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Abstract

Mathematical optimization is a common tool for numerous real-world optimization problems.

However, in some application domains there is a scope for improvement of currently used

optimization techniques. For example, this is typically the case for applications that contain

features which are difficult to model, and applications of interdisciplinary nature where no

strong optimization knowledge is available. The goal of this thesis is to demonstrate how to

overcome these challenges by considering five problems from two application domains.

The first domain that we address is scheduling in Cloud computing systems, in which we

investigate three selected problems. First, we study scheduling problems where jobs are required

to start immediately when they are submitted to the system. This requirement is ubiquitous

in Cloud computing but has not yet been addressed in mathematical scheduling. Our main

contributions are (a) providing the formal model, (b) the development of exact and efficient

solution algorithms, and (c) proofs of correctness of the algorithms. Second, we investigate

the problem of energy-aware scheduling in Cloud data centers. The objective is to assign

computing tasks to machines such that the energy required to operate the data center, i.e.,

the energy required to operate computing devices plus the energy required to cool computing

devices, is minimized. Our main contributions are (a) the mathematical model, and (b) the

development of efficient heuristics. Third, we address the problem of evaluating scheduling

algorithms in a realistic environment. To this end we develop an approach that supports

mathematicians to evaluate scheduling algorithms through simulation with realistic instances.

Our main contributions are the development of (a) a formal model, and (b) efficient heuristics.

The second application domain considered is powerline routing. We are given two points

on a geographic area and respective terrain characteristics. The objective is to find a “good”

route (which depends on the terrain), connecting both points along which a powerline should

be built. Within this application domain, we study two selected problems. First, we study a

geometric shortest path problem, an abstract and simplified version of the powerline routing

problem. We introduce the concept of the k-neighborhood and contribute various analytical

results. Second, we investigate the actual powerline routing problem. To this end, we develop

algorithms that are built upon the theoretical insights obtained in the previous study. Our

main contributions are (a) the development of exact algorithms and efficient heuristics, and (b)

a comprehensive evaluation through two real-world case studies.

Some parts of the research presented in this thesis have been published in refereed publica-

tions [119], [110], [109].
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Chapter 1

Introduction

Applications of mathematical optimization techniques can be found everywhere. For example,

they are used to plan arrival and departure times of trains, to create university timetables, or to

manage quay cranes in order to move containers between a cargo ship and the shore. However,

in practice, the full potential of mathematical optimization is often not fully exploited. In 2015,

the BBC published an article [75] that the London Gateway actively seeks Tetris gamers to

control quay cranes and stuck containers in appropriate positions due to the similarity between

the game of Tetris and the task of tacking containers in an efficient way. Assigning Tetris gamers

to this tasks turned out to work in practice. However, at least in theory, such a task can be

solved more efficiently through mathematical optimization techniques. In fact, mathematicians

offer tools for numerous applications. However, as for the example above, these tools are often

not fully used. Two main reasons for this are stated in the following:

(i) Hard-to-model features. Real-world applications are typically of much higher complexity

than analytical models. As a consequence, extensions and modifications of analytical

models are often necessary. Moreover, for some application domains it is even a big

challenge on its own to formulate a mathematically well-defined model.

(ii) Interdisciplinary nature. Many applications are of interdisciplinary nature and therefore

require solution techniques from various domains including mathematical optimization.

The main challenge is typically to find solutions for sub-problems stemming from different

domains such that these solutions work together as a whole. However, optimization

solutions for sub-components can often be improved significantly. One main reason for

this is that in interdisciplinary applications, a strong knowledge in optimization is not

always available, and thus optimization is often done based on intuition and common

sense.

In this thesis, we contribute toward bridging this gap. To this end, we study two real-

world application domains based on which we demonstrate how challenges (i) and (ii) can be

1
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overcome.

The first application domain that we address is scheduling in the context of Cloud com-

puting systems. Cloud computing has experienced a tremendous growth over the last decade

and is now a key component of numerous Cloud services that people use in their everyday

life such as online banking, online shopping, social media, or streaming services. Scheduling

is a key component of Cloud computing as it directly impacts the quality of Cloud services.

Scheduling theory is a well-established discipline, with more than 60 years of study. However,

traditional scheduling models are not directly applicable to scheduling problems in the context

of Cloud computing. In fact, there is no straight-forward way to modify and/or extend existing

mathematical models in order to make them applicable to a Cloud computing environment.

In this thesis, we contribute toward linking both disciplines by addressing three main issues.

First, we introduce a new scheduling model in which the processing of jobs is required to start

immediately upon arrival. This so-called immediate-start constraint accounts for the fact that

Cloud services are required to be delivered in an on-demand manner. Second, we investigate a

scheduling model where the objective is to minimize the total energy consumption required to

operate a data center, i.e., a facility housing up to several hundreds of thousands of computers,

that perform the processing required for delivering Cloud services. The energy consumption

of a data center is a composition of the energy required to operate computing devices and the

energy required to cool computing devices in order to keep them at a reliable temperature.

Third, we address the problem of evaluating mathematical scheduling algorithms through real-

istic simulation instances. To set up a simulation that generates instances that mimic real-world

behavior, domain-specific Cloud computing knowledge is required which mathematicians often

do not have. In order to support scheduling researchers from the mathematical community,

we develop Resource Boxing, a tool that automatically transforms historical service execution-

patterns into data of simpler structure but with similar properties. This data can then directly

be used by scheduling researchers to create simulation instances to evaluate scheduling algo-

rithms. All in all, Cloud scheduling is an example for both challenges (i) and (ii). Additionally,

there are also other challenges involved such as a high level of uncertainty, the dynamic nature

of the problem (i.e., the requirement for fast decision-making), or the relevancy of multiple

competing objective functions.

The second application domain that we address is powerline routing. Given two points on

a geographic area, the task consists in connecting both points by a “good” route along which

a powerline should be built. This application is of interdisciplinary nature as it requires do-

main specific knowledge in geographic information systems (GIS), electrical engineering, and

mathematical optimization. The key drawbacks of the approaches discussed in the literature

are related to simplifications of the underlying model. As a consequence, also powerline routing

raises challenges of types (i) and (ii). We improve the optimization component by investigating

two research components. First, we obtain a deeper understanding of the underlying math-

ematical problem: finding a shortest path in a regular grid. To this end, we introduce the
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concept of a k-neighborhood for grid graphs and perform an approximation analysis. Second,

we present a well-defined powerline routing model and develop an algorithmic approach based

on the theoretical insights obtained in the first step. Our algorithmic approach yields a sig-

nificant improvement of the solution quality while keeping the running time at an acceptable

level.

The rest of this chapter is organized as follows. Section 1.1 gives an introduction to math-

ematical optimization techniques that are relevant for this thesis. Then we describe the appli-

cation domains of scheduling in Cloud computing systems (Section 1.2) and powerline routing

(Section 1.3). Conclusions and an outline of the thesis are presented in Section 1.4.

1.1 Mathematical definitions and notation

In this section, we introduce the mathematical concepts that are relevant for this thesis. We

start with an introduction to different classes of optimization problems. Then, we introduce

some scheduling terminology and discuss relevant problems from algorithmic graph theory.

1.1.1 Mathematical optimization

In a very general form, a mathematical optimization problem can be formulated as

minimize f(x)

subject to x ∈ X .
(1.1)

Here, x ∈ X is called a feasible solution to the optimization problem and X is the set of feasible

solutions. Function f : X → R is the objective function of the optimization problem and f(x),

for x ∈ X , is called the objective function value of x.

There exist many important sub-classes of optimization problems which are all special cases

of (1.1). One of them is the class of linear optimization problems. The standard form of linear

optimization problems is the following:

maximize cTx

subject to Ax ≤ b,

x ≥ 0,

(1.2)

with linear constraints defined by matrix A ∈ Rm×n and vector b ∈ Rm, and with a linear

objective function defined by vector c ∈ Rn. Vector x ∈ Rn is the vector of decision variables.

Problem (1.2) is also referred to as a linear program (LP).

The version of problem (1.2), where all decision variables are required to take only integer

values is referred to as integer linear program (ILP). This class of optimization is of high

relevancy for many practical applications, as often only integer solutions are meaningful. The
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standard form of an ILP is given as follows:

maximize cTx

subject to Ax ≤ b,

x ≥ 0,

x ∈ Zn.

(1.3)

If only some, but not all, decision variables are required to be integer, the optimization

problem is referred to as a mixed integer linear program (MILP).

A linear program can be solved in polynomial time as first shown by Leonid Khachiyan

in 1979. He achieved this by developing the ellipsoid algorithm, however, the algorithm has

been shown to be impractical due to its high-degree polynomial running time. Over the years,

there have been developed several alternative algorithms that perform well in practice. The

most prominent are the simplex algorithm (1947) and the interior point method (1984). The

interior point method has polynomial running time. The simplex algorithm is typically very

fast, although it has exponential running time in the worst case.

Integer linear programs are known to be NP-hard [45]. However, smaller instances can still

be solved efficiently using techniques such as branch and bound, cutting plane algorithms, or

branch and cut [95]. Over the years there have been developed highly efficient optimization

software for solving ILPs and MILPs that can tackle even sizeable instances.

Many problems that arise in practical applications cannot be modeled with sufficient accu-

racy using only linear restrictions and linear objective functions. As a consequence, numerous

types of non-linear optimization problems have been intensively studied over the years. An

important class of non-linear optimization is convex optimization. In the following we give

a brief introduction to aspects of convex optimization that are relevant for this thesis. Our

introduction is adapted from textbook [31].

A convex optimization problem is typically formulated as

minimize f0(x)

subject to fi(x) ≤ 0, 1 ≤ i ≤ m,

x ≥ 0,

(1.4)

where functions f0, . . . , fm : Rn → R are convex, i.e., each function fi, 0 ≤ i ≤ m, satisfies

fi(λ1x1 + λ2x2) ≤ λ1fi(x1) + λ2fi(x2)

for all x1, x2 ∈ Rn, and λ1, λ2 ∈ R with λ1 + λ2 = 1 and λ1, λ2 ≥ 0. There exist very

efficient methods for solving convex problems, in particular for subclasses such as semidefinite

programming or second-order cone programming.

In the following we outline basic concepts of Lagrangian duality. To this end, it is useful to
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consider a modified version of (1.4) that is formulated as

minimize f0(x)

subject to fi(x) ≤ 0, 1 ≤ i ≤ m

hj(x) = 0, 1 ≤ j ≤ p

x ≥ 0,

(1.5)

where functions f0, . . . , fm : Rn → R and h1, . . . , hp : Rn → R are convex. We assume that the

domain

X = {x ∈ Rn | fi(x) ≤ 0, 1 ≤ i ≤ m, hj(x) = 0, 1 ≤ j ≤ p, x ≥ 0}

is non-empty. Function f0 is convex, thus continuous, and X is closed. Therefore, there exists

an optimal solution to (1.5) and we denote the optimal objective function value by P ∗.

The Lagrangian L is a function associated with (1.5) and defined by

L(x, λ, ν) := f0(x) +
m∑
i=1

λifi(x) +

p∑
j=1

νjhj(x),

where λi and νj are the Lagrange multipliers for constraints fi(x) ≤ 0 and hj(x) = 0, respec-

tively. The Lagrangian dual function is defined by

g(λ, ν) := inf
x∈X
L(x, λ, ν) = inf

x∈X

f0(x) +

m∑
i=1

λifi(x) +

p∑
j=1

νjhj(x)

,
where λ ∈ Rm≥0 and ν ∈ Rp. This dual function yields a lower bound on the optimal objective

function value P ∗ of the primal problem (1.4), i.e., for all λ ∈ Rm≥0 and ν ∈ Rp the following

holds:

g(λ, ν) ≤ P ∗.

Naturally, one is interested in finding a lower bound that is as close to P ∗ as possible. This

motivates the study of the dual problem:

maximize g(λ, ν)

subject to λ ∈ Rm≥0, ν ∈ Rp.
(1.6)

Problem (1.6) is a convex optimization problem, since its constraints are convex and the objec-

tive function to be maximized is concave and thus equivalent to the convex function −g(λ, ν).

If an optimal solution to problem (1.6) exists, we denote its objective function value by D∗. If

the problem (1.6) is unbounded, we set D∗ =∞.

Theorem 1.1 (Weak duality). Let P ∗ and D∗ denote the optimal objective function values for
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problems (1.5) and (1.6), respectively. Then, the inequality

D∗ ≤ P ∗ (1.7)

holds.

Theorem 1.1 is called weak duality. Note that this inequality also holds if P ∗ or D∗ are

infinite: if P ∗ = −∞, then we also have D∗ = −∞; if D∗ = ∞, then we also have P ∗ = ∞.

The difference P ∗−D∗ is called the duality gap. Note that Theorem 1.1 implies that the duality

gap is always non-negative. If D∗ = P ∗, then the duality gap is zero and we say that strong

duality holds. For a general convex optimization problem, the duality gap does not have to be

zero. However, a duality gap of zero can be guaranteed if additional conditions hold.

Theorem 1.2 (Karush-Kuhn-Tucker conditions for convex optimization problems). Let

f0, . . . , fm : Rn → R be convex differentiable functions. Further let h1, . . . , hp : Rn → R
be affine functions, i.e., hj(x) = ajx + bj, where aj , bj ∈ R for 1 ≤ j ≤ p. If there exist

x̃ ∈ Rn, λ̃ ∈ Rm and ν̃ ∈ Rp that satisfy the Karush-Kuhn-Tucker (KKT) conditions given by

fi(x̃) ≤ 0, 1 ≤ i ≤ m,
hj(x̃) = 0, 1 ≤ j ≤ p,

λ̃i ≥ 0, 1 ≤ i ≤ m,
λ̃ifi(x̃) = 0, 1 ≤ i ≤ m,

∇f0(x̃) +
∑m
i=1 λ̃i∇fi(x̃) +

∑p
j=1 ν̃j∇hj(x̃) = 0,

(1.8)

then x̃ and (λ̃, ν̃) are primal and dual optimal, and the duality gap is zero.

1.1.2 Scheduling theory

Scheduling is a decision-making process that is concerned with the assignment of jobs to ma-

chines and their sequencing. The objective is to optimize a given objective function while

satisfying a set of problem-specific restrictions. Scheduling research was initialized by the sem-

inal papers by Johnson [68] in 1954 and Bellman [21] in 1956. The first main applications of

scheduling theory came from the manufacturing industry. For example, Johnson [68] addressed

the problem of assigning multiple operations (jobs) to two machines with given processing times.

Each job has to be processed first on machine M1 and afterwards on machine M2. Johnson

suggested a simple rule that minimizes the makespan, i.e., the maximum completion time of all

jobs.

Over the years scheduling theory has been studied extensively and has been applied in

numerous applications including management, production, services and computer systems. In

this section, we introduce basic scheduling concepts that are relevant for this thesis; see, e.g.,

textbook [34] for an introduction to scheduling theory.
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Consider a set of n jobs j, 1 ≤ j ≤ n, that have to be processed on m machines Mi,

1 ≤ i ≤ m. For each job j, we are given its processing time pj which denotes the time required

to complete job j. The release time rj denotes the time at which job j becomes available for

processing. A cost function fj(t) is associated with job j that measures the cost of completing

job j at time t. Job j may be associated with a due date dj and/or a deadline d̄j . Due dates

can be considered as soft constraints, i.e., a job is allowed to miss its due date at the cost of a

penalty in the cost function fj . On the other side, deadlines are hard constraints, i.e., each jobs

has to meet its deadline. We may consider a weight wj indicating the relative importance of

job j. If preemption of jobs is allowed, the processing of a job may be interrupted and resumed

later, probably on a different machine. We refer to the case in which the job is resumed on a

different machine as migration.

A schedule consists of an assignment of the jobs to the machines and sequences of jobs on

each machine. We call a schedule feasible, if no two jobs assigned to the same machine overlap,

and, if a set of problem-specific constraints is satisfied. Finally, a schedule is called optimal, if

the schedule minimizes a given objective function. In classical scheduling theory, the objective

function is typically a function of the individual cost functions fj of each job. Popular choices

for fj include the completion time Cj , the lateness Lj := Cj − dj , the flow time Cj − rj , or the

tardiness Tj := max{0, Cj − dj} of job j. In many scheduling problems, the objective function

is then of the form ∑
fj :=

n∑
j=1

fj(Cj)

or

fmax := max{fj(Cj) | 1 ≤ j ≤ n}.

Additionally, linear combinations and weighted versions of these functions are also considered.

1.1.3 Algorithmic graph theory

In this section, we introduce basic concepts for a shortest path problem and a minimum cost

flow problem that are needed later in the thesis.

An undirected graph is a tuple G = (V,E), where V denotes the set of vertices of the

graph and E ⊆ {{v1, v2} | v1, v2 ∈ V, v1 6= v2} denotes the set of undirected edges of the

graph. An undirected edge {v1, v2} ∈ E connects vertices v1 ∈ V and v2 ∈ V . There is

also the possibility that edges have a direction: a directed graph is a tuple G = (V,A), where

A ⊆ {(v1, v2) | v1, v2 ∈ V, v1 6= v2} denotes the set of directed edges. A directed edge is also

called an arc. An arc (v1, v2) ∈ A has an orientation with v1 being the start vertex and v2

being the end vertex. In this thesis, we only consider finite graphs, i.e., graphs with |V | < ∞
and thus |E|, |A| <∞.
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Shortest path problems

Consider an undirected graph G = (V,E) and assign a positive weight c(vi, vj) to each edge

{vi, vj} ∈ E. We are given a source vertex vs ∈ V and a destination vertex vt ∈ V . An s − t
path P is a non-empty sub-graph P = (VP , EP ) of G of the form

VP = {v0, v1, . . . , vp−1, vp} and EP = {{v0, v1}, {v0, v1}, . . . , {vp−1, vp}},

where vertices v0, . . . , vp are pairwise distinct, and where v0 = vs and vp = vt. The length ‖P‖
of path P is defined as

‖P‖ :=

p−1∑
i=0

c(vi, vi+1). (1.9)

The objective is to find a shortest s− t path, i.e., a path for which the length as defined in (1.9)

is minimum. This problem is known as single-pair shortest path problem.

The probably most well-known algorithm to solve a shortest path problem with positive edge

weights is Dijkstra’s algorithm. The algorithm can be implemented to run in O(|E|+|V | log |V |)
using a priority-queue implemented by a Fibonacci heap [50]. One limitation of Dijkstra’s

algorithm is its relatively high time complexity resulting in a large computation time, especially

in case of dense graphs. As a consequence, (heuristic) alternatives may sometimes be preferred

in applications.

One popular alternative to Dijkstra’s algorithm is the A∗-algorithm; see [80]. Both the A∗-

algorithm and Dijkstra’s algorithm are forward-search algorithms and therefore their underlying

structure is the same. If they are implemented using a priority queue, they only differ by the

function that is used to sort the priority queue. In general, this function f is of the form

f(v) = g(v) + h(v) for v ∈ V,

where g(v) is the length of a path from vs to v, and where h(v) is an estimation of the length

of a shortest path from v to vt. In Dijkstra’s algorithm, we have h(v) = 0 for all v ∈ V and

thus vertices in the priority queue Q are sorted with respect to g, i.e., in each iteration, the

next vertex to be visited minimizes g(v′) among all unvisited vertices v′.

The A∗-algorithm extends Dijkstra’s algorithm and aims at reducing the number of itera-

tions. To this end, in order to sort the priority queue Q, the algorithm not only considers g(v),

but also incorporates h(v), i.e., an estimation of the length of a shortest path from v to vt.

However, in the worst case, the A∗-algorithm has to iterate over all vertices to find destination

vertex vt. As a consequence, the A∗-algorithm and Dijkstra’s algorithm have the same worst-

case time complexity. If h(v) is smaller or equal to the length of a shortest path from v to vt

for all v ∈ V , the A∗-algorithm is called admissible and guaranteed to find a shortest path.
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Minimum cost flow problem

Consider a directed graph G = (V,A) and assign non-negative costs c(v, v′) and positive capac-

ities µ(v, v′) to each arc (v, v′) ∈ A. Further, associate each vertex v ∈ V with a real number

b(v) such that
∑
v∈V b(v) = 0. A feasible flow is a function x : A→ R that satisfies two types

of constraints. First, the flow on an arc must not exceed its capacity:

0 ≤ x(v, v′) ≤ µ(v, v′), (v, v′) ∈ A (capacity constraints).

Second, the flow that leaves v minus the flow that enters v must be equal to b(v):∑
v′∈V :(v,v′)∈A

x(v, v′)−
∑

v′∈V :(v′,v)∈A

x(v′, v) = b(v), v ∈ V (flow capacity constraints).

The cost c(x) of flow x is defined as

c(x) :=
∑

(v,v′)∈A

c(v, v′)x(v, v′).

The task is to find a feasible flow of minimum cost. There exist many algorithms for the

minimum cost flow problem and for its special cases. Here we state the successive shortest path

algorithm as it is used in Section 2.5 of the thesis. The algorithm assumes integral capacities

µ(v, v′) for (v, v′) ∈ A, and integer supply-numbers b(v) for vertices v ∈ V . In a nutshell, the

algorithm starts with an empty flow that satisfies the capacity constraints but violates the flow

capacity constraints. In each iteration, the algorithm selects a vertex s with excess supply and a

vertex t with unfulfilled demand, and sends the maximum amount of flow along a shortest path

from s to t in a residual network such that the capacity constraints remain satisfied. When

all flow capacity constraints are satisfied, a minimum cost flow is found and the algorithm

terminates.

Theorem 1.3 ([2]). For integral capacities and supplies, the successive shortest path algorithm

solves the minimum cost flow problem optimally. It can be implemented with a time complexity

of O(BS(n, |A|, nC)), where B = 1
2

∑
v∈V |b(v)| is an upper bound on the number of iterations

and S(n, |A|, nC) is the number of operations required to determine a shortest path in a graph

with n vertices, |A| the number of arcs, and where arc weights are non-negative and bounded by

C.

In Section 2.5, we consider a special network where b(v) is equal to an integer for the source

and the destination vertex, and where b(v) = 0 for all other vertices. The shortest path problem

can be solved in O(|A| + |V | log |V |) time. As a consequence, for our purposes, the successive

shortest path algorithm can be implemented to run in strongly polynomial time.
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term explanation example

computational
resource

component of limited availability
within computer system

CPU, memory,
network

server/machine a processing unit
a computer

(typically in a data center)

Cloud computing
service

service made available to
users on-demand via the Internet

through the servers of
a Cloud computing provider

Netflix
Dropbox

Amazon EC2
Google Docs

Cloud
infrastructure

hardware/software components
needed to support the

computing requirements of a
Cloud computing model

servers, storage, a network,
virtualization software

virtual machine (VM)

an emulation of a physical
computer system providing the
same or similar functionality;

usually multiple VMs per server

job
a unit of work or

execution; the components of
a job are called tasks

ambiguous term: can be, e.g.,
a unit of a process, an entire
process, or a set of processes

task
a basic unit of work that

needs to be executed on a server;
usually a part of a job

ambiguous term: can be, e.g.,
a process, or a unit

within a process

Table 1.1: Cloud computing terminology

1.2 Cloud computing systems

In this section, we give an introduction to Cloud computing. This is not an easy task, as

a reasonable amount of technical terminology is required to present even the basics of this

discipline accurately. An attempt has been made to keep the amount of technical terminology

at an appropriate level. See Table 1.1 for the most important terms.

1.2.1 What is Cloud computing?

Cloud computing is a computing paradigm that enables users access to computational resources

such as networks, servers, storage, applications, or services over the Internet in an on-demand

manner. Over the last decade, Cloud computing systems have become a part of everyday life:

people can now access computational resources in a similar way as utilities such as electricity

or water. Access to Cloud computing services is charged based on a pay-as-you-go basis, i.e.,

users only pay for what they use and typically do not need to pay a subscription fee.

Cloud computing is used to refer to different technologies, services, and concepts and has

become a common buzzword. This makes it difficult to give a generally accepted definition of

Cloud computing. As a consequence, there exist multiple different definitions with the definition

given by the National Institute of Standards and Technology (NIST) [91] being one of the most
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widely accepted ones:

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand net-

work access to a shared pool of configurable computing resources (e.g., networks,

servers, storage, applications, and services) that can be rapidly provisioned and re-

leased with minimal management effort or service provider interaction. This Cloud

model is composed of five essential characteristics, three service models, and four

deployment models”

NIST also gives definitions for each essential characteristic, service model, and deployment

model which are presented in the following. However, we slightly modified the definitions in

order to make them more compact, less technical, and in-line with the scope of this thesis.

Essential characteristics (adapted from [91])

1. On-demand self-service. Consumers get access to computational resources, such as CPU

or network storage, as needed automatically without requiring human interaction with

each service provider.

2. Broad network access. Services are available over a network and accessed through standard

mechanisms such as mobile phones, tablets or laptops.

3. Resource pooling. Computational resources are provided to multiple consumers using

a multi-tenant model, i.e., a single instance of a software application serves multiple

customers. Resources are dynamically assigned and reassigned according to customer

demand. Customers have no knowledge of the exact location of the accessed computer,

but may be able to specify the location in terms of country, state, or data center.

4. Rapid elasticity. Resources can be provisioned dynamically to customers, and scale up

and down rapidly based on the current demand. Thus, customers may get an impression

that unlimited amounts of computational resources are available.

5. Measured service. Cloud systems automatically control and optimize resource usage. The

usage of computational resources can be monitored, controlled, and reported, providing

transparency for both the provider and consumers.

Service models (adapted from [91])

1. Software as a Service (SaaS). Customers get access to services running on a Cloud in-

frastructure. Services may be accessed via web browsers or a proper program interface.

The underlying infrastructure including components such as network, servers, operating

systems, storage, or application capabilities are managed by the service provider; the

customer may only have limited control over application configuration settings.
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2. Platform as a Service (PaaS). Customers get access to consumer-created or acquired

applications created through programming languages, libraries, services, and tools sup-

ported by the service provider. The customer does not manage or control the underlying

infrastructure, but has control over the deployed applications and possibly configuration

settings for the application-hosting environment.

3. Infrastructure as a Service (IaaS). Customers get access to fundamental computational

resources such as CPU, memory, or network and are able to deploy and run arbitrary soft-

ware, including operating systems and applications. Customers do not manage or control

the underlying Cloud infrastructure but have control over operating systems, storage, de-

ployed applications, and possibly limited control of selected networking components, e.g.,

host firewalls.

Deployment models (adapted from [91])

1. Private Cloud. The Cloud infrastructure is provisioned for exclusive use by a single

organization. It may be owned, managed, and operated by the organization, a third

party, or a combination of both, and it may exist on or off premises.

2. Community Cloud. The Cloud infrastructure is provisioned for exclusive use by a spe-

cific community of consumers from organizations that have shared interests, e.g., mission,

security requirements, or compliance considerations. It may be owned, managed, or op-

erated by one or more organizations in the community, a third party, or a combination of

these, and it may exist on or off premises.

3. Public Cloud. The Cloud infrastructure is provisioned for open use by the general pub-

lic. It may be owned, managed, or operated by a business, academic, or government

organization, or a combination of these. It exists on the premises of the Cloud provider.

4. Hybrid Cloud. The Cloud infrastructure is a composition of two or more distinct Cloud

infrastructures (private, community, or public) that remain unique entities, but are bound

together in order to enable data and application portability, e.g., moving workload between

entities when the capacity of one entity is exceeded.

Example 1.1 (Netflix). Netflix is a media service provider headquartered in Los Gatos, Cali-

fornia, U.S. They offer online streaming of films and television shows to which users have access

at any point. Whenever someone wants to stream a film, Netflix has to ensure that there is a

machine available on which the film can be executed. Netflix claims to have streamed about

2 billion hours of content in the fourth quarter of 2011 [62]. In order to guarantee that there

are enough machines available to satisfy this massive demand, Netflix decided to outsource

their IT-infrastructure to the Cloud: Netflix uses Amazon Web Services to run and stream the

films and TV shows. This is a win-win situation for both companies: Netflix does not need to

take care about building and maintaining a huge and expensive IT-infrastructure, and Amazon
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earns money by renting their infrastructure to Netflix. In this example, Netflix is both a Cloud

provider and customer. As a Cloud provider, Netflix offers streaming services to customers

over the Internet, accessible at any time (Software as a Service). As a Cloud customer, Netflix

rents IT-infrastructure through Amazon Web Services over the Internet, dependent on current

demand (Infrastructure as a Service). Finally, we point out that Netflix is a good example

where Cloud services are used by millions of people around the world, but only a minority of

them is aware that an on-demand service at this scale is only possible through Cloud computing

technologies.

1.2.2 Cloud computing architecture

Cloud computing systems are highly complex and consist of numerous components. The aim of

this section is to provide an overview of all key components, ranging from hardware appliances

to software systems. To this end, we present and discuss a Cloud computing architecture that

provides a categorized view of the components; see Figure 1.1.

The bottom layer consists of Cloud resources such as desktop computers, clusters, or massive

data centers. This layer provides the physical infrastructure required for delivering Cloud

services.

The core middleware manages the physical infrastructure. Its objective is to provide a suit-

able runtime environment for applications and to appropriately utilize computing resources.

Using virtualization technologies, physical resources such as CPU or memory can be finely par-

titioned in order to meet requirements of customers. Additional capabilities, such as admission

control, execution monitoring, or billing, are also supported.

A concrete implementation of both layers is classified as an IaaS solution. They are used to

design system infrastructures, but only come with limited support for building applications.

The next layer is referred to as Cloud programming environment and tools which provides

users with a platform where users can get access to tools in order to build applications.

Finally, there is the user applications layer at the top. This layer is responsible for all

services that are delivered as applications.

1.2.3 IaaS implementation

In this section, we describe the essential components of an IaaS solution. Recall that an IaaS

solution refers to a concrete implementation of the two bottommost layers of the system archi-

tecture illustrated in Figure 1.1. IaaS solutions are popular for both providers and customers.

They allow providers to exploit their physical infrastructure more efficiently and reduce admin-

istration and maintenance for customers. Figure 1.2 provides an overview of the most essential

components of a sample IaaS solution. We distinguish three layers.

Physical infrastructure: consists of the physical computing infrastructure on top of which

the software management layer is deployed.



14 CHAPTER 1. INTRODUCTION

Figure 1.1: Cloud computing architecture (adapted from [36])

Figure 1.2: IaaS solution (adapted from [36])
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Software management infrastructure: implements the central functionality of the IaaS so-

lution including the management of virtual machines (VMs).

User interface: provides access to services for customers.

The scheduler plays a key role in the software management infrastructure. It interacts with

various components and its responsibilities include the allocation, execution, pricing, billing,

and monitoring of VMs.

1.2.4 Resource management and scheduling

The goal of this section is to provide an overview of how scheduling is done in real-world Cloud

computing systems. Given the complexity of such systems, this overview will be presented at

a much higher level than the introduction to scheduling theory in Section 1.1.2.

In Cloud scheduling, there exist the notions of a job and of a task. There is no clear definition

for jobs and tasks, and they are sometimes used interchangeably. A task typically refers to a

computational unit like a thread or a process. A job often refers to a set of tasks and can be

understood as a larger logical computational unit, e.g., an application.

There exist many different objective functions that are important for Cloud customers,

providers, or both. In contrast to the classical scheduling theory, these scheduling objectives

are typically not given by mathematically well-defined formulas. Some of the most important

objectives are described in the following.

Energy consumption. The goal of the scheduler is to assign tasks to VMs, such that the

energy consumed by the data center is minimized. There are multiple sources that con-

tribute toward the total data center energy. The two main sources [85] are

• computing energy: the energy required to operate computing devices; and

• cooling energy: the energy required to cool computing devices in order to prevent

overheating.

Energy consumption is the main cost component in data center operation [56].

Availability and reliability. Task assignment is done with the aim of maintaining high levels

of availability and reliability. Availability of a VM is defined as the readiness for correct

service, whereas reliability is defined as the continuity for correct service [14]. In other

words, availability can be seen as the percentage of time during which VMs are available

for starting new jobs, whereas reliability can be considered as the percentage of time

during which VMs conduct their intended operation.

Resource usage. The workload of submitted tasks is assigned to VMs such that a desired

utilization of physical machines in the data center is achieved. A typical, yet simple,

goal is to distribute the workload evenly across all physical machines. However, there are
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incentives to distribute workload asymmetrically, e.g., in order to avoid the formation of

hot spots; see Chapter 3.

Response time. This metric is defined as the elapsed time between an inquiry in the Cloud

system and the responds to this inquiry [131]. In classical scheduling theory, this metric

is called flow time. Response time is an indicator of the performance of the Cloud system,

i.e., of how fast tasks are processed.

Due to commercial reasons, companies do not make their scheduling algorithms public.

However, there are classes of algorithms into which most industrial scheduling algorithms fall

[127]. Common for all algorithms is that the decision-making policies are typically of very

simple nature.

First-in, first-out (FIFO): tasks submitted to the system are hold in a queue and assigned

in the order of arrival. The target (virtual) machine is chosen using a problem-specific

policy which is often of simple nature.

Load balancing: the scheduler assigns incoming tasks to (virtual) machines in a round-robin

manner, i.e., in circular order. The goal of load balancing algorithms is to achieve an

equally-distributed resource utilization of physical machines.

Asymmetric load balancing: the scheduler assigns tasks to machines aiming at achieving a

non-uniform resource utilization of physical machines. Non-uniform resource utilizations

are capable of reducing the number and size of hot spots in a data center. Thus, they are

beneficial for reducing the energy required to cool down machines; see Chapter 3.

Besides the standard algorithms described above, many other simple heuristics are used.

1.2.5 The gap between theoretical and applied scheduling

In Section 1.1.2 we introduced basic concepts of scheduling theory and in Section 1.2.4 we gave

an high-level overview of scheduling decision-making in Cloud systems. The goal of this section

is to provide a compact overview of some key differences between both disciplines, as well as a

discussion of how they can benefit each other.

Differences between mathematical and Cloud scheduling:

• Level of Abstraction. Mathematical scheduling problems are very abstract by nature,

whereas Cloud scheduling problems are typically much more technical.

• Definitions. In scheduling theory, all terms, restrictions, and objectives are well-defined.

For scheduling in Cloud systems, those components are often vaguely described by text

rather than by explicit formulas. In addition, there exist numerous widely used terms that

are ambiguous, e.g., a task may refer to a thread, a process, a request, or an application.
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mathematical scheduling Cloud scheduling

solution method +
exact, approximation,

and heuristic algorithms
- pure heuristics

level of abstraction + high - low
applicability - not directly applicable + directly applicable

level of comprehensiveness - low + high

Table 1.2: Strengths and drawbacks/challenges of mathematical and Cloud scheduling

• Algorithmic solutions. For mathematical scheduling problems, provable algorithms in

terms of accuracy and running time are proposed. In Cloud computing context, algorith-

mic solutions consist almost always of simple heuristics based on intuition and common

sense.

• Evaluation. Mathematical scheduling algorithms are mostly evaluated by formal proofs,

simulation, and experiments. The main body of Cloud scheduling algorithms are evaluated

by simulation and experiments, and only very few algorithms are validated through formal

proofs.

• Applicability. Mathematical scheduling models have applications in fields such as man-

ufacturing, services, or transportation. However, mathematical models sometimes relax

too many actual features, and considerable modifications and extensions of a mathemati-

cal solution may be needed when implemented in practice. In contrast, Cloud scheduling

models are often built for one specific type of application, making them more directly

applicable.

