at 8304-7928 cal BP, and the occurrence of alder at Drumburgh Moss which 

was dated at 8947-8403 cal BP (Lloyd et al., 1999). Therefore, it is probable that the 

date for the first occurrence of alder at Herd Hill would correspond with those 

recorded at Cowgate Farm, Boustead Hill and Drumburgh Moss. A second date of 

7475-7322 cal BP was obtained for zone HH-1 from a depth of 1.15 m (8.35 m OD).  
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Figure 8.10: Summary diagram showing pollen, particle size analyses and loss on ignition undertaken on samples from core HH4 
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Zone HH-1 is characterised by high frequencies of Poaceae and Cyperaceae, 

suggesting that the site supported an open environment dominated mainly by grass 

and sedges. It is probable that trees were growing in the pollen catchment area close 

to the site whilst the grass and sedges were growing locally at the site. A notable 

presence of Corylus was observed throughout zone HH-1, indicating that heather was 

also present. Aster-type and Chenopodiaceae pollen were also observed in zone HH-

1, and these are associated with a saltmarsh environment (Zong & Tooley, 1996; 

Lloyd et al., 1999) that might have developed close to the site.  

 

Polypodiaceae, Polypodium, Pteridium and Sphagnum spores were also present in 

zone HH-1. The presence of ferns and peat moss are common in acidic wetlands 

including bogs, fens and swamps, which may have developed at the site or in nearby 

areas as relative sea level increased resulting in the increase of the groundwater table 

at the site, or as marine influence expanded into the site. 

 

Zone HH-2 (Figure 9 and Table 2) 

 

Generally low frequencies of arboreal pollen were observed with alder, birch, ash, 

pine, oak and elm noted. The frequencies of Alnus pollen were the highest amongst 

the arboreal pollen present, which may be attributed to the ability of alder fruits to 

float and remain viable for a period of approximately a year, with water currents often 

attributed as the main dispersal mechanism for Alnus pollen (Walker 1966; Birks, 

1989). 

 

Zone HH-2 is dominated mainly by Cyperaceae and Poaceae. At a depth of 0.70 m 

(8.80 m OD), the occurrence of Cyperaceae and Poaceae is almost equal, but a clear 

shift to the dominance by Poaceae was observed at a depth of 0.66 m (8.84 m OD). 

The change in ratios between sedges and grasses may indicate a change of 

environment from reed swamp to freshwater limnic sediment and turfa (Zong and 

Tooley, 1999), and a possible evidence of changing groundwater table in the area 

(Zong and Tooley, 1999). This shift to the dominance of Poaceae corresponds with 

the transition from the blue/grey silt-clay unit to the overlying peat unit, a more 

freshwater environment and was dated at 6179-5914 cal BP (sample HH-69). Low 

frequencies of Corylus and spores pollen were also observed in this zone indicating 

that heather and ferns were present at the site. 
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Zone HH-3 (Figure 9 and Table 2) 

 

Increased percentages of arboreal pollen throughout this zone, characterised mainly 

by Alnus and Betula, with lower frequencies of Quercus pollen were observed. This 

suggests further development of the mixed woodland in the area (Walker 1966; 

Tipping, 1995; Dumayne-Peaty and Barber, 1998), as relative sea level decreased 

and soil cover in the pollen catchment area developed evidenced by the transition to 

the peat unit in the core. The date for the start of this zone is approximately 6179-

5914 cal BP, which was obtained from sample HH-69 at a depth of 0.69 m (8.81 m 

OD). Two distinct peaks of alder were noted at the depths of 0.62 m (8.88 m OD) 

and 0.50 (9.00 m OD). Elm and pine were almost non-existent in zone HH-3 broadly 

agreeing with the dates of elm decline recorded at 5130 cal BP in Ennerdale Water, 

5100 cal BP in Blea Tarn and 5540-4860 cal BP in Blelham Tarn in the Lake District, 

Cumbria (Pennington, 1964).  

 

The percentages of Cyperaceae and Poaceae pollen decreased significantly in zone 

HH-3, with frequencies of both sedges and grasses below 20% throughout the zone. 

The notable occurrence of Corylus was still observed in zone HH-3, which may 

correspond to the increase in development of mixed woodland, as hazel is often 

associated as a component of the understorey of lowland oak, ash or birch woodland. 

Low frequencies of fern pollen (Pteridium and Polypodiaceae) and Sphagnum were 

also observed, indicating that ferns and moss were growing at the site.  

 

Zone HH-4 (Figure 9 and Table 2) 

 

An overall decrease in arboreal pollen was observed, with frequencies of arboreal 

pollen composed mainly of alder, birch and oak below 30% throughout the zone. The 

presence of elm was also noted, although in low frequencies. Although the start of 

zone HH-4 was not dated, the overall decrease in arboreal pollen might be attributed 

to increased anthropogenic activities of the area throughout the Bronze Age which 

started at approximately 4300 BP.  

 

A notable increase in Calluna and Ericaceae pollen, alongside the presence of Corylus 

was also observed in zone HH-4. Hazel may have formed the understorey component 

of the mixed woodland as recorded by the arboreal pollen species present. Heather 
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is known to grow on heaths, moors and grasslands with poor nutrients, and also in 

open woodland on acidic soils, ranging from dry exposed habitats to wet peat bogs. 

The significant decrease in values for fern spores (in particular Pteridium) and the 

increase of Calluna pollen might suggest a transition from a fen environment to a 

peat bog at this time (Walker, 1966). The increase of Calluna and Ericaceae may 

correspond to a shift to a more freshwater peat environment at both sites.  

 

A similar vegetation change was observed at Crag Lough, Northumberland, where a 

clearance of Quercus and Corylus woodland began at approximately at 4550 BP. A 

significant decline of Alnus and the spread of Calluna vulgaris was then observed at 

approximately 2350 BP (Coombes et al., 2009). The start of zone HH-4 might 

therefore correspond to a similar time period, although this would suggest that only 

70 cm of peat accumulated over the period of approximately 3700 years (6018 cal 

BP to 2350 BP).  

 

8.11 Sediment Deposition and Relative Sea-Level Interpretation 

 

The red sand and gravel unit is most likely composed of degraded bedrock, as the 

site is underlain by New Red Sandstone of Permo-Triassic age (Lloyd et al., 1999; 

McMillan et al., 2011). The brown silty sand and gravel unit is barren of any 

foraminifera. If the brown silty sand and gravel unit is of marine origin which 

inundated the site during increased relative sea level, the high sand content in the 

unit might have prevented the preservation of foraminifera. However, the origin of 

the brown silty sand and gravel unit is deemed unknown at present. 

 

The silty brown sand and gravel unit was overlain by a unit of blue/grey silt-clay 

where the presence of foraminifera was observed, indicating a marine origin. The 

deposition of the blue/grey silt-clay unit which recorded the transgressive contact in 

core HH4 was dated at 7475-7332 cal BP, and is most probably related to the Main 

Postglacial Transgression at the site. The increase of relative sea level would have 

resulted in an expansion of the intertidal mudflat environment at the site.  

 

The blue/grey silt-clay unit transitioned to the overlying peat unit, indicating that the 

previous intertidal mudflat environment may have developed into a more freshwater 

environment as relative sea level decreased from the site, resulting in the absence of 
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foraminifera. This was evidenced by the absence of foraminifera at a depth of 0.69 

m (8.81 m OD) towards the top of the core combined with the change in 

lithostratigraphy. The regressive contact indicating negative sea-level tendency at 

Herd Hill was dated at 6179-5914 cal BP. No further changes in biostratigraphy 

(foraminifera) were observed from 0.69 (8.81 m OD) towards the top of the core. 

The change in lithostratigraphy to the surface peat occurred at 0.23 m (9.27 m OD). 

 

8.12 Relative Sea-Level Reconstruction for Herd Hill 

 

Relative sea-level reconstruction for the site at Herd Hill was developed through a 

combination of lithostratigraphic and biostratigraphic analyses, determination of 

indicative meanings and calculation of sea-level index points. Foraminifera-based 

transfer functions were also developed.  

 

8.13 Determination of Indicative Meaning 

 

The assigned reference water level based on the changes in lithostratigraphy and 

biostratigraphy (foraminiferal assemblages) was used for the calculation of sea-level 

index points as the predicted palaeo marsh surface elevation (PMSE) based on the 

transfer function utilised on core HH4 was deemed unreliable. 

 

The lithostratigraphy of sample HH-115 consisting of blue/grey silt-clay unit is 

consistent with a lower saltmarsh or an intertidal mudflat environment, with the 

dominance of J. macrescens and presence of test linings observed. This is consistent 

with the contemporary samples from Cardurnock Marsh (Chapter 4; Section 4.3.2). 

 

For sample HH-69, an indicative meaning associated with a high saltmarsh 

environment was assigned, consistent with the lithostratigraphy of the peat unit, the 

dominance of J. macrescens and increased abundance of H. wilberti which suggest 

an environment occurring at the level of extreme high water, as observed in the 

contemporary samples collected from Bowness Marsh (Chapter 4; Section 4.3.3).  

 

As the indicative meaning for samples HH-115 and HH-69 have been ascribed based 

on samples from two different contemporary marshes (Cardunock Marsh and 

Bowness Marsh), the complete Solway training set with elevation values converted to 
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standardised water level index (SWLI) (Figure 4.22) was used to determine the 

indicative range of the samples, as this eliminates the tidal variations between the 

two contemporary sites. The SWLI values for the respective contemporary sample 

most representative of the samples HH-115 and HH-69 were then converted back to 

elevation (m OD), to allow the calculation of the reference water level and indicative 

range.  

 

The contemporary sample most representative of sample HH-115 lies between the 

SWLI of 285 and 295 in the Solway training set, which falls below MHWST (Figure 

4.22). The presence of saltmarsh pollen species (e.g. Aster-type) in the blue/grey silt-

clay unit from which sample HH-115 was dated, further supports the ascribed 

indicative meaning for the sample. This covers an altitude of 4.69 m OD 

(contemporary sample CM05) and 5.23 m OD (contemporary sample CM01). Based 

on these values, the reference water level for sample HH-115 is the midpoint between 

4.69 m OD and 5.23 m OD, resulting in an indicative range of ±0.5 m. 

 

The contemporary samples most representative of sample HH-69 lie above MHWST 

with the SWLI ranging between 300 (contemporary sample BM20) and 310 

(contemporary sample BM15) based on the Solway training set. This covers an 

altitude of 5.34 m OD and 5.83 m OD, with the reference water level for both samples 

to be the midpoint of these altitude resulting in a value of 5.6 m OD, and an indicative 

range of ±0.5 m. 

 

Sample HH-146 was not assigned to any indicative meaning due to the lack of 

microfossil evidence indicating a marine environment and the likelihood of an error 

for the date. A sea-level index point is therefore not calculated for sample HH-146. 

 

8.14 Post -Depositional Lowering of Sediments 

 

The post-depositional lowering (PDL) of sediments in core HH4 was estimated based 

on the geotechnical model developed by Brain et al. (2011, 2012), as discussed in 

Chapter 3 (Section 3.9.1). Minimal PDL of sediments is observed in the core from 

Herd Hill, which ranged between 0.001 to 0.013 m. Figure 8.11 shows the PDL of 

sediments at a 0.02 m interval throughout core HH4.  
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Figure 8.11: Geotechnical and physical properties showing the averaged downcore 

organic content, expressed as % loss on ignition and the model estimates of post-

depositional lowering for core HH4. Abbreviations: LOI = Loss on ignition; PDL = 

Post-depositional lowering 

 

8.15 Sea-Level Index Points  

 

The sample’s age, reference water level and indicative range along with the 

associated errors for each sample are required for the calculation of sea-level index 

points (Chapter 3; Section 3.9). Two sea-level index points were produced for Herd 

Hill (Table 8.4). 
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Table 8.4: Sea-level index points produced from HH4 

Lab Code Latitude Longitude 

Radiocarbon Age  
Cal BP 

(2σ Ranges) Altitude 

(m OD) 

Compaction 

Correction 

(m) 

RSL  

(m) 
Tendency 

BP 
1σ 

Error 
Min Mean Max 

D-AMS 

022224 
54.928 -3.285 5236 46 5914 6018 6179 8.81 +0.001 +3.26±0.56 Negative 

D-AMS 

022225 
54.928 -3.285 6497 36 7322 7401 7475 8.35 +0.008 +3.41±0.56 Positive 
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Samples HH-69 and HH-115 produced sea-level index points of 3.26±0.56 m and 

3.41±0.56 m respectively. Errors and corrections associated with each sea-level index 

point were calculated based on the methods described in Chapter 3 (Section 3.9). 

Figure 8.12 shows the sea-level index points from Herd Hill plotted against the 

modelled relative sea-level curve for southern Solway Firth at the location of NY 2481 

5666 based on the BRADLEY2011, KUCHAR2012 and BRADLEY2017 models (Shennan 

et al., 2012; 2018; Kuchar et al., 2012). 

 

 

Figure 8.12: Graph showing two sea-level index points from Herd Hill. The black line 

is the modelled relative sea-level curves for southern Solway Firth based on Shennan 

et al. (2012; 2018) and Kuchar et al. (2012). All sea-level index points include 

associated individual vertical and age error bars  

 

8.16 Summary 

 

The site at Herd Hill has provided a record of Holocene sea-level changes evidenced 

by the changes in lithostratigraphy and biostratigraphy of core HH4. The two sea-

level index points from Herd Hill broadly agree with the recorded dates of marine 

transgression and marine regression from other sites located at the southern shore 

of the Solway Firth, although the altitudes of sample HH-69 and HH-115 are higher 

than the existing sea-level index points. The transgressive contact at Herd Hill which 
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is likely a result of the Main Postglacial Transgression was dated at 7401 cal BP, while 

the regressive contact indicating negative sea-level tendency at Herd Hill was dated 

at 6018 cal BP.  
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CHAPTER 9 

 

PASTURE HOUSE 

 

 

9.0 Introduction 

 

The study site at Pasture House (NY 1861 6030) is located east of the site at Herd 

Hill (Figure 9.1). The site is bordered by a road in the north, farmland to the east and 

west of the site and Bowness Common to the south (Figure 9.2a). The study area is 

approximately 120 m by 100 m. The geomorphology suggests that the site is 

composed of relict sand dunes, with small ridges present at Pasture House.  

 

 

Figure 9.1: Location of the study site at Herd Hill and Pasture House marked in red 

 

9.1 Borehole Location and Stratigraphy 

 

Three transects of boreholes were cored at Pasture House to establish the 

stratigraphy of the site. Two transects were cored from north to south and the third 

transect was cored from east to west. The altitude of boreholes at Pasture House 
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ranged from 7.8 m OD to 9.7 m OD, with borehole PH4 reaching the maximum depth 

of 5.04 m (4.26 m OD).  

