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Abstract 

Photovoltaic (PV) systems are a promising renewable source to achieve green energy 

targets and be part of the electricity generation. Lots of efforts have been devoted to 

increase the penetration level of PV systems and its share in the generated electricity. 

Power quality is one of the challenges that impact the penetration level of PV systems. 

It is important to ensure high power quality from PV systems to allow more 

installations to the grid. So, PV power quality issues have to be addressed properly.  

It was reported that the poor power quality of the PV systems might be caused by many 

reasons such as the large amount of PV power fluctuation, the low level of current from 

the PV system, and large populations of PV inverters. In addition to the aforementioned 

reasons, recently it was suggested that perturb and observe (P&O) controller is another 

source of harmonics which result in a deprived PV power quality. This newly reported 

problem is based on experimental observations without full understanding of the 

generation mechanism of these harmonics in the PV system, the relation between the 

P&O controller design and the generated harmonics, and the effect of these harmonics 

on the rest of the system. Thus, in-depth analysis of the harmonics in PV systems due 

to P&O controller and a solution to eliminate these harmonics are demanded. 

Therefore, in this research an investigation is carried out to explore P&O related 

harmonics in a double-stage grid-connected PV system. First, regarding the P&O 

related harmonics full explanation of how harmonics are generated due to the 

perturbing nature of the P&O controller is provided, a modelling approach is suggested 

to identify the frequency and the amplitude of the variations in the DC bus due to the 

P&O controller, the effect of different factors (e.g. weather conditions, system 

parameters, system operating point, and P&O architecture) on the induced harmonics 

are investigated. Secondly, regarding the effect of the P&O related harmonics on the 

rest of the system an intense simulation analysis is provided to explore the possible 

effect of the P&O related harmonics on increasing the interaction between the system 

power stages. This can help to set system design recommendations and guidelines such 

as sizing the dc-link capacitance and designing the system controllers. Finally, a novel 

mitigation solution is proposed to supress the P&O related harmonics. That can help to 

reduce the dynamic interaction between system power stages and improve the power 

quality of the PV system. 
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Nomenclature 
 

SYMBOL Description Unit 

𝑲𝒃 Boltzmann constant (𝟏. 𝟑𝟖 × 𝟏𝟎−𝟐𝟑) - 

𝑪𝒊𝒏 The input capacitance of the first-stage DC/DC boost converter 𝑭 

𝑪𝒐 The output capacitance of the first stage DC/DC boost converter 𝑭 

𝑪𝒐_𝒎𝒊𝒏 The minimum output capacitance of the first stage DC/DC boost 

converter for the specified output voltage peak-peak switching ripple 

𝑭 

𝑪𝒐𝒖𝒕_𝟐 The output capacitance of the second stage DC/DC boost converter 𝑭 

𝑫𝒌 The duty cycle of  an arbitrary SCPVM unit 𝒌 - 

𝑫𝒎𝒂𝒙 Maximum duty cycle of the first-stage DC/DC boost converter - 

𝑫𝒎𝒑𝒑𝒕 The duty cycle of the maximum power point tracking controller - 

𝑫𝟏_𝒑𝒂𝒊𝒓_𝒊 The duty cycle of the first SCPVM unit of an arbitrary pair 𝒊 - 

𝑫𝟐_𝒑𝒂𝒊𝒓_𝒊 The duty cycle of the second SCPVM unit of an arbitrary pair 𝒊 - 

𝒇𝒄 Cut-off frequency 𝑯𝒛 

𝒇𝒈 The grid fundamental frequency 𝑯𝒛 

𝒇𝒍𝒐𝒘 The lowest harmonic frequency induced by the P&O controller 𝑯𝒛 

𝒇𝒍𝒐𝒘_𝒂𝒄𝒕𝒊𝒗𝒆 The lowest harmonic frequency induced by the P&O controller when 

using the active filter 

𝑯𝒛 

𝒇𝑴𝑷𝑷𝑻 The sampling rate of the MPPT controller 𝑯𝒛 

𝒇𝒏 The frequency of the interharmonics in the grid current 𝑯𝒛 

𝒇𝒔𝒘𝟏 The switching frequency of the first-stage DC/DC boost converter 𝑯𝒛 

𝒇𝒔𝒘𝟐 The switching frequency of the second-stage DC/DC boost converter 𝑯𝒛 

𝑮 Solar irradiation level 𝑾/𝒎𝟐 

𝑮̇
 

The average rate change in solar irradiation inside a time interval of 

length equal to the sampling period of the P&O controller 
𝑾/(𝒎𝟐. 𝒔) 

𝑮𝑺𝑻𝑪 Solar irradiation level at the standard test conditions 𝑾/𝒎𝟐 

𝑯𝒄(𝒔) The transfer function of the controller - 

𝑯𝒄𝒊(𝒔) The transfer function of the PI current controller of the cascaded 

current-voltage controller 

- 

𝑯𝒄𝒗(𝒔) The transfer function of the PI voltage controller of the cascaded 

current-voltage controller 

- 

𝑯𝒊𝒍𝟐𝒅𝟐
(𝒔) 

The transfer function of duty cycle to inductor current of the second 

stage converter 
- 

𝑯𝒊𝒔𝒄𝒑𝒗𝒎_𝒐𝒖𝒕
𝑮 𝒅(𝒔) The duty cycle to SCPVM output current transfer function - 

𝑯𝒗𝒅𝒄𝒅𝟐
(𝒔) The transfer function of the second-stage converter duty cycle to DC-

link voltage  
- 

𝑯𝒗𝒅𝒄𝒊𝒍𝟐_𝒓𝒆𝒇
(𝒔) The transfer functions of the reference current-to-dc-link voltage of 

the second-stage converter 
- 

𝑰𝒈𝒓𝒊𝒅
 

Grid current A 

𝑰𝒉 The current of 𝒉 harmonic A 

𝑰𝑴𝑷𝑷 Maximum power point current of the photovoltaic module A 

𝑰𝒑𝒉 Photo-generated current A 

𝑰𝒑𝒉,𝑺𝑻𝑪
 

Photo-generated current at standard test condition A 

𝑰𝒑𝒗 Photovoltaic module current A 

𝑰𝒑𝒗_𝒍𝒆𝒇𝒕
𝑮  The PV current at Left MPP and irradiation G A 

𝑰𝒑𝒗_𝒎𝒑𝒑
𝑮  The PV current at MPP and irradiation G A 

𝑰𝒑𝒗_𝒓𝒊𝒈𝒉𝒕
𝑮  The PV current at Right MPP and irradiation G A 

𝑰𝒔𝒂𝒕 Diode saturation current A 

𝑰𝒔𝒄
 

Photovoltaic module short circuit current A 

𝑰𝒔𝒄𝒑𝒗𝒎_𝒐𝒖𝒕_𝒎𝒂𝒙
𝑮  The maximum value of the SCPVM output current for irradiation G  A 

𝑰𝒔𝒄𝒑𝒗𝒎𝒌_𝒐𝒖𝒕_𝒎𝒂𝒙
𝑮  The maximum value of the output current of one arbitrary SCPVM 

unit 𝒌 under solar irradiation 𝑮  
A 

𝑰𝒔𝒄𝒑𝒗𝒎_𝒐𝒖𝒕_𝒎𝒊𝒏
𝑮  The minimum values of the SCPVM output current for irradiation G  A 

𝑰𝒔𝒄𝒑𝒗𝒎𝒌_𝒐𝒖𝒕_𝒎𝒊𝒏
𝑮  The minimum value of the output current of an arbitrary SCPVM 

unit 𝒌 under solar irradiation 𝑮 
A 

𝑰𝒔𝒄𝒑𝒗𝒎_𝒐𝒖𝒕_𝒍𝒆𝒇𝒕
𝑮  The steady-state value of the SCPVM output current when the PV 

module operate at the left of MPP 
A 

𝑰𝒔𝒄𝒑𝒗𝒎𝒌_𝒐𝒖𝒕_𝒍𝒆𝒇𝒕
𝑮  The steady-state current of an  arbitrary SCPVM unit 𝒌 when the 

PV module operate at the left of MPP 
A 

𝑰𝒔𝒄𝒑𝒗𝒎_𝒐𝒖𝒕_𝒎𝒑𝒑
𝑮  The steady-state value of the SCPVM output current when the PV 

module operate at MPP and under solar irradiation 𝑮 
A 
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𝑰𝒔𝒄𝒑𝒗𝒎𝒌_𝒐𝒖𝒕_𝒎𝒑𝒑
𝑮  The steady-state output current of an arbitrary SCPVM unit 𝒌 when 

the PV module operate at MPP and under solar irradiation 𝑮 
A 

𝑰𝒔𝒄𝒑𝒗𝒎_𝒐𝒖𝒕_𝒓𝒊𝒈𝒉𝒕
𝑮  The steady-state value of the SCPVM output current when the PV 

module operate at the right of MPP and under solar irradiation 𝑮 
A 

𝑰𝒔𝒄𝒑𝒗𝒎𝒌_𝒐𝒖𝒕_𝒓𝒊𝒈𝒉𝒕
𝑮  The steady-state output current of an arbitrary SCPVM unit 𝒌 when 

the PV module operate at the right of MPP and under solar 

irradiation 𝑮 

A 

𝑰𝟏_𝒑𝒂𝒊𝒓_𝒊_𝒍𝒆𝒇𝒕
𝑮  The steady-state output current of the first SCPVM unit of an 

arbitrary pair 𝒊 when the PV module operate at the left of MPP and 

under solar irradiation 𝑮 

A 

𝑰𝟏_𝒑𝒂𝒊𝒓_𝒊_𝒎𝒑𝒑
𝑮  The steady-state output current of the first SCPVM unit of an 

arbitrary pair 𝒊 when the PV module operate at MPP and under 

solar irradiation 𝑮 

A 

𝑰𝟏_𝒑𝒂𝒊𝒓_𝒊_𝒓𝒊𝒈𝒉𝒕
𝑮  The steady-state output current of the first SCPVM unit of an 

arbitrary pair 𝒊 when the PV module operate at the right of MPP 

and under solar irradiation 𝑮 

A 

𝑰𝟐_𝒑𝒂𝒊𝒓_𝒊_𝒍𝒆𝒇𝒕
𝑮  The steady-state output current of the second SCPVM unit of an 

arbitrary pair 𝒊 when the PV module operate at the left of MPP and 

under solar irradiation 𝑮 

A 

𝑰𝟐_𝒑𝒂𝒊𝒓_𝒊_𝒎𝒑𝒑
𝑮  The steady-state output current of the second SCPVM unit of an 

arbitrary pair 𝒊 when the PV module operate at MPP and under 

solar irradiation 𝑮 

A 

𝑰𝟐_𝒑𝒂𝒊𝒓_𝒊_𝒓𝒊𝒈𝒉𝒕
𝑮  The steady-state output current of the second SCPVM unit of an 

arbitrary pair 𝒊 when the PV module operate at the right of MPP 

and under solar irradiation 𝑮 

A 

𝒊𝒅𝒄 The instantaneous DC-link current  A 

𝒊𝒑𝒗
𝑮  The instantaneous PV module current at solar irradiation G A 

𝒊𝒔𝒄𝒑𝒗𝒎_𝒐𝒖𝒕
𝑮  The instantaneous output current of a single SCPVM unit A 

𝒊𝒔𝒄𝒑𝒗𝒎𝒌_𝒐𝒖𝒕
𝑮  The instantaneous output current of an arbitrary SCPVM unit 𝒌 A 

𝒊𝟏_𝒑𝒂𝒊𝒓_𝒊
𝑮  The instantaneous output current of the first SCPVM unit of an 

arbitrary pair 𝒊 
A 

𝒊𝟐_𝒑𝒂𝒊𝒓_𝒊
𝑮  The instantaneous output current of the second SCPVM unit of an 

arbitrary pair 𝒊 
A 

𝒋 Total number of system pairs  - 

K Solar cell material constant A.m2/W 

𝑲𝒊𝒊 Integral current gain of the cascaded controller - 

𝑲𝒊𝒗 Integral voltage gain of the cascaded controller  - 

𝑲𝒑𝒊 Proportional current gain of the cascaded controller - 

𝑲𝒑𝒗 Proportional voltage gain of the cascaded controller  - 

𝑲𝒗 Voltage gain of the three-pole-two-zero controller - 

𝑳 Inductance of the first-stage DC/DC boost converter 𝑯 

𝑳𝒎𝒊𝒏 Minimum inductance of the first-stage DC/DC boost converter for a 

specified current switching ripple 
𝑯 

𝑳𝟐 Inductance of the second-stage DC/DC boost converter 𝑯 

𝑴(𝑫) Voltage conversion ratio of a DC/DC converter - 

𝑴𝒑 Maximum overshoot % 

N An integer (N-1,2,3,… etc.) - 

𝑵𝒔 Number of series cells in the photovoltaic module - 

𝒏 Total number of SCPVM units - 

Ppv 
The power of a PV module 𝑾 

𝒒 The electronic charge (𝟏. 𝟔 × 𝟏𝟎−𝟏𝟗) Coulomb 

𝑹𝒔 The series resistance of the equivalent circuit of the solar cell Ω 

𝑹𝒔𝒉 The shunt resistance of the equivalent circuit of the solar cell Ω 

𝒓𝒑𝒗 Dynamic resistance of the photovoltaic module at the linearisation 

point 
Ω 

𝒓𝒑𝒗_𝒎𝒑𝒑 Dynamic resistance at the maximum power point Ω 

𝐒𝒏𝒖𝒎 The number of P&O duty cycle steps - 

SCPVM Self-controlled photovoltaic module - 

𝑺𝑪𝑷𝑽𝑴𝒌 One arbitrary SCPVM unit 𝒌 out of 𝒏 units - 

𝑺𝑪𝑷𝑽𝑴𝟏_𝒑𝒂𝒊𝒓_𝒊 The first SCPVM unit of an arbitrary pair 𝒊 - 

𝑺𝑪𝑷𝑽𝑴𝟐_𝒑𝒂𝒊𝒓_𝒊 The second SCPVM unit of an arbitrary pair 𝒊 - 

𝑻 The control loop gain - 

𝑻_𝑰𝑺 The control loop gain of the second-stage converter with ideal 

current source. 
- 

𝑻_𝑵𝑰𝑺 The control loop gain of the second-stage converter with non-ideal - 
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source. 

𝑻𝒎𝒑𝒑𝒕 The sampling time of the MPPT controller Sec. 

𝑻𝒔𝒆𝒕𝒕𝒍𝒆 Settling time Sec. 

𝑻𝒕𝒆𝒎𝒑 The junction temperature of the solar cell °C 

 𝑽𝒅𝒄 DC-link bus voltage V 

𝑽𝒆𝒒 Equivalent voltage V 

 𝑽𝒈𝒓𝒊𝒅
 

Grid voltage V 

𝑽𝒎  The amplitude of the PWM voltage carrier V 

𝑽𝒎𝒑𝒑 Maximum power point voltage of the photovoltaic module V 

𝑽𝒐 Output voltage of a DC/DC converter V 

𝑽𝒐𝒄 Open circuit voltage of a photovoltaic module V 

𝑽𝒑𝒗 Photovoltaic module voltage V 

𝑽𝒑𝒗_𝒍𝒆𝒇𝒕 The PV module voltage at Left MPP V 

𝑽𝒑𝒗_𝒎𝒑𝒑 The PV module voltage at MPP V 

𝑽𝒑𝒗_𝒓𝒊𝒈𝒉𝒕 The PV module voltage at Right MPP V 

𝑽𝒕 Thermal voltage of the solar cell V 

𝒗𝒑𝒗 The instantaneous PV module voltage V 

𝒙 The perturbed variable of the maximum power point tracking 

controller 
V 

∆𝒅 The amplitude of the duty cycle perturbation of the MPPT P&O 

controller 
- 

∆𝒊𝒅𝒄 The peak-peak steady-state ripple in the DC-link current without 

taking into account the peak values of the transient response 
A 

∆𝒊𝒅𝒄_𝒐𝒗𝒆𝒓𝒂𝒍𝒍 The overall peak-to-peak variation of the dc-link current of n-

parallel SCPVM units taking into account the maximum and 

minimum peaks of the transient response 

A 

∆𝒊𝒅𝒄_𝒐𝒗𝒆𝒓𝒂𝒍𝒍
𝒖𝒏𝒊𝒇𝒐𝒓𝒎

 the overall peak-peak variation of the DC-link current under 

unifrom solar irradiation of multi-parallel connected SCPVM units 
A 

∆𝒊𝒅𝒄_𝒑𝒂𝒊𝒓_𝒊
𝒖𝒏𝒊𝒇𝒐𝒓𝒎

 the peak-to-peak variation of the total output current of of an 

arbitrary pair 𝒊 under uniform solar irradiation 
A 

∆𝒊𝒅𝒄_𝒑𝒂𝒊𝒓_𝒊
𝒏𝒐𝒏_𝒖𝒏𝒊𝒇𝒐𝒓𝒎

 the peak-to-peak variation of the total output current of an arbitrary 

pair 𝒊 under non-uniform solar irradiation 
A 

∆𝒊𝒅𝒄_𝒐𝒗𝒆𝒓𝒂𝒍𝒍_𝒂𝒄𝒕𝒊𝒗𝒆
𝒖𝒏𝒊𝒇𝒐𝒓𝒎

 the peak-peak variation of the dc-link current for j pairs and under 

uniform irradiation on each pair with the proposed active filter 
A 

∆𝒊𝒌_𝒔𝒔_𝒎𝒑𝒑_𝒕𝒐_𝒍𝒆𝒇𝒕
𝑮  the left steady-state peak amplitude of an arbitrary SCPVM unit 𝒌 

measured with respect to the desired operating point MPP 
A 

∆𝒊𝒌_𝒔𝒔_𝒎𝒑𝒑_𝒕𝒐_𝒓𝒊𝒈𝒉𝒕 
𝑮  the right steady-state peak amplitude of an arbitrary SCPVM unit 𝒌 

measured with respect to the desired operating point MPP 
A 

∆𝒊𝒌_𝒕𝒓𝒂𝒏𝒔_𝒓𝒊𝒈𝒉𝒕_𝒕𝒐_𝒎𝒂𝒙
𝑮  the right transient peak amplitude measured with respect to the 

right steady-state values of the output current of an arbitrary 

SCPVM unit 𝒌 

A 

∆𝒊𝒌_𝒕𝒓𝒂𝒏𝒔_𝒍𝒆𝒇𝒕_𝒕𝒐_𝒎𝒊𝒏
𝑮  the left transient peak amplitude measured with respect to the left 

steady-state values of an arbitrary SCPVM unit 𝒌 
A 

∆𝒊𝑳_𝒑𝒑 Peak to peak inductor current ripple A 

∆𝒊𝒔𝒄𝒑𝒗𝒎_𝒐𝒖𝒕_𝒔𝒔
𝑮   Peak-peak amplitude of the steady-state variation of the SCPVM 

output current without taking into account the peak values of the 

transient response 

A 

∆𝒊𝒔𝒄𝒑𝒗𝒎_𝒐𝒖𝒕_𝒐𝒗𝒆𝒓𝒂𝒍𝒍
𝑮  The overall variation of the SCPVM output current taking into 

account the maximum and minimum peaks of the transient response 
A 

∆𝒊𝟏_𝒑𝒂𝒊𝒓_𝒊_𝒔𝒔_𝒎𝒑𝒑_𝒕𝒐_𝒍𝒆𝒇𝒕
𝑮  The steady-state peak amplitude of the first unit of an arbitrary pair 

𝒊 when the PV operate at Left MPP 
A 

∆𝒊𝟏_𝒑𝒂𝒊𝒓_𝒊_𝒔𝒔_𝒎𝒑𝒑_𝒕𝒐_𝒓𝒊𝒈𝒉𝒕
𝑮  The steady-state peak amplitude of the first unit of an arbitrary pair 

𝒊 when the PV operate at Right MPP 
A 

∆𝒊𝟐_𝒑𝒂𝒊𝒓_𝒊_𝒔𝒔_𝒎𝒑𝒑_𝒕𝒐_𝒍𝒆𝒇𝒕
𝑮  The steady-state peak amplitude of the second unit of an arbitrary 

pair 𝒊 when the PV operate at Left MPP 
A 

∆𝒊𝟐_𝒑𝒂𝒊𝒓_𝒊_𝒔𝒔_𝒎𝒑𝒑_𝒕𝒐_𝒓𝒊𝒈𝒉𝒕
𝑮  The steady-state peak amplitude of the second unit of an arbitrary 

pair 𝒊 when the PV operate at Right MPP 
A 

∆𝒙 The amplitude of the perturbation applied to the control variable 𝒙   

𝝎𝒏 The natural frequency rad/sec 

𝝎𝒐 The second-stage double pole frequency  

𝝎𝒑𝟏 𝒂𝒏𝒅 𝝎𝒑𝟐 The frequency of the poles of the three-pole-two-zero controller rad/sec 

𝝎𝒛𝟏 𝒂𝒏𝒅 𝝎𝒛𝟐 The frequency of the zeros of the three-pole-two-zero controller rad/sec 

𝝁 The static gain of a second order system - 

𝝁𝟎 
The DC gain of the duty cycle-to-input voltage transfer function of 

the DC/DC boost converter 
- 
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𝜼 Diode quality factor - 

𝜼𝑴𝑷𝑷𝑻 MPPT controller efficiency % 

𝜻 Damping ratio - 
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CC Constant Current 

CV Constant Voltage 

FFT Fast Fourier Transform 

IS Ideal Source 

MPP The maximum power point of the PV module 

NIS Non ideal source 

PI Proportional integral controller 

𝑷𝑴 
 

Phase margin 

P&O Perturb and Observe 

PQ Power quality 

RHP Right half plane zero 

SCPVM Self-controlled photovoltaic module 

STC Standard test conditions  

3P2Z Three-poles-two-zeros controller 
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1 INTRODUCTION 

1.1 Background 

The world is facing environmental and energy challenges: such as how to deal with 

climate change and energy security. Burning fossil fuel is one of the main reasons of 

global warming which causes climate change on the earth resulting in environmental 

and socio-economic difficulties. Many countries around the world follow policies to 

reduce greenhouse gases. At the same time, economic growth needs electricity which 

relies mainly on fossil fuels. The problem of using fossil fuels is not only related to the 

increasing emission of greenhouse gases, but also the fact that fossil fuel resources are 

depleting. These challenges make using renewable resources in generating electricity 

all the more urgent and require swift actions from governments and industry. 

Renewable energies are inexhaustible and clean (no emissions in the generation of 

electricity). It will make a significant contribution in reducing the creation of 

greenhouse gases and decreasing the depletion rates of fossil fuels. Therefore, 

governments try to achieve targets in generating energy from clean resources such as 

wind, photovoltaic (PV), fuel cells, geothermal and hydro energies. On the other hand, 

there are some challenges to overcome and manage when connecting distributed 

generators to the grid such as synchronisation with the main power network, harmonics 

and subharmonics, voltage rise, voltage flicker, circulating current, the instability of the 

main network caused by increasing the number of the connected distributed 

generations, power quality and efficiency. 

Microgrids (AC and DC microgrids) were proposed as a new paradigm in order to deal 

with some of the aforementioned problems. Microgrids allow connecting distributed 

generation sources efficiently and avoid the problems of small and low voltage 

distributed generation sources such as PV when connecting it to the main power 

network [1, 2]. Adopting AC microgrid, where the distributed generation sources and 

loads are connected together through an AC bus, has solved many problems (e.g. 

circulating current, reactive power flow, and synchronisation) and remarkable research 

has been made to improve its performance [3-7]. However, power quality is still an 

issue in AC microgrid especially for those with sensitive power loads (e.g. power 

electronic and microprocessor based loads). 

As shown in Figure 1 PV has experienced a huge growth in the last few years due to 

the increasing of efficiency and reducing the cost per watt [8]. The cost (in US dollars) 
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per watt of utility scale PV has decreased from 4.57$/W in 2010 to 1.03$/W in 2017 

(see Figure 2, [9]) and the efficiency has increased from 13.8% in 2010 to 17.5% in 

2016 for commercial PV module (see Figure 3, [9]). 

 

Figure 1: PV market growth in USA. 2004 – 2016 [9] 

 

Figure 2: PV system cost benchmark summary in USA, 2010 – 2017 [9] 
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Figure 3: Module power and efficiency trends from the California NEM database, 

2010–2016 [9] 

Therefore, the effect of a PV system connected to an AC bus (e.g. AC microgrid) on 

the power quality has gained a high interest in recent studies. PV system can be 

interfaced in to grid through a single-stage converter or a double-stage converter as 

shown in Figure 4. Under mismatch phenomena due to shading from clouds or nearby 

building, dirt from dusty weather, manufacturing tolerances, PV module age, etc, the 

global MPP can be at the lower voltages than the normal MPP. In case of double-stage 

converter having a converter for MPPT tracking between the PV arrays and the grid 

converter (e.g. DC/AC converter) allows wider operating range of the PV voltage. 

Therefore, maximum power can be extracted at lower voltage than in the case of single-

stage converter, where the PV voltage (𝑣𝑝𝑣) is constrained by the grid voltage as shown 

in Figure 4. 

It has been reported that inverter based grid-connected PV systems are one of the 

sources which deliver harmonics to the grid [10-15]. It was found that harmonics 

increase due to large populations of PV inverters [10, 11], resonance between the 

power network and the PV inverter [10, 15], switching harmonics and its sidebands 

[11], in phase unwanted harmonics generated by multiple parallel connected PV 

inverters [11], low level of current fed by PV systems [12, 13], PV inverters operate 

with non-unity power factor (PF) for providing ancillary services (e.g. Volt-VAR 

control and PF-Watt control) [12], poor performance of the grid current synchronisation 

method in single-phase inverters [12], large amount of PV power fluctuations [12, 15], 
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impedance-based interactions especially when a PV system is connected to a weak grid 

[14], or Maximum Power Point Tracking (MPPT) controller as was observed recently 

in [16-18]. 

 

Figure 4: PV system interfaced in to grid (a) single-stage converter (b) double-stage 

converter 

The author of [19] proposed what is a so-called ‘DC type quality control centre’ as a 

possible configuration to meet the needs of customers power quality. The configuration 

of their network is what is known today as DC microgrid, where the distributed 

generation sources and loads are connected together through a DC bus. A general 

structure of  a DC microgrid is shown in Figure 5. DC microgrid has been recognised 

not only for high power quality but also for many other advantages such as small 

system size, high efficiency, a simple control system, and is compatible with DC output 

type distributed generation sources such as a PV source [20-27]. In DC microgrid there 

is no need for reactive power flow control, frequency regulation, and synchronisation 

control. Thus, unlike AC microgrid power quality issues due to a PV system that 

operates with a non-unity power factor and deprived performance due to a poor grid 

current synchronisation method are non-existent. Nevertheless, poor power quality in 

PV systems connected to a DC bus still may arise due to other issues such as large 

fluctuations in PV power, interaction between system power stages, or harmonics 

induced by MPPT controller as was observed in the case of a PV system connected to 

an AC bus. 
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Figure 5: General structure of a DC microgrid 

The poor power quality in PV systems due to MPPT controller, which is based on a 

perturbation technique such as P&O, is newly reported in the literature. It has been 

observed that harmonics are induced in a double-stage PV system connected to a DC 

bus (e.g. DC microgrid) due to the P&O controller which leads to a poor power quality 

as has been published in our papers [28, 29]. In parallel, the same observations were 

reported in other studies [16-18, 30, 31] which show interharmonics in grid-connected 

PV inverters due to the P&O controller. The analysis in [16-18] is based on 

experimental observations where the origin of the harmonics is suggested to be from 

the MPPT P&O controller. Although the aforementioned studies highlighted the origin 

of the interharmonics, still some issues are unclear and have not been investigated such 

as the generation mechanism of the P&O related harmonics, the effect of the P&O 

controller parameters on the characteristics of the harmonics, and the influence of these 

induced harmonics on the rest of the system.  

Contrast with the analysis in [16-18] our published work in [28] demonstrates through 

simulation that the harmonics in the dc-link and grid currents increase due to the 

perturbing behaviour of the P&O controller in steady-state. In addition to that, it was 

shown that under specific operating conditions the interaction between the system 

stages increases due to the P&O related harmonics and that has been taken into account 

in designing the controller of the second-stage converter in the double-stage PV system. 

In another paper we published [29], the P&O related harmonics is expressed as a 

function of the P&O parameters (sampling period (𝑇𝑚𝑝𝑝𝑡)) and number of perturbation 

steps in steady-state) and it was shown that for optimal three duty-cycle steps operation 

the lowest harmonics frequency induced by the P&O controller is 𝑓𝑙𝑜𝑤 = 1 (4𝑇𝑚𝑝𝑝𝑡)⁄ . 



6 

[31] is the latest research published in 2018 which is investigating the impact of the 

P&O controller on increasing the harmonics in a single phase grid-connected PV 

inverter. The frequency and the amplitude of the P&O related interharmonics in the 

grid current are expressed as a function of the P&O controller parameters (the sampling 

period and the perturbation step size). It was found that the perturbation step size of the 

P&O controller has a strong effect on the amplitude of the interharmonics components. 

While the sampling period affects both the amplitude and the frequency of the 

interharmonics. The findings in [30, 31] for single phase grid-connected PV inverter is 

in line with our simulation analysis in [28, 29] for a double-stage PV system connected 

to a main DC bus. In addition to that, our studies in [28, 29] provide an insight to the 

effect of the solar irradiation level and the dc-link capacitance size on the level of the 

P&O related harmonics and on the interaction between the system stages.  

P&O technique is widely used in commercial products because of its low-cost 

implementations and simplicity which make the newly reported P&O related power 

quality problem a subject undergoing intense study and researchers are persuaded to 

find a solution. The first steps to do that is by understanding how the P&O harmonics 

are generated, identifying the factors that affect the P&O related harmonics, and 

assessing the effect of the P&O related harmonics on the rest of the system. To the best 

of our knowledge, only the generation mechanism of the P&O related harmonics is 

well covered in the literature through our research in [28, 29] and the studies in [30, 

31]. With regard to the factors that affect the P&O related harmonics, the effect of the 

P&O parameters is well understood from [29-31]. However, other factors can affect the 

P&O related harmonics such as the solar irradiation level, the PV module operating 

region, and the adopted PV system configuration. Finally, the effect of the P&O related 

harmonics on the rest of the system has not yet been investigated in the literature. only 

brief simulations have been provided in our research paper in [28].  

In addition to above, as the poor power quality in the PV system due to the P&O 

controller is only recently reported in the literature, there is no specific solution 

proposed. 

1.2 Research Motivation  

As discussed above, in order to improve the power quality of grid-connected PV 

systems several areas still need to be properly investigated such as identifying all 

factors that influence the P&O related harmonics and the effect of the P&O related 
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harmonics on the rest of the system. This will help to set system design 

recommendations to ensure minimum effect of the P&O related harmonics on system 

power quality and stability. That also will help to develop proper solutions to supress or 

eliminate these harmonics. With the improved PV system power quality more PV 

system can be connected to the grid and that will help meeting the targets in reducing 

the emission of greenhouse gases. 

Thus, in this research an investigation is carried out to explore P&O related harmonics 

in a double-stage PV system connected to a DC bus. First, regarding the P&O related 

harmonics, a full explanation of how harmonics are generated due to the P&O 

controller is provided. A modelling approach is also provided to identify the harmonics 

frequency and the amplitude of the dc-link voltage and current variations. The effect of 

different factors such as weather conditions, system parameters, system operating point 

and P&O architecture on the induced harmonics is investigated as well. Secondly, 

regarding the effect of the P&O related harmonics on the rest of the system, an intense 

simulation analysis is carried out to explore the possible effect of the P&O related 

harmonics on increasing the interaction between the system power stages. Finally, a 

novel mitigation solution is proposed to supress the harmonics that are induced by the 

parallel-connected distributed P&O controller in the double-stage PV system. This will 

help to reduce the dynamic interactions between system power stages, improve the 

efficiency and power quality of the PV system. 

1.3 Research Aim and Objectives  

1.3.1 Aim 

Investigate the dynamic interactions in a double-stage DC/DC PV system due to P&O 

related harmonics. 

1.3.2 Objectives 

The objectives of this PhD research can be summarised as follow: 

1) Identify and analyse the impact of a P&O controller on the power quality of a 

double-stage DC/DC PV system. 

2) Provide a procedure to predict the frequency and the amplitude of the dc-link 

current variation as a function of P&O parameters, solar irradiation level, and 
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the total number of parallel connected self-controlled PV modules (i.e. PV 

module with a dedicated MPPT converter).  

3) Investigate the effect of the distributed P&O architecture and synchronisation 

between the distributed P&O controllers on power quality.  

4) Explore the effect of the P&O related harmonics on increasing the dynamic 

interaction between system power stages in a double-stage DC/DC PV system. 

5) Propose a solution to mitigate the harmonics induced by the P&O controller to 

improve the system’s power quality and efficiency, and reduce the dynamic 

interaction between system stages in a double-stage DC/DC PV system.  

6) Provide an experimental validation of the generated harmonics in the system 

due to the P&O controller, the proposed mitigation method, and the dynamic 

interactions between the system stages of the double-stage DC/DC PV system. 

1.4 Thesis outline  

This research is divided as follow: 

Chapter 2: this chapter includes reviews on the PV source characteristics, maximum 

power point techniques, grid-connected PV system configurations in AC and DC 

microgrids, controller structure for grid-connected DC/DC PV systems, and the power 

quality of grid-connected PV systems. In addition to that, possible mitigation methods 

of P&O related harmonics are discussed. 

Chapter 3: this chapter includes the adopted system configuration, system design 

considerations, controller design, and simulation results for the designed system. 

Chapter 4: this chapter provides a procedure to predict P&O related harmonics in a PV 

system connected to a DC bus. The analysis includes investigating the effect of the 

following factors on the harmonics frequency and amplitude: (I) the P&O sampling 

period and the P&O perturbations step size, (II) solar irradiation level, (III) the non-

linear characteristic of the PV source, (IV) the total number of parallel connected self-

controlled PV modules, and (V) the synchronisation between the distributed P&O 

controllers 
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Chapter 5: through simulations analysis, this chapter explores the effect of the P&O 

related harmonics on the performance of a PV system that consists of a double-stage 

DC/DC boost converter connected to a DC bus. The dynamic interaction between the 

first stage; which consists of a PV module and its dedicated MPPT converter, and the 

second-stage dc-link voltage controller is analysed. The impact of the P&O controller 

on designing the second-stage controller is addressed. Also, this chapter investigates 

the effect of the controller parameters values (i.e. design specifications), the dc-link 

capacitance (𝐶𝑑𝑐) size, and the solar irradiation level on increasing the dynamic 

interaction between the system power stages. 

Chapter 6: in this chapter a novel system-level controller named as “active filter” is 

proposed to reduce the progression of the P&O related harmonics into the dc-link bus 

and as a consequence improve the efficiency and power quality of the overall system. 

Chapter 7: in this chapter experimental verification is provided to show the dynamic 

interactions in double-stage PV system due to P&O related harmoncis and to validate 

the proposed controller to supress P&O related harmonics. 

Chapter 8: in this chapter the outcomes of this research, main contributions, and 

research prospective are summarised. 

1.5 List of Publications 

 R. Alsharif and M. Odavic, "Photovoltaic generators interfacing a DC micro-

grid: design considerations for a double-stage boost power converter system," in 

2016 18th European Conference on Power Electronics and Applications 

(EPE'16 ECCE Europe), 2016, pp. 1-10. (see Appendix A). 

