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Abstract

Controlling a gas turbine engine is a fascinating problem. As one of the most complex

systems developed, it relies on thermodynamics, fluid mechanics, materials science

as well as electrical, control and systems engineering. The evolution of gas turbine

engines is marked with an increase in the number of actuators. Naturally, this

increase in actuation capability has also been followed by the improvement of other

technologies such as advanced high-temperature and lighter materials, improving the

efficiency of the aero engines by extending their physical limits. An improvement in

the way to control the engine has to be undertaken in order for these technological

improvements to be fully harnessed. This starts with the selection of a novel control

system architecture and is followed by the design of new control techniques.

Model-based control methods relying on distributed architectures have been

studied in the past for their ability to handle constraints and to provide optimal

control strategies. Applying them to gas turbine engines is interesting for three

main reasons. First of all, distributed control architectures provide greater modu-

larity during the design than centralized control architectures. Secondly, they can

reduce the life cycle costs linked to both the fuel burnt and the maintenance by

bringing optimal control decisions. Finally, distributing the control actions can in-

crease flight safety through improved robustness as well as fault tolerance.

This thesis is concerned with the optimal selection of a distributed control sys-

tem architecture that minimizes the number of subsystem to subsystem interactions.

The control system architecture problem is formulated as a binary integer linear

programming problem where cuts are added to remove the uncontrollable partitions

obtained. Then a supervised-distributed control technique is presented whereby a su-

pervisory agent optimizes the joint communication and system performance metrics

periodically. This online optimal technique is cast as a semi-definite programming

problem including a bilinear matrix equality and solved using an alternate convex

search. Finally, an extension of this online optimal control technique is presented

for non-linear systems modelled by linear parameter-varying models.
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Chapter 1

Introduction

During the past few years air travel has become more accessible, triggering an in-

crease in the number of flights as well as in the number of passengers. For instance,

during the year 2014 alone, 3.1 billion people flew worldwide representing a total

of approximately 31 million flights. Every year these numbers increase, with this

tendency, 6 billion passengers are expected to travel by 2030. Therefore, a cor-

responding increase in fuel consumption as well as in the emissions is expected.

Nonetheless, it is interesting to note that the fuel consumption, per passenger per

kilometre flown, has consistently been decreasing (Benito and Alonso, 2018). This

trend is due to the use of new technologies in civil aviation, bringing a reduction

in aircraft weight as well as a better engine fuel and propulsive efficiency for Gas

Turbine Engine (GTE). The year 2014 marked an important milestone as the cen-

tenary of commercial flight operations (Airbus, 2014), thus a signifiant data history

has been gathered, starting to reveal the trends in the aerospace sector. Also, even

if air transportation is the main application for gas turbine engines it is far from

being the only one. Indeed, marine power generation, train power systems and other

means of transportation also take advantage of the high power density of gas turbine

engines in order to produce energy, mainly under electrical form. Consequently, it

is very likely that gas turbine engines will prosper in the future and keep following

the same technological evolution as before. The following three paragraphs presents

the three main features of gas turbine engines that are at the heart of this research

project.

An aircraft gas turbine engine has to deliver thrust as well as power under var-

ious forms, including electrical, pneumatic and hydraulic. In order to achieve such

a goal in an efficient manner an engine has to be equipped with multiple built-in

subsystems (Richter, 2012). Firstly, a gas turbine engine is composed of different

modules representing the thermodynamic processes acting on the fluid mass flow

1
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later ejected at high velocity to generate thrust (Linke-Diesinger, 2008). Secondly,

other accessory systems such as pumps and electrical generators, are connected to

one of the shafts of the gas turbine engine in order to generate energy under elec-

trical and hydraulic form. Finally, fluid subsystems are also added to ensure the

safe handling of the engine and to allow for hot air extraction. The hot air is used

for purposes such as de-icing, cabin climate control and pneumatic actuation. It is

therefore appropriate possible to describe a GTE as a set of integrated subsystems

that together form what is called a power plant. The subsystem organization of an

aero power plant ranks gas turbine engines in the category of complex medium-scale

systems. Subsequently, the design of gas turbine engine control laws has to take into

account the interactions between all subsystems, and control the power plant as a

whole. Thus, the first control design step is to select the control system architec-

ture appropriately, so that it well describes the system dynamics, and in particular

accounts for the subsystem to subsystem dynamical interactions. Currently engine

control units are fully centralized and new control system architectures constitute

an important research topic.

Gas turbine engines use ever more advanced technologies, and as a result, they

become more efficient at extracting the chemical energy from the fuel. These new

technologies include for example the development of lighter and high temperature

materials, as well as new techniques like the geared fan design or the variable nozzle

area. The direct consequence of this technological development is a decrease in fuel

consumption but also of the emissions, such as the pollution and the noise as well as

the maintenance burden. However, the drawback of using more advanced technolo-

gies is that more complexity is added to the engine design. Future generations of

engine will also include more sensors and actuators, and thus it will allow the engine

manufacturers to control more engine parameters (Jaw and Mattingly, 2009). This

trend of increasing the number of engine control variables allows gas turbine engines

to be run closer to their structural and thermal limits, which translates to having

more degrees of freedom in the choice of control input variables, and therefore to

perform closer to the optimal operating point. Subsequently, new control laws need

to be developed to fully harness the increase in gas turbine engine controllability

and to provide the best performance and reliability possible. Based on the control

system architecture selected the control law design can be completed. In the case

where the control system architecture is not fully centralized, the control law design

will also include a communication scheme between the local controllers in charge of

controlling subsets of the gas turbine.

Finally, gas turbine engines are based on thermodynamic processes involving

an open Joules-Brayton cycle (Richter, 2012). This cycle relies on the fact that
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chemical energy is released as heat in the combustion chamber, and then converted

into mechanical work when driving the turbine modules and producing thrust. The

efficiency of this thermodynamic cycle is increased by mechanically compressing

the working fluid beforehand, within the compressor stages. The thermodynamic

efficiency of a gas turbine engine is calculated as a function of the Engine Pressure

Ratio (EPR), the ratio of the turbine discharge pressure and the compressor inlet

pressure. The higher the EPR, the better the thermodynamic efficiency of the

engine. Since gas turbine engines are subject to complex phenomena such as the

behaviour of the dynamics in the compressor and turbine stages, they are highly

non-linear systems. Therefore, modelling a gas turbine engine is usually done by

linearizing the system dynamics at multiple operating conditions, which yields a set

of linear models covering the operating envelope (Balas, 2002). Then the control laws

are designed based on gain scheduling techniques, in order to adapt the controller

to the changing system dynamics. Subsequently, designing new gas turbine control

laws must be performed accounting for the non-linearity of the gas turbine engine

dynamics as well as the newly design control system architecture.

This thesis is concerned with the three points presented previously. First of all,

the selection of a control system architecture is considered. This task can be achieved

through the partitioning of the gas turbine system model into overlapping or non-

overlapping controllable subsystems. Each subsystem is then fitted with a local

controller. Secondly, the control law design can be performed based on the obtained

system partitioning. This design is performed optimally online by minimizing an

objective function that represents the total energy of the system. Finally, the last

aspect presented within this thesis tackles the control law design for a special type

of non-linear systems, modelled by a linear parameter-varying model.

In order to understand the context of this research project, a literature review

presenting the state of the art in control system is included after the introduction.

This chapter is followed by a chapter introducing the mathematical background

necessary to the understanding of the following chapters. Finally, a conclusion sum-

marizes the main contributions of this thesis and proposes some future research

directions. The remainder of this introduction includes a summary of the gas tur-

bine engine history as well as of the engine control development phases. Therefore, it

provides the necessary motivations for the different research problems raised during

this project. This introduction concludes with a detailed presentation of the content

of the following thesis chapters as well as how they are articulated together.
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1.1 History of Gas Turbine Engines

The invention of the GTE was a huge leap forward and was a key contribution to the

development of aviation, especially in the civil sector. This innovation resulted from

the technological race between Sir Frank Whittle in Britain and Hans von Ohain

in Germany, working independently on similar technologies (Whittle, 1945). The

very first gas turbine engine powered flight took place in 1939 in Germany with the

Heinkel He 178 aircraft. At the very early stages of the engine development, the

goal was simply to control the thrust of the gas turbine using a single input, the

fuel flow rate. The main initial issues were to maintain a controlled combustion as

well as to prevent the combustion chamber from overheating. Very quickly engineers

realized that they needed more control input variables in order to improve the engine

handling capabilities as well as to operate them safely. For instance, protecting

the gas turbines against surging and flaming out is achieved by enforcing limits

to the control variables, such as a minimal fuel flow rate to avoid flaming out,

and a maximal fuel flow rate to prevent the engine from over heating. A GTE

is designed to operate within a control envelope that is defined by structural and

thermal boundaries, where the engine is kept undamaged and remains under control.

As the main source of propulsive power, gas turbine engines have to provide thrust

safely over the entire aircraft flight envelope. Therefore, from the very start, the

development of gas turbine engines has been linked to the advancement of control

system technologies, and this trend still continues today.

In the past few years engineers introduced further control inputs, not only to

protect the GTE, but also to increase its efficiency and to allow for greater operating

ranges. Controlling an engine is crucial in providing safe operation, but it can also

be used to run the engine with greater efficiency and thus to reduce the operating

life cycle costs. More controllability allows the engine to be operated closer to its

optimal performance. Hence, it goes with a reduction of fuel burnt, emissions and

maintenance cost, and it triggers an increase in engine life.

Being able to reach higher thrusts with less fuel burnt makes it possible to carry

more passengers for the same cost. The project Clean Sky is the major European

project that aims at reducing emissions in civil aviation. Clean Sky ’s projects are

helping to dramatically slash the air industry’s carbon dioxide, noise and nitrous

oxide footprints by developing new engine architectures (such as the open rotor),

improved wing aerodynamics, lighter composite structures, smarter aircraft trajec-

tories, and more electric on-board energy. Therefore, an improvement of the engine

control architecture as well as the control laws will help to support this goal.
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1.2 History of Gas Turbine Engine Control

The development phases of the gas turbine engine controllers can be decomposed

into four distinct periods. These periods are leading to the current integration

and advanced control era that represents the current era of engine control (Jaw

and Mattingly, 2009). Each of these periods are one or two decades long and are

presented in this section.

1.2.1 Infancy Period

The initial engine control period saw the development of mechanical control devices.

During that time all the control actions were performed by gear trains, cams and

linkages. The design of the engine controller was based on a frequency domain anal-

ysis, relying on Bode plots in order to achieve the desired gain and phase margins.

By the end of this period, the development of hydromechanical systems combined

with the first tube based electronic controllers was undertaken. Nonetheless, elec-

tronic engine controllers offered poor performance during these early stages due to

their inability to cope with harsh operating environments. Finally, most of the per-

formance studies at this period was focused on the steady state analysis. This was

due to the complexity to perform efficient and fast computations, and therefore only

first order shaft dynamic modelling could be used.

1.2.2 Growth Period

During the growth period, the engine control techniques such as hydromechanical

control were still used. However, this period was marked by the introduction of

new control variables such as geometry control for the compressor, the intake and

the nozzle. The design of control laws during this time relied on classical control

techniques, using multiple control loops designed by considering that other variables

remained around their steady state values. The control loops were closed one af-

ter the other using the successive loop-closure technique, accounting for dynamical

interactions. Soon after, state space models started to be developed for optimal con-

trol purposes, but were not yet embedded in engine controllers. Finally, this period

saw the use of Newton techniques as well as computer simulations to evaluate the

transient engine performance.

1.2.3 Electronic Period

The hydromechanical units reached a limit to control the engines, since much larger

and heavier units were needed to fulfil all the requirements. A more practical solu-
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tion was to use an Electronic Engine Controller (EEC) to provide supervisory and

trim control functions. During that time the electronic engine controllers were still

coupled with a hydromechanical unit. This unit is more conservative but used only

as a backup controller. Engineers quickly realized that a digital engine controller

offered significantly more flexibility with regards to modifications and updates when

compared to the previous hydromechanical units. Also, electronic engine controllers

reduced the development cycle time and provided more functionality allowing, for

example, to record engine data for health monitoring purposes. This period also

brought more attention on multivariable control techniques as well as real time en-

gine models.

1.2.4 Integration Period

During the past three decades the use of Full Authority Digital Engine Controllers

(FADECs) has become a standard technique for engine controllers. This control

unit is lighter and smaller than the previous EEC and includes a dual-channel archi-

tecture for redundancy as well as more built-in test functions. During this period,

multivariable control techniques were implemented based on the previous studies

conducted. An engine model is often embedded in the FADEC to improve the con-

trol performance and provide health monitoring capabilities. The integration of the

flight control system with the propulsion control system is also achieved, improving

the aircraft manoeuvrability and subsequently giving a tactical advantage in the

military. This integration usually relies on vectorized thrust. In addition to this,

model-based control techniques are implemented to benefit from the increase in con-

trol and output variables. In addition to this, the introduction of technologies such

as smart wireless sensors allowed the sensing of remote parameters in the engine and

to communicate them wirelessly on-board as well as to ground stations.

1.3 Control System Architecture Research Direction

The standard control system architecture implemented since the use of electronic

engine controllers is the dual-channel centralized architecture. The engine controller

is composed of a single unit where two identical channels are embedded. Each

channel is a control computer fully capable of controlling the gas turbine engine.

These controllers are named FADEC where full authority implies that the control

is applied from engine start-up to engine shut-down and that they are in charge of

all the flight phases without any manual override possible. In order to reach the

safety level required, and to decrease the probability of failure per flight hours to

meet the certification level. The dual-channel architecture is necessary, the engine
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sensors and actuators are all linked directly to one or two of the FADEC channels,

for redundancy purposes. The centralized architecture of the EEC comes with an

engine health monitoring system. The aim is not only to monitor the health of the

engine but also to gather data about all the engines of the fleet to perform statistical

analyses. Digital engine controllers bring significant advantages, such as a reduction

in specific fuel consumption, weight reduction, as well as a greater operation safety

compared to former engine control techniques (Sobey and Suggs, 1963). Also, it

reduces the workload for the flight crew, allowing the removal of the flight engineer

from the flight deck.

The current research is focused on redesigning the engine control architecture to

move towards a more distributed control system (Merrill et al., 2010). The purpose

of a distributed control architecture is to take advantage of the great number of

control parameters and subsystems to provide a more efficient and safer control

architecture (Thompson et al., 1999). For instance a FADEC relying on a centralized

architecture is not protected against a single point of failure, due to the lack of

physical segregation. On the contrary, distributed architectures are more robust to

the failure of one or multiple local controllers. Also, the centralized architecture

suffer from a lack of modularity. Subsequently, with the increase in complexity of

gas turbine engines, a lot of resources are required to design, test and certify every

new centralized FADEC unit. Hence, distributing the control actions will allow to

decrease the engine overall life cycle costs.

A modification of the engine control system starts with the partitioning of the

system into joint, or disjoint, pairs of sets of state and input variables. The ar-

chitectural problem is then reduced to the optimization of these subsets of system

variables. Thus, computing the subsystems can be cast as an optimization problem

such that the amount of interactions between all the subsystems is minimized while

all the subsystems stay controllable. Such an optimization problem belongs to the

class of combinatorial optimization and its formulation requires the use of integer

variables.

1.4 Control Method Research Direction

So far only classical control methods have been applied for engine control, this in-

cludes control laws such as Proportional Derivative Integral (PID). They provide

control commands to keep good safety margins, sometimes at the expense of the

specific fuel consumption. These controllers are preceded by an operating scheduler

that modifies the control gains as a function of the flight conditions. In order to

provide protections for the GTE and to avoid exceeding the physical system bound-
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aries, minima and maxima selectors are added to the controller structure (Austin

Spang and Brown, 1999). The standard engine controllers can be divided in two

parts. The first part consists of a steady state regulator that aims at maintaining

the GTE at a desired set-point. Naturally, the second part is in charge of the tran-

sient phases. It controls the engine during accelerations and decelerations occurring

after a pilot input is given (Thompson, 1992). Following this, the control is handed

back to one of the steady state regulators. This standard controller ensures that the

engine performs with an acceptable efficiency and that the engine parameters remain

within the required boundaries. This research project aims at giving a framework for

distributed model-based control applicable to complex medium-scale systems such

as gas turbine engines. The main feature of this research project is to provide an

algorithm to optimize the subsystem to subsystem communication jointly with the

overall system performance as a function of the system state variables.

Gas turbine engines have evolved a lot since their creation, with new materials

and technologies developed continuously. This evolution brings new control input

variables that can be used to steer the GTE state variables more efficiently. How-

ever, including this capability will require the use of online optimization and will

trigger an increase in the control design complexity. Controlling a system based on

its dynamic model allows the controller to tailor the control actions to the plant

behaviour as well as to predict its future state variables. Predictive controllers min-

imize an objective function, which is achieved by solving an optimization problem

online over a prediction horizon. Therefore, the future state and input variable dis-

crepancies, based on the system model, are minimized when the controller computes

the next control input sequence. In contrast PID controllers use the error already

perpetrated to control the system. Model-based control techniques provide a better

way to handle the constraints compared to classical controllers. Distributing the

control actions with the use of a model-based controller will allow the reduction of

the total weight of the control system and increase its modularity (Eren et al., 2017).

These aims are achieved by formulating the distributed control problem as an

online optimization that will periodically update the control laws of the subsystems

as a function of their state variables. The different control modes used include the

inter subsystem communication. The last point will be to evaluate the impact on

system performance of different communication strategies. The distributed model-

based control technique developed can be applied in other domains such as energy

distribution networks or even in marine systems and automotive systems (Seok et al.,

2017).
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1.5 Thesis Structure

The thesis presents a literature review as well a mathematical background chapter

in order to be able to facilitate the understanding of the following research outputs.

After that, the main contributions of the research undertaken are articulated in three

research chapters. These research chapters could be read as independent research

contributions or linearly as a continuum. The remainder of this section presents a

summary of what is included in each of the remaining chapters and a diagram high-

lighting the main thesis structure as well as the interconnections between chapters

is provided.

Chapter 2: The second chapter presents a literature review in system and control

theory. It introduces the notations used throughout the thesis along with the impor-

tant properties developed in the system and control engineering field. Then, these

properties are used to describe the concept of optimal control. First, the notion

of infinite horizon linear quadratic regulator is introduced as a precursor of online

optimal control. Following this, the idea behind model-based predictive control is

presented along with its main features. This chapter concludes with the presen-

tation of the different control system architectures and a summary of the notions

presented, therefore motivating the research undertaken within the next chapters.

Chapter 3: In this chapter the mathematical background necessary for the un-

derstanding of the rest of the thesis is provided. It defines convex sets and convex

functions along with their fundamental properties and illustrate them with funda-

mental examples. All the theoretical results developed are then combined in order to

introduce the convex optimization framework. These critical tools of modern system

and control theory are essential to the understanding of optimal control architecture

selection and control method design. In addition, this chapter defines some common

non-convex optimization problems along with the main techniques to solve them.

Finally, the major methods and algorithms used to solve the optimization problems

presented previously are discussed before a summary is provided.

Chapter 4: The control system architecture problem is tackled within this chap-

ter. The partitioning of a system model will condition the structure of the controller

as well as its design. In order to partition a system model, one has to know what

states and inputs to group together to define subsystem models. The subsets of

state and input variables describing the subsystems can be non-overlapping or over-

lapping when some state variables are shared between multiple subsystems. For a

given partitioning, the total magnitude of the interactions between subsystem mod-



10 Introduction

els is evaluated. Therefore, the partitioning problem seeking for weak interactions

can be posed as a minimization problem. Initially, the problem is formulated as a

non-linear integer minimization that is then relaxed into a linear integer program-

ming problem. It is shown within this chapter that cuts can be applied to the initial

search space in order to find the least interacting partitioning; only composed of

controllable subsystems. The complexity of the partitioning algorithm is evaluated

and a few examples are included in order to demonstrate the partitioning method.

Chapter 5: This chapter is concerned with the control of systems composed of

multiple coupled subsystems. In such architectures, communication between dif-

ferent local controllers is desired in order to achieve a better overall control per-

formance. Any resultant improvement in control performance needs, however, to

be significant enough to warrant the additional design complexity and higher en-

ergy consumption and costs associated with introducing communication channels

between local controllers. A practical distributed control design aims, therefore, to

achieve an acceptable balance between minimizing the use of communication be-

tween controllers and maximizing the system-wide performance. In this chapter,

a new approach to the problem of synthesizing stabilizing distributed control laws

for discrete time linear systems that balances performance and communication is

presented. The approach employs a supervisory agent that, periodically albeit not

necessarily at every sampling instant, solves an optimization problem in order to

synthesize a stabilizing state feedback control law for the system. The online op-

timization problem, which maximizes sparsity of the control law while minimizing

an infinite-horizon performance cost, is formulated as a bilinear matrix inequality

problem; subsequently, it is relaxed to a linear matrix inequality problem, and (i)

convergence to a solution as well as (ii) that early termination guarantees a feasible

(but suboptimal) control law are proved. Stability of the closed-loop system under

what is a switched control law is guaranteed by the inclusion of dwell time constraint

in the optimization problem. Finally, the efficacy of the approach is demonstrated

through numerical simulation examples.

Chapter 6: The control design of non-linear systems modelled as discrete time

linear parameter-varying systems is treated within this chapter. For such systems,

the dynamical model of the system is varying within a compact set based on the

value of an exogenous scheduling parameter, not controllable but measurable in real

time. In the past, multiple techniques have been used to control this type of systems,

for instance an optimal robust feedback control method has been studied based on

a feedback gain robust to plant uncertainty. However, very few research approaches
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have considered the synthesis of structured linear-parameter varying controller im-

plemented in a distributed framework. This chapter considers the offline synthesis

of a set of linear-parameter varying control laws, relying on different communication

topologies and presenting different control performance. Then a supervisory unit

selects online and periodically the best control mode candidate from the finite set of

control laws computed offline. The controller selection is performed in order to max-

imize the system-wide performance while minimizing the subsystem to subsystem

communication burden. The control law synthesis is formulated as a semi-definite

programming problem with convex structural constraints, when the system is par-

titioned in non-overlapping subsystems and as a bilinear matrix inequality problem

when some state variables are shared between different subsystems. Then online,

the best control mode is selected based on the predicted control and communication

costs amongst the stable switchable controller. A numerical example is provided to

illustrate the effectiveness of the distributed control strategy.

Chapter 7: The main contributions presented within this thesis are summarized

in this last chapter. The conclusion highlights the connections between the differ-

ent techniques developed. Finally, some future work and research directions are

proposed, based on the work presented within the previous chapters.

The reader will be able to find some secondary results in the appendices, they

provide deeper explanations about some specific points used within the chapters of

this thesis without altering the overall understanding. A bibliography at the end of

the thesis contains all the references that were used in order to perform the research

work, they are necessary to fully understand the thesis content as well as to get more

perspective on it. This thesis is linked to published work and planned publications,

the list of publications is as follows:

- Guicherd, R., Trodden, P. A., Mills, A. R., and Kadirkamanathan, V. (2017).

Weak interactions based system partitioning using integer linear programming.

IFAC-PapersOnLine, 50:3698–3704

- Guicherd, R., Trodden, P. A., Mills, A. R., and Kadirkamanathan, V. (2019).

Supervised-distributed Control with Joint Performance and Communication

Optimization. International Journal of Control. In Preparation

- Guicherd, R., Trodden, P. A., Mills, A. R., and Kadirkamanathan, V. (2020).

Supervised-distributed Control with Joint Performance and Communication

Optimization for LPV Systems. Automatica. In Preparation



12 Introduction

Introduction

Literature
Review

Background

Weak Interactions
System Partitioning

Using Binary
Integer Linear
Programming

Supervised-distributed
Control with Joint
Performance and
Communication

Optimization

Distributed control
for LPV systems with

joint performance
and communication

optimization

Conclusion
&

Future Work

Figure 1.1: Thesis structure diagram presenting the main sequence of chapters and
the interconnections between non-consecutive chapters respectively with the bold
and thin arrows.



Chapter 2

Literature Review

2.1 Introduction

Control and system theory is concerned with the design of controllers, implemented

in order to influence the behaviour of physical systems and therefore to achieve a

given aim. More specifically control systems are used to regulate the controlled

variables of a system to a fixed value or to provide tracking capabilities for these

variables. Regulation is used to keep a variable at a given static set point, whereas

tracking is used in order for a controlled variable to follow a specific time varying

trajectory. Control system is far from being a new topic, indeed it goes back more

than two millennia ago with one of the very first control system developed by Kte-

sibios that aimed at controlling the liquid flow within water clocks, subsequently

improving their accuracy (Mayr, 1970). Most of the mechanical clocks designed af-

ter that were relying on a mechanical feedback control system (Lepschy et al., 1992).

The Romans implemented mechanical control systems in order to regulate the wa-

ter levels within the aqueducts throughout the use of a set of valves (Sontag, 1998).

Also, the use of feedback control has been increasing more recently in history since

the industrial revolution. At that time, mechanical control systems were the key to

harness power from steam engines, they allowed rotational speed regulation. The

control of systems is made possible through the knowledge of system engineering.

System engineering deals with the design and the understanding of dynamical sys-

tems based on mathematical modelling. The term systems is used across a multitude

of fields and it includes for example systems that are electrical, mechanical, chemical

but also economical and biological. Consequently, control system engineering is a

multidisciplinary topic, applicable in most of the other engineering fields and more

(Aström and Kumar, 2014). Control theory is studied as a field of applied mathe-

matics, hence providing theoretical tools for the design of control systems (Sontag,

13
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1998). This chapter gives the necessary definitions about dynamical systems before

introducing the different control techniques along with system stability. Finally, it

introduces the different control system architectures before finishing by explaining

the gaps in the literature and by presenting the three main contributions presented

later within the chapter of this thesis.

2.2 Dynamical Systems

Control systems are applied to dynamical systems that are modeled usually from first

principles. The mathematical models used to represent these physical systems can

be linear or non-linear as well as continuous or discrete. These mathematical models

developed are fundamental to the understanding of the system and subsequently to

the design of the control systems (Bay, 1998). This section defines these different

types of system models along with their characteristics.

2.2.1 Linear Systems

One of the simplest and most widely used system model is the linear system model.

The mathematical models representing dynamical systems are expressed in the time

domain using a differential or difference system of linear equations or in the frequency

domain with a transfer function. When the dynamical system is represented in the

time domain, the model can be formulated in continuous time or discrete time.

First, the continuous time linear model is introduced before the discrete time one is

presented.

Continuous Dynamical Systems

In the continuous time case, dynamical systems can be represented by a continuous

time differential system of linear equations as follows,

ẋ(t) = A(t)x+B(t)u(t) (2.1a)

y(t) = C(t)x(t) +D(t)u(t), (2.1b)

where, t ∈ R denotes the time, the vector x ∈ Rn represents the state variable,

the vector u ∈ Rm is the input or control variable and finally y ∈ Rp represents

the output variables, with n, m and p three strictly positive integers. The matrices

A(t), B(t), C(t) and D(t) are of appropriate dimensions and are respectively the

state, input, output and feedthrough matrices. This mathematical representation

of a continuous linear dynamical system is called a state space representation, it
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constitutes a general model for continuous time linear dynamical systems. The

state, input and output variables are all vector functions of time. Based on the state

space model as well as a fixed initial state x(t0), the trajectory of the state variables

can be computed as follows,

∀t ∈ [t0,+∞[, x(t) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, τ)B(τ)u(τ)dτ, (2.2)

where, the matrix function Φ(t, τ) is called the state transition matrix and complies

with the following two properties,

Φ̇(t, τ) = A(t)Φ(t, τ) (2.3a)

Φ(τ, τ) = In. (2.3b)

The state transition matrix exists and is uniquely defined by the equation (2.3)

when the state space matrices are smooth. It is possible to show that (2.2) is the

solution to the system modeled by the state space (2.1) complying with the initial

condition x(t) = x(t0) when t = t0. This is proved by differentiating (2.2) with

respect to t as follows,

ẋ(t) = Φ̇(t, t0)x(t0) +

∫ t

t0

Φ̇(t, τ)B(τ)u(τ)dτ + Φ(t, t)B(t)u(t)

= A(t)Φ(t, t0)x(t0) +

∫ t

t0

A(t)Φ(t, τ)B(τ)u(τ)dτ +B(t)u(t)

= A(t)

[
Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, τ)B(τ)u(τ)dτ

]
+B(t)u(t)

= A(t)x(t) +B(t)u(t).

(2.4)

Also, it is trivial to show that the equation (2.2) complies with the system initial

condition, hence it is the solution to the dynamical system (2.1). In general, the

computation of an analytical solution for the state transition matrix is difficult,

it can be achieved based on an iterative method called the Peano-Baker integral

series (Rugh, 1996). Even if getting an analytical solution can be a tedious task, it

is possible to construct a numerical solution for the state transition matrix based

on n linearly independent vectors. Then a general numerical solution is calculated

by superposition of the n linearly independent solutions due to the linearity of the

system model. By definition, the state transition matrix also complies with the

property of composition. When the system is initialized from x(t0) and no input is
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applied, the state variables at times t and t1 can be obtained as follows,

x(t) = Φ(t, t1)x(t1)

= Φ(t, t1)Φ(t1, t0)x(t0)

= Φ(t, t0)x(t0).

(2.5)

However, in most cases linear continuous time dynamical systems are time invari-

ant, therefore all the state space matrices are constant matrices and do not depend

on the time variable. This type of models are called Linear Time-invariant (LTI)

state space models and in this specific case the analytical computation of the state

transition matrix is defined by the matrix exponential, such that

Φ(t, t0) = eA(t−t0) . (2.6)

Consequently, for a given fixed initial state x(t0) and an input function u(t), an

explicit formula exists in order to compute the state variable trajectory as follows,

∀t ∈ [t0,+∞[, x(t) = eA(t−t0) x(t0) +

∫ t

t0

eA(t−τ)Bu(τ)dτ. (2.7)

Continuous state space representations are useful to design analogue control

systems, where all the system variables obtained are continuous functions of time.

In addition to the control design task, state space models can be used to analyze

the behaviour of a system such as the stability. In conclusion, the state space model

of a dynamical system allows to predict the future values of the state and output

variables, knowing the initial state as well as the input variable function.

Discrete Dynamical Systems

Some physical dynamical systems are behaving in a discrete fashion and therefore

a continuous state space model cannot represent them appropriately. In addition,

a continuous linear state space model can be discretized to obtain a discrete time

linear state space model (Bay, 1998). Discrete state space models are similar to the

continuous model representation obtained previously. The equation (2.8) shows a

discrete time linear state space model.

x(k + 1) = Ad(k)x(k) +Bd(k)u(k) (2.8a)

y(k) = Cd(k)x(k) +Dd(k)u(k), (2.8b)
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where, k ∈ Z represents the time step index, and the other variables and matrices

are the same as per the previous continuous state space model. When this model

is obtained from a continuous state space model, it is computed by sampling the

continuous model with a given sampling time Ts ∈ R∗+. Subsequently, the time step

index k represents multiples of the sampling time Ts such that,

x ((k + 1)Ts) = Ad (kTs)x (kTs) +Bd (kTs)u (kTs) (2.9a)

y (kTs) = Cd (kTs)x (kTs) +Dd (kTs)u (kTs) . (2.9b)

In the discrete case, all the system variables are discrete sequences of values,

constant on each interval kTs ≤ t < (k+ 1)Ts. In particular, the input variable u(t)

is constant and equal to u(k) on the interval mentioned previously. Consequently,

the input u(k) can be considered as a constant in the integral (2.2) between two

consecutive time steps, hence the matrices of the discrete time state space model

can be computed using the solution of the continuous time model as follows,

x(k + 1) = Φ(k + 1, k)x(k) +

∫ k+1

k
Φ(k + 1, τ)B(τ)dτu(k). (2.10)

Therefore, the discrete time state space matrices are linked to the continuous

state transition matrix as follows,

Ad(k) = Φ(k + 1, k) (2.11a)

Bd(k) =

∫ k+1

k
Φ(k + 1, τ)B(τ)dτ (2.11b)

Cd(k) = C(kTs) (2.11c)

Dd(k) = D(kTs) (2.11d)

The solutions of the discrete state space equation (2.8) are obtained from a given

initial condition x(0) as well as a specific sequence of control inputs by applying re-

cursively the dynamical relation (2.8). The discrete time model yields the following,

x(1) = Ad(0)x(0) +Bd(0)u(0)

x(2) = Ad(1)x(1) +Bd(1)u(1)

= Ad(1)Ad(0)x(0) +Ad(1)Bd(0)u(0) +Bd(1)u(1).

(2.12)

By induction the state variable x(k) can be obtained based only on the value of
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the initial state as well as the sequence of inputs from 0 to k − 1 such that,

∀k ∈ N∗, x(k) =

[
k−1∏
i=0

Ad(i)

]
x(0) +

k∑
i=1

k−1∏
j=i

Ad(j)

Bd(i− 1)u(i− 1), (2.13)

where, the following product is defined by
∏k−1
j=k Ad(j) = In. In a similar way as

for the continuous time system, the state transition matrix can be defined based on

(2.13) by the following relation,

∀k ∈ N∗, Ψ(k, l) =
k−1∏
i=l

Ad(i). (2.14)

Finally, the solution of the discrete time state space model (2.8) is analogous to

the one obtained in the continuous time case and can be computed from a specific

initial condition as well as a sequence of input variables by the following,

x(k) = Ψ(k, 0)x(0) +
k∑
i=1

Ψ(k, i)B(i− 1)u(i− 1). (2.15)

If the system is time invariant the state space model simplifies,

Ad = eATs (2.16a)

Bd =

∫ Ts

0
eAτ dτB (2.16b)

Cd = C (2.16c)

Dd = D. (2.16d)

Therefore, the sequence of state variables becomes,

∀k ∈ N∗, x(k) = Akdx(0) +

k∑
i=1

Ak−id Bdu(i− 1). (2.17)

Since the continuous and discrete time state space models are used without

confusion in the notations, the subscripts used for the discrete time model matrices

are omitted in the remainder of this thesis. Discrete time state space models are

used in digital control since they can account for the clock of a digital controller.
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2.2.2 Controllability and Observability

Controllability and observability are two important properties of dynamical systems,

the verification of these properties is done before being able to perform any design

step (Zhou et al., 1996). The principal definitions are described in details within

this section.

System Controllability

The definition of a controllable system is given as follows,

Definition 2.1 (Controllability). The system model defined in equation (2.1),

more specifically the pair of state and input matrices (A,B) is said to be controllable

if, for any initial state x(0), time t1 ∈ R∗+ and state x1, there exist an input u(·)
such that the solution of the equation (2.2) satisfies x(t1) = x1.

The controllability property of a linear system model can be verified based on

some algebraic criteria.

Theorem 2.1. The following propositions are equivalent

1. (A,B) is controllable

2. The controllability Gramian Wc(t) =
∫ t

0 eAτ BB> eA
>
τ dτ , is positive definite

3. The controllability matrix C =
[
B
∣∣∣AB ∣∣∣A2B

∣∣∣ . . . ∣∣∣An−1B
]

is full row rank

4. The matrix [A− λIn |B] has full row rank for all λ ∈ C

5. The eigenvalues of A + BF can be freely assigned (with complex conjugate

pairs) by a suitable choice of F

A dynamical system is said to be uncontrollable if it is not controllable. However,

milder conditions exist in the case where the non-controllable modes of a system are

stables. This condition is called stabilizability.

Definition 2.2 (Stabilizability). The system model (2.1), more precisely the pair

of state and input matrices (A,B) is said to be stabilizable if there exist a linear

state feedback F such that the system under control is stable i.e. A+BF is stable.

Theorem 2.2. The following propositions are equivalent,

1. (A,B) is stabilizable

2. The matrix [A− λIn |B] has full row rank for all λ ∈ C+

3. There exists a linear state feedback F such that A+BF is Hurwitz

The same results are also available for discrete time system defined as per equa-

tion (2.8).
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System Observability

A system is said to be observable if it complies with the following definition,

Definition 2.3 (Observability). The system model (2.1), more specifically the

pair of output and state matrices (C,A) is said to be observable if, for any t1 ∈ R∗+,

the initial state x(0) can be determined from the input and output history of the

system i.e. u(t) and y(t) with t ∈ [0, t1].

Theorem 2.3. The following propositions are equivalent,

1. (C,A) is observable

2. The observability Gramian Wo(t) =
∫ t

0 eA
>
τ C>C eAτ dτ , is positive definite

3. The observability matrix C =



C

CA

CA2

...

CAn−1


has full column rank

4. The matrix

[
A− λIn

C

]
has full column rank for all λ ∈ C

5. The eigenvalues of A+LC can be freely assigned (with complex conjugate pairs)

by a suitable choice of L

A dynamical system is said to be unobservable if it is not observable. Nonethe-

less, there exists a milder concept regarding system observability called detectability

and defined below.

Definition 2.4 (Detectability). The system model (2.1), or the pair (C,A) is

detectable if there exist a matrix L such that A+ LC is stable.

Theorem 2.4. The following propositions are all equivalent,

1. (C,A) is detectable

2. The matrix

[
A− λIn

C

]
has full column rank for all λ ∈ C+

3. There exists a state observer L such that A+ LC is Hurwitz

It is well know that the notions of controllability and observability for a system

are dual concepts. For instance, if the pair (A>, C>) is controllable, then the pair

(C,A) is observable. In a similar way, the two properties of stabilizability and

detectability are also dual.
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2.2.3 System Stability

Stability of a system defines the behaviour of a dynamical system, most of the time

the system state variable either converges towards an equilibrium point or diverges

altogether. In some cases however, the trajectory does not converge nor diverge.

System stability theory is concerned with all these different cases and its study

started with the seminal work of A. M. Lyapunov and the development of the direct

and indirect methods (Lyapunov, 1992).

Lyapunov Stability

Definition 2.5 (Lyapunov stability). The equilibrium point xe is stable in the

sense of Lyapunov at time t = t0 if there exists a δ(t0) > 0 such that,

‖x(t0)− xe‖ < δ ⇒ ∀t ∈ [t0,+∞[, ‖x(t)− xe‖ < ε. (2.18)

The stability of a dynamical system in the sense of Lyapunov is a mild condition.

It means that if a dynamical system starts close enough to an equilibrium point at

t0, it will remain relatively close to the equilibrium point. Lyapunov stability does

not imply that the state variable of a system will converge to the equilibrium point.

ε

δ

xe

x1

x2

Figure 2.1: Example of Lyapunov stability.