Given these differences, how can both scheduling disciplines benefit from each other? The

list of differences above shows that both scheduling disciplines come with their own strengths

and drawbacks/challenges; see Table 1.2. Note that very often the strength of one discipline

may be considered as the weakness of the other discipline and vice versa. Therefore, we believe

that a carefully chosen compromise between both approaches has potential to yield reasonable

improvements in practice. However, finding such a compromise is not straightforward. For

example, exact or approximation algorithms (with reasonable ratios and running times) are

desirable for Cloud scheduling applications, but it is often not feasible to obtain them. Cloud

scheduling problems are typically too complex in nature to allow for provable approximation

guarantees. Still, there is potential to design enhanced algorithms by using inputs from both

communities. As for the example above, mathematicians may consider a more abstract schedul-

ing model in the first place, and develop exact, approximation, and/or heuristic algorithms for

this model. Using structural insights gained from this initial study, more problem-tailored

heuristics may then be developed in cooperation with Cloud computing experts providing ad-

ditional domain-specific knowledge.

We conclude this section by addressing the following question: why is there such a big gap
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between both scheduling communities despite the potential that we see in collaboration? Below,

we describe two main reasons.

• Mathematical scheduling researchers usually have a background in mathematics or theo-

retical computer science, whereas Cloud scheduling researchers typically have an applied

background in computer science. In order to collaborate efficiently, there is a need to es-

tablish a common language incorporating both mathematical and technical components.

• Although the history of Cloud computing can be traced back to the 1960s, its market

breakthrough happened in 2006 with the introduction of Amazon’s Elastic Computing

Cloud (Amazon EC2). This 12-year period (since 2006) is a relatively short amount of

time to develop theory for scheduling in Cloud systems. Additionally, Cloud computing

has always been developing at a rapid pace making it challenging for mathematicians to

stay up to date.

1.2.6 Problem I: scheduling with immediate start of jobs

Scheduling theory has been around for over sixty years and a large body of research has been

conducted. On the contrary, Cloud computing (in a mature form) only exists since 2006, but

has since experienced a massive growth in research and industry. A key component in delivering

Cloud services is scheduling: users submit requests for services, i.e., jobs, to a Cloud provider

and the Cloud provider has to make sure that jobs are scheduled and processed. Scheduling

problems arising in the context of Cloud computing come with numerous characteristics that

are new to traditional scheduling theory.

The goal of this research is to develop a new type of speed-scaling scheduling model with

the immediate start requirement, i.e., scheduling models that require the processing of a job to

be started exactly at its release time. The immediate start requirement is a novel feature in

scheduling theory and accounts for the fact that services are processed in an on-demand manner.

Decisions for a scheduler are then to decide (a) to which machine a job should be allocated,

and (b) at which speed a job should be processed. We study both single and parallel machine

problems, and incorporate two types of objective functions. The first function depends on the

completion times of jobs and contributes toward lower response times of jobs. The second

function depends on the speed at which jobs are processed and contributes toward a lower

energy consumption. Naturally, both objectives are in conflict with each other: increasing

processing speed reduces response time but increases energy consumption, and vice versa. In

the proposed scheduling models, we investigate optimal tradeoffs between both objectives for

speed scaling models with the immediate start requirement.

1.2.7 Problem II: energy aware scheduling

In the context of Cloud computing, there are numerous scheduling objective functions of in-

terest. One of the most important, if not the most important, objective function is the energy
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required to operate a Cloud data center. Reducing energy not only results in lower operating

cost for Cloud providers and consequently for customers, but also reduces the carbon foot-

print of a data center. However, the reduction of energy is not straightforward, as multiple

components of different nature contribute toward the total data center energy consumption.

We develop a framework to reduce energy consumption and incorporate two main sources

of energy usage: the energy required to operate servers and the energy required to cool them.

In contrast to previous work, the proposed framework does not require an analytical model for

energy consumption and does not make assumptions about characteristics of the data center.

We develop two scheduling algorithms, justify our algorithms analytically, and show, through a

comprehensive simulation evaluation, that our algorithms outperform existing approaches. In

contrast to the study of Problem I, this work is of applied nature and more directly applicable

in practice.

1.2.8 Problem III: resource boxing

There are two main streams of scheduling research: applied research on scheduling in Cloud

computing systems and theoretical research on mathematical scheduling. We believe that both

research communities can benefit from a closer collaboration. However, there are a number

of challenges that should be addressed in order to make the collaboration more valuable; see

our discussion in Section 1.2.5. One main challenge that mathematical scheduling researchers

face is related to the evaluation of their scheduling algorithms in a practically relevant setting.

Mathematical scheduling models are of more abstract nature and thus impose certain assump-

tions on their input that are not entirely met in practice. For example, the CPU utilization

of a machine is often assumed to be a piecewise constant function, whereas in practice the

CPU utilization may be highly fluctuating. As a consequence, historical data cannot be used in

simulation instances directly as there is a discrepancy between historical data and assumptions

imposed by mathematical scheduling models.

The goal of the research is to present an approach to overcome this challenge. We present Re-

source Boxing, a method that automatically transfers historic task execution patterns into a se-

ries of boxes, i.e., a piecewise-constant pattern that approximates the original execution pattern.

Several algorithmic approaches using event-based, interval-based, and hybrid approaches are

developed. We evaluate the similarity between the original data set and its box-representation

based on data from a large scale data center of Google [55]. Finally, we apply Resource Boxing

within experiments in order to evaluate its applicability in the context of resource utilization

and power.
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1.3 Powerline routing

1.3.1 What is powerline routing?

Due to the growing global energy consumption, new powerlines are constantly required in order

to satisfy the world-wide electricity demand. The powerline routing problem is about finding

an optimal route along which a new powerline should be built. Given a source and a destina-

tion point on a large geographic area, powerline routing is the task of finding a “good” route

connecting both points along which a new powerline should be built. Finding an appropriate

route is a problem of an interdisciplinary nature. It requires methodologies from disciplines

such as geographic information systems (GIS), electrical engineering, and mathematical opti-

mization. As far as the mathematical optimization component is concerned, we have identified

a gap between (a) optimization techniques currently used in powerline routing, and (b) the

potential that mathematical optimization techniques can provide. As such, powerline routing

is a good example of an application domain where optimization techniques are required and

also generally used, however at a very basic level, with a large scope for improvement.

The main goal of our study is to provide a well-defined optimization model and an analyti-

cally justifiable approach that naturally improves currently used optimization techniques. This

will demonstrate that, even in the context of an established interdisciplinary application do-

main, such as powerline routing, significant solution improvements are achievable. Our research

approach is conducted in two steps that are further outlined in the following.

1.3.2 Problem IV: approximating shortest paths in regular grids

A powerline routing problem is typically modeled as a shortest path problem. To this end, the

geographic area is covered with a regular square or hexagonal grid. A graph is constructed

where a vertex is associated with the centers of a grid cell and edges are introduced connecting

vertices that correspond to neighboring cells in the grid. Weights are assigned to each cell

indicating the cost of the route passing through the area covered by the cell. The powerline

routing problem is then solved as the shortest path problem between the source point and the

destination point.

The goal of this research is to develop algorithms with good approximation guarantees and

to adjust them to be applied in practice. To this end, we first introduce the concept of a k-

neighborhood, where k ≥ 1 is an integer parameter. We do not follow the traditional approach,

in which an edge is only added between vertices if the corresponding cells are neighbors, i.e.,

if the cells are k = 1 cells apart. In our approach, we add edges between vertices where the

cells are at most k cells apart. Then, we investigate the worst-case ratio between the length

of a shortest path in (a) the graph using the k-neighborhood and (b) in the complete graph

(obtained for k = n). In our analysis, we consider two types of square grids (with 4 respectively

8 neighbors per cell) and the hexagonal grid. If weights assigned to grid cells are equal, we

prove a tight worst-case ratio for the case of k = 1 and asymptotically tight ratios for the case
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of k ≥ 2. For the arbitrary weight case and k = 1, we prove constant worst-case ratios for the

square grid with 8 neighbors and for the hexagonal grid. Additionally, we prove that for the

square grid with 4 neighbors no constant worst-case ratio exists. Finally, we show improved

ratios for the case where the weights between neighboring cells can only change by a limited

factor.

1.3.3 Problem V: macro- and micro-analysis for powerline routing:

mathematical modeling and case studies

The theoretical insights obtained from the study of Problem IV indicate that a significant

reduction in the cost of a route is achievable if the k-neighborhood for k ≥ 2 is considered. In

this work, we put these findings into practice.

We split the powerline routing problem into a macro-problem and a micro-problem. In the

macro-problem, we seek a minimum-cost route, where the decision-making is based on Euclidean

distances and on the weights assigned to grid cells. In the micro-problem, we seek a minimum-

cost route, where for the decision-making we additionally include powerline specifics such as

line costs, tower costs (dependent on tower types), and the impact of powerline direction change

angles. Through two cases studies based on actual geographic data, we demonstrate that for

both problem types the inclusion of the k-neighborhood for k ≥ 2 yields a significant reduction

in cost while keeping the algorithm’s running time at an acceptable level. Our evaluations are

based on the value of k, the route cost, and the running time of the algorithm.

1.4 Main contributions and the outline of the thesis

This thesis is centered around two main challenges arising when mathematical optimization

techniques are applied into practice. First, practical applications may contain hard-to-model

features which are very challenging to capture accurately in an abstract mathematical model.

Second, some real-world applications are of interdisciplinary nature and require solution meth-

ods from various domains, including optimization.

This thesis consists of two parts. The first part is dedicated to scheduling in Cloud computing

systems. Through this work, we address the challenge of hard-to-model features within an

interdisciplinary application. In our study of Problems I, II, and III, we demonstrate how these

challenges can be overcome by tackling three aspects: (i) the formal mathematical modeling

of Cloud scheduling problems, (ii) the development of practically applicable Cloud scheduling

algorithms that are justified based on scheduling theory, and (iii) the evaluation of mathematical

scheduling algorithms using realistic simulation instances.

The second part is dedicated to the powerline routing problem. Through this application, we

address the issue that, even for applications with well-established solution approaches, often only

simple mathematical models and solution algorithms are used that can be improved significantly.
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In our study of Problems IV and V we show how mathematical modeling and optimization can

deliver improved solutions to the powerline routing problem.

Each problem is dedicated a separate chapter. Due to the different nature of the problems, it

is practically impossible to maintain a single universal notation across all chapters. Therefore,

we use a separate notation for each chapter, i.e., a symbol used in one chapter may have a

different meaning in another chapter. However, an attempt has been made to keep the notation

as consistent as possible throughout the entire thesis. In the following we present an overview

of the contributions for each of the five problems.

In Chapter 2, we discuss Problem I, scheduling with immediate start of jobs. Our first con-

tribution is the introduction of the concept of immediate start. Two types of objective functions

are optimized. One depends on the completion time of jobs and contributes toward a lower

respond time. The other depends on machine speeds and contributes toward a lower energy

consumption. Two cases are considered, with a single machine and with parallel machines. We

present several optimal algorithms for speed scaling models that respect the immediate start

requirement.

In Chapter 3, we investigate Problem II, energy aware scheduling. We present a new al-

gorithmic framework that, in contrast to previous work, does not require an analytical model

for energy, and does not depend on physical characteristics of the underlying data center. Two

algorithms are presented to be used in the scheduling component of the framework and we show

that they outperform existing approaches.

In Chapter 4, we study Problem III, Resource Boxing. We present a method, that auto-

matically translates historic task execution patterns into similar piecewise constant patterns

to which we refer to as boxes. These boxes can then be used to generate instances that meet

all typical assumptions of mathematical scheduling algorithms. Four algorithms using event-

based, periodic, and hybrid approaches are developed. We show that it is possible to create

box equivalents of task execution patterns with an absolute deviation of less than 3%. We

also demonstrate through experiments the applicability of Resource Boxing in the context of

resource utilization and power.

In Chapter 5, we consider Problem IV: approximation of shortest paths in regular grids.

We introduce the concept of the k-neighborhood for regular grids. Then, we investigate the

worst-case ratio between the length of a shortest path (a) in a graph using the k-neighborhood

and (b) in the complete graph (obtained for k = n). Our analysis provides insight into how

worst-case ratios are affected by the following problem characteristics: equal versus arbitrary

grid weights, the cases k = 1 versus k ≥ 2, and the type of grid used.

In Chapter 6, we analyze Problem V: macro- and micro-analysis for powerline routing. We

put the theoretical insights of the k-neighborhood obtained in Chapter 5 into practice. To this

end, we develop powerline routing algorithms using the k-neighborhood approach and evaluate

them through two case studies using real-world data. The results show that our algorithms

achieve a significant reduction in cost, while keeping the computation time at an acceptable
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level.

Finally, future research directions and conclusions are presented in Chapter 7.





Part I

Scheduling in Cloud Computing

Systems
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Chapter 2

Problem I: Scheduling with

Immediate Start of Jobs

2.1 Overview

The application domain of Cloud scheduling contains numerous aspects which are difficult to

model with existing scheduling theory. The goal of this chapter is to develop a mathematical

model that incorporates some key aspects as new scheduling features. To this end, we investigate

speed scaling scheduling problems for time and energy optimization with the immediate start

requirement: the processing of jobs has to start exactly at the time when the job gets submitted

to the system. The immediate start requirement is ubiquitous in Cloud scheduling but has not

yet been addressed by the scheduling community.

Speed scaling models have been the subject of intensive research since the 1990s; see [138],

and have become particularly important recently, with the increased attention to energy saving

demands; see surveys [3], [5], [67], [54]. They reflect the ability of modern machines to change

their clock speeds through a technique known as dynamic voltage and frequency scaling (DVFS).

The higher the speed, the better the performance from a users’ perspective, but the energy

usage and other computation costs increase. The goal is to select the right speed value from the

full spectrum of speeds to achieve a desired tradeoff between performance and energy. DVFS

techniques have been successfully applied in Cloud data centers to reduce energy usage; see,

e.g., [132], [137], [76]. However, so far no work incorporates the immediate start requirement.

The main novelty of scheduling models studied in this chapter is the immediate start re-

quirement. It is motivated by the advancements of modern Cloud computing systems and it is

widely accepted by practitioners. The immediate start requirement accounts for the fact that in

Cloud computing systems user requests have to be served in an on-demand manner (see Section

1.2.1, in particular the “essential characteristics” in the NIST definition of Cloud computing) -

a core feature of Cloud computing that is unlikely to change. Cloud scheduling algorithms that

27
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do not consider the immediate start property are not suitable in practice: Cloud customers can

monitor the job execution in real time and tend to get unsatisfied with the Cloud service if the

execution of the job is not immediately started upon submission. The immediate start require-

ment has not been addressed in traditional scheduling research which was originally motivated

by scenarios arising from manufacturing. In manufacturing systems, jobs compete for limited

resources. Jobs often have to wait until resources become available and job starting times are

delayed if the system is busy.

2.2 Definitions and notations

Consider n jobs j, 1 ≤ j ≤ n, where a job can be understood as some computational task that

should be processed on a machine in a data center. For each job j, we are given its work γj ,

measured in million instructions (MI), which is the amount of instructions that a machine needs

to process in order to complete j. Each job is associated with a release time rj denoting the

time at which j is submitted to the system. Job j may also be assigned a due date dj , before

which it is desired to complete that job, and/or a deadline d̄j . Due dates are considered to

be soft constraints, i.e., violating them preserves feasibility but typically comes with a penalty

to the objective function. On the other hand, deadlines are considered to be hard constraints,

i.e., violating them results in an infeasible schedule. As a consequence, in any feasible schedule

job j has to be completed by time d̄j . If a job is not explicitly assigned a deadline, we assume

d̄j =∞. Additionally, job j can be assigned a weight wj indicating its relative importance.

Each job is processed without preemption either on a single machine or on one of m parallel

machines. For job j, we consider its speed sj , measured in million instructions per second

(MIPS), which denotes the processing speed at which the machine processes j. The processing

time of job j when processed at speed sj is then defined by

pj :=
γj
sj
. (2.1)

The key feature of the scheduling models studied in this chapter is the immediate start

requirement, i.e., the restriction that the processing of each job j has to start exactly at its

release time rj . Without loss of generality, we assume that all release times are distinct and

that jobs are ordered in increasing order of their release times, i.e.,

r1 < r2 < · · · < rn. (2.2)

A schedule consists of an assignment of jobs to machines, a sequencing of jobs assigned to the

same machine, and a speed selection for each job. For a given schedule, let Cj denote the

completion time of job j. Since we require the processing of job j to be started exactly at its
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release time rj , the completion time is given by

Cj = rj + pj = rj +
γj
sj
.

Note that the completion time Cj depends on the speed sj at which job j is processed.

We now introduce two types of objective functions:

(i) a traditional scheduling cost function F , the sum of non-decreasing functions fj that

depend on the completions times of jobs:

F :=

n∑
j=1

fj (Cj) =

n∑
j=1

fj (rj + pj) ;

(ii) an energy cost function H, containing non-decreasing functions hj , dependent on the

processing speeds of jobs:

H :=

n∑
j=1

γj
sj
hj (sj) =

n∑
j=1

pjhj

(
γj
pj

)
.

Notice that our model is formulated for a homogeneous distributed system: all physical machines

have the same speed and energy characteristics, and the cost functions hj are independent of

machines. However, note that a machine can process different jobs at different speeds.

A common and widely accepted assumption is that power is proportionate to the cube

of speed; see, e.g., [33] and [111]. Therefore, in most illustrative examples presented in the

remainder of this chapter, we assume that the power consumption of a machine at some point

during the processing of job j is given by

hj (sj) = βjs
3
j . (2.3)

In our model, the processing speed sj of job j is assumed to be constant throughout the pro-

cessing of j. The energy consumption is then calculated by integrating the power consumption

over time. Therefore, the energy consumption of job j is given as∫ rj+pj

rj

hj(sj) dτ = pjhj(sj) = pjβjs
3
j = βjγjs

2
j =

βjγ
3
j

p2
j

. (2.4)

Note that in the integral in (2.4) the term hj(sj) is constant over time. The total energy

consumption H is therefore the total energy consumption of all jobs:

H =

n∑
j=1

βjγjs
2
j =

n∑
j=1

βjγ
3
j

p2
j

. (2.5)

In this chapter, we address the following models with immediate start:
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• Π+: it is required to find a feasible schedule that minimizes F +H;

• Π1: it is required to find a feasible schedule that minimizes one of the objective functions

subject to an upper bound on the other function, e.g., to minimize total energy H subject

to an upper bound on the value of F ; and

• Π2: it is required to find feasible schedules that simultaneously minimize two cost compo-

nents, e.g., to find the Pareto-optimal solutions for the problem of minimizing total cost

F and total energy H.

2.3 Related work

Speed scaling models have a long history of study. The immediate start requirement, however,

has not been studied in the context of speed scaling up to this date. Immediate start scheduling

is related to interval scheduling, where each job is given by time intervals during one of which

the job has to be processed. There is no freedom in selecting job starting times: a job starts

at the beginning of one time interval and finishes at the end of the same time interval. One

point of difference is related to preemption, the ability to interrupt and resume job processing

at any time. This feature is typically accepted in speed scaling research in order to avoid

intractable cases, while it is forbidden in the immediate start model on a single machine and on

parallel identical machines. Notice that a preemptive version with immediate start should have

additional conditions on immediate migration and restart. In what follows, we provide further

details about the two streams of research, i.e., machine speed scaling and interval scheduling,

and point out similarities and differences to the models studied in this chapter.

Research on speed scaling stems from the seminal paper by Yao et al. in 1995 [138], who

developed an O(n3)-time algorithm for preemptive scheduling of n jobs on a single machine

within the time windows
[
rj , d̄j

]
given for each job j. Note that in that paper time windows

are treated in the traditional sense, without the immediate start requirement. Subsequent

papers [83], [84], [6], [8], and [12] proposed improved algorithms for the single-machine problem

and extended this line of research to the multi-machine model. The running times of the current

fastest algorithms are O(n2) and O(n4) for the single-machine and parallel-machine cases; see

[118].

Speed scaling problems which involve not only the speed cost function G, but also a schedul-

ing cost function F =
∑n
j=1 fj(Cj) have been under study since 2008 [111]. The two most

popular functions are the total completion time F1 =
∑n
j=1 Cj and the total rejection cost

F2 =
∑n
j=1 wjsgn

(
max

{
Cj − dj , 0

})
, where wj indicates the rejection cost if job j cannot be

processed before its deadline and therefore is rejected. Without the immediate start require-

ment, the tractable cases of problems Π+ and Π1 with objectives F1 and F2 are very limited.

In the case of function F1, the non-preemptive version of problem Π+ with equal release

times is solvable in O(n2m2(n + logm)) time, where m is the number of machines; see [16].
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If jobs are available at arbitrary release times rj , then problem Π1 is NP-hard even if there

is only one machine and preemption is allowed; see [18]. For problems with arbitrary release

times and equal-work jobs, preemption allowance makes no difference to an optimal solution

and, due to the non-linear nature of the problem, an optimal value of the objective can only

be found within a chosen accuracy ε > 0. For example, problem Π1 on a single machine can

be solved in O(n2 log H
ε ) time [111], where H is the upper bound on the speed cost function

(energy), while for problem Π+ on parallel machines an algorithm by [7] requires O(n3 log 1
ε )

time. The difficulties associated with arbitrary-length jobs are discussed in [111], [35], [19]. For

the problem of preemptive scheduling on a single discretely controllable machine, [13] provides

an algorithm with running time O(n4k), where k is the number of possible speed values of the

processor.

In speed scaling research, the problems of minimizing the total rejection cost F2 are typically

studied as those of maximizing the throughput, defined as the number of jobs that can be

processed by their deadlines. Polynomial-time algorithms are known only for special cases,

where various conditions are imposed, in addition to the assumption that all jobs have equal

weights wj . Notice that strict assumptions of those models make preemption redundant. The

single-machine problem Π1 with wj = 1 for all j was addressed in [10]. They show that if

jobs are available simultaneously, i.e., rj = 0 for 1 ≤ j ≤ n, the problem can be solved in

O
(
n4 log n log

∑
γj
)

time. In case of arbitrary release times, it is shown that the problem can

be solved in O
(
n6 log n log

∑
γj
)

time if release times and deadlines are agreeable, i.e., it holds

that r1 < r2 < · · · < rn and d1 < d2 < · · · < dn. The parallel-machine problem Π1 with jobs of

equal size and equal weight, i.e., γj = wj = 1 for 1 ≤ j ≤ n, is solvable in O(n12m+9) time, or in

O(n4m+4m) time, if additionally release times and deadlines are agreeable; see [11]. Research

on speed scaling problems extends to the design of approximation algorithms and the study of

their online versions. Without providing a comprehensive list of results of this type, we refer

an interested reader to survey papers by Albers [3], [5], [4], and Bampis [15].

In interval scheduling, each job is given by time intervals during one of which the job has

to be processed. Note that this implies that preemption is not allowed in interval scheduling.

A schedule is characterized by the set of processed jobs and their assignment to machines.

We refer to [73] and [74] for an overview of results for the interval scheduling problem and

its variants. One of the most well-studied versions of interval scheduling assumes that there

is only one interval per job [rj , dj ]. The decision making consists in selecting a subset of jobs

and assigning them to machines such that the job-intervals assigned to the same machine do

not overlap. The two typical objectives are the job rejection cost, which is defined similarly to

function F2, and the machine usage cost defined typically as the (weighted) number of machines

which are selected to process the jobs. Note that unlike the operational cost function H used in

our model, the machine usage cost in interval scheduling does not take into account the actual

time of using a machine.

Within the broad range of interval scheduling results, those relevant to our study deal with
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identical parallel machines or uniform machines. In the case of identical parallel machines, the

fastest algorithms for minimizing the job rejection cost have time complexity O(n log n), if all

jobs have equal weights [38], and O(mn log n), if job weights are allowed to be different [30];

the fastest algorithm for minimizing the machine usage cost is of time complexity O(n log n),

if machine weights are equal [61].

The version of the problem with uniform machines is less studied. For uniform machines

both problems, with job rejection cost and machine usage cost, are strongly NP-hard; see [104]

and [20]. Polynomial-time algorithms, all of time complexity O(n log n), are known for the

problem of minimizing the machine usage cost, if there are only two types of machines, slow

and fast [104], and for the problem of minimizing the job rejection cost, in one of the following

two cases: if all jobs are available simultaneously and have equal weights, or if all jobs have

equal work and there are only two machines [20].

One more problem related to our study is a relaxed version of interval scheduling, where

jobs are allowed to start at or after their release time rj , but they are required to complete

exactly at their deadline dj . Such a problem can be considered as a counterpart to our problem,

where jobs are required to start at release times rj , but they are allowed to complete at any

time before deadlines dj . For the model with fixed job completion times, the scheduling cost

function F =
∑
fj (Cj) can only be of type F2 representing the job rejection cost, since Cj = dj

has to hold for any accepted job j and therefore there is no scope for optimizing function fj .

Prior study focuses on the model with identical parallel machines, where machine speeds are

equal and cannot be changed. Algorithms of time complexities O(n log n) and O(n2m) are

proposed by [79] and [63] for the case of equal-weight jobs and for the general case, respectively.

The latter result is generalized further to the case of controllable processing times [82], where a

job consuming xj amount of resources gets a compressed processing time given by an arbitrary

decreasing function p′j(xj), and where the associated resource consumption cost is linear:

H ′ =

n∑
j=1

β′jxj .

Two typical choices for p′j are

p′j(xj) = pj − ajxj and p′j(xj) =
(
θj
xj

)k
,

where pj , aj and θj are given job-related parameters, while k is a positive constant; see [116].

The second model is linked to our power-aware model. If k = 1/2, θj = γ3
j , and xj = γjs

2
j ,

then we get H = H ′ assuming a cubic power function: compare p′j(xj) =
γj
sj

with (2.1) and

H ′ =
∑n
j=1 β

′
jγjs

2
j with (2.5). Notice that as observed above, the research with fixed completion

times is limited to only one type of scheduling objective: job rejection cost.

As demonstrated in [82], the counterpart of problem Π+ with fixed completion times can

be solved in O(mn2) time, while the counterparts of problems Π1 and Π2 are NP-hard.
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For discrete versions of NP-hard problems, there is known an algorithm of time complex-

ity O(mnm+1Xmax) presented in [82]. Here, Xmax is the maximum resource usage cost,

Xmax =
∑n
j=1 β

contr
j max {xj}, where resource amounts xj are only allowed to take discrete

values from a given range.

We study the most general versions of Π+, Π1, and Π2 with arbitrary functions fj , reflecting

diverse needs of customer oriented Quality-of-Service provisioning in Cloud computing. In

Section 2.4, we show that problem Π+ is solvable in O(n) time on a single machine, and in

Section 2.5 we show that it is solvable in O(n2m) on m parallel machines. The Π1 model of

minimizing energy H on a single machine subject to an upper bound on the total flow time

is handled in Section 2.6. We formulate it as a non-linear resource allocation problem with

continuous variables and explain how it can be solved in O(n log n) time. In Section 2.7, we

present a method, also of time complexity O(n log n), for finding Pareto-optimal solutions for

the Π2 model, in which functions F and H have to be simultaneously minimized on a single

machine. Finally, conclusions are presented in Section 2.8.

2.4 Problem Π+ on a single machine

In this section, we study the problem of minimizing the sum of the performance cost F and

total energy H on a single machine, provided that each job j starts exactly at time rj .

It is clear that in the single-machine case, in order to guarantee the immediate start of job

j + 1, each job j, 1 ≤ j ≤ n − 1, must be completed no later than time rj+1. Taking into

account deadlines d̄j , we conclude that in a feasible schedule job j must be completed by its

imposed deadline Dj given by

Dj := min
{
d̄j , rj+1

}
, 1 ≤ j ≤ n.

Here for completeness we assume that n+ 1 is an artificial job with rn+1 = dn+1 = d̄n+1 =∞.

Due to the immediate start requirement, the actual processing time pj of job j should not

exceed

uj := Dj − rj .

In order to minimize the sum of total cost F and total energy H, we need to solve a problem

which, in terms of the decisions variables pj , can be formulated as

minimize Z =

n∑
j=1

fj (rj + pj) +

n∑
j=1

pjhj

(
γj
pj

)
subject to 0 < pj ≤ uj , 1 ≤ j ≤ n.

(2.6)

Due to the separable structure of the objective function in (2.6), the optimal processing

times can be found independently for each job by solving the following n problems with a single
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decision variable p:

minimize Zj = fj (rj + p) + phj

(
γj
p

)
subject to 0 < p ≤ uj .

(2.7)

For problem (2.7), let Z∗j denote the optimal objective function value and let p∗j be the

optimal solution. In the schedule that minimizes Z = F + H, jobs are processed in the order

of their numbering and the actual processing time of job j is equal to p∗j . For most practically

relevant cases, we may assume that for each j problem (2.7) can be solved in constant time.

Under this assumption, we obtain the following statement.

Theorem 2.1. The problem Π+ of minimizing the sum of total cost F and total energy H on

a single machine is solvable in O (n) time, provided that jobs are numbered in accordance with

(2.2) and that problem (2.7) can be solved in constant time for each job.

Below we present several illustrations, taking two popular scheduling performance measures

and, as agreed in Section 2.1, a cubic speed cost function (2.3). Notice that for the latter

function, phj(
γj
p ) =

βjγ
3
j

p2 for 1 ≤ j ≤ n.

For job j, suppose that fj (Cj) = wjCj , i.e., F represents the weighted sum of the completion

times. Then problem (2.7) can be written as

minimize Zj = wjp+ wjrj +
βjγ

3
j

p2

subject to 0 < p ≤ uj ,

so that the optimal solution is given by

p∗j = min

{
γj

(
2βj
wj

) 1
3

, uj

}
.

Indeed, the objective function Zj is convex and the first derivative

dZj
dp

= wj −
2βjγ

3
j

p3

is equal to zero for p = γj

(
2βj
wj

)1/3

.

For another illustration, assume that job j is given a “soft” due date dj , but no “hard”

deadline d̄j , i.e., Dj = rj+1. Suppose that fj (Cj) = wj max {Cj − dj , 0}, i.e., F represents

the total weighted tardiness. If for a job j the inequality rj+1 ≤ dj holds, then job j will be

completed no later than dj and it is sufficient to solve the following optimization problem:

minimize
βjγ

3
j

p2

subject to 0 < p ≤ rj+1 − rj ,
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so that p∗j = min

{
γj

(
2βj
wj

)1/3

, rj+1 − rj
}

. Otherwise, i.e., if rj+1 > dj , in order to solve

problem (2.7), we need to solve two problems:

minimize
βjγ

3
j

p2

subject to 0 < p ≤ dj − rj ,

which corresponds to an early completion of job j so that no tardiness occurs, and

minimize wj(rj + p− dj) +
βjγ

3
j

p2

subject to dj − rj ≤ p ≤ rj+1 − rj ,

where job j completes after its due date. For job j the optimal processing time p∗j is then equal

to the value of p that delivers the lowest value of the objective functions in these two problems.

In the presented examples, which can be extended to most traditionally used objective

functions, the actual processing time p∗j of each job is essentially written in closed form, which

justifies our assumption that problem (2.7) can be solved in constant time.

2.5 Problem Π+ on parallel machines

In this section, we study the problem of finding an immediate start schedule for the processing

of n jobs on m parallel machines M1,M2, . . . ,Mm that minimizes the sum of the total cost

F and total energy H. Adapting the ideas from [63] and [82], we reduce our problem to a

minimum cost flow problem in a special network. In [63] and [82], the authors consider a

related problem where jobs are allowed to start at or after the release time, but have to finish

exactly at the deadline. They consider a network with the same set of nodes and edges, however

with a different structure of edge costs.

Introduce a network as a directed and bipartite graph G = (V,A); see Figure 2.1. The

vertex set V = {s, t} ∪ Y ∪ Z consists of a source s, a sink t, and two sets Y = {y1, y2, . . . , yn}
and Z = {z1, z2, . . . , zn}, where vertices yj and zj are associated with a job j. The set A of

arcs is defined as A := AY ∪AY Z ∪AZY ∪AZ , where

AY := {(s, yj) | yj ∈ Y },

AZ := {(zj , t) | zj ∈ Z},

AY Z := {(yj , zj) | 1 ≤ j ≤ n},

AZY := {(zj , yk) | zj ∈ Z, yk ∈ Y, 1 ≤ j < k ≤ n}.

Each arc (v, v′) ∈ A is associated with a capacity µ(v, v′) and cost c(v, v′). Recall that a
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Figure 2.1: Network G = (V,A)

feasible flow x : A→ R satisfies the capacity constraint

0 ≤ x(v, v′) ≤ µ(v, v′), (v, v′) ∈ A,

i.e., the flow on an arc cannot be larger than its capacity, and the flow balance constraint∑
v′∈V : (v′,v)∈A

x(v′, v) =
∑

v′∈V : (v,v′)∈A

x(v, v′), for v ∈ V \ {s, t} ,

i.e., for each vertex v other than the source and the sink, the flow that enters the vertex must

be equal to the flow that leaves the vertex.

The value of a flow x is equal to the total flow on the arcs that leaves the source (or,

equivalently, enters the sink):

value of flow x :=

n∑
j=1

x(s, yj) =

n∑
j=1

x(zj , t).

For network G, set all arc capacities to 1. By appropriately defining the costs on the arcs

of network G, we reduce the original problem of minimizing the objective function F + H on

m parallel machines to finding a minimum-cost flow with value m in G.

Suppose a flow of value m in network G is found. Since the network is acyclic, the arcs with

a flow equal to 1 will form m paths from s to t, and the order of arcs of set AZY in each path

defines the sequence of jobs on a machine. A path starts with an arc (s, yj), proceeds with

pairs of arcs of the form (yj , zj), (zj , yk), and concludes with the final pair (y`, z`), (z`, t). An

arc (s, yj) implies that job j is the first on some machine. A pair (yj , zj), (zj , yk) implies that

job j comes before job k on the same machine, and a pair (y`, z`), (z`, t) implies that job ` is

the last job on a machine.



2.5. PROBLEM Π+ ON PARALLEL MACHINES 37

The arc costs reflect the selected sequence of jobs on a machine. For the final pair

(y`, z`), (z`, t) of a chain, the cost of scheduling job ` as the last job on a machine is equal

to the contribution of job ` to the objective function. It can be found as the optimal value Z∗`
for the problem (2.7) with j = ` and uj = d̄j . Thus, for each j, we compute the value Z∗j and

assign this value as a cost of the arc (zj , t).

If a pair of arcs (yj , zj), (zj , yk) with rj < rk belongs to a certain path from s to t, then job

j is sequenced on some machine immediately before job k, and therefore must complete before

time min
{
d̄j , rk

}
. The cost associated with the job sequence (j, k) is equal to the smallest

value Z∗j,k of the objective function Zj,k for problem

minimize Zj,k = fj (rj + p) + phj

(
γj
p

)
subject to 0 < p ≤ min

{
d̄j − rj , rk − rj

}
,

(2.8)

which can be seen as problem (2.7), where uj = min{d̄j−rj , rk−rj}. For each pair (j, k) where

1 ≤ j < k ≤ n, we compute the value Z∗j,k and assign this value as a cost of the arc (zj , yk).

For each arc (yj , zj) ∈ AY Z the cost is set equal to −M , where M is a large positive number.

This guarantees that every arc (yj , zj) ∈ AY Z receives a flow of 1, so that each job j will be

scheduled. If we ignore the costs of the arcs (yj , zj) ∈ AY Z , the total cost of the found flow is

equal to the optimal value of the function F +H.

Thus, if one of the paths from s to t visits the sequence of vertices

(s, yj1 , zj1 , yj2 , zj2 , . . . , yj` , zj` , t),

then in the associated schedule the sequence (j1, j2, . . . , j`) of jobs is processed on one machine.