 R. Alsharif, M. Odavic, and K. Atallah, "Active suppression of photovoltaic 

system related harmonics in a DC microgrid," in 2017 IEEE Energy Conversion 

Congress and Exposition (ECCE), 2017, pp. 1594-1601. (see Appendix B). 
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2 LITERATURE REVIEW 

2.1 Abstract 

Currently there is a high concern about producing clean energy. Governments try to 

achieve targets in generating energy from clean resources such as wind, photovoltaic 

(PV) generator, fuel cell, geothermal, and hydro energies. Among these resources, PV 

has experienced the huge growth in the last few years due to the increasing of 

efficiency and reducing the cost per watt [8, 9]. Table 1 provide the Levelised Cost of 

Electricity (LCOE) for different energy sources technology [32].The LCOE is used to 

compare different energy sources technologies and it represents the total cost to build 

and operate a new power plant over its life divided to equal annual payments and 

amortized over expected annual electricity generation. It takes into account all the costs 

including initial capital, return on investment, continuous operation, fuel, and 

maintenance, as well as the time required to build a plant and its expected lifetime. It 

also takes into account carbon capture and sequestration. Table 1 show that the solar 

PV power plant is the second lowest cost energy source per watt compared with other 

energy technologies. This makes the PV a promising renewable source to achieve green 

energy targets and be part of the electricity generation. 

Table 1: LCOE for different energy technologies[32] 

Power Plant Type Cost (LCOE) $/kW-hr 

Nuclear 0.093 

Wind onshore 0.059 

Wind offshore 0.139 

Solar PV 0.063 

Solar Thermal 0.165 

Geothermal 0.045 

Biomass 0.095 

Hydro 0.062 

This chapter reviews the following: I) the electrical characteristics, equivalent circuit, 

and linearisation of a non-linear PV source; II) the most popular control techniques 

used for tracking the maximum power from a PV system; III) the configuration and 

topologies of grid-connected PV system in both AC and DC microgrids; IV) local 

control structures of the PV interface converter in microgrids such as voltage, current 

and droop control; V) and finally the effect of grid-connected PV system on power 

quality. 
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2.2 Photovoltaic Generator 

2.2.1 Electrical characteristics and equivalent non-linear circuit  

It is important to study the main electrical components of the PV cell in order to design 

a model that can be used in simulations tests for predicting the energy produced by PV, 

evaluating the converter performance, assessing power quality and testing control 

algorithms. The equivalent circuits of the PV generators proposed in the literature are 

categorised into two types: double diode model [33] and single diode model [34-37] as 

shown in Figure 6. The current-voltage characteristic for single diode model can be 

expressed by (2.1) [38]. For the double diode model, an additional current term shall be 

added to represent the second diode. 

 

Figure 6: Equivalent non-linear circuit of solar cell (a) double diode (b) single diode 

model. 
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      (2.1)

where  𝑉𝑝𝑣 and 𝐼𝑝𝑣 are the Photovoltaic module voltage and current, respectively; 𝐼𝑝ℎ is 

the photo-generated current (given in (2.2)); 𝐼𝑠𝑎𝑡 is the diode saturation current (𝐼𝑠𝑎𝑡 is a 

measure of the "leakage" of carriers across the p-n junction in reverse bias.); 𝑅𝑠 (given 

by (2.3)) and 𝑅𝑠ℎ (given by (2.4)) are the series and shunt resistances, respectively; 𝑁𝑠 

is the number of series cells in the module; η is the diode quality factor (1.2 for 

monocrystalline solar panel) (η is a fitting parameter that describes how closely the 

diode's behavior matches that predicted by theory, which assumes the p-n junction of 

the diode is an infinite plane and no recombination occurs within the space-charge 

region); 𝑉𝑜𝑐 is the PV module open circuit voltage; 𝐼𝑠𝑐 is the PV module short circuit 

current; and 𝑉𝑡 is the thermal voltage and given by ((2.5)), where 𝐾𝑏 is Boltzmann 



12 

constant (1.38 × 10−23), 𝑇𝑡𝑒𝑚𝑝 is the junction temperature, and 𝑞 is the electronic 

charge (1.6 × 10−19) coulomb. 
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Electrical characteristics at standard test conditions (STC) cannot be usually measured. 

So, PV modelling tends to use data that provided by the module manufacturers. 

Normally, the manufacturer provides four values: the short circuit current 𝐼𝑠𝑐, open 

circuit voltage 𝑉𝑜𝑐, operating voltage and current at maximum power point (𝑉𝑚𝑝𝑝, 

𝐼𝑚𝑝𝑝). These four known values do not provide enough information to solve the five 

unknown parameters in a single-diode model which are 𝐼𝑝ℎ, 𝐼𝑠𝑎𝑡, 𝜂, 𝑅𝑠 and 𝑅𝑠ℎ. One 

possible solution is to fix one parameter value, e.g. the diode quality factor 𝜂 or the 

shunt resistance [8], and solve the remaining parameters accordingly. In the double 

diode model the number of the unknown parameters increase with the additional 

current term for the second diode and that requires assuming more parameters which 

reduce its accuracy [8]. Moreover, the high-order model as double diode model is very 

sensitive to the selection of initial conditions, and failing in it may lead to the reduction 

of model accuracy. The double diode model requires generally more pre-assumed 

parameters and iterative tuning cycles than the single diode model parameterisation, 

because if the initial condition is not correctly selected, the accuracy of the double 

diode model will be low. 
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The single diode model is more popular than the double diode model. It is less complex 

since the number of the unknown parameters is lower. This makes it easier to be solved 

and more accurate with the least number of pre-assumed parameters. For this reason the 

single diode model is adopted in this research work. 

Figure 7 and Figure 8 show the effect of solar irradiation level (𝐺) and temperature 

(𝑇𝑡𝑒𝑚𝑝) on the current-voltage characteristic curve, respectively. There are three 

practical points to highlight on the current-voltage curve which are: short circuit current 

(𝐼𝑠𝑐), Maximum Power Point (MPP), and open circuit voltage (𝑉𝑜𝑐). These three points 

are illustrated in Figure 7 and Figure 8. 
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Figure 7: Effect of solar irradiation G on the PV current-voltage characteristic [38]. 

 

Figure 8: Effect of temperature on the PV current-voltage characteristic [38]. 

2.2.2 Equivalent linear model 

The linear model of the PV is important for designing the system controllers, 

simplifying the analytical analysis of the effect of the PV source on the power 

electronic interfaced converter, and for the small signal analysis. A linear model of the 

PV is proposed in [39-41] which is described by the slope of the current-voltage curve 

at the linearisation point (e.g. MPP). The model is presented as a dynamic resistance 

(𝑟𝑝𝑣) connected in series with an equivalent voltage source ·
eq ppv p vv

V V I r  as shown in 

Figure 9. The PV current-voltage characteristic equation in (2.1) can be simplified to 

(2.6) as shunt resistance is assumed to be so high that it can be neglected. At the steady 
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state conditions both the solar irradiation and the cell temperature are constant which 

means that 𝐼𝑝ℎ and 𝐼𝑠𝑎𝑡 are constant. Differentiating (2.6) and rearranging gives 𝑟𝑝𝑣 

which is given by (2.7).  
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From (2.7) it is clear that 𝑟𝑝𝑣 is a function of the PV voltage (Vpv), solar irradiation and 

temperature. Solar irradiation varies the value of Ipv. The cell temperature can vary the 

values of Vt, Isat, and Rs. The rest of the research will focus on the influence of the 

irradiation and the PV module voltage on the dynamic resistance but not the 

temperature because during the day time the variation in the temperature is very slow 

[38]. 

The dynamic resistance for NU-E240 PV module [42]; its specifications are given in 

Table 2, under different Vpv and solar irradiation levels is shown in Figure 10. The 

lower the solar irradiation and/or the Vpv, the higher the rpv becomes. 

2.2.3 PV modelling for simulation studies 

For this research work the model in [37] was chosen, since it is an accurate, simple and 

easy to be modified for implementing different PV modules. 

The solar cell is modelled based on the Shockley diode equation with single diode solar 

cell for moderate complexity as shown in Figure 6.b. The model includes temperature 

dependent photo current (𝐼𝑝ℎ), diode saturation current (𝐼𝑠𝑎𝑡) and series resistance (Rs) 

but not a shunt resistance (Rsh). The shunt resistance is assumed to be so high that it can 

be neglected for simplifying the model. The model generates the output current from a 

selected PV panel depending on the weather data (solar irradiation (W/m
2
) and 

temperature (°C)), the PV panel manufacturer’s parameters, and the connected load. As 

shown in Figure 11 the PV model is implemented using a controlled current source and 

the control signal of the current source is computed based on (2.6). For connecting the 

PV model in Figure 11 to a DC/DC boost converter in simulink environment a 

capacitor is used at the output terminal of the current source. 
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Figure 9: PV equivalent linear circuit. 

Table 2: NU-E240 PV specifications 

NU-E240 (J5) 

Number of cells in series (𝑵𝒔) 60 

Maximum power 240 Wp 

Open circuit voltage 37.3 V 

Short circuit current 8.62 A 

Standard operation condition 

temperature 
25 °C 

Maximum power point voltage ( 𝑽𝒎𝒑𝒑
𝑺𝑻𝑪 ) 29 V 

Maximum power point current  (𝑰𝒎𝒑𝒑
𝑺𝑻𝑪 ) 8.15 A 

 

 

Figure 10: The dynamic resistance of NU-E240 PV model. 
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Figure 11: PV model. 

2.3 Maximum Power Point Tracking Control 

It is desired that PV operates at the maximum power point (MPP) to maximise the 

harvested power from a PV system. The maximum power point of the PV is a time-

variant and depends on the operating conditions such as the uncontrollable weather 

conditions (i.e. solar irradiation and temperature)  and on the connected load, so it is 

necessary to track the MPP continuously [43]. As a consequence, it is mandatory to use 

a converter stage between the PV array and the load/grid as the converter is capable of 

controlling its input voltage level to match the PV array MPP in the presence of time 

varying operating conditions.  

A maximum power point tracking (MPPT) controller is employed to adjust the 

switching converter duty cycle to follow the MPP for whatever operating conditions. 

Different methods of MPPT have been addressed in the literature: examples of perturb 

and observe (P&O) [38, 39], adaptive step size P&O [44], incremental conductance 

(INC), hill climbing, particle swarm optimisation, the extremum seeking and ripple 

correction techniques [38, 43]. Under different operating conditions, the MPPT 

controller regulates either the voltage or the current to a value that gives the MPP. The 

current of MPP (IMPP) is changing significantly with the solar irradiation (see Figure 7). 

Nevertheless, solar irradiation only slightly varies the voltage of MPP (VMPP). 

Observing the effect of the temperature from Figure 8, it illustrates that the temperature 

is affecting VMPP significantly but not IMPP. The fact that during the day time the 

variation in solar irradiation is very high while the temperature is changing slowly and 

within certain limits makes controlling VMPP possible and easier than IMPP. VMPP is 
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almost constant under different solar irradiation and it changes only with the 

temperature which has a very slow dynamic. That is why most of the researches such as 

[38, 40, 41, 45] prefer to control the PV voltage. 

The most popular MPPT techniques will be reviewed in this section. Also, two 

different MPPT architectures which are used in the literature will be discussed.  

2.3.1 Maximum power point tracking techniques 

2.3.1.1 Fractional Open Circuit Voltage  

The fraction open circuit voltage is one of the earliest and simplest proposed MPPT 

methods. It is based on approximating the MPP of the PV system as 76% of the open 

circuit voltage of the PV system [38, 46]. The drawback of this technique is that the 

MPP is not always at 76% of the open circuit voltage and keeping it unchanged under 

different solar irradiation levels and/or temperatures leads to very poor system 

efficiency. 

2.3.1.2 Perturb and Observe (P&O)  

2.3.1.2.1 P&O operation 

The Perturb and Observe (P&O) method is the most popular technique for its simplicity 

and low cost. Basically the operation of P&O depends on a small perturbation injected 

to the system to drive the operating point toward the MPP.  The PV operating point is 

perturbed periodically by changing the voltage at PV source terminals, and after each 

perturbation, the power generated by the PV before and after the perturbation are 

compared. If after the perturbation the PV power has increased, this means that the 

operating point has been moved toward the MPP; thus the following perturbation 

imposed to the voltage will have the same sign as the previous one. If after the 

perturbation the PV power has decreased, this means that the operating point has been 

moved away from the MPP. Therefore the next perturbation will have opposite sign of 

the previous one [38]. 

The PV operating points due to the P&O controller are shown in Figure 12. The P&O 

algorithm can be described using the following general equation [38]: 

    

[( 1) ] [ ]

[ ] [ ] [ ] [( 1) ] . [ ] [( 1) ]( 1)
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where x represents the variable that is perturbed (e.g., the duty cycle or the reference 

voltage), Tmppt is the time interval between two adjacent perturbations and 𝑘𝑇𝑚𝑝𝑝𝑡 is the 

current sampling instant with 𝑘 = 1,2, . . , 𝑒𝑡𝑐.; Δx is the amplitude of the perturbation 

applied to x; and Ppv is the output power of a PV module. 

 

Figure 12: PV operating points imposed by the P&O controller [38] 

Two P&O techniques can be used for controlling the switching converter and 

perturbing the PV voltage: 

 Direct duty cycle P&O  

This involves direct perturbation of the duty-cycle of the switching converter. In 

this case the converter operates in open loop after each duty cycle perturbation. 

 Voltage reference P&O 

In this case the converter operates under feedback voltage control loop and the 

perturbation is applied to the reference voltage of an error amplifier that 

generates the signal to control the duty cycle of the switching converter.  

When the system approaches the MPP, the P&O algorithm continue oscillating about it. 

The optimal three-step P&O duty cycle oscillation; as shown in Figure 13, maximises 

the average power extracted from a PV module and ensures periodic and stable 

oscillation across the MPP [39]. 
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Figure 13: Three-step duty cycle of P&O scheme. 

To guarantee optimal efficiency three-step P&O operation, the P&O parameters which 

are the amplitude of the perturbation Δx and the sampling period Tmppt have to be 

designed carefully. Guidelines for designing direct duty cycle and voltage reference 

P&O controllers are given in [38, 39]. In this research the direct duty cycle P&O 

controller is considered and designing both the duty cycle step size ∆d and Tmppt are 

given in the following section. 

2.3.1.2.2 Direct duty cycle P&O parameters optimisation 

The basic version of P&O algorithm is designed with fixed duty cycle step Δd and its 

value is chosen to ensure a good compromise between the system transient and steady-

state performance and to ensure that the P&O is not confused by the rapidly changing 

weather conditions (i.e. solar irradiation) [38, 39]. The P&O algorithm will not be 

confused only if during Tmppt the variation of the output power caused by the duty-cycle 

perturbations (∆Ppv_d) is larger than the one caused by the solar irradiance (∆Ppv_G) 

variation [39].  

_ _pv d pv GP P             (2.9) 

Based on the condition in (2.9), the author in [39] has derived the minimum duty cycle 

step size as follow: 
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where K is a PV cell material constant 6.895×10
-3

 A.m
2
/W, rpv_mpp is the PV dynamic 

resistance at MPP, 𝐺̇ is the average rate of change in the solar irradiation inside the 

time interval of length 𝑇𝑚𝑝𝑝𝑡, and 𝜇0 is the DC gain of the duty cycle-to-input voltage 

transfer function. Based on (2.10) the P&O algorithm controller is able to track without 

errors irradiation is characterised by average rate of change (within Tmppt) not higher 

than 𝐺̇.  

The sampling time Tmppt is selected so that the P&O decision-making is not affected by 

transient response of the PV voltage and current after each perturbation [39]. It is 

necessary that the time period between two consecutive perturbations is long enough to 

allow the PV power to reach its new steady-state value. In order to find the minimum 

sampling period Tmppt the dynamic behaviour of the whole system (i.e. the PV source 

and the interfaced switching converter) can be analysed by considering the system 

small-signal model evaluated around MPP. 

Accordingly, and by assuming stationary weather conditions, the response of the PV 

power (𝑝̂𝑝𝑣(𝑡)) to a small step perturbation of amplitude ∆d is derived in [38, 39] and 

given as follow: 
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𝑣𝑝𝑣(𝑡) can be found by analysing the step response of the control to PV voltage transfer 

function. Most of the DC/DC switching converter operating in open loop can be 

described by a second order transfer function as given in (2.12) [38].  
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Where µ is the static gain, ωn is the natural frequency, and ζ is the damping factor. The 

values of µ, ωn, ζ can be expressed as a function of the converter parameters after the 

DC/DC converter topology is selected. From (2.12) the response 𝑣𝑝𝑣 to a small step 

perturbation of amplitude ∆d is [38]:  
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Inserting (2.13) in (2.11) the settling time Tɛ which ensures the PV power oscillation is 

within a band of relative amplitude +/-ɛ around the steady state value is derived in [38, 

39] and it results in:  

1
.ln( )

2
n

T



           (2.14) 

Accordingly the P&O sampling period has to be longer than the settling time in (2.14) 

so the algorithm is not affected by the transient oscillations of the PV system after each 

perturbation.  
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Where the value of ɛ=0.1 is a reasonable threshold to be considered based on the 

classical control system theory [39]. 

The parameters of the basic direct duty-cycle P&O technique (∆d, Tmppt) are fixed 

which are chosen to ensure a good compromise between the system speed under quick 

change in solar irradiation and the losses in steady state due to large perturbation step 

size. In [39] the authors recommend three-step P&O duty cycle operation as it 

maximises the average power extracted from a PV module and ensures periodic and 

stable oscillation across the MPP. 

2.3.1.3 Advanced MPPT method 

The performance of the P&O technique can be improved by modifying the basic 

algorithm. As an example in [44] P&O with adaptive step size is proposed. The duty 

cycle step size is automatically modified according to the derivative of power with 

respect to the PV voltage until the step size becomes very small around the MPP. This 

technique guarantees very good performance in the steady state. Other more advanced 

MPPT methods which can achieve a very small steady-state oscillation or even 

completely cancelling it can be used in order to improve the system performance in the 

steady-state. Example of these methods is: incremental conductance, particle swarm 

optimisation, extremum seeking, and ripple correlation [47-49]. In these methods once 

the system operation approaches the MPP and specific condition is fulfilled (depending 

on the employed method), the perturbation of the control parameter is stopped [47-49] 

to achieve high performance at steady-state. 
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Particle swarm optimization (PSO) is seen as a perturbative method with an adaptive 

amplitude of the applied perturbation. The particle velocity has been designed so that 

its value is close to zero when the system operation approaches the MPP and the value 

of the DC/DC converter duty cycle is approaching a constant. The application of the 

method requires a tuning of some parameters that strongly affect performances, some 

of them being dependent on the specific application. 

Extremum seeking (ES) control uses a signal having a low-frequency oscillating 

component to detect whether the PV array is operating on its MPP or is on the right or 

left side of the MPP itself. In PV MPPT single-phase AC applications, ES can use the 

oscillating component at 100 or 120 Hz, depending on the frequency of the AC voltage, 

which can be 50 or 60 Hz, for tracking the MPP. Such an oscillation back propagates 

through the DC/DC converter and worsens the performances of the MPPT algorithm. 

Nevertheless, it can be used for tracking the maximum power point. In DC 

applications, a sinusoidal low-frequency disturbance can be injected for accomplishing 

the same work, but at the price of additional circuitry. 

The ripple correlation control (RCC) technique uses the ripple at the switching 

frequency generated by the power electronic circuit to detect whether the PV array is 

operating on its MPP or is on the right or left side of the MPP itself. 

Incremental conductance method is based on the observation that in the MPP, the 

following condition occurs: 
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By accounting for the dependence of the PV current on the voltage, it is possible to 

express such a condition as follows: 
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so that the validity of condition (2.16) is equivalent to 
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which means that, at the MPP, the absolute value of the conductance must be equal to 

the absolute value of the incremental conductance. Such a condition is the basis of the 

incremental conductance (INC) MPPT method. Condition (2.51) is verified through a 
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repeated measure of the conductance at two different values of the PV voltage. As a 

consequence, the method requires the application of a repeated perturbation of the 

voltage value, until the following condition occurs: 

[ ] [ ] [ 1]

[ ] [ ] [ 1]
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I k I k I k

V k V k V k

 
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        (2.19) 

where the indices k and k− 1 refer to two consecutive samples of the PV voltage and 

current values. 

2.3.2 Maximum power point tracking architectures 

2.3.2.1 Centralised MPPT  

The centralised MPPT is based on using one centralised switching converter and 

employs the MPPT for the whole PV arrays composed by paralleled PV strings as 

shown in Figure 14. 

Under mismatch phenomena due to shading from clouds or nearby building, dirt from 

dusty weather, manufacturing tolerances, PV module age, etc., the power vs. voltage 

characteristic curve of the whole PV system may exhibit more than one peak which 

may confuse the centralised MPPT algorithms and make it fail [50-52]. In this case the 

centralised MPPT can cause a huge decrease in the overall system efficiency [50-52]. 

 

Figure 14: Grid-connected PV system with centralised MPPT. Strings of PV modules 

are put in parallel and connected to a single DC/AC inverter [38]. 
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2.3.2.2 Distributed MPPT 

The distributed MPPT is proposed to overcome the drawback of the mismatching 

phenomena in the centralised MPPT PV system. It is based on a dedicated switching 

converter for each PV module as shown in Figure 15 [38, 53-57]. Two different 

approaches can be implemented. The first one is based on dedicating MPPT DC/AC 

converter for each PV module [53, 54, 58], it is known as microinverter. The output 

port of the microinverters can be connected either in parallel or in series to the AC gird 

[38]. The second approach is based on dedicating MPPT DC/DC converter for each PV 

module [55-58].  The output port of the MPPT DC/DC converters can be connected in 

parallel or series to a common dc bus. 

 

Figure 15: Grid-connected PV system with distributed MPPT. Approach based on the 

adoption of microinverters with the output ports in parallel to the grid [38]. 

2.4 Configurations and Topologies of Grid-connected PV Systems 

2.4.1 Configurations in DC microgrids  

When connecting PV system to DC microgrid, one of the major concerns is the need of 

a high output voltage (e.g. 380 V- 400 V) from low input voltage level (e.g. 30 V - 48 

V) of a PV module. This problem can be solved by adopting different PV system 

configurations. The configurations can be classified into different categories based on 
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the method used to boost up the voltage and on the implemented MPPT configuration 

as shown in Figure 16 [20]. 

The most common configurations are the series centralised and string configurations as 

shown in Figure 16.(a) and Figure 16.(b), respectively. In these configurations the PV 

modules are connected in series to ensure sufficient voltage level and a centralised 

converter is used to implement MPPT. The advantage of these configurations is no 

need for a converter with a high-step-up voltage conversion ratio. However, these 

configurations are very sensitive to mismatching phenomena which increase the system 

power losses [38, 50-52]. 

To overcome the aforementioned drawback, PV system configurations based on 

distributed MPPT can be adopted [55-58]. Here and afterward will refer to the PV 

module with its MPPT converter as self-controlled photovoltaic module (SCPVM). The 

SCPVM can be connected in series directly to the DC microgrid as shown in Figure 

16.(c), called series SCPVM configuration. This configuration provides lower 

sensitivity to mismatching phenomena, increase system modularity since it can be 

easily expanded by paralleling the series of SCPVM units, increase system redundancy 

in case of failure. However, under mismatching condition there is difficulty to achieve 

the desired output voltage of some SCPVM units. This is because voltage across each 

SCPVM (as given in (2.20) where 𝑉𝑑𝑐 is the dc-link voltage and 𝑉𝑆𝐶𝑃𝑉𝑀 is the output 

voltage of a given SCPVM in the series connection) depends on the ratio of its output 

power with respect to the total output power of the whole string [38]. That means the 

output voltage of an SCPVM can vary in a wide range due to the imbalance power 

delivered by each PV modules. For example, if most of the modules in the system are 

totally under shading, the output voltage across the a few unshaded SCPVM units can 

become very large causing high switching stresses. To solve this problem an advanced 

and more complex control structure is necessary [55] or a parallel configuration could 

be adopted. 

     

     

out
SCPVM dc

total

P of the Panel
V V

P of the string
          (2.20) 

The new trend of connecting PV to the grid is the parallel configuration rather than 

series configuration to reduce the mismatching effect on the output voltage of the 

SCPVM units, improve the use of the PV power, and satisfy the safety requirement 
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during installation and maintenance; each converter module may be able to isolate its 

connected power source, so that the wiring parallel connections of these modules can 

be performed safely [57]. The power source—converter connection is a safe low 

voltage connection. However, in parallel connection one of the major concerns is the 

need to boost up the low PV voltage to a high output voltage (e.g. 400 V). Two 

solutions are proposed in the literature: Either boosting the voltage by using high-step-

up boost converter, or by using multi stages of the conventional boost converter. 

Accordingly, single-stage and double-stage parallel SCPVM configurations are shown 

in Figure 16.(d) and Figure 16.(e), respectively. The new proposed high-step-up boost 

converters can be used for single-stage parallel SCPVM configuration such as coupled 

inductor, switched capacitor, integrated boost and switched capacitor, combined 

coupled inductor and switched capacitor, and interleaved boost converters [59]. 

However, the main problem with the single-stage parallel SCPVM configuration is the 

need for a DC/DC converter characterised by two contrasting requirements: a high-

step-up voltage conversion ratio (about 10-15) and high conversion efficiency [38]. The 

double-stage parallel SCPVM configuration as shown in Figure 16.(e) can boost up the 

voltage by using two stages of conventional boost converter [59]. 
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Figure 16: PV system configurations in DC microgrid. 

Choosing between the single-stage and the double-stage parallel SCPVM 

configurations should be based on the configuration capability in providing: high-step-

up voltage, high efficiency, low cost, simplicity, high MPPT efficiency, and high 

MPPT speed (as it was shown in previous section that the MPPT sampling time 

depends on the dynamic of the MPPT converter). The single-stage conversion is 

superior in its efficiency but the dynamic performance of the MPPT with the new 

proposed single-stage topologies has not been proven so far. Where in case of double-



29 

stage based on using conventional boost converter: a high MPPT efficiency has been 

proven (more detail regarding MPPT efficiency is provided in section  2.4.3) [38], 

optimisation of the MPPT parameters and achieving high tracking speed are easy due to 

the simple structure of the boost converter. 

It is important to mention that there are two issues to consider for two-stage boost 

converter: I) the stability of the cascaded structure which depends highly on the chosen 

controller structure [60]; II) for the second-stage boost converter the output-diode 

reverse recovery problem is severe and the voltage stress on the switch is high which 

have to be consider carefully in its design [59]. 

2.4.2 Configurations in AC microgrids 

In any PV system connected to an AC microgrid it has to be provided with a DC/AC 

converter to invert the PV panels DC voltage to the grid AC voltage. Also, a DC/DC 

converter can be used between the PV panels and the DC/AC converter to maintain the 

DC voltage at the required level and to implement the MPPT controller. Figure 17 

shows the most common PV system configurations in AC microgrid [8, 61]: 

 Centralised configuration is where the PV modules are connected in series-

parallel configuration to a centralised DC/AC converter. 

 String configuration is where each string is connected to a DC/AC converter. If 

the string voltage does not have the appropriate value, then a boost DC/DC 

converter placed on the DC side or a step-up transformer placed on the AC side 

is required. 

 Multistring configuration where is a DC/DC converter is placed between the PV 

string and the DC/AC converter. Each DC/DC converter implements the MPPT 

for the string. This configuration allows wider operating range of the PV 

voltage so the MPP can be extracted at lower voltage than in case of single-

stage inverter, where the dc link voltage is constrained by the grid voltage. 

 SCPVM configuration is where each PV module incorporates a DC/AC 

converter (single-stage) that implements an automatic control that performs the 

MPPT control at module level [58]. The DC/AC based SCPVM can be 

connected in parallel or series to the AC microgrid [38].  
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 Modular configuration, a conventional DC/DC converter and DC/AC converters 

(double-stage) sharing a common DC bus. Each DC/DC converter is connected 

to a PV string for MPPT implementation. High system reliability is guaranteed 

as the system is easy to maintain by only replacing the damaged converter. 

The topologies used to interface the PV system to AC microgrid can be classified into 

categories based on using or not using an isolation transformer and on its location: 

either it is placed at the high frequency side ‘‘high frequency transformer HFT’’, or at 

the low frequency (60Hz or 50Hz) side ‘‘low frequency transformer LFT’’. Figure 18 

summarises some of the PV system topologies in AC microgrid [8, 58]. 

 

Figure 17: PV system configurations in AC microgrid [8]. 
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Figure 18: Example of PV system topologies in AC microgrid [8]. (a)DC/DC-DC/AC 

with HFT, (b) DC/DC-DC/AC with LFT, (c) DC/DC-DC/AC (boost and inverter), (d) 

DC/AC inverter with LFT, (e) DC/AC. 

2.4.3 Converter topologies for SCPVM based DC/DC converter 

DC/DC converters such as boost, buck, and buck-boost are widely used for SCPVM to 

implement the MPPT controller because of their simplicity and efficiency. There are 

very important key points to be considered when choosing between them such as the 

given application, efficiency, weight and size, input filter requirement, component 

stress level, cost, MPPT capability and efficiency, and matching the bus voltage 

regulation. 
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The authors of [62] compare different type of DC/DC converters buck, boost and buck-

boost for implementing MPPT in stand-alone application, where the PV system is 

connected to a load. It was found that using buck converter for MPPT is better in case 

of inductive load because it keeps the system efficiency roughly constant as irradiation 

changes and shows better loop stability and dynamic response. However, large input 

filter is required for buck converter due to the discontinuous input current. In case of 

using boost converter for MPPT, it was found that it does not require input filter but the 

system efficiency is function of irradiation level (efficiency increases with decreasing 

irradiation). For the buck-boost converter it was found that it offers voltage gains larger 

or smaller than one, and therefore is more flexible in applications where the load varies 

widely. However, the switch and diode losses are greater than those of the basic buck 

or boost converters for same power level and voltage gain. For this reason the buck-

boost type is not recommended for high power applications. 

Different possible dc-dc converter topologies for PV applications such as buck, boost, 

buck-boost, Cúk converters are examined in [63]. The results reveal that: I) the boost 

converter is best if a significant step-up voltage is required with a short string of PV 

modules but cannot deliver all the power from the shaded modules, II) the buck 

converter can deliver any combination of module power but its required longer string of 

PV modules compared with boost converter; III) Buck-boost and Cúk converters are 

found to be the lower efficiencies and higher costs due to their high semiconductor 

conduction and switching losses. 

A comparison between boost and buck converters was done in [64]. It states that the 

boost converter has several advantages over the buck as the following: I) the rms 

current through the inductor is much less; II) the required input filter (capacitance) is 

smaller and cheaper; III) current rating is lower which is better for selecting the power 

switches and drivers; IV) the boost diode acts as blocking diode to avoid the reverse 

current from the grid to the PV; V) the boost shows better dynamic characteristics: well 

damped, wider bandwidth and smaller resonance due to the small input capacitance. 

The authors of [38] emphasise on all these aforementioned advantages mentioned by 

[64] for using boost converter in grid-connected PV applications. In addition to that, in 

[38] the effect of the DC/DC converter type on the MPPT efficiency is discussed. An 

expression of the MPPT efficiency as a function of the peak-peak voltage oscillation of 
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the output voltage and PV voltage conversion ratio (𝑉𝑜/𝑉𝑝𝑣 ) of the DC/DC converter 

has been derived as given in (2.21).  
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It is important to highlight that 𝛼 and 𝛽 in (2.21) have negative values. The equation in 

(2.21) reveals that the MPPT efficiency is high as the output voltage oscillation is small 

and the voltage conversion ratio 𝑉𝑜/𝑉𝑝𝑣 is high. This means that step-up DC/DC 

converters give better MPPT efficiency. 

Accordingly and based on the discussion in this section for PV grid connected 

application the boost converter is preferred than the buck and buck-boost converters 

due to its advantages in boosting the voltage, allowing the use of small size input and 

output filters, and giving better efficiency of the MPPT. 

2.5 Control Structure of PV Converters in Microgrid 

In general, there are two control levels in microgrids [20, 65-67]: 

 Local control level: This is applied on the interfaced converters of the 

distributed generators, storage systems and loads. Local control normally 

covers: a) voltage, current and droop control for each converter; b) special 

control functions such as maximum power point tracking (MPPT) for 

photovoltaic generators or state of charge for energy storage system; c) 

centralised such as master–slave or multi-master controllers in AC microgrid 

and decentralised coordination functions such as DC bus signalling, Power line 

signalling and adaptive adjustment of droop coefficients in DC microgrid; d) 
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Control the frequency and manage the output active and reactive power from 

the distributed generators in AC microgrid.  

 Global control level (central control): A digital control and communication 

network can be applied to achieve advanced energy management functions. It 

uses information on load needs, power quality requirements, electricity cost, 

special grid needs, demand-side management requests, grid operating mode etc. 

to determine the coordinated control commands which is sent to the local 

controllers. 

Figure 19 shows an example of a systematic control diagram in a DC microgrid. 

In order to keep the scope of this research as focused as possible on the generation side 

of the microgrid and in particular on the PV source as the main renewable energy 

source used in this research, the rest of this section will be reviewing the local control 

of the PV source converter. More details about the global control principles can be 

found in [65] and references therein. 

2.5.1 Operating modes of microgrids and the function of the PV source 

converter 

The first time the concept of microgrid was mentioned in literature was by [2] in 2001. 

It has defined the microgrid as ‘a cluster of loads and micro-sources operating as a 

single controllable system that provides both power and heat to its local area’. The 

main goals behind proposing this new paradigm were providing new way for 

connecting the distributed generation sources efficiently. An example of a DC 

microgrid is shown in Figure 19.The operating function of each converter in a 

microgrid to switch between different operating modes (i.e. operates as voltage source 

or current source) [66-70] depends on the microgrid operating mode (grid-connected or 

islanding mode), the power level from distributed generation sources, loads profile, and 

battery state [66-70]. At least one converter has to operate in voltage source mode to 

regulate the voltage and the frequency of the microgrid (in case DC microgrid only 

voltage regulation is needed), and then other distributed generation sources converters 

can be connected to the microgrid and function as current sources [66-70]. In order to 

assign the source converter which regulates the microgrid voltage, Table 3 summarises 

the operating modes of a microgrid and the function of the source converters for each 

mode [67, 68, 70]. 
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Figure 19: DC microgrid and control diagram of the local and global controllers [65] 

In case of grid-connected mode the microgrid voltage is controlled by the main AC grid 

interfacing converter while the PV converter operates as a current source. In islanding 

mode; the distributed generator converter operates as a current source and the battery 

converter control the microgrid voltage unless the generated power by PV panels is 

higher than the load demand and the battery is fully charged (see mode VI in Table 3). 

In this case the PV converter operates as voltage source to regulate the microgrid 

voltage and ensure power balance in the system. 

Based on the above discussion, the PV converter switches between current source and 

voltage source based on the operating mode of the microgrid as shown in Table 3. A 

general local control diagram of a PV converter connected to a DC bus is shown in 

Figure 20. The PV converter operates as current source (in Modes I – V) when the 

switch is at position 1. In this case the special MPPT control function is active. This 

operating mode will be called ‘MPPT mode’ and it is the desirable mode in grid-

connected PV applications for higher energy harvesting. In case the switch is at 

position 2 the PV converter operates as a voltage source and controls the dc bus voltage 

(Mode VI). This mode will be referred as ‘Droop mode’. It includes current and voltage 

controllers and droop control loop [65]. Switching between MPPT mode and Droop 

mode should be fast and smooth to provide bumpless transition and to guarantee the 

system efficiency and reliability. The decentralised coordination functions or the 
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central controller can be used to trigger the transition between different modes [65, 67, 

69]. 

 

Figure 20: Local control diagram of PV converter connected to a DC bus. 