 

Borehole PH1 was cored at the top of a ridge, terminating in a very sandy light brown 

peat unit at a depth of 0.77 m (8.83 m OD). The very sandy brown peat unit was 

overlain by a similar very sandy peat unit that was lighter in colour at 0.27 m (9.33 

m OD).  

 

Borehole PH2 terminated in a brown sand unit at 1.46 m (7.44 m OD). The brown 

sand unit occurred between the depths of 1.46 m (7.44 m OD) and 0.49 m (8.41 m 

OD). A unit of black peat occurred at 0.52-0.53 m (8.38-8.37 m OD), and a brown 

peat with charcoal unit was noted at 0.50-0.51 m (8.40-8.39 m OD). A unit of dark 

brown peat overlaid the brown sand unit at 0.49 m (8.41 m OD). Another unit of 

brown sand with organics occurred at 0.44 m (8.46 m OD). This transitioned into an 

organic brown silt-clay at 0.42 m (8.48 m OD) and the surface sandy peat unit at 

0.34 m (8.56 m OD).  

 

Borehole PH3 reached a maximum depth of 1.85 m (7.85 m OD) in a dense blue/grey 

silt-clay unit. This was overlain by a unit of sandy grey/brown silt-clay at 1.66 m (8.04 

m OD) and brown organic silt-clay at 1.03 m (8.67 m OD). A unit comprised of organic 

brown sand occurred at 0.85 m (8.85 m OD), and was overlain by a black peat with 

occasional charcoal unit at 0.69 m (9.01 m OD). The surface unit at borehole PH3 

comprised of a peat with occasional wood which occurred at 0.65 m (9.05 m OD), 

with increased sand content towards the bottom of the unit.  

 

Borehole PH4 terminated in a stiff, brown silt-clay unit at 5.04 m (4.26 m OD). This 

was overlain by a sandy brown silt-clay at 4.05 m (5.25 m OD), and sandy blue/grey 

silt-clay at 3.05 m (6.25 m OD). A similar unit of blue/grey silt-clay with occasional 

wood overlaid the previous unit at 1.96 m (7.34 m OD). The blue/grey silt-clay unit 

was overlain by a dark brown peat unit at 1.09 m (8.21 m OD), and this in turn was 

overlain by an organic brown silt-clay at 0.94 m (8.36 m OD). The organic brown silt-

clay unit transitioned into the sandy surface peat unit at 0.85 m (8.45 m OD).  

 

Borehole PH5 reached an impenetrable depth at 3.57 m (5.03 m OD) in a stiff and 

sandy pink silt-clay unit. This was overlain by a sandy grey/brown silt-clay unit at 
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3.12 m (5.48 m OD) and a grey silt-clay unit at 3.00 m (5.60 m OD). The grey silt-

clay unit was overlain by a sandy grey silt-clay unit at 1.87 m (6.73 m OD) and a 

brown sand unit at 0.55 m (8.05 m OD). A unit of dark brown peat occurred above 

this at 0.51 m (8.09 m OD), and a silty brown peat with sand occurred at 0.35 m 

(8.25 m OD). Borehole PH5 transitioned into the surface peat unit at 0.26 m (8.34 m 

OD).  

 

Borehole PH6 terminated in a pink/brown silty sand unit at 2.80 m (5.60 m OD). This 

was overlain by a unit of grey silty sand at 1.30 m (7.10 m OD) and a unit of silty 

brown organic sand occurred above this at 0.90 m (7.50 m OD). The silty brown 

organic sand unit transitioned into a brown sand unit at 0.53 m (7.87 m OD) and the 

sandy surface peat unit at 0.31 m (8.09 m OD).  

 

Borehole PH7 reached an impenetrable depth of 0.77 m (7.03 m OD) in an organic 

brown sand unit which transitioned into the surface peat unit at 0.29 m (7.51 m OD).  

 

A sample core (PH4-a) was taken at Pasture House from borehole PH4, and was used 

for the particle size, loss on ignition and microfossil analyses of the site. A replicate 

core (PH4-b) was then taken approximately 1 metre away from borehole PH4. Both 

PH4-a and PH4-b cores terminated in the blue/grey silt-clay unit as the sediment was 

too stiff to core with the Russian corer.  
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(a) 
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(b) 
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(c) 

Figure 9.2: (a) Location of boreholes and sample core (PH4) obtained at Pasture House with contour line marking the altitudes (m OD) of 

surrounding areas (Source: © Crown Copyright and Database Right (2018) Ordnance Survey, Digimap Licence) (b) The lithostratigraphy of the 

boreholes and sample core from Pasture House (c) The simplified lithostratigraphy of the boreholes and sample core from Pasture House. Sample 

core is marked in a black square  
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9.2 Sediment Composition 

 

Cores PH4-a and PH4-b terminated in the sandy blue/grey silt-clay unit at 1.94 m (m 

OD) and 2.10 m (7.20 m OD) respectively. The surface elevation recorded for both 

cores were 9.30 m OD. Towards the base of the core in the sandy blue/grey silt-clay 

unit and in the surface peat and sand units, sand content increased. The sand fraction 

found in the core consisted of very fine sand mainly, fine sand and medium sand. 

Core PH4-a was not continuous, with the first, second and third sections of the core 

covering 22-72 cm, 85-135 and 144-194 cm respectively, due to sampling difficulties. 

The sediment description of the cores PH4-a and PH4-b are summarised in Table 9.1 

and Table 9.2 respectively. 

 

Table 9.1: Sediment description of core PH4-a including depth, altitude and the 

Tröels-Smith (1955) sediment classification  

Depth 

(m) 

Altitude 

(m OD) 

Sediment 

Description  

Tröels-Smith Sediment 

Classification (1955) 

22 – 43 9.08 – 8.87 Very dark brown peat 

with occasional wood 

Th4; Dl+,  

Nig. = 4, Strf. = 0, Sicc. = 

1, Elas. = 1 

43 – 49 8.87 – 8.81 Very dark brown peat 

with occasional wood, 

sandy 

Th4; Dl+; Ga+,  

Nig. = 4, Strf. = 0, Sicc. = 

1, Elas. = 1, Lim. = 1 

49 – 55 8.81 – 8.75 Light brown sand with 

some organic remains 

Ga4; Dl+,  

Nig. = 2, Strf. = 0, Sicc. = 

1, Elas. = 1, Lim. = 2 

55 – 60 8.75 – 8.70 Very dark brown peat 

with occasional wood, 

sandy 

  Th4; Dl+; Ga+,  

Nig. = 4, Strf. = 0, Sicc. = 

1, Elas. = 1, Lim. = 2 

60 – 64 8.70 – 8.66 Light brown sand with 

some organic remains 

Ga4; Dl+,  

Nig. = 2, Strf. = 0, Sicc. = 

1, Elas. = 1, Lim. = 2 

64 – 72 8.66 – 8.58 Very dark brown peat 

with occasional wood, 

sandy 

 

Th4; Dl; Ga+,  

Nig. = 4, Strf. = 0, Sicc. = 

1, Elas. = 1, Lim. = 2 
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85 – 99 8.58 – 8.31 Very dark brown peat 

with occasional wood 

and some silt, sandy 

Th4; Dl+; Ag+; Ga+,  

Nig. = 4, Strf. = 0, Sicc. = 

1, Elas. = 1, Lim. = 1 

99 – 112 8.31 – 8.18 Dark brown silt-clay 

with organic remains, 

sandy 

Ag2; As2; Dl+; Ga+, 

Nig. = 4, Strf. = 0, Sicc. = 

3, Elas. = 0, Lim. = 2 

112 – 135 8.18 – 7.95 Blue/grey silt-clay with 

organic remains 

Ag2; As2; Dl+, 

Nig. = 2, Strf. = 0, Sicc. = 

3, Elas. = 0, Lim. = 2 

144 – 178 7.95 – 7.52 Blue/grey silt-clay with 

some organic remains 

Ag2; As2; Dl+, 

Nig. = 2, Strf. = 0, Sicc. = 

3, Elas. = 0, Lim. = 1 

178 – 194 7.52 – 7.36 Blue/grey silt-clay with 

some organic remains 

and sand 

Ag2; As2; Dl+; Ga+, 

Nig. = 2, Strf. = 0, Sicc. = 

3, Elas. = 0, Lim. = 1 

 

Table 9.2: Sediment description of core PH4-b including depth, altitude and the 

Tröels-Smith (1955) sediment classification  

Depth 

(m) 

Altitude 

(m OD) 

Sediment 

Description 

Tröels-Smith Sediment 

Classification (1955) 

0 – 91 9.30 – 8.39 Very dark brown peat 

with occasional wood, 

sandy 

Th4; Dl+; Ga+,  

Nig. = 4, Strf. = 0, Sicc. = 

1, Elas. = 1 

91 – 107 8.39 – 8.23 Dark brown silt-clay 

with organic remains 

Ag2; As1; Th1; Dl+,  

Nig. = 3, Strf. = 0, Sicc. = 

1, Elas. = 1, Lim. = 2 

107 – 121 8.23 – 8.09 Very dark brown peat 

with occasional wood, 

some brown silt 

Th4; Dl+; Ag+,  

Nig. = 4, Strf. = 0, Sicc. = 

1, Elas. = 1, Lim. = 2 

121 – 170 8.09 – 7.60 Blue/grey silt-clay with 

some organic remains 

  Ag2; As2; Dl+, 

Nig. = 2, Strf. = 0, Sicc. = 

3, Elas. = 0, Lim. = 2 
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170 – 210 7.60 – 7.20 Blue/grey silt-clay with 

some organic remains 

and sand 

Ag2; As2; Dl+; Ga+, 

Nig. = 2, Strf. = 0, Sicc. = 

3, Elas. = 0, Lim. = 1 

 

9.3 Loss on Ignition 

 

Loss on ignition analyses were undertaken on samples from core PH4-a, to give an 

estimate of the organic carbon content and carbonate content of the sediment. 

Samples were taken at 2 cm, 4 cm and 16 cm from 0.22 m to 0.72 m (9.08 m OD to 

8.58 m OD); at 4 cm, 6 cm and 16 cm from 0.85 m to 1.35 m (8.45 m OD to 7.95 m 

OD) and at every 16 cm from 1.44 m to 1.94 m (7.86 m OD to 7.36 m OD), from 

each stratigraphic unit found in the core. The organic carbon content and carbonate 

content of core PH4-a are shown in Figure 9.3. 

 

 

Figure 9.3: Plot of loss on ignition analyses for Pasture House showing organic carbon 

and carbonate content of the sediment in core PH4-a. Dashed lines represent a break 

in sedimentation 
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In the sandy blue/grey silt-clay unit and the more organic blue/grey silt-clay unit, low 

percentages of organic carbon were recorded, with a minimum of 0% at 1.89 m (7.41 

m OD) and 4% at 1.33 m (7.97 m OD). From the depths of 1.00 m (8.30 m OD) to 

1.18 m (8.12 m OD), organic carbon content ranged between 6% and 10%. The 

organic carbon in core PH4 increased slightly between the depths of 0.66 m (8.64 m 

OD) and 0.97 m (8.33 m OD), with a maximum of 23% recorded at a depth of 0.94 

m (8.36 m OD) and a minimum of 16% recorded at 0.66 m (8.64 m OD). In the 

surface peat and sand units, a maximum of 85% organic carbon content was recorded 

at 0.22 m (9.08 m OD), and a minimum of 2% was recorded at 0.60 m (8.70 m OD).  

 

Very low percentages of carbonate content were observed throughout the core, with 

a range of 0% to 5% observed. A maximum of 5% of carbonate content was observed 

at a depth of 0.91m (8.39 m OD).  

 

9.4 Particle Size Analysis 

 

Samples for particle size analysis were taken at 2 cm, 4 cm and 16 cm from 0.22 m 

to 0.72 m (9.08 m OD to 8.58 m OD); at 4 cm, 6 cm and 16 cm from 0.85 m to 1.35 

m (8.45 m OD to 7.95 m OD) and at every 16 cm from 1.44 m to 1.94 m (7.86 m OD 

to 7.36 m OD), from each stratigraphic unit found in the core.  
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Figure 9.4: Diagram showing particle size analysis for core PH4-a from Pasture House. 

Dashed lines represent a break in sedimentation 

 

Particle size analysis in core PH4-a showed sediment dominated mostly by silt with 

increased sand content observed towards the bottom of the core in the sandy 

blue/grey silt-clay unit and the surface peat and sand units.  

 

The percentages of clay in the core showed minimal fluctuations, with a maximum of 

6% observed at a depth of 1.33 m (7.97 m OD) and a minimum of 0% observed at 

a depth of 0.85 m (8.45 m OD). Core PH4-a was dominated mainly by silt, with the 

highest silt percentages observed in the blue/grey silt-clay unit. The percentage of 

silt content reached a maximum of 91% at 1.12 m (8.18 m OD), while the minimum 

silt content of 6% was noted at 0.60 m (8.70 m OD) in the surface peat and sand 

units. Increased sand content was observed in the basal sandy blue/grey silt-clay unit 

and the surface peat unit. A total of 44% sand was observed at 1.89 m (7.41 m OD) 

in the sandy blue/grey silt-clay unit, and decreased to 5% at 1.12 m (8.18 m OD) 

and 14% at 1.44 m (7.86 m OD). From 1.06 m (8.24 m OD) towards the top of the 

core at 0.22 m (9.08 m OD), increased sand content were noted, with 22% at 1.00 

m (8.30 m OD) and 94% at 0.60 m (8.70 m OD), corresponding to the deposition of 

the surface peat and sand units.  
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9.5 Microfossil Analyses 

 

Samples were taken at 2 cm, 4 cm or 8 cm intervals throughout cores PH4-a and 

PH4-b for diatom and foraminiferal analyses. Despite multiple samples from both 

cores, extremely poor preservation of foraminifera and diatoms was noted within the 

sediment. The identification of diatom species was ultimately deemed impossible in 

both cores. Foraminifera (Jadammina macrescens and Trochammina inflata) were 

present in sections of the blue/grey silt-clay unit of PH4-a and PH4-b cores (Figure 

9.5), although the individual foraminiferal counts were low, despite increasing the 

samples’ volume. Microfossil analyses was therefore not feasible on the cores from 

Pasture House and no chronology for the site was established.  

 

 

(a) 
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(b) 

Figure 9.5: Foraminiferal diagram from Pasture House showing total individual counts 

(a) Core PH4-a, with dashed lines represent a break in sedimentation (b) Core PH4-

b. All samples including samples with low individual counts (below 40 individuals) 

were included in this diagram 

 

9.6 Summary 

 

The geomorphology and lithostratigraphy at Pasture House suggest that the site is 

composed of relict sand bars and sand dunes, with units of sand interbedded within 

the surface peat unit. These relict sand bars have also been recorded in the inner 

estuary of the Solway Firth, behind the contemporary saltmarshes (Lloyd et al., 1999).  
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CHAPTER 10 

 

PALAEO-TIDAL CHANGES IN THE SOLWAY FIRTH 

 

 

10.0 Introduction 

 

This chapter illustrates the estimated changes in palaeo-tidal range in the Solway 

Firth for the study period between 10 ka BP to present day based on the model 

developed by Hill (personal communication; Chapter 3, Section 3.9.1). The tidal data 

were then used for the correction of the sea-level index points (SLIPs) produced in 

this study along with the existing SLIPs in the Solway Firth, which have not been 

included in the calculation of most of the SLIPs in the region prior to this study. 