The actual processing time p∗ji of job ji, 1 ≤ i ≤ ` − 1, is equal to the value of p that delivers

the smallest value of Z∗ji,ji+1
, while for the last job j` the actual processing p∗j` is defined by the

value of p that delivers the smallest value of Z∗j` .

As in Section 2.4, we may assume that determining the cost of each arc of network G takes

constant time, so that all costs can be found in O
(
n2
)

time. We apply the successive shortest

path algorithm to determine a flow of minimum cost. Theorem 1.3 states that the algorithm

can be implemented to run in O(B(|A| + n log n)) time. Here, B = 1
2

∑
v∈V |b(v)|, where b(v)

is the flow that has to leave v minus the flow that has to enter v. In our network, we have

b(s) = m, b(t) = −m, and b(v) = 0 for all v ∈ V \ {s, t}. Thus, B = m and the required flow

can be found in O(m(|A|+n log n)) = O(n2m) time, which is strongly polynomial in n and m.

Theorem 2.2. The problem Π+ of minimizing the sum of total cost F and total energy H on

m parallel machines is solvable in O
(
n2m

)
time by finding the minimum cost flow of value m

in network G, provided that the cost of each arc of G can be computed in constant time.

The described approach can be extended to the problem of determining the optimal number

of parallel machines to be used. This aspect is particularly important in modern computing
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systems, as there are overheads related to initialization of virtual machines in Clouds, and

overheads for activating the machines which are in the sleep mode.

Suppose that using q parallel machines incurs cost σq, 1 ≤ q ≤ m, and we are interested

in minimizing F + H plus additionally the cost σq of all used machines. This can be done

by solving the sequence of flow problems in network G, trying flow values 1, then 2, etc., up

to an upper bound m on the machine number. For each tried value of q, 1 ≤ q ≤ m, the

function F + H + σq is evaluated and the best option is taken. The running time for solving

the resulting problem remains O
(
n2m

)
, since the successive shortest path algorithm for finding

the minimum cost flow of value m will iteratively find the minimum cost flows with all required

intermediate values 1, 2, . . . ,m− 1.

Theorem 2.3. The problem Π+ of minimizing the sum of total cost F , total energy H and the

cost σq for using q ≤ m machines, where q is a decision variable, is solvable in O
(
n2m

)
time,

under the assumptions of Theorem 2.2.

A drawback of the model with the aggregated objective function is that it requires scheduling

of all jobs. In the case of a rather short interval available for processing a job this can only be

achieved if a very high speed is applied, which may be unacceptably expensive. Instead, it may

be beneficial to not accept certain jobs and to pay an agreed rejection fee.

Suppose that the cost of rejecting job j is δj . Let J+ be the set of accepted jobs and

let J− := {1, 2, . . . , n} \ J+ be the set of rejected jobs. In order to minimize the sum of the

performance function for the accepted jobs, total energy used, and total rejection penalty, we

need to solve the problem with the objective function

Z =
∑
j∈J+

fj (pj + rj) +
∑
j∈J+

pjhj

(
γj
pj

)
+
∑
j∈J−

δj ,

which is equivalent (up to the additive constant
∑n
j=1 δj) to

Z ′ =
∑
j∈J+

fj (pj + rj) +
∑
j∈J+

pjhj

(
γj
pj

)
−
∑
j∈J+

δj .

In the network model, we replace the cost on an arc (yj , zj) ∈ AY Z by −δj , while keeping the

cost of an arc (zj , yk) ∈ AZY the same as in the basic model. Recall that the latter cost is

found by solving problem (2.8). Since in an optimal solution less than m machines can be used,

we add an extra arc (s, t) with capacity m and zero cost.

For example, suppose that the minimum cost flow of value q, q ≤ m, in the modified network

is found, and one of the paths from s to t visits the sequence

(s, yj1 , zj1 , yj2 , zj2 , . . . , yj` , zj` , t)

of vertices. Then the sequence of accepted jobs (j1, j2, . . . , j`) is processed on some machine,
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and the contribution of job ji is equal to the cost of the arc that leaves vertex zji , found by

solving problem (2.8), plus the cost −δji of the arc that enters vertex zji , 1 ≤ i ≤ `. The

described adjustments do not change the time complexity of the approach.

Theorem 2.4. The problem Π+ in which it is required to determine the set J− of rejected jobs

to minimize the sum of total cost F , total energy H, and the cost
∑

1≤j≤n δj is solvable in

O
(
n2m

)
time, under the assumptions of Theorem 2.2.

2.6 Problem Π1 on a single machine

In this section, we consider the problem of minimizing total energy H subject to a constraint

on the total cost F on a single machine. The presented solution approach is based on Karush-

Kuhn-Tucker (KKT) reasoning in relation to the associated Lagrange function; see Section 1.1.1.

This approach works for a wide range of functions H and F ; however below for simplicity it is

presented for the case that F =
∑n
j=1 (Cj − rj), i.e., F represents the total flow time. Moreover,

a natural interpretation of the obtained results occurs if for each j the energy function hj is

polynomial, strictly convex, decreasing in pj , and job-independent, e.g., satisfies (2.3) with

βj = 1.

Due to the immediate start requirement, we have Cj − rj = pj . Let F be a given upper

bound on F =
∑n
j=1 pj . Further, let uj be an upper bound on the actual processing time pj ,

defined as in Section 2.4. Denote

Hj (pj) = pjhj

(
γj
pj

)
, 1 ≤ j ≤ n.

Then the problem we study in this section can be formulated as

minimize H =

n∑
j=1

Hj (pj)

subject to

n∑
j=1

pj ≤ F ,

0 < pj ≤ uj , 1 ≤ j ≤ n.

(2.9)

Such a problem can be classified as a non-linear resource allocation problem with continuous

decision variables; see survey [107]. Note that we can limit our consideration to the case of

F <
∑n
j=1 uj ; otherwise in an optimal solution pj = uj holds for all j.

For a vector p = (p1, p2, . . . , pn)
T

and a non-negative Lagrange multiplier λ, introduce the

Lagrangian function

L (p, λ) :=

n∑
j=1

Hj (pj) + λ

 n∑
j=1

pj − F


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and its dual

Q (λ) := −λF +

n∑
j=1

min
0<pj≤uj

{Hj (pj) + λpj} ;

see [107]. The derivative of the Lagrangian dual Q (λ) is equal to

Q′ (λ) = −F +

n∑
j=1

pj (λ) ,

where vector p (λ) = (p1 (λ) , p2 (λ) , . . . , pn (λ))
T

denotes the unique minimum to the Lagrangian

function for a given λ.

The KKT conditions guarantee that there exists a value λ∗ such that Q′ (λ∗) = 0. Then

vector p (λ∗) is an optimal solution to problem (2.9), i.e., defines the optimal values of the

actual processing times.

Differentiating functions Hj (pj), denote

λj := −H ′j (uj) , 1 ≤ j ≤ n.

For a polynomial energy function, e.g., Hj (pj) = pj
γ3
j

p3j
=

γ3
j

p2j
, the values λj admit a natural

interpretation. Indeed, λj = −H ′j (uj) =
2γ3
j

u3
j

= 2s3
j , i.e., if for a job j the actual processing

time is equal uj , then this job is processed at speed 3
√
λj/2.

Let π = (π (1) , π (2) , . . . , π (n)) be a permutation of the numbers 1, 2, . . . , n such that

λπ(1) ≥ λπ(2) ≥ · · · ≥ λπ(n).

For some k, 1 ≤ k ≤ n, in accordance with the KKT reasoning for the resource allocation

problem ([107]), define

pπ(j)

(
λπ(k)

)
:=

{
uπ(j), if 1 ≤ j ≤ k,
p0
π(j), if k + 1 ≤ j ≤ n,

(2.10)

where the values p0
π(j) for k + 1 ≤ j ≤ n are solutions of the system of equations

H ′π(j)

(
pπ(j)

)
= −λπ(k), k + 1 ≤ j ≤ n. (2.11)

By applying binary search with respect to k, we find a value k∗ ∈ N such that either

n∑
j=1

pj
(
λπ(k∗)

)
= F
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or
n∑
j=1

pj
(
λπ(k∗)

)
> F >

n∑
j=1

pj
(
λπ(k∗+1)

)
.

In the former case, we define λ∗ = λπ(k∗) and p (λ∗) = p
(
λπ(k∗)

)
; otherwise solve the system of

equations

H ′π(j)

(
p∗π(j)

)
= −λ∗, k∗ + 1 ≤ j ≤ n,∑k∗

j=1 uπ(j) +
∑n
j=k∗+1 p

∗
π(j) = F .

(2.12)

Having solved the latter system, we determine λ∗ and the values p∗π(j), k
∗ + 1 ≤ j ≤ n. The

components of the solution vector p (λ∗) are defined by

pπ(j) (λ∗) :=

{
uπ(j), if 1 ≤ j ≤ k∗,
p∗π(j) if k∗ + 1 ≤ j ≤ n.

The search for the value k∗ takes at most log n iterations, and system (2.11) has to be solved

in each iteration. Additionally, system (2.12) has to be solved at most once. If energy functions

are cubic, we may assume that solving systems (2.11) and (2.12) requires time that is linear

with respect to the number of decision variables. Indeed, the solution to (2.11) is given by

p0
π(j) = 3

√
2

λπ(k)
γπ(j) =

uπ(k)

γπ(k)
× γπ(j), k + 1 ≤ j ≤ n. (2.13)

The solution to (2.12) is given by

λ∗ =
2(

∑n
j=k∗+1 γπ(j))

3

(F−
∑k∗
j=1 uπ(j))

3 ;

pπ(j) (λ∗) = 3

√
2
λ∗ γπ(j), k∗ + 1 ≤ j ≤ n.

Thus, we have proved the following statement.

Theorem 2.5. The problem Π1 of minimizing total energy H on a single machine, subject

to the bounded total flow time F ≤ F , reduces to the non-linear resource allocation problem

and can be solved in O (n log n) time, provided that energy functions hj are polynomial, strictly

convex, decreasing in pj, and job-independent.

The following remark is useful for justifying the solution method for the bicriteria problem,

presented in the next section. The system of equations (2.12) implies that in an optimal solution

for each job π (j), 1 ≤ j ≤ k∗, the equality pπ(j) (λ∗) = uπ(j) holds, i.e., each of these jobs fully

occupies the interval
[
rπ(j), rπ(j) + uπ(j)

]
available for its processing. The processing speed of

job π (j) is

sπ(j) =
γπ(j)

uπ(j)
= 3

√
λπ(j)/2, for 1 ≤ j ≤ k∗.
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Additionally, for k∗ + 1 ≤ j ≤ n, (2.12) implies that H ′π(j)

(
p∗π(j)

)
= −λ∗, so that jobs are

processed at the same speed

sπ(j) = 3
√
λ∗/2, for k∗ + 1 ≤ j ≤ n,

and none of these jobs fully occupy their available interval. Moreover, since λπ(1) ≥ · · · ≥
λπ(k∗) > λ∗ > λπ(k∗+1) ≥ · · · ≥ λπ(n), we conclude that the common speed at which each job

π (j), k∗ + 1 ≤ j ≤ n, is processed is less than the speeds of jobs π (j) with 1 ≤ j ≤ k∗.

2.7 Problem Π2 on a single machine

In this section, we describe an approach for solving the bicriteria problem, in which it is required

to simultaneously minimize the total cost F and the total energy H on a single machine. A

schedule S′ is called Pareto-optimal if there does not exist a feasible schedule S′′, such that

F (S′′) ≤ F (S′) and H(S′′) ≤ H(S′), where at least one of these inequalities is strict. Consider a

two-dimensional coordinate system, where the x-axis and the y-axis correspond to the objective

function values of H and F of a given feasible schedule. Then all Pareto-optimal schedules

correspond to points on the Pareto-frontier defined by

{(F (S), H(S)) | S is a Pareto-optimal schedule}.

The Pareto-frontier characterizes all candidate schedules that a decision-maker may accept as

neither the value of H nor of F can be reduced without increasing the the value of the respective

other function. In contrast, for a non-Pareto-optimal schedule, the value of one function can be

further decreased, without increasing the value of the other function, thus resulting in a better

schedule. The Pareto-frontier is always (but not necessarily strictly) monotonic decreasing,

however in general does not even need to be continuous.

Although the outlined approach can be extended to deal with rather general cost functions,

below we present it for F =
∑n
j=1 (Cj − rj) and H =

∑n
j=1 pjgj

(
γj
pj

)
=
∑n
j=1

γ3
j

p2j
. The solution

of the problem of finding the Pareto-optimum in the space of variables F and H is given by

(i) a sequence of break-points F0, F1, F2, . . . , Fν of the variable F ; and

(ii) an explicit formula that expresses variable H as a function of variable F ∈ [Fk, Fk+1] for

all k = 0, 1, . . . , ν − 1.

As we show below, ν = n holds.

In line with the reasoning presented in Section 2.6, compute

sj =
γj
uj
, 1 ≤ j ≤ n.
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The value sj represents the speed at which job j has to be processed to get the actual processing

time uj . Determine a permutation π = (π (1) , π (2) , . . . , π (n)) of numbers 1, 2, . . . , n such that

sπ(1) ≥ sπ(2) ≥ · · · ≥ sπ(n).

Additionally, we set sπ(0) =∞. For 1 ≤ k ≤ n, we define

Uk (π) :=

k∑
j=1

uπ(j), Γk (π) :=

k∑
j=1

γπ(j), Rk (π) :=

k∑
j=1

γ3
π(j)

u2
π(j)

.

Additionally, for completeness, we set U0 (π), Γ0 (π), and R0 (π) to 0. Finally, for Γ :=
∑n
j=1 γj ,

define F0 := 0 and

Fk :=

k∑
j=1

uπ(j) +
uπ(k)

γπ(k)

n∑
j=k+1

γπ(j) = Uk (π) +
Γ− Γk (π)

sπ(k)
, 1 ≤ k ≤ n. (2.14)

Theorem 2.6. For the bicriteria problem Π2 of minimizing total flow time F and total energy

H on a single machine, the values Fk, 0 ≤ k ≤ n, defined by (2.14) correspond to the break-

points of variable F , and variable H can be expressed as

H = Rk(π) +
(Γ− Γk (π))

3

(F − Uk (π))
2 , F ∈ (Fk, Fk+1], (2.15)

for 0 ≤ k ≤ n− 1. Problem Π2 is solvable in O(n log n) time.

Proof. If a schedule S is Pareto-optimal, the schedule corresponds to an optimal solution of the

problem formulated in (2.9) with F = F (S). As a consequence, all Pareto-optimal schedules

satisfy the properties described at the end of the previous section. The fact that values Fk,

0 ≤ k ≤ ν, are indeed break-points then follows from the structure of an optimal solution of

the problem of minimizing total energy H subject to an upper bound on the sum of actual

processing times; see (2.10) and (2.13) from Section 2.6. For F ∈ (Fk, Fk+1] consider the jobs

in accordance with the permutation π: the actual processing times of the first k jobs are fixed

to their upper bounds, while the actual processing times of the remaining jobs are obtained by

running these jobs at a common speed s that decreases starting from sπ(k). The next break-

point Fk+1 occurs when s becomes equal to sπ(k+1). Note that break-points Fk and Fk+1

coincide if sπ(k) = sπ(k+1), but we count them separately so that indeed ν = n holds. The last

break-point Fn corresponds to the situation that the actual processing time of job π(n) is equal

to its largest possible value uπ(n).

Consider the first interval (F0, F1]. In this interval, jobs are processed at speed s ≥ sπ(1),
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so that for F ∈ (F0, F1] we have F =
∑n
j=1 pj =

∑n
j=1 γj/s = Γ/s. We deduce that

H =
∑n
j=1

γ3
j

p2j
= s2

∑n
j=1 γj = Γ3

F 2

= R0(π) + (Γ−Γ0(π))3

(F−U0(π))2
, F ∈ (F0, F1],

which complies with (2.15) for k = 0.

Now consider the next interval (F1, F2]. It follows that F ∈ (F1, F2] can be written as

F = uπ(1) +
1

s

n∑
j=2

γπ(j) = U1 (π) +
Γ− Γ1 (π)

s
,

as a function of speed s, where s decreases from sπ(1) to sπ(2), so that

s =
Γ− Γ1 (π)

F − U1 (π)

and

H =
γ3
π(1)

u2
π(1)

+ s2
n∑
j=2

γπ(j) = R1(π) +
(Γ− Γ1 (π))

3

(F − U1 (π))
2 ,

as (2.15) for k = 1.

Consider now an arbitrary interval (Fk, Fk+1] for some k, 0 ≤ k ≤ n − 1. It follows that

F ∈ (Fk, Fk+1] can be written as

F =

k∑
j=1

uπ(j) +
1

s

n∑
j=k+1

γπ(j) = Uk (π) +
Γ− Γk (π)

s
,

where s decreases from sπ(k) to sπ(k+1), so that

s =
Γ− Γk (π)

F − Uk (π)

and

H =

k∑
j=1

γ3
π(j)

u2
π(j)

+ s2
n∑

j=k+1

γj = Rk(π) +
(Γ− Γk (π))

3

(F − Uk (π))
2 .

Computing H for all values of k, 0 ≤ k ≤ n − 1, takes O (n log n) time. This proves the

theorem.

2.8 Conclusions and future research

In this chapter, we investigated several scheduling models that combine the well-established

feature of speed scaling and the novel requirement to start jobs immediately at their release
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times; a key feature for modern Cloud computing systems. We considered two objective func-

tions which are both of the min-sum type, one depended on the job completion times, and the

other depended on the job processing speeds. We showed that the single-machine model with

n jobs can be solved in O(n log n) time for two single criterion versions of our problem, Π+

and Π1, or for the most general bicriteria version Π2. Additionally, we showed that the single

criterion version Π+ of the multi-machine model with n jobs and m machines is solvable in

O(n2m) time.

The presented results for immediate start models can be naturally generalized to handle

problems that combine a max-type scheduling objective Fmax = maxj∈N {fj(Cj)} and the

energy component H. For example, for fj(Cj) = Cj or fj(Cj) = Cj − dj , the objective Fmax

becomes the makespan Cmax or the maximum lateness Lmax, respectively.

• For problem Πmax
1 (minimizing energy H subject to an upper bound F on the value of

Fmax), define deadlines induced by a given value of F , eliminate Fmax from consideration

by setting fj(Cj) = 0, j ∈ N , and solve problem Π+ to minimize H + 0 using the

techniques from Sections 2.4 and 2.5.

• As far as problem Πmax
+ is concerned, function Fmax is convex in pj for most popular min-

max scheduling objectives, such as Fmax ∈ {Cmax, Lmax}. Since the energy component H

is also convex in pj , it follows that the objective Fmax + H is convex and its minimum

can be found by a numerical method of convex optimization.

To summarize, our study can be considered as the first attempt to explore fundamental

properties of the novel speed scaling scheduling model with the immediate start requirement.

Future research may elaborate further the applied aspects of our study: the basic system model

can be enhanced to address a range of issues typical for modern Cloud computing systems,

such as heterogeneous physical machines having different speed characteristics and energy usage

functions, introduction of virtual machines with possible allocation of several virtual machines

to one physical machine, the possibility of migrating virtual machines and associated tasks, etc.

Our study may also serve as a basis for the development of online algorithms for problems with

the immediate start requirement. Notice that the online versions of the traditional models of

power-aware scheduling, without immediate start, are proposed by [7], [17], [39], [78], [77].





Chapter 3

Problem II: Energy-Aware

Scheduling

3.1 Overview

In Chapter 2, we have developed mathematical scheduling models that take into account a

key feature of Cloud computing scheduling models: the immediate start requirement. One

drawback of this model is its limited applicability. For example, our scheduling problems are

formulated as offline problems, i.e., it is assumed that all information about the input is known

in advance. In practice, this assumption is only satisfied in specific scenarios. In this chapter, we

develop Cloud scheduling algorithms that are more directly applicable in practice. Throughout

the modeling process, we put importance on applicability and a justification based on the usage

of known scheduling results. In the following, we motivate and outline the scheduling model

developed in this chapter.

Cloud computing has established itself as a fundamental component within modern Internet

infrastructure. It is used by providers to deliver IT services as a utility: customers have access

to on-demand service, enforced by a service level agreement (SLA). In order to stay competitive,

Cloud providers face numerous challenges, with energy-efficiency emerging as a key requirement.

For example, according to the energy efficiency status report 2012 [25], in Western Europe data

centers account for 2% of the total energy consumption and it is predicted that this fraction

will increase to 4% by 2020. Similar figures have been found by the Lawrence Berkeley National

Laboratory for the U.S. [117]: data centers are estimated to have accounted for 1.8% of the

total electricity consumption in 2014 and the total data center energy usage is expected to

increase by 4% from 2014 to 2020.

Job scheduling is a core component in Cloud computing systems. It significantly impacts

numerous aspects including system performance and energy consumption. Although intensively

studied, energy-aware scheduling within data centers still faces numerous challenges that remain

47
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unsolved. First, there are multiple sources that contribute toward the total energy usage of a

data center. The two main contributors stem from computing and cooling components:

(i) computing energy refers to the energy required to operate computing devices; and

(ii) cooling energy refers to the energy required to cool computing devices.

The correlation between computing and cooling energy is of highly complex nature. For ex-

ample, an intuitive approach to reduce energy consumption is workload consolidation, i.e., the

migration of workload from under-utilized machines to other machines, so that idle machines

can be switched off in order to reduce computing energy. However, this approach may lead to

the formation of hot spots within data centers resulting in increased cooling energy [142], [99].

This tradeoff is inherently difficult to model analytically; see [85]. Second, modeling the energy

consumption of a data center is an interdisciplinary task that requires knowledge of computing,

fluid mechanics, and thermodynamics. Third, existing approaches that directly model total

cooling energy are typically restricted to a certain class of data center architectures [85], [51],

[102]. For example, cooling models heavily depend on the data center topology, i.e., the fa-

cility layout, and the physical location of installed cooling devices such as computer room air

conditioners (CRACs). The dependence of cooling energy on the physical locations of cooling

devices will play a key role in the modeling conducted in this chapter.

We propose a framework that allows to conduct efficient energy-aware scheduling with-

out dependencies pertaining to assumptions of the underlying data center infrastructure. The

framework does not make use of analytical models for energy consumption. Instead, the prob-

lem of energy-efficient scheduling is divided into components that can be studied and applied

independently from each other. Each component makes use of data center thermal management,

machine learning, or mathematical optimization theory. Our aim is to develop a framework

that is not restricted to one specific data center topology. To this end, we introduce the con-

cept of a target workload distribution. A target workload distribution is a vector, in which each

component corresponds to a machine indicating what fraction of the total data center workload

should ideally be assigned to the machine. For an arbitrary but fixed type of a data center (i.e.,

a specific size, topology, cooling system, etc.), a recommendation for a target workload distri-

bution, that is expected to be energy-efficient, is given by a system or expert. The scheduler

then assigns tasks to machines so that the actual workload distribution is as close as possible

to the target workload distribution. The expert or system is expected to determine the target

workload distribution based on calculations, previous experience or supporting tools. However,

the expert does not have the opportunity to run any workload in the data center to improve

the quality of the recommendation. Therefore, the target workload distribution may have room

for further improvement. To this end, a machine learning component is embedded within the

framework in order to improve the target workload distribution over time.

In this chapter, we focus on the task allocation component of the framework, i.e., the chal-

lenge of assigning workload to machines such that the actual workload is distributed as close
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as possible to the target workload distribution. We show that the underlying scheduling model

corresponds directly to the generalized assignment problem (GAP). We develop multiple heuris-

tics based on structural properties of the underlying GAP. Finally, we evaluate our scheduling

algorithms by comparing them against (asymmetric) load balancing algorithms through simu-

lation. In the simulation, jobs are modeled as bag-of-tasks (BoT), i.e., a set of parallel tasks

with no dependencies between each other. Our main contributions are listed as follows:

• An infrastructure independent framework for energy-efficient scheduling in Cloud data

centers. The framework does not make any assumptions on the data center infrastructure

and thus, in principle, can be applied to any type of a data center. There is no analytical

modeling of energy required. Instead, energy-efficient scheduling decisions are made based

on a given target workload distribution.

• Linking energy-aware scheduling algorithms in Clouds and the GAP. We abstract away

technical components of a data center which allows us to formulate the scheduling problem

as an integer linear program (ILP). These structural insights enable us to establish a link

to the GAP.

• Algorithm development for the task allocation problem. Our algorithms outperform tra-

ditional (asymmetric) load balancing algorithms.

The rest of this chapter is organized as follows. Section 3.2 discusses related work. In

Section 3.3 the framework of our approach is explained. The system and application model is

introduced in Section 3.5. In Section 3.6 the algorithmic solutions to the scheduling problem

are presented. A simulation-based evaluation is conducted in Section 3.7. Conclusions and

future work are discussed in Section 3.8.

3.2 Related work

The majority of energy-aware scheduling for data centers has addressed the challenge from two

perspectives: reducing computing energy (required to operate computing devises) and reducing

cooling energy (required to keep computing devices at an acceptable temperature). These

challenges have been addressed both in isolation and combined using a variety of different

techniques from different fields. This section gives an overview of some of the relevant work for

each category.

Computing energy can be reduced through workload consolidation [81] and has been inten-

sively studied; see [22], [124], [24]. The problem is typically modeled as a bin packing problem

which is NP-hard. A large variety of heuristics has been proposed over the years; see surveys

[42], [87]. A drawback of workload consolidation is that this approach increases the likelihood

of high temperature hot spots in Cloud data centers which results in higher cooling energy [85].

Therefore this approach only aims at minimizing computing energy but neglects cooling energy.
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Another technique is dynamic voltage and frequency scaling (DVFS) that controls the op-

erating frequency and voltage of a machine to reduce computing energy. This technique has

been investigated both by Cloud computing researchers and practitioners [140], [23], [60], as

well as by mathematicians [3], [136]. Similar to workload consolidation, DVFS only addresses

computing energy but not cooling energy.

Since cooling energy constitutes approximately 38% of the total data center energy con-

sumption [121], alternative approaches that incorporate cooling energy are required. Cooling

energy is of complex nature and depends on various aspects including the installed cooling

system type, data center infrastructure, or the location and the climate zone of the data center

[123]. Computational fluid dynamics (CFD) is a powerful technique that constructs analytical

temperature models of machines within a data center. CFD models have been intensively stud-

ied [85], [49], [125], [120], and have been found to be capable of significantly reducing cooling

energy. However, CFD models come at the cost of high complexity and long modeling time.

Additionally, CFD models cannot be applied to any data center as they require a number of

assumptions about the data center topology; see [28].

The framework proposed in this chapter addresses the drawbacks of CFD models. It con-

sists of several independent components that reduce the overall complexity of the model and

allows practitioners to work on the different components simultaneously. Moreover, the pro-

posed framework does not impose any assumptions on the topology of the data center and can

therefore, in principle, applied to any data center.

3.3 The framework

The core concept of the proposed framework is based on the following observation: a thermal-

aware scheduling policy should not distribute the workload uniformly across all machines. For

example, machines which are located closer to a CRAC can be cooled more energy-efficiently

than machines located further away from cooling devices. As a consequence, machines located

closer to CRACs should receive a higher workload due to the relatively smaller amount of energy

required for cooling. Figure 3.1 illustrates this phenomenon observed in [85] for a data center

consisting of 24 machines with 4 CRACs. Machines located closer to CRACs receive a higher

workload (up to 11.25% of the data center workload), whereas machines located further away

receive a significantly lower workload. Note that a percentage value of 9% does not signify that

the corresponding machine is utilized to 9%, but that 9% of the entire data center workload is

assigned to the machine.

The observation made above suggests that a key aspect of thermal-aware scheduling is

determining an appropriate workload distribution pattern. In all previous works, this is typically

achieved by modeling cooling energy analytically using sophisticated and complex techniques

such as CFD. In this work, we present a framework that does not require complex analytical

models. This is useful as it makes it much easier for developers to implement a scheduling
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Figure 3.1: Workload distribution for 24 machines and 4 CRACs (adapted from [85])

algorithm. Furthermore, our approach is flexible: it can be applied to any type of a data

center, which is not the case for algorithms based on CFD. The framework is illustrated in

Figure 3.2 and consists of the following components.

Scientist: a domain-specific expert that gives a recommendation of an appropriate workload

distribution. The recommendation is used to initiate the improvement component, and

is obtained based on previous experience and through supporting tools.

Task allocation: the scheduling component of the framework is responsible for assigning tasks

to machines such that the workload distribution becomes as close as possible to the target

workload distribution.

Migration: responsible for task migration in order to perform consolidation.

Consolidation: determines how many and which machines should be turned off in order to

save computing energy when the data center utilization is low. When a machine is turned

off, its target utilization fraction is set to zero. The target utilization fractions of all other

machines are then normalized so that they sum up to 1. This way, the framework can be

applied without further adjustments when machines are dynamically turned on and off.

Improvement: enhances the initial workload distribution obtained by the scientist. Improve-

ment of workload distribution can be performed via, e.g., machine learning techniques.

In this work, we focus on the task allocation component. We develop scheduling algorithms

that assign tasks to machines such that the actual workload distribution approximates the

target workload distribution as close as possible.

Formally, for a data center consisting of m potentially heterogeneous machines Mi with

1 ≤ i ≤ m, we are given target utilization fractions ρi ∈ [0, 1] that satisfy
∑m
i=1 ρi = 1. These

target utilization fractions should be such that if all machines Mi are utilized with a fraction of

ρi of the data center workload over time, the total cooling energy is expected to be minimized.
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Figure 3.2: The proposed framework for infrastructure independent energy-efficient scheduling

Note that the target utilization fraction values ρi depend on the data center architecture and

are obtained by the scientist component.

3.4 Metrics for analyzing workload distribution

The problem of distributing the workload such that the actual workload distribution gets as

close as possible to the target workload distribution, can be considered as an asymmetric load

balancing problem. In an asymmetric load balancing problem, each machine is assigned a weight

from [0, 1], where the total weight of all machines sums up to 1. The objective is to distribute

the workload to machines such that each machine receives the fraction of the total workload

in accordance with the assigned weight. As an example, consider a data center consisting

of two machines M1 and M2 with weights ρ1 = 1
3 and ρ2 = 2

3 . Then, machine M2 should

ideally be assigned twice as much workload as M1 at any time. In practice it is infeasible

to achieve and maintain a distribution of the workload that perfectly matches a given target

workload distribution. Therefore, the focus lies on the development of algorithms that achieve a

workload distribution that is, over time, as close as possible to the target workload distribution.

In the literature, there have been proposed a number of metrics to evaluate asymmetric load

balancing algorithms. In this work, we consider the total imbalance level (IBL) [127] and also

propose two new metrics termed total relative deviation (RD) and relative variance (RVar).

The IBL metric is based on absolute comparisons whereas the RD and the RVar are based on

relative comparisons.

Let ρi denote the target utilization for machine Mi and let ρ := (ρ1, . . . , ρm)T denote the

target workload distribution. Further, let Ui(t) denote the actual CPU utilization (in terms of

allocated workload) of Mi at time t, and let U(t) :=
∑m
i=1 Ui(t) denote the total data center

CPU utilization at time t. The average CPU utilization of machine Mi and of the entire data



3.5. SYSTEM AND APPLICATION MODEL 53

center within time interval [t1, t2] are denoted by

U i :=
1

t2 − t1

∫ t2

t1

Ui(τ) dτ and U :=
1

t2 − t1

∫ t2

t1

U(τ) dτ .

We do not incorporate time interval [t1, t2] in the notation of U i and U as no confusion can

occur.

The IBL measures how close the actual workload distribution is to the target workload

distribution and is defined by

IBL :=
1

m

m∑
i=1

(
U i − ρiU

)2
.

The IBL is the average quadratic deviation over time across all machines of (a) the utilization

U i of machines from (b) the target workload distribution ρiU . As the IBL is quadratic, large

deviations are penalized more severely which may not always be desired. The relative deviation

metric overcomes this drawback. To define it, consider

RD(t) :=
1

m

m∑
i=1

|Ui(t)− ρiU(t)|
ρiU(t)

,

which is a relative measurement of the similarity between actual and target workload distribu-

tion at a given time t. The total relative deviation RD is then defined by the average value of

RD(t) over a time interval [t1, t2], i.e.,

RD :=
1

t2 − t1

∫ t2

t1

RD(τ) dτ .

This metric compares two distributions based on first-order comparisons.

Additionally, we also introduce the relative variance (RVar), a second-order metric defined

by

RVar :=
1

m

m∑
i=1

Var (Ui(t))

Var (ρiU(t))
.

Together, metrics IBL,RD, and RVar incorporate absolute and relative comparisons as well as

first- and second order comparisons. Therefore, these metrics provide sufficient information for

an appropriate comparison.

3.5 System and application model

We consider a model where clients submit bag-of-tasks (BoT) applications to a data center.

The data center consists of machines and each machine has multiple cores. Each core operates

exactly one VM. The system model is illustrated in Figure 3.3 and based on the model proposed
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Figure 3.3: The system and application model of the proposed framework

in [37]. Although we consider a similar system model, the focus in [37] is to achieve energy-

efficiency using DVFS techniques, which is substantially different to our research objectives.

Therefore, the work in [37] is not suitable to be compared with our work.

We consider a virtualized IaaS Cloud data center composed of m potentially heterogeneous

machines Mi, 1 ≤ i ≤ m. Machine Mi consists of γi identical cores. We assume that each

VM operates on one core and that different VMs do not share a common CPU core. As a

consequence, each VM has full access to the physical resources of the underlying core (apart

from small amounts dedicated to operational components such as the virtual machine manager).

The VMs on Mi are denoted by Vi`, 1 ≤ ` ≤ γi, and have a CPU capacity of ωi each. Note

that VMs on the same machine have identical CPU capacities, as we assume that cores on the

same machine are identical.

In this work, each job is a CPU intensive BoT application, i.e., a set of parallel tasks with

no dependencies between each other. A job that is being scheduling consists of a set of n

independent tasks Tk, 1 ≤ k ≤ n. The release time r denotes the time at which the job is

submitted to the system and the deadline d denotes the time at which all tasks of the job have

to be completed. If at least one task does not finish by d, then the SLA between provider and

the customer who submitted the job is violated and the job gets rejected. The processing time

of Tk on Mi is denoted by pik and we assume that it can be predicted at the time at which the

job is submitted to the system. These predictions can be obtained through historical analysis,

predicting techniques, or a combination of them, as demonstrated in [100]. Note that pik is only

a predicted value and not the actual processing time, which may appear to be different. Since

all cores are assumed to be identical, the processing time depends only on machine Mi and not

on an individual core. A job is completed once all its tasks are completed. The scheduler has

to assign tasks to VMs such that the common deadline is respected, i.e., all tasks finish before

time d. Tasks assigned to the same VM are stored in a queue and are processed in a first-in,

first-out (FIFO) manner. As a VM may be accessed by applications of different customers, a
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notation description
m the number of machines in the data center
n the number of tasks of a given job
Mi a machine in the data center
γi the number of cores/VMs of Mi

Vi` a VM of Mi, 1 ≤ ` ≤ γi
ωi CPU capacity of each core of Mi

ρi target utilization fraction for Mi

Tk a task of given job, 1 ≤ k ≤ n
d deadline at which all tasks of j have to be completed
pik estimated processing time of Tk on Vi`
δi` estimated remaining busy time of Vi` at time r
πi` weight of Vi`
V set of VMs
Vh set of VMs with hth lowest weight
Ui(t) CPU utilization of Mi at time t
U i CPU utilization averaged over the time horizon
U(t) data center CPU utilization at time t
U data center CPU utilization averaged over the time horizon
fhk desirability of assigning Tk to Vh

Table 3.1: Summary of notation

component for managing access operations is required. To this end, the virtualized IaaS Cloud

data center also supports a PaaS layer that provides a resource management system (RMS).