Table 3: Microgrid operating modes and the function of the system's converters 

Mode Description 

Functions of Power Converters (controller mode) 

Main AC grid 

interfacing converter 
PV converter 

Battery 

converter 

I 
Grid connected, battery is not in full 

state, and PPV > PL
(1) 

Voltage source 

(inverting) 

Current source 

(MPPT) 

Loading unit 

(charging) 

II 
Grid connected, battery is not in full 

state, and PPV < PL 

Voltage source 

(rectifying) 

Current source 

(MPPT) 

Loading unit 

(charging) 

/Disconnected 

III 
Grid connected, battery is in full 

state, and PPV < PL 

Voltage source 

(rectifying) 

Current source 

(MPPT) 
Disconnected 

IV 
Islanding mode, battery is not in 

full state, and PPV > PL 
Disconnected 

Current source  

(MPPT) 

Voltage 

source 

(charging) 

V 
Islanding mode, battery is in full 

state, and PPV < PL 
Disconnected 

Current source  

(MPPT) 

Voltage 

source 

(discharging) 

VI 
Islanding mode, battery is in full 

state, and PPV > PL 
Disconnected 

Voltage source 

(Droop) 
Disconnected 

VII 
Islanding mode, battery is deeply 

discharged, and PPV < PL 
Disconnected 

Disconnected unless 

load shedding is 

applied 

Disconnected 

unless load 

shedding is 

applied 

Notes: (1) PPV is the photovoltaic output power and PL is the load power.  

2.5.2 Local controller of a PV converter connected to a DC bus 

General control structures when the system operates at MPPT mode are shown in 

Figure 21. The control structure in Figure 21.a is direct-duty-cycle MPPT controller 

and it was used by [38, 39, 71]. The voltage-reference MPPT controller in Figure 21.b 

has been used by [38, 40, 41, 71, 72]. It reduces the effect of  𝑟𝑃𝑉 on the system 

transient (see section  2.3.1.2.2), thus improve P&O performance. However this 

configuration is suitable only for low power application. The transient behaviour of the 
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current is uncontrolled and at high power application that affects the quality of the 

provided power and the system failure rate. This problem can be solved by using 

cascaded input-voltage controller structure which includes controlling the PV voltage 

and the inductor current as shown in Figure 21.c and it was used by [73]. 

Most of the studies on grid-connected PV system, where the PV converter operates at 

MPPT mode, use one of the above three discussed controller structures (Shown in 

Figure 21.a, b and c). The analysis is based on the assumption that main AC grid 

interfacing converter is responsible for controlling the dc bus voltage or in case 

islanding it is assumed that the storage system is large enough to store the excess 

energy from the PV resource and its converter is responsible to regulate the dc bus 

voltage. 

The fact that the MPPT converter and PV source are both nonlinear makes it difficult to 

design the compensator. A solution for this problem is found in many references such 

as in [39-41]. Basically the nonlinear system (the PV and the switching converter) is 

formed as two linear models within a certain range and time period. The linearisation is 

based on the fact that the model is linear around the operating point within small 

operating range. Averaging and Linearising methods for DC/DC switching mode 

converter (e.g. state-space averaging method and circuit-averaging method) are well 

developed and are used for studying converter behaviour and designing linear 

controllers [74, 75]. An equivalent linear circuit of the PV source is proposed in [39-

41] and was discussed earlier in Section  2.2.2, page 14. The linearised model of the PV 

source can be used for designing the associated PV system controllers and for 

simplifying the analytical analysis to show the effect of the non-linear PV source on the 

overall system dynamic. 
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Figure 21: MPPT mode control structures. 

In the next section the influence of the non-linear PV source on the controller 

performance and system dynamic will be explored based on using the linearised PV 

model. 

2.5.3 Effect of the non-linear PV source on the controller performance 

2.5.3.1 Regulating the input voltage of the PV interface converter 

As the dynamic resistance of the PV source changes with the operating conditions (see 

Figure 10), the PV interfaced converter’s dynamics is affected. In [38, 39] the dynamic 

behaviour of the PV voltage for a PV source connected to DC/DC boost converter with 

direct-duty cycle MPPT controller is studied for optimising P&O controller. It reports 

that the damping factor 𝜁 of the control-to-input voltage transfer function depends on 

𝑟𝑃𝑉. It was found that as 𝑟𝑃𝑉 increases, because of a reduced in the solar irradiation 

level and/or a decrease in the PV voltage (see Figure 10), the damping factor reduces 

and that affects the system transient behaviour. Also, the authors in [38, 39]  have 

showed that the effect of  𝑟𝑃𝑉 on the system transient can be reduced by using 

compensator in the feedback loop; voltage-reference MPPT controller as was shown in 

Figure 21.b. Figure 22 compares the system transient dynamic with and without 

compensator and it shows that with compensator the effect of 𝑟𝑃𝑉 is reduced and the 

settling time is much smaller than that for the open loop system. 
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Figure 22: Step response of the PV voltage for low solar irradiation (100 W/m2). Black 

curve: closed loop step response, dashed curve: open loop step response [38]. 

For same system configuration (PV source connected to boost converter with voltage-

reference MPPT controller), the authors in [40] have discussed the effect of changing 

the PV voltage on 𝑟𝑃𝑉 and eventually on the system dynamics under constant solar 

irradiation and temperature. The current-voltage curve of the PV source is divided into 

four regions; current source region, power region I, power region II, and voltage source 

region as shown in Figure 23. The frequency response of the control-to-input voltage 

transfer function in the four operating regions is shown in Figure 24. It shows that the 

change in the operating regions does not affect the dc gain, the natural frequency, and 

the cut off frequency. However, it affects the damping factor 𝜁. The system is well 

damped when the operating point is in the voltage-source region. The damping factor 

reduces, when 𝑟𝑃𝑉 increases by moving closer to the current-source region. So, the 

current-source region should be avoided to prevent the system from entering into 

oscillatory state and some control issues of the lightly damped system. In [40] two 

ways are suggested to avoid the current-source region. One way is a lower bound of the 

PV voltage, but the temperature affects the desired operating voltage (Vmpp) over a 

large range (see Figure 8) which makes it difficult to decide the lower bound.  The 

other way is to use the lower bound of the 𝑟𝑃𝑉 under the lower limits of the solar 

irradiation and temperature. 
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Figure 23: Current-voltage characteristic curve of PV and the four operating regions 

as given in [40]. 

 

Figure 24: Bode diagram of the theoretical control-to-input voltage transfer function 

for voltage-reference MPPT controlled boost converter [40].The operating regions are 

shown in Figure 23. 

The study in [41] is using voltage-reference MPPT controller to control a buck 

converter to interface the PV system to the load. The closed loop system performance is 

checked when the operating point moves between different regions (same regions 

shown in Figure 23: voltage-source, MPP and current-source region). The frequency 

response of the control-to-input voltage transfer function is shown in Figure 25. Its 

shows that the damping factor of the system is affected, where the current-source 

region presents the least damped operation, while the voltage-source region presents the 
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very damped operation. The cut-off frequency of the system for the different regions is 

the same. 

Regulating the PV voltage by only considering a voltage control loop as was emplyed 

in [38-41] without an inner current loop is usually useful for small PV system (less than 

1 kW). For higher power application, cascaded input-voltage control usually used to 

avoid current transient, reduce failure rates, and for overload protection [76]. Cascaded 

input-voltage control is implemented by using two control loops; the inner curent 

control loop and the outer voltage control loop as hown in Figure 21.c. In [41] the 

cascaded input-voltage control loop for a buck converter is analysed for three different 

PV operating regions. The bode diagram of the closed-loop system is shown in Figure 

26. It shows that at low frequency region the dc gain and the phase are affected 

significantly. However, the design point of the closed loop control (i.e. cut-off 

frequency) is chosen at high frequency which guarantees proper control performance 

for the three operating regions. In fact, the effect of 𝑟𝑃𝑉 was hidden by the large input 

capacitance (connected across the PV terminal) and high cut-off frequency of the 

system. 

 

Figure 25: Bode diagram of the closed-loop system at three different operating regions 

for voltage reference MPPT controlled buck converter [41]. 

In the previous disscussed studies [38-41] the influence of the non-linear PV source 

(modelled as a dynamic resistance 𝑟𝑃𝑉) on the PV voltage regulation results in different 
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damping factor. However, the resonance frequency is not affected by 𝑟𝑃𝑉 and the 

system can be easily controlled by two ways. One way is by designing the system with 

high cut-off frequency, where the system characteristics are less affected by 𝑟𝑃𝑉 as 

shown in Figure 24, Figure 25, and Figure 26. On one hand the high cut-off frequency 

helps to guarantee same system dynamic performance under different operating 

conditions, but on the other hand the high cut-off frequency will required higher 

switching frequency which increases the switching losses. Also in case cascaded input-

voltage controller the cut-off frequency will be limited by the current controller. The 

other way is using large input capacitance Cin across the PV terminal to hide the effect 

of 𝑟𝑃𝑉. However, large capacitance will reduce the system reliability [77] and will 

diminish the performance of the P&O controller [38]. 

 
Figure 26: Bode diagram of the closed-loop system at three different operating regions 

for cascaded input-voltage controlled buck converter [41]. 

The influence of 𝑟𝑃𝑉 for cascaded input-voltage controlled boost converter with small 

input capacitance has been analysed in [73]. The PV voltage is controlled by means of 

inner inductor current loop. A small input capacitance and low cut-off frequency 

(~50Hz) are considered. It was found that 𝑟𝑃𝑉 variation affect the cut-off frequency and 

the phase margin of the system as shown in Figure 27. The impact of 𝑟𝑃𝑉 is very 

significant at MPP and CV regions. The performance of the controller becomes much 

slower as PV voltage increases which can cause problems such as low performance of 

the P&O controller [38], or no rejection of disturbances from weather variation or load 

side variation [76]. However, the effect on the stability is not critical as the phase 
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margin is improved. The author of [73] has proposed an adaptive voltage control based 

on estimating 𝑟𝑃𝑉 to adapt one parameter of the controller to overcome the slow 

regulation in the power and constant voltage regions and achieve same regulation 

performance at different regions. 

 
Figure 27: Bode plots of the cascaded input-voltage controlled boost converter at three 

different operating regions [73]. 

2.5.3.2 Regulating the output voltage of the PV interface converter 

It was discussed in section  2.5.1, the outputs of the PV interfaced converter system 

(output voltage and current) need to be controlled under specific operating mode such 

as Mode VI (Droop mode). Output-side feedback control of buck type and boost type 

converters with a voltage source input (voltage-fed converter as shown in Figure 28.a) 

is completely developed. However, the existent of the current source input (current-fed 

converter as shown in Figure 28.b) such as PV source affects the dynamic 

representation of the conventional voltage-fed converter [78]. The main difference 

between the current-fed and voltage-fed converter is that the current-fed converter 

introduce a new state variable to the system which is the input capacitance Cin voltage. 

The input voltage of the current-fed converter is not constant as in the voltage-fed 

converter. The new state variable adds more complexity to the system and will also 

affect the dynamic of the system. Steady state mathematical model and the small signal 

frequency model in continuous conduction mode for current-fed buck and boost 

converters has been given in [78]. 
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Figure 28:(a) voltage-fed converter (b) current-fed converter 

The effect of the PV on the output-side control was tackled by [79, 80]. It was shown 

that the control loop gain of a peak-current-mode-controlled buck converter in PV 

application has a right half plane zero (RHP) when the PV operates in the current-

source region. [80] also reveals that a RHP pole appears in the converter dynamic when 

the PV operates in the current-source region. The two earlier mentioned studies ([79] 

and [80]) have analysed the buck converter dynamics under output current control, the 

study in [81] is investigating the buck converter with output voltage control. It was 

found that the dynamics of the output-voltage-controlled buck converter, used in PV 

applications, contains RHP zero and duty-cycle-dependent resonant poles when the PV 

operates in the voltage-source region. Therefore, the controller design of an output-

side-controlled buck converter used for PV applications is more complex than the 

conventional converter due to the appearance of the RHP roots. 

Boost-type converters are preferred to connect PV to the DC microgrid, mainly because 

of its voltage boosting capability, small input filter and DC-link capacitance size, and 

high MPPT efficiency. However, the conventional voltage-fed boost, buck-boost and 

other boost-derived converters present considerable difficulties to the output-side 

controller design because they contain a RHP zero in their control-output transfer 

function [74]. In addition to the conventional RHP zero in boost type converters the 

recent investigation of PV interfacing boost converter [82] has showed that another 

RHP zero appears in the control-to-output transfer function when the PV operates in the 

current-source region. The second RHP zero is generated because of the non-linear PV 

source and the additional input filter at the output terminal of the PV. 

Thus, to ensure good output-side-controller performance and stable control loop in PV 

application: In case output-voltage-controlled buck converter special care is required at 

the voltage-source region. For the peak-current-controlled buck converter, the attention 

is to be paid at the current-source region. In case of output-mode-controlled boost 
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converter for either output voltage or output current, the system is more sensitive at the 

current-source region. 

2.5.3.3 Transient response specification under different damping ratio 

In grid-connected PV system the interfacing converter operate at MPPT mode and 

control its input side by one of the structures shown in Figure 21. In section  2.5.3.1 it 

was discussed that the influence of the non-linear PV source on the input side control 

performance designed with a high cut-off frequency (at a frequency where the system 

characteristics are less affected by 𝑟𝑃𝑉 variation) affects only the damping ratio of the 

system [38-41]. The damping factor of the system affects the controller performance, 

especially its transient response [74, 83]. Consequently, this section reviews the effect 

of different damping ratio on the transient performance of a second order system 

focusing on the system settling time and maximum overshoot. 

The closed loop transfer function of a DC/DC switching converter can be described by 

a second-order equation as given in (2.22): 
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Where; R(s) and C(s) are the input and output of the system, respectively. ζ is the 

damping ratio and ωn is the natural frequency of the system. The step response curves 

of c(t) with different values of ζ is shown in Figure 29. 

The settling time (ts) is the time required for the response curve to reach a specified 

percentage of the final value (usually 2% or 5%) [74, 83]. The decay speed of the 

transient response depends on the time constant 𝜏 = 1
𝜁𝜔𝑛

⁄ of the system. Therefore, for 

a given ωn, the settling time is a function of ζ as shown in Figure 30. 
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Figure 29: Unit-step response of the system given in equation (2.22) [83]. 

The maximum overshoot (𝑀𝑝) is the maximum peak value of the response curve 

measured from unity [74, 83]. The relationship between the maximum percent 

overshoot and ζ is given in (2.23) and illustrated in Figure 31 [83]. 
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Figure 30: Settling time versus ζ [83]. 

 

 

Figure 31: Overshoot versus ζ [83]. 

2.6 Power Quality of Photovoltaic Systems 

One of the challenges the PV system bring to the grid is the power quality. Several 

origins of the poor power quality in grid-connected PV system are discussed earlier in 
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Chapter 1, Section  1.1. Recently, it was found that the MPPT controller that based on 

perturb and observe technique such as P&O controller induces harmonics in the grid 

and that impact the PV system power quality as reported in [16-18, 28-31]. In this 

section the impact of the P&O controller on PV power quality is reviewed in-depth and 

possible mitigation methods are discussed.  

2.6.1 Impact of P&O controller on PV power quality 

The investigations in [16-18, 30, 31] point to the impact of the P&O controller on the 

PV system power quality based on experimental results for single-stage centralised 

MPPT inverters. The study in [16] indicates significant power-dependent changes in 

harmonics emissions of the single-stage centralised MPPT inverters and states that 

harmonics emission increases in low power operating modes. The study suggesting that 

the increase in the harmonics is due to the P&O controller, but a clear explanation of 

how the P&O controller induces these harmonics is not provided. One of the 

experimental results of the study in [16] is shown in Figure 32 which show the 

harmonics in the dc-link voltage and AC grid current. Similarly, for the system shown 

in Figure 33 the authors of [17] reveal that rapid subharmonics have been observed in 

the experimentally measured DC and AC voltages and currents of the single-phase 

grid-connected PV inverters as shown in Figure 34. They comment that the cause of 

these subharmonics is the P&O controller, however proper explanation of generation 

mechanisms of these subharmonics is unclear. My published work in [28] shows that 

the harmonics in the dc-link and grid currents increase in the double-stage DC/DC 

boost converter due to the interaction between the system stages as the continuous 

perturbations from the P&O controller of the first-stage are seen as disturbances by the 

second-stage converter. The induced harmonics are shown in line with the P&O duty 

cycle perturbations as shown in Figure 35. 
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Figure 32: Experimental results of single-stage PV inverter (a) instantaneous input DC 

voltage, (b) instantaneous output AC voltage, and (c) instantaneous output AC current 

[16].  

 

Figure 33: Measurement setup and the network impedances 



50 

 

Figure 34: Experimental results of single phase single-stage PV inverters show the 

current and voltage variations related to the MPP tracker [17].  

 

Figure 35: Harmonics in the dc-link current (𝐼) and grid current (𝐼𝑔𝑟𝑖𝑑) in double-stage 

DC/DC boost converter [28]. 

Based on the earlier review on the P&O operation in section  2.3.1.2 and on the results 

shown at the DC side (i.e. the PV voltage and current) in [16] and [17] in Figure 32 and 

Figure 34, respectively, it seems that the P&O controller of their systems does not 

operate in three duty-cycle steps as shown in the DC voltage waveforms of inverter 1 
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and inverter 3; that might be another factor that increases the harmonics emissions in 

their systems. According to [38, 39] the perturbing behaviour of the P&O scheme 

introduces continuous PV power oscillations in the steady-state and transient-response 

oscillations at each time P&O perturbs. The steady-state oscillation depends mainly on 

the adopted P&O parameters which are the control parameter step size (e.g. duty-cycle 

step size in direct duty-cycle P&O controller) and the sampling frequency. The 

transient-response oscillations depend on the dynamics of the adopted converter 

topology and the PV module characteristics which is in turn a function of the solar 

irradiation level and the operating point of the PV module [38]. Accordingly, different 

converter topologies produce different transient-response oscillations under the same 

operating conditions. Proper optimisation of P&O controller to all possible operating 

conditions and to the dynamic behaviour of the specific converter adopted is very 

important to ensure least undesirable impact of the P&O on the rest of the system. The 

authors of [39] provide guidelines to properly optimise P&O controller (i.e. to operate 

in three duty-cycle steps in steady-state) and this also was covered in section  2.3.1.2 in 

page 18.  The most important in the optimisation process is to make sure that P&O 

decision-making is not affected by transient-response oscillations of the PV voltage and 

current after each perturbation [39]. Therefore, the operating point leading to the 

longest transient oscillations (i.e. worst case scenario) must be used when optimising 

P&O parameters. Otherwise, the P&O controller can be confused leading to increased 

variations in the PV voltage and current and this give rise to the harmonics generated 

by the PV system. 

The relation between the P&O controllers and the generated harmonics in double-stage 

parallel SCPVM system is discussed in my published paper in [29]. It highlights that 

the lowest harmonic frequency (𝑓𝑙𝑜𝑤) generated in the dc-link and grid currents 

depends on the P&O sampling time (𝑇𝑚𝑝𝑝𝑡) and the number of the P&O duty-cycle 

steps in steady-state. Thus, 𝑓𝑙𝑜𝑤 is expressed as a function of the P&O parameters and it 

was shown that for optimal system efficiency and three duty-cycle steps 

operation 𝑓𝑙𝑜𝑤 = 1 (4𝑇𝑚𝑝𝑝𝑡)⁄ . Some Fast Fourier Transform (FFT) results are provided 

in [29] as shown in Figure 36 and Figure 37 which show the P&O low-frequency 

related harmonics in the dc-link voltage and current of the double-stage parallel 

SCPVM system, respectively. Also, in my work in [29] the transient harmonics in the 

dc-link and grid sides due to the P&O perturbations are discussed. 
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Figure 36: FFT of the dc-link voltage in double-stage parallel SCPVM system for four 

SCPVM units. System operates at three P&O duty-cycle steps in steady-state and 

𝑇𝑚𝑝𝑝𝑡=0.2 ms [29]. 

 

Figure 37: FFT of the dc-link current in double-stage parallel SCPVM system for four 

SCPVM units. System operates at three P&O duty-cycle steps in steady-state and 

𝑇𝑚𝑝𝑝𝑡=0.2 ms [29]. 

[30, 31] are the latest studies published in 2018 which are investigating the impact of 

the P&O controller on increasing the harmonics in grid-connected PV system. In these 

studies the interharmonics from commercial PV inverter are observed experimentally as 

shown in Figure 38 and an approach to characterise the frequency and the amplitude of 

the P&O related interharmonics in the grid current is proposed for single phase PV 

inverter according to the P&O controller parameters. In [31] it was found that the 

frequency of the interharmonics (𝑓𝑛) in the grid current can be expressed as a function 
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of the P&O sampling frequency (𝑓𝑀𝑃𝑃𝑇): 𝑓𝑛 = (2𝑛 − 1)𝑓𝑀𝑃𝑃𝑇 4⁄ , where n is an integer. 

Thus, the AC grid current will contain harmonics at 𝑓𝑔 ± 𝑓𝑛 frequencies after the 

amplitude modulation, where 𝑓𝑔 is the grid fundamental frequency (e.g. 𝑓𝑔=50Hz). The 

variation in the grid current amplitude at each harmonics due to the variation in the dc-

link voltage perturbations is predicted by decomposing the dc-link reference voltage 

into a summation of 𝑛 frequency components (which is function of the P&O sampling 

frequency and the control-signal step size) and use it as an input to the system close 

loop transfer function between the dc-link reference voltage and the grid current 

amplitude. It was found that the perturbation step size of the P&O controller has a 

strong effect on the amplitude of the interharmonics components. While the sampling 

rate affect both the amplitude and the frequency of the interharmonics. 

 

Figure 38: Experimental results from a commercial 15-kW PV inverter operating at 

2% of the rated power, where 𝑣𝑝𝑣 is the PV voltage, 𝑖𝑝𝑣 is the PV current, 𝑣𝑔 is the grid 

voltage, and 𝑖𝑔 is the grid current [30, 31]. 

The adopted MPPT architecture; centralised or distributed MPPT (see section  2.3.2 

page 24), is another factor to be considered when analysing P&O related harmonics in 

PV systems. From the P&O harmonic point of view, the distributed MPPT architecture 

is more critical than the centralised architecture because the number of the P&O 

controllers increases in the system. 
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2.6.2 Mitigation methods of P&O related harmonics 

Since the main reason of the aforementioned generated harmonics in [16, 17, 28-30] is 

the repeated perturbations of the P&O control parameter, a possible solution could be 

adopting different MPPT method. As example, the fraction open circuit MPPT method 

(see section  2.3.1.1) can be used as suggested in [30]. It does not required perturbations 

in the PV voltage and current [38, 46]. However, this MPPT method leads to very poor 

system efficiency as the MPP is not always at 76% of the open circuit voltage and 

keeping it unchanged under different solar irradiation levels and/or temperatures 

decreases PV system efficiency. Other more advanced methods which can achieve a 

very small steady-state oscillation, or even completely cancelling it can be used such 

as, incremental conductance, particle swarm optimisation, extremum seeking and ripple 

correlation [47-49] as discussed in section  2.3.1.3. However, the implementation of 

these techniques is more expensive than P&O, sometimes required additional circuit, 

tuning their parameters is very complex and required more complex software which 

leads to increased computation time [38, 46]. In addition to that and as discussed in 

[39], in practice the specific condition which is required to be fulfilled to stop the 

perturbations is never exactly satisfied because of noise and measurement errors. As a 

result, it is usually required that such condition is approximately satisfied within a 

given accuracy and to that the operating point cannot be exactly equal to MPP but 

oscillates about it. 

The P&O related harmonics problem is newly reported in the literature and a specific 

solution has not been proposed so far. However, some existing filtering methods can 

also be used to supress the voltage and current variations in the output side of the PV 

system due to P&O scheme such as passive filters, ripple eliminator circuits, or 

adopting new control techniques. The most common solution is using passive filters 

such as using bulk dc-link capacitor. This solution is not desirable as it reduces system 

reliability and increases losses and cost.  

The bulky dc-link capacitor can be replaced by ripple eliminator circuit connected in 

parallel with a smaller dc-link capacitor.  For instance, in the literature the ripple 

eliminator circuit is used to eliminate dc-link variations caused by a three-phase 

unbalanced ac load [84], switching ripple from an input source [85], second-order 

ripple power in a single phase PWM rectifier [86], and power fluctuations from 

renewable energy sources [87]. However, this solution required adding extra power 
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electronic circuit and control-loop to the system which increases system physical size, 

complexity and cost. 

Alternative solutions might be new control techniques such as those proposed in [88], 

[89] and [90] to overcome dc-link variation caused by resonance under unbalanced 

loads condition, poorly damped LC circuit and interaction between micro-grid clusters, 

respectively. The advantages of these solutions are no additional power electronic 

circuit is required, power quality and efficiency are improved at low cost. 

2.7 Conclusion 

In this chapter the characteristics of the non-linear PV source, MPPT techniques, 

configurations and topologies of grid-connected PV system, and controller structures 

for different operating modes (i.e. grid-connected and islanded modes) have been 

studied. In addition to that, two concerns for grid-connected PV system have been 

discussed. The first concern is related to the effect of the non-linear PV source on the 

dynamic performance of the system such as system damping factor, phase margin, and 

cut-off frequency. It was found that the impact of the non-linear PV source depends on 

system controller structure in terms of controlling the input side or the output side of 

the PV interface converter. In case of controlling the input side the system damping 

factor and cut-off frequency are mostly affected. In case of controlling the output side 

(this is applied in case of islanded mode operation) the non-linear PV source changes 

the system dynamic and may generate a right half plane roots which affect system 

stability depending on the converter topology and the PV operating region. The second 

concern is related to the poor power quality from grid-connected PV systems. It has 

been reported that grid-connected PV systems is one of the sources which deliver 

harmonics to the grid due to[10-15][10-15][10-15][10-15][10-15] many reasons such as 

large populations of PV inverters, resonance between the grid and the PV inverter, or 

large amount of fluctuating in PV power[12, 15][12, 15][12, 15][12, 15][12, 15]. In 

addition to the aforementioned sources of harmonics in PV systems, recent studies have 

reported that there is possible impact of P&O controller on increasing the harmonics in 

PV grid-connected systems, which leads to a poor power quality from the PV system. 

P&O technique is widely used in commercial products, especially for low-cost 

implementations which make the newly reported P&O related harmonics problem a 

subject undergoing intense study and researchers are persuaded to find a solution. 
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As discussed in this chapter there are several configurations to connect a PV system to 

the grid and each configuration leads to different converter topologies and P&O 

architectures (centralised or distributed P&O). Therefore, it is difficult to generalise the 

effect of the PV system on the power quality in the grid. In this work, the main focus is 

on double-stage parallel SCPVM configuration connected to a DC bus. As has been 

discussed in section  2.4.1 this cofiguration  is capable to provide: high-step-up voltage, 

low cost, simple and provide high MPPT performance.A DC/DC boost converter is 

considered for both system stages as will be shown in the next chapter. 
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3 DESIGN CONSIDERATIONS OF THE DOUBLE-

STAGE PV SYSTEM CONNECTED TO A MAIN DC 

BUS 

3.1 Abstract 

In this chapter the design considerations of the SCPVM unit in double-stage DC/DC 

boost converter is discussed. First, the available range of the dc-link voltage for 

successful tracking of MPP has been identified. Then, the effect of that voltage range 

on the first-stage converter parameters (e.g. inductance and capacitance) under different 

weather condition is analysed. After designing SCPVM unit the P&O parameters 

(𝑇𝑚𝑝𝑝𝑡 and ∆d) are optimised based on the dynamic behaviour of the first-stage 

converter and the adopted PV module. Then, a brief discussion of the different 

controller types that can be used to control the common dc-link bus in grid-connected 

mode such as the voltage mode and cascaded current-voltage controllers is provided 

with a summary of the designed controllers. Finally, time domain simulation for the 

designed system is provided and discussed. 

3.2 Overall System Structure and Parameters  

Different PV system configurations has been discussed in section  2.4, page 25, the 

double-stage parallel SCPVM configuration connected to a main DC bus, as shown in 

Figure 39 is investigated in this research. It offers advantages in minimising shading 

effects, improving system modularity, improving MPPT performance and efficiency, 

boosting up the voltage, and providing the same voltage level at the output of each 

SCPVM under mismatching conditions. Each SCPVM consists of a DC/DC boost 

converter, a PV module (type NU-E240 is used as an example; see Table 2, page 16 for 

its specifications) and a MPPT digital controller.  For the second-stage converter a 

DC/DC boost converter is adopted in order to boost the dc-link voltage 𝑉𝑑𝑐 to the 

required main DC bus voltage 𝑉𝑔𝑟𝑖𝑑. It is generally suggested that the main DC bus in a 

future DC system should be regulated at a voltage level in the range of 380-400V, since 

this voltage level can meet the industry standard for consumer electronics with the 

power factor correction circuit at the input [20, 91]. Also, this voltage level offers good 

efficiency when supplying high-demanding loads (e.g. hybrid electric vehicle chargers, 

washing machines) [20]. However, in this work 𝑉𝑔𝑟𝑖𝑑 is selected to be 200V due to 

some constrains in the practical work of this research such as the power rating of the 

programmable electronic load which is used to emulate the main DC bus voltage. This 
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is acceptable as  𝑉𝑔𝑟𝑖𝑑 level does not affect the main findings and contribution of this 

research. 

The controller implementation is based on the assumption that the PV system is in grid-

connected mode or in islanded mode and the storage system capacity is large enough to 

allow MPP tracking all the time. The first-stage controller is responsible for MPPT and 

a direct duty cycle P&O method is adopted. The controller of the second-stage 

converter controls the dc-link voltage 𝑉𝑑𝑐 at constant value. Some dc-link controllers 

for regulating 𝑉𝑑𝑐 such as voltage mode, and cascaded current-voltage controllers will 

be discussed in details in Chapter  5. The output voltage of the second-stage converter is 

controlled either by the bidirectional AC/DC inverter which connects the main DC bus 

to the AC network, or by a storage system converter. 

The PV system standards require a very small tolerance between PV modules 

specifications and characteristics for high system performance [92]. In consequence, all 

the PV modules in this work are assumed to be identical and manufactured by the same 

firm. 

 

Figure 39: Double-stage parallel SCPVM configuration connected to a main DC bus. 

3.3 Parameters and P&O Design of a SCPVM Unit 

There are two key points to be considered when designing a SCPVM unit, namely the 

limitation on the output voltage to ensure the P&O is functioning under all weather 

conditions and the effect of changes in weather conditions and dc-link voltage 𝑉𝑑𝑐 on 

the first-stage converter parameters. 



59 

3.3.1 DC-link voltage selection for MPPT mode 

This section shows that even when high efficiency DC/DC converter and high 

performance MPPT algorithm, the MPP cannot be achieved. This is because MPPT 

depends on the load profile and on the static features of the DC/DC converter. In [93] 

the authors present an analysis of MPPT limitation when different types of DC/DC 

converters (buck, boost, buck-boost, and cúk) are used. The analysis considered a 

resistive load at the output. Since the Boost converter is adopted in this work, the 

method in [93] was followed to check the limitation of the MPPT for the boost 

converter with constant voltage at the output. The maximum duty cycle limit is defined 

at 0.9. The required duty cycle (Dmppt) for the boost converter to obtain the maximum 

power from the PV module can be found from  the basic voltage gain equation of 

DC/DC boost converter in [74]. 
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If the system operates at MPP, the PV voltage will be Vin = 𝑉𝑚𝑝𝑝
STC (the maximum power 

point voltage at Standard Test Conditions STC) and if the output voltage is regulated at 

constant voltage Vdc, then the output voltage is constant and Vout = 𝑉𝑑𝑐. Assuming a 

converter efficiency of 100% (𝑖. 𝑒.  Pin = Pmpp = Pout), the duty cycle is given by: 

1  

STC

mpp

mppt

dc

V
D

V
            (3.2) 

Under different solar irradiation levels and constant temperature conditions, Vmpp 

changes very slightly and can be assumed to be constant (equal to 𝑉𝑚𝑝𝑝
𝑆𝑇𝐶). This means 

that both the input voltage and the output voltage of the boost converter are constant, 

thus Dmppt is equal for the different solar irradiation levels. The situation will be 

different if the effect of changing the cell temperature is included because Vmpp will not 

be constant in this case.  

Figure 40 shows the required duty cycle for the highest and lowest irradiation levels to 

achieve the maximum power point for different values of the output voltage 𝑉𝑑𝑐. It 

shows that Dmppt is equal for different irradiation conditions for one output voltage 

level and it hits its maximum defined limit of 𝐷𝑚𝑎𝑥 = 0.9 at 290V. Therefore, for the 
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tested system under constant temperature conditions, the dc-link voltage limit is given 

by:  

max1
d
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mppSTC

mp cp

V
V V

D
 


         (3.3) 

And for NU-E240 PV module (see Table 2, page 16 for its specifications): 

29 290dcV V V            (3.4) 

Therefore, 𝑉𝑑𝑐 is selected to be controlled at 50V. 

3.3.2 Inductance and capacitance selection 

In this part, first-stage converter parameters (i.e. inductance L and capacitance Co) 

selection will be analysed considering the output voltage range in (3.4). The inductance 

L of the first stage converter can be found from the following equation [74]: 
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Where,Vin = 𝑉𝑚𝑝𝑝
STC,  ∆𝑖𝐿_𝑝𝑝 is the peak-peak inductor current ripple, 𝑓𝑠𝑤1 is the 

switching frequency of the first-stage converter. 

In general, the peak-peak current ripple ∆𝑖𝐿_𝑝𝑝 in (3.5) can be selected based on the 

minimum current ripple requirement for the highest PV module current (i.e. the highest 

solar irradiation) or for the lowest current (i.e. the lowest solar irradiation). Figure 41 

shows the effect of changing the solar irradiation and SCPVM output voltage 𝑉𝑑𝑐 

(within the limit in (3.4)) on Lmin based on (3.6). 
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Where ∆𝑖𝐿𝑝𝑝,𝑚𝑎𝑥 is defined as a percentage of the PV module current (a value of 13% 

is used in Figure 41). As shown in Figure 41 low solar irradiation conditions present 

the worse-case design requirement. However, other factors have to be considered such 
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as the inductance core size, and power production in deciding which operating point to 

use for the design. 

 

 

Figure 40: Effect of solar irradiation level (1000 𝑊/𝑚2 & 200 𝑊/𝑚2) for different 

values of 𝑉𝑑𝑐 on 𝐷𝑚𝑝𝑝𝑡 of the first stage converter. 

If L is designed based on the highest irradiation, the result is smaller inductance than 

for the lowest irradiation as shown in Figure 41. In this case the core size will be 

smaller [94]. However, two key drawbacks can be identified. First, at lower solar 

irradiation the current ripple amplitude accounts for the higher percentage of the total 

current and thus the captured energy will be lower than in the case if the higher 

inductance were used [94]. Second, under the conditions of low input current (i.e. low 

solar irradiation) the converter might operate in discontinuous conduction mode 

(DCM). 

If L is designed based on the lowest irradiation a higher inductance is needed, then the 

loss of the captured energy from PV is minimal at the low irradiation levels [94]. 

However, for this case the core size has to be designed for the highest current (𝑖𝑙,𝑚𝑎𝑥) 

to avoid magnetic saturation. As the core size is proportional to the stored energy in the 

inductor (𝐸 =
1

2
𝑖𝑙,𝑚𝑎𝑥

2 𝐿), designing L based on the  lowest irradiation will result in a 

bigger core size than the case if the higher solar irradiation were used for designing L 

[94]. 
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Figure 41: Effect of solar irradiation level (1000 𝑊/𝑚2 to 200 𝑊/𝑚2) for different 

levels of 𝑉𝑑𝑐  on the first stage converter inductance value.( ∆𝑖𝐿_𝑝𝑝 =13% and 𝑓𝑠𝑤1 

=60kHz). 

Thus, aiming for the small inductance core, high irradiation is used for designing L. 

