
Flexible and Adaptive
Real-Time Task Scheduling in

Cyber-Physical Control
Systems

Xiaotian Dai

PhD

University of York

Computer Science

January 2019

2

Abstract

In a Cyber-Physical Control System (CPCS), there is often a hybrid of hard
real-time tasks which have stringent timing requirements and soft real-time
tasks that are computationally intensive. The task scheduling of such sys-
tems is challenging and requires flexible schemes that can meet the timing
requirements without being over-conservative.

Fixed-priority scheduling (FPS) is a scheduling policy that has been widely
used in industry. However, as an open-loop scheduler, FPS has low system
dynamics and no feedback from historic operation. As the working conditions
of a CPCS will change due to both internal and external factors, an improved
scheduling scheme is required which can adapt to changes without a costly
system redesign.

In recent years, there is a large research interest in the co-design of control
and scheduling systems that explicitly considers task scheduling during the
design of a controller. Many of these works reveal the possibility of adapting
control periods at run-time in order to accommodate varying resource require-
ments and to optimise CPU utilization. It is also shown that control quality
can be traded off for resource usages.

In this thesis, an adaptive real-time scheduling framework for CPCS is
presented. The adaptive scheduler has a hierarchical structure and it is built on
top of a traditional FPS scheduler. The idea of dynamic worst-case execution
time is introduced and its cause and methods to identify the existence of a
trend are discussed. An adaptation method that uses monitored statistical
information to update control task periods is then introduced. Finally, this
method is extended by proposing a dual-period model that can switch between
multiple operational modes at run-time. The proposed framework can be
potentially extended in many aspects and some of these are discussed in the
future work. All proposals of this thesis are supported by extensive analysis
and evaluations.

3

4

Contents

Abstract 3

List of Figures 8

List of Tables 9

Acknowledgements 11

Declaration 13

1 Introduction 15
1.1 Scheduling Issues in Cyber-Physical Systems 17
1.2 A Framework of Adaptive Scheduling Systems 18
1.3 Thesis Proposition . 20
1.4 Thesis Organisation . 21

2 Flexible and Feedback Methods in Real-Time Scheduling 23
2.1 Overview of Real-Time Scheduling 23
2.2 Research Challenges and Trends in Real-Time Scheduling for

CPS . 31
2.3 Flexible Scheduling Algorithms 34
2.4 Feedback Scheduling . 44
2.5 Statistical and Probabilistic Methods in Scheduling 58
2.6 Flexible Scheduling in Cyber-Physical Control Systems 60
2.7 Summary . 63

3 Trend Analysis of Dynamic Worst-Case Execution Times 65
3.1 The Dynamic Perspective of WCET 66
3.2 Modelling of dWCET . 69
3.3 Execution Time Monitoring . 72

5

3.4 Trend Analysis . 73
3.5 A Survey of Trend Analysis Methods 75
3.6 Methods for Comparison . 78
3.7 Compared Methods . 81
3.8 Incorporating Data Selection 84
3.9 Evaluation . 85
3.10 Summary . 95

4 Period Adaptation of Real-Time Control Tasks 97
4.1 Real-Time Digital Controller Implementation 99
4.2 Method Overview . 103
4.3 Performance Prediction . 107
4.4 The Run-Time System . 112
4.5 Evaluation . 113
4.6 Analysis and Discussion . 120
4.7 Summary . 124

5 Dual-Period Task Model 125
5.1 Task Models for Real-Time Control 126
5.2 Proposed Task Model . 127
5.3 Experiments and Evaluations of Dual Period 134
5.4 Summary . 143

6 Conclusions and Future Work 145
6.1 Contributions . 146
6.2 Future Research . 148

Abbreviations 151

Bibliography 153

List of Figures

1.1 The MAPE-K structure for adaptive systems 18

1.2 The structure and components of the proposed Adaptive Task
Scheduling framework (ATAS) 20

2.1 A linear spring system compressed by a force F 37

2.2 Elastic scheduling with execution time estimation 39

2.3 QoS Negotiation Service Provider 40

2.4 Structure of a feedback-control computer system and its com-
ponents . 46

2.5 An overview structure of FC-EDF 49

2.6 Block diagram that shows the basic structure of a feedback loop
with a PID Controller and a plant being controlled. 50

2.7 Block diagram of the feedback-feedforward structure 54

3.1 A simplified structure of ATAS 72

3.2 An example of a multi-state Markov process that is used to
generate the experimental data sets. 80

3.3 An example of generated time-series with 1% increasing trend . 81

3.4 Definition of important points and regions 87

3.5 Penalties are given to false positives/false negatives. 88

3.6 Box plot of mean trend estimation error 91

3.7 Estimated trend error of each data set (block maxima) 93

3.8 Experiment result - false negatives/positives 94

4.1 A digital controller in a feedback control system 99

4.2 Task timing of multiple tasks scheduled by FPS 101

4.3 Control task timing (single task) 101

4.4 Block diagram of the proposed adaptation method 105

7

4.5 Timing of a control task. 108
4.6 The Monte Carlo Predictor . 109
4.7 Flowchart of the proposed method. 113
4.8 Experiment setup in MATLAB/Simulink 115
4.9 Predicted Control Performance v.s. Actual Performance. 117
4.10 Estimated prediction bias for each iteration. 118
4.11 Terminated period with different degradation factors. 119
4.12 Utilization v.s. Performance Index. 120
4.13 Results of robustness evaluation 121

5.1 An illustration of the dual-period task model 128
5.2 An illustration of the control model 129
5.3 The experiment setup and block connections in Simulink 136
5.4 System outputs of each control task (αi = 0.5) 137
5.5 CPU utilization of each control task (αi = 0.5) 137
5.6 Sensitivity of THi (when αi = 0.5 and TLi = 100) 138
5.7 Sensitivity of TLi (when αi = 0.5 and THi = 50) 139
5.8 Sensitivity of αi (when THi = 50 and TLi = 100) 139
5.9 The plot of performance when αi = 0.5 140
5.10 Parameter αi against Pc and Ps 141
5.11 Influence of task parameters on the control and scheduling per-

formance . 142

8

List of Tables

2.1 Table of Notations . 25
2.2 Feedback Scheduling Comparison 56

3.1 Comparison of Static and Dynamic WCET Perspectives 68
3.2 Combinations of Trend Identification Methods 85
3.3 Definition of positives and negatives 87
3.4 A table of generated data sets 88
3.5 Mean Error of k̂ for Block Maxima and r-largest 92
3.6 Mean Penalty of All Methods with All Data Sets 95
3.7 Functional Comparison of Methods 95

4.1 Experiment Task Set . 116
4.2 Experiment configuration for evaluating robustness 122

5.1 List of Symbols and Notations 133

9

10

Acknowledgements

I would like to give the main thanks to my supervisor Professor Alan Burns for
all his commitments and efforts. I could not have completed my PhD without
his guidance, insights and extensive knowledge. I want to give my appreciation
to all the academic staffs in the Department of Computer Science, including
Neil Audsley (as my internal), Iain Bate, Ian Gray, Leandro Indrusiak and
Robert Davis for their valuable advice. I would also like to thank my colleges
in the Real-Time Systems Group at the University of York, to name a few,
Benjamin Lesage, David Griffin, Frank Soboczenski, Hao Xu, Haitao Mei,
James Harbin, Shuai Zhao, Xinwei Fang and Zhe Jiang. Thank you for being
supportive and created such a productive and friendly research environment
in this group.

Finally, to my wife Yingyi Kuang, whom I married during this PhD. Thank
you for your love and tolerance. Life will not be a wonderful journey without
your companionship, and I wish this journey will not have an end.

11

12

Declaration

I declare that this thesis is a presentation of original work and I am the sole
author. Certain parts of the material presented within this thesis have ap-
peared in published and submitted papers, journals and reports. Specifically,
these are:

• Xiaotian Dai. The Role of Flexible Models in Adaptive Real-Time Schedul-
ing, Qualifying Dissertation Report, Department of Computer Science, Uni-
versity of York, 2015.

• Xiaotian Dai and Alan Burns. Predicting Worst-Case Execution Time
Trends in Long-Lived Real-Time Systems, 22nd International Conference
on Reliable Software Technologies - Ada-Europe, 2017.

• Xiaotian Dai and Alan Burns. Period Adaptation of Real-Time Control
Tasks with Fixed-Priority Scheduling, submitted to Special Issue on Ad-
vances in Reliable Software Technologies: An Ada Perspective, Journal of
Systems Architecture (JSA), 2019.

• Xiaotian Dai, Wanli Chang, Shuai Zhao and Alan Burns. A Dual-Mode
Strategy for Performance-Maximization and Resource-Efficient CPS Design,
submitted to International Conference on Embedded Software (EmSoft),
2019.

This work has not previously been presented for an award at this, or any other
university. All sources are acknowledged as references.

13

14

Chapter 1

Introduction

Real-Time Systems (RTS) are computer systems that have stringent tim-
ing requirements in addition to functional correctness [94] [35]. A timing
requirement is often defined as a temporal specification, in which results
should be produced within a specified deadline deterministically or proba-
bilistically [120]. Typical real-time systems include real-time control, com-
munication, data processing, power, avionic and automotive systems. These
applications often involve a multiprogramming environment in which multiple
tasks have to compete for limited computational resources.

Scheduling in Real-Time Systems is a research framework that includes
scheduling algorithms, resource sharing protocols and analytical methods (such
as feasibility or schedulability tests), to verify that real-time systems will meet
their deadlines [40]. Scheduling can refer to task scheduling, network packet
scheduling or resource scheduling. This thesis focuses on task scheduling, and
real-time task scheduling and real-time scheduling will be used interchange-
ably, if not explicitly stated otherwise.

Historically, real-time tasks have been statically scheduled by cyclic exec-
utives. During the last few decades, real-time scheduling has been progressed
from this static approach to dynamic priority-based scheduling methods. The
seminal work of Liu and Layland in 1973 build the foundation of priority-
based scheduling [93], including Rate Monotonic Fixed-Priority Scheduling
(FPS-RM), and Earliest Deadline First (EDF). The use of dynamic schedul-
ing has significantly improved resources usage when the task workload is not
fully known.

With the advance of ubiquitous computing and communication, new appli-
cations have emerged, which have more complex functional requirements and

15

increased performance demands than traditional embedded and real-time sys-
tems. Some example systems include wireless sensor network, robotic systems,
intelligent transportation systems and Industry 4.0, which in their nature, are
Cyber-Physical Systems (CPS). Generally speaking, a CPS is an engineering
system that requires tight integration of computing, communication and con-
trol to achieve stability, performance, reliability, robustness and efficiency in
dealing with physical systems in many application domains [112]. CPS often
involve feedback loops where physical processes affect computations and vice
verse [88]. Many CPS need to be deployed in the field for long periods of
time, and often with limited or no human supervision, which are referred to
as long-lived CPS in this work.

Compared with traditional applications, long-lived CPS are often more
vulnerable to system changes due to the evolution of functional requirements,
degradation of hardware and lack of maintenance. Although dynamic schedul-
ing can improve system flexibility, the effectiveness of scheduling is still reliant
on the correctness of the task model. However in long-lived CPS applications,
system characteristics as well as system models will change and evolve over
time. In addition, these systems are often working in an open environment,
in which the computational workload cannot be fully modelled and predicted
in advance. In this case, a scheduling analysis cannot be properly applied or
cannot be applied without conservative assumptions, e.g., a large conservative
worst-case execution time (WCET).

To solve these issues, flexibility and domain specific knowledge can be ap-
plied to enhance traditional scheduling methods for long-lived applications. A
potential way of achieving this is to support adaptive behaviour using tech-
niques e.g., machine learning and cloud computing, in combination with tra-
ditional schedulers. The use of adaptation will ease the process of making
modifications to system software and improve the resilience against timing
failures.

The vision is that this research will ultimately lead to an adaptive schedul-
ing system, that can be fully integrated into the design, implementation, ver-
ification and testing of the next-generation cyber-physical systems. In the
reminder of this chapter, scheduling issues in cyber-physical systems and a
general framework of adaptive scheduling are introduced. The proposition of
the thesis is then presented. The chapter completes with an outline of this
thesis.

16

CHAPTER 1. INTRODUCTION

1.1 Scheduling Issues in Cyber-Physical Systems

Cyber-physical systems are emerging systems that often have close integration
of physical systems and computer systems. As physical processes are involved,
a CPS often has different structures and characteristics, which makes its design
and implementation different from current engineering systems. There are
many challenges identified in CPS that could affect scheduling of real-time
tasks. To list a few:

Hardware Degradation: the hardware components of a CPS may vary with
time. Hardware in general is subjected to ageing and degradation over system
operation time. This could result in increased amount of computation and
access time, and lead to more frequent fault handling due to temporary or
permanent failure of hardware components.

Software Evolution: the software aspect of CPS is often subject to change.
The functional requirement could change even after the system is deployed.
In an adaptive system, the software could learn from its past executions
and improve and evolve its internal structure, which often leads to a higher
demand in computation.

Context Sensitive: unlike traditional real-time and embedded systems, a
CPS has to respond to its environment, which is often dynamic. To interact
with the environment, the system will have dependencies on its external
inputs and states, which makes the system sensitive to spatial and temporal
context.

Open Environment: many CPS are exposed to an open environment, which
indicates the computation and communication have to deal with changing
scenarios. The system may have to reconfigure its structures and parameters
and reallocate its resources.

All of these issues and challenges motivate us to design a scheduling system for
cyber-physical systems that is more flexible and adaptive than conventional
FPS-RM and EDF scheduling.

17

1.2 A Framework of Adaptive Scheduling Systems

An adaptive system is a flexible system that is able to adjust its behaviour
in response to its perception of the environment and the system itself [53].
Adaptive systems in general can be extensively found in natural systems, e.g.,
brain, nervous and immune system, atmosphere system, ecosystem, economics
and even human societies.

In the context of computer systems, adaptation or self-adaptation is a
well-known technique to handle growing complexities of software systems in
a dynamic and unpredictable environment. The MAPE-K framework [85]
is a widely accepted adaptive and autonomic computing framework that is
proposed by IBM. MAPE-K stands for Monitor-Analyse-Plan-Execute over a
shared Knowledge. A diagrammatic representation of the framework is shown
in Figure 1.1.

Context

Domain Specific System

Sensors Actuators

Knowledge

Analyze Plan

ExecuteMonitor

Environment

Managed
System

Managing
System①

② ⑤

④③

Figure 1.1: The MAPE-K structure for adaptive systems: M - Monitor; A -
Analyze; P - Plan; E - Execute; K - Knowledge.

As shown in the diagram, the Monitor component (marked with (2) in Fig-
ure 1.1) acquires information from the managed system and the environment.
The obtained information is used to update the Knowledge (1). Based on the
knowledge, the Analyze component (3) will determine the need for adaptation
of the managed system. A sequence of adaptation actions are planned by the

18

CHAPTER 1. INTRODUCTION

Plan module (4) and sent to be executed by the Execute component (5).
The use of feedback mechanism is the key in the adaptation process. The

closed-loop of monitoring, analysis, plan and control ensures the system would
react to the environment and condition changes accordingly. The system could
also ‘learn’ from its historical behaviour and adapt itself to be more robust
and optimised.

In this thesis, the problem of applying the MAPE-K framework into real-
time scheduling context is considered. The scheduling system of a CPS should
be able to adjust its behaviour at run-time in response to the perception
of the system itself and its environment. To fit real-time task scheduling
into the MAPE-K framework, the components of MAPE-K are mapped into
their correspondences in the context of scheduling, and adjust the structure to
accommodate for a CPS. The overall structure is shown in Figure 1.2, which
will be referred as the Adaptive Task Scheduling Framework, or ATAS.

The ATAS framework is formed of two sub-systems: 1) the target system
and 2) the adaptation manager. As in a CPS, the target system in most cases
only has limited resources and computational power, it is preferable to use a
distributed structure in which the computation intensive work is offloaded to
a cloud computer. Multiple target systems can share one such more powerful
cloud computer, and these two sub-systems are connected through network
infrastructures, i.e., the Internet or a local network, which are readily available
in CPS.

To make it more specific, the target system will conduct monitoring and
executions, which can be integrated as callable functions or services into the
real-time operating system. The modelling, analysis and planning modules
are implemented on the adaptation manager in the cloud, which will have
access to target systems and improve their performance through continuous
monitoring and reconfiguration. The use of cloud reduces the overhead of
local embedded computers, and makes this approach novel and feasible in the
context of CPS. Further details of the framework will be provided in later
chapters of this thesis.

19

Network Infrastructure

Performance
Monitor

Communication Interface

Target System(s)

Cloud Adaptation Manager

Modelling

Desired
Performance

Task Scheduler (FPS/EDF)

Communication Interface

Parameter
Configuration

Knowledge

Estimated Models

Performance
Analyzer

Planner

 Objective &
Constraints

Local Machines

Figure 1.2: The structure and components of the proposed Adaptive Task
Scheduling framework (ATAS)

1.3 Thesis Proposition

The research focus of this thesis is to support adaptive real-time scheduling in
cyber-physical control systems. The central proposition of this thesis is:

Flexible and adaptive task scheduling can improve the schedulability of
long-lived cyber-physical systems. This can be achieved by using novel flexible
models for making design trade-offs, utilising statistical learning techniques for
supervision and analysis, and using cloud computing facilities for adaptively
managing resource reclaiming.

20

CHAPTER 1. INTRODUCTION

The main contribution of this thesis is a framework that enables two op-
posing dynamic behaviours of long-lived CPS to be addressed and balanced.
First, the tendency for task execution times to increase; the second, which
can be used to compensate for this deterioration, is for control programs to
be exhibited conservative performance.

Such control programs can be modified to run less often thereby releasing
CPU bandwidth that can be made available to tasks that are predicted, in the
future, to require more than their statically determined worst-case execution
times. The overall result of applying this framework is more resilient CPS.

1.4 Thesis Organisation

In this chapter, a general introduction of this thesis is given. The scheduling
issues in CPS are discussed and an adaptive scheduling framework, ATAS, is
proposed. The remaining contents of this thesis is organised as follows:

Chapter 2: Flexible and Feedback Methods in Real-Time Schedul-
ing. This chapter introduces the background of this work. A general overview
of real-time scheduling is introduced. A review is given on flexible schedul-
ing methods including elastic task scheduling and feedback control scheduling;
other novel scheduling methods such as probabilistic and statistical scheduling
are also discussed.

Chapter 3: Trend Analysis of DynamicWorst-Case Execution Times.
In this chapter, the idea of dynamic worst-case execution times (dWCET) is
discussed. The causation, consequence and monitoring methods of dWCET
are discussed. The potential methods that could detect and predict trends
in dWCETs are then explored, followed by a comparison experiment on four
representative approaches.

Chapter 4: Period Adaptation of Real-Time Control Tasks. In this
chapter, an adaptation method is demonstrated, in which a control system
can adapt to workload changes by using a flexible task model and run-time
monitoring. A cloud server is involved in processing, analysis and making
adaptation decisions. A demonstrated example is given by using simulations.

21

Chapter 5: Dual-Period Task Model. This chapter introduces a novel
task scheduling model in which each control task is assigned two flexible task
periods. The proposed model can switch between two operational modes de-
pending on the system state at run-time. It is identified that the dual-period
model can significantly reduce CPU usage with limited impact on the control
performance.

Chapter 6: Conclusions and Future Work. In this last chapter, a con-
clusion of this thesis is given. The contributions are summarised and re-
emphasised. The thesis hypothesis is also revisited, and some of the future
works are explored and discussed for each contribution.

22

Chapter 2

Flexible and Feedback
Methods in Real-Time
Scheduling

The idea of Adaptive Task Scheduling Framework (ATAS) is motivated by sev-
eral parallel research. In this chapter, some of these will be studied in order to
describe their advances over traditional scheduling methods, as well as iden-
tifying the issues in current practice in order to understand the contributions
of this thesis.

To start with, a brief look of prevailing real-time scheduling methods and
their limitations for scheduling CPS will be given, e.g., in dealing with over-
loads and uncertainties. Several online scheduling methods that involve run-
time monitoring and actuating are then introduced as solutions which can
improve system flexibility and resilience. Finally, the idea of statistical learn-
ing and making long-term improvements is proposed as a research interest
that can ultimately achieve adaptive scheduling systems that have optimised
resource allocation and performance.

2.1 Overview of Real-Time Scheduling

Real-time systems often require interactions with physical processes, and there
could be a catastrophic consequence if one or more tasks in the system fail to
complete within their deadlines. Scheduling these time-critical tasks requires
methods that are analysable and verifiable, and needs a systematic approach

23

that is significantly different from scheduling in general operating systems.

The main concern in the design of real-time systems is to meet system
functional requirements under given resource and temporal constraints. This
is in contrast with general purpose computing systems in which achieving high
average performance is the main objective. To satisfy the timing constraints,
real-time systems should be designed and validated in a way which could guar-
antee that the tasks will always meet their deadlines at run-time. In general,
this is achieved by real-time scheduling, which includes theory, algorithms and
methodologies for scheduling tasks and resources. This section will introduce
the basis of real-time scheduling and discuss some of the most outstanding
work that have been done in the last few decades.

2.1.1 Background and Terminology

Firstly some of the fundamentals of real-time systems are examined. A full
list of commonly used symbols is given in Table 2.1.

A real-time application normally consists of several sub-programs, or tasks.
Each task τi has a specific functionality and is invoked either by an internal/ex-
ternal event or a timer interrupt. The total number of tasks in a task set is
defined as n. A job ji,k is a single release of a task, and is the basic unit that
can be scheduled by a task scheduler. The period Ti of a task is defined as
the inter-arrival time between two consecutive releases of jobs belonging to
that task. The release time ri of a task is the time instant at which the task
becomes available to be executed. For a periodic task, the kth release time can
be worked out as ri,k = (k − 1)Ti + φ0, where φ0 is the phase, i.e. the release
time of the first job.

Tasks in a real-time system normally have temporal constraints on their
completion time after their releases, which is known as (relative) deadline Di.
A deadline is said to be hard if missing the deadline will jeopardise the system
and may lead to disastrous consequence. On the contrary, a deadline is soft
if missing one will only degrade the performance of the system, but will not
cause damages to the environment or to the operator. In addition to hard and
soft, there is also a firm deadline, which is defined as a deadline that can be
missed but the utility of the result will be unusable once after the deadline.

The amount of time a task takes to execute without any interruption is
defined as execution time. Due to execution path divergences and hardware
architecture, the execution times of a task could be different in each run. The

24

CHAPTER 2. FLEXIBLE AND FEEDBACK METHODS IN REAL-TIME
SCHEDULING

Table 2.1: Table of Notations

Symbol Description

Γ a task set

τi a task indexed by i

n number of tasks

ji,k kth released job of task i

ri,k kth release time of task i

φ0 task release phase

Pi priority of task i

Ci worst-case execution time of task i

Ti period of task i

Di deadline of task i

Ri response time of task i

Bi blocking time of task i

Ii interference time of task i

Ui utilization of task i

Uub upper bound on total utilization

Ud desired utilization

Qs budget of an execution time server

Ts period of an execution time server

upper bound on task execution time is known as the worst-case execution
time (WCET), denoted by Ci. In real-time scheduling theory, the WCET is
important to derive the response time Ri, i.e., the length of time that a task
takes to finish after its release, which is normally larger than the computation
time due to interrupts and preemptions.

In order to produce an analysable and predictable system, a few assump-
tions about the task model in the system being analysed are often required.
One of the most commonly used task models is the simple periodic task model,
which has the following properties:

• All tasks are periodic with a fixed period;

• All tasks have known WCETs;

25

• All tasks have deadline less or equal to the period;

• All tasks are executed on a uniprocessor, i.e., CPU with a single core;

• There are no execution precedence or data dependency between tasks;

• No implementation-introduced overheads are considered, e.g., context-
switching.

The simple periodic task model is a simplified but yet reasonable descrip-
tion of a wide range of applications. Later in this thesis, it will be shown how
some of these assumptions can be relaxed.

2.1.2 Scheduling Periodic Tasks

Modern real-time systems use multiprogramming to improve the utilization
of a processor. In such an environment, multiple tasks are executing con-
currently but give the impression that they were executed on a dedicated
processor. Computation resources are shared by different tasks according to a
scheduling algorithm, which will determine the orders in which a task can use
the processor at a certain time instant.

Historically, tasks in a real-time system are scheduled offline using static
cyclic executives [120]. Basically, the cyclic executive is a table of procedure
calls, which records the sequence of the tasks being called. The complete
table is called the major cycle, which consists of a number of minor cycles.
The length of the major cycle is equal to the least common multiple of the
periods (hyperperiod) among all the tasks, while the length of each minor
cycle is fixed and is determined by the characteristic of the task set. For the
cyclic executive approach, it is assumed that all the task parameters, including
periods, computation times and future release times are known a priori when
determining the scheduling table. However, this limits the flexibility of the
system as even a small change in the characteristic of the task set will require
the scheduling table to be recalculated.

In 1973, Liu and Layland proposed two dynamic scheduling algorithms:
Rate-Monotonic Fixed-Priority Scheduling (RM-FPS, or RMS) and Earliest
Deadline First (EDF) [93]. RMS uses a static priority assignment policy based
on task periods namely the rate-monotonic policy, while EDF uses dynamic
priorities according to the absolute task deadlines. RMS and EDF have proven
to be optimal scheduling methods for uniprocessor systems, in which tasks are

26

CHAPTER 2. FLEXIBLE AND FEEDBACK METHODS IN REAL-TIME
SCHEDULING

independent and can be preempted at any time. The advantage of dynamic
scheduling over cyclic executives is that it makes scheduling decisions at run-
time, so the exact release and execution times of the tasks are not necessarily
needed.

For systems scheduled with RMS, there exists a utilization bound below
which the task set in the system will always be schedulable. The least upper
utilization bound of RMS is derived in [93] as Uub = n(21/n − 1). Thus the
task set is schedulable if:

n∑
i=1

Ci
Ti
≤ n(21/n − 1) (2.1)

For example, when there are only two tasks, Uub = 2(21/2 − 1) = 0.83 and
when n approaches ∞, Uub → 0.693. It is notable that this is a sufficient
but not necessary condition. Task sets with total utilization higher than this
bound could still be schedulable, e.g., schedulability of tasks with harmonic
periods is guaranteed up to 100% utilization.

The utilization-based test for EDF is also derived in the same work [93]. It
is indicated that the utilization bound of simple periodic tasks with Di = Ti

is equal to 1 for all task sets:

n∑
i=1

Ci
Ti
≤ 1 (2.2)

Unlike the utilization test in FPS, which is only sufficient, this criterion
is exact (both sufficient and necessary). For more complicated task sets, i.e.,
tasks with Di < Ti, the feasibility of EDF can be obtained by Processor
Demand Analysis (PDA). The feasibility of a task set is guaranteed if the
process demand g(·) between the interval [t1, t2] is less or equal to the available
time, which is:

∀{t1, t2 | t2 ≥ t1} g(t1, t2) ≤ (t2 − t1) (2.3)

Although a higher utilization can be achieved by EDF, it behaves badly
when the CPU overloads. Unlike FPS, where only low priority tasks will
suffer from overloads, EDF has a less predictable behaviour that is known as
a ‘domino effect’ [40], i.e., a cascade of deadline misses. Another drawback
of EDF is that it has higher overheads than FPS, which also limits its use in
real-world applications.

27

2.1.3 Scheduling Sporadic and Aperiodic Tasks

Many real-time tasks have an arrival pattern that is not periodic. These tasks
are often triggered by external events and may have stochastic arrival times.
Depending on whether a minimal arrival interval is properly defined, these
tasks can be categorised as sporadic (minimal inter-arrival time is defined) or
aperiodic tasks.

One way to handle non-periodic tasks is to run them as background activ-
ities. In this case, these tasks are giving priorities lower than periodic tasks.
As a consequence they can only use the spare capacity of the processor and
cannot steal resources from periodic tasks [35]. The drawback of this method
is that the average throughput and response time could be unsatisfactory with
background execution.

In order to handle sporadic and aperiodic tasks in a predictable way
with Quality-of-Service (QoS) [64] [14] requirements, a mechanism namely
Execution-Time Server is introduced, which is a reservation-based schedul-
ing method [120]. An Execution-Time Server is a straightforward solution
for handling sporadic and aperiodic tasks. It is a dedicated task that runs
periodically, which behaves just like a normal periodic task. One example of
execution-time servers is the polling server, which is a periodic task with a
fixed period Ts and a fixed execution capacity Qs [35]. The polling server is
released periodically at run time and at each release, the server checks if there
are any non-periodic tasks in the ready queue. If there is a ready task, the
server will execute the task with its assigned capacity. Once the budget is
exhausted, the polling server is suspended and has to wait for the next re-
lease. The polling server is simple and effective. However, the capacity will
be wasted if there is no task available when the server releases.

To solve the limitation of the polling server, many solutions are proposed,
e.g., Priority Exchange, Deferrable Server, and Sporadic Server [35] [120].
These methods use principles quite similar to the polling server, but they can
reduce wasted capacity by preserving it if there are no tasks available. These
three algorithms are differentiated in the way of preserving and replenishing
capacity, and they use different feasibility analysis to determine the maximum
capacity of the server. Since unused capacity is retained if there are no ape-
riodic tasks, these servers are known as bandwidth preserving servers. The
equivalent bandwidth that a server can use is equal to Qs/Ts. Since Periodic
and Sporadic Severs behave the same as a periodic task, the feasibility of a

28

CHAPTER 2. FLEXIBLE AND FEEDBACK METHODS IN REAL-TIME
SCHEDULING

task set involving servers can be analysed by treating the servers as a period
task (Ti, Ci), with Ti = Ts and Ci = Qs. For Deferrable Server, it is equivalent
to a periodic task with release jitter [120].

Similar server techniques are used for systems scheduled with EDF, which
is an extension to the fixed-priority server. One of these servers is the Constant
Bandwidth Server (CBS) [4] [3] [1]. A CBS has an instantaneous capacity cs, a
period Ts, a maximum budget QS and a relative deadline ds. Once the budget
is decreased to 0, the server budget is recharged to the maximum value Qs and
the server deadline is postponed by a period Ts. An important property of
CBS is that during any duration L, the demand of the server will not exceed
Qs/Ts∗L. Thus a priori guarantee can be made, even when the actual requests
may sometimes exceed the expected load [3]. The CApacity SHaring (CASH)
and the Greedy Reclamation of Unused Bandwidth (GRUB) algorithm are also
proposed to reclaim resources that are incorrectly assigned [120].

2.1.4 Response Time Analysis

For fixed-priority scheduling, the utilization bound for the feasibility test is
both conceptually and computationally simple. However, it requires Di = Ti

and Pi assigned according to rate-monotonic. Also, it is sufficient but not
necessary, which in some cases is pessimistic. For example, for a task set with
harmonic periods, the upper utilization bound can reach 100% [137] [36].