Correcting for changes in palaeo-tidal range for SLIPs is important to prevent an 

underestimation or overestimation of the calculated relative sea level (RSL) for each 

SLIP, as changes in the tidal range of the sites will ultimately affect the reference 

water level ascribed to the respective SLIP. 

 

10.1 Palaeo-Tidal Changes in the Solway Firth 

 

Changes in the palaeo-tidal range in the Solway Firth from 10 ka BP to 1 ka BP relative 

to present day are shown in Figure 10.1. The SLIPs produced in this study along with 

the existing SLIPs from the southern and northern Solway Firth were corrected based 

on the palaeo-tidal data, and are presented in the following Section 10.2. The data 

of the presently available SLIPs from the southern and northern Solway Firth were 

obtained from Shennan et al. (2018), with the full details on each SLIPs as provided 

by the authors available in the online database.  
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Figure 10.1: Maps showing the modern tidal range and changes in palaeo-tidal range 

in the Solway Firth from 10 ka BP to 1 ka BP, relative to the modern tidal range 
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10.2 Corrected SLIPs from the Solway Firth 

 

SLIPs produced from this study showing the RSL at the sites investigated, along with 

the existing SLIPs from the northern and southern side of the Solway Firth are 

presented in Table 10.1, 10.2 and 10.3 respectively. Each SLIP was corrected for 

changes in palaeo-tidal range in accordance to their respective time period, with the 

updated RSL values also presented in the tables.   

 

The palaeo-tidal model have a temporal resolution of 1000 years. The 98 SLIPs 

available for the region (including those from this study) were therefore categorised 

into ten different timeslices from 10 ka BP to 1 ka BP based on their mean ages (e.g. 

a SLIP with a mean age of 7320 is included in the 7 ka BP timeslice). 

 

The palaeo-tidal model have a spatial resolution of approximately 1 km along the 

coastline. Therefore, all sites less than 1 km apart from each other would have the 

same tidal range (as they fall within the same triangle cell in the model). As most of 

the sites studied in the Solway Firth are clustered within the same sub-estuaries (e.g. 

in the Cree Estuary and Nith Estuary), different SLIPs from the same timeslice would 

have resulted in the same palaeo-tidal range prediction. However, a more complex 

linear function was also used in the model, which may result in different tidal ranges 

for sites less than a kilometre apart (Hill, personal communication 14th May 2019). 

When the raster files were produced for each timeslice, the changes in palaeo-tidal 

range along the coastline are presented at a 1 km resolution (Figure 10.1).  
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Table 10.1: SLIPs produced in this study corrected for changes in palaeo-tidal range 

Lab Code Lat. Long. Site Region  

Radiocarbon Age 
Cal BP 

(2σ Ranges) Altitude 

(m OD) 
RSL (m) 

Palaeo-

Tidal Range 

Correction 

(m) 

Corrected 

RSL (m) 
BP 

1σ 

Error 
Min Mean Max 

D-AMS 
022222 

54.783 -3.408 Allonby 6377 34 7255 7320 7418 6.65 +1.06±1.46 -0.468 +1.53±1.46 

D-AMS 
025776 

54.783 -3.408 Allonby 7209 41 7954 8031 8158 6.00 +0.42±1.46 -0.468 +0.89±1.46 

D-AMS 
022223 

54.783 -3.408 Allonby 7203 49 7946 8030 8160 5.61 +0.02±1.46 -0.596 +0.62±1.46 

D-AMS 
016391 

54.812 -3.405 
Cowgate 

Farm 
5655 50 6310 6437 6557 7.71 +2.12±1.46 -0.440 +2.56±1.46 

D-AMS 
016392 

54.812 -3.405 
Cowgate 

Farm 
7521 55 8200 8324 8412 6.89 +1.30±1.46 -0.593 +1.89±1.46 

D-AMS 
022226 

54.829 -3.371 Pelutho 6231 35 7016 7146 7254 6.89 +1.35±0.56 -0.469 +1.82±0.56 

D-AMS 
025778 

54.829 -3.371 Pelutho 6456 45 7275 7367 7435 6.00 +0.50±0.57 -0.469 +0.97±0.57 

D-AMS 
022227 

54.829 -3.371 Pelutho 7285 36 8018 8097 8174 5.51 +0.58±0.57 -0.590 +1.17±0.57 

D-AMS 
022224 

54.928 -3.285 Herd Hill 5236 46 5914 6018 6179 8.81 +3.26±0.56 -0.450 +3.71±0.56 

D-AMS 
022225 

54.928 -3.285 Herd Hill 6497 36 7322 7401 7475 8.35 +3.41±0.56 -0.469 +3.88±0.56 
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Table 10.2: Existing SLIPs from northern Solway Firth corrected for changes in palaeo-tidal range 

Lab Code Lat. Long. Site Region 

Radiocarbon Age 
Cal BP 

(2σ Ranges) Altitude 

(m OD) 
RSL (m) 

Palaeo-

Tidal Range 

Correction 

(m) 

Corrected 

RSL (m) 
BP 

1σ 

Error 
Min Mean Max 

Q638 55.00 -3.48 Clarencefield 6645 120 7307 7527 7717 9.32 +4.12±0.43 -0.402 +4.52±0.43 

Beta96322 54.93 -4.45 Cree Estuary 6470 80 7252 7378 7560 8.86 +4.86±0.21 -0.297 +5.16±0.21 

Beta96321 54.93 -4.45 Cree Estuary 5770 90 6350 6571 6784 9.09 +5.49±0.21 -0.282 +5.77±0.21 

SUERC44405 54.93 -4.40 Cree Estuary 7127 26 7877 7958 8005 6.55 +2.42±0.98 -0.297 +2.71±0.98 

BIRM461 55.08 -3.54 Collin 3290 110 3254 3528 3828 9.00 +4.00±0.83 -2.563 +6.56±0.83 

BIRM222 54.97 -3.30 River Annan 7540 150 8015 8342 8626 2.95 -2.07±1.01 -0.512 -1.56±1.01 

UB3903 54.98 -3.09 Inner Solway Firth 7956 62 8631 8821 8998 2.27 -3.24±0.80 -0.465 -2.77±0.80 

SUERC42711 54.93 -4.40 Cree Estuary 7452 25 8197 8266 8343 5.60 +1.87±0.98 -0.678 +2.54±0.98 

Beta120961 54.89 -4.45 Cree Estuary 3380 70 3459 3627 3827 8.44 +4.44±0.21 -2.376 +6.82±0.21 

UB3902 54.98 -3.09 Inner Solway Firth 7794 61 8421 8572 8753 2.41 -2.89±0.21 -0.465 -2.42±0.21 

SUERC44406 54.93 -4.40 Cree Estuary 6963 36 7694 7794 7922 6.90 +2.80±0.21 -0.297 +3.10±0.21 

I5069 54.88 -3.63 Southerness 1850 95 1562 1780 1989 5.30 +0.51±0.34 -2.357 +2.86±0.34 

BIRM415 54.94 -4.42 Nith Estuary 6540 120 7247 7444 7656 6.43 +2.78±0.41 -0.403 +3.18±0.41 

Beta96323 54.91 -4.46 Cree Estuary 8600 90 9444 9594 9887 2.43 -1.17±0.21 -1.208 +0.04±0.21 

Beta105932 54.94 -4.42 Cree Estuary 6100 70 6790 6980 7166 8.66 +4.66±0.21 -0.282 +4.94±0.21 

Beta96327 54.94 -4.42 Cree Estuary 8310 100 9032 9301 9489 -1.15 -5.15±0.21 -1.208 -3.94±0.21 

SUERC42712 54.93 -4.40 Cree Estuary 7088 26 7854 7929 7968 6.42 +2.55±0.98 -0.297 +2.85±0.98 

SUERC44369 54.93 -4.40 Cree Estuary 7980 27 8725 8873 8994 3.17 -0.66±0.98 -0.678 +0.01±0.98 

SUERC44400 54.93 -4.40 Cree Estuary 7049 65 7729 7879 7996 6.49 +2.46±0.98 -0.297 +2.75±0.98 

UB3897 54.98 -3.37 Inner Solway Firth 7302 68 7972 8110 8303 6.64 +1.35±0.21 -0.465 +1.82±0.21 

SUERC44371 54.93 -4.40 Cree Estuary 7409 26 8179 8255 8318 5.60 +1.87±0.98 -0.678 +2.54±0.98 

SRR26 54.93 -4.41 Cree Estuary 4746 50 5325 5492 5588 7.92 +4.07±0.41 -0.141 +4.21±0.41 
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Beta120963 55.01 -3.60 Nith Estuary 5560 60 6222 6355 6472 9.44 +4.35±0.21 -0.380 +4.73±0.21 

UB3899 54.98 -3.37 Inner Solway Firth 6087 186 6506 6958 7413 8.73 +3.44±0.21 -0.400 +3.84±0.21 

Beta100919 54.93 -4.40 Cree Estuary 6800 130 7439 7659 7925 7.16 +3.16±0.21 -0.297 +3.46±0.21 

Beta84193 54.88 -3.63 Southerness 1760 70 1534 1678 1863 4.92 -0.17±0.21 -2.357 +2.19±0.21 

SUERC44399 54.93 -4.40 Cree Estuary 7107 26 7865 7945 7996 6.42 +2.55±0.98 -0.297 +2.85±0.98 

Beta96326 54.94 -4.42 Cree Estuary 8190 80 8996 9162 9406 -1.13 -4.73±0.21 -1.208 -3.52±0.21 

SUERC44398 54.93 -4.40 Cree Estuary 7344 65 8018 8154 8320 5.54 +1.67±0.98 -0.678 +2.35±0.98 

BIRM323 54.92 -3.58 Southerness 9390 130 10259 10636 11088 -1.05 -4.50±0.89 -5.170 +0.67±0.89 

GU4658 55.02 -3.63 Nith Estuary 7680 50 8390 8473 8575 3.34 -1.26±0.22 -0.521 -0.74±0.22 

Beta100914 54.93 -4.40 Cree Estuary 7820 80 8424 8621 8975 3.45 -0.35±0.41 -0.678 +0.33±0.41 

Beta100917 54.93 -4.40 Cree Estuary 7510 310 7684 8344 9071 6.96 +2.96±0.21 -0.678 +3.64±0.21 

GU4647 55.03 -3.64 Nith Estuary 7710 50 8413 8493 8585 3.78 -0.82±0.22 -0.521 -0.30±0.22 

GU4652 55.04 -3.65 Nith Estuary 7090 90 7696 7908 8151 5.82 +0.73±0.21 -0.403 +1.13±0.21 

GU4646 55.03 -3.64 Nith Estuary 7360 100 7998 8179 8374 6.82 +1.73±0.21 -0.521 +2.25±0.21 

GU4645 55.03 -3.64 Nith Estuary 6950 80 7626 7786 7945 7.02 +1.73±0.21 -0.403 +2.13±0.21 

GU4657 55.02 -3.63 Nith Estuary 7220 70 7935 8044 8179 6.24 +1.15±0.21 -0.521 +1.67±0.21 

Beta100915 54.93 -4.40 Cree Estuary 7830 110 8426 8661 8980 5.81 +1.81±0.21 -0.678 +2.49±0.21 

Beta83747 54.90 -4.45 Nith Estuary 3680 60 3846 4018 4221 8.97 +4.97±0.21 -3.718 +8.69±0.21 

GU4656 55.02 -3.63 Nith Estuary 6790 90 7487 7642 7826 6.90 +2.30±0.21 -0.403 +2.70±0.21 

GU375 54.97 -3.29 Inner Solway Firth 7812 131 8399 8645 8994 4.57 -0.65±0.43 -0.465 -0.18±0.43 

Beta83746 54.90 -4.46 Nith Estuary 4050 90 4296 4559 4829 9.23 +5.23±0.21 -3.718 +8.95±0.21 

GU64 54.97 -3.30 Newbie 7254 101 7873 8082 8319 5.79 +0.77±0.22 -0.515 +1.28±0.22 

SUERC44397 54.93 -4.40 Cree Estuary 7392 39 8060 8238 8340 5.54 +1.67±0.98 -0.678 +2.35±0.98 

SUERC44386 54.93 -4.40 Cree Estuary 7507 25 8214 8350 8388 5.47 +1.60±0.98 -0.678 +2.28±0.98 

SUERC44387 54.93 -4.40 Cree Estuary 7831 65 8448 8626 8973 3.18 -0.65±0.98 -0.678 +0.02±0.98 

Beta84189 54.90 -4.46 Cree Estuary 3050 60 3075 3252 3382 9.60 +5.60±0.21 -2.376 +7.98±0.21 

Beta120962 54.89 -4.44 Cree Estuary 3470 80 3560 3743 3969 7.96 +3.96±0.21 -2.376 +6.34±0.21 

SUERC42708 54.93 -4.40 Cree Estuary 7982 27 8725 8874 8995 3.16 -0.71±0.98 -0.678 -0.03±0.98 

SUERC44385 54.93 -4.40 Cree Estuary 7977 26 8725 8871 8993 3.17 -0.66±0.98 -0.678 +0.01±0.98 
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Beta83750 54.91 -4.45 Nith Estuary 4050 50 4418 4538 4807 8.98 +4.98±0.21 -3.718 +8.70±0.21 

Beta96325 54.93 -4.40 Cree Estuary 8580 80 9433 9561 9765 -0.51 -4.51±0.21 -1.208 -3.30±0.21 

BIRM325 54.97 -3.31 Inner Solway Firth 7400 150 7938 8214 8511 5.60 +0.58±1.01 -0.465 +1.05±1.01 

BIRM324 54.98 -3.38 Inner Solway Firth 6470 280 6734 7337 7922 8.73 +3.24±0.23 -0.387 +3.63±0.23 

UB3895 54.98 -3.37 Inner Solway Firth 7033 57 7731 7868 7965 6.87 +2.07±0.21 -0.387 +2.46±0.21 

SUERC42709 54.93 -4.40 Cree Estuary 7936 27 8640 8770 8977 3.17 -0.66±0.98 -0.678 +0.01±0.98 

Beta83748 54.92 -4.41 Nith Estuary 3810 70 3989 4209 4415 8.59 +4.59±0.21 -3.718 +8.31±0.21 

BIRM189 54.94 -4.42 Cree Estuary 6240 240 6566 7107 7576 6.38 +2.53±0.41 -0.297 +2.83±0.41 

Beta96320 54.93 -4.45 Cree Estuary 5030 110 5489 5779 5998 9.16 +5.16±0.21 -0.141 +5.30±0.21 

