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Abstract 

The goal of this thesis was to investigate the domain-general 

predictors that underpin mathematics skills in early childhood. Thus, this 

thesis examined the role of working memory and language. In particular, 

the empirical work of this thesis focused on comparing how children do 

mathematics in a relatively pure context on the one hand, and in a more 

applied context on the other. Three studies were designed for this purpose. 

The first study investigated the contributions of working memory 

components to both arithmetic skills and applied mathematics in 5-to 6-

year-olds. Study 1 showed, as expected, that the central executive plays an 

important role both in arithmetic skills and in applied mathematics. 

However, there was also an unexpected and somewhat surprising finding 

that also showed that both kinds of mathematics performance were 

significantly predicted by children’s receptive vocabulary. Thus, the second 

study was designed to further investigate the specific contributions of 

receptive language skills in children’s mathematics skills. Results from 

Study 2 were unexpected since the results obtained in Study 1 were not 

replicated. However, this was likely to be because the language measures 

had unexpectedly high executive functions components, and as such the 

language measures themselves were not transparent. Finally, the third 

study, although it did not followed directly from Study 1 and 2, it followed 

the subject of the role of language skills in pure and applied mathematics. 

Study 3 investigated the role of longitudinal linguistic precursors and 

concurrent language and executive functions in 4-year-old’s mathematics 

skills. Results suggested that concurrent language skills were significant to 

both mathematics performance, and that inhibitory control was also 

contributing to applied mathematics. Collectively, these findings improve 

our understanding of the domain-general contributions underpinning 

mathematics in both pure and applied contexts.   
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Chapter One 

The Development of 

Mathematics Skills 

 

1.1 Introduction 

Mathematics is an umbrella term comprising a broad set of skills 

that, putting it in a very general way, allow us to perceive and manipulate 

quantities. Mathematics is understood as the science dealing with 

quantitative calculations and spatial forms, which utilizes logic and 

symbolic notation as an approach (Khait, 2005). It can be broadly divided 

into arithmetic, geometry, logic, and algebra. When approached and 

studied as a science, mathematics are called “pure mathematics”, when used 

as a tool in other sciences or in practical problems, it is called “applied 

mathematics”. As such, mathematics provide us with the means and tools to 

understand and improve our world. 

Even the best mathematician had to start in the same place as the 

rest of us, by learning how to count to ten. However, even before learning 

how to express ourselves verbally, we develop the sensory perception that 

allows us to think about and process numerical quantities. For example, 

new-borns show that they can respond to change in numerosities by 

looking longer at a new group of objects (e.g. 16 dots) after being 

repeatedly shown the same number of objects (e.g. eight dots). These 

building blocks are also referred as informal mathematics skills. 

Mathematics, then, can be divided into informal and formal mathematics. 

Informal mathematics are lower level skills such as the ability to process 

numerical magnitudes and are acquired without the necessity of formal 

instructions. Formal mathematics are the mathematics skills acquired 
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thanks to formal instructions, like learning how to solve an addition; thus, 

these refer to the mathematics skills that we learn in school. 

Understanding the development of mathematics is important 

because having proficiency in mathematics provides a solid foundation for 

future learning and for academic and career outcomes (Lubinski & 

Benbow, 2006; Passolunghi, Lanfranchi, Altoè, & Sollazzo, 2015). This is 

shown by the significant statistical prediction that early mathematics skills 

have to later school success (Duncan et al., 2007; Passolunghi et al., 2015). 

The contribution of mathematics to later life outcomes is important to 

acknowledge because underachievement in mathematics is a common issue 

world-wide. For example, the international average for mathematics skills 

according to the Programme for International Student Assessment (PISA) 

test in 2015 was 490/1000 in a scale that goes from 0 to 1000; indicating that 

36% of the countries that participate in this assessment have their 15-year-

olds’ students failing to apply their mathematics knowledge to real-life 

situations (OECD; 2018). Specifically in the UK, results from the 

mathematics scores in the General Certificate of Secondary Education’s 

(GCSE), which determine whether a student is eligible to be accepted at 

University  showed that in 2017 only 32.7% of the students had the 

required scores (Grade C as minimum) to be able to access these 

opportunities (Joint Council for Qualifications, 2017).  

Mathematics are also important in life situations that are unrelated 

to academic achievement. A good level of mathematics increases the chance 

to understand and use information to make decisions about health, like 

understanding food or medication labels (Council & Education, 2016;i.e. 

health literacy; National Numeracy, 2016a; Word Health Organization, 

2016); and finance (National Numeracy, 2016b). Even when baking a cake 

or paying the bills we use mathematics to calculate quantities. Taking all 

this into consideration, the identification of the cognitive mechanisms that 

underpin mathematics skills is an important issue to address.  

Moreover, if we are to target improvement of these skills, it becomes 

crucial to understand how mathematics developed in early stages of life. 
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Research conducted thus far has stressed three main factors involved in 

mathematics development: (i) domain-specific abilities, which refers to 

early quantitative abilities considered to be important for understanding 

and acquiring later mathematics skills; (ii) domain-general abilities, which 

are non-mathematics cognitive skills that are relevant in a broader context 

of learning (Vanbinst & De Smedt, 2016) ; and (iii) environmental factors, 

which refers to the influences from the social and physical world in which 

the child develops.  

This chapter provides an overview of the research on these three 

topics across childhood. I will start by presenting research regarding the 

development of informal mathematics skills (1.2. Children’s Informal 

Mathematics Skills), since these are the domain-specific abilities that 

support the development of formal mathematics skills; which is the second 

topic addressed in this chapter (1.3 Children’s Formal Mathematics Skills). 

Then I will address the role of two relevant domain-general precursors of 

mathematics: executive functions and language skills (1.4. Domain-General 

Precursors of Children’s Formal Mathematics Skills). The fourth topic will 

be an overview of the environmental factors known to influence 

mathematics development (1.5. Environmental Factors). Finally, I will end 

this chapter by providing a summary, the next questions to be addressed, 

and an overview of the current thesis. 

 

1.2 Children’s Informal Mathematics Skills 

Informal mathematics are the mathematics skills that we develop 

without the need of formal instruction. These early mathematics skills are 

important for mathematics development because they serve as the 

foundation for children’s later mathematics skills, as such, they become the 

building blocks also known as “domain-specific abilities” for higher order 

mathematics domains (Geary, 2011; Geary, Nicholas, Li, & Sun, 2017). The 

following section will describe the development of informal mathematics, 

that although will be presented in a linear way, their emergence through 
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development overlap; and rather than replacing one another, they become 

mapped onto each other. 

1.2.1 Number sense 

The first domain-specific ability to emerge during the development 

of mathematics is the sensory perception that allows us to think about and 

process numerical quantities. Observed as early as 49 hours after birth 

(Izard, Sann, Spelke, & Streri, 2009), this ability is commonly referred as 

“number sense”. Number sense can refer to two different ways of 

representing numerical quantities. One is by representing quantities 

without the use of numerals, known as “non-symbolic number sense”; this 

ability is nonverbal, and allows us to perceive quantitates without counting 

(e.g. choosing the queue with fewer people when we want to pay our 

groceries at the supermarket). The other way of representing quantities is 

by using numbers and number-words, called “symbolic number sense” 

(Tosto et al., 2017). Both the non-symbolic and symbolic number sense are 

essential precursors for the emergence of later exact number skills that 

allow the use of numbers in a more precise way (Dehaene, 1997; Tosto et 

al., 2017). 

1.2.1.1 Cognitive systems for non-symbolic number sense 

The non-symbolic number sense comprises two cognitive skills (i) 

the Approximate Number System (ANS) and (ii) subitizing. The ANS 

allows us to discriminate quantities in an imprecise manner (e.g. choosing 

the larger of two piles of rice); and subitizing allows us to quickly and 

exactly enumerate small quantities without counting (e.g. determining that 

there are three cookies on a plate without needing to count them one by 

one). Both systems are present from childhood to adulthood (Ansari, 2016). 

The ANS can be observed in humans and in many other species (Dehaene, 

1997); conversely, subitizing is an ability found only in humans (Dehaene, 

1997; Feigenson, Dehaene, & Spelke, 2004). 
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The ANS 

The ANS is the system that allows us to represent and process non-

symbolic numerosities  (Gilmore et al., 2013). ANS competency, also 

knowns as ANS acuity, is frequently measured with a magnitude 

comparison task in which the level of discriminability between sets is 

assessed. For example, two sets of dots are presented to a child, and the 

child need to decide which set of dots has more dots. Moreover, different 

format of stimuli can be used: dots, numbers of short sounds (e.g. beeps), or 

different objects (De Smedt, Noël, Gilmore, & Ansari, 2013). As a first 

glance this task may seem quite easy, however, the difficulty of the task can 

be manipulated by modifying the ratio of the two groups of dots.  For 

example, for adult humans it is easier to distinguish between 10 and 3 dots, 

than it is to distinguish between 9 and 7 dots. Thus, the relative difference 

between two quantities, rather than their absolute difference, is what 

determines its difficulty (De Smedt et al., 2013; Dehaene, 1997; Xu & Spelke, 

2000). 

The precision to discriminate numerical quantities increases with 

age. In terms of age-related differences, children at birth can discriminate 

numerical quantities with a 1:3 ratio (e.g. 4 vs 12; Izard et al., 2009); 

whereas 4-year-olds are able to discriminate numerical quantities with a 

ratio of 1:2 (e.g. 6 vs 12; Xu & Spelke, 2000). Moreover, children around the 

age of 9 years are able to discriminate numerical quantities with 2:3 ratios 

(e.g. 8 vs 12; Xu & Arriaga, 2007). The acuity of the ANS continues to 

improve across the lifespan until adulthood; typically, adults can 

distinguish between quantities with a ratio between 7:8 and 9:10 (Barth, 

Kanwisher, & Spelke, 2003; Justin Halberda & Feigenson, 2008). After this 

period, the ANS acuity gradually decline (Halberda, Ly, Wilmer, Naiman, 

& Germine, 2012). 

Individual differences in numerical discrimination acuity can be 

found early in life, and seem to be stable over time. These individual 

differences can be found as early as 6 months of age and appear to be stable 

at least within the first 9 months of life (Libertus & Brannon, 2010). This 
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was found in one study in which 80 6-month-old children completed a 

numerical change detection task. In this task two sets of images containing 

different groups of dots were presented simultaneously. There were two 

types of sets: one was the “numerical changing” set, in which images 

contained two different quantities of dots, and the other one was the “non-

changing” set, in which both images had the same number of dots. Both 

types of sets were shown alternately for 500 ms followed by 300 ms of a 

blank screen. Across four trials, 14 out of 16 children successfully 

discriminated dots with a 1:4 ratio, but as the ratio decreased to 2:3 only 

seven out of 16 children were successful on the task. Significant differences 

between children who chose the numerically changing image set and 

children who did not, were observed to be within a discrimination range 

between a 1:2 and a 2:3 ratio (Libertus & Brannon, 2010). The same 

paradigm was used again when children were 9 months of age, and it was 

observed that children who spent longer time looking at the numerical 

changing set at 6 months were more likely to spent longer time looking at 

the numerical changing set at 9 months, demonstrating that children who 

react to a change of numerosities early in life, remain to do so months later.  

Subitizing 

Subitizing is the cognitive skill that allows us to quickly and exactly 

enumerate small quantities without counting. This skill is present from 

around the age of 2 years. At this age children are able to discriminate sets 

of up to three items (Starkey & Cooper, 1995). For example, one study 

found that 12 2-year-olds were able to quickly distinguish between one-, 

two-, and three-item displays, even when they varied in density, spatial 

configuration, and object composition (Starkey & Cooper, 1995). In this 

study subitizing abilities were measured with 15 different number 

comparison problems. In these problems, the experimenter showed to the 

children an array of blue chips (with numerosities between one and four) 

and then displayed an array of white light dots that varied in density and 

spatial configuration, on a screen. Children needed to state if the white 

light dots were the same or different from the blue chips. Ten additional 

problems were presented to the child, only this time, the white dots were 
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presented faster to avoid children from counting. Because 2-year-olds were 

unlikely to use verbal counting to enumerate the items, it was concluded 

that subitizing was present in young infants as old as 2 years of age, and 

that it was independent of verbal counting abilities (Starkey & Cooper, 

1995).  

Subitizing is an important skill, both in its own right, and because it 

provides the direct foundation for the emergence of explicit number 

understanding. For example, subitizing is vital for the development of 

children’s ability to count. Counting is the knowledge of the number words 

sequence and although subitizing and verbal counting are different skills, 

both skills develop in parallel (Starkey & Cooper, 1995). In the same study 

conducted by Starkey and Cooper (1995), 5-year-olds followed the same 

experimental paradigm, only this time children needed to mention how 

many dots they saw on the screen. Children also completed a number 

identification task in which different items were presented and children 

needed to mention the absolute number. Children were able to successfully 

subitized and encode up to five items, however, they committed errors in 

the problems with six or seven items. Moreover, when the large arrays 

were displayed longer (two seconds), children used verbal counting, which 

did not happen when the shorter arrays were display for a long time as 

well. These findings suggest that subitizing and counting skills develop in 

parallel and that children use them alternatively to enumerate objects. 

1.2.1.2 Symbolic number sense 

Together, the ANS and subitizing support the emergence of the 

symbolic number sense. The symbolic number sense emerges when 

children are able to link their internal non-symbolic representation of 

numerosities to its corresponding symbol and their phonological 

representation (number words; Ansari, 2016; Verguts & Fias, 2008) – that is, 

children’s understanding that three dots can be represented with the 

number “3”, or the word “three”. This process is important in children’s 

mathematics development because it allows them to perform a range of 

important numerical operations, such as identifying the smallest or largest 
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number in a set, ordering numbers, and even solving addition, subtraction 

and multiplication problems (Mundy & Gilmore, 2009). 

Symbolic number sense refers to the sensory perception that allows 

us to represent quantities by using numbers and number-words. Symbolic 

sense emerges around the age of 3 years (Benoit, Lehalle, Molina, Tijus, & 

Jouen, 2013) when children understand that numerical quantities can be 

represented with numbers and number words (Mundy & Gilmore, 2009). 

Understanding the role of numbers as quantities is the most essential and 

the most basic component of mathematics knowledge. This understanding 

develops in three main stages. First, children learn that the number word 

represents a specific quantity (e.g. “one” equals “•”, “two” equals “• •”, 

etc.). Three-year-olds are able to successfully relate number words to their 

corresponding magnitudes only in numbers smaller than three. The second 

stage in the development of the symbolic number sense is around the age 

of 4 when children learn the digits that represent both quantities and 

number words (e.g. “1” is the same as “•” and “one”; Benoit et al., 2013). 

Finally, mastering the relation between digits, quantities, and number 

words, is achieved around the age of 5 or 6 (Benoit et al., 2013; Mundy & 

Gilmore, 2009; Mussolin, Nys, Content, & Leybaert, 2014). As such, the 

symbolic system does not replace the non-symbolic system, but rather, 

these systems become mapped onto each other (Siegler, 2016). 

The symbolic number sense fosters other basic numerical skills, 

such as counting and the ability to represent numbers in the form of a 

mental number line  (Passolunghi & Lanfranchi, 2012; Passolunghi et al., 

2015) as it allows children to represent numbers and magnitudes in a 

specific order. Moreover, symbolic number sense also allows children to 

infer positional relationships between numbers (e.g. 2<4<8; Le Corre & 

Carey, 2007). Representing numbers in order and understanding their 

positional relationship is the cognitive basis of counting (Mussolin et al., 

2014).  

1.2.2 Counting 
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Counting refers to knowing the number sequence by rote. Counting 

is a crucial aspect of early mathematics development, since it has been 

suggested that it reflects an explicit understanding of numbers (Geary, 

2011). Acquiring counting skills is a long process that starts around the age 

of 2 years and finishes around the age of 6 years. Although most 2-year-

olds would be able to understand that number words used in counting 

refer to quantities, most of them would not be able to map the number 

words to their corresponding magnitudes (Wynn, 1992). For example, 2-

year-olds could use the number word “four” just to refer to any quantities 

that are more than one. Thus, children become successful counters only 

when they truly understanding the meaning of the number words 

(Mussolin, Nys, Leybaert, & Content, 2016). 

In order for children to understand the meaning of number words, 

children need to learn the principles of counting. These principles are 

known as the conceptual principles (Gelman & Gallistel, 1978) and their 

comprehension lead children to be able to enumerate any object in any 

direction (Jordan, Glutting, & Ramineni, 2010).  There are three main 

conceptual principles of counting: (i) the stable-order principle (also known 

as the ordinality principle), (ii) the one-to-one correspondence principle, 

and (iii) the cardinality principle.  

The stable-order or ordinality principle, is children’s 

understanding that when counting items in a set, each item has a 

position in relation to the other items (i.e. first, second, third, etc; 

Bartelet, Vaessen, Blomert, & Ansari, 2014; Gelman & Gallistel, 

1978). Thus, it is the knowledge of the order of the numbers. Most 3-

to-4-year-olds would understand the concept of ordinality, being 

able to count from one to ten in the correct order (Bermejo, 1996).  

The second principle is the one-to-one correspondence 

principle. This principle is characterized by the ability to count and 

point to objects simultaneously; thus, it refers to the understanding 

that number words are used to tag one, and only one, of the items to 

be counted. This stage of counting is reached between the ages of 4 
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and 5 years (Gelman & Gallistel, 1978; Le Corre, Van de Walle, 

Brannon, & Carey, 2006). 

Finally, the third principle, the cardinality principle, is 

children’s understanding that when they are counting a set, the last 

number word is the total number of objects on the sequence, thus, it 

is the answer to ‘how many?’ (Bartelet et al., 2014; Gelman & 

Gallistel, 1978; Lyons, Vogel, & Ansari, 2016) This principle is 

reached by the age of 5 years. By 6 years of age, children are able to 

successfully count from any given number (Kyttälä, Aunio, Lehto, 

Van Luit, & Hautamäki, 2003). 

Acquiring counting skills allows children to order and compare 

numbers. Ordering and comparing numbers are abilities that are 

considered fundamental for numerical processing and more complex 

mathematics skills, such as mental arithmetic (performing calculations 

without the use of any instruments; Lyons & Ansari, 2015). It has been 

observed that the way children order and compare numbers is by 

representing the numbers spatially on a mental number line (Morsanyi, 

Mahony, & Mccormack, 2016). In western societies the representation of 

numbers on the number line is organized horizontally and in ascending 

order from left to right, associating small numbers with the left-hand side 

and large numbers with the right-hand side (Dehaene, 1997). This spatial 

representation of numbers has been shown to be a significant predictor of 

children’s understanding of the base-10 place value structure of numbers 

(ones, tens, hundreds, thousands, etc; e.g. in “123”, number “1” belongs to 

the hundreds, number “2” to the tens, and number “3” to the ones; Zuber, 

Pixner, Moeller, & Nuerk, 2009). One way of measuring these abilities is 

using a number line estimation task. This procedure is explained next. 

  1.2.3 Spatial representation of numbers: The number line 

estimation 

Being able to quickly judge the value of one number relative to 

another number is a vital part of young children’s mathematics skills. This 
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ability is thought to come about through the use of a mental number line– 

that is, the ability to represent the numbers in order, spatially. This ability 

is measured with the number line estimation task that consists of a blank 

number line in which children need to indicate the position of a target 

number. This task is often used to measure children’s ability to represent 

spatially the magnitudes of numbers. The ability of placing a specific 

number in a number line starts developing around 3 to 4 years of age. 

Children’s initial mental representation of magnitudes is logarithmic, that 

is, smaller numbers are spaced farther apart than they should be, and larger 

numbers are spaced closer together (Dehaene, 1997).  In order for children 

to be successful in placing numbers on a line they need to use their 

knowledge of the relationship between numbers and their corresponding 

magnitudes, thus, it is an ability that it is supported by the ANS (Fuchs et 

al., 2010). Additionally, children also need to use their knowledge of the 

ordinality principle (Von Aster & Shalev, 2007).   

 

1.3 Children’s Formal Mathematics Skills  

Formal mathematics are the mathematics skills that are learn 

through formal instructions, thus, they are the mathematics skills that are 

acquired in school. The transition from informal to formal mathematics is 

an important stage in children’s mathematics development because it is 

when children start connecting their previous mathematics knowledge to 

new information learned in school. This process typically occurs during the 

first years of schooling, when children are between the age of 5 and 7 years 

(Purpura, Baroody, & Lonigan, 2013).  Formal mathematics during this 

period include, but are not limited to, the following concepts: arithmetic, 

place-value understanding, knowledge of the base-10 numbers system, 

decimal knowledge, counting fluency; and the understanding of length, 

mass, volume, time, money, and geometry (e.g. shapes and patterns; 

Ginsburg, 1977, as cited in Purpura & Ganley, 2014 Department for 

Education, 2013).  Details of all these skills go beyond the scope of this 

thesis. I will limit the sub-sections that follow to the explanation of 
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arithmetic and arithmetic word-problems, and their domain-specific 

predictors, because these two overlapping abilities are the main element of 

the mathematics curriculum in the first years of formal schooling (i.e. Years 

1 and 2 of the National curriculum in England; Department for Education, 

2013). 

1.3.1 Arithmetic 

Arithmetic refers to the calculation and manipulation of numbers; it 

includes single or multi-digit additions, subtractions, multiplications, and 

divisions. Usually, the first step in children’s arithmetic skills development 

is solving non-symbolic arithmetic problems (i.e. calculation problems 

without numbers), around the age of 2 to 4 years. Then, during the first 

year of formal schooling, when children are around the age of 5 years, 

children are able to perform symbolic arithmetic problems (i.e. calculation 

problems with numbers). I will start this section by presenting the process 

of solving non-symbolic arithmetic problems and then I will present the 

process of solving symbolic arithmetic problems. 

Non-symbolic arithmetic problems are calculation problems that do 

not involve numbers and require children to represent and transform 

numerosities. The means by which young children are able to solve non-

symbolic arithmetic problems is by representing the problem in a mental 

model. For example, solving a non-symbolic arithmetic problem involve 

presenting the child with a set of objects that is then hidden. While the 

objects are still hidden, the set is manipulated by adding or extracting an 

object. Finally, while the set is still hidden, the child is asked to show the 

final outcome with their own sets of objects. As such, to be able to reach an 

answer the child must have been following the whole process by 

representing each step in a mental model, from  the representation of the 

original set, the action of adding or extracting, to the representation of the 

final outcome (Huttenlocher, Jordan, & Levine, 1994). This ability to 

transform numerosities has been identified as an important foundation for 

symbolic arithmetic skills (Gilmore, McCarthy, & Spelke, 2010; 

Huttenlocher et al., 1994; Rasmussen & Bisanz, 2005).  
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During the first year of formal schooling, children will start learning 

the process of calculation through the use of numbers. This process 

requires children to successfully access, discriminate, and compare 

numerical magnitudes, from the abstract symbols that represent them 

(Gilmore et al., 2010; Holloway & Ansari, 2009). Children can use the core 

skills they have already acquired, and use them to assist in arithmetic 

problems. For example, counting is a useful tool when children need to 

find the total of items in two groups. Children are able to find a total of two 

groups of items by counting all of them (Moylett & Stewart, 2012). In this 

way, counting skills become part of the strategies children can use to solve 

simple arithmetic problems. Generally, the first counting strategy that 

children develop, is counting two sets of objects separately, and then count 

them all together. For example, adding two and three items entails children 

to count the group of two items, then count the group of three items, and 

then count both sets together (Barody, 1987).  

Eventually children learn that they can “count-on”, that is, start 

counting from two and then count-on the further three items (Gray & Tall, 

1994). This learning trajectory takes place between the ages of 3 and 5 years, 

and because this process involves holding in mind numerical information 

(number two in the previous example) to then add new numerical 

information (i.e. number three), children rely on physical aid like using 

their fingers, to represent each addend (Department for Education, 2013; 

Gray & Tall, 1994).  

Solving single-digit arithmetic problems become an easier job once 

children learn to build problem-answer associations, like 2+2 always be 4. 

Each time a child encounters a particular arithmetic problem she creates an 

association between the problem and its answer. These associations are 

called arithmetic facts, which, through experience, will be stored in the long 

term memory (Bull & Johnston, 1997; Siegler & Shrager, 1984). On this way, 

arithmetic facts are important for mathematics development because they 

are cognitively efficient, allowing the child to not compute the answer 

every time . As soon as children become able to automatically retrieve these 

facts, they are able to solve simple arithmetic problems without drawing on 
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slower procedures (i.e. counting). Additionally, being able to retrieve an 

answer from memory, rather than having to compute it, means that 

children would be able to direct their attentional resources to solve more 

complex problems, like multi-digit arithmetic problems (Ashcraft, 1982; 

Gersten & Chard, 1999). As such, arithmetic fact retrieval gradually 

increases the speed and efficiency with which children engage with 

mathematical material.  

The next step for children’s arithmetic learning is knowing how to 

solve problems with more than one digit (i.e. multi-digit arithmetic 

problems). By the age of 7 years, children are able to solve multi-digit 

arithmetic problems. They achieve this by understanding the value of a 

number given its place or position in relation to other numbers on a 

number set (i.e. ones, tens, hundreds, thousandths, etc.). This construct is 

known as numbers’ place value (Martins-Mourao, 2000) and develops 

thanks to children’s knowledge of the linear representation of numbers. An 

accurate understanding of the number line allows children to organize and 

store information regarding number’s magnitudes (Träff, 2013). This 

understanding is necessary for multi-digit arithmetic problems where 

children need to regroup “10” when they “borrow” or during the carry 

effect, when a unit needs to be “carried form” another number. For 

example, in 16 + 7 = 23, a number 1 needs to be “carried from” the units to 

the decades (because 6+7=13;Göbel, Moeller, Pixner, Kaufmann, & Nuerk, 

2014).  

Arithmetic problems can vary a great deal in their complexity and 

in the processes necessary to solve them. Unsurprisingly, therefore, instead 

of relying on a single approach to solve arithmetic problems, children use 

several distinct counting-based and arithmetic facts retrieval strategies 

(Siegler & Braithwaite, 2016). What determine the use of one or the other 

depend on familiarity or experience with certain mathematics procedures. 

For example, 6- and 7-year-olds tend to solve single-digit arithmetic 

problems using counting and decomposition strategies, whereas 8- and 9-

year-olds are more likely to use direct fact retrieval instead (Raghubar, 

Barnes, & Hecht, 2010). Nonetheless, for multiplication problems, 8- and 9-
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year-olds use counting strategies (Ashcraft, 1982) because of the lack of 

familiarity they have with these problems. This variability between 

strategies can also be observed during adulthood and it is present while 

solving all four arithmetic calculations (addition, subtraction, 

multiplication, and division; Siegler & Braithwaite, 2016). 

To summarize, in order to solve arithmetic problems, children must 

learn to use their counting skills as strategies first (e.g. counting with their 

fingers) , to manipulate numerical information, to later be able to solve 

them by arithmetic fact retrieval or any other strategy. This process 

happens around the age of 5. Then, around the age of 6 and 7, children start 

building arithmetic facts; and thus, start being more efficient in solving 

single-digit problems by getting their answers derived through retrieval 

from long-term memory (Butterworth, 2010). When solving multi-digit 

problems, where they need to attend to regrouping demands and place 

values, children rely on their linear representation of numbers. However, 

from childhood and even in subsequent years, not only a single strategy 

will be used, but rather different strategies in combination. Arithmetic is a 

very important skill in children’s mathematics learning, however for it to 

be really useful in everyday life, children need to be able to solve arithmetic 

problems when they are embedded in everyday situations. 

1.3.2 Arithmetic word-problems 

Arithmetic word-problems are important because they are the mean 

by which children learn to apply their arithmetic knowledge to every-day 

situations. Arithmetic word-problems, are problems that simulate 

information that people commonly encounter in daily life. These problems 

are presented inside a narrative (e.g. “Luis went to the Moor Market and 

bought six apples. If he gave two apples to his mother and one apple to his sister, 

how many apples will he have then?”). Between the ages of 5 and 7 years, 

children start learning how to apply their arithmetic knowledge to solve 

these problems. These real-life problems are characterized by requiring 

calculation skills for their solution and are typically presented with verbal 

or visual representations that must be interpreted and manipulated 
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symbolically to be solved (Cummins, 1991). For example, taking the 

example above this means changing the problem to: 6-2-1=? In addition to 

providing practice with real-life problems situations, solving arithmetic 

word-problems foster children’s creative and critical solving skills, and 

thus the development of complex problem-solving skills (e.g. the ability to 

analyse different solutions to solve a problem; Chapman, 2006; Keen, 2011). 

Thus, the main difference between an arithmetic problem and an 

arithmetic word-problem is that, for the first one the calculation that is 

needed to be solved is already set-up; whereas for the second one, the 

calculation to be solved is presented within linguistic information that 

children need to interpret in order to first work out what the problem is, 

before being able to solve it. And so, solving arithmetic word-problems 

involves three main steps. Firstly, children need to interpret the narrative 

involving the problem. Secondly, it is necessary to select only the 

information that is relevant to solve the problem. And thirdly, children 

need to select the correct arithmetic operation in order to solve the problem 

(Andersson, 2007; Lee, Ng, Ng, & Lim, 2004; Swanson & Beebe-

Frankenberger, 2004). Thus, solving arithmetic word-problems involve 

both cognitive and linguistic processes.  

The underlying cognitive abilities in solving arithmetic word-

problems are predominantly domain-general abilities, of which the 

strongest predictor is language skills (Wang, Fuchs, & Fuchs, 2016). This is 

because the arithmetic calculation that needs to be performed is embedded 

within linguistic information. In fact, a variable that determine the 

difficulty of these problems, is the semantic relations-the associations that 

exist between the meanings of words or sentences-within the problem 

(Riley, Greeno, & Heller, 1983). Three main types of problems are often 

proposed based on their semantic relations:  

(i) Combination problems, which involve two quantities that must 

be considered in combination to find the answer (e.g. Ana has 5 

apples. Laura has 2 apples. How many apples do Ana and Laura have 

altogether?),  
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(ii) Change problems, in which an exchange takes place and changes 

the size of a given set of objects (e.g. Ana had 5 apples. Then Laura 

gave her 2 more apples. How many apples does Ana have now?), and  

(iii) Compare problems, which consist of two quantities which 

difference must be compared and quantified to find the answer (e.g. 

Ana has 5 apples. Laura has 2 more apples than Ana. How many apples 

does Laura have?).  

Research has found that even when children need to perform simple 

calculations, compare problems are more difficult for children than 

combination or change problems. This is because compare problems use 

relational terms (e.g. more than, less than; Riley et al., 1983; Stern, 1993; 

Stern & Lehrndorfer, 1992) which for some children are difficult to 

understand. This demonstrates that solving arithmetic word-problems 

requires both domain-general abilities, as well as domain-specific abilities 

(e.g. language skills and arithmetic knowledge). Additionally, compare 

problems may also require children to inhibit misleading cues when the 

relational labels are inconsistent with the calculation needed to be 

performed. In the following example: Ana has 5 apples. She has 2 more apples 

than Laura. How many apples does Laura have? The relational label “more” 

implies a larger quantity; however, to solve the problem, children need to 

perform a subtraction to find the answer, thus needing to inhibit the 

strategy to perform an addition whenever they hear the cue “more” 

(Hegarty, Mayer, & Monk, 1995; Lee, Ng, & Ng, 2009).  

Difficulties in solving arithmetic word-problems can occur in 

children who may have adequate arithmetic skills (Swanson, Jerman, & 

Zheng, 2008), suggesting that other cognitive skills are involved. For 

example, in a longitudinal study it was found that domain-general abilities, 

but not arithmetic skills, predicted children’s performance on arithmetic 

word-problems. In this study, 6 to 8-year-olds were tested in three different 

time-points, over a period of two years. Children were divided into two 

groups on the basis of their problem-solving performance (i.e. at risk and 

not at risk for mathematics problem-solving difficulties). Children who 



  

18 

 

were at risk for problem-solving difficulties had low levels of performance 

in the domain-general measures, but their calculation skills were no 

different to children who were not at risk (Swanson et al., 2008). This 

finding shows that although arithmetic and arithmetic word-problems are 

related, the cognitive mechanisms underlying them are (at least partly) 

distinct.  

1.3.3 Summary of children’s informal and formal mathematics 

skills 

To summarize, mathematics has a hierarchical development for 

which informal mathematics are highly important. The understanding of 

numbers and their magnitudes starts with the ability to perceive and 

discriminate quantities. Then, children develop the understanding that 

numbers and number words are used to represent magnitudes. Counting 

and their ability to represent numbers spatially develop next around the 

age of 3; but it won’t be until 6 and 7 years of age that children become 

successful counters and successful at representing numbers on a number 

line.  Both abilities allow children to solve arithmetic problems in the 

following years. Simple non-symbolic arithmetic skills are the first step into 

the development of symbolic arithmetic, for which the first years of formal 

schooling, when children are5 to-6-years of age, are relevant. 

Research in mathematics has focused a great deal in arithmetic 

skills, because of how important they are during the first years of formal 

schooling. However, investigating solely arithmetic skills would give a 

very narrow account of how children use mathematics. It is important, 

therefore, to take a much more applied perspective. Some useful progress 

has been made in this regard with some research being conducted to look 

at arithmetic word-problems. From this, we understand some things about 

how children use mathematics. However, it remains an area that merits 

additional work to offer a fuller account of how young children use their 

mathematics in real-world contexts. 
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1.4 Domain-General Precursors of Children’s 

Mathematics Skills 

In addition to domain-specific abilities, the development of 

mathematics also involves domain-general abilities (Purpura & Ganley, 

2014). Since a variety of domain-general abilities have been associated with 

mathematics, for the purpose of this thesis, this section will focus on two 

major domain-general abilities: executive functions and language. These 

two constructs have been found to be important precursors of mathematics 

development (Vanbinst & De Smedt, 2016). The following section will 

summarize significant findings regarding the role of executive functions in 

mathematics, followed by the role of language skills. 