An exact feasibility test for fixed-priority scheduling, that derives the
worst-case response time of a task, is fixed-priority response time analysis
(RTA) [17]. The standard RTA equation is a recursive equation that is formed
of two parts: the worst-case execution time, plus an interference time resulting
from tasks with higher priorities [35]:

Ri = Ci + Ii

= Ci +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj

(2.4)

in which Ri is the response time, Ii is the interference time, hp(i) is the set
of all tasks that have priorities higher than i, and d·e is the ceiling function
that gives the smallest integer greater than the given fractional number. The
response time equation can be solved by forming a recurrence relationship [16]:

ωn+1
i = Ci +

∑
j∈hp(i)

⌈
ωni
Tj

⌉
Cj (2.5)

29

The intermediate variable ωni is monotonically non-decreasing. A solution is
found when ωn+1

i = ωni . If ωni excesses the period of the task, then the task
will not meet its deadline. Compared with the utilization test, the RTA can
be further used for tasks with arbitrary priority ordering [120] and tasks that
have deadlines less than periods [108].

2.1.5 Summary

The cyclic executive packs all the tasks into ‘minor cycles’ in a way that will
enable all task deadlines to be met. The scheduling is done offline so there is
negligible overhead at run-time. The feasibility is guaranteed by constructing
the scheduling table while considering the deadlines as constraints that have
to be satisfied. Although cyclic executive is effective and safe, it becomes
increasingly difficult to pack the cycles as the number of tasks grows in the
system.

Dynamic scheduling algorithms, e.g., FPS and EDF, overcome the draw-
backs of the cyclic executive by making scheduling decisions at run-time. FPS
uses static priority assignment according to the periods (rate-monotonic) or
deadlines (deadline-monotonic). It is proven that RMS is optimal, in the sense
that if a task set with Di = Ti can be scheduled by any other fixed priority-
based approach, it can also be scheduled by RMS. The optimality of EDF is
proven in a similar way in the context of deadline-driven scheduling.

The concept of server is introduced as the way to incorporating non-
periodic tasks into the framework of periodic scheduling. A server is char-
acterised as (Qs, Ts) and is scheduled as a periodic task. Different server
schemes differ in their policies of replenishing the capacity and reclaiming the
unused bandwidth. Guarantees can still be made if the actual load exceeds
the expectation.

The scheduling algorithms introduced in this section are sometimes known
as the ‘plain algorithms’. However, to meet the requirement of certain appli-
cations, modifications and extensions have to be made. Some of the extended
variations will be discussed in the rest of this chapter.

30

CHAPTER 2. FLEXIBLE AND FEEDBACK METHODS IN REAL-TIME
SCHEDULING

2.2 Research Challenges and Trends in Real-Time

Scheduling for CPS

Cyber-Physical Systems [136] often have complex functional requirements and
are exposed to open environments with interactions to physical elements and
other systems. There are two aspects that were identified as challenges to
apply traditional scheduling algorithms:

1) Execution times can be temporally or spatially dependent, and variations
of system workload can be large;

2) The worst-case boundary on execution times are hard to predict and
can be imprecise and inaccurate, or can only be accurate and valid for
a short period of time [135].

The timing requirements imposed on real-time tasks are typically guaran-
teed with offline analysis by considering the worst-case scenario. For instance,
the response time analysis of a uniprocessor fixed-priority scheduling uses the
worst-case execution time and the critical instance to determine the maximum
time a task will take to complete [35]. A guarantee is made if the analysed
response time is equal to or less than the task deadline. In order to properly
inference the satisfaction of the timing requirements, the WCET should be
derived precisely. However, an accurate estimation of the WCET is hardware-
dependant and it is difficult to derive.

In practice, there are two approaches to analyse WCET [135]: static and
measurement-based analysis. Static analysis derives the WCET from the
source code and an abstract processor model. It generates all possible control-
flow paths from the source code, and finds the worst-case path based on the
flow and processor behaviour. Measurement-based approaches, in contrast,
measure the actual end-to-end execution times, and estimate the WCET based
on these measurements. Static analysis is likely to overestimate the WCET,
while measurement-based method may underestimate the WCET if the actual
WCET path is not observed, or the worst-case state of the hardware was not
experienced.

The analysis of the WCET is non-trivial since it is based on both the pro-
gram control flow and hardware architecture features [135]. The initial state,
input data and control-flow path that lead to the WCET is hard to derive. In
addition, due to the advanced features of modern computer architecture, e.g.,

31

multi-level caches, pipelines, speculative features and out-of-order execution,
the analysis of such an upper bound is becoming much more difficult. If the
WCET is underestimated, the resultant scheduling system will be optimistic,
in which case the system will occasionally suffer from transient overloads and
is likely to have unpredictable behaviours. On the other hand, if a system is
designed with too pessimistic estimations, the system resources will be wasted
and effectively the functionalities that a system can implement have to be re-
duced. However, due to high correlation and coupling with other system-level
elements and the environment, deriving the WCET of a task in CPS could be
non-trivial. Hence a precise WCET should not be expected.

For most systems, more resources means higher hardware cost, larger phys-
ical size and more power consumption. It will therefore be too expensive to
satisfy the worst-case, especially when some of the tasks have a large WCET
but only a small average execution time. In this case, the system has to make
less conservative assumptions of the workload, and as a consequence over-
loads will occasionally happen, which will lead to performance degradation.
The term ‘overload’ refers to the condition when the total demand requested
by the application tasks in the system is larger than the capacity that the
hardware platform can support.

It is known that only the lower-priority tasks scheduled with FPS will suffer
from overloads, leaving the higher-priority tasks unaffected. However, since
priority is not always equivalent to importance, the system may be jeopardised
if some critical but low-priority tasks fail. For EDF, a transient overload that
makes a task to miss its deadline, has a chance to cause a cascade of deadline
misses. Thus overloads have to be handled properly.

In general, there are two approaches to handle overloads [120]:

1) Prevent temporal failures: validate the system with worst-case anal-
ysis. Make sure the resources are sufficient enough to support even the
worst-case. However, if the assumptions of the worst-case are violated
(transient overload or resource failure), the guarantees may become in-
valid. Server technique can also be used to create temporal isolation
between tasks.

2) Tolerant timing faults: assume overloads will happen and handle
timing violations when they occur at run-time; Approaches include im-
precise computation [95], QoS adjustment [14], elastic scheduling [40]
[37] [41] [42], etc.

32

CHAPTER 2. FLEXIBLE AND FEEDBACK METHODS IN REAL-TIME
SCHEDULING

The reservation-based scheduling methods such as the Priority Exchange
Server and the Constant Bandwidth Server that are already discussed in Sec-
tion 2.1.3 can relieve some of the uncertainties by making pessimistic reserva-
tions, but the overall performance of a reservation-based server is still largely
depend on a correct and fair allocation of resources [120]. CPSs are in na-
ture more dynamic, and conservative reservations are not efficient. Since the
variation in task execution time can be large, both optimistic and pessimistic
allocations will decrease system performance or even lead to run-time failures.
The CPU bandwidth should be dynamically allocated to each task. This re-
quires scheduling decisions to be made online, not only for handling overloads,
but also for an increased overall resource utilization.

To address these mentioned issues, many efforts have been made in recent
years to use online mechanisms, that can improve scheduling for tasks with
high level of uncertainties in systems including CPS. The term ‘online’ refers
to the process of run-time system monitoring, resource planning and reallo-
cation. To provide predictable performance and improved system utilization
even under uncertain or unknown task parameters, these methods rely on task
models with a higher level of flexibility compared to traditional task models,
in which some of the task parameters are defined in a feasible range (or a
collection of feasible values) instead of a fixed single value.

The Elastic Scheduling is one of these methods which is an online adaptive
task management policy [37]. In an elastic task model, the period Ti of a
task τi is defined in a feasible range. The utility of the task is a function of
its period which decreases as the period increases. A system under elastic
scheduling is analogous to a physical spring system: the periods of tasks can
be adjusted to adapt to the current workload just as a chain of springs can
adapt their lengths in reaction to external forces.

The imprecise computation model [95], which is one type of anytime algo-
rithms, is another approach to make good use of spare processor capacity and
to handle overload conditions at run-time. In such a model, a task is split into
a mandatory subtask which must be done, and an optional subtask which is
only executed if there is enough spare capacity.

The notion of Quality-of-Service (QoS) was initially proposed as a metric
in soft real-time systems for measuring performance. A task under different
QoS levels has a corresponding execution time, period and a contribution
(e.g., value or reward) to the system. A system can make run-time trade-

33

offs between QoS and the requested resource demands, which is achieved by
searching the optimal solution of selecting QoS levels that will maximise the
total system value under the current load condition.

All of the aforementioned methods have assumptions that some of the
task parameters are known a priori. When it comes to open and dynamic
environments, the parameters of the tasks are not known until they arrive.
Feedback Scheduling is one method proposed to achieve desired performance
in a dynamic environment. Feedback scheduling uses measurements observed
from the system and feeds that information to the scheduler to make adap-
tations. The advantage of using feedback is that it can deal with systems in
which tasks have highly dynamic execution times and inter-arrival patterns.
There are also some work using control-theoretic approaches, named Feed-
back Control Scheduling (FCS) [46] [97] [100], which takes the benefit of the
modelling and verification methods from Control Theory. FCS is a more sys-
tematic method for applying feedback. It provides a way for systems to adapt
themselves in the presence of noise and uncertainties while still provide a pre-
dictable performance. For example, a method of using feedback control with
an admission controller under EDF (FCS-EDF) is discussed in [98].

Stochastic analysis is another method that deals with tasks with arbitrary
execution times and arrival rates [120]. Statistical approaches are used to
observe the execution times of tasks and build a probabilistic density function
for each task. A probabilistic analysis is then given to indicate the confidence
of the schedulability of the task set.

The rest of this review will give details of the aforementioned algorithms
and discusses their advantages and limitations. Most of these algorithms can
also be seen as adaptation methods that can be used to make online trade-offs
between system utilization and timing predictability.

2.3 Flexible Scheduling Algorithms

The actual task execution times at run-time have variations and even the
observed maximum execution time could still be much less than the WCET.
Hence the use of WCET in the design stage will lead to very inefficient usage
of resources at run-time, i.e., a very low utilization in general. Since the
basic element of a CPS is an embedded computer, which often has cost and
size constraints, the feasible resources in the system may not be sufficient to

34

CHAPTER 2. FLEXIBLE AND FEEDBACK METHODS IN REAL-TIME
SCHEDULING

support all the extreme scenarios. This means there is a potential chance that
the system will occasionally be overloaded.

To solve the conflicts between performance and timing guarantees, many
new paradigms of task scheduling are proposed, which will collectively be
referred to as flexible scheduling [57]. Flexible scheduling in this review refers
to a category of scheduling schemes that use a task model with a certain
level of flexibility. Unlike traditional algorithms where task parameters are
fixed, flexible scheduling permits some properties of a task to be defined in
a feasible range or some discrete values. In some cases, additional artificial
parameters (e.g., value, QoS level) are added to the task model to facilitate
the selection of parameters. The benefit of using a flexible model is this makes
it possible for the scheduler to adapt task parameters to the current workload
in order to achieve a higher resource utilization, while still ensuring a certain
level of timing guarantee. In this section, flexible scheduling algorithms in the
literature will be reviewed and their performance will be discussed.

2.3.1 Elastic Scheduling

Elastic scheduling is proposed as a methodology for adapting workload by
varying the rates of a subset of periodic tasks [40] [37] [41] [42]. Although
there exists similar rate modulation techniques [22] [119], the elastic schedul-
ing method is more systematic and general. In this framework, each periodic
task has a range of feasible periods and is treated as analogous to a spring with
an elastic coefficient and length constraints. The rate adaptation algorithm is
executed periodically to enlarge or compress task periods according to the cur-
rent estimated execution times. The possibility of varying rates increases the
flexibility of the system. The advantage is twofold: a) in overload conditions,
this reduces the number of deadline misses; b) whereas in normal conditions
the algorithm increases the CPU utilization and improves QoS.

Elastic Task Model

The tasks in the elastic scheduling framework are similar to flexible springs.
Each task is given a range of feasible periods [Ti0 , Timax] and a non-negative
elastic coefficient Ei. It is also assumed that the upper bound on execution
time of each task is known and is denoted as Cubi . Thus, an elastic task is
described as:

τi ≡ (Cubi , Ti0 , Timax , Ei)

35

where Ti0 is the minimum feasible period and is considered as the nominal
period. The maximum period of task τi that can be accepted is defined as
Timax . The actual period Ti is constrained to be in the range [Ti0 , Timax]. The
elastic coefficient Ei is equivalent to the rigidity coefficient of a spring, which
is used to determine the relative variability of a task period. For tasks which
have a fixed activation rate during load reconfiguration, Ei should be set to
0. While for other tasks whose rate could have some elasticity, Ei can be set
inversely proportional to the importance of task [41].

In this framework, a period reconfiguration can be achieved by stretching
and compressing task periods for all tasks with changeable periods. A feasible
solution exists if the total utilization of the new schedule is less or equal to
the required utilization bound. For the case when EDF scheduling is used,
all tasks can be guaranteed with their minimum periods if

∑
(Cubi /Ti0) ≤ 1.

Otherwise the elastic algorithm is used to calculate the new assignment of task
periods Ti, which satisfies

∑
(Ci/Ti) = Ud. Here Ci is the worst-case execution

time and Ud is the desired utilization (Ud ≤ 1).

The elastic task model is reasonable for a range of applications. For ex-
ample, in a control system, the sampling and actuating rate of the controller
is not always rigid. A higher execution rate is useful to obtain more precise
estimations of current states and to make faster reactions to external stim-
uli. On the other hand, decreasing a controller’s frequency is likely to have
a consequence of decreased control performance, but the amount of resources
needed is also reduced.

Task Compression and Decompression

The compression of elastic tasks is equivalent to compression of a linear spring
system. In this comparison, the utilization factor Ui = Ci/Ti of a task is
equivalent to the length xi of a spring. A set of n tasks with total utilization
Up =

∑n
i=1 Ui, is treated as a sequence of n springs with length L =

∑n
i=1 xi.

Figure 2.1 shows the situation when a linear spring is compressed from L0

to L′ by applying a force F. Define the set Γv of variable springs and the set
Γf to include all the springs that cannot be compressed any more. The new
length of each spring xi can be derived by [41]:

∀Si ∈ Γv xi = xi0 − (Lv0 − Ld + Lf)
Kv

ki
(2.6)

36

CHAPTER 2. FLEXIBLE AND FEEDBACK METHODS IN REAL-TIME
SCHEDULING

Figure 2.1: A linear spring system compressed by a force F

where

Lv0 =
∑
Si∈Γv

xi0 (2.7)

Lf =
∑
Si∈Γf

ximin (2.8)

Kv =
1∑

Si∈Γv
1
ki

(2.9)

To apply Equations (2.6)(2.7)(2.8)(2.9) to elastic tasks, substitute all length
parameters with utilization factors, and replace rigidity coefficients Ki and Kv

with elastic coefficients Ei and Ev. Let Γf be the subset with all fixed tasks
that already use the maximum periods, and Γv be the subset of all variable
tasks that can still be compressed. The new compression equation of each task
to achieving an overall desired utilization Ud is derived as:

∀τi ∈ Γv Ui = Ui0 − (Uv0 − Ud + Uf)
Ei
Ev

(2.10)

where

Uv0 =
∑
τi∈Γv

Ui0 (2.11)

Uf =
∑
τi∈Γf

Uimin (2.12)

Ev =
∑
τi∈Γv

Ei (2.13)

37

During utilization compression, task periods are increased. It is noticeable
that if the solution of Ui is less than the lower utilization bound Umin, then
the period of that task should be equal to the maximum period Tmax, and the
task will be removed from Γv and put into Γf . If a feasible solution exists,
the period Ti of task τi is then derived as Ci/Ui. It was shown in [41] that
when period constraints exist, the compression algorithm has a worst-case
complexity of O(n2) to find the solution of Ui.

Decompression can be performed once the overload is over, and all com-
pressed tasks can return toward their nominal periods. The new task uti-
lization can be expanded (task periods are shortened) according to the task
elastic coefficient, and a similar algorithm is used to recalculate utilization
allocations.

Online Adaptation

In previous sections, it is assumed that the WCETs of all tasks are known a
priori. The case when the task computation times are unknown is discussed
in [37]. In this work the actual execution time is monitored and an estimated
value is used as a feedback for achieving load adaptation. As illustrated in
Figure 2.2, the actual execution time is monitored by the kernel, and the mean
execution time over a sampling window ĉi and the maximum execution time
Ĉi is updated each period. The estimated execution time Qi is calculated as:

Qi = ĉi + k(Ĉi − ĉi) (2.14)

where ki ∈ [0, 1] is the guarantee factor. A larger value of ki will decrease the
weight of the mean execution time. When ki = 1, the estimated execution
time is equal to the WCET. As ki decrease, the actual system utilization
will increase, at the cost of more deadline misses. Once Qi is obtained, the
utilization factor can be calculated as Ûi = Qi/Ti, and the actual load is
estimated as:

Ua =

n∑
i=1

Ûi (2.15)

The objective of the feedback loop is to make the actual utilization Ua as
close as possible to the desired utilization Ud. This Ud is set close to (but less
than) 1.0, to permit variations in task execution. The advantage of using an
online estimation is that no prior information about execution times is needed.
However, since the establishment of Qi may take several task periods, there is

38

CHAPTER 2. FLEXIBLE AND FEEDBACK METHODS IN REAL-TIME
SCHEDULING

Figure 2.2: Elastic scheduling with execution time estimation

a chance that some deadline misses may occur during the start-up time. This
can be improved by providing ci to the kernel as the initial value, which will
speed up the convergence time of Qi to a stable value [37].

Other Extensions

An extension that deals with resource constraints is introduced in [42], and the
use of damping coefficient to achieve smooth adaptation can be found in [38].
In Chantem’s work [51], the elastic model is applied for tasks withD < T and is
generalised to adjust deadlines instead of task periods. An example of using the
elastic model for transmitting network packets over FTT-Ethernet, which is a
real-time master/multi-slave transmission protocol, is given by Pedreiras [110].

2.3.2 Quality-of-Service Adaptation

Services in real-time systems often have performance requirements that can
be interpreted as quality-of-service (QoS). For example, QoS in a multime-
dia application may refer to frame rate per second or frame resolution; the
QoS level in real-time communication may specify the permitted delay and
bandwidth requirement. By defining different acceptable QoS levels that the
service can provide, it is possible to adjust the QoS level of a service according
to the availability of current resources. Graceful degradation can be achieved
if one or more services can decrease their QoS as in the case of unanticipated
overloads and failures. System utility can thus be maximised by reallocating
resources at run-time and a balance can be made between predictability and
performance.

In [14], a QoS-negotiation model is proposed to ensure graceful degrada-
tion when prior assumptions are violated and overload occurs. The proposed

39

Figure 2.3: QoS Negotiation Service Provider

mechanism, as shown in Figure 2.3, permits clients to request a spectrum of
acceptable QoS levels and provide utility associated with each level when a
request is sent to the service provider. It is declared that the QoS negotiation
model extends the typical real-time services in two ways: a) QoS degrada-
tion is an alternative to denying service, which could potentially reduce the
number of service denies and improves the overall system utility; b) Compared
with other approaches to achieving graceful degradation, QoS negotiation uses
more generic application-specific knowledge to adapt service qualities.

In this QoS-negotiation model, the client requesting service expresses a
set of negotiation options and the penalty of rejecting the request from the
service provider. Each option is associated with a QoS level and a reward value.
Different QoS levels represent distinct configuration of parameters, of which
the semantics only need to be known by the client and the provider. The
reward represents the application-perceived utility that can be gained from
serving the client with the corresponding QoS level, which is a measurement
of benefits that can be contributed by accepting the request. The rejection
penalty defines the amount of penalty when a client’s request is rejected. Once
the request is accepted, the rejection penalty is considered no further.

The feasibility assessment module is responsible for checking if the current
QoS configuration can be maintained by the available resources, which is mon-

40

CHAPTER 2. FLEXIBLE AND FEEDBACK METHODS IN REAL-TIME
SCHEDULING

itored by the resource monitoring module. The QoS negotiation module uses
a local optimization heuristic to select a proper QoS level of each client, in a
way that could maximise system utility [14]. When a new task arrives, the
heuristic will recompute the set of QoS levels to maximise the sum of clients’
rewards. The acceptance of the new task will be only guaranteed if the penalty
of rejection is larger than the resultant degradation of all other local clients.

2.3.3 Value-based Scheduling

Value-based scheduling [39] has drawn wide attention from the real-time com-
munity. In this scheme, the concept of value is introduced to increase schedul-
ing flexibility, especially under overload conditions. The value parameter rep-
resents the relative benefit that can be contributed to the system when a task
finishes its computation. It is useful to support the scheduler in making run-
time decisions when resources are scarce. The value can be either a fixed
value, or a function. It should be noted that ‘value’ is an approximated utility
and is an artificial description of the importance derived from the application-
specific domain. Thus a correct assignment of values is critical to implement
this method.

The value-based scheme takes the consideration that not all tasks/services
have the same utility. When an overload occurs, instead of dropping tasks with
lower priorities, or serving tasks in a first-come-first-serve manner, it is more
desirable to drop some less valued tasks to achieve a graceful degradation. In
this way, value can be seen as the preference between different services/groups
of services.

Generally there are two approaches to schedule tasks with value: a) High
Value First (HVF): tasks are scheduled in the preference of value vi; b) High
Value Density First (HVDF): priorities of tasks are decided based on the value
density vi/ci. A comparison between different value-based schemes with EDF
and their mixture is studied in [39]. It is observed that when there is no
guarantee mechanism, HVDF is the most effective priority assignment policy
in overload conditions. Tres et. al. [132] developed a scheduling algorithm
DMB (Dynamic Misses Based) which assigns priorities based on the original
task value Vi and the percentage of timing faults MD i:

Pi = Vi × (k1 + k2 ×MD i) (2.16)

where Pi is the priority, and k1, k2 are weighting constants. When Vi is static

41

and there is no timing faults, DMB behaviours exactly the same as HVDF. A
comprehensive survey of value-based scheduling is given in [34], where algo-
rithms using constant and variable values are discussed and compared.

The actual assignment of value is a critical procedure in developing value-
based scheduling algorithms, yet it remains a less addressed issue in the lit-
erature. In the work of Burns et al. [34], the representation and construction
problem of value is discussed. The representation problem is to answer the
question that if a specific form of value (or value function) is theoretically
sound to support the decision procedure. It is required that the axioms (con-
ditions that are fulfilled by binary preference relations) be ‘testable’ or ‘empiri-
cally verifiable’. It is suggested that the construction of values that specify the
preference between service can be built by making pair-wise comparisons, in
which users are asked to make their judgements between every pair of services
alternatives. The quality of the pair-wise comparison experiment is strongly
based on the way the experiment itself is represented to the decision maker.
Although the inconsistency of preferences can be checked by tools, there is no
guarantee that the result of such an experiment is an accurate description of
the real utility of the services. Overall, the assignment of value inevitably de-
pends on intuition and judgement, thus tool support should be used to ensure
a fair and consistent assignment.

2.3.4 Imprecise Computation

Imprecise computation [95] [91] is another approach to avoid timing faults
and achieve graceful degradation. In this model, every time-critical task τi

can be logically decomposed into two sub-parts: 1) a mandatory sub-task
Mi and 2) an optional sub-task Oi. The mandatory task is the sub-part
that has to be completed before the deadline to obtain an acceptable result;
while the optional tasks is the one that can improve the precision of result or
the QoS of services if finished. The result is said to be ‘imprecise’ if the task
terminates after the mandatory sub-task is finished. An imprecise computation
can be monotone if the quality of the result increases as it executes longer.
Examples that support monotone computation include statistical estimation
and prediction, and heuristic searching for optimal solution, etc.

The key to scheduling imprecise tasks is to ensure all mandatory sub-tasks
have bounded processing time requirements and have sufficient computational
resources to complete their execution before the deadlines. Whenever there is

42

CHAPTER 2. FLEXIBLE AND FEEDBACK METHODS IN REAL-TIME
SCHEDULING

unused processing capacity, optional sub-tasks can be scheduled and executed
to improve the quality of the result. Scheduling problems in supporting im-
precise computation is discussed in [95]. Some performance metrics that can
be used for comparing different imprecise algorithms are listed below:

• Minimizing the total error, the maximum error or the average error;

• Minimization of the number of dropped optional sub-tasks;

• Minimizing the number of tasks that complete or terminate after their
deadlines;

• Minimize average response time.

A solution to scheduling imprecise tasks with minimised total error is also
introduced in the same paper [95], which uses a modified version of EDF. A
programming language that supports implementation of imprecise computa-
tion, flex, is discussed in [91]. The support of imprecise model in real-time
operating system that uses an Imprecise Computation Environment (ICE) is
given in [83].

2.3.5 Summary

In this section, we first introduced a few methods that can be used to handle
timing faults in dynamic real-time systems. The elastic scheduling method
is first introduced as an effective way of overcoming overloads and improving
resource utilization. The algorithm is derived from a mechanical spring system
and has a complexity of O(n2) when utilization constraints are imposed.

The QoS method permits services to have different levels of quality that are
provided to clients. Each QoS level is associated with different computation
time and contribution to the system. In some sense this method is similar
to the multiple versions approach. The scheduler can choose the quality level
to accommodate current available resources, while still achieving an overall
acceptable performance when there are not sufficient resources. Value-based
scheduling is then discussed, which adds an additional parameter, task value,
to indicate the preference between service alternatives. It can be inferred
that the assignment of value is the key to achieving fair scheduling between
tasks. Thus if the value is assigned in an inconsistent way, it is likely that an
undesired decision will be made, which is not in accordance with the actual
utility of services.

43

Finally, the imprecise computation model that enables part execution of a
task is introduced and discussed. The general idea of the methods discussed
here is to improve the system utility under insufficient resources by adding
flexibility to the task model. By allowing a task to have different computation
times, service levels or periods, it becomes possible for the scheduler to make
optimal decisions and trade-offs, and to avoid rejecting tasks if the minimal
requirement of the task can be accommodated by reducing the computation
quality of itself/other tasks.

A pitfall in common with all these algorithms lies in that the performance
of these methods is largely dependent on the way the flexible parameters are
specified. For example, in elastic scheduling, the determination of Ei will
largely change the way periods are changed; and in the QoS negotiation model,
the relative value of contribution between service alternatives will have a great
influence on the order of task’s degradation. Thus sound engineering theory
and empirical results that are application-specific should be used to obtain a
reasonable performance if flexible scheduling is used. In the next section, we
will examine a novel method that uses ideas from control theory in scheduling
real-time tasks.

2.4 Feedback Scheduling

Feedback scheduling [46] [97] [100] [98] is another category of scheduling meth-
ods that is designed for handling systems with high dynamic workload with
large uncertainties. Unlike execution time servers that pre-allocate resources,
or flexible scheduling methods in which a reconfiguration is triggered by over-
load events, feedback scheduling is based on the feedback regulation that ac-
tively manipulate task parameters, in order to achieve desired performance
even in the presence of uncertainties.

There are many real-time computer systems in which the execution times of
tasks are data-dependent, e.g., web-server, database and video decoding. Also
there are cases where the executions of tasks are inherently non-deterministic.
An example is the heuristic for finding optimised path for an autonomous
vehicle. The computation time of the heuristic is dependent not only on the
destination which could possibly be changed any time by the mission planner,
but also on the environmental conditions that the vehicle currently senses.
Feedback can be used to adjust the system during run-time to overcome these

44

CHAPTER 2. FLEXIBLE AND FEEDBACK METHODS IN REAL-TIME
SCHEDULING

uncertainties that cannot be predicted before execution. This is achieved
by observers that sense the current status, controllers that make a control
decision, and software actuators that manipulate parameters in the system. In
this section, the construction of feedback loops and some example applications
of feedback scheduling systems will be discussed.

2.4.1 Feedback Control and Its Application to Computer Sys-
tems

The general principle of the feedback mechanism is to continuously monitor
system state(s), compare with desired reference(s) and make corresponding
control actions that could decrease the error, i.e., the difference between the
current and the desired state [13]. Since the mid-1950s, feedback control has
been widely used in computer-controlled systems [23]. The plants being con-
trolled are normally physical and mechanical systems, such as wind turbines,
water control valves, mobile robots and aircraft control systems. For the case
of feedback scheduling, the controlled plant is the task scheduling system.

For general purpose computer systems, the most commonly monitored
state is the average performance. This is often achieved by a ‘best-effort’
scheduler and no guarantees can be made on performance and service quality.
However, there are complex computer applications in which explicit quality-of-
service is required in delivering their services. In these applications, feedback
control can be applied to achieve desired performance, even in the presence of
uncertainties.

Figure 2.4 shows the basic structure of a feedback-control computer sys-
tem. The Performance Sensor is a monitor that senses the current status of
internal variables of interest, such as CPU utilization, network bandwidth or
system workload. The variables that are being monitored are normally identi-
cal to the parameters that need to be controlled. The measured value is then
compared with the desired value to generate an ‘error’ signal, which is used
as the input to the Performance Controller. The role of the controller is to
calculate the amount of adjustments that needs to be made, based on the error
and a specific control algorithm. Finally, the Software Actuator will accept
the control signal and manipulate scheduling variables, e.g., queue size, task
parameters, scheduling policies or CPU frequency/voltage, that can eliminate
the error.

There are two categories of control problems: regulation and reference

45

Performance
Controller

Software
Actuator

Computing System

Performance Sensor

desired metrics

measured metrics

+ -

error

disturbances
(e.g. task load variation,

network latency)
control signal

manipulated
variable

Figure 2.4: Structure of a feedback-control computer system and its compo-
nents

tracking. The regulation problem focuses on maintaining the controlled vari-
able to a specific value, i.e. the desired metric in Figure 2.4 is fixed. For ex-
ample, for a wireless router, it may be required that the bandwidth it provides
to each client should be maintained to a fixed fraction of the total bandwidth.
If any connection exceeds this limitation, the feedback controller will regulate
its bandwidth to its permitted value. While for the reference tracking problem
in which the desired value is varying with time, the controller is designed to
follow the reference as fast as possible. Most of feedback scheduling systems
are regulation controllers, in which the desired metric is calculated through
an optimal distribution of resources.

General principles and applications of feedback in computing systems can
be found in the book of Hellerstein [79]. Information on feedback control
theory, including modelling, controller design and stability issues, can be found
in the textbook by Dorf and Bishop [62]. Some of these issues are beyond the
scope of this review and hence will not be discussed here.

2.4.2 Research in Feedback Scheduling

Feedback scheduling is a ‘closed-loop’ method, which is in contrast to FPS and
EDF that are ‘open loop’. There are many research efforts in the literature
where feedback is applied to real-time scheduling systems. The first one is pro-
posed by Lu and Stankovic in 1999, which extended the traditional EDF by
integrating a PID controller [98]. The proposed scheduling method, Feedback
Control EDF (FC-EDF), monitors the deadline miss ratio and controls the ad-
mission of tasks and the service levels of admitted tasks. Stankovic et al. [127]

46

CHAPTER 2. FLEXIBLE AND FEEDBACK METHODS IN REAL-TIME
SCHEDULING

proposed a two-level feedback scheduling framework for distributed systems.
This framework consists of two feedback controllers: a distributed (global)
and a local feedback controller, and these two controllers work hierarchically.

