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1.              Abstract 
 

Permanent magnet machines have high efficiency, high power density and 

ease of control due to the use of high energy density permanent magnets (PMS) as 

source of excitation which consume less power and allow achieving high airgap flux 

density and therefore high torque density can be produced comparing with other 

type of motor of the same rotor volume, employing them for various applications 

such as automotive and domestic appliance. Accordingly, permanent magnet 

characteristics have an important effect on the performance of the machine. 

However, their cost should be taken into consideration, because it can be a 

significant proportion of the total cost of the machine. Therefore, in this thesis the 

investigation of the modelling, design and analysis of novel permanent magnet 

machine for cost sensitive applications is presented. More specifically, a novel 

technique of arranging Ferrite permanent magnets with low energy density to 

achieve high airgap flux densities like those encountered in devices equipped with 

high cost rare-earth permanent magnets, thus, achieving significant cost savings, 

without substantial change in performance. Consequently, a spoke -type rotor 

equipped with axially magnetized permanent magnets in addition to the 

conventional circumferential permanent magnets is proposed, in order to increase 

the flux focusing and the airgap flux density. 

For the electromagnetic design and analysis, a combination of 2D-FEA and 3D-

FEA are used for the simulation of the conventional spoke-type rotor and the new 

proposed rotor machines respectively and the results concerning the fundamental 

airgap flux densities are compared with simple lumped parameter magnetic circuits 

considering the investigation of leading parameters, such as stator active length, 

airgap length, pole arc to pole pitch ratio and ratio of inner to outer diameter of the 

rotor, which can be employed as initial design stage.  
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Furthermore, 12 slots and 8 poles machine is designed to meet the specifications of 

a small personal mobility vehicle and the waveforms of flux linkage, airgap flux 

density and cogging torque are initially predicted at No-load condition using 3D-

FEA. Then the torque / power speed envelopes and efficiency map are predicted on 

load condition at different operating conditions. The results show that the novel 

machine can achieve airgap shear stress in excess of 20KPa under natural air-

cooling conditions with high efficiencies reaching 97% making it a strong contender 

for electric vehicle applications. 

A new lumped parameter magnetic circuit model is developed to represent and 

simulate the new proposed rotor machine considering most important details such 

as stator active axial length, leakage in stator slot, back iron, tooth tips and the 

(linear, nonlinear) magnetic characteristic of the stator iron material. Simulation 

results including linkage flux, BEMF voltage waveform at No-load condition and 

the linkage flux, phase voltage and torque/speed envelope at variety of load 

condition are compared with 3D-FEA, and relatively good agreement exists. Albeit, 

room for improvement of the lumped parameter magnetic circuit model still exists. 

Finally, a prototype is built, and the most important tests undertaken are investigated 

and the results are compared with predicted by 3D-FEA. 
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𝑤 mm Flux tube width 

Wt mm Width of tooth 

𝑊𝐶𝑃𝑀 mm Circumferential PM width 

𝛼  Pole arc to pole pitch ratio 

αc  B exponent for Classical losses 

αe  B exponent for Excess losses 

αh  B exponent for Hysteresis losses 

βh  f exponent for Hysteresis losses 

𝛾 Electrical 

degree 

Gamma (Current angle) 

𝜃 Electrical 

degree 

Rotor rotation angle 

𝜆  Ratio of 𝑅𝑐 𝑅𝑎⁄  
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λ𝑝 mm Rotor pole pitch 

λs mm Stator slot pitch 

𝜇0 henry per 

meter 

Permeability of the air 

𝜇𝑑𝑦𝑛 kg m. s⁄  Dynamic viscosity of air 

𝜇𝑟 1/henry Relative recoil permeability of the magnet 

𝜌 Kg/m3 Density of air 

𝜎 S/m Classical losses coefficient 

𝜎𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 kN/𝑚2, kPa Shear (normal) stress 

ϕ𝑠 Weber Flux per slot pitch 

ϕP Weber Flux per pole pitch 

𝜑𝑔 Weber Per pole flux in the airgap 

𝜑𝑠 Weber Per pole flux in the stator 

Ψ𝑑 Turn.weber d–axis Linkage flux component 

𝛹𝑚𝑑 Turn.weber d–axis Linkage flux component (only PM) 

Ψ𝑚𝑞 Turn.weber q–axis Linkage flux component (only PM) 

Ψ𝑞 Turn.weber q–axis Linkage flux component 

Ω 𝑟𝑎𝑑 𝑠𝑒𝑐⁄  angular frequency of the shaft 

ω 𝑟𝑎𝑑 𝑠𝑒𝑐⁄  Angular velocity 
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1. Chapter 1 

1. Introduction 

1.1 Motivation 

 

Permanent magnet (PM) machines were introduced in 1930, when alnico magnet 

was discovered [1]. At that time, the use of PM machines was limited due to its 

properties and the lack of frequency converters. However, in recent decades, the 

performance of PM machines has improved significantly, by the development of 

high-energy permanent magnet, such as NdFeB rare earth PM and SmCo, Fig. 1.1 

[2],  power electronic converters, and control techniques. Recently, due to the many 

restrictions on future supply and fluctuation in price, the motivation to reduce and 

eliminate the use of rare earth PM in the realization of electrical machines has 

increased [3]. Therefore, permanent magnet free machines such as induction 

machines and switched reluctance machines or machines using alternative 

permanent magnets such as ferrite magnet have been seriously considered in many 

applications including automotive application (electrical and hybrid vehicles) and 

direct drive generators used in wind power generation. Table 1.1 shows the average 

price in ($/Kg) for two grades of magnet (Neodymium-iron boron and ferrite) and 

based on the average maximum energy (BH)max. It can be noticed that the average 

price of the neodymium magnet is about 10 times that of the ferrite [4]. 

Material Average (BH)max 

(MGOe) 

Average price ($/Kg) 

NdFeB 40 75 

Ferrite 3.8 7.1 

Table 1.1 Average price comparison between neodymium and ferrite magnets. 
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Fig. 1.1 A historical development of PM materials [2] 

Nowadays, due to their high torque density and efficiency, permanent magnet (PM) 

machines are used in many applications such as: air conditioning compressors, 

hybrid electric vehicle traction, computer fans, washing machines, wind energy 

generation, domestic appliances and aerospace Fig. 1.2 [5]. 

           

       

Fig. 1.2 Applications of PM machines [5] 

(a) Power steering  (b) Hybrid Camry PM synchronous 

(c) Washing-machine motors (d) Wind Power (Siemens) 
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According to [6], PM machines can be mainly classified into two types, sinusoidal 

or trapezoidal BEMF or (AC & DC) PM machines. Depending on the field 

orientation in the machines, two main types of brushless PM machines, are used in 

industry: (Axial and Radial) field machines as shown in Fig. 1.3 [7]. In radial flux 

PM machines, the direction of the magnetic field is perpendicular to the rotation axis 

while, in the axial flux PM machines, the direction of the magnetic field is parallel 

to rotation axis. 

 

                           (a)                                                          (b) 

Fig. 1.3 a) Radial PM machine b) Axial PM machine [7]. 

Two main types of radial flux PM machines exist: (Internal and external rotor) radial 

flux PM machines as shown in Fig. 1.4. For internal rotor PM machines, the rotor is 

surrounded by the stator and the airgap is between the rotor outer diameter and stator 

inner diameter. For external rotor PM machines, the airgap is located between stator 

outer diameter and the rotor inner diameter this will affect on the value of the torque. 

Depending on the configuration of the PM magnet, the rotor of PM machines has 

many topologies which were developed with special features to make it desirable 

for specific application requirements, some of these topologies are: 1) surface 

mounted SPM machines (SPM), 2) Interior permanent magnet machines (IPM). 

SPM, IPM and axial flux PM machines (AFPM) are shown in Fig. 1.5 & Fig. 1.6. 

Each type of (SPM and IPM) has different magnet configuration such as [8][9]: inset 

magnet SPM, surface bread loaf SPM, spoke rotor type IPM, Wing shape IPM, etc.  

Axial flux permanent magnet machines have been used in different applications 

since the mid-70s due to their compact structure and higher toque and efficiency at 

low speed [10][11].  
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Depending on the number of rotors and stators, various topologies of (AFPM) exist: 

single rotor single stator, single stator double rotor (TORUS), single rotor double 

stator (AFIR) and multi rotor multi stator, each one of these topologies are sub 

divided into slotted, slotless and air-cored stator as shown in Fig. 1.6 and Fig. 1.7. 

 

      (a)                                                  

 

                 (b) 

Fig. 1.4 Radial PM machine a) External Rotor, b) Internal rotor [7] 

 

 

Fig. 1.5  a) Surface mounted magnets, b) inset rotor with surface magnets, c) surface 

magnets with pole shoes, d) embedded tangential magnets, e) embedded radial magnets, f) 

embedded inclined V-magnets and g) permanent magnet assisted synchronous reluctance 

motor [9]. 
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Fig. 1.6 Topologies of AFPM machines [11]. 

                  

                   

 

Fig. 1.7 AFPM machines: (a) Single Stator Double Rotor (TORUS), 3D view, (b) Slotted 

Stator (TORUS), (c) Slotless Stator (TORUS) [11]. 

(a) 

(b) (c) 
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In this research, ferrite permanent magnet will be used in the design of the machine. 

Although, the major disadvantage of ferrite magnet is their low energy, compared 

with the other type of PMs such as rare earth PM, Ferrite PMs are significantly 

cheaper and don’t suffer from supply. Therefore, the project would investigate novel 

techniques of arranging Ferrite permanent magnets to achieve airgap flux densities 

similar to those encountered in devices equipped with rare-earth permanent 

magnets, thus, achieving a significant cost savings, without substantially changing 

in performance [12]. This has been achieved by using axially and circumferentially 

magnetized ferrite PMs on special rotor designs, as can be seen in Fig. 1.8. 
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Fig. 1.8 Rotor with axially and circumferentially magnetised PMs (a) Assembled rotor, (b) 

Exploded view [12]. 

1.2 PM machines design review: Overview 

Many researchers have introduced design and analysis methodologies using 

the analytical and finite element analysis (FEA) techniques for different topologies 

of PM machines. This enables key design parameters, such as pole number, PM and 
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stator geometries, slot/pole number combinations etc. to be optimized, and the 

performance requirements of applications to be met. [7][13][14]. 

1.2.1 Surface mounted PM machines design 

Surface mounted PM brushless machines are widely used in many applications. The 

definition of surface mounted PM machines comes from the location of the PM, 

which is fixed, on the surface of the rotor [7]. As shown in Fig. 1.4, there are two 

types of surface mounted SPM, a) inner rotor b) outer rotor, and the magnets can 

have radial, parallel or Halbach magnetizations. Simplicity and lower construction 

cost can be considered the main advantages of the SPM machines. Since, the (𝐿𝑑, 

𝐿𝑞) inductances of the stator windings of this type of machines are equal, the value 

of the reluctance torque is null. However, despite the mentioned advantages, the 

Inner rotor SPM machines has disadvantages, due to the location of the PM which 

make them exposed directly to the armature reaction field causing irreversible 

demagnetization of magnet which affects the output flux density. In addition, the 

magnets are exposed to centrifugal forces, which can damage them especially, at 

high speed. Therefore, this type of PM machine is mostly used in the industrial 

applications, which require relatively low speed [7], or application where stator 

banding is tolerated. Since, the instantaneous air gap flux density and torque are 

very important for obtaining good performance of this type of PM synchronous 

machines, significant researches have been proposed dealing with the analytical 

modeling of the instantaneous flux density in the air gap region taking the effect of 

different design parameters and operating conditions and validated using FEA 

analysis. The simplest description of the airgap flux density equation, 

electromagnetic torque-speed characteristics, magnetization and demagnetization 

process, winding distribution in the stator, iron losses, output power and efficiency 

have been presented in [6]. Many analytical methods have been developed for 

calculation the instantaneous magnetic field in the airgap/magnet region and airgap 

flux density for multi pole, inner and outer rotor radial magnetized slotless brushless 
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PM motor (SPM), using (2D) analytical solutions in the polar coordinate system. 

Firstly, on open circuit magnetic field [15], then the effect of stator slot (opening) is 

investigated, together with the effect of the magnetic field (armature reaction) from 

the stator winding current [16][17][18]. Another technique for calculating the flux 

produced by the stator and PM accurately and the airgap flux density in the (SPM) 

machine using lumped parameter magnetic circuit models as shown in Fig. 1.9, in 

which reluctance network is used to model the rotor, stator slots, stator yoke and 

teeth of the machine taking into account of the effect of leakage flux, magnetic 

saturation, etc. and validate the analytical results for airgap flux density under slot 

and tooth and the induced phase voltage using FEA and experimental results. 

[19][20][21].   

 

                             (a)                                                                    (b) 

Fig. 1.9 Reluctance network: tooth and slot region [20].  

The shape and position of the magnet (flat magnet) or the classical single curved 

magnet in the SPM machine play an important role on the value of the fundamental 

airgap flux density, BEMF and the efficiency of the machines as shown in Fig. 1.10, 

in which six geometries of NdFeB magnet PM motor with different magnet shape 

and rotor configurations of internal and external rotor with 36 slots are designed and 
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compared using FEA with respect to their topologies, magnetic field, airgap flux 

density, torque, losses and efficiency at constant power rate and different speed [22]. 

 

Fig. 1.10 Topologies SPM machine [22] 

The material of the PM (Ferrite, SmCo, NdFeB etc.) and the distribution of the stator 

winding (distributed winding, concentrated winding, non-overlapped and 

overlapping winding) play an important factor in the losses (copper losses), linkage 

flux and BEMF harmonics, airgap flux density, fault tolerance, overload capability 

and the output properties for developing the required power and efficiency and then 

the cost of the SPM machines [6][8]. The effect of stator tooth length and width is 

also important and should be considered in the design of the SPM, by optimizing 

the tooth length and width with combination slot/pole number for getting the BEMF 

and increasing the linkage flux and achieving higher torque with reduced ripple 

torque [17][23]. The operation of the SPM motor and overload may cause 

mechanical damage for the machine; the mechanical torque will be high and can 

cause unsafe operation especially, when used in critical applications. To avoid high 

mechanical torque and overload, new topology for brushless permanent magnet 

motor equipped with all integrated magnetic torque limiter is designed by using two 



11 

 

rotor each one carries a set of PM in order to achieve torque limiter capability 

without significantly affecting the size/weight [24]. For electric vehicle applications, 

the high power/torque density, high efficiency and good flux weakening capability 

are very important to satisfy the required characteristics and the reference driving 

cycles such New European Driving Cycle (NEDC). Therefore, a new topology of 

SPM machines with concentrated windings has been designed and optimized as 

shown in Fig. 1.11, taking into account the effect of different key parameter such 

as: slot-pole number, machines inductance, axial length, tooth width, stator back 

iron thickness, inner to outer diameter ratio and pole, pole pitch ratio and number of 

turn to meet the desired specifications [25]. 