1.4.1 Executive functions 

Executive functions is an umbrella term that refers to high-level 

cognitive skills that govern the control, regulation, and efficient planning of 

human behaviour (Lezak, 1982). This set of skills are particularly important 

in situations that are complex or new, or when processes that are already 

automatized need to be inhibited (Miyake et al., 2000). There are three main 

executive functions that allow us to carry out goal-directed behaviour: 

Working memory, which refers to the ability to maintain and update 

information in mind; inhibitory control, which allow us to inhibit our 

attention to irrelevant information and to suppress previously learnt 

responses in favour of new more task-appropriate ones; and cognitive 

flexibility, which refers to the ability to shift between response sets in a 

flexible manner (Miyake et al., 2000; Miller & Cohen, 2001). Although these 

executive functions are theoretically distinguishable, these skills are often 

interrelated. This section will present the specific contribution of each of 

these three executive functions to mathematics. 

1.4.1.1 Working memory  

Working memory is the system that allows the child to hold and 

manipulate information in mind during the performance of complex tasks 
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such as learning, reasoning, and comprehension (Baddeley & Hitch, 1974 as 

cited in Baddeley, 2010). Among the many different theoretical models of 

working memory, Baddeley and Hitch’s multi-component model is one of 

the most frequently used in research involving mathematics’ development. 

This multi-component model goes beyond, and is different from, the 

general definition of working memory as a unitary system involved in 

monitoring and updating information proposed by Miyake and colleagues 

(Miyake et al., 2000). Instead, Baddeley and Hitch’s working memory 

model consists of four functional components: The central executive as a 

control system of limited attentional capacity, and three subsidiary short-

term storage systems: the visuo-spatial sketchpad, the phonological loop, 

and the episodic buffer (Baddeley and Hitch, 1974 as cited in Baddeley, 

2010). 

According to this multi-component model, the central executive 

supports the coordination of processing and storage of information 

(Baddeley, 2012). Four different functions have been ascribed to the central 

executive: (i) the coordination of tasks performance, (ii) switching between 

strategies, (iii) directing attentional resources to one stimuli while 

inhibiting irrelevant information, and (iv) the ability to hold and 

manipulate information in long-term memory (Baddeley, 1996). The visuo-

spatial sketchpad, for its part, is responsible for the storage and 

maintenance of visual and spatial information; while the phonological loop 

is responsible for the storage and maintenance of information in a 

phonological form (RepovŠ & Baddeley, 2006). The fourth component of 

this model is the episodic buffer, responsible for the integration of 

information from a variety of sources, especially from long-term memory 

(Baddeley, 2000). The episodic buffer was the last component to be added 

to the model. To my knowledge, no research has been conducted to explore 

the role of this component in children’s mathematics performance. Thus, 

from this chapter further, when talking about Baddeley and Hitch’s 

working memory model I will be referring to the central executive, the 

visuo-spatial sketchpad, and the phonological loop solely. 
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Because working memory  involves the storage and manipulation of 

information, the main role of the central executive would be monitoring 

and facilitating the control of attentional resources, as well as being 

involved in the activation of relevant information from long-term-memory  

(Friso-van den Bos, van der Ven, Kroesbergen, & van Luit, 2013; Swanson, 

2011). The central executive is usually measured with complex span tasks. 

Complex span tasks consist of a series of items (e.g. numbers or words) 

which need to be stored, manipulated, and then recalled (Friso-van den Bos 

et al., 2013). One example of these tasks is the widely used Backward Digit 

Span task. This task involves children needing to store and recall in 

backward order a series of numbers (Gathercole, Pickering, Ambridge, & 

Wearing, 2004). This task increases in difficulty by adding one digit each 

trial.   

The visuo-spatial sketchpad is involved only in the storage of 

domain-specific information and can be divided by its storage subsystems 

that is, in both visual and spatial storage. In dual-tasking experimental 

studies, where two tasks are performed simultaneously, the performance 

on visual short-term memory tasks (e.g. remembering different Chinese 

symbols), has been shown to be disrupted by visual (e.g. discriminating 

colours) but not by spatial interference (e.g. selecting a stationary item 

among several moving items). Performance on spatial short-term memory 

tasks (e.g. remembering the location of different dots) on the other hand, 

has been shown to be disrupted by only spatial interference and not visual 

interference (Della Sala, Gray, Baddeley, Allamano, & Wilson, 1999; Klauer 

& Zhao, 2004). These findings demonstrate that the visuo-spatial sketchpad 

can be separated by independent mechanisms. As such, the role of the 

visual storage subsystem is related to perception and visual imagery, 

retaining basic features such as orientation, colours, or shapes. Whereas the 

role of the spatial storage subsystem is related to attention and action 

(RepovŠ & Baddeley, 2006).  

Since the main role of the visuo-spatial sketchpad is the storage of 

information, simple span tasks are commonly used to measure this 

component. In such tasks, items must be stored and then recalled (Friso-
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van den Bos et al., 2013). The string of items involved in these tasks 

increase in difficulty by adding more items each time (Friso-van den Bos et 

al., 2013). A common measure of the visuo-spatial sketchpad is the Corsi 

block-tapping task in which children need to tap different cubes in the 

same order as the examiner. The task increases in difficulty by adding one 

cube each trial (i.e. the tasks start with the participant needing to reproduce 

a sequence of three different cubes, then four, then five etc.; Kessels, van 

Zandvoort, Postma, Kappelle, & Haan, 2000). 

In relation to the phonological loop, this component is also involved 

in the storage of domain-specific information. Two processes have been 

associated to this component, the first process is the temporary storage of 

verbal information. This verbal storage is limited by the number of items 

that need to be held (about five to eight items; Brener, 1940).  The second 

process relates to the articulatory rehearsal process, which consists of 

retrieving the information stored in the phonological loop via articulation 

(RepovŠ & Baddeley, 2006). The role of this component differs according to 

age, that is, in children younger than 7 years of age, the role of the 

phonological loop is to solely store verbal information , whereas after the 

age of 7 years, the role of this component extents to the generation of verbal 

strategies via articulatory rehearsal (Hecht, Torgesen, Wagner, & Rashotte, 

2001; McKenzie, Bull, & Gray, 2003; Meyer, Salimpoor, Wu, Geary, & 

Menon, 2010). 

To measure the phonological loop, simple span tasks are also 

commonly used. An example of a measure of the phonological loop is the 

non-word list recall task in which children need to store and recall a series 

of monosyllabic non-words (Gathercole et al., 2004). The use of non-words 

limits the use of long-term memory representations of familiar words that 

support recall, that is, unfamiliar words are separate of children’s 

vocabulary knowledge; and thus it is considered to be a pure measure of 

the phonological loop ability (Gathercole, Willis, Baddeley, & Emslie, 1994). 

Mathematics skills require, or at least are supported by, working 

memory resources (Raghubar et al., 2010). From counting skills to multi-
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digit arithmetic problems, mathematics involves a series of different steps 

that must be solved in sequence. Mathematics performance includes 

coordinating attentional resources (Hornung, Schiltz, Brunner, & Martin, 

2014a) and the maintenance and manipulation of numbers (Simmons, 

Willis, & Adams, 2012). The more the mathematics skill involve multiple 

steps to be carried out, the more it is likely to have a stronger relationship 

with working memory resources. For example, naming numerals that 

simply requires relating number words to symbols does not involve 

working memory resources (Purpura & Ganley, 2014), whereas verbal 

counting, that involves the retrieval of number words in the correct order 

while keeping one’s place in a counting sequence, does (Noël, 2009).  

Because mathematics skills involving multiple-steps demand more 

working memory resources, it is not surprising that multi-digit arithmetic 

problems have been frequently found to be predicted by working memory.  

The process of solving multi-digit arithmetic problems involves holding 

partial information in mind, while processing further information, in order 

to reach a solution (Raghubar et al., 2010). To illustrate this idea let us 

imagine that a girl is trying to solve the following addition: 58 + 67 without 

the use of any device. In order for the girl to be successful at finding an 

answer, she would need to first hold in mind these two numbers and then 

she would need to retrieve from long term memory her previously learned 

addition rules to calculate. But because this is a two digit calculation, she 

would also need to first sum up the units (8 and 7), hold in mind that 

result, and add the product to the tens (5 and 6). Working memory, thus, 

would be implicated in this process by allowing the storage and retrieval of 

partial results (Barker, 2016). 

The contributions of working memory to informal mathematics 

Working memory is particularly important during the early stages 

of learning mathematics, in which children cannot easily retrieve their 

answers from long-term memory and have not yet mastered the 

automatization of their mathematics skills. This is particularly noteworthy 

in three important areas of informal mathematics: counting, set 
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comparison, and non-symbolic arithmetic. For example, one-to-one 

counting for adults is an automatic process that does not involve much 

cognitive effort. In contrast, for young children (i.e. 4-to6-year-olds) this 

process is much more effortful. It involves working memory resources 

because it requires the constant updating of information in at least two 

steps, (i) keeping track of the verbal number sequence, and (ii) 

remembering which items have been counted and which items still need to 

be counted (Hornung et al., 2014a; Noël, 2009). Working memory is also 

essential for two further aspects of informal mathematics:  the ability to 

compare sets of objects and non-symbolic arithmetic skills. An overview of 

findings regarding the relationship of these three informal mathematics 

skills and working memory, are presented next.  

Working memory is essential for counting skills, mainly in keeping 

track of the numbers that are being counted. It has been suggested that in 4- 

to-6-year-olds, the central executive is directly involved during counting 

procedures because the central executive allows the control and allocation 

of attentional resources during the monitoring of numbers (Geary, Hoard, 

Byrd-Craven, & DeSoto, 2004; Geary, Hoard, & Nugent, 2012; Meyer et al., 

2010; Noël, 2009; Fiona R Simmons et al., 2012). For example, cardinal 

number knowledge involves both keeping in mind a target number, and 

simultaneously keeping track of the numbers that have been already 

counted (Purpura & Ganley, 2014). This skill is measured by asking 

children counting out a specified set of items from a larger set – for 

example, giving the examiner 5 objects from a set of 14 objects. The central 

executive (measured with a word recall task, a verbal working memory 

task in which children need to answer a question and then recall the last 

word) plays a central role in this process (Purpura & Ganley, 2014).  As 

such, the central executive is involved in allocating attentional resources to 

keep track of the numbers during counting. 

Working memory is also directly involved in young children’s 

ability to compare sets of objects. The ability to compare sets of objects 

successfully involves three steps (i) Children need to count each of the sets, 

(ii) hold in mind the total set sizes in memory and (iii) then identify which 
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one is the largest (Purpura & Ganley, 2014). Carrying out all three of these 

steps, involves working memory, specifically the central executive 

(Purpura & Ganley, 2014). In this study, set comparison was assessed by 

showing children four sets of dots, and then asking the children which of 

the four sets had the most, or fewest, dots. There was also a number 

comparison task that followed the same procedure, but instead of four 

dots, there were four numbers. However, children’s performance on the 

number comparison task was not related to their performance on the 

working memory task. The main difference between the number 

comparison task and the set comparison task, is that in the number 

comparison task the magnitudes being compared were already provided 

by their symbolic representation (i.e. number), and in the set comparison 

task, children needed to count in order to determine the magnitudes. Thus, 

the authors argue that the difference between tasks was due to children 

relying on more steps (i.e. counting) to perform the set comparison task, 

but not the number comparison task (Purpura & Ganley, 2014).  

Working memory, specifically the visuo-spatial sketchpad, is 

important for solving non-symbolic arithmetic problems because these 

problems involve the use of a mental model to represent the quantities in a 

given problem (Rasmussen & Bisanz, 2005; Xenidou-Dervou, van der 

Schoot, & van Lieshout, 2014). Children follow three steps to build a mental 

model of the non-symbolic arithmetic problem. First, children need to 

internally represent the non-symbolic quantities (e.g. chips) used in the 

external representation of the problem. Second, as the external display is 

manipulated either by adding or subtracting an object, children need to 

manipulate the internal representation by doing the same. Finally, children 

have to map the internal representation to a number or number word in 

order to give an answer (Rasmussen & Bisanz, 2005). These three steps 

recruit visuo-spatial sketchpad resources, because this component allow 

the representation and maintenance of non-symbolic quantities in mind. 

Like a sort of mental workspace (Rasmussen & Bisanz, 2005; Xenidou-

Dervou et al., 2014).  

The contributions of working memory to arithmetic problems 
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Arithmetic skills encompass the main focus in the academic 

curriculum at least during the first years of formal schooling (Department 

for education, 2013; Vanbinst & De Smedt, 2016). As such, they have 

become one of the most researched topics in mathematics development.  

Empirical evidence has suggested that both single-digit and multi-digit 

arithmetic problems require working memory resources (Bull, Johnston, & 

Roy, 1999; McKenzie et al., 2003; Peng, Namkung, Barnes, & Sun, 2015). 

This sub-section will present significant findings regarding the contribution 

of working memory to single-digit and multi-digit arithmetic problems, 

and will then present significant findings regarding arithmetic word-

problems. 

The central executive has an important role in both single-digit and 

multi-digit arithmetic problems. In single-digit arithmetic problems the 

central executive is known to play the role of allocating attentional 

resources and guiding counting strategies (Meyer et al., 2010; Simmons et 

al., 2012). One study measured 5- to-6-year-olds’ and 7- to-8-year-olds’ 

single-digit arithmetic skills with an experimental task in which children 

listened to arithmetic problems through an audio file, and then answered 

them verbally. The central executive was assessed using a composite score 

from four measures (the odd-one-out task, the spatial recall task, listening 

recall task, and a backward word task). Children also completed two visuo-

spatial tasks (maze memory, where children needed to retrace a maze route 

from memory, and a block recall task) and two phonological loop tasks 

(word and non-word recall; Simmons et al., 2012). Results indicated that 

the central executive was a unique predictor of arithmetic skills only in the 

5- to-6-year-old group. This is perhaps unsurprising, since at this age 

counting strategies are very common. For the older group, none of the 

working memory components predicted performance, suggesting that the 

older children were relying on more efficient strategies. 

A key developmental finding is that as children become more 

efficient with their counting strategies and with arithmetic fact retrieval, 

they require fewer and fewer resources from the central executive. As 

children increasingly solve tasks by retrieving the answer form long-term 
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memory, they no longer rely on information that needs to be protected 

from decay. The age-related change in strategy use from counting to 

arithmetic fact retrieval typically occurs around the age of 11 or 12 years 

(Imbo & Vandierendonck, 2007). However, as arithmetic fact retrieval is 

still not an automatic process at this age, the central executive will still be 

involved.  To illustrate this: in a study conducted with 10- to-12-year-olds, 

both counting strategies and arithmetic fact retrieval strategies were related 

to the central executive. However, reliance on the central executive 

decreased with age, and in relation to strategy efficiency: the more children 

used arithmetic fact retrieval strategies, the less they used the central 

executive.  

The central executive will still play a role in multi-digit problems 

despite the decrease of central executive demands in single-digit problems. 

In multi-digit problems the central executive is necessary for the temporary 

storage and manipulation of numerical information. This is because solving 

multi-digit problems involves the maintenance of intermediate numerical 

information while simultaneously attend to regrouping demands (Furst & 

Hitch, 2000). However, this suggestion is mostly based on research 

conducted with adults  (e.g. Hubber, Gilmore, & Cragg, 2014) because 

commonly, in studies conducted with typically developing children, both 

single-digit and multi-digit problems are presented within the same task 

and do not differentiate between simple and complex problems1 (Berg, 

2008).  

The visuo-spatial sketchpad and the phonological loop are 

particularly important in multi-digit arithmetic problems. The visuo-spatial 

sketchpad facilitates the use of imagery strategies while children solve 

multi-digit arithmetic problems where carrying procedures are required 

(Bull et al., 1999) Imagery strategies are those that help visualize an 

arithmetic problem as if it was being solved on paper. Thus, using the 

                                                             
1 Although it has to be noted that this would be the case in studies conducted in 

children older than 6 years, because younger children are not expected to know how to 
solve multi-digit problems, and only single-digit arithmetic problems or standardized tests 
with mixed problems are commonly used. 
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visuo-spatial sketchpad allow the maintenance of calculations and 

manipulation of numbers in mind (Hayes, 1973 as cited in de Hevia, Vallar, 

& Girelli, 2008).  However, the use of imagery strategies and thus, the role 

of the visuo-spatial sketchpad, is more commonly used by children 

younger than 7 years of age (McKenzie et al., 2003).  

As mathematics becomes more closely associated with linguistic 

processes and after a skill has been learned, the role of the phonological 

loop becomes more relevant, allowing children to use articulatory rehearsal 

strategies. This process takes place after the age of 7 years and mirrors the 

use of verbal strategies that children at this age employ more frequently 

(Bull & Johnston, 1997; McKenzie et al., 2003; Siegler, 1999). For example, 

children older than 7 years have been found to rely on articulatory 

rehearsal (a process that helps us retain information by repeating it under 

one’s breath) while solving arithmetic problems (McKenzie et al., 2003).   

Thus, the role of the visuo-spatial sketchpad and the phonological 

loop is determined by the age of the children and the mastery of either 

imagery or verbal strategies. For example, in one study 6- to 8-year-olds 

completed 20 arithmetic problems presented verbally, while being exposed 

to two different types of interference. One was phonological interference, in 

which children heard a recording on a foreign language; and the other one 

was a visuo-spatial matrix of black and white squares that changed colours 

(black to white and vice versa; McKenzie et al., 2003). The younger group 

(6- to 7-year-olds) performed significantly worse under the visuo-spatial 

interference, whereas the older group (7-to 8-year-olds) performed 

significantly worse under phonological interference. These results suggest 

that at least for mental arithmetic, children transition from predominantly 

using a visuo-spatial strategy to predominantly using a phonological 

strategy (presumably a linguistically mediated strategy) and thus use 

different working memory components.  

The contributions of working memory to arithmetic word-problems 
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Working memory plays a key role in arithmetic word-problems, 

especially because solving these problems involve multiple-steps. Children 

seem to rely to a greater extent in the central executive, rather than the 

visuo-spatial sketchpad or the phonological loop to solve arithmetic word-

problems (Peng et al., 2015; Swanson, 2011). The central executive is 

necessary for allocating attentional resources during the manipulation of 

information, and in suppressing irrelevant information (Peng et al., 2015). 

Two different studies have found the association of the central executive 

and arithmetic word-problems proficiency in young children. One study, 

conducted with 4-to-5-year-olds, used arithmetic word-problems presented 

verbally (e.g., “Here are three cows; if four more come, how many cows will there 

be?”). The three working memory components were measured, but only the 

central executive was a predictor of arithmetic word-problems. The second 

study found similar results so that the central executive was also a 

significant predictor. In this study the central executive predicted 4-to-7 

year olds’ abilities to solve arithmetic word-problems such as ”A shopkeeper 

has seven chickens. He buys three more. How many chickens does the shopkeeper 

have now?” (Kyttälä, Aunio, Lepola, & Hautamäki, 2014, p.680).   

The role of the working memory components in arithmetic word-

problems may be constrained by the format of such problems. That is, 

besides having in common the important role of the central executive in 

solving arithmetic word-problems, these two studies also share the 

characteristic of presenting the problems with some sort of visual aid 

(pictorial representations of the problems and tokens).  Thus, these findings 

suggest that when there is visual aid in which children can rely on to solve 

the problems- and therefore, presumably, decrease visuo-spatial sketchpad 

demands- among the three working memory components, they only need 

to recruit central executive resources to inhibit irrelevant information in 

order to attend to key numerical information  (Wang et al., 2016). 

Summary of the contribution of working memory to mathematics 

To summarize, empirical evidence has shown that children rely on 

working memory components to a higher extent when they are young and 
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that with age-and with the onset of strategy use and the acquisition of 

number facts-children’s reliance on working memory tends to decrease. As 

for the contribution of specific working memory components, the central 

executive is the component involved in directing attentional resources to 

counting, and later to counting strategies, retrieving arithmetic facts when 

these are not automatized yet, allocating attention control during 

manipulation of information, and in suppressing irrelevant information in 

an arithmetic word-problem. The visuo–spatial sketchpad allows children 

to use imagery strategies by functioning as a mental black-board. Later in 

development, as mathematics becomes more closely associated with 

linguistic processes and after a skill has been learned the phonological loop 

allows children to use articulatory rehearsal strategies.   

Moreover, if a child understands the operation that is being 

performed during single-digit arithmetic problem-solving, and is able to 

retrieve the answer directly from memory, then she will need little or no 

input from working memory (Hecht, , 2002; Raghubar et al., 2010). 

Conversely, children that have not yet achieved the automatization of 

calculation procedures, rely on working memory resources (Peng et al., 

2015). Thus, the relationship between single-digit arithmetic and working 

memory decrease as children become more efficient with their strategies. 

However, the association with multi-digit arithmetic problems could exist 

longer over time (Imbo & Vandierendonck, 2007; Vanbinst & De Smedt, 

2016).  

Working memory is an important domain-general precursor of both 

informal and formal mathematics. However, there is still a gap in our 

understanding of the relationship between working memory components 

and children’s mathematics, since most of the interest has been placed on 

developmental periods either when children are developing mathematics 

and are in the informal stage of learning mathematics, or after a few years 

of formal schooling where most of the children have already mastered 

some of their mathematics skills. Thus, less is known about the time-period 

where the transition from informal to formal mathematics is happening – 

that is, when children are between 5 and 6 years of age.  
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Research conducted with children between 5 and 6 years of age 

would help us understand the cognitive skills that typically developing 

children need for a successful transition from informal to formal 

mathematics learning; and in turn will allow us to determine where to 

focus educational effort so that all children can have the same learning 

opportunities in current and subsequent academic years. 

1.4.1.2 Inhibitory control 

Inhibitory control is the ability to override dominant or prepotent 

responses, in favour of more goal-appropriate responses (Miyake & 

Friedman, 2012). It allows us to ignore task irrelevant information in order 

to maintain focus on task-relevant stimuli (Clayton & Gilmore, 2015). There 

are two ways in which inhibitory control is related to mathematics skills. 

One way is related to a general account for the role of inhibitory control in 

mathematics, and another way is related to a specific role of the inhibitory 

control in mathematics. The general account for the role of inhibitory 

control posits that the role of inhibitory control in mathematics is due to the 

role of this executive function in general learning. As such, mathematics 

performance will depend on children’s ability to inhibit task irrelevant 

responses in the presence of distracting information, independent of the 

mathematics level that children possess (Blair & Razza, 2007). 

Undoubtedly,- just as the performance on any other cognitive task, 

performance in mathematics will be enhanced if children can allocate their 

cognitive resources to task-relevant stimuli and ignore task-irrelevant 

information (Van Dooren & Inglis, 2015).  

In addition to the relevance of inhibitory control in mathematics 

due to its contribution to general learning, inhibitory control can also have 

a more specific role in mathematics performance. The account that 

establishes that inhibitory control has a more specific role in mathematics 

points out that inhibitory control is specifically related to mathematics that 

(i) are more prone to interference, and (ii) that require ignoring either 

irrelevant strategies or previously learned mathematics rules, in order to 

choose more efficient ones (De Visscher & Noël, 2014; Fitzpatrick, 
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McKinnon, Blair, & Willoughby, 2014; Robert & LeFevre, 2013). An 

example of mathematics that are prone to interference is solving compare 

arithmetic word-problem (e.g. ‘Mary has 5 apples. She has 2 apples more than 

Ana. How many apples does Ana have?’) where the relational term (i.e. ‘more 

than’) interferes with the arithmetic computation that needs to be 

performed to solve the problem (i.e. subtraction; Lubin, Vidal, Lanoë, 

Houdé, & Borst, 2013). As for children needing to ignore previously 

learned mathematics rules, one example is when comparing fractions such 

as 
2

3
 vs  

2

6
 . In order for children to be successful at comparing these 

fractions, children need to ignore their well-established knowledge about 

natural numbers. If children were to apply the rule of natural numbers, 

they would choose the wrong answer that 
2

6
 is bigger, because 6 is larger 

than 3. This phenomenon is called “the natural number bias” and it is 

present not only in children, but in adults as well (Attridge & Inglis, 2015; 

Obersteiner, Van Dooren, Van Hoof, & Verschaffel, 2013).  

Inhibitory control can also have a specific role in relation to 

particular aspects of arithmetic performance. To better understand the 

relationship between inhibitory control and particular aspects of arithmetic, 

a recent study examined the relationship between inhibitory control and (i) 

factual knowledge, (ii) conceptual understanding, and (iii) procedural 

skills, in 11 to-14-year-olds and adults (Gilmore, Keeble, Richardson, & 

Cragg, 2015). Factual knowledge refers to previously learned numerical 

rules, conceptual understanding is children’s understanding of the 

principles of mathematics also referred as ‘knowing why’ (e.g. state 

whether or not the first problem: 74 + 57 = 131, help solve the second 

problem 131 − 74 =), and procedural skills refers to children’s use of the 

correct and efficient mathematics procedures, or the ‘knowing how’ (e.g. 

‘borrowing’ and ‘carrying ‘rules in multi-digit arithmetic problems; 

Gilmore et al., 2015). Findings from this study showed that children’s 

inhibitory control was significantly related to procedural skills, suggesting 

that the role of inhibitory control in mathematics is related to the selection 

of more efficient strategies while solving arithmetic problems (Gilmore et 

al., 2015).  
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1.4.1.3 Cognitive flexibility 

Cognitive flexibility is the ability to switch between sets, tasks, or 

strategies (Miyake et al., 2000). Cognitive flexibility has been shown to play 

a role in mathematics, although the precise nature of this role is unclear. 

Moreover, evidence on this point is not only sparse, but also inconsistent. 

Additionally, measuring cognitive flexibility in young children is 

challenging, because cognitive flexibility itself relies on working memory 

and inhibitory control. Therefore there are few ‘pure’ cognitive flexibility 

measures available (St Clair-Thompson & Gathercole, 2006a). Thus, it is 

currently unclear whether cognitive flexibility predicts mathematics 

performance beyond the effects of working memory or inhibitory control.  

It has been suggested that young children rely on cognitive 

flexibility to help them develop the conceptual understanding of numbers. 

Specifically, it has been suggested that cognitive flexibility allows children 

to transition from the procedural understanding of counting to the 

conceptual understanding of counting (Purpura, Schmitt, & Ganley, 2017). 

That is, it allows them to transition from thinking about counting as a 

procedure- that is,  applying the counting sequence to a set of objects- to 

thinking about it as a medium that provides quantitative information 

(cardinal understanding; Purpura et al., 2017). In this study 3 to-5-year-

olds’ cognitive flexibility was measured with a card sorting task, children 

also completed a set of informal mathematics measures that assessed the 

following skills: subitizing, set comparison, verbal counting, one-to-one 

counting, cardinality, counting subsets, identification of numbers, mapping 

sets to their numbers, number order, number comparison, arithmetic word 

problems, and simple additions. Results showed that cognitive flexibility 

predicted the mathematics abilities that are related to the conceptual 

understanding of numbers, that is, cardinality, counting subsets, number 

order, and number identification.  

Cognitive flexibility is involved in arithmetic performance by 

supporting alternation between procedures, like switching between 

operations or solution strategies (Bull & Scerif, 2001). In this study 6 to-8-
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year-olds completed one arithmetic test that had both single and multi-

digit additions and subtractions. Cognitive flexibility was measured with a 

Wisconsin Card Sorting Test (WCST) with three dimensions: colour (red, 

yellow, green, or blue), shape (star, triangle, cross, and circle), and number 

(one, two, three, or four). Children needed to sort the cards according to the 

sorting criteria (colour, shape, or number) which needed to be figured out 

by using the experimenter feedback (“that is correct” or “that is wrong”;  Bull 

& Scerif, 2001). Results showed that cognitive flexibility significantly 

predicted arithmetic performance even after controlling for reading and IQ. 

The most likely explanation for these results was that cognitive flexibility 

enabled children to switch between different strategies. This would seem to 

suggest that cognitive flexibility itself is not central to children’s 

mathematics performance – but that in circumstances where some degree 

of switching is required, cognitive flexibility can predict children’s 

mathematics performance.  

However, some of the previous research that have found cognitive 

flexibility to be a significant predictor of mathematics, have failed to 

separate this executive function from the effects of other cognitive 

constructs, like processing speed. One study divided four cognitive 

flexibility tasks in two versions each: one that measured the executive 

shifting ability (all the manipulated versions) and the other one that was 

non-executive, and that was assumed to measured only processing speed 

(all the control versions). This procedure was carried out as such to directly 

investigate if the relationship between cognitive flexibility and arithmetic, 

was due to the processing requirements that arithmetic has (van der Sluis, 

de Jong, & van der Leij, 2007). Results showed that arithmetic skills were 

predicted by the executive factor of cognitive flexibility, until the non-

executive factor was considered. This finding suggests that the 

relationships between cognitive flexibility and arithmetic skills that some 

studies have reported before, could be partially explained by the 

processing requirements of the tasks. In fact, in Bull and Scerif’s study 

processing speed was not considered as covariates. Nonetheless, the 
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deficiency of research on the subject makes it difficult to draw stronger 

conclusions on this subject. 

In conclusion, research regarding the role of executive functions in 

children’s mathematics have frequently, and somewhat consistently, found 

that working memory is a strong predictor of mathematics. Conversely, the 

role of inhibitory control and cognitive flexibility in mathematics is less 

clear, at least in young children.  

1.4.2 Language skills 

Language is a cultural-specific communication system that allows 

us to understand the world (Hauser, Chomsky, & Fitch, 2002). In a general 

sense, it has been proposed that we use language skills to understand 

mathematics because mathematics involves symbols since they are 

expressed and explained verbally and through written words (Kovarik, 

2010). There are two aspects of children’s language skills that have been 

recurrently found to be strong predictors of mathematics skills. These are 

(i) phonological processing which refers to the use of sound units (i.e. 

phonemes) to process verbal and written language (Wagner & Torgesen, 

1987); and (ii) vocabulary. Vocabulary skills can be divided in expressive 

vocabulary, which is the ability to provide word definitions, and receptive 

vocabulary, which refers to the words that a person can comprehend and 

respond to (even if the person cannot produce those words; Burger & 

Chong, 2011). I will start this section presenting an overview of the 

significant findings regarding language skills as a composite and their 

relationship to mathematics. Then I will present an overview of the 

contributions of phonological processing and vocabulary. 

During early stages of development children who have more 

advanced language skills tend to be better at counting and in matching 

Arabic numerals to their verbal labels. This in turn improves their 

quantitative understanding and supports their arithmetic development 

(Lefevre et al., 2010; Moll, Snowling, Göbel, & Hulme, 2015). For example, 

one longitudinal study found that language skills (measured as a 
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composite score from an expressive vocabulary task and receptive 

vocabulary task) at 3 to 4 years of age predicted counting (measured with a 

counting dots task and children’s ability to count as far as possible) and 

number knowledge (measured with a number recognition task and a 

number writing task) at the age of 5. Furthermore, variations in early 

language skills had indirect effects to arithmetic skills (measured with an 

arithmetic fluency task) at the age of 6-7 through counting skills and 

number knowledge (Moll et al., 2015). As such, the precise role that 

language plays in children’s mathematics development changes with age. 

As for the role of language in relation to children’s age; in young 

children language skills help them to perform basic numeracy skills, 

whereas for older children language skills help them to understand 

mathematics concepts and carry out simple operations. For example 

language skills at the age of 5, are important for children’s ability to name 

numbers; whereas at the age of 7, language has a key role in the conceptual 

understanding of  measure, order, and place value; and geometry and 

calculation (Lefevre et al., 2010).  What is more, three different pathways 

were investigated in relation to children’s mathematics skills: the linguistic 

pathway, which was a composite of receptive vocabulary and phonological 

processing; the spatial attention pathway, which referred to visuo-spatial 

working memory; and the quantitative pathway which referred to 

subitizing (LeFevre et al., 2010). Among the three cognitive pathways, the 

linguistic pathway was the most important for children’s mathematics from 

the age of 5 to the age of 7 years.  

Language skills also allow children to interpret and understand 

mathematics concepts through development (Vukovic & Lesaux, 2013). For 

example, one study tested children when they were 6 years of age, and 

were followed and tested for three years until they were 9 years of age. A 

language composite was formed by receptive vocabulary skills and 

listening comprehension skills, and mathematics skills were measured in a 

range of domains, from basic number facts and solving arithmetic 

problems, to three higher order domains of mathematics: (i) data 

analysis/probability, for which children needed to interpret tables and tally 
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charts, and estimate probability; (ii) algebra, for which children needed to 

find a missing number in an equation,  describe patterns and functions, and 

represent mathematics relations (e.g. X is smaller than Y); and (iii) 

geometry, for which knowledge of shapes in two and three dimensions was 

considered (Vukovic & Lesaux, 2013). Results showed that after controlling 

for visuo-spatial working memory, reading ability, and gender; language 

skills predicted gains in data analysis/probability and geometry, but not in 

arithmetic or algebra. Overall, these findings suggest that general language 

skills are necessary for the development of mathematics concepts and 

representations, but may not be involved in the process of manipulating 

quantities and other symbolic notations. 

1.4.2.1 Phonological processing 

Phonological processing refers to the use of sound units to process 

verbal and written language (Wagner & Torgesen, 1987). One way in which 

phonological processing has been thought to help with children’s 

mathematics is by allowing children to learn numbers. Some researchers 

have proposed that learning the symbols for sound and learning the 

symbols for quantity are similar processes (Tolchinsky, 2003 as cited in 

Berghout, Blevins-Knabe, & Lokteff, 2013). Specifically, both learning to use 

letters to write words, and learning to use numbers to express quantity, are 

processes that rely on children’s ability to relate symbols with their 

meaning; suggesting that the acquisition of one system can reinforce the 

acquisition of the other (Tolchinsky, 2003 as cited in Berghout et al., 2013).  