Steere et al. [128] described a feedback scheduling method for real-rate
applications, which allocates CPU proportions and rates to tasks according to
the estimations of their current progress. The progress metrics of a real-rate
task are expressed by the current fill-level of the input/output queue divided
by the queue size. The adjustment of the CPU allocation is then calculated
by a PID controller based on the estimated progress.

A control-based middleware framework is presented in [90]. The frame-
work uses control theory to model the dynamics of the QoS adaptation and
is deployed in a distributed visual tracking application. A similar middle-
ware that supports QoS-control, the ControlWare, was proposed by Zhang in
2002 [142]. The middleware offers a control theoretic paradigm for achieving
absolute/relative guarantees, and the solution of the prioritisation problem in
distributed environments.

Approaches that exploit Dynamic Voltage/Frequency Scaling (DVFS) are
discussed in [145] [101]. In Lu’s work [101], a formal feedback-control DVS
is developed and evaluated in a simulated multimedia system which decodes
and plays MPEG video. The objective of the controller is to maintain a sta-
ble throughput, while holding the CPU at its minimum possible operating
frequency to save battery energy. In this case, the CPU operating frequency/-
voltage is scaled based on the average frame delay over a certain window size.
In Zhu and Mueller’s work [145], the integration of a DVS scheduler and a
feedback controller has been achieved within EDF scheduling, targeting hard
real-time systems with dynamic workloads.

Lu, Stankovic and Son etal. summarised a systematic way to design feed-
back control scheduling (FCS) systems that satisfies transient and steady-state
performance specifications [99]. In their work, design issues such as dynamic
modelling and performance evaluation are addressed, and categories of real-
time applications are identified.

Other works that applied feedback in real-time systems include End-to-end
Utilization CONtrol (EUCON) [100], web server delay control [97], feedback-
feedforward scheduling that supports period adjustments in control applica-
tions [46], and feedback admission control [63]. To better understand the
internals of a feedback scheduling system, two of the aforementioned works

47

will be considered in detail: FC-EDF [98] and feedback-feedforward schedul-
ing [46]. These topics are selected because they are well presented the scenarios
in which feedback control can be applied. FC-EDF extends traditional EDF
with a PID controller. The deadline miss ratio is selected as the controlled
variable. In the work of feedback-feedforward scheduling, a detailed design
methodology is represented. This work shows how application-specific infor-
mation (control cost in this case) can be used in controller design. The topics
mentioned here can be easily extended to cover more general cases and be
adopted for new applications.

2.4.3 The FC-EDF Scheme

In Lu’s work, a PID controller is integrated with an EDF scheduler based on
the feedback control framework. The proposed architecture, which is known
as feedback control EDF (FC-EDF), consists of a PID controller, a service
level controller, an EDF scheduler and an admission controller (as shown in
Figure 2.5) [98]. The system uses deadline miss ratio (DMR) as the controlled
variable, which represents the fraction of tasks missed their deadlines among
all admitted tasks. The feedback loop works as follows:

1. The DMR is monitored periodically;

2. The DMR is compared with the set point to generate an error;

3. The controller computes the required amount of control based on the
error and applies control law;

4. The actuator changes the value of the manipulated variables (in this case
is the service levels and the admissions of tasks) to control the system.

The objective of the controller is to achieve a high utilization and system
throughput. To satisfy this objective, a small (but non-zero) DMR for admit-
ted tasks is chosen as the set point. The reason for not choosing a zero DMR is
that a system with no deadline misses is likely to ignore the secondary perfor-
mance index [98], i.e., a high system utilization. A system with DMR equals
to 0% could still have an extremely low utilization, which will be treated as a
normal state by the controller if the reference point is set to be zero. In con-
trast, a set point of a non-zero DMR will always force the controller to slightly
overload the system in order to achieve a high utilization. There is hardly any

48

CHAPTER 2. FLEXIBLE AND FEEDBACK METHODS IN REAL-TIME
SCHEDULING

possibility that a system can achieve 100% utilization with no deadline misses
all the time, especially in an unpredictable environment.

At this point, it can be seen that a trade-off between deadline miss ratio
and utilization is unavoidable. To increase the resource usage, sacrifices have
to be made and hard guarantees can no longer be held. For this reason, the
method introduced here is only suitable for scheduling tasks without hard
timing requirements.

Figure 2.5: An overview structure of FC-EDF

Task Model

The task model used in FC-EDF is similar to the imprecise computation model.
In this framework, each task is described as a tuple: τi ≡ (Ii,ETi,VALi,Si,Di).
Each task is implemented with one or more logical versions Ii, which can be
expressed in different forms, e.g., multiple version, sieve function or milestone
method [95]. Each version is called a service level and is associated with
different nominal execution times ETi = {ETi1,ETi2, . . .ETik} and values
VALi = {VALi1,VALi2, . . .VALik}. The execution time is described in the
form of requested utilization, e.g., ETik = 0.02 means the kth version of task
τi requires 0.02% of the CPU time. Finally, Si represents the starting time

49

and Di is the soft deadline of task τi.

PID Control

Figure 2.6: Block diagram that shows the basic structure of a feedback loop
with a PID Controller and a plant being controlled.

The Proportional-Integral-Differential (PID) controller is widely used in
control systems. A graphical representation of PID controller is shown in
Figure 2.6, and its mathematical form in continuous time is written as [62]:

u(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kd

d

dt
e(t) (2.17)

which can also be transformed into frequency domain (s-domain):

U(s) = KpE(s) +Ki
1

s
E(s) +KdsE(s) (2.18)

where e(t) or E(s) is the error; u(t) or U(s) is the controller output; Kp, Ki

and Kd are constant coefficients, and should be tuned for a specific application
in order to get a stable and satisfactory performance.

In FC-EDF, since the sampling and actuating are taken place periodically
in discrete times, Equation (2.17) is discretized into the following formula:

∆CPU(kT) = Kpe(kT) + Ki

∑
kT∈IW

e(kT) + Kd
e(kT)− e(kT−DW)

DW
(2.19)

where T is the sampling period; ∆CPU is the changes in total requested CPU
utilization, which is the manipulated variable; e(kT) is the error, which is

50

CHAPTER 2. FLEXIBLE AND FEEDBACK METHODS IN REAL-TIME
SCHEDULING

defined as the desired deadline miss ratio DMRs minus the measured DMR at
t = kT , i.e., e(kT) = DMRs − DMR(kT); the parameters IW and DW are
the integration and derivative window, respectively.

Equivalently, what this controller does is to map the DMR into the changes
of requested utilization, in a way that will drive the DMR back to its desired
set point. If ∆CPU (kT) < 0, the requested utilization should be decreased
and vice versa. Once the change in requested utilization is calculated, the
PID controller will call the Service Level Controller (SLC) and the Admission
Controller (AC) to change the utilization to CPU ((k − 1)T) + ∆CPU (kT).
The SLC will try to accommodate the desired utilization by adjusting the
service levels of accepted tasks, and returning ∆CPU 0, the portion of ∆CPU

that cannot be accommodated. The ∆CPU 0 is then used by the AC to limit
the capacity that can be used by admitting new tasks. If ∆CPU 0 becomes
negative, no new tasks will be admitted until the system load has been reduced.

FC-EDF is an early work on exploring the use of feedback control in real-
time scheduling systems. It uses a feedback PID controller to adjust the
deadline miss ratio of admitted tasks. An analytical model of the scheduling
is also introduced to facilitate the tuning of controller parameters Kp, Ki and
Kd. The authors showed the method can effectively adapt to the changes
in system workload and maintain satisfactory performance, while the original
EDF performs poorly in handling the same workload [98].

2.4.4 The FBFW-EDF Scheme

Cervin et. al. showed a feedback-feedforward scheduling architecture in their
work [46]. The scheduler in this framework uses feedback from execution times
as well as feedforward from mode changes to adjust the rates of tasks. The
objective is to optimise theQuality-of-Control (QoC), which is defined in terms
of a set of cost functions that describe the quality of a real-time controller.

From scheduling perspective, controllers are generally views as tasks with
fixed periods, hard deadlines and known WCETs by the real-time community.
In some situations it is possible to design a controller with different modes.
Thus the controller can switch between modes with different execution times
and sampling periods, according to the current workload in order to optimise
QoC. The WCET assumption can also be relaxed by using an estimation based
on actual execution time measurements. The relaxation of control task pa-
rameters provides the opportunity of applying scheduling algorithms in which

51

a feedback regulator can be used.

However, online parameter adjustment of control tasks have an influence
on the controller performance, which has to be taken into consideration. In
the following sections, the modelling, cost function formulation, and finally
the construction of feedback-feedforward loop will be discussed.

Modelling of the Controlled Plant

To formally apply control theory and to analysis control performance, a math-
ematical representation of the process being controlled (or plant) is essential.
Each physical process can be described by a set of linear differential equations
that reveals the relationship between control inputs and system outputs (or
measured signals). A standard state-space representation [13] of a controlled
plant is:

dx(t)

dt
= Ax(t) +Bu(t) + w(t)

y(t) = Cx(t) + v(t)

(2.20)

where x(t) is the vector of system state variables; u(t) is the control input;
y(t) is the system output that can be measured; w(t) and v(t) are white noises
assumed to have a Gaussian distribution with a zero mean; A, B and C are
constant matrices that describe the dynamics of the plant. The objective of
the controller is to keep the system states close to the desired values. As
the controller is implemented on a computer in discrete time, the sampling of
y(t) is performed periodically through an analog-to-digital converter (ADC),
and the control input u(t) is held by a zero-order hold via a digital-to-analog
converter (DAC).

Formulation of the Cost Function

The performance of a controller can be evaluated by setting time, steady-state
error and overshoot, etc [62]. To numerically evaluate the performance, they
used a quadratic criterion [46], which is formulated as:

J = lim
T→∞

1

T
E
{∫ T

0

(
xT (t)Q1x(t) + uT (t)Q2u(t)

)
dt
}

(2.21)

From this equation, it can be seen the cost J is related to plant state x(t)

and control input signal u(t), where E{·} represents expectation and matrices
Q1 and Q2 are constant weights. A higher value of J indicates a larger control

52

CHAPTER 2. FLEXIBLE AND FEEDBACK METHODS IN REAL-TIME
SCHEDULING

derivation and control efforts. Hence by attempting to optimise the cost, it
actually means to minimise the weighted sum of x(t) and u(t). To achieve
the optimization objective, a Linear-Quadratic-Gaussian (LQG) controller is
applied in the feedback loop, which is explicitly designed to minimise the above
quadratic cost function Equation (2.21).

The period of the control task, h, has an influence on x(t), u(t) and y(t),
which makes J a function of h. Overall, the feedback scheduler should select
the sampling period hi for each control task τi, which will optimise the summed
overall control performance:

min
h
J(h) =

n∑
i=1

Ji(hi) (2.22)

subject to the utilization constraint:

n∑
i=1

Ci/hi ≤ Usp (2.23)

where Ci is the average computation time of control task τi and Usp is the de-
sired processor utilization set point. Evaluating a cost function involves a large
amount of computation and it is time consuming. To solve the cost function at
run-time, a quadratic approximation is used to simplify the computation [46]:

Ji(hi) = αi + βihi
2 (2.24)

J(h) can also be approximated by a set of linear functions, if the change in hi
is sufficiently small:

Ji(hi) = αi + γihi (2.25)

An explicit solution can be obtained by applying Kuhn-Tucker conditions.
It is further shown in [46] that a simple rescaling of the nominal frequency
fi0(= 1/hi0) is optimal with respect to J , if the nominal frequency is chosen
proportional to:

a. (βi/Ci)
1/3, for a quadratic approximation, or

b. (γi/Ci)
1/2, for a linear cost approximation.

this implies that the ratio between optimal sampling periods is constant re-
gardless of the available resources. Once the nominal sampling periods are
chosen wisely, optimal feedback scheduling can be performed through a sim-
ple period rescaling.

53

The Feedback-Feedforward Scheduling Architecture

A feedback-feedforward scheduling structure is developed as shown in Fig-
ure 2.7, which supports optimising control quality under mode changes. The
control tasks in this framework are assumed to have multiple modes with
different execution times. The feedback scheduler receives feedforward infor-
mation from control tasks when a mode change occurs. The mode change
here means change of task sets due to system reconfiguration. In this way, the
scheduler can respond to mode changes actively and adapts scheduling param-
eters of control tasks according to current modes. The processor utilization is
fed back to the scheduler, and compared with the desired utilization Usp. The
scheduler will attempt to keep the deviation between the measured utilization
U and Usp as small as possible, which is done by rescaling the sampling periods
{h1, h2, ..., hn}, as discussed in the previous section.

Figure 2.7: Block diagram of the feedback-feedforward structure

The set point is selected based on the scheduling policy of the dispatcher
and the robustness of the controllers against deadline misses. Increasing Usp
will lead to a higher processor utilization and control performance, but may
introduce occasionally temporal overruns. However, no analytic approach for
selecting the set point is described by the authors. Hence ad-hoc trials should
be applied for obtaining a reasonable Usp. The execution time is estimated
from the actual measurements ci with a first-order filtering [46]:

Ĉi(k) = λĈi(k − 1) + (1− λ)ci (2.26)

where Ĉi(k) is the estimated execution time, λ is a forgetting factor and
λ ∈ [0, 1]. Finally, the optimised new task periods are calculated by simple
rescaling:

hi = hi0
Usp

Û0

(2.27)

54

CHAPTER 2. FLEXIBLE AND FEEDBACK METHODS IN REAL-TIME
SCHEDULING

where hi0 is the nominal period and Û0 is equal to
∑n

i=1 Ĉi/hi0.

The feedback-feedforward architecture is designed to support QoC opti-
mization of control tasks with multiple versions and adaptable sampling rates.
The feedback mechanism relaxes the requirement on known WCETs and im-
proves processor utilization by periodically monitoring and adjusting work-
loads. The feedforward part is complementary to feedback and it provides
mode changes information to the scheduler for rapid adaptation.

It is mentioned in early section that a simple rescaling is sufficient for op-
timising QoC with cost functions that can be approximated by quadratic and
linear functions. The type of controller that is used in the feedback scheduler
is not explicitly stated. However, linear rescaling of periods based on cur-
rent workload is equivalent to proportional control (P control) in some sense.
The current workload is calculated from execution time estimations, which are
filtered by a first order filter.

The adaptation algorithm of this method has a complexity of O(n), which
involves 2n divisions, n multiplications and n sums where n is the number of
control tasks. The computational efficiency of the method makes it possible
to use it online.

One aspect that is not addressed by the paper is the control system sta-
bility issue. Switching between different control modes and online changing
of control periods can cause potential system instability. This issue is noticed
by control systems researchers, and is being studied under the framework of
Hybrid Systems [59].

2.4.5 Exploring Feedback Scheduling Algorithms

In feedback scheduling, the scheduler is operated in closed-loop and adjusts
task parameters periodically, thus it is robust against workload uncertainties.
In addition to the two methods that were already discussed [98] [46], there are
many other parallel researches on the topic of feedback scheduling structures
[74] [90] [97] [100]. Table 2.2 shows a comparison between some of the works
in which feedback scheduling is applied. Specifically, each method is analysed
according to the controlled variable, the manipulated variable and the control
method that is applied.

It can be seen that processor utilization is the most commonly measured
variable. As one of the most important performance metrics used by modern
operating systems, CPU utilization reflects a generalised estimation of the cur-

55

T
able

2.2:
Feedback

Scheduling
C
om

parison

M
eth

od
C
ontrolled

V
ariab

le
M
an

ip
u
lated

V
ariab

le
C
ontrol

M
eth

od

FC
-E

D
F
[98]

deadline
m
iss

ratio
service

leveland
adm

ission
control

P
ID

F
B
F
W

-E
D
F
[46]

utilization
and

Q
oC

task
rates

rescaling
(P

control)

A
C
j A
C
t
[74]

utilization,job/task
slacks

adm
ission

threshold
M
P
C

control-based
m
iddlew

are
[90]

utilization
and

bandw
idth

task
reconfiguration

P
ID

&
Fuzzy

Logic

w
eb-server

delay
control[97]

connection
delay

process
budget

P
I

E
U
C
O
N

[100]
utilization

rate
adjustm

ent
M
P
C

56

CHAPTER 2. FLEXIBLE AND FEEDBACK METHODS IN REAL-TIME
SCHEDULING

rent workload. Processor utilization can be either averaged over a small time
window or can be calculated through periods and execution time estimations.
The set point of U(t) is normally chosen to be a value that can slightly over-
load the system to achieve the best outcomes. As the nature of it, processor
utilization does not reflect the satisfaction of timing.

Another measurable index that is also widely used in feedback schedulers
is deadline miss ratio (DMR). DMR describes the fraction of deadline misses
over all committed task releases. It is observed in [98] that a higher processor
utilization will lead to an increased number of deadline misses. In order to
apply DMR in the feedback loop, the desired set point should be non-zero,
which makes this metric incompatible with systems with hard real-time re-
quirements.

Controlled variables can also be variables of interest that are application-
specific. For example, network bandwidth is used in [90], where a scheduler
for distributed vision tracking system is studied. In [97], absolute and rela-
tive connection delay is chosen as the controlled variable to assess the service
quality of a web-server application.

The choosing of manipulated variable can be made once the controlled
variable is identified. The general principle for selecting the manipulated vari-
able is that the variable that is being manipulated should be able to directly or
indirectly affect the controlled variable. For example, if the utilization is the
variable that needs to be controlled, then adjusting task release rates would
be a valid manipulation. The input-output relationship, known as system dy-
namics that maps the controlled and manipulated variables, can be obtained
by using an analytical method as in [98] or system identification as in [74].

The control method specifies the way of calculating the manipulated vari-
able based on the measured controlled variable. In general, the PID con-
troller [98] [90] introduced in Section 2.4.3 and its variations, e.g., PI con-
troller [97], are the most used controllers in feedback scheduling. It has many
advantages: it is robust against uncertainties and disturbances, and it is com-
putational efficient. One of the drawbacks of PID is that it can only han-
dle SISO (single-input-single-output) systems. For MIMO (multiple-input-
multiple-output) systems with couplings between inputs and outputs, MIMO
controllers such as MPC (Model Predictive Control) [74] [100] are more prefer-
able than using multiple SISO controllers .

Feedback naturally relies on feedback information (measured variables).

57

The sampling process tends to smooth the measurements by, e.g., a first-order
filter or by mean filtering over a certain sampling window. Hence some of the
system dynamics are lost during sampling, and an average rather than an exact
performance evaluation is applied. In the next section, statistical methods
that generalise system behaviour from a wider range of sampling data will be
discussed, which could utilise more information from system measurements.

2.5 Statistical and Probabilistic Methods in Schedul-

ing

In the previous section, it is shown the implementation of feedback control in
scheduling that are constructed in order to delivery robust performance against
execution uncertainties. In this section, modelling methods that explicitly
consider these uncertainties using either statistical or probabilistic analysis
methods will be explored.

Many attempts were made to apply statistical analysis with probabilistic
guarantees [65] [60] [71] [15] [65]. Most of these works assume the system
to be either a firm or a probabilistic hard [31] real-time system. The notion
of probabilistic hard real-time system is introduced by Bernat in 2002 [25].
Probabilistic hard real-time system is a hard real-time system in which a small
amount of deadline misses are acceptable, if the probability of such misses are
below a predefined threshold, e.g., 10−6. The argument is that although a
deterministic timing guarantee is needed for most hard real-time tasks, the
requirement of timing reliability does not necessarily need to be higher than
the requirement on hardware. The probabilistic specification of timing is used
to overcome pessimism from overestimated WCETs, by using probabilistic
WCET analysis [25] [24] [33].

In addition to probabilistic modelling, another way of modelling stochastic
behaviour in task execution is to model the scheduling system as a queue.
Real-Time Queueing Theory [89] is an extension of the classic queueing theory,
which adds customised timing requirements to the queueing models. The
analysis is not limited to a specific scheduling algorithm and it can also be
extended to analyse real-time network schedules. However, as criticised by [60]
there are many limitations where this method can be applied, e.g., the system
is assumed to be working under heavy-traffic conditions, and the arrival and
computation times are identical for all the tasks.

58

CHAPTER 2. FLEXIBLE AND FEEDBACK METHODS IN REAL-TIME
SCHEDULING

In the framework of probabilistic hard real-time systems, tasks can also
be modelled with probabilistic execution times and inter-arrival times. Abeni
and Buttazzo presented a stochastic analysis of a reservation-based system in
2001 [2] , which enables the computation of the probability of deadline misses.
In their approach, a task is described by a pair of probability distribution
function (PDF): τi = (Ui(c), Vi(t)), where Ui(c) is the probability of task
execution time and Vi(t) is the distribution of task’s inter-arrival time. The
notion of probabilistic deadline is introduced to quantify the task QoS, which
is defined as a deadline that has to be fulfilled with a probability:

Xi(δ) = P{fi,j ≤ ri,j + δ} < 1 (2.28)

The system can then be modelled as a queue where stochastic analysis can
take place. If the queue is stable, the probabilistic deadlines can be computed
by solving an eigenvector. The result could be used as a guideline to decide the
reservation parameters (T s, Qs) by comparing with the system specification.

Progress has also been made which extends the classic response time analy-
sis to fit tasks with statistical parameters. Tia et al. [129] proposed an analysis
method, the Probabilistic Time Demand Analysis (PTDA). In their work, they
have shown that traditional scheduling algorithms and schedulability analysis
methods can be easily modified to accommodate semi-periodic tasks, i.e. peri-
odic tasks with widely variable execution times. The PTDA extends the Time
Demand Analysis by substituting the fixed execution times with convolution
of probabilistic functions. The result is the probabilistic function of the re-
sponse times, based on which a system engineer can make trade-offs between
more computational resources (e.g., number of processors) or lower degree of
confidence that all individual task requests will meet their deadlines.

Gardner et al. [71] extends the PTDA to cover systems where tasks can
have deadlines larger than periods (D > T). Their method, the Stochastic
Time Demand Analysis (STDA), computes a lower probability bound that
jobs in each task will meet their deadlines. This method gives a quick way
to determine if the probability of missed deadlines is acceptable, giving other
design goals such as processor utilization or cost. However, it is restricted to
fixed priority assignments.

In 2002, Diaz et al. [60] proposed a more generalised framework to deal
with both fixed-priority and dynamic-priority scheduling. In their approach,
knowledge of the execution time probabilistic functions required by each job

59

is assumed to be known a priori. Given that if the average utilization is less
than 1, the long-term statistical behaviour can be described by a Markov chain
which models a P-level backlog process [60]. Equations have been derived for
calculating the backlog at any time, as well as task response time probabilis-
tic functions. The statistical information can be combined with deadlines to
obtain the probability of deadline misses of a specific task.

Overall, the advantages of introducing statistical analysis in real-time sys-
tems is twofold:

(a) If a probabilistic distribution, rather than the worst-case of task exe-
cution time is given, a trade-off can be made to balance the confidence
level of deadline misses with available system resources;

(b) Statistical information is extracted from actual measurements, which
means a priori knowledge of task execution is not essential, and the
constructed model is more realistic compared with analytical methods.

It is thus possible to construct a more effective scheduler if statistic infor-
mation could be incorporated within the framework of feedback scheduling.

2.6 Flexible Scheduling in Cyber-Physical Control

Systems

The scheduling of tasks in Cyber-Physical Control Systems (CPCS) has be-
come an interest of both real-time and control researchers in the last few
decades. CPCS refers to the control aspect of Cyber-Physical Systems. The
initial motivation came from a strong demand for control and scheduling co-
design [9] [7], that is to take scheduling effects into consideration during the
design of a control system.

In recent years, CPS are becoming increasingly complex in terms of both
hardware architecture and functional requirements. On the other hand, in
most of the cases the implementation platforms are using commercial off-the-
shelf (COTS) hardware with cost and size constraints, which will result in
temporal non-determinism and limited execution resources [48]. Within a
control node, a task suffers interferences from other tasks through preemption
and blocking when waiting for shared resources, e.g., CPU and network. Also
for a CPS system, there are non-control related tasks which need to share

60

CHAPTER 2. FLEXIBLE AND FEEDBACK METHODS IN REAL-TIME
SCHEDULING

resources with control tasks. Hence it is important that the computational
resources are allocated properly and in an optimised way.

To achieve a real-time control system under execution resources constraints,
a control/scheduling co-design approach is promising, in which flexible and
adaptive scheduling policies are implemented.

2.6.1 Control-Scheduling Co-design

The idea of cooperatively designing a control system with real-time scheduling
is introduced by Årzén and Cervin et.al. in [7]. Co-design is a way to over-
come the limitation of independently designing control and scheduling. It is
shown in this work that designing a control system separately without consid-
ering the underlying real-time facilities could result in an unexpected control
performance. The authors discussed many methods for better scheduling con-
trol tasks, including flexible task models, timing compensation and feedback
scheduling.

In [9], the authors further introduced scheduling issues that reduce con-
trol performance to motivate control-scheduling co-design, e.g., sampling jit-
ter, input-output delay, interferences from higher priority tasks and non-
determinism from general purpose hardware and off-the-shelf operating sys-
tems.

2.6.2 Scheduling Models for CPCS

A control task model that supports a range of periods to allow trade-offs
between control performance and limited computing resources is described
in [119]. In their work, a monotonic, convex and quadratic relationship is
found between control frequency and control performance under a quadratic
cost function.

Task decomposition [72] is another way to improved schedulability. In [44],
a control task is split into two separate sub-tasks: output calculation task and
state update task. It is shown that by scheduling a control task as two sub-
tasks, the computational delay can often be reduced significantly, and the
control performance can be improved whilst maintaining schedulability.

In [6], Årzén introduced an event-based model as an alternative to the
traditional time-triggered paradigm. The event-driven method comes from
the nature of the system being controlled. This method combines event-based
and time-based mechanism and it is efficient in terms of resource usage.

61

Another commonly used model for scheduling control tasks is (m, k)-firm
scheduling [76]. Instead of executing every job instance of the task, the sched-
uler only needs to schedule m or more instances out of any k consecutive
releases. This is possible due to the rationale that occasional misses of the
output update can be tolerated by most control applications. In [113], an
(m, k)-firm model is used as a less stringent guarantee than the hard deadline
requirement. This work shows how (m, k)-firm models can be used to achieve
graceful degradation when the task set in a control system is overloaded.

2.6.3 Feedback Scheduling for CPCS

Feedback scheduling for general computing systems was discussed in Sec-
tion 2.4. In the context of CPCS, there are multiple methods for feedback
scheduling of control tasks [123]:

1. Increasing the control interval hi, that is equivalent to increasing the
task period Ti in scheduling;

2. Reducing the execution time Ci, e.g., by using an anytime control algo-
rithm, or a simplified version of the controller;

3. Using the Dynamic Voltage and Frequency Scaling (DVFS) capabilities
of modern computing chips. DVFS can dynamically adapt the CPU
computing speed and reducing energy cost.

Among these three methods, varying control intervals is the most common
way of manipulating CPU utilization, and it is used by many online feedback
schedulers [70] [103] [66]. The use of feedback scheduling in real-time control
systems can be categorised as [96]:

1. Resource aware feedback scheduling (RA-FS)

2. Resource and control aware feedback scheduling (RCA-FS)

In [66], a control task period allocation problem is solved by forming a recursive
algorithm to compute new values for sampling frequency at each step, by
approximating control cost as a quadratic function against frequency. This is
categorised as RA-FS, since only utilization is considered in the optimization
process.

62

CHAPTER 2. FLEXIBLE AND FEEDBACK METHODS IN REAL-TIME
SCHEDULING

RCA-FS considers both kernel load and current dynamics of the controlled
plant [70] [103]. For RCA-FS, either the current state, or a finite horizon of
predicted states is used in the optimization process, in additional to desired
utilization. The intuitive idea behind RCA-FS is to give more computation
capacity to control tasks of those plants experiencing severe transients.

2.7 Summary

In this chapter, flexible scheduling and feedback scheduling are reviewed as ap-
proaches that can handle overloads and execution time uncertainties. These
uncertainties, either caused by defects in the task model or introduced by
hardware speculative features, will degrade the performance of traditional
scheduling methods. Flexible methods, e.g., elastic model and imprecise com-
putation, increase the flexibility of the system by adding degrees of freedom
to the original task model through variable parameters. Similarly, feedback
scheduling constructs a closed-loop by taking measurements from the target
system and applies feedback control strategies. A hierarchical scheduler can
be used to monitor the current workload and apply task configuration adjust-
ments. Finally, the motivation of control-scheduling co-design is examined, as
well as using flexible and feedback scheduling methods in the context of Cyber-
Physical Control Systems. The contributions of this thesis are based on these
ideas and methods. In the next few chapters, details of these contributions
will be introduced and discussed in detail.

63

64

Chapter 3

Trend Analysis of Dynamic
Worst-Case Execution Times

Priority-based scheduling deals with execution time uncertainties by the dy-
namic scheduling of tasks at run-time, while task timing is guaranteed by a
prior knowledge of WCETs. Hence WCET is an important abstraction of the
tasks, and its validity and correctness is important. For current practices, it
is often assumed that the WCET is a static value during the system lifetime.
This assumption is used through the whole process of real-time system design
and timing verification.

Many CPSs, including Industry 4.0, Internet-of-Things (IoT), autonomous
driving and intelligent robots, have rich functional features and sophisticated
interactions between computational and physical processes. The WCETs of
these applications may not stay constant all the time during its long time of
existence. For example, as data accumulates and hardware ages, the WCET
can gradually increase over time.

The simplest solution is to use a conservative WCET in the first place,
which produces a pessimistic but schedulable system. An alternative and
potential better solution is to accept that WCET is subjected to change, and
embrace this fact by using less conservative WCETs initially with dedicated
mechanisms that could alleviate the consequence if WCET increases, which is
the paradigm applied in this work.

The novelty of the idea proposed by this thesis is the dynamic perspec-
tive of WCET, or dWCET. dWCET extents the static perspective and allows
WCET to vary with time, which could reduce pessimisms and improve resource

65

utilization. By explicitly monitoring and modelling of WCETs, the scheduler
can produce a more effective solution that fits not only current but also future
resource requirements. Another benefit of dWCET is for handling the case
when the original WCET is incorrectly modelled. As systems designed using
dWCET often have capabilities to reallocate resources, a constantly overrun-
ning of task execution can be accommodated by, e.g., increasing CPU speed,
migrating tasks between cores, or terminating or reducing the frequency of
less important tasks.

In this chapter, the motivation of dWCET is first introduced, followed by
a range of models that could be used for dWCET modelling. The issue of
trend analysis is then proposed as a problem of concern, which will be studied
through a comparison of state-of-the-art methods.

3.1 The Dynamic Perspective of WCET

In Cyber-Physical Systems, the execution time that a program requires is
affected by both hardware and software components in that system. For a
system that is designed for operating over a long time of period, e.g., 10 years
or more, the conditions of hardware and software are subjected to change,
which will reflect on WCETs.

As a motivational example, considering a decision support system that
produces results based on historical data in a real-time database. As the
items in the database tables increase, the execution time needed for a query
also increases linearly or logarithmically. Another example is for a CPU with
thermal management that can change CPU voltage and frequency. The ageing
of the CPU itself, the degradation of the cooling fan and the accumulation of
dust that blocks the air flow will make the CPU easier to be overheated, thus
the thermal management unit will reduce clock frequency that will propagate
and influence execution times.