DCM at low solar irradiation level can be avoided by opting for the current ripple to be 

less than twice the minimum current at the lowest irradiation. For instance, if the dc-

link voltage is controlled at 50V, L should be equal or greater than 0.19 mH to ensure 

less than 13% peak-peak inductor current ripple at the high solar irradiation level (i.e. 

for NU-E240 and G = 1000 W/𝑚2, ∆𝑖𝐿_𝑝𝑝 = 0.13 × 8.15 = 1.06𝐴) as shown in 

Figure 41. The PV current of NU-E240 at the lowest solar irradiation of 200 W/m
2 

is 

1.6A and since 2×1.6A=3.2A is higher than ∆𝑖𝐿_𝑝𝑝, the DCM is avoided. So, a value of 

0.212 mH is selected.  

The capacitance (Co) can be found from equation (3.7) [74]. The effect of the 

irradiation level and the SCPVM output voltage 𝑉𝑑𝑐 (within the limit in (3.4)) on the 

capacitance value is shown in Figure 42 for a peak to peak dc-link voltage ripple 

(∆𝑣𝑑𝑐_𝑝𝑝) requirement of 3%. The highest irradiation level presents the worst case 

scenario. 
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where 𝐼𝑠𝑐𝑝𝑣𝑚_𝑜𝑢𝑡 = (1 − 𝐷𝑚𝑝𝑝𝑡)𝐼𝑝𝑣. Figure 42 shows that increasing the output voltage 

will reduce the required capacitance; however, this will increase the duty cycle which 

affects the inductor copper losses and the semiconductor conduction losses [74]. Also, 

going back to the inductance design, increasing the output voltage will increase the 

inductance value. Another point that has to be considered when choosing the 

capacitance is the chosen PV system configuration. As example, in case of series 

connection of SCPVM, the voltage across each SCPVM will vary randomly in case of 

the non-uniform solar irradiation [38]. Therefore, in order to meet the minimum voltage 

ripple requirement the worst case operating condition has to be considered in the design 

of 𝐶𝑜. This limitation is not applied in the case of parallel connections which give more 

flexibility in choosing Co depending on the regulated DC-link voltage.  

Figure 42:  Effect of solar irradiation level (1000 𝑊/𝑚2 & 200 𝑊/𝑚2) for different 

𝑉𝑑𝑐 values on the first-stage output capacitance design. ( ∆𝑣𝑝−𝑝=3% & 𝑓𝑠𝑤1 =60kHz). 

As the dc-link voltage is selected to be controlled at 50V, 𝐶𝑜 is selected to be 22 µF and 

this will result in 1.5V peak-peak voltage ripple (∆vdc_pp = 0.03 × 50 = 1.5V). 

Table 4 summaries the parameters of the first-stage DC/DC boost converter. 
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Table 4: Parameters of the first-stage converter 

Symbol & Glossary Value 

𝑳 Inductance of the first-stage converter inductor 0.212 mH 

𝑪𝒐 Capacitance of the output capacitor of the first-stage converter 22 µF 

𝑪𝒊𝒏
 Capacitance of the input capacitor of the first-stage converter 2.2 µF(*) 

* 𝑪𝒊𝒏  value is chosen based on simulation tests to ensure a good value to fairly filter out the switching ripple of 

the inductor current and at the same time avoid worsening the dynamic performance of the system as MPPT 

sampling period is affected by its value. 

3.3.3 P&O optimisation 

Two parameters are required to be optimised: the sampling period (𝑇𝑚𝑝𝑝𝑡) and the step 

size ∆d. The sampling period has to be greater than the PV power settling time 𝑇𝜀 as 

was given in (2.15): 
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𝜀 = 0.1 gives a reasonable threshold. The values of 𝜔𝑛 and ζ can be found from the 

small signal duty cycle to PV module voltage transfer function as given in (3.8) [38]; 

with reference to Figure 39.  
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For ideal boost converter (3.8) can be assumed to be equal to (2.12). Therefore, 𝜔𝑛 and 

ζ can be expressed as the following:  
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Where, 𝑟𝑝𝑣 is given in (2.7) and the rest of the parameters in (3.9) and (3.10) are given 

in Table 4. The minimum 𝑇𝑚𝑝𝑝𝑡 for boost converter can be found by inserting 

equations (3.9) and (3.10) in (2.15): 
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As seen in (3.11) 𝑇𝑚𝑝𝑝𝑡 is function of 𝑟𝑝𝑣 which in turn changes with solar irradiation 

level and PV module (𝑣𝑝𝑣) voltage as given in (2.7). 

The results of the 𝑟𝑝𝑣 calculated based on (2.7) and the minimum sampling rate at 

different PV module voltages for the highest and lowest solar irradiation level are given 

in Table 5. Lower PV module voltage and/or solar irradiation level result in longer 

𝑇𝑚𝑝𝑝𝑡. 

Table 5: Minimum P&O sampling period (analytical calculation) 

G 

(W/m
2
) 

Vpv=27V Vpv=29V (MPP voltage) Vpv=31V 

𝒓𝒑𝒗 (Ω) 𝑻𝒎𝒑𝒑𝒕 (𝒎𝒔) ≥ 𝒓𝒑𝒗 (Ω) 𝑻𝒎𝒑𝒑𝒕 (𝒎𝒔) ≥ 𝒓𝒑𝒗 (Ω) 𝑻𝒎𝒑𝒑𝒕 (𝒎𝒔) ≥ 

1000 11.1 0.08 4.2 0.05 1.9 0.02 

200 40.7 0.17 14.3 0.13 5.3 0.06 

The PV module power settling times 𝑇𝜀 can be also estimated through simulating the 

SCPVM unit with a small unit step change in the duty-cycle. The simulation results in 

Figure 43 are determined by connecting a single SCPVM unit to a stiff 50V voltage. 

The duty cycle is adjusted to achieve the required testing point (i.e. the PV module 

voltage). The irradiation is kept constant (200 W/m
2
 solar irradiation is considered) 

then a small step change in the duty cycle is applied (0.003 step change). The results in 

Figure 43  for G=200 W/m
2
 show very close values to the analytical calculated values 

in Table 5. The slight difference is because in the analytical calculation an estimated 

values of 𝑟𝑝𝑣 and ζ were used, which were obtained based on the equivalent linear 

model while in the simulation a non-linear model of PV module was used. However, 

both results in Table 5 and Figure 43 show that the lower 𝑉𝑝𝑣 and/or G the longer time 

is required for the PV module power to settle and so longer sampling period 𝑇𝑚𝑝𝑝𝑡 is 

needed. Therefore, for the adopted system to operate in three steps in steady state the 

minimum value of 𝑇𝑚𝑝𝑝𝑡 is: 

0.2mpptT ms            (3.12) 

In this work 0.35 ms is considered for 𝑇𝑚𝑝𝑝𝑡. 
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The step size ∆d can be found from (2.10). As the value of ∆d depends on the average 

rate of change in the solar irradiation (𝐺)̇  and that depends on the location site of the 

PV system, in this work it was assumed that the maximum 𝐺̇ is 100 W/m
2
.s. Table 6 

shows the minimum value ∆d for high, medium and low solar irradiation for the 

selected 𝑇𝑚𝑝𝑝𝑡 of 0.35 ms. The solar irradiation leading to the highest value of ∆d must 

be used which is the lowest solar irradiation as shown in Table 6. Therefore, the 

minimum value of ∆d is as follow: 

0.006d             (3.13) 

 

Figure 43: Duty-cycle step change of 0.003 to determine 𝑇𝜀 for G=200 W/m
2
: top to 

bottom (a) Vpv=27V, (b) Vpv=29 V, and (c) Vpv=31V. 

 

Table 6: Minimum P&O step size (∆d) 

G 1000 W/m2 700 W/m2 200 W/m2 

 𝑮̇ 100 W/m2.s 100 W/m2.s 100 W/m2.s 

𝑻𝒎𝒑𝒑𝒕 0.35 ms 0.35 ms 0.35 ms 

∆d> 0.002 0.003 0.006 
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Figure 44 shows the simulation results of the first stage converter with ∆d=0.006 and 

200 W/𝑚2 solar irradiation. 

 

Figure 44: Simulation result of the first-stage converter with ∆d=0.006,𝑇𝑚𝑝𝑝𝑡 =

0.35𝑚𝑠, and 𝐺 = 200 𝑊/𝑚2. 

It should be highlighted that the results in Table 6 only take into account the variation 

of the irradiance level. Other factors which affect the level of the PV power variation 

such as the variation of the input capacitor voltage, and measurement noise in the 

system have not been considered. So, in practice the value of ∆d is most likely to be 

bigger than the analytical value given in Table 6. Also, as has been discussed in 

section  2.3.1.2 the value of ∆d must be chosen to ensure a good compromise between 

the system transient and steady-state performance. Therefore, ∆d is chosen to be 0.035 

to ensure three-step P&O duty cycle operation. The parameters of the SCPVM unit are 

shown in Table 7. 

3.4 Parameters of the Second-stage Converter 

The second-stage converter is designed for a conversion ratio of 4 to boost up the 

voltage from 50V to 200V. Its power rating is based on a system that consists of two 

SCPVM units. The second-stage parameters Cout_2 and L2 are selected so that the peak-

peak output voltage (𝑉𝑔𝑟𝑖𝑑) ripple is less than 1.5V (0.75% of 𝑉𝑔𝑟𝑖𝑑) and the peak-peak 

current ripple is less than 1.2A (13% of 𝐼𝑑𝑐), respectively for the case when the 

SCPVM units operate under the highest solar irradiation level. The minimum limit 
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values of the second-stage inductance and capacitance were found to be 0.52 mH and 

11µF, respectively. Thus, 0.6 mH and 47 µF values are used for L2 and Cout_2, 

respectively.  

Table 8 summaries the parameters of the second-stage converter. 

Table 7: SCPVM unit parameters 

Symbol & Glossary Value 

𝑳 Inductance of the input inductor of the first-stage converter 0.212 mH 

𝒓𝒍
(*) Resistance of the input inductor of the first-stage converter 0.77 Ω 

𝑪𝒐 Capacitance of the output capacitor of the first-stage converter 22 µF 

𝒓𝑪𝒐
(*) Resistance of the output capacitor 1.2 Ω 

𝑪𝒊𝒏
(*) Capacitance of the input capacitor of the first-stage converter 2.2 µF 

𝒓𝑪𝒊𝒏
(*) Resistance of the input capacitor 2.5 Ω 

𝒇𝒔𝒘𝟏 Switching frequency 60 kHz 

𝑻𝒎𝒑𝒑𝒕 P&O sampling period 0.35 ms 

∆𝒅 P&O step size 0.035  
* The value is measured in the lab 

 

Table 8: Second-stage converter parameters 

Symbol & Glossary Value 

𝑳𝟐 Inductance of the input inductor of the second-stage converter 0.6 mH 

𝒓𝒍𝟐
(*) Resistance of the input inductor of the second-stage converter 6.4 mΩ 

𝑪𝒐𝒖𝒕_𝟐 Capacitance of the output capacitor of the second-stage converter 47 µF 

𝒓𝑪𝒐𝒖𝒕_𝟐
(*) Resistance of the output capacitor of the second-stage converter 0.54 Ω 

𝒇𝒔𝒘𝟐 Switching frequency of the second-stage converter 60 kHz 
* The value is measured in the lab 

In grid-connected mode the second-stage converter is responsible for controlling the 

dc-link voltage 𝑉𝑑𝑐. Chapter  5 provides full details of designing three different types of 

controller: Proportional Integral (PI), Three-pole two-zero (3P2Z), and cascaded 

current-voltage controllers. As it will be shown in Chapter  5 the traditional voltage 

mode PI controller is not suitable to control a second order power stage converter (as in 

our case), the -180° phase delay incurred by the power stage double pole result in an 

insufficient phase margin when the cut-off frequency is greater than the power stage 

double pole and that affect system stability. To overcome this problem a higher order 

voltage mode controller or a cascaded current-voltage PI controllers can be used, that 

depends on the power rating of the system. Typically a PV system over 1 kW is 

controlled by cascaded current-voltage controller to control the current transient and 

avoid failure due to high transient peaks. A voltage mode 3P2Z controller can be used 

in applications of less than 1 kW power rating. A summary of the designed 3P2Z and 

cascaded controllers is given in Table 9. More details on designing the controller will 

be provided in Chapter 5. 
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3.5 The dc-link Capacitance 

The dc-link capacitance (Cdc) is defined as the sum of the capacitance values connected 

in parallel to the dc-link bus which depends on the output capacitance values of the 

SCPVM units (i.e. Co1, Co2,…,Con), thus  for n-parallel connected SCPVM units the dc-

link capacitance is: 

1

k n

dc ok

k

C C




           (3.14) 

Table 9: 3P2Z and cascaded controllers specifications 

Controller 

type 
Designed controller 

Specifications 

𝒇𝒄 PM 

3P2Z 
1 2

1 2

3 4

4 5

(1 )(1 ) (1 )(1 )
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
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Kv  : Voltage gain of the 3P2Z controller 

Kpv: Proportional voltage gain of the cascaded controller  

Kiv : Integral voltage gain of the cascaded controller  

Kpi : Proportional current gain of the cascaded controller  

Kii  : Integral current gain of the cascaded controller 

fc   : Control loop gain cut-off frequency 

PM: Phase margin 

3.6 Simulation Results  

The system has been simulated using MATLAB Simulink software with the set of 

parameter values depicted in Table 7 and  

Table 8 for the SCPVM unit and the second-stage converter, respectively. The simulink 

model of the whole system is shown in Appendix C. The model in [37] is used to 

implement the PV module as given in Appendix C.1. Direct duty cycle P&O MPPT 

controller as given in Appendix C.2 is used for the first-stage converter. The system is 

tested with single SCPVM unit and two SCPVM units connected to the second-stage 

converter. 
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3.6.1 Simulation results of a single SCPVM unit connected to the second-stage 

converter 

Figure 45 shows simulation results of one SCPVM unit connected to the second-stage 

converter with a voltage mode 3P2Z controller. The results show the three-step 

operation of the P&O controller which results in a periodic oscillation across the MPP 

in the PV module voltage and current (𝑣𝑝𝑣 and 𝑖𝑝𝑣) in steady state. This periodic 

oscillation has been highlighted as the main disadvantage of the P&O controller that 

degrades its efficiency, as discussed in section  2.3.1.2, page 18. However, the P&O 

controller is widely used for its simplicity and low cost. The P&O is not only affecting 

𝑣𝑝𝑣 and 𝑖𝑝𝑣, from Figure 45 it can be seen clearly that oscillations are observed in both 

the dc-link and grid waveforms (referred to as low frequency oscillation (𝑓𝑙𝑜𝑤) and 

transient oscillations in Figure 45). That mainly due to constant change in steady-state 

operating points of the SCPVM unit as the P&O controller perturbs every 𝑇𝑚𝑝𝑝𝑡. 

Figure 46 shows the Fast Fourier Transform (FFT) analysis of the voltages and currents 

waveforms in Figure 45. It shows that the highest harmonic level of the dc-link and 

grid current occurs at a frequency (referred to as flow in Figure 45 and Figure 46) 

associated with a time period equal to four times the P&O sampling period (𝑓𝑙𝑜𝑤 =

1/(4𝑇𝑚𝑝𝑝𝑡)). That is because under three-step P&O operation the overall waveforms 

shape will be repeated through time every 4𝑇𝑚𝑝𝑝𝑡. Figure 46 also shows that other 

dominant harmonics amplitudes occur at frequencies that are multiple of flow (e.g. 2flow, 

3flow, 4flow, 5flow,.. etc.). 
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Figure 45: Simulation results of one SCPVM unit connected to the second-stage 

converter with 3P2Z controller (Table 9). 𝐺 = 800𝑊/𝑚2,∆d=0.035, 𝑇𝑚𝑝𝑝𝑡=0.35ms, 

𝐶𝑑𝑐=𝐶𝑜=22µF, 𝑉𝑔𝑟𝑖𝑑=200V. 

 

𝟒𝑻𝒎𝒑𝒑𝒕 = 𝟏 𝒇𝒍𝒐𝒘⁄  
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Figure 46: FFT of waveforms in Figure 45: from top to bottom FFT of (a) 𝑣𝑝𝑣, (b) 𝑖𝑝𝑣, 

(c) 𝑣𝑑𝑐, (d) 𝑖𝑑𝑐, and (e) 𝑖𝑔𝑟𝑖𝑑 

Another example of simulation results with a cascaded current-voltage controller 

employed for controlling 𝑉𝑑𝑐 is shown in Figure 47. Similar to the pervious simulation 

results steady-state oscillations at 𝑓𝑙𝑜𝑤 and transient oscillations every 𝑇𝑚𝑝𝑝𝑡 are 

observed in the dc-link and grid waveforms. Also, the FFT results in Figure 48 show 

the dominant harmonics at frequencies that are multiple of 𝑓𝑙𝑜𝑤. 
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Figure 47: Simulation results of one SCPVM unit connected to the second-stage 

converter with cascaded current-voltage controller (Table 9). 𝐺 = 800 𝑊/𝑚2, 

∆d=0.035, 𝑇𝑚𝑝𝑝𝑡=0.35ms, 𝐶𝑑𝑐=22µF, 𝑉𝑔𝑟𝑖𝑑=200V.  

𝟒𝑻𝒎𝒑𝒑𝒕 = 𝟏 𝒇𝒍𝒐𝒘⁄  
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Figure 48: FFT of waveforms in Figure 47: from top to bottom FFT of (a) 𝑣𝑝𝑣, (b) 𝑖𝑝𝑣, 

(c) 𝑣𝑑𝑐, (d) 𝑖𝑑𝑐, and (e) 𝑖𝑔𝑟𝑖𝑑 

 

 

 

 

 

 



75 

3.6.2 Simulation results for two parallel SCPVM units connected to the second-

stage converter 

The second-stage converter’s parameters and controller are designed for the case of 

having two SCPVM units at its input. In order to validate the system operation with 

two units and under changes in dynamics due to the increase number of the SCPVM 

units, this section provide simulation results with the case of having two SCPVM units 

connected to the second-stage converter. The simulation results for two parallel 

SCPVM units connected to the second-stage converter for 3P2Z controller and 

cascaded current-voltage controllers are shown in Figure 49 and Figure 50, 

respectively. As has been shown for single SCPVM unit the P&O controller is affecting 

the dc-link and grid waveforms and continuous oscillations are observed in the steady 

state due to the constant change in the steady-state operating points of the SCPVM 

units. 

 

Figure 49: Simulation results of two SCPVM units connected to the second-stage 

converter with 3P2Z controller (Table 9). 𝐺 = 800𝑊/𝑚2,∆d=0.035, 𝑇𝑚𝑝𝑝𝑡=0.35ms, 

𝐶𝑑𝑐=2 × 𝐶𝑜=44µF, 𝑉𝑔𝑟𝑖𝑑=200V. 
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Figure 50: Simulation results of two SCPVM units connected to the second-stage 

converter with cascaded current-voltage controller (Table 9). 𝐺 = 800𝑊/𝑚2, 

∆d=0.035, 𝑇𝑚𝑝𝑝𝑡=0.35ms, 𝐶𝑑𝑐=44µF, 𝑉𝑔𝑟𝑖𝑑=200V. 

The drawback of steady state oscillation in the PV module power due to the nature of 

the P&O controller is well known, but the impact of P&O controller on power quality 

in PV grid-connected system and dynamic interactions between the power stages of the 

double-stage system are not covered well in the literature. Therefore, chapter four and 

chapter 5 in this work analyse P&O related harmonics and their effect on the rest of the 

system in a double-stage parallel SCPVM configuration connected to a main DC bus, 

which is shown in Figure 39. 

3.7 Conclusion 

The design considerations of the double-stage DC/DC boost converter, P&O 

parameters optimisation, dc-link voltage control structures have been discussed. First, 

the available range of the dc-link voltage for successful tracking of MPP has been 

identified. Then, the effect of that voltage range on the first-stage converter parameters 

(L and Co) under different weather condition is analysed. The converter parameters are 
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chosen based on the highest solar irradiation condition to ensure high performance of 

the MPPT and small inductance core size. Regarding P&O parameters (𝑇𝑚𝑝𝑝𝑡 and ∆d), 

they are designed based on the dynamic behaviour of the first-stage converter and the 

adopted PV module to ensure three-step operation for optimal efficiency. In addition to 

that, a brief discussion of the different controller types that are used to control the 

common dc-link bus in grid-connected mode such as the voltage mode and cascaded 

current-voltage controllers are provided. Finally, time domain simulation and FFT 

results for the designed system are provided. The results show that the P&O controller 

is one of the sources that produce harmonics in the common dc-link bus and grid. 
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4 ANALYSIS OF P&O CONTROLLER RELATED 

HARMONICS 

4.1 Abstract 

In this chapter an analytical model of the PV related harmonics is provided as a 

function of P&O parameters (∆d and 𝑇𝑚𝑝𝑝𝑡), solar irradiation level, and number of the 

parallel SCPVM units in the system (considering single SCPVM unit and n-parallel-

connected units). The analysis considers the dynamic behaviour of the non-linear PV 

source under different operating points and the synchronisation between the P&O 

controllers of the parallel-connected SCPVM units. The analytical model can be used to 

predict the harmonics frequency, explore the factors which affect the harmonics level 

induced by the P&O controller, and to understand the power quality degradation 

behaviour due to P&O related harmonics. The chapter starts with providing an 

analytical model of P&O controller related harmonics for parallel SCPVM units 

connected to a dc-link bus, and then MATLAB simulations and FFT analysis are 

provided under different operating conditions. 

4.2 Simplified Double-stage Parallel SCPVM Configuration: Second-

stage Converter modelled as Constant Voltage Source 

Chapter  1, Section  1.1 and Chapter  2, section  2.6  discussed different causes that affect 

the power quality of grid-connected PV systems. One of them is the P&O scheme 

which is considered in this work. The impact of the P&O controller on the power 

quality of the adopted double-stage parallel SCPVM system configuration has been 

demonstrated in Figure 45 - Figure 50 in section  3.6. In this chapter, an analytical 

model of the PV related harmonics is provided as a function of P&O parameters (∆d 

and 𝑇𝑚𝑝𝑝𝑡), solar irradiation level, and number of the parallel SCPVM units in the 

system (considering a single SCPVM unit and n-parallel-connected units). In addition 

to that, the harmonics analysis considers the dynamic behaviour of the non-linear PV 

source under different operating conditions such as different PV voltage and solar 

irradiation level. The analytical model can be used to predict the harmonics frequency 

and explore the factors which affect the level of the harmonics induced by the P&O 

controller. Knowing the frequency of the P&O related harmonics and the factors that 

might worsen it can help in finding the most efficient method to eliminate it. 

To carry on the aforementioned analysis first the configuration of adopted PV system in 

Figure 39 is simplified as shown in Figure 51. In grid-connected mode the second-stage 
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converter is designed so that it is capable to sink whatever current injected by the 

multiple parallel SCPVM units while keeping its input voltage regulated to a fixed 

average value (𝑉𝑑𝑐). So, it is possible to model the second-stage converter as a constant 

voltage source as will be considered in this chapter (see Figure 51). A very important 

advantage that the simplified PV system brings to the analysis is that the injected 

harmonics in the dc-link will be independent of the controller and impedance of the 

second-stage converter and it will clearly identify the harmonics frequency and levels 

that injected solely by the SCPVM units. Simulation results of the simplified system 

are shown in Figure 52. After ignoring the effect of the second-stage converter and its 

controller the transient behaviour of the dc-link current is defined by the dynamic of the 

first-stage converter and the connected load which is a stiff voltage in this study as 

shown in Figure 51, that makes the transient behaviour different than the earlier results 

shown in Figure 45 and Figure 47 where the transient behaviour were controlled and 

defined by the second-stage controller. 

 

Figure 51: Parallel SCPVM units connected to a dc-link bus. 
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Figure 52: Simulation results of one SCPVM unit connected to a stiff dc-link voltage 

source. 𝐺 = 800 𝑊/𝑚2.  

The FFT analysis of the waveforms in Figure 52 is shown in Figure 53. The level of the 

harmonics has changed slightly compared with the results in Figure 46 and Figure 48 

due to the absence of the dynamic and interaction with the second-stage converter. As 

shown in Figure 53 the system contains harmonics at 𝑁. 𝑓𝑙𝑜𝑤 (N=1,2,3,..,etc.). 

𝟒𝑻𝒎𝒑𝒑𝒕 = 𝟏 𝒇𝒍𝒐𝒘⁄  
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Figure 53: FFT analysis for (a) duty cycle, (b) 𝑣𝑝𝑣, (c) 𝑖𝑝𝑣, and (d) 𝑖𝑑𝑐 (waveforms are 

shown in Figure 52). 

4.3 Analytical Modelling of P&O Related Harmonics 

An analytical model of the P&O related harmonics can be useful to predict the 

frequency and the level of the harmonics induced by the P&O. Although the analysis is 

carried out for DC/DC boost converter, it can be easily done to any other DC/DC 

converter topology by considering the relevant equations and small signal model of the 

adopted topology. In this section the analytical analysis for multi parallel SCPVM 

considres synchronised perturbations times between the P&O controllers of the 

SCPVM units because it presents the worse case scenario of power quality and 

harmonics level. In addtion to that when the SCPVM units are non-synchronised its not 

easy to present their produced harmoics analytically as in this case it will be function of 

the time delay between the P&O perturbations time and that changes from one SCPVM 

unit to another due to connecting the units at different times (this can be the case when 

one or more units stop working and start again later). 
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4.3.1 Harmonics frequency 

The frequency of the dominant harmonic (𝑓𝑙𝑜𝑤) at the PV and dc-link sides can be 

defined as a function of Tmppt and the number of P&O duty cycle steps (S𝑛𝑢𝑚) in 

steady state as given in (4.1). As the oscillations at the PV and the dc-link sides due to 

the P&O controller are quasi-square waveforms, the system is expected to have 

harmonics at 𝑁. 𝑓𝑙𝑜𝑤 where N is an integer (N=1, 2, 3... etc.). 

As the number of the P&O duty cycles steps increases from 2 steps (which is lowest 

number of steps that the system operate with) to S𝑛𝑢𝑚 steps, the dominant lowest 

harmonic frequency is a sequence of  
1

2𝑇𝑚𝑝𝑝𝑡
,

1

4𝑇𝑚𝑝𝑝𝑡
,

1

6𝑇𝑚𝑝𝑝𝑡
, … ,

1

(2×𝑆𝑛𝑢𝑚−2)×𝑇𝑚𝑝𝑝𝑡
  

Therefore the lowest harmonic frequency can be expressed as follow: 
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        (4.1) 

Where S𝑛𝑢𝑚 is the number of the P&O duty cycle steps. For three-step P&O operation 

as considered in this work 𝑓𝑙𝑜𝑤 is 1/(4Tmppt). Based on (4.1) one can conclude that 

when the P&O sampling period Tmppt is increased the frequency of 𝑓𝑙𝑜𝑤 will be 

decreased and in this case it is harder to be suppressed and filtered. 

4.3.2 Harmonics amplitude 

There are two main factors that affect the amplitude of the dc-link voltage and current 

harmonics which are: (I) steady-state oscillations of the power fed by the SCPVM unit 

due to the P&O three-step operation; and (II) transient oscillations in the dc-link 

voltage and current due to the P&O duty-cycle perturbation every 𝑇𝑚𝑝𝑝𝑡(either 

increasing or decreasing). 

In this analysis the peak-peak amplitude of the steady-state variation is measured based 

on the final average steady-state values after each P&O duty cycle step without taking 

into account the peak values of the transient response. While the overall dc-link 

variation takes into account the maximum and minimum peaks of the transient 

response. Figure 54 shows a general waveform of one SCPVM unit output current and 

the measurement reference points of both steady-state and overall variations. 

𝐼𝑠𝑐𝑝𝑣𝑚_𝑜𝑢𝑡_𝑚𝑎𝑥
𝐺  and 𝐼𝑠𝑐𝑝𝑣𝑚_𝑜𝑢𝑡_𝑚𝑖𝑛

𝐺  are the maximum and minimum values of the 
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SCPVM output current for irradiation G. 𝐼𝑠𝑐𝑝𝑣𝑚_𝑜𝑢𝑡_𝑟𝑖𝑔ℎ𝑡
𝐺  and 𝐼𝑠𝑐𝑝𝑣𝑚_𝑜𝑢𝑡_𝑙𝑒𝑓𝑡

𝐺  are the 

steady-state values of the SCPVM output current when the PV module operate at the 

right and left of MPP, respectively. 

 

Figure 54: The steady-state and overall variations of the SCPVM output current. 

4.3.2.1 Steady-state variation 

The PV voltage and current variation due to the three-step P&O operation can be 

characterised by the following three points: Left MPP, MPP and Right MPP, as shown 

in green, red and yellow in Figure 55, respectively. The steady-state variation of the dc-

link current depends on ∆d, solar irradiation level, and the non-linear characteristics of 

the PV source as will be discussed herein. The analytical analysis in this section does 

not take into account the switching ripple to simplify the analysis. 

 

Figure 55: The location of the P&O operating points on the current-voltage 

characteristic curve of NU-E240 PV module (𝐼𝑟𝑎𝑡𝑒𝑑=8.62A and 𝑉𝑟𝑎𝑡𝑒𝑑=37.3V). 

Time (0.35 ms/div) 



84 

4.3.2.1.1 Single SCPVM unit 

From the basic current gain equation of a boost DC/DC converter, the output current of 

a single SCPVM unit for the three characteristic operating points (i.e. Left MPP, MPP, 

and Right MPP) can be defined as follow: 

_ _ _

_ _ _ _

_ _ _

(1 )

(1 ( ))

(1 ( ))

G G

scpvm out mpp pv mpp mppt

G G G

scpvm out scpvm out right pv right mppt

G G

scpvm out left pv left mppt

I I D

i I I D d

I I D d

  


   


   

     (4.2) 

Where 𝐼𝑠𝑐𝑝𝑣𝑚_𝑜𝑢𝑡_𝑚𝑝𝑝
𝐺  is the SCPVM output current at MPP and irradiation G, 

𝐼𝑠𝑐𝑝𝑣𝑚_𝑜𝑢𝑡_𝑟𝑖𝑔ℎ𝑡
𝐺  is the SCPVM output current at Right MPP and irradiation G, 

𝐼𝑠𝑐𝑝𝑣𝑚_𝑜𝑢𝑡_𝑙𝑒𝑓𝑡
𝐺  is the SCPVM output current at Left MPP and irradiation G.  

As specified in (4.2) the SCPVM output current varies between three values which are 

defined by 𝐷𝑚𝑝𝑝𝑡, ∆d, and PV module current (i.e. solar irradiation) at the three P&O 

operating points. The associated PV module currents are defined as: 𝐼𝑝𝑣_𝑚𝑝𝑝
𝐺  is the PV 

current at MPP and irradiation G, 𝐼𝑝𝑣_𝑟𝑖𝑔ℎ𝑡
𝐺   is the PV current at Right MPP and 

irradiation G, and 𝐼𝑝𝑣_𝑙𝑒𝑓𝑡
𝐺  is the PV current at Left MPP and irradiation G as shown in 

Figure 55. 

The PV module current can be approximated from the current-voltage characteristic 

equation of a single diode PV model as given in Chapter  2 in equation (2.1). Normally 

the shunt resistance Rsh is very high, so to simplify the analysis the last term in (2.1) 

can be neglected. Accordingly, the steady-state average values of 𝑖𝑝𝑣
𝐺  at the three P&O 

operating points are as follow: 
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_ _
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     (4.3) 

All equations that required for calculating 𝐼𝑝ℎ
𝐺 , 𝑅𝑠, 𝑎𝑛𝑑 𝑉𝑡 in (4.3) are given in 

Chapter  2, Section  2.2.1 and all required parameters for the adopted PV module is 
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provided in Table 2. As given in (4.3) the value of 𝑖𝑝𝑣
𝐺  at the three P&O operating 

points depends on the PV module parameters, solar irradiation level and the PV module 

output voltage 𝑉𝑝𝑣_𝑚𝑝𝑝 (PV voltage at MPP), 𝑉𝑝𝑣_𝑟𝑖𝑔ℎ𝑡 (PV voltage at Right MPP) and 

𝑉𝑝𝑣_𝑙𝑒𝑓𝑡 (PV voltage at Left MPP) which are shown in Figure 55. 

In this work PV grid-connected mode is considered where the DC-link voltage is 

controlled at constant value 𝑉𝑑𝑐. Therefore, from the basic voltage equation of a boost 

DC/DC converter 𝑣𝑝𝑣 is: 

_

_

_

(1 )

(1 ( ))

(1 ( ))

pv mpp dc mppt

pv pv right dc mppt

pv left dc mppt

V V D

v V V D d

V V D d

   


    


   

      (4.4) 

For a given PV module output voltage at MPP ( 𝑉𝑝𝑣_𝑚𝑝𝑝) and dc-link voltage 𝑉𝑑𝑐, Dmppt 

can be calculated and then for specific ∆d the 𝑉𝑝𝑣_𝑙𝑒𝑓𝑡, and 𝑉𝑝𝑣_𝑟𝑖𝑔ℎ𝑡  can be found. 

Equations (4.4) and (4.3) can be substituted in (4.2) to find the values of 𝑖𝑠𝑐𝑝𝑣𝑚_𝑜𝑢𝑡
𝐺  at 

the three P&O operating points. Finally, ∆𝑖𝑠𝑐𝑝𝑣𝑚_𝑜𝑢𝑡_𝑠𝑠
𝐺  can be estimated as follow: 

 _ _ _ _max minG G G

scpvm out ss scpvm out scpvm outi i i          (4.5) 

A MATLAB m-file for calculating ∆𝑖𝑠𝑐𝑝𝑣𝑚_𝑜𝑢𝑡_𝑠𝑠
𝐺  based on equations (4.2) - (4.4) is 

provided in Appendix D. Based on (4.5); Figure 56 shows ∆𝑖𝑠𝑐𝑝𝑣𝑚_𝑜𝑢𝑡_𝑠𝑠
𝐺  under 

different values of ∆d and solar irradiation level for the adopted PV module in Table 2, 

page 16. The results reveal that the steady-state variation increases as the solar 

irradiation and/or ∆d increase. The decreased peak-peak variation at lower solar 

irradiation at fixed ∆d and 𝑉𝑑𝑐 is related to the non-linear PV characteristic curve which 

becomes more flat around MPP at lower solar irradiations as shown in Figure 57. 
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Figure 56: Effect of ∆d and G on the peak-peak output current variation of one SCPVM 

unit. 𝐼𝑟𝑎𝑡𝑒𝑑=8.15A. Results are obtained by (4.2) - (4.5). 

 

Figure 57: Simulation results: Effect of the non-linear PV source on the peak-peak PV 

current variation for NU-E240 PV module. 

4.3.2.1.2 Multi-parallel connected SCPVM units 

For multi-parallel-connected SCPVM units the steady-state variation and the level of 

the generated harmonics are dependent on the total number of the connected SCPVM 

units and synchronisation between their P&O controllers (i.e. Synchronised 

perturbations times). 

Assuming that the P&O controllers of n-parallel connected SCPVM units are 

synchronised, the peak-peak dc-link current variation can be predicted and presented as 

a function of the variation of one SCPVM unit. The dc-link current in multi-parallel 

connected SCPVM units as shown in Figure 51 is: 
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_

1

n
G

dc scpvmk out

k

i i


           (4.6) 

In case of synchronised P&O controllers of n-parallel connected SCPVM units the 

steady-state peak-peak variation of dc-link current is: (the transient dynamics are not 

included in this part) 

_

1

n
G

dc scpvmk out

k

i i


            (4.7) 

Under uniform solar irradiation (Gk=G(k+1)=...=Gn) it can be assumed that: 

_ ( 1)_ _ _ _.....G G G

scpvmk out scpvm k out scpvmn out scpvm out ssi i i i            (4.8) 

Thus, the dc-link current peak-peak variation of synchronised n-parallel SCPVM units 

can be written as follow: 

_ _dc scpvm out ssi n i            (4.9) 

It can be then readily concluded that by increasing the number of parallel connected 

SCPVM units, the variation level in the dc-link current is expected to increase 

substantially. Figure 58 shows the peak-peak steady-state current variation in the dc-

link as the number of synchronised parallel-connected SCPVM units’ increases (m-file 

for calculating ∆𝑖𝑑𝑐 is provided in Appendix D). 