The Figure 2.1 presents the possible phase portrait of a dynamical system stable

in the sense of Lyapunov. As it is possible to see on the phase portrait, the constant

δ can be smaller than the constant ε. Examples of dynamical systems stable in the

sense of Lyapunov are the perfect harmonic oscillators. In the undisturbed case the

state variables oscillate around an equilibrium point but never converge towards it. A

system is said to be Lyapunov stable if there exist a Lyapunov function associated

to it. This Lyapunov function represents the generalized energy of the system.
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Therefore, studying the system stability can be done by studying its generalized

energy rate of change, and making sure that there exist a non-increasing generalized

energy function.

Asymptotic Stability

Definition 2.6 (Asymptotic stability). The equilibrium point xe is asymptoti-

cally stable if xe is a stable equilibrium and there exists at time t = t0 a δ(t0) such

that,

‖x(t0)− xe‖ < δ ⇒ lim
t→+∞

‖x(t)− xe‖ = 0. (2.19)

The Figure 2.2 presents the phase portrait of an asymptotically stable system.

The system does not have to converge monotonically to the equilibrium point and

therefore the trajectory of the system state can get closer or farther from the equi-

librium point xe, as long as it eventually converges towards it.

xe

x1

x2

Figure 2.2: Example of asymptotic stability.

Exponential Stability

Definition 2.7 (Exponential stability). The equilibrium point xe is exponentially

stable if there exists at time t = t0 and a set of constants (λ, a) ∈ R∗+ × R∗+ such

that,

‖x(t0)− xe‖ < δ(t0)⇒ ‖x(t)− xe‖ ≤ λ e−a(t−t0), (2.20)

where the constant a is called the rate of convergence of the system.

As it is presented in the phase portrait Figure 2.3, the state of the system

approaches the equilibrium point with a given convergence rate. The exponential

stability characteristic of a dynamical system encompasses the asymptotic stability
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definition and also provides some information on the rate of convergence to the

equilibrium point.

xe

x1

x2

Figure 2.3: Example of exponential stability.

2.2.4 Non-linear Dynamical Systems

Non-linear systems are in general difficult to model, consequently, performing the

control design can be a tedious task. The general form for a non-linear dynamical

system models is expressed as follows,

ẋ = f(x, u, t) (2.21a)

y = g(x, u, t), (2.21b)

where x ∈ Rn and u ∈ Rm are respectively the state and input variables, t represents

the time and the functions f and g are vector valued functions with the appropriate

dimensions and domains. The difficulties with non-linear systems come from the

fact that the superposition principle does not apply and that multiple equilibria may

exist, also the system behaviour of a non-linear system is more complex in general.

In practice, two main techniques are used in order to handle these difficulties. The

first technique called Linear Parameter-varying (LPV) consist of modelling a non-

linear system by a set of linear time invariant state space models varying with an

exogenous parameter θ(t) ∈ Rs. This exogenous parameter can be measured in real

time but is not known in advance, an LPV model is represented as per equation

(2.22).
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ẋ(t) = A(θ(t))x(t) +B(θ(t))u(t) (2.22a)

y(t) = C(θ(t))x(t) +D(θ(t))u(t), (2.22b)

In certain cases, it is possible to decompose a non-linear system model into

multiple linear system models. This requires the system to be relatively smooth

with regards to the time derivatives (Rugh and Shamma, 2000; Leith and Leithead,

2000). The linearization of the system model is performed as per equation (2.23),

where the couple (x̃i, ũi) represents an equilibrium manifold composed of the points

indexed by i. Since the Jacobian linearization of the system is computed along a

manifold of equilibria the linearized models are time invariant.

δẋ =
∂f(x, u, t)

∂x

∣∣∣∣
(x̃i,ũi)

δx+
∂f(x, u, t)

∂u

∣∣∣∣
(x̃i,ũi)

δu (2.23a)

δy =
∂g(x, u, t)

∂x

∣∣∣∣
(x̃i,ũi)

δx+
∂g(x, u, t)

∂u

∣∣∣∣
(x̃i,ũi)

δu (2.23b)

When the equilibrium points are parametrized by the exogenous variable θ(t),

then the linearized model (2.23) yields the LPV model provided in equation (2.24)

parametrized with the deviation system variables. If the parametrization is based

on an endogenous system variable then the model is called quasi-LPV.[
A (θ(t)) B (θ(t))

C (θ(t)) D (θ(t))

]
=

s∑
i=1

θi (t)

[
Ai Bi

Ci Di

]
(2.24)

Linearizing a non-linear system model is only valid at the vicinity of the equi-

librium points chosen. Subsequently, the linear system models obtained are blended

together based on the value of the scheduling parameter as per equation (2.24).

Then, the control laws can be designed for each linear model and blended in the

same way, or the control laws can be switched as a function of the scheduling pa-

rameter θ(t). Similarly, the non-linear system approximation (2.24) can be achieved

in the discrete time case, using on the same techniques.

2.3 Optimal Control

The maturation of state space system modelling along with the notions of control-

lability and observability presented previously led to the development of the Linear

Quadratic Regulator (LQR) theory (Kalman, 1960). This technique belongs to the
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field of optimal control, more generally it consists of minimizing a cost function

representing the performance of the control system, it relies on the system model as

well as a cost function that is usually a linear combination quadratic penalties on

the state and input variables.

2.3.1 Linear Quadratic Regulator

The linear quadratic regulator technique minimizes the discrepancies on the desired

values of the state and input variables for the continuous time invariant linear state

space model (2.1) by minimizing an infinite horizon cost function as follows,

J∞ =

∫ +∞

0
x(t)>Qx(t) + u(t)>Ru(t)dt (2.25)

where (Q,R) ∈ Sn+×S
m
++ represent weighting matrices to penalize the state and input

variables respectively. A variant of the linear quadratic regulator is formulated with

a finite horizon cost function. In the infinite horizon case, minimizing the system

performance index yields a linear state feedback control law under the assumptions

that the system is stabilizable and that the pair (Q
1
2 , A) is observable. The linear

control law is noted as follows,

∀t ∈ R+, u(t) = Fx(t). (2.26)

The minimization of the control cost J∞ leads to the matrix algebraic Riccati

equation (2.27) which then yields the control law F ∈ Rm×n formulated as per

equation (2.28).

A>P + PA− PBR−1B>P +Q = 0 (2.27)

The algebraic Riccati equation is a matrix equation in the variable P ∈ Sn, this

equation can be solved using the minimum principle of Pontryagin or the second

Lyapunov method. The algebraic Riccati equation can have multiple solutions,

however only the unique stabilizing solution P ∈ Sn++ is of interest in order to

compute a stabilizing state feedback controller.

∀t ∈ R+, u(t) = −R−1B>Px(t) = Fx(t)

F = −R−1B>P
(2.28)

It can be noticed that solving the Riccati equation is equivalent to solving the

Lyapunov equation (2.29) with the system dynamics in closed loop Acl = A + BF
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and the weighting matrix Qcl = Q+ F>RF .

A>clP + PAcl = −Qcl (2.29)

Consequently, the control cost J∞ with the initial condition x(t0) = x0 is evalu-

ated as follows,

J∞ =

∫ +∞

0
x(t)>Qx(t) + u(t)>Ru(t)dt = x>0 Px0. (2.30)

Similar results hold in the linear discrete time case, the integral operator used

to expressed the infinite horizon control cost (2.30) is replaced by a discrete time

summation such that,

J∞ =
+∞∑
k=0

x(k)>Qx(k) + u(k)>Ru(k). (2.31)

In the same fashion, the Riccati and Lyapunov equations are replaced by their

discrete time counterparts as per equations (2.33) and (2.34) respectively. In the

discrete time case, the LQR state feedback control law is defined based on the Riccati

solution P as follows,

F = −
(
B>PB +R

)−1
B>PA>. (2.32)

Where the discrete algebraic Riccati equation is defined such that,

A>PA− P −
(
A>PB

)(
R+B>PB

)−1 (
B>PA

)
+Q = 0. (2.33)

In the same way, the unique stable solution of the discrete Riccati equation (2.33)

is a solution of the discrete algebraic Lyapunov equation (2.34), with Acl = A+BF

and Qcl = Q+ F>RF .

A>clPAcl − P = −Qcl (2.34)

Linear quadratic control relies on the solution of the matrix algebraic Riccati

equation in the continuous and discrete time cases. Optimal LQR control optimizes

a performance index offline based on the linear system state space model. In both the

continuous and discrete cases, the control law F ∈ Rm×n computes the value of an

input variable based on a linear combination of the state variables. Different variants

of the LQR optimal control have been developed to synthesize linear control laws

robust to disturbances , such as the H∞ and H2 control techniques (Kwakernaak,

1993; Gahinet and Apkarian, 1994; Zhou et al., 1996) or to synthesize control gains
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robust to model uncertainty (Kothare et al., 1996). However, enforcing physical

system constraints on the state and input variables is not practical with offline

optimal control strategies and this feature is more suitably achieved with online

optimal control methods.

2.3.2 Model-based Predictive Control

Similarly to the LQR control technique, Model Predictive Control (MPC) relies on

solving an optimization problem maximizing the system performance in order to

compute the future control inputs. In the case of model predictive control, the op-

timization is performed online based on the system dynamical model as well as the

value of the current state variable. The dynamical system model is used to forecast

the system behaviour over a prediction horizon that recedes towards the future at

each time steps. Consequently, it is easy to realize that the system model plays a

central role in MPC. This control technique has started originally in process control

(Richalet et al., 1978; Richalet, 1993a,b; Qin and Badgwell, 2003). Since then, the

theoretical aspects of model predictive control concerning stability and feasibility

have been well understood and are gathered within some seminal textbooks (Ma-

ciejowski, 2002; Rossiter, 2003; Camacho and Bordons, 2004; Rawlings and Mayne,

2009). Note that model predictive control does not refer to a specific control strat-

egy, it gathers a wide range of control techniques relying on a system model to

compute optimal control inputs. Implementing a standard version of model predic-

tive control for the a discrete time LTI system (2.9) can be achieved by solving the

online optimization problem (2.35).

minimize
uk

N−1∑
k=0

{
‖x(k)‖2Q + ‖u(k)‖2R

}
+ ‖x(N)‖2P

subject to ∀k ∈ J0, N − 1K

x(k + 1) = Ax(k) +Bu(k)

x(0) = x0

(x(k + 1), u(k)) ∈ X× U

(x(k + 1), u(k)) ∈W

x(N) ∈ Xf ⊆ X,

(2.35)

where (Q,R) ∈ Sn+ × Sm++ respectively represent the state and input weighting ma-

trices, P ∈ Sn+, X, U, W and Xf are sets of linear constraints respectively on the

state variables, the input variables, a mix of the state and input variables and the

final state variable. The parameter N ∈ N∗ is called the prediction horizon. The
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optimization problem (2.22) consists in minimizing a quadratic objective function

subject to a set of linear constraints, therefore, it is a Quadratic Programming

(QP) problem. The cost function is expressed as the classical quadratic system

performance metric in the same way as for the LQR control technique. The linear

constraints represent the system dynamics as well as limits on the state and the

input variables. The state and input limits could represent physical limits enforced

by actuator saturation or desirable state limits to keep the system undamaged. The

state variable at the end of the prediction is subject to a different weighting matrix

in order to account for the remaining control cost and emulate the infinite horizon

cost. Solving the optimization problem (2.35) yields a sequence of optimal control

inputs as well as a predicted state trajectory as follows,

u? = [u(0), u(1), . . . , u(N − 1)] (2.36a)

x? = [x(1), x(2), . . . , x(N)] . (2.36b)

. . .
k − 2 k − 1 k k + 1 k + 2

. . . . . . . . .
k +N

. . .

Constraint

Set point

Prediction horizon N

Past Future

Time steps

System variables

x
u

Figure 2.4: Model predictive control example.

The main idea behind MPC is illustrated in Figure 2.4, the black line represents

the state variable that is steered to the green dashed line representing the set point.

The blue piecewise constant plots represent optimal sequences of input variables.

Finally, the red dashed line represents a physical system constraint on the input

variable. At time step k the optimization problem (2.35) is solved based on the

measurement of the current state variable x(k) over the prediction horizon from

k + 1 to k + N . Then, the first input variable u(k) from the optimal sequence of

inputs (2.36) is applied to the system and the new state variable x(k+1) is measured.
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Therefore, it allows to run a new optimization over a new prediction horizon shifted

towards the future, from k+ 2 to k+ 1 +N . Then k is incremented and this process

is repeated in a receding fashion.

Features of Model Predictive Control

Model predictive control has got many interesting features that made this control

technique attractive in the past for process control and that still motivates its use

today for more complex and faster control applications (Mayne, 2014).

Optimal Control MPC similarly to LQR emerges from the solution of an op-

timization problem, the main distinction however is that model predictive control

solves the optimization problem online and recursively contrary to LQR where the

solution is computed offline (Kalman, 1960). Unlike LQR the control inputs are

sent in an open loop fashion, and feedback is used to account for unmeasured and

unmodeled disturbances. Also, the minimized cost function can be tailored to the

system by considering the use of different norms for the state, input or output vari-

ables discrepancies or a penalty on the input rate of change. Nonetheless, since MPC

requires to solve an optimization problem online, enough time has to be allocated

(Bartlett et al., 2002; Pannocchia et al., 2007). Therefore, implementing MPC for

large system with fast dynamics is usually difficult.

Model-based Technique Different variants of model predictive control use dif-

ferent types of models but they all have in common the fact that the system model is

very important. Indeed, an accurate dynamical model allow for accurate predictions

and subsequently increases the performance of the control system. Model predictive

control has been developed for linear and non-linear system as well as uncertain

models (Morari and Lee, 1999). Different control system architectures can be taken

into account by using distributed and decentralized system models. The use of large

and complex models will slow the optimization because of the implementation of

more decision variables and constraints.

Constraint Handling Constraints are inherent to physical systems and unlike

linear quadratic regulator, model predictive control is well suited to system with

constraints. Classical control techniques such as Proportional Derivative Integral

(PID) controllers enforce the constraints after the control input is computed with

saturations and anti-wind up techniques. In the case of MPC the system constraints

are directly expressed within the optimization problem formulation (Mayne et al.,

2000). In general, controlling a system optimally goes with operating close to the
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system physical constraints (Maciejowski, 2002). Some constraints are hard and

cannot be exceeded, some other constraints can be formulated as soft by adding a

cost within the objective function when they are violated.

Multivariable Model Model predictive control techniques can be applied to mul-

tivariable system as there is no limitations on the size of the system model used

within the online optimization problem. Using a multivariable model within the

MPC framework is useful to take into account the different dynamical couplings

within the state and input variables. Nonetheless, an increase in system dimensions

will lead to a slower online optimization. Therefore, large-scale systems are usually

controlled in a decentralized or distributed fashion in order to reduce the computa-

tional burden. Different cooperative and non-cooperative MPC schemes have been

developed (Trodden and Richards, 2013; Negenborn and Maestre, 2014).

Robust control Controlling a system with MPC relies on a nominal system model

that does not necessarily include a disturbance model. It can be noted that model

predictive control has some inherent robustness to disturbances as well as model

mismatch (Pannocchia et al., 2011). However, robust theoretical framework has

been developed to tackle modeled disturbances. For instance, min-max MPC as well

as tube MPC are two of the main techniques that take into account disturbances and

provide some robustness (Scokaert and Mayne, 1998; Langson et al., 2004). Another

aspect of MPC considered model uncertainty (Kothare et al., 1996).

2.4 Control System Architectures

The architecture of control systems has been studied for decades (Mesarović et al.,

1970; Šiljak, 1991; Lunze, 1992), in the past the main motivation has been the

automation of processes found in large scale industrial systems. Examples such as

the steel industry, the chemical industry, power systems and traffic networks have

benefited from the development of more decentralized control system architectures

(Al-gherwi et al., 2010). These complex systems are most of the time composed of

smaller interacting subsystems and therefore the design of a centralized controller

can become tedious or even impossible due to the physical size of the system or

because of its geographical spread (Scattolini, 2009). The main control architectures

developed to answer these challenges includes fully decentralized structures where

no information is shared between the local controllers, distributed control structures

where only some information is shared between the local controllers. Finally, the

hierarchical control structures are similar to the distributed control architectures in
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many aspects. However, in the case of hierarchical control structures the controller is

composed of different interconnected levels or layers often working at different time

scales. This section presents the different types of control architectures along with

their benefits and drawbacks. The next subsection present the centralized control

system architecture.

2.4.1 Centralized Control Architecture

The first control system architecture presented is the fully centralized architecture,

in this case all the information available from the system is provided to the controller.

The controller then produces the control input used for the entire system. Therefore,

this control structure requires a fully connected network between the system sensors

and the centralized controller as well as between the centralized controller and the

system actuators. The main benefit of centralized control system architectures is

that the controller takes control decisions to improve the system wide performance

and therefore it provides the best system performance. Also, a centralized controller

can take into account the dynamical interactions between the subsystems when

computing the control input.

System

Subsystem 1

Subsystem 2

x1 x2

y1

y2

Controller

u1

u2

Figure 2.5: Centralized control system architecture.

The centralized control system structure is presented on Figure 2.5, in this exam-

ple the system is composed of two subsystems. All the output information available

from the system is provided to the system controller in order to compute the in-

put variables of both subsystems simultaneously. Even if the centralized control



32 Literature Review

architecture provides the best system wide performance, it is not always possible

to apply a centralized controller. The main barriers to the implementation of cen-

tralized control are the geographical separations between the subsystems as well as

the communication links limited bandwidth, cost and reliability. Subsequently, for

the systems having one or many of these previous characteristics the assumption

of centralizing the system information does not hold. In order to answer the issues

triggered by centralized structures other decentralized architectures have been de-

veloped. The next subsection presents the decentralized control system architecture.

2.4.2 Decentralized Control Architecture

Decentralized control architectures do not rely on the centralization of the subsys-

tems information, in this case each subsystem is equipped with a local controller

that receives only the information of a single subsystem in order to take a control

decision for it. The local controllers are not exchanging any information. Conse-

quently, the need for communication links between the system and the control layer

is decreased, however, because each local controller is only in charge of a given sub-

system without any knowledge of what the entire system is doing, the system wide

performance can be poor (Schuler et al., 2014). More specifically, if the subsystems

are strongly dynamically coupled, the design of a stabilizing decentralized controller

can become a complex task and in some cases can even be infeasible.

System

Subsystem 1

Subsystem 2

x1 x2

y1

y2

Controller 1

Controller 2

u1

u2

Figure 2.6: Decentralized control system architecture.

Figure 2.6 presents the decentralized control system architecture with two sub-
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systems, in this architecture one local controller is in charge of one subsystem only.

Therefore, the entire system has to be partitioned into disjoint sets containing some

of the system input and output variables. The local controllers are then designed

based on the dynamics of the subsystem they are connected to (Alessio et al., 2011).

As it is presented Figure 2.6, subsystem to subsystem interactions can exist, they

can be due to the internal states of the two subsystems or can be more direct and

caused by the input variables. Subsequently, when the subsystem to subsystem in-

teractions are weak the design of the decentralized architecture is straight forward.

On the contrary, when the subsystems are strongly coupled it is well known that in

some cases only poor performance can be achieved and that system stability can be

an issue (Scattolini, 2009). Intuitively, the local controller within the decentralized

architecture will only take into account the control of their own subsystem. Conse-

quently, when the subsystem are strongly coupled there will be a fight for control

that can be the root cause of instability. In this type of control system architecture,

the interactions are treated as disturbances that have to be rejected. The next sub-

section presents the distributed architecture, this type of architecture is similar to

the decentralized architecture, however some communication is allowed between the

local subsystems in order to take into account for the couplings.

2.4.3 Distributed Control Architecture

In distributed control system architectures, a communication network is established

between the local controllers so that each local controller has some information on the

other local controllers and subsystems as shown Figure 2.7. The information shared

mainly consists of input as well as output variables and can include the predicted

state and input variables (Christofides et al., 2013). The distinctions between the

different distributed architectures are with regards to the communication network

topology, the information exchange rate and the type of control algorithm used by

the local controllers.

Different communication network topologies can be implemented, for example

Figure 2.7 presents a fully connected communication structure. However, if the in-

formation was only sent from the first controller to the second controller then the

communication network topology would only be partially connected. A partially

connected network topology can be adapted to the case of large-scale systems where

the subsystem to subsystem interactions only comes from the direct neighbours.

Regarding the information exchange rate different communication protocols can be

implemented. The information exchange between the local controllers can be per-

formed once every sampling time step or can occur multiple times per sampling

time step, it corresponds respectively to non-iterative and iterative control tech-
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Figure 2.7: Distributed control system architecture.

niques (Maestre et al., 2011). Finally, the type of distributed control algorithms

implemented can focus on a subsystem performance index or on a system wide

performance metric. These two techniques are respectively called independent or

non-cooperative and cooperative control algorithms. The local controllers can per-

form the optimization sequentially or in parallel (Richards and How, 2007; Trodden,

2014). Distributed MPC is still an active field of research (Maestre and Negenborn,

2013).

2.4.4 Hierarchical Control Architecture

The hierarchical control system architecture is a compromise between the central-

ized and distributed control structures (Mesarović et al., 1970; Scattolini, 2009).

This type of control architecture includes multiple control layers usually working

at different time scales, it also comprises local controllers in charge of sending the

control input to their own local subsystems. Very often two layers of control are

included, the first layer is the supervisory layer located on top, it is often used to co-

ordinate the actions of the local controllers. For instance, it can be used to readjust

optimization weights in an optimal control framework, or to modify the set points

in a more classical framework. As it is presented Figure 2.8, a supervisory agent

is connected to the local controllers and can modulate their behaviour, while the

local controllers are in charge of feeding control inputs to the subsystem they are

connected to. Different types of hierarchical control methods have been developed
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in the past and are presented within this subsection.

System

Subsystem 1

Subsystem 2
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u2

Figure 2.8: Hierarchical control system architecture.

Hierarchical Control for Coordination

This first kind of control architecture is used to coordinates the actions of local

controllers. The local controllers can exchange the value of the state variables of the

subsystem they are connected to as well as their predicted state trajectory. Then

an iterative procedure can be implemented between the supervisor and the local

controllers in order to reach a system consensus. Throughout this technique such

a control architecture can take into account the dynamical couplings between the

different subsystems. The supervisory agent and the local controllers can be working

at different time scales, however, working at the same time scales allow the use of

iterative procedures.

Hierarchical Control of Multilayer Systems

In this kind of multilayer systems, the local controllers are working at different time

scales. Such an architecture is suitable in two main cases, first of all, it is adapted to

systems having subsystems with different dynamic behaviours. Indeed a few medium

and large scale systems can be partitioned into slow and fast dynamical subsystems.

The second case is when the overall system optimization and the local controllers

are working with different time scales. The top layer compute optimal values which

are the set points used by the lower control layers, these values are sent through a
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top-down communication links. Bottom-up communication is used in order for the

local controllers to share possible disturbances and to provide the required feedback

to the top layer.

2.5 Summary

Control system theory and systems engineering are interdisciplinary fields and there-

fore, they can be applied to a broad set of physical systems, including gas turbine

systems. The design of a controller requires not only the selection of a control system

architecture but also the design and the implementation of a control technique. This

literature review chapter first presented the field of systems engineering that is key

to the understanding of the behaviours of dynamical systems as well as the analysis

of some fundamental properties, such as stability, controllability and observability.

The main aspect developed within this chapter concerned the modelling of dynami-

cal systems. Dynamical system models allow to predict the future state and output

variables of a system and thus they provide a solid foundation to the development

of optimal and robust control techniques. The analysis of physical systems based

on dynamical models is fundamental to the understanding of the interactions be-

tween the subsystems composing a system and is subsequently central to the choice

of control system architecture. A presentation of optimal control and model-based

predictive control has been provided along with the different control system archi-

tectures developed in the past. Consequently, redesigning the gas turbine engine

control systems will be achieved by selecting an architecture, optimally with regards

to an objective function. Following this, a control method will be developed based

on the architecture selection performed previously.
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Background

3.1 Introduction

The background developed in this chapter will then be used within the subsequent

chapters of this thesis in order to solve system and control optimization problems.

Convex analysis is one of the main branches of mathematics, it studies convex sets,

convex functions and provides the theoretical foundation necessary in order to per-

form convex optimization. Convex optimization is a subset of the more general

field studying all the different types of mathematical optimization problems. Con-

vex analysis is at the crossroad of linear algebra as well as non-linear mathematical

analysis. The mathematical concepts and objects described within this chapter all

comply with some specific prerequisites that confer them remarkable properties.

The properties of convex sets and convex functions are then used in order to as-

certain some characteristics on convex optimization programming problems. One

of the main and central idea of convex optimization relies on the fact that local in-

formation can be used to assert global characteristics on the optimization problem.

Therefore, convex optimization problems can be solved numerically very efficiently

and reliably even when no analytical solution exists. Interior-point methods have

been developed in order to solve convex optimization problems in polynomial time

(Nesterov and Nemirovskii, 1994). In the past few decades, convex optimization has

proved to be a very powerful tool in multiple fields such as automatic control, sys-

tems engineering, information theory, signal processing and finance. For instance,

linear programming as well as least-square optimization problems are special cases

of convex optimization programming problems.

This chapter will present the background in convex optimization by introducing

definitions, properties as well as examples on respectively convex sets, functions and

optimization programming problems. Finally, some common non-convex problems

37
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are discussed along with the standard algorithm and methods to solve them. Convex

analysis has been covered widely in the literature (Rockafellar, 1970; Hiriart-Urruty

and Lemaréchal, 2001; Boyd and Vandenberghe, 2010), the background presented

here is not exhaustive and the reader is invited to refer to the textbooks cited within

this thesis if more information is needed.

3.2 Convex Sets

3.2.1 Introduction

Set theory defines mathematical sets of objects. Amongst all the mathematical sets,

the convex sets have specific properties useful to perform convex optimization. This

section will give the definition of a convex set, present some examples of convex sets

and introduce some of their basic properties.

3.2.2 Definition of a Convex Set

A convex set is defined as follows,

Definition 3.1 (Convex set). A set S is convex if, for all elements x and y

belonging to S, the line segment joining x and y also lies in the set S,

∀θ ∈ [0, 1], ∀(x, y) ∈ S2, θx+ (1− θ)y ∈ S. (3.1)

Convex sets are essential in order to define convex functions and therefore to

define convex optimization programming problems. The Figure 3.1 presents different

types of convex sets that can be represented in a two-dimensional plane.

Figure 3.1: Example of two-dimensional convex sets.

Definition 3.2 (Convex combination). For a finite number n ∈ N∗ of points

{x1, . . . , xn} belonging to a set S, a convex combination is defined by the following
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relation,

∀i ∈ J1, nK, θi ≥ 0,
n∑
i=1

θi = 1,

x =
n∑
i=1

θixi.

(3.2)

The vector x belongs to the set S for any convex combinations of points {x1, . . . , xn}
if and only if the set S is convex.

Based on the definition of a convex set and of a convex combination, it is possible

to show via induction that a convex set contains all the possible convex combinations

of its elements. The most natural convex sets are the polyhedra and the polytopes,

which can be defined by a finite set of affine inequalities. A polytope is a defined as

a bounded polyhedron.

Definition 3.3 (Affine set). A set S is affine if, for all elements x and y belonging

to S, the line joining x and y also lies in the set S,

∀θ ∈ R, ∀(x, y) ∈ S2, θx+ (1− θ)y ∈ S. (3.3)

Convex sets subsume affine sets, indeed if a set is affine it will contain all the

lines joining any couples of its points. Subsequently, it will also contain all the line

segments joining any pairs of points, therefore it will also be convex. However, the

converse is not true.

3.2.3 Examples of Convex Sets

This subsection presents different examples of convex sets and their definitions along

with some proofs of convexity.

Definition 3.4 (Unit simplex). The unit simplex set in dimension n is a special

case of a polytope and is defined by,

θ = [θ1, . . . , θn]> ∈ Λn, (3.4a)

Λn =

{
θ ∈ Rn

∣∣∣∣∣
n∑
i=1

θi = 1, ∀i ∈ J1, nK, θi ≥ 0

}
. (3.4b)

The Figure 3.2 represents the unit simplex in dimension three, it is possible to

see the simplex as a set of linear inequalities. Therefore, all simplexes are convex

regardless of their dimension. The more general simplex set in dimension n can

also be seen as the hyperplane defined by θ1 + . . .+ θn = 1, restricted to the closed
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Figure 3.2: Representation of the simplex in dimension three.

positive orthant in Rn. The general case of a set defined by linear inequalities and

equalities is the polyhedron. The definition of a polyhedron is given as follows,

Definition 3.5 (Polyhedron). A set P is a polyhedron when there exists a set of

affine inequalities represented by,

P = {x ∈ Rn |Gx ≤ h} . (3.5)

A polyhedron can be understood as the intersection of multiple half-spaces.

Therefore, because each half-space is a convex set and because a polyhedron is

a finite intersection of convex sets, a polyhedron is a convex set. Linear equalities

define affine sets and are therefore a representation of convex sets.

Example 3.1 (Affine set). The set defined by S = {x ∈ Rn |Ax = b}, where A ∈
Rp×n and b ∈ Rp, is such that,

∀(x, y) ∈ S2, Ax = b, Ay = b (3.6a)

∀(x, y) ∈ S2, ∀θ ∈ R, θAx = θb, (1− θ)Ay = (1− θ)b (3.6b)

∀(x, y) ∈ S2, ∀θ ∈ R, θAx+ (1− θ)Ay = θb+ (1− θ)b (3.6c)

∀(x, y) ∈ S2, ∀θ ∈ R, A(θx+ (1− θ)y) = b. (3.6d)

The set presented in the Example 3.1 does not include any restriction on the value

of θ, therefore it is affine and is convex by definition. A more general definition of

a polyhedron could include linear equalities. Although, linear equalities can always

be reformulated as a couple of linear inequalities. Another particular example of a

convex set is the ellipsoid, as defined in Definition 3.6.

Definition 3.6 (Ellispoid). An ellipsoid E is defined as follows,

E =
{
x ∈ Rn

∣∣∣ (x− xc)>P−1(x− xc) ≤ 1, P ∈ Sn++

}
, (3.7)
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where the vector xc ∈ Rn defines the center of the ellipsoid. The lengths of the

semi-axes are given by the square roots of the eigenvalues of the matrix P .

x y

z

Figure 3.3: Representation of an ellipsoid in dimension three.

The Figure 3.3 represents an ellipsoid in three dimensions. Any section generated

by the intersection of the ellipsoid with a plane is an ellipse. A convex set similar

to the ellipsoid is the norm ball, which is defined as per Definition 3.7.

Definition 3.7 (Norm ball). A norm ball is defined in Rn for a given norm such

that,

B = {x ∈ Rn | ‖x− xc‖ ≤ r} , (3.8)

where xc ∈ Rn is the center of the ball and r ∈ R+ is the radius of the ball. The

open norm ball is defined by a strict inequality.

The last topological sets of importance are the conic sets, they are defined as

follows,

Definition 3.8 (Cone). A set K is said to be a cone if, for all elements x belonging

to K, the following relation holds,

∀(θ, x) ∈ R+ ×K, θx ∈ K. (3.9)

The Figure 3.4 represents the full cone defined by the Euclidean norm in three

dimensions. The intersection of this cone with a plane orthogonal to the z-axis gives

circles. Restricting this cone to the half-plane z positive yields the second-order

cone. A cone is not convex in general, however a cone is called a convex cone when

it complies with the definition of a cone and of a convex set. The two previous

definitions can be combined into the following definition,
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Figure 3.4: Representation of a cone in dimension three.

Definition 3.9 (Convex cone). A set K is said to be a convex cone if, for all

elements x and y belonging to K, the following relation holds,

∀(θ1, θ2) ∈ (R+)2, ∀(x, y) ∈ K2, θ1x+ θ2y ∈ K. (3.10)

A conic set is called a proper cone if it is a closed, convex, pointed and solid

cone. A cone is pointed if it does not contain a full line and solid if its interior is

different from the empty set. The proper cone used for most applications in control

theory is the cone of positive semi-definite matrices.

Example 3.2 (Positive semi-definite cone). The set of symmetric positive semi-

definite matrices of dimension n ∈ N∗ is a proper cone, also called the semi-definite

cone, and it is denoted as follows,

Sn+ =
{
X ∈ Rn×n

∣∣∣X � 0
}
. (3.11)

The set of symmetric positive definite matrices is the convex cone that is the

interior of the positive semi-definite cone.

3.2.4 Convex Hulls

When a set S is not convex, it is possible to compute a convex set that contains S,

it is called the convex hull of S. The convex hull of a set S, denoted coS, is the

set containing all convex combinations of the elements in S. Consequently, it is the

smallest convex set containing S. In the case where S is already a convex set, the

convex hull of S and S are the same set.

Definition 3.10 (Convex hull). For a finite set of elements, S = {x1, . . . , xn},
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the convex hull of S is defined by,

coS =

{
n∑
i=1

θixi

∣∣∣∣∣ [θ1, . . . , θn] ∈ Λn

}
. (3.12)

The convex hull of S can also be defined as the intersection of all convex sets

containing S, and therefore it is the minimal convex set containing S.

coS

Figure 3.5: Convex hull for a discrete set of elements.

In Figure 3.5 the convex hull of a finite set of elements in the plane is represented

by the shaded area.

3.2.5 Operations on Convex Sets

This subsection presents different operations on convex sets that preserve convexity.

These different operations are also useful in order to prove or disprove that a given

set is convex, and finally it could additionally be used to build a convex set.

Proposition 3.1 (Set operations). A few basic set operations maintain convexity,

1. A finite or infinite intersection of convex sets is convex:

if Sα is convex for all α ∈ A, then so is ∩α∈ASα

2. Convexity is preserved through affine mapping:

if f is an affine function and S is a convex set, then f(S) = {f(x) |x ∈ S} is

convex

3. The inverse image of a convex set by an affine function is also convex:

if f is an affine function and S is a convex set, then f−1(S) = {x | f(x) ∈ S}
is convex

4. The sum of two convex sets is convex:

if S1 and S2 are convex sets, then S1⊕S2 = {x+ y |x ∈ S1, y ∈ S2} is convex
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5. The projection of a convex set onto some of its coordinates is convex:

if S is a convex set, then p(S) = {x1 | (x1, x2) ∈ S} is convex

6. The Cartesian product of convex sets is convex:

if S1 and S2 are convex sets, then S1 × S2 = {(x, y) |x ∈ S1, y ∈ S2} is also

convex

3.2.6 Generalized Inequalities

Generalized inequalities are defined for a proper cone K as a partial ordering, they

can be strict or non-strict. These inequalities represent the usual ordering used on

R when K = R+, also element-wise inequalities on Rn are defined by generalized

inequalities on the proper cone K = Rn+, the positive orthant in Rn. Subsequently,

generalized inequalities subsume the standard ordering on R as well as the element-

wise ordering as special cases. Generalized inequalities on a proper cone K are

denoted as follows,

x �K y ⇔ y − x ∈ K, (3.13a)

x ≺K y ⇔ y − x ∈ intK. (3.13b)

Example 3.3 (Positive semi-definite cone). The generalized inequalities (strict

and non-strict) on the positive semi-definite cone K = Sn+ are defined such that

X �K Y is equivalent to Y − X is positive semi-definite. Since the interior of

the proper cone K = Sn+ is the positive definite cone, X ≺K Y means Y − X is

positive definite. The partial ordering on the proper cone K = Sn+ is commonly used

without any subscript in the literature. The same applies to this thesis, therefore,

the previous generalized inequalities become X ≺ Y and X � Y respectively for the

strict and non-strict inequalities on the positive semi-definite cone. A representation

of a portion of the positive semi-definite cone K = S2
+ in dimension three is provided

Figure 3.6.

Proposition 3.2. Generalized inequalities have similar properties to the standard

ordering on R, for a given proper cone K,

1. Generalized inequalities are preserved under addition:

x �K y and u �K v implies x+ u �K y + v

2. Generalized inequalities are transitive:

if x �K y and y �K z then x �K z
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x
y

z

Figure 3.6: Representation of the semi-definite positive cone S2
+ in dimension three.

3. Generalized inequalities are maintained under non-negative scaling:

if α ∈ R+ and x �K y then αx �K αy

4. Generalized inequalities are reflexive:

therefore, x �K x

5. Generalized inequalities are antisymmetric:

if x �K y and x �K y then x = y

6. Generalized inequalities are preserved under limits:

if for all i ∈ N, xi �k yi then x �K y with limi→∞ xi = x and limi→∞ yi = y

All these properties are inherited from the definition of the proper cone K as

well as the definition of the generalized inequalities.

3.3 Convex Functions

3.3.1 Introduction

The study of mathematical functions belongs to a branch of mathematics called anal-

ysis. Amongst the different mathematical functions, the convex functions present

interesting properties and therefore play a very important role in mathematical op-

timization. This section define convexity for a function and introduces some of their

properties along with the main operations that preserve convexity.
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3.3.2 Definition of a Convex Function

Definition 3.11 (Convex function). A function is said to be convex if its domain

of definition dom f is a convex set and if for all elements x and y belonging to dom f

the following inequality holds,

∀θ ∈ [0, 1], ∀(x, y) ∈ (dom f)2, f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y). (3.14)

The function f is said to be strictly convex if the inequality (3.14) is a strict inequality

on the open segment whenever x and y are distinct.

The Figure 3.7 presents a convex function along with one of the chord. It is pos-

sible to see that this function complies with the definition of convex functions since

the chord is always above the function itself. Also, for linear and affine functions

the equation (3.14) is always an equality.

f(x)

f(y)

θf(x) + (1− θ)f(y)

f(θx+ (1− θ)y)

x

f
(x

)

Figure 3.7: Representation of a convex function in two dimensions with a single
global minimum.

The function presented in Figure 3.7 is actually a strictly convex function. A

given function f is said to be concave if −f is a convex function. Similarly, f is

said to be strictly concave is −f is strictly convex. Consequently, linear and affine

functions are convex as well as concave, and they are the only functions having this

property. In the case where f is differentiable, it is possible to define the affine

function g as follows,

g(y) = f(x) +∇f(x)>(y − x), (3.15)
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where (x, y) ∈ (int dom f)2. The function g is the first-order Taylor approximation

of f and in the case where f is convex then g is a global under-estimator of the

function f . Therefore, it is possible to deduce global properties on f based on local

information from the first-order Taylor approximation. This important feature is

what confers remarkable properties to convex functions and consequently to convex

optimization problems. Very simply, if the derivative of f is equal to zero in x this

directly implies that for all y ∈ dom f , f(y) ≥ g(x). The Figure 3.8 represents the

epigraph of a convex function and is defined as follows,

Definition 3.12 (Epigraph). The epigraph of a function f with dom f ⊆ Rn is

defined by the following set included in Rn+1,

epi f = {(x, t) |x ∈ dom f, t ≥ f(x)} . (3.16)

epi f

x

f
(x

)

Figure 3.8: Representation of the epigraph for a convex function in dimension two.