There is some empirical evidence that suggest that this might be the case; 

for example, one study found that children’s ability to write their name 

(‘name writing) and their ability to produce the beginning sounds of words 

(‘letter- sounds’) were significantly related to early mathematics skills (i.e. 

finger counting and understanding concepts like “more” and “whole”, the 

ability to read and write numbers and perform addition and subtractions, 

measured with the  Test of Early Mathematics Ability-3, TEMA-3; 

Berghout, Blevins-Knabe, & Lokteff, 2013). This finding suggests that there 

is an underlying commonality between children’s ability to remember and 

produce symbols for verbal and written language and for mathematics.  
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However, there is an alternative explanation for the relationship 

between letter sounds and name writing and mathematics. An alternative 

suggestion is ascribing phonological skills with a more general role; that is, 

these abilities are related to mathematics because for some mathematics 

skills, children need to manipulate phonological information. This in turn 

suggest the use of verbal strategies to perform mathematics. For example, 

one way in which verbal strategies have been found to be particularly 

useful is when arithmetic problems are presented horizontally. Arithmetic 

problems that are presented with a horizontal format involve counting 

strategies and thus the phonological loop (Caviola, Mammarella, Cornoldi, 

& Lucangeli, 2012; Trbovich & LeFevre, 2003). This was demonstrated in a 

study were 8-to 9-year-olds solved multi-digit addition problems presented 

both vertically and horizontally using a dual-task methodology. It was 

found that when the problems were presented horizontally, performance 

was impaired by verbal working memory load (Caviola et al., 2012). 

1.4.2.2 Vocabulary 

The other aspect of children’s language that has been associated to 

mathematics is vocabulary. Vocabulary refers to the ability to provide word 

definitions (i.e. expressive vocabulary) and to comprehend and respond to 

words (i.e. receptive vocabulary; Burger & Chong, 2011). Vocabulary 

supports the acquisition of number words and other mathematics concepts 

such as: small, add, more, etc. (Foster, 2012). For example, expressive 

vocabulary is involved in the expression and application of numbers such 

as it happens in verbal counting (Purpura & Ganley, 2014).  This study 

measured 4-to 6-year-olds’ early mathematics skills involving verbal 

counting, one-to-one counting, cardinality, subitizing, number comparison, 

set comparison, number order, numeral identification, set to numerals, and 

story problems. Expressive vocabulary skills were measured with a task in 

which children needed to identify pictures of objects by answering the 

question: “what is/are this/these?” (i.e. Expressive One-Word Picture 

Vocabulary Test; Purpura & Ganley, 2014). Expressive vocabulary 

predicted the mathematics skills that involved number words knowledge, 

connecting number words to quantities or numbers, and understanding the 
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meanings of comparative terms (i.e. more than, less than). This finding 

suggests that vocabulary skills may have a specific role in mathematics by 

providing the means to understand mathematics-specific vocabulary. 

For its part, mathematics-specific vocabulary is necessary for 

children’s mathematics performance because it allows children to 

understand and express mathematics concepts (Purpura & Reid, 2016). For 

example, the acquisition of quantifiers (e.g. some, many, a few) in English-

speaking 2-to 5-year-olds, has been found to be significantly related to their 

understanding of numbers (measured by asking them to give N objects to 

the examiner and increasing it by one up to eight objects if they succeeded); 

suggesting that understanding quantifiers allow children to understand 

that number words can be used to quantify items (Barner, Chow, & Yang, 

2009). Other content-specific words such as spatial terms (e.g. on top, 

closer, before) allow 4-to 5-year-olds’ to talk about relations between 

objects (Purpura & Reid, 2016) and are related to their building skills while 

playing with blocks (Ramani, Zippert, Schweitzer, & Pan, 2014). Much 

more attention has been put into the role of mathematics-specific 

vocabulary recently, its strong relationship with children’s mathematics 

skills has even lead researchers to propose that the language skills that 

have been previously found to be related to mathematics skills may have 

been acting as a proxy for mathematics-specific vocabulary (Purpura & 

Reid, 2016).  

The idea that general language skills are in fact a proxy of 

mathematics-specific vocabulary was tested in one recent study. This study 

found that even when general language skills were significant predictors of 

the early mathematics skills, when the content-specific vocabulary was 

included in the regression analysis model, mathematics vocabulary, but not 

general language skills was a significant unique predictor (Purpura & Reid, 

2016). This study measured mathematics-specific vocabulary in a sample of 

3-to 5-year-olds with an experimental task in which there were 16 items 

measuring quantitative (e.g. take away, more, less, etc.) and spatial (e.g. 

nearest, far away, last, etc.) words. The early mathematics skills assessed 

were counting, one-to-one counting, cardinality, subitizing, number 



  

40 

 

comparison, set comparison, number order, numeral identification, set to 

numerals, and story problems. These skills mirror children’s understanding 

of mathematics symbols and numbers, in this way, children use specific- 

mathematics vocabulary during the first years of education to make 

meaning of the mathematics symbols and numbers (Purpura & Reid, 2016). 

To summarize language skills contribute to mathematics both in a 

general and in a specific manner. That is, generally speaking, children’s 

whole process of learning involves being able to decode language, 

especially as mathematics are taught and are expressed through written 

and spoken words. However, language can have a more direct and specific 

contribution to children’s mathematics development. For example, 

phonological processing skills allow children to learn the symbols for 

quantity and the application of verbal strategies while solving arithmetic 

problems that are presented horizontally. Vocabulary, helps with 

conceptual understanding (in all domains, but notably in mathematics) of 

mathematics and supports the acquisition of a more specific mathematics-

vocabulary which in turn favors children’s mathematics learning. 

Moreover, children with better language skills are better able to 

automatized aspects of mathematics skills such as strategy use or number 

facts. However, because children’s general learning process is heavily 

dependent on language (e.g. being able to understand instructions to 

perform a classroom activity), analyzing specific components of language 

to specific mathematics concepts without being influenced by general 

language demands is often challenging. This in turn suggests that the 

specific role of language skills in mathematics is still poorly understood. 

 

1.5 Environmental Factors 

Besides being sensitive to children’s individual characteristics, 

mathematics development is influenced by factors from their social and 

contextual environment (Jimerson, Egeland, & Teo, 1999; Levine, 

Suriyakham, Rowe, Huttenlocher, & Gunderson, 2010; McNeil, Fuhs, 
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Keultjes, & Gibson, 2011; Pungello, Kupersmidt, Burchinal, & Patterson, 

1996). Understanding children’s social and contextual influences is 

important because children from disadvantaged backgrounds often start 

their formal mathematics education with gaps in their numerical 

knowledge, and consequently are at risk of poor mathematics performance 

in later years (Cheadle, 2008; Entwisle & Alexander, 1990; Siegler, 2009). 

Two of the most important factors affecting children’s mathematics 

development are socioeconomic status (SES) and caregiver-child 

interactions. SES is a measure of a person’s economic resources and social 

status mostly understood as a matter of (i) family income or (ii) caregiver 

education (Ayoub, Gosling, Potter, Shanahan, & Roberts, 2018). Caregiver-

child interactions, just as the name suggests, refers to the way in which a 

parent or caregiver speaks to and interacts with their child. It is known to 

influence the child’s social, emotional, and cognitive development 

(Graziano, Keane, & Calkins, 2010). An overview of both factors and their 

interaction to children’s mathematics skills will be described next. 

The first environmental factor affecting mathematics is SES, SES is 

generally measured with family income and caregivers’ education.  Family 

income, in turn, is related to access to resources, such as number of books 

at home (Chin & Phillips, 2004), which in turn reflects differences in the 

quantity and quality of early mathematics activities at home (Bojorque, 

Torbeyns, Van Nijlen, & Verschaffel, 2018; Vandermaas‐Peeler, Nelson, 

Bumpass, & Sassine, 2009). A longitudinal study found that family income 

and minority ethnic status were significant risk factors for children's 

mathematics achievement and that this relationship remained stable over 

time (Pungello et al., 1996). In this study 7-to- 9-year-olds’ mathematics 

achievement (measured with two standardized academic achievement 

tests: Science Research Associates Academic Achievement Test-SRA and 

the Iowa Basic Skills Achievement Test-IOWA) and demographic 

information, family income, and teacher’s report of children’s stressful life 

events, were assessed at four different time-points. Results suggested that 

over the four years, both low family income and minority ethnic status 

influenced children’s mathematics scores. Moreover, the mathematics 
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scores of children who were from families with low income decreased over 

time (Pungello et al., 1996).  

Low income decreases the possibilities of having access to resources 

that could stimulate children’s mathematics development at home. This is 

obviously a disadvantage compared to children who can have access to 

resources that reinforce what was learned in school (although having 

access to resources is not necessarily a synonym of home-activities that 

promote mathematics learning, family income and home-activities are 

commonly closely related). Home activities with the specific aim of 

boosting children’s mathematics skills are more likely to occur in 

households in which the caregivers have high levels of education. 

Caregivers’ education- specifically maternal education-is related to home-

learning experiences that are favourable for children’s mathematics 

development (Davis-Kean, 2005). There are three home-learning 

experiences that are related to caregiver’s education specifically: reading 

behaviour (how often the child reads for pleasure and how many books 

does the child have), parent–child play behaviour, and parent-child 

interactions (Davis-Kean, 2005).These activities in turn favours children’s 

mathematics achievement. One explanation for the relationship between 

caregivers’ education and home environment, is that caregivers with higher 

levels of education have greater expectations for the mathematics 

achievement of their children (DeFlorio & Beliakoff, 2015). That being the 

case, a higher amount of numeracy-related activities at home can be 

expected from families where parents have higher education levels 

(Purpura & Reid, 2016).  

The second environmental factor affecting mathematics is caregiver-

child interactions. There are two types of mathematics-related interactions 

that can be observed within the child’s home environment. These are (i) 

informal numeracy experiences, which refers to daily-life activities within 

the context of play that allow interactions around the subject of 

mathematics without explicitly teaching it (e.g. cooking); and (ii) formal 

numeracy experiences, which refers to parents’ explicit teaching of 

mathematics (Skwarchuk, Sowinski, & LeFevre, 2014). Both types of 
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interactions have been shown to be significant predictors of mathematics. 

For example, using a home numeracy questionnaire (where the frequency 

of informal and formal mathematics activities were measured) one study 

found that playing board games was a significant predictor of 5-to-7-year-

olds’ general mathematics knowledge and both playing games and 

directed instruction of numerical skills, were significant predictors of 

single-digit additions performance (LeFevre et al., 2009). This study was 

replicated later by a similar study (Skwarchuk et al., 2014). The most likely 

explanation for these results is that playing board games enabled children 

to understand numbers and even apply their mathematics knowledge. For 

example, a board game in which you need to move forward on the board 

will entitle children to apply their counting skills.  However, these studies 

have their limitations with regard to questionnaire use and therefore the 

social-desirability bias related to this practice. Yet, other studies have 

shown similar findings using other types of methodology, such as video-

recording sessions. Two different studies that are particularly informative 

on this subject are presented below. 

Caregiver’s number-related talk allows children to develop specific 

mathematics knowledge. One study for example found that caregiver’s 

number talk contributed to children’s cardinal knowledge specifically. In 

this study the naturalistic interactions of caregiver-child number-related 

talk was video-recorded for over 90 minutes in a sample of 1-to-3-year-

olds. (Levine et al., 2010). The study was conducted along five different 

visits. The caregiver-child interaction were coded for the total use of 

number words (from ‘one’ to ‘ten’) as well as the use of the words ‘count’, 

‘how many’, and ‘number’ within a numerical context. When children were 

around 3 years of age, they completed the ‘point-to-x’ task measuring 

children’s cardinal knowledge. In this task children were presented with a 

picture of two vertically arranged sets of squares. Children were asked to 

point to a specific number between two to six squares. Results showed that 

the relationship between caregiver’s number-related talk and children’s 

cardinal number knowledge remained robust even after controlling for 

SES, children’s own use of number words, and non-numerical talk (Levine 
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et al., 2010). These findings suggest that children’s early mathematics-

related linguistic experiences can have a positive key role in their 

mathematics development and opens the possibility to intervention studies 

in early stages of development. 

Caregiver’s talk is an important contributor to the development of 

conceptual knowledge in young children. A second study found that 

caregivers’ mathematics-talk about specific mathematics concepts 

enhanced children’s mathematics knowledge in the same constructs 

(Ramani, Rowe, Eason, & Leech, 2015). In this study semi-structured 

caregiver-child interactions were video-recorded. Caregivers and their 

children (3-to-5-year-olds’) participated in three specific activities, all 

related to mathematics talk. The first activity consisted of reading a book 

with numerical content; the second activity involved completing a snail 

puzzle with ten numbered pieces; and the third activity was a board game 

that had the numbers from one to ten enumerated, and in which children 

needed to move the number of spaces indicated by a spinner. Caregiver’s 

talk was coded into different categories such as counting, numbers 

identification, cardinality, ordinal relations, and arithmetic. Children 

completed different early mathematics tasks measuring: verbal counting, 

number-line estimation, counting principles knowledge (children needed 

to identify counting errors), numbers identification, numerical magnitude 

comparison, and enumeration and cardinality (Ramani et al., 2015). Results 

showed that exposure to talk from caregivers about advanced number 

concepts (e.g. cardinality, ordinal relations, and arithmetic) while engaging 

in number activities predicted children’s advanced mathematics 

knowledge, that is, their performance on cardinality, counting principles, 

and numerical magnitude tasks.  

It should be noted that SES and caregiver-child interactions are 

themselves closely related. In fact, differences in mathematics knowledge 

between low-SES and high-SES families can be attributed to less cognitive 

stimulation from caregivers to their children, because of the overall quality 

of life within the low-SES families (Fitzpatrick et al., 2014; Siegler, 2009). 

Thus, parents from high SES backgrounds engage in more mathematics 
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activities, like explaining the use and value of money during play activities, 

and other mathematics interactions including counting, quantity, and size 

comparisons; than the low SES families(Vandermaas‐Peeler et al., 2009). In 

turn, children from families of lower-SES are likely to be less exposed to 

mathematics activities that foster mathematics development. 

In sum, an approach to compensate for the disadvantages that 

income and caregiver-education disparities causes in children’s 

mathematics development, is to focus on caregiver-child interactions. 

Moreover, it seems that play-activities with mathematics content- like 

board games- and with direct instructions are a good approach to use the 

caregiver-child interactions as a mean to enhance children’s mathematics 

learning.  

 

1.6 Summary  

Mathematics development is influenced by three main factors: (i) 

domain-specific abilities such as ANS, subitizing, symbolic number sense, 

and counting; (ii) domain-general abilities, like executive functions and 

language; and (iii) environmental factors. Moreover, mathematics 

development has a hierarchical nature, as such, domain-specific abilities 

become the building blocks for later mathematics skills such as arithmetic 

and arithmetic word-problems. Domain-specific abilities start developing 

really early in life-as early as 49 hours after birth (Izard et al., 2009) - 

sensory ability to perceive and discriminate quantities the first ability to 

develop. In parallel to subitizing, children develop counting around the age 

of 2, however it won’t be until the age of 6 years when children truly 

understand the meaning of the number-words, acquiring the cardinality 

principle. Then, during the first year of formal schooling, children rely on 

their basic numeracy skills to solve arithmetic problems. For example, 

children rely on counting as a strategy for adding to sets of objects or in 

single-digit arithmetic problems, and their ability to represent numbers 

spatially to solve multi-digit problems with “carrying” procedures. 
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Although arithmetic is a core subject during the first years of education, 

this knowledge acquire more value once children start learning how to 

apply this knowledge in arithmetic word-problems. It is important, 

therefore, to take much more applied perspective in research investigating 

children’s mathematics skills. Arithmetic word-problems remains an area 

that merits additional work to offer a fuller account of how young children 

use their mathematics skills in the real-world context. 

The development of mathematics also involves cognitive resources 

form domain-general abilities, that although they are necessary skills for 

learning in general, they have specific contributions to mathematics 

development. For example in terms of executive functions, working 

memory and inhibitory control, which broadly speaking have been shown 

to be significant for keeping track of numbers while counting, represent, 

hold, and manipulate interim results in multi-digit problem solving; and 

inhibiting irrelevant information in order to focus on numerical-relevant 

information. Cognitive flexibility, for its part, seems that rather than being 

a key factor for mathematics skills, it is necessary as long as there is some 

degree of switching required in any circumstance. A third key domain-

general ability is language. Consensus exist that language skills are 

required for the performance of some mathematics skills, yet this domain-

general ability is relatively unstudied. From the studies that have 

investigated the role of language there is evidence that good language skills 

are necessary for the conceptual understanding of mathematics, for the 

implementation of counting strategies or other verbal strategies, or for the 

development of mathematics-specific vocabulary.  

Finally, environmental factors such as SES and caregiver-child 

interactions provide the means to enhance children’s mathematics skills. 

One approach to take advantage of caregiver-child interaction’s role in 

children’s mathematics development, is by promoting numeracy-based 

activities, however, further research is needed to determine the intensity of 

intervention studies in order to produce lasting effects in mathematics.   
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1.7 Next Questions and Thesis Overview  

The goal of this thesis was to investigate the domain-general 

predictors that underpin mathematics skills in childhood, by the means of 

three experiments that focused on (i) the contributions of working memory 

components (Study 1 and 2), (ii) the contributions of concurrent language 

skills (Study 2 and 3), and (iii) the longitudinal linguistic precursors (Study 

3) of mathematics skills presented in different contexts (Studies 1-3). 

Together, these studies aimed specifically to investigate the working 

memory and language resources that children need in order to perform 

mathematics in distinct contexts. 

As such, the main question that this research aimed to answer was 

How do domain-general abilities contribute to children’s mathematics skills inside 

(i.e. pure mathematics) and outside (i.e. applied mathematics) the school context? It 

is evident from this literature review that early numeracy skills and 

arithmetic skills cover most of the attention in the field of children’s 

mathematics development. Hence, there is still some gaps in our 

knowledge about the mathematics skills presented in different contexts. 

The distinction of mathematics skills in different contexts can inform us 

about the cognitive skills that children need not only to perform 

mathematics in school, but to apply the knowledge acquired at school in 

situations of their daily-lives. 

Chapter Two looked at the role of the different working memory 

components in mathematics skills in 5-to 6-year-olds. Among the three 

main executive functions that have been found fundamental for 

mathematics development (i.e. working memory, inhibitory control, and 

cognitive flexibility), working memory has consistently been found to be 

the strongest predictor of them all. Moreover, most of the evidence suggest 

that the role of working memory components vary in function of the 

mathematics skills that is being studied. Yet, very few studies have 

investigated the role of different working memory components in 

mathematics skills presented in two distinct contexts. Consequently, the 

aim of the first study of the current thesis, presented in Chapter Two, is to 
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investigate the specific contributions of working memory components to 

children’s mathematics skills focusing on the distinction between relatively 

pure mathematics skills and mathematics skills presented in a more 

applied context. 

Chapter Three investigated the specific contribution of language 

and working memory to 5-to 6-year-olds’ pure and applied mathematics 

skills. This subject is important to address because although many scholars 

would agree that language skills are fundamental for mathematics 

development, surprisingly, very little attention has been given to this topic. 

Even less attention has been given to the interaction between language 

skills and working memory components to generate different profiles in 

the performance of mathematics skills.  

During the course of my PhD, an opportunity was given to work 

with a sample of children that had been tracked longitudinally from the age 

of 11 months to the age of 4 years, and for whom there were data on early 

language measures. Being able to include children’s previous linguistic 

skills as possible precursors of mathematics performance was valued as a 

significant next step. Thus, Chapter Four was designed specifically to 

investigate the longitudinal and concurrent linguistic precursors of 

mathematics in this specific group of 4-year-olds. 
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Chapter Two 

Exploring the Role of Different 

Working Memory Components 

in Mathematics Skills in 5- to 6-

year-old Children (Study 1) 

 

The aim of this chapter was to investigate the contributions of 

working memory components to children’s mathematics performance in 

both pure and applied contexts, in 5- to 6-year-olds. Early mathematics 

skills, especially those that are learned during the first year of formal 

education, are significant predictors of children’s academic and career 

success (Lubinski & Benbow, 2006; Passolunghi et al., 2015; Tosto, Asbury, 

Mazzocco, Petrill, & Kovas, 2016). Moreover, children’s early mathematics 

skills are essential not only for a better school achievement, but also for 

understanding and carrying out different activities in their daily lives 

(Gilmore et al., 2013). As children encounter mathematics in many 

different contexts, investigating mathematics in two distinct contexts (i.e. 

pure and applied mathematics) will improve our understanding of how 

children’s mathematics skills develop. 

 To better understand the role of different working memory 

components in pure and applied mathematics, mathematics skills were 

assessed using two different measures: (i) the Numerical Operations test 

(as a measure of pure mathematics) and (ii) the Mathematical Reasoning 

test (as a measure of applied mathematics). A sample of 78 children 

between 60 and 79 months (M=69, SD=5.3) from diverse socio-economic 

backgrounds were assessed in working memory, mathematics, and 
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vocabulary. Results suggested that working memory contributes 

differently to mathematics skills, depending on the type of mathematics. 

Children’s pure mathematics performance was significantly predicted by 

the central executive only, whereas their performance in applied 

mathematics was significantly predicted by the central executive, the 

visuo-spatial sketchpad, and the phonological loop. Additionally, 

somewhat unexpectedly, receptive vocabulary was a significant predictor 

to pure and applied mathematics as well. Overall, results showed that 

while pure mathematics and applied mathematics shared some common 

working memory demands (as both relied on the central executive), there 

were relevant differences too, when doing applied mathematics, children 

also relied on the visuo-spatial sketchpad and the phonological loop. 

Moreover, these results showed that the significant association between 

working memory components and mathematics held even after controlling 

for age and receptive vocabulary. 

 

2.1 Introduction 

Children benefit from good mathematics skills inside and outside 

school. Within the school context, good mathematics skills are significant 

predictors for future school success (Claessens & Engel, 2010; Gilmore et 

al., 2013). For example, mathematics skills at the age of 5 years were found 

to be significant predictors of achievement in other educational domains 

including reading and science, at the age of 13 years (Claessens & Engel, 

2010). Moreover, as many aspects of everyday life are numeracy-

dependant, mathematics outside the school context are important for 

understanding and carrying out different activities in our daily lives 

(Gilmore et al., 2013). As mathematics inside and outside the school 

context are fundamental for children’s cognition and successful living, a 

better understanding of how the cognitive skills necessary for mathematics 

varies as a function of context would help our overall understanding of 

mathematics. Furthermore, this understanding would have implications 



  

51 

 

for how mathematics are taught and how we might intervene to help 

children who struggle with mathematics. Thus, in this study both kind of 

contexts were investigated together.  

Arithmetic skills were chosen as a measure of pure mathematics 

skills. Arithmetic is considered to be a core number-skill in children’s 

mathematics education, especially during the primary years (Vanbinst, 

Ansari, Ghesquière, & De Smedt, 2016). Moreover, since the interest of the 

present study was also to investigate the mathematics skills of children at 

school entry because children’s mathematics skills at school entry have a 

strong predictive value for later academic achievement (Purpura, Hume, 

Sims, & Lonigan, 2011), the study was conducted with 5-to-6-year-olds 

because it is at this age when children are starting school. From now on I 

will refer to pure mathematics as arithmetic skills. I will start the following 

section by describing the working memory model in detail to later describe 

the specific contribution of working memory components to mathematics 

skills; lastly, I will end this introduction by providing an overall 

description of the current study. 

Working memory refers to the system involved in holding and 

manipulating information in mind temporarily (Baddeley, 2010). The most 

influential model of working memory postulates the existence of three 

different, but related, components: The central executive as a supervisory 

system, and two subsidiary systems, the visuo-spatial sketchpad and the 

phonological loop (Baddeley & Hitch, 1974, as cited in Baddeley, 2010). 

Each of these working memory components has a specific role in how 

information is stored, manipulated, and retrieved; whereas the central 

executive requires storage and manipulation of information, the visuo-

spatial sketchpad and the phonological loop are involved only in the 

storage of domain-specific information (Friso-van den Bos et al., 2013). 

Because of the specificity in which these different components are involved 

in processing information, this model provides a useful framework for 

understanding the specific relationship between working memory and 

different mathematics skills.  
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The central executive has a widespread importance for many 

aspects of general cognition (Baddeley, 1996). Over the years, research has 

been conducted to understand the involvement of this component in 

different cognitive abilities (RepovŠ & Baddeley, 2006). The central 

executive has been shown to play a variety of roles (Baddeley, 1996; Bull & 

Scerif, 2001). Specifically, four different functions have been ascribed to the 

central executive. One of the functions is the already mentioned, ability to 

coordinate information from the visuo-spatial sketchpad and the 

phonological loop (Baddeley, 1996). This feature of the central executive 

involves the ability to carry out two tasks simultaneously and keeping 

information updated in the working memory ( Baddeley, 1996; Bull & 

Scerif, 2001). A second function is the control of attentional resources. This 

feature was proposed to involve the guiding of attentional resources in 

selecting and rejecting incoming information ( Baddeley, 1996; Baddeley, 

Emslie, Kolodny, & Duncan, 1998). A third function that has been related 

to the central executive is the ability to switch attention (Baddeley, 1996). 

This feature in turn has been related to the ability to switch between tasks 

(Baddeley, 1996; Bull & Scerif, 2001). Lastly, a fourth function is the ability 

to select and retrieve information from the long-term memory (Baddeley, 

1996; Bull & Scerif, 2001). 

This multi-purpose nature of the central executive explains how is 

it that the central executive has been found to be consistently and 

significantly related to other complex cognitive skills involved in 4 to-6-

year-olds’ learning (Alloway, Gathercole, Willis, & Adams, 2004; Barker, 

2016) including language (Bourke & Adams, 2003) and mathematics skills 

(Meyer et al., 2010; Simmons et al., 2012). The central executive has also 

been conceptualized as a unitary control system with multiple functions 

which main role is to coordinate and manipulate information stored within 

the subsidiary systems (RepovŠ & Baddeley, 2006). In the present study 

such conceptualization is adopted (Meyer et al., 2010). 

The visuo-spatial sketchpad is responsible for temporarily holding 

both visual and spatial information online. The visuo-spatial sketchpad has 

also been described as playing the role of generating and manipulating 
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mental images ( Baddeley, 2003). This component can be divided in its 

visual (object-related memory) or spatial (spatial-related memory) sub-

components (Della Sala et al., 1999; Klauer & Zhao, 2004). These two 

storage systems are specialized in the information they can retain, that is, 

the visual sub-component will be involved in retaining features such as 

orientation, colours, or shapes; and the spatial sub-component will be 

involved in retaining information about location and action (RepovŠ & 

Baddeley, 2006). Although the functions of these sub-components are 

different, they have been suggested to work in combination to subsidize 

the temporary retention of both spatial and visual features of the 

environment (Hamilton, Coates, & Heffernan, 2003). 

The phonological loop is responsible for the temporary storage of 

verbal information which can be maintained and retrieved via articulatory 

rehearsal (Baddeley & Logie, 1999; De Smedt et al., 2009). Although this 

component has two different functions (storing verbal information, and 

retrieving verbal information), the role of the phonological loop, before the 

age of 7 years, is to store verbal information temporarily (Gathercole et al., 

2004). After the age of 7 years, the phonological loop will allow children to 

use verbal strategies (e.g. in a memory task where children need to 

remember images labelling the images lead to better performance) or 

remembering information through cyclic rehearsal to maintain and 

retrieve information. One suggestion for why verbal strategies are not 

present in younger children is that children are naïve about the advantage 

of using labels to code information (Pickering, 2001). It has also been 

suggested that the emergence of verbal strategies goes hand in hand with 

the development of literacy (Logie, Della Sala, Wynn, & Baddeley, 2000). 

As such, young children will rely on their phonological loop to solely store 

verbal information, and until they are conscious of how to benefit from 

their language skills to maintain and retrieve information, they will rely on 

their phonological loop to generate verbal strategies (Logie et al., 2000; 

Pickering, 2001). 

2.1.1 The contributions of working memory components to 

arithmetic skills and applied mathematics 
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This section will review the contributions of working memory 

components to arithmetic skills and applied mathematics in 5-to-6-year-

olds.  It will first start with an overview of findings regarding the role of (i) 

the central executive, (ii) the visuo-spatial sketchpad, and (iii) the 

phonological loop, to arithmetic skills. Following this overview, the 

contributions of these three working memory components to applied 

mathematics will be presented. 

Concerning arithmetic skills, the relationship between the working 

memory components and arithmetic skills will differ depending on two 

main factors: (i) the strategies that children use to solve the problems, and 

(ii) the level of skills or familiarity that the children have in solving 

arithmetic problems. In turn, these two factors are strongly related to the 

age of the children because older children would be further along in their 

process of learning mathematics and as such, will be more familiarized 

with the mathematics procedures and strategies of calculation. One 

example for this developmental trend is the development of counting 

strategies which are the tool that is most frequently used by young 

children to solve arithmetic problems. 

The central executive is particularly relevant for children’s counting 

strategies, because the central executive allows the control and allocation 

of attentional resources during the monitoring of numbers (Geary et al., 

2004, 2012; Meyer et al., 2010; Noël, 2009; Simmons et al., 2012). Between 

the ages of 3 and 5 years, children will rely on physical aid like finger-

counting to represent the addends of a given arithmetic problem (Fuson, 

1982; Gray & Tall, 1994). Finger-counting is considered to be a substitute 

for children’s lack of ability to manipulate numerical information in their 

working memory2. Through development children will transition from 

finger-counting to verbal counting, which is a process that occurs around 

the age of 5 years (Fuson, 1982).  This transition is thought to be supported 

                                                             
2 However, findings from a very recent study suggest that 6-year-olds with high 

working memory skills do rely on counting with their fingers while performing additions, 
and they even use these strategies more frequently than children with low working memory 
skills  (see Dupont-Boime & Thevenot, 2018 for a review). 
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by the central executive because children move from relying on concrete 

tools to abstract representation of numbers, requiring higher attentional 

resources to keep track of the numbers being counted (Fuson, 1982). 

The visuo-spatial sketchpad is thought to function as a sort of 

mental blackboard that is used to represent and maintain numerical 

information mentally as it would happen in a written format ( Bull, Espy, 

& Wiebe, 2008; Bull et al., 1999; Holmes & Adams, 2006; McKenzie et al., 

2003; Rasmussen & Bisanz, 2005). The representation of numerical 

information is carried out through the use of analogous tokens that 

facilitate children’s computation skills. For example, imagining counting 

dots for the numbers involved in an arithmetic problem (e.g. imagining 

four dots to represent number ‘4’; Bull et al., 1999). Thus, children rely on 

their visuo-spatial sketchpad to solve arithmetic problems by representing 

the problem mentally (Rasmussen & Bisanz, 2005). 

The role of the phonological loop in arithmetic is to allow children 

to store the digits involved in a problem by the use of verbal labels 

(Rasmussen & Bisanz, 2005). However, coding digits to verbal labels is a 

strategy that most children younger than 6 or 7 years of age have not yet 

achieved (Hitch, Halliday, Schaafstal, & Schraagen, 1988; Meyer et al., 

2010). Unless the numerical information is presented verbally, and hence, 

involving the phonological loop for its storage, children younger than 7 

years are less likely to be relying on the phonological loop to solve 

arithmetic problems; as such, they will only recruit resources from the 

central executive and the visuo-spatial sketchpad. In sum, when children 

are younger than 7 years of age, the phonological loop is involved in the 

storage of verbal information, whereas after the age of 7 this component 

plays a role in children’s verbal strategies such as articulatory rehearsal 

strategies (Hecht et al., 2001; McKenzie et al., 2003; Meyer et al., 2010).  

Concerning applied mathematics, these are commonly investigated 

through children’s performance on arithmetic word-problems. Arithmetic 

word-problems are mathematics problems presented inside a narrative 

(e.g. Michelle went to the Peak District and picked up seven flowers. If she gave 
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three flowers to her mother and one flower to her sister, how many flowers will she 

have then?). Thus, they simulate the kinds of contexts in which people 

commonly encounter mathematics in daily life.  The main characteristic of 

these types of problems is that the numerical information is embedded 

within a context; of necessity, this involves information that is not relevant 

to the purely arithmetic aspect of the problem. As such, that irrelevant 

information needs to be ignored in order to solve the problem. 

The role of the central executive, the visuo-spatial sketchpad, and 

the phonological loop seems to be determined by three main 

characteristics: (i) the format in which problems are presented in (i.e. 

whether they are presented with useful visual stimulus or not), (ii) if they 

are presented with irrelevant information to be ignored, or (iii) the 

semantic structure of the problem (i.e. if the relational terms are in line 

with the calculation that needs to be performed- e.g. an addition when 

hearing “more than”; Riley, Greeno, & Heller, 1983; Simmons, Singleton, & 

Horne, 2008). The central executive is recruited in problems in which the 

representation of numerical information is decreased by the means of 

visual prompts which provide visual aid to achieve an answer. Its main 

role would be directing attentional resources to attend to key numerical 

information while inhibiting irrelevant information (Baddeley, 1996; 

Baddeley et al., 1998). When there is no visual support available, the need 

to represent the numerical information mentally increases, and thus, the 

visuo-spatial sketchpad will be recruited (Simmons et al., 2008). 

Two different studies have found the association of the central 

executive and arithmetic word-problems proficiency in young children. 