 

(a) 

        

                     (b)                                                             (c) 

Fig. 1.11 A new SPM motor topology a) Schematic of leading design parameter, b) Stator. 

c) Rotor [25]. 
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1.2.2 Inner PM Machines design 

The definition of inner PM comes from the location of the PM, which is buried into 

the rotor iron core. There are different types of inner PM machines depending on 

the position of magnet such as: V-shaped PM machines, W-shaped, segmented PM, 

spoke- rotor type etc.[8][9]. Each type has different properties which have been 

studied, and analyzed by many researchers in order to optimize the generated airgap 

flux density, torque production and efficiency [26][27]. This type of PM machines 

has many good features compared with SPM, since the PM is fixed inside the rotor, 

this make it robust and suitable for hybrid electric vehicle (HEV) [28][29][30]. Since 

it has a good torque smoothness, reliability and efficiency, IPM motor also used in 

the electrical power steering [31]. Due to the saliency of the rotor, the value of 

(𝐿𝑑 , 𝐿𝑞) inductances are not equal, this will increase the value of torque ripple which 

can be considered one of the main factors affecting the output characteristics of the 

machine (vibration, noise and losses) [32][33]. Therefore, this factor has been 

analyzed and calculated using different analytical techniques such as: (2-

dimensional) equivalent magnet circuit which can be used for general synchronous 

machine and it's useful for the first step before using (FEA) [34][35]. Then, validate 

the analytical results using FEA techniques and experimental prototypes. Many 

constraints should be considered and analyzed in the design of IPM machines such 

as: air gap length, leakage flux at machines shaft for getting high linkage flux and 

airgap flux density [36][37][38]. To decrease the effect of the generated leakage 

flux, an auxiliary magnet with different thickness of rare earth magnet has been 

added to the rotor of new IPM geometry, which affects the air gap flux density as 

shown in Fig. 1.12 [39].  
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Fig. 1.12 Structure of the optimised spoke-type rotor PM machines [39].  

To get a high air gap flux density and maximum torque which result in increased 

efficiency for the machine, the optimization of split ratio (Ratio of  stator bore to 

outer diameter), and the winding type, should be considered in the design of IPM 

machines [40]. Pushing assistant and sub assistant ferrite PMs in the design of spoke 

rotor type can be considered on the novel method to maximize the torque density, 

air gap flux density and BEMF, with low cost compared with the initial IPM made 

of neodymium PM., as shown in Fig. 1.13 [41], in which new model of spoke-type 
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rotor PM machine called (wing shaped spoke-type motor) is designed and analyzed 

using FEA and analytical model. The output characteristics such as BEMF, airgap 

flux density and torque are compared with other geometries so as to get novel 

reliable machine.  

 

(a) Initial IPM-type motor                    (b) Spoke-type motor              (c) V-type motor 

     
   (d) U-type motor                       (e) Wing-type motor         (f) Wing shaped spoke-type                                                                                                                                                                     

motor 

 

(i) Initial and analyzed models 

 

(a) IPM-type motor                     (b) SPOKE-type motor                    (c) V-type motor 

     
   (d) U-type motor                   (e) Wing-type motor               (f) Wing shaped spoke- 

                                                                                                                   type motor 

(ii) Magnetic characteristics of the analyzed models 

Fig. 1.13 Structure of different motors [41]. 
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Since using 3D-FEA is still time consuming in simulating and analyzing the 

magnetic characteristics of the permanent magnet machines, an analytical model 

based on lumped circuit parameter model has been used to analyze a hybrid 

excitation synchronous machines and then compare the results with (3D-FEA) to 

optimize and build the prototype as shown in Fig. 1.14 [42]. The complete 

description of reluctance modeling of machines will be detailed in chapter 4 of the 

thesis. 

 

                        (a)                                                                   (b) 

 

                        (c)                                                             (d) 

 

                    (e)                                                                  (f) 

Fig. 1.14 Structure of hybrid excitation synchronous machine and its lumped circuit 

parameter model. 
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The nonlinear phenomena such as: cross coupling magnetic saturation, stator 

slotting effect has been taken into account in the calculating airgap flux density, 

back EMF, phase (d-q inductance), and torque of the interior PM motor by 

proposing specific lumped parameter magnetic circuit model (MCM), which can be 

applied in general for different types of rotors and stators of the IPM machines under 

both no-load (NI=0) and loaded (with external excitation) operation [43][44].  

The effect of the material properties and the dimensions (length, thickness and the 

angle between the interior permanent magnets, auxiliary magnets) of the ferrite 

magnet used in the design of different type of the IPM machines is important, 

especially for spoke-type rotor machines. Therefore, it is analyzed in order to 

decrease the cogging torque and get a good flux concentration, by proposing a new 

spoke-type rotor BLDC motor as shown in Fig. 1.15, in which the inner magnet is 

divided with different adjusted angle in between so as to change the length and 

thickness of the magnet which cause variation of the ripple and cogging torque 

values [45].  

              

                            (a)  Model 1                                         (b) Model 2 

            

                         (c) Model 3                                     (d) Model 4      

Fig. 1.15 Variable spoke-type BLDC motor models [45]. 
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The eccentric shape of the pole pieces and the steel core between the splitted PMs 

plays a significant role on the electromagnetic performance of the spoke-type rotor 

machines. As shown in Fig. 1.16 the pole pieces of  model (b) are eccentric in the 

shape causing the airgap length is larger than model (a). Beside that the pole pieces 

are not symmetric and having different thickness which will have an important effect 

on the generated BEMF, Ld and Lq values and their difference at different rated 

current [46]. 

 

          

                                      (a)                                                          (b) 

Fig. 1.16 Rotor configuration of spoke-type rotor FMM [46]. 

Comparing with conventional spoke-type rotor machines, inserting auxiliary PMs 

have a significant effect on the magnetic field distribution and the output 

characteristics such as BEMF and torque waveforms. As shown in Fig. 1.17, four 

geometries of spoke-type rotor PM machines model (b), model (c), model (d) and 

model (e) are proposed and analyzed with auxiliary radial magnetized PMs. 

Comparing with model (a), the results show that model (b) and model (d) have less 

PM volume with improved electromagnetic torque and BEMF [47]. 
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Fig. 1.17 Topologies of spoke-type PM machines [47]. 

 

Since the influence of magnetic saturation and cross coupling between the magnetic 

fields generated from the PM and the armature winding is very important in the 

calculation of the average electromagnetic torque and its components such as 

reluctance torque generated in the PM machine, a method has been used for 

separation the components of the torque using the concept of frozen permeability 

[48][49]. A detailed complete description of the frozen permeability concept will be 

in chapter 3 of the thesis. 

The material of the motor iron core plays an important role in getting higher value 

of linkage flux with less losses, such as using (soft magnetic composite) (SMC) over 

the conventional silicon steels of the core in the design of the spoke rotor type PM 

motor [50].  

 

(a) Model 1 (b) Model 2 (c) Model 3 

(d) Model 4 (e) Model 5 
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1.2.3 Axial flux PM machines design  

Since the generated magnetic field in this type of PM machines is parallel to the 

rotational axis (shaft axis), it is called axial flux PM machines. AFPM machine has 

many features which make it an important alternative technology used in different 

modern applications such as Joint modules for robot, instead of radial flux PM 

(conventional) machines, as shown in Fig. 1.18 in which a new AFPM motor has 

been proposed since it has high torque with short axial length [51][52]. 

 

 

 

Fig. 1.18 New AFPM motor topology [51]. 

 

(a)  (b)  

(c)  (d)  
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Comparing with RFPM machines, higher torque to weight ratio can be achieved 

since AFPM machines has less rotor core material and exhibit less rotor iron and 

copper losses [10][53]. To maximize efficiency and torque, many aspects of 

construction, electromagnetic design should be evaluated by using sizing equation, 

and/or FEA [11]. This can be done by using 3D-FEA techniques [54][55], as shown 

in Fig. 1.19, in which twenty-eight pole, three phase AFPM motor has been 

simulated and analyzed by 3D-FEA software, such as Flux3D, since it provides an 

accurate analysis of the magnetic devices taking into account geometric details and 

nonlinearity of magnetic characteristics. 

 

                                           (a)                                                        (b) 

Fig. 1.19 a) 28 pole AFPM motor, b) Three-dimensional mesh model, c) Distribution flux 

density in the stator [54]. 

Using sizing equations, a slotted (TORUS) (AFPM) motor has been designed for 

electric vehicles [56]. Like the radial flux PM machines, the effect of PM thickness 

on the machine output characteristic, flux distribution and air gap flux density is 

important and has been be considered [57], as shown in Fig. 1.20, in which a novel 

Six-phase with (22 poles and 24 slots), one-rotor-two-stators disc PMSM has been 

designed and simulated using FEA. 
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Fig. 1.20 a) Basic structure of disc PMSM, b) prototype and stator slots and winding [57]. 

 

The permeability of the permanent magnet, the finite permeability of iron has been 

accounted in the analytical calculation for the air gap flux density, back EMF and 

torque for (micro slotless axial flux permanent magnet motor (AFPM)), resulting in 

a quick way of determining and optimizing the performances of a slotless axial flux 

motor [58]. Air gap variation or (air gap deformity) due to the displacement of rotor 

from original position influences on the flux density and then the axial magnetic 

force between the stator and rotor of surface mounted axial flux permanent magnet 

(a) 

(b) 
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motor (AFPM), which cause the bearing damage, reduce lifetime of the motor and 

cause vibration for the motor [59], as shown in Fig. 1.21. 

 

Fig. 1.21 Representation of rotor displacement in AFPM motor, a) healthy motor b) motor 

with airgap deformity. c) Representation of airgap displacement. 

 

The effect of material of the used PM on the airgap flux density of AFPM machines 

and active length to rotor diameter ratio has been analyzed using the lumped 

parameter magnetic circuit model and compared with the results obtained with (3D- 

FEA) [12]. Since the effect of stator slot opening on the flux in the airgap is 

considerable, it has been analyzed and compared with FEA [60]. 

 

(a) 

(b) 

(c) 



23 

 

1.2.4 Summary 

This chapter introduced a review about the design and analysis methodologies for 

different topologies of PM machines which are presented by many researchers, 

focusing on the effect of most important key design parameters such as of pole pairs 

number, rotor and stator geometries, distribution of stator windings, slots poles 

number, airgap length, stator active length ,PM geometry (length and thickness) etc. 

Using analytical and FEA techniques to investigate the electromagnetic 

performance of the machines and validate the output characteristics such BEMF, 

electromagnetic torque, cogging torque, phase voltage and airgap flux density with 

experimental results. 

The definition and the properties of the main three types of the PM machines: SPM, 

IPM and AFPM machines is introduced and the investigation about the construction 

and the application of each type is presented considering the key design parameters 

mentioned above. Therefore, it employed an initial step in the design of PM 

machines. 
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       Outline of this thesis 

 
 

The work in each chapter of this thesis is as follows: 

 
Chapter 2 - Investigation and design of different PM machines, the comparison 

between two PM rotor types has been introduced, these are the conventional IPM-

Spoke type rotor and newly proposed rotor, equipped with axially and 

circumferentially magnetized PMs. The effects of different parameters, such as 

airgap length, pole number, pole arc to pole pitch ratio and the ratio of active inner 

to outer diameter of the rotor has been investigated using FEA and lumped 

parameter circuit model. 

 

Chapter 3 - Design of axially and circumferentially magnetized PM machine to 

meet the requirements of a small personal mobility vehicle. In this chapter (3D) 

finite element method is the main method used for the design and analysis and the 

prediction of the BEMF, the output torque, efficiency etc. for different load 

condition. 

 

Chapter 4 – Development of a new lumped parameter circuit model and evaluation 

of the machine characteristics, such as winding linkage flux and BEMF, torque etc. 

and compare the results with (3D) finite element at no load and full load conditions.  

 

Chapter 5 – Description of the different components of the machine, and 

description of the methods adopted for the realization of the prototype and the test 

undertaken. The results are compared with prediction (3D-FEA). 

 

Chapter 6 – Conclusion and recommendation for future work. 
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9. Chapter 2 
 

2. An Investigation and design of                             

different rotor PM machines                                                                                                                                    

2.1 Introduction 

In this chapter, a comparison between two PM rotor types is introduced, 

these are the conventional IPM Spoke-type rotor and newly proposed rotor, supplied 

by axially and circumferentially magnetized PMs. The procedure used for building 

the geometry of IPM machines (spoke-type rotor), slotless stator using 2D finite 

element flux software is introduced, and the values of the airgap flux density are 

compared with the analytical values derived using a simple lumped parameter 

magnetic circuit. The new PM rotor topology is introduced and modelled using 3D 

finite element and results are also compared with predictions from a lumped 

parameter magnetic circuit. A comparison between the two rotor topologies and the 

effects of different parameters are investigated, these are airgap length, pole number, 

pole arc to pole pitch ratio and the ratio of active inner to outer diameter of the rotor. 
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2.2 Spoke-Type Rotor 

This section deals with the investigation of the performance IPM rotor, more 

specifically, a spoke-type rotor with slotless stator using (2D) Flux software. The 

purpose is to investigate the effect of parameters which include: airgap length, pole 

number, pole arc to pole pitch ratio and the ratio of active inner to outer diameter of 

the rotor on the airgap flux density and compare the finite element predictions of the 

airgap flux density with the analytical values from a simple lumped parameter 

magnetic circuit. The geometry and the parameters of the spoke-type rotor PM 

machines for different number of poles are shown in Fig. 2.1 and Table 2.1. 

 

 

                      

 

Fig. 2.1 IPM Spoke-type rotor geometries 

(a) 4 poles/slotless IPM machine 

(b) 8 poles/slotless IPM machine (c) 16 poles/slotless IPM machine 
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Stator active axial length 𝐿𝑎𝑥𝑖𝑎𝑙 (mm) 30 mm 

Airgap diameter 𝐷𝑎𝑖𝑟𝑔𝑎𝑝 (mm) 200 mm 

Stator outer diameter 𝐷𝑜𝑢𝑡𝑒𝑟−𝑠𝑡𝑎𝑡𝑜𝑟 

(mm) 

300 mm 

Number of poles P 4, 6, 8, 10, 12, 14, 16, 18, 20 

Airgap length 𝐿𝑔(mm) 0.5 mm 

Permanent magnet type  Ferrite 

Remanence of permanent 

magnet  

𝐵𝑟(T) 0.39 T 

Relative permeability  𝜇𝑟 1.2 

Table 2.1 Parameter of the spoke-type rotor PM machine. 

 

The flux per pole for spoke-type PM rotor is derived using equation Eq. 2.1, derived 

from the lumped parameter magnetic circuit in which the magnets are represented 

by MMF source 𝐹𝑚 and reluctance 𝑅𝑚 connected in series as shown in Fig. 2.2 

[12][61]. 
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(a) 1- pole-pair shown 

 

(b) Full geometry 

Fig. 2.2 Lumped parameter magnetic circuit for spoke-type rotor 

𝜑𝑔 =
𝐹𝑚

(
1
2 𝑅𝑚 + 2𝑅𝑔)

 
 2.1 

          Where: 

𝐹𝑚 = 𝐵𝑟

𝐿𝑚

𝜇𝑟𝜇0
 

 2.2 

𝑅𝑚 =
𝐿𝑚

𝜇𝑟𝜇0𝐴𝑚
 

 2.3 

𝑅𝑔 =
𝐿𝑔

𝜇0𝐴𝑔
 

                  2.4 
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The variation of the flux per pole with the ratio of the inner to outer diameter of the 

spoke-type rotor which is predicted using 2D-FEA and lumped parameter magnetic 

circuit is shown in Fig. 2.3, It can be noticed that the ratio of the inner to outer 

diameter of the rotor has a significant effect on the resulting flux per pole. 

 

Fig. 2.3 Variation of the Flux per pole with the inner to outer diameter ratio of the spoke-

type rotor for (12 pole, pole arc to pole pitch ratio = 0.8, 𝐿𝑔= 0.5 mm and stator active length 

= 30 mm). 

Fig. 2.4, shows the variation of the fundamental airgap flux density for slotless stator 

with airgap length. At fixed stator inner diameter 𝐷𝑠 when airgap length increases, 

the dimensions of the magnets of spoke-type rotor machine will be reduced causing 

reduction of the per pole flux and then 𝐵𝑔 will be reduced. The fundamental value 

of the airgap flux density is:  

𝐵1 =
4

𝜋
𝐵𝑔 sin (𝛼

𝜋

2
) 

 2.5 

It can be seen that the airgap length has a significant effect on airgap flux density. 