The static and dynamic perspectives will lead to two different design
paradigms. For the static perspective, resources are conservatively reserved
and the schedulability is verified according to the estimated WCET either
from static analysis or measurement-based methods. While for the dynamic
perspective, as the potential variation of WCET is explicitly considered, the
resulted system will have more flexibilities with the ability to reallocate com-
putational resources at run-time. For emerging CPS applications such as In-

66

CHAPTER 3. TREND ANALYSIS OF DYNAMIC WORST-CASE
EXECUTION TIMES

dustry 4.0, Internet-of-Things, autonomous robots and driver-less vehicles, the
system will benefit from using this dynamic view of WCET to improve tim-
ing robustness and allow more functionalities to be integrated on hardware
platforms with scarce resources.

In Table 3.1, different situations of WCET modelling are identified. The
scheduling behaviours under static and dynamic WCET assumptions are also
discussed and compared. From the table, it can be seen that in most cases
more effective scheduling strategies can be deployed by migrating from a static
assumption to a dynamic perspective of WCET.

It is further suggested that if a CPS satisfies one or more of the following
criteria, then dWCET is worth applying:

• The system deals with accumulated data;

• The system needs to survive a long living time to provide continuous
services;

• The system needs to be deployed in a harsh environment where mainte-
nance is lacking and accessibility is limited;

• The system is designed to allow multiple levels of quality-of-service;

• The system has self-adaptive and learning behaviours that will improve
its software components or change its structure over time.

It is also realised that not every CPS would benefit from this perspective
shift. Here are some typical cases in which using dWCET will not be beneficial:

• The system has a strict requirement on service delivery, that requires a
consistent level of quality over its life time. As adaptive behaviours often
lead to variations in quality of performance, this cannot be guaranteed;

• The system only has a short working period. If the system only needs to
work for a short time, the effects of changes in WCET can be negligible,
and the system will likely be survived;

• The system has small scale, low complexity, and more than sufficient
resources, in which case using a simpler scheme, e.g., execution time
servers, is already sufficient and more preferable.

67

T
able

3.1:
C
om

parison
of

Static
and

D
ynam

ic
W
C
E
T

P
erspectives

C
on

d
ition

S
tatem

ent
S
tatic

W
C
E
T

D
yn

am
ic

W
C
E
T

C
i
is

perfectly
m
odelled.

System
w
orks

w
ith

satisfactory
perfor-

m
ance.

System
w
orks.

H
ow

ever
som

e
resources

used
for

m
onitoring

W
C
E
T

and
planning

schedules
are

w
asted.

C
i
is

initially
overestim

ated.
System

w
orks

w
ith

utilization
low

er
than

expected.
System

w
orks,

and
the

over
reserved

re-
sources

w
illbe

used
by

other
tasks.

C
i
is

initially
underestim

ated.
System

w
ill

occasionally
be

overloaded
if

atrun-tim
e
the

execution
tim

e
exceeds

the
expected

C
i .

System
w
orks

but
som

e
tasks

w
illhave

to
degrade

their
quality-of-service.

C
i
grow

s
as

system
runs.

System
w
ill

stick
w
ith

the
initial

W
C
E
T

and
w
illeventually

becom
e
unschedulable.

A
s
soon

as
the

increm
ent

in
C
i
is

identi-
fied,som

e
resources

have
to

be
released

to
accom

m
odate

for
additionalrequirem

ents.

C
i
decreases

as
system

runs.
System

w
ill

stick
w
ith

the
initial

conser-
vative

W
C
E
T
.
A
s
system

runs,
m
ore

idle
resources

w
illrem

ain
unused.

T
he

reduced
resource

usage
from

τ
i can

be
used

by
other

tasks
and

services.

C
i
varies

according
to

a
pattern.

U
sing

a
W
C
E
T

estim
ation

that
could

bound
allvariations.

A
s
long

as
the

pattern
can

be
m
odelled,a

corresponding
resource

allocation
strategy

can
be

w
orked

out.

68

CHAPTER 3. TREND ANALYSIS OF DYNAMIC WORST-CASE
EXECUTION TIMES

However, it is still suggested the necessity to relax the constant WCET
assumption, as: a) it is becoming more difficult to obtain a precise upper
bound of the execution-times for modern commercial-off-the-shelf (COTS)
CPUs [136] [135], and b) the increasing system complexity and level of inter-
actions between hardware and software in Cyber-Physical Systems is forcing
new design paradigms that will be more robust and resilient.

3.2 Modelling of dWCET

For design and analysis of traditional real-time systems, the WCET of a task
is modelled as a constant and static value, often denoted as Ci. Existing works
that extend this model include:

1) Run-time estimation of WCET [37] [82]: an estimated WCET Ĉi is ob-
tained based on run-time observations of the maximum execution time;

2) Parametric WCET [20] [43]: WCET is expressed as a formula in which
WCET is parametric in some of a program’s variables, for example,
PWCET = 30n+m · log(m) + 10, where n and m are input variables;

3) Probabilistic WCET [25] [24] [33]: WCETs are modelled as probability
distribution functions. This modelling method can be used to derive
probabilities of missing a deadline, that can match the same order of
magnitude as other dependability estimates [24].

However these methods are not sufficient to model dWCET as there is no
description of the changing in WCET. For a long-lived CPS, many internal and
external factors could affect task execution times. During the initial phase of
this research, a number of factors are identified that will have influence upon
the initial task execution times. These contributors can be categorised into
software and hardware aspects, which are given in the following list:

1. Software considerations

• Data accumulation. For data-dependent tasks, as the amount of
data naturally grows with time, more processing time is needed.
For example, many searching algorithms and heuristics have a time
complexity of O(log(n)) or O(nlog(n)), in which n is the size of
data.

69

• File system ageing [124]. An aged file system would behave worse
than when the file system is new due to change of file layout and
file fragmentation [140].

• Growing resource requirement due to self-improving behaviour or
increased specification requirements.

• Increased complexity of software structure. For self-adaptive sys-
tems [117], the software components will be updated depending on
the adaptation policy.

• Software upgrades. During the long lifetime of a CPS, the software
is subjected to patches and updates that will change the timing
behaviour of the code.

• Software ageing, which refers to an empirically observed phenomenon
that as the run time of the system increases, its failure rate also
increases [75].

2. Hardware considerations

• CPU. Effects such as negative-bias temperature instability (NBTI)
[50], electromigration (EM) and time-dependent dielectric break-
down (TDDB) [5] will reduce the efficiency of a CPU and the max-
imum clock speed the CPU is capable of will decrease over time.

• Network-on-Chip (NoC). For large scale multi-core and many-core
systems, a real-time mesh NoC [102] is often used to connect on-
chip cores. If one or more of the routing nodes failed due to ageing,
the end-to-end response time of messages between cores is likely to
increase.

• Battery. For battery powered embedded systems such as energy-
aware Wireless Sensor Networks (WSNs) [138], the long term wear
and tear of the battery will trigger power management strategies
such as slowing down the CPU frequency.

• Hard drive. The ageing of the spin motor, the mechanism of the
positioning arm and the magnetic platters in the hard drive will
result in reduced reading and writing speed.

• Thermal effects. Modern CPU has thermal management which
will change its frequency and voltage at run-time based on CPU
activities. As the ageing of the CPU itself and the decreasing in

70

CHAPTER 3. TREND ANALYSIS OF DYNAMIC WORST-CASE
EXECUTION TIMES

cooling efficiency over time, the CPU will be more likely to overheat
and trigger circuitry that slows down the clock.

• Other hardware or infrastructure degradation. Fault rates and fault
recovery time will likely be increased as a consequence of degraded
(or faulty) hardware.

Most of these effects will make the task execution times become longer,
which will degrade the schedulability even if the system is initially verified to
be schedulable. Also the influence of these effects could be minimal in a short
period of time, but if being examined in a larger time-scale, e.g., days, weeks
or months, the impact on task execution times would be observable. As a first
attempt, it is natural to model dWCET directly as a combination of all these
effect variables:

dWCET = f(g(Sh), h(Ss), i(Sh, Ss),Se) (3.1)

in which Sh represents all hardware states, Ss includes all software states, and
Se is the state of the environment. However, it is soon realised that it is
too difficult to analyse how these internal and external states will propagate
to influence the WCET. Also it is impractical to find a model that has the
capability and richness to include every aspect. Even if such a model existed,
the usability of the model is limited, as many influence factors are not easily
monitored and quantified at run-time, e.g., degree of hardware degradation.

In this work, an alternative modelling method that is known as data-driven
modelling is applied, which is to build an ‘indirect model’ based on historically
measured WCETs. The model is defined in an iterative form, in which the
current dWCET is based on a number of previous states:

dWCETn = f(dWCETn−1, dWCETn−2, . . . , dWCETn−k) (3.2)

This model is more practical to use in real applications. Although it is
not exact, this model can still enhance the static WCET perspective. Systems
are often designed with a limited tolerance of worst-case execution times. To
design a long-lived and reliable system, it is important to observe the variation
of dWCET and predict if the WCET assumption will be violated.

Exploring worst-case execution time could also benefit task scheduling.
A scheduler should not be ‘short-sighted’. If a scheduler can predict future
execution behaviours, it would be possible for it to allocate resources more op-
timally, and to reduce the number of unnecessary reallocation/redistribution

71

Run-time Monitor

Planner Low-level
Scheduler

Environment /
Other systemsKnowledge

Database

Target System

Figure 3.1: A simplified structure of the ATAS framework. The run-time
monitor is in the feedback loop which consists execution time measurement
module and performance indices evaluator.

actions. It is interesting to see how adaptive control, as well as flexible schedul-
ing methods, e.g., feedback scheduling (see Chapter 2), could be applied in an
integrated framework.

3.3 Execution Time Monitoring

To model dWCET, there should be methods that can measure task execution
times when the system is running. The execution time monitoring process
is part of the ‘run-time monitor’ module in the Adaptive Task Scheduling
Framework (ATAS) framework (illustrated as the grey block in Figure 3.1).

Measuring and monitoring the CPU execution times of a task often needs
support from either the operating system kernel or the run-time library. There
are many operating systems, middleware and libraries that have readily avail-
able support for measuring task execution times. To give a few examples:

1. Operating system support. The real-time extension of POSIX [84]
supports execution-time clocks and timers that allow an application to
monitor the execution time consumption of tasks, and to set execution
time limits [109] [77].

72

CHAPTER 3. TREND ANALYSIS OF DYNAMIC WORST-CASE
EXECUTION TIMES

2. Real-time programming language support. The Ada programming
language [35] has support for POSIX standard Execution-Time Clocks
which can be used to measure and monitor task execution times [105]
[78].

3. Run-time libraries support. The Simulink Real-Time Library [56]
supports task execution time (TET) which measures how long it takes
the kernel to run for one base-rate time step. The TET monitor in the
MATLAB session is available for all Simulink Real-Time target objects.

More generally, task execution times can simply be measured using a high
precision timer that counts the CPU time spent for executing each task. The
timer starts when the task begins to execute, and ends when the task finishes
execution. If the task is preempted by higher priority tasks, the timer will
pause until the task retrieves the CPU. This can be implemented in the context
switch handler that is provided by most real-time operating systems.

3.4 Trend Analysis

In the previous sections, the motivation of dWCET is introduced. The mod-
elling and monitoring methods of dWCET are then discussed. The next chap-
ters will discuss how the proposed dWCET model and execution time moni-
toring can be used to improve system schedulability.

In the following sections, a specific problem within the ATAS framework is
explored: identification of trends in task worst-case execution times. A trend
in this context refers to a systematic upward or downward tendency in observed
execution time sequences with regard to time. From historical execution time
traces, potential patterns can be inferred to explore any regularity within the
observations. Here are some motivations and benefits to identify execution
time trends in a cyber-physical system:

1. To understand the characteristics and influential variables of worst-case
execution times;

2. To make future predictions of execution time based on the identified
trend model;

3. To use the information of dWCET for enhanced feedback scheduling;

73

4. To make a system aware of potential timing failures before these actually
happened.

Trend identification has a long history in prediction of time-series data.
It has been widely used in environmental, business and financial predictions,
in which streamed data is obtained at an approximately equal time interval.
The objective of trend identification is to derive a model of the underlying
process based on historical measurements, and to use this model to analyse
and understand the process, as well as make future predictions. In the context
of identifying trends in execution times, similar techniques could possibly be
applied. However there is a need to understand which identification method
can be used to accommodate the characteristic of execution times. It is also
questionable which model is the best fit for describing long-term trends.

Since real-time systems have a high concern about worst-case execution
times, it is natural for a system to observe these worst-case scenarios in a short
period (known as watermarks). The focus is on increasing trends rather than
decreasing ones, since these are the potential risks that could make a system
fail. Systems are often designed with a tolerance of worst-case execution times.
If there is any evidence indicating the WCET assumption will be violated in
the near future, it is important to detect these faults before they actually
cause the system to break, by e.g. eliminating the risk, or achieve a graceful
degradation if possible.

Exploring execution time trends could also benefit task scheduling. A
scheduler of a CPS should not be ‘short-sighted’. If the scheduler is able to
predict future execution behaviours, it is possible for it to allocate resources
optimally, as well as avoiding any potential timing failures. It is also interesting
to see how feedback techniques as well as dynamic scheduling methods could
be applied within an integrated framework.

The rest of this chapter is organised as follows: a general review of trend
identification methods is introduced first. Notations and symbols used in this
work then follow. A comparison experiment was made to compare different
trend identification methods. Finally, the experimental result is analysed and
conclusions are made.

74

CHAPTER 3. TREND ANALYSIS OF DYNAMIC WORST-CASE
EXECUTION TIMES

3.5 A Survey of Trend Analysis Methods

The question of the presence of a trend in a time-series originally arose in
business, economical and environmental problems. For these real-world ap-
plications, the variable of interest is either measured or calculated at an ap-
proximate constant rate. The resultant time sequence, which is referred to as
time-series data, can be analysed statistically to test the existence of any trend.
In this section, commonly used trend detection and identification methods will
be reviewed. Here a comprehensive, rather than an exhaustive, exploration
of some representative methods is given. It should also be noticed that many
methods have assumptions on the data set, hence only a subset of them can
be used in this case.

The awareness of a trend in data is important for understanding the impact
of new policies and changes. For example in environmental studies, the trend
of extreme precipitations was studied in [121], to understand its impact on
rainfed agriculture in Ethiopia. Another example is presented in [130], in which
the detection of trends in stratospheric ozone is studied. Many descriptive
and model-based approaches have been used to detect trends. These range
from correlation analysis, time-series modelling, regression analysis and non-
parametric statistical methods [80].

Conventionally, statistical time series models are used for representing time
series data, e.g., Autoregressive (AR), Moving Average (MA) and Autoregres-
sive Integrated Moving Average (ARIMA) models. Box and Jenkins [29] pro-
posed a set of effective strategies for building seasonal ARIMA models. A
current extension in practise is Generalized Autoregressive Conditional Het-
eroskedasticity (GARCH), which is largely used in stock and financial data
predictions.

An important non-parametric (i.e., distribution free) statistical test is
Kendall’s tau, which is widely used as a test method for trends [143] [87].
The Mann-Kendall test is often used to evaluate statistical significance. The
Seasonal Kendall is an extension to the original Kendall test, in which sea-
sonality is also considered [67]. In the work of Sen [118], a slope estimator
based on Kendall’s tau, known as the Theil-Sen estimator is designed, which
is a non-parametric estimator that takes the median of all possible slopes of
pairwise observations. This estimator is claimed to be statistically robust and
unbiased. The use of Kendall’s test and Theil-Sen estimator in extreme precip-
itation can be found in [87]. Another statistical test for trend detection is the

75

Spearman’s Partial Rank Correlation (SPRC) [104]. It is similar to Kendall’s
tau as it measures the relationship between two variables, but differs in the
interpretation of the correlation result.

In Visser and Molenaar’s work [133], a structural time-series model is pro-
posed which has a stochastic or a deterministic trend, and regression coeffi-
cients. The stochastic trend is described as an ARIMA process, and the overall
trend-regression model is estimated by a Kalman Filter (KF). However, the
KF does not consider time correlation of data. Thus it is a challenge to make
long term prediction in the presence of uncertainty.

Regression analysis is a class of model-based approaches for estimating
the relationship between dependent and independent variables. Linear models
with a trend and a seasonal component are often applied in prediction and
forecasting of time series data, where the parameters are often estimated with
an ordinary least square (OLS) estimator. However for the OLS estimator,
residuals of the time series are required to follow a normal distribution [118],
which is not always valid. Reinsel and Tiao [115] used linear regression models
to estimate trend with a correlated noise that is modelled by an autoregres-
sive process. In their model, additional explanatory variables are used in the
analysis to improve the prediction precision. Linear regression is applied by
Tiao in the detection of trends in stratospheric ozone data using time series
models with autoregressive noise [130].

Predicting trends is also of great interest in modelling and explaining the
variation in rare and extreme events. These changes can be assessed either
by a trend in frequency or magnitude of extreme events. Detecting long-term
trends in the frequency of extreme events is studied in [69]. In this study,
Frei and Schär modelled the counts of extreme events based on a binomial
distribution, and used logistic regression to estimate trends. Several methods
of detecting the change of intensity in the extreme values are reviewed in
[125]. A common way to model extreme events is to use generalised extreme
value (GEV) distributions [87] [143], which was first introduced by Fisher and
Tippett in their study in 1928 [68]. The extreme value distribution is generally
applied on block maxima, e.g., annual or monthly maxima of a time series.

One drawback of using block maxima is that only one data point in each
block is used in analysis. Alternative data pre-processing approaches include
the Peak-over-threshold (POT) and r-largest methods, which use relatively
more data points to train a model or fit a distribution. The POT is used

76

CHAPTER 3. TREND ANALYSIS OF DYNAMIC WORST-CASE
EXECUTION TIMES

in [121] to study extreme precipitation in Ethiopia. In their study, the loca-
tion parameter of the EV distribution is represented by a monthly constant
and a yearly trend. A similar model is also applied in [125], in which the
parameters of extreme distribution are estimated by maximum likelihood that
are considered separately for each month.

Zhang [144] compared several methods for detecting significant linear trends
in the magnitude of extreme values. The Mann-Kendall, generalised linear re-
gression (GLS), and the r-largest methods were studied, which is followed by
a Monte Carlo simulation for comparison. Zhang stated that Kendall out-
performs OLS when the sample size is large, and generalised linear regression
which incorporates generalised extreme value distributions has stronger power
of detection compared with the other two methods.

Neural Networks have also been actively researched for trend detection,
which have been widely used for time series modelling and forecasting [141]
[111] [81] [19] [139]. Theoretically, Neural Networks can precisely model any
linear or nonlinear relationship in the data, without making specific assump-
tions of the underlying model. This data-driven method is powerful in fore-
casting as a Neural Network is a universal function approximator, and it can
learn patterns adaptively through mining the data [141]. However, few practi-
cal guidelines exist for building a time series Neural Network model, in terms of
the number of input nodes and hidden layers, etc. To overcome the problem,
automatic modelling methods are studied in [19] [139]. Zhang [141] stated
that it is important to preprocess the data before it is fed into the Neural
Network, since a time series with trend and seasonality is considered to be a
nonstationary process, which can introduce errors on forecasting. Overall, the
use of Neural Networks to explore trend and extreme events is still not well
studied.

Support Vector Regression (SVR) is another data driven machine learning
method. It belongs to non-parametric regression class and is firmly grounded
in the background of statistical learning theory. It is extremely flexible because
few assumptions are imposed upon the mean function of the distribution, and
it is capable of revealing non-linear relationships between variables. However,
non-parametric techniques are relatively more computationally intensive. A
description of SVR and its mathematical details is given in [126]. SVR is a
rapidly developing field of research in Machine Learning, and it has potential
as a method for time series prediction.

77

To the author’s best knowledge, there are few studies on trend analysis of
worst-case execution times, in the context of real-time scheduling. Here it is
assumed that the time series being analysed is formed of maximum execution
times that are observed in a fixed duration, e.g., one hour, or one day. In
addition, only long-term rather than transient trend patterns of the time series
is considered. A comparison study follows to decide which method is the best
fit for analysing the time series of interest. The impact of data pre-processing
is also studied.

3.6 Methods for Comparison

In the previous section, several methods were introduced that can be used for
the purpose of trend identification. In this study, the focus is on detecting
trends in worst-case execution time observations, and the objective is to figure
out which methods could be potentially used for this purpose. By doing pre-
liminary experiments to evaluate each aforementioned method, four potential
statistical methods are selected to compare, which can be further categorised
into parametric and non-parametric statistics:

• Ordinary Linear Regression [OLR] (parametric)

• Kendall’s tau and Theil-Sen Estimator [TSE] (non-parametric)

• Support Vector Regression [SVR] (non-parametric)

• Extreme Value Distribution [EVD] (parametric)

Note the difference between parametric and non-parametric methods is whether
a distribution is explicitly or implicitly assumed in the process of modelling.
As the type of data set this work focused on is less studied in the literature,
the experiment is implemented more in an exploratory way. A comparison
study is conducted between the listed methods, as well as different data pre-
processing approaches for selecting the training data set. Overall, the research
questions this work wanted to address are:

• Would those methods that are normally applied in environmental and
financial studies also perform well for predicting WCET time series?

• Is there strong evidence that one or more methods achieve significantly
better performance than others?

78

CHAPTER 3. TREND ANALYSIS OF DYNAMIC WORST-CASE
EXECUTION TIMES

• Which is the best data selection method (raw, block maxima or r-largest)
for a particular application?

To answer these questions, an experiment is designed in which these four
methods are applied on a data set for comparison.

3.6.1 The Data Set

Synthetic data is used in this study to simplify the comparison, which is gen-
erated by a multi-state Markov process that is shown in Figure 3.2. In the
figure, each node represents a system mode that has a distinct execution time
due to different execution paths and system conditions. The edges represent
the probability of state transition from the starting mode to the pointed mode.

The model used for generating the baseline data is abstracted from an
application which has four major execution paths according to its operating
states. It is assumed that a deterministic trend, if it exists, is only in the
worst-case execution path. It is notable that the trend may also exist in
less critical paths, but as the execution time of the path increases, that path
will eventually overwhelm and become the worst-case path. It should also be
pointed out that there are different types of trend: (i) linear deterministic
trend (LDT), (ii) linear stochastic trend (LST), (iii) non-linear deterministic
trend (NDT), and (iv) non-linear stochastic trend (NST). This work focuses
on the first type, LDT, as other types can be decomposed and approximated
by a set of linear trends.

The reason for using a Markov model instead of random sampling is that
the former can simulate the time correlation between successive observations,
and has characteristics that are closer to real data. In a realistic computer
program, it is likely that the next state is dependant on the previous system
state, which follows a certain execution chain; it is also intuitive that a program
tends to stay in the same state for a while until a trigger event occurs. It is
notable that this model is not a precise description of the actual behaviour
considering all execution scenarios, but is a reasonable approximation of the
behaviour exhibited by a general computer program with branch and condition
structures. As the objective is not for precise modelling of execution time, but
is to explore the patterns behind execution times that are varying as the
system runs. Hence not every factor that would affect WCET is considered in
the generation process.

79

Figure 3.2: An example of a multi-state Markov process that is used to gen-
erate the experimental data sets.

In order to simulate a process where the worst-case path exhibits trend
behaviour, an artificial trend is injected into the worst-case execution times.
In this experiment, only time-series with a linear deterministic trend is consid-
ered. It is notable that in reality many trends are non-linear and/or stochastic,
but can be decomposed and approximated by a set of linear trends in a small
window. It is assumed that the execution time is only correlated with the
operation time, and no other explanatory variables are used in generating the
data. A linear model with a trend coefficient ω is applied, and it is assumed
the data is corrupted by white noise to simulate the influence of the run-time
environment, i.e., cache misses, branch predictions and resources waiting. The
execution time generation model used in this experiment is represented as:

y(t) = Cm(t) + ωm(t) × t+ ε(t) {t|t ≥ 0, t ∈ R};m(t) ∈ [1, N] (3.3)

in which t is the time starting from 0; N is the number of states; m(t) is
the index of the current state sampled at time t; Cm is the initial worse-case
execution time of state Sm; ωm is the trend coefficient of state Sm where
ω{1,2,...,N−1} = 0 and ωN = k; the term ε ∼ N (0, σ2) represents a Gaussian
distributed white noise that is caused by unexplainable disturbances. The
execution time is then sampled at discrete sampling intervals. The sampled
execution time is represented as:

y(n) = Cm(n) + φm(n)n+ ε(n) (3.4)

in which φm(n) = ωm(n) × T . During the time interval t ∈ [nT, (n + 1)T],
the state sm will transit l times according to the following state transition

80

CHAPTER 3. TREND ANALYSIS OF DYNAMIC WORST-CASE
EXECUTION TIMES

t
100 200 300 400 500 600 700 800 900 1000

C
i

0

50

100

150

200

250

300
Execution Time Observations

Figure 3.3: An example of generated time-series with 1% increasing trend

equation: sm | t=0 = S1

sm | t=n = aij × sm | t=n−1, n = 1, 2, 3,, k
(3.5)

in which aij is the i, j element of the state transition matrix A, which is defined
as the transition probability from state si to sj at each step. An instance of a
time series generated from this execution model with n = 4, φ = 0.05, l = 10,
and var(ε) = 10 is shown in Figure 3.3.

3.7 Compared Methods

As mentioned earlier, the trend identification methods can be categorised
as parametric or non-parametric. Overall, there are four distinct methods
to compare, namely: Ordinary Linear Regression (OLR), Theil-Sen Estima-
tor (TSE), Support Vector Regression (SVR) and Extreme Value Distribution
(EVD).

The objective of a prediction is to estimate the influence of a trend in the
future, i.e., predicting a potential failure point where the execution time will
eventually exceed a safe upper bound due to the existence of a trend. In order
to evaluate the prediction precision, the Hypothetical Failure Point (HFP) is
defined as the theoretically time point after which the system will fail the
system’s temporal requirements. The Estimated Failure Point (EFP) is also
defined as the estimated HFP that is predicted by trend prediction algorithms.

For the rest of this section, more details of each mentioned trend identifica-

81

tion method will be introduced. A short description of each method is given,
as well as assumptions that are implicitly imposed.

3.7.1 Ordinary Linear Regression

Linear regression is a widely used approach for trend identification. The pa-
rameters of the model, which are in the form yt = b1xt + b0 can be estimated
by minimising the error sum of squares (SSE) of the residuals:

SSE =

n∑
i=1

(yi − ŷi)2 =

n∑
i=1

(yi − (b0 + b1xi))
2 (3.6)

A direct solution of Equation (3.6) can be calculated from the following Normal
equation:

[b0 b1] = (xTx)−1xT y (3.7)

OLR has an assumption that the residuals are normally distributed, while in
this case it is not likely to be the case. However this work still make this
assumption for the data set. As a result of violating this assumption, the
quality of the analysis might be degraded.

3.7.2 Kendall’s tau

The Kendall’s tau test is a non-parametric statistic test for revealing the cor-
relation between two variables. The Theil-Sen estimator is based on Kendall’s
tau, which minimises the tau coefficient of the residuals. The slope of the
trend is estimated by the following steps:

1. For each distinct i and j, calculate Wij = (yj − yi)(tj − ti) if i < j;

2. Rank all Wij ;

3. The estimated slope of the trend, φ, is selected as the median of all
ranked Wij :

φ =

W(N−1)/2+1 (if N is odd)

(WN/2 +WN/2+1)/2 (if N is even)
(3.8)

Kendall’s tau is robust against anomalies, i.e., large outliers will not make the
result biased. The statistic significance of the trend can be evaluated by the
Mann-Kendall test.

82

CHAPTER 3. TREND ANALYSIS OF DYNAMIC WORST-CASE
EXECUTION TIMES

3.7.3 Support Vector Regression

The idea of Support Vector Regression (SVR) comes after the Support Vector
Machine (SVM). SVM is an active research field in the machine learning com-
munity. The basic idea of SVM is to create a hyperplane that could divide
different data in a higher dimension to achieve two-class data classification [28].
Unlike SVM, SVR uses only one class label and it is used to solve regression
problems. The objective of SVR is to find a hyperplane in which the devi-
ations of data from the hyperplane is minimized. This is equivalent to the
maximum margin problem encountered in SVM problem. Suppose the train-
ing data is given in {(x1, y1), (x2, y2), ..., (xl, yl)} ∈ χ×R. In ε-SV regression,
the objective is to find a function f(x) that has at most ε deviation from the
actual data points, as well as the best flatness (to overcome over-fitting). The
function f(x) has the form:

f(x) = < ω, x > +b with ω ∈ X, b ∈ R (3.9)

where ω is weight, b is offset. The formulation of the optimization problem to
solve ω and b is described below, by considering slack variables ξi and ξi∗:

minimise
1

2
||ω||2 + C

l∑
i=1

(ξi + ξi
∗) (3.10)

subject to

yi− < ω, xi > −b ≤ ε+ ξi

< ω, xi > +b− yi ≤ ε+ ξi
∗

ξi, ξi
∗ ≥ 0

(3.11)

Equation (3.10) can be solved by constructing a Lagrange function, which
leads to a dual optimization problem. The mathematical details can be found
in [126]. The problem of selecting parameters C and ε is described in [54].

3.7.4 Extreme Value Distribution

The idea of using extreme value distribution to identify a trend is to detect
the shift of distribution parameters that are fitted with data that is from
different periods of time. The Generalised Extreme Value (GEV) distribution
is represented as:

F (z;µ, σ, ξ) = exp{−[1− ξ((z − µ)/σ)]1/ξ} (3.12)

83

where ξ is the shape parameter; µ is the location parameter and σ represents
the scale parameter. For trend estimation based on extreme value distribu-
tion, both location and scale parameter can be considered to express a trend.
The following model, which involves covariates by considering the location
parameter µ, is used:

µ = µ0 + αt (3.13)

where α is the trend coefficient, and µ0 is the initial location. In this case,
the parameters of the distribution are estimated by maximising a likelihood
function, which is defined as:

L =
n∏
i=1

σ−1exp
[
− (1− ξ yi − µ

σ
)1/ξ
]

×(1− ξ yi − µ
σ

)(1/ξ)+1

(3.14)

In order to estimate the three parameters of the extreme distribution µ, σ

and ξ, the likelihood function of equation (3.14) needs to be maximised, or
equivalently to minimise its negative logarithm form −log(L). The trend that
is expressed in the form of equation (3.13) can be estimated by considering
two (or more) distributions that are fitted with data points that are measured
at different periods.

3.8 Incorporating Data Selection

Since data selection is also important in statistic inference, this work also
want to explore the effect of data pre-processing. A method can input all
observations (raw data) into the training process, or alternatively refine them
according to some data processing rules before they are processed. Data se-
lection is an important process as it removes the data which is less relevant
to inferencing the trend, especially for this case where the number of extreme
execution times are much less than non-extreme execution times. Applying
data selection also largely reduces the computational resources required by
the inference process, as the size of the input data is also reduced. Hence in
theory, an improved result is expected to be achieved when data selection is
applied. In this study, the following methods will be considered:

• raw : all execution time observations are used in the analysis.