The RMS coordinates job processing of various users in the data center. When the job is

submitted to the system, a VM Vi` may still be busy processing tasks from previous jobs. We

assume that we can predict the remaining busy-time of Vi`, i.e., the time needed until all tasks

currently hold in the queue of Vi` are processed. The remaining busy-time of Vi` at time r is

denoted by δi`. Similar to pik, the value δi` is only a prediction. The notation is summarized

in Table 3.1.

Jobs are submitted to the system over time. No information is known about a job that

has not yet been submitted. Once a job is submitted, all job and tasks characteristics become

available. Scheduling a single job is an offline problem: all tasks need to be scheduled so that

they meet the deadline of the job. Therefore, the scenario of multiple jobs being submitted

over time can be handled by solving a series of offline problems of the form as described in the

previous paragraph.

3.6 Algorithmic solutions

In this section, we present two algorithms to solve the offline problem that occurs for every

job submission. Our goal is to do this in such a way that, over time, the actual workload

distribution is as close as possible to the target workload distribution. To achieve that, we
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aim at keeping metrics IBL, RD, and RVar as small as possible. Note that the values of these

metrics depend on all jobs within the given time horizon. As a consequence, we do not consider

these metrics as objective functions in the offline problem for a single job.

Both algorithms are based on weights πi` assigned to each VM Vi`. Weight πi` is a heuristic

indicator of how beneficial it is to assign a task to Vi` in order to keep metrics IBL, RD, and

RVar low. In the next section, we describe how the weights are determined. Afterwards, in the

Sections 3.6.2 and 3.6.3, we present two algorithms to solve the task allocation problem that

occurs for each job submission.

3.6.1 Determination of weights

In the following we describe how weights πi` are chosen. First, we define preliminary weights

π′i` :=
`

ρi
(3.1)

for each Vi`. The preliminary weights π′i` give an indication of how beneficial it is to assign

a task to Vi` in order to approximate the target utilization. The lower π′i`, the higher the

indicated benefit.

• `: a task should only be assigned to Vi`, if all VMs Vi1, . . . , Vi,`−1 are already occupied.

Thus, VMs with a lower `-index should yield smaller values of preliminary weights π′i`.

• ρi: the higher the target utilization fraction ρi, the higher the indicated benefit. There-

fore, larger values of ρi should yield smaller values of preliminary weights π′i`.

The actual weights πi` are then determined by a categorization into Λ groups, for a positive

integer Λ. Let π′min and π′max denote the minimal and maximal preliminary weights across all

VMs. We define

πα := π′min +
α

Λ
(π′max − π′min) , for 1 ≤ α ≤ Λ. (3.2)

Then, the weight πi` of Vi` is defined by

πi` := min
1≤α≤Λ

{πα | πα ≥ π′i`} . (3.3)

We present an example for the calculation of weights for an easier understanding.

Example 3.1. Consider a data center consisting of 3 machines M1, M2, M3. The target utiliza-

tion fractions are given by ρ1 = 1
2 , ρ2 = 1

4 , ρ3 = 1
4 . Machine M1 hosts three VMs, V11, V12, V13,

machine M2 hosts two VMs, V21, V22, and machine M3 hosts three VMs, V31, V32, V33. The
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preliminary weights are then given by

π′11 =
1
1
2

= 2 π′12 =
2
1
2

= 4 π′13 =
3
1
2

= 6

π′21 =
1
1
4

= 4 π′22 =
2
1
4

= 8

π′31 =
1
1
4

= 4 π′32 =
2
1
4

= 8 π′33 =
3
1
4

= 12

Thus we have π′min = 2 and π′max = 12.

Let us assume Λ = 5. Then equation (3.2) yields

πα = 2 +
α

5
× 10, for 1 ≤ α ≤ 5.

For every preliminary weight there exists an α, 1 ≤ α ≤ 5, such that the preliminary weight is

equal to πα. As a consequence, the weights πi` coincide with the respective preliminary weights

π′i`, see (3.3).

3.6.2 MTGH: an algorithm based on the GAP

We consider the following ILP formulation of the offline problem for a single job:

minimize

m∑
i=1

γi∑
`=1

n∑
k=1

πi`pikxi`k

subject to

n∑
k=1

pikxi`k ≤ d− r − δi`, 1 ≤ i ≤ m, 1 ≤ ` ≤ γi,

m∑
i=1

γi∑
`=1

xi`k = 1, 1 ≤ k ≤ n,

xi`k ∈ {0, 1}, 1 ≤ i ≤ m, 1 ≤ ` ≤ γi, 1 ≤ k ≤ n.

(3.4)

Here, xi`k = 1, if Tk is assigned to Vi`, xi`k = 0, otherwise. The objective function in (3.4)

minimizes the total weighted processing time of tasks, where the processing time of task Tk on

Vi` is weighted by πi`. The first restriction ensures that tasks respect the common deadline and

the remaining busy-time of the VM they are allocated to. The second restriction ensures that

each task is assigned to exactly one VM. If problem (3.4) is infeasible, i.e., at least one task Tk

cannot be assigned to a VM, job j is rejected as a consequence.

In the following we show that the ILP (3.4) can be reformulated as a generalized assignment
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problem (GAP) [71], [90], which has the following form:

minimize

M∑
h=1

n∑
k=1

ahkxhk

subject to

n∑
k=1

bhkxhk ≤ ch, 1 ≤ h ≤M,

M∑
h=1

xhk = 1, 1 ≤ k ≤ n,

xhk ∈ {0, 1}, 1 ≤ h ≤M, 1 ≤ k ≤ n.

(3.5)

It is easy to make sure that formulation (3.4) can be represented as (3.5), if we introduce

consecutive numbering of VMs:

(
1, 2, . . . , γ1︸ ︷︷ ︸
VMs of M1

, γ1 + 1, γ1 + 2, . . . , γ1 + γ2︸ ︷︷ ︸
VMs of M2

, . . . ,

m−1∑
i=1

γi + 1,

m−1∑
i=1

γi + 2, . . . ,

m∑
i=1

γi︸ ︷︷ ︸
VMs of Mm

)
.

This way, we replace each pair of indices i ∈ {1, . . . ,m} and `i ∈ {1, . . . , γi} by an index

h = h(i, `i) :=

i−1∑
ι=1

γι + `i.

Then we define

πh := πi`i and δh := δi`i ,

and set

ahk := πhpi(h),k, bhk := pi(h),k, ch := d− δh, and M :=

m∑
i=1

γi,

where i(h) is the unique machine index i, 1 ≤ i ≤ m, that corresponds to index h = h(i, `i).

With above substitutions we transformed (3.4) into the GAP (3.5).

As the GAP is known to be NP-hard, we develop an heuristic algorithm. The algorithm

builds upon the well-established heuristic framework MTHG proposed by Martello and Toth

[89]. Note that MTHG is a framework and not an actual algorithm as it contains desirability

parameters that need to be appropriately chosen. The desirability fhk is a heuristic indicator

of how beneficial it is to assign task Tk to Vh. For our problem we choose the desirability as

fhk :=
ch
πh
, (3.6)

where ch is the time between the deadline and the expected completion of all tasks currently

assigned to Vh. Parameter fhk consists of two components.
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• ch: value ch is the expected time between the completion of all tasks currently assigned

to Vh and the deadline. We prefer large values of ch in order to increase the likelihood

that the task meets the deadline.

• πh: the lower weight πh, the higher the indicated benefit of assigning a task to Vh; see

the beginning of Section 3.6.

The MTHG algorithm consists of two phases. In the first phase, unassigned tasks are

iteratively considered to determine a task Tk∗ with maximum difference between the largest

and second largest desirability fhk, 1 ≤ h ≤ M . Task Tk∗ is then assigned to the VM that

maximizes fhk∗ . Note that the problem which arises in phase one is in fact a bin-packing

problem: objects (tasks) need to be assigned to bins (VMs) such that the capacities of the bins

is not exceeded (all tasks assigned to the VMs meet the deadline). In the second phase, the

solution is improved by local improvement exchanges. A pseudocode of our MTHG algorithm

is presented in Algorithm 1.

Algorithm 1: MTHG

Input : a job as bag of n tasks T1, . . . , Tn
Output: a schedule for tasks of the job or decision to reject the job

1 mark all tasks as unassigned;
/* Phase 1: find a feasible solution */

2 while there exist unassigned tasks do
3 foreach k ∈ {1, . . . , n} such that Tk is marked unassigned do
4 Fk := set of VMs for which task Tk is expected to complete before the deadline;
5 if Tk cannot be assigned to any VM, i.e., |Fk| = 0, then
6 reject the job;
7 if Tk can be assigned to exactly one VM, i.e., |Fk| = 1, then
8 ∆k := −∞;
9 else

10 f
(1)
k := largest desirability for Tk across VMs in Fk;

11 f
(2)
k := second largest desirability for Tk across VMs in Fk;

12 ∆k := f
(1)
k − f (2)

k ;

13 end
14 choose Tk∗ as a task with highest ∆k;
15 assign Tk∗ to a Vh in Fk∗ that maximizes the desirability fhk∗ ;
16 mark Tk∗ as assigned;

17 end
/* Phase 2: improve solution quality */

18 for k = 1 to n do
19 reassign Tk to the VM that reduces the objective function value the most;
20 end
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3.6.3 Phase allocation algorithm using LPT and FFD

In this section, we present an algorithm that consists of a general procedure that iteratively

assigns subsets of tasks in phases. A maximum number Λ of phases is part of the input. In

each phase α, 1 ≤ α ≤ Λ, all still unscheduled tasks are considered and are attempted to be

assigned to the subset

Vα := {Vi` | πi` = πα}, 1 ≤ α ≤ Λ,

of VMs (see (3.2) for the definition of πα). This assignment is done by use of a specific algorithm

A which is described later.

In the first phase, i.e., where α = 1, the set of VMs V1 corresponds to the set of VMs that

have the lowest possible weight π1. Tasks of the job are attempted to be assigned to VMs in

V1 using algorithm A. If not all tasks can be scheduled, then in a second phase the remaining

tasks are attempted to be assigned to set V2, again using algorithm A. Similarly to before, the

set of VMs V2 corresponds to the set of VMs that have the second lowest possible weight π2.

This procedure continues until all tasks of the job are assigned or until VΛ (the set of VMs with

the highest weights) was examined and at least one task remains unassigned. In the latter case

the job gets rejected. A pseudocode for this algorithmic framework is presented in Algorithm

2.

Algorithm 2: phase allocation

Input : a job as a bag-of-tasks, algorithm A
Output: a schedule for tasks of the job or decision to reject the job

1 α := 1;
2 while not all tasks Tk of the job are assigned do
3 if there exists a VM in Vα and α ≤ Λ then
4 schedule remaining tasks to VMs in Vα using algorithm A;
5 else
6 reject the job;
7 end
8 α = α+ 1;

9 end

We now present two choices for algorithm A and justify their relevancy.

Longest processing time (LPT) rule: “Consider a VM that becomes available the earliest.

Assign an unscheduled task with the longest processing time to the VM. Repeat until all

tasks are scheduled or until a task cannot be assigned to any VM.”

We choose the LPT-rule for two reasons. First, the LPT is straightforward to implement

and only requires little computation time to process. Second, the LPT-rule has a proven

approximation ratio, if the makespan is considered as the objective function. Algorithm A
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aims to assign as many tasks as possible respecting deadline d. This feasibility-problem with

respect to a common deadline is closely related to the makespan-minimization problem without

a deadline [34]. Therefore, we believe that the mathematically proven approximation ratio is a

valuable indicator for a reasonable scheduling policy. The approximation-ratio for the LPT-rule

is 4
3 −

1
3m in case of identical machines [32] and 19

12 in case of machines of different speeds [47].

Moreover, the LPT-rule is proven to be asymptotically optimal [43], [41].

First fit decreasing (FFD) rule: “Consider a VM that becomes available the latest. Assign

an unscheduled task with longest processing time to the VM. Repeat until all tasks are

scheduled or until a task cannot be assigned to any VM.”

The difference between the LPT-rule and the FFD-rule is that the LPT-rule considers VMs

in order in which they become available for processing, whereas the FFD-rule first considers

VMs in the reversed order. As a consequence, the LPT-rule acts as a load balancer, whereas

the FFD-rule aims at reducing the number of required VMs. It is proven that the FFD-rule

does not occupy more than 11
9 OPT(I) + 6

9 VMs, where OPT(I) is the minimum number of

required VMs in order to schedule all tasks [48].

3.7 Performance evaluation

We conduct a performance simulation using the SEED [52], an event-based simulator that

enables the creation of jobs consisting of multiple tasks for execution on a set of machines. For

the initial target workload distribution, provided by the scientist-component of the framework,

we choose a distribution inspired by the simulation results from [85] which is illustrated in Figure

3.1. Note that although the intention of the framework is to obtain the recommended target

workload distribution by a domain-specific expert, it is also reasonable to take the workload

distribution from [85], illustrated in Figure 3.1, as a “simulated recommendation”.

The data center consists of 24 machines. The number of cores/VMs on each machine is

randomly selected from {2, 4, 8}. Each VM is assigned a CPU capacity ωi which is randomly

selected from {1, 1.25, 1.5} with the restriction that VM on the same machine are assigned the

same CPU capacity. The quantities for CPU capacity have been normalized to make comparison

and interpretation easier.

Probability distributions and parameters in the following have been chosen in accordance

with [37]. Jobs are submitted according to a Weibull distribution with parameters (4.25, 7.86)

which is in accordance with findings from the comprehensive analysis of workload characteristics

conducted in [100]. A job consists of 2W tasks, where W follows a Weibull distribution with

parameters (1.76, 2.11). The actual processing time Pik of task Tk assigned to a VM on Mi

is defined by Pik := 2X

ωi
, where X follows a normal distribution with mean 2.73 and standard

deviation 6.1. The deadline d is modeled by d := r + 2E(X)T , where T follows a normal

distribution with mean 9 and standard deviation 2.2. The estimated processing time pik and
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the estimated remaining busy time δi` are modeled by their respective expected values. All

quantities are measured in minutes and the time horizon of the simulation is 24 hours.

We evaluate the MTHG and the phase allocation algorithm with LPT- and FFD rules as

subroutines. In the phase allocation algorithm, we set the number of phases to Λ = 10. The

evaluation is conducted by a comparison against a load balancing algorithm that assigns tasks

in a round robin manner, as well as against a probabilistic asymmetric load balancing algorithm

that assigns a task to Vi` with probability ρi
γi

if the deadline is met. Probability ρi
γi

is chosen

for two reasons. First, the sum across all VMs sums up to 1:

m∑
i=1

γi∑
`=1

ρi
γi

=

m∑
i=1

ρi = 1.

Second, the probability that a task is assigned to any VM on Mi is equal to the target utilization

fraction ρi:
γi∑
`=1

ρi
γi

= ρi.

This way, Mi is expected to be assigned a fraction ρi of the data center workload over time.

The entire simulation is conducted five times: each time all algorithms are simulated using

the same seed to ensure a fair comparison. Averaged values for each performance metric are

presented in Table 3.2. An illustration of the performance on an individual machine with 8

VMs is given in Figure 3.4.

The results show that our algorithms outperform both the round-robin load balancing and

the probabilistic asymmetric load balancing algorithm for each of the three objectives. As ex-

pected, the round-robin load balancing algorithm has the worst performance with an average

relative deviation (RD) of 187% and an average relative variance (RVar) that is 9.66 times

higher than desired. The probabilistic asymmetric load balancing algorithm improves upon

the round-robin load balancing algorithm, as it takes into account the target utilization level.

This significantly reduces the relative deviation RD to 142% with a slightly increased relative

variance RVar. Our algorithms further improve upon the probabilistic asymmetric load bal-

ancing algorithm. We not only take into account the target utilization levels, but also other

characteristics such as the CPU capacity or estimates of task processing times. As a result, our

algorithms achieve a further reduction of the RD to a level of between 86% and 118%, as well

as a reduction of the RVar to between 6.24 and 7.47. Similar conclusions can be drawn for the

IBL metric.

Finally, we note that although, e.g., a relative deviation of about RD = 86% may appear

substantive, our particular problem is highly restrictive as it contains many constraints. As

a consequence, solutions with a significantly lower RD or RVar value are not likely to exist.

This is further fortified by very high RD and RVar values obtained from the round-robin load

balancing algorithm and the probabilistic asymmetric load balancing algorithm.
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Figure 3.4: Performance illustration on a machine with 8 VMs. The black thin graph is the
desired utilization level of the machine; thick line in color is the actual utilization level.
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IBL RD RVar

Load Balancing 1.29× 108 1.87 9.66

Asymmetric Load Balancing 8.69× 107 1.42 10.6

MTHG 4.70× 107 0.86 6.24

phase allocation (LPT) 7.98× 107 1.06 7.39

phase allocation (FFD) 7.08× 107 1.18 7.47

Table 3.2: Average performance results

3.8 Conclusion and future work

In this chapter, we proposed an infrastructure independent framework for energy-efficient

scheduling in Cloud data centers that does not require complex modeling of energy. The

framework consisted of several components, with the task allocation component being the focus

of this work. In the task allocation component, a scheduler was required to assign workload to

machines such that the workload distribution gets as close as possible to a given target workload

distribution. We developed two algorithms and conducted comprehensive performance evalua-

tion using simulation. The simulation results demonstrated that algorithms yield a reduction

with respect to the round-robin and the probabilistic asymmetric load balancing algorithms

by at least 16.9% = 1 − 1.18
1.42 for the relative deviation (RD), and a reduction by at least

22.67% = 1− 7.47
9.66 for the relative variance (RVar).

Future work consists in elaborating other components of the framework, in particular the

components migration, consolidation, and improvement. Once each component is sufficiently

understood, the next step is to link all components together to build the entire framework.

The entire framework can be further evaluated by use of simulation and, more importantly,

experiments within a Cloud data center.



Chapter 4

Problem III: Resource Boxing

In Chapter 3, we introduced a scheduling model for minimizing the total energy in a data

center, where the total energy consumption consists of the energy required to run and to cool

computing devices. In comparison to most scheduling models suggested in the Cloud computing

literature, our approach is mathematically well-defined and justified based on known results,

e.g., the MTGH framework for the generalized assignment problem and provable approximation

guarantees for (a) the LPT-rule for a closely related makespan minimization problem, and for

(b) the FFD-rule for a closely-related bin packing problem. Moreover, it is more directly

applicable than the scheduling model we presented in Chapter 2. On the contrary, the formal

model in Chapter 2 enabled us to prove optimality for the algorithms in some specific scenarios.

The nature of our work conducted in Chapter 2, and especially in Chapter 3, demonstrates that

even the modeling component on its own is a very challenging task for a mathematician without

a strong background in Cloud computing.

Once a formal and well-defined scheduling model is obtained, the focus can be put on the

development of the actual scheduling algorithms. This task is very familiar to what math-

ematicians normally do and thus they can work on this task (fairly) independently. A final

challenge for mathematicians arises afterwards, in the evaluation. Cloud scheduling algorithms

are usually evaluated through simulation and experiments. It is very important that simula-

tion instances are generated such that typical workflows in Cloud data centers are emulated.

However, this requires domain-specific knowledge which mathematicians often do not have, and

thus this is a complex task on its own. In our work in Chapter 3, we avoided this problem

as we used a suitable Cloud system architecture from the literature [37] so that we could use

the same simulation set up. However, in general one may not find a suitable system archi-

tecture and simulation setup in the literature. Then, one needs to create simulation instances

based on historical data which is of complex structure and does not satisfy all assumptions that

mathematical scheduling models impose.

In this chapter, we address this issue and demonstrate an automated approach that enables

65
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the automatic transformation of complex historical task execution patterns into similar but

simpler structured data that can be used to generate simulation instances for mathematical

scheduling algorithms.

4.1 Overview

Cloud computing has increasingly become an important component within Internet infrastruc-

ture, capable of provisioning application service to millions of users globally. Data centers

composed of hundreds and thousands of interconnected machines require effective scheduling

algorithms in order to satisfy service level agreements (SLA) imposed by users. Scheduling

is a critical component in Cloud computing, reflected by a large body of research proposing

scheduling algorithms with various objective functions ranging from performance [130], [129],

dependability [88], [141], [65], networking [92], [26], and energy-efficiency [115], [58], [124]. These

algorithms are created and validated through formal proofs, simulation, and experiments. The

scheduling research community consist of two groups.

(i) Computer scientists conducting scheduling research in the context of distributed systems,

in particular Cloud computing systems. This research is of more applied nature.

(ii) Mathematicians investigating more abstract scheduling problems that are not bounded by

special features of particular scenarios. Instead, these scheduling problems are relevant

for multiple applications. However, modifications and extensions of scheduling models

and algorithms are usually required. This research is of more theoretical nature.

The research conducted in Chapter 2, scheduling with immediate start of jobs, is an example

of mathematical scheduling research. On the other side, the research in Chapter 3, energy aware

scheduling, is an example of applied scheduling research. As discussed in Section 1.2.5, there is

a big gap between both research communities: they typically use different methodologies, speak

different scientific languages, and come from different backgrounds. These differences bring a

number of challenges for both mathematicians and computer scientists conducting scheduling

research in-between both communities.

One of the challenges mathematicians face lies within a realistic evaluation of their scheduling

algorithms. In the Cloud computing community, a widely-accepted approach to evaluate a

scheduling algorithm is as follows.

(i) Take a data set containing historical task processing patterns from a real Cloud data

center.

(ii) Conduct a simulation of a data center with incoming job requests and schedule the jobs

using the developed algorithm. The simulation instance is adapted from the historical

data set: components such as submission rate, processing time, or resource usage follow

the same, or a similar, distribution as in the historical data set.



4.1. OVERVIEW 67

(iii) Judge the quality of the developed algorithm by analyzing the objective function values

of the obtained schedule. Alternatively, compare the developed algorithm against existing

algorithms by rerunning the simulation using the same seed.

This approach is not straight-forward to follow when evaluating mathematical scheduling

algorithms. An important and strong assumption typically imposed is that task resource de-

mand can be represented by a piecewise constant function [66], [128]. Here, we refer to a task

representation by a piecewise constant function as boxes. As an example, consider Figure 4.1.

The actual task resource demand (CPU utilization) follows a curve of high dynamicity with

no obvious structural properties to exploit. In contrast, mathematical scheduling models are

designed based on greatly simplified assumptions, i.e., the resource demand is assumed to be a

(piecewise) constant function or it is given by a simple analytical formula. Instances simulated

in Step (ii) do not satisfy all assumptions made by mathematical scheduling models and are

therefore not applicable directly.

As a result, there is a need to accurately transfer task processing patterns from real Cloud

computing systems to meet assumptions imposed by mathematical scheduling algorithms. In

other words, there is a requirement to find an accurate representation of processing patterns

that is composed of boxes. Such a technique would therefore allow a direct application of math-

ematical scheduling algorithms to realistic processing patterns. This is not currently possible

as algorithm inputs are not compatible with fluctuation intrinsic to task resource utilization

patterns.

A significant challenge toward bridging this gap is the automated conversion of realistic

system behavior into data that can directly be understood and applied within a mathematical

context. This would allow for

• the evaluation of sophisticated algorithms driven by realistic Cloud operation; and

• enabling a broader mathematical scheduling community a means to understand modern

Cloud system behavior.

The process of converting task patterns into boxes poses a number of challenges, which,

in its current form, requires significant manual effort bespoke to a specific studied system.

Furthermore, which resource conversion method is the most accurate remains unclear.

The goal of this chapter is to propose Resource Boxing, a method for converting realistic

task resource utilization patterns directly into boxes making them directly exploitable for the

evaluation of scheduling algorithms. Resource Boxing is capable of automated conversion irre-

spective of the underlying system architecture, resource type, and task dynamicity. Our main

contributions are as follows.

• Identification of the knowledge gap between theoretical and applied scheduling in Cloud

computing. This represents a serious endeavor within an unexplored research area toward

introducing realistic assumptions from applied scheduling into theory.
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Figure 4.1: Representation of a task processing pattern by a series of boxes

• Investigation and evaluation of four approaches for Resource Boxing. We detail four

algorithms for Resource Boxing using event-based, periodic, and hybrid approaches. Then,

we evaluate their respective accuracy and tradeoffs based on a large-scale production

Cloud data center. Finally, we apply our methods and perform experiments to study the

relationship between resource utilization and power usage.

4.2 Related work

Due to the mostly unexplored nature of the research area, there is limited effort toward con-

verting realistic assumptions of Cloud computing into a theoretical context. As a result, the

body of work can be categorized into three components: modeling Cloud task patterns, applied

scheduling, and mathematical scheduling.

There exist numerous works that attempt to study task patterns within Cloud computing

that have been used in order to enhance scheduling. Mishra et al. [94] classify tasks into qual-

itative categories (small, medium, large) in terms of processing time using k-means clustering.

Using trace data from four Google compute clusters for four days, they construct eight different

classes of tasks, characterizing the boundaries by task durations and resource utilization.

Kuvulya et al. [70] present a statistical analysis of MapReduce jobs from the M45 supercom-

puter cluster to ascertain the statistical characteristics of resource utilization and job patterns.

They provide details pertaining to the number of tasks, job completion rate (jobs for which

all tasks complete without rejection), and average job distribution to machines in the cluster.

They model job completion rate as a Lognormal distribution, and discover that 95% of jobs

complete within under 20 minutes.

Moreno et al. [100] propose a method of analyzing and modeling user and task patterns.

Their approach is applied to a Cloud data center containing more than 12,500 machines over
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a 29-day period of operation. They are able to categorize and capture task resource utilization

patterns through statistical analysis and probabilistic distribution functions, demonstrating

numerous types of resource usage patterns in Cloud computing.

The statistical properties of derived Cloud task patterns have been directly used to construct

assumptions and to evaluate applied scheduling algorithms [128], [101], [108]. While these works

can be leveraged by the research community to enhance scheduling, derived task utilization

patterns are predominately based on coarse-grain statistics or probabilistic models that produce

dynamic resource utilization, and thus cannot be readily translated into a box format as inputs

for theoretical scheduling.

In terms of mathematical research, there have been numerous scheduling models proposed for

distributed systems. Rahman et al. [112] propose a scheduling model for workflow applications.

They represent the workflow application as a directed acyclic graph in which vertices correspond

to tasks and arcs to precedence dependencies between the tasks. The goal is to minimize the

total estimated cost for running required services while assuring that the application finishes

prior to a given deadline.

Yin et al. [139] also consider the problem of assigning application tasks to different processors

such that the cost for the system is minimized and constraints limiting resource usage are

satisfied. They incorporate a penalty in the objective function to avoid solutions with too

many tardy tasks. Due to the NP-hardness of the problem, a particle swarm optimization

algorithm is presented to find high-quality solutions.

Jiang et al. [66] consider the problem of concurrent workflow scheduling in high performance

computing resources (HPC Clouds). They present a scheduling method that aims to minimize

the total cost in terms of the computation cost, the communication cost, as well as the earliest

start time.

Li [24] studies the NP-hard resource scheduling problem based on a SLA. The SLA incorpo-

rates restrictions based on throughput, latency, and cost. Using stochastic integer programming

techniques, an optimal solution is presented that satisfies all SLA constraints and minimizes

the total cost.

Numerous additional works for metaheuristic scheduling techniques for Cloud computing

also exist as surveyed in [128], detailing metaheuristics for Cloud scheduling problems from a

theoretical point of view. Furthermore, while numerous novel approaches are presented, it is

also highlighted that assumptions and objectives are often not entirely clear in the context of

Cloud computing, and frequently differ between each study.

4.3 The Resource Boxing algorithm

The objective of our approach is to convert realistic task resource utilization patterns in Cloud

computing into boxes that can be directly understood and integrated into scheduling algo-

rithms. Using historical data is effective for adapting and improving scheduling algorithms,
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Figure 4.2: System model of Resource Boxing

as demonstrated in [24]. Figure 4.2 depicts a high level system model of Resource Boxing, an

automated approach for this entire process. The system model of Resource Boxing consists of

two main components.

System characterizer: raw trace data of machine resource utilization patterns are studied to

distinguish unique task processing patterns for each machine within the Cloud computing

system. The system filters and extracts key parameters of interest from the raw trace data

in order to collect task ID, task utilization, and the respective timestamp of occurrence.

This allows to significantly reduce the data size of the output file.

Resource convertor: an algorithm is applied to the filtered data for task resource patterns

to conduct Resource Boxing in an automated way. It is possible to select the type of

algorithm for performing conversion, as well as to configure its parameters dependent on

administrator requirements. The output of this component is the approximated resource

utilization of the machine in box-format, stored within a database, and visualized for

analysis and exploitation.

Within the next section we propose four conversion algorithms to perform Resource Boxing.

4.3.1 Definitions and notation

Resource Boxing is the transformation of complex and dynamic resource patterns of tasks into

a series of boxes. Here, we focus on CPU utilization, however the transformation is directly

applicable to other resources such as memory, disk usage, or network.
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We start by defining the notation for a task Tk assigned to a machine Mi. The starting time

of Tk is denoted by Ski and corresponds to the time at which Tk is assigned to Mi. Note that

this includes migration and rescheduling of Tk to Mi due to failures or eviction policies within

the scheduler. Similarly, the completion time is denoted by Cki and corresponds to the time

at which Tk leaves Mi. This can be due to completion of processing of Tk, migration of Tk to

another machine, as well as task eviction or failure. The CPU utilization pattern of task Tk is

characterized by a time sequence

tk = (tk1, tk2, . . . , tkNk)

and by a sequence of CPU utilizations

uk = (uk1, uk2, . . . , ukNk).

Here uk` represents the CPU utilization at time tk` for 1 ≤ ` ≤ Nk, where Nk is the number of

measurements available for task Tk. Both sequences tk and uk are part of the input for Resource

Boxing. An update point of task Tk is defined as a timestamp contained in tk at which the

height of the box-representation for task Tk changes. The set of update points for task Tk is

denoted by Υk. Timestamps Sk = Ski = tk1 and Ck = tkN are always considered to be update

points in the context of Resource Boxing. The set of update points for the example in Figure

4.1 is given by {0, 2, 4, 8, 10, 16}. Having introduced the notation, we explain how to determine

the box height at an update point and how to select the set Υk of update points.

4.3.2 Box height determination

Consider a CPU utilization pattern with utilization sequence uk, time sequence tk, and set Υk

of update points. The j-indices of update points υkj ∈ Υk are assumed to be in accordance

with the order in which υkj appear in tk. For update point υkj we distinguish the following

three cases.

Case j = ‖Υ‖: the update point coincides with the last timestamp, i.e., the completion time

Ck, and therefore no further box is created.

Case 1 < j < ‖Υ‖: the condition j > 1 implies that the update point υkj is not the start-

ing time Sk = υk1 of Tk. Therefore, update point υk,j−1 exists and the time interval

[υk,j−1, υkj) is non-empty. The height of the box in the next interval

[υkj , υk,j+1] = {t | υkj ≤ t < υk,j+1}

is then calculated as the weighted mean of recorded CPU utilizations of each timestamp

in [υk,j−1, υkj), where the respective weight is the time difference between the actual and

subsequent timestamp.
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Case j = 1: the update point coincides with the starting time rk, thus taking the weighted

average CPU utilization over the previous time interval is not possible. Instead, the height

of the box for time interval [υk1, υk2] is chosen using an estimator. A simple choice for

an estimator is the CPU utilization uk1 at time tk1 as illustrated in Figure 4.1. It is also

possible to use historical data, prediction techniques [46], [134], or a combination of both

to achieve a more accurate estimator for tk1, as found in [100]. However, the choice of

the estimator for that single time instant will not have a significant impact on the overall

accuracy since only the first box is affected.

4.4 Algorithmic approaches

In this section, we propose four algorithms, each of which uses a different logic for selecting

the set of update points for task Tk on machine Mi. It is worth noting that each approach is

capable of Resource Boxing multi-tenant machines, i.e., machines which process multiple tasks

simultaneously. The four resource conversion algorithms that we propose are as follows.

Time zero: Resource Boxing is performed only at the very beginning of task processing within

the machine and no further box updates are performed. Therefore, for the time zero

algorithm the set Υ0
k of update points contains only the starting and completion time:

Υ0
k := {Sk, Ck}.

As shown in Figure 4.3(a), the box height does not change irrespective of task utilization.

This approach would appear to be effective in the event of very stable task patterns since

updating would result in relatively small changes.

Event-based: Resource Boxing is based on a reactive approach to changes within the machine

environment. In other words, updates are performed when other tasks different from

Tk, are assigned or completed; see Figure 4.3(b). Such an approach has been used for

scheduling decisions in [94] under the assumption that significant alteration to utilization

patterns occur due to event changes on the machine. In this context, an event is defined

as the timestamp at which a task is assigned to, or completes within, Mi. Therefore,

for the event-based algorithm, the set ΥE
k of update points consists of all time points in

[Sk, Ck] at which tasks arrive or leave the machine, i.e.,

ΥE
k := {t | Sk ≤ t ≤ Ck, t is task arrival or completion time on Mi}.

Note that this definition implies Sk, Ck ∈ ΥE
k since times Sk and Ck are the task arrival

and departure of task Tk, respectively.

Interval-based: updates are periodically performed at fixed time intervals as shown in Figure

4.3(c). The interval is determined by periodic updates at every L time units, where L
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(a) (b)

(c)

Figure 4.3: Resource Boxing algorithms: (a) time zero, (b) event-based, and (c) interval-based

is a configurable input parameter determined by the system administrator. This allows

Resource Boxing to operate in a coarse-grained or fine-grained fashion, irrespective of the

machine status and the number of tasks. Therefore, for the interval-based algorithm the

set Υ
I(L)
k of update points is given by

Υ
I(L)
k := {t | t = Sk + aL, a ∈ N0, t ≤ Ck} ∪ {Ck}.

Note that Sk, Ck ∈ Υ
I(L)
k .

Hybrid approach: it is possible to combine the event-based and interval-based approaches

into a single algorithm. This allows to capture sudden changes to the task composition

within a machine whilst updating dynamic changes of long running tasks during extended

periods of no event occurrence. Similar to interval-based, parameter L is configurable.

The set Υ
H(L)
k of update points for the hybrid approach is simply the union of update

points from the event-based and interval-based algorithms:

Υ
H(L)
k := ΥE

k ∪Υ
I(L)
k .

Note that since Sk, Ck ∈ ΥE
k and Sk, Ck ∈ Υ

I(L)
k , we also have Sk, Ck ∈ Υ

H(L)
k .



74 CHAPTER 4. RESOURCE BOXING

4.5 Algorithm evaluation

4.5.1 Metrics to measure similarity

In order to analyze the accuracy of our proposed algorithms for Resource Boxing, we first define

a good metric for the similarity between Cloud resource patterns and their representation as

boxes. As Resource Boxing can be agnostically applied to various resource utilization patterns,

it is unlikely that there is a single metric that can be considered as the most accurate one.

For this reason, we propose several metrics that we will use later in the evaluation for the four

algorithms.

Consider a fixed machine Mi over the time horizon given by time sequence

t = (t1, t2, . . . , tN ).