Fig. 2.5, shows the variation of the fundamental airgap flux density for slotless stator 

with different number of poles at different airgap length, using both lumped 

parameter magnetic circuit and 2D-FEA. It can be seen that for each airgap length, 
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a pole number exist for which the value of fundamental airgap flux density is 

maximum. 

 

         (i) 4 Poles                                                         (ii)  6 Poles 

 

                       (iii)  8 Poles                                                         (iv)  10 Poles 

 

                       (v)  12 Pole                                                        (vi)  14 Pole 

 

                    (vii)  16 Pole                                                   (viii)  18 Pole 

Fig. 2.4 Variation of the fundamental airgap flux density with airgap length 
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(i)  

 

(ii)  

Fig. 2.5 Variation of the fundamental airgap flux dentistry with number of poles for (Pole 

arc to pole pitch ratio =0.85, inner to outer rotor diameter ratio=0.66 and active length= 30 

mm). (i) Lumped parameter magnetic circuit, (ii) 2D-FEA. 
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The effect of the pole arc to pole pitch ratio of the magnet (𝛼) shown in Fig. 2.1, on 

the fundamental airgap flux density is shown in Fig. 2.6. The value of the 

fundamental airgap flux density is decreased when 𝛼 increased, this due to the 

reducing of the magnet thickness 𝐿𝑚. Fig. 2.7 shows the effect of number of poles, 

where it can be seen that it has a significant effect on the achievable airgap flux 

density.  
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                      (i)  4 Poles                                                              (ii)  6 Poles 

 

                        (iii) 8 Poles                                                       (iv)  10 Poles 

 

          (v)  12 Pole                                                      (vi)  14 Pole 

 

              (vii)  16 Pole                                           (viii)  18 Pole 

 

Fig. 2.6 Variation of the fundamental airgap flux density with the pole arc to pole pitch 

ratio of the magnet. 
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(i)  

 

(ii)  

Fig. 2.7 Variation of the fundamental airgap flux density with number of poles for (𝐿𝑔= 0.5 

mm, inner to outer rotor diameter ratio=0.66 and active length= 30 mm). (i) Lumped 

parameter magnetic circuit, (ii) 2D-FEA. 
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The dimensions of the magnets used in the machines will be changed if the ratio of 

the inner to outer diameter of the rotor is changed as shown in Fig. 2.8. When the 

ratio is increased at fixed airgap length and pole arc to pole pitch ratio 𝜶, the area of 

the magnet be reduced, and the thickness will be changed, and this will reduce the 

resulting fundamental airgap flux density. Similarly, Fig. 2.9 confirms that for 

different rotor inner active diameter to outer active diameter, the fundamental airgap 

flux density is significantly affected by number of poles. 
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                         (i) 4 Poles                                                       (ii)  6 Poles 

 

                       (iii)  8 Poles                                                   (iv)  10 Poles 

 

                      (v)  12 Pole                                                   (vi)  14 Pole 

 

         (vii)  16 Pole                                                  (viii)  18 Pole 

 

Fig. 2.8 Variation of the fundamental airgap flux density with the active inner to outer 

diameter ratio of the rotor. 
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(i)  

 

(ii)   

Fig. 2.9 Variation of the fundamental airgap flux density with number of poles for (𝐿𝑔= 0.5 

mm, pole arc to pole pitch ratio =0.8 and active length= 30 mm). (i) Lumped parameter 

magnetic circuit, (ii) 2D-FEA. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 8 12 16 20

F
u

n
d

a
m

en
ta

l 
a

ir
g

a
p

 f
lu

x
 d

en
si

ty
 (

T
)

Pole

RIOD=0.5

RIOD=0.6

RIOD=0.7

RIOD=0.8

RIOD=0.9

RIOD=0.99

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

4 8 12 16 20

F
u

n
d

a
m

en
ta

l 
a

ir
g

a
p

 f
lu

x
 d

en
si

ty
 (

T
)

Pole

RIOD=0.5
RIOD=0.6
RIOD=0.7
RIOD=0.8
RIOD=0.9
RIOD=0.99



38 

 

2.2.1 Conclusion 

The conventional spoke-type rotor machine is simulated using 2D-FEA and 

the important leading design parameters such as: number of poles, pole arc to pole 

pitch ratio, airgap length and the ratio of inner to outer diameter of the rotor are 

investigated to find the flux per pole and the fundamentals airgap flux density. 

A simple lumped parameter magnetic circuit which neglects the leakage flux and 

assumes a slotless stator is employed to model the rotor and investigate the 

generated flux per pole. The output results show there is a good agreement between 

2D-FEA and lumped parameter magnetic circuit which can be adopted as in the 

initial design stage. 

 

2.3 Novel PM rotor 

2.3.1 Introduction 

Spoke-type rotor machines generate large airgap flux densities since they 

exhibit flux focusing geometries particularly, if large number of poles are used. 

These types of machines may enable to use of low-cost Ferrite PM to achieve high 

torque density and efficiencies compared with those using rare earth PM. Therefore, 

in this section the simulation and analysis of a novel rotor which contain axial and 

circumferential magnetized PMs using 3D flux software is presented, since 3D finite 

element method (FEM) allows precise analysis of magnetic device considering 

geometrical details and magnetic nonlinearity. A simple lumped parameter magnetic 

circuit model is also proposed to analyze the new rotor topologies assuming slotless 

stator, and where infinitely permeable soft magnetic rings and pole pieces are used. 
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2.3.2 A novel rotor with axially and circumferentially          

magnetized permanent magnet 

The geometry of the novel rotor PM motor is shown in Fig. 2.10 and Fig. 2.11 

respectively, the dimensions and parameters are shown in Table 2.2. In the proposed 

rotor, a sintered Ferrite PMs axially and circumferentially magnetized are used to 

achieve large airgap flux densities. When compared with spoke-type rotor, lower 

number of poles will be required to achieve higher airgap flux densities for smaller 

ratios of active length to diameter of the rotor. The proposed machine is initially 

simulated with slotless stator for active stator lengths, airgap lengths, pole arc to 

pole pitch ratio and different inner to outer rotor diameter ratios [12]. 
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Fig. 2.10 Geometry of the novel PM rotor 
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Fig. 2.11 Topology of the novel PM rotor-based 3D-FEA 
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Stator active axial length 𝐿𝑎𝑥𝑖𝑎𝑙 (mm) 30 mm 

Airgap diameter 𝐷𝑎𝑖𝑟𝑔𝑎𝑝 (mm) 200 mm 

Stator outer diameter 𝐷𝑜𝑢𝑡𝑒𝑟−𝑠𝑡𝑎𝑡𝑜𝑟  (mm) 300 mm 

Number of poles P 6, 12, 18 

Airgap length 𝐿𝑔 (mm) 0.5 mm 

Axial PM length 𝐿𝐴𝑃𝑀 (mm) 7.5 mm 

Soft magnetic ring axial 

length 

𝐿𝑟𝑖𝑛𝑔 (mm) 5 mm 

Permanent magnet type  Ferrite 

Remanence of permanent 

magnet  

𝐵𝑟 (T) 0.39 T 

Relative recoil permeability  𝜇𝑟 1.2 

Table 2.2 Parameters of the proposed rotor PM machine 

2.3.3 Lumped parameter magnetic circuit model of    

the proposed rotor 

The lumped parameter magnetic circuit which is used to model the new proposed 

rotor and derive the average air gap flux density 𝐵𝑔 analytically is shown in Fig. 

2.12, assuming the slotless stator, an infinitely permeable soft magnetic rings and 

soft magnetic pole pieces and neglecting the leakage fluxes [12].  
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Fig. 2.12 Lumped parameter magnetic circuit of the proposed rotor. 

Based on the above lumped parameter magnetic circuit, the flux per pole of the 

proposed rotor machine is derived as: 

𝜑𝑔 =
(𝜆𝐹𝑎 + 𝐹𝑐)

(
1
2 𝑅𝑐 + (2 + 𝜆)𝑅𝑔)

 
                2.6 

Where: 

𝐹𝑎 = 𝐵𝑟

𝐿𝑎

𝜇𝑟𝜇0
 

 2.7 

𝐹𝑐 = 𝐵𝑟

𝐿𝑐

𝜇𝑟𝜇0
 

 2.8 

𝑅𝑎 =
𝐿𝑎

𝜇𝑟𝜇0𝐴𝑎
 

 2.9 

𝑅𝑐 =
𝐿𝑐

𝜇𝑟𝜇0𝐴𝑐
 

 2.10 

𝑅𝑔 =
𝐿𝑔

𝜇0𝐴𝑔
 

 2.11 

𝜆 = 𝑅𝑐/𝑅𝑎  2.12 
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For the spoke-type rotor machine, 𝐹𝑎=0. Fig. 2.13 shows the variation of the per pole 

flux with the of the inner to outer diameter ratio of the new proposed rotor which is 

predicted using 3D-FEA and lumped parameter magnetic circuit and compared with 

the conventional spoke-type rotor, it can be seen there is a good agreement between 

the predicted values using both methods. It can also be noticed that the inner to outer 

diameter ratio of the rotor affects significantly the resulting flux per pole. 

Furthermore, comparing with spoke-type rotor, a noticeable increase in the 

generated per pole flux can be achieved with the new proposed rotor.  

 

Fig. 2.13 Variation of the flux per pole for the (spoke-type rotor and proposed rotor) at 

different ratio of inner to outer diameter. 
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Fig. 2.14 shows the variation of the airgap flux density with the stator axial length. 

It can be noticed that the axial length of the stator has a significant effect on the 

airgap flux density resulting in a high flux density value at small ratio of stator axial 

length to the rotor diameter (𝐿𝑠𝑡𝑎𝑡𝑜𝑟 𝐷𝑟𝑜𝑡𝑜𝑟⁄ ). 

Furthermore, good agreement exists between 3D-FEA and lumped parameter 

magnetic circuit. Fig. 2.15 shows the variation of the airgap flux density with the 

airgap length, it can be noticed that the airgap flux density has relative sensitivity to 

the airgap length. 

 

Fig. 2.14 Variation of the airgap flux density with stator active axial length for (12 pole, 𝐿𝑔 

= 0.5 mm and pole arc to pole pitch ratio =0.85). 
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Fig. 2.15 Variation of the airgap flux density with airgap length for (12 pole, pole arc to 

pole pitch ratio =0.85 & stator active length = 60 mm). 

 

Fig. 2.16 shows the variation of the fundamental airgap flux density for the proposed 

rotor at different pole arc to pole pitch ratio 𝛼 and for different number of poles. It 

can be seen that there is significant increasing in the fundamental airgap flux density 

can be achieved when compared with spoke-type rotor for the same number of poles 

and airgap length. Fig. 2.17 shows the variation of the fundamental airgap flux 

density with the active inner to outer diameter ratio of the proposed rotor. The results 

show that compared with spoke-type rotor, a high value of the of the fundamentals 

airgap flux density can be achieved which can be (≅ 1 T) at ratio = 0.75 depending 

on the number of poles. 
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(i)  

 

(ii)  

 

(iii)  

Fig. 2.16 Variation of the airgap flux density pole arc to pole pitch ratio (α) for (𝐿𝑔 =0.5 

mm and stator active length =30 mm). (i) 6 poles. (ii) 12 pole. (iii) 18 pole. 
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(i)  

 

(ii)  

 

(iii)  

Fig. 2.17 Variation of the fundamental airgap flux density with the inner to outer diameter 

ratio of the rotor for (𝐿𝑔= 0.5 mm, pole arc to pole pitch ratio = 0.8 and stator active length 

= 30 mm). (i) 6 poles. (ii) 12 pole. (iii) 18 pole. 
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2.4 Conclusion 

In this chapter, a novel rotor topology equipped with axially and 

circumferentially magnetized ferrite permanent magnets is investigated and 

compared with the conventional spoke-type rotor topology in term of achieved high 

airgap flux density considering the effect of many factors such as: stator active 

length, number of poles, pole arc to pole pitch ratio, airgap length and the ratio of 

inner to outer diameter of the rotor. 

As the ratio of the inner to outer diameter of the rotor increases, the dimensions of 

the magnets of the conventional spoke-type rotor and the proposed rotor will be 

changed causing the flux per pole and then the fundamental airgap flux density to 

be reduced. In addition, the length of the airgap 𝐿𝑔 has a great effect on the generated 

airgap flux density. As airgap length increases, the flux at No-load captured by the 

winding or also at slotless stator will be reduced causing the airgap flux density to 

be reduced. Therefore, at specific No. of poles the required airgap flux density 

should be chosen at specific airgap length. Furthermore, as the pole arc to pole pitch 

ratio increase, the thickness of the magnet of the spoke– type rotor will be reduced 

at fixed No. of poles causing airgap flux density to be reduced. As result the value 

of the pole arc to pole pitch ratio should be chosen with a suitable value (not very 

small), the reason is that the increase of the airgap flux density will cause saturation 

in the rotor and stator materials when pole arc to pole pitch ratio is very small.  

Comparing with the conventional spoke-type rotor, high airgap flux density can be 

achieved from the new proposed rotor for relatively small ratio of axial length to 

diameter of the rotor which is can be about 2 times the remanence of the used ferrite 

PMs. Therefore, the proposed machine has the potential to be used in different cost 

sensitive applications, where torque/power density are important requirements, such 

as electric and hybrid vehicles. 
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A simple lumped parameter magnetic circuit which neglects the leakage flux and 

assumes a slotless stator is employed to model the rotor of the two topologies and 

investigate the flux per pole generated for different number of poles. Since it 

consumes less time comparing with FEA and can be used for different type of 

machines. The output results show there is a good agreement between FEA and 

lumped parameter magnetic circuit which can be adopted as in the initial design 

stage. 
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3. Chapter 3 
 

3. Design of axially and                                                        

circumferentially magnetized PM 

motor 

3.1 Introduction 

This chapter describes and analyses the performance and the characteristics 

of the new proposed rotor motor. Using 3D-FE, the geometry of the new proposed 

machine is simulated and optimised to obtain the desired output characteristics 

which enable it to be used in different cost sensitive applications, where 

torque/power density are important requirements, such as electric and hybrid 

vehicles. 