Both of these studies presented the arithmetic word-problems verbally and 

with visual prompts.  One study, conducted with 4-to-5-year-olds, used 

arithmetic word-problems presented verbally (e.g., “Here are three cows; if 

four more come, how many cows will there be?”) in which the first operand (i.e. 

three) was always visible for the children. Additionally, tokens were 

provided to the children in case they wanted to make use of them to solve 

the problems (Noël, 2009). The three working memory components were 

measured, but only the central executive was a predictor of arithmetic 
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word-problems. The second study found similar results so that the central 

executive was also a significant predictor. In this study the central 

executive predicted 4-to-7 year olds’ abilities to solve arithmetic word-

problems such as” A shopkeeper has seven chickens. He buys three more. How 

many chickens does the shopkeeper have now?” (Kyttälä et al., 2014). Both of 

these studies found that the central executive was the significant predictor 

among the three working memory components. Thus, together, these 

studies suggest that when there is some sort of visual aid that children can 

utilize to solve the problems, they only need to recruit central executive 

resources to inhibit irrelevant information in order to attend to key 

numerical information. 

Together these studies suggest that the role of the working memory 

components in arithmetic word-problems may be constrained by the 

format of such problems. Specifically, Noël, and Kyttälä and colleagues’ 

studies, the problems were presented both verbally and with visual 

prompts. In Noël’s (2009) study, for each of the problems the first addend 

was always visible to the child, which could have diminished the need to 

temporarily hold in mind numerical information. Additionally, tokens 

were available for the children to solve the problems, which in turn could 

have lessen the visuo-spatial sketchpad demands. In fact, these external 

tools were more frequently used in children with low visuo-spatial 

sketchpad skills (Noël, 2009). In Kyttälä, and colleagues’ (2014) study, all 

problems were also presented with pictures that represented each one of 

them and possible answers for the problem were also provided (i.e. a row 

of squares containing the answers). 

The visuo-spatial sketchpad seems to be recruited when the visual 

aid (or the lack of it) in the arithmetic word-problem does not contain 

information that helps the children to represent the problem (Simmons et 

al., 2008). One longitudinal study conducted with 5-year-olds, measured 

children’s visuo-spatial sketchpad skills with the Rabbits tasks when 

children were 5 years of age, and arithmetic word-problems a year after. 

The Rabbits task was a computerized task in which a rabbit appeared in 

different black holes in a sequence. Children needed to tap the same black 
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holes in the same order in which the rabbit appeared. The arithmetic word-

problems were presented both verbally and with pictures that did not 

provide visual aid to solve the problems. For example for the problem 

“each horse need four new shoes, how many horse-shoes must the farmer get 

altogether” the picture that was paired with the problem represented the 

horses without the legs  (Simmons et al., 2008). Results showed that even 

after controlling for vocabulary, non-verbal reasoning, and reading skills, 

the visuo-spatial sketchpad predicted arithmetic word-problems. 

However, although there was a significant association with performance 

on arithmetic word-problems and the visuo-spatial sketchpad, it is 

important to highlight, that in this study the central executive was not 

included in their design and thus, the possible contribution of the central 

executive cannot be ruled out completely. 

Young children seem to favour visual-spatial strategies rather than 

a verbal or phonological approach to solve arithmetic word-problems. In 

fact, in young children, the phonological loop has not always been found 

to contribute to arithmetic word-problems when the other two working 

memory components are also included in the design of the studies (e.g. 

Noël, 2009).  The studies that have found a significant contribution from 

the phonological loop to arithmetic word-problem solving have suggested 

that the phonological loop is especially relevant when the problems have 

irrelevant information to be ignored (Rasmussen & Bisanz, 2005). 

However, since the role of this component is to store verbal information, 

and the format in which the arithmetic word-problems is presented is with 

the  use of verbal cues, children may rely on their phonological loop to 

hold the verbal information within the problem in mind. 

To summarize, the central executive has a multi-purpose nature, 

being involved in both arithmetic and applied mathematics by allocating 

attentional resources to: counting strategies and relevant numerical 

information to solve the mathematics problems. For the visuo-spatial 

sketchpad evidence points at its role being dependant on the format in 

which the problem is being presented, with or without visual aids. For the 

phonological loop we can think of it as a storage unit for verbal 
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information when children are younger than 6 years, but with a role in the 

use of verbal strategies when children are older than 7 years. As such, the 

age of the children and what is developmentally accessible to them 

determine the way children “do mathematics”; either by directing 

attentional resources to numerical information (by the means of the central 

executive), visualizing the numerical quantities in mind (by the means of 

the visuo-spatial sketchpad), or using verbal strategies (by the means of 

the phonological loop). As such, 4-to-5-year-olds solve arithmetic problems 

through the use of mental models, recruiting their visuo-spatial sketchpad, 

but around the age of 7 years as their language skills become stronger, the 

use of verbal strategies by the means of the phonological loop will be use 

more often; even in mathematics problems where they used their visuo-

spatial skills before (Huttenlocher et al., 1994).  

The change from visuo-spatial skills to the use of the phonological 

loop seem to be related to children’s development of reading and 

phonological processing skills (Pickering, 2001). However, this does not 

mean that once children develop verbal strategies they stop relying on 

their visuo-spatial sketchpad. For example, one study investigated 8-to-9-

year olds’ performance on easy vs difficult items in different mathematics 

measures (e.g. arithmetic, algebra, and geometry; Raghubar, Barnes, & 

Hecht, 2010). Results showed that children rely on their phonological loop 

to solve the easy items, but their visuo-spatial sketchpad to solve the 

difficult items. As such, the employment, whether of the visuo-spatial 

sketchpad or the phonological loop, will also depend on the mathematics 

tasks demands. The visuo-spatial sketchpad and the phonological loop will 

exist together in continuity through development. This in turn will allow 

an increase on the number of verbal or visuo-spatial codes available to 

store, represent, and retrieve information in the working memory; 

mirroring a mature working memory system (Pickering, 2001). 

Attempting to understand the specific roles of different working 

memory components to mathematics skills is not a novel idea. However 

most of the empirical evidence comes from studies conducted in children 

older than 6 years and thus, there are some gaps in our understanding of 
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how it is that these components are relevant for 5-to-6-year-olds’ pure and 

applied mathematics. Information available regarding the contribution of 

working memory components to arithmetic skills and applied 

mathematics, in typically developing 5- to 6-year-olds is sparse. However, 

research conducted in children that are in their first year of formal 

education can help us understand the domain-general cognitive resources 

that children utilize in order to perform mathematics, and thus understand 

how we can intervene in order to enhance their performance. 

2.1.2 The current study 

The aim of this study was to investigate the contributions of 

working memory components to both arithmetic skills and to applied 

mathematics in 5- to-6-year-olds. To investigate these two different aspects 

of mathematics skills, two different measures were selected, the Numerical 

Operations and the Mathematical Reasoning. These measures are part of a 

standardized achievement test, the WIAT-II (Wechsler, 2001). The 

Numerical Operations test was selected to measure arithmetic skills, and 

the Mathematical Reasoning test was selected to measure applied 

mathematics skills. These two measures are frequently used to measure 

such constructs within the developmental psychology research area.  

The Numerical Operations is a paper-based test containing 

multiple arithmetic problems, similar to the mathematics skills that 

children encounter within the school context. The Mathematical Reasoning 

test includes arithmetic word-problems such as “Neil had 5 marbles, then his 

mom gave him 3 more, how many marbles did he have then?” This measure uses 

verbal and visual prompts, and includes a variety of different mathematics 

domains, that change from item to item. Using standardized task such as 

these provides a sensitive measure of children’s mathematics knowledge, 

since children will progress in the task as far as their mathematics abilities 

allow (Lee & Bull, 2015).   

One measure for each working memory component was selected. 

The Backward Digit Recall was selected to measure the central executive, 
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the Block Recall task to measure the visuo-spatial sketchpad, and the Non-

Word List Recall to measure the phonological loop. Consequently, this 

study allows us to examine whether or not the roles of working memory 

components to developmentally relevant mathematics skills, change 

according to the mathematics skill that is being measured.  

Additionally, receptive vocabulary was also measured. Receptive 

vocabulary was included as a covariate given the evidence of the 

importance of language skills in children’s mathematics development 

(Hornung et al., 2014a; Lefevre et al., 2010; Passolunghi, Mammarella, & 

Altoe, 2008; Purpura et al., 2011). For example, it has been found that 

vocabulary and children’s knowledge of letters at the age of 3 to 5 years, 

were significant predictors of children’s numeracy skills one year later 

(Purpura et al., 2011). 

Three main hypotheses were formulated for this study:  

First, it was hypothesised that children would need to allocate 

attentional resources to counting strategies and to relevant numerical 

information to solve the mathematics problems. If that were the case, then 

we would expect to see a significant contribution from the central 

executive to children’s performance, in both types of mathematics 

measures. 

Second, it was hypothesised that children would need to 

temporarily store and represent the numerical information given in the 

problem by the means of mental representations. If that were the case, then 

we would expect to see a significant contribution from the visuo-spatial 

sketchpad to children’s performance, in both types of mathematics 

measures. 

Third, it was hypothesised that children would require the storage 

of numerical information presented verbally. If that were the case, then we 

would expect to see a significant contribution from the phonological loop 

to children’s applied mathematics.  
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Additionally, it was predicted that the phonological loop would 

not be involved in arithmetic skills based on research that suggest that 

children have not acquire strategies such as verbal labelling of numerical 

information yet. 

 

2.2 Method 

2.2.1 Study design 

The present study had a cross-sectional design. Testing took place 

in one single testing session. The outcome variables were arithmetic skills 

(as measured by the Numerical Operations test) and applied mathematics 

skills (as measured by the Mathematical Reasoning test). The predictor 

variables were performances on the working memory measures: the 

backward digit recall task that measures the central executive; the block 

recall task that measures the visuo-spatial sketchpad; and the nonword list 

recall task that measures the phonological loop. Chronological age, SES, 

and vocabulary (measured with the British Picture Vocabulary Scale–

second edition, BPVS-II; Dunn, Dunn, Whetton, & Burley, 1997) were 

included as covariates. 

2.2.2 Participants 

Participants were recruited from three schools in Sheffield, UK. 

According to the Index of Multiple Deprivation (IMD) calculated using the 

school post code, these schools were from a broad range of socio-economic 

backgrounds (1st, 5th, and 9th decile in the IMD; Ministry of Housing, 

Communities & Local Government, 2015). A power analysis (conducted 

using the G*Power software) for a linear multiple regression with four 

predictors was performed with α = 0.05, a medium effect size f2=.15 and a 

desired power of 0.80. The power analysis resulted in a required overall 

sample size of 85 children. However, due to circumstances beyond my 

control and due to time constrains, participants were 79 children (39 
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female). This means that the only stopping rules for data collection were 

time, and of course, the school agreement on the time that data collection 

would take without interfering with other activities related to the school.  

Data from one child were excluded because of failure to 

understand instructions. Final data came from 78 children with ages 

between 60 and 79 months (Mean age= 68.78, SD=5.31). Because of the age 

range selected, the sample included both children from Reception year 

(N=27; with ages between 5 years 0 months to 5 years and 4 months) and 

Year 1 (N= 51; with ages between 5 years 5 months and 6 years and 7 

months).  Written consent was obtained from parents before testing began 

and ethical approval was obtained from the Department of Psychology’s 

ethics sub-committee. 

2.2.3 Materials 

To measure mathematics skills two standardized mathematics 

subtests from the WIAT-II were administered: a Numerical Operations 

test, to measure arithmetic competences and Mathematical Reasoning, to 

measure applied mathematics skills.  

Numerical Operations. This is a paper-and-pencil test that measures 

a number of different basic mathematics skills. These are: the ability to 

identify, discriminate, and write numerals; rote counting; counting with 

1:1 correspondence; and solving basic written operations in increasing 

complexity (i.e. additions, subtractions, multiplications, and divisions; 

Wechsler, 2001). There are no time constraints in this test so children have 

the option to solve as many problems as they can. 

Mathematical Reasoning. This test measures the ability to count; to 

identify geometric shapes; and to solve single and multi-step word 

problems. The problems to be solved are presented simultaneously in 

verbal and visual formats. The verbal and visual prompts used in this test 

are related to everyday applications of mathematics skills in terms of time, 

money, and measurement. As an example of an item that measures 
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children’s ability to solve problems using money, a picture showing 3 

different groups of coins (seven pennies, six 5p coins, and one 10p coin) is 

shown to the child. The child is then asked which group is worth the most. 

Items increase in complexity so that the child is also required to solve 

problems with whole numbers, fractions or decimals, to interpret graphs, 

to identify mathematical patterns, and to solve problems related to 

statistics and probability (Wechsler, 2001). There are no time constraints in 

this test. The test ends when children make six consecutive errors. 

The working memory measures were chosen from the Working 

Memory Test Battery for Children (WMTB-C; Pickering, 2001) which is 

designed to assess the three working memory components of Baddeley 

and Hitch’s model. The Backward Digit Recall was selected to measure the 

central executive, the Block Recall task to measure the visuo-spatial 

sketchpad, and the Non-Word List Recall to measure the phonological 

loop. All measures started with three practice trials (except backward digit 

recall which had four practice trials) at the start of the testing trials.  

Backward Digit Recall. The backward digit recall task was used to 

measure the central executive, this task required children to recall numbers 

in a backward order (Pickering, 2001). The task began with four practice 

trials using number cards (though the test trials only involved verbal cues). 

The number cards on the practice trials were used as visual aids to ensure 

that the child understood the concept of ‘‘reverse” before testing 

commenced. The number cards were presented to the child one at a time 

(e.g. a card with a “2” and a card with a “3”), and then they were moved 

into a reversed order (e.g. the card with a “3” first and then the card of the 

“2”). It was explained to the child that that was the order in which the 

numbers needed to be repeated. There were two practice trials of two 

digits, and two practice trials of three digits.  Any errors by the child were 

corrected. Testing commenced after the practice trials. There were seven 

testing-levels, each comprising six trials. During testing, the child was 

asked to listen to a string of number-words given by the experimenter, and 

then asked to repeat them in reverse order. For example, if the child heard 

“eight”, “one”, “three”, the correct response would be to respond “three”, 
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“one”, “eight”. The first testing-level started with two number-words, and 

then the sequence length increased at a rate of one number-word every 

testing-level. This measure (and the further two working memory 

measures that follow) was scored following the next WMTB-C testing 

rules: 

1. The ‘move on” rule. This rule stated that if a child correctly 

recalled the first four trials in a testing-level, then testing can move on to 

the first trial of the next testing block. But if an error was made in the first 

four trials, the fifth trial needed to be administered. If two errors were 

made in the first five trials, then the sixth and final trial needed to be 

administered. Any trials that were omitted as a consequence of the moving 

on rule were scored as correct. 

2. The ‘discontinue rule’. This rule stated that testing should be 

discontinued if a child made three errors in a single testing level. Any 

correct response made until the point at which testing was discontinued 

was recorded. 

Block Recall. The block recall task was used to assess the visuo-

spatial sketchpad (Pickering, 2001). The block recall measure consists of a 

board with a set of nine identical blocks set out in a non-regular pattern. 

On each trial, the experimenter taps a sequence of blocks at a rate of 

approximately one block per second. The child is then asked to duplicate 

the tapping in the same order. The three practice trials before testing 

involved practice with a sequence of one cube, two cubes, and three cubes, 

respectively. Feedback was given to the child if he or she made a mistake 

in any of the practice trials. There were nine testing levels in total, each 

containing six trials. The first testing level started with trials of one block, 

and then the sequence length increased at a rate of one block every testing 

level, up to a maximum of six. No block was tapped more than once within 

a sequence. 

Nonword List Recall. The nonword list recall task was used to assess 

the phonological loop (Pickering, 2001). As the name suggests, the 
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nonword list recall measure comprised a list of non-words that the 

experimenter read aloud. All non-words were one syllable non-words (for 

example “jat” or “gub”). After hearing the word, the child was ask to 

repeat them back exactly as he or she heard them and in the exact same 

order. The three practice trials before testing involved one non-word, two 

non-words, and three non-words, respectively. There were six testing-

levels in total, and each testing-level contained six trials. Trials in the first 

testing block were single non-words, then the sequence length increased at 

a rate of one non-word every testing block.  

British Picture Vocabulary Scale-II. Vocabulary was measured by the 

BPVS-II (Dunn et al., 1997), which is a measure of receptive vocabulary. In 

this measure, children are presented with a series of picture-based trials. 

Each trial consists of four pictures, and the child is asked to listen to a 

specific word and to identify which of four pictures corresponds to the 

target word. There are 14 testing-blocks, each of which contained 12 trials. 

The trials increase in difficulty across the testing-blocks. Testing stops after 

a total of eight errors in any of the testing blocks.  

2.2.4 Procedure 

All children participated in a single testing session that lasted 

approximately 30 minutes in a quiet area of their school. Each child was 

tested individually in a quiet area of the school and gave verbal assent in 

addition to their parent’s written consent. At the start of each session 

children were informed that they were there to play some maths, memory, 

and words games. Each session began with the Mathematical Reasoning 

test, followed by the Numerical Operations test, the Nonword List Recall 

measure, the Block Recall Measure, the Backward Digit recall measure, 

and the BPVS. All measures were administered in the same order for every 

child. At the end of the testing session all participating children received a 

sticker as a token of appreciation for taking part. 
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2.3 Results 

Correlations and hierarchical multiple regression analyses were 

performed to test the study hypotheses. These analyses were conducted to 

identify the working memory components that accounted for significant 

variance in arithmetic skills and applied mathematics. Preliminary 

analyses were run to test whether there was an effect of SES, gender, and 

school year (Reception year vs Year 1), on any of the variables. 

2.3.1 Descriptive statistics 

Descriptive statistics for age in months, and for the raw scores in 

the mathematics, the working memory, and the vocabulary measures are 

shown in Table 1. In this study, only raw scores are used in the statistical 

analyses. Skewness and kurtosis values indicate that not all variables’ 

scores were normally distributed. A further Shapiro-Wilk test confirmed 

the non-normal distribution of all variables (all p<.05) except for Block 

Recall (p=.34) and Numerical Operations (p=.08). Thus, non-parametric 

tests are used in the following analyses. 

Table 1. Descriptive statistics for age (months) and the raw scores for the 

mathematics, working memory, and vocabulary, measures in Study 1 

Variable Mean (SD) 

Range 

min-

max 

Skewness Kurtosis 

Age (months) 68.78 (5.31) 60-79 .14 -1 

Numerical Operations 9.60 (2.34) 5-15 .04 -.37 

Mathematical Reasoning 16.65 (6.19) 6-33 .52 -.46 

Backward Digit Recall 8.10 (3.10) 1-19 .86 1.69 

Block Recall 18.01 (4.51) 6-31 .10 .77 

Nonword List Recall 10.33 (3.11) 2-19 -.52 .61 

BPVS 53.71 (14.30) 13-90 .10 .82 

2.3.2 Preliminary analysis 
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Preliminary analyses were conducted to test whether there was an 

effect of SES and gender on any of the measures. Because of the age-range 

of the children in this study, some of the children were attending 

Reception year and some of the children were attending Year 1 during the 

period of testing, thus, analyses were also conducted to test whether there 

was an effect of school year. To test for a possible effect of school, a 

Kruskal-Wallis test was conducted. To test for possible gender and school 

year effects, Mann-Whitney tests were conducted.  

Results from the Kruskal-Wallis test revealed that there was a 

significant effect of school on most of the measures. Significant effects of 

school were found in Numerical Operations [H (2) = 20.11, p<.001], 

Mathematical Reasoning [H (2) = 32.91, p<.001], Backward Digit Recall [H 

(2) = 15.81, p<.001], Block Recall Scores [H (2) = 16.49, p<.001], and the 

BPVS scores [H (2) =17.09, p<.001]. Post-hoc Mann-Whitney tests were 

used to follow up these findings. A Bonferroni correction was applied so 

all effects are reported at a .0167 level of significance. Results revealed that 

differences between the 1st and the 5th IMD deciles were specific to scores 

in Numerical Operations (U=158, r=-.48), Mathematical Reasoning 

(U=125.50, r=-.55), and Backward Digit Recall (U=189, r=-.40), such that 

scores were significantly higher in the 1st decile than in the 5th decile (see 

Table 2 for the variables medians and Appendix 1 for Post-hoc results for 

the remain non-significant variables). 

Table 2. Differences between the 1st and the 5th IMD deciles. Variables 

medians in Study 1 

 1st 5th 

Numerical Operations 10.50 8 

Mathematical 

Reasoning 
15.50 11 

Backward Digit Recall 7.50 6 

Note. All p< .0167 

Differences between the 1st decile and the 9th decile were only on 

the BPVS scores (U=169.50, r=-.41), such that BPVS scores were higher in 
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the 9th decile (Mdn=63) than in the 1st decile (Mdn=51.50). No other 

significant differences were found. As for the comparisons between the 5th 

and the 9th decile, differences were specific to scores in Numerical 

Operations (U=109.50, r=.59), Mathematical Reasoning (U=49.50, r=-.73), 

Backward Digit Recall (U=136.50, r=-.52), Block Recall (U=117.50, r=-.56), 

and the BPVS (U=120, r=-.55), such that scores were higher in the 9th decile 

than in the 5th decile (see Table 3 for the variables medians). 

Table 3. Differences between the 5th and the 9th IMD deciles. Variables 

medians in Study 1 

 5th 9th 

Numerical Operations 8 10 

Mathematical 

Reasoning 
11 21 

Backward Digit Recall 6 9 

Block Recall 16 21 

BPVS 47 63 

Note. All p< .0167 

These differences between IMD deciles are likely to be indicating a 

school effect rather than a SES effect on Numerical Operations, 

Mathematical Reasoning, Backward Digit Recall, and Block Recall; since 

there don’t seem to be any differences that vary as a function of SES (i.e. 

there were no differences between the extreme deciles 1st and 9th) these 

data are not included in subsequent analyses and won’t be discussed 

further. 

In terms of gender and school year, the Mann-Whitney tests 

revealed that there was no significant effect of gender on any of the 

measures. However, significant effects of school year were found in all 

measures, such that children in Year 1 had significantly higher scores in 

the mathematics, working memory, and vocabulary measures, than 

children in Reception year (see Table 4).  
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Table 4. Mann-Whitney test results. Differences between Reception and 

Year 1 in Study 1 

  Medians 

 U R Z Reception 

Year  

Year 1 

Numerical 

Operations  
267.50 .51 -4.47 8 10 

Mathematics 

Reasoning 

175 .61 -5.41 11 20 

Backward Digit 

Recall 

325.50 .44 -3.87 6 8 

Block Recall 373 .38 -3.33 16 18 

Nonword List 

Recall 

478.50 .25 -2.24 10 11 

BPVS 411.50 .33 -2.91 47 55 

Note. All p<.001 except Nonword list recall (p=.03) 

2.3.3 Non-parametric correlations between working memory 

components and mathematics measures 

In an attempt to understand the relationship between the working 

memory components and mathematics skills, a simple non-parametric 

correlation analysis was conducted. Next, two hierarchical multiple 

regressions were performed to explore the significant correlations more 

closely.  

Associations between mathematics measures, working memory 

measures, vocabulary measure, and age, are presented in Table 5. The 

associations were examined with non-parametric simple correlations. As 

shown in Table 5, both mathematics measures were significantly correlated 

to all three working memory measures, the BPVS, and age.  
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Table 5. Correlation matrix reporting simple non-parametric correlations 

in Study 1 

 1 2 3 4 5 6 7 

1. Numerical 

Operations  
1       

2. Mathematical 

Reasoning  
.72*** 1      

3. Backward digit 

recall  
.69*** .70*** 1     

4. Block recall  .43*** .62*** .54*** 1    

5. Nonword list 

recall  
.44*** .50*** .40** .19 1   

6. BPVS  .57*** .65*** .51*** .41*** .40*** 1  

7. Age (in months) .62*** .69*** .52*** .46*** .39*** .46*** 1 

Note. Correlations= *<0.05, ** <0.01, and *** <0.001  

Because the BPVS and age were also significantly correlated to the 

working memory measures, a non-parametric partial correlation was 

conducted to examine whether the significant correlations between the 

mathematics and the working memory measures remained after 

eliminating the variance related to the BPVS and age (Table 6). The 

analyses were performed using SPSS Syntax. 

Table 6. Correlation matrix reporting partial non-parametric correlations 

controlling for receptive vocabulary and age in Study 1 

 1 2 3 4 5 

1. Numerical Operations  1     

2. Mathematical Reasoning  .39*** 1    

3. Backward Digit Recall  .47*** .46** 1   

4. Block Recall  .13 .42*** .34** 1  

5. Nonword List Recall  .19 .26* .17 -.06 1 

Note. Correlations= *<0.05, ** <0.01, and *** <0.001  

After eliminating the variance related to the BPVS and age (Table 6), 

the significant correlations between Numerical Operations and the working 
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memory components changed. As such, Block Recall and Nonword List 

Recall were not significantly related to Numerical Operations, and only the 

Backward Digit Recall remained significant. These results suggest that 

BPVS and age share substantial variance with both Block Recall and 

Nonword List Recall.  

The relationship between Mathematical Reasoning and the working 

memory components remained significant even after scores from the BPVS 

and age were partialled out. 

2.3.4 Hierarchical multiple regressions analyses 

Partial correlations indicated that the BPVS and age may share 

variance with the working memory measures. Thus, two hierarchical 

multiple regressions were conducted to further investigate the amount of 

unique and incremental contributions to Numerical Operations and 

Mathematical Reasoning respectively, by the working memory measures. 

The predictor variables entered in the model were selected on the basis of 

whether they were significantly related to the outcome variables or not. 

The first hierarchical multiple regression (Table 7) shows the analysis 

conducted to investigate Numerical Operations predictors. To control for 

age and the BPVS, these variables were entered in step 1. Backward Digit 

Recall was entered in step 2, Block Recall was entered in step 3, and 

Nonword List Recall was entered in step 4. In this way, any final step that 

accounted for significant additional variance, shared unique links with 

Numerical Operations. The order of entry of the predictors was based on 

the magnitude of the Spearman’s simple correlation (see Table 5).  

As shown in Table 7, step 1 for the Numerical Operations test 

indicated that age and the BPVS predicted 52% of significant variance. Step 

2 shows that the additional incorporation of Backward Digit Recall 

contributed an additional 8% significant variance. Finally, step 3 and 4 

show that including Block Recall (step 3) and Nonword Recall (step 4) did 

not change the findings in step 2, indicating that neither Block Recall nor 

Nonword Recall accounted for additional unique variance. The Durbin-
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Watson test was checked and was found to be within acceptable 

parameters (2.03), thus the assumption of independent errors was met. This 

result suggests that this regression model is unbiased, increasing the 

likelihood of these results to be true for a wider population (Field, 2009). 

Table 7.  Hierarchical regression analysis predicting unique variance in 

Numerical Operations in Study 1 

Step B SE B β t p 

1 (Constant) -7.22 2.51  -2.88 .01 

Age .20 .04 .44 4.79 .001 

BPVS .06 .02 .39 4.18 .001 

 F (2, 75) =39.95, p <.001, R2=. .52, p<.001 

2 (Constant) -4.54 2.40  -1.90 .06 

Age .14 .04 .32 2.83 .001 

BPVS .04 .02 .26 3.53 .01 

Backward Digit Recall .28 .07 .36 3.92 .001 

 F(3,74)=36.83, p <.001, ΔR2=.08, p<.001 

3 (Constant) -4.54 2.41  -1.88 .06 

Age .14 .04 .32 3.38 .001 

BPVS .04 .02 .26 2.79 .01 

Backward Digit Recall .27 .07 .36 3.66 .001 

Block recall .01 .05 .02 .17 .87 

 F(4, 73)=27.27, p<.001, ΔR2=.001, p=.87 

4 (Constant) -4.53 243  -1.87 .07 

Age .14 .04 .31 3.29 .002 

BPVS .04 .02 .25 2.71 .01 

Backward Digit Recall .27 .08 .36 3.56 .001 

Block Recall .01 .05 .02 .18 .86 

Nonword List Recall .01 .06 .01 .12 .91 

 F (5, 72) = 21.52, p<.001, ΔR2=.001, p=.91 

As one can see from the final step, there are three significant beta 

values indicating that age (β=.31), the BPVS (β=.25), and Backward Digit 

Recall (β=.36) are significant independent predictors of Numerical 
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Operations. As the standardised beta coefficient (β) is measured in 

standard units, they can be directly compared with one another. This 

indicates that in predicting scores on Numerical Operations, age and 

Backward Digit Recall are stronger predictors than the BPVS; and 

Backward Digit Recall is stronger than age.  Multicollinearity was checked 

using the variance inflation factor (VIF) which quantifies the severity of 

multicollinearity. The largest VIF was well below 10, and the average VIF 

was 1.54. Similarly the tolerance data are all within acceptable boundaries 

(all greater than 0.1). Therefore, it was concluded that there was no 

collinearity within the data (Field, 2009). 

The second hierarchical multiple regression (Table 8) shows the 

analysis conducted to investigate Mathematical Reasoning predictors. Age 

and the BPVS were entered in step 1, following by Backward Digit Recall in 

step 2, Block Recall in step 3, and the Nonword List Recall in step 4. The 

order of entry of the predictors was based on the magnitude of the 

Spearman’s simple correlation (see Table 5). 
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Table 8.  Hierarchical regression analysis predicting unique variance in 

Mathematical Reasoning Study 1 

Step B SE B β t p 

1 (Constant) -28.66 6.09  -4.71 <.001 

Age .50 .10 .43 5.10 <.001 

BPVS .20 .04 .46 5.39 <.001 

 F (2, 75) =54.56, p <.001, R2=. 59, p<.001 

2 (Constant) -21.57 5.70  -3.78 <.001 

Age .36 .10 .31 3.79 <.001 

BPVS .14 .04 .33 4.01 <.001 

Backward Digit Recall .73 .17 .36 4.35 <.001 

 F (3,74) =51.37, p <.001, ΔR2=.08, p<.001 

3 (Constant) -21.43 5.48  -3.91 <.001 

Age .31 .09 .26 3.28 .002 

BPVS .14 .03 .31 3.97 <.001 

Backward Digit Recall .59 .17 .30 3.52 .001 

Block Recall .28 .10 .20 2.66 .01 

 F (4, 73) =43.45, p<.001, ΔR2=.03, p=.01 

4 (Constant) -21.20 5.33  -3.97 <.001 

Age .27 .09 .23 2.92 .01 

BPVS .12 .03 .28 3.64 .001 

Backward Digit Recall .53 .17 .26 3.17 .002 

Block Recall .29 .10 .21 2.89 .01 

Nonword List Recall .32 .14 .16 2.30 .03 

 F (5, 72) =37.79, p<.001, ΔR2=.02, p=.03 

As shown in Table 8, step 1 for Mathematical Reasoning indicates 

that age and the BPVS predicted 59% of significant variance. Step 2 shows 

that the additional incorporation of Backward Digit Recall contributed an 

additional 8% significant variance. Step 3 shows that the incorporation of 

Block Recall added 3% significant variance. Finally, step 4 shows that 

Nonword List Recall contributed an additional 2% significant variance. 

Thus, the three working memory measures together accounted for 13% of 

the unique variance in Mathematical Reasoning scores after controlling for 
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age and the BPVS. The Durbin-Watson test was also checked and was 

found to be within acceptable parameters (1.92). 

The beta values from both the covariate and predictor variables are 

significant, indicating that age, vocabulary, Backward Digit Recall, Block 

Recall, and Nonword List Recall, are significant independent predictors of 

Mathematical Reasoning. The β values indicated that the BPVS was the 

strongest predictor (β=.28), followed by Backward Digit Recall (β=.26), age 

(β=-.23), Block Recall (β=.21), and Nonword List Recall (β=.16). The largest 

VIF was well below 10, and the average VIF was 1.54. Similarly, the 

tolerance data are all within acceptable boundaries (all greater than 0.1). 

Therefore, it was concluded that there was no collinearity within the data 

(Field, 2009). 

In summary, results suggested that Numerical Operations was 

significantly predicted by Backward Digit Recall even after having 

accounted for the effects of age and the BPVS. For Mathematical Reasoning, 

Backward Digit Recall, Block Recall, and Nonword List Recall were unique 

predictors independent of age and the BPVS. 

 

2.4 Discussion 

This study sought to investigate the contributions of working 

memory components to arithmetic skills and applied mathematics in 5- to 

6-year-olds. This study extended research on this topic by investigating the 

role of different working memory components in arithmetic skills and 

applied mathematics. Overall, findings from this study suggest that 

working memory contributes differently to mathematics, depending on the 

type of mathematics. Namely, while arithmetic skills and applied 

mathematics shared some common working memory demands (as both 

relied on the central executive), there were important differences too, when 

doing applied mathematics, children also relied on the visuo-spatial 

sketchpad and the phonological loop. Moreover, these results showed that 
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the significant association between working memory components and 

mathematics held even after controlling for age and receptive vocabulary.  

It was first hypothesised that children would need to allocate 

attentional resources to counting strategies and to relevant numerical 

information, to solve the mathematics problems. If that were the case, then 

we would expect to see a significant contribution from the central executive 

to children’s performance, on both mathematics skills. This hypothesis was 

supported by the results from the hierarchical multiple regression in which 

the central executive was a significant predictor of arithmetic skill and 

applied mathematics. The role of the central executive in arithmetic skills is 

consistent with previous research that have suggested that children need to 

allocate their attentional resources to guide the use of counting strategies 

while solving single-digit additions and subtractions (Hubber et al., 2014; 

Meyer et al., 2010), specially at this age, when children are in the transition 

of counting with their fingers to counting verbally (Fuson, 1982). Moreover, 

the role of the central executive in applied mathematics is consistent with 

research that suggest that this component is involved in directing 

attentional resources to attend to key numerical information while 

inhibiting irrelevant information (Baddeley, 1996; Baddeley et al., 1998). 