 

Figure 58: Effect of the total number of SCPVMs on ∆𝑖𝑑𝑐 under synchronised P&Os 

and uniform solar irradiation. 𝐼𝑟𝑎𝑡𝑒𝑑=𝐼𝑝𝑣_𝑚𝑝𝑝
1000 =8.15A, 𝑉𝑑𝑐=50V, ∆d=0.035. Obtained 

by (4.9) 
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4.3.2.2 Overall variation 

The overall dc-link variation takes into account the maximum and minimum peaks of 

the transient response as shown in Figure 54. The transient oscillations are induced by 

the perturbing nature of the P&O controller. At every duty-cycle perturbation the 

SCPVM current enters transient mode and oscillates until its new steady-state value is 

reached or the next perturbation occurs, depending on the P&O sampling period and the 

system dynamics. 

It is possible to evaluate the transient behaviour of the SCPVM output current under 

different operating condition by analysing the small-signal unit step response of the 

duty-cycle-to-output current transfer function which is given in (4.10) [82]. This 

equation is obtained by using the small signal linear model of the non-linear PV source 

(see Figure 9, page 16) and the small-signal model of the DC/DC boost converter. The 

parasitic parameters of the inductance and the capacitance are ignored to simplify the 

analytical analysis. 
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     (4.10) 

,0pv
r  is the PV dynamic resistance at the linearised operating point

,0 ,0
( , )

G

pv pv
v i . The 

linearised model of a PV module is given in (2.7). 

Based on (4.10) the dynamic behaviour of a SCPVM output current is affected by the 

boost converter parameters (L and 𝐶𝑖𝑛) and the PV dynamic resistance (𝑟𝑝𝑣) at the 

operating point. The parameters of the DC/DC boost converter (L and 𝐶𝑖𝑛) are assumed 

to be constant. Therefore, it is expected that changes in the system dynamic is mainly 

affected by 𝑟𝑝𝑣 which is solar irradiation and PV module voltage dependant parameter.  

From (4.10) it can be seen that 𝑟𝑝𝑣 has a direct impact on the location of the poles and 

zeros of 𝐻𝑖𝑠𝑐𝑝𝑣𝑚_𝑜𝑢𝑡
𝐺 𝑑 and in that affecting the transient behaviour of the SCPVM output 

current.  
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As given in (2.7) and illustrated in Figure 10, page 16 𝑟𝑝𝑣 is function of 𝑣𝑝𝑣 , 𝑖𝑝𝑣
𝐺  (i.e. 

solar irradiation) and the PV module specifications. Therefore, the SCPVM output 

current is expected to have different dynamic behaviour under different solar irradiation 

levels and P&O duty-cycle operating points (i.e. 𝐷𝑚𝑝𝑝𝑡 + ∆𝑑, 𝐷𝑚𝑝𝑝𝑡, 𝐷𝑚𝑝𝑝𝑡 − ∆𝑑). 

The step function in MATLAB is used to plot the step response of 𝐻𝑖𝑠𝑐𝑝𝑣𝑚_𝑜𝑢𝑡
𝐺 𝑑 given in 

(4.10) to show the dynamic behaviour of 𝑖𝑠𝑐𝑝𝑣𝑚_𝑜𝑢𝑡 for a sudden input 𝑑 under different 

operating points such as different solar-irradiation levels and PV module voltages. 

Figure 59 shows the step response of 𝐻𝑖𝑠𝑐𝑝𝑣𝑚_𝑜𝑢𝑡
𝐺 𝑑 at MPP operating point for different 

solar irradiation levels (i.e. 1000 W/m
2
, 800 W/m

2
 and 600 W/m

2
) of one SCPVM unit. 

It can be seen that the solar irradiation level affects the transient dynamic behaviour and 

at higher solar irradiation levels (i.e. lower 𝑟𝑝𝑣) the system is more damped than at 

lower solar irradiation levels and it required longer time to settle. 

 

Figure 59: Step response of −𝐻𝑖𝑠𝑐𝑝𝑣𝑚_𝑜𝑢𝑡
𝐺 𝑑 at MPP for high, medium and low solar 

irradiation levels. 

The effect of different P&O operating points on the dynamic of 𝐻𝑖𝑠𝑐𝑝𝑣𝑚_𝑜𝑢𝑡
𝐺 𝑑 under the 

same solar irradiation is shown in Figure 60. As the P&O operating point varies 

between Left MPP, MPP and Right MPP, the value of 𝑟𝑝𝑣 changes and it becomes 

lower when moving to the right side of MPP which result in more damped system and 

longer settling time. 

2% tolerance band 
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Figure 60: Step response of −𝐻𝑖𝑠𝑐𝑝𝑣𝑚_𝑜𝑢𝑡
𝐺 𝑑 at the three operating points of the P&O 

controller under high irradiation (1000 𝑊/𝑚2). ∆d=0.035, 𝑉𝑑𝑐=50V. 

Since the dynamic behaviour of transient harmonics depends on the operating point of 

the P&O controller (see Figure 60), for three-step P&O duty-cycle operation there will 

be four main intervals of transient modes which are then repeated every 1/𝑓𝑙𝑜𝑤. 

4.3.2.2.1 Single SCPVM unit  

As shown in Figure 54 when considering the transients peaks, the overall peak-to-peak 

variation of the dc-link current for a single SCPVM unit can be given as follow: 

_ _   _ _   _ _
G

scpvm out overall

G G
scpvm out max scpvm out mini I I        (4.11) 

4.3.2.2.2 Multi-parallel SCPVM units 

The total dc-link current (𝑖𝑑𝑐) is the sum of the output currents of the multi-parallel 

SCPVM units as given in (4.6). Consequently, it will contain the transient oscillations 

induced by all SCPVM units. The overall dc-link current variation depends on the 

transient dynamic of 𝐻𝑖𝑠𝑐𝑝𝑣𝑚_𝑜𝑢𝑡
𝐺 𝑑  of each SCPVM unit, total number of the SCPVM 

units, and synchronisation between their P&O controllers. 

Assuming synchronise P&O controllers the overall peak-to-peak variation of the dc-

link current of n-parallel SCPVM units can be given as follow: 

 _ _ _ max _ _ min

1

n
G G

dc overall scpvmk out scpvmk out

k

i I I


         (4.12) 

2% tolerance band 
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4.4 Simulation Analysis 

In this section the system shown in Figure 51 is simulated to show the effect of 

different factors such as𝑇𝑚𝑝𝑝𝑡, ∆𝑑, 𝐺, the number of SCPVM units and synchronisation 

between SCPVM units on the P&O related harmonics level.  

4.4.1 Effect of Tmppt on flow 

Simulation results and FFT analysis of the dc-link current after increasing  Tmppt are 

shown in Figure 61 and Figure 62 respectively. Comparing the FFT results in Figure 62 

for Tmppt = 0.9 𝑚𝑠 with Figure 53 for  Tmppt = 0.35 𝑚𝑠 , increasing  Tmppt from 0.35 

ms to 0.9 ms has decreased flow from 714.3 Hz to 277.7 Hz, respectively. This was 

expected from (4.1). Also, the FFT analysis in Figure 62 shows the harmonics in the 

dc-link current which are multiple of the 277.7 Hz for this case. 

 

Figure 61: Simulation results of one SCPVM unit connected to a stiff dc-link voltage 

source. 𝐺 = 800𝑊/𝑚2, 𝑇𝑚𝑝𝑝𝑡=0.9ms, 𝐶𝑑𝑐=22µF. 

 

𝟒𝑻𝒎𝒑𝒑𝒕 = 𝟏 𝒇𝒍𝒐𝒘⁄  
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Figure 62: FFT analysis for the dc-link current 𝑖𝑑𝑐 with 𝑇𝑚𝑝𝑝𝑡 =0.9 ms (time domain 

waveform is shown in Figure 61). 
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4.4.2 Effect of ∆d on the harmonics amplitude 

FFT results of the dc-link current 𝑖𝑑𝑐 for one SCPVM unit for two different values of 

∆d are shown in Figure 63. The results show that the harmonics levels decrease with 

smaller value of ∆d. Considering 𝑓𝑙𝑜𝑤 harmonic, this was expected analytically as was 

shown in Figure 56. Although the analysis in Figure 56 is considering only the steady-

state peak-peak ripple of the output current for different values of ∆𝑑, it gives an 

indication about the effect of ∆𝑑 on the amplitude of 𝑓𝑙𝑜𝑤 harmonic. 

 

Figure 63: FFT analysis of 𝑖𝑑𝑐 for two different duty-cycle step size ∆d=0.035 and 

∆d=0.05 of one SCPVM unit connected to a stiff dc-link voltage. 𝐺 = 800 𝑊/𝑚2, 

𝑇𝑚𝑝𝑝𝑡=0.35ms, 𝐶𝑑𝑐=22µF. 

4.4.3 Effect of solar irradiation on harmonics amplitude 

FFT analysis of the dc-link current for one SCPVM unit when the solar irradiation level 

varies is shown in Figure 64. As expected the results show that the harmonics levels 

decrease under lower solar irradiation level. 
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Figure 64: FFT analysis of 𝑖𝑑𝑐 for two different irradiation levels 𝐺 = 800 𝑊/𝑚2 & 

𝐺 = 200 𝑊/𝑚2 of one SCPVM unit connected to a stiff dc-link voltage. ∆d=0.035, 

𝑇𝑚𝑝𝑝𝑡=0.35ms, 𝐶𝑑𝑐=22µF. 

4.4.4 Effect of increasing the number of the SCPVM units 

4.4.4.1 Synchronised SCPVM units 

In this test the identical distributed P&O controllers (i.e. their parameters ∆d and 𝑇𝑚𝑝𝑝𝑡 

are the same) are assumed to communicate together and the perturbations of their duty 

cycles are forced to be synchronised in phase. The simulation results in Figure 65 and 

the FFT analysis in Figure 66 show that the in phase synchronised P&O controllers 

generate periodic harmonics in the dc-link current which are multiple of 𝑓𝑙𝑜𝑤 (as 

predicted in section  4.3.1 and by (4.1)) which is the same as in the case of a single 

SCPVM unit. 

Also, it can be observed from Figure 65 and Figure 66 the total peak to peak variation 

and the harmonics amplitudes are dependent on the number of the SCPVM units. As 

the units’ number increases the overall variation increase and harmonics amplitudes 

increase as expected from (4.12). As an example and from Figure 65, for a single 

SCPVM unit ∆𝑖𝑑𝑐_𝑜𝑣𝑒𝑟𝑎𝑙𝑙 ≈ 0.5 𝐴 and for six SCPVM units ∆𝑖𝑑𝑐_𝑜𝑣𝑒𝑟𝑎𝑙𝑙 ≈ 6 × 0.5 =

3 𝐴. The FFT results in Figure 66 show the increase in the harmonics amplitudes as the 

units’ number increases.  
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Figure 65: The dc-link current 𝑖𝑑𝑐 as the number of synchronised SCPVM units 

increases (a) n=1, (b) n=2, (c) n=3, (d) n=4, (e) n=5, (f) n=6. ∆d=0.035, 𝑇𝑚𝑝𝑝𝑡=0.35 

ms, 𝐺 = 800𝑊/𝑚2, 𝐶𝑑𝑐 = 𝑛 × 22𝜇𝐹, 𝑉𝑑𝑐=50V. 

 

Figure 66: FFT analysis for the dc-link current 𝑖𝑑𝑐 as the number of the synchronised 

SCPVM units increases (time domain waveforms are shown in Figure 65). 
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4.4.4.2 Non-synchronised SCPVM units 

In practise during the system operation if the SCPVM units are not forced to work in 

synchronised mode, the P&O perturbations time normally vary from one SCPVM unit 

to another due to connecting the units at different times (this can be the case when one 

or more units stop working and start again later), time delay which might be different 

due to non-identical measurement circuits design and unequal controllers 

computational times of the SCPVM units, delay between the P&O perturbation time, or 

the P&O controllers are designed with different sampling periods due to non-identical 

converters dynamics. Two examples of non-synchronised SCPVM units are shown in 

Figure 67 and Figure 71. 

Figure 67 shows the variation in the dc-link current as the number of the 

asynchrounous SCPVM units increases (the units are not forced to work in 

synchronised mode). In this example the non-synchronisation is assumed to be caused 

by a time delay between the P&Os perturbation time. As the perturbations of the P&O 

controllers occur at different times, the steady-state and transient variations of the 

output currents of the SCPVM units does not happen at the same time for all SCPVM 

units. Thus, in non-synchronised mode the variations of 𝑖𝑑𝑐 cannot be mapped by the 

ones generated by a single unit as in the case of synchronised SCPVM units. For the 

considered example in Figure 67 the overall variation in the dc-link current for six non-

synchronised SCPVM units is approximately 0.7A. That is 4 times less than the case of 

synchronised SCPVM units shown in Figure 65. However, this is only for this case and 

for asynchrounous SCPVM units the variation in the total dc-link current depends 

mainly on the relative time delays between the units. Other cases of different time 

delays between the units lead to a different results. As an example, Figure 68 shows the 

FFT results of 𝑖𝑑𝑐 for two SCPVM units for different time delay between their P&O 

perturbations. It can be seen that the amplitude of each harmonic is affected differently 

depending on the time delay between the units. 

The FFT analysis of the dc-link current as the number of the non-synchronised SCPVM 

units increase (waveforms in Figure 67) is shown in Figure 69. It show that the 

harmonics amplitudes at 𝑁. 𝑓𝑙𝑜𝑤 are lower than the case of synchronised SCPVM units 

(see Figure 66) for the same number of SCPVM units. 
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Figure 67: Simulation results of the dc-link current as the number of asynchronous 

SCPVM units increase (a) n=1, (b) n=2, (c) n=3, (d) n=4, (e) n=5, (f) n=6. ∆d=0.035, 

𝑇𝑚𝑝𝑝𝑡=0.35 ms, 𝐺 = 800𝑊/𝑚2, 𝐶𝑑𝑐=n×22µF, 𝑉𝑑𝑐=50V. Time delays with reference 

to SCPVM1 are: 58.333µs, 2×58.333µs, 3×58.333µs,4×58.333µs and 5×58.333µs for 

SCPVM2, SCPVM3, SCPVM4, SCPVM5 and SCPVM6, respectively. 

 

 

Figure 68: FFT of 𝑖𝑑𝑐 for two SCPVM units as the time delay between units varies. 
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Figure 69: FFT analysis for the dc-link current as the number of the asynchronous 

SCPVM units increases (time domain waveforms are shown in Figure 67). 

 

Figure 71 shows another example of non-synchronised SCPVM units. The non-

synchronisation is caused by the non-identical optimisation of the P&O controllers 

sampling periods where the six SCPVM units are designed with different P&O 

sampling periods (this can be the case if non-identical PV modules and/or converters 

are used for the SCPVM units). It shows that the peak-peak variation in the dc-link 

current is time dependant and most likely to be non-periodic and inconsistent which 

make it difficult to predict. As example, the dc-link current waveform in Figure 71 is 

sectioned into 3 parts: Part A, Part B, and Part C. it can be seen that Part A present the 

worst case scenario with approximately 1A variation in the dc-link current. In Part B 

the current variation is getting smaller to almost 0.5 A. Then in Part C it is increasing 

slightly. That mainly caused by the relative time delays between the duty cycles 

perturbation times which are changing continuously during the time because of the non-

equal sampling period of the P&O controllers (Figure 70 shows the changing in the 

time delay between the perturbations of the P&O duty cycles for two SCPVM units). 

Also, it can be seen that it is hard to distinguish the steady-state variation or the 

transient oscillations injected by the individual SCPVM units in the dc-link, especially 

if the delay between the units is very small where the transient oscillations of the 

SCPVM output currents overlap. 
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Figure 70: Changing in the time delay between the P&O controllers perturbations due 

to different design value for 𝑇𝑚𝑝𝑝𝑡. 

 

Figure 71: Simulation results of the dc-link current generated by 6-parallel SCPVM 

units operate with different sampling periods (𝑇𝑚𝑝𝑝𝑡1 = 0.35𝑚𝑠, 𝑇𝑚𝑝𝑝𝑡2 = 0.36𝑚𝑠, 

𝑇𝑚𝑝𝑝𝑡3 = 0.37𝑚𝑠, 𝑇𝑚𝑝𝑝𝑡4 = 0.38𝑚𝑠, 𝑇𝑚𝑝𝑝𝑡5 = 0.39𝑚𝑠 and 𝑇𝑚𝑝𝑝𝑡6 = 0.4𝑚𝑠). 

∆d=0.035, 𝐺 = 800𝑊/𝑚2, 𝐶𝑑𝑐 = 6 × 22µ𝐹, 𝑉𝑑𝑐=50V. 

4.5 Conclusion 

Based on the analysis in this chapter it was found that the periodicity of the harmonics 

in the dc-link bus which are generated by the distributed P&O controllers depend on 

their designed sampling periods 𝑇𝑚𝑝𝑝𝑡. If the distributed P&O controllers are optimised 

with different sampling periods, the result will be non-periodic and inconsistent 

variation in the dc-link bus. If the distributed P&O controllers are optimised with same 

sampling periods, the result will be periodic signal in the dc-link bus and if the 

sampling periods are synchronised the periodicity of the harmonics of 𝑛 parallel 

SCPVM units is the same as one SCPVM unit. For synchronised identical sampling 

periods for the distributed P&O controllers it was found that the harmonics occurs at 

𝑁. 𝑓𝑙𝑜𝑤 where N is an integer (N=1,2,3,.., etc.) and 𝑓𝑙𝑜𝑤 is function of the P&O 

sampling period 𝑇𝑚𝑝𝑝𝑡 and number of the P&O duty-cycle steps in the steady state. In 

addition to that, it was found that the harmonics levels increase as the P&O duty-cycle 
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step size (∆𝑑), solar irradiation (𝐺), number of the parallel SCPVM units increases, 

and when the P&O duty-cycles are synchronised in phase. 
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5 ANALYSIS OF THE DYNAMIC INTERACTIONS 

BETWEENT THE FIRST STAGE AND THE SECOND 

STAGE IN A DOUBLE-STAGE PV SYSTEM 

CONNECTED TO A MAIN DC BUS 

5.1 Abstract 

In this chapter the dynamic interaction between a SCPVM unit and the second-stage 

converter is analysed through simulations. The impacts of P&O controller on 

increasing the dynamic interaction between system stages and on designing the second-

stage controller are highlighted. It is important to understand the possible interactions 

between a SCPVM unit and the rest of the system as that can help to set system design 

recommendations and guidelines. Three different types of dc-link controllers are 

considered: PI, 3P2Z, and cascaded current-voltage controllers. For each controller the 

dynamic interaction is explored in case of having an ideal current source (the SCPVM 

is modelled as a current source) connected to the second-stage converter and in case of 

having SCPVM unit connected to the second-stage converter. Also, this chapter 

investigates the effect of the controller parameters, 𝐶𝑑𝑐 size, and solar irradiation level 

on system stability. At the end of the chapter, the design recommendations are provided 

for the dc-link voltage controller of the second stage converter. 

5.2 Simplified Double-stage Parallel SCPVM Configuration: Single 

SCPVM unit Connected to Second-stage Converter  

In the previous chapter the second-stage converter of the double-stage parallel SCPVM 

configuration is modelled as a constant voltage source. On one hand that has helped to 

clearly identify and analyse the harmonics injected by the PV source and the P&O 

controller (the SCPVM unit), but on the other hand the effect of the PV related 

harmonics on the rest of the system was not included. It is important to understand the 

possible interactions between SCPVM unit and the rest of the system as that can help to 

set system design recommendations and guidelines.  

In particular, this chapter explores the effect of the P&O related harmonics on the 

performance of a PV system consists of double-stage DC/DC boost converter 

connected to a DC bus (e.g. DC microgrid). The data and the simulation results in this 

chapter are obtained from a simplified system; the case when the system has only one 

SCPVM unit connected to the second-stage DC/DC boost converter as shown in Figure 

72.a. However, the system can be scaled up for a higher power rating simply by 
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increasing the number of parallel SCPVM units, and increasing the power rating of the 

second stage converter. Three types of controllers will be considered PI voltage mode, 

3P2Z voltage mode, and cascaded current-voltage controllers and all are designed for a 

dc-link capacitance of 44 µF (assuming having two SCPVM units connected to the dc-

link bus, 𝐶𝑑𝑐 = 2 × 22𝜇𝐹). For each controller the dynamic interaction is explored in 

case of having an ideal current source (the SCPVM is modelled as a current source and 

the value of the dc-link current is estimated based on the assumption that the SCPVM 

operates at the highest solar irradiation of 1000 W/𝑚2) and in case of having the 

SCPVM unit (the original source) connected to the second-stage converter. 

 

Figure 72: Voltage mode controller structure; (a) non-ideal source configuration, (b) 

ideal source configuration. 
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5.3 Voltage Mode Controller Design for Second Stage DC/DC Boost 

Converter 

5.3.1 Proportional Integral (PI) compensation 

In this section it will be shown that the PI controller is not suitable to control the input 

voltage of the DC/DC boost converter. Traditionally proportional integral (PI) 

controller is used for voltage regulation, since it is simple to implement and gives zero 

steady state error. The voltage mode control block diagram is shown in Figure 73. As a 

first attempt PI voltage mode controller is investigated to regulate 𝑉𝑑𝑐. The voltage 

mode controller structure of the second-stage converter is shown in Figure 72.a. For 

designing the controller it is assumed that the first-stage converter is an ideal current 

source as shown in Figure 72.b. The transfer function of the duty-cycle-to-dc-link 

voltage 𝐻𝑣𝑑𝑐𝑑2
 of the second stage with ideal current source is [75]: 
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Figure 73: DC-link voltage mode control diagram 

Figure 74 show the bode diagram of Hvdcd2
(s) for a system operating with the 

following parameters: Cdc=41 µF, L2=1.5 mH, fsw1=100 kHz, rcdc
=1.2 mΩ and 

rl2
=0.01 mΩ. Although the parameters in this section are different from those designed 

in Chapter  3 which is used for the rest of this research work, the main discussion and 

finding can be applied on a boost converter with any other parameters. As shown in 

Figure 74 the transfer function 𝐻𝑣𝑑𝑐𝑑2
 is a second order with a double pole at 𝜔0 where 

an additional -180º phase delay occur (at 𝜔0 the phase changes from 180º to 0º).  
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Figure 74: Bode diagram of 𝐻𝑣𝑑𝑐𝑑2
(𝑠)given in (5.1) with the following parameters 

𝐶𝑑𝑐=41µF,𝐿2=1.5mH, 𝑟𝑐𝑑𝑐
=1.2mΩ and 𝑟𝑙2

=0.01 mΩ.. 

It is known that a single integrator compensation such as PI controller force the loop 

gain of the system to start its phase at -90º and as discussed above at 𝜔0 an additional -

180º phase delay is expected. So, it is expected the phase of the control loop gain to fall 

below -180º after 𝜔0 depending of the other system roots that lower than  𝜔0. To ensure 

wide attenuation of the closed loop transfer function, it is required that the control loop 

gain cut-off frequency (𝜔𝑐) is higher than the second-stage double pole frequency 

(𝜔𝑜 = 1/√𝐶𝑑𝑐𝐿2) [74, 83]. Having 𝜔𝑐 > 𝜔𝑜 and with the phase in this frequency range 

below -180º, this makes the control loop most likely to be unstable. To demonstrate that 

the control toolbox in MATLAB Simulink is used for tuning the PI controller as given 

in (5.2) at a cut-off frequency higher than 𝜔𝑜 (𝜔0 ≈ 4 × 103rad/s) and as an 

example 𝜔𝑐 is chosen to be 14.87 × 103 rad/s. The control loop gain (T) of the system 

is given in (5.3). 
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Where 𝐻𝑐(𝑠) is the controller transfer function, 𝐻𝑣𝑑𝑐𝑑2
(𝑠) is given in (5.1), and 

𝐻𝑝𝑤𝑚(𝑠) =
1

𝑉𝑚
 , 𝑉𝑚 is the amplitude of the PWM voltage carrier. 

The control loop gain of the system with an ideal current source (T_IS) is shown in 

Figure 75. The linear analysis tool in MATLAB is used to measure the control loop 

gain. Basically the simulation measurement is based on injecting small perturbations 

signal at the input point of the plant and measure the response at output point as shown 

in Figure 76.  As it can be seen in Figure 75, and as expected, the control loop gain 

phase starts at -90º due to the integral part of the controller. Then and due to the zero at 

325 rad/s the phase changes from -90º to 0º. Finally, at 𝜔0 the loop gain phase changes 

from 0º to -180º. This makes the system unstable for any cut-off frequency higher 

than 𝜔0. 

 

Figure 75: Simulation results of the control loop with ideal source (T_IS) and non-

ideal source (T_NIS). PV operates at CV (𝑉𝑝𝑣=35V), MPP (𝑉𝑝𝑣=29V) and CC 

(𝑉𝑝𝑣=19V) regions. 𝐾𝑣=11, 𝐶𝑑𝑐=41µF,𝐿2=1.5 mH, 𝑓𝑠𝑤1= 𝑓𝑠𝑤2=100 kHz and 𝐺 =

 1000 𝑊/𝑚2. 
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Figure 76: The control loop gain simulation measurement points (see Appindex C.4 for 

full block diagram and explaination of linear analysis tool in MATLAB) 

Despite the above analysis which eliminates the single integrator compensator as a 

possible choice for controlling the input-side of a boost converter, it was used in the 

literature to control the input side of a boost converter in PV applications such as in 

[71, 82, 95]. In these studies [71, 82, 95] the stability problem due to the power stage 

double pole is not discussed and it seems that it was not affecting their system stability 

because the control loop gain cut-off frequency was designed lower than 𝜔𝑜. As an 

example in [82] the control loop gain is tuned at 60 Hz while the boost converter 

double pole is at 890 Hz and in [71] the control loop gain cut-off frequency is kept 

below 10 Hz. However, the expense of designing 𝜔𝑐 lower than  𝜔𝑜  is poor close loop 

performance [74, 83]. 

It has been discussed earlier in Section  2.5.3 that the PV operating regions; constant 

current (CC), constant voltage (CV), and MPP source regions (refer to Figure 23 page 

40 for PV operating regions), affect the dynamic performance of the control-to-input-

voltage controller. To investigate the effect of the non-ideal SCPVM source on the 

control loop gain in (5.3), the ideal current source is replaced by the non-ideal SCPVM 

source then the control loop gain is measured again. The controller in (5.2) is kept the 

same despite having the control loop gain unstable. However, under the condition of 

𝜔𝑐 > 𝜔𝑜 is not possible to stabilise it. 

Figure 75 shows the control loop gain of the second-stage converter with non-ideal 

source (T_NIS). The three operating regions are considered: CC, MPP, and CV 

regions. From Figure 75 it can be clearly seen that the NIS affects the designed control 

loop depending on the operating region. With SCPVM at CC region (See T_NIS as CC 

in Figure 75) the system behaves exactly as in case of the ideal source (the phase after 

𝜔𝑜 fall to -180°). Therefore, any value of  𝜔𝑐 (under the condition of 𝜔𝑐 >  𝜔𝑜) will 

results in an unstable control loop due to the insufficient phase margin. 
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In case of SCPVM operating at MPP and CV regions (see T_NIS at MPP and T_NIS at 

CV in Figure 75, respectively) the system is stable as it has not violate the stability 

criteria as the control loop gain is not -180° or below it. Although the system is stable, 

at CV region the phase margin (PM) is very small (9°) and that is not acceptable in real 

life applications. 

For further investigations and to verify the findings which is based on analysing the 

control loop gain, a time domain simulation is carried out for the system in Figure 72.a 

with a SCPVM unit (NIS) operates at CV and CC regions for 𝐺 = 1000 𝑊/𝑚2. The 

results are depicted in Figure 77. At the beginning the system operates at CV region 

and at t=30 ms it changes to CC region. The operating region of the SCPVM unit is 

varied by changing the duty cycle of the first stage converter so that the PV voltage 

changes from 35V (CV region) to 19V (CC region).  The results show that the system 

is stable at the CV region and unstable at the CC region as expected from the control 

loop gain in Figure 75. Still at CV region the system shows continuous oscillations at 

the steady state (see Figure 77) and that’s due to the small PM at this region which is 

9°. Even though operating at MPP and in CV region has a positive effect on the control 

loop gain as the PM margin has improved, the PM is insufficient to be accepted for real 

life application especially at CV region. 

 

Figure 77: Simulation results of double-stage PV system with PI controller as PV 

moves from CV region (𝑉𝑝𝑣=35V) to CC region (𝑉𝑝𝑣=19V). 𝐾𝑣=11, 𝐶𝑑𝑐=41µF, 

𝐿2=1.5mH, 𝐶𝑖𝑛=1.5 µF, 𝑓𝑠𝑤1= 𝑓𝑠𝑤2=100 kHz, G=1000 W/𝑚2. 
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To sum it all, the PI controller is not suitable to control a second order power stage 

converter due to the phase delay incurred by the power stage double pole. A higher 

order controller is required to overcome this problem as will be discussed in the next 

section. 

5.3.2 Three-pole two-zero (3P2Z) compensation 

The three-pole two-zero compensation method (structure is shown in (5.4)) include two 

zeros placed in the neighbourhood of the power stage double pole (𝜔𝑧1 < 𝜔𝑜 < 𝜔𝑧2) to 

compensate for the -180° phase delay incurred by the power stage double pole. This 

will ensure a good phase for the frequencies beyond  𝜔𝑜 and allow sufficient PM at the 

designed 𝜔𝑐. The two high-frequency poles  𝜔𝑝1 and  𝜔𝑝2 are necessary to provide 

good attenuation at the high frequencies to make sure that the high-frequency switching 

noises are fairly filtered [74, 83]. The control block diagram was shown in Figure 73. 

The voltage sensor 𝐻𝑣(𝑠) is assumed to operate as unity gain. 
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5.3.2.1 Control performance with 3P2Z and an ideal current source 

Assuming an ideal input current source at the input of the second-stage converter the 

control toolbox in MATLAB Simulink is used for tuning of the three-pole two-zero 

controller as given in (5.5). Root Locus and the bode diagram of the designed control 

loop gain viewing the locations of the designed zeros and poles are shown in Figure 78 

and Figure 79, respectively. 
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Figure 78: Root locus of the 3P2Z control loop gain 

 

Figure 79: Bode Diagram of the designed control loop showing the locations of the 

designed zeros and poles 

The analytical and simulation results of the control loop gain 

2
( ). ( ). ( )

dcc v d pwmT H s H s H s  are shown in Figure 80. The simulation results is obtained 

as described earlier by using the linear analysis tool in MATLAB (see Figure 76) 
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Figure 80: Analytical and simulation results of the control loop gain with 3P2Z 

controller and ideal input current source of 4.7A (𝑓𝑐 =4.86 kHz, PM=47.5°, 𝑇𝑠𝑒𝑡𝑡𝑙𝑒 =
0.3 𝑚𝑠). System parameters: 𝐶𝑑𝑐=44µF,𝐿2=0.6mH, 𝑟𝑐𝑑𝑐=1.26Ω, 𝑟𝑙2=6.4mΩ,and 

𝑓𝑠𝑤2=60 kHz. (Analytical optained by (5.3) and the simulation is measured using 

MATLAB linear analysis tool as describe in Appendix C.4 and shown in Figure 145) 

Table 10: 3P2Z controller specifications 

Controller Type 
Specifications 

𝒇
𝒄
 PM Settling time 

3P2Z  4.86 kHz 47.5º 0.30 ms 

5.3.2.1.1 Effect of changes in dc-link capacitance 𝑪𝒅𝒄 

A small dc-link capacitance is desirable for reducing system cost and improving system 

reliability. However, the second-stage control loop is normally designed for a specific 

value of 𝐶𝑑𝑐. Changing 𝐶𝑑𝑐 value will affect the performance of the designed controller, 

because the second-stage double pole frequency depends on the value of 𝐶𝑑𝑐 as can be 

seen from (5.6). In order to achieve the same initial designed performance, after 

changing 𝐶𝑑𝑐 it will require re-designing the controller. However, the aim from 

changing 𝐶𝑑𝑐 without re-tuning the controller is to compare the system performance in 

case an ideal current source with the case of having SCPVM unit as non-ideal source. 

Keeping the controller parameters unchanged will show how tolerant is the controller in 

case of ideal current source and SCPVM source under different 𝐶𝑑𝑐 values. That will 

give an insight to the level of the dynamic interaction between system’s stages that is 
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imposed by the non-ideal SCPVM source which will add additional constraints on re-

tuning the designed controller as will be discussed later in the next sections. 

Therefore, this section investigates the acceptable limit of 𝐶𝑑𝑐 to ensure harmless effect 

on the already designed control loop based on having ideal current source. Within this 

acceptable limit it is expected that the value of 𝐶𝑑𝑐 is sufficient to keep the system 

stable without the need to re-design the controller. 

From the transfer function of the duty-cycle-to-dc-link voltage 𝐻𝑣𝑑𝑐𝑑2
 in (5.1) the 

second-stage double pole frequency (𝜔𝑜) is:  
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It depends on 𝐶𝑑𝑐 and 𝐿2 values and based on the 3P2Z controller design rules to 

ensure good dynamic performance 𝜔𝑜 has to be in between the controllers zeros. 

Therefore, the designed zeros in (5.5) allow frequency range for 𝜔𝑜 as follow: 
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The relation in (5.7) provides the design limitation for 𝐶𝑑𝑐 and 𝐿2. The resulting 

frequency from any combination of Cdc and L2 values has to be within the limit in (5.7). 

For a given second-stage inductance that designed for specific current ripple 

suppression (in this research 𝐿2=600µH) the limits of 𝐶𝑑𝑐 can be found as follow: 
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Figure 81 and Figure 82 show the effect of 𝐶𝑑𝑐on the control loop as the value gets 

smaller or higher than the allowed limit, respectively. When 𝐶𝑑𝑐 value is lower than the 

minimum limit, o  is pushed to a frequency higher than 2z . That initiates the problem 
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of the -180° phase delay resulting in unacceptable PM as shown in Figure 81. The case 

is different with large value of 𝐶𝑑𝑐 (higher than the limit in (5.8)) as the PM of the 

control loop gain increases as shown in Figure 82. However, higher PM results in 

larger ζ which might lead to an overdamped system with undesirable long settling time 

and very slow input response. 

 

Figure 81: Effect of small 𝐶𝑑𝑐 on the control loop gain with ideal current source (4.7A) 

and 3P2Z controller in (5.5). 𝐿2=0.6mH, 𝑟𝑐𝑑𝑐=1.26Ω, 𝑟𝑙2=6.4mΩ, and 𝑓𝑠𝑤2=60 kHz. 

(control loop gain measured using the model shown in Figure 145 in Appendix C.4) 

 

Figure 82: Effect of large 𝐶𝑑𝑐 on the control loop gain with ideal current source (4.7A) 

and 3P2Z controller in (5.5). 𝐿2=0.6mH, 𝑟𝑐𝑑𝑐=1.26Ω, 𝑟𝑙2=6.4mΩ, and 𝑓𝑠𝑤2=60 kHz. 

(control loop gain measured using the model shown in Figure 145 in Appendix C.4) 
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The simulation result of the system with an ideal current source under different values 

of 𝐶𝑑𝑐is shown in Figure 83 and Figure 84. The system is stable when sufficient 𝐶𝑑𝑐 

value is used as in Figure 83.a. While in Figure 83.b the insufficient value of 10µF 

results in unstable system due to the small PM of the control loop. 