3.2 Novel PM motor 

The schematic of the proposed machine and its parameters are shown in Fig. 3.1 and 

Table 3.1 respectively. 
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(i) View with CPMs 

 

 

(ii) View with APMs 

Fig. 3.1 Full geometry of the new proposed machine-based FEA. 
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Stator active axial length 𝐿𝑎𝑥𝑖𝑎𝑙  30 mm 

Stator back iron width 𝑑𝑐 (mm) 25.25 mm 

Tooth stalk width 𝑇𝑠 (mm) 50.0 mm 

No. of winding turns N 24 turn / 1 2 strands / FSCW 

Airgap diameter 𝐷𝑎𝑖𝑟𝑔𝑎𝑝 (mm) 200 mm 

Stator outer diameter 𝐷𝑜𝑢𝑡𝑒𝑟−𝑠𝑡𝑎𝑡𝑜𝑟  (mm) 350 mm 

Number of pole pairs 𝑃 4 

Rotor outer active diameter 𝐷𝑜𝑢𝑡𝑒𝑟−𝑟𝑜𝑡𝑜𝑟 (mm) 199 mm 

Axial PM length 𝐿𝐴𝑃𝑀 (mm) 7.5 mm 

Circumferential PM length 𝐿𝐶𝑃𝑀 (mm) 30 mm 

Circumferential PM width 𝑊𝐶𝑃𝑀 (mm) 49.75 mm 

Circumferential PM thickness 𝐿𝐶  (mm) 11.7 mm 

Soft magnetic ring axial length 𝐿𝑟𝑖𝑛𝑔 (mm) 5 mm 

Number of slots 𝑁𝑠 12 

Slot opening to slot pitch ratio  0.1 

Airgap length 𝐿𝑔 (mm) 0.5 mm 

Soft magnetic ring  Mild steel 

Pole pieces material  SMC 

Remanence of ferrite PM  𝐵𝑟  (T) 0.39 T 

Relative recoil permeability  𝜇𝑟 1.2 

Based speed 𝑁𝑏𝑎𝑠𝑒  2250 r/min 

Max. speed  4500 r/min 

Max. current  880.27 A/turn 

DC link voltage 𝑉𝐷𝐶 17 V/turn 

Rated torque 𝑇𝑟𝑎𝑡𝑒𝑑  38.5 N.m 

Rated power 𝑃𝑟𝑎𝑡𝑒𝑑  9 kW 

Table 3.1 Parameters of the new proposed machine 
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Based on Fig. 3.2, the initial values of the stator teeth width and back iron thickness 

are calculated using Eq. 3.1 and Eq. 3.2, respectively. It can be noticed that the width 

of the tooth (Wt) is limited by the airgap flux density (Bairgap) and tooth density 

(Btooth) which depends on the value of flux per slot pitch (ϕs) and the active axial 

length of the machine (𝐿𝑎𝑥𝑖𝑎𝑙) as shown in Eq. 3.3. Whereas the back iron thickness 

(dc) is limited by the airgap flux density (Bairgap) and the flux density in the back 

iron core (Bcore) which depends on the value of flux per pole-pitch (ϕp) and the 

axial length of the machine (𝐿𝑎𝑥𝑖𝑎𝑙) as shown in Eq. 3.4. These are subsequently 

refined to take into account the saturation of the magnetic circuit. 

 

Wt =
Bairgapλs

Btooth
 

 3.1 

 

dc =
BairgapπDairgap

4PBcore
 

 3.2 

 

Btooth =
ϕs

WtL
 

 3.3 

 

Bcore =
ϕP 2⁄

dcL
 

 3.4 
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                                                    (a) 

 

 

                                                           (b) 

Fig. 3.2 Schematic diagram for (a) stator teeth (b) stator back iron. 
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In 3D-FEA, the stator windings (turn/coil) are represented using non- mesh coil 

option as shown in Fig. 3.3. 

 

Fig. 3.3 3D-FEA based representing of stator winding (turn/coil). 

 

 

3.3 3D-FEA Simulation and results 

3.3.1 No-load condition 

Fig. 3.4 - Fig. 3.6 shows the output characteristics of the new proposed machine 

such as linkage flux, BEMF voltages, It can be noticed that the fluxes produced by 

all the permanent magnets are focused in order to achieve large airgap flux densities 

compared to the conventional spoke-type rotor topologies, especially when a lower 

number of poles (8 poles) are used.  
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(a) 3-phase linkage flux waveforms 

 

(b) Harmonic spectrum 

 

(c) d-q axes phase flux linkage waveforms 

Fig. 3.4 Linkage flux wave forms under open circuit condition at speed =2250 r/min. 
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(a) 3-phase BEMF phase voltage waveforms 

 

(b) Harmonic spectrum 

Fig. 3.5 Three phase BEMF-Phase voltage waveforms at speed = 2250 r/min. 
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(a) 3-phase BEMF line voltage waveforms 

 

(b) Harmonic spectrum 

Fig. 3.6 Three phase BEMF-Line voltage waveforms at speed = 2250 r/min. 
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Fig. 3.7 shows the NO-LOAD airgap flux density. As explained in chapter two, it 

can be noticed that a high value of the average flux density can be achieved which 

is more than 1.5 time of the remanence of the ferrite permanent magnet, especially 

at low ratio of the stator active length to rotor diameter which is very important 

characteristic of the novel machine. The waveform of cogging torque is predicted 

as shown in Fig. 3.8. It can be seen that low value of the cogging torque can be 

achieved. 

 

 

Fig. 3.7 Airgap flux density waveform for the new proposed machine. 
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Fig. 3.8 Cogging torque waveform for the new proposed machine. 

3.3.2 Demagnetization characteristics of the ferrite   

magnet 

The demagnetisation withstand capability for the Ferrite magnet used in the new 

proposed machine is estimated when full load current is applied at different working 

temperature so as to make sure that the magnet B-H characteristics will be within 

the linear region and to avoid working below the knee point as shown in Fig. 3.9. 

This has an important effect on the choosing of the correct type of sintered Ferrite 

magnet used in the prototype. The flux density Bm and the field intensity Hm for 

both the axially magnetised PM and circumferentially magnetised PM are shown in 

Fig. 3.10 & Fig. 3.11. As a result, Ferrite magnet grade (TDK FB6H) is chosen since 

it has linear working characteristics on the B-H curve at ambient and other working 

temperature at shown in Fig. 3.12 [62]. 
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Fig. 3.9 B-H characteristics of the magnet material showing the demagnetization operating 

region [6] 

 

 

Fig. 3.10 Flux density of the ferrite PM used in the new proposed machine. 
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Fig. 3.11 Field intensity of the ferrite PM used in the new proposed machine. 

 

Fig. 3.12 B-H curve of the ferrite magnet grade (TDK FB6H) [62] 

-220

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

-60 -20 20 60 100

H
m

(K
A

/m
)

Temperature (C°)

(Circumferentially magnetized PM), speed=2250 r/min, at rated torque

(Axially magnetized PM), speed=2250 r/min, at rated torque

(Circumferentially magnetized PM), speed=4500 r/min, at rated torque

(Axially magnetized PM), speed=4500 r/min, at rated torque

(Circumferentially magnetized PM), speed=2250 r/min, at peak torque

(Axially magnetized PM), speed=2250 r/min, at peak torque



64 

 

3.3.3 Simulation at load condition 

In order to predict the output characteristics for the new proposed machine such as 

torque / speed and power / speed, efficiency envelopes and field weakening 

properties, it is simulated at load condition at 𝐼𝑚𝑎𝑥 = 880.27A/turn (made from 24 

turns of 12 strands of 0.75mm diameter wire) at maximum airgap shear stress = 

20kPa. According to the 3D-FEA, the wave forms of the linkage flux, phase 

voltages, iron losses and maximum torque per ampere are investigated at different 

speeds to predict the required characteristics as shown in the below section. 

3.3.3.1 Linkage flux waveforms at load condition 

Fig. 3.13–Fig. 3.16, shows the three phase linkage flux waveforms for the new 

proposed machine which are predicted using 3D-FEA and its fundamental analysis 

at different rotational speed starting with base speed = 2250 r/min and in field 

weakening region at high speed. It can be noticed that the values of the linkage flux 

are decreased gradually as the rotational speed increases, due to field weakening in 

order to get a torque and output power within the limitation of the available voltage 

(DC link voltage). The value of current angle (𝛾) is determined based on the 

maximum value of the torque per applied load achieved (MTPA) which is predicted 

equal to (𝛾 = 25°) at base speed (2250 r/min). 
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(a) 3-phase linkage flux waveforms 

 

(b) Harmonic spectrum 

 

(c) d-q axes phase flux linkage waveforms 

Fig. 3.13 Linkage flux at 𝐼𝑚𝑎𝑥=880.27 A/turn, speed = 2250 r/min, 𝛾= 25°. 
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(a) 3-phase linkage flux waveforms 

 

(b) Harmonic spectrum 

 

(c) d-q axes phase flux linkage waveforms 

Fig. 3.14 Linkage flux at 𝐼𝑚𝑎𝑥 = 880.27 A/turn, speed = 2500 r/min, 𝛾 = 35.65°. 
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(a) 3-phase linkage flux waveforms 

 

(b) Harmonic spectrum 

 

(c) d-q axes phase flux linkage waveforms 

Fig. 3.15 Linkage flux at 𝐼𝑚𝑎𝑥 = 880.27 A/turn, speed = 3500 r/min, 𝛾 = 52.39°. 
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(a) 3-phase linkage flux waveforms 

 

(b) Harmonic spectrum 

 

(c) d-q axes phase flux linkage waveforms 

Fig. 3.16 Linkage flux at 𝐼𝑚𝑎𝑥 = 880.27 A/turn, speed = 4500 r/min, 𝛾 = 62.07°. 
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3.3.3.2 Torque waveforms at load condition 

The waveforms of the electromagnetic torque which are predicted using 3D-FEA at 

base speed = 2250 r/min and during the field weakening working region are shown 

in Fig. 3.17–Fig. 3.20. In the field weakening region as the speed increases the value 

of the torque will be reduced in order to work with constant power. In order to get 

maximum current per ampere the field weakening region, there will be d-axis 

current (𝐼𝑑) injected as the as the maximum current angle (𝛾) will be > zero). The 

average values of the torque will be maximum at the base speed = 2250 r/min and 

then started to decrease when working at the high speed in order to get the same 

required output power as much as possible, as will be seen in the generated torque 

speed envelopes later. 

 

 

Fig. 3.17 Torque waveform at 𝐼𝑚𝑎𝑥 = 880.27 A/turn, based speed = 2250 r/min, 𝛾 = 25°, 

𝐼𝑑= -372.018 A/turn, 𝐼𝑞= 797.7956 A/turn. 
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Fig. 3.18 Torque waveform at 𝐼𝑚𝑎𝑥= 880.27 A/turn, speed = 2500 r/min, 𝛾 = 35.65°,    

𝐼𝑑  = -513.161 A/turn, 𝐼𝑞 = 715.2212 A/turn. 

 

Fig. 3.19 Torque waveform at 𝐼𝑚𝑎𝑥= 880.27 A/turn, speed = 3500 r/min, 𝛾 = 52.39°,     

𝐼𝑑= -697.349 A/turn, 𝐼𝑞 = 537.1967 A/turn. 
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Fig. 3.20 Torque waveform at 𝐼𝑚𝑎𝑥 = 880.27 A/turn, speed = 4500 r/min, 𝛾 = 62.07°,      

𝐼𝑑 = -777.796 A/turn, 𝐼𝑞 = 412.19 A/turn. 

3.3.4 Torque components separation using frozen    

permeability 

The well-known equation of the electromagnetic torque of the machine is [48]: 

𝑇𝑒𝑚 =
𝑚

2
𝑃[Ψ𝑑(𝑖𝑑 , 𝑖𝑞 , 𝜃)𝑖𝑞 − Ψ𝑞(𝑖𝑑, 𝑖𝑞 , 𝜃)𝑖𝑑]  3.5 

 

Under low magnetic saturation (low load condition), the mutual coupling between 

the d and q axis of the magnetic circuit will be very small and negligible. Therefore, 

the d and q axis of the linkage flux are expressed using Eq. 3.6 [49]. 

Ψ𝑑 = Ψ𝑚(𝑖𝑑, 𝑖𝑞 , 𝜃) + 𝐿𝑑(𝑖𝑑, 𝑖𝑞 , 𝜃)𝑖𝑑 

Ψ𝑞 = 𝐿𝑞(𝑖𝑑, 𝑖𝑞 , 𝜃)𝑖𝑞 

 3.6 
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On the other hand, at high load condition and if high value of torque is required, the 

magnetic saturation will be high. Therefore, the mutual coupling between the d and 

q axis of the magnetic path should be considered in the calculation of the d and q 

axis of the linkage flux equation as shown in Eq. 3.7 [49]. 

𝛹𝑑 = 𝛹𝑚𝑑(𝑖𝑑, 𝑖𝑞 , 𝜃) + 𝐿𝑑(𝑖𝑑, 𝑖𝑞 , 𝜃)𝑖𝑑 + 𝑀𝑑𝑞(𝑖𝑑, 𝑖𝑞 , 𝜃)𝑖𝑞 

Ψ𝑞 = Ψ𝑚𝑞(𝑖𝑑 , 𝑖𝑞 , 𝜃) + 𝑀𝑞𝑑(𝑖𝑑, 𝑖𝑞 , 𝜃)𝑖𝑑 + 𝐿𝑞(𝑖𝑑, 𝑖𝑞 , 𝜃)𝑖𝑞 

 3.7 

 

Substituting Eq. 3.7 into Eq. 3.5, the resulting torque equation will be [49]: 

𝑇𝑒𝑚 =
𝑚

2
𝑃[Ψ𝑚𝑑𝑖𝑞 − Ψ𝑚𝑞𝑖𝑑 + (𝐿𝑑 − 𝐿𝑞)𝑖𝑑𝑖𝑞 + 𝑀𝑑𝑞𝑖𝑞

2 − 𝑀𝑞𝑑𝑖𝑑
2]  3.8 

 

Due to saturation effect, the reluctance of the d and q axis of the stator iron will be 

unequal due to the relative permeability change of the stator iron at different rotor 

position as shown in Fig. 3.21. 

 

Fig. 3.21 Relative permeability contour at base rotation speed (a) Rotor position =15°, (b) 

Rotor position =43.5°. 
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As a result, the interaction between the rotor magnetic field with the unequal 

reluctances in the d and q axis will contribute torque component 𝑇𝑚𝑟, which will be 

added to Eq. 3.8. and the final equation will be Eq. 3.9 [49]. 

𝑇𝑒𝑚 =
𝑚

2
𝑃[Ψ𝑚𝑑𝑖𝑞 − Ψ𝑚𝑞𝑖𝑑 + (𝐿𝑑 − 𝐿𝑞)𝑖𝑑𝑖𝑞 + 𝑀𝑑𝑞𝑖𝑞

2 − 𝑀𝑞𝑑𝑖𝑑
2] 

                                                       +𝑇𝑚𝑟 

 3.9 

 

 

In this section, the instantaneous torque components shown in Eq. 3.9, are separated 

using frozen permeability process via FLUX 3D software as described below. 