The link between convex functions and convex sets is given by the epigraph of

a function, a function f is convex if and only if epi f is a convex set. Figure 3.8

represents the convex epigraph of a convex function in two dimensions.

3.3.3 Examples of Convex Functions

This subsection presents a few examples of convex functions used later on within this

thesis. The previous subsection already explained that linear and affine functions

are convex functions. Other functions comply with the definition given previously,

for example, by definition any norm operator is convex as explained in Example 3.4.
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Example 3.4 (Norm). A norm ‖·‖ defined on Rn complies with the triangle in-

equality and is absolutely homogeneous, therefore, the following relation holds,

∀θ ∈ [0, 1], ∀(x, y) ∈ Rn, ‖θx+ (1− θ)y‖ ≤ ‖θx‖+ ‖(1− θ)y‖ (3.17a)

⇔‖θx+ (1− θ)y‖ ≤ θ‖x‖+ (1− θ)‖y‖. (3.17b)

The relation (3.17a) is the triangle inequality, the relation (3.17b) is linked to the

absolutely homogeneous property as well as the fact that θ and (1 − θ) are positive

scalars.

Functions such as power functions with a power greater than one, exponential

functions, geometric mean as well as minus log-determinant are all convex functions.

3.3.4 Operations on Convex Functions

This subsection presents some operations that preserve the convexity of convex func-

tions. Therefore, allowing not only to build new convex functions from existing ones

but also to check for function convexity.

Proposition 3.3. Given a set of convex functions {fi | i ∈ J1,mK} as well as a

convex function f the following properties hold,

1. A non-negative weighted sum of convex functions defines another convex func-

tion, therefore, g(x) =
∑m

i=1wifi(x) is convex if for all i ∈ J1,mK, wi is

positive

2. The composition of a convex function with an affine mapping is convex, i.e.

g(x) = f(Ax+ b) is a convex function

3. The point-wise maximum of a finite set of convex functions defines another

convex function g(x) = maxi∈J1,mK{fi(x)}

4. The point-wise supremum of an infinite set of convex functions defines another

convex function g(x) = supy∈I f(x, y)

The point-wise maximum and supremum of a set of functions correspond to the

intersection of the epigraphs of all the functions belonging to the set. Therefore, it

is the intersection of a finite or infinite number of convex sets and it yields a convex

set according to the properties of convex sets.
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3.4 Convex Optimization Problems

3.4.1 Introduction

This section presents the necessary background knowledge regarding the mathemat-

ical optimization used later on within this thesis. Different types of optimization

problems are introduced along with their particular notations. Convex optimization

is one of the main fields of mathematical optimization. In the following section

the main convex optimization programming problems will be presented. An opti-

mization problem consists of finding the minimum of a cost function over a given

feasible set defined by constraints. More generally, an optimization problem can be

represented as follows,

minimize
x

f0(x)

subject to ∀i ∈ J1,mK

fi(x) ≤ bi,

(3.18)

where, the vector x ∈ Rn is called the decision variable, f0 : Rn → R is the cost

function or objective function and for all i ∈ J1,mK, the functions fi : Rn → R are

the constraint functions respectively associated to the bounds bi. The set of feasible

solutions is defined by the set of decision variables satisfying the constraints. Very

often, the first step to solving an optimization problem is to check for feasibility. An

optimization problem is said to be feasible if the feasible set defined by the constraint

functions is not empty. A solution x? is said to be optimal if it has the smallest cost

function value amongst all the feasible solutions. If an optimization problem is not

feasible, then no optimal solution can be found. Even though feasibility is a nec-

essary condition, it is not a sufficient condition in order to guarantee the existence

of an optimal solution. A great variety of optimization problems can be cast in the

form of (3.18), the main distinction between these optimization problems come from

the properties of the cost and constraint functions. An optimization problem is said

to be convex if both the cost function and the feasibility set are convex. The under-

lying idea is that convex optimization problems are tractable (Rockafellar, 1993).

The distinctions between the different types of convex optimization programming

problems resides in the type of convex constraint set as well as the type of convex

cost functions.

3.4.2 Linear Programming

The simplest convex optimization programming problem is the Linear Programming

(LP), the cost function to be minimized is an affine function of the decision variable
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and the constraints are all affine inequalities as well as equalities. Linear program-

ming problems trace back to the inequality elimination principle (Fourier, 1827).

The standard form of a linear program is given as follows,

minimize
x

c>x+ d

subject to Gx ≤ h

Ax = b,

(3.19)

where x ∈ Rn is the decision variable, G ∈ Rm×n, A ∈ Rp×n, and h and b are

vectors of appropriate dimensions, respectively representing affine component-wise

inequality and equality. Any LP can efficiently be solved using standard algorithms

such as the simplex method or an interior-point algorithm (Dantzig et al., 1955;

Karmarkar, 1984; Nesterov and Nemirovskii, 1994). Linear programs have a simple

geometric representation in low dimensions (Boyd and Vandenberghe, 2010).

P

−c

x?

Figure 3.9: Geometric representation of a two-dimensional linear programming prob-
lem.

In the Figure 3.9, the feasible set is represented by the closed convex polyhedron

P. Since the objective function is affine, the level curves are the hyperplanes or-

thogonal to the vector c and represented by parallel lines. The optimal solution x?

is reached by moving inside the polyhedron P as far as possible in the direction −c.
The intersection of the solid level line with the polyhedron shows the position of the

optimum value. A classical example of LP problem is the diet problem, which con-

sists of finding the cheapest diet satisfying given nutritional requirements. Another

typical example is finding the center of a polyhedron (Chebyshev center), by trying

to fit the largest ball inside a polyhedron (Boyd and Vandenberghe, 2010).
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3.4.3 Quadratic Programming

Another type of convex optimization problem is the Quadratic Programming (QP)

optimization, it can be formulated as per the equation (3.20). In this case the cost

function is a quadratic function of the decision variable and the constraints are all

affine.

minimize
x

1

2
x>Px+ q>x+ r

subject to Gx ≤ h

Ax = b,

(3.20)

where P ∈ Sn+, G ∈ Rm×n and A ∈ Rp×n. The vectors q, h and b are of appropriate

dimensions and r is a scalar. Quadratic programming subsumes linear programming,

indeed setting the matrix P to the zero matrix allow to get the LP optimization

problem (3.19).

P

−∇f(x?)x?

Figure 3.10: Geometric representation of a two-dimensional quadratic programming
problem.

The level curves for a quadratic programming problem can be represented as per

Figure 3.10, in the two dimensional case they are ellipses. Two types of quadratic

programming exists based on the constraint set.

Quadratic Cost with Linear Constraints

The first type of quadratic programming is simply called quadratic programming,

it consists of minimizing a quadratic convex cost function over a linear set of con-

straints. These programming problems are solved very efficiently and differ only

from linear programming problems by their objective function. They play a very

important role in optimal control when applied to linear discrete time systems.
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Quadratic Cost with Quadratic Constraints

The second type of quadratic programming allows not only a quadratic cost function

but also some convex quadratic constraints, this type of problem is called Quadratic

Constraint Quadratic Programming (QCQP). It subsumes the standard quadratic

programming problems with linear constraints and it is a special case of the second-

order cone programming case presented within the next subsection.

3.4.4 Second-order Cone Programming

Another type of convex programming problem similar to quadratic programming is

called the Second-order Cone Programming (SOCP). It relies on the minimization

of a linear cost function over a convex set composed of the intersection of a set of

affine constraints with second-order cones as follows,

minimize
x

f>x

subject to ∀i ∈ J1,mK

‖Aix+ bi‖2 ≤ c
>
i x+ di

Fx = g,

(3.21)

where f and ci are vectors of Rn, Ai and F are matrices of appropriate dimensions,

bi and g are vectors of appropriate dimensions and di is a scalar. This optimization

formulation framework gathers a wider range of convex optimization programming

problems. For instance, it is possible to see that any linear programming problem

is subsumed by the second-order cone programming formulation. Indeed, if Ai = 0

for all i ∈ J1,mK, then the optimization reduces to a LP. Also, if for all i ∈ J1,mK,
ci = 0 the problem (3.21) is equivalent to a QCQP. Consequently, second-order cone

programming subsumes LP and QP. For instance a robust LP can be expressed

as a SOCP. Therefore, second-order cone programming is more general than the

optimization problems presented previously.

3.4.5 Semi-definite Programming

Different types of proper cones can be used in order to formulate convex optimization

problems, as it was the case with second-order cone programming, Semi-definite Pro-

gramming (SDP) uses the positive semi-definite cone. A semi-definite programming
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problem is formulated as follows,

minimize
x

c>x

subject to F0 + x1F1 + . . .+ xnFn � 0

Ax = b,

(3.22)

where x ∈ Rn is the decision variable and for all i ∈ J0, nK, Fi is a symmetric matrix

of appropriate dimensions, A ∈ Rp×n and the vectors b and c are of appropriate

dimensions. Semi-definite programming is of particular interest for the development

of this thesis and it is used for the online design of optimal control laws. Convex

optimization and in particular SDP have been developed and used a lot in control

theory for optimal and robust control as well as in signal processing (Boyd et al.,

1994; Vandenberghe and Boyd, 1996; El Ghaoui and Niculescu, 2000). The con-

straint defined by the weighted sum of symmetric matrices is called a Linear Matrix

Inequality (LMI) constraint, and defines a convex set. Subsequently, the feasible

set of the optimization problem (3.22) is convex as being the intersection of the set

{x ∈ Rn |F (x) � 0} with the affine set defined such that {x ∈ Rn |Ax = b}.

Linear Matrix Inequalities

Linear matrix inequalities are expressed under the following form,

F (x) = F0 +
n∑
i=1

xiFi � 0, (3.23)

where the matrices Fi are all symmetric of dimension m. The set defined such that

S = {x ∈ Rn |F (x) � 0} can be seen as the inverse image of the positive semi-definite

cone Sm++ by the affine transformation −F (x), hence it defines a convex set. Note

that the set S can be formulated using a strict or non-strict generalized inequal-

ity which respectively defines an open or a closed convex set. From the definition

given in equation (3.23), it seems that LMI constraints have a very specific and lim-

ited form. However, it is known that linear matrix inequalities can express a large

set of problems from control theory such as problems including convex quadratic

matrix inequalities, matrix norm inequalities. For instance, the problem of comput-

ing a solution to the discrete time Lyapunov equation, proving the stability of an

autonomous system can be formulated as follows,

P � 0, (3.24a)

A>PA− P ≺ 0, (3.24b)
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where the matrix A ∈ Rn×n defines the autonomous discrete time system, and the

decision variable P ∈ Sn++ is a candidate Lyapunov solution. The matrix inequalities

presented in (3.24) differ from the standard formulation given in equation (3.23),

nonetheless it is possible to link the original definition with (3.24) by considering

a decomposition of the variable P over the basis of symmetric matrices Sn. Fi-

nally, note that multiple LMIs can be concatenated into a single LMI constraint by

redefining the matrices Fi, which combines them on the diagonal of a single matrix.

Schur Complement

The Schur complement technique proves the existence of equivalences between LMIs

and non-linear matrix inequalities and therefore brings a lot more depth to the use

of semi-definite programming. This mathematical tool allows to convert a set of

standard LMIs into a set of non-linear but convex inequalities. The different Schur

complement equivalences are detailed in Lemma 3.1.

Lemma 3.1. Consider the following symmetric matrix with affine dependence in x

such that

X =

[
Q(x) S(x)

S(x)> R(x)

]
, (3.25)

then the following relations hold,

1. X � 0 if and only if R(x) � 0, Q(x)− S(x)R(x)−1S(x)> � 0

2. X � 0 if and only if Q(x) � 0, R(x)− S(x)>Q(x)−1S(x) � 0

3. If Q(x) � 0, then X � 0 if and only if R(x)− S(x)>Q(x)−1S(x) � 0

4. If R(x) � 0, then X � 0 if and only if Q(x)− S(x)R(x)−1S(x)> � 0

3.4.6 Cone Programming

A more general modelling framework relying on generalized inequalities and gather-

ing all the optimization problems defined previously exists. This framework is called

Cone Programming (CP) and is based on a linear cost function minimized over an

affine equality constraint as well as a generalized inequality constraint, it is defined

as follows,

minimize
x

c>x

subject to Fx+ g �K 0

Ax = b

(3.26)
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where, K is a proper cone, F and g represent an affine mapping in K, the matrix A

belongs to Rp×n and the vectors b and c are of appropriate dimensions. For example,

if the proper cone K = Rn+ is the non-negative orthant in Rn then the generalized

inequality reduces to the element-wise inequality and therefore the optimization

problem (3.26) reduces to a standard linear programming problem. In a similar

fashion, if K is defined as the Lorentz cone or as the positive semi-definite cone, then

the problem (3.26) is respectively equivalent to a second-order cone programming

or a semi-definite programming. More generally, by defining the proper cone K

by a Cartesian product as follows K = K1 × . . . × Kr, then the conic inequality

of the optimization problem (3.26) can be used to represent any generalized conic

inequality.

3.4.7 Summary

This section introduced some of the most common convex optimization programming

problems, which all have in common the fact that they rely on disciplined problem

modelling. A very well structured optimization model is key in order for a given

optimization problem to be cast according to one of the standard forms presented

previously. As it was explained before, Figure 3.11 illustrates how the different

convex optimization programming problems are nested. From the inside out, linear

programming can be seen as a special case of quadratic programming and quadratic

programming problems are subsumed by second-order cone programming. Finally,

second-order cone programming is subsumed by semi-definite programming that is

only a subset of the larger set of cone programming. Cone programming includes

different kind of convex cones such as the power and exponential cones not mentioned

in detail here, as well as other kind of convex programming such as Geometric

Programming (GP). All these optimization problems are similar in the way that

they all belong to the category of convex optimization problems, therefore they are

tractable and efficiently solvable in polynomial time. These features make them very

interesting, especially for online optimization. To conclude, cone programming is a

very powerful optimization framework that unifies most of the convex programming

problems into disciplined programming.

3.5 Non-convex Optimization Problems

Not all optimization problems are convex and can be efficiently solved or are even

tractable. The non-convexity can come from the objective function or can be linked

to the non-convexity of the constraints and thus of the feasibility set. Most of

the time, these problems are very difficult to solve to global optimality and simply
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LP QP SOCP SDP CP

Figure 3.11: Set inclusions between different types of convex optimization problems.

verifying that a solution is optimal can be tedious. This section presents some of

the non-convex optimization problems that will be encountered later on within this

thesis.

3.5.1 Mixed-integer Linear Programming

The first type of non-convex optimization problem encountered is the Mixed Integer

Linear Programming (MILP). This problem is similar to a standard LP problem,

with the main distinction that some decision variables are restricted to be inte-

gers. The objective function and the constraints are affine functions of the decision

variables. The standard for of a MILP is described in equation (3.27).

minimize
x

c>x+ d

subject to Gx ≤ h

Ax = b

x ∈ Rn × Zm,

(3.27)

where x is the decision variable composed of n real and m integer entries, G ∈
Rp×(n+m), A ∈ Rq×(n+m) and h and b are vectors of appropriate dimensions. This

type of problem comes in different variants, for example if all the decision variables

have to take integer values, or if the decision variables have to be only binaries

then the problem is called Integer Linear Programming (ILP) and Binary Integer
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Linear Programming (BILP) respectively. By definition, the integer constraints are

responsible for the non-convexity of the problem. The theory linked to integer linear

programming problems is well developed and solving techniques have been created

to avoid an exhaustive search of the feasible set (Schrijver, 1998).

3.5.2 Bilinear Matrix Inequalities

Biaffine matrix inequalities, also called Bilinear Matrix Inequality (BMI), are a gen-

eralization of LMI constraints. However, except in special cases bilinear matrix

inequalities represent non-convex constraints and therefore, optimization problems

involving BMIs are computationally difficult to solve to global optimality (Goh et al.,

1995). Very often only one of the multiple local optima can be achieved easily. A

standard form of the BMI optimization problem is given in equation (3.28).

minimize
x

c>x x+ c>y y

subject to F0 +
n∑
i=1

xiFi +
m∑
j=1

yjGj +
n∑
i=1

m∑
j=1

xiyjHij � 0

Axx = bx

Ayy = by,

(3.28)

where x ∈ Rn and y ∈ Rm are the decision variables, for all (i, j) ∈ J1, nK × J1,mK,
the matrices F0, Fi, Gi ad Hij are symmetric with appropriate dimensions. The

matrices Ax and Ay as well as the vectors cx, bx, cy and by are of appropriate

dimension. From the BMI problem formulation (3.28) it can be seen that fixing the

variable x or y yields a semi-definite programming problem respectively in y and in

x (VanAntwerp and Braatz, 2000). Consequently, one way to handle bilinear matrix

inequalities is to solve them as alternate SDP problems (Goh et al., 1995). Bilinear

matrix inequality problems are equivalent to LMI problems with rank constraints,

and it is well known that rank constrained optimization problems are complex to

solve (Recht et al., 2007).

3.6 Algorithms

This section presents the main algorithms and methods used to solve convex as well

as non-convex programming problems. The very first algorithms developed to tackle

linear programming problems called the Simplex method, the ellipsoid algorithm and

the interior-point methods are discussed here.
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3.6.1 Simplex Algorithm

The simplex algorithm has been developed to solve linear programming problems,

it relies on the fact that if an optimal solution exists, it can be found at one of the

vertex of the polytopic feasible set (Dantzig et al., 1955). In addition to this, it

has been shown that if the objective function is not optimal when evaluated on a

vertex, then an edge containing the vertex and moving away from it while improving

on the objective function exists. The Simplex algorithm will use this principle to

visit a sequence of feasible vertices such that the objective function always improves.

The algorithm is terminated either when there is no improvement possible or if an

improving edge is not bounded. In order to achieve this, all the constraints are

transformed into equality constraints with the introduction of slack variables, also

called basic variables. The standard LP defined before is recast in a new standard

form presented in (3.29) used for the pivoting iterations of the simplex algorithm.

minimize
x

c>x

subject to Ax = b

x ≥ 0

(3.29)

The linear programming problem is formulated using a tableau highlighting the

improving directions while all the variables comply with the constraints of the initial

optimization problem. Initializing the simplex method consist of computing an

initial basic feasible solution used as a starting point for the following pivoting

iterations. In the case where no basic feasible solutions can be computed, the linear

program is infeasible.

Algorithm 3.1: Simplex algorithm.

Inputs : Linear program tableau
Initialization: Compute basic feasible solution
while There exists an improvement direction do

Select improving pivot variable xi
Find best pivot entry aij
Complete pivot operation around element aij

end
return
x?

p? = c>x?

The simplex algorithm is used a lot in practice to solve linear programming

problems, even though it has been shown that the worst case complexity of this

method is exponential (Klee and Minty, 1972). Consequently, other techniques have
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been developed in order to improve on the worst case exponential complexity of the

simplex. These new methods have been first used to solve LP, then, later on they

have been generalized to all convex optimization problems.

3.6.2 Ellipsoid Algorithm

The ellipsoid algorithm relies on a sequence of ellipsoids decreasing in volume and

always containing the optimal value of the optimization problem (Shor, 1977). It is

the first method that has been shown to have a polynomial complexity when used

to solve linear programs (Khachiyan, 1980). However, it can be applied to a wide

variety of convex optimization problems. The main idea is that given a subgradient

of the function to minimize evaluated at the center of the ellipsoid, it is possible to

find a half-space that does not contain the optimal point. The half-space is defined by

a hyperplane splitting the ellipsoid in two halves, one half contains the optimal value

and the other one is pruned at the next iteration. The next iteration starts with the

computation of a new ellipsoid of minimal volume that contains the intersection of

the previous ellipsoid with the half-space known to include the optimal value. This

process is repeated until the volume of the ellipsoid reaches a critical value. It has

been proven that with this technique the volumes of the ellipsoids are decreasing

geometrically. A special case of this technique in dimension one is the bisection

method, in this case the sequence of ellipsoids are decreasing intervals on R. The

initialization of the algorithm is done with an initial ellipsoid E0, defined by a shape

P0 and a center x0 and known to contain the optimal value of the objective function

f as follows,

E0 =
{
x ∈ Rn

∣∣∣ (x− x0)>P−1
0 (x− x0) ≤ 1

}
. (3.30)

Updating the ellipsoid at a given step k is performed by computing the ellipsoid

of minimum volume such that it contains the intersection of the previous ellipsoid

Ek with the half-space defined by the subgradient gk.

Ek+1 ⊇ Ek ∩
{
x ∈ Rn

∣∣∣ g>k (x− xx) ≤ 0
}

(3.31)

Then these steps are repeated until the volume of the ellipsoid reaches a critical

value, ensuring a certain bound on the optimal value.

The Algorithm 3.2 presented the unconstrained ellipsoid algorithm, nonetheless,

it is possible to include convex constraints by following the gradient of a violated con-

straint, alternating between unconstrained ellipsoid iterations when no constraints

are violated and feasible iterations when a constraint is violated. The ellipsoid

method provides a solid theoretical background with polynomial complexity stand-
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Algorithm 3.2: Ellipsoid algorithm.

Inputs : Initial ellipsoid E0 with center x0

Initialization: Set k = 0

while

√
g>k Pkgk ≥ ε do

Compute subgradient: gk at xk
Normalize subgradient: g̃ = gk√

g
>
k Pkgk

Update ellipsoid center: xk+1 = xk − 1
n+1Pkg̃

Update ellipsoid shape: Pk+1 = n
2

n
2−1

(
Pk − 2

n+1Pkg̃g̃
>Pk

)
k = k + 1

end
return
x? = argmini∈J1,kK (f(xi))

p? = mini∈J1,kK f(xi)

ing as a generalization of the bisection method in higher dimensions. Nonetheless,

it is not used a lot in practice due to the fact that better methods, such as the

interior-point method have been developed more recently. Compared with the sim-

plex method, the ellispoid algorithm does not move along the vertices on the outer

part of the feasible set but converges from one starting point towards the optimum.

A similar technique relying on an initial feasible point located within the constraint

set has been developed to solve convex programs. This technique presented within

the next subsection includes multiple variants called interior-point methods.

3.6.3 Interior-point Methods

Interior-point methods offer powerful polynomial time and practically applicable

algorithms. This family of techniques has been introduced initially to tackle linear

programming problems (Karmarkar, 1984), they have been later on generalized to

all convex programming problems (Nesterov and Nemirovskii, 1994). This algorithm

relies on a barrier function that is smooth and convex in the interior of the feasibility

set and tends to infinity on the boundary.

Lagrange Duality

A convex optimization problem called the primal is linked to its dual problem by

the Lagrange dual function. The basic idea behind Lagrange duality is to add the



3.6 Algorithms 61

constraints to the objective function to create an augmented objective function.

minimize
x

f0(x)

subject to ∀(i, j) ∈ J1,mK× J1, pK

fi(x) ≤ 0

hj(x) = 0

(3.32)

The Lagrangian associated with the optimization problem (3.32) with decision

variable x ∈ Rn is therefore expressed as follows,

L(x, λ, ν) = f0(x) +
m∑
i=1

λifi(x) +

p∑
j=1

νjhj(x), (3.33)

where λ and ν are called the Lagrange multiplier vectors, and domL = D×Rm×Rp,
with dom f0 = D. The Lagrange dual is the function calculated such that,

g(λ, ν) = inf
x∈D

L(x, λ, ν). (3.34)

Consequently, as the infimum of a family of affine functions the Lagrange dual is

concave. An important property of the Lagrange dual function is that any feasible

solution x for the optimization problem (3.32), and any pair of Lagrange multipliers

(λ, ν) ∈ Rm+ × Rp provide a lower bound on the optimal value of the optimization

problem noted p?.

g(λ, ν) ≤ p? (3.35)

Subsequently, an important property of the Lagrange dual function is that it

provides a non-trivial lower bound on the optimum value of the optimization prob-

lem. This has been achieved by formulating the hard constraints of the optimization

problem (3.32) with soft constraints in an augmented cost function. Naturally, one

will want to find the best lower bound on the optimal value p? using the Lagrange

dual function using a new optimizatin problem, formulated as per (3.36).

maximize
λ,ν

g(λ, ν)

subject to λ ≥ 0
(3.36)

This new optimization problem is called the dual problem, while the previous

problem presented in equation (3.32) is called the primal problem. The Lagrange

dual consists of maximizing a concave function and therefore is a convex optimization

problem. This property holds regardless of the convexity properties on the primal



62 Background

problem.

Weak duality The optimal value of the Lagrange dual obtained as the optimal

value of (3.36) is denoted by d?. It has been already established that the following

inequality holds,

d? ≤ p?. (3.37)

The difference between p? and d? is called the optimal duality gap, this gap is

always positive according to (3.35). This property is called weak duality and always

holds even if one of the bounds is not finite.

Strong duality The property of strong duality holds when the optimal duality

gap is zero and it naturally follows that,

d? = p?. (3.38)

Strong duality holds when the primal is convex and under constraint qualification

conditions. For example, if the primal is strictly feasible, in other word if there exists

an element in the relative interior of the feasible set, then strong duality holds. The

property of strong duality can be used as a certificate proving that optimality has

been reached, and subsequently it provides a very powerful stopping criteria for the

interior-point algorithm.

Optimization algorithm

The duality theory is used in order to solve convex optimization problems as well

as to certify that the optimal solution has been obtained, therefore providing a

termination criteria for the primal dual interior-point algorithm. Some conditions

used as the generalization of the optimality conditions for unconstrained convex

differentiable functions have been developed in the case of constrained convex op-

timization problems, they are called the KKT conditions (Brezhneva et al., 2009).

Simply using the gradient of the objective function to compute the optimal solution

of a constrained convex optimization problem is in general difficult. Subsequently,

an algorithm computing a sequence of points converging to the optimal solution,

called minimizing sequence, is implemented in practice. Different versions of the

interior-point algorithm exist, the main variants are the barrier method and the

primal dual interior-point algorithm. The barrier method relies on the definition

of a self-concordant barrier function given in equation (3.39) for the optimization
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problem (3.32).

φ(x) = −
m∑
i=1

log(−fi(x)) (3.39)

The barrier function φ(x) can be understood as a force field that keeps the

objective function away from the inequality constraints. Changing the balance of

this force field is achieved by weighing the sum composed of the objective function

and the barrier function. The idea is to minimize the equality constrained problem

and to increase the weight linked to the objective function until a stopping criteria

is reached. This barrier function can be used for generalized inequalities. However,

more efficient than the barrier method is the primal dual interior-point algorithm, an

alternative that is presented in Algorithm 3.3. This technique is similar to the barrier

method, however the update is performed on both the primal and dual variables by

applying Newton’s method directly to the KKT equations.

Algorithm 3.3: Primal dual interior-point algorithm.

Inputs : Strictly feasible primal and dual solution (x0, λ0, ν0)
Initialization: Set k = 0
while ‖rpri‖ ≥ εfeas or ‖rdual‖ ≥ εfeas or η̂ ≥ ε do

Set t = µmη̂
Compute primal dual search ∆pd =

(
∆xpd,∆λpd,∆νpd

)
Line search with step length s
Update primal and dual variables
(xk+1, λk+1, νk+1) = (xk, λk, νk) + s

(
∆xpd,∆λpd,∆νpd

)
k = k + 1

end
return
x? = xk
p? = f0(x?)
d? = g(λk, νk)

The variables rpri and rdual correspond respectively to the primal and dual resid-

uals. The scalar µ denotes the increasing factor of the variable t, η̂ represents the

duality gap when the solution obtained is primal and dual feasible, and the con-

stants ε and εfeas denote the problem tolerance. The primal dual interior-point

algorithm terminates at the iteration k, when xk is primal feasible, (λk, νk) are dual

feasible and the duality gap is smaller than the required ε precision. Note that the

Lagrangian can be defined for generalized inequalities by replacing the Lagrange mul-

tiplier constraints with dual positive generalized inequalities. In addition to this, the

KKT conditions have also been generalized to handle optimization problems includ-

ing generalized inequalities. Therefore, the same primal dual interior-point method
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can be extended to the more general case of conic programs using generalized in-

equalities. This is the generalization of interior-point methods that confers a lot of

practicality and importance to this technique (Potra and Wright, 2000).

3.6.4 Branch and Bound Algorithm

The branch and bound technique has been proposed originally to tackle linear in-

teger programming problems (Land and Doig, 1960). The main idea behind this

optimization technique is that a mixed integer linear program is relaxed into a stan-

dard linear programming problem in order to be solved, this initial problem is called

the root node. The next step is to branch the search space into multiple mixed inte-

ger linear programs that are solved and compared to an upper and a lower bounds

on the solution, the algorithm stores the best achievable incumbents during the

search. The initial problem is divided into a set of subproblems organized in the

shape of a rooted tree graph, branching is done when an integer variable does not

have an integer value in the solution for the relaxed problem. The branches of the

tree correspond to the original problem solved over a smaller feasible set. If it is

found that a branch cannot provide a better solution, it is pruned from the search

tree. This process is performed within the search tree in a top down fashion until

the best solution is found.

0 1 2 3 4 5 6
0
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5
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x
2

Figure 3.12: Representation of the feasible set for an integer linear program.

The branch and bound algorithm uses the linear relaxation of the integer problem
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Algorithm 3.4: Branch and bound algorithm.

Inputs : Problem instance
Initialization: L = {P0}, J

?
feas = +∞

while L 6= ∅ do
Select node P in active set L
Remove node P from active set L
Branch problem P into problems {P1, . . . , Pk}
for i = 1 to k do

Compute lower bound Ji and solution xi by solving the relaxed
problem Pi

if Ji < J?feas then
if xi solution of initial problem then

Set J?feas = Ji
else

Add problem Pi to active set L
end

end
else

Discard node Pi
end

end

end

end
return
x? = argmin

(
J?feas

)
p? = J?feas
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in order to obtain an optimal mixed integer solution. In the worst case scenario the

algorithm will evaluate all the possible nodes and perform an exhaustive search

over the integer decision variables. Subsequently, the worst case computational

complexity is exponential. Multiple variants have originated from the branch and

bound technique, such as the branch and cut method. This last technique uses cuts

in order to tighten the bounds obtained during the linear relaxation of the integer

decision variables in the branches. The distinctions between these algorithms is

found in the branching and cutting strategies. The integer values located within the

shaded are presented in Figure 3.12 represent the feasibility set of a integer linear

program. The maximization of x1 and x2 would lead to the top right vertex in the

relaxed LP, the branch and bound would therefore branch the search space in two

subspaces where the initial problem would be relaxed and solved again. The branch

and cut would branch and then apply some integer cuts to the search space and

terminates with the optimal solution.

3.7 Summary

This section has presented the principal properties and definitions of convex sets and

convex functions which led to the formulation of convex optimization problems. In

addition, some background has been provided regarding the formulation of standard

non-convex optimization problems that are frequently encountered in control and

systems theory. It is interesting to notice that even the non-convex problems rely

on convex optimization techniques to obtain global or local solutions. Finally, the

main algorithms and methods used to solve these optimization problems have been

introduced. All these techniques will be used within the next chapters in order to

solve the control architecture problems as well as the optimal control problems.



Chapter 4

Weak Interactions System

Partitioning Using Binary

Integer Linear Programming

4.1 Introduction

System models are widely used in control design especially with the development

of techniques such as Model Predictive Control (MPC) (Richalet et al., 1978; Ma-

ciejowski, 2002; Rawlings and Mayne, 2009). Systems are growing in size and com-

plexity and they are in most cases composed of interacting subsystems (Scattolini,

2009). For these large scale systems, the design of a centralized controller can be pro-

hibitive due to the heavy computational resources required (Mayne, 2014; Adelipour

et al., 2017). Also, if the system is geographically spread out, communication de-

lays between the centralized controller and the actuators and sensors arise. An

appropriate decomposition of the main system into subsystems could improve the

system performance, ease the implementation of distributed control as well as bring

a reduction in communication requirements. One way to solve this problem is to

see the system as a concatenation of subsystems and to design local controllers for

each subsystem (Xie et al., 2016). In a top-down approach the full model of the

multivariable system is partitioned into subsystem models so that the decentralized

controller can be designed. Decentralized control has been studied for decades and

design procedures have been established (Šiljak, 1991; Lunze, 1992; Bakule, 2008).

However, the system model partitioning problem has been overlooked, often because

the system is already composed of physical subsystems. Every subsystem model is

defined by a set of states and inputs. The weak interaction partitioning problem

consist of defining these sets in order to minimize the coupling between subsystem

67
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models. In other words, the problem of partitioning a dynamical system into sub-

systems can be seen as a packing problem where the aim is to pack the set of sensors

and actuators in subsystems. In addition to this, a cost function representing the

total level of interaction is minimized and constraints are employed such that each

subsystem remains controllable. For instance, strongly coupled subsystem models

can emerge from the main system model, particularly within chemical plants (Stew-

art et al., 2010) or heating systems (Moroşan et al., 2010). The ideal partitioning

of a system model would yield completely decoupled subsystem models.

Defining the subsystems of a plant has been done in different ways in the past.

One of the first methods employed to couple inputs and outputs was the relative gain

array (Bristol, 1966). This method is used to find the best pairing at steady state

between inputs and outputs and hence to choose the most relevant input to control

a given output in a multi-input multi-output system. It can be seen as a response

to the industrial need to control a multivariable process as a combination of single

variable processes. The relative gain array has been extended to the block relative

gain, allowing for suitable pairing for block decentralized control (Manousiouthakis

et al., 1986; Kariwala et al., 2003). The extension of the relative gain array allows

the design of multivariable controllers in a decentralized way. However it only links

inputs and outputs together and does not provide a partitioning of the plant model.

A technique similar to the relative gain array, is the Nyquist array method, allow-

ing the design of single-input single-output controllers after rendering the model

diagonally dominant (Leininger, 1979; Chen and Seborg, 2003). System partition-

ing can be performed by seeking the least interacting groups. Another technique

used for system decomposition and integration is the design structure matrix also

known as the dependency structure matrix or interaction matrix (Browning, 2001).

This technique indicates the link between the elements it represents, moreover the

links are directed. Elements along a row indicate that a contribution is provided

to other elements whereas elements along a column indicates a dependency from

other parts of the system. The attribution of weights within the interaction matrix

is used in order to perform clustering and achieve system decomposition. Another

similar technique employed clustering along with a genetic algorithm optimal search

in order to (Xie et al., 2016). A graph partitioning algorithm has also been used

in order to decompose a system into subsystems, it relies on a translation of the

system model into a graph (Ocampo-Martinez et al., 2011). Then the partition-

ing is performed by seeking highly connected sub-graphs, also reducing the number

of interconnections between them. Other works on decentralized control combined

the controller design along with the controller topology, these two aspects are com-

bined in an optimization function yielding a trade-off between the need for feedback
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links and the loss of performance compared to the centralized controller architecture

(Schuler et al., 2014). Finally, other works have studied the actuator partitioning

problem (Jamoom et al., 1998; Motee and Sayyar-Rodsari, 2003). To the best of the

author knowledge the problem addressing state space model partitioning has not

been studied. Therefore this partitioning approach is a standalone work, making

any real comparison difficult.

In this chapter, a binary integer linear programming based approached is pro-

posed to the problem of partitioning a system model into a set of non-overlapping

but coupled subsystem models, or overlapping subsystem models. The objective is

to reduce the magnitude of the interactions between the subsystem models. Finally,

cuts are added to rule out non-controllable partitionings in order for the algorithm

to yield only controllable subsystem models.

Most of the content presented within this chapter has been already published

(Guicherd et al., 2017). The chapter is organized as follows, section 4.2 states the

problem and section 4.3 introduces the required notations leading to the optimization

problem formulation. Section 4.4 demonstrates how the problem can be relaxed into

a integer linear programming problem. In section 4.5 the partitioning cut principle

is presented allowing to obtain only controllable subsystems. Section 4.6 explains

the linear partitioning algorithm along with one of the auxiliary algorithm used to

extract the subsystem models. Section 4.7 proposes a discussion dealing with the

linear partitioning problem size as well as the partitioning algorithm complexity.

In section 4.8, the system and subsystem graph representations are introduced. In

order to illustrate the efficacy of the partitioning algorithm section 4.9 includes some

numerical examples, finally section 4.10 concludes the chapter.

4.2 Problem Statement

Given a continuous linear time invariant controllable state space model defined by

ẋ = Ax+Bu, (4.1)

where, the matrix A is the state matrix and the matrix B is the input matrix

respectively with the appropriate sizes for n states and m inputs, therefore, x ∈ Rn

and u ∈ Rm. Partitioning the system model (4.1) consists of decomposing the inputs

as well as the states into groups representing subsystems. For a given number of

partitions N ∈ J2,min(n,m)K and for any subsystem p ∈ J1, NK the subsystem model
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indexed by p can be expressed as follows,

ẋp = Appxp +Bppup +

N∑
j=1
j 6=p

{
Apjxj +Bpjuj

}
, (4.2)

with, for all p ∈ J1, NK, xp ∈ Rnp and up ∈ Rmp such that

N∑
p=1

np ≥ n (4.3a)

N∑
p=1

mp = m. (4.3b)

The weak interactions partitioning problem consists of minimizing the magni-

tude of the right-hand side sum in (4.2) for the subsystems while keeping each of

them controllable. An ideal partitioning of the system (4.1) would yield completely

decoupled subsystems, consequently the right-hand side sum in (4.2) would always

be equal to zero regardless of the state and input variables value. A non-overlapping

condition for the states and the inputs is imposed by (4.3) in the case of the equality

for equation (4.3a) and a state overlapping condition is allowed in the case of the

strict inequality, providing that all the state variables are used in the partitioning.

The next section presents the decision variables, the constraints as well as the sub-

system to subsystem interaction metric necessary in order to formulate the weak

interactions partitioning optimization problem.

4.3 Weak Interactions Problem Formulation

4.3.1 Decision Variables

A decision variable is associated with the couples formed by a group p and a state i as

well as a group p and an input j. All the decision variables are binary variables. They

are organized in two grouping matrices, the state grouping matrix α ∈ J0, 1KN×n and

the input grouping matrix β ∈ J0, 1KN×m. Therefore, the rows of α and β represent

the N groups and the columns represent the n states and the m inputs respectively.