Beta96324 54.93 -4.40 Cree Estuary 8400 80 9142 9409 9538 0.88 -2.72±0.21 -1.208 -1.51±0.21 

BIRM258 55.02 -3.52 Bankend 5410 160 5761 6184 6538 6.00 +0.90±0.22 -0.381 +1.28±0.22 

Beta83749 54.93 -4.40 Nith Estuary 4010 80 4244 4495 4814 8.94 +4.94±0.21 -3.718 +8.66±0.21 

Beta100918 54.93 -4.40 Cree Estuary 7210 120 7795 8039 8312 7.09 +3.49±0.21 -0.678 +4.17±0.21 

Beta100916 54.93 -4.40 Cree Estuary 7240 90 7868 8068 8302 5.86 +2.26±0.21 -0.678 +2.94±0.21 

GU4650 55.04 -3.65 Nith Estuary 7540 90 8178 8346 8537 4.59 -0.01±0.21 -0.521 +0.51±0.21 

Beta83751 54.92 -4.41 Nith Estuary 4330 80 4647 4929 5283 8.21 +4.21±0.21 -3.718 +7.93±0.21 

Beta92209 54.93 -4.40 Cree Estuary 9680 50 10432 10578 10710 -9.32 -9.77±0.21 -3.592 -6.18±0.21 

GU4653 55.04 -3.65 Nith Estuary 7770 60 8414 8546 8693 3.38 -1.42±0.21 -0.521 -0.90±0.21 

GU4649 55.04 -3.65 Nith Estuary 7210 100 7831 8038 8298 4.68 -0.41±0.21 -0.521 +0.11±0.21 

GU4654 55.04 -3.64 Nith Estuary 7460 100 8039 8270 8420 6.10 +1.01±0.21 -0.521 +1.53±0.21 

GU4655 55.02 -3.63 Nith Estuary 5910 70 6553 6736 6922 7.43 +2.34±0.21 -0.380 +2.72±0.21 

SUERC44407 54.93 -4.40 Cree Estuary 6890 64 7607 7729 7916 6.90 +2.80±0.21 -0.297 +3.10±0.21 

GU4648 55.03 -3.64 Nith Estuary 7170 80 7847 7994 8168 7.27 +4.15±2.67 -0.403 +4.55±2.67 
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Table 10.3: Existing SLIPs from southern Solway Firth corrected for changes in palaeo-tidal range 

Lab Code Lat. Long. Site Region 

Radiocarbon 

Age 

Cal BP 

(2σ Ranges) Altitude 

(m OD) 
RSL (m) 

Palaeo-

Tidal Range 

Correction 

(m) 

Corrected 

RSL (m) 

BP 
1σ 

Error 
Min Mean Max 

HV4713 54.87 -3.19 Inner Solway Firth 5385 280 5491 6159 6794 6.17 +0.87±0.21 -0.400 +1.27±0.21 

HV5228 54.87 -3.19 Inner Solway Firth 6870 95 7571 7718 7929 4.66 -0.14±0.21 -0.387 +0.25±0.21 

HV4418 54.83 -3.37 Inner Solway Firth 4845 100 5321 5580 5877 8.70 +3.60±0.21 -0.227 +3.83±0.21 

UB3892 54.91 -3.14 Inner Solway Firth 7353 53 8030 8167 8313 4.55 -0.76±0.21 -0.465 -0.29±0.21 

B103261 54.91 -3.15 Inner Solway Firth 2430 60 2351 2505 2708 6.85 +1.05±0.21 -2.483 +3.53±0.21 

B103262 54.91 -3.11 Inner Solway Firth 6510 60 7293 7425 7561 7.16 +1.36±0.21 -0.387 +1.75±0.21 

UB4054 54.91 -3.11 Inner Solway Firth 6563 110 7264 7465 7623 6.68 +1.37±0.21 -0.387 +1.76±0.21 

UB3893 54.91 -3.15 Inner Solway Firth 2587 56 2488 2711 2840 8.12 +2.32±0.21 -2.483 +4.80±0.21 

HV6208 54.93 -3.21 Inner Solway Firth 6850 60 7583 7686 7822 4.73 -0.29±0.30 -0.387 +0.10±0.30 

HV6207 54.93 -3.21 Inner Solway Firth 5875 220 6282 6714 7251 5.95 +0.43±0.30 -0.400 +0.83±0.30 

UB3894 54.91 -3.14 Inner Solway Firth 7806 81 8414 8599 8973 4.44 -1.07±1.26 -0.465 -0.60±1.26 

UB3891 54.91 -3.11 Inner Solway Firth 7315 79 7981 8124 8317 6.19 +0.68±1.26 -0.465 +1.15±1.26 

HV4714 54.87 -3.19 Inner Solway Firth 4725 190 4880 5419 5890 4.80 +1.68±2.67 -0.227 +1.91±2.67 
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10.3 Summary 

 

All the available SLIPs in the Solway Firth including those produced in this study have 

been corrected for changes in the tidal range over the Holocene. Tidal range in the 

Solway Firth increased between 8 ka BP to 5 ka BP, corresponding to the Main 

Postglacial Transgression in the area (and possibly combined with the freshwater 

input due to the drainage of glacial lakes Agassiz-Ojibway) and later decreased. The 

tidal range in the study region again showed an increase based on the modern day 

data. The changes in palaeo-tidal ranged between 0.227 m (HV47114) to 5.170 m 

(BIRM323), which were estimated for the time period of 5 ka BP and 10 ka BP 

respectively. The tidal range in the Solway Firth during the study period (10 ka BP to 

1 ka BP) are consistently smaller than the present day tidal range, which have resulted 

in an underestimation of the altitude of RSL prior to the corrections (discussed in 

Chapter 11). The correction of palaeo-tidal range in the Solway Firth over the study 

period will now allow the identification of potentially different RSL changes between 

the northern shore and the southern shore of the Solway Firth due to the differential 

crustal rebound between the two localities.  
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CHAPTER 11 

 

DISCUSSION 

 

 

11.0 Introduction  

 

This chapter discusses the results in this research in order to address the main 

objectives set out in this research: 

 

1. To generate sea-level index points (SLIPs) from sites located along the currently 

understudied southern shore of the Solway Firth 

 

2. To define the timing of sea-level and broader environmental changes recorded 

at each site using microfossil analyses and radiocarbon dating  

 

3. To establish the contemporary distribution of foraminifera from three saltmarshes 

located in the study region 

 

4. To examine, and correct for palaeo-tidal changes of the SLIPs produced in this 

study, and the ones that currently exist for the northern and southern Solway 

Firth 

 

5. To compare the corrected SLIPs with relative sea-level (RSL) values produced 

from glacio-isostatic models 

 

A critique of the methods used to reconstruct sea-level changes including an 

assessment of the contemporary foraminiferal and saltmarsh environments 

investigated are presented. This is followed by a discussion on the results obtained 

from the four palaeo sites investigated, illustrating the general trend of Holocene RSL 

in the region based on the new SLIPs produced. A comparison of SLIPs between the 

northern and southern Solway Firth (including those produced from this study) is then 

considered, examining if differential crustal rebound between the two localities exists, 

as evidenced by different records of relative sea level of the SLIPs.  
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11.1 Reliability of Palaeo Sea-Level Techniques 

 

In order to reconstruct Holocene RSL and environmental changes along the Cumbrian 

coastline, the methodology included the selection of suitable study sites, microfossil 

analyses, development of a local transfer function, the determination of indicative 

meanings and calculation of SLIPs. The following sections will discuss these methods 

and techniques. 

 

11.1.1 Preservation of Microfossils in the Palaeo Sites Cores  

 

Several issues were identified with the preservation of microfossils. In the core 

obtained from Pasture House (PH4), and in the deeper section of the core from 

Cowgate Farm (CGF1), very poor preservation of the microfossils was noted, and this 

was attributed to the generally high sand content within the respective sediment 

units. From PH4 and CGF1, samples were prepared for diatom analysis. Very small 

and broken fragments of diatoms were observed but these were not identifiable. 

Samples were prepared for foraminiferal analysis on the core from Pasture House. 

However, foraminifera occurred at low frequencies (Chapter 9; Section 9.5). Good 

preservation of foraminifera was otherwise observed in cores from the four sites 

investigated.  

 

The most crucial issue encountered with respect to the preservation of microfossils 

from all four sites (A7, CGF1, P12 and HH4) was the dissolution of the calcareous 

foraminiferal species in the fossil cores. No calcareous species were observed in all 

four cores in this study, although the presence of test linings was observed at Allonby, 

Pelutho and Herd Hill. The dissolution of the calcareous foraminifera in an acidic, low 

pH and organic saltmarsh deposit may result in a biased foraminiferal assemblage 

(e.g. Edwards & Horton, 2000; Gehrels et al., 2001; Leorri et al., 2010; Callard et al., 

2011; Best, 2016). If the calcareous species were deposited higher in the organic and 

acidic saltmarsh environment due to the macrotidal range of the Solway Firth, as was 

observed in the contemporary samples in this study, the calcareous species may have 

been dissolved and therefore not preserved in the sediment cores. However, the 

dissolution and poor preservation of the calcareous species were also noted in the 

minerogenic units of marine origin, with only test linings present (at Allonby and Herd 

Hill, and in very low frequencies at Pelutho). This led to a biased foraminiferal 
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assemblage within the core, with the saltmarsh foraminiferal species dominating the 

minerogenic units as well as the organic units of saltmarsh origin. The post 

depositional dissolution of the calcareous species may be due to input of acidic pore 

water at the sites, and this was also recorded at Boustead Hill in the southern Solway 

Firth (Lloyd et al., 1999).  

 

The dissolution of calcareous foraminiferal species in the cores has therefore led to 

some difficulty in the interpretation of RSL changes based solely on the foraminiferal 

assemblages. However, the changes in saltmarsh foraminifera assemblage and 

presence of test linings, combined with the lithostratigraphical changes and pollen 

analysis has enabled in the reconstruction of Holocene RSL at each site investigated.  

 

11.1.2 Determination of Indicative Meaning for the SLIPs 

 

The indicative meaning of SLIPs can be assigned based on either the environmental 

context of the microfossil proxy utilised (e.g. Zong & Tooley, 1996; Lloyd et al., 1999; 

Lloyd et al., 2013) or quantitatively through the development of transfer functions 

(e.g. Horton et al., 1999; Edwards, 2001; Edwards, 2006; Horton & Edwards, 2006; 

Barlow et al., 2013; 2014). The combined information on the lithostratigraphy, 

sediment composition and preserved microfossils within the sample allowed the 

determination of the indicative meaning for the calculation of SLIPs in this study. 

However, this could only be achieved when there was good preservation of 

microfossils within the fossil core. At Allonby and Pelutho, generally good preservation 

of microfossil was noted, with changes in foraminiferal assemblages corresponding 

to the different sediment units observed. However at Cowgate Farm and Herd Hill 

foraminifera were only present in one stratigraphic unit. The dissolution of the 

calcareous foraminiferal assemblages resulted in the biased dominance of the 

agglutinated foraminiferal assemblages, although the presence of test linings that 

occurred only within the minerogenic units increased the confidence in the 

determination of the indicative meaning of samples from the different 

lithostratigraphic units.  

 

Despite the development of transfer function in this study, the high number of poor 

modern analogues in all of the fossil cores from Allonby, Cowgate Farm, Pelutho and 

Herd Hill was observed. This was attributed mainly to the dissolution of the calcareous 
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foraminiferal assemblages in the fossil samples and the low significance of elevation 

in explaining the variation in foraminiferal assemblage. Therefore, the predicted 

palaeo marsh surface elevation (PMSE) values based on the utilised transfer function 

on each core were ultimately deemed unreliable.  

 

In this study, two methods of ascribing the indicative meaning of a SLIP were 

adopted. The first was based on the environmental context of the microfossil proxy 

utilised for the determination of the indicative meaning of the SLIPs, and the second 

was the development of a transfer function (Figure 4.23). However, the prediction of 

PMSE value for each SLIP was eventually unsuccessful, due to the dissolution of the 

calcareous foraminiferal assemblages within the fossil cores. The indicative meaning 

for all SLIPs in this study was therefore assigned with respect to the environmental 

preferences of the foraminiferal assemblages present in each sample. The 

determination of the indicative meanings for each sample in this study provided SLIPs 

that were in general agreement with the other available SLIPs (Huddart et al., 1977; 

Lloyd et al., 1999) and the modelled RSL curve for the southern Solway Firth in 

Bradley et al. (2011), Kuchar et al. (2012) and Shennan et al. (2018), thus providing 

confidence in the approach utilised.  

 

11.1.3 Effect of Changes in Palaeo-Tidal Range  

 

The two significant sources of vertical uncertainties in the calculation of SLIPs are the 

changes in the tidal range over time and the post-depositional compaction of 

sediments. These were addressed and quantified in the calculation of SLIPs in this 

study and have resulted in improved constraints of Holocene RSL changes for the 

study area. The changes of tidal range over the Holocene were also calculated for all 

the available SLIPs from the Solway Firth for the study period between 10 ka BP to 1 

ka BP.  

 

The changes of the tidal range for the SLIPs produced in this study throughout the 

Holocene occurs on a decimetre scale (Table 10.1). This had led to a minimal change 

in the calculation of SLIPs at respective palaeo sites (Allonby, Cowgate Farm, Pelutho 

and Herd Hill; Figure 11.1), as well as the resulting interpretation of Holocene sea-

level changes at these sites. The tidal range changes over the Holocene however, 

may still potentially affect the coastal geomorphology and sedimentation of the area. 
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Although the effect of palaeo-tidal changes in the study area of this present study 

appear to be minimal, tidal range variations throughout the Holocene have proved to 

be significant (up to a metre scale) elsewhere (e.g. Horton et al., 2013; Best, 2016) 

and along the northern shore of the Solway Firth (Chapter 10; Section 10.2).  A more 

significant tidal range variation between present day and the past had led to an 

underestimation of RSL at the other sites in the Solway Firth, hence highlighting the 

importance of applying the corrections.  

 

11.1.4 Effect of Compaction of Sediments in the Palaeo Cores 

 

In general, minimal post-depositional lowering of sediments is observed in all of the 

cores utilised in this study. The minimal post-depositional lowering of the sediments 

may be attributed to the generally shallow depth of the cores from Allonby (172 cm), 

Cowgate Farm (152) and Herd Hill (168 cm), with the core from Pelutho recording 

the deepest sediment sequence of 315 cm. The effect of compaction which resulted 

in post-depositional lowering of the sediments is therefore concluded not to have 

resulted in a significant variation in the calculation of SLIPs, and therefore not have 

led to a misinterpretation of the reconstructed sea-level trends in this study. However, 

cores with deeper lithostratigraphic sequences and more pronounced transgressive 

changes are prone to larger effects of compaction and post-depositional lowering, 

leading to an increased distortion of the reconstructed sea-level trend (Brain et al., 

2015). 