Fig. 3.22 illustrates the concept of the frozen permeability, where PM, i and 

combined refer to PM excitation, current excitation and the combination of both PM 

and current excitation respectively [48], 𝐻𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 is the combined magnetic fields 

which is the combination of the 𝐻𝑃𝑀 and 𝐻𝑖. It can be noticed that the summation 

of 𝐵𝑃𝑀 + 𝐵𝑖 > 𝐵𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 which means 𝐵𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 cannot be obtained by 

superposition 𝐵𝑃𝑀 and 𝐵𝑖 respectively due to the difference of their relative 

permeability 𝜇𝑃𝑀 and 𝜇𝑖. Therefore, the concept of the frozen permeability assume 

that the relative permeability will be fixed at value of 𝜇𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑. In other words, the 

B-H relationship will be straight line with a slop of 𝜇𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑. As a result, the new 

combination of flux density 𝐵𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝐵𝑃𝑀_𝐹𝑃 + 𝐵𝑖_𝐹𝑃. 
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Fig. 3.22 Frozen permeability concept diagram [49] 

 

 

The process for one electrical cycle using frozen permeability concept is deduced in 

the flow chart as shown in Fig. 3.23, where A-F are defined in Table 3.2. In this 

process, the frozen permeability concept is applied to stator part material. Therefore, 

the magnetic characteristic of stator material is updated from the original B-H curve 

to the spatial quantity at the present rotor position. This process will be continued 

until one electrical period is over. 
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Fig. 3.23 Process of frozen permeability concept [49] 

To compute the components of the electromagnetic torque at the rated speed, the 

excitation sources are changed in order to accurately compute the torque 

components resulted from this source as described in Table 3.2. It can be seen that 

the torque can be separated into six components and the final torque equation will 

be Eq. 3.10. 
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Torque 

components 

Description Equation 

A Remove magnets 𝑚

2
𝑃[(𝐿𝑑 − 𝐿𝑞)𝑖𝑑𝑖𝑞 + 𝑀𝑑𝑞𝑖𝑞

2 − 𝑀𝑞𝑑𝑖𝑑
2] 

B Just q-axis current 

as input load 

𝑚

2
𝑃[Ψ𝑚𝑑𝑖𝑞 + 𝑀𝑑𝑞𝑖𝑞

2] + 𝑇𝑚𝑟 

C Remove magnets 

& Just q-axis 

current as input 

load 

 

𝑚

2
𝑃𝑀𝑑𝑞𝑖𝑞

2 

D Just d-axis current 

as input load 

𝑚

2
𝑃[−Ψ𝑚𝑞𝑖𝑑 − 𝑀𝑞𝑑𝑖𝑑

2] + 𝑇𝑚𝑟 

E Remove magnets 

& Just d-axis 

current as input 

load 

 

−
𝑚

2
𝑃𝑀𝑞𝑑𝑖𝑑

2 

F No current 𝑇𝑚𝑟 

Table 3.2 Torque components separation using frozen permeability process [49] 

𝑇𝑒𝑚 = 𝐴 + 𝐵 − 𝐶 + 𝐷 − 𝐸 − 𝐹  3.10 

To achieve torque component (A), the rotor magnets are removed by setting the 

remanence of the magnets (𝐵𝑟 = zero) and keep armature current as excitation 

source. Furthermore, the torque components (B and D) are achieved by exploiting 

just q-axis and d-axis of the armature current as input source respectively. Besides 

that, torque components (C and E) are achieved by removing the rotor magnets as 

for (A) but with only q-axis and d-axis of the armature current as input source, 

respectively. Finally, torque component (F) which represent the component 

contributed by the interaction of the rotor permanent magnet field with the unequal 

d and q direction in stator iron is achieved by removing the armature current source, 

in this case the rotor permanent magnet field will represent the only excitation 

source for the machine. To achieve each component mentioned above, the geometry 

is simulated and solved for one electric cycle based in the concept of the frozen 

permeability using 3D FLUX software developed by CEDRAT. 
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The waveforms of the torque components which are defined in Table 3.2, at rated 

speed are shown in Fig. 3.24 and the average torque values and the percentage values 

with rated torque average value are shown in Table 3.3. 

 

Fig. 3.24 Waveforms of torque components at base speed. 

 

Torque components Average torque (N.m) Average torque ratio (%) 

A 13.1 32.06 % 

B 31 75.95 % 

C 2.24 5.47 % 

D -4 -9.78 % 

E -0.46 -1.14 % 

F -2.49 -6.1 % 

(A+B-C+D-E-F) 40.81 100 % 

Table 3.3 Average value of the separated torque components. 
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Fig. 3.25 shows a comparison between the predicted torque waveforms using (with 

and without using frozen permeability concept) and the one obtained by 3D-FEA. 

(Model 1) represents the waveform of the electromagnetic torque which is predicted 

based on 3D-Flux software while (Model 2) represents the waveform of the torque 

predicted based on the frozen permeability concept and taken into account the effect 

of torque component (𝑇𝑚𝑟) as shown in Eq. 3.9 or Eq. 3.10. It can be noticed that 

(Model 2) and based on frozen permeability concept is accurately represented the 

waveform produced by 3D-FEA with small error comparing with the other predicted 

waveforms. In contrast, the classic model of the torque shown in Eq. 3.11 (Model 

3) and based on frozen permeability has a large error comparing with 3D-FEA, since 

it neglects the effect of mutual inductance (𝑀𝑑𝑞 and 𝑀𝑞𝑑) and the torque component 

(𝑇𝑚𝑟). On the other hand, the classical model of the torque (Model 4) shown in Eq. 

3.11 without using frozen permeability concept only matches the average value of 

the torque predicted by 3D-FEA.  

 

Fig. 3.25 Comparison of the calculated torque waveforms with 3D-FEA. 
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𝑇𝑒𝑚 =
𝑚

2
𝑃[Ψ𝑚𝑑𝑖𝑞 + (𝐿𝑑 − 𝐿𝑞)𝑖𝑑𝑖𝑞] 

= A + B − 2C − E − F 

 3.11 

 

The calculation of the reluctance torque (𝑇𝑟𝑒𝑙) is also done using classic torque 

model with and without frozen permeability process (Model 3 & Model 4) and the 

proposed model in [49] (Model 2) based on frozen permeability concept as shown 

in Eq. 3.12 & Eq. 3.13 respectively. The comparison between the three predicted 

waveforms of the reluctance torque is shown in Fig. 3.26 and Table 3.4. It can be 

noticed that the reluctance torque predicted based on (Model 2) with frozen 

permeability method is more accurate comparing with the other two components 

since, the classic model of the reluctance torque with and without using the frozen 

permeability process neglects the effect of the torque component resulted from 

mutual inductances. On the other hand, the effect of the torque (𝑇𝑚𝑟) on the 

reluctance torque component generated from (Model 2) and (Model 3) of the 

reluctance using frozen permeability is low, due to the fact that the value of (𝑇𝑚𝑟) is 

contributed by the alignment torque calculated using frozen permeability which is 

lower while the reluctance torque is higher compared with classic model of the 

reluctance torque without using frozen permeability process (Model 4) as shown in 

Table 3.4. Therefore, it can be concluded that the predicted torque using (Model 2) 

based on the frozen permeability concept, can accurately validate the torque 

produced by 3D-FEA. 

𝑇𝑟𝑒𝑙 =
𝑚

2
𝑃[(𝐿𝑑 − 𝐿𝑞)𝑖𝑑𝑖𝑞] = A − C − E  3.12 

𝑇𝑟𝑒𝑙 =
𝑚

2
𝑃[(𝐿𝑑 − 𝐿𝑞)𝑖𝑑𝑖𝑞 + 𝑀𝑑𝑞𝑖𝑞

2 − 𝑀𝑞𝑑𝑖𝑑
2] = A  3.13 
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Fig. 3.26 Comparison of the reluctance torque waveforms. 

 

 Model 3 Model 2 Model 4 

Average 

reluctance 

torque (N.m) 

 

11.3 

 

13.1 

 

7 

Average 

reluctance 

torque ratio 

(%) 

 

27.6 % 

 

32 % 

 

17.1 % 

Table 3.4 Average values of the predicted reluctance torques. 
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3.4 Torque & power speed envelope 

In this section, the generated torque & power speed envelops which are predicated 

based on 3D-FEA at different airgap shear stress are detailed. Fig. 3.27 shows the 

torque & power speed envelope at maximum airgap shear stress = 20kPa and 𝐼𝑚𝑎𝑥 = 

880.27 A/turn. It can be noticed that a continuous torque of about 38 N.m can be 

getting below and at base speed = 2250 r/min and high output mechanical power of 

about 9 kW. The iron losses of stator material are computed using the 3D- FE based 

on Bertotti formula which including the computation of hysteresis losses, classical 

losses and excess losses as shown in Eq.  3.14.[63]. 

𝑃𝑓𝑒 =  Kf [Losses by hysteresis + Classical losses + Losses in excess] 

Losses by hysteresis = KhBm
αhf βh 

Classical losses = 𝜎
d2

12
[

dB

dt
(t)]

αc

 

Losses in excess = Ke [
dB

dt
(t)]

αe

 

 3.14 

 

Kh: Hysteresis loss coefficient (130.245 (Ws/T2/m3)). 

𝜎: Classical losses coefficient (1923077 S/m). 

Ke: Excess losses coefficient (0.357 (W/(T/s)1.5/m3)).  

d: Stator lamination thickness (0.35E-3 m). 

Kf: Stacking factor (0.97). 

αh: B exponent for Hysteresis losses (2.0). 

βh: f exponent for Hysteresis losses (1.0). 

αc: B exponent for Classical losses (2.0). 

αe: B exponent for Excess losses (1.5). 
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Consequently, the predicted efficiency map over the rated torque and speed range is 

shown in Fig. 3.28. It can be noticed that the high efficiency of about 97% and above 

occurs over the torque range of (12.5 – 38.5) N.m at speed range of 1500 – 4500 

r/min. It should be noted that the iron losses in the rotor pole pieces and magnet are 

not accounted in the prediction of efficiency map. since the material of the rotor 

pieces is soft magnetic composite (SMC) material which is featured with magnetic 

isotropy and powder metallurgy characteristics comparing with the conventional 

silicon steel material and the losses of the ferrite magnet is low comparing with rare 

earth. 

 

Fig. 3.27 Torque speed and power envelope at airgap shear stress 20kPa, 𝐼𝑚𝑎𝑥= 880.27 

A/turn.  
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Fig. 3.28 Predicted efficiency map of the new proposed machine. 

 

The predicted torque, power speed envelop and efficiency for the new proposed 

machine at different airgap shear stress are shown in Fig. 3.29 – Fig. 3.33.                  

The value of the input current (𝐼𝑚𝑎𝑥) is predicted at different shear stress as shown 

in the following equations: 

The initial value of the electromagnetic torque (𝑇𝑒) in firstly analytically calculated 

at different values of shear stress (𝜎) as shown in Eq. 3.15.  

𝑇𝑒 =  2 × 𝑉𝑟𝑜𝑡𝑜𝑟 × 𝜎𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠  3.15 

The value of the electrical loading (𝑄𝑟.𝑚.𝑠) is then predicted from the equation of the 

electromagnetic torque (𝑇𝑒) as shown in 3.16.  

𝑇𝑒 =
𝜋

2√2
× 𝐾𝑤 × 𝐷𝑏𝑜𝑟𝑒−𝑠𝑡𝑎𝑡𝑜𝑟

2 × 𝐿𝑎𝑥𝑖𝑎𝑙 × 𝑄𝑟.𝑚.𝑠 × 𝐵1                     3.16 

The input current (𝐼𝑚𝑎𝑥) is set from the equation of the electrical loading (𝑄𝑟.𝑚.𝑠) as 

shown in Eq. 3.17. 

𝑄𝑟.𝑚.𝑠 =  
𝑁𝑠 × 𝐼𝑟𝑚𝑠

𝜋 × 𝐷𝑏𝑜𝑟𝑒−𝑠𝑡𝑎𝑡𝑜𝑟
 

 3.17 
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Fig. 3.29 Torque speed and power envelope and efficiency at airgap shear stress 18kPa, 

𝐼𝑚𝑎𝑥 = 792.24 A/turn.  
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Fig. 3.30 Torque speed and power envelope and efficiency at airgap shear stress 16kPa, 

𝐼𝑚𝑎𝑥  =704.21 A/turn. 
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Fig. 3.31 Torque speed and power envelope and efficiency at airgap shear stress 14kPa, 

𝐼𝑚𝑎𝑥 = 616.19 A/turn. 
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Fig. 3.32 Torque speed and power envelope and efficiency at airgap shear stress 12kPa, 

𝐼𝑚𝑎𝑥 = 528.16 A/turn. 
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Fig. 3.33 Torque speed and power envelope and efficiency at airgap shear stress 10kPa, 

𝐼𝑚𝑎𝑥 = 440.13 A/turn. 
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3.5 Conclusion 

In this chapter, the simulation and analysis of the new proposed machine is 

presented. Based on 3D-FEA, the required No-Load characteristics of the machine 

such as BEMF voltage, airgap flux density and cogging torque are predicted. The 

results show that a high airgap flux density with average value about 2 times the 

remanence of the used ferrite magnet can be achieved with low ratio of the stator 

active length to rotor diameter. The machine is simulated at different load conditions 

and the output characteristics such as the torque and power envelope are then 

predicted. Later on, the losses of the machines such as copper and iron losses are 

computed.  

Based on 3D FLUX software and the with help of CEDRAT techniques a new 

prediction of the electromagnetic torque waveform is investigated using frozen 

permeability concept which considers the effect of magnetic saturation at high load 

condition, the mutual coupling between the d and q axis of the magnetic path and 

the interaction between the rotor magnetic field with the unequal reluctances in the 

d and q axis of the stator material. The validation of the predicted waveform of the 

torque is done with 3D-FEA. The results show that the predicted torque based on 

the frozen permeability concept, can accurately validate the torque produced by 3D-

FEA. 

Finally, the torque speed envelope and efficiency map are predicted. The predicted 

results show efficiencies in excess of 97% can be achieved.  
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4. Chapter 4 

4. Lumped parameter circuit 

model 

4.1 Introduction 

Compared to finite element method, lumped parameter circuit model can 

also be considered a good method to represent, analyze and simulate electrical 

machines since it takes shorter time and can be used to estimate the performance 

different type of machines to predict parameters such as linkage flux, BEMF, torque 

etc. The accuracy of the lumped parameter circuit model depends on how the most 

important details are considered such as stator active axial length, leakage in stator 

slot, back iron, tooth tips and the (linear, nonlinear) magnetic characteristic of the 

stator iron material. In this chapter, a new non-linear lumped parameter circuit 

model (LPCM) is represented to simulate the new proposed machine using 

MATLAB/Simscape which enable to develop the models of different components. 

Therefore, the flux distribution and machine characteristics are predicted 

considering magnetic saturation and the above-mentioned parameters. The value of 

per phase linkage flux is evaluated at different rotor positions which is then used to 

predict the BEMF and the electromagnetic torque. 
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4.2 Basic concepts of LPCM approaches 

The creation of the LPCM needs a prior knowledge to the flux pattern presented in 

the machines, Therefore, it is created to position lumped reluctances in the direction 

of the flux[43].  The governing equation at each lumped element is given by Eq. 4.1. 

𝜑 =
𝐹

𝑅
 

 4.1 

Where 𝜑, F and R, are flux, magneto-motive force (MMF) and reluctance, 

respectively. Reluctance is defined as: 

𝑅 =
𝐿𝑚

𝜇𝐴
 

 4.2 

Where 𝐿𝑚, 𝜇 and 𝐴 are thickness of the magnet in the direction of the flux, 

permeability of the material and the cross-sectional area perpendicular to flux flow, 

respectively. 

Permanent magnets are represented by reluctance R in series with an MMF source. 

The MMF source and R are given by: 

𝐹𝑚 = 𝐵𝑟

𝐿𝑚

𝜇0𝜇𝑟
 

 4.3 

 

𝑅𝑚 =
𝐿𝑚

𝜇0𝜇𝑟𝐴𝑚
 

 4.4 

 

And the reluctance associated with the airgap is given by: 

𝑅𝑎𝑖𝑟𝑔𝑎𝑝 =
𝐿𝑔

𝜇0𝐴𝑔
 

 4.5 

     

Where 𝜇𝑟 , 𝜇0, 𝐿𝑚, 𝐴𝑚, 𝐿𝑔 and 𝐴𝑔 are relative recoil permeability of the magnet, 

permeability of the free space, thickness of the magnet in the direction of 

magnetisation, area of the magnet to which the magnetisation is perpendicular, 

airgap length and airgap area respectively. 
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4.3 LPCM of the proposed machine 

The new LPCM which is used to represent the new proposed machine is 

shown in Fig. 4.1. It consists of three main regions: stator region, rotor region and 

airgap region. Each part will be detailed clearly in the next section. Due to magnetic 

symmetry, only a quarter part of the machine is represented taking the advantage of 

the periodicity of the machine as shown in Fig. 4.2. The parameters and dimensions 

of the proposed machine are given in Table 4.1. Accordingly, all the reluctances 

representing the stator teeth, back iron and tooth tips are modelled to include a 

nonlinear magnetic saturation, while the others which represent the airgap, stator 

slots and magnets are modelled as linear reluctances. 