84

CHAPTER 3. TREND ANALYSIS OF DYNAMIC WORST-CASE
EXECUTION TIMES

• block maxima: data is blocked by a group of n points, and only the
maximum value in each block is used for analysis.

• r-largest : data is blocked by a group of n points, in which the r largest
data points are used in the analysis. When r = 1 this is identical to the
block maxima, so it is confined that r >= 2.

As both trend identification and the influence of data selection process
need to be explored, a full combination of trend detection and data-selection
methods is made, which is given in Table 3.2.

Table 3.2: Combinations of Trend Identification Methods

raw block maxima r-largest

TSE tse-raw tse-max tse-r

OLR olr-raw olr-max olr-r

SVR svr-raw svr-max svr-r

EVD evd-raw evd-max evd-r

3.9 Evaluation

To make comparisons, the aforementioned trend identification algorithms are
implemented in MATLAB c©R2015a. Two categories of data set are generated
(with trend and trend-free), and each data set consists of multiple samples
that are generated by the model described earlier. In the following sections,
symbols that are used in this experiment will be introdcued first, followed by
experiment setup and evaluation metrics.

Note a single experiment, with one algorithm and one data set, will give
rise to a large number of predictions – as the system moves from start-up to
the failure point (end of the data set). Some of these predictions may be good,
others not. Hence the set of predictions need to be analysed together to give
an overall estimate of the quality of the algorithm in that experiment. It is
assumed that the controlled system can take corrective action if the failure
point, H, is identified within a relative deadline, D. But taking action too
early is not useful so there is a maximum reaction-time R defined.

85

3.9.1 Symbols and Notations

A graphical representation of important terms and notations is given in Fig-
ure 3.4. The symbols and notations used in this experiment are listed below:

• t: the current (discrete) time; it is assumed there are no observations
between two successive time points tn−1 and tn.

• Cub: the upper bound of task execution time. During run-time if the
execution time Cm exceeds this bound, i.e., Cm > Cub, a system failure
will occur.

• k: the actual deterministic trend of a data set that is ejected while
generating the data. k̂(t) is used to represent the trend that is estimated
by trend identification methods at time t.

• H: Hypothetical Failure Point (HFP), which is defined as the expected
time point of failure. If k > 0, H can be directly estimated by H =

(Cub − Cm0)/k. For data sets that have k <= 0, it is made H =∞.

• R: R in this context is the reaction time which is defined as the earliest
time that a system can make actions before the failure happens. If an
action is made earlier than the permitted region, i.e., in (0, H − R), a
false positive is given.

• D: D in this context is the deadline before which any control action
should have been made. If any action is made in the interval [H −
R,H −D], this estimator is said to behaviour correctly and it is a true
positive. Otherwise, a false negative is given.

• P (t): is a prediction of H made at time t; it is made P (t) → ∞ if no
trend or a negative trend is found. In practice it is made P (t) = t + B

if P (t) ≥ t + B, where B is a boundary. This boundary indicates the
failure is too far away and does not need to be concerned now.

• S: satisfactory region deviated from H, which is used to evaluate the
goodness of P (t). If H −S ≤ P (t) ≤ H +S, the estimation is said to be
satisfactory. In the figure, this region is bounded by −S and +S.

During run-time a system will only make a control action if the estimated
failure point will be reached soon. Specifically, an action is taken if P (t) <

86

CHAPTER 3. TREND ANALYSIS OF DYNAMIC WORST-CASE
EXECUTION TIMES

H

tn

P(t)
k

t

Cn

D

R

-S +S

k(tn)
^

0

Cub

Figure 3.4: Definition of important points and regions

t + R, or more accurately if the prediction is run every T time, then the
criterion is P (t) < t+R− T . To evaluate the effectiveness of each algorithm,
positives and negatives are associated with whether an action is taken when it
is supposed to do. A logic table discussed these scenarios is shown in Table 3.3.

Table 3.3: Definition of positives and negatives

t ∈ [0, H −R) t ∈ [H −R,H −D) t ∈ [H −D,H)

Action Made False Positive True Positive True Positive

No Action True Negative False Negative False Negative

In reality, the numbers of false positives/negatives are found not provid-
ing enough information of the goodness of an algorithm, e.g., a false control
action made close to the response region is at least better than the one made
far earlier. Hence a penalty function is introduced as shown in Figure 3.5.
The penalty of false positives is decreased when the time is approaching the
response region (H −R), and the penalty of false negatives is increasing from
(H −R) to the deadline (H −D). When t > H −D, any false negative would
score a higher penalty, as the deadline is already missed in this case.

3.9.2 Experiment Setup

As part of the evaluation, synthetic time-series data is generated using the
model described in Section 3.7. In general, there are two categories of data:
A) trend-free; B) with trend. For group A, data sets are generated that are
trend-free but suffer from random noise. While for group B, both trends and

87

penalty

HH-DH-R t

FP FN

H-αR

Figure 3.5: Penalties are given to false positives/false negatives.

noise are ejected. The same initial computation time Ci is used in group B,
and four distinct magnitudes of trend which are gradually increasing: from 1%
to 4%. For each value of trend, 10 data sets are generated independently, so
overall there are 50 data sets. Each data set is generated till the point where a
failure would happen, which is directly calculated from the actual trend. The
size of the trend-free data set is made the same as data with 1% trend. A full
list of data set is shown in Table 3.4.

Table 3.4: A table of generated data sets

Group Subgroup data set Index data set Size Trend

A A1 1 - 10 5,000 0%

B

B1 11 - 20 5,000 +1%
B2 21 - 30 2,500 +2%
B3 31 - 40 1,667 +3%
B4 41 - 50 1,250 +4%

For each data set in the table, the following evaluation steps are taken:

1. Define a sampling window W , and start to make the first estimation at
time t = W .

2. Apply data selection process for samplings from (t −W) to t. Fit pre-
processed time series data with each trend analysis method to generate
trend models.

3. Use the models to estimate the system failure point P (t). Make a
(dummy) control action if P (t) satisfies P (t)− t ≤ R.

88

CHAPTER 3. TREND ANALYSIS OF DYNAMIC WORST-CASE
EXECUTION TIMES

4. Make an evaluation of each estimation, including prediction error, valid/
invalid of the estimation and the property of any made action. A cumu-
lative penalty is added if a false positive/negative is presented.

5. Move to t = t + M and repeat from step 2 until all data points are
processed, whereM is the step size. M controls the fraction of new data
that is not overlapped in the training set. For example, if M = 0.2W ,
at each step 20% new data will be added into the analysis.

To evaluate the quality of an estimation, the knowledge of the actual failure
time H can be used. Define the failure estimation error at time t as:

eh(t) = H − P (t) (3.15)

If |eh(t)| ≤ S, the estimation is satisfactory (valid). Otherwise, it is recognised
as invalid. A smaller prediction error represents a better estimation, and an
ideal predictor would have eh = 0. In practice, it is preferred to have a
predictor that would give a positive error (earlier) rather than a negative error
(later), as in the former case, it gives more time for the system to process and
make a reaction.

In addition to failure estimation error, trend estimation error is also con-
sidered, which is calculated as:

ek(t) = k − k̂(t) (3.16)

Note that ek and eh are correlated, but ek is more intuitive for evaluating
the precision of estimated slopes. To study the absolute performance of each
algorithm, a baseline algorithm is introduced: the Ideal Predictor (IDP), which
has the foresight to know the HFP and associated time regions. For IDP, there
is ∀t : ek(t) = 0 and ∀t : eh(t) = 0.

According to current time t and estimated failure point P (t), there are
several prediction scenarios:

• When 0 ≤ t < H −R, no action should be taken.

– If the prediction has P (t) > t + R, no action will be taken, which
is a correct behaviour and a true negative.

– If P (t) ≤ t + R, action is falsely taken, which is not correct and a
false positive.

• When t ≥ H −R, a control action should be taken.

89

– If P (t) > t + R, no action will be taken, which is an incorrect
behaviour and a false negative.

– If P (t) ≤ t + R, action will be taken, which is correct and a true
positive.

Based on these scenarios, the number of correct behaviours equals the sum of
all true positives and true negatives, and the number of incorrect behaviours
equals the sum of all false results.

3.9.3 Impact of Data Pre-processing

Data pre-processing is an important procedure in processing time-series data.
In this evaluation, the raw data is compared with two data pre-processing
methods: block maxima and r-largest value (r = 3), which are both used in
extreme value analysis.

For each method i, pre-processing method j and each data set κ, the mean
estimated trend error ēi,j,κk is obtained of all evaluations over that data set:

ēi,j,κk =
1

Nκ

Nκ∑
n=1

ei,j,κk (W + n ∗M)

=
1

Nκ

Nκ∑
n=1

(k − k̂i,j,κ(W + n ∗M))

(3.17)

where W is the sampling window, M is the step size and Nκ is the number
of evaluations made over data set k. In this case, data sets with different
magnitude of trends have different sizes. HenceNκ of each subgroup is distinct,
which can be calculated from:

Nκ = floor((size_of_κ−W)/M) + 1 (3.18)

To analysis the result, ēi,j,κk are grouped by {i, j} and are plotted out as
box plots in Figure 3.6. There are overall 12 box plots (4 identification ×
3 preprocessing methods), and each box plot consists of 50 data points that
comes from all data sets. Definitions of method labels are the same as in
Table 3.2.

From Figure 3.6, it can be clearly seen results that using raw data have
worst performance, i.e., olr-raw, tse-raw, svr-raw and evd-raw. Compared
with the other two methods max and r, methods using raw have a significant
larger median and variance of mean error. This is reasonable as none of the

90

CHAPTER 3. TREND ANALYSIS OF DYNAMIC WORST-CASE
EXECUTION TIMES

olr
-ra

w

olr
-m

ax olr
-r

tse
-ra

w

tse
-m

ax
tse

-r

sv
r-r

aw

sv
r-m

ax
sv

r-r

ev
d-

ra
w

ev
d-

m
ax

ev
d-

r

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

mean error

Figure 3.6: Box plot of mean trend estimation error

identification methods have an explicit objective to identify trend in extremes.
If raw data are used as the training set, the trend of the extreme values will
be overwhelmed by the data points that have no trend in them. Actually as
it is observed during the experiment, k̂ for any method with any magnitude
of trend is approximately 0, i.e., no trend can be found.

If block-maxima and r-largest are further compared, it can be seen that
even considering outliers, block-maxima still performs much better than r-
largest with all four methods. To measure the improvement of block-maxima
to r-largest, pairwise comparison for each identification method are made.
Specifically, minima, mean, median, maxima and standard deviation are com-
pared across all -max and -r methods. The result is shown in Table 3.5 (all
numbers in the table are amplified by 1× 103).

From the table, it can be seen the minimal errors are roughly the same,
except svr-max which has slightly larger error. From olr-max and olr-r, it can
be seen that olr-r has 85% larger median, 69% larger mean and 16% larger
maximal error. For tse-max and tse-r, these values are 310%, 223% and 49%.
svr-max outperformed svr-r with 69.5% improvement in mean and 1.87×10−2

91

Table 3.5: Mean Error of k̂ for Block Maxima and r-largest

min median mean max σ

olr-max -1.91 4.16 6.31 27.64 7.21

olr-r -2.07 7.68 10.59 32.10 9.31

tse-max -1.12 2.23 3.07 17.45 3.27

tse-r -1.15 9.14 9.91 26.00 7.72

svr-max -5.24 0.15 1.60 25.65 5.71

svr-r -1.00 9.65 12.72 44.36 12.74

evd-max -1.46 1.60 3.40 23.47 4.75

evd-r -0.45 5.34 6.86 30.20 6.77

less in maxima. Considering the original trend which has a magnitude of 10−2,
this is a significant improvement. Finally for evd-max and evd-r, a similar
conclusion is obtained: evd-max is about 100% better than evd-r in terms of
mean error, and 6.73× 10−3 less in maxima.

As a conclusion, data pre-processing can significantly improve identifica-
tion performance, compared with using raw data. It can be seen that, in this
particular data set and block size, block maxima performs the best.

3.9.4 Impact of Variations in Data Set

As part of the evaluation, the impact that the magnitude of trend would have
on the performance of the methods is studied. In these data sets, there are
five subgroups of data set, each of which has a distinct trend, ranging from
0% to 4%.

To make this comparison, mean trend errors of each method with all data
sets are plotted as individual lines in Figure 3.7. The x axis represents the
index of data set, and the y axis is the mean error of estimated trend for all
predictions in that data set. From the figure it can be seen that mean errors
tend to increase when the magnitude of trends increased. This can be clearly
seen from the peaks of mean errors. It can also be seen that in each subgroup
of data set, there exists a large variation between individual data sets. This
suggests that estimation error is highly correlated to data set.

As a conclusion, estimation error is sensitive to data. When the magni-
tude of trend is increasing, the error will be increased in proportion. All of
these methods are sensitive to the actual characteristics of the data set. From

92

CHAPTER 3. TREND ANALYSIS OF DYNAMIC WORST-CASE
EXECUTION TIMES

Dataset Index
0 5 10 15 20 25 30 35 40 45 50

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

IDP-MAX
OLR-MAX
TSE-MAX
SVR-MAX
EVD-MAX

Mean Error

Figure 3.7: Estimated trend error of each data set (block maxima)

Figure 3.7, it can be seen that different methods have very similar patterns in
terms of peaks and minimal. This indicates that these methods are sensitive to
data sets, but in a similar way, so the characteristics of data set will not break
the fairness of comparison as the same data sets are used across all methods.
However, a large number of data sets should be used to average the effect of
data set and reveal the actual performance of each method.

3.9.5 Comparison of Identification Methods

From previous sections, it is already shown block maxima performs the best
among all data pre-processing methods. In this evaluation, trend identification
methods are compared, and only block maxima will be considered in this
section.

To compare the effectiveness of trend identification methods, an important
index is the ability to detect trend. In this work, this is measured by two
factors: the validation of an estimation, and the positiveness of a control
action. A full diagram that shows relative performance is shown in Figure 3.8.
Each bar plot shows a different metric of all four methods, plus the Ideal
Predictor (IDP), separated by data set subgroups. For plots of valid, correct
and true positives, data is normalised to [0,1] by IDP, while for plots of invalid,
incorrect, false positive/negative, data is normalised by the worst method

93

within the same subgroup.

0

0.5

1
Valid Estimations

IDP-MAX LR-MAX TSE-MAX SVR-MAX EVD-MAX

0

0.5

1
Invalid Estimations

0

0.5

1
True Positives

0

0.5

1
False Positives

k = 0 k = 1% k = 2% k = 3% k = 4%
0

0.5

1
False Negatives

Figure 3.8: Experiment result - false negatives/positives

From the valid/invalid plots in the figure, it can be seen that TSE and
SVR are the two best methods. OLR has the largest number of invalids for
data set B1, B2, B3 and B4. EVD only performs slightly better than OLR. If
further look at numbers of false positives, it could be seen SVR tends to give
more false positives, and OLR gives more false negatives. All methods give
no false positives and negatives when there is no trend in the data. TSE is
consistent and gives the best performance on average.

To further compare these methods, penalties are summarised that come
from the results of all data sets for each method, and this is shown in Table 3.6.
From the table it can be seen that TSE has least mean penalties with all three
data selection methods, comparing with other three methods. This is identical
to the conclusion that is described earlier. For methods using block maxima,
OLR obtained the largest penalty, while for r-largest, it is SVR.

Additionally detailed functionalities of these four methods are compared,
as shown in Table 3.7. In the table, TSE is the most computational efficient

94

CHAPTER 3. TREND ANALYSIS OF DYNAMIC WORST-CASE
EXECUTION TIMES

Table 3.6: Mean Penalty of All Methods with All Data Sets

OLR TSE SVR EVD

raw 62 62 62 62

maxima 58.28 29.02 42.26 49.68

r-largest 58.2 53.82 77.58 55.76

method, and it is least sensitive to characteristic of data set. OLR is median
in computation, but it is sensitive to the composition of data set, and it will be
biased if a large percentage of non-relevant data is involved. SVR is the only
method that needs to provide parameters: the cost C that controls the trade off
between errors of the SVM on training data and margin maximisation, and the
epsilon ε that controls the size of insensitive region. The ability of supporting
non-linear trend is supported by SVR as well. Other methods can be extended
to support non-linearity, but SVR directly supports non-linear data by using
Kernel functions. In this work, only one variable is considered: time, and it is
assumed execution times are only affected by time. In terms of multivariable
regression, if additional variable(s) need to be taken into consideration, both
OLR and SVR can give enough support.

Table 3.7: Functional Comparison of Methods

OLR TSE SVR EVD

Computational Cost ++ + +++ ++

Sensitivity to data variation +++ + ++ ++

Sensitivity to data size ++ + ++ +++

Number of parameters 0 0 2 0

Support non-linear No No Yes No

Support multivariable Yes No Yes No

3.10 Summary

In this chapter, the issue of identifying long-term trends in execution times
is studied to achieve timing fault predictions. Four different trend identifi-
cation methods are discussed and their performances are compared. The re-
sults suggest that data pre-processing should be used as this can significantly

95

improve estimation performance. It also can be seen that the Theil-Sen esti-
mator, which is a non-parametric method, achieved the best performance in
this particular experiment. It is robust against noise and outliers. The other
non-parametric method, SVR, is also an outstanding method as it can predict
non-linear trends and can be used in multivariable regression. The extreme
value distribution does not perform well as it needs a large amount of data
to fit the distribution, i.e., a large window size. However, this will decrease
the ability of early detection of failures. Finally for OLR, the performance is
not satisfactory as the assumption of data set is known to be violated. From
the experimental result, it would suggest to use non-parametric methods with
either block-maxima or r-largest method.

In the next chapters, two scheduling methods will be discussed that can
reduce task utilization by varying control task parameters. The resulting spare
capacity can then be made available to the tasks that have been identified as
requiring additional resources.

96

Chapter 4

Period Adaptation of
Real-Time Control Tasks

Cyber-Physical Control Systems (CPCS) often contain a number of control
functions that require long-lived and non-stop execution. During the oper-
ation of a CPCS, considerable knowledge about its execution behaviour can
be obtained, which can then be explored to improve its energy consumption
and system resilience/robustness. If long-term trends in resource usage are
identified, adaptation can be made to accommodate additional computation
requirements. In this chapter, an adaptation method that uses online moni-
toring and model prediction is introduced, which can be used to reduce the
resource requirements of the control tasks in a CPCS.

The control-related sub-system of a CPCS is often implemented as several
control tasks. Each task is executed periodically with an interval h between
consecutive control actions, which is known as the control interval. For current
practice, the control interval is usually selected based on rule-of-thumb, e.g.,
0.2 ≤ ω0h ≤ 0.6, in which ω0 is the closed-loop bandwidth of the controlled
plant [12]. However, a real-time controller can generally operate with a wide
range of possible intervals, as long as the control performance is satisfactory.
As limited resources are shared by multiple functional modules that are in-
tegrated on the same platform, it is important to make sure that the CPU
resource allocated to control tasks is no more than necessary.

Before a system is deployed in the field, there is only limited knowledge
about the system’s dynamics and the interactions between different aspects of
the external environment etc. Also the uncertainties introduced by scheduling

97

are not able to be accounted for during the design phase, and the worst-case
execution time is not always accessible or precise. This means that the system
model is inevitably conservative. To improve the situation, the real behaviour
of a system can be observed, and the control performance can be assessed at
run-time. If there is evidence that control performance can be safely degraded,
system schedulability can be improved by increasing the control intervals of
control-related tasks. This released capacity can then be used to:

• cater for non-control tasks in the system that are experiencing evolu-
tionary increases in demand (as discussed in Sections 3.1 and 3.2), e.g.
tasks concerned with communication, data processing, system monitor-
ing, diagnosis, fault recovery, decision making etc., or

• save energy in battery powered systems by reducing processor speed,
core usage, activation time etc., [86] or

• improve the quality of other aspects of the system that have been im-
plemented using anytime algorithms (see Section 2.3.4), or

• accommodate future system upgrades.

In this chapter, an online method is presented that uses model-based pre-
diction based on a timing model and feedback measurements, to safely degrade
control performance in a predictable and managed way. The desired control
quality is defined statistically through a degradation degree parameter. It is
assumed that one or more control tasks are initially running with conserva-
tive periods which are then gradually increased in small and controlled minor
steps. During this adaptation process, performance predictions are made in
advance, and a step change in period is only made if sanctioned by the pred-
ication. The consequence of the period change is monitored and feedback is
used to improve the predictor.

The adaptation process is undertaken over a much longer time granular-
ity than the system’s control processes, e.g., hours, days or weeks compared
to tens or hundreds of milliseconds in the later case. It is assumed that the
embedded platform of the CPS has communication channels that are linked
to a more powerful computational resource (e.g. a cloud facility) on which the
modelling and prediction aspects of the adaptation process are undertaken.
The adaptation iterates until no further changes can be sanctioned – although

98

CHAPTER 4. PERIOD ADAPTATION OF REAL-TIME CONTROL
TASKS

monitoring (with the potential to make further modifications) continues in-
definitely.

As each period change is small and predictions are utilised, minimal dis-
ruption will be created to the ongoing operation of the system. The method
proposed here is especially useful for applications that need to run for a
long time and need non-stop operations, and for optimization-based con-
trollers [107] [106] as they typically require a large amount of computation,
and hence changes to task periods can release considerable capacity.

This chapter is organised as follows: background of real-time control is
reviewed in Section 4.1. A general overview of the adaptation method is given
in Section 4.2. The performance prediction and the run-time system support
is discussed in Section 4.3 and Section 4.4, respectively. In Section 4.5 an
evaluation based on a control-scheduling co-simulator is made to demonstrate
and verify the effectiveness of the proposed method, followed by a discussion
on some aspects of the approach in Section 4.6. Finally, a summary of the
work and conclusions are given in Section 4.7.

4.1 Real-Time Digital Controller Implementation

A real-time control task is the entity that executes the software implementation
of a digital feedback controller. In Section 2.4.1, the structure of a feedback
controller for computer systems have already been reviewed. A more general
structure of feedback control with a digital controller in the loop is given
in Figure 4.1. To implement such a controller on an embedded platform,
the control functions need to be abstracted into individual tasks and a few
considerations need to be made. In this section, the implementation aspect of
a control task is explained in detail.

PlantDigital Controller

ADC

Reference
Input Error

Actuating
Signal

Output
Feedback

Signal

-

+
DAC

Sensors

Control
Input

Figure 4.1: A digital controller in a feedback control system

99

To illustrate the problem, the timing of a control task’s execution is firstly
analysed in Section 4.1.1. Due to the scheduling effects of the real-time kernel,
the timing behaviour of a control task is not exactly the same as the ideal pe-
riodic case, which will affect control performance. It is then demonstrated the
relationship between control interval and control performance in Section 4.1.3,
i.e., how would the changing of control task’s period affect specific performance
metrics.

4.1.1 Control Loop Timing

In the control community, it is often assumed that sampling and control are
performed equidistantly and simultaneously with a fixed interval. However,
as a digital controller is running on a computer, the controller will behave dif-
ferently than the ideal periodic execution according to the applied scheduling
algorithm.

Consider a system with three control tasks that are scheduled by a fixed
priority scheduler (FPS), in which tasks are scheduled preemptively according
to their priorities (a smaller task index indicates a higher priority). A timing
diagram of this case is shown in Figure 4.2. Due to the nature of sharing
resources in a multiprogramming environment, the timing of a control task is
not fully deterministic. Among all three tasks, task 1 has the highest priority
and hence is not suffering from interferences. However having the lowest prior-
ity, task 3 has the largest interferences and jitter. This example shows that in
a multiprogramming environment, a control task without the highest priority
will be occasionally preempted and suffer interferences from higher priority
tasks in the same system. This process will introduce artefacts such as sam-
pling jitter and control delay which will affect control outcomes [48] [11] [8].

To explain the details more, an illustration of the timing of a single control
task is given in Figure 4.3. In the diagram, hi is the task period, τs,j is jth
sampling delay and τio,j is jth input-output latency. The sampling delay and
jitter can be eliminated by using a programmable ADC that is synchronised
to the task period. However, the scheduling-introduced input-output latency,
or control delay, cannot be precisely predicted as it could be different for each
job instance. From the scheduling point of view, if τs,j = 0, this is equivalent
to the control task’s response time, which consists of its own execution time,
the interference time from higher priority tasks and the blocking time from
lower priority tasks.

100

CHAPTER 4. PERIOD ADAPTATION OF REAL-TIME CONTROL
TASKS

Task 1

Task 2

Task 3

executing

preempted

Figure 4.2: Task timing of multiple tasks scheduled by FPS

τs,1 τio,2τs,2τio,1

hi

Task i

time

Figure 4.3: Control task timing (single task)

The influence of timing variations is dependent on the controlled plant and
the controller. Some control systems are robust towards variations in control
interval and latency, but others are less tolerant. A study on the influence of
jitter on control performance is described in [49], where the notion of ‘jitter
margin’ is introduced. Scheduling-introduced effects can also be analysed using
Jitterbug [92] [47]. Overall, it is hard to analytically work out the exact effects
on control that are introduced by task scheduling.

4.1.2 Control Performance Evaluation

To analyse the performance of a real-time controller, some numerical perfor-
mance metrics need to be defined. There are many commonly used criteria for
evaluating the performance of a designed controller, for example, percentage
of overshoot, settling time, deviation from a reference output, control error
variance, etc. [116]. A Performance Indicator (PI) can be seen as a numeric
evaluation of the performance of the target control system. It should be able

101

to reflect the true quality of a controller running under different conditions.
Ideally, it should satisfy the following properties:

• it can be quantified and is numerically comparable;

• it can be normalised;

• it can reflect relative long-term behaviour;

• it is insensitive to initial states and noise.

Control error, i.e., the difference between the desired and the actual output,
is a straightforward measure of the instant performance. However, this metric
has large fluctuations as each of its evaluations is dependent on the current
system state. To smooth short-term variations, some form of integral error is
applied to evaluate controllers, e.g., integral of absolute error (IAE), integral
of time-weighted absolute error (ITAE), integral of squared error (ISE), etc.
In some circumstances this integral error is known as control cost.

Note that a higher control cost means worse performance. When the cost is
measured at run-time, there could be inconsistent variations due to scheduling
and system noise. Thus a range of possible costs could be observed, that can
be represented as a distribution. This will be revisited later in Section 4.2.

4.1.3 Control Task Period

The control performance, or Quality-of-Control (QoC), of a digital control
system is largely affected by the sampling period of the controller task. In the
work of [119], it is shown that the performance of a digital controller has a
monotonic decreasing relationship in regards to the control period. This claim
is generally true for most systems, although a counterexample is given in [10]
for a non-inverted pendulum.

The selection of a control task’s period depends on the dynamics of the
controlled plant, the desired control performance, and the resources that are
available on the hardware platform. For a given digital control system, the
quality-of-control is not a linear function of period. If the control interval is
sufficiently small, increasing the control interval will have a negligible change
on the control performance. However, as the period keeps increasing, the
control performance will drop more significantly.

From the control point of view, running a controller faster (i.e., with smaller
control intervals) would normally increase the control performance, as a higher

102

CHAPTER 4. PERIOD ADAPTATION OF REAL-TIME CONTROL
TASKS

control rate allows the dynamics of the system to be properly sampled and
handled, and it makes the discrete-time implementation perform closer to its
continuous-time counterpart. However, from the scheduling point of view,
running a task too frequently could introduce more interferences to lower pri-
orities tasks, making the system more difficult to schedule and reducing the
system’s resilience to timing faults. In order to make an optimal use of CPU
resources, it is important to schedule control tasks in a way that could satisfy
control performance as well as the timing requirements of other tasks in the
system.

It is often hard for a control engineer to determine which is the right period
to use at the system design stage. Following a rule-of-thumb or experimental
simulations is good common practice. However as no scheduling effects are
considered, the selected period could be too pessimistic and thus waste system
resources. Ideally, a period should be adequate to satisfy control performance
under required specifications, whilst using the least CPU resources. In the
following sections, an adaptation method will be discussed that attempts to
deliver this behaviour after deployment.

4.2 Method Overview

This work is identified as control-scheduling co-design [10] [7]. The research on
co-design focuses on integration of design of control and scheduling systems, in
which scheduling efforts are considered explicitly in the design process of real-
time controllers. Resource constraints are also considered during the design
of a digital controller.

This work is a form of feedback scheduling (Section 2.6), in which the
scheduler has the ability to monitor system states, and to perform correspond-
ing actions by adjusting scheduling parameters (e.g., task attributes such as
task periods, execution times, deadlines and priorities). This work focuses on
changing task periods only.

In contrast to optimising control periods using off-line analysis [119] [116],
the method used in this work is an online adaptation method. The philos-
ophy applied is to tune control task periods gradually and slowly, in which
changes are made across a large time span, e.g., hourly or daily. This makes
the approach in this work much less dynamic than other feedback schedul-
ing methods, in which a change is basically made every tens or hundreds of

103

milliseconds [66]. This work is also related to graceful degradation [122], in
which planned and pre-designed degradation is made in order to avoid serious
system failures.

As in each adaptation cycle only a small change is applied and the conse-
quence of the change is also observed and considered, the method in this work
is less aggressive than some of the existing adaptation methods, for example,
state-aware and resource-aware feedback [70] [103] [96].

4.2.1 System Structure

In this system, it is assumed that each element of the physical plant is con-
trolled by an individual control task executing on an embedded computer,
which has connectivity to a more powerful machine ‘in the cloud’. All tasks
are executing concurrently and independently. Each task is responsible for
sampling, updating system state and calculating control signals.

Figure 4.4 shows the basic structure of the proposed method. The system
is composed of a server and one or more clients. The client/server structure
distributes the computational load that is required, as the server has much
more processing power than the local embedded computer. The traces of
control and scheduling performance are measured at the local system with
a monitor module, and transferred to the cloud server for processing and
analysis. The planner on the cloud will make a decision if a longer period can
be applied, based on a model-based predictor and the run-time observations.
The observed data will also be used to update the prediction model which
forms a feedback loop.

In order to apply this method, there are some general assumptions on the
properties of the deployed system:

1. The embedded computer (local system) consists of a uniprocessor and a
preemptive scheduler using fixed-priority scheduling (FPS).

2. Control tasks are released periodically, i.e., the system applies time-
triggered rather than event-triggered controllers.

3. All tasks in the complete system are initially schedulable, given the con-
trol tasks are using periods that can satisfy control specifications.

4. The system has the ability to monitor task execution and response times,
and control outputs. The kernel has the ability to change task periods

104

CHAPTER 4. PERIOD ADAPTATION OF REAL-TIME CONTROL
TASKS

at run-time.