For example, the partitioning of a system with n = 5 states and m = 3 inputs into

N = 2 subsystems could be given by the non-overlapping state and input grouping
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matrices (4.4).

α =

[
1 1 1 0 0

0 0 0 1 1

]
, β =

[
1 0 1

0 1 0

]
(4.4)

In this example, the first three states belong to the first group (red subsystem)

and the fourth and fifth states compose the second group (blue subsystem) (4.5).

Concerning the input matrix, the first subsystem (red subsystem) includes the first

and third inputs to control the first, second and third states, whereas the second

subsystem (blue subsystem) is composed of the second input in order to control the

fourth and fifth states as presented respectively in equation (4.5) and equation (4.6).

A =

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a34

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55



 (4.5)

B =

b11 b12 b13

b21 b22 b23

b31 b32 b33

b41 b42 b43

b51 b52 b53




(4.6)

All the matrix elements not included in one of the subsystem models represent

the state and input interactions between subsystems, respectively within the state

and input matrices. The partitioning of A relies only on the grouping matrix α

whereas the partitioning of B relies on both α and β grouping matrices. Without

loss of generality, for a non-overlapping system partitioning the subsystem models

can always be represented by block matrices along the state matrix diagonal after

permutation of the states order and by disjoint block matrices composing the input

matrix after possible permutation of the inputs. An example of a state overlapping

partitioning is provided equation (4.7), in this case a state variable can be shared by

multiple subsystems as it is presented equation (4.8) with the third state variable.

α =

[
1 1 1 0 0

0 0 1 1 1

]
, β =

[
1 0 1

0 1 0

]
(4.7)
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A =

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a34

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55



 (4.8)

B =

b11 b12 b13

b21 b22 b23

b31 b32 b33

b41 b42 b43

b51 b52 b53




(4.9)

Hence, a specific system model partitioning is represented by a pair of state and

input non-overlapping or overlapping grouping matrices, even if this representation

is not unique. Indeed, any new grouping matrices obtained by simultaneous per-

mutation of the rows of α and β simply represent the same partitioning. Such a

permutation is allowed because the subsystem models are not ordered or labelled and

consequently it would correspond to changing the subsystem labels. More specif-

ically, the columns of the grouping matrices are composed of zeros and a single

one in the non-overlapping case. The one is positioned in the row representing the

group where the state or input belongs respectively for a state and an input non-

overlapping grouping matrix. Multiple ones can be located in the same column of a

state grouping matrix in the case of state overlapping partitioning. The next sub-

section presents the linear constraints restricting the decision variables α and β in

the integer optimization problem formulation.

4.3.2 Partitioning Constraints

The formulation of constraints on the decision variables is necessary in order for

the algorithm to return a solution complying either with the rules defining non-

overlapping subsystem models or state overlapping system models. The partitioning

rules along with their mathematical equivalence as linear constraints are expressed

as per equation (4.10) and equation (4.11), respectively for the non-overlapping and

overlapping system model partitionings.



4.3 Weak Interactions Problem Formulation 73

Non-overlapping Partitioning Constraints

1. Each state group contains at least a state, hence, no state group can be empty

and the partitioning has the correct number of state groups

∀p ∈ J1, NK,
n∑
i=1

αpi ≥ 1 (4.10a)

2. Each input group contains at least an input, hence, no input group can be

empty and the partitioning has the correct number of input groups

∀p ∈ J1, NK,
m∑
i=1

βpi ≥ 1 (4.10b)

3. A state can be in only one state group, therefore, the multiple use of a state

is prevented and the non-overlapping state requirement is respected

∀i ∈ J1, nK,
N∑
p=1

αpi ≤ 1 (4.10c)

4. An input can be in only one input group, therefore, the multiple use of an

input is prevented and the non-overlapping input requirement is respected

∀i ∈ J1,mK,
N∑
p=1

βpi ≤ 1 (4.10d)

5. Each state must belong to a state group, consequently, no state is left out of

the optimization problem

∀i ∈ J1, nK,
N∑
p=1

αpi ≥ 1 (4.10e)

6. Each input must belong to an input group, consequently, no input is left out

of the optimization problem

∀i ∈ J1,mK,
N∑
p=1

βpi ≥ 1 (4.10f)
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Overlapping Partitioning Constraints

1. Each state group contains at least a state, hence, no state group can be empty

and the partitioning has the correct number of state groups

∀p ∈ J1, NK,
n∑
i=1

αpi ≥ 1 (4.11a)

2. Each input group contains at least an input, hence, no input group can be

empty and the partitioning has the correct number of input groups

∀p ∈ J1, NK,
m∑
i=1

βpi ≥ 1 (4.11b)

3. The total number of state variables used is set to n + q to allow for q state

variables to overlap

N∑
p=1

n∑
i=1

αpi = n+ q (4.11c)

4. An input can be in only one input group, therefore, the multiple use of an

input is prevented and the non-overlapping input requirement is respected

∀i ∈ J1,mK,
N∑
p=1

βpi ≤ 1 (4.11d)

5. Each state must belong to at lest one state group, consequently, no state is

left out of the optimization problem

∀i ∈ J1, nK,
N∑
p=1

αpi ≥ 1 (4.11e)

6. Each input must belong to an input group, consequently, no input is left out

of the optimization problem

∀i ∈ J1,mK,
N∑
p=1

βpi ≥ 1 (4.11f)

It can be noted that some pairs of inequality constraints, in both the non-

overlapping and the overlapping case could be expressed as one equality constraint,

without affecting the formulation of the partitioning problem. The constraints are
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expressed for the two grouping matrices, however only three different sets of con-

straints concern each type of grouping matrix. Because α and β are arrays of binary

variables a natural implicit constraint links n,m and N .

1 < N ≤ min(n,m) (4.12)

Subsystem interactions can come from the state matrices or the input matrices,

the next subsection presents how these interactions can be formulated firstly using

the block matrix form and secondly using the state space model entries.

4.3.3 Objective: Minimizing Subsystem Interactions

The first part of the interactions comes from the state matrices. The subsystem

model (4.2) presents the couplings with the other subsystems in the form of a sum,

this sum can be split into the state interactions and the input interactions. For a

given number of partitions N ∈ J2,min(n,m)K and for any subsystem p ∈ J1, NK the

state interactions can be expressed by,

Jstatep =
N∑
j=1
j 6=p

∥∥vec
(
Apj
)∥∥

1
. (4.13)

The expression written in block matrix form can also be represented using the

state matrix elements as well as the state grouping matrix elements as follows,

Jstatep =
n∑
i=1

n∑
j=1

αpi|aij |
(
1− αpj

)
. (4.14)

The elements from the state grouping matrix are used here as boolean tests

to take into account only the interactions acting on the subsystem p and coming

from the other subsystem states. A similar reasoning is applied to quantify the

interactions coming from the input matrices,

J inputp =
N∑
j=1
j 6=p

∥∥vec
(
Bpj
)∥∥

1
. (4.15)

In a similar fashion, equation (4.15) can also be represented using the input

matrix elements as well as the elements of the state grouping matrix combined with

the elements of the input grouping matrix, such that,

J inputp =

n∑
i=1

m∑
k=1

αpi|bik|
(
1− βpk

)
. (4.16)
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Likewise, the elements from the state grouping matrix combined with the ele-

ments of the input grouping matrix are used as boolean tests to take into account

only the interactions acting on the subsystem p and coming from the other subsys-

tems inputs. After having defined the two types of interactions, the full interaction

metric can be calculated. Consequently, the last step is to pose the weak interactions

optimization problem like it is presented within the next subsection.

4.3.4 Weak Interactions Optimization Problem

The overall formulation of the weak interactions optimization problem is obtained

by summing the interactions coming from the states and the inputs over the N

subsystems as follows,

J interaction =
N∑
p=1

{
Jstatep + J inputp

}
. (4.17)

Hence, the integer linear optimization problem can be formulated using the same

notation as the one employed in equation (4.14) and equation (4.16) and is expressed

by the optimization problem provided in equation (4.18).

minimize
α,β

N∑
p=1

n∑
i=1

αpi
 n∑
j=1

{
|aij |

(
1− αpj

)}
+

m∑
k=1

{
|bik|

(
1− βpk

)}
subject to ∀p ∈ J1, NK,

n∑
i=1

αpi ≥ 1,
m∑
i=1

βpi ≥ 1

∀i ∈ J1, nK,
N∑
p=1

αpi ≤ 1,
N∑
p=1

αpi ≥ 1

∀j ∈ J1,mK,
N∑
p=1

βpj ≤ 1,

N∑
p=1

βpj ≥ 1

(4.18)

The optimization problem presented in (4.18) has an equivalent matrix formu-

lation using the state space model matrices as well as the state and input grouping

matrices. This representation will be used later in order to display the subsystem
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to subsystem interactions in the form of a weighted directed graph.

minimize
α,β

tr(α|A|(1− α)> + α|B|(1− β)>)

subject to ∀p ∈ J1, NK,
n∑
i=1

αpi ≥ 1,

m∑
i=1

βpi ≥ 1

∀i ∈ J1, nK,
N∑
p=1

αpi ≤ 1,
N∑
p=1

αpi ≥ 1

∀j ∈ J1,mK,
N∑
p=1

βpj ≤ 1,
N∑
p=1

βpj ≥ 1

(4.19)

The grouping matrices (1 − α) and (1 − β) are the conjugate of α and β re-

spectively, they are obtained by changing the ones into zeros and vice versa. The

magnitude operator applied to a matrix yields a matrix where each component is the

magnitude of the initial matrix. The pre-multiplication of |A| by α adds the selected

rows from each subsystem together into a single row, then the post-multiplication

by the transpose of the conjugate of α adds the columns not belonging to the same

subsystem together. Consequently, the square matrix obtained is of dimension N

and contains the subsystem to subsystem interactions on its diagonal. More specif-

ically, the diagonal element with row and column indexes equal to i represents the

sum of the interactions coming from all the subsystems with the subsystem i. In

a similar fashion, replacing the constraints of the optimization problems (4.18) and

(4.19) by the overlapping partitioning constraints yields the equivalent overlapping

problem formulation. As it was demonstrated previously within this section the par-

titioning problem can be expressed as an integer optimization problem. However the

cost function representing the interaction metric is non-linear as well as non-convex,

therefore the problem can be intractable. As it is presented within the next section

a linear relaxation of the optimization problem (4.18) is made possible throughout

the use of auxiliary variables.

4.4 Linear Relaxation of the Weak Interactions Prob-

lem

The weak interactions optimization problem formulated previously in (4.18) can

be turned into an Integer Linear Programming (ILP), this is made possible due to

the introduction of auxiliary variables. Replacing a product of binary variables by

an auxiliary variable is a well known technique that requires the use of new linear

constraints (Cavalier et al., 1990; Bemporad and Morari, 1999; Williams, 2013).
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Two auxiliary binary variables are created along with their linear constraints, a

state auxiliary variable γ used to take into account the interactions coming from the

state matrix, and an input auxiliary variable δ used to account for the interactions

coming from the input matrix.

4.4.1 State Auxiliary Variable

As it is presented in Table 4.1 and in equation (4.20), γ is linked to α throughout

four constraints. Indeed, four inequalities are necessary because of the four possible

outcomes for the binary product αpi(1−αpj) in equation (4.14). From top to bottom

within Table 4.1, the four different cases are, first when no states belong to the group

p then no interaction has to be accounted for. If the state i is not in the group p

but the state j is, then no interaction is accounted for as this will be taken into

account in the symmetrical case. If the state i belongs to the group p and the state

j does not then an interaction is accounted for. The last possible case is when the

two states i and j both belong to the group p, in this last scenario no interaction

subsists as they are both in the same group.

Table 4.1: Auxiliary variable γ.

Primary Auxiliary
αpi αpj αpi

(
1− αpj

)
γpij

0 0 0 0
0 1 0 0
1 0 1 1
1 1 0 0

The four linear constraints for the state auxiliary variable γ are the following,

∀(p, i, j) ∈ J1, NK× J1, nK× J1, nK,

γpij ≤ αpi + αpj (4.20a)

γpij ≤ 1 + αpi − αpj (4.20b)

γpij ≥ αpi − αpj (4.20c)

γpij ≤ 2− αpi − αpj . (4.20d)

4.4.2 Input Auxiliary Variable

In a similar way, δ is the auxiliary binary variable taking into account the interactions

coming from the input matrix. This time the constraints are formed using α as well

as β because the input interactions are also state dependent. The same reasoning
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applies to formulate the four inequalities arising from the binary product αpi(1−βpk)
in equation (4.16). All the cases are gathered within Table 4.2.

Table 4.2: Auxiliary variable δ.

Primary Auxiliary
αpi βpk αpi

(
1− βpk

)
δpik

0 0 0 0
0 1 0 0
1 0 1 1
1 1 0 0

The four linear constraints associated to δ are represented in (4.21).

∀(p, i, k) ∈ J1, NK× J1, nK× J1,mK,

δpik ≤ αpi + βpk (4.21a)

δpik ≤ 1 + αpi − βpk (4.21b)

δpik ≥ αpi − βpk (4.21c)

δpik ≤ 2− αpi − βpk (4.21d)

In summary, the required behaviours induced by the state and input auxiliary

variables are equivalent to the logical conditions, state i in group p and state j not

in group p as well as state i in group p and input k not in group p, respectively for

γpij and δpik. Both auxiliary variables have three indexes and can be represented

by cubic arrays of binary variables, their respective sizes are N × n × n for the

state auxiliary variable γ and N × n × m for the input auxiliary variable δ. In

addition to the linear constraints presented in equation (4.20) and equation (4.21),

both auxiliary variables have to be composed only of binaries. Similarly, the same

auxiliary variables with the same constraints are used to linearize the cost function

of the overlapping partitioning problem. Indeed, the overlapping case is only a

generalization of the non-overlapping case that is achieved by a modification of the

linear constraints affecting the primary variables. The next subsection presents the

formulation of the linearized weak interactions partitioning problem based on the

state and input auxiliary variables.

4.4.3 Weak Interactions Optimization Linear Problem

The optimization problem presented in (4.18) is reformulated into the linear integer

optimization problem presented in (4.22), obtained by replacing the binary products
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by the auxiliary variables along with their linear constraints. The new optimization

problem obtained has a linear cost function and linear constraints, however, all the

decision variables are binaries. Therefore, the linearized optimization problem (4.22)

is a Binary Integer Linear Programming (BILP). The linear relaxation provided by

the introduction of auxiliary variables is tight and equivalent to the initial partition-

ing optimization problem (Williams, 2013). A similar formulation can be achieved

in the overlapping case by replacing the set of constraints (4.10) by the constraints

(4.11).

minimize
α,β,γ,δ

N∑
p=1

n∑
i=1


n∑
j=1

{
γpij |aij |

}
+

m∑
k=1

{
δpik|bik

∣∣}


subject to ∀p ∈ J1, NK,
n∑
i=1

αpi ≥ 1,
m∑
i=1

βpi ≥ 1

∀i ∈ J1, nK,
N∑
p=1

αpi ≤ 1,
N∑
p=1

αpi ≥ 1

∀i ∈ J1,mK,
N∑
p=1

βpi ≤ 1,
N∑
p=1

βpi ≥ 1

∀(p, i, j, k) ∈ J1, NK× J1, nK× J1, nK× J1,mK

γpij ≤ αpi + αpj

γpij ≤ 1 + αpi − αpj
γpij ≥ αpi − αpj
γpij ≤ 2− αpi − αpj
δpik ≤ αpi + βpk

δpik ≤ 1 + αpi − βpk
δpik ≥ αpi − βpk
δpik ≤ 2− αpi − βpk

(4.22)

As it was presented within this section, the use of two auxiliary variables enables

the linearization of the optimization problem. The minimization problem presented

in (4.22) because of the use of primary and auxiliary binary variables allows to

trade non-linearities for an increase in decision variable dimension. Nonetheless, the

complexity of the optimization problem can be reduced by exploiting the structure

of the plant model and by creating only the auxiliary variables where the state space

model elements are not equal to zero. For instance, if aij = 0 there is no need to

create (γpij)p∈J1,NK, similarly if bik = 0 with (δpik)p∈J1,NK. The next section presents

the notion of partitioning cut reducing the search space in order to obtain only
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controllable subsystems.

4.5 Partitioning Cuts

Running the previous optimization problem will yield N subsystems presenting the

least amount of interactions, unfortunately no information is given concerning their

controllability. The state space model of any subsystem p, represented without the

couplings coming from the other subsystems can be rewritten from equation (4.2)

as follows,

∀p ∈ J1, NK, ẋp = Appxp +Bppup. (4.23)

The controllability of any given subsystem model p yielded by the optimization

problem can be checked by verifying that the controllability matrix Cp defined in

(4.24) has full row rank.

∀p ∈ J1, NK, Cp =
[
Bpp

∣∣∣AppBpp ∣∣∣ . . . ∣∣∣Anp−1
pp Bpp

]
(4.24)

Therefore, at the end of the optimization process, a controllability test is per-

formed for each subsystem model, testing that the set of equalities given in (4.25)

holds.

∀p ∈ J1, NK, rank
(
Cp
)

= np (4.25)

As one can see the controllability matrices Cp as well as the integers np rep-

resenting the number of state variables in subsystem p are obtained as a result of

solving the optimization problem and are not known a priori. Therefore, implement-

ing constraints within the linear integer optimization problem in order to restrain

the solutions to the set of controllable subsystems is a tremendously difficult task.

However, applying controllability cuts to the search space recursively and a poste-

riori is possible. Every time a non-controllable partitioning is achieved new linear

constraints are added to the existing ones in order to reduce the search space by

cutting the non-controllable partitionings out with an affine hyperplane cut. The

principle of cutting solutions out of the search space is similar to the Gomory cuts

(Gomory, 1958) where cuts are used to discard solutions that are not integer. Con-

trollability cuts are applied from the root node and are valid for the entire search

tree, hence cuts lifting methods are not necessary in this case (Balas et al., 1996).
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4.5.1 Non-overlapping Partitioning Cuts

The non-overlapping grouping matrices can be seen as a concatenation of basis

vectors, such that

α =
[
ei1
∣∣ ei2 ∣∣ . . . ∣∣ eik ∣∣ . . . ∣∣ ein]ik∈J1,NK (4.26a)

β =
[
ei1
∣∣ ei2 ∣∣ . . . ∣∣ eik ∣∣ . . . ∣∣ eim]ik∈J1,NK , (4.26b)

with (eik)ik∈J1,NK the canonical orthonormal basis of RN . Subsequently, the square

of their l2-norm is equal to n and m respectively and is calculated in equation (4.27)

and equation (4.28).

‖α‖22 = tr
(
α>α

)
=

n∑
k=1

e>ik .eik =

n∑
k=1

δikik = n (4.27)

‖β‖22 = tr
(
β>β

)
=

m∑
k=1

e>ik .eik =
m∑
k=1

δikik = m (4.28)

In the more general case of overlapping grouping matrices having q state overlaps,

only the l2-norm of α is changed as follows,

‖α‖22 = tr
(
α>α

)
=

N∑
i=1

n∑
j=1

α2
ij = n+ q. (4.29)

The set of non-overlapping grouping matrices of size N × n respecting the con-

straints (4.10a), (4.10c) and (4.10e) will be referred to as GNn with GNn ⊂ J0, 1KN×n.

Whereas the set of overlapping grouping matrices of size N × n with q overlaps, re-

specting the constraints (4.11a), (4.11c) and (4.11e) will be referred to as Gq
Nn with

Gq
Nn ⊂ J0, 1KN×n. The optimal non-controllable partitionings can be cut out of

the search space by applying the following cut after at least one non-controllable

subsystem is obtained,

∀ (α, β) ∈ GNn ×GNm, (α, β) 6=
(
αnc

?

, βnc
?)

⇔ tr
(
α>αnc

?)
+ tr

(
β>βnc

?)
≤ n+m− 1 (4.30a)

⇔
N∑
p=1

{
n∑
i=1

{
αpiα

nc
?

pi

}
+

m∑
k=1

{
βpkβ

nc
?

pk

}}
≤ n+m− 1. (4.30b)

As proved by Lemma 4.1 as well as Lemma 4.2, cuts can be added to re-
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move the non-overlapping or overlapping partitionings that include at least one

non-controllable subsystem.

Lemma 4.1. A non-controllable non-overlapping partitioning defined by a pair of

grouping matrices (αnc
?

, βnc
?

) is removed from the set of feasible solutions by apply-

ing the controllability cut (4.30).

Proof. For a given non-controllable optimal non-overlapping partitioning denoted

by αnc
?

and βnc
?

, and for any couple of non-overlapping grouping matrices α and

β, the inequalities (4.31) hold for the state grouping matrices.

∀
(
αnc

?

, α
)
∈ G2

Nn, tr
(
α>αnc

?)
=

n∑
k=1

e>ik .e
nc

?

ik
=

n∑
k=1

δ
iki

nc
?

k

≤ n (4.31)

Similarly, for the input grouping matrices the inequality (4.32) holds.

∀
(
βnc

?

, β
)
∈ G2

Nm, tr
(
β>βnc

?)
=

m∑
k=1

e>ik .e
nc

?

ik
=

m∑
k=1

δ
iki

nc
?

k

≤ m (4.32)

Therefore, because of the sum of Kronecker operators, the upper bounds are only

reached in equation (4.31) when α = αnc
?

and in equation (4.32) when β = βnc
?

.

Consequently, there exists a natural way of constructing hyperplane cuts when a

non-controllable optimal partitioning (αnc
?

, βnc
?

) is obtained. The hyperplane cut

is as presented in equation (4.30) which completes the proof.

4.5.2 Overlapping Partitioning Cuts

In a similar way, a non-controllable optimal overlapping partitioning (αnc
?

, βnc
?

) can

be cut out of the search space by adding a similar controllability cut, as introduced

in equation (4.33), and proved by Lemma 4.2.

∀ (α, β) ∈ Gq
Nn ×GNm, (α, β) 6=

(
αnc

?

, βnc
?)

⇔ tr
(
α>αnc

?)
+ tr

(
β>βnc

?)
≤ n+m+ q − 1 (4.33a)

⇔
N∑
p=1

{
n∑
i=1

{
αpiα

nc
?

pi

}
+

m∑
k=1

{
βpkβ

nc
?

pk

}}
≤ n+m+ q − 1. (4.33b)

Lemma 4.2. A non-controllable overlapping partitioning defined by a pair of group-

ing matrices (αnc
?

, βnc
?

) is removed form the set of feasible solutions by applying the
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controllability cut (4.33).

Proof. For a given non-controllable optimal overlapping partitioning denoted by

αnc
?

and βnc
?

, and for any couple of overlapping grouping matrices α and β, the

inequalities (4.34) hold for the state grouping matrices.

∀
(
αnc

?

, α
)
∈ Gq

Nn ×Gq
Nn,

tr
(
α>αnc

?)
=

N∑
i=1

n∑
j=1

αijα
nc

?

ij ≤
√
‖α‖22 × ‖α

nc
?

‖22 = n+ q
(4.34)

The inner product of any overlapping state grouping matrix α with the non-

controllable optimal grouping matrix αnc
?

has an upper bound according to the

Cauchy-Schwartz inequality, given by equation (4.34). Moreover, this upper bound

is achieved only when the two state overlapping grouping matrices are equal. Also,

the previous inequality provided in equation (4.32) still holds in the overlapping

case. Therefore, the upper bounds are only reached in equation (4.33) when α =

αnc
?

and when β = βnc
?

. Consequently, there exist a hyperplane cut, ruling out a

non-controllable optimal overlapping partitioning (αnc
?

, βnc
?

) from the search space.

This cut corresponds to the inequality presented equation (4.33), which concludes

the proof.

Every time a non-controllable partitioning is obtained a controllability cut (4.30)

or (4.33) is added to the linear constraint set before the optimization is performed

again, respectively in the non-overlapping and overlapping cases. Therefore, the

previous non-controllable optimal partitioning can no longer be reached as it is now

excluded from the search space. However, because the groups are not ordered a

similar partitioning can be achieved again simply by swapping simultaneously the

rows of α and β, leading to another representation of the same system partition.

Indeed, without any order constraints on the groups, N ! identical representations

of a single partition are possible. Different techniques can be employed to make

the optimization more efficient. First of all, it would be possible to constrain the

grouping matrices in order to rank the different groups as it has been done with

move blocking matrices (Cagienard et al., 2007). In this case only one representa-

tion per partitioning would be possible. The second solution would be to perform

N ! controllability cuts every time a non-controllable optimal solution is obtained.

Therefore, all the possible non-controllable representations of a given partitioning

would be removed from the search space simultaneously. It is the latter solution

that has been implemented in the weak interactions partitioning algorithm. Every

time an optimal non-controllable solution is encountered N ! linear constraints cor-

responding to a controllability cut are added to the set of existing constraints. More
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details on the complexity of the partitioning algorithm are provided in a later sec-

tion. The optimization is then ran iteratively until the least interacting controllable

partitioning is obtained. It can be noted that the duality between the controllability

and the observability of a system can be used in order to partition a system model

composed of a state matrix A as well as an output matrix C into observable subsys-

tem models. The next section presents how the partitioning algorithm is built using

the linear relaxation as well as the controllability cut technique.

4.6 Weak Interactions Partitioning Algorithm

This section presents the main weak interaction partitioning algorithm along with

one of the auxiliary algorithm. Since the partitioning algorithm has to compute the

controllability matrices for all the subsystems, one of the steps of the partitioning

algorithm is to extract the subsystem state space models based on the value of the

grouping matrices obtained. Subsequently, a second algorithm is implemented to

extract the subsystem models relying on a technique using masking matrices and

presented within the next subsection. This auxiliary algorithm uses the grouping

matrices in order to compute the two sets of N state and N input masking matrices.

4.6.1 Extraction of the Subsystem Models

After each iteration of the partitioning algorithm a controllability check is performed

on the subsystem state space models obtained. Therefore, one of the step for the

weak interaction partitioning algorithm is to extract the subsystem models form the

main system state space model. This step is achieved throughout the use of a set of

state masking matrices Tα,p as well as a set of input masking matrices Tβ,p, where

p represents a subsystem index such that p ∈ J1, NK. The main system state space

model matrices are pre-multiplied and post-multiplied by the masking matrices in

order to keep only the appropriate rows and columns for a given subsystem. The

subsystem state space model of any subsystem indexed by p ∈ J1, NK is extracted

as per equation (4.35).

∀p ∈ J1, NK,

App = T>α,pATα,p (4.35a)

Bpp = T>α,pBTβ,p (4.35b)

The pre-multiplication of a state space matrix by the transpose of a masking

matrix will mask the appropriate rows and the post-multiplication by a masking
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matrix will mask the appropriate columns. Consequently, after pre-multiplications

and post-multiplications by the state and input masking matrices the subsystem

state space model are extracted from the main system model. The columns of the

state and input masking matrices are composed of the unit vectors of the canonical

basis of Rn and Rm respectively for the state and input masking matrices. Subse-

quently, the dimensions of the masking matrices are only linked to the dimensions of

the grouping matrices as well as the value of their entries. For a given subsystem of

index p, the state masking matrix Tα,p is an element of the set J0, 1Kn×np , similarly

the input masking matrix belongs to the set J0, 1Km×mp . Finally, for any indexes

(i, j) ∈ J1, NK2 the block matrices representing the interactions between two distinct

non-overlapping subsystems in the state space model (4.2) can be extracted with the

masking matrices as per equation (4.36).

∀(i, j) ∈ J1, NK2,

Aij = T>α,iATα,j (4.36a)

Bij = T>α,iBTβ,j . (4.36b)

Note that the extraction of interaction models in the case of state overlapping

subsystems is different for the state matrices and therefore relies on another set

of state masking matrices. The Algorithm 4.1 presented within this subsection,

explains how to compute the sets of state and input masking matrices.

Each state masking matrix is created by concatenating the unit vectors compos-

ing the canonical basis of Rn having a specific index. At the start, the algorithm

initializes each masking matrix with a zero matrix of appropriate dimension. The

masking matrices are built by concatenating vectors as follows, for a given subsys-

tem index p ∈ J1, NK, if a one is located at the intersection of the p-th row and the

i-th column of the state grouping matrix α then the canonical unit vector ei ∈ Rn

is concatenated to the right side of Tα,p, based on the value of the column index

Col, that is then incremented. Consequently, the state masking matrix indexed by

p is built by concatenating np vectors horizontally from the right. The same process

is applied to build the set of input masking matrices. However, in this case the

canonical unit vectors ej are taken from the canonical basis of Rm and the equality

condition is applied to the entries of the input grouping matrix β.

4.6.2 Partitioning Algorithm

The algorithm implemented to perform the weak interactions system partitioning

takes the main state space model (A,B) as well as the subsystem number N as
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Algorithm 4.1: Masking matrices computation algorithm.

Input : α, β
Output : ∀p ∈ J1, NK,

{
Tα,p, Tβ,p

}
Initialization: ∀p ∈ J1, NK, Tα,p = 0n×np

, Tβ,p = 0m×mp

for p = 1 to N do
Col = 1
for i = 1 to n do

if αpi = 1 then
Tα,p(:, Col) = ei
Col = Col + 1

end

end

end
for p = 1 to N do

Col = 1
for j = 1 to m do

if βpj = 1 then
Tβ,p(:, Col) = ej
Col = Col + 1

end

end

end

inputs. It returns the state and input grouping matrices α and β once one of

the least interacting controllable partitioning is reached. The algorithm can be

described step by step as it is implemented. The first step is to build the initial

linear constraints that will be used for the primary and auxiliary variables. Then

the optimization is performed yielding the first pair of state and input grouping

matrices α and β. The subsystem models are extracted from the main system model

based on the masking matrices computed by Algorithm 4.1, therefore, the subsystem

controllability matrices can be computed and their rank can be evaluated. The last

step of the algorithm is to add the appropriate set of controllability cuts if the current

optimal partitioning presents at least one uncontrollable subsystem as well as to

return to the previous step to run the optimization again with the new set of linear

constraints. Otherwise, the algorithm terminates and returns the least interacting

controllable partitioning as a final result when the optimal partitioning obtained has

all its subsystem models controllable. The weak interaction partitioning problem is a

0−1 integer linear programming problem also known as BILP. The weak interactions

partitioning algorithm is presented below in Algorithm 4.2.

On the very first loop iteration, no solution exists, therefore, the optimization is

performed and the first grouping matrices are obtained. The next step is to check
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Algorithm 4.2: Weak interactions partitioning algorithm.

Input : A,B,N
Output: α, β
while ∃p ∈ J1, NK, rank(Cp) 6= np do

if ∃(αnc
?

, βnc
?

) then
Add controllability cuts (4.33)
Run the optimization problem (4.22) subject to cuts (4.33)
Extract the subsystem state space models using Algorithm 4.1 and
compute: ∀p ∈ J1, NK, Cp

else
Run the optimization problem (4.22)
Extract the subsystem state space models using Algorithm 4.1 and
compute: ∀p ∈ J1, NK, Cp

end

end
return α, β

that every subsystem is controllable by verifying that equation (4.25) holds. If at

least one of the subsystems obtained is not controllable then N ! controllability cuts

(4.33) are added to the set of linear constraints and the optimization can start again

using the reduced search space. It can be noticed that the non-overlapping case is

subsumed by the overlapping case when the overlapping parameter q is set to zero.

The algorithm finishes when the least interacting controllable partitioning compris-

ing N subsystems is found, or when no controllable partitioning can be established.

In the latter, the optimization problem becomes infeasible as the search space re-

duces to the empty set. Evaluating the controllability of the subsystems obtained is

performed by using the auxiliary Algorithm 4.1 to extract the subsystem models, so

that the controllability matrices can be computed. A variant of the weak interaction

partitioning algorithm can be implemented if the stopping criteria is modified so that

the algorithm does not terminate when the least interacting controllable subsystems

are obtained but when all the possible controllable subsystems having the same in-

teraction metric are found. Indeed, some examples can be computed where different

partitionings have the same interaction cost and are all composed of controllable

subsystems. Such a modification of the algorithm would allow to use the extra de-

gree of freedom provided and compare all the partitionings obtained and chose the

more suitable, according to other design criteria. The next subsection presents the

combinatorial complexity of the weak interactions partitioning algorithm as well as

the search space dimension.
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4.7 Complexity of the Partitioning Problem

The weak interactions partitioning algorithm has the complexity of a binary integer

linear program, it is a well known fact that such combinatorial problems have Non-

deterministic Polynomial (NP) complexity (Karp, 1972). This section firstly explains

the size of the discrete feasible search space by enumerating the decision variables

and the constraints and secondly discusses the complexity of the binary integer linear

programming problem.

4.7.1 Search Space Dimension

Partitioning a state space model into overlapping or non-overlapping weakly coupled

subsystems consists of solving a combinatorial optimization problem. For a model

composed of n states andm inputs, the set of feasible, non-empty, non-overlapping or

overlapping partitions with N subsystems has to include a certain number of decision

variables and to comply with the set of linear constraints presented previously.

Number of Decision Variables

Performing the binary linear optimization requires primary and auxiliary variables,

the primary variables α and β are composed respectively of N × n state grouping

binaries and N ×m input grouping binaries. Finally, in order to linearize the op-

timization problem, two auxiliary variables γ and δ are added to the optimization,

their respective dimensions are N ×n×n and N ×n×m. Consequently, the integer

linear problem (4.22) has a total number of decision variables d such that,

d = Nn+Nm+Nn2 +Nnm = N(n+m)(n+ 1). (4.37)

Number of Constraints

In order for the optimization problem to comply with the overlapping or non-

overlapping problem requirements, some constraints have to be applied to the pri-

mary and auxiliary decision variables. As it can be seen from the definition of the

problem (4.22), the number of linear constraints initially applied to the primary

variables is 2(N + n + m). The auxiliary variables are subject to 4(Nn2 + Nnm)

constraints in the initial optimization problem. Therefore, the total initial number

of constraints c is as follows,

c = 2(N + n+m) + 4Nn2 + 4Nnm = 2(N + n+m) +Nn(n+m). (4.38)
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The total number of linear constraints is increased by N ! each time a controlla-

bility cut is added to the search space.

Non-overlapping Partitioning

The set of all feasible non-overlapping possible partitionings is a discrete set that

grows exponentially based on the dimensions of the system model as well as the

number of subsystems. The problem of partitioning the state and the input variables

into a fixed number of non-overlapping groups is equivalent to the number of ways

to partition a set of n states into N non-empty non-overlapping subsets. This

combinatorial number is defined by the Stirling number of the second kind as well

as the factorial operator as follows,

cardGNn = N !

{
n

N

}
. (4.39)

Similarly, the number of ways to partition the input variables into N subsets

is computed by replacing n by m in equation (4.39). Therefore, the cardinality of

the set of non-overlapping partitions for a system composed of n state variables and

m input variables is defined by the cardinality of the Cartesian product of the two

discrete sets GNn and GNm such that,

card {GNn ×GNm} = (N !)2

{
n

N

}{
m

N

}
. (4.40)

The cardinality of the product of the discrete sets is the product of the cardinality

of the two initial sets. The expression of the cardinality expressed in equation (4.39)

correspond to the number of distinct system partition representations, nonetheless,

the same partitioning can be represented N ! times by swapping simultaneously the

rows of α and β. Consequently, the total number of distinct system partitionings is

given by the following number,

N !

{
n

N

}{
m

N

}
. (4.41)

Overlapping Partitioning

The set of all feasible overlapping partitionings is computed in two steps. The first

step is similar to the set of non-overlapping partitionings, the extra step can be

seen as performing q state overlaps. Thus, it is similar to choosing q state variables

amongst n(N − 1) remaining states, in order to be used again in the state grouping
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matrix. Therefore, the cardinality of the set Gq
Nn is defined by,

cardGq
Nn = N !

{
n

N

}(
n(N − 1)

q

)
. (4.42)

Subsequently, the cardinality of the set of overlapping partitions for a system

composed of n state variables and m input variables with a number of state overlaps

set to q is defined by the cardinality of the Cartesian product of the two discrete

sets Gq
Nn and GNm given in equation (4.43).

card
{
Gq
Nn ×GNm

}
= (N !)2

(
n(N − 1)

q

){
n

N

}{
m

N

}
. (4.43)

Similarly as before, the cardinality number presented equation (4.43) is linked to

the number of representations for an overlapping partitioning. However, since each

partitioning has N ! distinct representations, the number of distinct state overlapping

system partitionings is defined as follows,

N !

(
n(N − 1)

q

){
n

N

}{
m

N

}
. (4.44)

It is possible to see that setting q to zero, correspond to the non-overlapping case

since the overlapping case subsumes it.

4.7.2 Algorithm Complexity

The complexity of a binary integer linear programming is in general NP-complete

and only some special cases have a deterministic polynomial time algorithm com-

plexity (Papadimitriou, 1981; Papadimitriou and Steiglitz, 1998). In the worst case

scenario solving a 0 − 1 integer linear program requires to perform an exhaustive

search with exponential complexity O(2d poly(d, c)), where poly(·) denotes a poly-

nomial function, d represents the number of binary decision variables and c is the

number of linear constraints respectively as per equation (4.37) and equation (4.38).

As it has been mentioned previously, knowledge of the structure of the system ma-

trices A and B can be exploited to reduce the number of auxiliary variables, hence

the number of constraints. Nonetheless, it is in general faster than the worst case

and parallel computing can be used in order to speed up the 0 − 1 integer linear

program. Also, since the algorithm is used offline and before performing the control

design, the time sensitivity of the partitioning algorithm is relatively low.
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4.8 Graph Representations

Graphs are mathematical objects used to represent the topology and structure be-

tween discrete finite sets of elements. Therefore, they are useful to represent the

dynamic relations within a system or between multiple subsystems. Thus, the weak

interaction partitioning problem can be compared to a graph partitioning problem.

This section presents the relations between system and subsystem dynamical mod-

els and mathematical graphs, and highlights the similarity between the system and

graph partitioning problems.

4.8.1 System Graph Representation

Linear systems can be represented by weighted directed graphs (Šiljak, 1991; Lunze,

1992), and graph theory has been used as a system partitioning technique previously

in the literature (Ocampo-Martinez et al., 2011). The graph representation of a

system is based on the system state space model in order to define the adjacency

matrix of the system directed weighted graph. The adjacency matrix is built from

the system state space model as follows,

A =

[
A> 0

B> 0

]
. (4.45)

The adjacency matrix A is square of dimension n+m and represents the oriented

dynamical connection between the state and input variables of a system. Also,

weights are associated to each of the edges within the directed graph to account for

the dynamical interactions between state and input variables. The system (4.46) is

mapped into the directed weighted graph represented Figure 4.1.