4.3.1 Stator modelling 

In order to analyze the flux passing through the stator part of the proposed machine 

accurately taking into account the nonlinear magnetic saturation of the stator tooth, 

back iron and tooth tips (Non-linear permeability is derived from the B-H 

characteristics of the stator material), and the leakage flux between the stator pole at 

the end region, a new LPCM is used as shown in Fig. 4.3. It consist of five region 

(back iron region, teeth region, slots region, tooth tips region and leakage flux 

between adjacent stator teeth), each one is modelled using a specific lumped 

reluctance [21][64].  
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The lumped reluctances for stator back iron region 𝐑𝐬𝐛𝐚𝐜𝐤−𝐢𝐫𝐨𝐧 and stator tooth 

region 𝐑𝐬𝐭𝐨𝐨𝐭𝐡 are derived based on Eq. 4.2. Stator slot leakage path is represented 

by series of reluctance connections 𝐑𝐬𝐬𝐥𝐨𝐭 as shown in Fig. 4.4. The first term 𝐑𝐋𝟏 

is the leakage reluctance between the stator teeth in winding area while the second 

term 𝐑𝐋𝟐 corresponds to the leakage reluctance in slot are excluding the winding 

area. Accordingly, it is modeled based on Eq. 4.6 [21] . Fig. 4.5 shows the leakge 

flux tube in the end region of the stator. It consists of semi-circular cylinder and half 

annulus. The leakage reluctance between adjacent stator teeth 𝐑𝐬𝐥𝐞𝐚𝐤𝐚𝐠𝐞 is modelled 

based on Eq.   4.7.  Stator tooth tips are modelled using nonlinear magnetic 

reluctance which is expressed based on Eq. 4.8, Eq. 4.9, Eq 4.10 and Eq. 4.11.  
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Fig. 4.1 Lumped parameter circuit model of the proposed machine. 
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Fig. 4.2 Geometry of the new proposed machine. 
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Stator axial length 𝐿𝑎𝑥𝑖𝑎𝑙 (mm) 30 mm 

Stator back iron width dc (mm) 25.25 mm 

Tooth width 𝑇𝑠 (mm) 50 mm 

Tooth stalk length 𝑇𝑠𝑙 (mm) 42.86 mm 

Tooth tip thickness 𝐿𝑡𝑜𝑜𝑡ℎ−𝑡𝑖𝑝 (mm) 7.73 mm 

Tooth tip width 𝑇𝑡𝑤 (mm) 5.58 

Slot upper width 𝑆𝑢𝑤 (mm) 28.15 

Slot lower width 𝑆𝑙𝑤 (mm) 5.92 mm 

Slot opening angle  3° 

Stator outer diameter 𝐷𝑜𝑢𝑡𝑒𝑟−𝑠𝑡𝑎𝑡𝑜𝑟  (mm) 350 mm 

Stator bore diameter 𝐷𝑏𝑜𝑟𝑒−𝑠𝑡𝑎𝑡𝑜𝑟 (mm) 200 mm 

Airgap diameter 𝐷𝑎𝑖𝑟𝑔𝑎𝑝 (mm) 200 mm 

Airgap length 𝐿𝑔 (mm) 0.5 mm 

Rotor inner diameter 𝐷𝑖𝑛𝑛𝑒𝑟−𝑟𝑜𝑡𝑜𝑟 (mm) 88.18 mm 

Rotor outer diameter 𝐷𝑜𝑢𝑡𝑒𝑟−𝑟𝑜𝑡𝑜𝑟 (mm) 199 mm 

Axial PM length 𝐿𝐴𝑃𝑀 (mm) 7.5 mm 

Circumferential PM length 𝐿𝐶𝑃𝑀 (mm) 11.698 mm 

Soft magnetic ring axial length 𝐿𝑟𝑖𝑛𝑔 (mm) 5 mm 

Rotor Pole piece length 𝐿𝑎𝑥𝑖𝑎𝑙−𝑟𝑜𝑡𝑜𝑟 (mm) 30 mm 

No. of pole pairs 𝑃 4 

No. of slot 𝑁𝑠 12 

Type of magnet  Ferrite 

Remanence of PM 𝐵𝑟(T) 0.39 

permeability of air 𝜇0 henry per meter 4𝜋 ∗ 10−7 

Table 4.1 Parameters of the new proposed machine required for LPCM. 
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Fig. 4.3 Lumped parameter circuit model for the stator of the proposed machine. 
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Fig. 4.4 Flux tube between adjacent stator poles [21] 

 

 

Rsslot 
=(1 ((𝜇0𝑘𝑖𝐿𝑎𝑥𝑖𝑎𝑙 𝜃𝑠𝑙𝑜𝑡𝑟𝑠1⁄ )(𝑟𝑠2 − 𝑟𝑠1))⁄ ) + (1 ((𝜇0𝑘𝑖𝐿 𝜃𝑠𝑙𝑜𝑡⁄ ) ln

𝑟𝑠1

𝑟𝑠3
)⁄ )    

= 𝑅𝐿1 + 𝑅𝐿2 

 

4.6 

 

 

Fig. 4.5 Leakage flux tube between adjacent stator teeth [21] 
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Rsleakage = (1 (2𝜇0𝑤 (0.268 + 0.318 ln (1 +
𝑇𝑠

𝑙𝑠
)))⁄ ) 

  4.7 

 

Rtooth−tip =
𝐿𝑡𝑜𝑜𝑡ℎ−𝑡𝑖𝑝

𝜇0𝜇𝑟𝐴𝑡𝑜𝑜𝑡ℎ−𝑡𝑖𝑝
 

 4.8 

Where: 

 𝐿𝑡𝑜𝑜𝑡ℎ−𝑡𝑖𝑝, 𝜇0, 𝜇𝑟 and 𝐴𝑡𝑜𝑜𝑡ℎ−𝑡𝑖𝑝 are tooth tip length, air permeability, relative 

permeability respectively and tooth tip area, respectively. 𝐴𝑡𝑜𝑜𝑡ℎ−𝑡𝑖𝑝 is expressed as: 

𝐴𝑡𝑜𝑜𝑡ℎ−𝑡𝑖𝑝 = 𝑘𝑖𝐿(𝑇𝑠 − 𝑋)  4.9 

 

𝐿𝑡𝑜𝑜𝑡ℎ−𝑡𝑖𝑝 = 𝑋 if (0 ≤ 𝑋 <
𝑇𝑠

2
)  4.10 

 

𝐿𝑡𝑜𝑜𝑡ℎ−𝑡𝑖𝑝 = 𝑇𝑠 − 𝑋 if (
𝑇𝑠

2
≤ 𝑋 < 𝑇𝑠)  4.11 

 

X is the shifting value between the magnet magnetisation axes and the stator pole. 

4.3.2 Airgap modelling 

The flux path in the airgap region is expressed by reluctance 𝑅𝑎𝑖𝑟𝑔𝑎𝑝 which has been 

derived based on Eq. 4.5. The airgap area 𝐴𝑔 is calculated at each rotation step of 

the rotor with respect to the stator as shown in Eq. 4.12 . Furthermore, the value and 

connection of airgap reluctances 𝑅𝑎𝑖𝑟𝑔𝑎𝑝 will be change based on the position of the 

magnets in the rotor with respect to the stator winding as shown in Fig. 4.6. 

𝐴𝑔 =  𝑊𝑎𝑖𝑟𝑔𝑎𝑝 × 𝐿𝑎𝑥𝑖𝑎𝑙  4.12 

𝑊𝑎𝑖𝑟𝑔𝑎𝑝: Airgap width surrounding between rotor pole-pieces and stator tooth. 
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       (a) Rotor position = 0° mech. Deg.                           (b) Rotor position = 30° mech. Deg.  

                    

    (c) Rotor position = 45° mech. Deg.                           (d) Rotor position = 60° mech. Deg. 

 

(e) Rotor position = 90° mech. Deg. 

Fig. 4.6 Airgap reluctance connections at different rotor positions 
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The effect of the stator slot on the calculation of the airgap length (actual airgap) is 

considered. Therefore, the new airgap length is expressed by Eq. 4.13 using Carter 

coefficient [61]. 

 

𝑙𝑔𝑐 = 𝑘𝑐𝑙𝑔  4.13 

 

Where: 

𝑙𝑔𝑐: Airgap length with carter factor. 

𝑙𝑔: Mechanical airgap length. 

𝑘𝑐: Carter coefficient. 

4.3.3 Rotor modelling 

The LPCM which is used to represent the rotor of the proposed machine is shown 

in Fig. 4.7. As previously mentioned, the axially and circumferentially magnetized 

PMs are represented by MMF source in series with reluctance. The rotor pole piece  

reluctance is represented by 3D reluctance element which consist of five reluctances 

as shown in Fig. 4.8 [65]. The soft magnetic ring reluctance Rring is calculated based 

on Eq. 4.2.  
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(a) Rotor expolded view 

 

(b) LPCM of the rotor 

Fig. 4.7 Lumped parameter circuit model for the rotor of the proposed machine. 
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Fig. 4.8 Rotor pole-pieces reluctance (3D reluctance element). 

4.4 LPCM results and discussion 

The validation of the proposed LPCM shown in Fig. 4.1 is done by comparing the 

output waveforms such as phase flux linkages, BEMF and phase voltages with FEA 

results under open circuit condition and in the presence of armature current (load 

condition). Furthermore, the electromagnetic torque is predicted and compared with 

FEA under different load conditions at different current control angles. The 

instantaneous value of the flux linkages is computed and converted into d, q axis at 

each position step as in FEA.  
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4.4.1 No-load condition 

Fig. 4.9 & Fig. 4.10 show a comparison between predicted phase flux linkage 

waveform at no load (open circuit condition) using the LPCM and FE. It can be 

noticed that a small difference exists in the fundamental values as shown in Fig. 

4.11. Fig. 4.12 & Fig. 4.13, show the BEMF voltage waveform at electrical 

frequency of (150 Hz) and the harmonic spectrum respectively, corresponding to 

rotor speed of 2250 r/min. It can be seen that a very good agreement exists between 

the predicted values using both methods.  

 

 

Fig. 4.9 Phase flux linkage waveforms under No-load condition. 
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Fig. 4.10 d-q axes phase flux linkage waveforms under No-load condition. 

 

Fig. 4.11 Harmonic spectrum of the linkage flux waveform under No-load condition. 
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(i) BEMF waveform – phase A 

 

(ii) BEMF waveform – phase B 

 

(iii) BEMF waveform – phase C 

Fig. 4.12 Phase BEMF voltage waveform under No-load condition at base speed =2250 

r/min. 
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Fig. 4.13 Harmonic spectrum of the BEMF waveform. 

 

4.4.2 Load condition 

Fig. 4.14 - Fig. 4.28 show the waveforms of the phase flux linkages and phase 

voltages which are predicted using proposed LPCM and compared with FE as a 

function of rotor angle at different rotor speeds (electrical frequency) and current 

control angles. The results show that the harmonics especially the fifth harmonics 

of the linkage flux waveforms is high at the base speed 2250 r/min and reduced at 

the field weakening working region of the machine. Therefore, comparing with the 

finite element waveforms, there is a difference between the two waveforms as can 

be noticed in the harmonic analysis, and this difference in values is reduced when 

working at the maximum speed = 4500 r/min. The difference also can be noticed in 

the phase voltage waveforms at different rotation speeds, since they are calculated 

depending on the predicted linkage flux waveforms from the lumped parameter 

circuit model. 
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(i) Linkage flux waveform – phase A 

 

(ii) Linkage flux waveform – phase B 

 

(iii) Linkage flux waveform – phase C 

Fig. 4.14 Phase flux linkage waveforms at speed = 2250 r/min, 𝐼𝑚𝑎𝑥= 880.27A, 𝛾 = 0°. 
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Fig. 4.15 Harmonic spectrum of the linkage flux at speed 2250 r/min, 𝐼𝑚𝑎𝑥= 880.27A,      

𝛾 = 0°. 
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(i) Phase voltage waveform – phase A 

 

(ii) Phase voltage waveform – phase B 

 

(iii) Phase voltage waveform – phase C 

Fig. 4.16 Phase voltage waveforms at speed 2250 r/min, 𝐼𝑚𝑎𝑥= 880.27A, 𝛾 = 0°. 
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(i) Linkage flux waveform – phase A 

 

(ii) Linkage flux waveform – phase B 

 

(iii) Linkage flux waveform – phase C 

Fig. 4.17 Phase flux linkage waveforms at speed = 2250 r/min, 𝐼𝑚𝑎𝑥 = 880.27A, 𝛾 = 25°. 
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Fig. 4.18 Harmonic spectrum of the linkage flux at speed = 2250 r/min, 𝐼𝑚𝑎𝑥 = 880.27A,  

𝛾 = 25°. 
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(i) Phase voltage waveform – phase A 

 

(ii) Phase voltage waveform – phase B 

 

(iii) Phase voltage waveform = phase C 

Fig. 4.19 Phase voltage waveforms at speed 2250 r/min, 𝐼𝑚𝑎𝑥 = 880.27A, 𝛾 = 25°. 
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(i) Linkage flux waveform – phase A 

 

(ii) Linkage flux waveform – phase B 

 

(iii) Linkage flux waveform – phase C 

Fig. 4.20 Phase flux linkage waveforms at speed = 2500 r/min, 𝐼𝑚𝑎𝑥 = 880.27A, 𝛾 = 35.65°. 
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Fig. 4.21 Harmonic spectrum of the linkage flux at speed = 2500 r/min, 𝐼𝑚𝑎𝑥 = 880.27A, 

𝛾 = 35.65°. 
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(i) Phase voltage waveform – phase A 

 

(ii) Phase voltage waveform – phase B 

 

(iii) Phase voltage waveform – phase C 

Fig. 4.22 Phase voltage waveforms at speed 2500 r/min, 𝐼𝑚𝑎𝑥 = 880.27A, 𝛾 = 35.65°. 
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(i) Linkage flux waveform – phase A 

 

(ii) Linkage flux waveform – phase B 

 

(iii) Linkage flux waveform – phase C 

Fig. 4.23 Phase flux linkage waveforms at speed = 3500 r/min, 𝐼𝑚𝑎𝑥 = 880.27A, 𝛾 = 52.39°. 
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Fig. 4.24 Harmonic spectrum of the linkage flux at speed = 3500 r/min, 𝐼𝑚𝑎𝑥= 880.27A,  

𝛾 = 52.39°. 
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(i) Phase voltage waveform – phase A 

 

(ii) Phase voltage waveform – phase B 

 

(iii) Phase voltage waveform – phase C 

Fig. 4.25 Phase voltage waveforms at speed 3500 r/min, 𝐼𝑚𝑎𝑥= 880.27A, 𝛾 = 52.39°. 
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(i) Linkage flux waveform – phase A 

 

(ii) Linkage flux waveform – phase B 

 

(iii) Linkage flux waveform – phase C 

Fig. 4.26 Phase flux linkage waveforms at speed = 4500 r/min, 𝐼𝑚𝑎𝑥 = 880.27A, 𝛾 = 62.07°. 
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Fig. 4.27 Harmonic spectrum of the linkage flux at speed = 4500 r/min, 𝐼𝑚𝑎𝑥 = 880.27A, 

𝛾 = 62.07°. 
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(i) Phase voltage waveform – phase A 

 

(ii) Phase voltage waveform – phase B 

 

(iii) Phase voltage waveform – phase C 

Fig. 4.28 Phase voltage waveforms at speed 4500 r/min, 𝐼𝑚𝑎𝑥 = 880.27A, 𝛾 = 62.07°. 
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4.4.3 Torque at (load condition) 

Fig. 4.29 - Fig. 4.33, show a comparison between the output torque waveforms 

which are predicted using LPCM and FE analysis for amplitude of current (𝐼𝑚𝑎𝑥 = 

880.27 A/turn) at different speeds and current control angles (𝛾). Comparing with 

FEA, the average value of the predicted torque using lumped parameter circuit 

model at different rotation speeds is a slightly smaller as shown in Fig. 4.34 and Fig. 