 

Figure 83: Controller performance with ideal current source (4.7A); (a) stable 

operation with sufficient capacitance of 44µF (b) unstable operation due to insufficient 

capacitance of 10µF. 𝐿2=0.6mH, 𝑟𝑐𝑑𝑐=1.26Ω, 𝑟𝑙2=6.4mΩ, 3P2Z controller in (5.5), 

and 𝑓𝑠𝑤2=60 kHz. (the average value is the mean value of the input signal over one 

cycle of the 60 kHz switching frequency). 
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Figure 84: Zoom in of Figure 83. 

5.3.2.2 Control performance with 3P2Z and a SCPVM unit as a non-ideal source 

In this section the dynamic performance of the control loop is checked when the ideal 

current source is replaced with the original SCPVM source. The 3P2Z control is kept 

the same as in (5.5) which is designed based on an ideal current source. Figure 85 

shows simulation results when one SCPVM unit is connected to the second-stage 

converter with 𝐶𝑑𝑐 = 44𝜇𝐹 and 𝐺 = 1000 𝑊/𝑚2. 

As discussed in Chapter  4, in steady-state (under constant solar irradiation) the P&O 

operating point varies every 𝑇𝑚𝑝𝑝𝑡 and that induce periodic low-order frequency and 

transient oscillations in the dc-link bus. These periodic oscillations in the dc-link due to 

the non-ideal SCPVM source will be seen as disturbances by the control loop of the 

second-stage converter forcing it to interact to regulate the dc-link voltage as required 

every  𝑇𝑚𝑝𝑝𝑡.  It was revealed in Chapter  4 that the dynamics and the level of the 

oscillations in the dc-link bus depend on the P&O parameters, solar irradiation level, 

and PV operating region. So, it is expected that the second-stage control loop will 

interact differently depending on the operating condition of the SCPVM unit. 

Therefore, in this section the effect of the SCPVM unit when operates under different 

solar irradiation levels (G) and different PV operating regions (different value of 𝑉𝑝𝑣) 
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on the designed control loop is explored. Then, the effect of the P&O parameters (∆d 

and 𝑇𝑚𝑝𝑝𝑡) are discussed. 

 

Figure 85: Simulation results of one SCPVM unit connected to the second-stage 

converter with 3P2Z controller in (5.5). 𝐺 = 1000𝑊/𝑚2, ∆d=0.035, 𝑇𝑚𝑝𝑝𝑡=0.35ms, 

𝐶𝑑𝑐=44µF, and  𝑉𝑔𝑟𝑖𝑑=200V. 

5.3.2.2.1 Effect of different solar irradiation levels on the performance of the 

second-stage converter 

The simulation results of the control loop for the system with non-ideal SCPVM source 

at different solar irradiation level is shown in Figure 86. The results show that with the 

non-ideal source (i.e. SCPVM unit) the system is more damped than the case with ideal 

current source. The higher the solar irradiation is, the more damped the system 

becomes. Also, the cut-off frequency of the system is slightly reduced. The result in 

Figure 86 is verified by time domain simulations as shown in Figure 87 and Figure 88. 

Figure 87  compares the transient behaviour of IS and NIS at high solar irradiation and 

show that the dc-link voltage is more damped with NIS. Figure 88 shows the transient 

behaviour under different solar irradiation levels (e.g. for 1000 W/𝑚2, 800 W/𝑚2, 600 
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W/𝑚2, and 400 W/𝑚2 ) which becomes more damped as the solar irradiation level 

increases. 

 

Figure 86: Effect of the non-ideal current source ‘SCPVM unit’ on the control loop 

gain under different solar irradiation level. 𝐶𝑑𝑐=44µF and 𝐾𝑣=222. (control loop gain 

measured using the model shown in Figure 146Figure 145 in Appendix C.4) 

 

Figure 87:Time domain simulation of the dc-link voltage when the first-stage duty cycle 

changes from 𝐷 𝑚𝑝𝑝𝑡 to 𝐷 𝑚𝑝𝑝𝑡+∆d. 𝐶𝑑𝑐=44µF and 𝑉𝑑𝑐_𝑟𝑎𝑡𝑒𝑑 =44V.  
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Figure 88: The dc-link transient behaviour when SCPVM unit operates under different 

solar irradiation levels. 𝑉𝑑𝑐_𝑟𝑎𝑡𝑒𝑑 =44V. 𝐶𝑑𝑐=44µF. 

5.3.2.2.2 Effect of PV operating regions 

In this case the solar irradiation is kept constant at 1000 W/m
2
 and the voltage across 

the PV is varied to different values to check the effect of the PV operating region on the 

dynamic performance of the control loop. The simulation results of the control loop are 

shown in Figure 89. The lower the PV voltage (such as 𝑣𝑝𝑣=25V in Figure 89), the 

more the system behaves as an ideal current source with the least effect on the control 

loop gain. When the PV voltage increases toward MPP (𝑉𝑝𝑣 = 𝑉𝑚𝑝𝑝) and to the 

constant voltage region (e.g. 33V in Figure 89) the system becomes more damped with 

higher PM. Also, the cut-off frequency of the system is influenced slightly. The time 

domain simulation of the dc-link voltage transient behaviour in Figure 90 verifies the 

simulation results of the control loop in Figure 89. The higher the PV module voltage 

the more damped is the control loop gain. 

5.3.2.2.3 Effect of P&O parameters ∆d and 𝑻𝒎𝒑𝒑𝒕 

The perturbation step size Δd affects the three steady-state values of the PV module 

voltage 𝑉𝑝𝑣 including 𝑉𝑝𝑣−𝑙𝑒𝑓𝑡 , 𝑉𝑝𝑣−𝑚𝑝𝑝 and 𝑉𝑝𝑣−𝑟𝑖𝑔ℎ𝑡 (see Figure 55, page 83). These 

values can be found by using (4.4). In grid connected mode the output voltage 𝑉𝑑𝑐 is 

controlled at constant value and in this case and based on (4.4) for a specific PV 

module voltage at MPP (i.e. 𝑉𝑝𝑣−𝑚𝑝𝑝) 𝐷𝑚𝑝𝑝𝑡 will be constant and the adopted value Δd 

decides the values of 𝑉𝑝𝑣−𝑙𝑒𝑓𝑡 and 𝑉𝑝𝑣−𝑟𝑖𝑔ℎ𝑡. It was discussed earlier in 

section  5.3.2.2.2 that the transient dynamic of the control loop depends on the value of 

𝑉𝑝𝑣 (see Figure 89 and  Figure 90). Therefore, a different value of Δd changes 𝑉𝑝𝑣−𝑙𝑒𝑓𝑡 
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and 𝑉𝑝𝑣−𝑟𝑖𝑔ℎ𝑡 that leads to different transient dynamics of the control loop. The smaller 

∆d is, the slightest the dynamic of the control loop is affected as the difference between 

𝑉𝑝𝑣−𝑙𝑒𝑓𝑡  and 𝑉𝑝𝑣−𝑟𝑖𝑔ℎ𝑡 will be very small. However, the minimum value of ∆d is 

constrained by the SCPVM dynamic and the average rate of change in the solar 

irradiation as given in equation (2.10). 

 

Figure 89: Effect of different PV operating regions on the control loop gain. 

𝐶𝑑𝑐=44µF, 𝐾𝑣=222, and G=1000W/m2. (control loop gain measured using the model 

shown in Figure 146 Figure 145in Appendix C.4). 

 

Figure 90: The dc-link transient behaviour when SCPVM unit operates at different 

operating region. 𝑉𝑑𝑐_𝑟𝑎𝑡𝑒𝑑 =44V. 𝐶𝑑𝑐=44µF, and G=1000 W/m2. 

As has been discussed in chapter 2, section  2.3.1.2, the time interval between two 

adjacent perturbations 𝑇𝑚𝑝𝑝𝑡 is optimised based on the transient behaviour of the PV 
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module voltage and current (𝑣𝑝𝑣 and 𝑖𝑝𝑣) of the SCPVM unit. However, the P&O 

perturbations also affect the dc-link voltage and current (𝑣𝑑𝑐 and 𝑖𝑑𝑐) and that forces 

the controller to enter a transient mode every 𝑇𝑚𝑝𝑝𝑡 as seen in Figure 85. The given 

time for 𝑣𝑑𝑐  and 𝑖𝑑𝑐 to settle to their new steady state value after each perturbation is 

limited by 𝑇𝑚𝑝𝑝𝑡. Therefore, it is expected that a control loop characterised by a settling 

time longer than 𝑇𝑚𝑝𝑝𝑡 will result in unsettled transient periods in the dc-link which 

will certainly affect the system power quality. In contrast, when the control loop gain is 

characterised by a settling time shorter than 𝑇𝑚𝑝𝑝𝑡, the current transient period in the 

dc-link will settle down before a new transient period start. As discussed in 

Section  3.3.3 𝑇𝑚𝑝𝑝𝑡is chosen to be 0.35 ms for the first-stage converter. This has been 

taken into account when designing the second-stage controller and control loop gain in 

(5.5) is designed with a settling time (𝑇𝑠𝑒𝑡𝑡𝑙𝑒) of 0.3 ms. 

To demonstrate the effect of different values of  𝑇𝑚𝑝𝑝𝑡 on the settling of the transient in 

the dc-link and grid sides due to the P&O perturbation the original designed P&O 

sampling period ( 𝑇𝑚𝑝𝑝𝑡 = 0.35 𝑚𝑠) is changed first to a longer period of 0.7 ms then 

to a shorter period of 0.2 ms as shown in Figure 91 and Figure 92, respectively. The 

longer sampling period of 0.7 ms is providing longer time for the 𝑣𝑑𝑐 , 𝑖𝑑𝑐 and 𝑖𝑔𝑟𝑖𝑑 to 

be settled and damped before the next P&O perturbation occurs as shown in Figure 91. 

In case of shorter sampling period of 0.2 ms which is the minimum limit for the studied 

system based on (3.12) (see Section  3.3.3) the new transient period starts before the 

previous transient oscillations finish. The result is frequent unsettled transient periods 

in the dc-link and grid sides. 

In order to make sure that the transients of 𝑣𝑑𝑐 and 𝑖𝑑𝑐  are settled, the settling time of 

the dc-link control loop has to be shorter than 𝑇𝑚𝑝𝑝𝑡. That can be achieved either by 

considering this from the beginning when designing the control loop gain of the 

second-stage or by readjusting the P&O sampling time to be longer than the designed 

control loop gain settling time. However, the second option is not desirable as it 

degrades the P&O performance. It is important to highlight that as for voltage-mode 

controller the transient characteristics (e.g. the settling time) of the control loop gain are 

influenced by solar irradiation level and the PV operating region as was shown in 

Figure 86 and Figure 89. Therefore, the worst case which leads to the longest dc-link 

control loop settling time has to be considered when comparing with 𝑇𝑚𝑝𝑝𝑡. According 
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to Figure 86 and Figure 89 the worst case is when the irradiation and PV voltage are at 

their highest operating values (where ζ and PM increase). 

 

Figure 91: Effect of increasing 𝑇𝑚𝑝𝑝𝑡 on settling of the transient oscillations in the dc-

link and grid sides (𝑉𝑑𝑐, 𝐼𝑑𝑐 and 𝐼𝑔𝑟𝑖𝑑). 𝐺 = 1000 𝑊/𝑚2, 𝐶𝑑𝑐=44µF,𝐿2=600 µH, 

3P2Z controller in (5.5). 
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Figure 92: Effect of reducing 𝑇𝑚𝑝𝑝𝑡 on settling of the transient oscillations in the dc-

link and grid sides (𝑉𝑑𝑐, 𝐼𝑑𝑐 and 𝐼𝑔𝑟𝑖𝑑). 𝐺 = 1000 𝑊/𝑚2, 𝐶𝑑𝑐=44µF,𝐿2=600 µH, 

3P2Z controller in (5.5). 

5.3.2.2.4 Effect of changes in dc-link capacitance 𝑪𝒅𝒄 

As has been shown in Figure 86 - Figure 91 the control loop gain is stable under 

different solar irradiation levels and different PV operating regions for the nominal dc-

link capacitance value (𝐶𝑑𝑐=44µF). In this section the PV voltage and the solar 

irradiation are kept constant and 𝐶𝑑𝑐 is varied to different values to check its effect on 

the control loop gain as shown in Figure 93. One can see that the control loop gain 

becomes less damped with lower PM when 𝐶𝑑𝑐 decreases. In other words the transient 

behaviour of the dc-link voltage 𝑉𝑑𝑐 will be more oscillatory and take longer time to 

settle when 𝐶𝑑𝑐 decreases. 
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Figure 93: Effect of 𝐶𝑑𝑐 on the control loop gain. G=1000 W/m
2
 and 3P2Z controller 

in (5.5). (control loop gain measured using the model shown in Figure 146Figure 145 

in Appendix C.4) 

Time domain simulations of the 𝑣𝑑𝑐 and 𝑖𝑑𝑐 for different values of 𝐶𝑑𝑐 is shown in 

Figure 94. It shows that at decreased value of 𝐶𝑑𝑐, the 𝑣𝑑𝑐 transient during 𝑇𝑚𝑝𝑝𝑡 

becomes more oscillatory and it takes longer time to settle. Also, 𝐶𝑑𝑐 affects the 

transient performance of the uncontrolled 𝑖𝑑𝑐. The transient behaviours of 𝑣𝑑𝑐 and 𝑖𝑑𝑐 

are very important as with the employed P&O controller the system enters transient 

mode every 𝑇𝑚𝑝𝑝𝑡. That makes the transient dynamics of 𝑣𝑑𝑐 and 𝑖𝑑𝑐 a critical factor in 

deciding the minimum required capacitance in the system and re-tuning the controller 

after changing 𝐶𝑑𝑐  to ensure high power quality and stability. Obviously, the value of 

𝐶𝑑𝑐 should not result in a high transient oscillations or long settling time that violate the 

condition of 𝑇𝑠𝑒𝑡𝑡𝑙𝑒 < 𝑇𝑚𝑝𝑝𝑡 as was discussed earlier in Section  5.3.2.2.3. Figure 94 

shows poor transient performance of 𝑣𝑑𝑐 and 𝑖𝑑𝑐 at low capacitance value of 14.2µF 

and that affect the dc-link power quality significantly. 

In the previous analysis considering ideal current source, the limiting range of 𝐶𝑑𝑐 is 

decided based on the condition of having 1 2z o z     to avoid the -180° phase delay 

caused by the power stage double pole. Higher constraints are applied on the 𝐶𝑑𝑐 in 

case of non-ideal SCPVM source which is associated with the dynamic performance of 

the dc-link voltage and current. In addition to that, the P&O sampling time is another 

constraint as it limits the transient time of 𝑣𝑑𝑐 and 𝑖𝑑𝑐 after each P&O perturbation. As 
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discussed above and previously in Chapter  4 the dc-link transient performance is a 

function of 𝐶𝑑𝑐, 𝐺, 𝑣𝑝𝑣, and of course it is a function of the controller parameters (e.g. 

𝐾𝑣). As the system operates in MPP mode and P&O step size is typically very small the 

variations in 𝑣𝑝𝑣 is steady state will be small and thus its effect on the transient 

behaviour can be ignored. Therefore, the next section provides some simulation 

examples that explore the effect of 𝐶𝑑𝑐, 𝐺, and 𝐾𝑣 on system power quality. 

 

Figure 94: Effect of 𝐶𝑑𝑐 on the dc-link voltage and current transients. G=1000W/𝑚2. 

5.3.2.2.5 Time domain simulation 

Figure 95 show simulation results of the system operating with two different values of 

𝐶𝑑𝑐. In case of sufficient 𝐶𝑑𝑐 of 30 µF as shown in Figure 95.a good transient 

performance and power quality are achieved at the dc-link and grid sides. When 𝐶𝑑𝑐 is 

reduced to 14.2 µF as shown in Figure 95.b the power quality has degraded 

significantly (see the dc-link and grid current waveforms in Figure 95.b). The poor 

power quality is associated with the poor transient performance in the dc-link side. 

Depending on how small 𝐶𝑑𝑐 is a worse situation might occur (i.e. poorer power quality 

and chaotic like behaviour) especially if 𝐶𝑑𝑐 value results in transient settling time that 

longer than the P&O sampling time. 

The small value of 𝐶𝑑𝑐 in Figure 95.b has affected the transient performance. The 

transient became more oscillatory and required longer settling time which violates the 
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condition of having𝑇𝑠𝑒𝑡𝑡𝑙𝑒 < 𝑇𝑚𝑝𝑝𝑡. So frequent unsettled transient oscillations occur in 

the dc-link and grid sides and that affect the system power quality. Considering longer 

P&O sampling period to allow the transient of 𝑣𝑑𝑐 and 𝑖𝑑𝑐 to settle down is one of the 

options that can help to avoid the chaotic like behaviour in the dc-link bus. However, as 

shown in Figure 96 the P&O sampling period has to be increased to ten times the 

original designed 𝑇𝑚𝑝𝑝𝑡 (from 0.35 ms to 3.5 ms) to allow enough time for the dc-link 

voltage and current to settle when 𝐶𝑑𝑐is reduced to 14.2 µF. However, this solution is 

not desirable as it degrades the P&O performance. As shown in Figure 95  the poor 

power quality in the dc-link has not affected the three step operation of the P&O 

controller, so increasing 𝑇𝑚𝑝𝑝𝑡 is not necessary and it will only reduce the P&O 

efficiency without solving the problem of the poor power quality at the dc-link and grid 

sides. 

 

Figure 95: Effect of 𝐶𝑑𝑐 on the dc-link and grid power quality with 3P2Z controller in 

(5.5); (a) sufficient capacitance of 30µF, (b) insufficient capacitance of 14.2µF. (the 

average value is mean value of the input signal over a one cycle of the 60 kHz 

switching frequency). 
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The first 25 ms of the simulation results in Figure 97 is for same 𝑇𝑚𝑝𝑝𝑡, G and 𝐾𝑣 used 

in Figure 95 but with 𝐶𝑑𝑐 reduced slightly more to 14.1 µF. It can be seen that the 

situation is getting worse and now the system is unstable. 

It has been discussed earlier that the transient performance of 𝑖𝑑𝑐 (see Figure 59, page 

89) and the controlled 𝑣𝑑𝑐 (Figure 86, page 116) depends on the solar irradiation level 

and as the instability in Figure 97 is due to the poor transient performance (that was 

caused by the reduced capacitance value of 14.1µF under G=1000 W/m
2
), it is expected 

that changing the solar irradiation level can be a factor that affect the system stability 

depending on the effect of G on the transient behaviour. As an example, at t=25ms in 

Figure 97 the solar irradiation has changed from 1000 W/m
2
 to 800 W/m

2
 and both  𝐾𝑣 

and 𝐶𝑑𝑐 are kept the same. The result shows that reducing the irradiation level has 

stabilised the system. That might be associated with the fact that at lower solar 

irradiation the transient dynamics of 𝑣𝑑𝑐 and 𝑖𝑑𝑐 become faster and in this case the dc-

link voltage and current have a better chance to settle down within the given time 

period of 𝑇𝑚𝑝𝑝𝑡. 

 

Figure 96: Effect of 𝑇𝑚𝑝𝑝𝑡 on settling time of the transient oscillations in the dc-link 

and grid sides with small 𝐶𝑑𝑐=14.2 µF, 𝐺 = 1000 𝑊/𝑚2,3P2Z controller in (5.5). 

and 𝑇𝑚𝑝𝑝𝑡=3.5ms. (the average value is mean value of the input signal over a one cycle 

of the 60 kHz switching frequency). 
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Figure 97: Effect of solar irradiation level on the dc-link and grid stability. 

𝐶𝑑𝑐=14.1µF, 3P2Z controller in (5.5), at t<25ms 𝐺 = 1000 𝑊/𝑚2, and at  t>25ms 

𝐺 = 800 𝑊/𝑚2. (the average value is mean value of the input signal over a running 

window of one cycle of the 60 kHz switching frequency). 

Another option to stabilise the system can be by re-tuning the controller. It was seen in 

Figure 93 that when the capacitance size reduces, the PM of the control loop gain 

decreases and fc increases. These two values; the PM and fc can be readjusted by re-

tuning the voltage gain of the 3P2Z controller 𝐾𝑣. Based on Figure 93, reducing 𝐾𝑣 will 

readjust the control loop gain characteristic by increasing the PM and reducing fc and in 

that reversing the effect of reduced 𝐶𝑑𝑐. Figure 98 shows the effect of changing 𝐾𝑣 on 

stabilising the system. The unstable system with 𝐺 = 1000 W/m
2
, 𝐶𝑑𝑐=14.1 µF, and 

𝐾𝑣=222 became stable after 𝐾𝑣 has been reduced to 215 at t=25 ms. 
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Figure 98: Effect of the voltage gain 𝐾𝑣 on the dc-link and grid stability. 𝐶𝑑𝑐=14.1µF, 

G=1000 W/𝑚2, at t<25ms 𝐾𝑣=222, at t>25ms 𝐾𝑣=215. (the average value is mean 

value of the input signal over a running window of one cycle of the 60 kHz switching 

frequency). 

5.3.2.3 Stability region with 3P2Z compensation for ideal current source and for 

SCPVM as non-ideal current source 

Based on the discussion in the previous section, at specific values of 𝐶𝑑𝑐, 𝐾𝑣 and 𝐺 a 

poor dynamic performance might occur in the dc-link and that can cause chaotic like 

behaviour and even loss of system stability. The critical values of 𝐶𝑑𝑐  for different 𝐾𝑣 

and 𝐺 values for the double-stage boost converter in MPP mode are identified in this 

section through simulations. First, for different solar irradiation levels (𝐺) and under 

specific voltage gain (𝐾𝑣) the dc link capacitance 𝐶𝑑𝑐 is reduced in small steps until the 

system become unstable (at critical value 𝐶𝑑𝑐_min _𝐺). Then, for this critical capacitance 

value the cut-off frequency of the control loop, 𝜔𝑐_𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒_𝐺, is measured from the 

simulation result of the control loop gain. Of note is that the value of 𝐶𝑑𝑐_min _𝐺 changes 

as 𝐾𝑣 changes. Therefore, the minimum 𝐶𝑑𝑐_min _𝐺, for different irradiation and voltage 

gain levels, is found to be defined by (5.12) which is derived from the control loop gain 

𝑇 (see Figure 99) as follow: 



128 

   
2

. . ( )
dcc v d pwmT H s H s H s         (5.9) 

Substituting (5.1), (5.4), and 𝐻𝑝𝑤𝑚(𝑠) =
1

𝑉𝑚
 in (5.9):  

1 2

2

2 2

1 2

1 1
1

.  .
( ) 1

1 1

dc

dc

C dcgridv z z

m dc dc l C

p p

s s

r C sK
T

V L C s C r r s s s

V  

 

  
   

   
     

     
  

   (5.10) 

𝜔𝑜 at 𝜔𝑐_𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒_𝐺  is 
1

√𝐿2𝐶𝑑𝑐_min _𝐺
. From Figure 99 and equation (5.10), the following 

relation is derived: 

_ _2

1 2

2 _ min _

20log 40log 20log 0 
1

v

c unstable Gm z

z z

d

gri

c G

d
K

V
dB

L C

V


 
  

  
    
    

   
   

  (5.11) 

 

Figure 99: Graphical construction of the asymptotes of the control loop gain 

magnitude. 

Solving and re-arranging equation (5.11) for 𝐶𝑑𝑐_min _𝐺 gives: 
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where 𝐾𝑣 is the dc gain of the 3P2Z voltage mode controller, 𝑉𝑔𝑟𝑖𝑑 is the dc grid 

voltage, 𝜔𝑐_𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒_𝐺 is the cut-off frequency where the system becomes unstable at 

irradiation 𝐺, 𝐿2 is the inductance of the second stage converter, 𝜔𝑧1  and 𝜔𝑧2 are the 

3P2Z controller zeros. 

Therefore, based on (5.12) with SCPVM unit the minimum required dc-link 

capacitance 𝐶𝑑𝑐 in MPP mode with a 3P2Z voltage-mode-controller (5.5) with different 

𝐾𝑣 values for double-stage boost converter is depicted in Figure 100. The same 

equation in (5.12) can be used to find the minimum dc-link capacitance in case of 

having an ideal current source at the input of the second-stage converter which is also 

shown in Figure 100. The value of the ideal current is considered to be equivalent to the 

case of the SCPVM unit operating at MPP of the highest solar irradiation 

(𝑖𝑑𝑒𝑎𝑙 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝐼𝑝𝑣
1000(1 − 𝐷𝑚𝑝𝑝𝑡)). So, in Figure 100 the minimum dc-link 

capacitance with SCPVM source is compared with the minimum dc-link capacitance in 

case of an ideal current source and as it can be seen the SCPVM source  at the highest 

solar irradiation present the worst case scenario. At specific 𝐾𝑣 the SCPVM source 

required higher dc-link capacitance value than the ideal current source case to ensure 

stable operation. The SCPVM source adds another constraint on the second-stage 

controller design and in this case changing the capacitance size and re-tuning the 

controller parameter 𝐾𝑣 based on ideal current source might be not sufficient. 

 

Figure 100: Minimum dc-link capacitance for ideal current source and SCPVM source 

with 3P2Z controller (5.5) and different 𝐾𝑣 values. 
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Another simulation example for the system with SCPVM source is shown in Figure 

101. At the beginning the system is stable at 𝐺=1000 𝑊/𝑚2, 𝐾𝑣=150, and 𝐶𝑑𝑐=13 µF, 

then the voltage gain has increased to 225 and that destabilised the system. The stable 

and unstable operating points of the previous simulations results in Figure 97, Figure 

98 and Figure 101 are shown on Figure 102 which verifies the accuracy of the given 

stability margin. 

 

Figure 101: Destabilise the system when 𝐾𝑣 is increased from 150 to 225 with 

𝐶𝑑𝑐=13µF and 𝐺=1000W/m
2
. (the average value is mean value of the input signal over 

a running window of one cycle of the 60 kHz switching frequency). 
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Figure 102: Showing the operating points in Figure 97, Figure 98 and Figure 101 on 

the curves of the minimum dc-link capacitance for SCPVM source. 

5.4 Cascaded Current-Voltage Controller for Second Stage DC/DC 

Boost Converter 

Usually a PV system that is over 1 kW capacity is controlled by cascaded current-

voltage controller to control the current transient and avoid failure due to high transient 

peaks. In this section a cascaded current-voltage controller is designed for the system 

under study. The dynamic performance of the designed controller is checked through 

simulating the system for the two cases of having ideal current source and non-ideal 

SCPVM source. Effect of 𝐶𝑑𝑐, 𝐺, and the proportional voltage gain 𝐾𝑝𝑣 on the stability 

of the system is investigated through simulation examples. 

5.4.1 Control performance with cascaded current-voltage controller and an ideal 

current source  

For designing the cascaded current-voltage controller it is assumed that the first-stage 

converter is an ideal current source, as it was the case in designing the voltage-mode 

controller. Accordingly, the transfer functions of the reference current-to-dc-link 

voltage (𝐻𝑣𝑑𝑐𝑖𝑙2_𝑟𝑒𝑓
) and duty-cycle-to-current (𝐻𝑖𝑙2𝑑2

)of the second stage are: 
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The control block diagram is shown in Figure 103. The voltage and current sensors are 

assumed to operate as unity gain. The control toolbox on MATLAB Simulink is used 

for tuning the PI controllers of the voltage and current as given in (5.15) and (5.16), 

respectively. The specifications of the controllers are given in Table 11. 

410
( ) 1iv

cv pv

K
H S K

s s


             (5.15)

61.33 10
( ) 38ii

ci pi

K
H S K

s s


            (5.16) 

 

Figure 103: Block diagram of the cascaded current-voltage controller 

 

Table 11: Cascaded current-voltage controller specifications 

Controller Type 
Specifications 

𝒇
𝒄
 PM Settling time 

PI voltage controller  3.91 kHz 67.8º 0.33 ms 

PI current controller 11.2 kHz 63.7º 0.1 ms 

The simulation result of the system with an ideal current source under different values 

of 𝐶𝑑𝑐 is shown in Figure 104. The system is stable when sufficient 𝐶𝑑𝑐 value is used as 

in Figure 104.a. The value of 𝐶𝑑𝑐 has decreased in small steps until the system became 

unstable at 20.5µF as shown in Figure 104.b. 
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Figure 104: Cascaded controller with ideal current source (4.7A) (a) stable operation 

with sufficient capacitance size of 44µF (b) unstable operation due to insufficient 

capacitance size of 20.5µF. (the average value is mean value of the input signal over a 

one cycle of the 60 kHz switching frequency). 

5.4.2 Control performance with cascaded current-voltage controller and a 

SCPVM unit as a non-ideal source 

In this section the performance of the designed cascaded controller is checked when the 

ideal current source is replaced with the original non-ideal SCPVM source. As shown 

in Figure 105 the periodic oscillations in the dc-link power due to the P&O controller 

of the non-ideal SCPVM source are seen as disturbances by the controller and forcing it 

to enter transient mode every 𝑇𝑚𝑝𝑝𝑡. Similar to the case of the 3P2Z controller the 

effect of 𝐶𝑑𝑐, 𝐺, and the proportional voltage gain 𝐾𝑝𝑣 on system stability is checked. 



134 

 

Figure 105: Simulation results of one SCPVM unit connected to the second-stage 

converter with cascaded current-voltage controller. 𝐺 = 1000𝑊/𝑚2, ∆d=0.035, 

𝑇𝑚𝑝𝑝𝑡=0.35 ms, 𝐶𝑑𝑐=44µF, 𝐾𝑝𝑣=1, 𝐾𝑖𝑣=1×104, 𝐾𝑝𝑖=38, 𝐾𝑖𝑖=1.33×106, 𝑉𝑔𝑟𝑖𝑑=200V. 

5.4.2.1 Effect of 𝑪𝒅𝒄 size 

In this test as shown in Figure 106 solar irradiation level and 𝐾𝑝𝑣 are kept constant at 

1000 𝑊/𝑚2 and 1, respectively, while the value of the 𝐶𝑑𝑐 has changed from 44 µF to 

22 µF. Figure 106 shows that in case of sufficient 𝐶𝑑𝑐 size of 44 µF, as shown in Figure 

106.a, good transient performance and power quality are achieved. When 𝐶𝑑𝑐 is 

reduced to 22 µF, as shown in Figure 106.b, the power quality at both the dc-link and 

grid sides has degraded significantly. This emphasises that also with the cascaded 

controller the dc-link transient becomes more oscillatory and required longer time to 

settle with small capacitance size which might results in chaotic like behaviour. 
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Figure 106: Effect of 𝐶𝑑𝑐 value on the power quality in the dc-link and grid sides at 

G=1000W/𝑚2 and 𝑘𝑝𝑣 = 1: (a) sufficient capacitance size 44µF (b) insufficient 

capacitance size 22µF. (the average value is mean value of the input signal over a one 

cycle of the 60 kHz switching frequency). 

5.4.2.2 Effect of solar irradiation level  

In this test as shown in Figure 107 𝐶𝑑𝑐 value and 𝐾𝑝𝑣 are kept constant at 21.5 µF and 

1, respectively. The solar irradiation level has changed from 600 W/𝑚2 to 1000 W/𝑚2. 

Figure 107 shows that with cascaded controller the solar irradiation level also affect the 

power quality of the dc-link and grid sides. Same as 3P2Z voltage mode controller the 

high solar irradiation level presents the worst case scenario which drive system to a 

chaotic like behaviour and instability under specific operating point (𝐶𝑑𝑐 and 𝑘𝑣) as 

shown in Figure 107. 
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Figure 107: Effect of solar irradiation level on the dc-link and grid stability. 𝐶𝑑𝑐 and 

𝑘𝑝𝑣 are kept constant at 21.5 µF and 1, respectively. (the average value is mean value 

of the input signal over a one cycle of the 60 kHz switching frequency). 

5.4.2.3 Effect of the proportional voltage gain 

Another factor that affects system stability is the controller gain parameters. In case 

cascaded controller re-tuning the proportional voltage gain (𝐾𝑝𝑣) will adjust the control 

loop cut-off frequency and the PM. In this test, as shown in Figure 108, 𝐶𝑑𝑐 value and 

𝐺 are kept constant at 21.5 µF and 1000 W/𝑚2, respectively. The value of 𝐾𝑝𝑣 has 

changed from 0.8 to 1. Based on Figure 108, increasing 𝐾𝑝𝑣 from 0.8 to 1 degrades the 

cascaded controller performance and drives system to instability. 
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Figure 108: Effect of the proportional gain of the voltage controller (𝑘𝑝𝑣) on the dc-

link and grid stability. 𝐶𝑑𝑐 and 𝐺 are kept constant at 21.5 µF and 1000 W/𝑚2, 

respectively. (the average value is mean value of the input signal over a one cycle of 

the 60 kHz switching frequency). 

5.5 Design Recommendations for the DC-link Voltage Controller 

In order to control the dc-link voltage in grid-connected PV system with double-stage 

DC/DC boost converter, the following is recommended: 

 For low power rating system where voltage-mode controller is suitable, the 

single integrator controllers such as PI controller are not suitable to control the 

input-side of DC/DC boost converter due to the -180º phase delay incurred by 

the power stage double pole at 𝜔𝑐 > 𝜔𝑜 which results in insufficient phase 

margin or even unstable control loop gain when PV operates in CC region. A 

higher order controller is recommended to overcome this problem such as 3P2Z 

controllers. 

 Modelling the SCPVM units as an ideal current source can simplify designing 

the controller of the second-stage converter. However, the original SCPVM unit 

under different operating conditions has to be considered when evaluating the 

performance of the controller and re-tuning the controller in case of changing 
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the value of 𝐶𝑑𝑐 to ensure stable operation under different operating conditions 

such as solar irradiation level, PV voltage, and P&O sampling time. 

 To reduce the dynamic interaction between the first-stage and the second-stage 

converters and avoid chaotic like behaviour, the second-stage control loop 

settling time 𝑇𝑠𝑒𝑡𝑡𝑙𝑒 has to be shorter than the first-stage P&O controller 

sampling period 𝑇𝑚𝑝𝑝𝑡. 

 To ensure 𝑇𝑠𝑒𝑡𝑡𝑙𝑒 < 𝑇𝑚𝑝𝑝𝑡, the worst case which leads to the longest 𝑇𝑠𝑒𝑡𝑡𝑙𝑒 has 

to be considered which occurs when the solar irradiation and the PV voltage are 

at their highest operating values. 

5.6 Conclusion 

The dynamic interactions between the system stages in the double-stage DC/DC boost 

converter are analysed through simulation. The dynamic interaction is explored in case 

of having an ideal current source (the SCPVM is modelled as a current source) 

connected to the second-stage converter and in case of having SCPVM unit connected 

to the second-stage converter. The results from the two aforementioned cases are 

compared and it reveals that: (I) the assumption that SCPVM units can be lumped 

together and modelled as an ideal current source might be insufficient and misleading, 

especially, if small dc-link capacitance is used, which is normally very desirable, (II) 

the SCPVM unit increases the dynamic interaction between the system stages due the 

induced low-order frequency and transient oscillations by the P&O controller. It was 

shown through simulation that the effect of the P&O controller on the control loop of 

the second-stage converter at MPPT mode depend on the P&O sampling time ( 𝑇𝑚𝑝𝑝𝑡), 

the solar irradiation level, the size of 𝐶𝑑𝑐, controller specifications (e.g. settling time 

and voltage gain), and system cut-off frequency.  