ẋ =

1 1 0

0 1 1

0 0 1

x+

0 1

0 0

1 0

u (4.46)

The adjacency matrix A corresponding to the system model (4.46) is therefore

given as per equation (4.47).

A =


1 0 0 0 0

1 1 0 0 0

0 1 1 0 0

0 0 1 0 0

1 0 0 0 0

 (4.47)
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Figure 4.1: Weighted digraph representation of the system model (4.46).

4.8.2 Subsystem Graph Representation

Similarly, the dynamical interactions between different subsystems can be repre-

sented using weighted directed graphs. Therefore, the problem of computing the

least interacting and controllable subsystem partitionings for a given system model

is equivalent to a graph partitioning problem. The system (4.46) can be partitioned

into two non-overlapping controllable subsystems with the minimum amount of in-

teractions as presented Figure 4.2. The first subsystem (red subsystem) includes the

state x2 and x3 as well as the input u1 and the second subsystem (black subsystem)

includes the rest of the system variables.

More precisely, the weak interactions system partitioning problem is equivalent

to the minimum k-cut algorithm for graphs, where one graph is cut into k subgraphs

such that the sum of the positive weights of the edges shared between all the sub-

graphs is minimized (Burlet and Goldschmidt, 1997). The distinction here resides

in the fact that each subsystem has to remain controllable after the partitioning

is performed. A subsystem representation of the system (4.46) is given Figure 4.3,

where each node represents a given subsystem and the edges directions and weights

respectively denote the interaction magnitudes and directions. The partitioning of

the system (4.46) can be represented by the state and input grouping matrices given
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Figure 4.2: Weighted digraph representation of the controllable partitions of the
system model (4.46) in two non-overlapping subsystems.
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in equation (4.48).

α =

[
0 1 1

1 0 0

]
, β =

[
1 0

0 1

]
(4.48)

The representation of the subsystem graph for the system model (4.46), is linked

to the grouping matrices presented previously through the definition of the adjacency

matrix A defined as follows,

A> = α|A|α> + α|B|β>. (4.49)

Defining the adjacency matrix of a system partitioning as per equation (4.49),

provides a graph with N vertices and a maximum of N2 edges including possible

loops. Each vertex represents a subsystem and their associated weight denotes the

interaction strength between two given subsystems. The interactions amongst the

state and input variables of a subsystem is defined by a diagonal element and is

represented by a loop in the subsystem graph. The subsystem graph representation

of the system (4.46) is provided Figure 4.3, according to the adjacency matrix A
computed in equation (4.50).

1 24 1 2

Figure 4.3: Subsystem graph representation of the subsystem (4.46).

The adjacency matrix A defined for the system model example is as follows,

A> =

[
0 1 1

1 0 0

]1 1 0

0 1 1

0 0 1

[0 1 1

1 0 0

]>
+

[
0 1 1

1 0 0

]0 1

0 0

1 0

[1 0

0 1

]>
=

[
4 0

1 2

]
(4.50)

4.9 Numerical Examples

This section presents some numerical examples that were used to test the weak

interactions partitioning algorithm. The first example presented was used only to

test the binary integer linear optimization and does not require any controllability

cuts. The second example was used specifically to demonstrate the controllabil-

ity checks as well as the controllability cut technique. Finally, the third example

highlights the state overlapping partitioning capability, as a generalization of the
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weak interactions partitioning problem. These three examples have been solved in

Matlab using CPLEX as the optimization solver (IBM corp., 2016). The algorithm

used by CPLEX in order to solve BILP is a branch and cut technique, where the

initial problem is relaxed into a Linear Programming (LP) problem and then cuts

and branches are created until the solution of the relaxed LP is complies with the

binary requirement.

4.9.1 Example without Controllability Cuts

The first example tested is the state space model of a military engine, the Pratt and

Whitney F100 taken from (Jaw and Mattingly, 2009). The algorithm was used with

the parameters given in (4.51). The reader can see that the whole system is already

controllable even before performing any kind of partitioning.

A =


−0.3245× 101 −0.2158× 101 −0.9155× 103 0.5731× 100 0.1342× 103

0.1642× 101 −0.5941× 101 −0.2816× 103 0.1897× 100 0.5705× 102

0.1685× 10−1 −0.2554× 10−1 −0.1003× 102 0.7994× 10−2 0.5807× 100

0 0 0 −0.1× 102 0

−0.2163× 101 0.6862× 101 0.7405× 103 0.1195× 101 −0.1715× 103


(4.51a)

B =


0.1432× 10−1 −0.3553× 103 −0.9906× 102 −0.1549× 102 0.222× 105

0.2871× 100 0.7286× 103 0.2514× 102 −0.6487× 102 0.8122× 104

−0.2469× 10−2 −0.103× 103 0.6333× 100 −0.3213× 100 −0.7418× 102

0.1× 102 0 0 0 0

−0.1311× 100 0.3295× 103 −0.25× 102 0.6257× 102 −0.6445× 105


(4.51b)

N = 2 (4.51c)

The partitioning obtained can be guessed due to the presence of zeros but also

because of the presence of large elements in the matrices. The two grouping matrices

resulting from the optimization are given in equation (4.52). It is important to notice

that this first example does not need any controllability cut.

α =

[
0 0 0 1 0

1 1 1 0 1

]
(4.52a)

β =

[
1 0 0 0 0

0 1 1 1 1

]
(4.52b)
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This example has been run on a standard desktop computer with an execution

time of 0.75s. The partitioning algorithm encounters multiple integer incumbents

during the branch and cut search, before terminating at the minimum value. The

value of the best incumbents stored during the branch and cut search are presented in

Table 4.3 and plotted in Figure 4.4. The global minimum concerning the subsystem

interactions is obtained during the very first iteration of the algorithm, thus the two

subsystems are controllable and no controllability cuts are required.
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Figure 4.4: Interaction costs of the sequence of best integer incumbents for the
partitioning of the system (4.51).

Table 4.3: Best integer incumbent costs for the partitioning of the system (4.51).

Incumbent index Interaction cost

1 9349.62
2 9303.93
3 155.21
4 2.40

The total number of ways to partition the system (4.51) into two controllable

subsystems without any overlaps is given as follows,

2!

{
5

2

}2

= 450. (4.53)
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4.9.2 Example Involving Controllability Cuts

The second example is a five order system defined such that,

A =


1 1 0 0 0

1 −1 0 0 0

0 0 1 1 0

0 0 1 1 0

0 0 0 0 −1

 (4.54a)

B =


1 0 0 1 0

1 0 0 1 0

0 1 0 0 1

0 1 0 0 1

0 0 1 0 0

 (4.54b)

N = 3 (4.54c)

The first 20 iterations of the algorithm result in non-controllable partitionings.

After performing 120 controllability cuts, being 20× 3!, one of the least interacting

controllable partitioning is obtained as presented equation (4.55).

α =

1 1 0 0 1

0 0 0 1 0

0 0 1 0 0

 (4.55a)

β =

1 0 1 1 0

0 1 0 0 0

0 0 0 0 1

 (4.55b)

For three groups each controllability cut has to be performed 6 times in order

to take into account all the possible permutations of the grouping matrices. On a

standard desktop computer the total run time was 15.5s.

The Figure 4.5 presents the cost of the best integer incumbents encountered

during the successive optimizations. Each new color represents a new partitioning

optimization after a controllability cut has been performed. It can be noticed that

the original system can be partitioned into three completely decoupled subsystems,

however, these subsystems are not controllable. Naturally, applying cuts to the

search space tends to increase the minimum interaction metric. The weighted di-

graph representation of the subsystems interactions is given Figure 4.6, it is possible
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Figure 4.5: Interaction costs of the sequence of best integer incumbents encountered
during the non-overlapping partitioning of the system (4.54). Each new (blue and
red) line represents a new optimization performed after a controllability cut is added.

to notice that subsystem 1 is completely decoupled from the other two subsystems.

In this example the total number of distinct ways to partition the system (4.54)

in two non-overlapping subsystems is as follows,

3!

{
5

3

}2

= 3750 (4.56)

4.9.3 Example with State Overlapping

Finally, this subsection includes an example presenting a system partitioning includ-

ing a one state overlap between two subsystems.
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Figure 4.6: Subsystem graph representation of the least interacting subsystems of
the system (4.54).

A =

1 −24 1

1 −20 1

1 −24 1

 (4.57a)

B =

2 0

0 0

0 2

 (4.57b)

N = 2 (4.57c)

q = 1 (4.57d)

This example has been taken from (Šiljak, 1991), and as it can be seen from the

optimization results, after 2 controllability cuts, two state overlapping subsystems

are obtained. This optimization for this system has been performed in 1.75s on a

standard desktop computer.

α =

[
1 1 0

0 1 1

]
, β =

[
1 0

0 1

]
(4.58)

The interaction costs linked to the best integer incumbents encountered during
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the branch and cut system partitioning are presented in Table 4.4.
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Figure 4.7: Weighted digraph representation of the two controllable subsystems for
the system model (4.57) with one state variable overlap.

Table 4.4: Best integer incumbent costs for the partitioning of the system (4.57).

Incumbent index Cut index Interaction cost

1 0 27
2 0 4
3 1 29
4 1 4
5 2 29
6 2 27
7 2 8
8 2 4

4.10 Conclusion

A binary integer linear programming approached has been presented within this

chapter to tackle the problem of partitioning a system model into subsystems mod-

els. The system model is partitioned into state overlapping or non-overlapping



102 Weak Interactions System Partitioning Using Integer Linear Programming

0 1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

Incumbent index

In
te

ra
ct

io
n

co
st

Figure 4.8: Interaction costs of the sequence of best integer incumbents encountered
during the non-overlapping partitioning of the system (4.57). Each new (blue and
red) line represents a new optimization performed after a controllability cut is added.

controllable subsystem models presenting the least amount of interactions. Firstly,

the problem has been formulated as a non-linear integer optimization. Then, it

has been demonstrated that auxiliary binary variables could be introduced in or-

der to linearize the objective function and therefore yield a binary integer linear

program. Finally, a method similar to the Gomory cut technique has been imple-

mented in order to rule out the least interacting partitionings including at least one

non-controllable subsystem model. Based on the duality between the controllability

and observability properties, a similar partitioning technique can be implemented in

order to partition a system into least interacting but observable subsystems. Since

the partitioning problem is a combinatorial problem, the size of the search space

increases very rapidly with the size of the system and the number of subsystems.

In addition to this, binary integer linear programs have an exponential worst case

complexity even if they are most of the time tractable in practice. Subsequently, the

computational cost can be important for large-scale systems. Nonetheless, because

the architecture optimization is performed offline, as a preliminary step before de-

signing the control system, more time and computing power can be used if necessary

to reach an optimal solution. Future research directions could provide an extension

to the weak interaction partitioning problem to a full system state space model.

Also, there is some interest in finding a way to speed up the partitioning algorithm,
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possibly based on a warm start technique after partitioning cuts are applied.





Chapter 5

Supervised-distributed Control

with Joint Performance and

Communication Optimization

5.1 Introduction

Decentralized control architectures have attracted attention since the 1960s (Lunze,

1992). In non-centralized architectures, each subsystem is equipped with a local

controller that may or may not share information with the other local controllers.

Distributing the control actions brings different advantages, for instance it allows

to decrease the weight of a system and also provides an increase in its modularity.

Nowadays, systems are growing in size and complexity and they are most of the time

composed of smaller interacting subsystems, integrated together. Control engineers

design controllers using a specific control architecture adapted to the subsystem in-

teractions (Scattolini, 2009). Therefore, the first problem to tackle is to select a

controller architecture suitable for the system. This task is often achieved by min-

imizing the coupling between subsystems while keeping them controllable (Bristol,

1966; Kariwala et al., 2003). Another common technique consists of finding the input

and output pair having the highest sensitivity (Manousiouthakis et al., 1986). For

distributed control architectures, a communication scheme has to be selected and

implemented (Maestre et al., 2009; Gross and Stursberg, 2016). Simply broadcast-

ing the state variables between the local controllers at every time step will increase

the overall performance of the control system but this will be achieved at a high

communication cost. For instance, if the sensors are transmitting using a wireless

communication medium, more energy will be required in order to transmit and re-

ceive the data packets (Ye and Heidemann, 2002). Also, for security reasons as well

105
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as for privacy, communicating less often and only when the control performance is

at stake, decreases the risk of network tapping and hacking from external entities.

Distributed control architectures are relevant for future gas turbine engines relying

on wireless sensor networks. In such systems, most sensors will be battery powered

and the electrical energy they will use will be harvested from engine vibrations or

thermal differences between engine components. Consequently, the main motivation

of such a control system technology for next generations gas turbine engines lies in

optimizing the sensors energy consumption. Therefore, one of the major challenges

for distributed control systems is to solve the joint optimization problem balancing

the communication effort between local subsystem controllers along with the sys-

tem wide performance. The principal application of such a control method would

be for steady state disturbance rejection. In this case, the control law is updated

online based on the value of the state variable, and the controller switches between

different communication topologies as a function of the system predicted perfor-

mance. Finally, such a control method could be used to homogenize the control

system performance among a set of similar systems with slightly different dynamics.

The performance between the systems is balanced based on different control laws

relying on distinct communication topologies. In the first case, the optimization is

performed online and yields a sequence of control modes, in the second case the

optimization is performed offline over a set of systems with similar dynamics.

Therefore, the next problem of importance is the controller design itself. Some

approaches have focused on the implementation of fully decentralized controllers

(Šiljak, 1991; Bakule, 2008). The synthesis of decentralized control laws has become

an important research topic for large-scale systems (Lunze, 1992). Decentralized

control systems answer the need for decreasing the shared information between the

subsystems and therefore the number of communication links between local con-

trollers. For instance, an efficient communication scheme based on game theory has

been developed (Maestre et al., 2014). It has been used for systems coupled through

their inputs after the system partitioning is performed. Following the work on de-

centralized control design, more research approaches have addressed the problem of

structurally constrained control law synthesis.

It is well known that in most cases, the computation of structurally constrained

controllers is a difficult problem, however, some particular systems complying with

a quadratic invariance condition are tractable and can be formulated as convex op-

timization problems (Rotkowitz and Lall, 2006). Some approaches have performed

the optimal design of decentralized controller in a framework such that the feed-

back gain obtained is as sparse as possible, while keeping acceptable system wide

performance (Schuler et al., 2014). Most of these research approaches are based on
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compressed sensing techniques developed to deal with sparsity (Candès and Tao,

2005). For instance, common convex relaxations of the l0-norm such as the l1-norm

(Candès, 2008), or reweighed l1-norm are frequently implemented as sparsity induc-

ing costs (Candès et al., 2008). Other approaches have focused on row or column

sparsity, in order to minimize respectively the number of sensors and actuators in

use (Polyak et al., 2013). Finally, some approaches have managed to promote spar-

sity in the controller while minimizing the H2 performance index (Babazadeh and

Nobakhti, 2016), or to induce a desired structure on the feedback gain using sufficient

conditions (Crusius and Trofino, 1999).

This chapter provides a solution to the joint problem of optimizing communica-

tion and system performance in a distributed framework. A control technique where

a supervisory agent recomputes online a state feedback controller in order to mini-

mize an objective combining the infinite horizon control cost with a communication

metric is proposed. The control law is updated online based on the value of the

state variables and then sent to the local controllers in order to be implemented.

Consequently, an optimization problem is solved online in order to decrease the joint

communication and performance metrics and provide a sparse control law based on

the value of the state variables. This type of control method can be used to provide

efficient system regulation, where the controller relies on communication channels

only to tackle more efficiently the disturbances. Also, convex constraints can be

added to the problem in order to tackle constraints on the state and input variables

as well as to provide robustness to system model uncertainty.

The work presented within this chapter shows how to compute a new linear state

feedback gain optimally with regards to the control performance cost as well as a

communication metric. The optimization problem is formulated as a Semi-definite

Programming (SDP) problem including a Bilinear Matrix Inequality (BMI). This

optimization problem is then relaxed using an alternate convex search method, also

convergence of such a technique for this type of problem is proved. In addition to

this, it is demonstrated that a feasible stable solution can always be computed, even

after early termination of the algorithm. The asymptotic stability of the closed-loop

system is guaranteed based on a dwell time requirement for switching between the

different control modes generated. Finally, recursive feasibility of the supervised-

distributed control algorithm is demonstrated.

The content presented within this chapter has been submitted for publication

(Guicherd et al., 2019). The chapter is organised as follows, section 5.2 states the

problem and section 5.3 introduces the required notations for the constraints and the

objective function, leading to the formulation of the optimization problem. Section

5.4 demonstrates the stability and recursive feasibility of the supervised-distributed
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control technique. In section 5.5, the control algorithm is presented along with a

proof of its convergence. Also it is shown that extra constraints can be added to

the optimization problem in order to include physical system constraints as well as

system model uncertainty. Section 5.6 analyses the control algorithm complexity. In

order to illustrate the control algorithm efficacy, section 5.7 includes two numerical

examples, finally section 5.8 concludes the chapter.

5.2 Problem Statement

5.2.1 Distributed System Dynamics

Consider a discrete time, linear, time invariant system (5.1a) already partitioned

into N ∈ N∗ stabilizable subsystems. Such that, for all p ∈ J1, NK the subsystem

indexed by p is modelled as per equation (5.1b).

x+ = Ax+Bu (5.1a)

x+
p = Appxp +Bppup +

N∑
j=1
j 6=p

{
Apjxj +Bpjuj

}
(5.1b)

with x ∈ Rn and u ∈ Rm are respectively the system state and input variables,

the vector x+ denotes the successor system state. The matrices A and B are of

appropriate dimensions and denote the system state space model. For all p ∈ J1, NK,
xp ∈ Rnp and up ∈ Rmp are the state and input variables of the subsystem p, the

vector x+
p denotes the successor subsystem state. The matrices App and Bpp are of

appropriate dimensions representing the subsystem model indexed by p, such that

N∑
p=1

np ≥ n (5.2a)

N∑
p=1

mp = m. (5.2b)

The right hand side sum in (5.1b) represents the subsystem couplings. The

equation (5.2a) defines a possible overlapping condition for the subsystem state

variables, whereas the equation (5.2b) denotes a condition of non-overlapping for the

subsystem input variables. In other words, a state variable and an input variable

can respectively be shared by multiple subsystems or belongs to a unique subsystem.
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The following assumption is made with regards to the overall system as well as the

subsystems.

Assumption 5.1. The system (A,B) as well as, for all p ∈ J1, NK the subsystem

(App, Bpp) are stabilizable.

Assumption 5.1 implies that a linear stabilizing state feedback controller F ∈
Rm×n exists along with a decentralized controller. The next subsection formulates

the optimal distributed control problem.

5.2.2 Control Problem

The aim is to synthesize online and periodically an optimal state feedback control

law u(k) = f(x, k), that simultaneously minimizes the classical Linear Quadratic

Regulator (LQR) cost as well as a subsystem to subsystem communication metric,

defined within the next section of this chapter. In particular, when the control law

is linear (i.e. uk = Fxk) and designed as the optimal linear quadratic regulator gain

F , then F is state invariant and fully centralized in general. The system (5.1) in

closed-loop control with the LQR control law F is then represented as follows,

x+ = (A+BF )x. (5.3)

Without loss of generality, the state and input matrices A = (Aij)(i,j)∈J1,NK2 and

B = (Bij)(i,j)∈J1,NK2 represent the system state space model along with its subsys-

tem block decomposition. This decomposition is always achievable throughout the

reorganization of the system state and input variables. As a consequence, the block

matrices composing the matrix F represent linear feedback gains from a subsys-

tem state variable to a subsystem input variable. More specifically, diagonal blocks

represent feedback gains within a subsystem, whereas off-diagonal blocks represent

gains between two distinct subsystems. In a similar fashion, F can be decomposed

into N2 block matrices as follows,

∀(i, j) ∈ J1, NK2, Fij ∈ Rmi×nj , F = (Fij)(i,j)∈J1,NK2 . (5.4)

Therefore, if the block matrix Fij is different from the zero matrix, it implies

communication from the subsystem j to the subsystem i. The supervised-distributed

control framework is presented in Figure 5.1 and detailed in the Example 5.1.

Example 5.1 (Supervised-distributed framework). This example presents the

idea behind the supervised-distributed control technique. The gain matrix F is broad-

cast to the system composed of two non-overlapping subsystems, indexed by 1 and

2. The supervisory unit in Figure 5.1 periodically updates the control law F used
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Supervisory Unit

F

Subsystem 1
(x1, u1)

x1
Subsystem 2

(x2, u2)
x2

Figure 5.1: Representation of the information communicated between the subsystem
1, the subsystem 2 and the supervisory unit.

by the entire system, it can be noted that the communication structure between the

subsystems is also included in the block structure of F . The gain matrix F can be

decomposed into blocks as follows,

F =

[
F11 F12

F21 F22

]
. (5.5)

Therefore, the subsystems control inputs are calculated based on the following

relations,

{
u1 = F11x1 + F12x2

u2 = F21x1 + F22x2

(5.6)

In this example, when F12 is equal to the zero matrix, then the subsystem 2 does

not have to communicate its state variable to the subsystem 1. Similarly, when the

F21 with the subsystem 1. Therefore, in this case a block diagonal F corresponds to

the decentralized control of the system, whereas a non-sparse F correspond to a full

use of the subsystem to subsystem communication.

The objective to be minimized online by the supervised-distributed control algo-

rithm is the quadratic cost to infinity under the linear control law F , as well as the

associated communication effort. The latter being defined by the off-diagonal block

sparsity of the control law F . The quadratic control cost is predicted based on the

use of the control mode F , from the current time step onwards. The optimization

problem is solved online periodically and in a receding horizon manner. The next

section presents the formulation of the two parts composing the objective function

as well as the constraints associated with the optimization problem, thus defining

the approach taken.
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5.3 Proposed Approach

The cost function formulated here includes a part linked to the control performance,

representing the effort to steer the states to a reference using a controller F , as well

as a penalty on the state variable discrepancy. The second part of the cost is a

metric associated to the number of subsystem to subsystem communication links in

use in the control law F .

5.3.1 Infinite Horizon Control Cost

The infinite horizon control quadratic cost is given by an infinite sum on the state

and input variables (5.7). In the linear case, it only depends on the initial state, the

state space model and the control law implemented (Zhou et al., 1996).

Jctrl =

+∞∑
k=0

{
x>k Qxk + u>k Ruk

}
= x>0 Px0 (5.7)

where, (Q,R) ∈ Sn+ × Sm++ are the weighting matrices used in order to penalize

adequately the state and input discrepancies respectively. The vectors xk and uk

represent the system state and input variables at time step k. The matrix P ∈ Sn++ is

the unique positive definite solution of the following discrete time Lyapunov equation

(A+BF )>P (A+BF )− P +Q+ F>RF = 0. (5.8)

The optimal feedback control law F can be computed by solving the discrete

time algebraic Riccati equation (5.9a). It provides the optimal feedback gain (5.9b)

that minimizes the infinite horizon control cost (5.7).

P = A>PA− (A>PB)(R+B>PB)−1(B>PA) +Q (5.9a)

F = −(R+B>PB)−1B>PA (5.9b)

These algebraic equations can be solved in many different ways (Laub, 1979; Zhou

et al., 1996), including a semi-definite programming technique (Boyd et al., 1994;

Kothare et al., 1996) used and explained in more details latter in this chapter. The

next subsection presents the formulation of the communication cost that composes

the second part of the distributed control algorithm objective function.
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5.3.2 Communication Cost

The cost linked to the subsystem to subsystem communication is based on the

sparseness of the off-diagonal blocks of the state feedback gain F . The corresponding

entries of the feedback gain matrix rely on communication between local controllers

and subsystem sensors. However, this communication metric does not evaluate

the communication exchange information rate, it only represents the need for a

communication link. Previously, a study on the effect of the communication bit

rate allocation has already been performed (Xiao et al., 2003). The communication

cost promoting sparsity employs the l0-norm applied to the vectorized form of the

feedback gain such that,

Jcomm =
∥∥ vec(W ◦ F )

∥∥
0

(5.10)

where, W ∈ J0, 1Km×n is a binary masking matrix used to select the entries of F

relying on communication and to penalize. Sparseness of a vector or a matrix is

penalized using the l0-norm which associates a binary element to each of the entries

based on their value. Therefore, the l0-norm corresponds to the number of non-zero

entries in a matrix or vector. Finding sparse solutions represents a combinatorial

problem and is in general Non-deterministic Polynomial (NP) hard, usually requiring

exhaustive search with exponential complexity. Since the l0-norm does not comply

with all the norm properties (Hurley and Rickard, 2009), and is therefore not a true

norm, a common convex relaxation is to use the l1-norm. Indeed, the l1-norm is a

well known sparsity promoting penalty. This heuristic has been used in the past in

different fields such as optimal control, compressed sensing and signal reconstruction

(Candès and Tao, 2005). Necessary and sufficient conditions have been established

for this convex relaxation to be tight (Candès et al., 2008). Therefore, as it has been

done in previous research approaches, sparsity is promoted using the l1-norm as a

convex relaxation in the following communication cost,

Jcomm =
∥∥ vec(W ◦ F )

∥∥
1
. (5.11)

The next subsection explains how the gain masking matrix W is computed from

the definition of the distributed control system architecture.

5.3.3 Control Gain Masking Matrix

In order to account for the communication cost, a penalty on the entries of F

representing subsystem to subsystem communication has to be accounted for. This

is achieved using a matrix W composed of binaries and used as control gain masking
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matrix. The control masking matrix W ∈ J0, 1Km×n is multiplied element-wise with

the feedback control gain in order to add a zero weight to the entries of F when

they do not represent subsystem to subsystem communication and a weight of one to

the other entries of F , the ones relying on subsystem to subsystem communication.

Subsequently, the control masking matrix W can be computed from the control

system architecture information. More specifically, computing W requires to know

the set of state variables and input variables belonging to each of the subsystems, in

order to flag the entries used to compute an input variable based on state variables

coming from different subsystems. Therefore, the control masking matrix W can be

calculated with the following matrix product,

W = β>(1− α) = (1− β)>α (5.12)

where, α ∈ J0, 1KN×n and β ∈ J0, 1KN×m are respectively the state and input group-

ing matrices representing the subsystem partitioning (5.1b) of the system (5.1a).

The matrices (1− α) and (1− β) represent respectively the conjugates of the state

and input grouping matrices, and are obtained by replacing the 1 with 0 and vice

versa (Guicherd et al., 2017). The masking matrix W is built by multiplying the

transpose of the input grouping matrix with the conjugate of the state grouping

matrix, hence, ones are located only when an input variable does not belong to the

same group as a state variable. It can be noted that it is possible for α to be an

overlapping state grouping matrix in order to allow for one or multiple state vari-

ables to be shared amongst different subsystems. Finally, the communication cost

(5.11) could be computed using the mathematical trace operator in the same way

as in Chapter 4 when it has been used to compute the subsystem state and input

interaction metrics.

Jcomm = tr
(

(1− β)|F |α>
)

= tr
(
β|F |(1− α)>

)
(5.13)

The square matrices computed within the trace operators in equation (5.13)

compute on their diagonal entries the sum of the magnitudes of the gains resulting

from subsystem communication with an index different from the diagonal element.

The trace operator is then used to sum these gain magnitudes representing the

communication effort in the same way as previously in equation (5.11). The next

subsection presents the optimization problem to be solved recursively in order to

determine what communication links are needed based on the system performance.
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5.3.4 Minimization of the Control and Communication Costs

In this subsection, the optimization problem dealing with the infinite control cost

and the communication metric is formulated using Linear Matrix Inequalities (LMIs)

as well as a bilinear matrix equality constraint. The objective to minimize is the

convex performance index taking into account both the control and communication

costs and given in (5.14).

J = λJctrl + (1− λ)Jcomm (5.14a)

⇔ J = λx>0 Px0 + (1− λ)
∥∥ vec(W ◦ F )

∥∥
1

(5.14b)

where λ ∈]0, 1] is a design tuning parameter implemented in order to balance the

control (5.7) and communication (5.11) objectives. The constraints formulated for

the optimization problem are LMI constraints as implemented in the optimization

problem (5.15). They are implemented in order to minimize an upper bound on the

infinite horizon control cost. A bilinear matrix equality is added to the constraint set

so that the sparsity promoting objective can be expressed within the cost function.

The optimization problem (5.15) presented below articulates the trade-off between

the control and communication objectives

Remark 5.1. Strictly speaking the optimization variables should be indexed with

the control mode index to emphasize the fact that these modes are recomputed online

and periodically. However, for the sake of conciseness, these indexes are used only

for the asymptotic and recursive feasibility proofs.

minimize
ρ,F,X,K

λρ+ (1− λ)
∥∥ vec(W ◦ F )

∥∥
1

(5.15)

subject to


X XA> +K>B> XQ

1
2 K>R

1
2

AX +BK X 0 0

Q
1
2X 0 ρIn 0

R
1
2K 0 0 ρIm

 � 0

[
1 x>0

x0 X

]
� 0

FX = K

Theorem 5.1. Any feasible solution of the optimization problem (5.15) constitutes

a stable feedback control law, stabilizing for the system (5.1a).
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Proof. Applying the Schur complement to both linear matrix inequality constraints

in the optimization problem (5.15) yields the relations (5.16) and (5.17) respectively.


X XA> +K>B> XQ

1
2 K>R

1
2

AX +BK X 0 0

Q
1
2X 0 ρIn 0

R
1
2K 0 0 ρIm

 � 0 (5.16a)

⇔


ρ ≥ 0

X � 0

X − (AX +BK)>X−1(AX +BK) � ρ−1(XQX +K>RK)

(5.16b)

⇔


ρ ≥ 0

X � 0

ρX−1 − (A+BKX−1)>ρX−1(A+BKX−1) � Q+X−1K>RKX−1

(5.16c)

⇔


ρ ≥ 0

X � 0

(A+BF )>P (A+BF )− P � −(Q+ F>RF )

(5.16d)

The equation (5.16) is equivalent to the Lyapunov equation (5.8) with a new

parametrization for P and F , respectively the solution of the Lyapunov equation

and the state feedback control law. The Lyapunov equation obtained is relaxed

with an inequality instead of the equality of equation (5.8). The other constraint is

equivalent to an invariant ellipsoid set as per equation (5.17).

[
1 x>0

x0 X

]
� 0 (5.17a)

⇔

{
X � 0

1 ≥ x>0 X
−1x0

(5.17b)

⇔

{
X � 0

ρ ≥ x>0 Px0

(5.17c)

The equation (5.17) provides an invariant ellipsoid set condition for the system state

variable due to the strict decrease of the Lyapunov cost function. Thus, the system

state variable is known to belong to the ellipsoid E , defined by the inequality (5.17).

The variable ρ represents an upper bound on the infinite horizon control cost that

is minimized by the optimization problem (5.15). Hence, any feasible solutions of
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the optimization problem (5.15) provides a stable control mode, which completes

the proof.

Note that the optimization problem presented in (5.15) is biconvex. Fixing the

variable F or X renders convex optimization problems, respectively in the set of

variables {ρ,X} and {ρ, F}. With the parametrization of the problem (5.15), the

Lyapunov solution P and the state feedback gain F are computed as follows,

P = ρX−1 (5.18a)

F = KX−1. (5.18b)

The optimization problem (5.15) minimizes a dual objective composed of a con-

trol and a communication metric, therefore it is in general different from a standard

optimal linear quadratic control design problem. The next subsection explains why

the optimization problem is different from a standard LQR optimal control problem

and how it is affected by the communication objective.

5.3.5 Time-varying Control Modes

When the parameter λ is set to 1, the standard LQR feedback gain is returned by the

optimization as the global optimum. Consequently, the optimization problem (5.15)

without the sparsity promoting objective is state invariant. The minimum is reached

for the solution of the discrete time algebraic Riccati equation (5.9a). In the case of

(5.15), different degrees of sparsity of F will affect the infinite horizon control cost

throughout the dynamical couplings between the subsystems. Indeed, completely

dynamically decoupled subsystems would not require subsystem to subsystem com-

munication and a sparse feedback control law would be optimal with regard to the

performance as well as the communication. Also, in the case of (5.15), the spar-

sity level of F is balanced with the infinite horizon control cost in a semi-definite

programming problem and consequently requires the inclusion of a bilinear matrix

equality. It is well known that bilinear matrix equalities are usually non-convex

and therefore constitute difficult problems to solve. In the literature different tech-

niques have been used in order to solve these types of optimization problems. For

instance, one approach implemented a sequential method where a penalty on the

bilinear equality gap was added to the objective function (Doelman and Verhaegen,

2016). A convergence guarantee has been proven, however there is no insurance

that the optimum reached will be the global optimum. Another technique called the

alternate convex search uses iterative convex relaxations of the biconvex problem
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(Gorski et al., 2007). The alternate convex search also known as alternate SDPs

method (Fukuda and Kojima, 2001), works by alternately fixing one of the variables

in the bilinear matrix equality constraint. The two convex optimization problems

are solved alternately until a stopping criteria is met. Other techniques, relying on

a branch-and-cut strategy have been developed in order to reach the global opti-

mum value for a bilinear matrix inequality optimization problem (Goh et al., 1995;

Fukuda and Kojima, 2001). However, the technique mentioned above requires a

lot of time and computational power which makes any online implementation very

difficult. The next section introduces a new set of convex constraints that are added

to the optimization problem (5.15) in order to ensure global asymptotic stability

of the switched closed-loop control system. Also, the recursive feasibility of the

supervised-distributed control method is demonstrated.

5.4 Stability and Feasibility of the Distributed Con-

troller

This section establishes two very important properties of the online optimization

controller, the stability as well as the recursive feasibility. These two features of the

distributed control technique are proved and a theorem gathers the overall result for

the supervised-distributed control method.

5.4.1 Controller Stability

Since, the distributed controller minimizes not only the infinite horizon control cost

but also the communication effort, and that no constraints are added to ensure the

stability of the switched control system, instability can be triggered by switching

between different control modes inadequately. For example, the system presented

(5.19) is stable and can be stabilized by any of the two feedback control laws given

in (5.20). Also, the two closed-loop systems obtained by implementing the controller

F0 and F1 belong to the set of feasible solutions of the optimization problem (5.15),

as stabilizing control laws. Nonetheless, instability can still be triggered by a rapid

switching between these two control laws, as shown by the Example 5.2.

Example 5.2 (Switching system instability). The Linear Time-invariant (LTI)

discrete time system given by the equation (5.19), can become unstable by an inap-
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propriate switching between the two control laws F0 and F1 (5.20).

A =

[
−1

2 0

0 1
2

]
, B =

[
0 1

1 0

]
, (5.19)

F0 =

[
2 0

0 −1
2

]
, F1 =

[
1
2 0

0 −2

]
. (5.20)

Since the two control gains are stabilizing for the system (5.19), their Lyapunov

functions can be computed in order to evaluate their infinite horizon control costs.

The quadratic Lyapunov functions associated to the two closed-loop systems are re-

spectively given by the following matrices,

P0 =

[
25.71 5.71

5.71 6.43

]
, P1 =

[
6.43 5.71

5.71 25.71

]
. (5.21)

A direct switching between the control modes F0 and F1 brings instability to

the switched controlled system. Indeed, this is due to the fact that for ∆ = 1, the

following two inequalities presented below are not verified,

(A+BF1)∆>P0(A+BF1)∆ ≺ P1 (5.22a)

(A+BF0)∆>P1(A+BF0)∆ ≺ P0. (5.22b)

The phase portraits of the direct switching sequences between F0 and F1 are given

Figure 5.2. Such switching sequences yield unstable switched closed-loop systems

diverging away from the origin. The red curve shows a direct switching sequence

starting with the control law F0, whereas the blue curve pictures a direct switching

sequence initialized with the control mode F1. Both phase portraits for these two

switching sequences start from an initial state given by x0 =
[
0.1 0.1

]>
. It is well

known that switching between stable control laws can be achieved in a stable fashion if

the switching is performed slowly enough (Liberzon, 2003). The time delay before a

switch is triggered is called the dwell time and is parametrized by ∆ ∈ N∗ in the case

of a discrete time system. Subsequently, if the dwell time parameter ∆ is not chosen

carefully, a switching sequence between the two previous control laws can provide a

control cost increase and therefore destabilize the switched system, even if the two

control modes are stable. An analysis of the dwell time effect on the inequalities

(5.22) shows that only certain values of ∆ will provide a stable switching sequence

between these two control modes. However, as it will be proved later on within this

section, since the two control laws are stabilizing for the closed-loop system, when the

switching dwell time ∆ is larger than a minimum value the control cost to infinity
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decreases and thus, the switched controlled system remains asymptotically stable.
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Figure 5.2: Phase portraits of the two direct switching sequences between the control
laws F0 and F1.

In order to ensure a Lyapunov cost decrease for the switched controlled system,

the dwell time ∆ has to be chosen carefully so that the inequality (5.22a) is satisfied,

when a switch from F1 to F0 occurs, and the inequality (5.22b) has to be satisfied

for a switch from F0 to F1.

M∆ = P1 − (A+BF1)∆>P0(A+BF1)∆ (5.23a)

N∆ = P0 − (A+BF0)∆>P1(A+BF0)∆ (5.23b)

Satisfying these inequalities is equivalent to finding the values of ∆ such that

M∆ ∈ S2
++ and N∆ ∈ S2

++ respectively. The eigenvalues of these two matrices for

the first few values of ∆ are given Table 5.1, in this example these values are equal

because of the system symmetry. It can be seen that for a value of ∆ greater or equal

to 6, switching between the two control laws provides a stable switched control system.

Intuitively, since the spectral radii of (A+BF0) and (A+BF1) are strictly less than

one, it implies that the matrices M∆ and N∆ will converge to the matrices P1 and P0

respectively. Since M∆ and N∆ converge with increasing values of ∆, it implies that

there exists a value ∆min ∈ N∗ possibly different for M∆ and N∆ guaranteeing that

any higher value of ∆ will ensure a stable switch for the control system. Computing
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the value of ∆min is usually a complex problem to solve, especially when the set of

control modes is large. The eigenvalues of M∆ and N∆ are plotted on the Figure 5.3,

it is possible to see that they oscillate while converging towards the eigenvalues of M∆

and N∆ respectively. Although, for any value of ∆ greater than 6 both eigenvalues

are strictly positive.