5. The system itself has limited resources but has connectivity to a more
powerful cloud computer.

Control
Tasks

Other Task(s)

FPS Scheduler

Controlled
Plants

traces of
control inputs

traces of
plant outputs

traces of
execution times

Planner
Control

Performance
Profiles

Task
Execution
Profiles

configuration of task
attributes

Local system

Cloud Server

System
Model

Figure 4.4: Block diagram of the proposed adaptation method

Assumption 1 is based on the fact that single core systems still form the
majority of embedded control applications, and FPS is now extensively sup-
ported by real-time operating systems. Assumption 2 is valid as time-triggered
periodic control is still the mainstream. Event-based control [6] is still an open
research topic and more theoretic work is needed. Assumption 3 is necessary,
because if the initial periods cannot satisfy the system requirements, increasing
a period will only deteriorate the situation. It is notable that more conser-
vative initial periods will lead to more potential of relaxing periods later on.
For Assumption 4, the support of task execution time monitoring is already
available in POSIX compliant run-time kernels. However, in order to change
task attributes at run-time, some modifications may need to be applied, as
this capability is not universally available in every real-time kernel. Finally,
for Assumption 5, as the prediction and analysis need to be executed on a
more powerful machine, a form of network connection to a local server or

105

a cloud service provider is needed. There are many off-the-shelf commercial
cloud service providers, e.g., IBM Bluemix, Amazon Web Services (AWS),
Google Cloud or Microsoft Azure. In CPS, many monitoring and diagnosis
functionalities have already been implemented on the cloud, so using a cloud
would not necessarily increase the cost in terms of operation and maintenance.
Note the link to the cloud does not need to be reliable or time predictable.

4.2.2 Task Model and Problem Formulation

Given a control application that is represented as a task set Γ = {Γc∪Γnc}, in
which Γc is the subset of all the control tasks and Γnc represents the subset of
non-control-related tasks. For each control task τi ∈ Γc, a flexible task model
is used [52], of which the task period is a variable parameter. A task is defined,
using the normal symbols as τi ≡ {Ci, T 0

i , Ti, Di}. T 0
i is the initial period as

well as the lower boundary on the period, and Ti is the current period. The
schedulability of the initial task set is checked through response time analysis
by using optimal priority assignment based on the initial periods.

The control aspect of a system can be represented as time-domain differen-
tial equations that describe the relationship between the control signal inputs
and the system response. Define the controlled plant of control task τi as Pi.
The dynamic model of Pi is represented in the standard state-space form:ẋi(t) = Aixi(t) +Biui(t) + ωi(t)

yi(t) = Fixi(t) + ei(t)
(4.1)

in which xi(t) is the system states vector, ẋi(t) is the first derivative of xi,
ui(t) is the control input, yi(t) is the system output; Ai is the system dynamic
matrix, Bi is the input matrix, Fi is the output matrix; ωi ∼ N (0, σ2

ω) is
system process noise, and ei ∼ N (0, σ2

e) is measurement noise. The symbol
N (m,n) means normal distribution with mean m and variance n.

The optimization objective is to minimise the overall resources used by the
control tasks under given control quality constraints, which is formulated as
follows:

minimise
Ti

∑
Ui =

Ci
Ti
, i ∈ Γc

subject to
PIi(Ti)

PI0
i

≥ 1− λd(i), i ∈ Γc

(4.2)

The Performance Index, PI, is defined as an inverse of a control cost J , i.e.,
PI = 1/J . The performance index is only used to evaluate the performance

106

CHAPTER 4. PERIOD ADAPTATION OF REAL-TIME CONTROL
TASKS

of a single control task running at different periods, rather than comparing
across multiple control tasks. With the PI, the performance of period Ti and
an arbitrary period T ′i can be compared.

The parameter λd is the degradation factor, which is defined as the frac-
tion of the expected performance at a desired period, PIi(Ti), and the ideal
expected performance PI0

i when Ti = T 0
i . This introduced design parameter

is used to make trade-offs between task utilization and control performance. It
is important that the performance index should be comprehensive and should
also be a monotonic decreasing function with regard to the task period. By
defining the degradation factor, the system designer can control the tolerance
of QoC (Quality-of-Control) degradation as a consequence of manipulating
periods. The subscript i in Equation (4.1) and Equation (4.2) will be omitted
if there is only one control task.

4.3 Performance Prediction

It is important for the system to determine the consequence of applying a new
period, and making advance predictions is a straight-forward way of estimat-
ing such influence. The adaptation relies on a performance prediction process,
which is done through a model-based performance predictor using a Monte
Carlo model that runs in the cloud server. The predictor has the ability to
predict the performance distribution of a given digital controller when oper-
ating at a particular rate with a given task model. Monte Carlo is a method
for evaluating a model that is complex, non-linear, or involves more than just
a couple of uncertain parameters. Monte Carlo approximates results (i.e., the
predictions) from a large number of repeated experiments through random
sampling.

In this work, a Monte Carlo method is used for analysing how task schedul-
ing uncertainties and variations would propagate to affect control system per-
formance. It is used as the original control problem is hard to solve by a
deterministic and analytical calculation. From a hybrid system point of view,
each control action introduces a jump - i.e., a sudden change in system dy-
namics. Although control jobs are released periodically, the actual execution
and outputs are not equally distributed in time. The overall control output is
therefore the consequence of the contributions of multiple control job releases
– as illustrated in Figure 4.5.

107

r(t)

y(t)

τi

Figure 4.5: Timing of a control task. The control job releases periodically, but
the control delay is different case by case, which will affect control performance.
In the diagram, y(t) is the control output and r(t) is the expected output
(reference).

4.3.1 Monte Carlo Predictor

The overall predictor structure is shown in Figure 4.6a. The predictor is
formed of a simulator, a system dynamic model, a task set model, and a
correction model to generate performance profiles. The Monte Carlo simulator
module is a hybrid system that is formed of a discrete model and a continuous
model, which are shown in Figure 4.6b and Figure 4.6c, respectively.

The discrete model is formed from a timed finite state machine, and each
of the symbols is explained as follows:

• t1: is the delay due to phasing of the first released job after the operation
point is changed. t1 ∈ (0, Ti). The worst-case is when the operational
point changes right after the task is released. In this case, the control
task will only be aware of the change after its next release.

• t2: is the execution delay after the task is released due to interference
from higher priority tasks.

• t3: is the input-output latency. This is partly from task interference and
partly from task execution. Both t2 and t3 will result in controls that
are not equal-distanced.

• t4: the delay for the next release of the job: t4 = Ti − t2 − t3.

• cond: is a conditional to check if the simulation has finished. This
termination criterion is either the system has reached 5% of steady state
or the maximum allowed simulation time has passed.

108

CHAPTER 4. PERIOD ADAPTATION OF REAL-TIME CONTROL
TASKS

System and
Controller Dynamics

Task Model

Monte Carlo
Simulation

Task Profiles
Response Time

Analysis

Predicted
Performance

Profiles

Correction Model

Observations

(a)

Job
Release

Sample/
Input

Control/
Output

StartStart End

t2t2t1t1 t3t3

t4t4

condcond

(b)

ODE Engine

System Dynamics

Controller
(discrete sub-system)

r(t) e(t) u(t)

y(t)

Noises

(c)

Figure 4.6: The Monte Carlo Predictor: (a) An overview of the structure.
The Monte Carlo Simulation module consists: (b) discrete sub-module which
simulates a periodic task and generates control inputs; (c) continuous sub-
module that takes control inputs and generate responses using the system
dynamic model.

109

The continuous module simulates control system dynamics with an ODE
solver. It takes inputs of control signals, and produces system response as
output, which can then be used to calculate the performance index. The
system dynamic model that is used can either be obtained from first principles
or from empirical modelling. If the system model is in the form of a transfer
function, it will be converted into a state-space model.

During the process of the simulation, the continuous model receives control
inputs and sends plant outputs to the discrete model, while the discrete model
decides when and how to update the input signal, according to the states of
the discrete timing model. Collaboratively, these two subsystems simulate the
real run-time behaviour of the digital controller.

4.3.2 Predicting Control Performance

The performance of a designed controller is quantitatively evaluated by control
cost J . In this work, the Integral of Absolute Error (IAE) is used to describe
the cost. It has the general form:

J =

∫ ∞
0
|r(t)− y(t)| · dt

=

∫ ∞
0
|e(t)| · dt

(4.3)

The control error, e(t), is defined as the difference between the desired refer-
ence r(t) and the actual output y(t). For practicability, the error is integrated
from t = 0, when the reference starts to change, to t = tss when the system is
in steady-state (after which the margin of control error is within, for example,
5% representatively), so:

J =

∫ tss

0
|e(t)| · dt (4.4)

The integral operation smoothes the fluctuations in the system output due
to short-term transients of system states. However, as there are variations due
to scheduling and noise, each measure of J could be different. In this case,
multiple runs of the simulation can be done to obtain a distribution for J .
As there is no evidence to prove that the J distribution would follow a cer-
tain category of parametric distribution, the cumulative distribution function
(CDF) is used to explain the data. Depending on the conservativeness of the
requirement, the expectation of performance, J̄ , is determined from:

J̄ = E[J] = {X|cdf(x < X) >= αd} (4.5)

110

CHAPTER 4. PERIOD ADAPTATION OF REAL-TIME CONTROL
TASKS

in which cdf(·) is the cumulative distribution function, and αd is a decision
threshold with αd ∈ 0 .. 1 (with a typical value of 0.95). Note that the
definition of expectation in this context is slightly different from the traditional
explanation, which is to describe the average output. While in this case, more
extreme cases will also need to be considered.

4.3.3 Prediction Refinement by Error Correction

Ideally, the predictions from the Monte Carlo model are expected to match the
measurements of the actual system. However in reality, there are many fac-
tors that would affect the accuracy of the prediction, such as modelling error
in the system dynamics, random processes and measurement noises, incorrect
assumption of the response time distribution, and integral error due to numer-
ical approximation. This will lead to imprecise and sub-optimal predictions,
or even cause the adaptation process to fail.

Many of these errors are impractical to be directly measured or modelled.
It is also difficult to analyse how these factors would translate into errors
of performance measurements, even if the error source is identified. As a
consequence, a correction model is proposed to refine the predictions in order
to handle the errors and improve the utility of the prediction. It is assumed
that the predictions (Ĵ) are biased by a factor β with the addition of zero-
mean Gaussian noise ε ∈ N (0, σ2). Hence the actual performance measure (J)
is given by:

J = Ĵ + β + ε (4.6)

In particular, the bias β parameter is estimated with the following criterion:

minimise
β

Dn = sup
x

∣∣cdfJ(x)− cdfĴ(x)
∣∣

subject to ∀x : cdfJ(x) > cdfĴ(x)
(4.7)

in which cdfJ(·) is the cumulative distribution function of the control cost,
cdfĴ(·) is the cumulative distribution of the estimated control cost, and Dn

is the Kolmogorov-Smirnov (K-S) statistic [55] [134], which is the maximal
distance between the CDFs of the two distributions. This criterion makes sure
the predictions are more conservative than the actual measurements. It is
assumed that the prediction error is sustained when making predictions for a
small period change, as the main error sources are independent of task period.

111

4.4 The Run-Time System

The Monte Carlo simulation introduced in the previous section is executed
in the cloud, which significantly reduces the computational load on the lo-
cal system. In order to achieve adaptation, there is also a need for run-time
support on the local computer. The run-time system is formed of two mod-
ules: monitor and executor. The monitor module runs on the client side. It
is the process for collecting system observations and performing basic confor-
mance analysis. The executor module communicates with the cloud, and is
responsible for uploading observed traces, accepting adaptation decisions and
informing the kernel to make changes.

The overall flow of the adaptation system is given in Figure 4.7. Unlike
off-line period assignment methods, the period in this work is updated in
multiple iterations. Each iteration only applies a small change to the period.
The general work flow of this adaptation process is explained in the following
steps:

1. Assuming the control task is running with its initial period T 0
i . When a

new request of target utilization is received, a plan is made for changing
the current period to the required period, by dividing the objective into
fixed small step changes.

2. Based on the system model, a prediction is made by the Monte Carlo
Predictor for the new period T ′i = Ti + ∆Ti, in which ∆Ti is the step
size.

3. If the predicted performance can satisfy the performance requirement
defined by the system, the new period is passed to the scheduler, and
the scheduler will change the period of the control task. However, the
saved resources will not be immediately available to other tasks.

4. An evaluation phase is then involved to monitor if the system running
at the new period can satisfy the performance requirements. If yes, the
saved capacity (Ui(Ti)− U ′i(Ti′)) will be committed and can be used by
other tasks in the system. If no, the task’s period is returned to its
previous value.

5. The prediction model is updated based on run-time observation.

112

CHAPTER 4. PERIOD ADAPTATION OF REAL-TIME CONTROL
TASKS

6. Repeat the process until a) the required utilization is satisfied; or b) the
control performance has reached its bound (i.e. future changes are not
sanctioned or are rejected once evaluated on the plant).

Start

Observe the
system

Analyse & update
the prediction

model

Make
predictions

Make a
change?

Temporarily change
task’s period

Monitor &
analyse

consequences

Accept
change?

Commit change
and release
resources

Decline change
& reclaim
resources

End

Yes

No

Yes

No

Figure 4.7: Flowchart of the proposed method.

The system monitor is implemented as a normal periodic task. It periodi-
cally makes performance measurements and checks if the actual performance
is violated. If appropriate, it will raise exceptions to terminate the adaptation
process. This module also checks if any task runs longer than the expected
worst-case. In case of an anomaly, the system will roll back to use the previous
period and reclaim resources that are not committed. This is to make sure
the new period could be safely and permanently applied.

4.5 Evaluation

To demonstrate the effectiveness of the adaptation method, an illustrative
example is given that uses a second-order system and a task set consisting

113

of one control task and multiple non-control tasks. The effectiveness and
robustness is also evaluated by investigating a range of design parameters.
Unfortunately no currently available scheme attempts to address the issues
identified in this thesis, and hence a comparative study is not possible.

The experiment is based on simulation using MATLAB/Simulink. Simulink
is a block diagram simulation environment that supports model-based design
and simulation of dynamic systems. The overall setup in Simulink is shown
in Figure 4.8. The task scheduler (the A-FBS Kernel block in the diagram)
is implemented as a discrete system using the MATLAB s-function in C++,
and is called by the Simulink engine during simulation. The scheduler uses
standard fixed-priority scheduling, and the deadline-monotonic policy is also
used for task priority assignment.

In terms of the controller, a Linear-Quadratic-Regulator (LQR) controller
is used. The control law of a LQR controller for reference tracking is defined
as: u(t) = Nr(t) −Kx(t). The optimal control gain K is calculated using a
continuous-time model by solving a Riccati equation [61]. N is a precompen-
sator scaling factor so that the output does equal the reference in steady state.
The overall system closed-loop dynamic equation in a state-space form is:

ẋ(t) = (A−B ·K) · x(t) +B ·N · r(t) (4.8)

The task set used in this experiment is randomly generated using UUniFast
[27], with log-uniform distributed periods. The schedulability of the task set
is checked through response time analysis.

4.5.1 Demonstration

This experiment is started by evaluating a second-order system with one con-
trol task and five higher priority non-control tasks. The system dynamic
equation is defined as:[

ẋ1

ẋ2

]
=

[
10 25

−25 10

][
x1

x2

]
+

[
0

1.6

]
u

y =
[
2.5 0

] [x1

x2

] (4.9)

in which the system has a complex conjugate pole pair: p1,2 = 10± 25j. The
closed-loop bandwidth of the system is 40.72 rad/s, which suggests an initial
control period of 10 ms (middle value of the rule-of-the-thumb and rounded

114

CHAPTER 4. PERIOD ADAPTATION OF REAL-TIME CONTROL
TASKS

u
(t

)

y(
t)

re
fe

re
n
ce

 +
 O

u
tp

u
ts

 /
 I

n
p
u
ts

n
o

is
e

_
in

p
u

t

p
ro

ce
ss

_
n
o
is

e
s

d
_

in
p

u
t

p
ro

ce
ss

_
d
is

tr
u
rb

a
n
ce

s
A

d
d

1

y(
t)

n
o
is

e

d
is

tu
rb

a
n
ce

s

R
e
f

A
/D

D
/A

S
c
h
e

d
u
le

P
e
ri
o
d
s

A
-F

B
S

 K
e

rn
e
l

p
e
ri
o
d
s

S
c
h
e
d

u
le

A
d
d
2

u
(t

)

y
(t

)

x
(t

)

S
ta

te
-s

p
a

ce
 M

o
d
e
l

x(
t)

C
lo

ck

sf
u

n
_

re
fe

re
n

ce
_

cp
p

R
e
fe

re
ce

n
 G

e
n
e
ra

to
r

F
ig
ur
e
4.
8:

E
xp

er
im

en
t
se
tu
p
in

M
A
T
LA

B
/S

im
ul
in
k

115

to the closest integer). The complete task set with other higher priority tasks
in the system is given in Table 4.1. At run-time, these tasks are assumed to
have variable execution times which are normal distributed from Ci/2 to Ci.
The decision parameter αd is set to be 0.95, and the period change ∆Ti in
each step is 1.0 ms, which is 10% of the initial period.

Table 4.1: Experiment Task Set

Task Ci (ms) Ti (ms) Control Task

τ0 0.42 1.57

τ1 0.10 2.15

τ2 0.53 4.99

τ3 0.87 7.77

τ4 0.48 8.01

τ5 1.00 10.00
√

The degradation factor is set to be 0.7 while running the system. For
each iteration, the actual system is observed for 1,000 seconds, which will give
400 - 500 measurements depending on the reference signal. The Monte Carlo
predictor generates a prediction based on 3,000 randomised task executions
and then makes an estimation of the PI for the next step.

The predicted performance is compared with the actual observed metrics
in Figure 4.9, and the prediction bias is also shown in Figure 4.10. It can
be seen that the predictor made a relatively precise prediction, i.e., the de-
viations between the predictions and observations are small (less than 10%),
when Ti ≤ 30ms. However, as the period increases, the prediction error is
also increased. This is explained as the variation of the performance indices
increases dramatically when the control period is becoming larger. Also the
extremes that would rarely happen in a real system would still be used to
produce expectations in the predictor. This can ensure the conservativeness
of the predictor and reduce the chance of invalidation. For this experimental
run, the period is terminated by the predictor at 39 ms, which is four times
the initial period, i.e., the utilization is only 25% of the initial task utilization.

For an actual system, a degradation of 0.7 may be impractical as the control
loss could be too high. To give a full spectrum of the system behaviour, a range
of degradation factors are used from 0.05 to 0.70. From Figure 4.11, it can be
seen that as the degradation factor increases, the period that the algorithm

116

CHAPTER 4. PERIOD ADAPTATION OF REAL-TIME CONTROL
TASKS

Period (ms)
10 15 20 25 30 35 40

P
I

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Actual
Estimated

Figure 4.9: Predicted Control Performance v.s. Actual Performance. The
prediction is one step ahead of the corresponding actual observation.

terminates at also dramatically increases. For example, if λd = 0.1, the period
can be 25 ms, while if λd = 0.5, the period can be 34 ms. It can be seen
that the degradation factor is an important design parameter as it determines
when the adaptation process will have to be terminated.

To better illustrate the trade-off between utilization and performance, the
two metrics against task period are compared in Figure 4.12. It can be seen
that as the period increases, the control performance loss is also gradually
increased. On the other hand, task utilization is reduced as a consequence of
using a longer period. However, the benefit of utilization saved by increasing
task period is exponentially decreased, while the penalty to control perfor-
mance grows quadratically. This implies:

1. Increasing the control task’s period could have a great positive impact on
scheduling performance in terms of utilization, with just a small amount
of control degradation as penalty;

2. However, over-extending the period of a control task could dramatically
affect control performance while making limited contribution to utiliza-
tion saving.

This trade-off is controlled by the degradation factor. The degradation

117

of Iteration
0 5 10 15 20 25

#10-3

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

bias

Figure 4.10: Prediction bias estimation. The bias is used as a feedback infor-
mation to correct the prediction.

factor is an important design parameter in guiding the adaptation process.
As it is a relative measure and it is used mainly for facilitating numerical
computation, sometimes it is not straightforward to select a proper parameter.
In this experiment, it is suggested that the degradation factor would be less
than 0.3 to obtain a good trade-off. However, an unstable system is used in
the experiment which is more sensitive to period changes. For other systems,
the degradation factor would be higher. The selection of a proper degradation
factor can be done by off-line simulation with conservative conditions, in which
the control responses are examined under varies periods.

4.5.2 Robustness

In the previous demonstration, it is assumed the actual system is identical to
the design model. In this experiment, the robustness of the algorithm will
be explored by looking at the case in which model mismatch exists. Model
mismatch is the phenomenon that the system model is deviated from the actual
system. This is common in actual engineering systems, due to many factors
such as modelling error, limited knowledge of the system, and simplification
of the physical system.

118

CHAPTER 4. PERIOD ADAPTATION OF REAL-TIME CONTROL
TASKS

Degradation Factor
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

T
er

m
in

at
ed

 P
er

io
d

10

15

20

25

30

35

40

Figure 4.11: Terminated period with different degradation factors. The degra-
dation factor will affect the period in which the system terminates at.

The robustness is evaluated by applying deviations into the actual system,
compared to the design model. As model differences exist, the actual system
behaviour will be different from expected. This includes both the system
dynamic model and the task model.

The experiment configurations are given in Table 4.2. There are overall 7

experiments including a baseline E1 (the one described above). The ‘system
dynamics’ column in the table indicates how much percentage of error is added
to the system dynamic matrix A. The ‘task model’ column indicates what
task model is used in the simulation: ‘WCET’ for always using the worst-case
execution times, ‘BCET’ for the best-case execution times, and ‘Normal’ for
normally distributed between these two extremes.

The results are shown in Figure 4.13. From the figure it can be seen that the
actual system outputs could be very different if there are errors in the original
model. The worst-case is E5 in which both system dynamics and task model
are worse than ideal. The best two cases are E6 and E7 in which the best-case
execution time model is applied. Nevertheless, in all cases, the predictions
are more conservative than the actual observations, and it can be seen that
the predictor is able to correct itself to accommodate different situations. For
example, in E6 and E7, as the actual observations are much better than the
model, the prediction corrects itself so it will not be too conservative.

119

Period (ms)
10 15 20 25 30 35 40

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Utilization and Performance Loss

"PI
U

Figure 4.12: Utilization v.s. Performance Index. The utilization is defined in
a relative percentage to the original utilization. The performance is illustrate
as a relative percentage of loss.

4.6 Analysis and Discussion

In this section, some of the features of the introduced method will be discussed.
Also some of the details that were not mentioned in the experiments will be
explained.

4.6.1 Influence of Extending Periods

Given the standard response time analysis equation [18], which is (for con-
strained independent tasks):

Ri = Ci +
∑

j∈hp(i)

⌈Ri
Tj

⌉
Cj (4.10)

it can be seen that extending the period of a task will not change the worst-
case response time of that task. Also, it will have no influence on higher
priority tasks. Extending period could, however, potentially improve schedu-
lability of low-priority tasks; also this will not affect the schedulability of the
system if the task set is initially schedulable. This is explained as scheduling
sustainability [30].

120

CHAPTER 4. PERIOD ADAPTATION OF REAL-TIME CONTROL
TASKS

P
er

io
d

(m
s)

10
20

30

PI 0.
5

0.
6

0.
7

0.
8

0.
91

E
1

P
er

io
d

(m
s)

10
20

30

PI 0.
5

0.
6

0.
7

0.
8

0.
91

E
2

P
er

io
d

(m
s)

10
20

30

PI 0.
5

0.
6

0.
7

0.
8

0.
91

E
3

P
er

io
d

(m
s)

10
20

30

PI 0.
5

0.
6

0.
7

0.
8

0.
91

E
4

P
er

io
d

(m
s)

10
20

30

PI 0.
5

0.
6

0.
7

0.
8

0.
91

E
5

P
er

io
d

(m
s)

10
20

30

PI 0.
5

0.
6

0.
7

0.
8

0.
91

E
6

P
er

io
d

(m
s)

10
20

30

PI 0.
5

0.
6

0.
7

0.
8

0.
91

E
7

F
ig
ur
e
4.
13
:
R
es
ul
ts

of
ro
bu

st
ne
ss

ev
al
ua

ti
on

.
T
he

bl
ue

lin
es

w
it
h
‘x
’m

ar
ks

ar
e
th
e
pr
ed
ic
ti
on

s
an

d
th
e
re
d
lin

es
w
it
h
‘4

’m
ar
ks

ar
e
th
e
ac
tu
al

ob
se
rv
at
io
ns
.

T
he

ex
pe

ri
m
en
t
nu

m
be

r
E
n
on

to
p
of

ea
ch

su
bg

ra
ph

is
de
fin

ed
in

T
ab

le
4.
2,

in
w
hi
ch

E
1
is

th
e

ex
pe

ri
m
en
t
us
in
g
pe

rf
ec
t
m
od

el
s.

121

Table 4.2: Experiment configuration for evaluating robustness

Experiment System Dynamics Task Model

E1 Ideal
NormalE2 -5%

E3 +5%

E4 Ideal
WCET

E5 +5%

E6 Ideal
BCET

E7 -5%

The priority ordering will be unaffected if the priority assignment policy
is deadline-monotonic as task deadlines are not changed. However, if rate-
monotonic is used (and deadlines change with period), extending the period
without changing priorities would change the optimality of the priority order-
ing.

4.6.2 Discussion on Overheads

Although most of the computation load is distributed to the cloud server,
the implementation of the method still requires additional computation and
communication in the local embedded computer. In particular, these are:

Computation overhead: the additional overhead of computation mainly
comes from calculating performance statistics and run-time monitoring. The
process can be run as a low priority background service to create minimum
interferences to other running tasks in the system.

Memory overhead: as traces and statistical data is buffered into memory
before being sent to the cloud server, some memory storage is required. De-
pending on the sampling rate and reliability of the communication link, this
size can range from a hundred bytes to a few kilobytes.

Communication overhead: the communication overhead is minor. As only
packets containing statistical data are transferred to the cloud server, the
communication bandwidth required by the method is negligible. Also as the
communication is not in the control loop, the real-time and reliability require-
ments of the network are also low.

122

CHAPTER 4. PERIOD ADAPTATION OF REAL-TIME CONTROL
TASKS

4.6.3 Dealing with Multiple Control Tasks

In the experimental evaluation, the case for only one control task in the system
is considered. As it is common to have multiple control tasks in an control
application, it is essential to prioritise each task for adaptation. To control
the influence of adaptation, it is recommended that only one task at a time is
in an adaptation cycle and can change its period.

Assuming all control tasks are equally important, control tasks could be
prioritised according to one of the following potential policies:

Highest Priority First (HPF) The higher priority task has the largest
margin and the highest interferences with non-control tasks, and also changing
a higher priority task first can avoid the need for recalculating periods of lower
priority task.

Least Sensitivity First (LSF) The task is selected according to the sensi-
tivity of its performance index by changing its period. This is evaluated by a
sensitivity function:

∆J =
∂J

∂h
∆h

∣∣∣
h=Ti(k−1)

(4.11)

Least Uncertainty First (LUF) Select the controller that behaves the clos-
est to its prediction model, i.e., minimal prediction bias and error.

If the importance, or critical levels, of the control tasks are not equal, it is
always preferable to change the task with the least importance first.

4.6.4 Control Stability

The proposed method only checks control system stability through long sim-
ulations. In some situations, this may not be appropriate to demonstrate
the stability of the system. One way of addressing this issue is to give an
upper bound of the maximum allowed period, which could be a value from
mathematical formulations or early stage experiments. Analysis of control
system stability under random delays is still an open research question and
can be found in related research, e.g., networked control systems [131]. In
the adaptation process, it is assumed that the period will not be larger than
a pre-designed safe boundary, otherwise the request will be rejected. In the
simplest case this could be the upper bound of the rule-of-thumb, or this could
come from simulations with extreme conditions.

123

4.7 Summary

In this chapter, an adaptation framework is proposed that gradually changes a
control task’s period at run-time, in order to compensate for additional compu-
tational requests emanating from other tasks in the system. The effectiveness
and robustness of the method is demonstrated through multiple experiments.
Although only one example system is used, the method itself is generalised
and could potentially be applied to other systems. In summary, the following
contributions have been made:

• A period adaptation framework is proposed that can accommodate ad-
ditional computing requirements (or reduce power consumption) in a
cyber-physical control system.

• A proposal to use cloud computing as a component in the loop of mon-
itoring and improving control and scheduling performance.

• A decision making method that uses system dynamics and task timing
models to make predictions and instigate future actions.

• A scheme which utilises run-time feedback information to improve the
precision and robustness of performance predictions.

• The framework is demonstrated in an example system to show its us-
ability.

In the next chapter, this framework will be extended through the use of
a novel flexible model with two periods, the dual-period task model. It will
be shown how resource saving can be made without compromising control
performance.

124

Chapter 5

Dual-Period Task Model

In the last chapter, an adaptation method that uses a flexible task model is
discussed. In that model, each control task has a flexible task period that
can be changed on demand. In this chapter, this task model is extended
by considering control modes. Specifically, each control task can run in two
control modes: a fast mode and a slow mode, and for each mode there is an
associated period.

This idea of multiple operation modes is inspired by mixed-criticality sys-
tems [21] [32] in which a system has multiple criticality modes that it can
switch to. For instance, consider a system with two criticality modes: a high-
critical mode and a low-critical mode. The system will operate in low-critical
mode if all the tasks are executing within their expected WCETs; and the
system will switch to high-critical mode and will terminate low-critical tasks
if one or more tasks exceeds their budget.

Similarly, in a digital control system the controller task can operate in two
modes: a slow mode (i.e., a longer control interval) if there is no significant
ongoing perturbations, and a fast mode if there is an operational point change
or a major disturbance. It is expected that the proposed model can have the
following properties:

1. This method can save computational resources with minimal impact on
the control performance.

2. This method can have predictable scheduling behaviour that can guar-
antee extra capacity for executing other tasks in the system.

3. This method can achieve graceful degradation if the system becomes

125

overloaded.

4. This method should have low run-time overheads, low memory footprint
and minimal modification of the system.

The rest of this chapter is organised as follows: Section 5.1 gives a brief
review on task models for real-time control. In Section 5.2, the method is
formalised by introducing the definition of control performance and scheduling
performance, and the collaborative optimization objective. A dual-period task
model is then introduced and it is described how it can be scheduled by a fixed-
priority scheduler. In Section 5.3, the dual-period model and its sensitivity
on control performance regarded to scheduling parameters are explored. A
heuristic searching method is also proposed in order to find the optimal periods
and switching points. Finally the results are analysed and conclusions are
presented.

5.1 Task Models for Real-Time Control

Many existing task models can be applied to real-time control systems, and
some of these are covered in Chapter 2. For example, the elastic task model
and the quality-of-service degradation.

There are also some other task models that are explicitly designed for
control applications. For instance, task decomposition [73] can be used to
improve schedulability of control tasks. In [45], a control task is split into
two dependent sub-tasks: 1) an output calculation task and 2) a state update
task. It is shown that by scheduling a control task as two sub-tasks, the
computational delay could potentially be reduced significantly, and the control
performance can be improved with maintained schedulability.

In [6], Årzén introduced an event-based controller as an alternative to
the traditional time-triggered control paradigm. As a consequence, the cor-
responding task of the controller will be released aperiodically. The authors
demonstrated that this method could lead to large reduction in the CPU uti-
lization, while making minor control performance degradation. However, it is
hard to verify the worst-case performance for the proposed event-based con-
troller, both in terms of scheduling and for the control aspect.