 

11.1.5 Chronology of the Dated Samples  

 

The chronology for the changes in lithostratigraphy and biostratigraphy (foraminifera) 

were established through AMS radiocarbon dating of bulk sediments. A total of 14 

dates were obtained (Sections 5.5; 6.5; 7.5 and 8.5) and out of the 14 dated samples, 

10 were utilised in the calculation of SLIPs to constrain Holocene RSL changes at the 

respective sites. Three of the dates (ALL-78, CGF-127 and HH-146) produced ages 

that were out of sequence, while sample CGF-135/141 was excluded due to the lack 

of preserved microfossils indicating a marine origin. 

 

Sample ALL-78 was obtained from a blue/grey silt-clay unit most likely deposited at 

the site at Allonby during an event of increased relative sea level, and the effect of 
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tidal washing and the resultant sediment reworking and resuspension within the 

intertidal mudflat environment might have led to the incorporation of older sediment 

(hence older carbon) into the sample which led to the contamination of the date. 

Samples CGF-127 and HH-146 both resulted in ages younger than expected (Table 

6.2 and Table 8.2). Similar issues of reworked sediments and penetration of root 

fragments into the lower sediment column may have resulted in the incorporation of 

younger carbon into the samples.  

 

All three samples that produced out of sequence ages were dated through bulk 

sediment. Alternative dating methods such as the dating of plant macrofossils which 

is commonly employed, or through the dating of individual foraminiferal tests (e.g. 

Martin et al., 1996; Cearreta & Murray, 2000; Allison & Austin, 2003; Hearty et al., 

2004; Kaufman et al., 2008; Wacker et al., 2013) may also be explored, although the 

original issue of the lack of preserved microfossils, and absence of suitable plant 

macrofossils in the minerogenic units of the respective cores from Allonby, Cowgate 

Farm and Herd Hill may limit or prevent the success of the alternative dating 

approaches. Utilisation of geochemical techniques (e.g. identification of stable carbon 

isotope) on the fossil cores which have been employed to reconstruct saltmarsh 

accretion history (Dyer et al., 2002; Tsompanoglou et al., 2011), to identify storm 

records in lake sediments (Orme et al., 2016) and to identify fluctuations in palaeo 

relative sea level, river discharge and catchment disturbance (Lamb et al., 2007; Khan 

et al., 2015) may also serve as an alternative to overcome some of the dating issues 

encountered and mentioned above.  

 

11.1.6 Utilisation of Pollen Analysis as a Chronostratigraphic Marker 

 

Generally good preservation of pollen grains was noted in the cores from Cowgate 

Farm and Herd Hill. The pollen analyses undertaken at Cowgate Farm and Herd Hill 

therefore have provided additional evidence of the broader environmental changes 

that have occurred in the region. For example, in core CGF1 from Cowgate Farm, the 

pollen assemblage, with the presence of saltmarsh species (e.g. Aster-type and 

Artemisia), supported the biostratigraphic changes evidenced by the presence of 

foraminifera in the core, that indicated a shift from a more freshwater environment 

into a saltmarsh environment. A change in the dominance between Cyperaceae and 

Poaceae in Cowgate Farm (zone CGF-4) and Herd Hill (zone HH-2) which potentially 
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indicated a change in environment from reed swamp to a more freshwater limnic 

sediment and turfa was also supported by the absence of foraminifera from the cores, 

which was interpreted as an indicator of marine regression from the site. The 

correspondence between the lithostratigraphic changes and the presence/absence of 

foraminifera along with the pollen analysis undertaken at Cowgate Farm and Herd 

Hill, has led to an increased confidence in the indicative meaning ascribed to the 

SLIPs obtained at the respective zones. 

 

The pollen analyses undertaken has also provided chronostratigraphic markers when 

it was compared to other published pollen records. For example, although the start 

of zone HH-4 at Herd Hill which recorded a significant decrease of arboreal pollen 

was not dated, comparison was made with similar changes in pollen assemblages 

from other sites and related to the anthropogenic activities in the area (Chapter 8; 

Section 8.10).  

 

11.1.7 Contemporary Saltmarsh Environment and Reliability of the 

Transfer Function Developed 

 

A local training set was developed in this study, comprising of 72 contemporary 

foraminifera samples obtained from three different contemporary marshes (Chapter 

4; Section 4.1). The contemporary foraminiferal samples collected in this study 

provided a continuous record of foraminifera covering the different tidal ranges 

present at each site.  

 

For the local Solway training set, the five measured environmental parameters 

(elevation, pH, LOI, silt and sand) accounted for 40% of the total foraminiferal 

assemblage variation (Chapter 4; Section 4.5.4). From this 40%, elevation explained 

only 1% of the foraminiferal assemblage variation, while LOI, silt, sand and PH 

accounted for 4%, 2%, 2% and 8% respectively. The extremely low percentages of 

elevation in explaining the variation of foraminiferal assemblages may be due to the 

lower vertical range sampled at Skinburness Marsh, Cardurnock Marsh and Bowness 

Marsh (1.9, 5.0 and 4.0 metres respectively) which covered the highest astronomical 

tide (HAT) to mean high water neap tide (MHWNT). In comparison, the actual tidal 

range at each site covering HAT to mean low water spring tide (MLWST) covers a 

distance of 11.2, 14.2 and 11.6 metres respectively. This may result in a significantly 
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reduced statistical significance of elevation in explaining the total variation in 

foraminiferal assemblages (Mills et al., 2013; Best, 2016).  

 

Although the transect sampled at each contemporary marsh in this study covered the 

different saltmarsh zonation (upper, middle to lower and intertidal mudflat), the 

collection of more samples from the intertidal mudflat environment may have resulted 

in a higher statistical significance of elevation when explaining the variation of the 

foraminifera assemblages. For example, the tidal range sampled at Skinburness 

Marsh which covered the HAT to MHWNT (1.9 metres) was restricted mainly to the 

vegetated saltmarsh environment and accounted for 17% of the complete tidal range, 

while the tidal range covering MHWNT to MLWST (9.3 metres) in the intertidal 

mudflat environment accounted for 83% of the total tidal range but resulted in only 

one sample being collected. Due to the nature of the estuary which restricted the 

collection of more intertidal mudflat samples, only 17 samples in total were collected 

from the intertidal mudflat environment for the Solway training set as a whole, in 

comparison to 55 samples collected from the vegetated saltmarsh environment.  

 

The transect sampled at Skinburness Marsh, Cardurnock Marsh and Bowness Marsh 

covered 17%, 35% and 35% of the total vertical tidal range at each site respectively. 

The inability to collect more samples from the intertidal mudflat environment allowing 

the whole tidal range to be considered, e.g. from HAT to mean tide level (MTL) or 

MLWST in a macrotidal estuarine settings was due to the locations being too far out 

into the estuary, resulting in potentially unsafe sample collection. Mills et al. (2013) 

suggested that when the sampled elevation range compared to the whole tidal range 

is low (<10%), the significance of the intercorrelations between the environmental 

variables in explaining the foraminiferal distribution at the site will be greater than 

that of the elevation, and this is a challenging issue that is often encountered in a 

macrotidal estuarine setting.  

 

To overcome the issue of non-representation of the complete vertical tidal range in a 

macrotidal environment, Hill et al. (2007) sampled two sites within Severn Estuary 

and was successful in collecting samples from the complete vertical tidal range. 

However, despite sampling at three different saltmarshes located in the Solway Firth 

and Moricambe Bay and sampling a tidal range of >10%, sampling the entire tidal 

range was not possible. The issue on incomplete vertical tidal range sampling was 
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also observed in a study undertaken at the Humber Estuary, although this was mainly 

attributed to the land reclamation and presence of embankments within the estuary 

which resulted in a limited upper saltmarsh environment (Best, 2016).  

 

The intercorrelation between the five environmental parameters accounted for 83% 

of the total foraminifera assemblage variation (Chapter 4; Section 4.5.4), illustrating 

the highly dynamic and interdependent relationship between the environmental 

parameters measured. The intercorrelation at Skinburness Marsh, Cardurnock Marsh 

and Bowness Marsh accounted for 23%, 74% and 50% respectively. The high 

intercorrelation between the environmental parameters is consistent with the findings 

of other studies undertaken in Cumbria (e.g. Zong & Horton, 1999), where the 

intercorrelation between the environmental parameters at Morecambe Bay accounted 

for 42% of the microfossil assemblage variation. As the intercorrelation between the 

environmental parameters for the Solway training set was 83%, high scattering 

between the samples was observed as a result in the local transfer function developed 

(Chapter 4; Section 4.7). This resulted in the poor performance of the local transfer 

function and the high number of poor modern analogues for the fossil samples. 

 

The three contemporary saltmarshes investigated in this study were located in 

different parts of the estuary and located relatively near to the palaeo study sites, to 

provide the best representation of the fossil foraminiferal samples in the cores 

(Horton & Edwards, 2006). However, the environment of the area might have 

changed over time, and the present contemporary samples may no longer reflect the 

environment during deposition of the fossil assemblages, thus resulting in the poor 

modern analogues for the fossil samples. The inclusion of a single environmental 

parameter (elevation) within the transfer function excludes the effects of the other 

environmental variables, which contributed to the variation in foraminiferal 

assemblages (Zong & Horton, 1999). The exclusion of the other environmental 

parameters may also explain the high number of poor modern analogues for the fossil 

samples.  

 

Apart from the low significance of elevation in explaining the foraminiferal assemblage 

variation thus resulting in poor modern analogues for the fossil samples, the high 

number of poor modern analogues was also attributed to the dissolution of the 

calcareous foraminiferal assemblage in the fossil cores, as discussed in Section 11.1.1 
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and Chapter 4 (Section 4.8). The absence of calcareous species in all of the fossil 

cores led to a biased assemblage dominated by the agglutinated foraminifera in all 

sediment sequences present in the fossil cores. This was not represented in the 

contemporary samples.  

 

The dissolution of the calcareous species with only test linings present in fossil 

samples was also highlighted in Edwards & Horton (2000) and Edwards (2001). In 

an attempt to overcome the issue of the high number of fossil samples having poor 

modern analogues, all the calcareous species in the contemporary samples were 

grouped and classed as a single taxon, to be comparable to the test linings found in 

the fossil samples. This resulted in an agglutinated foraminifera-based transfer 

function that was capable of only distinguishing between the high saltmarsh 

environment and low saltmarsh/intertidal mudflat environment (Edwards & Horton, 

2000).  

 

Several issues however should be taken into consideration when developing the 

agglutinated foraminifera-based transfer function, in particular the fragile nature of 

the test linings itself which may be damaged or removed from the record during 

sediment accumulation or during sample preparation in the laboratory. When this 

occurs, the test linings are more likely to be under represented in the fossil samples, 

and therefore the total contribution of the test linings in comparison to the 

agglutinated species would be underestimated. The agglutinated foraminifera-based 

transfer function resulted in less samples having poor modern analogues, however, 

the transfer function developed was less precise with an increased scatter of the data, 

reflecting the fact that the assemblages dominated by a single calcareous component 

were less sensitive to changes in elevation. It was therefore concluded that the 

changes in the single calcareous species taxon could not be used to refine the sea-

level reconstruction (Edwards & Horton, 2000).  

 

In conclusion, the utilisation of a local training set developed from the contemporary 

samples collected in the Solway Firth was unsuccessful, and for this study was 

deemed to be an invalid method in producing a transfer function for the 

reconstruction of RSL changes at the palaeo study sites.   
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11.1.8 Summary 

 

The methods and techniques used to reconstruct Holocene RSL changes along the 

Cumbrian coastline were deemed appropriate and successful. Ten new SLIPs have 

been produced from the sites at Allonby, Cowgate Farm, Pelutho and Herd Hill. The 

utilisation of transfer functions to predict the SWLI of the fossil foraminiferal 

assemblages based on their contemporary counterparts were however unsuccessful, 

and this was mainly due to the absence of calcareous foraminifera assemblages in 

the fossil cores as a result of dissolution of the tests. The use of a different microfossil 

proxy (e.g. diatoms) in addition to foraminifera, may be able to solve the issues 

encountered and should be considered in future studies of the area, although poor 

preservation of diatoms in particular within the sediments with increased sand content 

were also noted at some of the sites investigated in this study. The identification of 

suitable sites in the area which contain undisturbed and preserved sedimentary 

sequences, with good preservation of microfossil are therefore crucial for further 

reconstruction of palaeo sea-level changes along the Cumbrian coastline.  

 

11.2 Holocene RSL Changes: Records from Allonby, Cowgate Farm, 

Pelutho and Herd Hill 

 

The research undertaken in this study has revealed two episodes of Holocene RSL 

change, which are most likely associated with the Main Postglacial Transgression, 

although the transgression associated with the drainage of the glacial Lake Agassiz-

Ojibway in North America may also have been represented at the sites. Holocene RSL 

changes were constrained at three coastal sites (Allonby, Cowgate Farm and Pelutho), 

and at one inner estuary site (Herd Hill). This allowed comparison of the sea-level 

records from the two different geomorphological settings, as well as a comparison of 

the RSL changes in the study area as a whole. The RSL changes observed at each 

site are summarised in the following sections, with the SLIPs produced from each site 

also presented. 
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11.2.1 Allonby 

 

An episode of marine transgression was recorded at Allonby based on 

lithostratigraphical and biostratigraphical evidence. The transgressive contact at 

Allonby was evidenced by the presence of foraminifera in the silty peat with 

Phragmites unit at a depth of 1.38 m (5.62 m OD) resulting in a RSL of +0.62±1.46 

m, and this marine transgression was dated at 8160-7946 cal BP. The regressive 

contact at Allonby indicating RSL fall at the site was dated at 7418-7255 cal BP, at a 

depth of 0.35 m (6.65 m OD) recording a RSL of +1.53±1.46 m. This was evidenced 

by the disappearance of foraminifera from core A7. The sea-level rise recorded at 

Allonby is most likely associated with the Main Postglacial Transgression or a 

combination of both Main Postglacial Transgression and the drainage of Lake Agassiz-

Ojibway. The period of marine transgression at Allonby lasted for a duration of 

approximately 711 years.  