Sequence t contains all timestamps of all tasks that are processed on Mi at one point. We

define the cumulated resource utilization sequence

U = (U1, U2, . . . , UN ),

where U`, 1 ≤ ` ≤ N , is the total resource utilization of Mi at time t` by all tasks processed by

Mi at this time instant. Similarly, we consider the cumulative box height sequence

B = (B1, B2, . . . , BN ),

where B`, 1 ≤ ` ≤ N , is the aggregated height of boxes at time t`. The following metrics are

used in the evaluation of Resource Boxing.

Absolute deviation: this metric calculates the weighted sum of the absolute difference be-

tween cumulative resource utilization and box height for machine Mi over all time inter-

vals. The weighting is based on the length of the intervals:

1

tN − t1

N−1∑
`=1

(t`+1 − t`)|U` −B`|.

Note that since there are N timestamps and only N−1 intervals, the difference |UN−BN |
is not taken into account.

Relative deviation: this metric calculates the weighted sum of the relative difference between

the cumulative resource utilization and box height for machine Mi over all time intervals.

The weighting is also based on the length of the intervals:

1

tN − t1

N−1∑
`=1

(t`+1 − t`)
|U` −B`|

U`
.
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As before, the difference |UN −BN | is not taken into account.

Ratio of averages: let U and B be the average cumulative resource utilization and the average

cumulative box height, respectively, i.e.,

U :=
1

N

N∑
`=1

U` and B :=
1

N

N∑
`=1

B`.

Then the ratio of averages is defined by B/U. This metric is useful to check whether

Resource Boxing is overestimating or underestimating the actual resource pattern on

average.

Ratio of variances: let Var[U] and Var[B] be the sample variances of the cumulative resource

utilization and the cumulative box heights, respectively. Then the ratio of variances is

defined by
Var[B]

Var[U]
.

This metric can be used to verify that the variance of the box approach is close to the

variance of the original data.

Ratio of standard deviations: this metric is defined by√
Var[B]√
Var[U]

.

It can be used to verify that the standard deviation of the box approach is close to the

standard deviation of the original data.

4.5.2 Resource Boxing evaluation with production data

In this section, we apply Resource Boxing to the updated second version of the Google Cloud

tracelog [55] to analyze the algorithm accuracy. The Google Cloud tracelog is a data set

containing performance information of 12,580 machines, over 25 million tasks, and 930 users in

a Google data center for 29 full days of operation. This data contains information about both

CPU and memory utilization of tasks on machines normalized between 0 to 1. Each record

refers to the average utilization over a period of typically five minutes.

In our analysis we have randomly selected 150 machines of various architectures from the

data set and automatically extracted the following parameters: task ID (comprising JobId and

taskindex), timestamp, CPU utilization, and machine ID from the task resource usage table

over the entire 29 days. We have applied Resource Boxing to the CPU utilization patterns of

each machine. All four conversion algorithms have been applied; parameter L for the interval-

based and hybrid approaches is chosen from {5, 10, 15, 20, 25, 30} (measured in minutes). Figure

4.4 and Figure 4.5 show a graphical comparison between real machine CPU utilization over three
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(a) (b)

Figure 4.4: Day 3-6 utilization patterns of machine with ID 257408789: (a) real CPU utilization,
(b) the output of the time zero algorithm

(a) (b)

Figure 4.5: Day 3-6 utilization patterns of machine ID 32915063: (a) real CPU utilization, (b)
the output of the event-based algorithm

days comparing two Resource Boxing algorithms, with each color representing a unique task.

It is observable that visually these patterns are similar and that the event-based algorithm is

capable of capturing the fluctuation of resource usage. Clearly, the plots visually demonstrate

that the event-based approach is more accurate than the time zero algorithm.

Figure 4.6 provides details of the absolute deviation of Resource Boxing using empirical

data from all 150 machines, respectively. It is observable that with the exception of the time

zero algorithm, all resource conversion algorithms yield high quality solutions with an absolute

deviation of less than 8% and a mean of less than 3%. The reason for the large deviation for

the time zero algorithm is due to the fact that the height of each box remains constant and

cannot capture fluctuations in resource usage. The hybrid approach results in the lowest error

rate of less than 4% and a mean of approximately 2.5%. However, as expected, the hybrid

approach also introduces the largest number of update points; see Figure 4.7 and Figure 4.8.

This is an important consideration within the context of large-scale Cloud computing systems,

since heavy network use to transmit data and computation of Resource Boxing can potentially

have a detrimental effect on the network performance of the system.

As discussed previously, interval-based Resource Boxing enables the control of the number
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Figure 4.6: Absolute error deviation for all resource conversion algorithms

Figure 4.7: Number of update points per algo-
rithm

Figure 4.8: Parameter L sensitivity
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of update points. We observe from Figure 4.8 that there exists a negative correlation between

the number of update points and the error rate for Resource Boxing accuracy. This allows

for system administrators to select an appropriate L-value, dependent on accuracy required,

or even dependent on the current utilization of the system, i.e., low levels of cluster usage can

allow for finer grained data collection. Furthermore, this is an important consideration for

online scheduling, requiring rapid decision making for effective task allocation. On the other

hand, the time zero algorithm only requires a single update point to calculate the box and

results in an error rate of up to 10 − 15%. While the hybrid algorithm achieves the highest

accuracy, from the analysis it is observable that interval-based Resource Boxing is capable of

achieving a high level of accuracy whilst keeping the number of update points at an acceptable

level. Moreover, the number of update points is controllable through parameter L.

The analysis of a Cloud computing system demonstrates that it is possible to accurately

convert real task patterns into boxes applicable for scheduling. Specifically, we are capable of

capturing deviation in task processing in multi-tenant environments, and the start and comple-

tion of tasks automatically. However, it is worth highlighting that although there exists dynamic

change in resource utilization patterns over the 29 day period, task patterns are observed to be

relatively stable per individual task as analyzed in [130], and that the CPU utilization from the

Google tracelog is a five minute aggregate, resulting in increased algorithm accuracy. Therefore,

it is necessary to study Resource Boxing at much higher fidelity of resource utilization patterns,

with a time difference of significantly less than 5 minutes between each timestamp.

4.6 Validation and application

In this section, we detail a scenario to which Resource Boxing can be applied in order to study

and improve scheduling within Cloud computing.

We use Resource Boxing to investigate whether it is possible to translate empirical energy

profiles into inputs for optimization algorithms. We conducted an experiment to collect the

power profiles of a DELL D3400, Intel Core 2 Quad CPU @2.83GHz desktop computer running

Debian Ubuntu over a period of 450 seconds. We developed a program in C++ to emulate

multiple tasks with resource usage patterns.

Each task was generated such that it has the following life cycle.

(i) The task is generated at time t = 0. The total life time L of the task is chosen randomly

from interval [150, 450]. Go to step (ii).

(ii) There is a 30% probability that the task is put into sleep mode for s seconds, where s is

randomly selected from [0, 250]. If the task is put to sleep, set t = t+ s. Go to step (iii).

(iii) If t ≥ L, go to step (iv). Otherwise, select a number δ randomly from [15, 25]. The CPU

utilization of the task in interval [t, t + δ] is then artificially forced to a constant, yet

randomly chosen, level. Set t = t+ δ and repeat (iii).
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(a) (b)

(c)

Figure 4.9: Machine resource patterns for (a) actual CPU usage, (b) the output of the event-
based algorithm, and (c) real power consumption

(iv) The task is killed and ceases processing.

By using a Bash script we recorded and extracted the CPU utilization of every task using the

“top”-command and its respective timestamp. It is possible for the task process to be recorded

as 0 due to low scheduling priority (observable within production systems) [135]. Therefore,

we collected the average record for each second and task, which provides a more realistic CPU

utilization.

Using Voltech PM1000+ power meter we collected the machine power consumption and

obtained automated measurements of the actual power consumption of the machine throughout

the experiment. This provided us with exactly one measurement per second for the power

consumption (measured in Watts).

Then, we applied four Resource Boxing algorithms to the CPU utilization pattern of tasks

and analyzed their accuracy. Figure 4.9 gives a graphical comparison between the real CPU us-

age (Figure 4.9(a)) and the box representation using the event-based algorithm (Figure 4.9(b)).

The task behavior is accurately represented every second with an error rate of less than 1.08%.

We exploit the obtained Resource Boxing approximation to obtain a formula for calculating

machine energy consumption and measure its closeness to the actual energy recorded. Modeling
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the power as a linear function of the CPU utilization is widely recognized in the literature [23],

[64]. Note that the linear model for energy consumption is different to the model studied in

Chapter 2, in particular in (2.5), where the energy consumption is represented as a quadratic

function of the machine speed. From the data produced in the experiment we construct an

affine linear function P with parameters a and b as follows:

P (U) := a+ bU, (4.1)

where U is the processor utilization and P (U) is the power consumption function. In order to

determine suitable values for a and b, we conduct a linear regression analysis based on the data

we recorded previously with the Voltech PM1000+ power meter. This analysis yields a = 105.7

and b = 64.1, and therefore the power function reads now as follows:

P (U) = 105.7 + 64.1U.

We use this formula to calculate the energy consumption based on both the recorded CPU

utilization levels and the Resource Boxing approximation. The energy consumption is found by

integrating power over time. Our analysis findings shows that the actual energy consumed by

the machine is 57 kWs per experiment, with less than a 1% error rate when applied to Resource

Boxing. This shows that the predicted energy comes very close to the actual consumed energy,

indicating that using Resource Boxing can successfully capture realistic machine power usage.

As a consequence, we have demonstrated that Resource Boxing is capable of providing realistic

instances for power-aware scheduling models.

4.7 Conclusions and future work

In this chapter, we have presented Resource Boxing - an approach for translating realistic

resource utilization patterns of Cloud computing tasks into inputs that are usable by theoretical

scheduling algorithms. We have identified a knowledge gap which exists between theoretical

and applied scheduling, and have developed an automated technique for approximating real

Cloud utilization by a box pattern. Our conclusions are summarized as follows.

Real task patterns can be directly converted to be used as input for mathematical scheduling. We

demonstrate from analysis of production trace data and experiments that it is possible to

create box approximations of diverse task processing patterns within multi-tenant Cloud

machines, with less than 3% error rate in absolute deviation.

Interval-based Resource Boxing is highly effective. In terms of accuracy, number of update

points, and computation time, it appears that the interval-based algorithm is the most

effective approach in our case studies. However, this algorithm requires a system admin-

istrator to manually specify the time period between update points which may not be
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always possible or desired. For such cases we recommend using event-based Resource

Boxing since it has an acceptable accuracy and requires no input parameters.

Conclusions for power-aware scheduling models derived from real task patterns and their box-

representations are in line with each other. This indicates that the usage of Resource

Boxing for evaluating power-aware scheduling models is justified. It also suggests that

Resource Boxing is a promising tool for evaluating scheduling models with potentially

different objective functions.

Future work includes introducing more extreme workflow patterns to evaluate the accuracy

of Resource Boxing, as well as evaluating numerous algorithms by using the derived boxes from

this analysis. Additionally, it is interesting to explore if Resource Boxing works fine with all

objective functions or if there are objective functions for which the box-representation may yield

misleading conclusions when used by a scheduling algorithm. Further, an important extension

of Resource Boxing consists in directly applying the approach to perform online decision making

using mathematical scheduling algorithms within real Cloud computing systems. Finally, there

is the opportunity to develop Resource Boxing as a software tool that acts as a workload

generator creating boxes based on realistic task behavior. These workloads could then be

downloaded and used by scheduling researchers and it would enable them to validate their

scheduling algorithms based on real-world instances.
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Power Line Routing
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Chapter 5

Problem IV: Approximation of

Shortest Paths in Regular Grids

In this part of the thesis we address the powerline routing problem. The powerline routing

problem consists of sub-problems from different domains. One of these sub-problems is an

optimization problem that is usually formulated as a shortest path problem. Research on

powerline routing problems is typically conducted by electrical engineers and by geographic

information systems (GIS) researchers. As a consequence, the optimization problem is often

addressed with techniques that leave room for improvements.

The goal of Chapters 5 and 6 is to improve existing optimization techniques for powerline

routing. To this end, we derive analytical results for the underlying geometric shortest path

problem in this chapter. This work will serve as theoretical foundation for powerline routing

algorithms that will be developed and applied to real-world data in Chapter 6.

5.1 Introduction

Shortest path problems on regular grids, i.e., tessellations of the Euclidean space, have a long

history of study. Most research has been focused on the two-dimensional case for which three

types of regular grids exist: triangular, square, and hexagonal. The scope of associated shortest

path problems is very broad: over the years numerous application domains have evolved such

as in autonomous vehicle control planning [69], [106], the gaming industry [44], [9], powerline

routing [1], [98], [72], or in GIS [93], [40]. Depending on the application, different variations

of shortest path problems are considered. For example, in the context of gaming or automatic

vehicle planning, one is usually interested in finding a shortest path traversing along the borders

of grid cells or even a path that may traverse along any continuous curve between two arbitrary

points. In other applications, such as in powerline routing, one usually seeks a path that

traverses via straight segments connecting center points of grid cells.

85



86 CHAPTER 5. APPROXIMATION OF SHORTEST PATHS IN REGULAR GRIDS

In this chapter, we study shortest path problems on regular grids that are relevant for

powerline routing. Given two points s and t in a geographic area with respective terrain

characteristics, the task is to find a route from s to t such that the cost of building a powerline

along that path is minimized. In order to discretize the problem, the geographic area is overlaid

with a regular grid and each cell of the grid is assigned a positive integer weight. The path

cost is calculated as the sum of weights of grid cells which the path goes through, taking into

account the Euclidean length of the intersection with the cell. As an example, assume a path P

crosses three cells c1, c2, and c3 with weights w1 = 5, w2 = 3, and w3 = 2, respectively. Further,

assume that the Euclidean lengths of P in cells c1, c2, and c3 are |P (c1)| = 0.5, |P (c2)| = 1,

and |P (c3)| = 0.5. Then, the length of P is given by 5× 0.5 + 3× 1 + 2× 0.5 = 6.5.

A typical approach is to restrict the set of feasible paths to paths that consist of linear

segments connecting center points of grid cells. Square and hexagonal grids are preferred to

triangular grids; one main reason for this is that triangles in a triangular grid are required to

have two different orientations [27]. The task of providing cell weights accounting for terrain

characteristics is done by means of GIS. As such, the subject of this work falls into the category

of least-cost path analysis, a sub-discipline of GIS.

The literature on shortest path problems on grids can be categorized by various factors

including (a) what is considered as a feasible path, (b) regular versus irregular grids, or (c)

arbitrary-weight versus unit-weight grids. All these problems are special cases of the weighted

region problem introduced by Mitchell and Papadimitriou in 1991 [96]. Since then, multiple

approximation algorithms for the weighted region problem have been proposed; see survey [29].

In the weighted region problem, we are given a weighted planar polygonal subdivision consisting

of a set of faces, edges, and vertices. Every face is assigned a non-negative (or infinite) weight,

specifying the unit cost of traveling in the interior of the face. Similarly, each edge is assigned

a non-negative (or infinite) weight, specifying the unit cost of traveling along the edge. The

task is to find a shortest path between a given source point and a given destination point. The

length is calculated as the sum of weighted sub-path lengths through each face and along each

edge. A path is allowed to follow an arbitrary continuous curve. However, the consideration can

be limited to non-self-intersecting and piecewise linear paths. For the weighted region problem,

the authors of [96] provide a (1+ε)-approximation algorithm, and prove that the algorithm has

time complexity O(m8L) and space complexity O(m4), with L = O
(

log mNwmax

εwmin

)
, where m

is the number of edges, N is the maximum integer coordinate of any vertex in the underlying

graph, wmax and wmin are the maximum and minimum integer weights assigned to the faces,

and ε > 0 is an error tolerance specified by the user. Despite this potentially high complexity,

the algorithm is expected to perform well for certain types of applications. However, there

exist many scenarios with stricter requirements in terms of time and memory (e.g., in powerline

routing or robotics) that require alternative approaches.

In the context of irregular grids, a common approach is to divide each face into triangles

to obtain a triangulation. Shortest path problems on triangulations are very popular and have
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(a) (b) (c)

Figure 5.1: Neighborhood types for (a) the von Neumann square grid, (b) the Moore square
grid, and (c) the hexagonal grid

many applications such as autonomous robotics [122], [80]. For these applications the well-

known A∗-algorithm is the gold standard approach, as it is easy to implement and typically much

faster than the classical Dijkstra’s algorithm. Additionally, there have been many algorithms

developed that are variations of the classic A∗-algorithm; see survey [113].

This work focuses on regular grids. Our motivation to study regular grids is twofold. On

the one side, it is a common approach in GIS to capture geographic data by use of regular grids.

On the other side, the regular structure allows for the development of faster and less memory

intensive algorithms as we will demonstrate in Chapter 6. These are two main reasons why

regular grids are ubiquitously used in powerline routing.

Shortest path problems on regular grids are typically formulated as follows: given a source

point and a destination point, which are assumed to be corner points of cells, the task is to find

a shortest path that traverses along the borders of the grid cells, connecting the source point

with the destination point. In this work, we investigate a slightly different problem where the

roles of corner points are replaced by center points of cells, i.e., we seek a shortest path from the

center of the source cell to the center of the destination cell, where the path traverses between

centers of cells. The reason why we consider the problem with center points (rather than

corner points) as connecting points is because this study serves as the theoretical foundation

for powerline routing: an application domain where shortest paths are traditionally modeled to

connect center points of grid cells.

The concept of a neighborhood is uniquely defined for the hexagonal grid; see Figure 5.1(c).

For a square grid, there are two types of neighborhoods: the von Neumann neighborhood (4

neighbors per cell) and the Moore neighborhood (8 neighbors per cell); see Figures 5.1(a) and

5.1(b).

The main contribution of this work is the introduction and the analysis of the so-called

k-neighborhood in regular grids. With k as a free parameter, the k-neighborhood provides

flexibility to handle the tradeoff between (a) solution quality, and (b) computation time and

memory requirement of algorithms. The standard model typically used in the literature is the

special case obtained for k = 1 (see Figure 5.1). We consider the square grids (both the von

Neumann and the Moor grid) and the hexagonal grid. For s and t being centers of grid cells,

we consider the problem of finding a shortest s − t path consisting of linear segments that
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(a) (b) (c)

Figure 5.2: The 3-neighborhood for (a) the von Neumann square grid, (b) the Moore square
grid, and (c) the hexagonal grid

connect centers of grid cells. However, in contrast to the standard model where k = 1, we also

allow values k ≥ 2. Then, segments do not necessarily have to connect centers of neighboring

cells, but can also connect centers of cells that can be reached in at most k moves in allowed

directions; see Figure 5.2 for an illustration of the 3-neighborhood for each grid type.

We conduct an approximation ratio analysis comparing (a) the length of a shortest path

using the k-neighborhood with (b) the length of a shortest path using the n-neighborhood,

i.e., the length of a shortest path where a segment is allowed to connect any two cells in

the entire grid. The focus of this work is on the unit-weight case for which we first give a

characterization of shortest s − t paths. This allows us to identify shortest s − t paths that

have a simple geometrical structure. The geometrical structure is used to construct worst-case

instances that yield (asymptotically) tight approximation ratios for each grid type and arbitrary

k. For the weighted case, we show that a path using the 1-neighborhood can be constructed

to approximate a given shortest s − t path using the n-neighborhood, such that the deviation

does not become too large. This results in constant approximation ratios for the Moore square

grid and the hexagonal grid if k = 1. It is interesting that a constant approximation ratio

exists that does not depend on the grid weights. Moreover, we show that, on the contrary,

no constant approximation ratio exists for the von Neumann square grid. Finally, we consider

arbitrary weight grids with the property that the weight of any two neighboring cells does not

change by more than a factor of 1+η, where η is a given non-negative parameter. This property

is a natural assumption in many applications including powerline routing, where usually the

characteristics of the area covered by the grid change gradually and big changes only occur

sporadically. We derive improved approximation ratios for all three grid types if k = 1.

Formally, we consider a regular grid C consisting of n cells ci, 1 ≤ i ≤ n. The side lengths

of each cell are assumed to be equal to 1, resulting in dimensions as illustrated in Figure 5.3.

A positive weight wi is assigned to each cell ci ∈ C. We assume that both locations s and t lie

in the centers of cells and, without loss of generality, we assume that s is located in the origin
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(a) (b)

Figure 5.3: Dimensions of a cell in (a) a square grid and in (b) the hexagonal grid

Figure 5.4: Segment σ94 connecting c9 with c4, where Cinner
94 = {c9, c7, c4} and Cside

94 =
{c6, c10, c3, c8}

of the Euclidean plane. The cells containing s and t are denoted by cs and ct, respectively.

A segment σij is the part of a straight line that connects the centers of cells ci and cj . Let

σ
(`)
ij be the subsegment that consists of the intersection of σij and cell c`. Define Cside

ij as the

set of cells which have one side belonging in full to σij , and Cinner
ij as the set of cells crossed

by σij in the interior, see Figure 5.4 for an example of a segment connecting c9 with c4 such

that Cinner
94 = {c9, c7, c4} and Cside

94 = {c6, c10, c3, c8}. The weight of σij is denoted by ‖σij‖ and

calculated as

‖σij‖ :=
∑

c`∈Cinnerij

w`|σ(`)
ij |+

∑
c`∈Csideij

w`
2
|σ(`)
ij |, (5.1)

where |σ(`)
ij | is the Euclidean length of subsegment σ

(`)
ij ; see [40]. Therefore, the length of σij

is the sum of weighted Euclidean lengths of the subsegments of σij . The first term in (5.1)

accounts for cells c` ∈ Cinner
ij that are crossed by σij in the interior of c`, that contribute w`|σ(`)

ij |
to ‖σij‖. The second term in (5.1) accounts for cells c` ∈ Cside

ij that have one side fully belonging
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to σij . For the latter cells, |σ(`)
ij | is weighted by w`

2 since σ
(`)
ij coincides with borders of exactly

two cells in Cside
ij .

An s− t path is a sequence of segments connecting s with t, where each segment connects

centers of cells by a straight line. The length of a path is given by the sum of the lengths of its

segments.

Definition 5.1. Let G = (V,E) be an undirected weighted graph. The vertex set is given by

V = {v1, . . . , vn}, where vertex vi ∈ V is associated with the center of cell ci ∈ C. The vertices

corresponding to cs and ct are denoted by vs and vt, respectively. Let ci and cj denote two

distinct cells that correspond to vertices vi and vj . The edge set E contains all possible edges

that are non-divisible: the edge {vi, vj} ∈ E connecting vi and vj is called non-divisible if the

segment σij connecting the centers of ci and cj does not go through the center of any other

cell. The weight ‖σij‖ as defined in (5.1) is assigned to each edge {vi, vj} ∈ E.

Note that omitting divisible edges does not increase the length of a shortest path since each

divisible edge can be replaced by non-divisible edges of the same combined length. The task is

to find a shortest path P from the source vertex vs to the destination vertex vt in G such that

its length ‖P‖ is minimized.

In order to find a shortest path with respect to the k-neighborhood, we define a subgraph

Gk of G that only contains the edges which are admissible in the k-neighborhood.

Definition 5.2 (k-neighborhood graph). Graph Gk = (V,Ek) is a subgraph of G = (V,E)

with the same set of vertices V and a subset of edges Ek ⊆ E such that any edge {vi, vj} ∈ Ek
is non-divisible and connects vertices vi, vj which are within the k-neighborhood.

An approximation ratio ρ(k) is defined as an upper bound on the worst-case ratio between

(a) the length of a shortest s − t path in Gk and (b) the length of a shortest s − t path in G,

i.e.,

ρ(k) ≥ ‖Pk(I)‖
‖P ∗(I)‖

,

where Pk(I) and P ∗(I) are shortest s− t paths in Gk and G for a given instance I, respectively.

In this work, we investigate the approximation ratios ρ(k) for the hexagonal and the two

square grids. For the unit-weight case, we first derive a characterization of shortest s−t paths in

Gk and prove (asymptotically) tight approximation ratios. For the weighted case and k = 1, we

prove constant approximation ratios of 2
√

2 and 2
√

3 for the Moore square grid and hexagonal

grid, respectively. Moreover, we prove that in the case of the von Neumann square grid there

does not exist a constant approximation ratio. The results are summarized in Table 5.1 for

each grid.
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Table 5.1: Summary of the approximation ratio results
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(a) (b) (c)

Figure 5.5: Vectors ~b1 and ~b2 in (a) the von Neumann square grid, (b) the Moore square grid,
and (c) the hexagonal grid

5.2 The k-neighborhood graph

Given s and t, introduce a coordinate system so that s is in the origin. Define basic vectors
~b1 and ~b2 such that they connect s with 1-neighbors with minimal angle and such that

−→
st is

in-between ~b1 and ~b2; see Figure 5.5. Unless otherwise stated, we do not use the standard basis

for vectors ~b1 and ~b2. Instead, for each grid type we use the respective basis such that ~b1 =
(

1
0

)
and ~b2 =

(
0
1

)
:

• square grid (von Neumann): ~b1 and~b2 correspond to~b1 =
(

1
0

)
and~b2 =

(
0
1

)
in the standard

basis;

• square grid (Moore): ~b1 and ~b2 correspond to ~b1 =
(

1
0

)
and ~b2 =

(
1
1

)
in the standard basis;

• hexagonal grid: ~b1 and ~b2 correspond to ~b1 =
(√

3
0

)
and ~b2 =

(√3
2
3
2

)
in the standard basis.

It is known that the vector connecting s and t can be represented as λ1
~b1 + λ2

~b2 with integer

coefficients λ1 and λ2 [59].

Based on graph Gk, introduce vectors ~e`, 1 ≤ ` ≤ z, within the k-neighborhood that

originate from s and lie in-between ~b1 = ~e1 and ~b2 = ~ez. Note that since Gk only contains non-

divisible edges, vectors ~e` are non-divisible as well. Denote the set of resulting vectors ~e` by Ωk

and number them in increasing order of their angle toward ~b1; see Figure 5.6. Note that since

~e` = (x`, y`) are induced by Gk, the corresponding end-vertex belongs to the k-neighborhood

of s, i.e., max {x`, y`} ≤ k.

The exact number of edges |Ek| in Gk depends on k and n, but also on the shape of grid C.
For example, with k and n fixed, a grid with a shape close to a square imposes a larger number

of edges than a grid with a shape closer to a lengthy rectangle, since cells close to borders have

fewer k-neighbors, i.e., neighbors within the k-neighborhood. In the following, we determine

the asymptotic growth of |Ek| ignoring the dependency on the grid shape, i.e., each cell has the

same number of neighbors in the k-neighborhood. To this end we consider wrapped versions of

the grids [105]. In the wrapped version of a grid, each cell has the same number of neighbors
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Figure 5.6: Vectors ~e1,. . . ,~e7 in Ω4 for the 4-neighborhood originating from the origin s, where
destination t is contained in the cone formed by ~ei = ~e4 and ~ei+1 = ~e5

in the k-neighborhood. For cells at the border of the grid, this is achieved by symmetrically

connecting them with border cells at the opposite side of the grid.

Proposition 1. Let C be a wrapped grid with n cells and let Gk = (V,Ek) be the k-neighborhood

graph based on C. Then the number of edges |Ek| tends to fk(n) for k →∞, n→∞, where

fk(n) :=


6
π2 k

2n for the square grid (von Neumann),

12
π2 k

2n for the square grid (Moore),

9
π2 k

2n for the hexagonal grid.

Proof. Consider first source vertex vs and count the number of vertices in the k-neighborhood

of vs. Let p be equal to the number of adjacent vertices of vs in G1, i.e.,

p =


4 for the square grid (von Neumann),

8 for the square grid (Moore),

6 for the hexagonal grid.

Notice that

fk(n) =
3p

2π2
k2n. (5.2)

The number of vertices adjacent to vs in Gk = (V,Ek) is equal to the number of cells c in

grid C in the k-neighborhood of cs such that the segment connecting the center points of cs

and c is non-divisible. The coordinates of the center point of cs are
(

0
0

)
and the coordinates

of the center point of c can be written as
(
x
y

)
with 1 ≤ x + y ≤ k for non-negative integers x

and y. Recall that a segment is non-divisible if it does not go through the center of any cell

other than its start and end cell. Therefore, the segment from
(

0
0

)
to
(
x
y

)
is non-divisible if and

only if x and y are relatively prime, i.e., if the common greatest divisor of x and y is 1. As a

consequence, the number of vertices in the k-neighborhood of vs (not counting vertex vs itself)
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between the direction of (including) of vector ~b1 =
(

1
0

)
and the direction (excluding) of vector

~b2 =
(

0
1

)
is given by

k∑
j=1

ϕ(j), (5.3)

where ϕ is Euler’s totient function1. Vectors ~b1 and ~b2 split the grid into quad-

rants/sextants/octants so that the total number of vertices in the k-neighborhood of vs is

p

k∑
j=1

ϕ(j).

The asymptotic behavior of the sum in (5.3) is given by

k∑
j=1

ϕ(j) =
3k2

π2
+ r(k) with r(k) = O(k(log k)

3
2 (log log k)

4
3 );

see [133]. In a wrapped grid, each cell has the same number of neighbors in the k-neighborhood.

There are n cells in total and the total number of neighbors of all cells is equal to 2|Ek|. This

yields

|Ek| =
pn

2

k∑
j=1

ϕ(j) =
3p

2π2
k2n+

pn

2
r(k).

Since

lim
k→∞

k(log k)
3
2 (log log k)

4
3

k2
= 0,

we obtain

lim
k→∞

lim
n→∞

|Ek|
fk(n)

= 1 + lim
k→∞

r(k)
3k2

π2

= 1.

Note that the asymptotic growth of |Ek| in wrapped grids proved in Proposition 1 is close

to the asymptotic growth for non-wrapped grids as long as k � n (which is in accordance with

our aim of approximating shortest paths in the complete graph G by shortest paths in a sparse

graph Gk). Table 5.2 compares |Ek| with fk(n) for n = 10000, k ∈ {1, 5, 10, 30, 100} in case

of the von Neumann square grid (4 neighbors). The relative deviation |Ek|−fk(n)
|Ek| is quite large

for small k: for k = 1 and k = 5 it is about 69% and 24%, respectively. For larger values of k,

the relative deviation becomes much smaller: in case of k = 10, the relative deviation is about

5% and it further reduces to 0.14% for k = 100. The situation for the other two grid types is

similar: the values of fk(n) and |Ek| are different, but yield the same relative deviations as in

Table 5.2.

1ϕ(j) = the number of positive integers up to integer j that are relatively prime to j
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von Neumann
square grid k = 1 k = 5 k = 10 k = 30 k = 100

(4 neighbors)

fk(n) ≈ 6.07× 103 ≈ 1.51× 105 ≈ 6.07× 105 ≈ 5.47× 106 ≈ 6.07× 107

|Ek| 20× 103 2× 105 6.4× 105 5.56× 106 6.088× 107

|Ek|−fk(n)
|Ek| ≈ 0.6960 ≈ 0.2400 ≈ 0.0501 ≈ 0.0159 ≈ 0.0014

Table 5.2: Comparison of |Ek| and fk(n) with fixed n = 10000 (wrapped von Neumann grid)

We conclude this section by analyzing the time complexity of Dijkstra’s algorithm on graph

Gk dependent on k and n. In general, Dijkstra’s algorithm can be implemented to run in

O(|E| + |V | log |V |); see [50]. For Gk we have |V | = n and |Ek| = O(k2n); see Proposition

1. Therefore, Dijkstra’s algorithms runs on G1 in O(n log n) time, on Gk in O(k2n) time, and

on the complete graph Gn = G in O(n2) time. We observe that the time complexity for Gk

is linear in n and quadratic in k. As a consequence, the algorithm is expected to run very

efficiently even for large n, as long as k is not too big.

5.3 Equal weight grids

Lemma 5.1. Given the source s =
(

0
0

)
and destination t =

(
t1
t2

)
with non-negative integers t1

and t2, there exists a unique representation of vector
−→
st as a linear combination of vectors ~ei

and ~ei+1 with non-negative integer coefficients u, v:

−→
st = u~ei + v~ei+1, (5.4)

where ~ei =
(
xi
yi

)
and ~ei+1 =

(
xi+1

yi+1

)
have the closest angles in relation to

−→
st, i.e.,

yi
xi
≤ t2
t1
<
yi+1

xi+1
. (5.5)

Proof. For the proof, we will use the properties of the Stern-Brocot construction known in

number theory as a representation of the mediant relationship between positive rational num-

bers; see [57]. For two fractions a
b and a′

b′ , the mediant is defined by a+a′

b+b′ . The Stern-Brocot

construction has fractions 0
1 and 1

0 at the top level, their mediant 1
1 in the next level, then the

mediant 1
2 of 0

1 and 1
1 , and mediant 2

1 of 1
1 and 1

0 at the next level, etc. Since a
b <

a′

b′ implies
a
b <

a+a′

b+b′ <
a′

b′ , fractions in the Stern-Brocot construction are ordered left-to-right, i.e., larger

fractions appear to the right of smaller fractions. For an illustration, consider Figure 5.7, where

for the purposes of our proof we replace fractions a
b by vectors

(
a
b

)
. Clearly, with our notation

the mediant a+a′

b+b′ of a
b and a′

b′ corresponds to the sum of the two vectors,
(
a+a′

b+b′

)
=
(
a
b

)
+
(
a′

b′

)
.

Each vector ~e1 =
(

1
0

)
, ~e2, . . . , ~ei, ~ei+1, . . . ,~ez =

(
0
1

)
of the k-neighborhood has the sum of

coordinates less than or equal to k; they appear at the top of the construction, and their right-
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Figure 5.7: The Stern-Brocot construction: vectors ~e1, . . . , ~e5 are in the 3-neighborhood of s
and vector

−→
st =

(
5
8

)
is expressed in terms of ~ei and ~ei+1
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to-left order corresponds to the numbering of ~e-vectors. In Figure 5.7, the highlighted top part

corresponds to the 3-neighborhood of s.

We assume that
−→
st is not an integer multiple of

(
0
1

)
or
(

1
0

)
as otherwise the statement of the

lemma is straightforward. Further we assume for now that coordinates t1 and t2 of
−→
st =

(
t1
t2

)
are relatively prime. Due to these assumptions and a property of the Stern-Brocot construction

[57, p. 117], there exists a unique entry
(
t1
t2

)
with unique parent entries

(
a
b

)
and

(
a′

b′

)
such that(

t1

t2

)
=

(
a

b

)
+

(
a′

b′

)
. (5.6)

In the Stern-Brocot construction, parent entries
(
a
b

)
and

(
a′

b′

)
are given as the nearest elements

on the left and right that are above
(
t1
t2

)
. A similar unique representation exists for the parents,

for parents of the parents, etc. Moving upwards in the Stern-Brocot construction we eventually

reach two entries
(
xi
yi

)
and

(
xi+1

yi+1

)
, corresponding to ~ei and ~ei+1 in the k-neighborhood of s.

Since parent entries are the first entries on the left and right above the child entry, vectors ~ei

and ~ei+1 have the closest angle in relation to
−→
st among all pairs of vectors in the top k layers:

yi
xi
≤ t2
t1
<
yi+1

xi+1
.

Tracking the moves, we expand the terms in (5.6) step by step, ending up with
(
t1
t2

)
=

u
(
xi
yi

)
+ v
(
xi+1

yi+1

)
, with non-negative integers u and v. For example, if we need to express

(
5
8

)
in

terms of vectors ~ei and ~ei+1 in the 3-neighborhood of s, then

(
5

8

)
=

(
3

5

)
+

(
2

3

)
=

(
1

2

)
+

(
2

3

)
+

(
2

3

)
=

=

(
1

2

)
+ 2×

[(
1

2

)
+

(
1

1

)]
= 3×

(
1

2

)
+ 2×

(
1

1

)
,

(5.7)

see Figure 5.7.