Another commonly used model for scheduling control tasks is (m, k)-firm
scheduling [76]. Instead of executing every job instance of the task, the sched-
uler only needs to schedule at least m job instances out of any k consecutive

126

CHAPTER 5. DUAL-PERIOD TASK MODEL

releases. This is feasible as occasional misses of the output update can be
tolerated by most control applications. In [114], (m, k)-firm model is used as a
less stringent guarantee than the hard deadline requirement. This work shows
how the (m, k)-firm model can be used to achieve graceful degradation when
a system is overloaded.

The distinctive feature of this method is that a task model is applied which
has two flexible periods that it can switch to. Instead of decomposing the
control task itself, the control system behaviour is decomposed as transient
and steady phases. Similar to the event-based method, the proposed task
model can achieve equivalent control performance with less CPU utilization.
Compared to the (m, k) model, this method is equivalent to reducing control
frequency rather than skipping some job instances. In the next section, the
proposed task model will be discussed in detail.

5.2 Proposed Task Model

For the proposed dual-period model, each control task is associated with two
periods: a fast period and a slow period. The actual task period will switch
between these two periods, which is jointly determined by the switch period
and the switching ratio. The switch period is the minimal cycle that consists
of a fast and a slow mode. To formalise, the task model is defined as follows:

τi ≡ (Ci, T
Γ
i , T

H
i , T

L
i , αi, Di = THi) (5.1)

where Ci is the worst-case execution time; TΓ
i is the switch period which is

equal to the minimal interval between two disturbances; THi and TLi are fast-
mode and slow-mode periods respectively, with THi < TLi ; αi is a ratio that
defines when a mode switch will be performed, and Di is the deadline of the
task, which equals the fast-mode period THi .

In this dual-period model, a task initially executes with period THi . This
phase, known as the ‘fast mode’, is used to bound the intersampling dynamics
after a disturbance is made to the system. A switching from THi to TLi is
then made which is triggered at t = αiT

Γ
i . The phase in which Ti = TLi is

known as the ‘slow mode’, in which the system is likely to have less dynamics.
As changing of task mode will not take effect until the next job release, the
exact switching point happens at: tS = d(αiTΓ

i)/THi e(THi). So in every switch
period TΓ

i the task executes with period THi and then executes with period

127

Fast mode Slow mode

1) Response of the controlled plant

2) Releases of the control task

3) Task modes changes

Fast mode

Figure 5.1: An illustration of the dual-period task model

TLi . The task will stay in the slow mode and switch back to the fast mode if
a new disturbance is detected. See Figure 5.1 for an illustration.

Both of the periods can adapt according to system requirements. However,
under no circumstance should the system become unstable due to a period that
is too large. Hence, an upper bound T+

i is defined, which is the period where
the control system output will become unacceptable. Also, as the resource of
the embedded hardware is limited, the period cannot be too small that would
overload the system. Thus there is also a lower bound T−i on task period,
which is determined by the maximum allowed utilization for task τi. Overall
there is T−i ≤ THi < TLi ≤ T

+
i , and for all cases, Ti ∈ [T−i , T

+
i].

It is assumed that there is a minimum interval of time between perturba-
tions. In the steady state the controller runs with the longer period. This will
continue to be the case unless there is a significant perturbation or a change
in set point. If this occurs then the controller will immediately switch to the
shorter period. After a time computed from the parameter αi the controller
switches back to the longer period.

128

CHAPTER 5. DUAL-PERIOD TASK MODEL

G(s)

Hh(s)

Hl(s)

F(s)

switching unit controllers

system

Figure 5.2: An illustration of the control model

5.2.1 Control Model

For a single-input-single-output (SISO) system, the open loop dynamics of a
control system can be described as a transfer function in the s-domain [62]:

G(s) =
Y (s)

U(s)
=
ans

n + an−1s
n−1 + ...+ a0

bnsn + bn−1sn−1 + ...+ b0
(5.2)

where U(s) represents the Laplace transform of system input and Y(s) rep-
resents system response. Here the symbol U is used by convention in control
theory, it does not represent utilization in this context.

Assuming the transfer function of the controller is H(s), and the feedback
path is F (s), the closed loop transfer function can be written as:

Gc(s) =
G(s)H(s)

1 +G(s)H(s)F (s)
(5.3)

The controller H(s) is designed in continuous time and then discretized.
Depending on the control mode, two versions of controllers, Hh(s) and Hl(s)

are used mutually. Both of the controllers use the same control law but with
different time constants and parameters according to the associated task pe-
riod. A diagrammatic representation that demonstrates the whole feedback
loop is shown in Figure 5.2.

To quantify the control performance, a quadratic control cost function is
applied that is widely used in the design of optimal controllers. The general
form of this cost function is given by [26]:

J =

∫ ∞
t=0

(xT (t)Q1x(t) + 2xT (t)Q12u(t) + uT (t)Q2u(t))dt (5.4)

129

where x(t) is system state vector; u(t) is controller input vector, and Q1, Q12

and Q2 are weighting matrices. Similar to the period adaptation model, in
this work, the cost is only evaluated over a finite horizon up to TΓ

i , i.e. the
switch period of the control task:

J =

∫ TΓ
i

t=0
(xT (t)Q1x(t) + 2xT (t)Q12u(t) + uT (t)Q2u(t))dt (5.5)

5.2.2 Scheduling of Dual Period Tasks

To schedule dual-period tasks, an extension to standard fixed-priority sched-
uler is considered. Task priorities are assigned using the deadline monotonic
policy. The deadline of a dual-period task is equal to the fast model period,
i.e., Di = THi , and it is not affected by the current control mode. Hence at
run-time, the task priorities will not change if the fast model period stays
constant.

Scheduling a dual-period task requires a run-time monitor and a timer.
The process of scheduling such a task is given in Algorithm 1. Note the
control-related states are passed to this procedure from the monitor which
runs independently and in parallel.

Algorithm 1: Scheduling a Dual-Period Task
Inputs : THi , T

L
i , T

Γ
i , αi, y(t), r(t)

Initialise: ti ⇐ 0

loop:

1: scheduler → set_task_period(THi);
2: timer → start(ti);
3: timer → wait_until(αiTΓ

i);
4: scheduler → set_task_period(TLi);
5: while |y(t)− r(t) ≤ b| and mode_change() == False do
6: scheduler → stay_in_slow_mode();
7: end while
8: timer → reset();
9: goto loop

For operating systems that need permissions to access kernel functions,
this routine should be executed in kernel mode. This process can also be
integrated into the scheduler and be invoked in the scheduler handler.

130

CHAPTER 5. DUAL-PERIOD TASK MODEL

5.2.3 Response Time Analysis for Dual-Period

For fixed-priority scheduling, the schedulability of a task can be checked
through response time analysis. The standard equation for calculating re-
sponse time for independent task is already introduced in Section 2.1.4, which
is the addition of its own execution time, and the interference time due to
preemptions from higher priority tasks:

Ri = Ci +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj (5.6)

From this equation it can be indicated that the worst-case response time of
a dual period task is no different from a normal task, as the response time of the
task is independent of its own period. Also for tasks with higher priorities,
running a dual period will not change their response times. However, for
lower priority tasks, their response time will potentially be influenced as the
interference pattern is changed.

To make it more specific, assuming there is a dual period task τj and a
normal periodic task τi that has a lower priority:

τi ≡ (Ci, Ti, Di = Ti) (5.7)

τj ≡ (Cj , αi, T
H
j , T

L
j , T

Γ
j , Dj = THj) (5.8)

and for the dual period task, the switching behaviour is defined as:

• switching point: tS = d(αiTΓ
i)/THj e(THj);

• if (t mod TΓ
i) ≤ tS =⇒ Tj = THj ;

• if (t mod TΓ
i) > tS =⇒ Tj = TLj .

The response time of τi is discussed under different conditions depending
on if task τi finishes before or after the switching of τj :

1) If Ri < tS , task τj always executes with THj , and the resultant worst-
case response time of τj is no different from the case if τj was a normal
periodic task with period THj :

Ri = Ci +

⌈
Ri

THj

⌉
Cj

131

2) If Ri ≥ tS , after the switching task τj will use TLj which reduce the
frequency of interferences:

Ri = Ci +

(
tS

THj
+

⌈
Ri − tS
TLj

⌉)
Cj

3) if Ri > TΓ
j , the worst-case behaviour is that the dual period task switches

immediately back to the fast mode after it reaches its switch period. De-
fine the total interference time in a switch period as IΓ, and the number
of switch period that task τi suffers as n, there is:

Ri = Ci +

⌈
Ri−nIΓ
THj

⌉
Cj + nIΓ if (Ri mod TΓ

j) < tS(
tS
THj

+

⌈
Ri−nIΓ−tS

TLj

⌉)
Cj + nIΓ if (Ri mod TΓ

j) ≥ tS
(5.9)

in which n = bRi/TΓ
j c. To generalise for all cases, the max() and min()

functions are introduced which output the larger or lower value between two
parameters, respectively. Overall, there is:

Ri = Ci +

(⌈
min(tS , Ri − nIΓ)

THj

⌉
+

⌈
max(Ri − nIΓ − tS , 0)

TLj

⌉)
Cj + nIΓ

(5.10)

5.2.4 Optimal Selection of Scheduling Parameters

The optimal scheduling of dual period is equivalent to optimally selecting task
parameters (i.e., αi, THj , T

L
j) of control tasks. This can be transferred into an

optimization problem. First a few assumptions need to be clarified:

A.1 The upper bound T+
j and the lower bound T−j of the period of a control

task in Γc are known.

A.2 The whole task set Γ is guaranteed to be schedulable, if all control tasks
τi ∈ Γc are executing in slow mode (Ti = TLi).

A.3 Switching between two period modes will not introduce control system
instability.

A.4 The operating system has interfaces to allow the feedback scheduler to
change task periods, and the kernel has information on the current con-
trol states.

132

CHAPTER 5. DUAL-PERIOD TASK MODEL

Table 5.1: List of Symbols and Notations

Symbol Description

Γ the task set

Γc the task set of all control tasks

Γnc the task set of all non-control tasks

PI system overall performance

Jc control cost

Js scheduling cost

wc control weight

ws scheduling weight

αi switching point ratio

TΓ
i the switching period

THi the task period during fast mode

TLi the task period during slow mode

T+
i upper bound of the period of control task τi
T−i lower bound of the period of control task τi

The sampling interval of a control system is normally based on the desired
speed of the closed loop system. To satisfy A.1, one practice would be let
T+
j = 10 × Tr and T−j = 4 × Tr, in which Tr is the closed-loop rising time.

The second assumption A.2 is to make sure the task set is schedulable even
in the worst case. Assumption A.3 is not always true. It is known in hybrid
system theory that switching between two different controllers could introduce
instability. As in this work, only two switches every TΓ

i are performed, it is
reasonable to think the switching interval is larger than the dwell time. Hence
no instability should be introduced. Assumption A.4 is essential for observing
the system and making changes to the period. The additional symbols and
notations involved are defined in Table 5.1.

133

The overall system performance is judged by both the scheduling perfor-
mance and the control performance. The optimization problem is formed as
follows:

minimise
αi,THi ,T

L
i

J = {wcJc + wsJs}

s.t. 0 < αi ≤ 1

THi ≥ T−i
TLi ≤ T+

i

THi < TLi

∀i ∈ Γc

(5.11)

where ws and wc are constants that are used to decide trade-offs between
control and schedulability. Relative cost is used as the metric for measuring
control performance Pc:

Pc =
J ′

J(0)
, Jc ≥ 1 (5.12)

in which J(0) defines the cost of the best control scenario, i.e., Ti = THi . A
higher Pc indicates a worse control quality of the system.

In this initial investigation, schedulability performance is evaluated with
CPU utilization. The lower the task set utilization is, the more likely the
task set is schedulable. The performance of scheduling Ps can be measured by
improvements in task utilization:

Ps =
Ui
Ui(0)

, 0 < Js ≤ 1 (5.13)

here Ui(0) is the initial utilization when the system has Ti = THi = T−i . A
smaller Ps represents a larger improvement in utilization.

5.3 Experiments and Evaluations of Dual Period

The purpose of doing evaluations is to reveal the performance of this dual-
period model, and give insights into choosing proper scheduling parameters.
All experiments in this section are performed using MATLAB R2015a and
Simulink. A mex file is compiled with Microsoft Windows SDK 7.1. For all
the control tasks, the same system dynamics is used, which is a second-order
system with a transfer function G(s) given as:

G(s) =
200

s2 + 80s+ 2000
(5.14)

134

CHAPTER 5. DUAL-PERIOD TASK MODEL

The controller used is a PID controller with proper timing compensation
following details in [9]. A fixed-priority scheduler is simulated in Simulink
with a kernel tick time of 0.1ms. The range of allowed upper bound and lower
bound is selected as T+

i = 10ms and T−i = 5ms respectively. The computation
time is Ci = 1ms for each task release. The switch period TΓ

i is selected as
300ms. All tasks are released at the critical instant, i.e., no task offset, unless
explicitly mentioned. For simplicity, the dual-period task scheduling method is
notated as DUAL-FPS. The Simulink block diagram used for this experiment
is shown in Figure 5.3.

5.3.1 Performance of DUAL-FPS

In this experiment, there are three control tasks τ0, τ1, τ2, and a background
task τ3. τ0 applies a dual-period model with TH0 = T−i , TL0 = T+

i and αi = 0.5.
τ1 and τ2 are periodic tasks with T1 = T−i and T2 = T+

i , respectively.
The system responses of each control plant are shown in Figure 5.4. From

the figure, it can be seen that the output of the controller implemented by task
τ0 (Controller 0 for short) is similar to the output of Controller 1, which applies
the shortest period. Specifically, the response is identical before the switching
point (0.15s), and has noticeable degradations after the switch. However,
when compared with Controller 2, the output of the dual-period task is still
much better.

In terms of resource usage, the equivalent utilization of τ0 over the switch
period is 0.15, which lies exactly in the middle of τ1 and τ2 (see Figure 5.5).
As the switching time instance is deterministic, the task utilization is expected
to be:

Ui = (1− αi)U(TLi) + αiU(THi) (5.15)

It can be seen that with DUAL-FPS, significant computational resources
can be saved with a little compromise over the quality of control. Even in the
worst-case, the output of DUAL-FPS is still bounded by the output of a single
period task with Ti = T+

i . The minimal resources that a DUAL-FPS uses is
lower bounded by U(TLi) when αi = 0, and the maximal is when Ti = TLi for
∀t in which case αi = 1.

135

(T
h

re
e

 id
e

n
tica

l syste
m

 p
la

n
t)

R
e
f

A
/D

D
/A

S
c

h
e
d
u
le

P
e
rio

d
s

A
-F

B
S

 K
e
rn

e
l

o
u
tp

u
t

in
p
u
t

sch
e
d
u
le

sim
o

u
t_

sch
e

d
u

le

To
 W

o
rksp

a
ce

 (sch
e
d
u
le

)

U
(t)

Y
(t)

S
yste

m
 M

o
d
e
ls

o
u
tp

u
t_

a
ll

in
tp

u
t_

a
ll

R
e
fe

re
n
ce

sim
o

u
t_

y

To
 W

o
rk

sp
a
c
e
 (o

u
tp

u
t)

p
e
rio

d
s

sim
o

u
t_

p
e

rio
d

s

T
o
 W

o
rksp

a
ce

 (ta
sk p

e
rio

d
s)

d
u

/d
t

D
e
riva

tive

sim
o

u
t_

y
_

d
o

t

To
 W

o
rksp

a
c
e
 (d

_
o
u
tp

u
t)

A
d
d

P
ro

c
e
ss N

o
ise

sim
o

u
t_

u

To
 W

o
rksp

a
ce

 (in
p
u
t)

F
igure

5.3:
T
he

experim
ent

setup
and

block
connections

in
Sim

ulink

136

CHAPTER 5. DUAL-PERIOD TASK MODEL

t
0 0.05 0.1 0.15 0.2 0.25 0.3

y(
t)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Task 0 (*)
Task 1
Task 2

Figure 5.4: System outputs of each control task (αi = 0.5)

utilization
0 0.05 0.1 0.15 0.2 0.25

Task 2 (T = TL)

Task 1 (T = TH)

Task 0 (DUAL)

Figure 5.5: CPU utilization of each control task (αi = 0.5)

5.3.2 Parameter Sensitivity

In the previous evaluation, all of the three scheduling parameters are fixed.
However, the selection of the parameters αi, THi and TLi has a large influ-
ence on both control and scheduling performance, thus needs more dedicated
exploration.

To figure out how the variation of each parameter will change the control
performance Pc and the scheduling performance Ps, a sensitivity analysis is
performed for each scheduling parameter. This is done by exhaustive search
in the parameter space formed by all possible values, while keeping the other

137

two parameters fixed. Specifically, it is made αi = 0.5, THi = 50 and TLi = 100

if they are not the variable of interest. In this experiment, only τ0 and τ3 are
activated. The role of τ3 is to measure unused capacities in order to calculate
utilization.

The results of the experiment are shown in Figure 5.6 for THi , Figure 5.7
for TLi , and Figure 5.8 for αi. The first observation is that the scheduling
and control performance do have a correlation with the three parameters.
The only exception is TLi against Pc: increasing of TLi has little effect on
Pc. This is because most of the system dynamic transition happens at the
beginning of the switch period. After the system switches to the slow-mode,
the interval between two successive controls has limited impact on the control
performance. However, this is not the case for THi . It can be seen from
Figure 5.6, Pc is very sensitive to THi . The correlation is not linear but Pc
is monotonically increasing when THi increases. It can be seen that αi also
controls Pc. However, after αi = 0.3, increments in αi no longer decrease the
control performance.

In terms of scheduling performance, because the existence of a determin-
istic switch, the result roughly follows Equation (5.15). Increasing TLi , T

L
i or

decreasing αi can all reduce resource usage. From these three figures, it can
be seen Ps is equally sensitive to THi and TLi , and is more sensitive to αi.

One conclusion is that Ps and Pc have a negative correlation, i.e., increasing
one will decrease the other. Theoretically, given an optimization objective, one
or more balance points can be found that gives proper trade-offs between Pc
and Ps. This gives motivation to do another experiment in the next subsection.

TH
50 60 70 80 90 100

P
c

1

1.5

2

2.5

3

TH
50 60 70 80 90 100

P
s

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.6: Sensitivity of THi (when αi = 0.5 and TLi = 100)

138

CHAPTER 5. DUAL-PERIOD TASK MODEL

TL
50 60 70 80 90 100

P
c

1

1.5

2

2.5

3

TL
50 60 70 80 90 100

P
s

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.7: Sensitivity of TLi (when αi = 0.5 and THi = 50)

α

0 0.5 1

P
c

1

1.5

2

2.5

3

α

0 0.5 1

P
s

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.8: Sensitivity of αi (when THi = 50 and TLi = 100)

5.3.3 Control and Scheduling Trading-off

To further explore the trade-off that can be made between control and schedul-
ing, two more studies will be done in this subsection. In the first study,
the cost spaces of Ps (Figure 5.9a) and Pc (Figure 5.9b) are explored that
are determined by varying the two periods when αi is fixed to 0.5. From
these two diagrams, it can be seen TLi and THi have equal influences in terms
of the scheduling performance. However, for the control performance, THi
(quadratic) is more influential than TLi (linear). This indicates that if the
same utilization needs to be achieved, increasing TLi is less expensive than
increasing THi .

For the second analysis, the objective is to explore how αi could change
Ps and Pc. This is done by plotting a series of scatter points with different
parameters. In Figure 5.10, each point represents a unique combination of THi ,
TLi and αi. Points with the same αi are grouped, marked with the same colour.

139

40
60

T
H

80
100

100
80

T
L

60
40

0.7

0.5

0.8

0.9 1

0.6

P
s

(a)
P
eriods

and
C
ontrolP

erform
ance

100

80

T
H

60

40
40

60

T
L

80

100

1.8 21

1.2

1.4

1.6

P
c

(b)
P
eriods

and
Scheduling

P
erform

ance

F
igure

5.9:
T
he

plot
of

perform
ance

w
hen

α
i

=
0.5

140

CHAPTER 5. DUAL-PERIOD TASK MODEL

From this diagram, it can be seen αi does not have a clear correlation to Ps
and Pc. An αi that has a small Ps and a large Pc can also occasionally have a
large Pc and a small Ps. From the distribution of these scatter points, a lower
bound of all points on the figure can be found, which is also a boundary that
indicates all optimised parameters. If there is no constraint on the utilization
that the control task can use, the corner point (Ps = 0.66, Pc = 1.05, αi = 0.4)
can be selected that represents the best option: resource is saved with little
degradation in control. If more resources are required, then degradation in
control is unavoidable. If this is the case, then decreasing TLi is preferred
rather than THi as learned from Figure 5.9a and 5.9b.

P
s

0.5 0.6 0.7 0.8 0.9 1

P
c

0.8

1

1.2

1.4

1.6

1.8

2

2.2

a = 0.0

a = 0.2

a = 0.4

a = 0.6

a = 0.8

a = 1.0

Figure 5.10: Parameter αi against Pc and Ps

All of these experiments reveal the performance of the dual-period task
model, and provide insights of how parameter changes will affect Ps and Pc.
Figure 5.11 shows how the three parameters collaboratively affect both control
and scheduling performance. The way of getting an optimised point can be
found from exhaustive simulation by applying all possible combinations of
parameters.

As exact optimization through full search of the space is costly and not
always tractable, some heuristic assignment methods can also be used. One
possible guidance is given here, which tries to minimise the utilization without

141

Control Tasks

Task Scheduler

α

Ti
H

Ti
L

Ps

Control System Pc

Non-Control Tasks

parameters target system performance

Figure 5.11: Influence of task parameters on the control and scheduling per-
formance

compromising the control performance:

1. Initially set THi = TLi = T−i and αi = 1.0. In this case, period switching
is effectively disabled. Let the task period Ti = THi (fastest).

2. Simulate the step response of the closed-loop system. Record the settling
time Ts and the quadratic cost J0 in [0, Ts]. Let TΓ

i ≥ Ts.

3. Now enable period switching. Increase THi and re-run the simulation
(TLi = THi). Assuming the new cost is J ′, repeat the process until
J ′ − J0 > 0.1J0 (i.e., a 10% performance drop).

4. Decrease αi. Run a simulation and record the control cost as J ′′. Repeat
this process until J ′′ − J ′ > 0.1J ′.

5. Increase TLi and run a simulation. Record the control cost as J ′′′. Repeat
this process until J ′′′ − J ′′ > 0.1J ′′ or TLi ≥ T

+
i .

This strategy prioritised the searching of the three parameters in the order
THi � αi � TLi . By utilising this searching method with a step size of 10 for
periods, and 0.1 for αi, a solution is found: {αi = 0.1, THi = 60, TLi = 80}
that leads to Pc = 1.18 and Ps = 0.65. It can be seen from Figure 5.10 that
this solution is very close to the corner point.

Note a different solution can be obtained if there are constraints on the
utilization or control performances. To handle scenarios in which there are

142

CHAPTER 5. DUAL-PERIOD TASK MODEL

dynamic requirements on different utilization and/or quality of control, multi-
ple solutions can be solved off-line and be provided to the scheduler, in order
to enable it to choose the proper parameters under different conditions at
run-time.

5.4 Summary

In this work, it is first motivated the requirement of a method to improve the
resource usage of an over-controlled control system. A novel scheduling model
is then presented: the dual-period task model. This model is designed explic-
itly for control applications. Three parameters THi , TLi and αi are associated
with each control task. It can be seen from the experiment that for a partic-
ular second-order system, the resulted control performance is competitive to
that of using the shortest control period.

It can be also seen that, by properly choosing the scheduling parameters,
the system can have different set-points that result in different scheduling
and control performances. This is to say, if a solution exists, this method
could find a balance point that makes a trade-off between the control and the
scheduling performances in a predictable and controllable way. In scenarios
where dynamic resource allocation is required, this method can also produce
good trade-offs under different constraints on utilization or quality of control.
This can be done by making performance mappings off-line with extensive
simulations in the parameter space.

Note it is possible to adapt the two periods THi and TLi at run-time, which is
similar to the period adaptation model. Once outline analysis has determined
THi and TLi , the run-time strategy (described in the previous chapter) can
be applied to each of these periods. First the THi mode is monitored and
THi would be potentially extended. Then TLi is considered a candidate for
extension.

143

144

Chapter 6

Conclusions and Future Work

In this chapter, the work previously presented will be evaluated in terms of
the primary objectives of this research. This chapter will also summarise the
thesis and re-emphasis its contributions. The insight into further work that
can be performed is also provided at the end of this chapter.

The development of the next generation of cyber-physical systems requires
all system components to be more flexible and robust. As task scheduling
has an important role in coordination of computer resources, it is vital for
a scheduling system in a cyber-physical system to have higher flexibility and
adaptiveness. All of the work presented in this thesis tries to address these
arising issues by proposing a novel scheduling framework that could potentially
be used for emerging systems.

The proposed framework, Adaptive Task Scheduling Framework, or ATAS,
is a general adaptive task scheduling framework that has many novel features.
There are three major properties that make ATAS distinctive from traditional
scheduling methods:

1) The system performance, including both scheduling and control perfor-
mance, is monitored and used in a feedback loop.

2) The task parameters, e.g., period of a task, are allowed to be changed
to make resource and performance trade-offs.

3) The scheduling system is hierarchical, with the lower-level scheduler be-
ing a traditional FPS or EDF, and the higher-level scheduler being a
feedback scheduler that is deployed in the cloud.

The framework can cope with scenarios in which the resource demand of

145

a system increases over its operation, due to additional function requirements
or hardware ageing. Within this context, it is shown a case where task worst-
case execution times are increasing and a method for trend identification is
developed through a comparison study. To accommodate for these additional
resources, a period adaptation model is proposed, which applies a flexible
model and cloud based analysis. The period of a control task can be extended
to release computational resources, if that control system can still meet its
specification after the adaptation process. Finally, this model has been ex-
tended to one in which a task has two flexible periods that a task can switch
between.

These two opposing dynamic behaviours of a long-lived CPS are addressed
and balanced through the framework. The integration of these two opposites is
straightforward, which can be done through CPU utilization, i.e., the resource
saved from period adaptation or dual period can be allocated to tasks with
increased demand. When applied in accordance with other adaptive methods,
this method can improve the resilience of a CPS, making a system run longer
without stopping for maintenance, and save energy and resources. Although
the context of this work is merely for control applications, the generality of
this framework makes it not limited to control, but also applicable to other
applications that have quantifiable performance or utility that is correlated to
task periods.

6.1 Contributions

In this thesis, a framework for scheduling tasks in cyber-physical systems is
presented: the Adaptive Task Scheduling Framework, or ATAS. This frame-
work is unique in its ability to adapt to changes by manipulating task param-
eters at run-time. The framework is based on the IBM MAPE-K architecture
and is designed explicitly for handling real-time tasks. The argument starts
from the identification of dynamic worst-case execution times, or dWCET. It
is demonstrated that both software and hardware aspects will influence task
worst-case execution times.

The dWCET will often cause increased computational requirements in
the system. It is essential that the dWCET should be monitored and any
trend should be predicted which forms the next contribution of this work. A
review of trend identification methods is given which results in three candidate

146

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

methods that are then used for a comparative study. It is shown that by
introducing a wide range of performance measures, the effectiveness of the
trend identification methods can be compared in a context that is close to real
scheduling scenarios.

The next contribution of this thesis is to explore methods that can accom-
modate such changes in the system load caused by varied worst-case execution
times. In particular, the problem of actively changing task periods in real-time
controllers is explored. The periodical real-time control tasks apply a flexible
task model, in which case the task period can be changed and reconfigured at
run-time according to the actual system requirement. The use of cloud-based
monitoring and prediction makes it feasible for embedded real-time controllers
with limited resources to make complicated decisions. The adaptation decision
is made based on both a simulated model and run-time information.

Finally, a dual-period task model is proposed to enhance the case where
only one period can be adapted. The dual-period model switches between
two operational modes according to the scheduling parameters and control
conditions. The use of dual-period makes it easier in terms of making trade-
offs between control and scheduling. The selection of scheduling parameters
in the dual-period model is discussed by using a heuristic. The response time
analysis is also given, along with the scheduling mechanisms on a fixed-priority
scheduler.

All of these contributions are evaluated and analysed by experiments on a
hybrid simulation environment based in Matlab and Simulink. The research
hypothesis, defined in Chapter 1, is revisited below:

Flexible and adaptive task scheduling can improve the schedulability of
long-lived cyber-physical systems. This can be achieved by using novel flexible
models for making design tradeoffs, utilising statistical learning techniques for
supervision and analysis, and using cloud computing facilities for adaptively
managing resource reclaiming.

All of the contributions discussed provide evidence to sustain the hypoth-
esis of this thesis. It can be seen that the hypothesis is sufficiently satisfied.

147

6.2 Future Research

Although sufficient discussions and evaluations are already made in previous
chapters, the author is aware that there is still plenty of potential work that
can be incorporated into the framework to either improve or enhance the
usability of ATAS. To be more specific, future work is discussed in the following
subsections. Some of this work have already been looked at, but not fully
investigated due to time limitation.

6.2.1 Trend Analysis

For this work, it is only explored the case where a linear and deterministic
trend is considered. In reality, many trends are non-linear and stochastic.
Some of them can be decomposed into sub linear trends but may exhibit dif-
ferent characteristics. It is also worth to consider more dependent variables
that could have an impact on execution times to improve the precision of
prediction. The use of ensemble learning to combine two or three identifica-
tion methods could also benefit the result of analysis, and multiple successive
predictions should be considered to make a control decision with a high confi-
dence. This approach can also be applied to real data which is obtained from
industrial applications. All these issues form topics for future work.

6.2.2 Period Adaptation

There are still many other aspects that can be further explored for period
adaptation. These include consideration of the case in which the system has
dependent control tasks, for example a multi-loop controller that has cascaded
control tasks. Another example is a motion control system with multiple
degrees of freedom, e.g., a humanoid robot, in which more than one control task
has to cooperate and be synchronised. This method can also be extended to
satisfy multiple objectives, as there may be more than one design consideration
and even conflicted constraints in additional to the performance requirement.

6.2.3 Dual Period

As part of future work, different forms of control systems and controllers will
be studied. A scheduling method that better matches the dual-period model
also needs to be explored, e.g., Dual Priority Scheduling [58]. Also in this work,
utilization is used to measure the scheduling performance. However, utilization

148

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

does not provide all the information of the effectiveness of scheduling. In
future work, a more precise timing analysis will be used to better describe the
resource usage and improvements in terms of providing additional capacity to
lower-priority tasks. The adaptation of THi and TLi is also important. It may
also be possible to modify the α parameter by monitoring the behaviour of
the system as it executes.

6.2.4 Real-World Case Study

In this thesis, control and scheduling system co-simulations are applied for
the purpose of demonstration and evaluation. However, there is a limitation
on simulations as the fidelity of simulation depends on the precision of the
system model. Hence a real-world case study will provide stronger support
of the usability of the framework. To transform the proposed method into a
real-world application, some details related to software development, kernel
modification and communication with the cloud need to be formalised. The
other interesting topic is what methodology can be applied for validation and
verification of the deployed system with the ATAS integrated.