4.35, which show a comparison between the torque speed envelopes predicted by 

the proposed lumped parameter circuit model and finite element at different current 

angles (𝛾). The LPCM predicted torque is calculated based on Eq. 4.14 or Eq. 4.15 

[49]. 

𝑇
(𝐼𝑚𝑎𝑥,𝛾)=

3
2

𝑃(𝜓𝑑(𝐼𝑚𝑎𝑥,𝛾)∗ 𝐼𝑚𝑎𝑥∗cos(𝛾)−𝜓𝑞(𝐼𝑚𝑎𝑥,𝛾)∗𝐼𝑚𝑎𝑥∗sin(𝛾))
  4.14 

𝑇
(𝜓(𝑑,𝑞),𝑖(𝑑,𝑞))=

3
2

𝑃((𝜓𝑑∗𝑖𝑞)−(𝜓𝑞∗𝑖𝑑))
  4.15 

 

 

 

Fig. 4.29 Torque waveform at speed 2250 r/min, 𝐼𝑚𝑎𝑥 = 880.27A, 𝛾 = 0°. 
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Fig. 4.30 Torque waveforms at speed 2250 r/min, 𝐼𝑚𝑎𝑥 = 880.27A, 𝛾 = 25°. 

 

Fig. 4.31 Torque waveforms at speed 2500 r/min, 𝐼𝑚𝑎𝑥 = 880.27A, 𝛾 = 35.65°. 
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Fig. 4.32 Torque waveforms at speed 3500 r/min, 𝐼𝑚𝑎𝑥 = 880.27A, 𝛾 = 52.39°. 

 

Fig. 4.33 Torque waveform at speed 4500 r/min, 𝐼𝑚𝑎𝑥 = 880.27A, 𝛾 = 62.07°. 
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Fig. 4.34 Predicted average torque at different speed.  

 

Fig. 4.35 Predicted average torque at different current control angle (𝛾). 
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4.5 Conclusion 

A new lumped parameter circuit model is developed to simulate and analyze the 

new proposed rotor machine which is able to predict the machine characteristics 

with significantly shorter time compared with finite element. In addition, the 

nonlinear characteristics of the stator and rotor material, slot leakage, and tooth tip 

leakage are considered.  

The predicted results including flux linkage, BEMF, phase voltage and torque 

waveforms are compared with finite element at no-load condition and at different 

current angles (𝛾) which show a relatively good agreement in particular for the no-

load linkage flux and BEMFs.  

Although nonlinear characteristics of stator are considered, there are a still 

noticeable differences between the predicted linkage flux waveforms between the 

LPCM and the finite elements, particularly for harmonics, and for the phase voltage 

on load conditions. One of the reasons is LPCM struggling with airgap flux with 

rotor/tooth alignment as 𝑅𝑎𝑖𝑟𝑔𝑎𝑝 is only approximated. Nevertheless, the value of 

the predicted linkage flux when working in the field weakening region are closer to 

that predicted by finite element specially at high speeds of 3500 r/min and 4500 

r/min.  

The average value of torques predicted using LPCM generally smaller than those 

predicted value by finite element and it is about (8%) at based speed, albeit the 

difference being smaller at  larger rotational speeds, as can also be confirmed by the 

results in Table 4.2, which shows that the values of inductances 𝐿𝑑 and 𝐿𝑞 are closer 

at higher speed under field-weakening operation. 
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Speed 

(r/min) 

Current 

angle (ᵞ) 

𝐿𝑑 

(FE) 

𝐿𝑑 

(LPCM) 

𝐿𝑞 

(FE) 

𝐿𝑞 

(LPCM) 

𝐿𝑑 (%) 

(FE reference) 

𝐿𝑞 (%) 

(FE reference) 

2250 25 8.28E-06 

 

1E-05 

 

9.9E-06 

 

8.25E-06 

 

-31.7 % 

 

17.1 % 

 

2500 35.65 8.15E-06 

 

1E-05 

 

1.03E-05 

 

8.9E-06 

 

-25.8 % 

 

13.4 % 

 

3500 52.39 8.5E-06 

 

9.84E-06 

 

1.06E-05 

 

8.69E-06 

 

-15.6 % 

 

17.7 % 

 

4500 62.07 8.69E-06 

 

9.9E-06 

 

1.06E-05 

 

1E-05 

 

-14.3 % 2.75 % 

 

Table 4.2 Results for 𝐿𝑑 and 𝐿𝑞 inductances. 
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5. Chapter 5 

5. Experimental tests and    

validations of the novel prototype 

5.1 Introduction 

In this chapter the manufacture and description of the different components 

and assembly of the Ferrite prototype electrical machine are represented. 

Furthermore, the description for the methods adopted for the realization of the 

prototype and tests undertaken is investigated and the results are compared with 3D-

finite element predictions. 

5.2 Novel machine prototype 

The overall geometry of the novel prototype is shown in Fig. 5.1. Each part of the 

prototype construction will be detailed as shown in the following: 

 

Fig. 5.1 Schematic diagram of the novel prototype. 
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5.2.1 Stator  

The stator part of the new prototype is shown in Fig. 5.2. It consists of steel 

lamination type (M270-35A) with (0.35 mm) thickness and (30 mm) active axial 

length with 12 slots, fractional slot concentrating windings (FSCW) with 24 

turn/tooth, 0.75 mm winding diameter are wounded as shown in Fig. 5.3 & Fig. 5.4 

respectively. The overall dimensions will be shown in Appendix A. 

 

 

                                  (a)                                                         (b) 

Fig. 5.2 Stator modelling for the new proposed prototype. 
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Fig. 5.3 Stator steel lamination type (M270-35A). 
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(a) 

 

(b) 

Fig. 5.4 Proposed stator with windings. 
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5.2.2 Rotor 

The rotor part of the new proposed machine is shown in Fig. 5.5 & Fig. 5.6. It 

consists of:  

• Rotor pole pieces. 

• Axially and circumferentially magnetised permanent magnets. 

• Soft magnetic rings. 

• Shaft. 

• Cylindrical bush and adapter. 

 

Due to cost and machining difficulties, the axially magnetised permanent magnets 

are assembled from rectangular pieces, resulting in total area smaller than originally 

assumed. The description of each part will be detailed below and the overall 

dimensions and schematic diagram for the rotor pole pieces, axially and 

circumferentially magnetised permanent magnets and the cylindrical bush will be 

shown in Appendix A. 
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(i) Assembled rotor 

 

 

(ii) Exploded view 

Fig. 5.5 Schematic diagram of the proposed rotor. 
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Fig. 5.6 Proposed rotor. 

Fig. 5.7 & Fig. 5.8 show the rotor pole-pieces which are built using (mild steel EN1) 

and fixed on a non-magnetic aluminium bush using non-magnetic stainless screws 

to minimise the leakage flux. At the outer diameter of the moulds there are two 

features which are used to protect the circumferential PM from being thrown out by 

the centrifugal force at high-speed operation. 
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Fig. 5.7 Schematic diagram of the proposed rotor pole-pieces. 

 

 

Fig. 5.8 Proposed rotor pole-pieces. 
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Fig. 5.9 shows the geometry of the axially and circumferentially magnetized sintered 

ferrite permanent magnets which are used in the new proposed machines with Br 

about (0.39) and linear at 20° in the 2nd quadrant B-H characteristics. As shown in 

Fig. 5.6, there will be two layers of axially magnetised PM distributed and fixed on 

both sides of the rotor pole pieces using specific high strength glue. It may worth 

mentioning that the axially magnetised PM provide a leakage bath for 

circumferentially magnetised PM and vice versa.  

 

Fig. 5.9 Geometry of axially and circumferentially magnetised PM. 
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As shown in Fig. 5.5, the two soft magnetic rings with high permeability steel are 

used and fixed over each axially magnetised PM to provide a good path for the 

magnetic flux as well as supporting the rotor parts. The geometry of the soft 

magnetic ring is shown in Fig. 5.10. 

 

Fig. 5.10 Geometry of the soft magnetic ring. 

The geometry of the used shaft is shown in Fig. 5.11. Due to the combined weight 

of the shaft and the (attached parts fixed over the shaft), a deflection in the shaft may 

happen during rotation which will creates resonant vibration at certain speed which 

is called critical speed. The magnitude of shaft deflection depends on 1) stiffness of 

the shaft and its support. 2) total mass of the shaft and attached parts. 3) unbalance 

of the mass with respect to the axis of rotation [66]. The calculation of the critical 

speed is shown in Eq. 5.1.  
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Fig. 5.11 Proposed Shaft geometry of the machine. 

Critical speed (Nc) = 
30

𝜋
√

𝑔

𝛿𝑠𝑡
 

 5.1 

Where: 

𝑔 = gravity acceleration (9.81 𝑚 𝑠2⁄ ). 

𝛿𝑠𝑡 = total maximum static deflection. 
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The total maximum static deflection (𝛿𝑠𝑡) consists of a) Maximum static deflection 

on shaft (𝛿𝑠𝑡1) based on Fig. 5.12 and Eq. 5.3 [66]. (b) Maximum static deflection 

on load (𝛿𝑠𝑡2) based on Fig. 5.13 and Eq. 5.4 [66]. 

𝛿𝑠𝑡 = 𝛿𝑠𝑡1+ 𝛿𝑠𝑡2  5.2 

 

 

 

Fig. 5.12 Static deflection on shaft. 

𝛿𝑠𝑡1 =
5𝑤Lshaft

3

384𝐸𝐼
 

 5.3 

 

 

 

 

 

 

Fig. 5.13 Static deflection on load. 

 

𝛿𝑠𝑡2 =
𝑊Lshaft

3

48𝐸𝐼
 

 5.4 

Where: 

𝑤 = weight of the shaft in kg, (1.657 kg) 

𝑊 = weight of the wheel (attachment parts over the shaft) in kg, (9.5 kg). 

𝐸 = modulus of elasticity, kg 𝑚2⁄ , for shaft C40= 200×108 kg 𝑚2⁄  . 

𝐼 = moment of inertia = 𝜋𝐷4 64⁄ , 𝑚4. 

Lshaft = length of the shaft, m. (300.5 mm). 

According to Eq. 5.1, the critical speed (Nc) is (18000 r/m) at total maximum static 

deflection is about (1.5E-6 m). 

 

 

Lshaft 

Lshaft 2⁄  Lshaft 2⁄  

Lshaft 



141 

 

An aluminium bush and adapter are fixed over the shaft using key material which 

are fixed through the keyways paths to avoid sliding. On the both ends of shaft there 

are two deep groove bearings type (6205-2RSLTN9/C3VT162). The diameter of the 

bearing and its type is chosen depending on the total load (dynamic and static load) 

on the shaft and its diameter. Fig. 5.14 shows the bush and bush adapter material. 

The material which has been used for the shaft is (steel EN8) and for the bush and 

bush adapter is (aluminium).  

 

Fig. 5.14 Bush and adapter fixed over the shaft. 
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5.3 Experimental results and validations 

Experimental tests are undertaken to measure the output characteristics of the new 

proposed machine such as (cogging torque, static torque and BEMF) and compared 

with those obtained from finite elements. 

5.3.1 Cogging torque measurements 

For any slotted permanent magnet machines, due to the interaction between the PM 

and slot permeance there will be a cogging torque generated which has an important 

effect on the speed ripple and may cause acoustic noise and vibration. Therefore, it 

is important to separately quantify the cogging torque accurately. In this section a 

specific simple test is applied on the new proposed machine to measure the cogging 

torque wave form as in [67]. 

The schematic diagram of the cogging torque measurements rig is shown in Fig. 

5.15. 

 

 

 

 

 

 

 

Fig. 5.15 Schematic diagram of cogging torque measurements. 
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The stator is fixed in the jaws of lathe which enable it to turn in different (precise) 

steps. A levelled beam is attached to the rotor shaft and the and one end is rested on 

the tray of weight scale which is fixed on support table. Firstly, the beam is levelled 

at the weight scale was zero, then the weight is added and fixed at the end of the bar 

as preload to ensure the bar is always in contact with the scale, and to obtain 

measurement of positive and negative the cogging torque waveform, i.e. getting 

always positive waveform of the measured cogging torque. Secondly, the stator is 

turned in the lathe at fixed steps (1.5°-90°). The experimental installation to measure 

the cogging torque is shown in Fig. 5.16.  

 

(i) Cogging torque measurement with preload weight = 1.36 kg 

Rotation scale 

Weight 

PM machine 

Digital gauge 
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(ii) Cogging torque measurement with preload weigh = 4.56 kg 

Fig. 5.16 Installation for cogging torque measurement (experimentally). 

Due to the position changing between the stator and rotor relatively, the measured 

force is asserted with the changing cogging torque value acting on the bar. For 

symmetrical permanent magnet machine which having equal positive and negative 

cycles of the cogging torque waveform and zero average value, the equation of the 

cogging torque can be obtained from the reading of the weight scale (𝐹𝑟𝑒𝑎𝑑𝑖𝑛𝑔) and 

the length of the bar (Lbeam) after subtracting the pre-load force (𝐹𝑝𝑟𝑒−𝑙𝑜𝑎𝑑) as 

shown in Eq. 5.5 – Eq. 5.8. 

 

 

 

 

 

 

Weight 
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𝑇𝑐𝑜𝑔𝑔𝑖𝑛𝑔 = ((𝐿1(𝐹𝑟𝑒𝑎𝑑𝑖𝑛𝑔 − 𝐹𝑝𝑟𝑒−𝑙𝑜𝑎𝑑)) − (𝐿2𝐹𝑏𝑎𝑟))  5.5 

 

𝐹𝑟𝑒𝑎𝑑𝑖𝑛𝑔 = 𝑤𝑠𝑐𝑎𝑙𝑒 𝑟𝑒𝑎𝑑𝑖𝑛𝑔(kg) × 𝑔  5.6 

 

𝐹𝑝𝑟𝑒−𝑙𝑜𝑎𝑑 = 𝑤𝑝𝑟𝑒−𝑙𝑜𝑎𝑑(kg) × 𝑔  5.7 

 

𝐹𝑏𝑎𝑟 = 𝑤𝑏𝑎𝑟(kg) × 𝑔  5.8 

Where: 

𝐿1 = The total length of the beam from the centre of the rotor shaft to the centre of 

the weight (mm) 

𝐿2 = The length of the beam from the centre of the rotor shaft to the middle of the 

beam. 

𝑔 = Gravity acceleration (9.8 𝑚 𝑠2⁄ ). 

Fig. 5.17 shows the variation of measured and predicted cogging torque waveforms 

with rotor position. It can be noticed that although the shape of the waveforms is 

very similar, the measured cogging torque is larger than predicted, with predicted 

cogging torque considering the realisation of the axial permanent magnet Fig. 5.18 

being ever smaller. Nevertheless, the results show that the maximum value of the 

cogging torque is very small and about 5.5% of the rated torque value. The 

modification of the shape of the axially magnetized permanent magnet is 

represented in 3D-FEA by changing the value of the remanence flux density Br of 

the magnet. The area of the modified shape of the axial magnetized permanent 

magnet is reduced to about 19% comparing with the original shape, Therefore, the 

modified value of the Br is equal to: 

Br (modified) = Br (original) – (0.19×(Br (original)))  5.9 
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Fig. 5.17 Cogging torque waveforms. 