Finally, we consider the case where t1 and t2 are not relatively prime, i.e., the greatest

common divisor d of t1 and t2 is greater than 1. Then there exist relatively prime integers t′1

and t′2 such that
−→
st = d

(t′1
t′2

)
, where d is an integer. Applying the tracking procedure sketched

in (5.7) to
(t′1
t′2

)
, we obtain non-negative integers u′ and v′ such that

−→
st = du′~ei + dv′~ei+1.

Theorem 5.2. An s − t path P ∗ is a shortest s − t path in Gk if and only if the directional

vectors of its segments are the vectors with the nearest angle with respect to
−→
st, i.e. if vectors
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(a) (b)

Figure 5.8: Paths P ∗ (black, solid) and P (gray, dashed) illustrated for (a) before and (b) after
reordering

~ei and ~ei+1 are as in (5.5).

Proof. Lemma 5.1 implies that there exists a path P ∗ that can be represented as

−→
st = u~ei + v~ei+1, (5.8)

with non-negative integers u and v. Assume that there exists a shortest s − t path P in

Gk that cannot be represented as (5.4). Recall that Ωk denotes the set of vectors within

the k-neighborhood that originate from s and lie in-between ~b1 and ~b2. Therefore, P can be

represented as

−→
st =

|Ωk|∑
`=1

λ`~e`

for integers λ`. Since P cannot be represented as in (5.4), we have λi 6= u, or λi+1 6= v, or

λ` 6= 0 for at least one ` different from i and i + 1. Since reordering of the vectors forming

the path does not change the length of the path, we can assume that the vectors of P , as they

appear from s to t, are arranged in increasing order of their angles. Similarly, we assume that

the vectors of P ∗, as they appear from s to t, are arranged in increasing order of their angles as

well, i.e., first P ∗ has u segments in direction ~ei and then v segments in direction ~ei+1. With

these assumptions we are in the situation as illustrated in Figure 5.8(b): P together with
−→
st ,

and P ∗ together with
−→
st form two nested, closed, and convex curves from s to t with P ∗ being

the inner one. For such two nested, closed, and convex curves P and P ∗, the Crofton formula

implies that ‖P‖ ≤ ‖P ∗‖; see, e.g., [126, p. 38]. Since P ∗ and P are piecewise linear, and since

P ∗ lies inside of P between s and t, the strict inequality ‖P ∗‖ < ‖P‖ holds. This, however,

contradicts our assumption that P is a shortest s − t path in Gk. Therefore, the directional

vectors of the segments of a shortest s− t path can only be ~ei or ~ei+1. Lemma 5.1 implies that

all such s− t paths have the same length of u‖~ei‖+ v‖~ei+1‖. As a consequence, an s− t path

P ∗ is a shortest path if and only if the directional vectors of the segments are ~ei and ~ei+1.

Theorem 5.2 not only states an interesting characterization of shortest s − t paths in Gk,

but it can also be used to derive approximation ratios for shortest s− t paths in Gk in relation
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4-square grid 8-square grid hexagonal grid
k=1 ≈ 1.4142 ≈ 1.0823 ≈ 1.1547
k=2 ≈ 1.0823 ≈ 1.0274 ≈ 1.0352
k=3 ≈ 1.0274 ≈ 1.0130 ≈ 1.0140
k=4 ≈ 1.0130 ≈ 1.0075 ≈ 1.0074
k=5 ≈ 1.0075 ≈ 1.0048 ≈ 1.0045

Table 5.3: Approximation ratios for shortest s− t paths in Gk with k = 1, 2, 3, 5 for a grid with
unit weights

to a true shortest s− t path in G.

Theorem 5.3. A shortest s− t path in Gk approximates a shortest s− t path in G with ratio

ρ(k) =



√√√√ 2

1 +
√

1− 1
k2−2k+2

for the von Neumann square grid (4 neighbors),

√√√√ 2

1 +
√

1− 1
k2+1

for the Moore square grid (8 neighbors),

√√√√ 2

1 +
√

1− 3
4(k2−k+1)

for the hexagonal grid (6 neighbors).

(5.9)

These ratios are tight for k = 1 and asymptotically tight (when n→∞) for k ≥ 2.

Sample values of ratios ρ(k) are presented in Table 5.3.

Proof. Consider the k-neighborhood of s with non-divisible vectors ~ei, i = 1, . . . , z = |Ωk|, such

that the first and the last vectors, ~e1 and ~ez, correspond to the two basic vectors ~b1 and ~b2

of the regular grid; see Figures 5.5 and 5.6. We examine instances with a fixed origin s and

changeable destinations t considering classes of instances I1, I2, . . . , Iz defined as follows: for

any instance from Ii, the location of t is such that the direction of
−→
st is strictly in-between ~ei

and ~ei+1. We do not consider the cases in which the direction of
−→
st corresponds to a directional

vector ~ei, as in this case the shortest s− t path in G coincides with the shortest s− t path in

Gk. Our main result is the formula for the approximation ratio ρi(k) in class Ii, i = 1, . . . , z.

Then we demonstrate that ρ1(k) = max1≤i≤z {ρi(k)}, i.e., the overall worst-case instance has
−→
st

in-between ~e1 and ~e2, splitting the angle between ~e1 and ~e2 in half. We then derive the explicit

formula for ρ1(k) for the three types of regular grids, justifying the values of ρ(k) stated in the

formulation of the theorem.

For fixed i, let the angle between ~ei and ~ei+1 be φi. Denote the angle between
−→
st and ~ei by

αi, and the angle between
−→
st and ~ei+1 by βi. Note that αi + βi = φi. All instances in the class

Ii are characterized by αi ∈ [0, φi], where φi is fixed and φi ≤ π
2 for all three types of regular
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Figure 5.9: Angles between points s, q and t

grids. By Theorem 5.2, a shortest s − t path P ∗ (Ii, Gk) in Gk for instance Ii corresponds to

the representation u~ei + v~ei+1 of
−→
st , where u and v are non-negative integers, and the shortest

path P ∗ (Ii, G) between s and t in graph G corresponds to the direct vector
−→
st between s and

t. Introduce vertex q such that −→sq = v~ei+1 and
−→
qt = u~ei, and consider the triangle 4sqt with

angles ∠stq = αi, ∠tsq = βi, and ∠sqt = π − φi; see Figure 5.9. By the law of sines we obtain

|sq| = |st| sinαi
sin (π − φi)

=
|st| sinαi

sinφi
, |qt| = |st| sinβi

sin (π − φi)
=
|st| sinβi

sinφi
.

Thus the approximation ratio ρi(k, αi) for an instance in class Ii with αi ∈ [0, φi] is given by

ρi(k, αi) =
|sq|+ |qt|
|st|

=
sinαi + sinβi

sinφi
=

sinαi + sin (φi − αi)
sinφi

.

In order to find the maximum value of function ρi(k, αi) for the changeable parameter αi ∈
[0, φi], we find stationary points of ρi(k, αi):

∂ρi(k, αi)

∂αi
=

cosαi − cos (φi − αi)
sinφi

=
−2 sin (φi/2) sin (αi − φi/2)

sinφi
,

where in the last equality we use the product-to-sum identity

cosx− cos y = −2 sin

(
x+ y

2

)
sin

(
x− y

2

)
.

Solving ∂ρi(k,αi)
∂αi

= 0 for αi ∈ [0, φi] yields αi = φi/2, which delivers the maximum to ρi(k, αi)

since the second derivative

∂2ρi(k, αi)

∂2αi
=
−2 sin (φi/2) cos (αi − φi/2)

sinφi
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is negative for αi = φi/2 and 0 < φi ≤ π/2. We conclude that the worst case instance in

class Ii is characterized by αi = βi = φi/2 and thus u ‖~ei‖ = v ‖~ei+1‖. The corresponding

approximation ratio is

ρi(k) =
2 sin (φi/2)

sinφi
=

2 sin (φi/2)

2 sin (φi/2) cos (φi/2)
=

1

cos (φi/2)
. (5.10)

Note that the above arguments justify the direction of
−→
st for a worst-case instance in the class

Ii, but the selected direction may miss all center points of the regular grid. If this happens,

then in order to derive an asymptotically tight worst-case instance, we construct an infinite

sequence of center points t1, t2, . . ., together with associated points q1, q2, . . ., also centers of

grid cells, such that

lim
h→∞

|sqh|+ |qhth|
|sth|

= lim
h→∞

uh ‖~ei‖+ vh ‖~ei+1‖
|sth|

=
1

cos (φi/2)
.

Recall that a shortest s − t path P ∗(Ii, Gk) can be represented as u~ei + v~ei+1 with u‖~ei‖ =

v‖~ei+1‖. Since u ‖~ei‖ = v ‖~ei+1‖ it is sufficient to show that there exist sequences u1, u2, . . .

and v1, v2, . . . of positive integers such that

lim
h→∞

uh
vh

=
‖~ei+1‖
‖~ei‖

.

In general, the right-hand-side expression ‖~ei+1‖
‖~ei‖ is irrational. The Stern-Brocot construction

does not contain irrational numbers, but a special version of the binary search algorithm applied

to the construction generates the required sequence of irreducible fractions uh
vh

which approx-

imates the target value ‖~ei+1‖
‖~ei‖ with a desired accuracy; see, e.g., [57, p. 115-123]. The point

uh~ei + vh~ei+1 is the center of a grid cell and we have uh + vh < uh+1 + vh+1. Thus, for increas-

ing h, the center point uh~ei + vh~ei+1 moves further away from s, while the error ‖uhvh −
‖~ei+1‖
‖~ei‖ ‖

decreases (and becomes 0 for h → ∞). Thus the approximation ratio is asymptotically tight

(for n→∞).

It remains to specify φi for k-neighborhoods of regular grids and to derive formula (5.9)

stated in the formulation of Theorem 5.3. If k = 1, then there are only two vectors ~e1, ~e2 which

coincide with the basic vectors, and

φ1 =


π/2 for the square grid (von Neumann),

π/4 for the square grid (Moore),

π/3 for the hexagonal grid.

It is easy to verify that the indicated values of φ1 imply (5.9). Consider now the case k ≥ 2.

Equation (5.10) implies that ρ(k) = max1≤i≤z{ρi(k)} is obtained for ρi(k) such that φi is
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maximum. In Section 5.7 we prove that φ1 = max1≤i≤z {φi} and that

cosφ1 =


k−1√

1+(k−1)2
for the square grid (von Neumann),

k√
1+k2

for the square grid (Moore),

2k−1
2
√
k2−k+1

for the hexagonal grid.

(5.11)

This implies that the worst-case instance belongs to the class I1, i.e., ρ(k) = ρ1(k). Note that

since α1 = β1 = φ1/2, the instance is characterized by a specific direction of
−→
st : it splits the

angle φ1 between ~e1 and ~e2 in half.

Using the identity cos(x2 ) =
√

1+cos x
2 for x ∈ (0, π), we get

ρ(k) =
1

cos(φ1

2 )
=

√
2

1 + cos(φ1)
. (5.12)

Inserting the angles for worst-case instances in (5.11), we obtain the following approximation

ratios

ρ(k) =



√
2

1+ k−1√
(k−1)2+1

=
√

2

1+

√
(k−1)2+1−1

(k−1)2+1

=
√

2

1+
√

1− 1
k2−2k+2

for the square grid

(von Neumann),

√
2

1+ k√
k2+1

=
√

2

1+

√
k2+1−1

k2+1

=
√

2

1+
√

1− 1
k2+1

for the square grid

(Moore),

√
2

1+ 2k−1

2
√
k2−k+1

=
√

2

1+

√
(2k−1)2+3−3

(2k−1)2+3

=
√

2

1+
√

1− 3
4(k2−k+1)

for the hexagonal grid.

which are tight for k = 1 and asymptotically tight (when n→∞) for k ≥ 2.

It is not surprising that the von Neumann square grid, in which each cell has four 1-neighbors,

is outperformed by the other two grids in terms of the approximation ratio ρ(k); see Table 5.3.

We conclude this section with three observations. First, Proposition 1 implies that, asymp-

totically, the number of edges |Ek| in case of the Moore neighborhood is about twice as high as

in the case of the von Neumann neighborhood:

|Ek| ≈

 6
π2 k

2n for the square grid (von Neumann)

12
π2 k

2n for the square grid (Moore).

Moreover, comparing the asymptotic number of edges Ek+1 (von Neumann) with Ek (Moore),

we obtain |Ek+1| ≈ 6
π2 (k + 1)2n = 6k2n

π2 + 6(2k+1)n
π2 which, for k ≥ 3, is larger than 6k2n

π2 .

Consequently, for k ≥ 3, the number of edges of Gk+1 with the von Neumann neighborhood
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is larger than the number of edges of Gk with the Moore neighborhood. On the other side, in

both scenarios there are equal (asymptotically tight) approximation ratios: ratio ρ(k + 1) for

the von Neumann square grid is equal to ratio ρ(k) for the Moore square grid. It is intuitive

that these ratios are equal since, in the neighborhood graph as defined in Definition 5.2, the

(k + 1)-neighborhood for the von Neumann square grid is the same as the k-neighborhood for

the Moore square grid (note that the graph only contains non-divisible edges).

Second, for the hexagonal grid, ratio ρ(k) is initially outperformed by ρ(k) for the Moore

square grid. However, for k ≥ 4, the ratio of the hexagonal grid outperforms the ratio of the

Moore square grid. As φ1 directly dictates the value of ρ(k), this can simply be explained by

the different rates of decrements for the worst-case angle φ1 when k is increased:

hexagonal grid: φ1 =



60◦, if k = 1,

30◦, if k = 2,

19.11◦, if k = 3,

13.9◦, if k = 4,

10.89◦, if k = 5,

Moore square grid: φ1 =



45◦, if k = 1,

26.57◦, if k = 2,

18.43◦, if k = 3,

14.04◦, if k = 4,

11.91◦, if k = 5.

Third, we highlight that ρ(k) converges to 1 very fast for all grid types. As a consequence,

even for small k, a shortest s− t path in Gk approximates a shortest s− t path in G for (close

to) unit-weight grids with very high accuracy.

5.4 Arbitrary weight grids

Intuitively, one may expect that there does not exist a constant factor approximation ratio for

arbitrary-weight grids. Surprisingly, this intuition is (at least partially) wrong. In this section,

we show that the ratio between (a) the length of a shortest s− t path in G1, and (b) the length

of a shortest s− t path in G is bounded by 2
√

2 for the Moore square grid and by 2
√

3 for the

hexagonal grid. Before that, however, we show that for the von Neumann square grid there

does not exist a constant factor approximation ratio.

Theorem 5.4. For the von Neumann square grid there is no constant factor approximation for

the ratio between (a) the length of a shortest s − t path in G1 and (b) the length of a shortest

s− t path in G.

Proof. We prove the statement based on the instance illustrated in Figure 5.10. The shortest

s− t path P ∗ in G goes in a direct line diagonally from s to t and has a length of ‖P ∗‖ =
√

2

(recall that squares are assumed to have a side length of 1). A shortest s − t path P1 in G1

however has to take a deviation through one of the two adjacent squares. This results in a total
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Figure 5.10: A shortest s − t path (solid black) in G has a length of
√

2, whereas a shortest
s− t path (dashed gray) in G1 (von Neumann neighborhood) has length 1 +M

length of ‖P1‖ = 1 +M . The approximation ratio is then given by

‖P1‖
‖P ∗‖

=
1 +M√

2
,

and thus becomes arbitrarily large for M →∞.

We now address the Moore square grid and the hexagonal grid.

Definition 5.3. Let P be an s − t path and c ∈ C a cell that is intersected by P . Then the

Euclidean length of P in c is denoted by

|P (c)| :=
∑

σc: σc is
subsegment
of P in c

|σc|. (5.13)

As an example consider the gray dashed s − t path illustrated in Figure 5.10. Denote its

segment from s to the center of c3 by σ′ and its segment from the center of c3 to t by σ′′. Then

we have |P (cs)| = |P (ct)| = 1
2 and |P (c3)| = 1. On the other side, we have |σ′| = |σ′′| = 1.

Note that with (5.13) we can write

‖P‖ =
∑
c`∈C

w`|P (c`)|.

The following Lemma states some technical relations that will be used for the proof of the

main theorem later on.

Lemma 5.5. Let C be a Moore square grid or a hexagonal grid and let P be an s − t path.

Consider a segment of P that connects the center points of cells c`0 and c`q , where c`0 , c`q ∈
C. Further, let c`0 , c`1 , . . . , c`q−1

, c`q denote the cells in the order they appear on the segment

from c`0 to c`q for which |P (c`0)|, . . . , |P (c`q )| are positive. Then cells c ∈ {c`0 , . . . , c`q} with

|P (c)| ≥ 1
2 form a sequence without gap from c`0 to c`q .
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Figure 5.11: Illustration for the statement of Lemma 5.5. The length |P (c`h)| of P in c`h
is larger than 1

2 (gray filled), but the length |P (c`h+1
)| of P in c`h+1

is smaller than 1
2 (gray

hatched). Then c`h+2
is a 1-neighbor of c`h and |P (c`h+2

)| ≥ 1
2 (gray filled). Cells c with

|P (c)| ≥ 1
2 form a sequence without gap from c`0 to c`q .

The statement of Lemma 5.5 is illustrated for the Moore square grid in Figure 5.11.

Proof. We show the lemma by proving the following two statements:

(i) if for some c`h and c`h+1
, 1 ≤ h ≤ q − 2, the inequalities |P (c`h)| ≥ 1

2 and |P (c`h+1
)| < 1

2

hold, then c`h+2
is a neighbor of c`h and |P (c`h+2

)| ≥ 1
2 ; and

(ii) |P (c`0)|, |P (c`q )| ≥ 1
2 .

For statement (i) assume that there is a c`h such that |P (c`h)| ≥ 1
2 and |P (c`h+1

)| < 1
2 .

First, note that c`h and c`h+1
are neighbors in C. Since each side of each cell is of length 1,

|P (c`h+1
)| ≤ 1

2 implies that the segment intersects c`h+1
at two adjacent sides. For both grid

types this implies that c`h+2
is a neighbor of c`h . Moreover, a side length of 1 implies |P (c`h+1

)|
+ |P (c`h+2

)| ≥ 1. Together with |P (c`h+1
)| ≤ 1

2 , this implies |P (c`h+2
)| ≥ 1

2 .

Statement (ii), i.e., |P (c`0)|, |P (c`q )| ≥ 1
2 , holds since the shortest Euclidean distance from

the center to the border of a cell is 1
2 for the square grid and

√
3

2 > 1
2 for the hexagonal grid;

see Figure 5.3.

Statements (i) and (ii) together imply that cells c ∈ {c`0 , . . . , c`q} with |P (c)| ≥ 1
2 form a

sequence without gap from c`0 to c`q .

Theorem 5.6. A shortest s − t path in G1 approximates a shortest s − t path in G with the

ratio

ρ(1) =

2
√

2 for the square grid (Moore),

2
√

3 for the hexagonal grid.

Proof. Let P ∗ be a shortest s− t path in G. Consider the set of cells C∗ intersected by P ∗ and

define set C′ by

C′ := {c ∈ C∗ | |P ∗(c)| ≥ 1

2
}.
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By applying Lemma 5.5 to each segment of P ∗ we deduce that there exists an s− t path P1 in

G1 such that the vertices of P1 correspond to the cells in C′. We obtain

‖P1‖
‖P ∗‖

=

∑
c`∈C′ w`|P1(c`)|∑
c`∈C w`|P

∗(c`)|
≤
∑
c`∈C′ w`|P1(c`)|∑
c`∈C′ w`|P

∗(c`)|
.

Considering Figure 5.3, the following upper bound on |P ′(c)| for c ∈ C′ holds:

|P ′(c)| ≤ a :=


√

2 for the square grid (Moore),
√

3 for the hexagonal grid.

Recall that |P ∗(c)| ≥ 1
2 for c ∈ C′. It follows that

‖P1‖
‖P ∗‖

≤
a
∑
c`∈C′ w`

1
2

∑
c`∈C′ w`

= 2a =

2
√

2 for the square grid (Moore),

2
√

3 for the hexagonal grid.

Finally, let P ∗1 be a shortest s− t path in G1. Since ‖P ∗1 ‖ ≤ ‖P1‖, we obtain

‖P ∗1 ‖
‖P ∗‖

≤ ‖P1‖
‖P ∗‖

≤

2
√

2 for the square grid (Moore),

2
√

3 for the hexagonal grid,

and thus we obtain the approximation ratio ρ(1) stated in the formulation of the theorem.

Corollary 5.7. A shortest s − t path in Gk approximates a shortest s − t path in G with an

approximation ratio of

ρ(1) =

2
√

2 for the square grid (Moore),

2
√

3 for the hexagonal grid.

Proof. Every s − t path in G1 is also contained in Gk for k ≥ 2, thus ρ(1) holds as an upper

bound for k ≥ 2.

Theorem 5.6 provides a constant approximation ratio for shortest paths in G1, however it

does not state that the given ratios are (asymptotically) tight.

5.5 Regular grids with weights of limited change in the

neighborhood

For many applications the weights in the grid are not entirely arbitrary, but have some sort

of structure. As an example, consider powerline routing, where grid weights capture terrain

specific characteristics of the areas covered by the cells. A typical geographic area consists
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of hills and valleys that are not steep; most other obstacles, like rivers, are small and do not

increase the weight of a cell significantly. Of course, substantial changes in weights do sometimes

occur, e.g., where unused land (low weights) touches a big lake (large weights). However, these

changes typically only occur sporadically or along the borders of bigger entities (like big lakes

or unused land). For most parts of the entire area, weights only change gradually between the

areas of neighboring cells.

In order to take this into consideration, we add a restriction on the weights of neighboring

cells of the grid. We assume that each cell c` ∈ C satisfies

|w` − w`′ |
w`

≤ η, for all 1-neighbors c`′ of c, (5.14)

where η is a given non-negative parameter. This property ensures that the percentage difference

between the weights of two neighboring cells is at most 100η%.

Theorem 5.8. Let C be a weighted grid that satisfies property (5.14). Then, a shortest s − t
path in G1 approximates a shortest s− t path in G with the ratio

ρ(1) = (1 + η)×


2 for the square grid (von Neumann),
√

2 for the square grid (Moore),
√

3 for the hexagonal grid.

Proof. Let P ∗ be a shortest s− t path in G and consider each segment of P ∗ separately. For a

fixed segment σ, denote the coordinates of the center points of start and end cell by s′ and t′.

The cell containing s′ is denoted by cs′ and the cell containing t′ is denoted by ct′ . Without

loss of generality we assume that s′ is the origin and that t′ =
(t′1
t′2

)
satisfies t′1 ≥ t′2 ≥ 0. The

other cases reduce to this case as follows:

• if s′ =
(s′1
s′2

)
is not the origin, shift the segment by −

(s′1
s′2

)
;

• if t′ = (t′1, t
′
2) is in the first quadrant but satisfies t′2 > t′1, exchange the roles of the x- and

y-axis;

• if t′ is in the second quadrant, reflect the segment over the y-axis;

• if t′ is in the third quadrant, reflect the segment over point s′; and

• if t′ is in the fourth quadrant, reflect the segment over the x-axis.

Using only directions ~b1 =
(

1
0

)
and ~b2 =

(
0
1

)
(as illustrated in Figure 5.5), we construct an

s′− t′ path P1 in G1 so that each cell corresponding to a vertex of the path is either intersected

by
−→
s′t′ or shares a side with a subsegment of

−→
s′t′; see Figure 5.12. For c1, c2 ∈ C, we define a
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(a)

(b) (c)

Figure 5.12: Construction used in the proof of Theorem 5.8 for (a) the hexagonal grid, (b) the
von Neumann square grid, and (c) the Moore square grid. The columns are highlighted in gray
and white.

relation ∼ on C by

c1 ∼ c2 :⇔ center coordinates differ by a multiple of


(

0
1

)
for the square grids,(−1

1

)
for the hexagonal grid.

Obviously, relation ∼ defines an equivalence relation on C. We refer to its equivalence classes

as columns; see Figure 5.12. Then P ∗ and P1 cross at most two cells in each column.

Consider a column that is crossed by P ∗ and P1, but does not contain cs′ or ct′ . Let

c1, c2 ∈ C \ {cs′ , ct′} denote the neighbor cells in one column that are crossed. If only one cell

c1 is crossed, choose c2 as an arbitrary cell in the same column. Then we obtain

w1|P1(c1)|+ w2|P1(c2)|
w1|P ∗(c1)|+ w2|P ∗(c2)|

≤ (1 + η) min(w1, w2) (|P1(c1)|+ |P1(c2)|)
min(w1, w2) (|P ∗(c1)|+ |P ∗(c2)|)

= (1 + η)
|P1(c1)|+ |P1(c2)|
|P ∗(c1)|+ |P ∗(c2)|

.

Further, we have

|P1(c1)|+ |P1(c2)| ≤ a :=


2 for the square grid (von Neumann),
√

2 for the square grid (Moore),
√

3 for the hexagonal grid,

and |P ∗(c1)| + |P ∗(c2)| ≥ 1 as the Euclidean length of P ∗ in the column is at least 1. This
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yields the desired ratio for cells within columns that do not contain cs′ and ct′ :

w1|P1(c1)|+ w2|P1(c2)|
w1|P ∗(c1)|+ w2|P ∗(c2)|

≤ (1 + η)
|P1(c1)|+ |P1(c2)|
|P ∗(c1)|+ |P ∗(c2)|

≤ (1 + η)× a. (5.15)

The situation for cs′ and ct′ is slightly different as the segment starts/ends in the center

of these cells. However, we can consider the columns containing cs′ and ct′ together to obtain

an analog upper bound as in (5.15). Indeed, we have |P1(cs′)| + |P1(ct′)| ≤ a and |P ∗(cs′)| +
|P ∗(ct′)| ≥ 1 which, as above, yields

ws′ |P1(cs′)|+ wt′ |P1(ct′)|
ws′ |P ∗(cs′)|+ wt′ |P ∗(ct′)|

≤ (1 + η)× a.

Since the length of a segment is the sum of the lengths within each column, the ratio also

holds for each segment. Similarly, since the length of a path is the sum of the lengths of all

segments, the ratio also holds for the entire path, i.e.,

‖P1‖
‖P ∗‖

≤ (1 + η)× a = (1 + η)×


2 for the square grid (von Neumann),
√

2 for the square grid (Moore),
√

3 for the hexagonal grid.

Corollary 5.9. Let C be a weighted grid that satisfies property (5.14). Then, a shortest s − t
path in Gk approximates a shortest s− t path in G with ratio

ρ(1) = (1 + η)×


2 square grid (von Neumann),
√

2 square grid (Moore),
√

3 hexagonal grid.

Proof. Every s − t path in G1 is also contained in Gk for k ≥ 2, thus ρ(1) holds as an upper

bound for k ≥ 2.

5.6 Conclusions and future work

In this chapter, we investigated the ratios between (a) the length of a shortest path in Gk and

(b) the length of a shortest path in the complete graph G. We conducted our analysis for

hexagonal grids and square grids, considering both von Neumann and Moore neighborhoods.

In the case of unit weights, we derived an explicit formula for the tight ratio for each of the

grid types with arbitrary k. In case of arbitrary weights and k = 1, we derived an upper bound

of 2
√

3 and 2
√

2 in case of a hexagonal grid and Moore square grid, respectively. Moreover, for

k = 1, we showed that there does not exist a constant approximation ratio in case of the von
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Neumann square grid. Finally, for weighted grids where the weights of neighboring cells do not

change by more than a factor of 1 + η, we proved improved approximation ratios for all grid

types if k = 1.

Future work is of both theoretical and applied nature. On the theoretical side, there is the

challenge to prove tightness or to prove lower ratios ρ(k) than those stated in Theorems 5.6 and

5.8. Another open problem consists in generalizing the results in the weighted case to arbitrary

k. Finally, one may consider the research problems of this chapter in case of a triangular grid.

In the triangular grid, there exist even three different types of neighborhoods [103], compared

to two neighborhoods for the square grid and one neighborhood for the hexagonal grid. Besides

a separate study, it would be particularly interesting to see if the fact that the hexagonal grid

is dual to the triangular grid can be used to obtain results from the work presented in this

chapter.

On the applied side, in Chapter 6 we will put the theoretical insights gained in this work into

practice through case studies. We will analyze powerline routing problems on large geographic

areas in England and Scotland. Our powerline routing algorithms will be based on the concept

of the k-neighborhood, and will be evaluated in terms of solution quality, computation time,

and the size k of the chosen neighborhood.

5.7 Appendix

In this section, we prove that, for k ≥ 2, φ1 = max1≤i≤|Ωk|−1 {φi} and that

cosφ1 =


k−1√

1+(k−1)2
for the square grid (von Neumann),

k√
1+k2

for the square grid (Moore),

2k−1
2
√
k2−k+1

for the hexagonal grid.

Proof. In this proof, we write all points and vectors with respect to the standard basis. Thus,

since side lengths of squares and hexagons are assumed to be equal to 1, the basic vectors ~b1

and ~b2 (illustrated in Figure 5.5), are given as follows:

• square grid (von Neumann): ~b1 =
(

1
0

)
, ~b2 =

(
0
1

)
;

• square grid (Moore): ~b1 =
(

1
0

)
, ~b2 =

(
1
1

)
;

• hexagonal grid: ~b1 =
(√

3
0

)
, ~b2 = 1

2

(√
3

3

)
.

Consider first the hexagonal grid. For 1 ≤ ` ≤ k, we introduce the following angles:

• φ′` as the angle between

(√
3(k + 1

2 −
`
2 )

3
2 (`− 1)

)
and

(√
3(k − 1

2 −
`
2 )

3
2 (`− 1)

)
,

• φ′′` as the angle between

(√
3(k − 1

2 −
`
2 )

3
2 (`− 1)

)
and

(√
3(k − `

2 )
3
2`

)
;
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(a) Hexagonal grid: angles φ′`, φ
′′
` for 1 ≤ ` ≤ k.

Note that φ′1 = φ′′4 = 0.
(b) Square grid, Moore neighborhood: angles φ`

for 1 ≤ ` ≤ k

Figure 5.13: Angles φ′`, φ
′′
` for 1 ≤ ` ≤ k (hexagonal grid) and φ` for 1 ≤ ` ≤ k (square grid,

Moore neighborhood), k = 4

see Figure 5.13(a) for the case of k = 4. For each angle φi between ~ei and ~ei+1, 1 ≤ i ≤
|Ωk| − 1, there exists an ` ∈ {1, . . . , k} such that φi is smaller than or equal to φ′` or φ′′` . Note

that φ′′1 is the angle between
(√

3(k−1)
0

)
and

(√3(k− 1
2 )

3
2

)
which is the same as the angle between

~e1 and ~e2, i.e., φ′′1 = φ1. We show that φ′′1 ≥ max
1≤`≤k

{φ′`, φ′′` }. Since φ′` = φ′′k−`+1, it is sufficient

to show that φ′′1 ≥ φ′′` , or equivalently

cosφ′′1 ≤ cosφ′′` for 2 ≤ ` ≤ k.

The cosines of these angles are given by

cosφ′′1 =

(√
3(k − 1)

0

)T (√
3
(
k − 1

2

)
3
2

)
∥∥∥∥∥
(√

3(k − 1)

0

)∥∥∥∥∥
∥∥∥∥∥
(√

3
(
k − 1

2

)
3
2

)∥∥∥∥∥
=

3k(k − 1)− 3
2 (k − 1)√

3(k − 1)2 ×
√

3
(
k − 1

2

)2
+ 9

4

=
k − 1

2√(
k − 1

2

)2
+ 3

4

=
k − 1

2√
k2 − k + 1
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and

cosφ′′` =

(√
3
(
k − 1

2 (`+ 1)
)

3
2 (`− 1)

)T (√
3
(
k − 1

2`
)

3
2`

)
∥∥∥∥∥
(√

3
(
k − 1

2 (`+ 1)
)

3
2 (`− 1)

)∥∥∥∥∥
∥∥∥∥∥
(√

3
(
k − 1

2`
)

3
2`

)∥∥∥∥∥
=

3
(
k − 1

2`−
1
2

) (
k − 1

2`
)

+ 9
4` (`− 1)√

3
(
k − 1

2`−
1
2

)2
+ 9

4 (`− 1)
2 ×

√
3
(
k − 1

2`
)2

+ 9
4`

2

=
k2 + `2 − k`− 1

2k −
1
2`√

k2 + `2 − k`− k − `+ 1×
√
k2 + `2 − k`

.

Since we deal with angles smaller than π/3, it is sufficient to show that cos2 φ′′1 < cos2 φ′′` .

Indeed,

cos2 φ′′1 − cos2 φ′′` =

(
k − 1

2

)2
k2 − k + 1

−
(
k2 + `2 − k`− 0.5k − 0.5`

)2
(k2 + `2 − k`− k − `+ 1) (k2 + `2 − k`)

=
−3` (`− 1)

(
`2 − 2k`+ 2k2 − k

)
4 (k2 − k + 1) (k2 + `2 − k`− k − `+ 1) (k2 + `2 − k`)

.

Taking into account assumptions

k ≥ 2, k ≥ `, ` ≥ 2,

we conclude that the obtained expression is negative since

`2 − 2k`+ 2k2 − k ≥ `− 2k`+ 2k2 − k = (2k − 1)(k − `) ≥ 0,

k2 − k + 1 > 0,

k2 + `2 − k`− k − `+ 1 = (k − `)2
+ (k − 1) (`− 1) > 0,

k2 + `2 − k` ≥ k2 + `2 − k2 ≥ 0.

As a consequence, we obtain φ′′1 ≥ φ′′` for 1 ≤ ` ≤ k. For the hexagonal grid, the cosine of

φ1 = φ′′1 is therefore given by

cosφ1 =

√
3(k − 1

2 )√
3(k − 1

2 )2 +
(

3
2

)2 =
2k − 1

2
√
k2 − k + 1

.

Now consider the von Neumann square grid. For 1 ≤ ` ≤ bk2 c, we introduce the following

angles:

• φ′` as the angle between

(
k + 1− `
`− 1

)
and

(
k − `
`− 1

)
,
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(a) Angles introduced in case of even k = 6. Note
that φ′1 = φ′′1 = 0 as well as φ′′′3 = 0.

(b) Angles introduced in case of odd k = 7. Note
that φ′1 = φ′′1 = 0.

Figure 5.14: Angles φ′`, φ
′′
` , φ
′′′
` for 1 ≤ ` ≤ bk2 c and φ∗ (in the case of odd k)

• φ′′` as the angle between

(
k − `
`− 1

)
and

(
k − 1− `
`− 1

)
,

• φ′′′` as the angle between

(
k − 1− `
`− 1

)
and

(
k − `
`

)
.

Additionally, for the case of odd k, we introduce φ∗ as the angle between
(d k2 e
d k2 e

)
and

(d k2 e−1

d k2 e

)
.

An illustration of these angles is presented in Figure 5.14. Note that φ′′′1 is the angle between(
k−2

0

)
and

(
k−1

1

)
which is the same as the angle between ~e1 and ~e2, i.e., φ′′′1 = φ1. As for the

hexagonal grid it is sufficient to show that φ′′′1 = max1≤`≤b k2 c
{φ′`, φ′′` , φ′′′` } and additionally, if

k is odd, φ′′′1 ≥ φ∗. First, we prove φ′′′1 ≥ φ∗ for the case of odd k (note that in this case

k ≥ 3). For positive x, the term x−1
x is monotonic increasing and thus arctan x−1

x is monotonic

increasing as well. This implies

φ∗ = arctan
dk2 e
dk2 e
− arctan

dk2 e − 1

dk2 e
≤ arctan 1− arctan

k
2 − 1
k
2

= arctan 1− arctan
k − 2

k
.