All of those work discussed can be formed into future research.

149

150

List of Abbreviations

ATAS Adaptive Task Scheduling Framework

AFBS Adaptive Feedback Scheduler

BCET Best-Case Execution Time

CDF Cumulative Distribution Function

CPS Cyber-Physical Systems

CPCS Cyber-Physical Control Systems

EDF Earliest Deadline First

FPS Fixed-Priority Scheduling

IAE Integral of Absolute Error

LQR Linear-Quadratic Regulator

OLS Ordinary Least Square

PI Performance Indicator

QoC Quality-of-Control

QoS Quality-of-Service

RTA Response Time Analysis

RTS Real-Time Systems

SVR Support Vector Regression

WCET Worst-Case Execution Time

151

152

References

[1] L. Abeni and G. Buttazzo. Integrating multimedia applications in hard
real-time systems. In Real-Time Systems Symposium, 1998. Proceedings.
The 19th IEEE, pages 4–13. IEEE, 1998.

[2] L. Abeni and G. Buttazzo. Stochastic analysis of a reservation based
system. In null, page 30092a. IEEE, 2001.

[3] L. Abeni and G. Buttazzo. Resource reservation in dynamic real-time
systems. Real-Time Systems, 27(2):123–167, 2004.

[4] L. Abeni, G. Lipari, and J. Lelli. Constant bandwidth server revisited.
SIGBED Review, 11:19–24, 2014.

[5] S. Arunachalam, T. Chantem, R. P. Dick, and X. S. Hu. An online wear
state monitoring methodology for off-the-shelf embedded processors. In
Proceedings of the 10th International Conference on Hardware/Software
Codesign and System Synthesis, pages 114–123. IEEE Press, 2015.

[6] K.-E. Årzén. A simple event-based PID controller. In Proc. 14th IFAC
World Congress, volume 18, pages 423–428, 1999.

[7] K.-E. Årzén, B. Bernhardsson, J. Eker, A. Cervin, K. Nilsson, P. Pers-
son, and L. Sha. Integrated control and scheduling. Report ISRN
LUTFD2/TFRT–7586–SE, Department of Automatic Control, 1999.

[8] K.-E. Årzén and A. Cervin. Software and platform issues in feedback
control systems. Cyber-Physical Systems, pages 165–195, 2017.

[9] K.-E. Årzén, A. Cervin, J. Eker, and L. Sha. An introduction to control
and scheduling co-design. In Proceedings of the 39th IEEE Conference
on Decision and Control, 2000., volume 5, pages 4865–4870. IEEE, 2000.

153

[10] K.-E. Arzén, A. Cervin, J. Eker, and L. Sha. An introduction to control
and scheduling co-design. In Decision and Control, 2000. Proceedings of
the 39th IEEE Conference on, volume 5, pages 4865–4870. IEEE, 2000.

[11] K.-E. Årzén, A. Cervin, and D. Henriksson. Implementation-aware em-
bedded control systems. Handbook of networked and embedded control
systems, pages 377–394, 2005.

[12] K. J. Åström and B. Wittenmark. Computer-controlled systems: theory
and design. Prentice-Hall, 1997.

[13] K. J. Åström and B. Wittenmark. Computer-controlled systems: theory
and design. Courier Corporation, 2013.

[14] T. Atdelzater, E. M. Atkins, and K. G. Shin. QoS negotiation in real-
time systems and its application to automated flight control. Computers,
IEEE Transactions on, 49(11):1170–1183, 2000.

[15] A. Atlas and A. Bestavros. Statistical rate monotonic scheduling. In
Real-Time Systems Symposium, 1998. Proceedings., The 19th IEEE,
pages 123–132. IEEE, 1998.

[16] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings.
Applying new scheduling theory to static priority pre-emptive schedul-
ing. Software Engineering Journal, 8(5):284–292, 1993.

[17] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Hard
real-time scheduling: The deadline-monotonic approach. IFAC Proceed-
ings Volumes, 24(2):127–132, 1991.

[18] N. C. Audsley, A. Burns, M. M. Richardson, K. Tindell, and A. J.
Wellings. Applying new scheduling theory to static priority pre-emptive
scheduling. Software Engineering Journal, 8:284–292, 1993.

[19] S. D. Balkin and J. K. Ord. Automatic Neural Network modeling for
univariate time series. International Journal of Forecasting, 16(4):509–
515, 2000.

[20] C. Ballabriga, J. Forget, and G. Lipari. Context-sensitive parametric
wcet analysis. In WCET, 2015.

154

REFERENCES

[21] S. K. Baruah, A. Burns, and R. I. Davis. Response-time analysis for
mixed criticality systems. 2011 IEEE 32nd Real-Time Systems Sympo-
sium, pages 34–43, 2011.

[22] G. Beccari, S. Caselli, M. Reggiani, and F. Zanichelli. Rate modulation
of soft real-time tasks in autonomous robot control systems. In Real-
Time Systems, 1999. Proceedings of the 11th Euromicro Conference on,
pages 21–28. IEEE, 1999.

[23] S. Bennett. A brief history of automatic control. IEEE Control Systems
Magazine, 16(3):17–25, 1996.

[24] G. Bernat, A. Colin, and S. Petters. pwcet: A tool for probabilistic
worst-case execution time analysis of real-time systems. REPORT-
UNIVERSITY OF YORK DEPARTMENT OF COMPUTER SCI-
ENCE YCS, 2003.

[25] G. Bernat, A. Colin, and S. M. Petters. Wcet analysis of probabilistic
hard real-time systems. In Real-Time Systems Symposium, 2002. RTSS
2002. 23rd IEEE, pages 279–288. IEEE, 2002.

[26] D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena
Scientific, 2008.

[27] E. Bini and G. C. Buttazzo. Measuring the performance of schedulability
tests. Real-Time Systems, 30(1-2):129–154, 2005.

[28] C. M. Bishop. Pattern Recognition and Machine Learning. Springer,
2006.

[29] G. E. Box and G. M. Jenkins. Time series analysis: Forecasting and
control. In Holden-Day series in time series analysis. Holden-Day, 1976.

[30] A. Burns and S. Baruah. Sustainability in real-time scheduling. Journal
of Computing Science and Engineering, 2(1):74–97, 2008.

[31] A. Burns, G. Bernat, and I. Broster. A probabilistic framework for
schedulability analysis. In Embedded Software, pages 1–15. Springer,
2003.

[32] A. Burns and R. Davis. Mixed criticality systems - a review. Department
of Computer Science, University of York, Technical Report, pages 1–69,
2013.

155

[33] A. Burns and S. Edgar. Predicting computation time for advanced pro-
cessor architectures. In Real-Time Systems, 2000. Euromicro RTS 2000.
12th Euromicro Conference on, pages 89–96. IEEE, 2000.

[34] A. Burns, D. Prasad, A. Bondavalli, F. Di Giandomenico, K. Ramam-
ritham, J. Stankovic, and L. Strigini. The meaning and role of value in
scheduling flexible real-time systems. Journal of Systems Architecture,
46(4):305–325, 2000.

[35] A. Burns and A. J. Wellings. Real-time systems and programming lan-
guages: Ada 95, real-time Java, and real-time POSIX, pages 365–420.
Pearson Education, 2001.

[36] J. V. Busquets-Mataix, J. J. Serrano, R. Ors, P. Gil, and A. Wellings.
Using harmonic task-sets to increase the schedulable utilization of cache-
based preemptive real-time systems. In rtcsa, page 195. IEEE, 1996.

[37] G. Buttazzo and L. Abeni. Adaptive workload management through
elastic scheduling. Real-Time Systems, 23(1-2):7–24, 2002.

[38] G. Buttazzo and L. Abeni. Smooth rate adaptation through impedance
control. In null, page 3. IEEE, 2002.

[39] G. Buttazzo, M. Spuri, and F. Sensini. Value vs. deadline scheduling in
overload conditions. In Real-Time Systems Symposium, 1995. Proceed-
ings., 16th IEEE, pages 90–99. IEEE, 1995.

[40] G. C. Buttazzo. Hard real-time computing systems: predictable schedul-
ing algorithms and applications, pages 233–279. Springe, 2005.

[41] G. C. Buttazzo, G. Lipari, and L. Abeni. Elastic task model for adaptive
rate control. In Real-Time Systems Symposium, 1998. Proceedings., The
19th IEEE, pages 286–295. IEEE, 1998.

[42] G. C. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni. Elastic scheduling
for flexible workload management. Computers, IEEE Transactions on,
51(3):289–302, 2002.

[43] S. Bygde, A. Ermedahl, and B. Lisper. An efficient algorithm for para-
metric wcet calculation. 2009 15th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications, pages
13–21, 2009.

156

REFERENCES

[44] A. Cervin. Improved scheduling of control tasks. In ECRTS, 1999.

[45] A. Cervin. Improved scheduling of control tasks. In ECRTS, 1999.

[46] A. Cervin, J. Eker, B. Bernhardsson, and K.-E. Årzén. Feedback-
feedforward scheduling of control tasks. Real-Time Systems, 23(1-2):25–
53, 2002.

[47] A. Cervin, D. Henriksson, B. Lincoln, and K.-E. Årzén. Jitterbug and
truetime: Analysis tools for real-time control systems. In Proceedings of
the 2nd Workshop on Real-Time Tools. Copenhagen, Denmark, 2002.

[48] A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and K.-E. Arzen. How
does control timing affect performance? analysis and simulation of tim-
ing using jitterbug and truetime. IEEE control systems, 23(3):16–30,
2003.

[49] A. Cervin, B. Lincoln, J. Eker, K.-E. Arzén, and G. Buttazzo. The jitter
margin and its application in the design of real-time control systems.
In Proceedings of the 10th International Conference on Real-Time and
Embedded Computing Systems and Applications, pages 1–9. Gothenburg,
Sweden, 2004.

[50] S. Chakravarthi, A. Krishnan, V. Reddy, C. Machala, and S. Krishnan.
A comprehensive framework for predictive modeling of negative bias
temperature instability. In Reliability Physics Symposium Proceedings,
2004. 42nd Annual. 2004 IEEE International, pages 273–282. IEEE,
2004.

[51] T. Chantem, X. S. Hu, and M. D. Lemmon. Generalized elastic schedul-
ing for real-time tasks. Computers, IEEE Transactions on, 58(4):480–
495, 2009.

[52] T. Chantem, X. Wang, M. D. Lemmon, and X. S. Hu. Period and
deadline selection for schedulability in real-time systems. In Real-Time
Systems, 2008. ECRTS’08. Euromicro Conference on, pages 168–177.
IEEE, 2008.

[53] B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee, J. Ander-
sson, B. Becker, N. Bencomo, Y. Brun, B. Cukic, G. D. M. Serugendo,
S. Dustdar, A. Finkelstein, C. Gacek, K. Geihs, V. Grassi, G. Karsai,

157

H. M. Kienle, J. Kramer, M. Litoiu, S. Malek, R. Mirandola, H. A.
Müller, S. Park, M. Shaw, M. Tichy, M. Tivoli, D. Weyns, and J. Whit-
tle. Software engineering for self-adaptive systems: A research roadmap.
In Software Engineering for Self-Adaptive Systems, 2009.

[54] V. Cherkassky and Y. Ma. Practical selection of SVM parameters and
noise estimation for SVM regression. Neural Networks, 17(1):113–126,
2004.

[55] J. S. Cho, M.-H. Park, and P. C. Phillips. Practical kolmogorov–smirnov
testing by minimum distance applied to measure top income shares in
korea. Journal of Business & Economic Statistics, pages 1–15, 2017.

[56] J. B. Dabney and T. L. Harman. Mastering simulink. Pearson, 2004.

[57] X. Dai. Qualifying dissertation: The role of flexible models and feedback
in real-time scheduling. University of York, 2015.

[58] R. Davis and A. Wellings. Dual priority scheduling. In RTSS, 1995.

[59] R. DeCarlo, M. S. Branicky, S. Pettersson, B. Lennartson, et al. Perspec-
tives and results on the stability and stabilizability of hybrid systems.
Proceedings of the IEEE, 88(7):1069–1082, 2000.

[60] J. L. Díaz, D. F. García, K. Kim, C.-G. Lee, L. L. Bello, J. M. López,
S. L. Min, and O. Mirabella. Stochastic analysis of periodic real-time
systems. In Real-Time Systems Symposium, 2002. RTSS 2002. 23rd
IEEE, pages 289–300. IEEE, 2002.

[61] R. C. Dorf and R. H. Bishop. Modern Control Systems. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 9th edition, 2000.

[62] R. C. Dorf and R. H. Bishop. Modern control systems. Pearson, 2011.

[63] P. Dziurzanski, H. A. Ghazzawi, and L. S. Indrusiak. Feedback-
based admission control for task allocation. In Reconfigurable and
Communication-Centric Systems-on-Chip (ReCoSoC), 2014 9th Inter-
national Symposium on, pages 1–5. IEEE, 2014.

[64] K. Ecker, F. Drews, and J. Lichtenberg. QoS-based management of mul-
tiple shared resource in dynamic real-time systems. In Parallel and Dis-
tributed Processing Symposium, 2006. IPDPS 2006. 20th International,
pages 6–pp. IEEE, 2006.

158

REFERENCES

[65] S. Edgar and A. Burns. Statistical analysis of wcet for scheduling. In
Real-Time Systems Symposium, 2001.(RTSS 2001). Proceedings. 22nd
IEEE, pages 215–224. IEEE, 2001.

[66] J. Eker, P. Hagander, and K.-E. Årzén. A feedback scheduler for real-
time controller tasks. In In IFAC Control Engineering Pratice, 2000.

[67] S. Esterby. Trend analysis methods for environmental data. Environ-
metrics, 4(4):459–481, 1993.

[68] R. A. Fisher and L. H. C. Tippett. Limiting forms of the frequency
distribution of the largest or smallest member of a sample. In Mathe-
matical Proceedings of the Cambridge Philosophical Society, volume 24,
pages 180–190. Cambridge Univerisity Press, 1928.

[69] C. Frei and C. Schär. Detection probability of trends in rare events: The-
ory and application to heavy precipitation in the Alpine region. Journal
of Climate, 14(7):1568–1584, 2001.

[70] M. M. B. Gaid, A. Cela, Y. Hamam, and C. Ionete. Optimal scheduling
of control tasks with state feedback resource allocation. In American
Control Conference, 2006, pages 6–pp. IEEE, 2006.

[71] M. K. Gardner and J. W. Liu. Analyzing stochastic fixed-priority real-
time systems. In Tools and Algorithms for the Construction and Analysis
of Systems, pages 44–58. Springer, 1999.

[72] R. Gerber and S. Hong. Slicing real-time programs for enhanced schedu-
lability. ACM Trans. Program. Lang. Syst., 19:525–555, 1997.

[73] R. Gerber and S. Hong. Slicing real-time programs for enhanced schedu-
lability. ACM Trans. Program. Lang. Syst., 19:525–555, 1997.

[74] H. A. Ghazzawi. A control-theoretic approach for scheduling soft real-
time tasks with dependencies. University of York Technical Report, 2014.

[75] M. Grottke, R. Matias, and K. S. Trivedi. The fundamentals of soft-
ware aging. In Software Reliability Engineering Workshops, 2008. ISSRE
Wksp 2008. IEEE International Conference on, pages 1–6. Ieee, 2008.

[76] M. Hamdaoui and P. Ramanathan. A dynamic priority assignment tech-
nique for streams with (m, k)-firm deadlines. IEEE transactions on
Computers, 44(12):1443–1451, 1995.

159

[77] M. G. Harbour. Real-time posix: an overview. In VVConex 93 Interna-
tional Conference, Moscu. Citeseer, 1993.

[78] M. G. Harbour, M. A. Rivas, J. G. García, and J. P. Gutiérrez. Im-
plementing and using execution time clocks in ada hard real-time appli-
cations. In International Conference on Reliable Software Technologies,
pages 90–101. Springer, 1998.

[79] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury. Feedback control
of computing systems. John Wiley & Sons, 2004.

[80] A. Hess, H. Iyer, and W. Malm. Linear trend analysis: a comparison of
methods. Atmospheric Environment, 35(30):5211–5222, 2001.

[81] T. Hill, M. O’Connor, and W. Remus. Neural Network models for time
series forecasts. Management Science, 42(7):1082–1092, 1996.

[82] B. Hu, K. Huang, G. Chen, L. Cheng, and A. Knoll. Online workload
monitoring with the feedback of actual execution time for real-time sys-
tems. In Proceedings of the Conference on Design, Automation & Test in
Europe, pages 764–769. European Design and Automation Association,
2017.

[83] D. Hull, W.-c. Feng, and J. W. Liu. Operating system support for
imprecise computation. Flexible Computation in Intelligent Systems:
Results, Issues, and Opportunities, 1996.

[84] IEEE Standards Project P1003.4b. Portable operating system interface
(posix)— part 1: Realtime system api extension. In Draft Standard
for Information Technology. The Institute of Electrical and Electronics
Engineers, 1993.

[85] J. O. Kephart and D. M. Chess. The vision of autonomic computing.
Computer, 36(1):41–50, 2003.

[86] F. Kerasiotis, A. Prayati, C. Antonopoulos, C. Koulamas, and G. Pa-
padopoulos. Battery lifetime prediction model for a wsn platform. In
Sensor Technologies and Applications (SENSORCOMM), 2010 Fourth
International Conference on, pages 525–530. IEEE, 2010.

160

REFERENCES

[87] K. E. Kunkel, K. Andsager, and D. R. Easterling. Long-term trends in
extreme precipitation events over the conterminous United States and
Canada. Journal of Climate, 12(8):2515–2527, 1999.

[88] E. A. Lee. Cyber physical systems: Design challenges. 2008 11th IEEE
International Symposium on Object and Component-Oriented Real-Time
Distributed Computing (ISORC), pages 363–369, 2008.

[89] J. P. Lehoczky. Real-time queueing theory. In Real-Time Systems Sym-
posium, 1996., 17th IEEE, pages 186–195. IEEE, 1996.

[90] B. Li and K. Nahrstedt. A control-based middleware framework for
quality-of-service adaptations. Selected Areas in Communications, IEEE
Journal on, 17(9):1632–1650, 1999.

[91] K.-J. Lin and S. Natarajan. Expressing and maintaining timing con-
straints in flex. In Real-Time Systems Symposium, 1988., Proceedings.,
pages 96–105. IEEE, 1988.

[92] B. Lincoln and A. Cervin. Jitterbug: A tool for analysis of real-time
control performance. In Decision and Control, 2002, Proceedings of the
41st IEEE Conference on, volume 2, pages 1319–1324. IEEE, 2002.

[93] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. Journal of the ACM (JACM),
20(1):46–61, 1973.

[94] J. W. Liu. Real-time systems. Prentice Hall, 2000.

[95] J. W. Liu, K.-J. Lin, W. K. Shih, A. C.-s. Yu, J.-Y. Chung, and W. Zhao.
Algorithms for scheduling imprecise computations. Springer, 1991.

[96] C. Lozoya, P. Martí, M. Velasco, and J. M. Fuertes. Control performance
evaluation of selected methods of feedback scheduling of real-time control
tasks. IFAC Proceedings Volumes, 41(2):10668–10673, 2008.

[97] C. Lu, Y. Lu, T. F. Abdelzaher, J. Stankovic, S. H. Son, et al. Feedback
control architecture and design methodology for service delay guarantees
in web servers. Parallel and Distributed Systems, IEEE Transactions on,
17(9):1014–1027, 2006.

161

[98] C. Lu, J. Stankovic, G. Tao, S. H. Son, et al. Design and evaluation of a
feedback control edf scheduling algorithm. In Real-Time Systems Sym-
posium, 1999. Proceedings. The 20th IEEE, pages 56–67. IEEE, 1999.

[99] C. Lu, J. A. Stankovic, S. H. Son, and G. Tao. Feedback control real-
time scheduling: Framework, modeling, and algorithms*. Real-Time
Systems, 23(1-2):85–126, 2002.

[100] C. Lu, X. Wang, and X. Koutsoukos. Feedback utilization control in
distributed real-time systems with end-to-end tasks. Parallel and Dis-
tributed Systems, IEEE Transactions on, 16(6):550–561, 2005.

[101] Z. Lu, J. Hein, M. Humphrey, M. Stan, J. Lach, and K. Skadron.
Control-theoretic dynamic frequency and voltage scaling for multime-
dia workloads. In Proceedings of the 2002 international conference on
Compilers, architecture, and synthesis for embedded systems, pages 156–
163. ACM, 2002.

[102] Y. Ma and L. S. Indrusiak. Hardware-accelerated analysis of real-time
networks-on-chip. Microprocessors and Microsystems, 53:81–91, 2017.

[103] P. Marti, C. Lin, S. A. Brandt, M. Velasco, and J. M. Fuertes. Optimal
state feedback based resource allocation for resource-constrained control
tasks. In Real-Time Systems Symposium, 2004. Proceedings. 25th IEEE
International, pages 161–172. IEEE, 2004.

[104] A. I. McLeod, K. W. Hipel, and B. A. Bodo. Trend analysis methodology
for water quality time series. Environmetrics, 2(2):169–200, 1991.

[105] J. Miranda and M. G. Harbour. A proposal to integrate the posix
execution-time clocks into ada 95. In International Conference on Reli-
able Software Technologies, pages 344–358. Springer, 2003.

[106] R. M. Murray. Optimization-based control. California Institute of Tech-
nology, CA, 2009.

[107] R. M. Murray, J. Hauser, A. Jadbabaie, M. B. Milam, N. Petit, W. B.
Dunbar, and R. Franz. Online control customization via optimization,
based control. Software-Enabled Control Inf. Technol. Dyn. Syst, page
149, 2003.

162

REFERENCES

[108] E. Nassor and G. Bres. Hard real-time sporadic task scheduling for fixed
priority schedulers. In Proceedings International Workshop on Respon-
sive Systems, pages 44–47, 1991.

[109] K. M. Obenland. The use of posix in real-time systems, assessing its
effectiveness and performance. The MITRE Corporation, 2000.

[110] P. Pedreiras, L. Almeida, and P. Gai. Ftt-ethernet: A platform to im-
plement the elastic task model over message streams. In Factory Com-
munication Systems, 2002. 4th IEEE International Workshop on, pages
225–232. IEEE, 2002.

[111] M. Qi and G. P. Zhang. Trend time–series modeling and forecasting with
Neural Networks. IEEE Transactions on Neural Networks, 19(5):808–
816, 2008.

[112] R. Rajkumar, I. Lee, L. Sha, and J. A. Stankovic. Cyber-physical sys-
tems: The next computing revolution. Design Automation Conference,
pages 731–736, 2010.

[113] P. Ramanathan. Graceful degradation in real-time control applications
using (m, k)-firm guarantee. Proceedings of IEEE 27th International
Symposium on Fault Tolerant Computing, pages 132–141, 1997.

[114] P. Ramanathan. Graceful degradation in real-time control applications
using (m, k)-firm guarantee. Proceedings of IEEE 27th International
Symposium on Fault Tolerant Computing, pages 132–141, 1997.

[115] G. C. Reinsel and G. C. Tiao. Impact of chlorofluoromethanes on strato-
spheric ozone: A statistical analysis of ozone data for trends. Journal of
the American Statistical Association, 82(397):20–30, 1987.

[116] M. Ryu and S. Hong. Toward automatic synthesis of schedulable real-
time controllers. Integrated Computer-Aided Engineering, 5(3):261–277,
1998.

[117] M. Salehie and L. Tahvildari. Self-adaptive software: Landscape and
research challenges. ACM transactions on autonomous and adaptive
systems (TAAS), 4(2):14, 2009.

163

[118] P. K. Sen. Estimates of the regression coefficient based on Kendall’s
tau. Journal of the American Statistical Association, 63(324):1379–1389,
1968.

[119] D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin. On task schedulability
in real-time control systems. In Real-Time Systems Symposium, 1996.,
17th IEEE, pages 13–21. IEEE, 1996.

[120] L. Sha, T. Abdelzaher, K.-E. Årzén, A. Cervin, T. Baker, A. Burns,
G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok. Real time
scheduling theory: A historical perspective. Real-time systems, 28(2-
3):101–155, 2004.

[121] H. Shang, J. Yan, M. Gebremichael, and S. M. Ayalew. Trend analysis
of extreme precipitation in the Northwestern Highlands of Ethiopia with
a case study of Debre Markos. Hydrology and Earth System Sciences,
15(6):1937–1944, 2011.

[122] K. G. Shin and C. L. Meissner. Adaptation and graceful degradation
of control system performance by task reallocation and period adjust-
ment. In Real-Time Systems, 1999. Proceedings of the 11th Euromicro
Conference on, pages 29–36. IEEE, 1999.

[123] D. Simon, A. Seuret, and O. Sename. On real-time feedback control
systems: requirements, achievements and perspectives. In International
Conference on Systems and Computer Science, 2012.

[124] K. A. Smith and M. I. Seltzer. File system aging - increasing the rele-
vance of file system benchmarks. In SIGMETRICS, 1997.

[125] R. L. Smith. Extreme value analysis of environmental time series: an
application to trend detection in ground-level ozone. Statistical Science,
pages 367–377, 1989.

[126] A. J. Smola and B. Schölkopf. A tutorial on Support Vector Regression.
Statistics and Computing, 14(3):199–222, 2004.

[127] J. Stankovic, T. He, T. Abdelzaher, M. Marley, G. Tao, S. Son, C. Lu,
et al. Feedback control scheduling in distributed real-time systems. In
Real-Time Systems Symposium, 2001.(RTSS 2001). Proceedings. 22nd
IEEE, pages 59–70. IEEE, 2001.

164

REFERENCES

[128] D. C. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu, and
J. Walpole. A feedback-driven proportion allocator for real-rate schedul-
ing. In OSDI, volume 99, pages 145–158, 1999.

[129] T.-S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C. Wu, and J. W.-
S. Liu. Probabilistic performance guarantee for real-time tasks with
varying computation times. In Real-Time Technology and Applications
Symposium, 1995. Proceedings, pages 164–173. IEEE, 1995.

[130] G. Tiao. Use of statistical methods in the analysis of environmental
data. The American Statistician, 37(4b):459–470, 1983.

[131] Y. Tipsuwan and M.-Y. Chow. Control methodologies in networked
control systems. In Control Engineering Practice, pages 1099 – 111,
2003.

[132] C. Tres, L. B. Beck, and E. Nett. Real-time tasks scheduling
with value control to predict timing faults during overload. In Ob-
ject and Component-Oriented Real-Time Distributed Computing, 2007.
ISORC’07. 10th IEEE International Symposium on, pages 354–358.
IEEE, 2007.

[133] H. Visser and J. Molenaar. Trend estimation and regression analysis in
climatological time series: an application of structural time series models
and the Kalman filter. Journal of Climate, 8(5):969–979, 1995.

[134] C. Whitnall, E. Oswald, and L. Mather. An exploration of the
kolmogorov-smirnov test as a competitor to mutual information analy-
sis. In International Conference on Smart Card Research and Advanced
Applications, pages 234–251. Springer, 2011.

[135] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, et al. The worst-
case execution-time problem: overview of methods and survey of tools.
ACM Transactions on Embedded Computing Systems (TECS), 7(3):36,
2008.

[136] W. H. Wolf. Cyber-physical systems. IEEE Computer, 42(3):88–89,
2009.

165

[137] Y. Xu, A. Cervin, and K.-E. Årzén. Harmonic scheduling and control
co-design. In Embedded and Real-Time Computing Systems and Appli-
cations (RTCSA), 2016 IEEE 22nd International Conference on, pages
182–187. IEEE, 2016.

[138] R. Yan, H. Sun, and Y. Qian. Energy-aware sensor node design with its
application in wireless sensor networks. IEEE transactions on instru-
mentation and measurement, 62(5):1183–1191, 2013.

[139] W. Yan. Toward automatic time-series forecasting using Neural Net-
works. IEEE Transactions on Neural Networks and Learning Systems,
23(7):1028–1039, 2012.

[140] K. Zeng, Y. Lu, H. Wan, and J. Shu. Efficient storage management for
aged file systems on persistent memory. In Proceedings of the Conference
on Design, Automation & Test in Europe, pages 1773–1778. European
Design and Automation Association, 2017.

[141] G. P. Zhang and M. Qi. Neural Network forecasting for seasonal
and trend time series. European Journal of Operational Research,
160(2):501–514, 2005.

[142] R. Zhang, C. Lu, T. F. Abdelzaher, J. Stankovic, et al. Controlware: A
middleware architecture for feedback control of software performance. In
Distributed Computing Systems, 2002. Proceedings. 22nd International
Conference on, pages 301–310. IEEE, 2002.

[143] X. Zhang, K. D. Harvey, W. Hogg, and T. R. Yuzyk. Trends in Canadian
streamflow. Water Resources Research, 37(4):987–998, 2001.

[144] X. Zhang, F. W. Zwiers, and G. Li. Monte Carlo experiments on the
detection of trends in extreme values. Journal of Climate, 17(10):1945–
1952, 2004.

[145] Y. Zhu and F. Mueller. Feedback edf scheduling exploiting dynamic volt-
age scaling. In Real-Time and Embedded Technology and Applications
Symposium, 2004. Proceedings. RTAS 2004. 10th IEEE, pages 84–93.
IEEE, 2004.

166

	Abstract
	List of Figures
	List of Tables
	Acknowledgements
	Declaration
	1 Introduction
	1.1 Scheduling Issues in Cyber-Physical Systems
	1.2 A Framework of Adaptive Scheduling Systems
	1.3 Thesis Proposition
	1.4 Thesis Organisation

	2 Flexible and Feedback Methods in Real-Time Scheduling
	2.1 Overview of Real-Time Scheduling
	2.2 Research Challenges and Trends in Real-Time Scheduling for CPS
	2.3 Flexible Scheduling Algorithms
	2.4 Feedback Scheduling
	2.5 Statistical and Probabilistic Methods in Scheduling
	2.6 Flexible Scheduling in Cyber-Physical Control Systems
	2.7 Summary

	3 Trend Analysis of Dynamic Worst-Case Execution Times
	3.1 The Dynamic Perspective of WCET
	3.2 Modelling of dWCET
	3.3 Execution Time Monitoring
	3.4 Trend Analysis
	3.5 A Survey of Trend Analysis Methods
	3.6 Methods for Comparison
	3.7 Compared Methods
	3.8 Incorporating Data Selection
	3.9 Evaluation
	3.10 Summary

	4 Period Adaptation of Real-Time Control Tasks
	4.1 Real-Time Digital Controller Implementation
	4.2 Method Overview
	4.3 Performance Prediction
	4.4 The Run-Time System
	4.5 Evaluation
	4.6 Analysis and Discussion
	4.7 Summary

	5 Dual-Period Task Model
	5.1 Task Models for Real-Time Control
	5.2 Proposed Task Model
	5.3 Experiments and Evaluations of Dual Period
	5.4 Summary

	6 Conclusions and Future Work
	6.1 Contributions
	6.2 Future Research

	Abbreviations
	Bibliography