 

11.2.2 Cowgate Farm 

 

Microfossil evidence from core CGF1 suggests an episode of higher than present 

relative sea level occurred at the site in Cowgate Farm. A transgressive contact was 

evidenced by the presence of foraminifera in the peat with Phragmites unit at 1.11 

m (6.89 m OD), and this was dated at 8200-8412 cal BP which recorded a RSL of 

+1.89±1.46 m. The regressive contact in core CGF1 was recorded at 0.29 m (7.71 m 

OD) evidenced by the absence of foraminifera in the core. This marine regression 

from the site at Cowgate Farm was recorded at 6557-6310 cal BP, which resulted in 

a RSL of +2.56±1.46 m. It is probable that the period of RSL rise at Cowgate Farm 

is correlated with the Main Postglacial Transgression, although the date of the 

transgressive contact would suggest an earlier transgression than at the other sites 

investigated. The period of RSL rise at Cowgate Farm lasted for approximately 1887 

years. Given the longer duration of increased marine influence at Cowgate Farm, it is 

possible that the marine transgression recorded is a combination of both Main 

Postglacial Transgression and the transgression related to the drainage of the glacial 

Lake Agassiz-Ojibway.  
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11.2.3 Pelutho 

 

Two episodes of marine transgression were recorded at the site in Pelutho based on 

lithostratigraphical and biostratigraphical evidence. The first period of higher than 

present RSL of +1.17±0.57 m was recorded at a depth of 2.89 m (5.51 m OD), 

corresponding to the first presence of foraminifera in the lower blue/grey silt-clay 

unit. The first transgressive contact at Pelutho was dated at 8174-8018 cal BP, and 

the date would suggest that the marine transgression into the site may have resulted 

from marine transgression associated with the Main Postglacial Transgression or a 

combination of both Main Postglacial Transgression and the drainage of Lake Agassiz-

Ojibway, similar to those recorded at Allonby and Cowgate Farm. The second 

occurrence of foraminifera in core P12 in the organic unit at a depth of 2.40 m (6.00 

m OD) recorded the second transgressive contact at Pelutho and a RSL of +0.97±0.57 

m, and resulted in a date of 7435-7275 cal BP. The second episode of sea-level rise 

at Pelutho ceased at 7254-7016 cal BP, at a depth of 1.51 m (6.89 m OD) and a RSL 

of +1.82±0.56 m, which was evidenced by the disappearance of foraminifera from 

core P12. The duration of the first episode of marine transgression into the site is 

unknown. The second episode of marine transgression and regression at Pelutho was 

recorded over a shorter period of 221 years. The combined duration from the first 

transgressive contact until the final regressive contact at Pelutho was 951 years.  

 

11.2.4 Herd Hill 

 

Based on the lithostratigraphical and biostratigraphical evidence, an episode of higher 

than present RSL was recorded at Herd Hill, with the transgressive contact at 1.15 m 

(8.35 m OD) at a date of 7475-7322 cal BP, evidenced by the appearance of 

foraminifera in core HH4 resulting in a RSL of +3.88±0.56 m. The period of higher 

RSL at Herd Hill ceased at 6179-5914 cal BP, at a depth of 0.69 m (8.81 m OD) and 

recorded a RSL of +3.71±0.56 m. The episode of RSL rise at Herd Hill was recorded 

over the duration of approximately 1383 years and is most likely correlated with the 

Main Postglacial Transgression in the Solway Firth. 
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11.2.5 SLIPs 

 

Ten new SLIPs for the northwest of Cumbria located on the southern shore of the 

Solway Firth were produced in this study (Figure 11.1).  

 

Figure 11.1: SLIPs produced in this study plotted against the available SLIPs from the 

southern Solway Firth. Circle symbol = Allonby; Square symbol = Cowgate Farm; 

Triangle symbol = Pelutho; Diamond symbol = Herd Hill; Black dashed symbol = 

Marine limiting dates 

 

The SLIP obtained at Cowgate Farm (CGF-111; 8324 cal BP) has provided the earliest 

record of RSL rise for the southern Solway Firth, which was previously recorded at 

Drumburgh Moss (8125 cal BP) (Lloyd et al., 1999). Apart from the regressive contact 

recorded at Drumburgh Moss dated at 2428 cal BP, the SLIP from Herd Hill (HH-69; 

6018 cal BP) which constrained the Holocene RSL at the site has now provided the 

second youngest date for the region (Figure 11.1). 

 

The SLIPs from this study show agreement with the dates of the recorded marine 

transgressions and marine regressions from the existing SLIPs for the southern 

Solway Firth (Tooley, 1974; 1978; Huddart et al., 1977; Lloyd et al., 1999) which 
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recorded the Main Postglacial Transgression in the region and with the modelled 

relative sea level (Bradley et al., 2011; Kuchar et al., 2012; Shennan et al., 2018) as 

shown in Figure 11.1. All SLIPs plotted in Figure 11.1 have been corrected for changes 

in palaeo-tidal range. 

 

11.2.6 Early to Middle Holocene RSL Changes 

 

The ten new SLIPs obtained from Allonby, Cowgate Farm, Pelutho and Herd Hill have 

contributed towards the record of Holocene RSL changes along the Cumbria coastline. 

In particular, the new SLIPs have provided data from the region located between the 

southern shore of the Solway Firth and central Cumbria, with the SLIPs from 

Wedholme Flow the only ones available prior to this study.  

 

The earliest record of RSL change in the region studied was recorded at Cowgate 

Farm, where a marine transgression was recorded at 8324 cal BP and attained a RSL 

of +1.89±1.46 m. At Allonby and Herd Hill, marine transgressions were recorded at 

8030 cal BP and 6497 cal BP attaining RSL of +0.62±1.46 m and +3.88±0.56 m 

respectively. At Pelutho, two different episodes of relative sea-level rise were 

recorded, which began at 8097 cal BP and 7367 cal BP and resulting in RSL values of 

+1.17±0.57 m and +0.97±0.57 m respectively.  

 

A similar onset of RSL rise recorded at Pelutho was recorded at Drumburgh Moss and 

dated at 8167 cal BP, at an altitude of 4.55 m OD (Lloyd et al., 1999) resulting in a 

RSL of -0.29±0.21 m (Table 10.3). This first marine transgression at Drumburgh Moss 

may have also recorded a combination of the drainage of Lake Agassiz-Ojibway in 

addition to the Main Postglacial Transgression in the Solway Firth. The foraminiferal 

assemblage zones at Drumburgh Moss showed a clear negative tendency from zone 

DBM-FZ2 to DBM-FZ3 (Figure 11.2, from Lloyd et al., 1999). A transition back to an 

intertidal flat assemblage in zone DBM-FZ4 representing the second positive marine 

tendency at Drumburgh Moss is as a result of the Main Postglacial Transgression, 

although this was not dated due to lack of suitable material (Lloyd et al., 1999).  
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Figure 11.2: Foraminiferal diagram from Drumburgh Moss core DBM94-50 (Lloyd et 

al., 1999) 

 

It is therefore possible that the record from Pelutho and Drumburgh Moss have 

recorded two episodes of RSL changes during the early Holocene, based on the 

microfossil evidence of cores P12 and DBM94-50, and the lithostratigraphical 

evidence from core P12 (Chapter 6). It is also possible that Cowgate Farm may have 

recorded both events given the earlier marine transgression date (8324 cal BP) 

recorded and the longer duration of increased marine influence at the site.  

 

However, based on the results obtained by Lawrence et al. (2016) which presented 

RSL data constraining the meltwater-driven sea-level rise related to the 8.2 ka event, 

the timing of the marine transgressions recorded at Pelutho and Drumburgh Moss 

occurred later than the dates obtained by the authors from their study site located in 

the Cree Estuary (NX 4592 6137), located on the northern Solway Firth. In the Cree 

Estuary, three abrupt sea-level rises (by 0.24-0.45 m, 0.67-0.73 m and 0.37-0.43 m) 

were recorded at 8760-8640 cal BP, 8595-8465 cal BP and 8323-8218 cal BP 

respectively (Lawrence et al., 2016; also discussed in Chapter 2; Section 2.3.1).  

 

Marine regressions at Allonby, Cowgate Farm, Pelutho and Herd Hill were recorded 

at 7320 cal BP, 6437 cal BP, 7146 cal BP and 6018 cal BP attaining RSL of +1.53±1.46 

m, +2.56±1.46 m, +1.82±0.56 and +3.71±0.56 m respectively. The regressive 

contact recorded at Herd Hill most likely represents the end of the Main Postglacial 
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Transgression in the region. The much later regression at Drumburgh Moss (2505 cal 

BP; 6.85 m OD; RSL of +3.53±0.21 m) may have recorded a different episode of RSL 

changes that occurred in the second half of the Holocene, but was not recorded at 

the other sites (Allonby, Cowgate Farm, Pelutho, Herd Hill, Wedholme Flow, Bowness 

Common and Boustead Hill). It is also probable that earlier cessation of marine 

transgression at all of the sites apart from Drumburgh Moss was due to the difference 

in altitude and geomorphology of the sites. 

 

11.2.7 Middle to Late Holocene RSL Changes 

 

From 6018 cal BP onwards, no evidence of RSL changes were recorded at the four 

sites studied, in common with the records from Wedholme Flow, Bowness Common 

and Boustead Hill as falling sea level does not create the inland accommodation space 

for sea-level archives to be preserved well compared to an event of increased sea 

level. Only one SLIP from Drumburgh Moss constrained the RSL on the southern 

shore of the Solway Firth for the later part of the Holocene (Figure 11.1).  

 

On the northern shore of the Solway Firth, only one SLIP constrained the second half 

of the Holocene, recording the last marine regression for the area. The regressive 

contact at Newbie Cottages (NY 1844 6449) was dated at 4847 cal BP (at 8.18 m 

OD), with marine regression at the other sites on the northern shore of the Solway 

Firth occurring earlier at approximately 7500-7000 cal BP (Lloyd et al., 1999). The 

lack of evidence for a RSL rise in the mid-late Holocene along the northern Solway 

Firth would support the hypothesis suggesting that the isostatic land rebound had 

outpaced any RSL rise which occurred in that period. At sites located in the Cree 

Estuary further west in the Solway Firth, in addition to the Main Postglacial 

Transgression, a second episode of RSL rise was recorded at 5800 cal BP, with the 

regressive contact dated at 3100 cal BP (Wells, 1997; Smith et al., 2002). The authors 

concluded that the marine transgression which occurred in the middle Holocene was 

however locally variable, with the cessation of the transgression occurring earlier 

further upstream, and later at sites located south of the river.  

 

In southern Cumbria however, an episode of RSL rise which occurred in late Holocene 

was recorded at Morecambe Bay (Zong & Tooley, 1996), with the transgression dated 

at 3915 cal BP (6.19 m OD) and the regressive contact dated at 3631 cal BP (6.23 m 
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OD). A transgressive contact was also recorded at Skelwith Pool, Morecambe Bay and 

this was dated at 4403 cal BP (4.43 m OD; RSL of +0.20±0.20 m) (Zong & Tooley, 

1996). As the sites investigated in this study are located closer to the centre of 

isostatic rebound in Scotland in particular, it is possible that the isostatic rebound of 

the land in the study area had outpaced the RSL rise that occurred later in the 

Holocene (which was more evident in Morecambe Bay as it is located farther away 

from the centre of isostatic rebound hence experiencing more land subsidence than 

sites located in north Cumbria).  

 

11.2.8 Comparison between the Coastal Sites and the Inner Estuary Site 

 

The marine transgression during the early Holocene is recorded to have occurred 

earlier at the open coastal sites; at 8324 cal BP at Cowgate Farm, at 8030 cal BP at 

Allonby and at 7367 cal BP at Pelutho compared to the inner estuary site at Herd Hill, 

recorded at 7401 cal BP, although Cowgate Farm possibly recorded an earlier marine 

transgression in addition to the Main Postglacial Trangsression. The marine 

transgression at Herd Hill is however consistent with the transgression recorded at 

sites located in the inner estuary at Wedholme Flow (7718 cal BP), Bowness Common 

(7686 cal BP) and Boustead Hill at 7465 cal BP (Huddart et al., 1977; Lloyd et al., 

1999). Drumburgh Moss recorded an earlier transgression at 8167 cal BP, and as 

discussed previously in Section 11.2.6, may relate to a different and earlier 

transgression which was also recorded at Pelutho (8097 cal BP).  

 

The marine regression at Allonby, Cowgate Farm, Pelutho and Herd Hill was recorded 

at 7320 cal BP, 6437 cal BP, 7146 cal BP and 6018 cal BP respectively, and probably 

represents the end of the Main Postglacial Transgression. Compared to the three 

open coastal sites, the decrease in RSL was recorded later in the inner estuary site at 

Herd Hill, and the date obtained (6018 cal BP) is more consistent with the regressive 

contacts at Wedholme Flow and Bowness Common which were recorded at 6159 cal 

BP and 6714 cal BP respectively (Huddart et al., 1977). 

 

RSL attained a higher altitude at Herd Hill (+3.88±0.56 m) during the marine 

transgression, in comparison to Allonby (+0.62±1.46 m), Cowgate Farm (+1.89±1.46 

m) and Pelutho (+1.17±0.57 m). This is likely due to the relatively shallow depth, 

funnel shape and tide dominated nature of the Solway Firth estuary, with the spring 
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tidal range and the difference in ebb and flood duration increasing along the estuary 

as evidenced by the measurement of tidal range at the contemporary saltmarshes in 

this study (Chapter 4; Section 4.2). The increase of tidal range along the estuary was 

also supported by the tidal data obtained from the model by Hill (personal 

communication, 8th May 2018) where the tidal range at the coast nearest to the site 

at Allonby, Cowgate Farm, Pelutho and Herd Hill were measured at 7.84 m, 7.85 m, 

7.86 m and 7.90 m respectively.  

 

11.2.9 Comparison with Geophysical Model Predictions 

 

The altitudes of the Main Postglacial Transgression shorelines identified at the four 

sites investigated in this study were compared to the RSL isobase map predicted by 

Smith et al. (2012). Smith et al. (2012) predicted that the RSL as a result of the Main 

Postglacial Transgression should occur at approximately 2 m OD to 4 m OD in the 

Solway Firth region. Based on the lithostratigraphical and biostratigraphical evidence, 

the RSL during the Main Postglacial Transgression at Allonby, Cowgate Farm, Pelutho 

and Herd Hill are predicted to have reached approximately 0.20 m OD, 0.96 m OD, 

0.23 m OD and 4.97 m OD respectively. At Allonby and Pelutho, the Main Postglacial 

Transgression shoreline lies approximately 1.8 metres lower than those predicted in 

the model. The Main Postglacial Transgression shoreline at Cowgate Farm lies within 

1 metre of the predicted shoreline in the model. At Herd Hill, the shoreline lies at 4.97 

m OD, which is approximately 1 metre higher than that predicted in the model by 

Smith et al. (2012). The highest Main Postglacial Transgression shoreline observed at 

Herd Hill was attributed to the location of the site in the inner estuary, hence affected 

by the funnelling effect of the estuary (Section 11.2.8). The models in Smith et al. 

(2012) did not predict a significant difference between the west and east Solway 

Firth, with the principal gradient being towards the south. The altitudes of the Main 

Postglacial Transgression shorelines at the sites investigated in this study appear to 

have a southward gradient, although the influence of the Lake District ice mass in 

the model is unclear (Smith et al., 2012; Smith, personal communication 5th May 

2018). 

 

The Holocene RSL curve from the model predictions in Bradley et al. (2011), Kuchar 

et al. (2012) and Shennan et al. (2018) for the south Solway Firth region were also 

compared with the altitudes of SLIPs produced in this study. The background on each 
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model compared in this section is discussed in Chapter 2 (Section 2.4). The difference 

in altitude of relative sea level predicted by the models compared to those obtained 

from SLIPs produced in this study is shown in Figure 11.3. 