Simulation examples are provided to show that under specific operating conditions the 

dynamic interaction between the system stages increases and may leads to undesirable 

operating behaviour (chaotic like behaviour). It was shown that at MPPT mode and for 

specific P&O parameters the dynamic interaction increases as solar irradiation 

increases, 𝐶𝑑𝑐 decreases, or system cut-off frequency increases (e.g. controller voltage 

gain increases). Accordingly, design recommendations and guidelines are provided in 

order to avoid undesirable operating behaviour.  
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Although the output impedance of the SCPVM unit is not discussed in this work, it 

affects the interaction between the system stages as the output impedance is not the 

same as when an ideal current source is assumed at the input of the second-stage 

converter. Also, the output impedance of the SCPVM units depends on the solar 

irradiation and the number of the parallel connected units and that will affect the 

interaction between the system stages differently. 
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6 ACTIVE SUPPRESSION OF P&O RELATED 

HARMONICS 

6.1 Abstract 

In this chapter a novel system-level controller named as “active filter” is proposed to 

reduce the progression of the P&O related harmonics into the dc-link bus and as a 

consequence improve the efficiency and power quality of the overall system. The level 

of the harmonics suppression was shown analytically and through simulation. First, the 

proposed active filter is described for multiple parallel connected and synchronised 

SCPVM units. Secondly, the effect of the active filter on improving the dc-link power 

quality by suppressing the P&O related harmonics is explored analytically by 

comparing the dc-link current variation in case the system operating with and without 

active filter. Finally, the effect of the active filter on the dynamic interaction between 

the system stages of the double-stage parallel SCPVM system consisting of two parallel 

SCPVM units (see Figure 39) and operating with small dc-link capacitance value is 

explored through simulation examples. 

6.2 Introduction 

As has been discussed in chapter  4, the conventional widely used Perturbation and 

Observation (P&O) maximum power point tracker introduces harmonics in the 

common dc-link bus and grid. Also, it was shown that in a PV system which consists of 

multiple parallel connected and synchronised SCPVM units, the level of the harmonics 

become more critical. Furthermore, in Chapter  5 it was shown that the P&O related 

harmonics increase the dynamic interactions between the SCPVM units and the second-

stage control system and that affects the minimum required capacitance size for stable 

operation in double-stage boost converter. 

In this chapter a novel system-level controller named as “active filter” is proposed to 

reduce the progression of the P&O related harmonics into the dc-link bus and as a 

consequence improve the efficiency and power quality of the overall system. For this 

analysis multiple parallel connected SCPVM units connected to a stiff dc-link voltage 

as shown in Figure 51 is considered. Then, the effect of the active filter on reducing the 

dynamic interaction between system stages with small dc-link capacitance value is 

explored through simulation for the double-stage parallel SCPVM system (see Figure 

39) consisting of two parallel SCPVM units connected to a second-stage DC/DC boost 

converter. 
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In this work as a quantitative measure for power quality (PQ) of the system the 

following relation is used: 

2
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100%

n

h

h

dc
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I
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
         (6.1) 

Where 𝐼ℎ is the current of ℎ harmonic and 𝐼𝑑𝑐 is the DC component of the current. 

6.3 Proposed Active Filtering Method 

The outline of the proposed active filtering approach considering n SCPVM units 

connected in parallel is shown in Figure 109 and the m-file code is provided in 

Appendix E. The new system-level controller can suppress the harmonics levels by 

synchronising and aligning the harmonics in 𝑖𝑠𝑐𝑝𝑣𝑚𝑘_𝑜𝑢𝑡, which are generated by 

SCPVMk, to be out of phase with an identical or closely identical harmonics generated 

by another SCPVM unit in the system (e.g. SCPVMm ,1≤m≤n, and m ≠ k). As a result 

the harmonics levels are suppressed at their total output (𝑖𝑑𝑐).  

The SCPVM units generate identical harmonics levels if they operate under the same 

solar irradiation and the same P&O duty-cycle operating point (see Figure 56, Figure 

58, Figure 59, and Figure 60). Accordingly, each two SCPVM units under the same 

solar irradiation can form a pair to be controlled as one unit. 

The first step of the proposed algorithm is to group the n-parallel SCPVM units in the 

system into j pairs where the generated harmonics levels by the units in each pair i 

(SCPVM1_pair_i and SCPVM2_pair_i) are identical or closely identical. The pair units can 

be formed as a fixed pair or flexible pair. In the case of fixed pair the SCPVM units of a 

pair are chosen in advance and the formed pairs will not change during the system 

operation. The fixed pair can be chosen based on the distance between the SCPVM 

units as very near modules are most likely to have the same solar irradiation level and 

generate identical harmonics levels. However, under shading conditions the fixed pairs 

might not be the optimal solution for greater harmonics suppression. Flexible pairs give 

the possibility to re-arrange the units of pairs in case of shading to ensure high degree 

of harmonics suppression. For this purpose, as shown in Figure 109, the PV module 

current (𝑖𝑝𝑣𝑘) is used to identify the SCPVM units which work under similar solar 

irradiation level and to decide on the units of each pair. So, the system-level controller 
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compare the PV output currents (i.e. 𝑖𝑝𝑣1, 𝑖𝑝𝑣2, ..., 𝑖𝑝𝑣𝑛) every 𝑇𝑚𝑝𝑝𝑡 and rearrange the 

units into the appropriate pairs if required as shown in Figure 109. 

 

Figure 109: Outline of the proposed system-level controller ‘‘active filter’’ (interrupt 

routine at every 𝑇𝑚𝑝𝑝𝑡). 

As shown in Figure 109 the second step in the proposed algorithm is to make sure that 

the SCPVM units in each pair are in the three-step mode (i.e. in steady state operation) 

by checking four consecutive duty cycles perturbations of each unit in a pair. This is 

required to avoid interrupting the transients following a sudden and big change in 

irradiation. Then, the duty cycles perturbations of the SCPVM units in a pair are 

checked if their perturbations are in phase (i.e. perturbations every 𝑇𝑚𝑝𝑝𝑡 are in the 

same direction) or out of phase (i.e perturbations every 𝑇𝑚𝑝𝑝𝑡 are in opposite direction). 

If the units of a pair are in the three-step mode and their waveforms are aligned in 
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phase, the system level controller (i.e the active filter) aligns them out of phase by 

controlling the perturbation direction of the Synchronised P&O controllers. The 

perturbation direction is adjusted in order to have the three-step duty cycles of a pair 

(𝐷1_𝑝𝑎𝑖𝑟_𝑖  and 𝐷2_𝑝𝑎𝑖𝑟_𝑖) out of phase by detecting the present duty cycles perturbation 

direction (at rising or falling edge) as shown in Figure 109. In each pair the duty cycle 

of one SCPVM unit is kept unchanged while the duty cycle of the other SCPVM unit is 

modified by adding or deducting two times ∆d (i.e. the duty cycle step) from the 

current value of the duty cycle, depending on the value of the duty cycle of the other 

SCPVM unit in a pair. The control diagram of the proposed controller is shown in 

Figure 110. 

 

Figure 110: Control diagram of the proposed active filter controller 

For further demonstration of how the system-level controller operates, MATLAB 

Simulink model is used for testing the proposed active filtering method. The SCPVM 

units are connected to stiff 50V dc-link bus (the second-stage converter is modelled as a 

stiff voltage source). The simulation test in Figure 111 consists of a system with only 

two SCPVM units (SCPVM1 and SCPVM2) operating under uniform solar irradiation 

of 1000 W/m
2
. The simulation results before applying the active filter are shown in 

Figure 111.a. The rising (↑) and falling (↓) edges of D1 and D2 occur at the same time 

producing in phase low-frequency oscillation and in phase transient response peaks in 

𝑖𝑠𝑐𝑝𝑣𝑚1_𝑜𝑢𝑡 and 𝑖𝑠𝑐𝑝𝑣𝑚2_𝑜𝑢𝑡. In this case and based on (4.8) and (4.9) the peak-peak 

variation in 𝑖𝑑𝑐 is two times the peak-peak variation in 𝑖𝑠𝑐𝑝𝑣𝑚1_𝑜𝑢𝑡 and 𝑖𝑠𝑐𝑝𝑣𝑚2_𝑜𝑢𝑡 as 

can be seen in Figure 111.a. On the contrary, after applying the active filter as shown in 

Figure 111.b the low-frequency oscillation and the transient peaks in 𝑖𝑠𝑐𝑝𝑣𝑚1_𝑜𝑢𝑡 and 



144 

𝑖𝑠𝑐𝑝𝑣𝑚2_𝑜𝑢𝑡 are aligned out of phase and they are significantly suppressed in the dc-link 

current 𝑖𝑑𝑐. This is achieved by the active filter that rearranges the rising and falling 

edges of D1 and D2 opposite each other.  

The simulation results of the dc-link current  𝑖𝑑𝑐 with and without active filter as shown 

in Figure 111, demonstrate that the proposed active filter has suppressed the harmonics 

levels in the dc-link which improves the power quality injected to the grid. The overall 

current variation in 𝑖𝑑𝑐 has been decreased by 75% after applying the active filter (from 

1.2A to 0.3A without and with active filter, respectively as shown in Figure 111) and 

PQ has improved and it is less than 1% with active filter. 

 

Figure 111: Simulation result of two parallel-connected SCPVM units under uniform 

irradiation of 1000 𝑊/𝑚2. (a) Without active filter, (b) with active filter. 𝐶𝑑𝑐 = 2 ×
22µ𝐹 and 𝑉𝑑𝑐=50V. 

The capability of the proposed active filter working under transient in solar irradiation 

for both fixed and flexible pair approach is demonstrated in Figure 112. In this test four 

SCPVM units are considered; at the beginning the units work under uniform solar 

irradiation (800 W/m
2
) and in the following pairs: the first pair includes (SCPVM1, 
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SCPVM2) and the second pair includes (SCPVM3, SCPVM4). Then after 19.8 ms 

SCPVM2 and SCPVM4 work under reduced solar irradiation, for example shading.  In 

case of fixed pair approach as shown in Figure 112.a, the units of each pair are kept the 

same. While when flexible pair approach is employed as shown in Figure 112.b, the 

algorithm rearranged the system pairs based on their generated current level. 

Consequently, SCPVM3 is switched to work with SCPVM1. SCPVM2 and SCPVM4 

form the second pair. The switching process between the pairs can be clearly seen from 

𝑖𝑝𝑣𝑘 in the first row of Figure 112.b. 

Comparing the power quality in Figure 112.a and Figure 112.b, it can be seen that a 

higher degree of suppression in the peak-peak variation is gained with flexible pair 

approach. The steady-state peak-peak (transient peaks are not included) dc-link power 

variation (∆𝑃𝑑𝑐) decreased by more than 13% with flexible pair approach compared 

with fixed pair approach (from 19.4 W with fixed pair approach to 16.7 W with flexible 

pair approach) as shown in the last row of Figure 112.a and Figure 112.b. When taking 

the transient peaks into account, the overall peak-peak power variation decreased by 

50% with flexible pair approach compared with the fixed pair approach (from 40 W 

with fixed pair to 20 W with the flexible pair approach).  

In addition to improving system power quality, the advantages of the proposed active 

filter are: it does not require any additional measurements as it uses the same signals 

which are already measured for the distributed P&O controllers, does not require 

adding any extra switching power electronic circuits, low cost implementation and 

simple software. 

The proposed active filter can suppress the harmonics levels imposed by the P&O 

controller. However, the system still contains some oscillations as can be observed in 

last row of Figure 111.b and Figure 112. These oscillations are associated with the non-

linear characteristics of the PV source which result in asymmetrical variation of 𝑖𝑝𝑣 

about MPP as will be discussed in the next section. 
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Figure 112: Simulation results of four SCPVM units (a) Fixed pair approach (b) 

Flexible pair approach. At t<19.8 ms, 𝐺1 = 𝐺2 = 𝐺3 = 𝐺4 = 800𝑊/𝑚2, and at t≥19.8 

ms the solar irradiation on 𝑆𝐶𝑃𝑉𝑀2 and 𝑆𝐶𝑃𝑉𝑀4 dcreased from 800𝑊/𝑚2 to 

600𝑊/𝑚2 (𝐺1 = 𝐺3 = 800𝑊/𝑚2, 𝐺2 = 𝐺4 = 600𝑊/𝑚2). 

6.4 P&O Related Harmonics Suppression Level in the DC-link Bus of 

Multi-parallel SCPVM Units  

An example of the waveforms of the periodic oscillations due to the P&O controller in 

the output current of two arbitrary SCPVM units connected to a stiff voltage source 

under uniform and non-uniform solar irradiation are shown in Figure 113 and Figure 

114, respectively. It worth paying attention to that the final steady-state values and the 

transient behaviour of these figures can be different depending on the solar irradiation 

level. 

The maximum and minimum values of the output current of one arbitrary SCPVM unit 

𝑘 under solar irradiation 𝐺 and including the transient oscillations can be defined as 

follows: 
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_ _ _ _ _ _ _ _ max

_ _ _ _ _ _ _ _ min

  _ _ _ _

_ _ _ _

  

 

G G

k ss mpp to right k trans right to

G G

k ss mpp to left k trans left to

G G
scpvmk out max scpvmk out mpp

G G
scpvmk out min scpvmk out mpp

I i i

I i i

I

I

 

 

 





 
  (6.2) 

where ∆𝑖𝑘_𝑠𝑠_𝑚𝑝𝑝_𝑡𝑜_𝑟𝑖𝑔ℎ𝑡 
𝐺  and ∆𝑖𝑘_𝑠𝑠_𝑚𝑝𝑝_𝑡𝑜_𝑙𝑒𝑓𝑡

𝐺  are given in (6.3) and they are the right 

and left steady-state peak amplitudes measured with respect to the desired operating 

point MPP, respectively. ∆𝑖𝑘_𝑡𝑟𝑎𝑛𝑠_𝑟𝑖𝑔ℎ𝑡_𝑡𝑜_𝑚𝑎𝑥
𝐺  and ∆𝑖𝑘_𝑡𝑟𝑎𝑛𝑠_𝑙𝑒𝑓𝑡_𝑡𝑜_𝑚𝑖𝑛

𝐺  are also given 

in (6.3) and they are the right and left transient peak amplitudes measured with respect 

to the right and left steady-state values of 𝑖𝑠𝑐𝑝𝑣𝑚𝑘_𝑜𝑢𝑡, respectively. 

_ _ _ _

_ _ _ _

_ _ _ _ min

_

_

_ _ _

_ _ _ _

_ _ _ _

_ _ _ m

min

_ax

G G

scpvmk out mpp scpvmk out left

G G

scpvmk out right scpvmk out mpp

G G

scpvmk out left scpvm

G

k ss mpp to left

G

k ss mpp to right

G

k trans left to

G

k trans right

k out

scpvmk oto

i

i

I I

I I

I

i I

i

I

  

  

  

  _ max _ _

G G

ut scpvmk out rightI

     (6.3) 

where 𝐼𝑠𝑐𝑝𝑣𝑚_𝑜𝑢𝑡_𝑚𝑝𝑝
𝐺  is the SCPVM output current at MPP and irradiation G, 

𝐼𝑠𝑐𝑝𝑣𝑚_𝑜𝑢𝑡_𝑟𝑖𝑔ℎ𝑡 
𝐺  is the SCPVM output current at Right MPP and irradiation G, 

𝐼𝑠𝑐𝑝𝑣𝑚_𝑜𝑢𝑡_𝑙𝑒𝑓𝑡
𝐺  is the SCPVM output current at Left MPP and irradiation G. 

𝐼𝑠𝑐𝑝𝑣𝑚𝑘_𝑜𝑢𝑡_𝑙𝑒𝑓𝑡
𝐺  , 𝐼𝑠𝑐𝑝𝑣𝑚𝑘_𝑜𝑢𝑡_𝑚𝑝𝑝

𝐺 , 𝐼𝑠𝑐𝑝𝑣𝑚𝑘_𝑜𝑢𝑡_𝑟𝑖𝑔ℎ𝑡 
𝐺  are given in (4.2). 

 

Figure 113: The output current of two SCPVM units 𝑖𝑠𝑐𝑝𝑣𝑚𝑘_𝑜𝑢𝑡
𝐺  under uniform solar 

irradiation. 
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Figure 114: The output current of two SCPVM units 𝑖𝑠𝑐𝑝𝑣𝑚𝑘_𝑜𝑢𝑡
𝐺  under non-uniform 

solar irradiation. 

One can see from Figure 113 and Figure 114 that ∆𝑖𝑘_𝑠𝑠_𝑚𝑝𝑝_𝑡𝑜_𝑙𝑒𝑓𝑡
𝐺  is greater than 

∆𝑖𝑘_𝑠𝑠_𝑚𝑝𝑝_𝑡𝑜_𝑟𝑖𝑔ℎ𝑡 
𝐺 ; both are measured with respect to the desired operating point MPP 

as given in (6.3), that is associated with the non-linear characteristic of the PV source. 

The slope of the PV current-voltage characteristic curve increases when the operating 

point moves to the right resulting in an asymmetric variation around the desired MPP. 

∆𝑖𝑘_𝑠𝑠_𝑚𝑝𝑝_𝑡𝑜_𝑙𝑒𝑓𝑡
𝐺  and ∆𝑖𝑘_𝑠𝑠_𝑚𝑝𝑝_𝑡𝑜_𝑟𝑖𝑔ℎ𝑡

𝐺  can be found analytically by inserting (4.2) in 

(6.3) and the results for three different solar irradiation levels is shown in Figure 115. 

In general ∆𝑑 is chosen as small as possible and for the adopted value in this work 

∆𝑑 = 0.035 we have: 

_ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _

G G G G

scpvmk out mpp scpvmk out lef

G G

k ss mpp to left k ss mpp to right

t scpvmk out right scpvmk out mpp

i i

I I II

  

 
    (6.4) 
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Figure 115: The left and right steady-state peak amplitudes of 𝑖𝑠𝑐𝑝𝑣𝑚𝑘_𝑜𝑢𝑡
𝐺  for different 

∆d values and solar irradiation levels (obtained analytically by (6.3) and (4.2)). 

6.4.1 DC-link current variation without active filter 

The dc-link current for multi-parallel connected SCPVM units is: 

_

1

n
G

dc scpvmk out

k

i i


           (6.5) 

In case of synchronised P&O controllers of n-parallel SCPVM units the overall 

variation of dc-link current is: 

_ _

1

n
G

dc overall scpvmk out

k

i i


           (6.6) 

General waveforms of the periodic oscillations due to the P&O controller in the dc-link 

current of two arbitrary SCPVM units connected to a stiff voltage source under uniform 

and non-uniform solar irradiation are shown in second row of Figure 116 and Figure 

117, respectively. With reference to (6.2); before applying the proposed active filtering 

approach, the overall peak-to-peak variation of the dc-link current for n-parallel 

connected SCPVM units under uniform (see Figure 116) and non-uniform (see Figure 

117) solar irradiation can be given as follow: 

_ _ _ _ _ _ _ _ _ max _ _ _ _ _ _ _ _ n

1

mi    G G G G

dc overall k ss mpp to right k trans right to k ss mpp to left k trans left to

n

k

i i i i i


      

            (6.7) 
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Figure 116: The output current of two SCPVM units 𝑖𝑠𝑐𝑝𝑣𝑚𝑘_𝑜𝑢𝑡
𝐺  and their total current 

𝑖𝑑𝑐 under uniform irradiation without active filter. 
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Figure 117: The output current of two SCPVM units 𝑖𝑠𝑐𝑝𝑣𝑚𝑘_𝑜𝑢𝑡
𝐺  and their total current 

𝑖𝑑𝑐 under non-uniform irradiation without active filter. 

Under uniform solar irradiation on all n SCPVM units, it can be assumed that: 

_ _ _ _ ( 1) _ _ _ _ _ _ _ _

_ _ _ _ ( 1) _ _ _ _

_ _ _

_ __ _ _ _

_ _ _ _ max ( 1

_

) _

G G G

k ss mpp to right k ss mpp to right n ss mpp to right

G G G

k ss mpp to l

ss mp

eft k ss mpp to left n ss mpp to left

G

k trans rig

p to right

ss mpp to left

ht to k

i

i

i i i

i i i

i i







  

  

   

   





 _ _ _ max _ _ _ _ max

_ _ _ _ min ( 1)

_ _ _ max

_ _ _ min_ _ _ _ min _ _ _ _ min

trans right to

trans le

G G

trans right to n trans right to

G G G

k trans left to k trans left to ft ton trans left to

i

i i

i

ii

  

    



 

(6.8) 

Thus, the overall peak-peak variation of the DC-link current (𝑖𝑑𝑐) is: 

 _ _ _ _ _ _ max _ _ _ _ _ _ m_ in  ss mpp to right trans right to ss mpp to left trans left

uniform

dc o overal tl n ii i i i       (6.9) 

Without active filter the frequency of the dc-link current variation is the same as in 

𝑖𝑠𝑐𝑝𝑣𝑚𝑘_𝑜𝑢𝑡 which is flow as given in (4.1). 
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6.4.2 DC-link current variation with active filter 

Assuming 𝑆𝐶𝑃𝑉𝑀𝑘 is the first unit and 𝑆𝐶𝑃𝑉𝑀𝑚 is the second unit of a pair i ((1 ≤

𝑘 ≤ 𝑛) & (1 ≤ 𝑚 ≤ 𝑛) and 𝑘 ≠ 𝑚). The output current of the first SCPVM unit of 

pair i (𝑖1_𝑝𝑎𝑖𝑟_𝑖
𝐺 ) and the output current of the second SCPVM unit of pair i (𝑖2_𝑝𝑎𝑖𝑟_𝑖

𝐺 ) 

are as follow: 

1_ _ _

2_ _ _

G G

pair i scpvmk out

G G

pair i scpvmm out

i

i

i

i




         (6.10) 

And at the three P&O operating points we have: 

1_ _ _ _ _

1_ _ _ _ _

1_ _ _ _ _

G G

pair i mpp scpvmk out mpp

G G

pair i right scpvmk out right

G G

pair i left scpvmk out left

I I

I I

I I







          (6.11) 

2_ _ _ _ _

2_ _ _ _ _

2_ _ _ _ _

G G

pair i mpp scpvmm out mpp

G G

pair i right scpvmm out right

G G

pair i left scpvmm out left

I I

I I

I I







         (6.12) 

And the right and the left peaks are:  

1_ _ _ _ _ _

1_ _ _ _ _ _

2_

1_ _ _  1_ _ _

1

_ _ _ _ _ 2_ _ 2

_ _ _  1_ _ _

  _ _

2_ _ _ _ _

_

_

_

 

pair i mpp pair i left

pair i right

G G G

pair i ss mpp to left

G G G

pair i ss mpp to right

G G G

pair i ss mpp to le

pair

f

i mpp

mpp lt pair i pair i

pair i ss mpp to ri

eft

I I

I Ii

i

I

i

Ii

 







 





2_ _ 2_  _ _ _right mpp

G G G

ght pair i pair iI I 

     (6.13) 

When the active filtering approach is applied, two SCPVM units work as a pair as 

shown in Figure 118 under uniform solar irradiation and in Figure 119 under non-

uniform solar irradiation. If one unit in a pair operates at the Right MPP, the other unit 

in the pair operates at the Left MPP. With reference to Figure 118 and Figure 119, the 

peaks of the transient response and the low-frequency variation of the units’ output 

currents are aligned opposite each other and they are effectively suppressed in the total 

output current of the pair. A small transient variation still can be observed in the output 

current due to the difference in the transient dynamics of the aligned operating points 

(the left MPP and the right MPP have different transient dynamics as was shown in 

Figure 60) and a low-order frequency oscillation still can be observed due to the 

asymmetric variations around the desired MPP (∆𝑖1_𝑝𝑎𝑖𝑟_𝑖_𝑠𝑠_𝑚𝑝𝑝_𝑡𝑜_𝑙𝑒𝑓𝑡
𝐺 ≠

∆𝑖2_𝑝𝑎𝑖𝑟_𝑖_𝑠𝑠_𝑚𝑝𝑝_𝑡𝑜_𝑟𝑖𝑔ℎ𝑡
𝐺  ) and ( ∆𝑖1_𝑝𝑎𝑖𝑟_𝑖_𝑠𝑠_𝑚𝑝𝑝_𝑡𝑜_𝑟𝑖𝑔ℎ𝑡

𝐺 ≠ ∆𝑖2_𝑝𝑎𝑖𝑟_𝑖_𝑠𝑠_𝑚𝑝𝑝_𝑡𝑜_𝑙𝑒𝑓𝑡
𝐺 ). As 

shown in Figure 118 and Figure 119 the influence of the non-suppressed transient 
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oscillations on the overall peak-peak variation in the total dc-link current of the pair is 

significantly small compared to the variation caused by the final steady-state values. 

Therefore and to simplify the analysis, the transients are neglected and only the steady-

state values are considered in the following analysis to find the peak-peak variation in 

the dc-link current. 

 

Figure 118: The output current of two SCPVM units 𝑖𝑠𝑐𝑝𝑣𝑚𝑘_𝑜𝑢𝑡
𝐺  and their total current 

𝑖𝑑𝑐 under uniform irradiation with active filter. 

With reference to Figure 118 and Figure 119, for the active filtering approach: 

1_ _ _ _ _ _ 2_ _ _ _ _ _

1_ _ _ _ _ _ 2_ _ _ _ _ _

G G

pair i ss mpp to left pair i ss mpp to right

G G

pair i ss mpp to right pair i ss mpp to left

i i

i i

  

  
      (6.14) 
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Figure 119: The output current of two SCPVM units 𝑖𝑠𝑐𝑝𝑣𝑚𝑘_𝑜𝑢𝑡
𝐺  and their total current 

𝑖𝑑𝑐 under non-uniform irradiation with active filter. 

And based on (6.4) the following relations are valid: 

2_ _1_ 2_ __ _  1_ _ _   _ _  G G

pair i mpp pair i left right mpp

G G

pair i pair iI I I I       (6.15) 

  _ _ 1_ _ _  1_ _ _2_ _ 2_ _  mpp left pair i right

G G G G

pair i ppair air i mppiI I I I        (6.16) 

Rearranging (6.15) and (6.16) gives:  

Maximu

1_ _ _ _  1_ _ _2_ _ 2_ _

m value First minimum 

_

value

   pair i mpp mpp pair i right l

G G G G

pa eftir i pair iI I I I       (6.17) 

Maximum value Second minimum va

1  1_ _ _   __ _ _ 2_ _ _ 2

lu

_ _

e

 pai

G G G G

r i left ripair i mpp pa gir i mpp pai htr iII II       (6.18) 
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The left sides of (6.17) and (6.18) are equal and present the maximum steady-state 

value of the total output current of pair i (𝐼𝑑𝑐_𝑚𝑎𝑥) as shown in the second row of 

Figure 118 and Figure 119. 

_max 1_ _ _ 2_ _ _

G G

dc pair i mpp pair i mppI I I          (6.19) 

The right-sides of (6.17) and (6.18) present two minimum steady-state values. The 

global minimum value (𝐼𝑑𝑐_𝑚𝑖𝑛) depends on the operating condition of a pair; if it is 

operating under uniform or non-uniform irradiation.  Accordingly the overall peak-peak 

variation of the dc-link current of each case is discussed separately 

6.4.2.1 Uniform solar irradiation  

In the case of uniform solar irradiation on pair i (G1 =G2) as shown in Figure 118: 

 1_ _ _   _

 1_ _ _   _

2_ _

2_ _

 

 

pair i right right

pair i

G G

pair i

G G

pair ileft left

I I

I I




        (6.20) 

Consequently, the right-side values of (6.17) and (6.18) are equal and the total output 

current of pair i has one minimum value (𝐼𝑚𝑖𝑛) as shown in the second row of Figure 

118. Thus, under uniform solar irradiation the peak-to-peak variation of the total output 

current of one pair is given by: 

2_ _ 2_ _

2_ _

_ _ 1_ _ _ _  1_ _ _   _

1_ _ 2_ _
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_  1_ _ _   _ _
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uniform G G G G

pair i pair i

G G G G

pair i pairpp pair i left right mpp

pair i ss mpp to lef

i
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pair i sst

I I I I

I I I

i

I

i i



  





 



  



__ _ ri

G

mpp t ghto

  (6.21) 

And for j pairs and under uniform irradiation on each pair (solar irradiation levels on a 

pair are equal) the peak-peak variation of the dc-link current is: 

 1_ _ _ _ _ _

/2

_ _ 2_ _ _

1

_ __   pair i ss mpp to left right

i

j n
uniform G G

dc overall active pair i ss mpp toi ii




      (6.22) 

Under uniform irradiation on all j pairs of SCPVMs we have: 
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
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


 (6.23) 

Thus the peak-peak ripple of the dc-link current under global uniform irradiation is: 

 

 

_ _ _ _

_ _ _ _

_ _ _ _

_ _ 
2

uniform

dc overall active ss mss mpp to left right

ss mpp to left right

pp to

ss mpp to

j i i

n
i i

i    

   



     (6.24) 

6.4.2.2 Non-uniform solar irradiation 

In the case of non-uniform local solar irradiation on pair i (for example G1 ˃G2) as 

shown in Figure 119: 

 1_ _ _   _

 1_ _ _   _

2_ _

2_ _

 

 

pair i right right

pair i

G G

pair i

G G

pair ileft left

I I

I I




        (6.25) 

Thus, the right-sides values of (6.17) and (6.18) are not equal and for G1 > G2 : 

2_ _ 1_ _ _ _ _ _ __ _ _    G G

paipair i ss mpp to left r i ss mpp to leftii         (6.26) 

 2_ _ _ _ _ _   __ _ _1 _ _  G G

pairpair i ss mpp to right ss mpp to rightii i       (6.27) 

From (6.26) and (6.27) we have: 

 1_ _ _ _ _ _  2_ 2_ __ _ _ _ _     _ _ _ __ _ _ _ 1_ _  pair i ss mpp to left pair i ss mpp to right ss mpp to right

G G G G

pair i ss mpp to left pair ii i ii    

            (6.28) 

Inserting  (6.13) in (6.28): 

1_ _ 2 1_ _ _   _ _

_ min _

2_ _ _   _   _

G G G G

pair i pairpair i left pair i right right lei

dc dc mi

ft

d

I I

I I

I I  


    (6.29) 
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Therefore, from (6.19) and (6.29) the overall peak-peak dc-link current variation with 

non-uniform local solar irradiation on pair i can be found as follow: 

_ _ _ max _ min
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2_ _ 2_ _
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  (6.30) 

6.4.3 The decreased percentage in the dc-link current variation after applying 

the active filter 

6.4.3.1 Uniform solar irradiation 

Comparing (6.24) with (6.9) it can be shown that under global uniform solar irradiation 

the peak-peak variation can be decreased by more than 50% as follows: 
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  (6.31) 

As shown in Figure 118, under uniform solar irradiation on a pair i the frequency of the 

dc-link current ripple is: 

_ 2   low active lowf f           (6.32) 

And for j pairs the frequency of the dc-link will be the same as (6.32). 

6.4.3.2 Non-uniform solar irradiation 

Assuming a system operating with two units (SCPVMk and SCPVMm) k=1 and m=2, 

with active filter and with reference to (6.3), (6.11), (6.12), (6.13) we have: 
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Thus, the dc-link current variation in (6.30) can be written as follow: 
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Without active filter the dc-link current variation for two SCPVM units can be found 

using (6.7): 
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Equation (6.35) can be re-formatted as follow: 
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            (6.36) 

Thus, from (6.34) and (6.36): 

_ __

non unifrom

dc overalldc pair ii i z            (6.37) 

From (6.37) one can conclude that with active filter the peak to peak current variation 

of a pair will be less than the case without active filter by a value equal to z. The 

decreased percentage for one pair can be calculated as follow: 
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And as 
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Consequently, even under non-uniform irradiation on a pair a significant suppression 

level is expected in dc-link current variation of the two SCPVM units when they 

operate as a pair. 

If one or more of the j pairs operates under non-uniform irradiation, the more identical 

the level of generated harmonics from the units in a pair (e.g. their solar irradiation is as 

close as possible to each other) the greater harmonic suppression is achieved. 

As shown in Figure 119, under non-uniform solar irradiation on a pair a low order-

frequency variation at flow is still observed in the total output current after applying the 

active filter. For j pairs it is expected to be the same under Synchronised SCPVM units. 

6.5 Minimum DC-link Capacitance with Active Filter 

In this section, a system consists of two SCPVM units connected to the second-stage 

DC/DC boost converter via a common dc-link bus as shown in Figure 39, page 58 is 

considered. It has been discussed in Chapter  5 that under specific operating condition 

the interaction between system stages increases and can lead to chaotic like behaviour 

and even loss of system stability. The aim of this section is to show the effect of the 

proposed active filter on the minimum required dc-link capacitance. Therefore, before 
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applying the active filter to the system the dc-link capacitance 𝐶𝑑𝑐 is reduced until 

undesirable operating behaviour at the dc-link bus is observed. While the system 

operating with this insufficient 𝐶𝑑𝑐 value the proposed active filter is enabled to explore 

its effect on the minimum required dc-link capacitance for stable operation by 

suppressing the harmonics in the dc-link bus. The system is tested considering two 

different controllers for the second-stage converter; voltage mode 3P2Z controller and 

cascaded current-voltage controller. 

6.5.1 Voltage mode 3P2Z controller 

In this test the dc-link voltage is controlled by 3P2Z controller. The total dc-link 

capacitor is reduced to 24µF until the chaotic like behaviour is observed in the dc-link 

bus and grid as shown in Figure 120 for the time period less than 15 ms. Then, the 

active filter is enabled at t=15 ms as shown in Figure 120.  It can be seen that the active 

filter has helped to stabilise the system by suppressing the P&O related harmonics (i.e. 

reducing the dc-link current variation). With the active filter the dc-link power 

variations are suppressed and that reduces the disturbances seen by the second-stage 

controller. 

 

Figure 120: Simulation results show the effect of the active filter on stabilising the 

system when operating under insufficient 𝐶𝑑𝑐 size with 3P2Z controller (5.5). n=2, 

𝐶𝑑𝑐=24µF, 𝐾𝑣=222,𝑉𝑑𝑐=48V and G=1000 W/𝑚2. (Only average values are shown). 
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6.5.2 Cascaded current-voltage controller 

In this test the dc-link voltage is controlled by cascaded current-voltage controller. The 

total dc-link capacitor is reduced until the chaotic like behaviour is observed in the dc-

link bus and grid as shown in Figure 121 for the time period less than 15 ms. Then, the 

active filter is enabled at t=15 ms as shown in Figure 121. The active filter stabilise the 

system and allow the system to operate with smaller capacitance size than the case 

without active filter. 

 

Figure 121: Simulation results show the effect of the active filter on stabilising the 

system when operating under insufficient 𝐶𝑑𝑐 size with cascaded controller. n=2, 

𝐶𝑑𝑐=22µF, 𝐾𝑝𝑣=1, 𝐾𝑖𝑣=104, 𝐾𝑝𝑖=38, 𝐾𝑖𝑖 = 1.33 × 106 and G=1000 W/𝑚2. (Only 

average values are shown). 

6.6 Conclusion 

A novel system-level controller named as “active filter” is proposed to reduce the 

progression of the P&O related harmonics into the dc-link bus, reduce the dynamic 

interaction between system stages, and improve the efficiency and power quality of a 

PV system that consists multiple parallel connected SCPVM units. The concept of the 

active filter is based on synchronising the P&O controllers of n-parallel connected 

SCPVM units, sorting the units into pairs, and aligning the generated harmonics by the 

units in each pair to be out of phase. As a result the harmonics levels are supressed at 
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the total output of the parallel units. An analytical analysis is provided to proof the 

effectiveness of the proposed active filter by comparing the dc-link harmonics level 

before and after employing the active filter. The analysis show more than 50% decrease 

in the harmonics can be achieved with the proposed active filter. Moreover, with the 

proposed active filter the dc-link current ripple of the double-stage DC/DC boost 

converter is notably reduced (i.e. dc-link power quality has improved) and in that a 

smaller DC-link capacitor can be used. Also, improved control dynamics for both 

converter stages can be achieved. 
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7 EXPERIMENTAL VERIFICATIONS 

7.1 Abstract 

This chapter includes full description of the developed experimental prototype in the 

lab as shown in Figure 122. The method of emulating the PV module in the lab using 

programmable power supply is provided. The designed inductors and the selected 

components for the first-stage and the second-stage converters are provided. The 

procedure to optimise the P&O controller is described. Finally, experimental results are 

provided to validate: (I) the P&O related harmonics at the PV and dc-link sides, (II) the 

effectiveness of the proposed active filter, and (III) the dynamic interaction between the 

system stages and the effect of the proposed active filter to reduce it. 