 

(a)                                                              (b) 

Fig. 5.18 Shape of the axially magnetised PM. (a) FE, (b) practically. 
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5.3.2 Static torque measurements 

The measurement of the static torque is undertaken using the same method 

mentioned in Fig. 5.15 and Fig. 5.16 with DC current supply connected to the both 

side of the machine winding input terminals (phase A, Phase B and phase C) as 

shown in Fig. 5.19 and Fig. 5.20.  

 

 

 

 

 

 

 

 

 

 

Fig. 5.19 Schematic diagram of static torque measurements. 

 

 

Fig. 5.20 Experimental set up for static torque measurements. 
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The output waveforms of the static torque which are calculated based on Eq. 5.10 – 

Eq. 5.13 at different value of injected DC current as shown in Fig. 5.21 & Fig. 5.22. 

The difference between the predicted and measured is coming from the rotor 

position which is difficult to fix as the same as in finite element simulation. 

𝑇𝑠𝑡𝑎𝑡𝑖𝑐 = ((𝐿1(𝐹𝑟𝑒𝑎𝑑𝑖𝑛𝑔 − 𝐹𝑝𝑟𝑒−𝑙𝑜𝑎𝑑)) − (𝐿2𝐹𝑏𝑎𝑟)) − (𝑇𝑐𝑜𝑔𝑔𝑖𝑛𝑔)  5.10 

 

𝐹𝑟𝑒𝑎𝑑𝑖𝑛𝑔 = 𝑤𝑠𝑐𝑎𝑙𝑒 𝑟𝑒𝑎𝑑𝑖𝑛𝑔,𝑤𝑖𝑡ℎ 𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑 𝐷𝐶 𝑐𝑢𝑟𝑟𝑒𝑛𝑡(kg) × 𝑔  5.11 

 

𝐹𝑝𝑟𝑒−𝑙𝑜𝑎𝑑 = 𝑤𝑝𝑟𝑒−𝑙𝑜𝑎𝑑(kg) × 𝑔  5.12 

 

𝐹𝑏𝑎𝑟 = 𝑤𝑏𝑎𝑟(kg) × 𝑔  5.13 

 

Where: 

𝐿1 = The total length of the beam from the centre of the rotor shaft to the centre of 

the weight. 

𝐿2 = The length of the beam from the centre of the rotor shaft to the middle of the 

beam. 

𝑔 = gravity acceleration (9.8 𝑚 𝑠2⁄ ). 

𝑇𝑐𝑜𝑔𝑔𝑖𝑛𝑔 is shown in Eq. 5.5. 
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         (a) 𝐼𝑚𝑎𝑥 = 18.3 A, Airgap shear stress = 10 kPa                   (b) 𝐼𝑚𝑎𝑥 = 22 A, Airgap shear stress = 12 kPa 

                                                                                           

 

        (c) 𝐼𝑚𝑎𝑥 = 25.67 A, Airgap shear stress = 14 kPa                (d) 𝐼𝑚𝑎𝑥 = 29.34 A, Airgap shear stress = 16 kPa                 

 

 

        (e) 𝐼𝑚𝑎𝑥 = 33 A, Airgap shear stress = 18 kPa                       (f) 𝐼𝑚𝑎𝑥 = 36.67 A, Airgap shear stress = 20 kPa 

Fig. 5.21 Static torque waveforms 
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Fig. 5.22 Static torque peak value at different supply current. 

 

5.3.3 Back EMF measurements 

To measure back EMF waveforms, the new proposed machine is rotated at no load 

at different rotation speed as shown in Fig. 5.23. The waveforms of the phase and 

line voltage are measured by an oscilloscope across on the terminal of the three-

phase windings. The waveform of the phase and line back EMFs are shown in Fig. 

5.24, Fig. 5.25 and Fig. 5.26. It can be noticed that the emf waveforms are similar 

and relatively distorted. 
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Fig. 5.23 Motor test rig. 
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(i) BEMF waveform – phase A 

 

(ii) BEMF waveform – phase B 

 

(iii) BEMF waveform – phase C 

Fig. 5.24 BEMF wave forms – (phase voltages) at Nspeed = 976.5 r/min. 
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Fig. 5.25 Harmonic spectrum for BEMF- phase voltage at Nspeed  = 976.5 r/min. 
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(i) BEMF waveform – Line voltage (Vab) 

 

(ii) BEMF waveform – line voltage (Vbc) 

 

(iii) BEMF waveform – line voltage (Vca) 

Fig. 5.26 BEMF waveforms- (line voltages) at Nspeed = 976.5 r/min. 
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In summary, the new propose machine prototype is built and the different 

components such as stator, rotor and case are combined. For the realisation of the 

machines prototype, an experimental test such as cogging torque, static torque and 

BEMF measurements are undertaken to investigate the output characteristics. The 

output results are validated with 3D-FEA which shown a good and satisfy 

agreements.  

According to the new modification in the manufacturing of the shape of the axially 

magnetized PM shown in Fig. 5.18, a new torque/power speed envelop and 

efficiency calculation are predicted as shown in Fig. 5.27 & Fig. 5.28. It can be 

noticed that the rated value of torque at base speed is reduced about 8% compared 

with the original value. The values of the calculated efficiency are not significantly 

affected. 

 

Fig. 5.27 Torque/power speed envelope of the new proposed machine. 
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Fig. 5.28 Efficiency calculation of the new proposed machine. 

5.4 Calculation of mechanical losses 

In this section the mechanical losses which are due to bearing friction and windage 

losses are estimated. Bearing losses depend on bearing type, shaft rotation speed, 

force (applied to the shaft) and the properties of the lubricant [68]. According to 

SKF (a leading bearing and seal manufacturing company founded in Gothenburg, 

Sweden, in 1907), bearing losses have been calculated as shown in Eq. 5.14 [68]. 

𝑃𝑏𝑒𝑎𝑟𝑖𝑛𝑔 = 0.5Ω𝐶𝑓𝐹𝑏𝑒𝑎𝑟𝑖𝑛𝑔𝐷𝑏𝑒𝑎𝑟𝑖𝑛𝑔  5.14 

Where: 

Ω = Angular frequency of the shaft supported by a bearing (𝑟𝑎𝑑 𝑠⁄ ). 

𝐶𝑓 = Friction coefficient, typically between 0.0010 and 0.0050. [68], page 460-

461. 

𝐹𝑏𝑒𝑎𝑟𝑖𝑛𝑔 = The bearing loads (kN). 

𝐷𝑏𝑒𝑎𝑟𝑖𝑛𝑔 = Bearing inner diameter. 
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Windage losses are consequence of the friction between the rotating surface, in this 

case the rotor which can be modelled as a rotating cylinder and the surrounding air 

[68][69]. The significance of the windage losses becomes more and more important 

as the rotation speed increases as shown in Eq. 5.15. 

𝑃𝑤𝑖𝑛𝑑𝑎𝑔𝑒 =  𝜋𝐶𝑑𝜌𝑅4𝜔3𝐿  5.15 

𝐶𝑑 is skin friction coefficient and is evaluated as in Eq. 5.16. 

1

√𝐶𝑑  
= 2.04 + 1.768 ln(𝑅𝑒√𝐶𝑑) 

 5.16 

 

𝜌 = Density of air (1.225 kg/m3). 

𝑅 = Radius of the rotor. 

Ω = angular velocity (𝑟𝑎𝑑 𝑠𝑒𝑐⁄ ).  

L = Length of the rotor part (𝑚).  

𝑅𝑒 = Reynolds number for the airgap. Eq. 5.17 [70]. 

𝑅𝑒 =  
𝜌Ω(𝐷𝑜𝑢𝑡𝑒𝑟 − 𝐷𝑖𝑛𝑛𝑒𝑟)2

2𝜇𝑑𝑦𝑛
 

 5.17 

𝐷𝑜𝑢𝑡𝑒𝑟 = Stator inner diameter. 

𝐷𝑖𝑛𝑛𝑒𝑟 = Rotor outer diameter. 

𝜇𝑑𝑦𝑛 = Dynamic viscosity of air (1.962E-5 kg m. s⁄ ).  

Due to rotor saliency of the new proposed machine, a correction factor (K) will be 

multiplied by the obtained windage losses [69]. The value of correction factor (K) 

has been calculated as shown in Eq. 5.18. 

K = 8.5(H R⁄ ) + 2.2 

H = pole depth (mm) 

R = Radius of the rotating cylinder (mm) 

 5.18 
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The effect of the shroud (end plates) of the new proposed rotor has been considered 

in the calculation of the windage losses by multiplied by (3/2) [69]. 

The total mechanical losses will be the summation of the bearing friction and 

windage losses Eq. 5.19 as shown in Fig. 5.29. 

 

𝑃𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 = 𝑃𝑏𝑒𝑎𝑟𝑖𝑛𝑔 + (𝑃𝑤𝑖𝑛𝑑𝑎𝑔𝑒 × K × (3/2))  5.19 

 

The total losses which include the analytically calculated mechanical losses and the 

iron losses calculated using finite element, are shown in Fig. 5.30. The copper losses 

are (122.92 watt) at 20°. 

 

Fig. 5.29 Mechanical losses (theoretical calculation). 
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Fig. 5.30 Total losses (mechanical + iron losses). 

 

5.5 Rotation test 

During the NO-LOAD test of the new proposed machine at rotation speed = 3000 

r/min, a fault occurred and caused change the position of the axially magnetized PM 

which damaged it and the windings of the stator as shown in Fig. 5.31 and Fig. 5.32. 

Therefore, the investigation of the no load losses (iron losses) has not been 

experimentally validated. 
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Fig. 5.31 Damages of the proposed rotor. 
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(i) Windings at the stator tooth edge  
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(ii) Windings in the middle of stator tooth 

Fig. 5.32 Damages of the stator windings. 
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5.6 Conclusion 

In this chapter a description for the manufacture of the parts such as: stator, rotor, 

shaft, bush and bush adapter, the axially and circumferentially magnetised PMs used 

of the new proposed machine is provided. After assembling these parts and for the 

realisation of the new proposed prototype, some important tests are undertaken to 

predict the output characteristics such as measurements of cogging torque, static 

torque and back EMF tests. The results are then validated with 3D-FEA. The 

comparison shows a good agreement between the measured and predicted results. 

Unfortunately, during no-load test at speed=3000 r/min, a fault happened suddenly 

which caused damage of the axially magnetised PM causing damage to the stator 

winding as well and full load tests haven’t been undertaken. The mechanical losses 

which include bearing and windage losses are then analytically calculated and the 

total losses which consists of the iron losses predicted from the 3D-FEA and the 

mechanical losses are represented as well. 
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6. Chapter 6 

7. Conclusion and future work 

6.1 Conclusion 

In this thesis, the design and an analysis of a novel topology Ferrite machine 

is introduced. The main purpose of the proposed machine is to reduce/eliminate the 

use of high cost rare earth permanent magnets with cheaper alternative such as 

Ferrite permanent magnets. However, the energy of Ferrite permanent magnets is 

significantly smaller than rare earth counter parts. Therefore, new magnetic circuit 

topologies should be proposed and investigated in order to maximise the airgap flux 

density and achieve torque/power density and efficiency comparable with machine 

employing rare earth permanent magnets. Consequently, a spoke -type rotor 

equipped with axially magnetized permanent magnets in addition to the 

conventional circumferential permanent magnets is proposed in order to increase the 

flux focusing and the airgap flux density. 

Firstly, the conventional spoke-type rotor machine is simulated using 2D-FEA and 

the important leading design parameters such as: number of poles, pole arc to pole 

pitch ratio, airgap length and the ratio of inner to outer diameter of the rotor are 

investigated to find the flux per pole and the fundamentals airgap flux density which 

are then compared with the one predicted from the new proposed rotor machine 

A simple lumped parameter magnetic circuit which neglects the leakage flux and 

assumes a slotless stator is employed to model the rotor and investigate the 

generated flux per pole. The output results show there is a good agreement between 

2D-FEA and lumped parameter magnetic circuit. 
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Due to the 3D nature of the rotor magnetic circuit, the proposed machine is 

simulated using (3D-FEA) and the investigation of leading parameters, such as 

airgap length, pole arc to pole pitch ratio and ratio of inner to outer diameter of the 

rotor are applied, which can be employed as initial design stage. The output results 

such as flux per pole and the fundamental airgap flux density are also compared with 

the one obtained from a simple lumped parameter magnetic circuit which neglects 

the leakage flux and assumes a slotless stator. It can be seen there is a good 

agreement between the predicted values using both methods, 

Furthermore, 12 slots and 8 poles machine is designed to meet the specifications of 

a small personal mobility vehicle and the waveforms of flux linkage, airgap flux 

density and cogging torque are initially predicted at no-load condition. Then the 

waveforms of the electromagnetic torque and output power are predicted on load 

condition at different operating conditions. Furthermore, the iron losses in the stator 

iron and copper losses are computed and the torque / power speed envelopes and 

efficiency are predicted. The results show that the novel machine can achieve airgap 

shear stress in excess of 20KPa under natural air-cooling conditions with high 

efficiencies reaching 97% making it a strong contender for electric vehicle 

applications. 

On the other hand. By using FLUX 3D software developed by CERDAT, the 

electromagnetic torque components of the new proposed rotor machine are 

modelled accurately by employed frozen permeability concept which allows 

separation of the components and taking into account the magnetic saturation of the 

material and the cross coupling effect.  
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A lumped parameter magnetic circuit model of the machine is developed, where the 

non-linear magnetic characteristic of the soft magnetic components is taken into 

account. Simulation results spanning a variety of load condition are compared with 

3D-FEA, and relatively good agreement exists. Albeit, room for improvement of the 

lumped parameter magnetic circuit model still exists. 

Last but not least, a prototype machine was built. Tests are undertaken and 

quantities such as the waveforms of the BEMFs, cogging torque and static torque 

were measured and compared with FEA. Good agreement between measured and 

predicted results exists, which confirms the advantages of the proposed topology. 

Unfortunately, during a no-load test at rotation speed = 3000 r/min, a fault occurred 

and one of the axially magnetized PMs lefts its position and was damaged together 

with the windings on the stator. Therefore, on-load tests have not been 

experimentally validated. 

6.2 Proposed future work 

Based on what is mentioned above, there are some points which could be proposed 

as follows: 

(i) Investigate the proper method for fixing the axially magnetized permanent magnets, 

although it is fixed on the rotor pole pieces using a special type of glue which is also 

used at high temperature applications, it still did not fix them properly. Therefore, it 

is recommended that alternative techniques for building the rotor should be 

investigated in order to enable the machines to operate at required rotational speeds.  

(ii) Undertake a thorough experimental investigation, subjecting the machine to 

different load conditions. 

(iii) Investigate the possibility of realising a rotor using a number of stacked units, in 

order to reduce diameter, achieve higher speeds while keeping a rotor diameter to 

axial ratio sufficiently low to achieve large airgap flux density. 
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(iv) Further develop the LPCM in order to achieve improved accuracy. Furthermore, 

since the 3D flux is only in the rotor, investigate the possibility of combining 2D 

FEA with lumped parameter representation of the axially magnetised permanent 

magnets and soft magnetic rings. 

(v) Validate the wave forms of the electromagnetic torque components which are 

predicted based on frozen permeability concept by comparison with the 

experimental measurements.  
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9.            Appendix A 
 

 

Appendix A1: Overall dimensions of the stator lamination 

 

Appendix A2: Overall dimensions of the cylindrical bush 
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Appendix A3: Overall dimensions of the rotor pole pieces 
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Appendix A4: Overall dimensions of the axially and circumferentially magnetised 

PMs 

(a) Axially magnetised PM 

(b) Circumferentially magnetised PM 