 

Figure 11.3: SLIPs produced in this study plotted against three geophysical model 

predictions. Circle symbol = Allonby; Square symbol = Cowgate Farm; Triangle 

symbol = Pelutho; Diamond symbol = Herd Hill 

 

Data obtained in this study showed a reasonable agreement with the Holocene RSL 

trend based on the three models from approximately 8500 cal BP to 7500 cal BP, 

recording an RSL rise in the southern Solway Firth (Figure 11.1). The RSL model 

predictions based on Bradley et al. (2011), Kuchar et al. (2012) and Shennan et al. 

(2018) at approximately 8500 cal BP to 8000 cal BP however consistently suggested 

a lower RSL than evidenced by the data obtained in this study, and those in Lloyd et 

al. (1999), Huddart et al. (1977) and Tooley (1974; 1978), as shown in Figure 11.1. 

The RSL prediction based on the model by Kuchar et al. (2012) showed the least 

discrepancies when compared to the SLIPs in this study. 

 

It is possible that the discrepancies between the SLIPs and the three model 

predictions between the period of 8500 cal BP to 8000 cal BP is due to the increase 

of RSL due to the input of freshwater as a result of the collapse of the glacial Lakes 

Agassiz-Ojibway, which recorded a RSL rise in the Cree Estuary (Lawrence et al., 
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2016). The contribution of freshwater into the ocean which resulted in an eustatic 

sea-level rise may have not fully been considered in the geophysical models, leading 

to a mismatch between the SLIPs and the model’s predictions. 

 

Discrepancies between both Bradley et al. (2011) model and the data obtained in this 

study however decreased from 7500 cal BP onwards, illustrating a better fit between 

the two. Discrepancies between the calculated SLIPs which recorded marine 

regressions at the sites and the model was at a minimum of 0.19 metres (HH-69) and 

a maximum of 1.79 metres (ALL-35). The discrepancies from 7500 cal BP onwards 

also showed a general reduction for the Kuchar et al. (2012) and Shennan et al. 

(2018) models, ranging between 0.03 to 2.00 metres and 0.74 to 2.56 metres 

respectively.  

 

The Bradley et al. (2011) model predicted a Holocene RSL maximum at 6000 cal BP, 

with relative sea level approximately 2.90 metres higher than present, while the 

Kuchar et al. (2012) and Shennan et al. (2018) models predicted a sea-level maximum 

at 7000 cal (2.84 metres) BP and 6000 cal BP (3.45 metres) respectively. The earliest 

marine regression in the region was recorded at 7320 cal BP at Allonby, followed by 

Pelutho at 7146 cal BP and Boustead Hill at 7090 cal BP. The field data therefore 

suggest an earlier cessation of marine transgression in the region compared to the 

Bradley et al. (2011) and Shennan et al. (2018) models (difference of approximately 

1000 years), although the marine regression recorded in this study was better 

predicted by the Kuchar et al. (2012) model. The geographical and geomorphological 

variations between the different sites may also have resulted in the discrepancies in 

the timings recorded, as marine regressions were recorded at Cowgate Farm and 

Herd Hill at 6437 cal BP and 6018 cal BP respectively, resulting in a better fit with the 

trends predicted by the model of Bradley et al. (2011) and Shennan et al. (2018).   

 

The SLIPs from the northern Solway Firth that have been corrected for changes in 

palaeo-tidal were also plotted against the Holocene RSL trend based on the three 

geophysical models, and were divided into those located in the northwest Solway 

Firth which were mostly obtained along the coastline of the Cree Estuary (Figure 

11.4a) and those produced from other sites located on the northern Solway Firth 

coastline (Figure 11.4b).  
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(a) 

 

(b) 

Figure 11.4: SLIPs corrected for changes in palaeo-tidal range from (a) Northwest 

Solway Firth and (b) Northern Solway Firth plotted against three geophysical model 

predictions  
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For the period between 10,000 BP to 5000 BP, the SLIPs from northwest and northern 

Solway Firth show generally good agreement with the RSL predicted by Bradley et al. 

(2011), Kuchar et al. (2012) and Shennan et al. (2018). However, from 5000 BP 

onwards, the RSL recorded by the SLIPs in both regions showed significantly higher 

values than those predicted by all three models. This was less evident prior to the 

correction for changes in palaeo-tidal range in both regions (Figure 11.5). 
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(b) 

Figure 11.5: Uncorrected SLIPs from (a) Northwest Solway Firth and (b) Northern 

Solway Firth plotted against three geophysical model predictions  

 

There appears to be a misfit between the three geophysical models and the RSL 

values between 5000 BP to 2000 BP in the northwest and northern Solway Firth 

(Figure 11.4).  The data obtained from the SLIPs prior to the correction of changes 

in palaeo-tide were incorporated into the geophysical models to produce the RSL 

trends for the region (Bradley et al., 2011; Kuchar et al., 2012; Shennan et al., 2018). 

Therefore the importance of quantifying the changes in palaeo-tidal range is 

demonstrated in order to refine the RSL predictions from the geophysical models. It 

is also worth noting that a limitation to this approach is that the palaeo-tidal model 

used in this study utilised the RSL predictions from the geophysical model developed 

by Bradley et al. (2011), with some of the data utilised in the model included 

uncorrected SLIPs from the Solway Firth. 
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11.2.10 Differential Crustal Rebound between Northern and Southern 

Solway Firth 

 

To test the hypothesis that differential crustal rebound can be observed between the 

north and south Solway Firth coastline, a third order polynomial best line was drawn 

through the two different datasets: the SLIPs from the southern Solway Firth and 

those from the northern Solway Firth (Figure 11.6).  

 

 

Figure 11.6: A 3rd order polynomial best fit line drawn against the full dataset of 

available SLIPs from the southern Solway Firth (red symbol) and northern Solway 

Firth (black symbol)  

 

If differential crustal movement along the northern and southern coasts of the Solway 

Firth is absent or minimal, a random scatter between the two sets of data in each 

graph would be expected, i.e. the data points fall randomly above and below the best 

fit line, which may potentially indicate that there is minimal differential crustal 

movements between the two localities. The graph in Figure 11.6 showed a clear 

distinction between the SLIPs from the two localities, indicating that differential 

y = 8E-11x3 - 2E-06x2 + 0.0096x - 9.7027
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crustal movement between the northern and southern Solway Firth exists. All SLIPs 

produced in the southern Solway Firth fell below the best fit line apart from two SLIPs 

(HH-69 and CGF-111), with the majority of the SLIPs from northern Solway Firth lying 

above the best fit line. The data points from northern Solway Firth that fell below the 

best fit line mainly before 8500 cal BP may have resulted from the inadequacy of the 

best fit line, in the time period where only SLIPs from one of the two localities are 

available (Lloyd et al., 1999).  

 

The difference in RSL values observed between the northern Solway Firth data and 

the southern Solway Firth data could potentially be a result of different factors. These 

include the re-advances of Scottish ice (e.g. during the Loch Lomond Stadial), that 

may have influenced isostatic recovery of the northern coastline to a greater extent 

than the southern shore as it is located farther away from the centre of the ice mass. 

The effect of the local Lake District ice mass on the crustal uplift could also cause RSL 

to be different on the northern and southern shores of the Solway Firth. It is also 

possible that the local geomorphology of the coastline, could result in different RSL 

records, particularly when considering open coastal sites and inner estuarine 

locations.   

 

11.2.11 Palaeogeography in the Solway Firth 

 

Simplified palaeogeographical maps for the Solway Firth for the period from 8 ka BP 

to 5 ka BP have been constructed using the corrected SLIPs for the region (Figure 

11.7). Palaeogeographical maps were not drawn for the period of 10 ka BP, 9 ka BP 

and 4 ka BP to 1 ka BP due to the low number of SLIPs constraining the changes 

observed as this may lead to an erroneous or over-generalised prediction in the maps 

produced. For the time periods constrained by very few data, the influence of RSL in 

the Solway Firth as a system may not be accurately represented. The incorporation 

of surveyed geomorphological features that relates to the time period, could 

potentially assist in the palaeogeographical reconstructions and particularly in areas 

devoid of SLIPs.   

 

The black shaded areas represent environments classed as terrestrial (no marine 

influence) and the white shaded areas represent environments classed as marine (i.e. 
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subtidal, intertidal/mudflat and saltmarsh). The red line represents the present day 

coastline.  

 

Two assumptions were made when drawing each of the palaeogeographical maps: 

that the geomorphological features and the altitude of the coastline in the Solway 

Firth, had remained constant throughout the period between 8 ka BP to 5 ka BP. The 

expansion and contraction of the estuary are therefore based solely on the 

information derived from the SLIPs available for the Solway Firth.  

 

To generate the palaeogeographical maps of the study region, a digital terrain model 

(DTM) obtained from ArcGIS online image service database (ESRI, 2011) was input 

into ArcMap v.10.5.1. The DTM provided the elevation information of the specific data 

points for the study area. The SLIPs for the time period selected at specific locations 

were then imported into the map, allowing the extent of marine inundation in the 

region to be plotted. All land that lies below the highest altitude reached by RSL in 

the Solway Firth (based on the SLIPs available for that particular time period) are 

assumed to have been inundated by the sea and therefore were classed as marine 

on the map. The elevation range in the DTM was then converted into a polygon 

(allowing extrapolation between the SLIPs) and reclassified using the classify tool in 

the software based on the highest altitude attained by the SLIPs. This enabled the 

map to be divided into either marine or terrestrial regions.  
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Table 11.1: SLIPs utilised in the palaeogeographical maps for each time period 

Time 

(ka BP) 

No. of SLIPs 

Available 
Lab Code 

8 37 GU4649, Beta100918, GU4657, Beta100916, GU64, UB3897, UB3891, SUERC44398, UB3892, GU4646, BIRM325, 

SUERC44397, SUERC44371, SUERC42711, GU4654, BIRM222, Beta100917, GU4650, SUERC44386, GU4658, 

GU4647, GU4653, UB3902, UB3894, Beta100914, SUERC44387, GU375, Beta100915, SUERC42709, UB3903, 

SUERC44385, SUERC44369, SUERC42708, D-AMS 022223, D-AMS025776, D-AMS016392, D-AMS022227 

7 25 BIRM189, BIRM324, Beta96322, B103262, BIRM415, UB4054, Q638, GU4656, Beta100919, HV6208, HV5228, 

SUERC44407, GU4645, SUERC44406, UB3895, SUERC44400, GU4652,  SUERC42712, SUERC44399, SUERC44405, 

GU4648, D-AMS 022222, D-AMS 025778, D-AMS 022226, D-AMS 022225 

6 10 HV4713, BIRM258, Beta120963, Beta96321, HV6207, GU4655, UB3899, Beta105932, D-AMS 016391, D-AMS 

022224 

5 4 HV4714, SRR26, HV4418, Beta96320 
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Figure 11.7: Palaeogeographical maps for the Solway Firth from 8 ka BP to 5 ka BP illustrating the reconstruction of HAT position over time, 

based upon SLIPs corrected for changes in palaeo-tidal range



 

297 
 

The expansion of the estuarine environment is evidenced at 8 ka BP, 7 ka BP, 6 ka 

BP, while the contraction of the estuary is evidenced from 5 ka BP, in particular for 

the Solway Lowlands on the southern shore of the Solway Firth, corresponding to the 

Main Postglacial Transgression in the region. This was also shown in the palaeo-tidal 

maps for the Solway Firth, where palaeo-tidal range in the region increased during 

the same time period between 8 ka BP to 5 ka BP (Chapter 10; Figure 10.1), and 

further supported by the relative sea-level rise recorded by the SLIPs obtained in the 

Solway Firth (Figure 11.3 and Figure 11.4).  

 

11.2.12 Summary 

 

The reconstruction of Holocene relative sea level in the study area was produced 

through analyses of cores collected from three coastal sites (Allonby, Cowgate Farm 

and Pelutho) and one inner estuary site (Herd Hill). Two episodes of marine 

transgression in the early Holocene resulting in RSL changes along the northwest 

Cumbrian coastline were recorded and constrained in this study and ten new SLIPs 

were produced. The overall trend of the RSL changes recorded in this study is 

consistent with previous work, with the earliest record of transgression recorded at 

Cowgate Farm at 8324 cal BP (+1.89±1.46 m), and the latest regression recorded at 

Herd Hill at 6018 cal BP (+3.71±0.56 m). The ten new SLIPs now constrain the early 

Holocene RSL changes in the coastal region located between the southern shore of 

the Solway Firth and central Cumbria, where very few SLIPs existed prior to this 

study. The Main Postglacial Transgression shoreline predicted by Smith et al. (2012) 

is lower compared to the field data observed in this study, while the RSL predictions 

in Bradley et al. (2011), Kuchar et al. (2012) and Shennan et al. (2018) also showed 

discrepancies and had potentially underestimated the relative sea-level increase for 

the period between 8500 to 7500 cal BP and between 5000 to 2000 cal BP, suggesting 

more field data is needed to improve the models’ predictions. The potential evidence 

of differential crustal rebound between the northern and southern shores of the 

Solway Firth was also illustrated based on the corrected SLIPs obtained from the two 

localities. The importance of correcting for changes in palaeo-tidal range was also 

highlighted, where tidal range in the Solway Firth increased significantly during the 

Main Postglacial Transgression (between 8 ka BP to 5 ka BP), which led to an 

underestimation of the RSL recorded through most of the SLIPs from the Solway Firth 

for that period.  
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CHAPTER 12 

 

CONCLUSION 

 

 

12.0 Introduction  

 

This chapter will summarise the main conclusions of the reconstruction of Holocene 

relative sea-level changes along the northwest Cumbrian coastline. An assessment 

on the methods and techniques undertaken in this study will be reviewed and a 

summary on the wider implications of the research and recommendations for future 

work in the study area are presented. 