The second hypothesis was that if children needed to temporarily 

store and represent the numerical information given in the problem by the 

means of mental representations, then we would expect to see a significant 

contribution from the visuo-spatial sketchpad to children’s performance, 

on both mathematics measures. Results partially supported this hypothesis, 

namely, the visuo-spatial sketchpad was not significantly related to 

arithmetic skills, but it was to applied mathematics. Note that the 

arithmetic problems did not require multiple steps, because children only 

solved single-digit additions as such, no interim results needed to be held 

and manipulated; and the numerical information that needed to be 

calculated was always visible to the children. Thus, it is likely that it was 

not necessary to keep and represent the information by the means of 

mental representations and children would only need to rely on their 

central executive resources to guide their counting strategies.  The lack of 
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significant relationship between the visuo-spatial sketchpad and arithmetic 

skills is consistent with previous research suggesting that 5-year-olds do 

not rely on their visuo-spatial sketchpad to solve single-digit additions 

(Xenidou-Dervou et al., 2014).  

The fact that the visuo-spatial sketchpad plays a role in children’s 

applied mathematics is consistent with the idea that children rely on their 

visuo-spatial sketchpad in situations where the visual aid (pictorial 

representations of the arithmetic word-problems), or the lack of it, does not 

contain information that help the children to represent the problem. The 

applied mathematics measure does use visual prompts; nevertheless, 

results suggested that children represent the numerical information 

mentally regardless of the visual aid provided to them. One possible 

explanation for this observation is that, although the images presented with 

the problems were somewhat related to the problem, there remained some 

further numerical information that needed to be represented mentally in 

order for the child to solve the problem. For example, in the problem: “If 

two of these ducks flew away, how many would be left?” the visual aid for that 

problem is a picture of a pond with five ducks in it. Thus, it is likely that in 

order to solve the problem children needed to represent mentally the steps 

to solve it (i.e. 5-2=?). Moreover, because not all items in the applied 

mathematics measure were arithmetic word-problems (for example, one 

problem required children to determine how long a pencil was), this result 

suggests that in an applied context, children represent numerical 

information visuo-spatially. 

The third hypothesis was that children would rely on the storage of 

verbal numerical information presented within the applied mathematics 

problems. If that was the case, then we would expect to see a significant 

contribution from the phonological loop to applied mathematics. Results 

supported this hypothesis. Moreover, they also provided evidence to 

support the suggestion that the phonological loop was not involved in 

arithmetic problems. As such, the role of the phonological loop being solely 

about storing verbal information and not about being involved in the 

application of verbal strategies is confirmed in this study. Thus, results 
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from the visuo-spatial sketchpad and the phonological loop showed that 

even though the information on a given problem is presented verbally, and 

thus relying on their phonological loop, children simultaneously rely on 

the visuo-spatial sketchpad to build a mental representation of the 

information (Palmer, 2000). 

Overall, these results suggest that arithmetic skills and applied 

mathematics involve the central executive, but that applied mathematics 

additionally involves both the visuo-spatial sketchpad and the 

phonological loop. This is consistent with the idea that the formats in which 

the mathematics problems are presented will lead to different cognitive 

mechanisms being involved (Xenidou-Dervou et al., 2014). That is, in 

arithmetic problems the numerical information that needs to be calculated 

is already set out clearly and explicitly, whereas in mathematical reasoning, 

children need to work out what numerical information is relevant in order 

to reach an answer. Because the central executive was a significant 

predictor for both types of mathematics, it can be suggested that children 

would rely on their ability to allocate their attentional resources to relevant 

numerical information and their ability to inhibit irrelevant information 

during the first year of learning mathematics. 

One somewhat surprising finding relates to the role of receptive 

vocabulary. This finding merits comment due to the clear result showing 

that receptive vocabulary plays an important role in both mathematics 

skills. The variance in mathematics performance that receptive vocabulary 

explained as much variance as the variance explained by the working 

memory components. These results were somewhat unexpected, and raise 

the question of why children’s vocabulary accounted for such a significant 

part of their mathematics performance. While there is currently no clear 

answer to that, there are four possible explanations that come to mind.  

The first suggestion is that vocabulary itself has a direct effect on 

children’s ability to do mathematics, such that the more words children 

know, the better children will be in mathematics. Somewhat related to this 

first suggestion, the second suggestion is that receptive vocabulary predicts 
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mathematics performance because receptive vocabulary is associated with 

understanding concepts and ideas. In other words, what is important is 

understanding particular mathematics concepts, which happens to 

correlate with a larger vocabulary. Knowing words such as “more” and 

“less” may reflect greater conceptual understanding, which may be what 

matters for mathematics. This suggestion is consistent with research that 

found that children’s understanding of mathematics concepts such as 

small, add, more, etc. (Foster, 2012) fosters mathematics learning overall 

(Klibanoff, Levine, Huttenlocher, Vasilyeva, & Hedges, 2006). 

The third suggestion is that receptive vocabulary is essentially a 

proxy measure for general language skills and receptive vocabulary itself 

may not be particularly important. In turn, general language skills are 

thought to be involved in children’s use of strategies, like counting 

strategies, as general language supports verbal counting acquisition, which 

in turn improves their quantitative understanding and supports their 

arithmetic development (Lefevre et al., 2010; Moll et al., 2015). Moreover, 

while solving arithmetic word-problems, children need to understand the 

verbal cues within a mathematics problem to determine what it is needed 

to be done, like adding when hearing the verbal cue “more than”; thus 

involving language skills (Wang et al., 2016). 

The fourth suggestion is that the vocabulary measure in this study 

is a proxy for SES. Previous studies have suggested that vocabulary are 

strongly related to children’s SES (Hoff, 2003), and disparities in 

vocabulary between infants from high and low SES can be observed as 

early as 18 months of age (Fernald, Marchman, & Weisleder, 2013). 

Nevertheless, since in this study SES was measured by school post-codes, 

more sensitive indexes of SES (e.g. child’s post-code or parental education) 

are needed to make a more reliable conclusion. 

Given that the BPVS has been found to be highly correlated to other 

language measures, the third possibility (i.e. the possibility that receptive 

vocabulary is a proxy for general language skills), is the most likely. 

Unfortunately, given that the only measure of language taken in the 
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present study was of receptive vocabulary, it does not allow for a definitive 

explanation of what aspect of language is central for mathematics abilities. 

However, it is worth attempting to replicate these findings using different 

and more precisely targeted measures of language abilities to check if the 

result concerning the role of language is a robust finding. This is the 

objective of Study 2 presented in the next chapter. In the next chapter I 

explore in more detail the role of language skills such that two new 

measures of language skills were selected. Addressing this question will be 

informative about how understanding words, sentences, and meaning of 

spoken language is involved in arithmetic skills and applied mathematics 

skills.  

In conclusion, results showed that arithmetic skills and applied 

mathematics shared some common working memory demands relying on 

the central executive. The central executive will aid children to allocate 

attentional resources to counting strategies while solving arithmetic 

problems, and in applied mathematics will allow children to direct their 

attention to relevant numerical information while ignoring irrelevant 

information. However, there were differences too, when doing applied 

mathematics, children also relied on the visuo-spatial sketchpad and the 

phonological loop allowing children to hold and represent visual and 

verbal information. Moreover, receptive vocabulary is also a significant 

predictor of both arithmetic skills and applied mathematics.  
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Chapter Three 

Investigating the Specific 

Contribution of Language and 

Working Memory Skills to 5- to 

6-year-olds’ Mathematics Skills 

(Study 2) 

 

Results presented in Chapter Two revealed, as expected, that the 

central executive plays an important role in children’s mathematics – both 

in pure and applied contexts; and that the visuo-spatial sketchpad and the 

phonological loop play an important role in applied mathematics only. 

However, there was also an unexpected and somewhat surprising finding 

that showed that both kinds of mathematics performance were significantly 

predicted by children’s receptive vocabulary. Three possibilities to explain 

this finding were made. The first possibility was that receptive vocabulary 

was actually the aspect of language that was important for mathematics so 

that the more words children understand, the better they will be at 

mathematics. The second possibility was that receptive vocabulary predicts 

mathematics performance because vocabulary is associated with 

understanding concepts and ideas. In other words, what is important is 

understanding particular mathematics concepts, which happens to 

correlate with a larger vocabulary.  The third suggestion was related to 

receptive vocabulary being a key component of language development, 

and thus, receptive vocabulary in itself was not particularly important for 

mathematics. Instead, it may have been a proxy for other language skills. 

Thus, the current chapter aimed to investigate the specific contribution of 
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language to arithmetic skills and applied mathematics skills. To achieve 

this aim, two specific language skills were investigated: syntactic skills and 

the ability to understand and follow oral commands. A sample of 67 

children between 60 and 78 months (Mean age=69.64, SD=4.30) were 

assessed in mathematics, language skills, working memory, and processing 

speed (as a covariate). Since this study follows directly from Study 1, the 

mathematics and working memory measures remained the same. 

Hierarchical multiple regressions showed unexpected results: only 

children’s ability to understand and follow oral commands made a 

significant contribution to applied mathematics. No other significant 

relationship between language and mathematics was found. Moreover, the 

finding from Study 1 regarding the contribution of working memory 

components to mathematics was not replicated in Study 2. These results 

called for methodological issues within the study, namely, there was 

shared variance between the language measures and working memory. 

Thus, the question as to why language is particularly important for 

mathematics could not have been answered in full and with confidence. 

 

3.1 Introduction 

Chapter Two investigated the contributions of working memory 

components to mathematics skills using children’s receptive vocabulary 

skills as covariates; surprisingly however, receptive vocabulary turned out 

to have an important role for both arithmetic skills and applied 

mathematics. Results suggested that receptive vocabulary explained as 

much variance as the variance explained by the working memory 

components. The aim of the current study, was therefore, to investigate the 

specific contributions of receptive language skills in children’s mathematics 

skills.  There are at least two ways in which language could be related to 

mathematics skills. One is that in order to solve specific mathematics 

problems, children need to understand the verbal cues within the 

problems, involving syntactic skills, which refer to children’s ability to 
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understand complex sentences ( Cummins, Kintsch, Reusser, & Weimer, 

1988; Munro, 1979). A second way that language may play an important 

role in children’s mathematics is that language is related to children’s 

mathematics learning because it involves understanding the words in a 

given classroom task or instruction (Hornung, Schiltz, Brunner, & Martin, 

2014b).  Thus, it was of interest to investigate how understanding words, 

sentences, and meaning of spoken language could be involved in 

arithmetic skills and applied mathematics skills. These abilities are part of 

the umbrella term known as receptive language which refers to the ability 

to understand words, sentences, and meaning of spoken and written 

language (Friedlander, 1970). 

Because the aim of Study 2 was to investigate the specific 

contributions of receptive language to arithmetic problems and applied 

mathematics performance, two more precise skills were investigated (i) 

syntactic skills, which refer to children’s ability to understand complex 

sentences (sentences that generally have two or more verbs; Limber, 1976), 

and (ii) the ability to understand and follow oral commands; these two 

language skills form an integral part of children’s receptive language 

(Austin, Blevins-Knabe, Ota, Rowe, & Lindauer, 2011). The introduction of 

the present chapter will focus specifically on syntactic skills and children’s 

ability to understand and follow oral commands. This review is presented 

next. 

Generally speaking, learning how to solve arithmetic problems and 

applied mathematics involves understanding and decoding spoken and 

written language (Jaroslawska, Gathercole, Logie, & Holmes, 2016). 

Specifically, there is some evidence to suggest that the ability to respond to 

instructions is fundamental for a good response to school learning activities 

that involves several steps (Jaroslawska et al., 2016), as is the case of 

learning mathematics (Hornung et al., 2014b). Additionally, understanding 

language involves syntactic skills (Limber, 1976). Because during 

mathematics learning, children rely on their syntactic skills in order to 

make sense or (decode) the intended meaning of certain mathematics 

statements (Munro, 1979). For example, for children to understand the 
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following statement: “if there are ten children in the classroom and two are 

missing, how many children are here”, it is not enough that the child identifies 

and understand some of the elements or verbal cues (i.e. “two”, “missing”, 

“how many”); children also need to decode the whole statement and 

represent it in a concrete form (i.e. 10-2=?; Munro, 1979). This decoding 

process has been related to syntactic skills and children with higher 

syntactic skills have been found to be better in understanding the specific 

meaning of mathematics statements (Munro, 1979). 

Syntactic skills are important because children are constantly 

exposed to mathematics statements outside and inside the school context. 

For example, within the school context, while learning mathematics 

children need to understand what the teacher is saying in order to grasp 

the meaning of the mathematics concepts. The input, or mathematics-

related speech, that children receive from their teachers also has an 

influence in children’s mathematics learning (Klibanoff et al., 2006). For 

example, one study found that teachers’ mathematics-related speech was a 

significant predictor of children’s mathematics growth (Klibanoff et al., 

2006). In this study the frequency of mathematics statements within the 

teacher’s speech was coded from one hour of video-recording in 

naturalistic settings (school classrooms). Children’s mathematics 

knowledge was tested when they were 4 years of age and approximately 

six months later. Their mathematics knowledge was measured by a 15-item 

questionnaire that contained questions about ordinality, cardinality, 

number identification, names of shapes, understanding “half”, and 

calculation. The content of the teacher’s mathematics-related speech varied 

from statements involving cardinality (asking for a specific number of 

objects, i.e. “can you give me four marbles?”), comparing sets of entities (i.e. 

“this classroom has more children”), number words, or simple calculations. 

The statements also varied in context, from statements occurring as part of 

intentional mathematics instruction, to quantity talk in non-mathematics 

activities. Results showed that the quantity (but not the complexity) of 

preschool teachers’ mathematics statements was significantly related to the 

growth of children’s mathematics knowledge, even after controlling for 
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classroom quality (Klibanoff et al., 2006). This finding suggests that if 

teachers’ mathematics-related speech can contribute to children’s 

mathematics learning, children’s ability to understand language within the 

school context must play a significant role in children’s mathematics 

learning as well. 

First, in Klibanoff and colleagues’ (2006) study, where the 

contribution of the teacher’s mathematics-related speech to children 

mathematics learning was studied, child’s own syntactic skills were not 

measured. And thus, whether the mathematics growth was directly related 

to children’s ability to understand the teacher’s mathematics-speech, 

remained as a speculation. From the literature review there is some 

evidence that would suggest that syntactic skills won’t be related to 

arithmetic because they involve the manipulation of numbers. However, it 

is unclear whether this is also the case for 5-to 6-year-olds. 

Syntactic skills influence the conceptual understanding of non-

symbolic mathematics. A second study found that syntactic skills had a 

specific role in mathematics domains that did not depend on manipulating 

exact numbers (Vukovic & Lesaux, 2013). Six- to 9-years-olds were 

measured in four different mathematics skills, two symbolic-dependant 

mathematics skills (involving the manipulation of quantities): arithmetic 

and algebra, and two non-symbolic dependant mathematics skills: data 

analysis and geometry. Syntactic skills predicted non-symbolic 

mathematics domains, such as data analysis (i.e. interpretation of tables 

and tally charts, and estimation of probability) and geometry (i.e. 

knowledge of shapes with two and three dimensions; Vukovic & Lesaux, 

2013), but not symbolic mathematics (i.e. arithmetic and algebra).  

That is, the first study found that syntactic skill at the age of 4 

predicted performance on arithmetic fluency at the age of 6 (i.e. Moll et al., 

2015), and the second study found that in 6-to 9-year-olds syntactic skills 

were not related to arithmetic but were related to mathematics that are 

non-symbolic dependant (Vukovic & Lesaux, 2013). However, besides 

studying different age groups, these studies could have measured two 
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different components of arithmetic. Arithmetic fluency (the measure used 

in the first study) is a measure that is usually conceptualized as a measure 

of arithmetic fact retrieval (LeFevre et al., 2013) because children rely on 

memory retrieval instead of counting skills to solve this task. In turn, 

arithmetic fact retrieval has been found to be a strategy that heavily 

depends on language because arithmetic facts are learned and retrieved 

verbally (Salillas & Carreiras, 2014). On the other hand, in the second 

study, arithmetic and algebra were measured by problems that involved 

the four arithmetic operations (without time constrains) with regrouping 

demands and which solution involved other procedural skills than 

retrieving arithmetic facts.  

Applied mathematics depend on language skills because solving 

them involves children to translate the event presented in every-day 

language to arithmetic operations, to achieve the correct answer (Ilany & 

Margolin, 2008). A key first step therefore is to understand the narrative to 

successfully interpret what is needed to be done (i.e. which calculation to 

perform). Syntactic skills may come into play when children are learning to 

identify some cue words that would make their problem-solving skills 

more efficient. For example, understanding that in some problems when 

hearing ‘all together’, an addition needs to be performed (Cummins et al., 

1988). Moreover, understanding temporal and spatial words in a given 

instruction is fundamental in learning mathematics (Munro, 1979). For 

example, in instructions with statements such as: “Before you take away two, 

add six” (i.e. 6-2), if a child fail to understand and thus ignore the temporal 

conjunction (“before”), then he or she will assume that the order of the 

elements is the intended order of the mathematics problem (i.e. 2 + 6), and 

fail to solve the problem accordingly (Munro, 1979).   

Applied mathematics also depends on language skills because they 

need to understand the instruction given. There is one specific study that is 

particularly informative for the purposes of the present study because 

children’s ability to understand and follow oral commands and working 

memory were investigated as predictors of applied mathematics 

concurrently. This study suggested that for children to solve arithmetic 
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word-problems it was necessary to understand instructions, and working 

memory was a mediator of this relationship (Kyttälä et al., 2014).  The 

ability to understand oral commands was assessed in 4-to 7-year-olds with 

the Token Test for Children (TTFC) which consists of 20 plastic tokens that 

differ in colour, shape, and size. Children needed to manipulate the tokens 

in accordance to the oral commands given by the experimenter. Applied 

mathematics was assessed with short arithmetic word-problems, which 

were presented verbally with addition of visual prompts. Two aspects of 

working memory were measured, verbal working memory (measured with 

a nonword repetition task and a backwards word recall task) and visuo-

spatial working memory (measured with a matrix task, a Corsi blocks task, 

and an odd-one-out task). Results showed that there was an indirect effect 

of verbal working memory to arithmetic word-problems through children’s 

ability to understand and follow oral commands (Kyttälä et al., 2014).  

In summary, some empirical evidence posits both syntactic skills 

and children’s ability to understand and follow oral commands, as 

cognitive abilities that may drive children’s mathematics performance.  

3.1.1 The current study 

While there is some research that has considered working memory 

and language concurrently, these factors and their effects on mathematics 

skills are commonly studied independently. Investigating both cognitive 

skills together will allow us to find possible differences in the cognitive 

abilities that support arithmetic and applied mathematics performance. 

Results from Study 1 suggested that vocabulary skills contributed 

significantly to the performance of arithmetic and applied mathematics. 

Since children’s general receptive vocabulary was measured in Study 1, the 

analyses in Study 1 may not have capture the true relationship between 

specific receptive language components and mathematics performance. 

Thus, to shed more light on how receptive language relates to children’s 

arithmetic skills and applied mathematics, Study 2 included the following 

two measures: (i) ‘Sentence Structure’ to measure syntactic skills and (ii) 

‘Concepts and Following Directions’ to measure children’s ability to 
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understand and follow oral commands. These two measures are part of the 

Clinical Evaluation of Language Fundamentals Preschool 2 UK (CELF; 

Wiig, Secord, & Semel, 2006) which is a standardised measure of language 

skills, widely used in children. Working memory components were also 

taken into account. Additionally, age, SES, and processing speed were 

considered as possible covariates.  

Since the present study was designed to try to unpick the role of 

language, it was considered necessary to include other cognitive processes 

that may also be relevant for the performance of arithmetic skills and 

applied mathematics skills. As such, in the current study, processing speed 

was included in the design. The measure to assess processing speed was 

the Box Completion task (Salthouse, 1993). In the Box Completion task 

children simply need to draw lines to complete three-sided boxes, and it is 

unlikely that it would depend on language skills. This measure was 

selected because, contrary to other measures that involve naming shapes, 

colours, objects, or numbers, this measure does not depended on language 

skills. Additionally, there is some research that suggests that simple 

processing speed measures, such as this one, does not involve working 

memory or inhibitory control skills either (Cepeda, Blackwell, & Munakata, 

2013). 

The main hypothesis for this study was that overall, mathematics 

performance depends on the ability to understand language within 

mathematics statements and to translate this information to arithmetic 

operations. If this were the case, then we would expect syntactic skills to be 

related to both arithmetic skills and applied mathematics. However, if 

understanding language is not involved in the performance of mathematics 

that require the manipulation of numbers, then we would expect language 

skills to be more strongly related to applied mathematics and less strongly 

related to arithmetic skills. Moreover, since children need to understand 

instructions to perform any mathematics problems, it is expected to see the 

relationship between children’s ability to understand and follow oral 

commands to be related to both arithmetic skills and applied mathematics. 
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3.2 Method 

3.2.1 Study design  

The present study had a cross-sectional design in which testing was 

carried out in one single session. The outcome variables were arithmetic 

skills (as measured by the Numerical Operations test) and applied 

mathematics ability (as measured by the Mathematical Reasoning test). The 

predictor variables were syntactic skills (as measured by the Sentence 

Structure task) and the ability to understand and follow oral commands (as 

measured by the Concepts and Following Directions task). Performance on 

the working memory measures were also predictor variables. The working 

memory measures were: the Backward Digit Recall task that measures the 

central executive; the Block Recall task that measures the visuo-spatial 

sketchpad; and the Nonword List Recall task that measures the 

phonological loop. Chronological age and processing speed (as measured 

by the Box Completion task), were included as covariates.  

3.2.2 Participants 

Participants were recruited from two primary schools in Sheffield, 

UK. According to the IMD calculated with school postcodes these schools 

were from high to very high socio-economic backgrounds (7th and 10th 

deciles in the IMD; Ministry of Housing, Communities & Local 

Government, 2015).  A power analysis (conducted using the G*Power 

software) for a linear multiple regression with six predictors (three 

working memory variables, two language variables, and processing speed) 

was performed with α = 0.05, a large effect size f2=.35 (based on Study 1 

findings), and a desired power of 0.80. The power analysis resulted in a 

required overall sample size of 46 children. Participants were 67 children 

(36 female) with ages between 60 and 78 months (Mean age=69.64 SD=4.30). 

The sample involved 14 children who attended Reception year (ages 

between 5 years and 5 years 10 months) and 53 children who attended 

Year 1 (ages between 5 years and 5 months and 6 years and 6 months). 

Written consent was obtained from parents before testing began and 
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ethical approval was obtained from the Department of Psychology’s ethics 

sub-committee. 

3.2.3 Materials  

The mathematics measures (Numerical Operations and 

Mathematical Reasoning) and working memory measures (Backward Digit 

Recall, Block Recall, and Nonword Recall) used in this study were the same 

as those used in Study 1 (Chapter Two). Hence in this section, only full 

details for the language and processing speed tasks are provided. 

The language measures chosen for the current study were Sentence 

Structure and Concepts and Following Directions. They are part of the 

Language Content index of the CELF (Wiig, Secord, & Semel, 2006), a 

standardised battery of measures which assesses two areas of language 

skills, expressive language and receptive language.  Sentence Structure and 

Concepts and Following Directions were part of the receptive language sub-

section of the CELF. Pictorial prompts were used in the implementation of 

both tasks. A raw frequency score was calculated for each test according to 

individual assessment guidelines. 

Sentence Structure. The Sentence Structure measure was used to 

evaluate children’s syntactic skills. Specifically, it measured the ability to 

create meaning and context by interpreting spoken sentences (Wiig, Secord, 

& Semel, 2006). In this measure, the experimenter read a sentence out loud 

(e.g. “the boy who is sitting under the big tree, is eating a banana”), and the 

child needed to choose from four different pictures the picture that 

illustrated the referential meaning of the sentence (e.g. Figure 1). Testing 

procedure started with one example followed by two trials so the child can 

familiarized with the procedure. There were 22 items of increasing length 

and complexity. The task was discontinued after five consecutive mistakes. 

 



  

93 

 

 

 

 

 

 

 

Concepts and Following Directions. The Concepts and Following 

Directions measure was used to evaluate children’s ability to understand 

and follow oral commands. In order to solve this measure correctly 

children needed to interpret, recall, and execute oral commands given by 

the experimenter. The experimenter read out loud an oral command (e.g. 

“point to the dog before you point to the tortoises”; Figure 2) and children 

needed to remember the characteristics and order of the mentioned objects, 

to respond accordingly. Testing procedure started with two familiarization 

items followed by two trials before the main testing commenced. There 

were 22 items of increasing length and complexity. The task was 

discontinued after six consecutive mistakes.  

 

 

 

Box Completion. The Box Completion measure (Salthouse, 1993) was 

used to assess children’s processing skills. The task consisted of 35 

incomplete boxes on a sheet of A4 paper. Before starting, children practiced 

Figure 1. Sentence Structure example 

Figure 2. Concepts and Following Directions example 
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with one row of four incomplete boxes. Children were instructed to make 

as many three-sided boxes into four-sided boxes as possible, within 30 

seconds (Cepeda et al., 2013; Salthouse, 1993).  The score for this task was 

the number of completed boxes. Boxes that were not properly completed 

were not scored. 

3.2.4 Procedure 

All children participated in a single testing session that lasted 

approximately 30 minutes. Each child was tested individually in a quiet 

area of the school and gave verbal assent in addition to their parent’s 

written consent. During the session each child was administered two 

mathematics measures, three working memory measures, two language 

measures, and one processing speed measure. Children were informed that 

they were there to play some maths, memory, and words games. Each 

session started with the Numerical Operations test, followed by the 

Mathematical Reasoning test, the Block Recall measure, the Nonword List 

Recall measure, the Backward Digit Recall measure, the Sentence Structure 

measure, the Concepts and Following Directions measure, and the Box 

Completion at the end. At the end of the testing session all participating 

children received a sticker as a token of appreciation of taking part.   

 

3.3 Results 

3.3.1 Descriptive statistics 

Descriptive statistics for the raw scores in the mathematics 

measures, the working memory measures, the language measures, and the 

processing speed measure are provided in Table 9. Ceiling effects in the 

Sentence Structure subscale were obtained by two children from Year 1. 

Furthermore, three different children performed at ceiling on the Concepts 

and Following Directions task. Thus, these extreme values were scored and 

considered as missing data in further statistical analyses. Skewness and 
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kurtosis values indicated that not all variables’ scores presented a normal 

distribution. A further Shapiro-Wilk test confirmed the non-normal 

distribution of all variables (all p≤.05) except for Mathematical Reasoning 

(p=.17). Thus, non-parametric tests were used in the following analyses. 

Table 9. Descriptive statistics of raw scores for the mathematics, working 

memory, language, and processing speed measures in Study 2 

Variable Mean SD 
Range 
(min-
max) 

Skewness Kurtosis 

Numerical Operations 10.03 2.06 6-16 .06 .36 

Mathematical Reasoning 19.76 4.15 12-29 .19 -.63 

Backward Digit Recall 9.43 2.51 5-18 .61 .70 

Block Recall 20.03 4.01 5-27 -1.03 2.11 

Nonword Recall 10.40 2.08 4-14 -.62 .29 

Sentence Structure (N=65) 18.00 1.97 14-21 -.30 -.53 

Concepts and Following 

Directions (N=64) 
17.05 2.59 10-21 -.63 .41 

Box Completion 20.52 4.46 13-32 .55 -.36 

3.3.2 Preliminary analysis 

Mann-Whitney tests were conducted to test whether there was an 

effect of gender or school year (Reception vs Year 1).  Results revealed that 

there were no gender effects in any of the measures (all p> .05). However, 

there were school year effects. Children in Year 1 outperformed children in 

Reception year in the following measures: the Numerical Operations 

(U=64.50, p<.001, z=-4.82, r=-.59), Mathematical Reasoning (U=156.50, z=-

3.32, p<.001, r=-.41), Concepts and Following Directions (U=235.50, z=-1.96, 

p<.05, r=-.25), and Box Completion (U=151, z=-3.40, p<.001, r=-.42) (see 

Table 10 for medians).  
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Table 10. Differences between Reception and Year 1. Variables-medians in 

Study 2 

 Reception Year 1 

Numerical Operations 8 11 

Mathematical 

Reasoning 
16 21 

Concepts and 

Following Directions 
16 18 

Box Completion 16.50 21 

3.3.3 Non-parametric correlations  

Associations between age, the mathematic measures, the working 

memory measures, the language measures, and the processing speed 

measures were examined with a non-parametric correlation. The 

Spearman correlation was performed using all available data with 

pairwise deletion. This was to avoid bias and reduction in power that 

result from listwise deletion of data (Graham, 2009). As shown in Table 

11, Numerical Operations was significantly correlated to age, Concepts 

and Following Directions, and Box Completion. Mathematical Reasoning 

was significantly correlated to age, Backward Digit Recall, Block Recall, 

Sentence Structure, Concepts and Following Directions, and Box 

Completion. A non-parametric partial correlation was conducted to 

examine whether the significant correlations between the mathematics, 

working memory, and language measures remained the same after 

eliminating the variance related to age and Box Completion scores (Table 

12). The analyses were performed using SPSS Syntax. 
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Table 11. Correlation matrix reporting simple non-parametric correlations in Study 2 

 1 2 3 4 5 6 7 8 9 

1. Age 1         

2. Numerical Operations .44*** 1        

3. Mathematical Reasoning .37** .47*** 1       

4. Backward Digit Recall .07 .14 .35** 1      

5. Block Recall .16 .18 .28* .29* 1     

6. Nonword Recall .17 .16 .05 .13 .07 1    

7. Sentence Structure 

N=65 
.39*** .10 .42*** .33** .20 .04 1   

8. Concepts and Following Directions 

N=64 
.40*** .25* .53*** .34** .27* .09 .50*** 1  

9. Box Completion .35** .41*** .27* .10 .01 -.03 .16 .18 1 

Note. Correlations= *<.05, ** <.01, and *** <.001 
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Table 12. Correlation matrix reporting partial non-parametric correlations, 

controlling for age and Box Completion in Study 2 

 1 2 3 4 5 6 7 

1. Numerical 

Operations  
1       

2. Mathematical 

Reasoning  
.33** 1      

3. Backward 

Digit Recall  
.10 .34** 1     

4. Block Recall  .15 .25* .29* 1    

5. Nonword List 

Recall  
.14 .00 .13 .04 1 

  

6. Sentence 

Structure 
-.10 .32* .33** .15 -.03 1 

 

7. Concepts and 

Following 

Directions 

.09 .44*** .34** .23 .03 .41*** 1 

Note. Correlations= *<.05, ** <.01, and *** <.001    

As shown in Table 12, after eliminating the variance related to age 

and Box Completion scores, Numerical Operations was no longer 

significantly correlated to Concepts and Following Directions. As for 

Mathematical Reasoning, the correlations with Backward Digit Recall, the 

Block Recall, Sentence Structure, and Concepts and Following Directions, 

remained significant and independent from the variance related to age and 

Box Completion. 

3.3.4 Hierarchical multiple regression analyses  

Two hierarchical multiple regressions were conducted to further 

investigate the amount of unique and incremental contributions of 

language and working memory to Numerical Operations and to 

Mathematical Reasoning respectively. The predictors entered in the model 

were selected based on the significance of the Spearman’s rank correlation 

coefficient. Hence, for Numerical Operations (Table 13), the covariates were 
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age and Box Completion, entered in step 1; and Concepts and Following 

Directions entered in step 2 as the predictors. For Mathematical Reasoning 

(Table 14), the covariates were age and Box Completion, entered in step 1; 

and the predictors were: Concepts and Following directions (step 2), 

Sentence Structure (step 3), Backward Digit Recall (step 4), and Block Recall 

(step 5). Pairwise deletion was selected because of the missing values in the 

data. 

Table 13. Hierarchical regression analysis predicting unique variance in 

Numerical Operations in Study 2 

Step B SE B β t P 

1 (Constant) -3.82 3.70  -1.03 .31 

Age .16 .06 .34 2.86 .01 

 Box Completion .13 .06 .27 2.32 .02 

 F (2, 61) =10.39, p <.001, R2=. 25, p<.001 

2 (Constant) -3.89 3.69  -1.06 .30 

Age .13 .06 .28 2.20 .03 

Box Completion .13 .05 .28 2.34 .02 

 Concepts and Following 

Directions 

.12 .10 .15 1.23 .22 

 F(3,60)=7.48, p <.001, ΔR2=.02, p=.09 

As shown in Table 13, step 1 for the Numerical Operations test 

indicated that age and Box Completion predicted 25% of significant 

variance, and both age and Box Completion were significant predictors. 

Step 2 shows that the addition of Concepts and Following Directions 

contributed an additional 2% significant variance. However, only Box 

Completion continued to be a significant predictor. The Durbin-Watson test 

was checked and was found to be within acceptable parameters (2.26), thus 

the assumption of independent errors was met. This result suggests that 

this regression model is unbiased, increasing the likelihood of these results 

to be true for a wider population (Field, 2009).  

As one can see from the final step there are two significant beta 

values, indicating that age (β=.28) and Box Completion (β=.28) were 
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significant independent predictors of Numerical Operations and that both 

were equally strong predictors. Multicollinearity was checked using the 

variance inflation factor (VIF). The largest VIF was well below 10, and the 

average VIF was 1.22. Similarly the tolerance data are all within acceptable 

boundaries (all greater than 0.1). Therefore, it was concluded that there was 

no collinearity within the data (Field, 2009). 

The second hierarchical multiple regression (Table 14) shows the 

analysis conducted to investigate Mathematical Reasoning predictors. 