Using the angle difference identity2 for the arctangent, we further obtain

φ∗ ≤ arctan 1− arctan
k − 2

k
= arctan

1− k−2
k

1 + k−2
k

= arctan
1

k − 1
= φ′′′1 ,

which proves φ′′′1 ≥ φ∗. Now, for arbitrary k ≥ 2, we show that φ′′′1 ≥ φ′`, φ′′` , φ′′′` for 1 ≤ ` ≤ bk2 c.

2arctanx− arctan y = arctan x−y
1+xy

for x, y ∈ R
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The angles are

φ′` = arctan
`− 1

k − `
− arctan

`− 1

k + 1− `
(5.16)

φ′′` = arctan
`− 1

k − 1− `
− arctan

`− 1

k − `
(5.17)

φ′′′` = arctan
`

k − `
− arctan

`− 1

k − 1− `
.

Consider first φ′`. Using the angle difference identity for the arctangent, we get

φ′` = arctan
`−1
k−` −

`−1
k+1−`

1 + (`−1)2

(k−`)(k+1−`)

= arctan
(`− 1)(k + 1− `)− (`− 1)(k − `)

(k − `)(k + 1− `) + (`− 1)2

= arctan
`− 1

k2 − 2k`+ k + 2`2 − 3`+ 1

and further we obtain

tanφ′` − tanφ′′′1 =
`− 1

k2 − 2k`+ k + 2`2 − 3`+ 1
− 1

k − 1

=
k`− k − `+ 1− k2 + 2k`− k − 2`2 + 3`− 1

(k − 1)(k2 − 2k`+ k + 2`2 − 3`+ 1)

=
−(k − 2`+ 2)(k − `)

(k − 1)((k − `)2 + (`− 1)2 + k − `)
. (5.18)

Since all four main brackets in (5.18) are positive for 1 ≤ ` ≤ bk2 c and k ≥ 2, we obtain

tanφ′` − tanφ′′′1 ≤ 0 and thus tanφ′′′1 ≥ tanφ′`. The tangent is monotonic increasing in (0, π/2)

which implies φ′′′1 ≥ φ′` for 1 ≤ ` ≤ bk2 c.

Consider now φ′′` . Note that (5.17) only differs from (5.16) by k being decreased by 1. As a

consequence, we obtain φ′′′1 ≥ φ′′` for 1 ≤ ` ≤ bk2 c with the same reasoning as above.

Finally, consider φ′′′` and define

f1(`) := φ′′′` = arctan
`

k − `
− arctan

`− 1

k − 1− `
.
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The derivative of f1 is given by

df1(`)

d`
=

d

d`

(
arctan

`

k − `
− arctan

`− 1

k − 1− `

)
=

1

1 + `2

(k−`)2
× k

(k − `)2
− 1

1 + (`−1)2

(k−1−`)2
× k − 2

(k − `− 1)2

=
k

(k − `)2 + `2
− k − 2

(k − `− 1)2 + (`− 1)2

=

[
k3 − 2k2`− 2k2 + 2k`2 + 2k

]
−
[
k3 − 2k2`− 2k2 + 2k`2 + 4k`− 4`2

]
((k − `)2 + `2) (k2 − 2k(`+ 1) + 2(`2 + 1))

=
k(2− 4`) + 4`2

((k − `)2 + `2)(k2 − 2k(`+ 1) + 2(`2 + 1))
.

The term in the denominator is non-negative since

2(`2 + 1) = (`2 + 2`+ 1) + (`2 − 2`+ 1) = (`+ 1)2 + (`− 1)2 ≥ (`+ 1)2

and therefore

k2 − 2k(`+ 1) + 2(`2 + 1) ≥ k2 − 2k(`+ 1) + (`+ 1)2 = (k − (`+ 1))2 ≥ 0.

For the term in the numerator we obtain

k(2− 4`) + 4`2 = 2k − 2k`+ 2`(2`− k) ≤ 2`(2`− k) ≤ 0,

which implies that φ′′′` is monotonic decreasing in ` and thus φ′′′1 ≥ φ′′′` for 1 ≤ ` ≤ bk2 c.

We have now proven that φ′′′1 = max1≤`≤b k2 c
{φ′`, φ′′` , φ′′′` } and, if k is odd, φ′′′1 ≥ φ∗. For the

von Neumann square grid, the cosine of φ1 = φ′′′1 is given by

cosφ1 =
k − 1√

1 + (k − 1)2
.

Finally, consider the Moore square grid. We introduce angles φ` for 1 ≤ ` ≤ k as the angle

between
(
k
`−1

)
and

(
k
`

)
; see Figure 5.13(b). Similar to above, it is sufficient to show that φ1 ≥ φ`

for 1 ≤ ` ≤ k. These angles are

f2(`) := φ` = arctan
`

k
− arctan

`− 1

k
.
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Computing the derivative of f2, we obtain

df2(`)

d`
=

1

1 + `2

k2

× 1

k
− 1

1 + (`−1)2

k2

× 1

k

=
k

k2 + `2
− k

k2 + (`− 1)2

=
k(k2 + (`− 1)2)− k(k2 + `2)

(k2 + (`− 1)2)(k2 + `2)

=
k(1− 2`)

(k2 + (`− 1)2) (k2 + `2)
.

Since df2(`)/d` is negative for 1 ≤ ` ≤ k, we conclude that φ1 ≥ φ` for 1 ≤ ` ≤ k. For the

Moore square grid we therefore obtain

cosφ1 =
k√

1 + k2
.



Chapter 6

Problem V: Macro- and

Micro-Analysis for Powerline

Routing: Mathematical Modeling

and Case Studies

In this chapter, we put the theoretical results obtained in Chapter 5 into practice. We con-

duct two case studies where we solve powerline routing problems using the concept of the

k-neighborhood that we introduced in Chapter 5. For the case studies we use real-world data

of two regions in England and Scotland. We split the powerline routing problem into a macro-

problem and a micro-problem, and present algorithmic solutions for each problem. Finally, we

evaluate our algorithms in terms of the solution quality, the running time, and the value of k

- the parameter that dictates the size of the k-neighborhood. We also compare our algorithms

against the traditional approach which corresponds to the case where k = 1.

The research presented in this chapter has been carried out in close collaboration with the

NM Group, a British electricity network company headquartered in Knaresborough, UK. They

provided the data used in the case studies and supported us in the modeling process through

regular discussions.

6.1 Introduction

The worldwide electricity demand is currently growing at a rate of about 2.4% yielding an

expected doubling by 2030 [72]. Powerlines form a key part of the power system infrastructure

which needs to be permanently extended in order to be capable of satisfying the increasing

electricity demand. The construction of powerlines is among the most expensive projects in

117
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electrical engineering making cost minimization a critical objective. In this chapter, we focus on

the development of cost-effective and time-efficient algorithms for powerline problems at large

scale.

Mathematical optimization techniques have been proven to be a useful tool for the design

of powerline routes. Two main techniques used are mixed integer linear programming (MILP)

and finding a shortest path in a sparse graph. Unfortunately, these approaches have drawbacks.

MILP models typically become intractable for large instances. On the other hand, a shortest

path problem on a too sparse graph oversimplifies the underlying powerline routing problem

resulting in solutions of lower quality. Additionally, both approaches are static: they do not

allow a user to control the tradeoff between solution quality and running time in an interactive

manner. This would bring great benefits as it allows a team of developers to explore multiple

candidate-routes fast and elaborate the most promising ones.

In this chapter, we introduce a new algorithmic approach for powerline routing that tackles

these challenges. Similar to previous work, our routing algorithm is based on finding a shortest

path in a graph. However, the key concept of our approach is the introduction of the parameter

k that controls the density, i.e., the number of edges, of the graph. We demonstrate that even a

slight increase of the graph density yields powerline routes with significantly lower costs while

only minimal additional running time is required.

In order to reduce the high monetary cost for collecting required data, we follow a common

approach and split the powerline routing problem into a macro- and a micro-problem. In the

macro-problem, we determine an initial route between a given source and a given destination

point. To this end, the entire area is covered with a regular grid and each cell is assigned a

weight indicating the cost of building a powerline through the area covered by the cell. The

decision-making is based on Euclidean distances and the cell weights. For the macro-problem, it

is acceptable to use grid-data of coarse granularity in order to keep the time and cost required for

gathering the grid-data at an acceptable level. Once the macro-problem is solved and a macro-

route is obtained, the macro-grid is removed. Instead, the macro-route is used as the backbone

around which a corridor is formed. The area of the corridor is covered with a micro-grid. As

the area of the corridor is significantly smaller than the entire area, data for the micro-grid can

be collected with much finer granularity while keeping time and cost at an acceptable level.

The micro-problem then consists in finding a minimum cost route between the source and the

destination point within the corridor. In order to improve model accuracy, we additionally

incorporate the cost of constructing the powerline which depends on line costs, different tower

types, standard and maximum span values, and route direction change cost into our model.

The main contributions of our work are as follows.

Algorithms enabling user-interaction to control the tradeoff between solution quality and run-

ning time. In our approach, the user can control the density of the underlying graph

through parameter k. This is useful as it enables implementation of an interactive mode

to find multiple promising routes quickly, and routes of very high quality if more compu-
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tation time is available.

Mathematical modeling through macro- and micro-analysis. A powerline routing design for a

large geographic area requires gathering large amounts of data which is time consuming

and expensive. Through a separation into macro- and micro-problems, we demonstrate

how data gathering can be significantly reduced.

Approach to extend existing powerline routing models to improve solution quality. Typical

powerline routing algorithms only allow to go from a cell to one of its neighbors. We relax

this condition and allow to go from a cell to any cell which is at most k cells away. We

demonstrate that through this extension, a significant reduction in cost is achieved while

keeping the running time at an acceptable level.

Empirically sound evaluation based on large scale real-world instances. We justify the effi-

ciency of our approach based on an approximation analysis of shortest paths conducted

in Chapter 5, as well as empirically through case studies using real-world data.

The rest of this chapter is structured as follows. Section 6.2 provides background information

on powerline routing. Section 6.3 formally introduces the macro- and the micro-problems, and

discusses related work. In Section 6.4 we present our solution approach that controls the density

of the underlying graph with parameter k. Section 6.5 provides mathematical justification and

a comprehensive empirical evaluation through real-world case studies. Finally, conclusions and

future work are presented in Section 6.6.

6.2 Background

Given a source point s and a destination point t in a geographic region and terrain characteris-

tics, the powerline problem consists in finding a route connecting s and t such that the cost of

constructing a powerline along that route is minimized. In the most general setting, the route

is allowed to take any continuous curve between s and t. However, due to the infinite amount of

possible routes, the problem is often discretized in practice. Then the route is typically a piece-

wise linear curve for which analytical formulas for calculating the cost are available. The route

cost consists of two components: tower costs and line costs. The powerline routing problem is

modeled as a shortest path problem and solved with a suitable algorithm.

In order to obtain data about terrain characteristics, one usually uses tools provided by

geographic information systems (GIS); see the textbook [40] for an introduction. There exist

two main data models: the vector data model and the raster data model. In the vector data

model, spatial features are represented as points, lines, and polygons which are organized into

digital data files that a computer can process. This model works well for discrete features

with explicit shapes, however it is not suitable for capturing continuous features such as terrain

characteristics. For those applications, the raster data model is preferred. In the raster data
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(a) (b) (c)

Figure 6.1: Neighborhood types for (a) the von Neumann square grid, (b) the Moore square
grid, and (c) the hexagonal grid

model, the area under consideration is covered by a regular grid. There are three types of

regular grids: triangular grid, square grid, and hexagonal grid [105]. For most GIS-applications

a square grid is used. There exist two types of square grids: the von Neumann square grid

(a cell has 4 neighbors) and the Moore square grid (a cell has 8 neighbors); see Figures 6.1(a)

and 6.1(b). Besides the square grid, the hexagonal grid is also used. The hexagonal grid has

some properties that make it attractive, particularly for powerline routing applications [27].

Most importantly, all six neighbors are equidistant, whereas in the Moore square grid diagonal

neighbors are further away by a factor of
√

2. On the other side, in the von Neumann square

grid, all four neighbors are equidistant, however, every direction change is taken at a 90o angle

which makes routes in hexagonal grids appear much smoother. Finally, once a regular grid is

chosen, each grid cell is assigned a positive weight indicating the cost of building through this

cell (dependent on the terrain characteristics).

Once all input data is available, one requires a mathematical model for optimization. The

powerline routing problem is typically modeled through a graph, where each vertex corresponds

to the center of a grid cell. Traditionally, an edge is introduced between vertices that correspond

to neighboring cells. In case of a square grid there exist two models: only vertical/horizontal

neighbors are considered (von Neumann neighborhood), or with additional diagonal neighbors

(Moore neighborhood). In previous work (except for partially in [1]), edges are added only

between immediate neighbors, but no edge was considered between vertices corresponding to

centers of non-neighboring cells. Besides the structure of the graph, a key component for

powerline routing is the cost model. Many different cost models have been suggested that

address aspects such as the lightning trip-out rate [86] or economic-environmental tradeoffs

[97].

The problem is then solved through shortest path algorithms such as Dijkstra’s algorithm or

the A∗-algorithm, or through dynamic programming. The shortest path problem that appears

in the context of powerline routing falls into the category of geometric shortest path problems

on regular grids which are typically formulated as follows: given a source s and a destination t

which are center points of cells, the task is to find a shortest piecewise-linear path between s



6.3. PROBLEM DESCRIPTION AND DEFINITION 121

Figure 6.2: Macro/micro-approach for the powerline routing problem

and t that traverses between center points of grid cells. Traditionally, where the 1-neighborhood

is used, such a path consists of linear segments connecting neighboring cells, i.e., cells which

are k = 1 cells apart. In this work, we increase the search space for shortest paths introducing

edges that connect centers of cells which are at most k cells apart.

6.3 Problem description and definition

In this section, we first give a high-level description of the macro/micro- approach used in

this chapter, and then introduce the macro- and micro-problem formally. The macro/micro-

approach is illustrated in Figure 6.2.

Consider a large geographic area containing the source point s and the destination point t.

In the macro-problem, the area is covered by a macro-grid of coarse granularity. Due to the

coarse level of granularity, cost and time required for data gathering are kept at an acceptable

level. Using grid weights, a shortest route between source and destination point is determined.

At this point, no tower and line costs are considered. The route obtained as output of the

macro-problem serves as an indicator of where a route of low cost can be expected.

In the micro-problem, a corridor is constructed around the route obtained from the macro-

problem. Then, the macro-grid is removed and the corridor area is covered with a micro-grid of

much finer granularity. Since the area of the corridor is small in comparison to the original area,

data of fine granularity can be collected at appropriate cost and in reasonable time. The micro-

problem consists in finding an optimal route inside the corridor between source and destination

point. All decision-making is based on the fine-grained data of the micro-grid. In contrast

to the macro-problem, this model additionally includes cost of lines, standard and maximum

span values for different tower types, and additional costs caused by direction changes of the

powerlines that require more robust tower constructions.
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The spotting problem, i.e., the problem of determining tower types and location for a given

route, is not part of this study: it can be solved through commercial software such as PLS-

CADD [114].

6.3.1 Macro-problem

We are given a regular macro-grid Cmac with cells ci, 1 ≤ i ≤ n, that cover the area under

consideration. We introduce a complete undirected graph Gmac = (V mac, Emac). The vertex

set is given by V mac = {v1, . . . , vn}, where vertex vi ∈ V mac is associated with the center point

of a grid cell ci. Since Gmac is complete, the edge set is given by

Emac = {{vi, vj} | vi, vj ∈ V mac, vi 6= vj}.

Recall, that the cells containing s and t are denoted by cs and ct, respectively. The source

vertex is denoted by vs and the destination vertex is denoted by vt. Each grid cell ci is assigned

a weight wi ≥ 1.

In the following we provide a reminder of the calculation of edge costs. Consider two distinct

cells ci and cj . A segment is the part of a straight line that connects the center points of two

cells. Let σij denote the segment connecting the center points of ci and cj . For a given cell

c` ∈ Cmac, let σ`ij denote the subsegment that consists of the intersection of segment σij with

cell c`, and let |σ(`)
ij | denote the Euclidean length of this intersection. Define Cside

ij as the set of

cells which have one side belonging in full to σij , and Cinner
ij as the set of cells which are crossed

by σij in the interior. Then, we define the weight ‖σij‖ assigned to edge {vi, vj} ∈ Emac by

‖σij‖ :=
∑

c`∈Cinner
ij

w`|σ(`)
ij |+

∑
c`∈Csideij

w`
2
|σ(`)
ij |, (6.1)

i.e., the weight ‖σij‖ is the sum of the weighted Euclidean lengths of the subsegments of σij .

The first sum in (6.1) accounts for cells c` ∈ Cinner
ij , i.e., cells that are crossed in the interior,

that contribute w`|σ(`)
ij | to ‖σ(`)

ij ‖. The second sum accounts for cells c` ∈ Cside
ij , i.e., cells that

have one side fully belonging to σ
(`)
ij . For these cells, the contribution is halved as σ

(`)
ij coincides

with borders of exactly two cells in Cside
ij and is therefore counted twice. Note that in case of

neighboring cells ci and cj the formula in (6.1) simplifies to the standard model used in the

literature where k = 1. Specifically, for a square grid where each square has a side length of 1,

the formula simplifies to

‖σij‖ =

√
2

2
(wi + wj) and ‖σij‖ =

1

2
(wi + wj) (6.2)

for diagonal and horizontal/vertical neighbors ci and cj , respectively. Similarly, for a hexagonal



6.3. PROBLEM DESCRIPTION AND DEFINITION 123

grid where each hexagon has a side length of 1, the formula simplifies to

‖σij‖ =

√
3

2
(wi + wj) (6.3)

for neighbors ci and cj . The problem of finding a macro-level route of minimal cost then

translates to finding a shortest path from the source vertex vs to the destination vertex vt in

Gmac:

Macro-problem

Input: graph Gmac = (V mac, Emac)

edge costs ‖δij‖ for {vi, vj} ∈ Emac as defined in (6.1)

a source vertex vs ∈ V mac

a destination vertex vt ∈ V mac

Output: a shortest path from vs to vt in Gmac

6.3.2 Micro-problem

Assume that a macro-route has been found and let C ⊆ Cmac denote the set of cells that are

intersected by the macro-route. Given a positive integer p, a corridor is formed around the

macro-route such that the corridor covers cells C0 ⊆ Cmac, where

C0 := {c ∈ Cmac | c is at most p cells away from a cell in C}. (6.4)

The macro-grid Cmac is now removed and the area of the corridor C0 is covered by the

micro-grid Cmic. Note that by construction both s and t are inside the area of the corridor. In

our model, we assume that both points are center points of grid cells of Cmic. Each grid cell

ci ∈ Cmic is assigned a weight wi ≥ 1.

At this point, we shall outline an alternative way of defining the corridor. Let P ∗ be a

minimum-cost path connecting cs with ct in Cmac. The corridor can then alternatively be

defined to consist of all cells contained in

{c ∈ Cmac | there is a path P from cs to ct over c such that ‖P‖ ≤ (1 + ε)‖P ∗‖}

for a given ε > 0. This way, the corridor contains all paths with cost at most ‖P‖ ≤ (1+ε)‖P ∗‖.
This definition is more flexible and less dependent on the grid weights than the definition given

in (6.4). However, in this work we proceed with (6.4) as that corridor is used by NM Group,

our industrial collaborators.

As in the macro-problem, we seek a minimum cost route between s and t. However, in

the micro-problem we additionally incorporate line cost, standard and maximum span values

between towers, and direction change between two segments under an angle. There are two
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aspects that contribute to an improved model accuracy of the micro-problem in comparison

to the macro-problem. First, the finer grid incorporates terrain specifics more accurately, and

second, the additional inclusion of tower and span features.

Consider a fixed path P between the source cell cs and the destination cell ct. Further, let

ci1 , ci2 , . . . , cip−1 , cip denote the cells in which a segment starts or ends, in order from cs to ct.

Note that ci1 = cs and cip = ct. For a triple of the form (ciγ−1 , ciγ , ciγ+1) we call ciγ−1 the

predecessor of ciγ and ciγ+1 the successor of ciγ . Note that the predecessor and the successor

do not have to be neighbors of ciγ . For completeness we define ci0 := cs and cip+1
:= ct. The

cost of path P is the sum of tower costs τ(ciγ−1 , ciγ , ciγ+1) in cells ciγ , 1 ≤ γ ≤ p, plus the sum

of line costs λ(ciγ , ciγ+1), 1 ≤ γ ≤ p− 1, between the center points of ciγ and ciγ+1 :

‖P‖ :=

p∑
γ=1

τ(ciγ−1 , ciγ , ciγ+1) +

p−1∑
γ=1

λ(ciγ , ciγ+1).

Note that the tower cost τ(ciγ−1 , ciγ , ciγ+1) of placing a tower in cell ciγ depends on the pre-

decessor and successor of ciγ , as this cost incorporates angle and span characteristics. The

analytical formulas for τ(ciγ−1 , ciγ , ciγ+1) and λ(ciγ , ciγ+1) are presented in Section 6.3.3. For

now it is sufficient to know that each of the values can be calculated in O(1) time.

Since the cost of placing a tower in the center of cell ciγ depends on the predecessor and

successor of ciγ , it is not feasible to formulate a shortest path problem in the same way as in the

macro-problem. Instead, we construct an enlarged directed graph Gmic = (V mic, Emic). The

vertex set V mic = {vs[vs]} ∪ V mic
s− consists of a vertex vs[vs] for the source and a set for the

remaining vertices defined by

V mic
s− := {vi[vh] | ci 6= ch, ci 6= cs, ch 6= ct}.

Our aim is to introduce arcs in such a way that a path visiting a vertex vi[vh] ∈ V mic translates

to a path visiting ci coming from its predecessor ch. The arc set Emic = Emic
s ∪ Emic

s− consists

of two sets which we define as

Emic
s := {(vs[vs], vi[vs]) | vi 6= vs},

Emic
s− := {(vi[vh], vj [vi]) | vi[vh], vj [vi] ∈ V mic

s− , vi[vh] 6= vj [vi]}.

An illustration of the construction of graph Gmic = (V mic, Emic) is presented in Figure 6.3.

As an example, in Figure 6.3(c), a path visiting vertices vs[vs],v2[vs], and vt[v2] in this order

translates to a path visiting the centers of cells cs, c2, and ct (in this order).

We can now incorporate both tower and line costs within a single cost value ‖vi[vh], vj [vi]‖
for arcs (vi[vh], vj [vi]) ∈ Emic. Specifically, for any arc (vi[vh], vj [vi]) that does not connect to
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(a) grid C (b) macro-graph Gmac (c) micro-graph Gmic

Figure 6.3: Construction of the micro-graph Gmic based on a 2× 2 hexagonal grid C

a destination vertex vt[·] ∈ {vt[vh] | vh 6= vt}, we add the tower cost in ci to line cost of the arc:

‖vi[vh], vj [vi]‖ := τ(vh, vi, vj) + λ(vi, vj), where vh, vi, vj 6= vt. (6.5)

Similarly, for any arc (vi[vh], vt[vi]) ∈ Emic that connects to a destination vertex vt[·], we add

the tower costs in ci and in ct to the line cost of the the arc:

‖vi[vh], vt[i]‖ := τ(vh, vi, vt) + λ(vi, vt) + τ(vi, vt, vt), where vh, vi 6= vt. (6.6)

The micro-problem then consists in finding a path of minimum cost between the source vertex

vs[vs] and a destination vertex vt[·]:

Micro-problem

Input: graph Gmic = (V mic, Emic)

arc costs ‖vi[vh], vj [vi]‖ for (vi[vh], vj [vi]) ∈ Emic as defined in (6.5) and (6.6)

a source vertex vs[vs] ∈ V mic

a set of destination vertices of the form vt[·] ∈ {vt[vh] | vh 6= vt}

Output: a path between vs[vs] and a specific destination vertex vt[·] for which the cost of

the path over all destination vertices is minimal



126 CHAPTER 6. MACRO- AND MICRO-ANALYSIS FOR POWERLINE ROUTING

6.3.3 Calculation of tower and line costs

Consider a fixed path P connecting the center points of cs and ct. Recall that the path cost

‖P‖ is the sum of tower costs and line costs:

‖P‖ :=

p∑
γ=1

τ(ciγ−1 , ciγ , ciγ+1) +

p−1∑
γ=1

λ(ciγ , ciγ+1),

where ci1 , ci2 , . . . , cip−1 , cip denote the cells in which a segment starts or ends (with cs = ci0 = ci1

and ct = cip = cip+1).

The line costs are defined as

λ(ci, cj) := u|σij |,

where u is the line cost per unit distance and |σij | is the Euclidean distance between the center

points of ci and cj . Thus, λ(ci, cj) is the monetary line cost between the center points of ci and

cj .

The tower costs are impacted by two aspects: (i) restrictions on span values to the preceding

and succeeding tower, and (ii) the route direction change angle at the location of the tower.

Span restrictions dictate the tower type that should be chosen. Consider a set T of different

towers types that are available to be placed along the route. Towers in T differ in terms of

their characteristics, however, note that the same tower T ∈ T can be used arbitrarily often.

Towers are placed in the centers of cells in which a segment of a route starts or ends. For

each tower type T ∈ T we are given a standard span value std span (T ) and a maximum span

value max span (T ). For a given route P , consider a tower that is placed in the center of a

cell ci ∈ Cmic \ {cs, ct}. Let ch and cj be the predecessor and the successor of ci on P . In this

case, we refer to the tower type placed in ci as Ti[ch, cj ]. Then, the mean Euclidean distance

to predecessor and successor must not exceed the standard span value of Ti[ch, cj ]:

|σhi|+ |σij |
2

≤ std span (Ti[ch, cj ]), (6.7)

where |σhi| and |σij | denote the Euclidean distance between the center point of ci with center

points of ch and cj , respectively. Similarly, the maximum Euclidean distance to predecessor

and successor must not exceed the maximum span value of Ti[ch, cj ]:

max{|σhi|, |σij |} ≤ max span (Ti[ch, cj ]). (6.8)

If ci = cs (or if ci = ct), the distance from ci = cs (from ci = ct) to its successor cj (predecessor

ch) must not exceed the maximum span value of the tower placed in ci, i.e.:

|σsj | ≤ max spanTs[s, j] and |σht| ≤ max spanTt[h, t]. (6.9)
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standard span (meters) maximum span (meters)

M6 300.0 380.0
M3 325.0 400.0
STD 350.0 425.0
E3 375.0 450.0
E6 400.0 475.0
E9 425.0 500.0
E12 450.0 525.0
E15 475.0 550.0
E18 500.0 650.0

Table 6.1: Standard and maximum span values for each tower type

(a) (b) (c)

Figure 6.4: Direction change angles αhij between tower triples

Note that in cases ci = cs and ci = ct we do not take the standard span value into account.

In this work, we consider eight different tower types with different standard and maximum

span values. The data is provided by the NM Group and presented in Table 6.1. The tower

type is then chosen as the first tower type in Table 6.1 that satisfies the span constraints (6.7)

and (6.8). Other tower types with higher span values would also be appropriate but they are

not selected as they are more expensive. For example, if |σhi| = 385 and |σij | = 425, then the

mean span value is (385 + 425)/2 = 405 and the maximum span value is max(385, 425) = 425.

Thus, the tower type to be selected in ci is E9. In the special cases where ci = cs or ci = ct,

the tower type is chosen as the first tower type that satisfies the maximum span restriction as

defined in (6.9).

Dependent on the angle between the previous and the succeeding towers, different construc-

tion costs occur for each tower type. The larger the angle, the higher the line tension the

tower has to resist, resulting in increased construction costs. These direction change angles

are measured as in Figure 6.4. In our model, we consider a set Φ of angle categories. Given

a direction change angle α, its angle category is the smallest value φ ∈ Φ such that α ≤ φ.

As for the tower types, larger values of φ ∈ Φ would also be feasible, but are not chosen as

they are more expensive. In this work, we consider five angle categories which are given by

Φ = {0o, 10o, 30o, 60o, 90o}. This data is provided by the NM Group as well.

Given the tower type and the direction change angle α, the cost of placing a tower in a
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α = 0 α ∈ (0, 10] α ∈ (10, 30] α ∈ (30, 60] α ∈ (60, 90]

M6 95000.00 110000.00 130000.00 150000.00 200000.00
M3 100603.30 116573.45 137883.74 159210.50 212586.24
STD 106567.62 123575.58 146288.65 169036.92 226033.51
E3 112918.06 131036.51 155251.82 179523.57 240405.10
E6 119681.56 138988.63 164813.15 190718.18 255769.29
E9 126887.07 147466.77 175015.63 202672.14 272199.70
E12 134565.72 156508.40 185905.49 215440.83 289775.78
E15 142750.99 166153.82 197532.55 229083.95 308583.28
E18 151478.86 176446.43 209950.48 243665.83 328714.80

Table 6.2: Cost for each tower type dependent on angle category, Φ = {0, 10, 30, 60, 90}

cell ci is then given as the corresponding entry in Table 6.2 times the weight wi of the cell.

If α > 90o, then no tower is allowed to be constructed and the tower cost is formally set

to infinity. Continuing the example above, assume that the direction change angle in ci is

αhij = 25o. Since 25 ∈ (10, 30], the tower cost would be τ(ch, ci, cj) = 175015.63 × wi. In the

special cases where ci = cs or ci = ct no direction change angle exist as there does not exist

a predecessor respectively successor. In these cases we set the direction change angles to the

highest (and most expensive) angle category, i.e., αssj = αhtt = 90o.

6.3.4 Literature review

To the best of our knowledge, the only paper conducting both a macro- and a micro-approach

is [1]. In the macro-problem, a 1-neighborhood for Gmac is considered, i.e., edges are only

put between vertices that correspond to neighboring cells. However, in order to obtain more

practically relevant routes, the authors consider a larger graph with 4n vertices and 6n edges

(for the von Neumann square grid), or 6n vertices and 9n edges (for the hexagonal grid). For

the micro-problem they consider graph Gmic and use the more general k-neighborhood, i.e.,

in Gmic they connect vertices that correspond to cells which are at most k cells apart. The

micro-problem can then be solved optimally through a shortest path problem in Gmic, but,

as the size of the graph becomes intractably large very quickly, the authors suggest multiple

heuristics. However, no evaluation, neither empirical nor theoretical, is provided.

In all other work, no separation between macro-and micro-problem is conducted. Common

for all work is that the powerline routing problem is modeled as a shortest path problem in a

graph using the 1-neighborhood. In the following we present a selection of the powerline routing

literature that is most relevant to our work.

Li et al. [86] study the problem of designing a powerline in a geographic area that avoids

regions with high lightning likelihood. The geographic area is covered by a Moore square grid

and weights associated to each square incorporate statistical data about the lightning likelihood

in the area covered by the square. The authors consider the 1-neighborhood and use Dijkstra’s

algorithm to find a powerline route, however, they do not state the number of grid cells and
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actual running time of the algorithm.

Monteiro et al. [98] consider a von Neumann grid and construct a graph with the 1-

neighborhood. Weights are assigned to cells incorporating terrain costs and the construction

costs associated with the slope of the terrain. Additionally, the authors also introduce line

direction change costs for each cell if the line changes direction from the predecessor to the

successor cell. They solve the shortest path problem using dynamic programming. It is stated

that the dynamic programming algorithm yields an optimal solution. The algorithm is based on

the assumption that a sub-path of a minimum cost-path is a minimum-cost path. As we discuss

later in Section 6.4.2, this is actually not the case and thus no optimality guarantee exists. The

algorithm is evaluated through real-world case studies, but no specifications regarding the grid

size or the running time are made.

Monteiro et al. [97] address the issue that the construction of powerlines typically involves

multiple parties with conflicting interests. They present a multi-criteria decision aid system in

order to design powerlines incorporating both economic and environmental aspects. A square

grid with the 1-neighborhood is used. They conduct a comprehensive evaluation through real-

world case studies but do not state the grid size or the algorithmic running time.

Besides powerline routing problems, there exists the more general class of power distribution

planning problems. In contrast to powerline routing, where a single route is determined, in

power distribution planning problems the aim is to develop an entire power distribution network

system such that a set of technical and operational constraints is satisfied, and such that a given

objective function is optimized. We refer to [53] for a comprehensive survey.

6.4 Algorithmic modeling and development

6.4.1 Macro-problem

As discussed in Section 6.3.1, the macro-problem translates to finding a shortest path between

vs and vt in graph Gmac. However, graph Gmac is complete which may lead to an unacceptable

running time and memory requirement. To address this issue, we use the concept of a k-

neighborhood that we introduced in Chapter 5 to obtain a new graph Gmac
k = (V mac, Emac

k ).

The set of edges is defined by

Emac
k := {{vi, vj} ∈ Emac | cells ci and cj are at most k cells apart}.

In all previous work (except for partially in [1]), all decision making is based on Gmac
1 =

(V mac, Emac
1 ), i.e., only the special case k = 1 is considered. The larger k, the higher is the

potential reduction in cost, but the larger is the graph. In Chapter 5, we showed that in the

case of equal weights, i.e., wi = 1 for all ci ∈ Cmac, a shortest path in Gmac
k approximates a

shortest path in Gmac
k very well, even for small values of k ≥ 2. Moreover, for arbitrary weights,

we proved upper bounds on the length of a shortest path in Gmac
k compared to the length of
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a shortest path in Gmac. Based on these results, we expect significant reductions in cost even

for small values of k ≥ 2. As a consequence, we study a relaxed version of the macro-problem,

where we seek a path of minimum cost from vs to vt in Gmac
k .

Shortest path problems can be solved by Dijkstra’s algorithm that runs inO(|E|+|V | log |V |)
if a min-priority queue is used that is implemented by a Fibonacci heap [50]. However, Dijkstra’s

algorithm may perform unacceptably slow in practice, especially in case of dense (or even

complete) graphs. A popular alternative choice is the A∗-algorithm, which is an extension of

Dijkstra’s algorithm. The sole difference between both algorithms consists in how the next

vertex to be visited is chosen. At each iteration, the A∗-algorithm chooses an unvisited vertex

i that minimizes f(vi) = g(vi) + h(vi) as the next vertex to be visited. Here, g(vi) is the

cost of the path from vs to vi, and h(vi) is an estimation of (the unknown) cost from vi to

destination vt. If h(vi) is smaller than or equal to the true lowest cost of the path from vi to

vn for all vi ∈ V mac, then the A∗-algorithm is guaranteed to deliver an optimal solution. In

this case, the A∗-algorithm is referred to as admissible. Dijkstra’s algorithm is a special case

of the A∗-algorithm with h(vi) = 0 for all vi ∈ V mac, i.e., Dijkstra’s algorithm always visits

an unvisited vertex of minimal cost. The aim of the A∗-algorithm is to reduce the number of

unnecessarily visited vertices in order to speed up the search. This is achieved by choosing an

appropriate function h: the larger h(vi), the better, assuming that h(vi) does not exceed the

true cost of the lowest cost path from vi to vt for any vi ∈ V mac. For the macro-problem, a

natural estimate is

h(vi) = |σit| for vi ∈ V mac, (6.10)

where |σit| is the Euclidean distance between center points of ci and ct. Since wi ≥ 1, the

algorithm is admissible and will thus return an optimal solution.

To summarize, our approach consists of finding a shortest path in Gmac
k , where k is a positive

integer. We study the performance of two shortest path algorithms: Dijkstra’s algorithm and

the A∗-algorithm with cost estimation function h as defined in (6.10).