Table 5.1: Eigenvalues of M∆ and N∆ for different values of switching dwell times
∆.

∆ λmax(M∆) λmin(M∆) λmax(N∆) λmin(N∆)

1 4.176189 -70.247618 4.176189 -70.247618
2 22.304213 -8.241713 22.304213 -8.241713
3 4.535292 -27.637971 4.535292 -27.637971
4 24.267681 -2.295025 24.267681 -2.295025
5 4.842501 -3.775258 4.842501 -3.775258
6 25.503048 0.919072 25.503048 0.919072
7 10.130645 4.532180 10.130645 4.532180
8 26.251318 2.673624 26.251318 2.673624
9 17.570556 4.739783 17.570556 4.739783
10 26.691630 3.641150 26.691630 3.641150
11 21.812118 4.799947 21.812118 4.799947
12 26.945929 4.178760 26.945929 4.178760
13 24.203081 4.828706 24.203081 4.828706
14 27.091156 4.478981 27.091156 4.478981
15 25.548994 4.843886 25.548994 4.843886
16 27.173554 4.647148 27.173554 4.647148
17 26.306320 4.852175 26.306320 4.852175
18 27.220129 4.741516 27.220129 4.741516
19 26.732386 4.856767 26.732386 4.856767
20 27.246400 4.794525 27.246400 4.794525

The Example 5.2 introduced the concept of switched control systems along with a

technique used in order to verify and therefore prevent system instability when con-

trol mode switching occurs. Indeed, the switching instability question can be tackled

throughout the use of a dwell time constraint added to the optimization problem

(5.15). This extra constraint enforces an asymptotic decrease of the Lyapunov cost

function and is translated into a linear matrix inequality. The Figure 5.4 presents

the possible evolution of Vl(xk) representing the switched Lyapunov cost function

for the closed-loop system, where k is the time step index and l is the control mode

index. The Lyapunov cost function Vl can increase during a switch as long as the

increase of its value is maintained strictly below what the initial value was at the

start of the previous control mode. In the past different approaches have been used

in order to prove the stability of switched control systems, and this topic has seen the
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Figure 5.3: Eigenvalues of M∆ against ∆.

development of multiple mathematical tools (Branicky, 1998). For example, switch-

ing amongst a set of systems yields a stable system if the switching is slow enough

or is at least slow on average (Hespanha and Morse, 1999). This refers to the use

of a minimum dwell time parameter or allows for rapid switching if and only if the

switching is slow enough on average, slower than an average dwell time value. Other

techniques have considered the use of a Lyapunov function common to the entire

set of systems (Lin and Antsaklis, 2009). In the case of the supervised-distributed

controller, every time a new feedback gain is broadcast to the plant subsystems, the

entire plant becomes a switched system (Liberzon, 2003). Consequently, it is impor-

tant to ensure that by design switching between two consecutive feedback gains is

done so that one can guarantee global asymptotic stability of the closed-loop system

(Geromel and Colaneri, 2006). In order to prevent any unstable behaviour from

happening, an extra LMI constraint is added to the optimization problem (5.15)

enforcing the switched asymptotic stability for the closed-loop system and leading

to the formulation given in (5.24). This stability constraint is formulated using the

current Lyapunov function Pl and control mode Fl in addition to a dwell time design

parameter ∆. The control mode dwell time parameter ∆, with ∆ ∈ N∗ guarantees

that instability will not be triggered during control mode switching, if the switching

is performed after at least ∆ time steps. Also, the dwell time constraint allows

enough time to perform the biconvex online optimization. As mentioned previously
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in remark 5.1, the decision variables should all be indexed with the control mode

indexes, however for simplicity the indexes are only used for the proofs. The Lemma

5.1 proves that the extra constraint added in (5.24) enforces system stability under

switching before the recursive feasibility of the control algorithm is demonstrated in

Lemma 5.2.

k

V
l(
x
k
)

Figure 5.4: Example of a Lyapunov cost function for a stable switched system.

minimize
ρ,F,X,K

λρ+ (1− λ)
∥∥ vec(W ◦ F )

∥∥
1

(5.24)

subject to


X XA> +K>B> XQ

1
2 K>R

1
2

AX +BK X 0 0

Q
1
2X 0 ρIn 0

R
1
2K 0 0 ρIm

 � 0

 ρPl ρ(A+BFl)
∆> ρεIn

ρ(A+BFl)
∆ X 0

ρεIn 0 ρεIn

 � 0

[
1 x>0

x0 X

]
� 0

FX = K

Lemma 5.1. Consecutive feasible solutions of the distributed control optimization
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problem (5.24) are globally asymptotically stabilizing for the switched closed-loop

system.

Proof. The constraint added to the problem (5.24) corresponds to a stable switch

from the control mode l to the next control mode l + 1, after ∆ time steps. This

is shown by applying the Schur complement to the extra constraint in equation

(5.25), with the previous parametrization (5.18a) of the optimization problem (i.e.

Pl+1 = ρX−1).

 ρPl ρ(A+BFl)
∆> ρεIn

ρ(A+BFl)
∆ X 0

ρεIn 0 ρεIn

 � 0 (5.25a)

⇔


ερ ≥ 0

X � 0

ρPl − (A+BFl)
∆>ρ2X−1(A+BFl)

∆ � ρεIn

(5.25b)

⇔


ρε ≥ 0

X � 0

(A+BFl)
∆>Pl+1(A+BFl)

∆ − Pl � −εIn

(5.25c)

The constraint (5.25) added to the optimization (5.24) yields the following relation

when pre- and post-multiplied by x>k and xk respectively

x>k
(
(A+BFl)

∆>Pl+1(A+BFl)
∆ − Pl

)
xk < 0 (5.26a)

⇔
[
(A+BFl)

∆xk

]>
Pl+1(A+BFl)

∆xk < x>k Plxk (5.26b)

⇔x>k+∆Pl+1xk+∆ < x>k Plxk, (5.26c)

where xk is the system full state vector at time step k, different from the null

vector. Therefore, this ensures a strict decrease of the Lyapunov cost function for

the switched control system.

Remark 5.2. The dwell time ∆ ∈ N∗ is a designer tuning parameter. It will

condition the time allocated to the optimization algorithm as well as the control

feedback gain refreshing rate.

It can be noted that the dwell time parameter could be changed online before

the optimization is performed. This kind of feature could be useful in the case where

some a priori knowledge on the system is known. For example, a reduction of the
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dwell time can be used if a large disturbance affects the system whereas an increase

of the dwell time parameter could be applied on a time window when it is known that

no major disturbance will affect the system. Finally, the dwell time parameter ∆

also affects the size of the feasibility set with regards to the set of control modes that

can be used after ∆ time steps have elapsed, this property is proved by Proposition

5.1.

Proposition 5.1. For a given stable control mode l ∈ N, the convex set

Π∆
l =

{
(ρ,X) ∈ R∗+ × Sn++

∣∣∣∣∣
[

ρPl ρ(A+BFl)
∆>

ρ(A+BFl)
∆ X

]
� 0

}

is non-decreasing with ∆ ∈ N∗ with respect to set inclusion, i.e. Π∆
l ⊆ Π∆+1

l .

Proof. For a given stable control mode l ∈ N defined by a feedback gain Fl as well

as a Lyapunov function Pl, using the previous parametrization Pl+1 = ρX−1, the

following set inclusion arises,

∀∆ ∈ N∗, (5.27)

(ρ,X) ∈ Π∆
l ⇔ (A+BFl)

∆>Pl+1(A+BFl)
∆ ≺ Pl

(ρ,X) ∈ Π∆
l ⇒

[
(A+BFl)

∆+1
]>
Pl+1(A+BFl)

∆+1 � (A+BFl)
>Pl(A+BFl)

(ρ,X) ∈ Π∆
l ⇒

[
(A+BFl)

∆+1
]>
Pl+1(A+BFl)

∆+1 ≺ Pl

(ρ,X) ∈ Π∆
l ⇒ (ρ,X) ∈ Π∆+1

l .

This is due to the fact that Pl is the Lyapunov function linked to the control mode

Fl, and consequently complies with the strict Lyapunov inequality. Therefore, for

all ∆ ∈ N∗ and for any stable control mode l ∈ N, the set of stable control laws

under switching is non-decreasing with ∆, Π∆
l ⊆ Π∆+1

l .

In order to guarantee a strict decrease of the switched system Lyapunov functions

after ∆ time steps, the equation (5.26) must be a strict inequality. However, for a

practical numerical implementation, the strict inequality is replaced by an inequality

with a given ε precision, where ε ∈ R∗+ is a small but strictly positive real number.

Consequently, if a solution to the optimization problem (5.24) exists, it makes the

switched closed-loop system globally asymptotically stable. The next logical step is

therefore to prove that the optimization problem stays recursively feasible from one

control mode to the next. This property is presented within the next subsection.
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5.4.2 Controller Feasibility

The global asymptomatic stability of the controller is given by the previous LMI

constraint (5.15), and the stability of the control modes under switching is ensured by

adding extra constraints as presented in the optimization problem (5.24). Therefore,

the next important point is to make sure that this new set of constraints will not

trigger the infeasibility of the optimization problem from one control mode to the

next.

Lemma 5.2. If there exists an initial asymptotically stabilizing control law for the

system (5.1), then the optimization problem (5.24) is recursively feasible.

Proof. Consider the system given by the state space model (5.1). Due to system sta-

bilizability, an initial stabilizing state feedback controller F0 can be designed. This

initial control mode can be computed by solving the discrete algebraic Riccati equa-

tion (5.9). In this case, F0 is obtained by minimizing the infinite horizon quadratic

cost. Consequently, there exists at least one feasible asymptotically stabilizing mode

Fl, with l ∈ N for the system (5.1). Therefore, the control mode l must be feasible

for the optimization time step l + 1 with the lowest possible dwell time of 1. The

control law Fl along with the Lyapunov solution Pl are feasible candidate solutions

for the next optimization time step. Thus, even if the control mode Fl is not opti-

mal for the optimization step l+ 1, it still constitutes a feasible solution. Hence, by

induction, the optimization problem (5.24) remains recursively feasible.

Following the proofs regarding the stability as well as the recursive feasibility

of the supervised-distributed control algorithm, the main results are summarized in

Theorem 5.2. The next subsection formulates the Theorem 5.2.

5.4.3 Overall Controller Feasibility and Stability

This subsection gathers the results on asymptotic stability and recursive feasibility

developed in Lemma 5.1 and Lemma 5.2 respectively. Theorem 5.2 summarizes the

properties of the optimization problem (5.24) when applied to the system given in

(5.1) and complying with Assumption 5.1.

Theorem 5.2. If there exists an initial asymptotically stabilizing control law for

the system (5.1), then the optimization problem (5.24) is recursively feasible and

its consecutive solutions are globally asymptotically stabilizing control modes for the

switched closed-loop system.

Proof. The proof of this theorem is straight forward, and follows directly from

Lemma 5.1 and Lemma 5.2.
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After the discussions on the stability and recursive feasibility of the supervised-

distributed controller, the control system algorithm will be presented. The next

section explains how the algorithm proceeds and sufficient conditions will be intro-

duced in order to include physical system constraints as well as to ensure robustness

to model uncertainty. Finally, a proof of convergence of the control algorithm is

provided.

5.5 Supervised-distributed Control Algorithm

5.5.1 Unconstrained Supervised-distributed Controller

The optimization problem (5.24) yielding the distributed control modes is non-

convex. Therefore, it is difficult to find a global optima or even to verify that a

certain value is a global optima. However, since the problem is biconvex, including

a bilinear matrix equality, known techniques exist to reach a local optimum. For

instance, the alternate convex search technique is used to relax the problem into

two well defined convex optimization problems that are SDP problems (Boyd and

Vandenberghe, 2010). The Algorithm 5.1 presents this technique applied to the

optimization problem (5.24). According to Theorem 5.3, the structure of the opti-

mization problem, makes it possible to ensure convergence of the alternate convex

search.

Theorem 5.3. The optimization problem (5.24) is biconvex, more specifically con-

vex when the sets of decision variables (ρ, F ) and (ρ,X) are considered separately.

Also, the objective function is always positive, subsequently bounded from below by

zero. The optimization problem (5.24) is solvable in each set of decision variables,

therefore the sequence of solutions generated by the alternate convex search converges

to a stationary point that is a local optimum.

Proof. Since the sequence of solutions generated by the alternate convex search is

monotonically decreasing and since the objective function is bounded from below,

subsequently the sequence of solutions converges to a limit value (Gorski et al.,

2007).

The optimization problem (5.24) is denoted by Px0,X
(ρ, F ) and Px0,F

(ρ,X) re-

spectively when (i) ρ, F are decision variables and x0, X are fixed parameters,

(ii) ρ, X are decision variables and x0, F are fixed parameters. The supervised-

distributed controller presented Algorithm 5.1, uses the predicted system state vari-

able xk+∆|k after ∆ time steps under the current control mode Fl, in order to generate

the next control law by alternate convex search.
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Algorithm 5.1: Supervised-distributed control algorithm.

Inputs : xk, Fl, Pl
Outputs : Fl+1, Pl+1

Parameters : ∆, λ, W, εF , εX
Initialization: q = 0, F0 = Fl
Compute state prediction: xk+∆|k = (A+BFl)

∆xk
while ‖Fq+1 − Fq‖2 > εF or ‖Xq+1 −Xq‖2 > εX
do

Solve optimization problem: Pxk+∆|k,Fq
(ρ,X),

(ρ,Xq+1) = argmin(Pxk+∆|k,Fq
(ρ,X)).

Solve optimization problem: Pxk+∆|k,Xq+1
(ρ, F ),

(ρ, Fq+1) = argmin(Pxk+∆|k,Xq+1
(ρ, F )).

q = q + 1
end
return
Fl+1 = Fq
Pl+1 = ρX−1

q

The alternate convex search is performed with different user defined parameters.

Indeed, the dwell time parameter ∆, the masking matrix W , the trade-off parameter

λ and the termination criteria have to be set before the Algorithm 5.1 can run. The

first control mode F0 used to initialize the control algorithm can be taken equal to

any stable controller regardless of its communication requirements. One can notice

that the order of the alternate convex search implemented in Algorithm 5.1 can be

changed. In other words, Xq can be fixed first, before the optimization is performed

with Fq fixed. Indeed, the control mode l has been shown to be a suboptimal but

feasible solution of the succeeding optimization problem, at time step l + 1, and

therefore any of the previous decision variables can be used to start the alternate

convex search.

Theorem 5.4. For a discrete time, linear, time invariant state space model, any

convex combinations of asymptotically stabilizing linear feedback gains is stabilizing.

Providing that each of their closed-loop spectral norm is strictly less than one.

Proof. Consider the discrete set composed of N stable control laws such that, for all

N ∈ N∗, (Fk)k∈J1,NK ∈ (Rm×n)N , with ∀k ∈ J1, NK, σmax(A+BFk) < 1, and θk ≥ 0,
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with
∑N

k=1 θk = 1. ∥∥∥∥∥A+B
( N∑
k=1

θkFk

)∥∥∥∥∥
2

=

∥∥∥∥∥
N∑
k=1

(
θk(A+BFk)

)∥∥∥∥∥
2

(5.28a)

⇒

∥∥∥∥∥
N∑
k=1

(
θk(A+BFk)

)∥∥∥∥∥
2

≤
N∑
k=1

∥∥∥θk(A+BFk)
∥∥∥

2
(5.28b)

⇒
N∑
k=1

∥∥∥θk(A+BFk)
∥∥∥

2
=

N∑
k=1

(
θk

∥∥∥A+BFk

∥∥∥
2

)
(5.28c)

⇒
N∑
k=1

(
θk

∥∥∥A+BFk

∥∥∥
2

)
<

N∑
k=1

θk = 1 (5.28d)

The inequality (5.28b) is derived using the triangle inequality yielding an upper

bound on the spectral radius of the convex combination of control laws, which con-

cludes the proof.

According to Theorem 5.4, for a given linear system, one only needs to know

at least two stabilizing linear feedback gains complying with the spectral norm as-

sumption in order to be able to compute an infinite amount of stabilizing controllers.

Therefore, only a couple of gains are necessary in order to have access to an infinite

amount of feasible initial control laws for the distributed controller. In the case

where these control laws have different communication requirements, it would be

possible to artificially create an initial control mode with a desired communication

structure. Indeed, according to the Lyapunov stability theory, a symmetric posi-

tive definite solution exists if and only if the linear closed-loop system obtained is

globally asymptotically stable. Therefore, many different gains with different com-

munication requirements can be computed using a convex combination of existing

controllers with different initial communication requirement. However, the spectral

norm is an upper bound for the spectral radius (Goldberg and Zwas, 1974), hence

Theorem 5.4 presents only a sufficient condition. Unfortunately, it is possible to

show that the set composed of the asymptotically stabilizing feedback gains is not

convex in general. This is due to the fact that the spectral radius does not define a

norm on the set of square matrices. In particular, the triangle inequality does not

apply to the spectral radius, therefore, a convex combination of stabilizing gains can

yield an unstable controller.

As it is presented on Figure 5.5, at time step k the control law Fl is received by

the subsystems and used for the next ∆ time steps. In exchange, the subsystems

broadcast their state variables so the optimization can be performed in order to

compute the next control mode Fl+1. The optimization problem is solved based on
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Fl

k k + 1 k + 2

Fl+1

k + ∆

Unit

Supervisory

k

xk

k + 1 k + 2 k + ∆

xk+∆ Subsystems

SDC (xk, Fl, Pl)

Control law Fl

Figure 5.5: Supervised-distributed controller time line.

the current control mode as well as a prediction of the system state xk+∆|k, after

∆ time steps. The next control law is obtained when one of the convergence stop-

ping criteria is met. Although, the optimization can be terminated if the alternate

convex search has not converged within the allocated time, yielding a feasible but

suboptimal solution as proved in Corollary 5.1. Once the next control mode Fl+1 is

obtained, all the gains relying on a communication channel are set to zero if their

values are below a certain threshold. Then, the control mode with definite zeros

is tested against the optimization constraints for feasibility and sent to the subsys-

tems if it passes the test, otherwise the gain computed originally is returned. The

extra threshold step has to be completed due to the fact that the l1-norm is used

as a convex relaxation of the l0-norm. Consequently, the entries of the feedback

gain will be decreased to a small value but will not be set to a definite zero value.

Another optimization strategy developed in the past in order to induce sparsity and

that could be implemented in Algorithm 5.1 is to update the weights used for the

l1-norm of each gain, this framework is known as reweighted l1-norm minimization

(Candès et al., 2008). The final step is to broadcast the solution to the subsystems

so that the control law Fl+1 can be implemented for the following ∆ time steps.

Then, this process is applied recursively in a receding horizon fashion.

Corollary 5.1. A feasible asymptotically stabilizable solution of the optimization

problem (5.24) can be obtained by terminating Algorithm 5.1 after any iteration.

Proof. According to Theorem 5.2, the optimization problem (5.24) stays recursively

feasible and a suboptimal solution (Fl, Xl) is known at every time step from the

previous optimization solution. Subsequently, for all q ∈ N, Algorithm 5.1 uses a

feasible solution (Fq, Xq) in order to solve alternately the two following convex semi-

definite programming problems Pxk+∆|k,Fq
(ρ,X) which then generates (Fq, Xq+1)
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and Pxk+∆|k,Xq+1
(ρ, F ) which generates (Fq+1, Xq+1). Hence, by induction the Al-

gorithm 5.1 produces a new feasible solution after every iteration which concludes

the proof.

The periodical online computation of structured control modes uses ellipsoid

invariant sets based on the Lyapunov solutions obtained, this ensures that the pre-

dicted state variable remains within an ellipsoid set. According to Theorem 5.2,

the Lyapunov solution obtained at mode l remains a feasible solution for mode

l + 1, hence the initial ellipsoid set remains an invariant set for the following con-

trol modes. Therefore, using invariant set theory it is possible to enforce sufficient

constraint conditions on the input, the output and the state variables for the future

modes (Boyd et al., 1994). Because the control modes rely on the previous modes

computed, it can be proved by induction that only the first optimization problem

has to be feasible for the set of system constraints. The next subsection presents a

way to introduce sufficient conditions in order for the control modes to comply with

given physical system constraints, on the state, the input and the output variables.

5.5.2 Constrained Supervised-distributed Controller

Without changing the results presented previously within this chapter, it is possible

to introduce constraints on the input, the output as well as the state variables in the

optimization problem (5.24). These variables can be constrained in two different

ways, based on sufficient LMI conditions. Firstly, their Euclidean norm can be

bounded and secondly the maximum magnitude of each entry of these variables can

be limited. These techniques have been studied previously and can be added to

the supervised-distributed controller technique as presented within this subsection

(Kothare et al., 1996). This subsection considers the system (5.29), this new system

definition is similar to the system (5.1) and still complies with the Assumption 5.1

but differs from the initial system by the representation of the output variable.

x+ = Ax+Bu (5.29a)

y = Cx, (5.29b)

where y ∈ Rp is the output variable, and C is the output matrix of appropriate

dimension.
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Inputs Constraints

An extra LMI constraint can be added in order to ensure that the Euclidean norm

of the input variable remains within some boundaries (Boyd et al., 1994). This

condition is a sufficient constraint and is expressed as follows,[
u2
maxIm K

K> X

]
� 0. (5.30)

Adding the constraint (5.30) to the optimization problem (5.24) is a sufficient

condition to provide the following peak constraint on the Euclidean norm of uk,

∀k ∈ N, ‖uk‖2 ≤ umax, (5.31)

where uk is the system input variable at time step k. This result is proved below in

Lemma 5.3.

Lemma 5.3. Adding the constraint (5.30) to the optimization problem (5.24) en-

sures that the Euclidean norm of the input variable is bounded by umax ∈ R∗+.

Proof. According to Theorem 5.1, the system state variable xk belongs to the in-

variant ellipsoid E defined such that E =
{
x ∈ Rn

∣∣∣x>X−1x ≤ 1, X ∈ Sn++

}
for all

k ∈ N, consequently,

max
k∈N
‖uk‖

2
2 = max

k∈N
‖KX−1xk‖

2
2 (5.32a)

≤ max
x∈E
‖KX−1x‖22 (5.32b)

= λmax

(
X−

1
2K>KX−

1
2

)
. (5.32c)

Hence, applying the Schur complement to (5.30) shows that there exists a bound-

ary on the value λmax

(
X−

1
2K>KX−

1
2

)
that is u2

max, therefore concluding the

proof.

The case presented previously can be extended in order to implement a magni-

tude boundary on all the entries of the input variable. This is achieved by adding

the linear matrix inequality given in (5.33).[
Umax K

K> X

]
� 0 (5.33)

where, for all j ∈ J1,mK, Umaxjj ≤ u2
j,max. This constraint enforces the following
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magnitude constraint on all the entries of uk,

∀k ∈ N, ∀j ∈ J1,mK,
∣∣uj,k∣∣ ≤ uj,max (5.34)

where, uj,k is the j-th component of the input vector at time step k ∈ N.

Lemma 5.4. Adding the constraint (5.33) to the optimization problem (5.24) en-

sures that the magnitude of the j-th entry of the input variable is bounded by uj,max.

Proof. The system state variable xk belongs to the invariant ellipsoid E defined such

that E =
{
x ∈ Rn

∣∣∣x>X−1x ≤ 1, X ∈ Sn++

}
for all k ∈ N, subsequently,

max
k∈N

∣∣uj,k∣∣2 = max
k∈N

∣∣(KX−1xk)j
∣∣2 (5.35a)

≤ max
x∈E

∣∣(KX−1x)j
∣∣2 (5.35b)

≤
∥∥(KX−

1
2 )j
∥∥2

2
(5.35c)

=
(
KX−1K>

)
jj
, (5.35d)

where the subscript j ∈ J1,mK denotes the j-th entry or row when applied to a vector

or a matrix respectively. The inequality between (5.35b) and (5.35c) is obtain by

using the Cauchy-Schwartz inequality. Consequently, the existence of a symmetric

matrix Umax, such that for all j ∈ J1,mK, Umaxjj ≤ u2
j,max ensures that the magnitude

of uj,k is bounded by uj,max.

Outputs Constraints

In a similar fashion, sufficient LMI conditions can be used to implement a bound on

the Euclidean norm of the output variable, this constraint is presented in (5.36).[
X (AX +BK)>C>

C(AX +BK) y2
maxIp

]
� 0 (5.36)

where C represents the system output matrix. Similarly, by using only the appro-

priate row of C sufficient conditions can be established to bound the magnitude of

a single entry of the output variable. Hence, constraints can be implemented on the

vector Euclidean norm as well as on the peak magnitude of the entries of the output

vector such that,

∀k ∈ N∗, ‖yk‖2 ≤ ymax, (5.37a)

∀k ∈ N∗, ∀j ∈ J1, pK, |yj,k| ≤ yj,max (5.37b)
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where, yj,k is the j-th component of the output vector at time step k ∈ N.

Lemma 5.5. Adding the constraint (5.36) to the optimization problem (5.24) en-

sures that the Euclidean norm of the output variable is bounded by ymax ∈ R∗+.

Proof. Since the system state variable xk belongs to the invariant ellipsoid E defined

such that E =
{
x ∈ Rn

∣∣∣x>X−1x ≤ 1, X ∈ Sn++

}
for all k ∈ N, subsequently,

max
k∈N∗

∥∥yk∥∥2
= max

k∈N

∥∥C(A+BF )xk
∥∥

2
(5.38a)

≤ max
x∈E

∥∥C(A+BF )xk
∥∥

2
(5.38b)

= σmax

(
C(A+BF )X

1
2

)
. (5.38c)

Therefore, the condition
∥∥yk∥∥2

≤ ymax is verified if the maximum singular value

of the matrix C(A+BF )X
1
2 is less or equal to ymax. This condition can be turned

into an LMI condition as follows,

σmax

(
C(A+BF )X

1
2

)
≤ ymax (5.39a)

⇔X
1
2 (A+BF )>C>C(A+BF )X

1
2 � y2

maxIn (5.39b)

⇔

[
X (AX +BK)>C>

C(AX +BK) y2
maxIp

]
� 0 (5.39c)

The equivalent condition is obtained by pre- and post-multiplying (5.39b) by

X
1
2 and by forming the Schur complement, which leads to the equation (5.39c) and

concludes the proof.

States Constraints

In the same way as before, replacing the output matrix C by an appropriate matrix or

vector in the constraint (5.36) developed before will allow to constrain the Euclidean

norm of the state variable as well as the magnitude of its entries. Limiting the

Euclidean norm of the state variable by xmax ∈ R∗+ is achieved by replacing the

matrix C by the identity matrix In.

∀k ∈ N∗, ‖xk‖2 ≤ xmax (5.40)

Finally, replacing the matrix C with the transpose of the canonical unit vectors

ei ∈ Rn allows to enforce constraints on the magnitude of the i-th entry of the state

variable as presented in equation (5.41).

∀k ∈ N∗, ∀i ∈ J1, nK, |xi,k| ≤ xi,max (5.41)
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The supervised-distributed control technique can be made robust to system

model uncertainty by adding more constraints to the optimization problem devel-

oped previously. The next subsection presents how to include the model uncertainty

within the supervised-distributed control algorithm.

5.5.3 Supervised-distributed Controller with Model Uncertainty

The exact state space model of a system is rarely known perfectly, however the

dynamic model is often known to evolve within some known boundaries. This can

be due to two main paradigms. First of all, it can come from the fact that identifying

the exact linear system model is complex, or it can be due to the fact that the system

is not linear but can still be modelled by a set of linear state space models. Control

techniques robust to model uncertainty have been developed in the past to answer

the model uncertainty paradigms and to provide an optimal control to such systems

(Kothare et al., 1996; Zhou et al., 1996). These techniques minimize the upper

bound on the robust performance cost, which is equivalent to minimizing the cost in

the worst case scenario. This section considers system model uncertainty that can

be represented by a set of linear state space models, where the actual state space

model possibly time-varying is known to belong.

∀k ∈ N,
[
Ak |Bk

]
∈ Ω, (5.42)

where Ak and Bk are respectively the state and input matrices at time step k. Only

polytopic model uncertainty are considered within this section, therefore, the set Ω

is a polytopic set defined by a finite number of vertices. An example of such a set is

the set represented Figure 5.6 and defined by five distinct vertices. In this example

each vertex is a discrete time state space model whose value can be achieved by the

actual system dynamics. [
A1 |B1

]
[
A2 |B2

]

[
A3 |B3

] [
A4 |B4

]

[
A5 |B5

]

Figure 5.6: Representation of a polytopic uncertainty set with five vertices.

The polytopic uncertainty set Ω defined by s ∈ N∗ vertices is the convex hull of
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the set of vertices and is defined as follows,

Ω = co
{[
Ai |Bi

] ∣∣∣ i ∈ J1, sK
}
. (5.43)

The optimization problem (5.24) can be made robust to polytopic model uncer-

tainty by replacing its constraints by the set of constraints provided in the optimiza-

tion problem (5.44). It can be noted that in the case where the number of vertices

s is equal to one, the linear time-invariant case (5.24) is recovered with ∆ equal to

one.

minimize
ρ,F,X,K

λρ+ (1− λ)
∥∥ vec(W ◦ F )

∥∥
1

(5.44)

subject to ∀i ∈ J1, sK,
X XA>i +K>B>i XQ

1
2 K>R

1
2

AiX +BiK X 0 0

Q
1
2X 0 ρIn 0

R
1
2K 0 0 ρIm

 � 0

 ρPl ρ(Ai +BiFl)
> ρεIn

ρ(Ai +BiFl) X 0

ρεIn 0 ρεIn

 � 0

[
1 x>0

x0 X

]
� 0

FX = K

Theorem 5.5. If there exists an initial robust asymptotically stabilizing control law

for the system (5.1) with polytopic model uncertainty (5.42), then the optimiza-

tion problem (5.44) is recursively feasible and its consecutive solutions are globally

asymptotically stabilizing control modes for the switched closed-loop system robust to

polytopic model uncertainty.

Proof. Since all the LMI constraints indexed by i ∈ J1, sK are satisfied, the following
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relations hold,

∀i ∈ J1, sK,


X XA>i +K>B>i XQ

1
2 K>R

1
2

AiX +BiK X 0 0

Q
1
2X 0 ρIn 0

R
1
2K 0 0 ρIm

 � 0 (5.45a)

⇒∀k ∈ N,
s∑
i=1

θi,k


X XA>i +K>B>i XQ

1
2 K>R

1
2

AiX +BiK X 0 0

Q
1
2X 0 ρIn 0

R
1
2K 0 0 ρIm

 � 0 (5.45b)

⇒∀k ∈ N,


X XA>k +K>B>k XQ

1
2 K>R

1
2

AkX +BkK X 0 0

Q
1
2X 0 ρIn 0

R
1
2K 0 0 ρIm

 � 0, (5.45c)

where θi,k are positive numbers at time step k summing to one, such that the model

of the system at any time step k is given by the equation (5.46).

∀k ∈ N,
[
Ak |Bk

]
=

s∑
i=1

θi,k

[
Ai |Bi

]
(5.46)

In a similar way, multiplying the LMI dwell time constraints by θi,k and summing

them together yields the following relation,

∀i ∈ J1, sK,

 ρPl ρ(Ai +BiFl)
> ρεIn

ρ(Ai +BiFl) X 0

ρεIn 0 ρεIn

 � 0 (5.47a)

⇒ ∀k ∈ N,

 ρPl ρ(Ak +BkFl)
> ρεIn

ρ(Ak +BkFl) X 0

ρεIn 0 ρεIn

 � 0. (5.47b)

Therefore it ensures that the control law is robust to polytopic model uncertainty

as well as asymptotically stabilizing for the system under switching, thus concluding

the proof.

Since a convex combination of the dwell time constraints is used in order to

guarantee that the robust control modes will be asymptotically stable under switch-

ing, the dwell time parameter ∆ has to be set to one. Nonetheless, as it has been

proved previously in Proposition 5.1, the control mode refreshing rate can be higher
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than the dwell time parameter in order to allocate more time to perform the op-

timization. This feature can be useful since the optimization problem with model

uncertainty includes more LMI constraints and therefore requires more time to be

solved. Finally, the model uncertainty robustness and the system constraints could

be combined within the optimization problem (5.24) without changing the results

established previously. The next section provides an analysis of the complexity of

the two convex optimization problems solved alternately in the unconstrained case

of Algorithm 5.1.

5.6 Supervised-distributed Algorithm Complexity

The optimal supervised-distributed control algorithm solved online is computed by

solving sequentially two distinct SDP problems. Some work has been done previously

on the complexity of solving LMI problems (Gahinet et al., 1995). An upper bound

on the number of Floating Point Operations Per Second (FLOPS) and therefore on

the algorithm complexity, in order to compute a solution with an ε0 accuracy can

be evaluated. This bound is based on the size of the optimization problem (number

of variables and number of constraints). The Algorithm 5.1 sequentially solves the

problem (5.24) with modified LMI constraints. The first problem to be solved is

Pxk+∆|k,Fq
(ρ,X) when the variable Fq is fixed such that,

minimize
ρ,X

λρ+ (1− λ)
∥∥ vec(W ◦ Fq)

∥∥
1

(5.48)

subject to


X X(A+ FqB)> XQ

1
2 XF>q R

1
2

(A+BFq)X X 0 0

Q
1
2X 0 ρIn 0

R
1
2FqX 0 0 ρIm

 � 0

 ρPl ρ(A+BFl)
> ερIn

ρ(A+BFl) X 0

ερIn 0 ερIn

 � 0

[
1 x>k+∆|k

xk+∆|k X

]
� 0.

The second optimization problem of the alternate convex search when the vari-

able Xq is fixed is Pxk+∆|k,Xq
(ρ, F ) as follows,
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minimize
ρ,F

λρ+ (1− λ)
∥∥ vec(W ◦ F )

∥∥
1

(5.49)

subject to


Xq Xq(A+BF )> XqQ

1
2 XqF

>R
1
2

(A+BF )Xq Xq 0 0

Q
1
2Xq 0 ρIn 0

R
1
2FXq 0 0 ρIm

 � 0

 ρPl ρ(A+BFl)
∆> ερIn

ρ(A+BFl)
∆ Xq 0

ερIn 0 ερIn

 � 0.

The first SDP optimization problem solved has got the LMI constraints (5.48)

with 7n+m+ 1 rows and n(n+1)
2 + 1 decision variables. Therefore, the algorithmic

complexity in FLOPS is less or equal to,

(7n+m+ 1)

(
n(n+ 1)

2
+ 1

)3

log

(
V

ε0

)
, (5.50)

with V a data-dependent scaling factor. The second SDP optimization has the LMI

constraint (5.49) with 6n + m rows and nm + 1 decision variables. Subsequently,

the complexity in FLOPS is bounded by,

(6n+m)
(
nm+ 1

)3
log

(
V

ε0

)
. (5.51)

The complexity of both problems solved by Algorithm 5.1 is polynomial, because

SDP problems belong to convex programming problems and thus can be efficiently

solved with interior-point methods (Nesterov and Nemirovskii, 1994). The algorith-

mic complexity of the two problems solved during the alternate convex search are

O(n6(n+m)) and O(n3m3(n+m)) respectively. The scalable complexity combined

with the possibility to terminate the algorithm after a certain number of iterations

implies that such a control technique is very tractable and can be implemented on-

line. For instance, for a system model composed of n = 10 state variables andm = 10

input variables, the number of FLOPS required is of the order of magnitude of the

giga-FLOPS. As a comparison, a standard desktop computer has a computational

power of the order of magnitude tens to thousands of giga-FLOPS. The next section

presents some numerical examples in order to compare the supervised-distributed

control algorithm to other control methods as well as to show the trade-off between

control system performance and subsystem to subsystem communication.



5.7 Numerical Examples 139

5.7 Numerical Examples

Two examples have been used to demonstrate the trade-off offered by the optimal

distributed state feedback control. These numerical examples have been solved using

YALMIP (Löfberg, 2004) along with the SeDuMi (Sturm, 1999) and Mosek (MOSEK

ApS, 2017) SDP solvers.

5.7.1 Small-scale System

The first example used is a simple second order plant, where the interaction comes

from both the state and the input matrices. The example consists of a simple

second-order plant (5.52), where the subsystem interaction comes from both the

state matrix and the input matrix. All the simulations start from the initial state

x>0 =
[
1 −1

]
and include multiple additive disturbances added at time steps 24,

26, 32 and 34 only affecting the state variable x2.

x+ =

[
1 1

−1 1

]
x+

[
1 1

2
1
2 1

]
u (5.52)

The weighting matrices Q and R used to evaluate the control performance are

both taken equal to identity. The system is partitioned into two subsystems each

including the state and input having the same index. In order to compare the

performance of the distributed controller, two benchmark controllers are designed FC

and FD respectively the centralized and the decentralized linear feedback controllers.

FC =

[
−0.8709 −0.6210

0.6069 −0.5330

]
(5.53a)

FD =

[
−0.7551 0

0 −0.9078

]
(5.53b)

The spectral radius of the closed-loop plants with these two controllers are re-

spectively equal to 0.4012 and 0.8803.

The Figure 5.7 shows the behaviour of the plant when the supervised-distributed

controller is implemented. The supervisory unit computes a trade-off between the

communication and the system performance infinite horizon cost. In this example, a

dwell time parameter of five has been implemented, the value of lambda has been set

to 0.99 and the maximum number of iterations has been limited to ten. Therefore,

every five time steps, a new control law is computed and broadcast to the local

controllers in order to be implemented for the next five time steps. The supervisory

unit is initialized with a centralized controller and as soon as the system reaches
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Figure 5.7: Supervised-distributed controller applied to the small-scale plant (5.52).

its steady state the supervisory unit outputs a decentralized state feedback gain.

However, if some disturbance pushes the system out of its steady state value, the cost

balance changes, hence the next control laws computed rely on communication again

and could be even fully centralized. As it can be seen form Table 5.2, the structure

of the control law is optimized in real time and allows to rely on communication

only to improve the disturbance rejection performance. Because of the precision of

the SDP solver, the value of the off-diagonal elements is not strictly zero, therefore

some threshold has to be applied before a communication channel can be completely

switched off.

Figure 5.8 presents the response to the second order system when controlled

with the centralized state feedback controller FC . This control law relies on all the

available subsystem to subsystem communication, however it offers the best system

performance and disturbance rejection capabilities as it can be seen from Figure 5.8

as well as from Table 5.3.