7.2 Experimental Setup 

For experimental verifications, a prototype of double-stage parallel SCPVM units 

connected to a main dc bus is developed in the lab as shown in Figure 122. Two 

programmable power supplies are used to emulate the PV modules. The first-stage 

converters are rated at 250W each and the second-stage converter is rated at 500W. A 

dSPACE controller board (DS1103) is used to implement the distributed P&O 

controllers, the proposed system-level controller, and manages information exchange 

between SCPVM units. The dc-link bus voltage is controlled by the second-stage 

converter via cascaded current-voltage controller. The total dc-link capacitance is 44µF 

which is split into halves at the output of the first-stage boost converters. The main DC 

bus is controlled by a programmable electronic load at a constant voltage of 200V.  
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Figure 122: Experimental prototype of double-stage parallel SCPVM configuration 

connected to a main DC bus. 

7.2.1 PV emulator  

In this work a programmable DC power supply, Matlab/simulink and dSPACE are used 

to implement the PV module. A mathematical model of the PV module based on 

equation (2.6) is implemented using Matlab Simulink (the hardware implementation is 

done using dSPACE DS1103 controller board). The m-file for the PV model is 

provided in Appendix C. The model is capable to emulate actual PV module under 

different environmental conditions. The PV Simulink model is then used to control the 

programmable power supply via dSPACE. The operation depends on reading the value 

of the output voltage across the programmable power supply (i.e. the PV module 

voltage 𝑣𝑝𝑣). This reading is inserted to the PV Simulink model through the Analog to 

Digital connection port of the dSPACE. Then, the Simulink model of the PV gives a 

reference current to that certain voltage. Finally, the reference current signal is sent to 
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the Analog port of the programmable power supply via Digital to Analog connection 

port of the dSPACE to set its output current (i.e. 𝑖𝑝𝑣) at the value of the reference 

signal. 

The PV lab model is verified by comparing its characteristic curve with the PV 

simulation model. The PV lab characteristic curve is obtained by connecting variable 

dc voltage load to the PV emulator. Then, 𝑉𝑝𝑣 and 𝐼𝑝𝑣 are recorded while changing the 

load voltage in small steps from zero to the open circuit voltage of the PV module 

under different solar irradiation levels. Figure 123 compares the experimental and 

simulation results of the PV model. Both the experimental and the simulation results 

are matching and show similar behaviour under different solar irradiation levels. 

Furthermore, the model is compared with the manufacturer characteristics curve in the 

datasheet available in [42] and the model results are highly matching the 

manufacturer’s curves with less than 3% error. 

7.2.2 SCPVM and second-stage converters components  

The circuits of the boost converters are implemented on PCB boards. The capacitance 

and inductor are selected based on the designed values in Chapter  3, sections  3.3 

and  3.4. The inductors are built in the lab using the core geometrical method [74]. For 

the SCPVM converters ferrite core, ETD54 is used with 26 turn of 0.4 mm diameter of 

Litz wire. LCR analyser is used to measure the inductance of the SCPVM converters 

designed inductors and the results are 0.212 mH and 0.199 mH at 60 kHz switching 

frequency. Rest of the components are selected off shelf and are the same for both 

converters as given in Table 12. For the second-stage converter ferrite core, PM 62/49 

is used with 22 turn of 0.4 mm diameter of Litz wire. The result of the second stage 

inductance at 60kHz is measured by the LCR analyser and it is 0.519 mH at 60 kHz. 

The rest of the components for the second stage converter are given in Table 13. 



166 

 

Figure 123: Current-voltage characteristic curve of the PV module: (continuous line) 

Experimental results, and (cross line) Simulation results. 

Table 12: SCPVM Converter Components 

Element Converter component  

Capacitor of 𝑪𝒊𝒏 Aluminium Electrolytic Capacitor, 50V dc, 2.2 µF 

Switch N-channel MOSFET, 26 A, 200V 

Diode High Voltage SiC Schottky Diode, 1200V 20A 

Capacitor of 𝑪𝒐 Aluminium Electrolytic Capacitor, 400V dc, 22 µF 

Table 13: Second-stage Converter Components 

Element Converter component 

Switch N-Channel MOSFET, 23 A, 900 V 

Diode High Voltage SiC Schottky Diode, 1200V 20A 

Capacitor of 𝑪𝒐𝒖𝒕_𝟐 Aluminium Electrolytic Capacitor, 450V dc, 47 µF 

7.2.3 P&O optimisation 

In order to optimise the P&O sampling time, the transients dynamic of 𝑣𝑝𝑣 and 𝑖𝑝𝑣 are 

measured when the PV emulator (i.e. the programmable power supply) is connected to 

the first-stage converter. For this test the second-stage converter is disconnected and at 

the dc-link bus a constant voltage load of 50V is connected. First, a current demand of 

3.5A is sent to the Analog port of the PV emulator via the dSPACE. Then, a small unit 

step change in the duty-cycle is applied (0.035 step change which is equal to the P&O 

controller step size in the simulation work). It was found that 50 ms is required for 𝑣𝑝𝑣 

and 𝑖𝑝𝑣 to settle as shown in Figure 124. Therefore, 50 ms sampling time is considered 

for P&O controller. Due to the slow dynamic behaviour of the PV emulator, the P&O 

sampling period in the experimental work of 𝑇𝑚𝑝𝑝𝑡 = 50 𝑚𝑠 is much longer than the 
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sampling period of 𝑇𝑚𝑝𝑝𝑡 = 0.35 𝑚𝑠 that considered in the simulation analysis. 

However, this is will not affect the main findings of this work. Based on (4.1) in the 

experimental work the generated low frequency oscillation in the dc-link bus will be 

related to 𝑇𝑚𝑝𝑝𝑡 of 50 ms, so the expected low frequency ripple is 5 Hz for three-step 

operation of the P&O controller.  The perturbation step size ∆d is chosen to be 0.035; 

the same as the simulation parameter. 

 

Figure 124: Experimental results: the transients dynamic of 𝑣𝑝𝑣 and 𝑖𝑝𝑣. 𝐺 =

1000 𝑊/𝑚2 

7.3 Experimental Results of Two SCPVM Units Connected to a 

Constant Voltage Bus 

In this section the experimental tests are carried out for SCPVM units connected to a 

dc-link bus that controlled at constant voltage by the programmable electronic load as 

shown in Figure 125 (the second-stage converter is not included in the results of this 

section). First, one SCPVM unit is tested to show the P&O related harmonics at the PV 

and dc-link sides. Then, two SCPVM units are used to verify the proposed active filter 

approach. 
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Figure 125: Experimental prototype of two parallel SCPVM units connected to dc-link 

bus controlled by programmable electronic load. 

7.3.1 Single SCPVM unit 

In this test only one SCPVM unit is connected to the dc-link bus which is controlled by 

the programmable electronic load at a constant voltage of 50V. Figure 126 shows the 

effect of solar irradiation level on steady-state variation of 𝑖𝑝𝑣 due P&O controller. It 

shows the 5 Hz low frequency variation as expected from (4.1). Also, it can be seen 

that the peak-peak steady-state variation (denoted in Figure 126 as ∆𝑖𝑝𝑣) increases as 

the solar irradiation increases (e.g. ∆𝑖𝑝𝑣
200 = 0.24 𝐴 𝑎𝑛𝑑 ∆𝑖𝑝𝑣

1000 = 1𝐴) as was expected 

in the analytical analysis (see Figure 57, page 86). Also, transient oscillations are 

observed every 𝑇𝑚𝑝𝑝𝑡 as the PV module current changes at every time P&O perturbs. 

The output current of the SCPVM unit (𝑖𝑠𝑐𝑝𝑣𝑚_𝑜𝑢𝑡) is shown in Figure 127.a when the 

unit operate under two different solar irradiation levels (800 W/m
2
 and 400 W/m

2
). The 
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frequency of the low order variation is 5 Hz which is associated with the 50 ms P&O 

sampling time as expected form (4.1). Figure 127.b and Figure 127.c show the change 

in the transient dynamic due to solar irradiation variation and P&O operating point 

changes from MPP → Left MPP → MPP → Right MPP, respectively. In Figure 127.b 

and Figure 127.c the original waveforms are divided by their final values to make is 

easier to compare the settling behaviour. The system still show similar behaviour as 

expected analytically (see Figure 59 and Figure 60, Page 89) with more damped 

dynamic at higher solar irradiation (see Figure 127.b) and show different transient 

behaviour under the three P&O operating points (see Figure 127.c). 

 

Figure 126: Experimental results of 𝑖𝑝𝑣 under different solar irradiation level. 

𝑇𝑚𝑝𝑝𝑡=50 ms, ∆d=0.035. 
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Figure 127: Experimental results of the output current of one SCPVM unit (𝑇𝑚𝑝𝑝𝑡=50 

ms, ∆d=0.035). 

7.3.2 Two SCPVM units 

In this test two SCPVM units are connected to the dc-link bus. Figure 128 and Figure 

129 show two SCPVM units operating with non-synchronised and synchronised P&O 

controllers, respectively. The non-synchronised case (Figure 128) shows inconsistent 

dc-link variation which is not easy to be presented as a function of the variation of one 

SCPVM unit. That is because in this case the dc-link variation is not only a function of  

𝑇𝑚𝑝𝑝𝑡, but also a function of the time delay between the P&O perturbations of 

SCPVM1 and SCPVM2 and this delay is unknown before units are operating and it can 

change if units stopped working and restarted again. In the synchronised case (Figure 

129) the 𝑣𝑑𝑐 and 𝑖𝑑𝑐 variations occur at the same times as if the system operate with 

one SCPVM unit as defined in (4.1), but in this case the dc-link variation is two times 

larger than the non-synchronised case. 

The effect of increasing the number of the synchronised parallel-connected SCPVM 

units under uniform solar irradiation can be verified by comparing the overall variation 

of the one unit in Figure 127.a with the two units in Figure 129.As expected from (4.9) 

the overall variation in 𝑖𝑑𝑐 of the Synchronised SCPVM units in Figure 129 is 
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approximately twice the overall variation of one SCPVM unit (see Figure 127.a for 

800W/m
2
) with that to be 2.2 A and 1.05 A, respectively. 

 

Figure 128: Experimental results for uniform non-synchronised case: n=2, 𝑇𝑚𝑝𝑝𝑡=50 

ms, ∆d=0.035, 𝐺1=𝐺2=800W/𝑚2. 
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Figure 129: Experimental results for uniform synchronised case without active filter: 

n=2, 𝑇𝑚𝑝𝑝𝑡=50 ms, ∆d=0.035, 𝐺1=𝐺2=800W/𝑚2. 

The proposed active filter is tested under different operating conditions such as 

uniform, non-uniform and transient in solar irradiation. In case uniform irradiation of 

800 W/m
2
, the results before and after applying the active filter are shown in Figure 

129 and Figure 130, respectively. With the active filter the overall variation in 𝑖𝑑𝑐 is 

effectively suppressed by more than 77% (from 2.2A to 0.5A as shown in Figure 129 

and Figure 130, respectively). 

The FFT of 𝑖𝑑𝑐 in Figure 131 is comparing the harmonics of 𝑖𝑑𝑐 waveform in Figure 

129 (without active filter) with 𝑖𝑑𝑐 waveform in Figure 130 (with active filter). It shows 

that with the active filter all harmonics above 30 Hz are cancelled completely and 

harmonics below 30Hz are effectively suppressed except at 2flow (10 Hz) as expected 

from (6.32). 
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Figure 130: Experimental results for uniform synchronised case with active filter: n=2, 

𝑇𝑚𝑝𝑝𝑡=50 ms, ∆d=0.035, 𝐺1=𝐺2=800W/𝑚2. 
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Figure 131: FFT of the dc-link current 𝑖𝑑𝑐 shown in Figure 129 and Figure 130. 

 

The non-uniform irradiation case before and after applying the active filter is shown in 

Figure 132. After applying the active filter (Figure 132.b), the overall variation of 𝑖𝑑𝑐 

has improved by more than 71% (decreased from 2A without active filter to 0.57A with 

active filter). That verifies the effectiveness of the active filter in improving dc-link 

power quality even under non-uniform solar irradiation levels. The suppression level is 

not as effective as the previous case with uniform solar irradiation. It is only 6% less 

than the uniform case (77% for uniform case and 71% for non-uniform case) and that 

when the difference between the solar irradiation levels on the SCPVM units is ±50%. 

It will be less effective if the difference between the solar irradiation levels is bigger. 

This is because the harmonics level generated by a pair operating under non-uniform 

solar irradiation are not identical. The FFT results of 𝑖𝑑𝑐 without and with active filter 

for the non-uniform case is shown in Figure 132.c. It shows that the harmonics levels 

are effectively suppressed. 
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Figure 132: Experimental results for non-uniform solar irradiation: n=2, 𝑇𝑚𝑝𝑝𝑡=50ms, 

∆d=0.035, 𝐺1=800W/𝑚2 and 𝐺2=400W/𝑚2; (a) synchronised P&O without active 

filter (b) synchronised P&O with active filter (c) FFT of 𝑖𝑑𝑐 waveforms shown in a and 

b 

Finally, the capability of the proposed active filter under transient in solar irradiation is 

demonstrated without and with active filter in Figure 133 and Figure 134, respectively. 

Three cases of slow, medium and fast average change rate in solar irradiation are 
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considered. The active filter maintains high power quality before, during and after the 

transient in case of slow (50 𝑊/(𝑚2. 𝑠)) and medium (100 𝑊/(𝑚2. 𝑠)) change rate of 

solar irradiation as shown in Figure 134.a and Figure 134.b, respectively. In case of the 

fast change rate (300 𝑊/(𝑚2. 𝑠)) as shown in Figure 134.c, the active filter maintains 

high power quality before and after the transient period. During the transient period the 

active filter is disabled automatically as it continuously checks three duty-cycle steps 

mode and at this change rate (300 𝑊/(𝑚2. 𝑠)) in solar irradiation and based on the 

adopted P&O parameters in this work, the P&O algorithm does not operate with three 

duty-cycle steps. That’s happen when the variation of the output power caused by the 

solar irradiation is larger than the one caused by the P&O duty-cycle step size ∆d. The 

relation in (2.9) is not satisfied (see Chapter  2, Section  2.3.1.2). In this case the best is 

that the active filter waits until the system is in three-step-duty-cycle operation.  

For the tested system the maximum solar irradiation change rate before P&O get 

confused can be found from (2.10). The tested system has the following parameters 

(𝑇𝑚𝑝𝑝𝑡=50 ms, ∆d=0.035, 𝑉𝑚𝑝𝑝=29V, 𝐼𝑚𝑝𝑝=8.15A, the PV cell material constant 

K=6.895×10
-3 

A.m
2
/W, 𝑟𝑝𝑣_𝑚𝑝𝑝=4.244Ω (calculated from (2.7)), H=0.0105A/V 

(calculated from (2.10)). Substituting these values in (2.10), that result in 𝐺̇ =

162 𝑊/(𝑚2. 𝑠). Accordingly, for slow change rate of 50 𝑊/(𝑚2. 𝑠) and medium 

change rate 100 𝑊/(𝑚2. 𝑠) which are less than 162 𝑊/(𝑚2. 𝑠) the system operate in 

three step duty-cycle mode all time. While for the fast change rate of 300 𝑊/(𝑚2. 𝑠) 

which is higher than 162 𝑊/(𝑚2. 𝑠) the three step duty-cycle mode can be lost and 

that is clearly seen in Figure 134.c 
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Figure 133: Experimental results without active filter and under transient of solar 

irradiation at (a) 50 𝑊/(𝑚2. 𝑠), (b) 100 𝑊/(𝑚2. 𝑠) and (c) 300 𝑊/(𝑚2. 𝑠) change 

rate. 
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Figure 134: Experimental results with active filter and under transient of solar 

irradiation at (a) 50 𝑊/(𝑚2. 𝑠), (b) 100 𝑊/(𝑚2. 𝑠) and (c) 300 𝑊/(𝑚2. 𝑠) change 

rate. 

7.4 Experimental Results of Double-stage Parallel SCPVM Units 

Connected to a Main DC Bus 

In this section the double-stage parallel SCPVM units connected to a main DC bus as 

shown in Figure 122 is considered to show the effectiveness of the proposed active 

filter approach when the SCPVM units are connected to the second-stage converter and 

to show the dynamic interaction between the SCPVM units with the second-stage 

controller. 
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Cascaded current-voltage controller is used to control the dc-link voltage. The 

controller parameters are tuned in the lab as given in (7.1) for the case when the 

SCPVM units operate under 400 W/m
2
 solar irradiation level. 

2
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       (7.1) 

Figure 135 shows the system operating under uniform solar irradiation of 400 W/m
2
. At 

the beginning the system operates without active filter then at 𝑡 ≅ 0.75 𝑠 the active 

filter is enabled. It can be seen that after applying the active filter the overall variation 

in 𝑖𝑑𝑐 is effectively suppressed by 70% (from 2A to 0.6A as shown in Figure 135). 

 

Figure 135: Experimental results for uniform synchronised case without and with 

active filter and cascaded current-voltage controller (7.1): n=2, 𝑇𝑚𝑝𝑝𝑡=50ms, 

∆d=0.035, 𝐺1=𝐺2=400W/𝑚2, 𝐶𝑑𝑐=44µF. 

The interaction between the SCPVM converters and the second-stage converter due to 

the P&O related harmonics can be shown either by reducing the dc-link capacitance, 
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increasing the proportional voltage gain (𝑘𝑝𝑣) of the cascaded controller or increasing 

the solar irradiation level. First, the dc-link capacitance value is reduced to 22µF as 

shown in Figure 136. As can be seen with small capacitance value and without the 

active filter it becomes harder to control the dc-link voltage especially with the dc-link 

current changing continuously due to the P&O perturbations. After applying the active 

filter at 𝑡 ≅ 0.95 𝑠, the active filter suppress the changing in the dc-link current 

(improve the dc-link current quality) and that make is easier to control the dc-link 

voltage with the low capacitance value. 

 

Figure 136: Experimental results show the effect of the active filter on controlling 𝑣𝑑𝑐 

when operating with reduced capacitance size with cascaded current-voltage controller 

(7.1): n=2, 𝑇𝑚𝑝𝑝𝑡=50ms, ∆d=0.035, 𝐺1=𝐺2=400 W/𝑚2, 𝐶𝑑𝑐=22µF. 

Figure 137 shows the effect of the active filter on reducing the dynamic interaction 

between the system stages when the voltage gain is increased. At the beginning and as 

the system is operating with active filter as 𝑘𝑝𝑣 increasing from 0.24 to 1.05. As shown 

in Figure 137 the active filter maintain stable operation even at high value of 𝑘𝑝𝑣. Then 

at the large value of 𝑘𝑝𝑣 of 1.05 the active filter is disabled at 𝑡 ≅ 1.55 𝑠. As it can be 

seen in Figure 137 the dc-link voltage and current enter chaotic like behaviour because 

at this high voltage gain 𝑇𝑠𝑒𝑡𝑡𝑙𝑒 > 𝑇𝑚𝑝𝑝𝑡. 
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Figure 137: Experimental results show the effect of the active filter on system stability 

when operating with high voltage gain with cascaded current-voltage controller: n=2, 

𝑇𝑚𝑝𝑝𝑡=50ms, ∆d=0.035, 𝐺1=𝐺2=400 W/𝑚2, 𝐶𝑑𝑐=44µF, 𝑘𝑝𝑣=1.05. 

Finally, the increased interaction between the system stages due to the solar irradiation 

level and the effect of the active filter to reduce the dynamic interactions is shown in 

Figure 138. At the beginning, the system is stable when operating at 𝐺 = 400 𝑊/𝑚2 

then at 𝑡 ≅ 3.7 𝑠 the irradiation level changed to 500 𝑊/𝑚2. As can be seen, the 

interaction between the system stages had increased and that affected the power quality 

at the dc-link. While the system still operating under high solar irradiation of 500 𝑊/

𝑚2 the active filter is enabled at 𝑡 ≅ 7.25 𝑠. The active filter reduced the harmonics 

injected to the dc-link bus from the SCPVM units. This minimised the dynamic 

interaction between the stages and improved the dc-link power quality significantly. 
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Figure 138: Experimental results show the effect of the active filter on system stability 

when solar irradiation level changes with cascaded current-voltage controller: n=2, 

𝑇𝑚𝑝𝑝𝑡=50ms, ∆d=0.035, 𝐶𝑑𝑐=44µF, 𝑘𝑝𝑣=0.24. 

7.5 Conclusion 

A prototype of double-stage parallel SCPVM system consists of two SCPVM units is 

developed in the lab in order to validate the analysis of the P&O related harmonics, to 

test the proposed active filter and to show the dynamic interactions between system 

stages. The experimental results confirm the analysis of the P&O related harmonics and 

show the effect of the solar irradiation level, the P&O operating point, and the total 

number of the parallel connected SCPVM units on the level of the overall dc-link 

power variation. Also, the experimental results validate the effectiveness of the 

proposed active filter approach under uniform irradiation, non-uniform irradiation, 

transient in solar irradiation and in the case of high dynamic interaction between the 

system stages. The dynamic interaction between the system stages is shown for small 

capacitance value, high control-voltage gain and high solar irradiation level. 
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8 CONCLUSIONS AND FUTURE WORK 

In this chapter the outcomes of this research are summarised. Then, the main 

contributions are highlighted. Finally, research prospective is discussed. 

8.1 Summary  

PV is considered one of the promising renewable sources to produce clean energy and 

be part of the electricity generation.  Therefore, the characteristics of the non-linear PV 

source, MPPT techniques, configurations and topologies of grid-connected PV systems, 

and controller structures for different operating modes (i.e. grid-connected and islanded 

modes) have been discussed in Chapter  2. In addition to that, two concerns for a grid-

connected PV system have been discussed in Chapter  2. The first concern is related to 

the effect of the non-linear PV source on the dynamic performance of the system such 

as system damping factor, phase margin, and cut-off frequency. The impact of the non-

linear PV source depends on the system controller structure in terms of controlling the 

input side or the output side of the PV interface converter. In the case of controlling the 

input side of the system, the damping factor and cut-off frequency are the ones most 

affected. In the case of controlling the output side (this is applied in the case of islanded 

mode operation) the non-linear PV source changes the system dynamic and may 

generate right half plane roots which affect system stability depending on the converter 

topology and the PV operating region. The second concern is related to the poor power 

quality from grid-connected PV systems. It has been reported that grid-connected PV 

systems is one of the sources which deliver harmonics to the grid due to many reasons 

such as large populations of PV inverters, resonance between the grid and the PV 

inverter, or large amounts of fluctuation in PV power. In addition to the aforementioned 

sources of harmonics in PV systems, during the work on this research it was observed 

that there is possible impact of the P&O controller on increasing the harmonics in PV 

grid-connected systems, which leads to a poor power quality. In parallel, recent studies 

have reported the same observations based on experimental results. The P&O technique 

is widely used in commercial converters for PV applications, especially for low-cost 

implementations which make the newly reported P&O related harmonics problem a 

subject undergoing intense study until researchers find a solution. 

As discussed in Chapter  2 there are several configurations to connect a PV system to 

the grid and each configuration leads to different converter topologies and P&O 

architectures (centralised or distributed P&O). Therefore, it is difficult to generalise the 
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effect of the PV system on the power quality in the grid. In this work, the main focus is 

on double-stage parallel SCPVM configuration connected to a DC bus. A DC/DC boost 

converter is considered for both system stages. In Chapter  3, the design considerations 

of the double-stage DC/DC boost converter, P&O parameters optimisation and dc-link 

voltage control structures have been discussed. First, the available range of the dc-link 

voltage for successful tracking of MPP has been identified. Then, the effect of that 

voltage range on the first-stage converter parameters under different weather conditions 

is analysed. The converter parameters are chosen based on the highest solar irradiation 

condition to ensure high performance of the MPPT and small inductance core size. 

Regarding P&O parameters (𝑇𝑚𝑝𝑝𝑡 and ∆d), they are designed based on the dynamic 

behaviour of the first-stage converter and the adopted PV module to ensure an optimal 

efficiency of the three-step operation.  In addition to that, Chapter  3 provides a brief 

discussion of the different controller types that can be used to control the common DC-

link bus in grid-connected mode such as the voltage mode and cascaded current-voltage 

controllers. Finally, time domain simulation and FFT results for the designed system 

are provided. The results show that the P&O controller is one of the sources that 

produce harmonics in the common DC-link bus and grid.  

In Chapter  4, an analytical model of the DC-link current variation due to the P&O 

controller is provided as a function of P&O parameters (∆d and 𝑇𝑚𝑝𝑝𝑡), solar irradiation 

level, and the number of the parallel SCPVM units in the system (from a single 

SCPVM unit to n-parallel-connected units). In addition to that, the harmonics analysis 

considers the dynamic behaviour of the non-linear PV source under different operating 

points and the synchronisation between the P&O controllers of the parallel-connected 

SCPVM units. The analytical model can be used to predict the harmonics frequency 

and explore the factors which affect the harmonics level induced by the P&O 

controller. In addition to that, the analytical model helps to understand the power 

quality degradation behaviour due to P&O related harmonics and that will help to find 

the most efficient method to eliminate it. 

In Chapter  5, the dynamic interaction between a SCPVM unit and the second-stage 

DC-link controller is analysed through simulations. It is important to understand the 

possible interactions between a SCPVM unit and the rest of the system as that can help 

to set system design recommendations and guidelines.  The impacts of the P&O 

controller on increasing the dynamic interaction between system stages and on 
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designing the second-stage controller are highlighted. Three different types of DC-link 

controllers are considered: PI, 3P2Z, and cascaded current-voltage controllers. For each 

controller the dynamic interaction is explored in case of having an ideal current source 

(the SCPVM is modelled as a current source) connected to the second-stage converter 

and in case of having SCPVM unit connected to the second-stage converter. The results 

from the two aforementioned cases are compared and it reveals that the SCPVM unit 

increases the dynamic interaction between the system stages due to the P&O controller. 

As discussed in Chapter  4, the P&O operating point varies every 𝑇𝑚𝑝𝑝𝑡 and that 

induces periodic low-order frequency and transient oscillations in the DC-link bus. The 

effect of these oscillations on the control loop of the second-stage converter at MPPT 

mode depend on the P&O parameters (∆d and 𝑇𝑚𝑝𝑝𝑡), the solar irradiation level, the 

size of 𝐶𝑑𝑐, controller structure, and system cut-off frequency. It was shown through 

simulation examples that under specific operating conditions the dynamic interaction 

between the system stages increases and may lead to undesirable operating behaviour 

(chaotic like behaviour). It was shown that at MPP and for specific P&O parameters the 

dynamic interaction increases as solar irradiation increases, 𝐶𝑑𝑐 decreases, or system 

cut-off frequency increases (e.g. controller voltage gain increases). Accordingly, design 

recommendations and guidelines are provided in order to avoid any undesirable 

operating behaviour. 

In Chapter  6, a novel system-level controller named as “active filter” is proposed to 

reduce the progression of the P&O related harmonics into the DC-link bus, reduce the 

dynamic interaction between system stages, and improve the efficiency and power 

quality of the PV system that consists of multi-parallel SCPVM units. The concept of 

the active filter is based on synchronising the P&O controllers of n-parallel connected 

SCPVM units, sorting the units into pairs, and aligning the generated harmonics by the 

units in each pair to be out of phase. As a result the harmonics levels are suppressed at 

the total output of the parallel units. An analysis is provided to prove the effectiveness 

of the proposed active filter by comparing the DC-link variations level before and after 

employing the active filter. The analysis shows more than 50% decrease in the current 

variations can be achieved with the proposed active filter. Moreover, as the DC-link 

current ripple of the double-stage DC/DC boost converter is notably reduced with the 

active filter (i.e. DC-link power quality has improved) that allows a smaller DC-link 

capacitor to be used. Also, improved control dynamics for both converter stages can be 

achieved. 
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In Chapter  7, a prototype of double-stage parallel SCPVM system consists of two 

SCPVM units is developed in the lab in order to validate the analytical analysis of the 

P&O related harmonics, to test the proposed active filter and to show the dynamic 

interactions between system stages. The experimental results confirm the analytical 

analysis of the P&O related harmonics and show the effect of the solar irradiation level, 

the P&O operating point, and the total number of the parallel connected SCPVM units 

on the level of the overall DC-link power variation. Also, the experimental results 

validate the effectiveness of the proposed active filter approach under uniform 

irradiation, non-uniform irradiation, transient in solar irradiation and in the case of high 

dynamic interaction between the system stages. The dynamic interaction between the 

system stages is shown for small capacitance value, high control-voltage gain and high 

solar irradiation level. 

8.2 Main Contributions 

 Analysis and modelling of P&O related harmonics 

A detailed analysis of the P&O related harmonics generated by the grid-

connected double-stage SCPVM configuration has been carried out in this 

work. The frequency of the harmonics is provided as a function of the P&O 

parameters. Regarding the amplitudes of the harmonics it has been shown that 

they are function of the P&O parameters, solar irradiation level, and number of 

the parallel connected SCPVM units.  

 Dynamic interaction in double-stage parallel SCPVM system 

The impact of the SCPVM unit on the second-stage DC-link controller is 

investigated through simulation. The analysis considered different types of DC-

link controllers, P&O parameters, solar irradiation levels, PV operating regions, 

and DC-link capacitance sizes. The obtained results can help to set system 

design recommendations and guidelines such as sizing the DC-link capacitance 

and designing the DC-link voltage controller. 

 

 Active suppression of PV related harmonics 
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A cost-effective system level controller is proposed as a solution to minimise 

the harmonics injected to the DC-link bus and grid due to the employed parallel 

distributed P&O controllers in the grid-connected PV system. With the 

proposed controller: (I) more than 50% decrease in the harmonics level can be 

achieved, (II) DC-link power quality is improved by eliminating the harmonics 

injected by the P&O controllers, (III) dynamic interaction between system 

stages is reduced, (IV) smaller DC-link capacitance size can be used, and (V) 

improved control dynamics for both converter stages can be achieved. 

8.3 Future Work 

Although significant progress has been made in this work regarding investigating P&O 

related harmonics and their effect on increasing the dynamic interactions between 

system stages in double-stage PV system, a number of areas still deserve further 

investigations. 

 In this research the analysis of the PV related harmonics only considers a 

SCPVM unit based on a DC/DC boost converter. It could be interesting to apply 

the modelling approach on other topologies in order to study the impact of 

different converter topologies on the PV related harmonics. 

 In this work the impact of a SCPVM unit on the rest of the system and the 

critical dynamic interaction point due to distributed P&O controllers have been 

analysed through simulation.  Future work could be focused on providing 

analytical model that identify the critical dynamic interaction point between 

system stages for one SCPVM unit and multiple SCPVM units and determining 

the minimum system conditions to avoid any undesirable operating behaviour. 

 This work covered the dynamic interactions between the first-stage and the 

second-stage of the double-stage parallel SCPVM system due to the induced 

low-order frequency and transient oscillations by the distributed P&O 

controllers. Future work could be focused on investigating the interaction 

between the first-stage converters and the second-stage converter due to the 

output impedance of the first-stage converters which depends on the solar 

irradiation level and the number of the connected SCPVM units. The 

investigation could include a comparison between three cases: first-stage 
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converters modelled as ideal current sources, first-stage converters without the 

active filter, and first-stage converters with the active filter.  

 In this work the effectiveness of the proposed system level controller is 

compared only with the conventional P&O controller. It could be interesting to 

have a study that compares the proposed system level controller with other 

more advanced MPPT algorithms in terms of effect on grid power quality, cost, 

complexity and efficiency. 

 In this work the proposed active filter is suitable to be implemented for PV 

system configurations that are based on distributed P&O architecture such as 

double-stage parallel SCPVM, single-stage parallel SCPVM and series string 

configurations. These configurations allow implementing the proposed active 

filter at the system level where system parameters are closely identical and 

communication between converters is not a problem as they are so close to each 

other. It could be interesting to explore the possibility of implementing the 

active filter in the case of other PV system configurations that are based on a 

centralised P&O controller such as series centralised configuration. In this case 

two PV systems such as two roof-top residential PV systems have to 

communicate with each other in order to synchronise their P&O controllers and 

suppress the related harmonics. The challenges in this case would be the 

distance between the PV systems and proposing an algorithm that can provide 

optimal harmonics suppression for two systems that have been designed with 

different parameters. 
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APPENDIX A: Photovoltaic Generators Interfacing a DC 

Micro-Grid: Design Considerations for a Double-Stage 

Boost Power Converter System 
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APPENDIX B: Active Suppression of Photovaltaic System 

Related Harmonics in a DC Microgrid 
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APPENDIX C: Simulink Models 

C.1 Double-stage Parallel PV system 

The Simulink model of the whole system “Double-stage DC/DC Boost Converter PV 

system” consists of four parallel SCPVM units is shown below in Figure 139. For more 

details each part of the model such as SCPVM, second-stage converter, SCPVM 

controllers and the controllers are shown separately in Figure 140, Figure 141, Figure 

142 and Figure 143, respectively. 

 

Figure 139: Simulink model of double-stage parallel SCPVM system consists of four 

SCPVM units.  
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Figure 140: Simulink model of the SCPVM unit. PV algorithm is given in Appendix C.2 

 

Figure 141: Simulink model of the second-stage boost converter 
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Figure 142: Simulink model of the SCPVM controllers of the first-stage boost converter 

(SCPVM unit). P&O algorithm is given in Appendix C.3 and Fixed pair and Flexible 

pair algorithms are given in Appendix E. 

 

Figure 143: Simulink model of the 3P2Z and cascaded controllers of the second-stage 

boost converter 
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C.2 PV algorithm 
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C.3 P&O algorithm 
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C.4 Simulink model for control loop gain measurements using MATLAB linear 

Analysis Tool 

The Linear Analysis Tool (shown in Figure 144) lets you perform linear analysis of 

nonlinear Simulink models. Using this tool you can: 

 Interactively linearize models at different operating points 

 Interactively obtain operating points by trimming or simulating models 

 Perform exact linearization of nonlinear models 

 Perform frequency response estimation of nonlinear models 

In this work the Linear Analysis Tool is used to measure the control loop gain by 

following these steps: 

- Specify the initial state values in the model 

- Open the linear analysis tool for the model, select Analysis > Control Design > 

Linear Analysis. 

- Define the portion of the model to linearize: 

o To specify the linearization input, right-click the input signal of the 

controller block, and select Linear Analysis Points >  Input 

Perturbation. The default perturbation size is 10−5(1 + |𝑥|), where x is 

the operating point value of the perturbed state or the input. The input 

point is not the input of the block; rather it is an additive input to the 

signal. 

o To specify the linearization output, right-click the output signal of the 

dc-link voltage, and select Linear Analysis Points >  Open-loop 

Output. 

- Linearize the system at the operating points 

Figure 145 shows the Simulink model and the input and output points for measuring 

the control loop gain with the ideal current source. Figure 146 shows the Simulink 

model that used when the SCPVM is used as a source for the second-stage converter.  
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Figure 144: Snapshot of the MATLAB Linear Analysis Tool 

 

Figure 145: Simulink model of the system with ideal current as a source for the second-

stage converter and control loop gain measurement points 
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Figure 146: Simulink model of the system with SCPVM as a source for the second-

stage converter and control loop gain measurement points 
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APPENDIX D: Steady-state Peak-peak Variation of the 𝒊𝒑𝒗, 

𝒊𝒔𝒄𝒑𝒗𝒎_𝒐𝒖𝒕 and 𝒊𝒅𝒄 
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APPENDIX E: The Active Filter Algorithm 
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