6.4.2 Micro-problem

For the micro-problem we also use the concept of a k-neighborhood. To this end we consider a

graph Gmic
k = (V mic

k , Emic
k ) that is the sub-graph of Gmic = (V mic, Emic) in which the connection

of vertices is only allowed if the corresponding grid cells are at most k cells apart.

Formally, the vertex set of graph Gmic
k = (V mic

k , Emic
k ) is given by V mic

k = {vs[vs]} ∪ V mic
s−,k

and consists of a vertex vs[vs] for the source and a set of vertices defined by

V mic
s−,k := {vi[vh] |vi 6= vh, vi 6= vs, vh 6= vt, cells ci and ch are at most k cells apart}.
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The edge set is the union of two sets Emic
k = Emic

s,k ∪ Emic
s−,k, which we define by

Emic
s,k := {(vs[vs], vi[vs]) |vi 6= vs, ci and cs are at most k cells apart},

Emic
s−,k := {(vi[vh], vj [vi]) |vi[vh], vj [vi] ∈ V mic

s−,k, vi[vh] 6= vj [vi]}.

Each arc (vi[vh], vj [vi]) ∈ Emic
k is assigned cost ‖vi[vh], vj [vi]‖ as defined in (6.5) and (6.6). We

investigate a relaxed version of the micro-problem, where we seek a path in Gmic
k between vs[vs]

and a specific destination vertex vt[·] for which the cost of the path over all destination vertices

is minimal.

As for the macro-problem, we suggest Dijkstra’s algorithm or the A∗-algorithm to solve this

shortest path problem. For the A∗-algorithm, we need to specify a suitable function h(vi[vj ])

that serves as a lower bound for the minimum cost between vertex vi[vj ] and all destination

vertices vt[·]. Let S∗ be the largest max span-value among all tower types. Further, let C∗ be

the cost of the cheapest tower type at (the cheapest) angle category φ = 0. For example, using

the numerical values for tower spans and tower costs provided in Tables 6.1 and 6.2, we have

C∗ = 95000.00 and S∗ = 650.0. Then, a lower bound on the cost of a path from vi[vj ] to all

end vertices vt[·] is given by

h(vi[vj ]) = u|σit|+
⌊
|σit|
S∗

+ 1

⌋
× C∗. (6.11)

The first term u|σit| is a lower bound on the total line cost between ci and ct. The second

term is a lower bound on the total tower cost: the minimum tower cost C∗ is multiplied by⌊
|σit|
S∗ + 1

⌋
, i.e., a lower bound on the number of towers required. Note that, in general, (6.11)

is only a lower bound due to our assumption wi ≥ 1.

Unfortunately, for practically relevant instances, the graph Gmic
k = (V mic

k , Emic
k ) becomes

intractably big, even for small values of k. Therefore, we suggest a heuristic that does not require

the construction of a large graph. The idea of our heuristic is to search for the destination vertex

in a greedy manner, similarly to Dijkstra’s algorithm. However, since tower costs depend on

triples of vertices, there are no fixed edge costs of traversing between vertices. In our heuristic,

we iteratively calculate the edge cost based on the triple of vertices formed by (a) the start

vertex and end vertex of the edge under consideration, and (b) the predecessor of the start

vertex on the shortest path that leads to the edge.

Formally, introduce a new undirected graph G′
mic
k = (V ′

mic
, E′

mic
k ). The vertex set V ′

mic
is

defined by

V ′
mic

:= {vi | ci ∈ Cmic},

and the edge set E′
mic
k is defined by

E′
mic
k := {{vi, vj} | cells ci and cj are at most k cells apart in Cmic}.
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Figure 6.5: The difference between Dijkstra’s algorithm and our heuristic

In G′
mic
k it is not feasible to incorporate both tower and line costs as edge costs since tower

costs depend on triples of vertices. Instead, we present two heuristics that are adapted from

Dijkstra’s algorithm and the A∗-algorithm. In the following we explain the heuristic adapted

from Dijkstra’s algorithm. The heuristic works similar when adapted from the A∗-algorithm.

Dijkstra’s algorithm incrementally builds up a set S ⊆ V ′mic
of vertices to which a shortest

path from vs is already known. Whenever a new vertex vi is added to S, all vertices vj that are

connected to vi are investigated. If the path consisting of the shortest path from vs to vi and

edge {vi, vj} is shorter than the shortest currently known path from vs to vj , the path from

vs to vj is replaced by the shorter path. In each iteration a new vertex is added to S until

vertex vt is added. In this case, a shortest path from vs to vt has been found and the algorithm

terminates.

For our heuristic, assume that shortest paths from vs to a subset S ⊆ V mac \{vt} of vertices

are known. Let vi ∈ S be a vertex that has just been added to S and let vh denote the

predecessor of vi determined by the algorithm. In our heuristic, we consider the predecessor

vh and use this vertex to calculate the edge cost ‖vi[vh], vj [vi]‖ between vi and a vertex vj .

The cost of going from vi to vj depends on the predecessor of vi and thus on the chosen path

from vs to vi. Note that this is not an exact algorithm but a heuristic: there may exist a

path with lower cost to vj that comes from vi, however with a different predecessor vh′ of vi

- even if the sub-path from vs to vi is not of minimal cost. Thus, this heuristic may yield a

sub-optimal solution, but only requires a graph of significantly smaller size in comparison to
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the exact approach.

To summarize, similar to macro-problem, our approach consists in finding a path of minimal

cost in a graph using the k-neighborhood. We consider two graphs for the shortest path problem:

graph Gmic
k (exact approach) and G′

mic
k (heuristic approach). As for the macro-problem, we

investigate the performance of Dijkstra’s algorithm and the A∗-algorithm. The cost estimation

function for the A∗-algorithm is as defined in (6.11).

6.5 Evaluation

This section presents an evaluation of the proposed algorithms for macro- and micro-problems.

Ideally, the evaluation should be conducted using two data sets dedicated to the same geographic

area; one of coarse granularity (macro-problem), and the other of fine granularity (micro-

problem). Unfortunately, we do not have access to such data sets. Instead, we use two data

sets of coarse and fine granularity obtained from different geographic areas. In both data sets,

the area is covered by a hexagonal grid. Characteristics of the two data sets are given in the

following.

England/Scotland (coarse granularity): we consider an area of around 86×100 kilometers

located around the border of England and Scotland. The top left point is located around

20 kilometers south of Edinburgh and the bottom right point is located around 14 kilome-

ters south of Newcastle. The area is covered by a hexagonal grid with 100×100 = 10, 000

cells. Each hexagon has a diameter of around 1150 meters.

North Scotland (fine granularity): we consider a narrow but long area of around 4.25×50

kilometers in England and Scotland. The most southern part is at the Scottish town

Kintore and the most northern part is the sea coast located 50 kilometers to the north

of Kintore. The area is covered by a hexagonal grid of fine granularity consisting of

150× 2000 = 300, 000 cells. Each hexagon has a diameter of around 28 meters.

For each cell ci the fractions of the cell-area covered/affected by (a) buildings, (b) railroads,

(c) rivers, (d) roads, and (e) overhead transmission lines are determined. These values are

weighted in case of (a) with factor 20, (b) with factor 800, (c) with factor 10, (d) with factor

3.5 and (e) with factor 400. The weight wi assigned to cell ci is then equal to the sum of these

weighted values plus 1. This value 1 is added to the weight in order to guarantee wi ≥ 1. All

involved data is provided by the NM Group.

We implemented our algorithms using C since this programming language is very efficient

for computing a large number of arithmetic operations as it is required in this application. The

experiments are conducted on an Intel Xeon E3-1225 V2 Quad Core CPU @ 3.20 Ghz running

Windows 7. Note, however, that since our implementation does not support multithreading,

only one core is used.
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6.5.1 Macro-problem algorithms

We evaluate the impact of the k-neighborhood approach on the macro-problem. To this end,

we run Dijkstra’s algorithm and the A∗-star algorithm using the proposed k-neighborhood

graph Gmac, and compare the performance with the traditional approach where k = 1. For the

evaluation, we consider the following three instances.

Macro 1: England/Scotland data set (10, 000 hexagons), source: close to the top right corner,

destination: close to the bottom left corner.

Macro 2: England/Scotland data set (10, 000 hexagons), source: close to the center left border,

destination: close to the center right border.

Macro 3: North Scotland data set (300, 000 hexagons), source: top left corner at the sea coast,

destination: bottom right corner south of Kintore.

In instance Macro 3 we use the North Scotland data. This data set is of fine granularity and

thus intended to be used as data for the micro-problem. However, we also use this data set in

the macro-evaluation as it enables us to analyze our algorithms at scale (the data set contains

300, 000 hexagons). Our evaluation is based on the value of k, the cost of the obtained path,

and the computation time.

The experimental results for instances Macro 1, Macro 2, and Macro 3 are presented in

Tables 6.3, 6.4, and 6.5, respectively. In all instances a significant reduction in cost is achieved,

even from k = 1 to k = 2: the reduction is 10.9% for Macro 1, 5.9% for Macro 2, and 7% for

Macro 3. The increase in running time for Dijkstra’s algorithm remains small: the algorithm

only needs around 1 second longer for the smaller, but still fairly large, instances Macro 1 and

Macro 2. For the very large instance Macro 3, the increase in running time is only 2%. For

k > 3, only minor further reductions of less than 1% are achieved. On the contrary, the running

time increases significantly for k > 3.

Regarding theA∗-algorithm, we observe two interesting aspects. First, the A∗-star algorithm

requires more computation time than Dijkstra’s algorithm in case of small k. The reason for this

lies in the overhead that results from calculating the cost estimations defined in (6.10): for small

k, the time savings through the reduction in search space are smaller than the time required

for the repetitive calculations of (6.10). However, the A∗-algorithm outperforms Dijkstra’s

algorithm for values of k larger than 5 (for Macro 2) and larger than 10 (for Macro 1). However,

in the large instance with 300, 000 hexagons (Macro 3) this overhead turns out to be substantial,

resulting in a computation time of over 6 hours even for k = 1. We conclude that the A∗-

algorithm is not effective for large instances in our model.

The second aspect we observe is that the A∗-algorithm performs faster on Gmac
2 than on

Gmac
1 . This is because in Gmac

2 the larger number of edges is exploited to reduce the search

space much more than in Gmac
1 , resulting in a smaller overall running time.
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k = 1 k = 2 k = 3 k = 5 k = 10 k = 10000
cost of path
(rounded)

1.881× 105 1.676× 105 1.661× 105 1.656× 105 1.652× 105 1.651× 105

cost decrease 0 % 10.90 % 11.70 % 12.00 % 12.20 % 12.20 %

Dijkstra
time 6.10 7.35 10.29 23.10 1:32 5:43:26
time increase 0 % 20 % 69 % 278 % 1409 % 337 547 %

A∗
time 21.23 19.08 21.80 30.47 1:24 5:00:17
time increase 0 % −10 % 3 % 43 % 298 % 84 754 %

Table 6.3: Results for instance Macro 1 (England/Scotland)

k = 1 k = 2 k = 3 k = 5 k = 10 k = 10000
cost of path
(rounded)

1.146× 105 1.078× 105 1.063× 105 1.060× 105 1.057× 105 1.057× 105

cost decrease 0 % 5.90 % 7.20 % 7.50 % 7.70 % 7.70 %

Dijkstra
time 5.74 6.99 9.74 21.88 1:26 5:38:45
time increase 0 % 22 % 70 % 281 % 1416 % 354 309 %

A∗
time 11.57 10.78 11.80 18.15 48.57 3:07:09
time increase 0 % −7 % 2 % 57 % 320 % 96 995 %

Table 6.4: Results for instance Macro 2 (England/Scotland)

k = 1 k = 2 k = 3 k = 5 k = 10
cost of path
(rounded)

6.592× 104 6.131× 104 6.076× 104 6.055× 104 6.040× 104

cost decrease 0 % 7.00 % 7.80 % 8.40 % 7.70 %

Dijkstra
time 1:20:59 1:22:42 1:23:33 1:27:33 2:03:22
time increase 0 % 2 % 3 % 8 % 52 %

A∗
time 6:10:00 6:03:33 6:16:46 6:32:45 6:48:53
time increase 0 % −2 % 2 % 6 % 11 %

Table 6.5: Results for instance Macro 3 (North Scotland)
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A solution for the England/Scotland case study is presented in Figure 6.6. For instance

Macro 1, shortest paths for cases k = 1 and k = 10, 000 are compared. The path with k = 10, 000

chooses a much smoother and more direct route than its counterpart with k = 1. For instance

Macro 2, shortest paths for cases k = 1 and k = 2 are compared. The latter instance shows

that, although both paths have a very similar structure, the paths may still travel apart from

each other over a long distance - they are separated for the first half.

Figure 6.7 gives illustrations of the results for instance Macro 3. Shortest paths for cases

k = 1, k = 2, and k = 10 are compared. The figure shows that, although the area is a narrow

corridor, all three paths choose quite different routes between the start and the end point.

Besides a far-distance view, Figure 6.7 also provides a close-distance view of the area around

the end point located at the bottom part of the grid. There it can be seen that the end point is

located in the south of Kintore and that the only undeveloped area around that point is located

southwards. In order to reach this not-easily accessible point, the path for k = 1 maneuvers

through the city, while the paths with k = 2 and k = 10 find a more cost-effective path around

the city.

6.5.2 Micro-problem algorithms

We now evaluate our k-neighborhood approach on the micro-problem. To this end, we run

Dijkstra’s algorithm and the A∗-star algorithm on graphs Gmic
k (exact approach) and G′

mic
k

(heuristic approach). We consider 9 different tower types. The costs for each tower type,

dependent on the direction change category, are given by Table 6.2. If the direction change

angle is larger than 90 degrees, the cost of placing a tower is set to infinity. The standard and

the maximum span values for each of these towers are given by Table 6.1.

Recall that the grid Cmic used in the micro-problem corresponds to a corridor. For the

evaluation purpose of our algorithm, we construct a corridor as follows:

(i) consider a path P obtained as a solution to a macro-instance and take all cells C that the

path crosses; and

(ii) take the set of cells

{c ∈ Cmac | c is at most p cells away from a cell in C}

as grid Cmic.

We refer to the path in P as the backbone of the corridor.

The following two instances, which are derived from the instances used in the macro-problem,

are used.

Micro 1: based on instance Macro 1 (England/Scotland, 10000 hexagons). The shortest path

obtained for k = 10000 in instance Macro 1 is taken as the backbone of the corridor
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Figure 6.6: Results for instance Macro 1 (top left to bottom right) and Macro 2 (middle left
to middle right). Macro 1: paths of minimal cost with k = 1 (dotted, red) and with k = 10000
(solid, bright blue). Macro 2: paths of minimal cost with k = 1 (dotted, red) and k = 2 (solid,
purple).
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(a) far-distance view (b) close-distance view (bottom part)

Figure 6.7: Results for instance Macro 3: shortest paths for k = 1 (dotted, red), k = 2 (dashed,
yellow/purple), and k = 10 (solid, orange).
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and cells which are at most p ∈ {1, 2, 3} hexagons away from this path are added to the

corridor. The size of hexagons is reduced to the size of hexagons as in the North Scotland

data set, i.e., each hexagon has a diameter of 28 meters.

Micro 2: based on instance Macro 3 (North Scotland, 300000 hexagons). The shortest path

obtained for k = 10 in instance Macro 3 is taken as the backbone of the corridor and cells

which are at most p ∈ {1, 2, 3} hexagons away from this path are added to the corridor.

In instance Micro 1, the size of hexagons is reduced in order to make the instance compatible

with the standard and maximum span values given by Table 6.1. Our evaluations are based

on the value of k, the value of p, the cost of the obtained path, and the computation time.

Considering Table 6.1, the standard and maximum span values range between 300 and 650

meters. We evaluate our algorithms for k ∈ {10, 13, 16, 19, 22}: in Table 6.1, the smallest span

value is 300, covering about b300/28c = 10 hexagons; the largest maximum span value is 600,

covering about 23 = b650/28c hexagons.

In instance Micro 1, we first evaluate the exact approach for small values of k. In Tables

6.6, 6.7, and 6.8, we present the performance of Dijkstra’s algorithm and the A∗-star algorithm

when using the exact approach, i.e., when the algorithms are applied to graph Gmic. We make

three important observations. First, the running time of the algorithms grows unacceptably fast

for increasing k. For example, for p = 1, Dijsktra’s algorithm needs about 6 minutes for k = 10

and over 28 minutes for k = 22. Second, in all test runs, the heuristic (using graph G′
mic

) yields

high-quality solutions with cost values only slightly higher than using the exact approach. For

example, for p = 1 and k = 10, the cost value obtained with the exact approach is 3.568× 106,

whereas the cost value obtained from the heuristic approach is 3.664× 106 - an increase of only

about 2.69%. In all other cases, i.e., (p, k) 6= (1, 10), this gap is even smaller. Additionally, the

heuristic is much faster than the exact approach and finishes within a few seconds in all cases.

Third, we observe that Dijkstra’s algorithm (classical and modified) generally outperforms the

A∗-algorithm (classical and modified) in the micro-problem. This is not surprising: it is not

feasible for the A∗-algorithm to significantly reduce the search space since the micro-grid Cmic

has the shape of a corridor.

Now, we consider instance Micro 2 (consisting of 300, 000 hexagons) in order to evaluate

our approach at scale. From the evaluation of instance Micro 1, we have learned that Dijkstra’s

algorithm should be preferred for micro-problems. Additionally, we only apply the the heuristic

approach in instance Micro 2 as graph Gmic
k is by far too big for values of k ≥ 10. As for instance

Micro 1, our approach is evaluated for values of k ∈ {10, 13, 16, 19, 22} and values of p ∈ {1, 2, 3}.
The performance results are presented in Tables 6.9, 6.10, and 6.11. For p = 1, the algorithm

only requires between 55 seconds (for k = 10) and 96 seconds (for k = 23), and achieves a cost

reduction of 30.8% between k = 10 and k = 23. Similar conclusions can be drawn for cases

p = 2 and p = 3. For fixed k, a reduction of cost is achieved if p is increased, i.e., if a wider

corridor is considered. Figure 6.8 presents an illustration for p = 3 and k = 23.
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k = 10 k = 13 k = 16 k = 19 k = 22

h
e
u

ri
st

ic

cost of path
(rounded)

3.664× 106 3.261× 106 3.120× 106 3.045× 106 3.042× 106

cost decrease 0 % 11.01 % 14.86 % 16.89 % 16.98 %

Dijkstra
time 5.32 5.73 6.08 6.68 7.09
time increase 0 % 7.82 % 14.35 % 25.55 % 33.23 %

A∗
time 5.35 5.76 6.06 6.7 7.09
time increase 0 % 7.54 % 13.20 % 25.05 % 32.33 %

e
x
a
c
t

cost of path
(rounded)

3.568× 106 3.243× 106 3.066× 106 3.040× 106 3.020× 106

cost decrease 0 % 9.11 % 14.08 % 14.81 % 15.37 %

Dijkstra
time 6:09 10:05 15:11 21:29 28:47
time increase 0 % 63.71 % 146.32 % 248.71 % 367.10 %

A∗
time 12:44 20:08 28:36 39:16 50:27
time increase 0 % 58.07 % 124.58 % 208.25 % 296.05 %

Table 6.6: Results for instance Micro 1 (England/Scotland) with p = 1

k = 10 k = 13 k = 16 k = 19 k = 22

h
e
u

ri
st

ic

cost of path
(rounded)

3.586× 106 3.268× 106 3.054× 106 3.040× 106 3.041× 106

cost decrease 0 % 8.85 % 14.84 % 15.22 % 15.20 %

Dijkstra
time 9.35 10.52 11.36 13.03 14.14
time increase 0 % 12.44 % 21.43 % 39.29 % 51.15 %

A∗
time 9.51 10.64 11.45 13.05 14.01
time increase 0 % 11.91 % 20.49 % 37.22 % 47.35 %

e
x
a
c
t

cost of path
(rounded)

3.556× 106 3.201× 106 3.035× 106 3.022× 106 2.996× 106

cost decrease 0 % 9.97 % 14.65 % 15.01 % 15.76 %

Dijkstra
time 1:04:39 1:45:37 2:36:05 3:37:28 4:45:09
time increase 0 % 63.37 % 141.44 % 236.39 % 341.07 %

A∗
time 2:16:28 3:32:13 5:00:58 6:51:46 8:42:43
time increase 0 % 55.51 % 120.53 % 201.72 % 283.02 %

Table 6.7: Results for instance Micro 1 (England/Scotland) with p = 2

We conclude that smaller micro-instances can be solved in reasonable time with our ex-

act approach (demonstrated through instance Micro 1). Larger instances can be solved very

efficiently and with a very high solution quality with our heuristic approach (demonstrated

through instance Micro 2). Regardless of the size of the micro-instance, Dijkstra’s (classical

and modified) algorithm should be preferred over the A∗-algorithm (classical and modified).

6.6 Conclusions and future work

In this chapter, we presented a mathematical model of the macro/micro-approach for the power-

line routing problem. This approach splits the powerline routing problem into two components.

First, using a grid of coarse granularity, an initial route is calculated (macro-problem). Then,

the route is enlarged to a corridor and covered with a grid of finer granularity and the final route
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k = 10 k = 13 k = 16 k = 19 k = 22
h

e
u

ri
st

ic
cost of path
(rounded)

3.586× 106 3.215× 106 3.054× 106 3.034× 106 3.039× 106

cost decrease 0 % 10.34 % 14.84 % 15.38 % 15.25 %

Dijkstra
time 13.53 16.72 17.38 20.51 22.64
time increase 0 % 23.59 % 28.46 % 51.57 % 67.30 %

A∗
time 13.69 16.97 17.56 21.48 22.74
time increase 0 % 23.93 % 28.25 % 56.92 % 66.08 %

e
x
a
c
t

cost of path
(rounded)

3.549× 106 3.199× 106 3.035× 106 2.972× 106 2.971× 106

cost decrease 0 % 9.87 % 14.49 % 16.28 % 16.30 %

Dijkstra
time 5:12:21 8:43:14 12:55:20 17:19:34 22:46:03
time increase 0 % 67.51 % 148.22 % 232.81 % 337.33 %

A∗
time 10:45:02 18:02:38 24:37:52 32:15:14 41:28:15
time increase 0 % 67.84 % 129.11 % 200.02 % 285.75 %

Table 6.8: Results for instance Micro 1 (England/Scotland) with p = 3

k = 10 k = 13 k = 16 k = 19 k = 22

h
e
u

ri
st

ic

cost of path
(rounded)

3.070× 107 2.506× 107 2.385× 107 2.171× 107 2.124× 107

cost decrease 0 % 18.36 % 22.30 % 29.29 % 30.80 %

Dijkstra
time 55.76 1:04 1:12 1:24 1:36
time increase 0 % 15.42 % 29.32 % 51.89 % 72.18 %

Table 6.9: Results for instance Micro 2 (North Scotland) with p = 1

k = 10 k = 13 k = 16 k = 19 k = 22

h
e
u

ri
st

ic

cost of path
(rounded)

3.019× 107 2.486× 107 2.371× 107 2.136× 107 2.097× 107

cost decrease 0 % 17.66 % 21.44 % 29.25 % 30.54 %

Dijkstra
time 1:26 1:49 2:09 2:42 3:10
time increase 0 % 26.21 % 49.24 % 87.85 % 119.56 %

Table 6.10: Results for instance Micro 2 (North Scotland) with p = 2

k = 10 k = 13 k = 16 k = 19 k = 22

h
e
u

ri
st

ic

cost of path
(rounded)

2.990× 107 2.475× 107 2.362× 107 2.125× 107 2.088× 107

cost decrease 0 % 17.21 % 20.99 % 28.93 % 30.15 %

Dijkstra
time 1:55 2:39 3:18 4:21 5:14
time increase 0 % 38.23 % 71.93 % 126.25 % 171.62 %

Table 6.11: Results for instance Micro 2 (North Scotland) with p = 3
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Figure 6.8: Micro-problem for p = 3 and k = 23: illustration of the bottom part of the route
(orange) and the corridor (blue)
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is found. In the decision-making, specifics such as line cost, tower cost, tower type, or direction

change angle are incorporated in the micro-problem. Through the macro/micro-approach, the

required time and cost for collecting data of fine granularity is significantly reduced.

Both the macro- and the micro-problem require the solution of a shortest path problem. In

this work, we used the concept of the k-neighborhood. The standard model in the literature

corresponds to the special case of k = 1 in our approach. We demonstrate that a significant

reduction in cost is achievable even for small values of k ≥ 2 while keeping the running time

at an acceptable level. The impact of k is evaluated in terms of path cost, algorithmic running

time, and grid size. Our results are in line with the theoretical approximation results obtained

in Chapter 5.

Future work consists in incorporating several additional features. For example, one may

consider a model where two weights are assigned to each grid cell. Then, the edges of the

graphs are assigned a tuple of weights. One weight may correspond to the monetary cost of

crossing the area of a cell, whereas the other weight may be a penalty for violating environmental

regulations. Solving the resulting bicriteria shortest path problem, one obtains a path with an

acceptable tradeoff between monetary cost and social acceptance. Another useful extension

would be an algorithm that returns multiple paths instead of a single path. The paths should

be of high quality and structurally different, i.e., they should clearly look different on a map.

This is useful for a practitioner as there is a bigger choice for selecting a path that is in line

with additional requirements that are difficult to model formally. Finally, one may investigate

robustness and stability aspects of the powerline routing problem. In practical applications,

typically due to non-foreseeable events, a route often cannot be realized in exactly the same

way as obtained from an algorithm. Then it is essential that the quality of the path remains

high if minor adjustments to the path are made.





Chapter 7

Conclusions and Future Work

In this thesis, we addressed two common reasons why the full potential of optimization tech-

niques is often not fully exploited in practice. First, there are hard-to-model-features: real-world

applications are typically of complex nature which makes it very challenging to capture all char-

acteristics in a formal model. Second, there is the interdisciplinary nature of some applications:

they require solutions for sub-problems stemming from various domains such that the solu-

tions are compatible with each other. Sometimes, an optimization solution for a sub-problem

can be improved significantly, without affecting the compatibility with solutions for other sub-

problems. In this thesis, we addressed these challenges for two applications domains: scheduling

in Cloud computing systems, and powerline routing.

In the following we present conclusions of the work conducted in previous chapters of the

thesis. Additionally, we present future research directions, however at a higher level and less

technical than the future research directions presented at the end of each chapter.

7.1 Scheduling with immediate start of jobs

We developed a speed-scaling scheduling model that incorporated the novel immediate-start

requirement: the processing of each job is required to start exactly at its release time. This

requirement accounted for the central feature that Cloud services are available in an on-demand

manner. We considered two types of objective functions, where the first function depended on

the completion times of jobs, and the other depended on the processing speed of jobs. For the

single machine problem with n jobs, we showed that the three bicriteria scheduling problems

can be solved in O(n log n) time. Additionally, for the multi-machine problem with n jobs and

m machines, we showed that the problem for which the objective function is the sum of both

functions can be solved in O(n2m) time.

We consider our research as a first step toward bridging a significant gap between the Cloud

computing community and the (mathematical) scheduling community. There is a lot of scope for
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future research of both theoretical and applied nature. On the theoretical side, it is interesting

to tackle some generalized scheduling problems of our work. As an example, consider the multi-

machine problem for which we showed that it can be solved in O(n2m) time. What happens

if we minimize over one function (either depending on completion times or processing speeds

of jobs) and incorporate an upper bound on the other function? We studied this problem but

were unsuccessful - it is even not clear whether one should attempt to find a polynomial time

algorithm or prove NP-hardness.

On the applied side, it is interesting to generalize the immediate-start model to incorporate

additional features that are ubiquitous in Cloud computing such as throughput or reliability.

In addition, there is a need to investigate the performance of our algorithms in practice: how

can our exact results be adjusted and applied in real-world Cloud computing systems? Besides

scheduling in Cloud computing systems, the immediate start property also comes into play

wherever schedulers need to make decisions in real time. Recently there have emerged a number

of novel applications that require schedulers that act (almost) immediate upon receiving a

request. Prominent examples are self-driving cars (vehicles need to immediately respond to

changes in the environment) or robotics (robots need to transform external input from sensors

to appropriate reactions by the robot immediately for certain tasks).

7.2 Energy-aware scheduling

We investigated the problem of reducing the total energy consumption within a Cloud data

center. The total energy consists of two main components: energy required to operate com-

puting devices and energy required to cool them down. Additionally, reducing the total energy

consumption is a problem of interdisciplinary nature which requires knowledge from different

domains. One solution approach consists of analytical modeling through computational fluid

dynamics (CFD), however CFD models impose certain assumptions on the data center infras-

tructure and topology, and are therefore not applicable to every data center. Two other main

approaches to reduce data center energy are workload consolidation, and dynamic voltage and

frequency scaling. However, these approaches mainly focus on reducing computing energy and

neglect cooling energy.

We developed an algorithmic framework that does not make assumptions on the data center

infrastructure and can therefore, in principle, be applied to any type of data center. The

framework consists of several components in order to allow developers from different domains to

work independently. The task allocation component aims at assigning the workload to machines

in order to approximate a desired target workload distribution. We presented two algorithms

that outperform round robin and probabilistic asymmetric load balancing algorithms, which are

(at least in a modified form) widely used scheduling algorithms in modern Cloud data centers.

Our framework is a fundamentally new approach for assigning tasks to machines such that

the total data center energy is minimized. It is now up to the Cloud computing community to
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investigate its performance in a real-world environment. Therefore, it is important to see how

practitioners can adapt our framework in practice and how the framework performs for other

objectives.

7.3 Resource Boxing

We presented Resource Boxing - an automated approach for approximating resource utiliza-

tion patterns by a series of boxes. These boxes can then be used as input for mathematical

scheduling algorithms in order to evaluate algorithms within a realistic environment. We de-

veloped four Resource Boxing algorithms and applied them to CPU utilization patterns of the

Google tracelog, and demonstrated that a high accuracy is achieved. Moreover, we performed

an experiment for which we measured CPU utilization and power consumption. We managed

to predict the energy consumption based on the box-representation with an error rate of less

than 1%.

Future work consists in the analysis of utilization patterns of resources other than CPU.

Additionally, one may investigate how reliable predictions based on the box-representation are.

In our work, we made a first step by predicting the energy consumption based on the box-

representation. Future work may not be limited to the energy consumption; other objectives

can be studied as well. Finally, there is the opportunity that box-representations of resource

utilization patterns are made available for free. Researches could then download different box-

representations to evaluate their algorithms based on realistic data.

7.4 Approximation of shortest paths in regular grids

We studied shortest path problems on regular grids - the underlying problem in the optimization

component of powerline routing problems. The input consists of a regular grid with positive

weights assigned to each cell, as well as a source and a destination point that are both assumed

to be center points of grid cells. The problem consists in finding a piecewise linear shortest path

between the source and destination point such that each linear segment of the path connects

center points of grid cells. The problem is modeled as a graph, where each vertex is associated

with the center point of a grid cell, and where each edge corresponds to a linear segment

connecting the center points of two grid cells. If a complete graph is considered, i.e., a segment

is allowed to connect the center points of any two grid cells, the graph becomes intractably

large. On the other side, for the standard approach in previous work, where a segment is

only allowed to connect center points of neighboring cells, the model accuracy is significantly

reduced. In this work, we introduced the concept of a k-neighborhood where we allowed a

segment to connect the center points of two cells that are most k cells apart. We conducted

an approximation analysis for the ratio between (a) a shortest path in the graph using the

k-neighborhood and (b) a shortest path in the complete graph. Our analysis was based on the
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arbitrary k k = 1 arbitrary k k = 1 arbitrary k
unit weight arbitrary weight weight with limited change

von Neumann
square grid

Theorem 5.3 Theorem 5.4 – Theorem 5.8 Corollary 5.9

Moore
square grid

Theorem 5.3 Theorem 5.6 Corollary 5.7 Theorem 5.8 Corollary 5.9

hexagonal grid Theorem 5.3 Theorem 5.6 Corollary 5.7 Theorem 5.8 Corollary 5.9

Table 7.1: Overview of cases addressed in this thesis

grid type (von Neuman square grid, Moore square grid, and hexagonal grid), on the value k,

and on certain assumptions of the grid weights (unit weights, arbitrary weights, and weights

with limited change). Table 7.1 gives an overview of the cases for which results have been

derived in our study.

Our work is the first study of this type of research. We have obtained results for numerous

variations the problem; see Table 7.1. Moreover, for grids with unit weights we additionally

proved tightness (for all k ≥ 1). There are two obvious future research problems: can we

improve these ratios? If not, can we prove tightness?

Besides theoretical research, it is important to investigate how our findings can be used in

applications. In Chapter 6 we applied our insights for powerline routing. Besides powerline

routing, we expect that our work has the potential to yield significant improvements for other

applications as well.

Finally, we discuss gaming as an additional application that is not related to powerline

routing. Many games contain a virtual world that is internally built from a regular grid. Often,

a player can travel through the world, as a virtual person, with a vehicle, or in another form.

Besides the entity controlled by the human player, there may be many other entities interacting

with the virtual world such as Non-Playable Characters (NPCs). Internally, whenever any entity

changes the position in the virtual world (built upon a regular grid), a shortest path problem on

a regular grid has to be (approximately) solved, resulting in a large demand for computational

resources. A deeper understanding of how the lengths of shortest paths correlate with the

distribution of weights in certain areas of the grid has therefore the potential of significantly

reducing memory and CPU requirements, resulting in an improved gaming experience.

7.5 Macro- and micro analysis for powerline routing

In this work, we applied the theoretical insights gained about the shortest paths in regular

grids in the context of powerline routing. We split the problem into a macro-problem and

a micro-problem. Both problems are modeled as shortest path problems in graphs using the

concept of the k-neighborhood. We performed a comprehensive evaluation through two case

studies with real-world data. Our algorithms are capable of solving both the macro-problem

and the micro-problem efficiently. While the algorithm for the macro-problem is exact, the
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more complex micro-problem requires a heuristic approach (at least for very large grids). In

the conducted case studies, our proposed heuristic performs extremely fast and delivers close-

to-optimal solutions.

Our work demonstrates that the proposed algorithms using the k-neighborhood are capable

of yielding significant improvements over the traditional approach where k = 1. As a conse-

quence, we have promising algorithms for the powerline routing model as it is formulated in

Chapter 6. However, practitioners typically have additional requirements that are not consid-

ered in our model. This raises several exciting future research directions. First, it is interesting

to consider two objectives: on the one hand, one is interested in keeping construction costs low,

but on the other hand, one is also interested in finding a route that is accepted by the society

and does not violate environmental regulations. The challenge consists in finding a route with

a desired tradeoff.

Second, a practitioner may not fully agree with the route suggested by our algorithm. This

often happens due to factors that are difficult to model mathematically, for example due to

political reasons. Note that this is a common problem for almost all applications and not

specific to our solution or to powerline routing in general. How can we deal with this challenge?

One approach is to extend our algorithm to return multiple structurally different paths, i.e.,

paths that differ clearly when considered on a map. This would give a practitioner a bigger

choice to select a route that is in line with additional requirements and personal preferences.

Third, a powerline route should be robust, i.e., small changes to the powerline should not

cause a significant decrease in quality. Robustness is an important topic in practice, where

often, due to non-foreseeable events, a slight change of the route is necessary.

All three research directions outlined above come with their own challenges and deserve

a separate study. Still, we consider our work as a very valuable and solid starting point, in

particular because our results in the case studies were approved by practitioners (i.e., by the

NM Group).
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