Finally, Figure 5.9 shows the response of the system when the decentralized

control law FD is implemented. This automatic control system does not rely on

communication but offers the worst performance and disturbance rejection capabil-

ities when compared to the two other system behaviours.

Figure 5.10 presents the trade-off between the communication metric and the

control system performance for the small-scale system (5.52). This Pareto front has
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Table 5.2: State feedback gains computed by the supervised-distributed controller
in Figure 5.7.

State feedback gains

vec(F1)>
[
−0.8708 +0.6069 −0.6210 −0.5330

]
vec(F2)>

[
−0.8083 +0.0374 +0.0000 −0.9484

]
vec(F3)>

[
−0.7551 +0.0000 +0.0000 −0.9078

]
vec(F4)>

[
−0.7551 +0.0000 +0.0000 −0.9078

]
vec(F5)>

[
−0.7551 +0.0000 +0.0000 −0.9078

]
vec(F6)>

[
−0.7551 +0.0000 +0.0000 −0.9078

]
vec(F7)>

[
−0.8687 +0.6015 −0.6170 −0.5348

]
vec(F8)>

[
−0.8108 +0.0397 −0.0008 −0.9497

]
vec(F9)>

[
−0.8028 +0.3953 +0.4510 −0.6194

]
vec(F10)>

[
−0.7551 +0.0000 +0.0000 −0.9078

]
Table 5.3: Comparison of the cumulative control and communication costs for dif-
ferent control methods applied to the system (5.52).

Costs C-LQR SDC D-LQR

Control 23.1 58.8 110.9
Communication 61.4 16.8 0

Total 84.5 75.6 110.9
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Figure 5.8: Centralized controller applied to the small-scale plant (5.52).
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Figure 5.9: Decentralized controller applied to the small-scale plant (5.52).
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Figure 5.10: Trade-off between control performance and communication cost for the
system (5.52).
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been obtained by modifying the value of lambda from 0.85 to 1 within Algorithm

5.1 for a given fixed initial state. It can be noticed that because the two subsystems

composing the original subsystems are coupled, different level of communication

within the control law affect the performance of the system greatly. A performance

cost decrease of almost 70% between the fully decentralized and the fully centralized

control architectures is observed in this particular example.

5.7.2 Medium-scale System

The medium-scale example used here is the Pratt & Whitney F100 after-burning

turbofan engine (Jaw and Mattingly, 2009), discretized with a sampling time of 0.1s.

This example has been chosen to show that there is a trade-off between the amount

of communication between the subsystems and the system wide performance even

when the subsystems are weakly coupled. This gas turbine system is composed of

five state variables as well as five input variables partitioned according to the weak

interactions technique given in Chapter 4 (Guicherd et al., 2017). The state variables

respectively represent the fan speed, the compressor speed, the afterburner pressure,

the main burner fuel metering valve position and the compressor discharge pressure.

The five input variables of the gas turbine are the main burner fuel flow, the nozzle

jet area, the compressor inlet guide vane position, the high variable stator position

and the custom compressor bleed flow. The full state space model of the gas turbine

engine is given in equation (5.54). The Figure 5.11 shows the trade-off between the

normalized control performance and the normalized infinite horizon control cost, the

normalized communication performance is given by the l1-norm of the control law

communication elements.

A =


−0.3245× 101 −0.2158× 101 −0.9155× 103 0.5731× 100 0.1342× 103

0.1642× 101 −0.5941× 101 −0.2816× 103 0.1897× 100 0.5705× 102

0.1685× 10−1 −0.2554× 10−1 −0.1003× 102 0.7994× 10−2 0.5807× 100

0 0 0 −0.1× 102 0

−0.2163× 101 0.6862× 101 0.7405× 103 0.1195× 101 −0.1715× 103


(5.54a)

B =


0.1432× 10−1 −0.3553× 103 −0.9906× 102 −0.1549× 102 0.222× 105

0.2871× 100 0.7286× 103 0.2514× 102 −0.6487× 102 0.8122× 104

−0.2469× 10−2 −0.103× 103 0.6333× 100 −0.3213× 100 −0.7418× 102

0.1× 102 0 0 0 0

−0.1311× 100 0.3295× 103 −0.25× 102 0.6257× 102 −0.6445× 105


(5.54b)
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Figure 5.11: Trade-off between control performance and communication cost for the
Pratt & Whitney F100 (5.54).

The sparsity within the control law is changed linearly from fully centralized to

completely decentralized. Figure 5.11 shows the trade-off offered by the different

sparsity levels in the control feedback gain and it can be seen that the control cost

decreases by about 1% from the decentralized control architecture to the centralized

control architecture. Consequently, the centralized and the decentralized systems

perform very similarly. This is due to the fact that the subsystems were obtained

by weak partitioning of the original system, thus, the need for communication is

decreased for this particular architecture.

5.8 Conclusion

A supervised-distributed model-based control scheme has been presented within this

chapter. It has been shown that this problem can be formulated as a biconvex opti-

mization problem cast as a semi-definite programming problem including a bilinear

matrix equality. Therefore, solvable using an alternate convex search technique

where two convex programming problems are solved alternately until a stopping cri-

teria is achieved. Also, the particular structure of the optimization problem allows

to guarantee convergence of the optimal supervised-distributed control algorithm.

In addition to this property, the supervised-distributed control technique is proved

to be globally asymptotically stabilizing for the closed-loop system under switching
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based on dwell time requirements. The dwell time parameter not only ensures the

stability of the switched closed-loop controlled system but also provides enough time

to perform the optimization online. In addition to this, the recursive feasibility of

the optimization problem has been established, and it has been demonstrated that

a stable feasible control mode could be obtained even after early termination of the

algorithm. Finally, some extra constraints developed and used in the literature in

the past can be added to the optimization problem in order to tackle physical sys-

tem constraints as well as system model uncertainty, making the distributed control

system robust although more conservative. The problem of jointly optimizing the

communication and system performance is a complex non-convex problem. There-

fore, because the optimization problem is not convex, there cannot be any guarantee

that the solutions obtained are globally optimal. However, even local optima have

been shown to perform better that both the centralized and the decentralized con-

trollers in numerical simulations. Finally, it has been shown numerically that there

exists a trade-off between the amount of subsystem to subsystem communication

and the system performance when the subsystems are coupled. Future research di-

rections regarding the joint communication and performance optimization should be

looking at optimally selecting the designer tuning parameters λ and ∆. An inves-

tigation dealing with how to modify these two parameters online would also bring

some improvements to the supervised-distributed control technique.





Chapter 6

Distributed Control for Linear

Parameter-varying Systems

with Joint Performance and

Communication Optimization

6.1 Introduction

Physical systems are inherently non-linear, therefore performing system modelling

as well as designing a controller can be very complex in the non-linear case. On

the other hand, linear dynamical system models have a lot of useful properties but

are applicable only over a small operating range (Bay, 1998). Subsequently, non-

linear systems are linearized at multiple operating points, and the linear models

obtained are patched together based on the value of a scheduling parameter (Rugh

and Shamma, 2000), the new model obtained is named Linear Parameter-varying

(LPV). Following this, controllers are designed for each linearization point and then

blended together based on a technique similar to the one used for the linear mod-

els (Lawrence and Rugh, 1995). This divide and conquer strategy is a well known

control technique named gain-scheduling. It has become one of the standard prac-

tical strategies to perform non-linear control design, this technique has arisen and

then has been applied widely in the aerospace sector (Leith and Leithead, 2000;

Balas, 2002; Gilbert et al., 2010). The design of gain scheduling feedback control

laws relies on a LPV system model, and therefore enables the use of well estab-

lished linear design techniques in the realm of non-linear systems. In other words, a

non-linear system is approximated by a set of linear models varying with regards to

an exogenous scheduling parameter, not controllable, however measurable at every

147
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time step. Subsequently, the model of the system is known to evolve in a compact

set with established boundaries. Hence, one of the control technique applicable to

LPV systems would be to design a static state feedback gain ensuring robustness to

plant model uncertainties over the entire compact set of dynamical models (Kothare

et al., 1996). This technique can be quite conservative when the system model is

known to vary within a large dynamical range. This is due to the fact that one

control law has to be applicable over the entire compact set of system dynamics,

and in some cases, such a robust controller does not even exist. Another approach is

the gain scheduling technique, as mentioned previously, it relies on a gain that will

vary based on the value of the exogenous scheduling parameter, in order to adapt

to the varying system dynamics over the entire achievable set of dynamics (Wada

et al., 2006; Emedi and Karimi, 2016). In the case of distributed systems, the de-

sign of structured LPV controllers can be performed to optimize the system-wide

performance as well as the communication burden.

Designing a structured LPV controller has been considered in the decentralized

case when applied to power systems (Qiu et al., 2004). Other research approaches

have considered the design of structured LPV controllers for continuous and discrete

time systems (Veselý et al., 2013). The main approach used in the literature is to

design a family of control laws without any structure, on local sets of dynamics in

order to improve the overall system performance (Azadi Yazdi and Nagamune, 2011;

Hanifzadegan and Nagamune, 2014; Zhao and Nagamune, 2018). In the case where

multiple control modes share a single Lyapunov function, then the controlled system

remains stable under switching, regardless of the switching sequence. The switches

between the different LPV control modes have to be performed more carefully when

they do not share a single Lyapunov function. Nonetheless, the theory linked to

switched systems is a well developed field (Liberzon, 2003), the switching techniques

rely on smooth switching, bumpless switching, hysteresis or dwell time requirements

(Lu and Wu, 2004; Yang et al., 2018). The case where all the control modes have

a single Lyapunov function can be restrictive, therefore, a common technique used

for the design of LPV controllers is to rely on a parameter-dependent Lyapunov

function (Daafouz and Bernussou, 2001; Mason et al., 2007).

This chapter provides a solution to the distributed control of non-linear systems,

modelled by LPV discrete time state space models. A distributed control technique

where a supervisory agent selects a control law amongst a finite set of LPV con-

trollers, minimizing a cost function combining the predicted upper bound on the

infinite horizon control cost with a communication penalty is proposed. The con-

trol modes are selected online, periodically, based on the value of the system state

variable, before being transmitted to the local controllers. Therefore, this control
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technique rely on the offline synthesis of a set of LPV control modes having different

communication requirements, as well as the online selection of the most appropriate

control law. Such a control method can be used to provide efficient performance for

system regulation, where the subsystems rely on wireless communication channels,

only to tackle more efficiently the potential disturbances. Without changing the

approach taken, convex constraints can be added to the offline control law synthesis

in order to tackle constraints on the state and input variables (Wada et al., 2006).

The design approach taken within this chapter proposes a new distributed LPV

control technique suited for LPV systems, where the system is already partitioned

into non-overlapping or overlapping subsystems. The LPV control mode is selected

online based on the previous exogenous scheduling parameter measurements as well

as the current state variable value, in order to improve the system-wide performance

as well as a communication metric. The stability of the switched LPV control modes

is ensured online based on a sufficient control cost decrease condition, equivalent to

verifying the feasibility of a set of Linear Matrix Inequalities (LMIs). The recursive

feasibility is ensured by selecting the same LPV control mode as the one currently

implemented by the subsystems, thus not triggering any control switches. The de-

centralized offline control mode can be used as a fail safe mode in case where some

or all the communication channels are failing. The offline control synthesis problems

are cast as Semi-definite Programming (SDP) optimization problems, including pos-

sible Bilinear Matrix Inequality (BMI) constraints in order to induce some sparsity

structure in the control gain matrices.

This chapter is organized as follows, section 6.2 presents the problem statement,

introducing the required notations and assumptions on the system model. In section

6.3, the design of the non-structured offline feedback control law is formulated as

a SDP optimization problem, section 6.4 explains how to formulate the control

synthesis optimization problems in order to compute structured LPV controllers.

In section 6.5, stability conditions are presented and the recursive feasibility of the

control technique is explained. Section 6.6 explains the LPV controller algorithm

and section 6.7 includes a numerical example. Finally, section 6.8 concludes this

chapter.

6.2 Problem Statement

6.2.1 Linear Parameter-varying System Dynamics

This chapter is concerned with the optimal distributed control of linear parameter-

varying discrete time systems, such that the entire system can be represented by the
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following LPV system model,

xk+1 = A(θk)xk +Buk, (6.1)

where, k ∈ N represents the discrete time step index, xk ∈ Rn and uk ∈ Rm are

respectively the system state and input variables. For all k ∈ N, θk ∈ Rs is a

measurable exogenous scheduling parameter and the state and input matrices A(θk)

and B are of appropriate dimensions. It is assumed that for any given time step

k ∈ N, A(θk) is linear with respect to the entries of the vector θk, and that the

scheduling parameter θk belongs to the following unit simplex,

∀k ∈ N, θk =
[
θ1,k, . . . , θs,k

]> ∈ Λs, (6.2a)

Λs =

{
θk ∈ Rs

∣∣∣∣∣
s∑
i=1

θi,k = 1, ∀i ∈ J1, sK, θi,k ≥ 0

}
. (6.2b)

For all k ∈ N, the system matrix A(θk) linearly depends on the entries of the

exogenous parameter θk as follows,

∀k ∈ N, ∀θk ∈ Λs, A(θk) =

s∑
i=1

θi,kAi. (6.3)

Since the state matrix A(θk) is parametrized by a convex combination of a set of

matrices, it implies that, for all k ∈ N, A(θk) belongs to a matrix polytope, denoted

Ωs and defined such that,

∀k ∈ N, A(θk) ∈ Ωs, (6.4a)

Ωs = co {Ai | i ∈ J1, sK} . (6.4b)

Since for all values of k, θk is in the compact set Λs, it implies that θk as well

as all of its entries are bounded. Therefore, the set Ωs is also a compact set as the

image of a compact set by a linear transformation. The next subsection introduces

the LPV system decomposition into coupled LPV subsystem models.

6.2.2 Distributed Linear Parameter-varying System Dynamics

The discrete time LPV system provided in equation (6.1) is partitioned into N ∈ N∗

coupled subsystems, such that for all p ∈ J1, NK the subsystem indexed by p is
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modelled as follows,

x+
p = App(θk)xp +Bppup +

N∑
j=1
j 6=p

{
Apj(θk)xj +Bpjuj

}
, (6.5)

where xp ∈ Rnp and up ∈ Rmp are respectively the state and input variables of

subsystem p. The right hand side sum in equation (6.5) represents the subsystem to

subsystem interactions. The vector x+
p denotes the successor state for the subsystem

p, and App(θk) and Bpp are matrices of appropriate dimensions representing the block

partitioning of the original state and input matrices of system (6.1). The dimensions

of the block matrices are such that,

N∑
p=1

np ≥ n, (6.6a)

N∑
p=1

mp = m. (6.6b)

The equation (6.6a) defines a possible overlapping condition for the subsystem

state variables, whereas the equation (6.6b) denotes a non-overlapping condition for

the subsystem input variables. Therefore, a state variable and an input variable can

respectively be shared by multiple subsystems or belongs to a unique subsystem.

The following subsection presents the notation used for the LPV control modes as

well as the assumption made on the overall LPV system (6.1).

6.2.3 Linear Parameter-varying State Feedback Control Law

In order to ensure that the LPV system (6.1) can be stabilized by an LPV controller,

and therefore, that a parameter-dependent Lyapunov function exists (De Oliveira

et al., 1999; Daafouz and Bernussou, 2001), the system has to comply with the

definition of poly-quadratic stability given in Definition 6.1.

Definition 6.1. A system is said to be poly-quadratically stabilizable if and only

if there exist, for all i ∈ J1, sK, Xi ∈ Sn++, and Ki, Gi of appropriate dimensions,

solution of the following LMIs, for all (i, j) ∈ J1, sK2,[
Gi +G>i −Xi (AiGi +BKi)

>

AiGi +BKi Xj

]
� 0. (6.7)

Assumption 6.1. The LPV system (6.1) as well as the subsystems (6.5) are poly-

quadratically stabilizable.
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The assumption 6.1 implies that the system (6.1) can be stabilized by a LPV

control law F0 and that a corresponding parameter-dependent Lyapunov function

P0 exists. In addition to this, the existence of a decentralized LPV controller is

ensured, due to the poly-quadratic stabilizability of the subsystems (6.5). The LPV

control law F0 is denoted by the following parametrization,

∀k ∈ N, ∀θk ∈ Λs, F0(θk) =
s∑
i=1

θi,kFi,0. (6.8)

Applying the LPV control law F0 stabilizes the system over the entire convex

hull Ωs. Consequently, when the LPV system (6.1) is controlled using F0, the control

inputs uk are calculated as follows,

∀k ∈ N, ∀θk ∈ Λs, uk = F0(θk)xk. (6.9)

Therefore, the system (6.1) in closed-loop control with the control mode F0

becomes an autonomous discrete time LPV system defined such that,

∀k ∈ N, ∀θk ∈ Λs,

xk+1 = A(θk) +BF0(θk)xk (6.10a)

= [A(θk) +BF0(θk)]xk (6.10b)

= Acl0(θk)xk. (6.10c)

The dynamics of the closed-loop system using the LPV control law F0 are denoted

by the LPV system Acl0 . More generally, for any LPV control law Fi indexed by

i ∈ N, the closed-loop LPV system is denoted as follows,

∀(i, k) ∈ N2, ∀θk ∈ Λs, Acli(θk) = A(θk) +BFi(θk). (6.11)

In the remainder of this chapter, F0 will be used to refer to the optimal unstruc-

tured LPV control law. Subsequently, for all i ∈ J1, sK, the gains Fi,0 defined as per

equation (6.8) to form F0 by convex combination are all fully centralized in general.

In the particular case where all or part of the subsystems are completely decoupled,

and that over the entire range of system dynamics, then all the Fi,0 will be having

the same decentralized structure of the system. The next subsection formulates the

distributed LPV control problem treated within this chapter.
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6.2.4 Control Problem

The aim is to synthesize a set or alphabet of asymptotically stabilizing LPV control

modes offline, optimally, all relying on different communication topologies. Then, a

supervisory unit selects online the best LPV control law candidate from the finite

set of LPV controllers, based on the value of the system state variable as well

as the past history of the system dynamics. The optimal controller selection is

performed periodically, online, in order to minimize a combined cost composed of a

prediction of the upper bound on the infinite horizon quadratic control cost combined

with the subsystem to subsystem communication burden. Example 6.1 presents the

main idea behind the online optimal selection of an LPV control mode, Figure 6.2

pictures the exchange of communication packets between the LPV subsystems and

the supervisory unit.

Example 6.1 (Distributed LPV framework). This example presents the main

functioning principle behind the distributed control technique applied to the LPV

subsystems. The linear-parameter varying control law Fi is broadcast to the system

composed of two non-overlapping subsystems, respectively indexed by 1 and 2. The

supervisory unit in Figure 6.1 periodically updates the control mode Fi used by the

system. It can be noted that the communication structure between the subsystems is

provided by the block structure of Fi. The LPV controller Fi can be decomposed into

block matrices as follows,

Fi(θk) =

[
Fi,11(θk) Fi,12(θk)

Fi,21(θk) Fi,22(θk)

]
. (6.12)

Therefore, the subsystems control inputs are calculated based on the following

relations, {
u1 = Fi,11(θk)x1 + Fi,12(θk)x2

u2 = Fi,21(θk)x1 + Fi,22(θk)x2

(6.13)

In this example, when Fi,12 is equal to the zero matrix, then the subsystem 2

does not have to communicate its state variable to the subsystem 1, regardless of the

value of θk. Similarly, with Fi,21 concerning the subsystem 1. Therefore, in this case

a block diagonal Fi will correspond to the decentralized control of the LPV system,

whereas a non-sparse Fi corresponds to a full use of the subsystem to subsystem

communication channels.

The next section describes how to compute the unstructured LPV control mode

F0 based on the solution of a SDP optimization problem.
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Supervisory Unit
F = {F0, . . . , FL}

Fi

Subsystem 1
(x1, u1)

x1
Subsystem 2

(x2, u2)
x2

Figure 6.1: Representation of the information communicated between the LPV sub-
system 1 and 2 as well as the supervisory unit.

6.3 Linear Parameter-varying Control Law Synthesis

The first step of the distributed LPV controller design is to compute the offline

LPV control laws that will ensure the stability of the system over the entire convex

hull Ωs. The offline LPV controllers are designed with regards to the following

weighting matrices (Q,R) ∈ Sn+ × Sn++, respectively the state and input weights.

The optimization problem (6.14) is a standard SDP optimization problem (Boyd

et al., 1994; Boyd and Vandenberghe, 2010), solvable to global optimum, efficiently

and in polynomial time (Nesterov and Nemirovskii, 1994).

minimize
ρ,Gi,Ki,Xi

ρ (6.14)

subject to ∀(i, j) ∈ J1, sK2,
Gi +G>i −Xi (AiGi +BKi)

> G>i Q
1
2 K>i R

1
2

AiGi +BKi Xj 0 0

Q
1
2Gi 0 ρIn 0

R
1
2Ki 0 0 ρIm

 � 0

The LPV control law F0 is computed from the solution of the optimization

problem (6.14) as follows,

∀k ∈ N, ∀θk ∈ Λs, F0(θk) =
s∑
i=1

θi,kFi,0, (6.15)

where, for all i ∈ J1, sK, the gain matrices Fi,0 are computed such that,

∀i ∈ J1, sK, Fi,0 = KiG
−1
i . (6.16)
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Note that the matrices Gi are all non-singular since the following relations hold,

∀i ∈ J1, sK, Gi +G>i � Xi � 0. (6.17)

Solving the optimization problem (6.14) also yields a parameter-dependent Lya-

punov function (El Ghaoui and Niculescu, 2000; De Oliveira et al., 1999), provided

such that,

∀k ∈ N, ∀θk ∈ Λs, P0(θk) =

s∑
i=1

θi,kPi,0, (6.18)

where, for all i ∈ J1, sK, the matrices Pi,0 are computed as follows,

∀i ∈ J1, sK, Pi,0 = ρX−1
i . (6.19)

The optimization problem (6.14) is known to be feasible, based on the Assump-

tion 6.1 made on the overall LPV system. Solving the problem (6.14) offline provides

the first LPV control law that will be used to populate the set of feasible control

modes F . Theorem 6.1, establishes that a feasible solution for the optimization

problem (6.14), is stabilizing for the LPV system (6.1).

Theorem 6.1. Any feasible solution of the optimization problem (6.14) constitutes

a stable LPV control law, poly-quadratically stabilizing for the system (6.1).

Proof. The set LMIs provided in equation (6.14) implies the following inequalities,

∀i ∈ J1, sK, (6.20a)

Gi +G>i −Xi � 0 (6.20b)

Xi � 0. (6.20c)

Subsequently, since Xi is strictly positive definite, Gi is non-singular and the

following conditions hold,

∀i ∈ J1, sK, (Xi −Gi)
> (Xi)

−1 (Xi −Gi) � 0. (6.21)

The equation (6.21) can be expanded into the equivalent following condition, for

all i ∈ J1, sK,

G>i X
−1
i Gi � Gi +G>i −Xi. (6.22)

Subsequently, using the equation (6.22) in the LMI constraint of the optimization
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problem (6.14), implies that,

∀(i, j) ∈ J1, sK2,


G>i X

−1
i Gi (AiGi +BKi)

> G>i Q
1
2 K>i R

1
2

AiGi +BKi Xj 0 0

Q
1
2Gi 0 ρIn 0

R
1
2Ki 0 0 ρIm

 � 0. (6.23)

The LMI constraints (6.22) can be changed into equivalent LMI constraints by

using a congruence transformation. This transformation uses the matrix (6.24) as

well as its transpose.


G−1
i 0 0 0

0 X−1
j 0 0

0 0 In 0

0 0 0 Im

 (6.24)

The congruence transformation is achieved by pre and post-multiplying the LMI

constraints (6.23) respectively by the transpose and the matrix (6.24), then using

the change of variables Ki = Fi,0Gi, yields the following LMI condition,

∀(i, j) ∈ J1, sK2,


X−1
i

(
Ai +BFi,0

)>
X−1
i Q

1
2 F>i,0R

1
2

X−1
j

(
Ai +BFi,0

)
X−1
j 0 0

Q
1
2 0 ρIn 0

R
1
2Fi,0 0 0 ρIm

 � 0.

(6.25)

Applying the change of variable, Pi,0 = ρX−1
i to the equation (6.25), yields the

following LMI constraints,

∀(i, j) ∈ J1, sK2,


Pi,0

ρ

(
Ai +BFi,0

)> Pi,0

ρ Q
1
2 F>i,0R

1
2

Pj,0

ρ

(
Ai +BFi,0

) Pj,0

ρ 0 0

Q
1
2 0 ρIn 0

R
1
2Fi,0 0 0 ρIm

 � 0. (6.26)

Then, multiplying the LMI constraints by θi,k and summing and repeating this

process with θj,k+1 and summing the constraints again, provides the new following
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constraints


P0(θk)
ρ (A(θk) +BF0(θk))

> P0(θk+1)
ρ Q

1
2 (F0(θk))

>R
1
2

P0(θk+1)
ρ (A(θk) +BF0(θk))

P0(θk+1)
ρ 0 0

Q
1
2 0 ρIn 0

R
1
2F0(θk) 0 0 ρIm

 � 0.

(6.27)

Finally, applying the Schur complement to the LMI constraint (6.27) gives a

parameter-dependent discrete time Lyapunov equation as follows,

(A(θk) +BF0(θk))
> P0(θk+1) (A(θk) +BF0(θk))− P0(θk) ≺ −Q

− (F0(θk))
>RF0(θk).

(6.28)

Therefore, the optimization problem (6.14) minimizes the sum of the eigenval-

ues of the parameter-dependent Lyapunov function P0, solution of the Lyapunov

function (6.28), which concludes the proof.

According to Assumption 6.1 as well as Theorem 6.1, there exist a centralized

LPV control mode F0 stabilizing for the system (6.1). Subsequently, the set of

possible LPV control modes contains at least one control law, and can be initialized

with F0 such that F = {F0}. The next section presents how to perform the synthesis

of other structured LPV control modes, in both the non-overlapping and overlapping

partitioning cases, to populate the set of control modes F .

6.4 Structured LPV Control Modes

In the past, some research work has been performed to compute structured con-

trollers (Veselý et al., 2013; Schuler et al., 2014; Babazadeh and Nobakhti, 2016).

However, structured control laws have rarely been achieved in a LPV framework.

This section is organized in two subsections presenting respectively design proce-

dures for the non-overlapping and the overlapping structured LPV control laws.

The design of the LPV control law Fi with i ∈ J1, LK will ensure the stability of the

system over the entire convex hull of system dynamics Ωs, while relying on a specific

communication topology.
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6.4.1 Non-overlapping LPV Control Modes

Sufficient conditions can be formulated in order to induce structure in the LPV

feedback control gains. In the case where no state overlaps are allowed between the

subsystems the controller structure will always be represented by non-overlapping

block matrices. This is always achievable after a possible permutation of the state

and input variables. In the same way as it has been done previously concerning

the unstructured control mode F0, the structured LPV controllers are designed with

regards to two weighting matrices (Q,R) ∈ Sn+ × Sn++, respectively the state and

input weights. A sufficient condition to obtain LPV control laws Fl with a desired

block sparsity pattern is to constrain the gain matrices Fi,l, for all i ∈ J1, sK, that

compose the LPV control mode Fl, to have the same block sparsity pattern. This

can be achieved by adding structural equality constraints to the SDP optimization

problem (6.14), as presented in equation (6.29)

∀i ∈ J1, sK, ∀(k, l) ∈ IG, Gi(k, l) = 0 (6.29a)

∀i ∈ J1, sK, ∀(k, l) ∈ IK , Ki(k, l) = 0. (6.29b)

The sets IG and IK represent the pairs of row and column indexes where the

matrix entries have to be set to zero. This induces some block structure to the

matrices Gi,Ki as well as the gain matrices Fi,l obtained by product (Crusius and

Trofino, 1999). Therefore, the optimization problem (6.14) including the sufficient

structural constraints is still a standard SDP optimization problem (Boyd et al.,

1994; Boyd and Vandenberghe, 2010).

minimize
ρ,Gi,Ki,Xi

ρ (6.30)

subject to ∀(i, j) ∈ J1, sK2,
Gi +G>i −Xi (AiGi +BKi)

> G>i Q
1
2 K>i R

1
2

AiGi +BKi Xj 0 0

Q
1
2Gi 0 ρIn 0

R
1
2Ki 0 0 ρIn

 � 0

∀(k, l) ∈ IG, Gi(k, l) = 0

∀(k, l) ∈ IK , Ki(k, l) = 0

After solving the optimization problem (6.30), the structured LPV control mode
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Fl can be computed as follows,

∀k ∈ N, ∀θk ∈ Λs, Fl(θk) =
s∑
i=1

θi,kFi,l, (6.31)

where, for all i ∈ J1, sK, the Fi,l are computed such that,

∀i ∈ J1, sK, Fi,l = KiG
−1
i . (6.32)

For all i ∈ J1, sK, the matrices Gi are all non-singular since the previous matrix

inequalities presented in equation (6.17) still holds.

Lemma 6.1. If there exist block diagonal matrices Gi, solutions of the optimization

problem (6.30), then the control gain Fi,l has the same block structure as the matrix

Ki.

Proof. The matrix Gi is non singular and since the inverse of a block diagonal matrix

with N ∈ N∗ is another block diagonal matrix with the same number of non-zero

blocks, it implies that

∀i ∈ J1, sK, G−1
i = diag

(
G−1
i,jj

∣∣∣ j ∈ J1, NK
)
, (6.33)

where the operator diag concatenates the elements on the matrix diagonal, and the

matrix Gi,jj denotes the j-th diagonal block of the matrix Gi. Therefore, the gain

matrix Fi,l is computed such that,

∀i ∈ J1, sK,

Fi,l,pq =
N∑
k=1

Ki,pkG
−1
i,kq

Fi,l,pq = Ki,pqG
−1
i,qq.

(6.34)

Subsequently, the block structure of the gain matrices Fi,l is the same as the

block structure of the matrices Ki, which completes the proof.

Then, the set IK is modified in order to populate the set of control modes F
with control modes having different communication topologies. It can be noted

that the communication structure is enforced on the decision variables Gi and Ki

only, therefore, the parameter-dependent Lyapunov function remains structurally

unconstrained, and is not-sparse in general. The next subsection presents a tech-

nique applicable to the design of structured LPV control modes when the system

partitioning includes some state variable overlaps.
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6.4.2 Overlapping LPV Control Modes

The control synthesis method used previously does not apply when some state vari-

ables are shared between different subsystems. Indeed, the block diagonal structure

is preserved after computing inverses or products of matrices, but the block structure

is not preserved when the block matrices include overlaps. In this case, the bilin-

ear matrix equality problem (6.35) has to be solved in order to induce the required

sparsity pattern in the matrix gains Fi,l.

minimize
ρ,Gi,Ki,Xi,Fi,l

ρ+
s∑
i=1

∥∥ vec(Wi ◦ Fi,l)
∥∥

1
(6.35)

subject to ∀(i, j) ∈ J1, sK2,
Gi +G>i −Xi (AiGi +BKi)

> G>i Q
1
2 K>i R

1
2

AiGi +BKi Xj o 0

Q
1
2Gi 0 ρIn 0

R
1
2Ki 0 0 ρIn

 � 0

Fi,lGi = Ki

For all i ∈ J1, sK, Wi ∈ Rm×n are weighting matrices used to penalize the ele-

ments of Fi,l that should be set zero. The optimization problem (6.35) is non-convex,

and can be solved by alternate convex search starting from the solution of (6.14)

obtained without any structural constraints. Then, the matrices Fi and Gi are fixed

alternately in order to use the bi-convexity property of the bilinear matrix equality

in (6.35). Such an alternate convex search converges to a local minimum, however

due to the non-convexity of the search space, obtaining a sparse solution can be

complex. The implementation of the structured LPV control law Fl is stabilizing

for the system (6.1), then other control modes can be computed by changing the

weighing matrices Wi, in order to induce different sparsity patterns. The next sec-

tion presents the conditions linked to the stability and recursive feasibility of the

distributed control technique.

6.5 Stability and Recursive Feasibility of the LPV Dis-

tributed Controller

The online selection of an optimal LPV control mode is based on the predicted

control performance of the closed-loop system as well as on the communication

cost, accounting for the communication channels required by the controller selected.



6.5 Stability and Recursive Feasibility of the LPV Distributed Controller 161

Nonetheless, the periodical selection of distinct control laws will trigger control mode

switching. Therefore, before selecting the best control mode, the supervisory unit

has to test them for stability. This section develops a sufficient stability condition

that ensures a stable switch between two control modes. In addition to this result,

the recursive feasibility of the control technique is also explained. From this section,

it is assumed that the set F is populated with an alphabet of LPV control modes,

designed offline based on the optimization methods presented previously and having

different communication structures such that,

∃L ∈ N, F = {F0, F1, . . . , FL} (6.36)

where F0 is the unstructured controller and Fl with l ∈ N∗ corresponds to a control

mode with a given communication structure.

6.5.1 Controller Stability

In order to make sure that the closed-loop system is stable, the parameter-dependent

Lyapunov function has to decrease strictly along any trajectory within the polytope

Ωs (Daafouz et al., 2002). It has been shown previously in Theorem 6.1 that the

optimal synthesis of LPV controllers uses a parameter-dependent Lyapunov function

ensuring a strict decrease of the Lyapunov cost function. Therefore, each control

mode of the set F is asymptotically stabilizing for the system (6.1). In order to

ensure the asymptotic stability of the controlled system when a switch occurs, the

Lyapunov function has to decrease strictly between the initial time instants of two

consecutive control modes. This condition can be verified by measuring the schedul-

ing parameter θk online in order to compute the state transition matrix defined as

follows,

Al|k→k+∆ =
k+∆−1∏
i=k

Acll(θi) (6.37)

where l ∈ J1, LK denotes to the control mode index, k and k + ∆ represents re-

spectively the starting and finishing time step indexes and the product operator

corresponds to the matrix post-multiplication. Subsequently, Al|k→k+∆ corresponds

to the system closed-loop transition matrix from time step k to time step k + ∆

when the control mode l is used, in the case where ∆ = 0 then Al|k→k is defined

equal to In.

Lemma 6.2. A switch from control mode l1 to control mode l2 is stable after ∆
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time steps from time step k, if the following LMIs are verified,

∀i ∈ J1, sK, A>l1|k→k+∆Pi,l2Al1|k→k+∆ ≺ Pl1(θk). (6.38)

Proof. Multiplying the LMI constraints (6.38) by θi,k+∆ and summing the s inequal-

ities gives the following LMI,

A>l1|k→k+∆Pl2(θk+∆)Al1|k→k+∆ ≺ Pl1(θk). (6.39)

Then, pre and post-multiplying the inequality given in equation (6.39) by the

non-zero vectors x>k and xk respectively, yields the following inequality,

[
Al1|k→k+∆xk

]>
Pl2(θk+∆)Al1|k→k+∆xk < x>k Pl1(θk)xk. (6.40)

Consequently, the inequality defined in equation (6.40) is equivalent to a strict

control cost decrease, such that

x>k+∆Pl2xk+∆ < x>k Pl1(θk)xk (6.41a)

⇔ Vl2(xk+∆) < Vl1(xk). (6.41b)

The quadratic Lyapunov functions obtained for each LPV control modes are

constrained to be strictly positive definite by design as a convex combination of

positive definite matrices. Subsequently, the Lyapunov matrix solutions associated

to the control modes have strictly positive eigenvalues. Therefore, since the LMI

condition (6.38) implies the inequalities presented in equation (6.41), it concludes

the stability proof.

The LMI condition established by Lemma 6.2 is only a sufficient condition for

stability under switching. Subsequently, verifying that the LMIs (6.38) holds ensures

that the control switch from the control mode l1 to the control mode l2 is stable.

The next subsection presents the recursive feasibility of the distributed controller.

6.5.2 Controller Feasibility

Ensuring a decrease of the parameter-dependent Lyapunov function is a sufficient

and necessary condition in order to ensure the asymptotic stability of the system

under control mode switching. Since each control mode belonging to the set of

control modes F satisfies the parameter-dependent Lyapunov equation (6.28), and

that the right hand side of this equation is positive definite, it implies that the
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following inequality is verified,

∀(k, Fl) ∈ N×F , A>l|k→k+1Pl(θk+1)Al|k→k+1 − Pl(θk) ≺ 0. (6.42)

The recursive feasibility of the online distributed controller is trivial and comes

from the fact that remaining in the same control mode l asymptotically stabilizes

the system, without triggering a control switch. Therefore, when the supervisory

unit evaluates the LMIs conditions (6.38) defined previously, the set of achievable

stable control modes will contain at least Fl according to (6.42).

Proposition 6.1. If a switch between two control laws l1 and l2 is asymptotically

stable after ∆? ∈ N∗ time steps, then the same control switch remains stable after

any ∆ ∈ N∗ time steps if ∆ ≥ ∆?.

Proof. A stable switch from the control mode l1 to the control mode l2 performed

after ∆? time steps implies that the following LMI constraint is verified for any value

of time step k,

∀k ∈ N, A>l1|k→k+∆
?Pl2(θk+∆

?)Al1|k→k+∆
? ≺ Pl1(θk). (6.43)

In addition to this, since the control mode l1 is stable, the following LMI con-

straint holds,

∀k ∈ N, A>l1|k→k+1Pl1(θk+1)Al1|k→k+1 − Pl1(θk) ≺ 0. (6.44)

Pre and post-multiplying the LMI condition (6.43) respectively by the transition

matrices A>l1|k+∆
?→k+∆

?
+1 and Al1|k+∆

?→k+∆
?
+1 yields the following relation,

∀k ∈ N, A>l1|k→k+∆
?
+1Pl2(θk+∆

?)Al1|k→k+∆
?
+1 �

A>l1|k+∆
?→k+∆

?
+1Pl1(θk)Al1|k+∆

?→k+∆
?
+1.

(6.45)

Finally, combining the LMI constraints (6.45) with the condition presented in

equation (6.44) gives the following matrix inequality,

∀k ∈ N, A>l1|k→k+∆
?
+1Pl2(θk+∆

?
+1)Al1|k→k+∆

?
+1 �

A>l1|k+∆
?→k+∆

?
+1Pl1(θk+1)Al1|k+∆

?→k+∆
?
+1 ≺ Pl1(θk)

(6.46)

Noting that this condition holds for any value of time step k and applying it

recursively completes the proof.