Results from this hierarchical multiple regression indicate that step 1, age 

and Box Completion, predicted 18% of significant variance, but only age 

was a significant predictor. Step 2 shows that the additional incorporation 

of Concepts and Following Directions contributed an additional 17% 

significant variance, and age was no longer a significant predictor. Step 3 

shows that including Sentence Structure explained an additional 1% 

significant variance, Backward Digit Recall in step 4 added an additional 

2% significant variance, and finally, step 5 shows that Block Recall added 

an additional 1% significant variance. In this final step, the unique 

significant predictor was Concepts and Following Directions. The Durbin-

Watson test was checked and was found to be within acceptable 

parameters (1.65). Multicollinearity was checked using the variance 

inflation factor (VIF). The largest VIF was well below 10, and the average 

VIF was 1.38, similarly the tolerance data are all within acceptable 

boundaries (all greater than 0.1). Therefore, it was concluded that there was 

no collinearity within the data (Field, 2009).  
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Table 14. Hierarchical regression analysis predicting unique variance in 

Mathematical Reasoning in Study 2 

Step B SE B β T P 

1 (Constant) -6.50 7.96  -.82 .42 

Age .34 .12 .35 2.77 .01 

 Box Completion .14 .12 .15 1.16 .25 

 F (2, 59) =6.45, p <.01, R2=. 18, p=.003 

2 (Constant) -6.95 7.12  -.98 .33 

Age .17 .12 .17 1.40 .17 

Box Completion .14 .11 .15 1.33 .19 

 Concepts and Following 

Directions 

.73 .18 .45 3.96 <.001 

 F (3,58) =10.58, p <.001, ΔR2=.17,  p<.001 

3 (Constant) -8.39 7.27  -1.15 .25 

Age .14 .12 .14 1.13 .26 

Box Completion .15 .11 .16 1.39 .17 

Concepts and Following 

Directions 

.64 .20 .40 3.15 .003 

Sentence Structures .26 .27 .13 .98 .33 

 F (4,57) =8.17, p<.001, ΔR2=.01, p=.33 

4 (Constant) -9.82 7.28  -1.35 .18 

 Age .16 .12 .17 1.34 .19 

 Box Completion .13 .11 .14 1.25 .22 

 Concepts and Following 

Directions 

.56 .21 .35 2.69 .01 

 Sentence Structures .20 .27 .09 .73 .47 

 Backward Digit Recall .27 .19 .16 1.41 .16 

 F (5,56) =7.05, p<.001, ΔR2=.02, p=.16 

5 (Constant) -10.33 7.34  -1.41 .17 

 Age .15 .12 .16 1.23 .23 

 Box Completion .15 .11 .16 1.38 .17 

 Concepts and Following 

Directions 

.53 .21 .33 2.50 .02 
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In summary, results suggested that Numerical Operations was not 

predicted by any of the predictor variables; nevertheless, Box Completion 

was a significant predictor. For Mathematical Reasoning, the only 

significant predictor was Concepts and Following Directions. 

 

3.4 Discussion 

The aim of the current study was to investigate the specific 

contributions of receptive language skills in children’s mathematics skills. 

On this way, two more precise language skills were investigated: syntactic 

skills and the ability to understand and follow oral commands. Two 

unexpected findings were obtained from the results. First language skills 

did not predicted performance in neither of the mathematics skills, this in 

turn indicates that results in Study 1, regarding the role of vocabulary was 

not replicated. Only performance in applied mathematics was related to 

children’s ability to understand and follow oral commands. Second, Study 

2 failed to replicate findings in Study 1 with regard to the significant 

relationship between working memory and mathematics, that is, working 

memory was not a significant predictor of either mathematics skills. I will 

start by discussing the findings regarding the role of language skills in 

mathematics. Then I will address my reasons as to why I consider the 

results regarding working memory and mathematics were not replicated.  

It was hypothesized that if mathematics performance depended on 

the ability to understand mathematics statements and translate this 

information to arithmetic operations, then we would expect both language 

skills to be related to both arithmetic skills and applied mathematics. 

 Sentence Structures .19 .27 .09 .70 .49 

 Backward Digit Recall .24 .20 .14 1.21 .23 

 Block Recall .09 .12 .09 .76 .45 

 F (6,55) =5.93, p<.001, ΔR2=.01,  p=.45 
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Results did not support this hypothesis, since the only significant 

association found was between children’s ability to understand and follow 

oral commands and applied mathematics. This finding was surprising, 

nevertheless this result is likely to be because the language measures had 

unexpectedly high working memory demands, and as such it means that it 

is not possible to attribute task variance with any confidence, since the 

measures themselves are not transparent.   

As unexpected as it was to find arithmetic skills not being related to 

any of the receptive language measures this finding is consistent with some 

evidence that had suggested that the manipulation of precise numerical 

quantities, such as arithmetic, does not involve language skills (Vukovic & 

Lesaux, 2013). However, because of how much variance processing speed 

and age explained in arithmetic performance in the present study, and 

since receptive vocabulary was found to have a role in children’s arithmetic 

performance in Study 1, there are grounds for caution in interpreting these 

data as such. That is, the role of receptive language skills in arithmetic 

cannot be ruled out completely.  

Another possibility is that children in the present study had better 

procedural skills-such as arithmetic fact retrieval- than children in Study 1, 

and thus, there was no need for relying on other cognitive resources 

involving language. The ability to process information in specific domains 

is related to children’s familiarity or experience with the material ( Bull & 

Johnston, 1997). Thus, in the current study children might have been faster 

in calculating the answer of the arithmetic problems due to having more 

experience in solving single-digit arithmetic problems, whereas less 

experienced children, rely on their working memory resources (e.g. 

children in Study 1). Sample differences in problem-solving strategies 

between studies can be present even when there were no significant 

differences between the scores of the Numerical Operations test from 

children in Study 1 and children in Study 2 (see Appendix 2 for a Mann-

Whitney test results). This is in line with a recent study that found that 5-to 

6-year-olds with similar mathematics achievement profiles (measured with 

a composite score from the Numerical Operations test and the 
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Mathematical Reasoning test; Gilmore, Keeble, Richardson, & Cragg, 2017), 

had different skill-levels on their procedural skill, conceptual 

understanding, and working memory skills. Gilmore and colleague’s (2017) 

study highlights how there are many different cognitive pathways related 

to mathematics performance, even when children show a similar outcome. 

As such, children in the present study could have had more efficient 

procedural skills using other strategies that do not demand language or 

working memory resources. 

Performance on applied mathematics was significantly related to 

children’s ability to understand and follow oral commands; as such, this 

finding suggest that language skills are particularly significant when the 

format presentation of the mathematics problems is verbal. Note, however, 

that syntactic skills were not significantly related to applied mathematics.  

This finding is inconsistent with some research suggesting that has 

suggested that syntactic skills are related to applied mathematics, because 

children need to translate the problem presented in every-day language to 

arithmetic operations, so they can achieve the correct answer (Ilany & 

Margolin, 2008). Since syntactic skills are necessary for the understanding 

of the narrative in which the mathematics information is presented, it is 

likely that in the present study the linguistic structure was simple enough 

for children to understand the problem and did not need much 

interpretation. 

These results clearly show a significant contribution of language to 

mathematics in an applied context. There are a number of possible 

explanations for this and these following suggested explanations are not 

mutually exclusive. For example, one suggestion is that if in a given 

mathematics problem because the numerical information is presented in a 

verbal code, some language skills are likely to be involved, despite of the 

complexity of the verbal information. Moreover, difficulties in solving 

arithmetic word-problems could be related to children’s ability to 

understand the instructions of the task more than the mathematics 

complexity of the problem itself. This finding is in line with some research 

that found that children’s ability to follow oral commands was significantly 
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related to children’s performance in short arithmetic word-problems 

(Kyttälä et al., 2014). Additionally, understanding the language use in the 

explanations and interactions within the classroom, may be playing a role 

as well (Schleppegrell, 2007).  

To recapitulate, it is a little surprising that language skills were not 

contributing to arithmetic skills performance, because Study 1 suggested 

the contrary. I suggest that it is likely that differences in the contribution of 

receptive language skills to mathematics can be attributed to the 

presentation format of the mathematics problems, because arithmetic 

problems were presented in a written format, and applied mathematics 

were presented in a verbal format. Just as any other cognitive skill, 

language may have a significant role depending on the complexity of the 

problem or the procedural skills that children have. However, the 

presentation of applied mathematics will mean that if the problem is 

presented verbally, the problem very likely will involve language skills-

since the input form the problems is presented verbally and need to be 

represented internally as such.  

It has to be considered, however, the possibility of indirect effects of 

working memory to mathematics, via children’s ability to understand oral 

commands (Kyttälä et al., 2014), this suggestion leads to the second finding: 

Study 2 failed to replicate findings in Study 1 with regard to the significant 

association between working memory and mathematics. There are two 

different plausible explanations that could account for the failure to 

reproduce the findings of Study 1: (i) the lack of predictive value of 

working memory is due to the incidental executive and visuo-spatial 

demands on the language measures, and (ii) the effect of working memory 

over mathematics is highly variable across samples.  

In light of the first possibility, an inspection of intercorrelations 

among language and working memory measures (Table 11) can provide 

more information. As one can see in Table 11, Concepts and Following 

Directions significantly correlated with the central executive (Backward 

Digit Recall, rs= .34, p<.01) and the visuo-spatial sketchpad (Block Recall, 



  

106 

 

rs= .27, p<.05). The shared variance between the ability to understand and 

follow oral commands and working memory skills can be explored by 

looking at the nature of the measure used in this study. That is, the 

Concepts and Following Directions task involves children to hold in mind 

names, characteristics, and order of the mentioned objects to answer, and 

thus, it is very likely to involve working memory resources.  

The idea of Concepts and Following Directions involving working 

memory resources is consistent with previous research that has suggested 

that following instructions relies on working memory processes 

(Jaroslawska et al., 2016; Yang, Allen, & Gathercole, 2015). Especially 

because for children to succeed in following instructions, children need to 

remember a series of steps in sequence, and perform them soon after (Yang 

et al., 2015). Thus, in addition to engaging language skills, following 

instructions also involves working memory skills (Jaroslawska et al., 2016; 

Kyttälä et al., 2014). It is possible then, that children did rely on working 

memory resources to solve the applied mathematics measure, but that this 

was not reflected in the statistical analyses, due to potentially large 

amounts of shared variance between the working memory measures and 

the Concepts and Following Directions measure.  However, this suggestion 

deserves further exploration using more fine-grained approaches. 

My second plausibly explanation as to why there was no replication 

of findings regarding working memory, is that the effect of working 

memory on mathematics is highly variable across samples. From the Mann-

Whitney test (see Appendix 2) significant difference in SES were also 

obtained; so that children in Study 2 were mostly from higher SES 

backgrounds than children in Study 1. Overall, children’s cognitive 

development is greatly sensitive to influences from their social and 

contextual environment (Jimerson et al., 1999; Pungello et al., 1996), and 

mathematics skills are no exception (Jordan, Kaplan, Oláh, & Locuniak, 

2006). In fact, children from disadvantaged backgrounds start their formal 

mathematics education with gaps in their numerical knowledge and are at 

risk of having a low mathematics level in subsequent school years 

(Cheadle, 2008; Entwisle & Alexander, 1990; Siegler, 2009) To investigate 
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this subject with more depth more specific (than school-postcodes) 

measures of SES can be more useful to understand how low or high SES 

can lead to differences in mathematics cognition. For instance, there is some 

evidence that suggest that improving the home learning environment 

during preschool (e.g. caregivers reading with their child), decreases the 

gap between mathematics achievement between children from low and 

high SES backgrounds over time (Galindo & Sonnenschein, 2015). 

In conclusion, although there was increasing evidence that language 

seems to play an important role in young children’s emerging mathematics 

abilities, because of methodological concerns, at present it is difficult to say 

with confidence which aspect of language is key, nor what specific roles 

language plays in mathematics. Although based on the present data some 

suggestions could have been formulated, these need to be followed up with 

additional studies that use different measures of linguistic skills to assess 

children’s language. Moreover, the present study highlight just how 

complex studying mathematics skills is, and that looking at one individual 

cognitive factor in relation to mathematics achievement is not sufficient. 

Instead, investigating the interactions between relevant cognitive 

mechanisms may be more informative. Additionally, findings from this 

study and Study 1, suggest that children’s cognitive strategies to solve 

arithmetic problems cannot simply be observed by comparing different 

mathematics performance. Research would benefit from longitudinal 

studies including cognitive pathways (Gilmore et al., 2017; Lefevre et al., 

2010; Moll et al., 2015), to understand the development of mathematics.  
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Chapter Four 

Longitudinal and Concurrent 

Linguistic Precursors of 4-Year-

Olds’ Mathematics Skills (Study 3) 

 

Chapter Four was specifically designed to study the longitudinal 

and concurrent linguistic precursors of a sample of 4-year-old children that 

had been tracked from the age of 11 months, and for whom there were data 

on early language measures. Given the evidence from Study 1 and Study 2, 

showing that language plays an important role in young children’s 

mathematics skills, studying this relationship both longitudinally and 

concurrently could shed important light on the role that language plays in 

children’s mathematics ability.  

Therefore, the purpose of Study 3 in the present chapter was to 

investigate the contribution of the longitudinal and concurrent linguistic 

precursors of pure and applied mathematics skill in 4-year-olds. Early 

numeracy skills-measured with the Mathematics scale from the National 

Foundation for Educational Research (NFER) Baseline Reception 

Assessment-were chosen to represent pure mathematics in 4-year-olds, and 

applied mathematics were measured with the Mathematical Reasoning 

from the WIAT-II. The linguistic longitudinal precursors were the 

mathematics-related words that caregivers produced during caregiver-

child naturalistic interactions when children were 11 months of age, and 

the mathematics-related words that children produced in caregiver-child 

interactions when they were 2 years of age. Concurrent language skills 

were assessed with a composite score form three different measures, the 

BPVS, the NFER Language and Communication scale, and the CELF. 

Participants were 71 children between 48 and 55 months (Mean age=50.04, 
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SD=1.54) from a broad range of socio-economic backgrounds. Findings 

suggested that both mathematics skills relied on different concurrent 

predictors, such that early numeracy skills relied on general language skills 

and applied mathematics relied on general language skills and inhibitory 

control. This demonstrated that even before school entry children utilize 

their language skills to perform mathematics in a pure and applied context.  

 

4. 1 Introduction 

Evidence provided by Studies 1 and 2 have suggested that language 

skills are significant predictors of mathematics skills when children are 

between the age of 5 and 6 years. As such, studying this relationship both 

longitudinally and concurrently was considered to be a valuable next step 

to get closer to our understanding of the specific role of language in 

mathematics. Thus, taking the opportunity to work with a sample of 4-

year-old children that had been tracked longitudinally from the age of 11 

months, Study 3 in the present chapter, was designed. The aim of the 

current study is, therefore, to investigate the longitudinal and concurrent 

linguistic precursors of 4-year-olds’ pure and applied mathematics skills. 

To investigate this research question in a thorough way, other 

possibly relevant cognitive abilities were also measured, thus children’s 

executive functions were included in the design of the current study. This 

allows investigating developmental patterns in the precursors of early 

mathematics skills. As such the present study is characterized by 

investigating the following components: a younger-aged sample, pure vs. 

applied mathematics, concurrent vs. longitudinal linguistic predictors, and 

executive functions. A review of the literature regarding the longitudinal 

linguistic precursors and concurrent language and executive functions 

skills, of mathematics is presented next. 

4.1.1 Longitudinal linguistic precursors of children’s mathematics 

skills 
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Language skills have been shown to play an important role in the 

development of children’s mathematics ability both (i) longitudinally and 

(ii) concurrently. For example, children’s early mathematics-related 

language experiences at home predict later mathematics performance. 

Specifically, it has been found that the amount and type of the linguistic 

input that infants (between 14 and 30 months of age) and children (between 

3 and 5 years of age) receive about numbers, during caregiver-child 

interactions at home, are particularly important contributors of individual 

differences in early mathematics skills (Levine et al., 2010; Ramani et al., 

2015). Two studies, one conducted longitudinally, and the other one 

conducted concurrently, have been particularly informative about this 

subject. These studies are presented next. 

The first relevant study showed that caregivers’ mathematics-

related talk predicted children’s understanding of cardinality (Levine et al., 

2010). This was shown in a longitudinal study in which the frequency of 

the number-words (from one to ten) produced by the caregiver’s during 

naturalistic interactions with their child was measured (Levine et al., 2010). 

Caregiver-child interactions were video-recorded for 90 minutes, starting 

from when children were 14 months of age until they were 30 months of 

age. Later, when children were 46 months of age, children’s cardinality 

understanding was measured with the point-to-x task. The amount of 

number talk (from the caregivers) predicted children’s understanding of 

cardinality at 46 months over and beyond caregivers and children’s overall 

talk. Moreover, findings showed that not only did caregivers who talked 

more produced more number words than caregivers who talked less; but 

the amount of number words that caregivers produced was significantly 

related to the child’s own use of number talk (both increasing over time). In 

summary, this study showed that caregiver’s production of number words 

is specifically important for children understanding of numbers over 

development. 

The second study investigated caregiver’s talk during number-

related activities in relation to children’s concurrent early numeracy skills 

(Ramani et al., 2015).  In this study 3-to 5-year-olds’ and their caregivers 
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participated in one caregiver-child interaction. Children also participated in 

two individual testing sessions in which their numeracy skills were 

assessed. Caregivers also completed a questionnaire regarding the 

frequency of activities relating numbers, literacy, and play at home. The 

caregiver-child interaction was a semi-structured play session following the 

three bags task. The three bags task consisted in providing the caregiver 

with three bag containing a book, a puzzle, and a board game respectively; 

all with the aim to foster mathematics talk. For example the puzzle was a 

snail puzzle with numbers from one to ten. All the speech from both the 

caregiver and the child was transcribed from 15 minutes of video-

recording, and was categorised into two types of mathematics talk: 

‘foundational’, which was related to counting and identification of 

numbers; and ‘advance concepts’, which involved cardinality (e.g. “how 

many x?”), ordinality (e.g. “what comes after x?”), and arithmetic-related 

words (caregiver asking about additions or subtractions). The individual 

sessions were conducted to assess children’s early numeracy skills, which 

also were divided in ‘foundational’ (counting and identification of 

numbers) and ‘advanced’ (number line estimations, magnitude 

comparison, cardinality skills, and counting principles). Two particularly 

relevant findings can be extracted from this study. 

First, among the three home-activities in the questionnaire, 

caregivers reported that they engaged least often in number-related 

activities (e.g. teaching their child about numbers directly) however, these 

number-related activities significantly predicted children’s ‘foundational’ 

mathematics skills. This suggests that even if the activities were not as 

frequent as, for example, literacy activities, number-related activities still 

were relevant for children’s basic numeracy skills. Second, being exposed 

to a very specific mathematics content can influence children’s 

understanding of similar concepts. Specifically, caregiver’s talk about 

‘advance concepts’ (i.e. cardinality, ordinality, and arithmetic-related 

words) during the structured interactions significantly predicted children’s 

‘advance’ mathematics skills (i.e. number line estimations, magnitude 

comparison, cardinality skills, and counting principles). However, both 
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findings could be bidirectional, that is, children with a more developed 

number sense could have been showing more interest in numerosities 

which in turn fosters caregiver’s effort to produce number words and other 

mathematics concepts, and thus, causality cannot be determine with 

confidence. 

Together these studies suggest that being exposed to mathematics-

related talk during early stages of development support children’s 

mathematics development by enhancing their understanding of numbers. 

Findings also showed that the relationship between mathematics-related 

talk and children’s mathematics skills, may be domain-specific rather than 

domain-general. That is, in Levine and colleagues’ study (2010), number 

talk was related to children’s understanding of numbers and in Ramani 

and colleagues’ study (2015) advance mathematics talk specifically 

predicted children’s advance mathematics understanding. Thus, early 

exposure of mathematics talk may specifically contribute to children’s 

quantitative understanding.  

4.1.2 Concurrent linguistic precursors of children’s mathematics 

skills 

Children’s own language skills have also been related to their 

performance in mathematics skills. For example, children make use of their 

language skills to understand specific mathematics words like “all” (i.e. 

quantifiers), which in turn allow children to grasp specific mathematics 

concepts such as cardinality understanding (Purpura & Reid, 2016).  The 

role of language skills in mathematics has generally been studied with 

measures that tap these skills more generally; however, more recently, the 

role of content-specific language skills has been gaining attention. In the 

following paragraphs I will present some of the evidence for the role of 

general and content-specific language skills in mathematics. 

General language skills have been found to be related to 

mathematics across different mathematics domains. Some researchers have 

been proposed that language and mathematics are related because both use 
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symbols to represent them, so that the ability to relate sounds to their 

written letters foster children’s ability to use and manipulate numbers and 

operations,  as they are symbols on their own (Zhang et al., 2014). This 

suggestion could be considered as a very specific interpretation of the 

relationship between these two constructs. However, in a broader sense, 

general language skills seem to support mathematics learning because 

children need to understand new words many of which are unlike 

anything that children have learned before (e.g. “add”; Moll et al., 2015). 

General language skills have been related to mathematics, even from a very 

early age (3 to 4 years of age). For example, it has been suggested that 

language supports numerical development as children utilize language 

skills (e.g. number words) to improve their quantitative understanding 

(Purpura & Ganley, 2014). One study found that general language skills 

(measured with a standardized measure of expressive vocabulary that has 

been found to be highly correlated to other language skills; Purpura & 

Ganley, 2014)  accounted for significant variance in predicting, verbal 

counting, one-to-one counting, cardinality, number comparison, set 

comparison, number order, numeral identification, set to numerals, and 

story problems.  

The relevance of general language skills in mathematics is 

supported by studies done with children with language difficulties. For 

example it has been observed that a disturbance in language development 

can cause a developmental delay in counting strategies, number fact 

storage, arithmetic, and fact retrieval strategies (Moll et al., 2015; Von Aster 

& Shalev, 2007). Previous studies have found that individuals with 

language or reading problems perform poorly on arithmetic tasks 

compared to individuals without language or reading problems (Simmons 

& Singleton, 2006).  In sum, there is increasing evidence to suggest that 

language skills are strongly related to children’s mathematics skills.  

Language skills can also have a specific role in mathematics by 

helping children develop content-specific vocabulary. Content-specific 

vocabulary in turn is necessary for children’s conceptual understanding of 

mathematics. For example, children’s knowledge of comparative and 
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spatial words have been found to be significant predictors of early 

numeracy skills such as number knowledge and counting. Moreover, 

quantifiers (e.g. some, many, a few) have been found to be significant 

predictors of children’s understanding of numbers (Barner et al., 2009). 

Understanding quantifiers allow children to produce and describe 

comparisons between numbers (e.g. Barner et al., 2009). Other studies have 

identified a relationship between content-specific vocabulary and 

children’s quantitative understanding. For example, children’s 

understanding of the word “more” goes hand by hand with their 

understanding that “more” can mean an increase in a set of objects 

(Purpura, Napoli, Wehrspann, & Gold, 2017). One study evaluated 3-to 5-

year-olds’ mathematics-related words with an experimental measure that 

assessed two specific types of words: comparative words, such as 

“more”/”less”; and spatial words, such as “below”/”middle” (Purpura & 

Logan, 2015). Findings from this study suggested that children’s own 

mathematics-vocabulary predicted children’s mathematics performance 

across the preschool years, and suggested that content-specific vocabulary 

supports children’s ability to improve their conceptual understanding of 

quantity. 

Content-specific vocabulary has been found to be so significantly 

related to mathematics that it has been proposed that some of the variance 

accounted for by general language skills in previous studies could have 

been attributed to content-specific vocabulary knowledge. One study 

investigated this suggestion directly. Three-to five-year-olds were 

measured on their mathematics vocabulary, general language skills, and 

early numeracy skills (Purpura & Reid, 2016). Mathematics vocabulary was 

determined by children’s knowledge of comparative and spatial words. 

Results showed that even when general language skills were significant 

predictors of early numeracy, when the mathematics vocabulary 

knowledge was considered, mathematics vocabulary but not general 

language skills, was a significant predictor. This finding, then, provides 

some evidence that in some cases, general language skills that have been 

previously found to be related to early mathematics skills may have been 
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acting as a proxy measure for mathematics vocabulary which in turn is 

more strongly related to mathematics (Purpura & Reid, 2016). 

In conclusion, children’s mathematics development can be shaped 

by caregiver’s content-specific vocabulary, but also, by children’s own 

general and content-specific language skills. Specifically, both general and 

content-specific vocabulary can provide the tools to facilitate the 

acquisition of some mathematics skills (e.g. counting) and conceptual 

understanding of mathematics (Donlan, Cowan, Newton, & Lloyd, 2007; 

Romano, Babchishin, Pagani, & Kohen, 2010). 

4.1.3 Executive functions as predictors of children’s mathematics 

skills 

The extent to which executive functions are associated with 

mathematics skills have been studied to more extent in school-aged 

children whose mathematics skills are well established (Bull & Scerif, 2001; 

St Clair-Thompson & Gathercole, 2006b). Despite the sparseness in the 

literature there is some evidence that has suggested that the two executive 

functions that could be especially important for children’s mathematics 

skills during the preschool years are working memory and inhibitory 

control (Blair & Razza, 2007; Bull et al., 2008; Purpura, Schmitt, & Ganley; 

2017). For example, a longitudinal study assessed children’s executive 

functions when children were 4 years of age and children’s mathematics in 

three different time-points; the first time-point was when children were 4 

years of age, then when children were between 5 and 6, and the third point 

when children were between 7 and 8 years of age (Bull et al., 2008). 

Working memory was measured with a digit span task, and inhibitory 

control and cognitive flexibility were measured with the inhibition and 

switching condition of the shape school measure, respectively. The 

inhibition condition consisted in presenting a child with cartoon faces 

arranged in three rows, and for which they needed to name the colour of 

the face only if they did not have a sad face on. The switching condition 

consisted on first, naming the cartoon faces by colour for faces without hats 

and by shape for faces with hats. This condition involve children using 
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simultaneously the rules of colour and shape (Bull, et al., 2008). 

Mathematics was assessed with the PIPS assessment, a standardized 

measure of early mathematics that includes a number of constructs from 

counting, number recognition, simple arithmetic problems, to more 

complex mathematics skills, like interpretation of graphs. 

Results from this longitudinal study found that after controlling for 

age and reading skills, working memory significantly predicted 

mathematics at each time point (from 4 years of age to 7 years) and that 

inhibitory control at age 4 was only a significant predictor of mathematics 

at 4. These results show how working memory and inhibitory control at an 

early age as 4 years are important for later mathematics proficiency. For 

example, one study found that 4-to 6-year-olds’ working memory skills had 

a specific significant relationship to the mathematics task on a battery of 

early mathematics that involved maintaining information in mind for later 

processing and responding (i.e. a cardinality task; Purpura & Ganley, 2014).  

The contribution of inhibitory control has also been observed in 

other studies, in preschool children. For example, one study conducted 

with 2-to 5-year-olds found that the role of inhibitory control was a 

significant predictor even after controlling for working memory, cognitive 

flexibility, age, maternal education, and vocabulary skills (Clark, Sheffield, 

Wiebe, & Espy, 2013). In this study, inhibitory control was a composite 

score of (i) the delayed response task, (ii) the continuous performance task, 

(iii) the statue task, and (iv) a self-control task. In the first task a reward is 

hidden randomly in one of two cups, while children were looking the two 

cups switched location (e.g. from left to right) and immediately hidden 

under the table. After ten seconds, children needed to look for the reward. 

In the second task, children were exposed by pictures of several animals 

displayed on a computer. The animal pictures were accompanied by 

different animals’ sounds that rarely matched the animal (e.g. a dog 

meowing instead of barking). Children needed to press the computer 

mouse whenever they saw a picture of a sheep, regardless of the noise that 

it made. The third task, consisted on children standing with their eyes 

closed for 75 seconds, time during which the examiner tried to distract the 
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child. Finally, the fourth task consisted on the child receiving a present at 

the end of testing, which children supposed to not touch it until the 

examiner finished another task. Mathematics was measured with a 

standardized measure (i.e. Woodcock–Johnson Psycho-Educational 

Battery–Revised)that contains different items regarding subitizing, ordinal 

counting, counting relevant object items, additions, and subtractions (Espy 

et al., 2004).  

From studies conducted with older children, it has been proposed 

that inhibitory control may have the specific function of allowing children 

to focus on numerosities while ignoring competing non-numerical 

information when performing mathematics (Passolunghi & Siegel, 2001). In 

Passolunghi and Siegel’s study (2001) it was found that 10-year-old 

children who had deficits in their performance on an arithmetic task (i.e. 

the arithmetic sub-test from a standardized test, the Wide Range 

Achievement Test) and an arithmetic word-problems task, presented 

greater intrusion errors in three different memory tasks. Intrusion errors 

were a measure of inhibitory control because they mirror the difficulty of 

focusing on task-relevant information and avoiding irrelevant information 

accessing the working memory. Thus, these results suggested that solving 

arithmetic problems and arithmetic word-problems, involves children to be 

able to avoid that irrelevant numerical information access their working 

memory in order to arrive at a solution (Passolunghi & Siegel, 2001).   

4.1.4 Summary 

In sum, there is some empirical evidence for longitudinal and 

concurrent linguistic precursors of mathematics, perhaps more evidence 

exists for concurrent language skills in mathematics than longitudinal 

precursors. Moreover, executive functions are related to mathematics 

because they allow the storage and manipulation of numerical information 

(working memory) and allow children to focus on numerosities while 

ignoring irrelevant information (inhibitory control). Investigating 

concurrent executive functions and their role in mathematics before 

children enter formal education is important because most of the activities 
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that children first encounter when they enter school are novel to them. 

Thus, they may need to rely on their executive functions to a different 

extension comparing to children who have already entered school. 

Therefore, this study provides a good opportunity to study in combination 

all these cognitive skills that rarely have been studied together before. This 

is relevant because we can better identify developmental patterns in the 

precursors of mathematics. 

There remain two gaps in our knowledge that can be addressed to 

contribute to a better understanding of the role of language skills in 

mathematics.  First, there is evidence that early exposure to mathematics 

talk has an impact in children’s mathematics after one year. However, we 

still don’t know if this significant relationship hold over a longer period of 

time and whether we can observe this relationship with other mathematics 

domains, beyond what has been found with cardinality skills. If we were to 

observe a significant relationship between longitudinal linguistic skills to 

later mathematics, after a longer period of time, it would provide us with 

significant information about whether to focus our attention on the 

stimulation of mathematics talk between caregivers and children at such an 

early age in development. 

Second, although there is some evidence that naturalistic caregiver-

child interactions have an impact on early numeracy skills (i.e. Levine et al., 

2010) we cannot tell if the relationship between caregiver’s number talk and 

children’s early numeracy skills is specifically related to children’s 

engagement with this talk. It has been shown that within the talk that 

caregivers engage with their child (i.e. child directed speech); contingent 

talk (i.e. talk that occurs around whatever has caught an infant’s attention) 

is likely to be more important for children’s language development 

(Baldwin, 1991; McGillion, Pine, Herbert, & Matthews, 2017). If the 

mathematics-related talk that caregivers engaged with their child was not 

necessarily contingent we can expect to find an even stronger relationship 

between contingent mathematics-talk and children’s early numeracy 

knowledge. In fact, Ramani and colleague’s (2015) study suggests that 

direct engagement (i.e. semi-structured play) relates to children’s 
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understanding of advance mathematics concepts after a short period of 

time. Finding out specifically what type of engagement do children need to 

have with mathematics-related talk would help us design more efficient 

interventions. 

In the studies presented in the introduction of the current chapter, 

there was no differentiation between words produced during child directed 

speech and words produced during contingent talk. And thus, it may be 

that although caregivers were producing number words, only the ones 

produced within contingent talk were significant for early numeracy skills. 

Additionally, the quantity of child directed speech in both studies the total 

of number talk (also known as tokens) were considered as variables. An 

alternative is choosing “types” or the number of unique words; for example 

the sentence “taco cat spelled backwards is taco cat” has seven ‘tokens’ but five 

‘types’. In this way, the quality of the number talk is considered rather than 

the quantity3 (Rowe, 2012) 

In sum, we don’t know if the effect of linguistic input over 

children’s mathematics skills will hold over a longer period of time and 

whether we can see a significant relationship with other (than cardinality) 

mathematics domains. We also don’t know if there is a difference between 

number words used during child-directed speech and number words used 

during contingent talk; and whether or not choosing for words quality over 

quantity would make a difference in the results regarding the relationship 

between caregiver mathematics-related talk and children’s mathematics 

skills.  

The present study reflects an interesting and unique chance to look 

at language role in mathematics (in slightly younger children). Language 

skills could be important because they are the mean by which children gain 

conceptual understanding of mathematics-related ideas; or because 

                                                             
3 Although there is some debate about which one (tokens vs types) is more 

significant for language development and they tend to be highly correlated. This subject 
goes beyond the scope of the current thesis, but it is well documented within the language 
development literature (e.g. McGillion et al., 2017; Rowe, 2008, 2012) 
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children actively use language when carrying out mathematics operations. 

There is evidence for these ideas in the literature. This study will allow us 

to test these ideas from a new perspective. 

4.1.5 The current study 

The current study aimed to investigate the contribution of 

longitudinal and concurrent linguistic precursors of pure and applied 

mathematics skills in 4-year-olds. In addition, the present study also looked 

at the concurrent role of executive functions. The main reason being the 

focus of this thesis, which is investigating the domain-general abilities 

underpinning children’s mathematics skills and to allow us to investigate 

developmental patterns in the precursors of early mathematics skills.  

Specifically, two different measures of linguistic precursors were 

considered: (i) caregiver’s use of mathematics-related words when children 

were 11 months of age, data were: distinct mathematics words, distinct 

number words, and distinct mathematics words that were not number 

words (‘other mathematics words’ from now on), that caregivers used 

during both child directed speech (CDS) and CDS that was contingent on 

the infant’s focus of attention (contingent talk). (ii) The predictor variables 

from the 2-year-olds’ data were: the total number of distinct mathematics 

words, number words, and other mathematics words, within the child’s 

speech. All these data came from naturalistic interactions, that is, 

unstructured play time. There were two main reasons as to why the 11 

months data were chosen for the present study: (i) these data were pre-

intervention baseline data and (ii) these data had already been transcribed. 