 

12.1 Relative Sea-Level Changes along the Northwest Cumbria Coastline 

 

Relative sea-level (RSL) changes were identified in the study area, with the earliest 

marine transgressions recorded at Allonby, Cowgate Farm and Pelutho. This is most 

likely correlated to the Main Postglacial Transgression, although it is possible that the 

transgression associated with the glacial Lake Agassiz-Ojibway flood is also 

represented. At Allonby, this marine transgression is thought to have started at 8030 

cal BP, recording a RSL of +0.62±1.46 m, at Cowgate Farm at 8324 cal BP with RSL 

of +1.89±1.46 m, evidenced by the change in biostratigraphy of the core and at 

Pelutho at 8097 cal BP resulting in a RSL of +1.17±0.57 m, evidenced by the changes 

in the lithostratigraphy and supported with the occurrence of foraminifera. The 

second episode of RSL higher than present thought to be related to the Main 

Postglacial Transgression was potentially recorded at all four sites investigated in this 

study. At Allonby and Cowgate Farm, the increased RSL as a result of the Main 

Postglacial Transgression was believed to have continued and overlapped with the 

earlier episode of marine transgression, evidenced by the continuous presence of 

foraminifera within the sediment unit and the longer duration of increased marine 

influence recorded at the site. At Pelutho, the second marine transgression was dated 

at 7367 cal BP, resulting in a RSL of +0.97±0.57 m. At Herd Hill, the Main Postglacial 

Transgression was likely to have been recorded at 7401 cal BP with RSL of 
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+3.88±0.56 m. The higher attitude attained at Herd Hill compared to the other sites 

was attributed to the funnel shape effect of the estuary, with the site located in the 

inner estuary compared to the open coastal settings of Allonby, Cowgate Farm and 

Pelutho. The cessation of the Main Postglacial Transgression was recorded the earliest 

at 7320 cal BP (6.65 m OD; RSL of 1.53±1.46 m) at Allonby. The regressive contacts 

at Cowgate Farm, Pelutho and Herd Hill were recorded at 6437 cal BP (7.71 m OD; 

RSL of +2.56±1.46 m), 7146 cal BP (6.89 m OD; RSL of +1.82±0.56 m) and 6018 

cal BP (8.81 m OD; RSL of +3.71±0.56 m) respectively. No subsequent increase in 

RSL was recorded at the sites investigated in this study, as it is probable that the 

glacio-isostatic rebound of the land in the study area had outpaced any increase in 

eustatic sea level that occurred in the late Holocene.  

 

12.2 Methodological Conclusions 

 

The multidisciplinary approach employed in this study has provided a greater insight 

into the history of Holocene relative sea level in the study area. For example, at 

Cowgate Farm, where lithostratigraphic changes were not apparent, the microfossil 

evidence provided a record of increased RSL at the site, illustrating a change from a 

freshwater environment into a saltmarsh environment. The foraminiferal analysis 

undertaken at all four sites provided a detailed record of marine transgressions and 

regressions, supporting the lithostratigraphical changes observed. The survey of 

contemporary foraminifera from the three saltmarshes located close to the palaeo 

sites clearly illustrated the variation in foraminiferal assemblages between the 

different intertidal environments.  

 

The development and use of transfer functions in this study was ultimately deemed 

unreliable and therefore was unsuccessful in providing higher resolution estimates for 

the fossil samples. The local training set developed resulted in a large scatter between 

the predicted and observed sea water level index (SWLI), and this was attributed to 

the lack of contemporary samples from the intertidal mudflat environment (i.e. not 

covering the complete tidal elevation range). The training set developed in this study 

also resulted in a large number of fossil samples with no modern analogues, and this 
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issue was attributed mainly to the dissolution of calcareous foraminifera in all of the 

fossil cores.  

 

The utilisation of pollen analysis has been recognised in this study, in particular as a 

chronostratigraphic marker when compared to published pollen records. The pollen 

records obtained from Cowgate Farm and Herd Hill also provided additional 

information about the vegetation and coastal changes at the sites in response to the 

fluctuations in RSL. The importance of correcting for changes in palaeo-tidal range 

and post-depositional lowering of sediments when utilising intercalated samples for 

the reconstructions of Holocene RSL were also demonstrated, although the effect of 

both palaeo-tidal changes and post-depositional compaction of the sediments 

appears to be minimal for the new sea-level index points (SLIPs) produced in this 

study. 

 

12.3 Wider Implications of the Research 

 

The results obtained from this study, and the discussion presented in this thesis, have 

wider implications for Holocene RSL research, especially for studies undertaken in a 

macrotidal estuarine settings. This study has produced new records of Holocene sea-

level change from a previously understudied region located on the southern shore of 

the Solway Firth (Chapter 5, 6, 7, 8 and 9), through the development of 10 new SLIPs 

which will now improve the understanding, information and data available for the 

region (e.g. to refine the RSL prediction based on geophysical models in the future).  

 

The challenges and problems encountered while undertaking sea-level research in a 

macrotidal estuarine settings were also highlighted in this study. The issue of 

sampling the complete tidal range to produce a good performing transfer function 

was discussed (Chapter 4 and Section 11.1.7), as well as the issue of fossil samples 

having poor modern analogues as a result of dissolution of calcareous species in fossil 

cores (Chapter 4; Section 4.8). When collecting samples from different locations along 

a macrotidal estuary, the variation in the tidal range along the coastline should be 

considered and quantified. The tidal survey undertaken in this study showed an 

increase of tidal range from the outer estuary into the inner estuary, which potentially 
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affected the foraminiferal assemblage and other environmental parameters at 

respective sites. Failing to quantify the tidal variations along the estuary will therefore 

likely lead to an erroneous indicative meaning assigned to the SLIPs, as well as 

problems when developing a local transfer function based on the samples collected.  

 

The measurement of modern tidal variation along Moricambe Bay and the southern 

shore of the Solway Firth had illustrated that variation in tidal range (HAT difference 

of approximately 1 metre) exists along the estuary, even for sites located 

approximately 3 km apart (e.g. Skinburness Marsh and Cardurnock Marsh). However, 

as some of the palaeo sites are located more closely to each other (less than 1 km 

apart, e.g. sites located within the same sub-estuary), the tidal variation may not be 

accurately modelled as the spatial resolution of the palaeo-tidal model is 1 km. 

Increasing the palaeo-tidal model’s resolution may be able to resolve the issue, 

leading to a more precise calculation of changes in RSL in the region.  

 

The contemporary foraminiferal and environmental parameter data presented in this 

study (Chapter 4) are the first available from the southern Solway Firth, with the 

contemporary data from the Nith Estuary located on the northern Solway Firth the 

only set of data available prior to this study. Samples collected from the contemporary 

saltmarshes near to the palaeo study sites is important when ascribing the indicative 

meaning of the SLIPs produced, in order to provide the best representation for the 

fossil samples.  

 

Changes in palaeo-tidal range for the SLIPs available for the Solway Firth were also 

quantified for the first time in this study. The results obtained based on the palaeo-

tidal model developed by Hill (personal communication, 8th May 2018) and the 

calculations have shown that prior to the correction of changes in palaeo-tidal range, 

RSL in the Solway Firth was underestimated by up to ~5 metres (Chapter 10). The 

corrected SLIPs from the northern and southern shores of the Solway Firth will now 

provide more precise data for future research in the region.  

 

Based on the newly produced and corrected SLIPs from the region, the differential 

crustal movement between the northern Solway Firth and the southern Solway Firth 
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which resulted in variation of relative sea-level values was illustrated in this study. 

Comparison between the corrected SLIPs and three geophysical model RSL 

predictions was made. Based on the results obtained, the discrepancies between the 

SLIPs and the model predictions highlighted the need for more field data in order to 

improve the model predictions, especially for the time period where very few SLIPs 

exist at present.  

 

12.4 Recommendations for Future Work 

 

To produce new constraints for Holocene RSL changes of the region in the future, 

extensive surveying and microfossil work would be required to identify sites that 

contain preserved sediment sequences and microfossils. The issue of the preservation 

of microfossils at the sites is crucial, as foraminifera (and diatoms) may be poorly 

preserved due to the nature of the sediment present at the sites. Therefore, the 

utilisation of geochemistry-based techniques and methods (discussed in Chapter 11; 

Section 11.1.5) may be considered in the future for the reconstruction of Holocene 

RSL history to overcome the issue of the poor microfossil preservation. The potential 

effects of the Lake District ice mass on the differential isostatic rebound of the land 

in Cumbria may also be further explored in the future, to better understand the 

complex relationship between land uplift and sea-level changes in the region. Another 

aspect of research that may potentially inform studies of Holocene RSL changes in 

the area concerns the formation of the sand dune system that is present along the 

southern coastline. A better understanding of the changing coastal geomorphology 

in the region as a result of increased RSL, may in turn lead to an improved 

interpretation regarding the variation in the cessation of marine influence observed 

at different sites investigated. 
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12.5 Summary 

 

The overall aim of this study was to reconstruct the Holocene RSL changes for the 

northwest Cumbrian coastline and therefore the illustration of different RSL records 

between the northern and southern Solway Firth, and this was successfully 

undertaken through the development of ten new SLIPs constraining the period 

between 8324 cal BP to 6018 cal BP. Two possible episodes of RSL higher than 

present were evidenced from the four sites investigated, most likely related to the 

Main Postglacial Transgression, or a combination of the final drainage of the glacial 

Lake Agassiz-Ojibway and the Main Postglacial Transgression. Some of the challenges 

and issues encountered in reconstructing relative sea-level reconstruction were also 

highlighted, and recommendations for future work in the area were made. It is 

therefore hoped that this study has contributed to the knowledge of the history of 

Holocene RSL changes in northwest Cumbria in particular, and more generally of that 

along the southern coast of the Solway Firth.  
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APPENDIX 

 

 

 

 

 

 

 

 

 

Unique Sample ID Reference 
Region 
Code 

Sub-Region Lat. Long. 
Dating 
Method 

Radiocarbon 
Age (14C a BP) 

Radiocarbon Age 
Uncertainty (14C a) 

D-AMS 022222 Allonby (NY09494410) 3 S Solway Firth 54.78 -3.41 1 6377 34 

D-AMS 025776 Allonby (NY09494410) 3 S Solway Firth 54.78 -3.41 1 7209 41 

D-AMS 022223 Allonby (NY09494410) 3 S Solway Firth 54.78 -3.41 1 7203 49 

D-AMS 016391 Cowgate Farm (NY09674737) 3 S Solway Firth 54.81 -3.41 1 5655 50 

D-AMS 016392 Cowgate Farm (NY09674737) 3 S Solway Firth 54.81 -3.41 1 7521 55 

D-AMS 022226 Pelutho (NY12024920) 3 S Solway Firth 54.83 -3.37 1 6231 35 

D-AMS 025778 Pelutho (NY12024920) 3 S Solway Firth 54.83 -3.37 1 6456 45 

D-AMS 022227 Pelutho (NY12024920) 3 S Solway Firth 54.83 -3.37 1 7285 36 

D-AMS 022224 Herd Hill (NY17946010) 3 S Solway Firth 54.93 -3.29 1 5236 46 

D-AMS 022225 Herd Hill (NY17946010) 3 S Solway Firth 54.93 -3.29 1 6497 36 



 
 

305 
 
 

 

APPENDIX  

 

 

 

 

 

 

 

Unique Sample ID 
Age                   

(cal a BP) 
Age 2σ Uncertainty 

+ (cal a) 
Age 2σ Uncertainty 

- (cal a) 
Sample Depth/Overburden 

Thickness (m) 
Depth to Consolidated 

Substrate (m) 

D-AMS 022222 7320 98 65 0.35 1.35 

D-AMS 025776 8031 127 77 1.00 0.70 

D-AMS 022223 8030 130 84 1.39 0.31 

D-AMS 016391 6437 88 124 0.29 1.23 

D-AMS 016392 8324 156 114 1.11 0.41 

D-AMS 022226 7146 108 130 1.51 1.64 

D-AMS 025778 7367 68 92 2.40 0.75 

D-AMS 022227 8097 77 79 2.89 0.26 

D-AMS 022224 6018 161 104 0.69 0.99 

D-AMS 022225 7401 74 79 1.15 0.53 
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Unique Sample ID 
Sample Elevation 

(m MSL) 
Sample Elevation 
Uncertainty + (m) 

Sample Elevation 
Uncertainty - (m) 

Type 
Primary 

Indicator Type 
Secondary Indicator Type 

D-AMS 022222 6.65 0.05 0.05 0 5 High Marsh Environment 

D-AMS 025776 6.00 0.05 0.05 0 5 High Marsh Environment 

D-AMS 022223 5.61 0.05 0.05 0 5 High Marsh Environment 

D-AMS 016391 7.71 0.05 0.05 0 5 High Marsh Environment 

D-AMS 016392 6.89 0.05 0.05 0 5 High Marsh Environment 

D-AMS 022226 6.89 0.05 0.05 0 5 High Marsh Environment 

D-AMS 025778 6.00 0.05 0.05 0 5 High Marsh Environment 

D-AMS 022227 5.51 0.05 0.05 0 5 High Marsh Environment 

D-AMS 022224 8.81 0.05 0.05 0 5 High Marsh Environment 

D-AMS 022225 8.35 0.05 0.05 0 5 High Marsh Environment 
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Unique sample 
ID 

Supporting Evidence 
Sample indicative meaning 

(m OD) 
RSL (m) 

RSL 2σ Uncertainty 
+ (m) 

RSL 2σ Uncertainty 
- (m) 

D-AMS 022222 Litho- and/or biostratigraphy (HAT-MHWST)/2 1.06 1.46 1.46 

D-AMS 025776 Litho- and/or biostratigraphy (HAT-MHWST)/2 0.42 1.46 1.46 

D-AMS 022223 Litho- and/or biostratigraphy (HAT-MHWST)/2 0.02 1.46 1.46 

D-AMS 016391 Litho- and/or biostratigraphy (HAT-MHWST)/2 2.12 1.46 1.46 

D-AMS 016392 Litho- and/or biostratigraphy (HAT-MHWST)/2 1.30 1.46 1.46 

D-AMS 022226 Litho- and/or biostratigraphy Uniquely Defined by Author 0.09 1.46 1.46 

D-AMS 025778 Litho- and/or biostratigraphy Uniquely Defined by Author 0.05 1.47 1.47 

D-AMS 022227 Litho- and/or biostratigraphy Uniquely Defined by Author 1.58 3.37 3.37 

D-AMS 022224 Litho- and/or biostratigraphy Uniquely Defined by Author 2.81 1.46 1.46 

D-AMS 022225 Litho- and/or biostratigraphy Uniquely Defined by Author 4.41 3.36 3.36 
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Unique Sample ID 
Corrected RSL  

(m) 
Corrected RSL 

Error + (m) 
Corrected RSL 

Error - (m) 
Correction 

Type 
Tidal Correction 

Values (m) 
Reject Why reject? Notes 

D-AMS 022222 1.78 1.46 1.46 1 -0.468 0 n/a n/a 

D-AMS 025776 1.14 1.46 1.46 1 -0.468 0 n/a n/a 

D-AMS 022223 0.87 1.46 1.46 1 -0.596 0 n/a n/a 

D-AMS 016391 2.56 1.46 1.46 1 -0.440 0 n/a n/a 

D-AMS 016392 1.89 1.46 1.46 1 -0.593 0 n/a n/a 

D-AMS 022226 2.02 1.46 1.46 1 -0.469 0 n/a n/a 

D-AMS 025778 1.17 1.47 1.47 1 -0.469 0 n/a n/a 

D-AMS 022227 0.77 3.37 3.37 1 -0.590 0 n/a n/a 

D-AMS 022224 3.61 1.46 1.46 1 -0.450 0 n/a n/a 

D-AMS 022225 3.48 3.36 3.36 1 -0.469 0 n/a n/a 
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