A similar situation happened when data at the age of 2 years were chosen. 

That is, the corpus of the words that children produced at the age of 2 years 

had already been transcribed. Taking into consideration the time constrains 

related to carrying out a study such as this; these were strong motives for 

choosing the data at these two time points. 

Working memory (as measured by the Self-Ordered Pointing task), 

inhibitory control (as measured by a Flanker task), and language skills (as 
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measured by the BPVS, the NFER-Language; and CELF) were also 

included. The role of these predictors was examined in both early 

numeracy skills (as measured by NFER-Mathematics) and applied 

mathematics (as measured by the Mathematical Reasoning). As for the 

measure of working memory, it was first considered to use the ‘Spin the 

Box’ measure as it is a frequently used task to measure working memory in 

children around the age of 4 years. However, data from the pilot study 

suggested that this measure was easy for the vast majority of the children, 

with 10 out of 13 children were at ceiling (Appendix 3). Thus, the Self-

Ordered Pointing measure was chosen as a more appropriate measure. 

There were two main hypotheses in this study: 

The first hypothesis was that early exposure to mathematics talk 

and children’s previous content-specific language contribute to the 

development of children’s quantitative understanding. If this were the case 

then we would expect caregiver’s use of mathematics words during 

caregiver-child interactions at the age of 11 months and children’s 

mathematics words at the age of 2 years, to predict children’s early 

numeracy skills and applied mathematics at the age of 4 years. 

The second hypothesis was that children need to understand the 

verbal cues in a given mathematics problem. If this were the case, then we 

would expect children’s general language skills at the age of 4 predict 

children’s early numeracy skills and applied mathematics at the age of 4 

years.  

Additionally, it was predicted that working memory and inhibitory 

control, would be related to mathematics because children need to store 

and manipulate numerical information, and focus on numerosities while 

ignoring competing non-numerical information, when performing 

mathematics. It was also expected to find this higher in applied 

mathematics as its performance involves multiple step and the numerical 

information is embedded within irrelevant information. 
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4.2 Method 

 4.2.1 Study design 

The present study was designed to investigate whether children’s 

exposure to mathematical language at the age of 11 months and children’s 

mathematics vocabulary at the age of 2 years functioned as precursors of 

pure (i.e. early numeracy skills, this label will be used from now on) and 

applied mathematics at the age of 4 years. Furthermore, the predictive 

value of working memory, inhibitory control, and language skills at the age 

of 4 years was also examined.   

The outcome variables were early numeracy skills as measured by 

the NFER-Mathematics, and applied mathematics skills as measured by the 

Mathematical Reasoning sub-test of the WIAT-II when children were four. 

The predictor variables from the 11-month-olds’ data were: distinct 

mathematics words, distinct number words, and other mathematics words 

that caregivers used during both children directed speech (CDS) and CDS 

that was contingent on the infant’s focus of attention (contingent talk). The 

predictor variables from the 2-year-olds’ data were: the total number of 

distinct mathematics words, number words, and other mathematics words, 

within the child’s speech. Finally, the predictor variables from data 

collected when participants were 4 years of age were: performance on the 

self-ordered pointing task (working memory), performance on the Flanker 

task (inhibitory control), performance on the bubble popping task 

(processing speed), and performance on the following language measures: 

BPVS, NFER-Language, and the CELF. The covariates were chronological 

age, SES (measured by the IMD-rank at the age of 4 years), caregiver’s 

education (at the age of 4 years), the total of distinct words used in both 

CDS and contingent talk, and the total distinct words in child’s speech at 

the age of 2 years.  

 4.2.2 Participants 
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Participants were 87 children (46 female) drawn from a larger 

sample of 142 children who were part of a longitudinal study looking at 

children's language development (McGillion et al., 2017). This broader 

study was conducted by researchers from the Department of Psychology at 

the University of Sheffield and funded by the Nuffield Foundation and the 

British Academy. Participants were initially recruited from a volunteer 

database from the Cognitive Development Research group at the 

Department of Psychology and were followed from 11 months (N=140, 

Mean age=10.98 months, SD=.13) to 2 years of age (N= 101, Mean age=25.64 

months, SD=1.34). Participants were invited to take part in the current 

study when they reached the age of 4 years. Only participants who agreed 

to participate in this time-point and who gave consent to video-record the 

session, were included. Ethical approval for the studies was obtained from 

the Department of Psychology’s ethics sub-committee. 

From the 87 children who participated at all three time points, 16 

children were excluded: 11 children had missing data due to failure to 

follow instructions or to caregiver’s interference, and another five children 

were excluded when parent’s responses on follow-up questionnaires 

indicated that their child had a diagnosis of a developmental condition or 

delay. As such, the final sample was 71 children (38 Female, Mean=50.04, 

SD=1.54). The families and children who took part were from a wide range 

of SES backgrounds (from the 1st to 10th IMD Deciles) in and around the 

area of Sheffield, England. All children came from families whose first 

language was English.    

4.2.2.1 Overview of the recruitment and data collection of 

participants at 11 months and at 2 years of age 

The present study took place in the context of a wider longitudinal-

intervention study4 of children’s language development (Davies, 

McGillion, Rowland, & Matthews; in prep). Only methodological details 

                                                             
4 There was no difference at baseline on any measures collected, so it is not 

considered further here. 
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relevant to the current study are reported here. Further details can be 

obtained in McGillion, Pine, Herbert, and Matthews (2017). 

Families were initially contacted via email and post and were 

invited to take part in a longitudinal study of infant development. All 

children were monolingual English speakers. Families that agreed to take 

part were visited in their homes when children were 11, 12, 18 and 24 

months old. The visits included video-recordings of caregivers-child 

interaction during play. All data were extracted from video-recordings 

from 30 minutes of play in the participant’s home (15 minutes 

unstructured, and 15 minutes structured, with toys provided by the 

researcher). Researchers asked the caregiver to play with their infant as 

they usually did. Ten minutes of unstructured play were coded.  All CDS 

was extracted from this 10 minutes. All the words produced during CDS 

and contingent talk were transcribed orthographically following the Child 

Language Data Exchange System’s (CHILDES) CHAT conventions 

(MacWhinney, 2000). Child words at the age of 2 years were 

orthographically transcribed from 30 minutes of naturalistic play using 

ELAN software following the CHILDES CHAT conventions (MacWhinney, 

2000). To control for differences in the length of recordings, a word per 

minute count was calculated (McGillion et al., 2017). This procedure was 

carried out by Dr McGillion, from the longitudinal-intervention study 

team. 

Two Excel data sets, one containing the corpus of words that 

caregivers used during CDS and contingent talk when children were 11 

months old, and the other one containing children’s own words at the age 

of 2 years, were provided by the researchers conducting the wider 

longitudinal language study. From these two data sets, mathematics-

related words were extracted. The search terms for the mathematics words 

were identified from the NFER Mathematics application protocol. These 

words were extracted from the 11m CDS data-set. Words were divided into 

two categories: number words and other mathematics words. The number 

words did not include the number word one because this word could have 

occurred in other linguistic contexts that are not about counting (e.g. “I 
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want that one”). The words that appeared in the search are shown in Table 

15. This procedure was carried out by the author of this thesis following 

advice from Dr McGillion. 

 

4.2.3 Materials. Measures for the experiment conducted with the 

children at the age of 4 years 

Demographic questionnaires were used to collect SES background 

information (through the caregivers and children’s postcodes to calculate 

the IMD-rank) and caregiver’s educational level. Caregiver’s education was 

measured with a scale of 1 to 7, where 1 equals no formal qualifications, 2 

equals 1-4 GCSEs, O Levels (at any grade), or  NVQ Level 1 or similar; 3 

equals 5+ GCSEs (grades A*-C), O levels (passes), or NVQ level 2 or 

Table 15. Mathematics words found in caregiver’s and child’s speech in 
Study 3 

Search terms Found in caregiver’s 
CDS and contingent 

talk 

Found in children’s 
speech at age 2 

Number words  
Zero * * 
Two to  sixteen * * 
Seventeen *  
Eighteen *  
Nineteen *  
Twenty * * 

Other mathematics words  

Add   
Big/bigger/biggest * * 
Circle *  
Count/counting * * 
Half * * 
More * * 
Number * * 
Numbers *  
Rectangle * * 
Shape(s) * * 
Shaped *  
Size  * 
Small  * 
Square * * 
Tall  * 
Taller  * 
Triangle * * 
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similar; 4 equals 1 A Level or 2-3 AS Levels; 5 equals 2+ A Levels or NVQ 

Level 3 or similar; 6 equals University degree, HND, HNC, NVQ Level 4 or 

5; and  7 equals postgraduate degree or similar (e.g. PGCE, PhD, MA etc). 

Maternal and paternal education were averaged to give a single score for 

parental education. 

Additionally, all sessions were video-recorded using a SONY HDR-

PJ220E camera on a tripod set next to the table were testing was conducted.  

NFER-Mathematics. To assess children’s early numeracy skills, the 

mathematics subtest of the NFER was used. This subtest consists of 11 task-

based activities assessing early numeracy (one-to-one correspondence, 

identification of numerals, numbers ordering, finding 'more', finding 'one 

less', practical addition, practical subtraction, and written addition); and 

geometry (halving, knowledge of shapes, and pattern recognition) skills. 

This is a school-based measure. Its tasks have been matched to the Early 

Years Outcomes for mathematics in England, which is a guide for 

practitioners to assess children’s progress in mathematics and whether the 

child’s mathematics development is typical for his or her age. The NFER 

mathematics has also been matched to the English Year 1 National 

Curriculum requirements for mathematics (which is divided in “Numbers” 

knowledge and “Shape, space, and measures” knowledge). This is a child-

friendly measure with colourful and practical resources that makes the 

measure enjoyable for the children. 

Mathematical Reasoning. This task was identical to the one reported 

in Chapter Two.  However, for the present study, this measure was not 

applied the standardized way. Testing started with item six, because the 

first five items of the measure dealt with concepts already assessed by the 

NFER-Mathematics. This method of application of the measure was tested 

in a previous pilot study and was proven to be effective so that children 

were able to start and understand the measure from item six (see Appendix 

3 for more details about the pilot study). There is no normative data for 

children age 4, therefore raw scores are reported. 
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Self-ordered pointing task. The self-ordered pointing task (Petrides & 

Milner, 1981) is a working memory measure commonly used in adults. This 

measure was modified to be child-friendly. This task involved a set of 

animals images printed on laminated sheets of A4 paper. For each trial, the 

animals were arranged in a different order so that spatial location was not 

informative. Children were instructed to point at different animals each 

time so that all of the animals “get a turn.” Thus, children needed to 

remember which animal they had selected before.  The task started with a 

practice block in which two different animals were presented. Thus, for the 

first page they can point to either of the two pictures, but for the second 

page they must pick the other one. There were three trials in the practice 

block, each of which had two different animals. Testing did not continue 

unless children understood what they needed to do. The test blocks also 

had three trials in total, and used different animals for each trial. Each test 

block increased in span length by one additional animal each time, to a 

maximum length of eight animals. Children received a score of one for 

every time they pointed at an animal that they had not previously selected 

(since the first animal served as reference for pointing at the other animals, 

this item was not scored). The task ended when children made two errors 

in any test block. Possible scores ranged from 0 to 81. The predictor 

variable was children’s total scores.  

Flanker task. The Flanker task was used to measure children’s 

inhibitory control. It was a computerized task administered using E-Prime. 

Children were asked to identify whether a fish in the centre of a line of five 

fish faced left or right. Congruent and incongruent trials were created by 

having flanking fish that faced either in the same direction, or in the 

opposite direction. Half the trials were congruent and half were 

incongruent. There were four demonstration trials, four practice trials, and 

60 testing trials divided in three blocks. Before children were showed the 

practice trial on the screen, they were showed a printed version of what 

congruent and incongruent trials looked like to make sure they knew what 

“looking at the fish in the middle” meant. 
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The procedure of the testing blocks was as follows: a fixation point 

(a starfish) appeared on the centre of the screen for 1000 ms, followed by 

the target fish and the flankers, with two arrows below, until the 

participant’s response or up to 4000 ms. After the response a feedback noise 

was presented lasting no longer than 1000 ms, the target and flankers 

disappeared after the response and the next trial began. After each testing 

block, a “well done, take a break” message appeared on the screen. There 

was no limit in the duration of these breaks; children were asked to touch 

the screen whenever they were ready to continue with the game. The total 

number of correct responses in all trials of the three blocks was calculated 

and used as the predictor variable.  

Language skills. A composite score for language skills was calculated 

with data from three different language measures (BPVS, NFER-Language, 

and CELF; described below). A principal component analysis (PCA) was 

conducted to create the language score.  

BPVS-II. The BPVS (Dunn et al., 1997) was used to assess children’s 

receptive vocabulary (specifics of the task are reported in Chapter Two). 

The predictor variable was children’s total score. 

NFER-Language. The NFER language sub-test measures general 

communication, language, and literacy skills: vocabulary, phonics, picture 

sequencing, story prediction, listening comprehension, word reading, 

simple sentence reading, and name writing. The total score for this measure 

was used as the predictor variable. 

CELF-Preschool 2 UK. The CELF (Wiig, Secord, & Semel, 2006) is one 

of the most widely used standardised measures of language skills in 

preschool. It measures two areas of language skills: expressive language 

and receptive language. The expressive language sub-tests measure 

children’s knowledge of grammatical rules, children’s ability to name 

images of people, objects, and actions; and children’s ability to recall and 

repeat orally presented sentences. The receptive language sub-tests assess 

syntactic skills, children’s ability to understand and follow oral commands, 
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and knowledge of basic concepts such as dimension, location, quantity, and 

equality. The total score using both expressive and receptive scores was the 

predictor variable. 

Bubble popping task. Processing speed was measured with a “bubble 

popping” task. This was a computerized task administered with E-Prime 

and using a touch screen. This task was designed by Blakey (2015), and it 

was modified to include 14 test trials instead of eight5. The task consisted of 

bubble stimuli that appeared on a touch screen. Children were instructed to 

“pop” the bubble (by touching it) as fast as they could. Feedback was an 

image and the sound of a burst bubble. Before the task commenced 

children had three practice trials. The length of the interval between stimuli 

(ISI) varied randomly between 800ms and 1200ms. The mean reaction time 

was the predictor variable. 

 4.2.4 Procedure. Data collection from children at the age of 4 years 

For the data that were obtained when children were 4 years of age, 

families were contacted again and invited to take part in a follow-up study 

in which they were going to participate in three different sessions. Data for 

the current study was obtained from the first and second session. Only the 

first two sessions will be described in full. The first session was conducted 

in a quiet testing room within the University of Sheffield’s Department of 

Psychology by the author of this thesis.  Tasks were administered in the 

same order for all children and were video-recorded. Each child was tested 

individually with the presence of the caregiver. Written consent was 

obtained from caregivers before testing began. The first session lasted 

approximately 40 minutes and in this, the mathematics measures, the 

executive functions measures, the processing speed measure, and the BPVS 

were administered. The second session was conducted by a research 

assistant approximately one week after the first session at the family home. 

                                                             
5 Based on the pilot study results who indicated that 8 bubbles were easy for the 

children 
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In this session children completed the NFER Language measure and the 

CELF. All participants received a small gift after testing, on both visits.  

Moreover, besides searching and extracting the mathematics-related 

words from the longitudinal data, the author of this thesis collected, coded, 

and transcribed all data from the first session of the testing period in which 

children were 4 years of age. Additionally, all analyses and writing up the 

results from all the data that came from the two sessions at this time-point, 

was also carried out by the author of this thesis. 

4.3 Results 

4.3.1 Missing data 

Since not all the children participated at all three time points (11 

months, 2 years, and 4 years of age), there were different sample sizes at 

each time point. Data for parent’s contingent talk came from 67 children; 

data for children’s mathematics vocabulary came from 69 children; and 

data for the mathematics measures at age 4 came from 71 children. There 

were some missing data from the testing at age 4: 11 children had missing 

data in the working memory task (ten due to experimenter error and one 

due to failure in understanding the instructions). In addition, the flanker 

and bubble popping data of two children were missing due to technical 

problems. An additional child had missing data in the BPVS, another child 

had missing data on the NFER-Language, and two more children had 

missing data on the CELF due to refusal to participate. Analyses were 

therefore conducted using all available data using pairwise deletion to 

avoid bias and reduction in power. 

4.3.2 Descriptive statistics 

An exploration of the data was conducted to investigate whether 

caregivers and children were using mathematics words during the 

naturalistic interactions. Caregivers were not directly asked to use 

mathematics words during their interactions with their child, so the 

amount of mathematics words used could be highly variable. First it was 
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investigated if caregivers produced mathematics words when talking to 

their child at 11 months. A search within the corpus of all the words 

produced by the caregivers showed that caregivers did produce 

mathematics words when interacting with the children. On average 

caregivers produced 3.45 unique mathematics words during the session 

(SD=2.99), and were more likely to use number words than non-number 

words, such as names of shapes (see Table 15 for the words found in the 

caregiver’s speech). 

Data from children when they were 2 years of age showed that 

children were not producing many words overall, and across 30 minutes 

video-recording, children produced only two mathematics-related words in 

total (specifically, .08 number words and .05 other mathematics words; see 

descriptive statistics in Table 17). Descriptive statistics for caregiver’s use of 

distinct mathematics words in CDS and contingent talk are presented in 

Table 16, and children’s use of mathematics words at the age of 2 years6 are 

presented in Table 17. Age, mathematics measures, executive functions 

measures, language skills measures, processing speed measure, SES, and 

caregiver’s education, at the age of 4 years are provided in Table 18. The 

descriptive statistics reported in Table 18 are from the raw scores of all 

measures. Skewness and kurtosis values indicated that not all variables had 

a normal distribution. A further Shapiro-Wilk test confirmed the non-

normal distribution of all the variables (all p<.05) except for caregiver 

distinct words in CDS (p=.14), NFER-Mathematics (p=.53), and CELF 

(p=.19). Thus, non-parametric tests are used in the following analyses. 

 

 

 

 

                                                             
6 Histograms of children’s use of mathematics words are shown in Appendix 4 
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Table 16. Descriptive statistics for all measures at 11 months of age  

Variables N Mean (SD) 
Range 

Min-Max 
Skewness Kurtosis 

11 Months 67     

Caregiver 
Distinct Words in 
CDS (Total) 

 158.96 
(45.58) 

80-337 1.14 2.93 

CDS All 
Mathematics 
Words  

 3.45 (2.99) 0-11 .88 -.02 

CDS Number 
Words  

 1.94 (2.52) 0-10 1.52 1.89 

CDS Other 
Mathematics 
Words 

 1.51 (1.44) 0-6 1.02 .70 

Caregiver 
Distinct Words in 
Contingent Talk 
(Total) 

 117.49 
(36.90) 

44-235 .45 1.05 

Contingent Talk 
All Mathematics 
Words 

 2.67 (2.88) 0-11 1.43 1.43 

Contingent Talk 
Number Words  

 1.66 (2.48) 0-10 1.80 2.80 

Contingent Talk 
Other 
Mathematics 
Words 

 1.01 (1.08) 0-5 1.38 2.55 
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Table 17. Descriptive statistics for all measures at 2 years of age  

Variables N 
Mean 
(SD) 

Range 
Min-Max 

Skewness Kurtosis 

2 Years 69     

Child Distinct 
Words (Total) 

 4.27 
(2.12) 

.61-13.43 1.40 4.78 

Child All 
Mathematics 
Words 

 .12 (.10) 0-.53 1.35 2.58 

Child Number 
Words 

 .08 (.09) 0-.42 1.58 2.78 

Child Other 
Mathematics 
Words 

 .05 (.04) 0-.16 .70 .31 

Note: To control for differences in the length of recordings, a word per 

minute count was calculated. 
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Table 18. Descriptive statistics for all measures at 4 years of age  

Variables N 
Mean 
(SD) 

Range 
Min-Max 

Skewness Kurtosis 

4 Years      

Age  71 50.04 
(1.54) 

48-55 1.41 2.80 

NFER Mathematics  “ 17.23 
(5.11) 

7-32 .35 .27 

Mathematical 
Reasoning   

“ 10.76 
(3.00) 

4-22 .46 1.77 

Self-Ordered 
Pointing   

60 20.93 
(12.41) 

4-57 1.43 2.34 

Flanker (Accuracy) 69 33.86 
(9.73) 

10-57 .83 .52 

BPVS  70 52.21 
(8.49) 

38-79 .63 .35 

NFER Language  “ 18.41 
(7.41) 

6-38 .59 -.22 

CELF  69 49.30 
(7.86) 

28-63 -.42 -.11 

Bubble Popping  “ 1105.52 
(308.15) 

737.64-
2133 

1.67 3.05 

Caregiver 
Education  

71 5.51 
(1.24) 

1-7 -1.08 1.30 

IMD-Rank  “ 16698.07 
(9430.91) 

480-
32062 

-0.15 -1.27 

4.3.3 Language score 

A principal component analysis (PCA) was conducted to provide a 

robust index for language skills (the BPVS, the NFER-Language, and the 

CELF). Because of missing data, a pairwise deletion was selected for the 

PCA. In the PCA (with direct oblimin rotation), the Kaiser-Meyer-Olkin 

measure (KMO) verified the sampling adequacy for the analysis, KMO=.64 

(Field, 2009). Bartlett’s Test of Sphericity X2 (3) =38.80, p<.001, indicated 

that correlations between items were sufficiently large for a PCA. Results 

revealed that the BPVS, the NFER-Language and the CELF loaded into one 

component explaining 63.22% of the variance. Inspection of the component 

matrix table shows that all items loaded strongly (all well above .40; Field, 



  

136 

 

2009) on the one underlying component. This component score was saved 

and used in the subsequent analyses as the language score. 

4.3.4 Non-parametric correlations  

In order to understand the relationship between mathematics skills 

on the one hand, and children’s language precursors, working memory, 

inhibitory control, and language skills on the other, a simple non-

parametric correlation analysis was conducted. To avoid bias and reduction 

in power that result from listwise deletion of data (Graham, 2009), 

correlation analyses were conducted using all available data using pairwise 

deletion.  

Only significant associations with the outcome variables are 

reported here. The complete correlation matrix reporting all simple non-

parametric correlations is shown in Appendix 5.  Results showed that 

NFER- Mathematics was significantly correlated with age (rs=.59, p<.001), 

the BPVS (rs=.26, p<.001), the NFER Language (rs=.65, p<.001), and the 

CELF (rs=.38, p<.001).  Additionally, there was a significant negative 

correlation between NFER Mathematics and two variables from contingent 

talk: all mathematics words (rs=-.28, p<.05), and other mathematics words 

(rs=-.28, p<.05). Mathematical Reasoning was significantly correlated with 

child’s other mathematics words (rs=.24, p<.05), the BPVS (rs=.35, p<.001), 

NFER Language (rs=.49, p<.001), CELF (rs=.25, p<.05), and the flanker task 

(rs=.34, p<.001). Additionally there was a significant negative correlation 

between NFER-Mathematics and all mathematics words (rs=-.25, p<.05), 

and other mathematics words in contingent talk (rs=-.25, p<.05). 

In order to identify unique associations between mathematics skills, 

language precursors, working memory, inhibitory control, processing 

speed, and the language score from the PCA, a partial non-parametric 

correlation was conducted (Table 19). The partial non-parametric 

correlation was conducted controlling for age, SES, caregiver’s education, 

total number of distinct words used in both CDS and contingent talk; and 
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total number of words in children’s speech. The analyses were performed 

using SPSS Syntax. 

Results showed that NFER-Mathematics was significantly 

correlated with the language score (rs=.46, p<.001), and significantly 

negatively correlated with other mathematics words in contingent talk 

(rs=.27, p<.05). Mathematical Reasoning was significantly correlated with 

the flanker task (rs=.36, p<.01) and the language score (rs=.50, p<.001).  
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Table 19. Correlation matrix reporting partial non-parametric correlations controlling for age, SES, caregiver’s education, total number of 

distinct words used in both CDS and contingent talk; and total number of words in children’s speech. 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1. NFER Mathematics 1               

2. Mathematical Reasoning  .60*** 1              

11 Months                

3. CDS All Mathematics Words  -.13 -.15 1             

4. CDS Number Words  -.04 -.11 .83*** 1            

5. CDS Other Mathematics Words -.19 -.15 .59*** .09 1           

6. Contingent Talk All Mathematics Words -.21 -.26 .92*** .80*** .51*** 1          

7. Contingent Talk Number Words  -.14 -.19 .81*** .93*** .15 .88*** 1         

8. Contingent Talk Other Mathematics Words -.27* -.25 .56*** .14 .87*** .59*** .19 1        

2 Years                

9. Child All Mathematics Words .05 .13 .00 .07 -.16 -.06 .01 -.18 1       

10. Child Number Words .08 .07 .08 .13 -.08 .01 .07 -.12 .86*** 1      

11. Child Other Mathematics Words .06 .22 -.13 -.15 -.08 -.18 -.21 -.08 .36** -.03 1     

4 Years                

12. Self-ordered pointing task -.11 .00 .13 .08 .10 .20 .15 .12 -.19 -.24 .10 1    
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13. Flanker task .19 .36** -.16 .00 -.33** -.11 -.02 -.22 .05 .08 -.08 .28* 1   

14. Language score .46*** .50*** -.26* -.08 -.37** -.24 -.08 -.45*** -.19 -.19 -.14 .02 .17 1  

15. Bubble popping task .02 .05 -.08 -.11 .03 -.04 -.09 .03 .16 .03 .17 .07 -.07 .12 1 

Note. Correlations= *<0.05, ** <0.01, and *** <0.001 
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4.3.5 Hierarchical multiple regression analyses 

Hierarchical multiple regressions were conducted to further 

investigate the amount of unique and incremental contributions to NFER-

Mathematics and Mathematical Reasoning, by the significantly correlated 

variables. The predictor variables were entered in the model on the basis of 

the magnitude of the partial non-parametric correlations (see Table 19). The 

first hierarchical multiple regression (Table 20) shows the analysis 

conducted to investigate NFER-Mathematics. The language score was 

entered in step 1 and “other mathematics words” in contingent talk was 

entered in step 2. In this way, any final step that accounted for significant 

additional variance, shared unique links with NFER-Mathematics.  

As shown in Table 20, step 1 for the NFER-Mathematics indicated 

that language score predicted 35% of significant variance. Step 2 shows the 

additional incorporation of other mathematics words in contingent talk 

contributed an additional 1% significant variance; nevertheless, the unique 

significant predictor was language score. The Durbin-Watson test was 

checked and was found to be within acceptable parameters (1.25), thus the 

assumption of independent errors has been met. This result suggests that 

this regression model is unbiased, increasing the likelihood of these results 

being true for a wider population (Field, 2009). Additionally, the largest 

VIF was well below 10, and the average VIF was 1.08; similarly the 

tolerance data are all within acceptable boundaries (all greater than 0.1). 

Therefore, it was concluded that there was no collinearity within the data 

(Field, 2009). 
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Table 20. Hierarchical regression analysis predicting unique variance in 

NFER Mathematics 

Step B SE B β t p 

1 (Constant) 17.16 .52  33.19 <.001 

Language score 3.00 .52 .59 5.77 <.001 

 F (1,63) =33.24, p <.001, R2=.35, p<.001 

2 (Constant) 17.16 .73  24.12 <.001 

 Language score 2.87 .54 .56 5.29 <.001 

 Contingent Talk Other 

Mathematics Words 

-.44 .50 -.09 -.86 .39 

 F(2,62)=16.93, p <.001., ΔR2=.01, p=.39 

The second hierarchical multiple regression (Table 21) shows the 

analysis conducted to investigate Mathematical Reasoning predictors. The 

language score was entered in step 1, following by flanker task in step 2. 

The order of entry of the predictors was based on the magnitude of the 

partial non-parametric correlation (see Table 19). Step 1 for Mathematical 

Reasoning indicates that the language score predicted 26% of significant 

variance. Step 2 shows that the additional incorporation of flanker task 

contributed an additional 11% significant variance. The Durbin-Watson test 

was checked and was found to be within acceptable parameters (1.88). 

The beta values from both the predictor variables are significant, 

indicating that both the language score and flanker task were significant 

independent predictors of Mathematical Reasoning. The β values indicated 

that the language score was a stronger predictor (β=.39) than flanker task 

(β=.36).  The largest VIF was well below 10, and the average VIF was 1.13; 

similarly the tolerance data are all within acceptable boundaries (all greater 

than 0.1). Therefore, it was concluded that there was no collinearity within 

the data (Field, 2009). 
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Table 21. Hierarchical regression analysis predicting unique variance in 

Mathematical Reasoning in Study 3 

Step B SE B Β t p 

1 (Constant) 10.73 .32  33.49 <.001 

Language score 1.53 .32 .51 4.75 <.001 

 F (1, 64) =22.56, p <.001, R2=.26, p<.001  

2 (Constant) 7.03 1.15  6.14 <.001 

 Language score 1.71 .32 .39 3.68 <.001 

 Flanker task .11 .03 .36 3.34 .001 

 F(2,63)=18.66, p <.001, ΔR2=.11, p=.001 

In summary, hierarchical multiple regressions revealed that NFER 

Mathematics was uniquely predicted by language skills, and Mathematical 

Reasoning was significantly predicted by language skills and inhibitory 

control. 

 

4.4 Discussion 

The aim of this chapter was to investigate the contribution of the 

longitudinal linguistic precursors and concurrent language and executive 

functions skills, to 4-year-olds’ early numeracy skills and applied 

mathematics performance. Overall, two key findings can be identified in 

the current study. First, longitudinal linguistic precursors did not predict 

mathematics skills at the age of 4 years. Second, both mathematics skills 

relied on different concurrent predictors, such that early numeracy skills 

relied on general language skills, and applied mathematics relied on 

general language skills and inhibitory control. 

4.4.1 Does children’s early language experience predict their 

mathematics ability? 

First, it was hypothesised that early exposure to mathematics talk 

and children’s previous content-specific language contribute to the 
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development of children’s quantitative understanding. It was therefore 

expected that caregiver’s use of mathematics words during caregiver-child 

interactions at the age of 11 months and children’s mathematics words at 

the age of 2 years would predict children’s early numeracy skills and 

applied mathematics at the age of 4 years. Results did not support this 

hypothesis. Although previous studies have found caregiver’s 

mathematics-talk to be significant to children’s mathematics performance 

approximately one year after (i.e. Levine et al., 2010), this finding suggest 

that this relationship does not hold in the long term.  

Arguably, the most plausible interpretation for these data is that 

language exposure at 11 months and 2 years of age really don’t predict 

mathematics performance four and two years after. Additionally, there was 

not enough variance in both caregivers and children’s mathematics talk. 

Descriptive statistics about the frequency of words that children used in 

caregiver-child interactions showed that children did not produce many 

words overall, this could have reduced statistical power in the analyses and 

thus influenced the results by decreasing the chances of observing a true 

effect. Mathematics development is multi-factorial and variable, thus, 

arguably it may not be surprising that something as simple as a brief 

sampling of language exposure was not able to predict, several years later, 

the child’s ability to understand and act upon mathematics concepts and 

ideas. However, it was a significant attempt to explore whether children’s 

exposure to linguistic input, in naturalistic settings, as early as 11 months 

could be related to their mathematics skills.  

This approach is somewhat easy to improve. That is, future research 

could make structured interactions so that the frequency of mathematics 

words can be assured. For example, a very recent intervention study found 

that prompting children to produce mathematics-language contributed 

significantly to their mathematics-knowledge (Purpura, et al., 2017). This 

study used a novel methodology in which dialogic reading was the mean 

by which quantitative and spatial mathematics-language (e.g. more, below, 

near) was taught to children. This type of reading involves the child 

directly into the story by making the child the storyteller, while the person 
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leading the intervention presented different stimuli to incorporate 

additional mathematics-language. Results showed that the intervention 

group outperformed the control group in both mathematics-language and 

knowledge. 

Thus, this study showed that children’s early mathematics related 

language experience does not appear to predict their later mathematics 

ability, and although previous research has suggested that domain-specific 

language skills are more relevant for mathematics than general language 

skills; general language skills may allow children to access the symbolic 

numerical information that is necessary for mathematics learning 

(Klibanoff et al., 2006). 

4.4.2 Concurrent linguistic and executive functions predictors of 

children’s mathematics 

Concurrent language skills at the age of 4 were significant 

predictors for early numeracy skills and applied mathematics.  This finding 

supports the hypothesis that language skills at the age of 4 years would be 

related to early numeracy skills and applied mathematics at the same age. 

This finding with 4-year-old children is broadly consistent with findings 

with 5- and 6-year-old children in Study 1 from the present thesis, by 

demonstrating that different mathematics skills rely on language. However 

adds to our knowledge by demonstrating that even before school-entry, 

language skills have a central role in children’s mathematics (Romano et al., 

2010).  

With regards to the concurrent relationship between executive 

functions and mathematics, working memory was not a significant 

predictor of either of the mathematics skills and inhibitory control was 

significant only for applied mathematics. The finding regarding working 

memory was unexpected because working memory has been widely shown 

to be involved in young children’s mathematics skills, and because results 

from the previous studies in this thesis  in the thesis indicated that it plays 

a role in both pure and applied mathematics in 5-to-6-year-old children. 
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There are two plausible possibilities as to why working memory was not 

related to any of the mathematics skills. One possibility is related to the 

design of the working memory measure and the second possibility is 

related to missing data on this measure.  

Concerning the design of the working memory measure, namely, it 

is possible that the measure used to assess working memory was not 

effective at measuring this construct. The Self-Ordered Pointing task was 

used to measure working memory. This was an experimental task designed 

specifically for this study (based on Petrides & Milner, 1982) that consisted 

on pointing at different animals located in different spatial location across 

testing trials. Although in this task the animals included were animals that 

the children were not very likely to be familiarized with to avoid verbal 

labelling as a strategy (e.g. a quetzal); children may have still rely on these 

strategies to solve the task (e.g. Cragg & Nation, 2007). If children were 

using verbal labelling as a strategy then that would have affected 

performance by making the items easier to remember.  

The second possibility is that missing data could have reduced the 

chances of detecting a true effect. Data from 11 children were eliminated 

due to experimenter error, and thus analyses were conducted with data 

from a smaller sample of 60 children. Missing data is in fact a mayor 

limitation in this study- although it is common in studies conducted in 

young children. A power analysis (conducted using the G*Power software) 

for a Spearman correlation with α = 0.05, a medium effect size f2=0.3, and a 

desired power of 0.80 for a two-tailed test; resulted in a required overall 

sample size of 82 children.  The current study was conducted with different 

sample sizes being the highest 71 children. Thus, that the working memory 

analyses were conducted with 60 children, could have reduced the chances 

of detecting a true effect and different results might have been obtained if 

all children could have been included.   

Since the Self-Ordered Pointing task has been proven to be a 

sensitive measure of children’s working memory (Cragg & Nation, 2007), 

the second possibility is, therefore, the most likely possibility as to why 
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there was no significant relationship between working memory and 

mathematics. Thus, the role of working memory in the performance of 

children’s mathematics cannot be ruled out completely. 

The second finding regarding the role of executive functions was 

that inhibitory control was a significant predictor of applied mathematics, 

but not of pure mathematics. This finding was contrary to the prediction 

that inhibitory control supports bot early numeracy skills and applied 

mathematics.  That inhibitory control supported applied mathematics is in 

line with the body of research that suggests that children rely on their 

inhibitory control during situations in which they needed to focus on 

numerosities while ignoring competing irrelevant non-numerical 

information (e.g. Espy et al., 2004;  Passolunghi & Siegel, 2001). 

In sum, these findings suggest that linguistic precursors did not 

predict mathematics skills several years later, however concurrent 

language skills play a significant role in children’s pure and applied 

mathematics even before school-entry. Very few studies have considered 

the role of longitudinal and concurrent linguistic precursor together. 

Although in this study the role of longitudinal linguistic precursors seemed 

to not be significant for later mathematics skills, this study provides a first 

step in providing evidence that among longitudinal and concurrent 

linguistic precursors, concurrent language skills are more relevant for 4-

year-olds’ early numeracy skills and applied mathematics. However 

further research on this matter is needed to understand the specific 

relationship between language and mathematics in full. Additionally, 

results regarding the role of executive functions suggest that being able to 

ignore irrelevant information is a key process in 4-year-olds’ mathematics 

learning. 
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Chapter Five 

General Discussion 

In this final chapter I will present an overview of the three studies 

that make up this thesis. Following the studies overview, research 

contributions will be addressed. Finally, this chapter will close with some 

discussions concerning possible study limitations, and directions for future 

research. 

 

5.1 Overview of the Experimental Studies 

The goal of this thesis was to investigate the domain-general 

abilities that underpin mathematics skills in childhood. This was achieved 

by the means of three experiments focusing on (i) the contributions of 

working memory components (Study 1 and 2), (ii) the contributions of 

concurrent language skills (Study 2 and 3), and (iii) the longitudinal 

linguistic precursors of mathematics skills (Study 3). Another distinctive 

characteristic of this work is that the three studies focused in particular on 

the distinction between relatively pure mathematics skills and applied 

mathematics in every-day situations. In Study 1 and 2, the measure for 

pure mathematics skills were arithmetic skills because arithmetic represent 

a core subject of the mathematics curriculum during the first year of formal 

education. The pure mathematics measure in Study 3 was early numeracy 

skills, which involved basic mathematics skills such as counting, simple 

addition and subtraction problems, understanding mathematics words 

such as “more”, “less”, and “half”, and knowledge on different shapes. As 

for the measure of applied mathematics, the same measure (the 

Mathematical Reasoning sub-test) was utilized in the three studies. This 

distinction is important because it can inform us about the cognitive skills 
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that children need, to perform mathematics in school, and to apply the 

acquired mathematics knowledge in situations of their daily lives. 

The first study aimed to investigate the contributions of working 

memory components to both arithmetic skills and applied mathematics in 

5-to 6-year-olds (Mean age=69, SD=5.3). Mathematics skills were assessed 

using two different measures: the Numerical Operations test (as a measure 

of arithmetic skills) and the Mathematical Reasoning test (as a measure of 

applied mathematics). Additionally, receptive vocabulary was included as 

a covariate. Results suggested that working memory components 

underlying arithmetic skills were importantly different from those 

underlying applied mathematics: arithmetic skills relied on central 

executive resources only. Conversely, applied mathematics relied not just 

on central executive resources, but also on the phonological loop and the 

visuo-spatial sketchpad. These findings were consistent with the idea that 

children’s performance on arithmetic problems involved allocating 

attentional resources to guide the use of counting strategies while solving 

single-digit additions and subtractions –processes that are heavily 

dependent on the central executive. Conversely, findings regarding applied 

mathematics were consistent with the idea that children’s performance on 

applied mathematics involved attentional resources to attend to key 

numerical information, while inhibiting irrelevant information. Moreover, 

the contribution of the visuo-spatial sketchpad and the phonological loop, 

suggested that performance on applied mathematics also involved storing 

verbal information and representing it mentally to achieve an answer. 

Additionally, it was found that receptive vocabulary predicted 

performance of both mathematics skills as well. This surprising finding 

indicated that language skills are likely to play a specific role in children’s 

mathematics performance. I suggested, then, that receptive vocabulary was 

a proxy for other, more specific, language skills because previous literature 

has found that vocabulary highly correlates with several different language 

skills. However, because of the design of the study, a strong conclusion 

could not to be reached. Therefore, Study 2 was designed to try to further 

explore the role of language in young children’s mathematics ability. 
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As such, Study 2 (Chapter Three) was designed to investigate the 

specific contribution of children’s language skills and working memory 

skills to both arithmetic and applied mathematics skills. Two ways in which 

language could have been related to mathematics skills were considered, 

one way was that in order to solve specific mathematics problems, children 

needed to understand the verbal cues within the problems, involving 

syntactic skills (Cummins et al., 1988; Munro, 1979). A second way was that 

language might be important for children’s mathematics to understand the 

words in a given classroom-task or instruction (Hornung et al., 2014a).  

Thus, it was of interest to investigate how syntactic skills and children’s 

ability to understand and follow oral commands could be possible 

contributors to arithmetic and applied mathematics, in 5-to-6-year-olds 

(Mean age=69.64, SD=4.30). Two different measures of language skills were 

used for this purpose: (i) ‘Sentence Structure’ to measure syntactic skills and 

(ii) ‘Concepts and Following Directions’ to measure children’s ability to 

understand and follow oral commands. With these language measures I 

wanted to investigate how understanding words, sentences, and meaning 

of spoken language could affect mathematics performance. Because Study 2 

followed directly from Study 1, working memory components were also 

included. Additionally, age, SES, and processing speed were considered as 

possible covariates. Findings in Study 2 suggested that performing 

mathematics problems presented in an applied context required 5- to-6-

year-olds to understand and follow oral commands. Moreover, arithmetic 

skills performance was not explained by any of the language skills. Thirdly, 

contrary to my predictions, and very surprisingly, results regarding the 

role of working memory in mathematics found in the first study, were not 

replicated.  

There were two plausible possibilities that could have explained the 

result of no-replication of working memory results. One possibility was the 

incidental executive and visuo-spatial demands on the language measures. 

That is, both language measures were highly dependent on working 

memory resources -as shown in the non-parametric correlation analyses. 

Alternatively, as there were significant differences between schools SES in 
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Study 1 and 2, another possibility was that the effect of working memory 

over mathematics is highly variable across samples. Both suggestions fit the 

data. However, since the implication of working memory resources in 

children’s mathematics is very well documented in previous research and 

since such contribution is broadly recognized, it is less likely that this non-

replication meant that working memory was not important for children’s 

mathematics performance. As such, the most likely explanation for this 

finding was that the language measures were tapping important working 

memory resources.  

Overall, although Study 1 and 2 provided strong evidence that 

language plays an important role in young children’s emerging 

mathematics abilities, the questions regarding the specific contribution of 

language to mathematics could not be answered in full and with 

confidence with Study 2. Unfortunately, the amount of variance that was 

explained by processing speed and the shared variance between the 

language measures and working memory impaired the possibility of 

having clearer results. Thus, this research question should be followed up 

with additional studies including measures of language skills with less 

working memory demands to answer this question with more confidence. 

Study 3 was design based on an opportunity to work with a group 

of children that had been followed longitudinally since the age of 11 

months, and for whom there were available data regarding aspects of their 

early language experiences. Since language kept emerging as an important 

ability that could explain children’s mathematics performance, this new 

opportunity to study language skills longitudinally was a valuable 

opportunity to address this question from a new and complementary 

perspective. As such, although this study did not followed directly from 

Study 1 and 2, this study built on the path of investigating the role of 

language skills in pure and applied mathematics. Additionally, since the 

goal of the present thesis was to investigate the domain-general precursors 

of mathematics, concurrent executive functions (i.e. working memory and 

inhibitory control), and general language skills were also investigated. 

Four-year-olds’ (Mean age=50.04, SD=1.54) early numeracy skills were 
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measured with the NFER-Mathematics, and applied mathematics was 

measured with the Mathematical Reasoning sub-test. The linguistic 

longitudinal precursors were the mathematics-related words that 

caregivers produced during caregiver-child naturalistic interactions when 

children were 11 months of age, and the mathematics-related words that 

children produced in caregiver-child interactions when they were 2 years 

of age. Concurrent language skills were assessed with a composite score 

from three different measures, the BPVS, the NFER-Language and 

Communication scale, and the CELF.  

Overall, two key findings can be identified in Study 3. First, 

longitudinal linguistic precursors did not predict mathematics skills at the 

age of 4 years. Arguably, the most plausible interpretation for this result is 

that language exposure at 11 months and children’s own mathematics-

vocabulary at 2 years of age really do not predict mathematics 

performance. Alternatively, this finding suggests that although there might 

be a contribution of children’s early exposure of mathematics-related talk 

to later mathematics development, the contribution of the longitudinal 

linguistic precursors may not hold over a relatively long time span (over 

three years).  

The second finding was that both mathematics skills relied on 

different concurrent predictors, such that early numeracy skills relied on 

general language skills, and applied mathematics relied on general 

language skills and inhibitory control. These findings were consistent with 

the results obtained from the 5- and 6-year-old children in Study 1 of the 

present thesis, and adds to our knowledge by showing that performance on 

both pure and applied mathematics skills is supported by language skills 

even before school-entry.  

Before continuing to the research contributions of the present work 

two final notes need to be mentioned. First, the design of the three studies 

that shape this thesis allows us to link this work with research that has 

analysed the interaction of different cognitive precursors in children’s 

mathematics skills. Amongst this body of research, the most influential 
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work is LeFevre and colleagues’ study (2010). In their work the interaction 

of three cognitive precursors or pathways were investigated; these 

pathways were conceptualized as (i) the linguistic pathway, which was a 

composite of receptive vocabulary and phonological processing; (ii) the 

spatial attention pathway, which referred to visuo-spatial working 

memory; and the quantitative pathway which referred to subitizing 

(LeFevre et al., 2010). Overall, results suggested that from 5 years to 7 years 

of age, these pathways contributed differentially and independently to 

performance on a variety of mathematics skills. As such, LeFevre and 

colleagues’ work highlights the relevance of examining the interaction 

between different precursors of mathematics. On the same note and more 

recently, Gilmore and colleague’s study (2017) highlighted how there are 

many different cognitive pathways related to mathematics performance 

even when children had equivalent levels of overall mathematics 

achievement. Thus, the present thesis relates to these two studies because 

when studying two important precursors such as working memory and 

language it was found that, 4-year-olds and 5-and-6-year-olds, arithmetic 

skills and applied mathematics relied differently on these two cognitive 

mechanisms for their performance. Few studies have researched different 

pathways as precursors of mathematics performance, however, the multi-

factorial nature of mathematics implies that studying different pathways 

could be more beneficial to our understanding of mathematics. 

A second final note is regarding the choices of the regression 

models and how they could impact on the conclusions. There were three 

main reasons as to why it was decided to conduct the analyses the way 

they did. First, it was decided to run two separate hierarchical multiple 

regressions to predict arithmetic and applied mathematics skills 

respectively because it was of interest to investigate whether the cognitive 

mechanisms that predicted one skill predicted the other as well. Second, 

the first step of all hierarchical multiple regressions conducted in this thesis 

included the covariates so that any final step that accounted for significant 

additional variance could be assigned to the independent variables. Third, 

since hierarchical multiple regressions were chosen to further investigate 
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the amount of unique and incremental contributions to mathematics, by the 

significantly correlated variables, the predictor variables were entered in 

the model on the basis of the magnitude of the partial non-parametric 

correlations. All three considerations allowed us to explore the predictive 

power of working memory and language (in Study 1 and 2) and executive 

functions and language (Study 3) on mathematics achievement in the 

context of other variables. However, they could also may have shaped the 

results and thus its conclusions.  

For example, in Study 1, entering all three working memory 

components in one single step would have allowed us to examine the 

shared variance between these variables and how they could have changed 

if one was entering before or after the other ones. In other words, 

computing separate models in Study 1 could have helped us examine 

whether the relationship between mathematics and the central executive 

could only be partly accounted for by individual differences in the visuo-

spatial sketch pad or the phonological loop. While there may be different 

ways of conducting regression analyses (as long as the assumptions are 

met), comparing different models in the future could be beneficial in 

choosing which of them could best explain the data. 

 

5.2 Research Contributions 

A key question of the present thesis concerns mathematics skills 

studied in two contexts: in a relatively pure context, in which the numerical 

information that needs to be calculated is set out for the children, and in an 

applied context, in which children had to work-out what was the numerical 

information that needed to be calculated. Studying both contexts is 

important, because being successful with mathematics skills not only will 

contribute to children’s future academic success, but also to their success in 

the real world. Thus, understanding the cognitive mechanisms that support 

children’s mathematics in such context shed important light into what is 

the best way to enhance such skills. The following section will provide two 
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main contributions that we can extract from the experimental chapters 

presented in this thesis. 

5.2.1. Are arithmetic skills and applied mathematics carried out in 

the same way? 

One clear finding from this thesis is that for 4-year-olds and 5-and-

6-year-olds, arithmetic skills and applied mathematics are not performed in 

the same way. Study 1, investigating arithmetic skills and applied 

mathematics, and Study 3, investigating early numeracy skills and applied 

mathematics, demonstrated that different mathematics relied on different 

cognitive mechanisms for their performance. Specifically, in Study 1, 

arithmetic skills and applied mathematics were different because only 

applied mathematics relied on the visuo-spatial sketchpad and the 

phonological loop. However, they were sub-served by two common 

cognitive mechanisms, central executive resources and receptive 

vocabulary. These findings are consistent with previous research that has 

suggested that the role of working memory vary in relation to the 

mathematics skill being measured (Peng et al., 2015). Differences between 

these two skills are due to the format in which they are presented: that is, in 

arithmetic problems, the numerical information that needs to be calculated 

is already set out clearly and without any need for further interpretation. 

Conversely, in applied mathematics, children need to identify what 

numerical information is relevant, before they can reach an answer; 

involving the processing of numerical and linguistic information. Thus, 

applied mathematics need the recruitment of the three working memory 

components. Moreover, because the central executive was relevant for the 

performance of both mathematics skills, during the first year of learning 

mathematics, two key procedures are going to be necessary. One is 

allocating attentional resources to counting strategies, and a second one is 

allocating attentional resources to identify relevant numerical information 

while ignoring irrelevant information.   

This demonstration that arithmetic skills and applied mathematics 

rely on different cognitive mechanisms complements our understanding of 
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how children do mathematics during the first year of formal education. As 

such, this understanding has educational implications. For example, since 

arithmetic skills and applied mathematics are different, educators should 

noticed that children with good arithmetic skills will not necessarily be 

good at solving arithmetic word-problems. Thus, when teaching children 

how to apply their mathematics knowledge to everyday situations, using 

visual prompts as support tools, like explaining each step of the problems 

visually might allow children to represent and understand the problem 

better. 

Study 3 provided further evidence that pure and applied 

mathematics performance did not involve the same resources, although, 

they equally involved language skills. The role of inhibitory control in 

applied mathematics is somewhat related to findings regarding the central 

executive playing a key role in mathematics in 5-to 6-year-olds. Going back 

to the point made in the previous paragraphs about the central executive 

role, it was suggested that children needed to focus in relevant numerical 

information while inhibiting irrelevant information. As such, the finding 

regarding inhibitory control suggests that overall, and independent of age, 

performance in applied mathematics involves children ability to inhibit 

irrelevant information.  

Concerning the finding that language supported both pure and 

applied mathematics in 4-year-olds and 5-to 6-year-olds, based on the fact 

that 4-year-olds were not yet attending formal education and 5-to 6-year-

olds were on their first year of formal education, this finding suggest that 

one key cognitive skill for children’s success in their transition from 

informal to formal mathematics education is language. Investigating this 

subject further is relevant so that we could better understand the specific 

linguistic demands that learning mathematics represents. Overall, taking 

into account the differences and similitudes between pure and applied 

mathematics when planning classroom activities and teaching methods can 

have important educational implications.  

 5.2.2 What role does language play in children’s mathematics? 
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Study 1 and 3 showed that both pure and applied mathematics 

performances are essentially dependent on children’s language skills, in 

both 4- and 5-to-6-year-olds. Although this finding may not seem 

surprising, it is important to acknowledge that both age and background of 

the samples were different in the three studies; and while the thesis was not 

designed to make comparisons across groups of samples, this finding -

taken with caution- can help us understand something about mathematics. 

For example, the empirical work in the current thesis showed that even 

when working memory, a strong predictor of mathematics, was 

investigated alongside language skills, language skills emerged as strong 

significant predictors for pure and applied mathematics. These findings 

suggest that language skills have a key role in children’s process of learning 

mathematics concepts, and later when they need to connect their previous 

mathematics knowledge to new mathematics knowledge acquired in 

school (Purpura et al., 2013). Thus, language skills can be necessary tools 

for children’s understanding and application of mathematics concepts.  

Specifically, although the data in this thesis do not allow for a 

conclusive explanation for why language skills are so important to 

mathematics, there are two plausible possibilities that fit the data. The first 

suggestion is that general language skills may be important for applied 

mathematics because children need to understand the mathematics 

concepts and verbal cues within the problem, allowing children to be 

successful in reaching an answer. Note that the measure for applied 

mathematics was the same across the three studies, and across these 

studies, language skills contribute to applied mathematics performance. 

These findings are consistent with previous work that suggested that 

arithmetic word-problems involve predominantly language skills, mainly 

because the numerical information is embedded within linguistic 

information  (Wang et al., 2016). This also adds to our knowledge by 

showing that even as early as the age of 4 years, children use their language 

skills while performing applied mathematics. 

The second suggestion is related to strategy use, specifically, 

counting strategies. Counting strategies have been found to be strong 
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significant predictors of linguistic skills (Moll et al., 2015), and because of 

the age of the children in the current research, it was very likely that 

children rely on their language skills to make use of such strategies. 

Language skills, then, may be playing a significant role in mathematics 

because children were using language actively- during counting strategies- 

to perform mathematics.  

However, these findings also call into further research on this 

subject to go beyond general language skills and find specifically which 

language skill is relevant for mathematics. Specifically, Study 2 which was 

designed to investigate with more depth the contribution of language to 

arithmetic skills and applied mathematics, presented some methodological 

issues that caused that the question as to why language is particularly 

important for mathematics could not be completely answered. Suggesting 

in turn, that if we want to answer this question in full we need to look for a 

measure of language skills with less working memory demands. 

 Overall, findings from this research indicate that language skills 

have a more important role in mathematics than has previously been 

recognised. One methodological implication, for such findings, is that 

language skills should be included as covariates when studies, aiming to 

investigate the cognitive mechanisms underpinning mathematics skill, use 

mathematics measures with linguistic demands. This would allow studies 

to account for the variance that language skills may be explaining in 

mathematics performance. More importantly however, these findings 

suggest that language skills should be further investigated to explain the 

extent of the specificity of the relationship between mathematics and 

language.  

Despite not having found a significant relationship between 

mathematics and longitudinal language predictors, the fact that 

performance on pure and applied mathematics is supported by concurrent 

general language in a different groups of age suggest that language skills 

support not only children’s early conceptual understanding of 

mathematics, but also supports children’s ability to apply such knowledge. 
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For the younger children, general language skills are important because 

they allow children to understand the concepts they need to perform 

mathematics. And for older children, language skills are related to 

mathematics because they are using language actively to perform 

mathematics.  All in all, we know that language does contribute to 

mathematics, and although it is not yet clear how, we do know that they 

contribute to mathematics at least from the age of 4 years to the age of 6 

years.  

 

5.3 Future Research 

 Research presented in this thesis has demonstrated three different 

areas in which future research can be focused on in order to better 

understand children’s mathematics achievement. One area for future 

research is related to investigating the role of language skills. A second area 

for future research is related to finding the causal role of language in 

mathematics through intervention studies; and a third area for future 

research is related to investigating the role of the central executive with 

more depth.  

5.3.1 Investigating the role of language skills more precisely 

This research has demonstrated how important language skills are 

in mathematics. It has also demonstrated that language measures often 

correlated with other cognitive factors. As such, these skills sometimes 

have been proposed to be a proxy for some other construct, such as SES or 

domain-specific vocabulary. Domain-specific vocabulary has been studied 

with less frequency (than, for example, executive functions) in the 

developmental area.However, there is a recent author-developed 

mathematics-vocabulary measure that has been utilized in some recent 

studies (Purpura & Lonigan, 2015; Purpura, Napoli, et al., 2017); that has 

contributed to our understanding of how mathematics vocabulary allow 

children to understand quantity more precisely (Purpura, Napoli, et al., 
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2017). Studies with similar designs could add to our knowledge on this 

subject. Future research could include both a measure of language skills 

and a mathematics-vocabulary measure in the same study design to shed 

some light into what is the specific role of language in mathematics.  

5.3.2 Intervention studies to understand the causal role of 

language in mathematics 

This study was a first step into investigating how early linguistic 

experiences during early childhood can contribute to children’s 

mathematics development. The finding that both caregivers and children 

were producing mathematics-related words in a naturalistic environment 

suggest that an intervention study in which the production of mathematics-

related words is encouraged, could help determine the causal role of 

language in different mathematics skills. One way to investigate this, could 

be during specific intervention studies in which children and parents get 

involved in structured number-play (e.g. board games with numeracy 

content) or in structured sessions in which children are exposed to 

mathematics vocabulary through story-books. For example, a recent 

intervention study has shown that reading books with quantitative and 

spatial mathematics- vocabulary predicted children’s general mathematics 

performance (Purpura, et al., 2017). Such finding represent a promising 

avenue into promoting children’s mathematics skills during early 

childhood. 

5.3.3 The role of the central executive  

In Study 1 it was found that both arithmetic skills and mathematical 

reasoning relied on central executive resources. Because the central 

executive was conceptualized as a single component with multiple 

purposes, I suggested that for arithmetic problem-solving, the central 

executive aid children in the use of their counting strategies to solve the 

problems, and for applied mathematics the central executive allowed 

children to focus in relevant numerical information in order to ignore 

irrelevant information. However, this component was measured by a single 
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measure and not by its separate components. Because the central executive 

is known to serve several distinct cognitive functions, future research 

would benefit from treating separately the various different sub-processes 

of the central executive – such as inhibiting irrelevant information, 

directing attentional resources, or switching across strategies; instead of a 

unitary construct. This will allow us to understand how children perform 

pure and applied mathematics with more precision, and perhaps 

understand the different strategies that children utilize while performing 

these mathematics skills.   

 

5.4 Conclusion 

In conclusion, the main finding from the research presented in this 

thesis is that pure and applied mathematics draw on different working 

memory resources. Pure mathematics skills involve children to allocate 

their attentional resources to counting strategies, and applied mathematics 

involve children to allocate attentional resources to relevant numerical 

information and store and represent such information verbally and visuo-

spatially. This research also demonstrated how relevant language skills are 

to both pure and applied mathematics in 4-year-olds and in 5-to-6-year-

olds. Such findings emphasize that further research is required to better 

understand the role of language skills. Moreover, these findings represent a 

development in our understanding of different domain-general abilities 

underpinning pure and applied mathematics. 
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Appendix 1 

 

Post hoc Test for the Kruskal-Wallis Test (Mann-Whitney Test Results) 

Post hoc test results. SES 

 
1st vs 5th  

1st vs  

9th  
5th vs 9th  

 U z U z U z 

Block recall 317 -.61 209.50 -2.19 224 -2.08 

BPVS 255 -1.71 312.50 -.24 205.50 -2.42 

Note. A Bonferroni correction was applied and so all effects are reported at a .0167 

level of significance. All non-significant except BPVS between 5th and 9th, p=.015. 
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Appendix 2 
 

Differences between Study 1 and Study 2 

 Mdn U z p r 

 Study 1 

(N=78) 

Study 2 

(N=67) 

    

SES (IMD Rank) 16257 32345 700 -7.91 <.001 .66 

Age (months) 69 70 2336 -1.10 ns .09 

Numerical Operations  10 10 2309 -1.22 ns .10 

Mathematical 

Reasoning 

14 20 1710.50 -3.59 .000 .30 

Backward Digit Recall 7 9 1782.50 -3.23 .001 .27 

Block Recall 18 21 1761 -3.39 .001 .28 

Nonword List Recall 11 11 2519 -.38 ns .03 
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Appendix 3 

Details of Chapter 4-Pilot Study 

The aim of this pilot study was to establish whether the measures 

and method selected for Study 3 were suitable for 4 year olds. In this study, 

13 children (5 female) with ages between 4 years 2 months- 4 years 6 

months (Mean age= 51.85, SD=1.14) were recruited from the volunteer 

database owned by the Cognitive Development Research Group at the 

University of Sheffield’s Department of Psychology. All the children lived 

in Sheffield. The testing session lasted 30 minutes approximately and was 

conducted in a quiet testing room within the University of Sheffield’s 

Department of Psychology. 

Children completed the spin the box measure, to assess working 

memory; the Flanker task to assess inhibitory control, the bubble popping 

measure to assess processing speed, the Mathematical Reasoning measure 

to assess applied mathematics, the Numerical Operations measure to assess 

arithmetic skills, and the BPVS to assess vocabulary skills.  

Measures descriptions and findings 

Spin the box: Spin the box consists of 8 visually distinct boxes with 

lids arranged on a rotating tray. First, children watched the experimenter 

put colourful stickers in 6 of the pots, and the 2 empty boxes were pointed 

out before testing began. Then, testing began by covering the rotating tray 

with a black cloth and then spinning the tray for a few seconds. The 

children were asked to find 1 sticker and keep it if found. This procedure 

was repeated during each search trial. This task ended either when children 

had found all 6 stickers, or after 16 trials. The dependent variable was the 

total number of trials. 

Pilot data suggested that this measure was easy for the vast 

majority of the children (Mean score=5.69, SD=.48), so that 10 children were 

at ceiling (scores of 6). Thus, this measure was not effective for measuring 
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children’s working memory. The self-ordered pointing measure presented 

in Chapter 4-Method was used instead. 

Fish flanker task: This task was a computerized task administered using 

E-Prime. The first 3 children completed a 3 fish flanker measure with 32 

trials in which 4 were demo trials, 4 were practice trials, and 24 were 

testing trials (i.e. 12 test trials divided in two blocks). Half the trials were 

congruent (stimuli were all left-facing or all right-facing); and half were 

incongruent (the middle stimulus faced the opposite direction to the 

flanking stimuli). Stimuli were presented for 4000 ms, with a fixation in 

between trials lasting 1000 ms. This version of the task was considered to 

be too easy (Mean score= 22 SD=1.73) for this age range and it was later 

modified. Therefore, the following 10 children completed a 5 fish flanker 

task with 4 demo trials, 4 practice trials, and 60 testing trials divided in 3 

blocks (i.e. 20 test trials per block). Half the trials were congruent and half 

were incongruent. The mean score for this version was 37.8 (SD=22.74). 

This version was chosen for the study.  

Bubble popping task. This was also a computerized task 

administered using E-Prime and was designed by Blakey (2015). Blakey’s 

version was modify to include 14 test trials instead of 8. Children needed to 

pop the bubbles stimuli that appear on a touchscreen computer by 

touching them as quickly as they can. The ISI varied randomly between 800 

and 1200ms. The dependent variable was the mean reaction time 

(Mean=950.63 SD=329.29). This measure was found to be enjoyable and 

suitable for 4 year olds and was implemented in the study without any 

modifications. 

Mathematical reasoning. Testing started with item 6, instead of the 

first item. It was decided to start from this item mainly because of time 

constrains. Thus, in this pilot study was investigated whether starting in 

item 6 was too challenging for the children, and thus, needed to be applied 

the reverse rule with the first 5 items. Descriptive statistics showed that out 

of the 13 children, only 2 failed to answer items 6 and 7 correctly, and then 

needed to answer the previous 4 items correctly (i.e. reverse rule). Thus, 
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this method of application of the measure was proven to be effective. 

Children’s mean score in this measure was 12.85 (SD=2.79). 

Numerical Operations. This measure was considered to be too 

difficult for 4 year olds. The higher score achieved was 8 (from the first 8 

items), and was only achieved by 1 child (Mean score=5.15, SD=1.95). None 

of the children could performed the arithmetic items correctly. Thus, the 

NFER mathematics was chosen instead (this measure was not piloted). 
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Appendix 4 
Frequency of number words and other mathematics words in 

child’s speech at the age of 2 years.  

To control for differences in the length of recordings, a word per 

minute count was calculated. 
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Appendix 5 

Correlation Matrix Reporting Simple Non-parametric Correlations (Study 3) 

To avoid bias and reduction in power that result from listwise deletion of data (Graham, 2009), correlation analyses were conducted using all 

available data using pairwise deletion.  

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 25 26 

1. Age 1                                                 

2. NFER 
Mathematics 

.30** 1                                               

3. Mathematical 
Reasoning 

.14 .59*** 1                                             

4. Caregiver type 
words in CDS 

.25* .05 -.03 1                                           

5. CDS All 
Mathematics 
Words 

-.25* -.22 -.20 .29 11                                         

6. CDS Number 
Words 

-.24* -.11 -.13 .05 .83*** 1                                       

7. CDS Other 
Mathematics 

Words 

-.10 -.23 -.21 .20 .63*** .14 1                                     

8. Caregiver type 

words in 
contingent talk 

.30** .10 0.04 .90*** .13 .09 .14 1                                   

9. Contingent 
Talk All 
Mathematics 

Words 

-.18 -.25* -.28* .11 .92*** .80*** .54*** 0.13 1                                 
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10. Contingent 
Talk Number 

Words 

-.19 -.17 -.19 .04 .80*** .93*** .17 .09 .87*** 1                               

11. Contingent 

Talk Other 
Mathematics 
Words 

-.03 -.25* -.28* .18 .57*** .15 .88*** .13 .61*** .19 1                             

12. Child total 
number of words 

.00 .18 .02 .07 .06 .06 .07 .12 .02 .03 .05 1                           

13. Child All 
Mathematics 

Words 

.13 .19 .16 .04 -.03 .08 -.15 .12 -.08 .02 -.18 .45*** 1                         

14. Child 

Number Words 

.08 .17 .10 .07 .06 .13 -.07 .13 .00 .08 -.12 .30** .87*** 1                       

15. Child Other 

Mathematics 
Words 

.19 .19 .24* .04 -.14 -.10 -.10 .11 -.19 -.17 -.12 .44*** .54*** .16 1                     

16. BPVS -.03 .26* .35*** -.03 -.17 -.05 -.20 .03 -.17 -.05 -.28* .32** .03 -.07 .10 1                   

17. NFER 
Language 

-.01 .65*** .49*** .12 -.21 .00 -.33** .16 -.18 -.01 -.36*** .40*** .20 .17 .11 .48*** 1                 

18. CELF .23 .38*** .25* .11 -.12 -.03 -.15 .14 -.14 -.03 -.21 .30** .07 .02 .11 .29* .45*** 1               

19. Self-Ordered 
Pointing Task 

.08 -.04 .02 -.10 .11 .10 .07 -.01 .17 .16 .08 .18 -.02 -.12 .22 .04 .02 .10 1             

20. FlankerTtask -.02 .22 .34*** .22 -.10 .05 -.26* .20 -.06 .03 -.17 .10 .08 .10 -.01 .19 .28* .06 .23 1           

21. Bubble 
Popping Task 

.27* .16 .12 .09 -.17 -.17 -.06 .12 -.11 -.13 -.03 .00 .18 .06 .20 .10 .14 .13 .07 -.01 1         

22. IMD Rank (at 
11 months) 

-.04 .15 .01 .05 .05 -.05 .11 .13 .11 .00 .19 .13 .00 .04 -.10 .15 .11 .16 -.03 -.02 -.02 1       

23. IMD Rank (at 
4 years of age) 

-.05 .15 .00 .02 .04 -.04 .13 .08 .09 .01 .17 .15 .06 .08 -.04 .16 .09 .23 .00 -.03 -.04 .95*** 1     

24. Primary 
Caregiver 

Education at 11 
months 

.14 -.02 -.10 .38*** .25* .09 .32** .41*** .22 .08 .32** .14 -.01 .04 -.02 -.02 -.04 .19 .08 .00 -.08 .48*** .46*** 1   
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25. Parental 
Education at 4 

years of age 

.10 .17 -.01 .54*** .17 .14 .15 .60*** .18 .12 .19 .12 .07 .10 .06 -.04 .23 .17 .07 .20 .06 .32** .29** .65*** 1 

Note. Correlations= *<.05, ** <.01, and *** <.001 

 

 