According to Proposition 6.1, the set of control modes that can be used for

switching increases with the value of ∆. Indeed, if ∆?
li→lj ∈ N∗ denotes the minimum

dwell time from the control mode li to the control mode lj , then the value ∆min =
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max
(i,j)∈J0,LK2

{
∆?
li→lj

}
ensures that a control switch between any two control modes

of the set F will be asymptotically stabilizing for the LPV system (6.1) (Liberzon,

2003). Therefore, the online selection of an LPV control mode is always feasible in

order to ensure asymptotic stability. As presented in Figure 6.2, if the distributed

controller is initialized with the unstructured control mode F0, then F0 constitutes a

feasible solution as next control law. Similarly, when the control mode Fl1 is selected,

the next control mode can be either the new candidate Fl2 or the same control mode

Fl1 . The online distributed controller can be initialized with any control mode Fl0
from the alphabet F of control modes. A possible control switching sequence is

as presented in Figure 6.2. Following the discussions about the stability and the

recursive feasibility of the distributed LPV controller presented in Lemma 6.2 as

well as Proposition 6.1, the main results are summarized in Theorem 6.2 formulated

within the next subsection.

F0 Fl1 Fl2 Fl3

F0 Fl1 Fl2 Fl3

Figure 6.2: Switching sequence between the LPV control modes of the set F .

6.5.3 Overall Controller Feasibility and Stability

This subsection gathers the results developed in the two previous subsections con-

cerning the asymptotic stability as well as the recursive feasibility of the distributed

LPV control technique. Theorem 6.2 summarizes the properties of the distributed

LPV controller when applied to a LPV system complying with Assumption 6.1.

Theorem 6.2. The distributed LPV controller obtained by selecting the best stable

LPV control mode in the finite set F is recursively feasible and consecutive control

modes are asymptotically stabilizing for the switched closed-loop LPV system (6.1).

Proof. The proof of this theorem is straight forward, and follows directly from

Lemma 6.2, Proposition 6.1 and the results developed and discussed previously.

Following the discussion on the stability and recursive feasibility as well as the re-

sults provided about the synthesis of structured LPV control laws. The next section

explains how the control algorithm proceeds to orchestrate stable control switches

maximizing the system-wide performance while minimizing the communication cost,

online.
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6.6 Distributed Linear Parameter-varying Control Al-

gorithm

This section presents how the online distributed LPV controller algorithm selects the

most appropriate control mode candidate from the subset of feasible control modes

F . The predicted system performance is assessed based on the current measured

state variable xk, periodically, every ∆ ∈ N∗ time steps. In order to select the most

appropriate control mode, the first step is to reduce the set of controllers to the set of

control modes that will preserve the asymptotic stability of the closed-loop system.

This is achieved by verifying that the LMI condition (6.38) is verified. The set of all

the control modes that are complying with this criteria forms the set denoted Fs.
As it has been proved previously, the set Fs is always different from the empty set

due to the fact that that it always contains at least the current control mode.

Algorithm 6.1: Distributed LPV control algorithm

Inputs : θk
Output : Fl
Parameters : λ, ∆, F = {F0, F1, . . . , FL}
Initialization: k0 = 0, k1 = 0, l = 0, Al|k0→k1

= In
Al|k0→k1+1 = Al|k0→k1

×Acll(θk)
k1 = k1 + 1
if mod(k1 − k0,∆) = 0 then

Check for switching stability conditions with LMIs in equation (6.38)
Compute the set of stable control modes: Fs
Rank the control modes in the set Fs
Select best control mode: Fl? ∈ Fs
if Fl? 6= Fl then

l = l?

k0 = k
k1 = k
Al|k0→k1

= In
end

end
return
Fl

Then, ranking the LPV control modes belonging to the set Fs, is performed by

computing a combined cost, composed of the predicted infinite horizon quadratic

cost with a communication metric given in equation (6.47), as follows

∀Fl ∈ Fs, Jl = x>k Pl(θk)xk + λ‖vec (W ◦ Fl)‖0, (6.47)
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where λ ∈ R∗+ is a strictly positive weight constant, added to balance the control and

communication costs, and W ∈ J0, 1Km×n is a masking matrix used to account for the

entries of Fl relying on subsystem to subsystem communication. In the unlikely case,

where the best combined cost is achieved by more than one candidate, the control

candidate providing the best control performance or the best communication cost

can arbitrarily be implemented. The implementation of the distributed LPV control

algorithm requires to set the tuning parameter λ, also since any control modes from

the set Fs can be implemented at a given control switch instant, the value of λ can be

adjusted online as a function of the system behaviour. Finally, some LMI constraints

can be used during the design of the set F in order to enforce physical system

constraints (Wada et al., 2006). The next section presents a numerical example to

show the efficacy of the distributed algorithm.

6.7 Numerical Examples

This numerical examples have been solved using Yalmip (Löfberg, 2004) as well as

the optimization solvers SeDuMi (Sturm, 1999) and Mosek (MOSEK ApS, 2017).

6.7.1 Example with Small Scheduling Parameter Dimension

This example is a modification of the benchmark example to evaluate robust con-

trollers (Wie and Bernstein, 1992). The aim of the benchmark example is to control

the position and velocity of two carts linked by a spring. The physical continuous

system is discretized with a sampling time of 0.1s, the masses m1 and m2 of the

two carts are fixed and known, however the spring constant varies with time. The

system is modelled by the discrete-time LPV system described in equation (6.48).

xk+1 =


1 1

10 0 0
−K(θk)
10m1

1 K(θk)
10m1

0

0 0 1 1
10

K(θk)
10m2

0 −K(θk)
10m2

1

xk +


0 0
1

10m1
0

0 0

0 1
10m2

uk (6.48)

The state variables are the positions and velocities of the carts 1 and 2, respec-

tively for the state variables index from 1 through 4. The control input variables

are forces applied on the cart one and two. A representation of the system is given

in Figure 6.3.

The continuous time state space model is discretized using Euler’s first order

approximation for the derivative with the sample time. The spring parameter K(θk)

varies between Kmin = 1 and Kmax = 5, and the masses m1 and m2 are taken equal

to 0.1, the weighting matrices Q and R are both equal to the identity matrices of
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m1 m2

K(θ)

x1 x3

u1 u2

Figure 6.3: Two-mass-spring LPV system.

appropriate dimensions. Four different control modes with different communication

requirements between the two carts are designed for this example, as follows,

F0(θk) = θk

[
−4.12 −1.42 2.80 0.46

2.80 0.46 −4.12 −1.42

]

+ (1− θk)

[
−0.38 −1.45 −0.94 0.49

−0.93 0.49 −0.38 −1.45

] (6.49)

F1(θk) = θk

[
−7.66 −1.88 −0.38 0.07

0 0 −3.83 −1.43

]

+ (1− θk)

[
−3.23 −1.93 −4.40 0.03

0 0 −0.08 −1.65

] (6.50)

F2(θk) = θk

[
−3.83 −1.43 0 0

−0.38 0.07 −7.66 −1.88

]

+ (1− θk)

[
−0.08 −1.65 0 0

−4.40 0.0287 −3.23 −1.93

] (6.51)

F3(θk) = θk

[
−4.90 −1.65 0 0

0 0 −4.9030 −1.6540

]

+ (1− θk)

[
−2.78 −1.86 0 0

0 0 −2.78 −1.86

] (6.52)

Therefore, for this example F = {F0, F1, F2, F3}, the simulation is performed

with the initial state x>0 =
[
1 1 1 1

]
. The aim of this simulation is to regulate

the state variables to zero and a periodic switching time of ∆ = 10 time steps

is used. The distributed controller relies on the fully centralized control law to

tackle the transient behaviour, before disconnecting the subsystems communication

channels without any major impact on the overall system performance. The control
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costs and the number of communication packets transmitted are given in Table 6.1.

Table 6.1: Comparison of the cumulative control and communication costs for dif-
ferent control methods applied to the mass-spring-system (6.48).

Costs F0 Distributed LPV F3

Control 43.55 43.74 142.92
Number of communications 100 20 0

Total 143.55 63.74 142.92

6.7.2 Example with Medium Scheduling Parameter Dimension

This second example represents a modification of the LPV model for the CMPASS-

1 gas turbine engine (Richter, 2012). The two state variables represent the fan

and core engine speed, and the two input variables represent the fuel flow and the

variable stator vane respectively. The gas turbine engine model is parametrized

with a scheduling parameter of dimension two representing the Mach number and

the altitude for values between 0 and 0.85 as well as 0ft and 42000ft respectively.

The gas turbine engine model is discretized using a sampling time of 0.1s. The

discrete-time LPV system model is described in equation (6.53).

xk+1 = A(θk)xk +Buk

xk+1 = (A0 +M ×AM + h×Ah)xk +Buk
(6.53)

The scheduling parameter θk is a vector of dimension four composed of the

combinations of engine Mach number and altitude extreme cases. Thus, the number

of vertices used to compute the control modes is equal to four. The vertices for the

discrete time model as well as the input matrix are given as follows,

A1 =

[
1.0202 0.0444

0.0137 1.1102

]
(6.54)

A2 =

[
0.9373 0.0476

0.0216 1.0883

]
(6.55)

A3 =

[
1.2826 −0.0824

−0.0083 1.4660

]
(6.56)

A4 =

[
1.3968 −0.0945

−0.0211 1.4963

]
(6.57)
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B =

[
29.6492 −4.2037

100.8654 13.2474

]
. (6.58)

The fuel flow input and the fan speed state compose the first subsystem, the vari-

able stator vane input combined with the core speed state variable form the second

subsystem. The weighting matrices Q and R used for the control design are both

equal to the identity matrices of appropriate dimensions, and four different control

modes with different communication requirements between the two subsystems are

designed, as follows,

F0(θk) = θ1,k

[
−0.0166 −0.0064

0.1255 −0.0348

]
+θ2,k

[
−0.0153 −0.0064

0.1149 −0.0336

]

+ θ3,k

[
−0.0208 −0.0062

0.1587 −0.0634

]
+θ4,k

[
−0.0225 −0.0062

0.1732 −0.0660

] (6.59)

F1(θk) = θ1,k

[
−0.0210 −0.0072

0.0000 −0.0580

]
+θ2,k

[
−0.0194 −0.0071

0.0000 −0.0548

]

+ θ3,k

[
−0.0263 −0.0073

0.0000 −0.0931

]
+θ4,k

[
−0.0286 −0.0073

0.0000 −0.0985

] (6.60)

F2(θk) = θ1,k

[
−0.0174 0.0000

0.1308 −0.0795

]
+θ2,k

[
−0.0161 0.0000

0.1201 −0.0780

]

+ θ3,k

[
−0.0214 0.0000

0.1631 −0.1067

]
+θ4,k

[
−0.0232 0.0000

0.1777 −0.1092

] (6.61)

F3(θk) = θ1,k

[
−0.0358 0.0000

0.0000 −0.0153

]
+θ2,k

[
−0.0280 0.0000

0.0000 −0.0150

]

+ θ3,k

[
−0.0418 0.0000

0.0000 −0.0458

]
+θ4,k

[
−0.0475 0.0000

0.0000 −0.0485

] (6.62)

The experiments is conducted with the set of control modes F = {F0, F1, F2, F3}
from the initial state x>0 =

[
100 −100

]
, which correspond to a higher fan speed and

a lower core speed to regulate. The scheduling parameter evolves from an altitude of

0ft and a Mach number of 0 to the 42000ft cruise altitude and the 0.85 cruise Mach

number. The aim of this simulation is to regulate the state variables to zero which
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correspond to their steady state values, a periodic switching time of ∆ = 10 time

steps is used throughout the simulation. A summary presenting the control costs as

well as the number of communication packets transmitted are given in Table 6.2.

Table 6.2: Comparison of the cumulative control and communication costs for dif-
ferent control methods applied to the modified CMAPS-1 turbofan engine (6.53).

Costs F0 Distributed LPV F3

Control 20258.01 20258.01 378875.07
Number of communications 50 20 0

Total 20308.01 20278.01 378875.07

The centralized LPV controller F0 is close to a dead beat controller, therefore,

switching to a decentralized control mode after the first 10 time steps does not affect

the overall control cost. The Figure 6.4 and 6.5, respectively present the behaviour

of the turbofan during the simulation for the centralized and decentralized LPV

controllers.
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Figure 6.4: Centralized LPV controller applied to the CMAPS-1 turbofan engine
(6.53).
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Figure 6.5: Decentralized LPV controller applied to the CMAPS-1 turbofan engine
(6.53).

6.8 Conclusion

A distributed LPV control technique has been presented within this chapter, where

a supervisory unit updates the LPV control mode by selecting a LPV controller

amongst a finite set F of control laws. All the control laws composing the finite

alphabet present different communication topologies and therefore, in the case where

the LPV system is composed of coupled subsystems different control performance

as well. The selection of the most appropriate control mode is performed by first

selecting the stable controllers. Then, this subset of controllers is ranked based on

a cost function including a prediction of the infinite horizon control performance

combined with the number of communication channels in a weighted sum. The best

control mode selected is broadcast to the subsystems and this process is repeated.

It has been demonstrated that the synthesis of unstructured and structured LPV

control laws can be achieved based on a SDP formulation, including BMI constraints

in the case where some state variables are shared between multiple subsystems.





Chapter 7

Conclusion and Future Work

7.1 Conclusion

The contributions presented within this thesis are concerned with the optimal de-

sign of control system architectures as well as the online and offline synthesis of

distributed control techniques, respectively with applications for linear system as

well as non-linear system modelled as linear-parameter varying systems. In addition

to this, the thesis has presented a literature review in control and system theory,

introducing the concept of optimal control and has provided the necessary mathe-

matical background in order for the research contributions to be motivated, and for

the optimization techniques to be clearly introduced.

Systems and control engineering is a multidisciplinary field that affects a lot

of different types of systems. Subsequently, a lot of theoretical properties have

been developed in order to tailor the dynamical model to the physical systems.

In addition to this, the chapter 2 has presented the work developed to show the

stability of a system and to analyze the controllability and observability of a system.

These properties have led naturally to the development of optimal control techniques.

First, optimal control has been applied offline in the case of linear time invariant

system models. Following this, online optimal control strategies such as model-based

predictive control have been developed to provide an intuitive and simple way to

deal with system constraints.

The chapter 3 introduced the background and the main mathematical notions

and notations used throughout the thesis. The definition of convex sets as well

as convex functions along with some of their fundamental properties has been pre-

sented, leading to the formulation of convex optimization problem. It has been shown

that conic programming is a powerful optimization framework gathering most of the

convex optimizations used in control and system theory. Even if convex optimization

173
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is used extensively in control, the formulation of some problems lead to non-convex

optimization. Therefore, this chapter also described the principal non-convex opti-

mization problems encountered in the field of control systems. This chapter finished

by presenting some of the algorithms and methods implemented to solve the opti-

mization problems introduced previously.

Firstly, a control system architecture technique has been presented within chap-

ter 4. The purpose of this technique is to partition a system model into non-

overlapping or overlapping subsystem models, such that the interactions between

subsystems are minimized. Partitioning a system model consists of partitioning the

set of state variables as well as the set of input variables into paired subsets of

state and input variables, where each subset pair represents one subsystem. The

non-overlapping and overlapping partitionings are obtained by respectively prevent-

ing or allowing some state variables to be shared amongst multiple subsystems.

Initially, this task has been achieved by expressing the partitioning minimization

problem as a binary integer non-linear program, that has then been linearized based

on the introduction of a state and input auxiliary variable. Solving this partition-

ing optimization problem offline yields the subsystem architecture having the least

interacting but controllable subsystem models. It has been shown that the weak in-

teractions partitioning problem is a combinatorial optimization problem. Therefore,

it is a difficult problem to solve that in the worst case scenario leads to an exhaustive

search, with the set of feasible solutions having a cardinality that grows exponen-

tially with the size of the input parameters. However, this architectural optimization

technique is important considering that partitioning a system into subsystems is the

preliminary step that will condition the control system architecture, and therefore

its design. Subsequently, the control architecture choice will directly influence the

control system overall performance as well as the communication requirements when

a non-centralized controller is implemented.

Secondly, in chapter 5, a supervised-distributed control algorithm has been de-

veloped in order to maximize the system-wide performance while minimizing the

subsystem to subsystem communication burden. The supervised-distributed control

technique uses a supervisory agent that periodically updates the subsystems control

laws by solving an online optimization problem. This optimization problem has been

formulated as a semi-definite program including a bilinear matrix equality. Subse-

quently, the optimization problem has been relaxed into two standard semi-definite

programming problems solved alternately until a stopping criterion is reached. The

asymptotic stability of the distributed controller is guaranteed based on a dwell

time parameter, ensuring that switches between two consecutive control modes will

not destabilize the system and will also provide enough time for the algorithm to
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converge. Also, based on the biconvex structure of the optimization problem it has

been proved that the algorithm converges to a stationary point that is a local opti-

mum. It has been demonstrated that even if the algorithm does not converge within

the allocated time, early termination will output a feasible control mode. Finally,

recursive feasibility of the online optimization has been demonstrated. Variants

of the supervised-distributed control algorithm can include physical system con-

straints as well as robustness to system model uncertainty, without affecting the

results presented previously. The supervised-distributed control technique devel-

oped is relevant to wireless sensor networks, where the sensors of a subsystem will

have to broadcast data wirelessly to other subsystems based on battery energy. Con-

sequently, the control system can minimize the total amount of energy spent by the

system by accounting for the communication in the control objective function.

Finally, an extension of the supervised-distributed control method applicable

to non-linear systems modelled as linear parameter-varying systems has been pre-

sented within chapter 6. This control technique relies on the offline design of a set

of linear-parameter varying control modes having different communication require-

ments. Following the offline design step, a supervisory agent can select the best

control mode within a finite alphabet of control laws according to the predicted

infinite horizon cost as well as the forecast communication cost. The selection and

the implementation of a new control mode implies performing a switch from on con-

troller to another. A switching sequence ensuring the asymptotic stability of the

system can be guaranteed relying on sufficient linear matrix inequality conditions,

checked online based on the history of the system dynamics. Trivially, the online

control selection method remains feasible due to the fact that each control mode

is asymptotically stable. It has been shown that the synthesis of linear-parameter

varying control laws having a given sparsity structure can be performed optimally

in the case of non-overlapping and overlapping subsystem decompositions. These

optimization problems are formulated as semi-definite programming problems that

include a set of bilinear matrix equalities when the controller sparsity pattern cannot

be expressed using block matrices.

7.2 Future Work

Possible future work and research directions include points linked to the three con-

tributions developed within this thesis, and are presented within the next three

subsections.
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7.2.1 Weak Interaction System Partitioning

The problem of partitioning a system into subsystems is a difficult combinatorial

problem that scales up with poor performance. Therefore, the development of com-

putational methods used to speed up the convergence of the system partitioning

algorithm would be desirable. Another interesting aspect linked to the partitioning

of a system model would be to be able to account for a multi-objective cost function

that would include other physical data such as the distances between the sensors

and actuators of a subsystem, as well as the total system weight or power consump-

tion. The partitioning of linear-parameter varying system models would also be an

interesting point to investigate. As it has been discussed previously, steering or con-

straining the partitioning algorithm to the controllable subsystems is complex, as it

involves rank constraints with unknown matrix dimensions. However, the study of

a partitioning algorithm including rank constraints would be very valuable.

7.2.2 Supervised-distributed Controller

Concerning the supervised-distributed algorithm, even if the control algorithm has a

polynomial time complexity, the overall optimization of the control algorithm would

be very relevant. Such a feature would potentially allow to apply the supervised-

distributed control technique to very large-scale systems. Another algorithm com-

plexity encountered was the need to include a bilinear matrix equality in the op-

timization problem, triggering the non-convexity of the feasible set. Research per-

formed in the field of optimization, looking for new techniques applicable to problems

involving bilinear matrix inequality is very active. The development of more effi-

cient branch and bound methods or similar algorithms applicable to bilinear matrix

problems would be very beneficial for this control technique. Last but not least, a

study about the tuning of the control algorithm, with the trade-off parameter λ as

well as the dwell time parameter ∆ would be interesting.

7.2.3 Distributed Linear-parameter Varying Controller

Some future work regarding the distributed linear-parameter varying control tech-

nique could be investigating the online design of the control modes composing the

control set F . In order to be able to implement the optimal control law synthesis

online, an improvement of the algorithm complexity would have to be performed, es-

pecially in the case of large and very large-scale systems. Future research directions

could also be looking into the performance improvement of linear-parameter varying

control laws based on the measurement of the real time system dynamics, based on

the assumption that the rate of change of the exogenous scheduling parameter is
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bounded. This would imply that the system dynamics are located within a subset

of the achievable dynamics, and that this situation will remain for a certain amount

of time steps. Finally, an extension to the linear-parameter varying problem can be

considered where all the matrices composing the system model are varying with the

exogenous scheduling parameter.





Appendix A

Stirling Numbers

A.1 Introduction

Number theory is a field of mathematics that studies integers, it subsumes the

branch of combinatorics concerned with counting the number of combinations and

permutations of finite sets (Laplace, 1820; Riordan, 1958). The Stirling numbers of

first, second and third kind play an important role in combinatorial mathematics,

they find applications for different analytic and combinatorial problems and they

can all be used to express the coefficient of sequences of polynomials. All these

numbers are linked by the fact that they can express the number of partitions of a

set with n elements into k non-empty non-overlapping subsets. This appendix aims

at introducing the Stirling numbers as well as how they can be computed. Also,

a presentation of some of their properties as well as the link between them is also

provided.

A.2 Stirling Numbers of the First Kind

The Stirling numbers of the first kind are linked to the number of cycles within a

finite discrete set. These numbers can be unsigned or signed and are defined by the

coefficients of the rising and falling factorials as follows,

x(n) =

n−1∏
k=0

(x+ k) =

n∑
k=0

[
n

k

]
xk. (A.1)

The equation (A.1) defines the rising factorial and its relation with the unsigned

Stirling numbers of the first kind, whereas the equation (A.2) defines the falling

factorial along with its relation with the unsigned Stirling numbers of the first kind.

The signed Stirling numbers of the first kind are obtained by combining the sign in
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the sum of (A.2) with the unsigned Stirling numbers of the first kind.

(x)n =

n−1∏
k=0

(x− k) =

n∑
k=0

(−1)n−k
[
n

k

]
xk (A.2)

The unsigned Stirling numbers of the first kind correspond to the number of

permutations of a set of n elements with k disjoint cycles. These numbers can also

be computed using the following recurrence relation,

∀(n, k) ∈ N∗ × N∗,
[
0

0

]
= 1,

[
n

0

]
=

[
0

n

]
= 0, (A.3a)[

n+ 1

k

]
=

[
n

k − 1

]
+ n

[
n

k

]
. (A.3b)

It is possible to show this recurrence relation using either the definition of the

Stirling numbers of first kind based on the rising or falling factorials or by using their

combinatorial definition based on permutations. The first few Stirling numbers of

the first kind are presented within Table A.1.

Table A.1: Stirling numbers of the first kind.

n\k 0 1 2 3 4 5

0 1
1 0 1
2 0 1 1
3 0 2 3 1
4 0 6 11 6 1
5 0 24 50 35 10 1

For a fixed value of n, the sum of all the Stirling numbers of the first kind over k

from 0 to n yields factorial n, which can be computed from the rising factorial with

x equal 1.

∀n ∈ N,
n∑
k=0

[
n

k

]
= n! =

[
n+ 1

1

]
(A.4)

Using the recursive relation (A.3), it is trivial to show that the right side equality

of (A.4) holds.

Figure A.1 represents the different cycles linked to the Stirling number of the

first kind with a set of n = 3 elements and k = 2 cycles. The total number of ways

to partition the set is 3. In this case, all three partitions have a cycle composed of

2 elements and a cycle of a single element.
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Figure A.1: Cycle representations of the Stirling number of the first kind with n = 3
and k = 2.

A.3 Stirling Numbers of the Second Kind

The Stirling numbers of the second kind represent the number of ways to partition a

set of n elements into k non-empty non-overlapping subsets. These numbers are the

inverse to the Stirling numbers of the first kind. Similarly to the Stirling number of

the first kind, they can be computed based on the generating function consisting of

the rising and falling factorials (A.5), such that,

∀n ∈ N, xn =

n∑
k=0

{
n

k

}
(x)k =

n∑
k=0

(−1)n−k
{
n

k

}
x(k) (A.5)

It can be proved that there exists a recurrence relation between the Stirling

number of the second kind based on their definition from the falling factorial. The

recurrence relation is as follows,

∀(n, k) ∈ N∗ × N∗,
{

0

0

}
= 1,

{
n

0

}
=

{
0

n

}
= 0, (A.6a){

n+ 1

k

}
= k

{
n

k

}
+

{
n

k − 1

}
. (A.6b)

Table A.2 presents the first few Stirling numbers of the second kind which high-

lights the recurrence relation presented previously.

Table A.2: Stirling numbers of the second kind.

n\k 0 1 2 3 4 5

0 1
1 0 1
2 0 1 1
3 0 1 3 1
4 0 1 7 6 1
5 0 1 15 25 10 1

There is an explicit formula used to compute the Stirling numbers of the second
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kind relying on factorials, this formula is as follows,

{
n

k

}
=

1

k!

k∑
i=0

(−1)k−i
(
k

i

)
in. (A.7)

The total number of ways to partition a set with n elements into non-empty

non-overlapping subsets is defined by the Bell number. Consequently, the n-th Bell

number Bn is equal to the sum of the Stirling numbers of the second kind such that,

∀n ∈ N,
n∑
k=0

{
n

k

}
= Bn. (A.8)

In order to have an idea of the distinct ways to partition a set of n elements into

k non-empty non-overlapping subsets, the Figure A.2 illustrates all the different

partitioning ways with n = 4 and k = 2. In this case, there are 6 possible ways the

partition the set of four elements, each one is composed of a subset composed of two

elements as well as two subsets with a single element.

1 2

34

1 2

34

1 2

34

1 2

34

1 2

34

1 2

34

Figure A.2: Set partitions representing the Stirling number of the second kind with
n = 4 and k = 3.

A.4 Lah Numbers

The Lah numbers, also sometimes called the Stirling numbers of the third kind,

represent the number of ways to partition a set of n elements into k non-empty

non-overlapping ordered subsets. Similarly to the Stirling number of the first and

second kinds, the Lah numbers can be generated using the rising factorial as follows,

x(n) =
n∑
k=1

⌊
n

k

⌋
(x)k. (A.9)

In the same fashion as for the Stirling numbers of the first and second kinds, the
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Lah numbers are linked to the falling factorial, the relation is as follows,

(x)n =

n∑
k=1

(−1)n−k
⌊
n

k

⌋
x(k). (A.10)

The Lah numbers can be calculated by using the following recurrence relation,

∀(n, k) ∈ N∗ × N∗,
⌊

0

0

⌋
= 1,

⌊
n

0

⌋
=

⌊
0

n

⌋
= 0, (A.11a)⌊

n+ 1

k

⌋
= (n+ k)

⌊
n

k

⌋
+

⌊
n

k − 1

⌋
. (A.11b)

However, in this case, an explicit formula to compute these numbers exists based

on binomial coefficients and factorials exists and is given by,⌊
n

k

⌋
=

(
n− 1

k − 1

)
n!

k!
. (A.12)

Some properties of the Lah numbers can be proved by recurrence, for example,

∀n ∈ N∗,
⌊
n

1

⌋
= n!, (A.13a)⌊

n

n

⌋
= 1, (A.13b)⌊
n

n− 1

⌋
= n(n− 1). (A.13c)

Finally, Table A.3 presents the first Lah numbers for n less or equal to 5. The dis-

tinct ways to partition a set of n = 3 elements into k = 2 non-empty non-overlapping

ordered subsets is represented Figure A.3. In this case, there are 6 different partitions

possible, every partition is composed of an ordered subset including two elements

and a subset composed of a single element.

Table A.3: Lah numbers.

n\k 0 1 2 3 4 5

0 1
1 0 1
2 0 2 1
3 0 6 6 1
4 0 24 36 12 1
5 0 120 240 120 20 1
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3

1 2
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1 2

3
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3
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3

Figure A.3: Ordered subsets representing the Lah number with n = 3 and k = 2.

A.5 Relations Between the Stirling and Lah Numbers

The three different combinatorial numbers presented within the previous sections of

this appendix are related. It can be seen that they represent a change in basis for

polynomial functions as it is pictured by Figure A.4. A Polynomial function can be

expressed uniquely with the canonical polynomial basis or with the polynomial basis

generated from the rising and the falling factorials. The Figure A.4 presents how

these numbers connect the three polynomial basis mentioned previously. Therefore,

it means that the Stirling number of the first and second kind can be considered

as inverses when they form lower triangular matrices whose entries are the Stirling

numbers with corresponding row and column indexes. Similarly, as it can be seen

Figure A.4, the Lah numbers and the Lah numbers multiplied by (−1)n−k can be

seen as inverses when they compose the entries of lower triangular matrices. Finally,

since these three combinatorial numbers represent different ways to partition a set

of n elements into k subsets being respectively unordered, cyclically ordered and

linearly ordered, the following inequalities naturally arise,

∀(n, k) ∈ N× N,
{
n

k

}
≤
[
n

k

]
≤
⌊
n

k

⌋
(A.14)
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Figure A.4: Relations between the Stirling and Lah numbers.





Appendix B

Graph Theory

B.1 Introduction

Multiple real life situations can be modelled by a set of vertices connected together

by edges, this representation is called a graph. Graph theory is a field of discrete

mathematics that has been developed in order to provide the tools to analyse and

solve problems involving graphs, subsequently providing answers to the real life sit-

uations they represent (Diestel, 2000; Bondy and Murty, 2008). Graphs can be

undirected, directed, and even weighted based on the type of situation that is mod-

elled. A given graph G is defined by an ordered pair of elements, including a set of

vertices V and a set of edges E such that,

G = (V,E). (B.1)

The set of edges E is composed of pairs of vertices taken from the set V that

can be directed and even weighted in some cases. Graphs can also be defined by

their incidence or adjacency matrices. The incidence matrix of an undirected graph

is a rectangle matrix whose rows represent the vertices and whose columns represent

the edges, its entries are positive integers representing the number of times a vertex

and an edge are incident. The adjacency matrix is a square matrix with rows and

columns labelled after the vertices and composed of binaries. When an entry is

equal to 1, it indicates the presence of an edge between the vertices corresponding

to the row and column indexes, whereas a 0 entry means that there is no direct

link between these two particular vertices. A graph is said to be disconnected if its

vertices can be partitioned into two distinct subsets that do not share any edges,

otherwise a graph is said to be connected.
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B.2 Undirected Graphs

An undirected graph also called simple graph is a graph where the edges are not

oriented, therefore, the edge {1, 2} is the same as the edge {2, 1}. A direct conse-

quence of this is that for an undirected graph with n vertices the maximum number

of edges is n(n−1)
2 if loops are not considered and n(n+1)

2 with loops. Two vertices

linked by an edge are said to be adjacent, and a vertex is said to be incident with an

edge and vice versa. Subsequently, a graph can be defined by its incidence matrix

or adjacency matrix. The adjacency matrix of a simple graph is a symmetric binary

matrix, the Figure B.1 represents a simple undirected graph with 10 vertices.

1

2

34

5

6

7

8 9

10

Figure B.1: Example of an undirected graph.

The adjacency matrix representation is not unique and any permutations of a

row and a column with equal indexes will yield the same graph by changing the

vertex labels. A possible adjacency matrix A for the graph presented in Figure B.1
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is as follows,

A =



0 1 0 0 1 0 1 0 0 1

1 0 1 0 0 1 0 1 0 0

0 1 0 1 0 0 1 0 1 0

0 0 1 0 1 0 0 1 0 1

1 0 0 1 0 1 0 0 1 0

0 1 0 0 1 0 1 0 0 1

1 0 1 0 0 1 0 1 0 0

0 1 0 1 0 0 1 0 1 0

0 0 1 0 1 0 0 1 0 1

1 0 0 1 0 1 0 0 1 0



(B.2)

Similarly, a graph can be defined by its incidence matrix I. This kind of matrix

links each edge to the two vertices it connects. The incidence matrix of the graph

B.1 is presented in equation (B.3). It can be noted that the adjacency matrix

does not have to be symmetric or even square since the number of edges can be

different from the number of vertices. In the same way as for the adjacency matrix,

any permutations of the rows and the columns will represent the same graph after

changing the labels of the vertices and of the edges respectively. Very often graphs

have a lot more edges than vertices, subsequently in most cases the adjacency matrix

constitutes a more compact way to store a graph than the incidence matrix. Hence,
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it is the preferred representation in most cases.

I> =



1 1 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 1 1

1 0 0 0 0 0 0 0 0 1

1 0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 1

0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 1 0 0 0 1



(B.3)

Graphs are mathematical objects used to represent a given topology and conse-

quently, the relative position of the vertices as well as the shape of the edges does

not change the topological properties of a given graph. However, only plotting the

undirected edges between a set of vertices can be insufficient sometimes, and in some

cases associating an edge with a specific direction can carry some useful meaning.

This property is achieved for the directed graphs and presented within the next

section.

B.3 Directed Graphs

Each edge of a simple graph can be oriented from a vertex towards another in

order to define a directed graph. An edge is called a loop if it connects a vertex to

itself. A directed graph also called a digraph does not usually include any loops or

parallel edges (multiple edges from and to the same vertex). The graph presented

in Figure B.2 corresponds to the oriented adjacency matrix A given equation (B.4).

In this case the adjacency matrix is still square and composed of binaries entries
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but does not have to be symmetric any more. Indeed, the adjacency matrix of a

digraph contains the information related to the incidence of the edges as well as

their orientation. Any element of A indicates the number of edges starting from the

vertex indexed by the row index and going to the vertex indexed by the column index.

Directed graphs do not only inform on the topology but also on the direction of the

edges between the vertices, therefore, they can be used to represent a succession of

states or flows between vertices. In the example presented Figure B.2, each vertex

is the initial vertex of two edges and the terminal vertex of two other edges.

1

2

34

5

6

7

8 9

10

Figure B.2: Example of a directed graph.

Consequently, in this specific case the binary entries of the adjacency matrix A
are positioned in such a way that each row and each column sum to two. A row

sums to two for two edges leaving a vertex and a column sums to two for two edges
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going to a vertex.

A =



0 0 0 0 0 0 1 0 0 1

1 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 1

1 0 0 1 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0

0 0 0 1 0 0 1 0 0 0

0 0 0 0 1 0 0 1 0 0

0 0 0 0 0 1 0 0 1 0



(B.4)

The representation of a directed graph by its incidence matrix is done by adding

signs to the matrix entries. An entry is set to −1 if an edge leaves a vertex and to

1 if an edge points towards a vertex, it is set to 0 otherwise.

B.4 Weighted Graphs

In some cases it is important to associate each oriented edge of a directed graph to

a weight. Weighted graphs are used to define a certain distance closeness between

two given vertices and are therefore essential to analyse the flow between vertices.

In the same way as for the simple graphs and the directed graphs, weighted graphs

could be defined by their incidence or adjacency matrix.

The adjacency matrix of a weighted graph has to contain the necessary infor-

mation about the weights and the orientations of all the edges. A weight is located

on the entry at the intersection of the row and the column, whose indexes are the

index of the initial vertex and of the terminal vertex respectively. The entries of

the incidence matrix are the weights of the edges with positive and negative signs,

positive for an edge that is directed from a vertex and negative for an edge directed

towards a vertex.

B.5 Multi-graphs

Finally, multi-graphs allow to have multiple weighted edges between two given ver-

tices, also a given vertex can be connected to itself by a loop. Therefore, multi-

graphs subsume the oriented and weighted graphs into one single type of graph.

In the same way as before they can be represented by an adjacency matrix A as

presented equation (B.5) or by an incidence matrix. The multi-graph linked to the
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Figure B.3: Example of a weighted graph.

adjacency matrix A is shown in Figure B.4. The adjacency matrix contains the ori-

entation of each edge as well as their respective weights, subsequently it is a square

matrix linking the vertices with weights. The edges connect the vertices indexed by

the row indexes to the ones indexed by the column indexes with the weight provided

by the value of the matrix entry. The incidence matrix has the same definition as

the incidence matrix for the weighted graphs, possibly including many parallel edges

as well as loops.

A =



1 5 0 0 1 0 5 0 0 5

2 2 1 0 0 5 0 2 0 0

0 5 3 2 0 0 2 0 5 0

0 0 7 4 5 0 0 2 0 5

7 0 0 7 5 5 0 0 1 0

0 5 0 0 2 6 5 0 0 1

2 0 5 0 0 1 7 5 0 0

0 7 0 5 0 0 2 8 1 0

0 0 5 0 7 0 0 5 9 1

5 0 0 5 0 1 0 0 1 10



(B.5)
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Figure B.4: Example of a weighted multi-graph.



Appendix C

Algorithmic Complexity

C.1 Introduction

The algorithmic complexity is measured by the time as well as the memory required

in order to run an algorithm for an input of size n. The study of the complexity

of an algorithm is important in order to evaluate the performance and be able to

compare different algorithms (Garey and Johnson, 1979). The time complexity can

be estimated based on the number of elementary operations that the algorithm has

to perform for an inout of size n, relying on the assumption that the execution

of each operation takes a fixed amount of time. On the other hand, the memory

complexity also called the space complexity of an algorithm is the assessment of

the space in memory required during the execution of an algorithm with an input

of size n. The main point of interest in both the time and space complexity case

is the asymptotic behaviour, in other words how does the complexity grow when

the input size n tends to infinity. In reality, time and space complexity are also

linked to the operating system, the programming language, the hardware, as well

as many other parameters. However, since the study of complexity is focused on

the algorithmic implementation based on the elementary operations, the complexity

analysis become independent from the parameters mentioned previously. The study

of algorithms and their complexity belongs to the field of computer science but they

are relevant to the domains of control and systems engineering when one wants to

assess the performance of a control algorithm. Finally, other aspects such as the

algorithm power consumption, the bandwidth, the number of disk access could be

considered as indicators of algorithm efficiency. Nonetheless, in general, only the

time and space complexities are of interest.
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C.2 Time Complexity

The time complexity of an algorithm is usually composed of a fixed part, completely

independent of the input as well as a part directly linked to the size of the input

denoted n. In most cases the fixed part is based on the initialization of variables and

counters, these elementary operations have to be completed regardless of the input

dimension. Analyzing the time complexity of an algorithm is performed based on

the worst case scenario, when the algorithm has to complete the largest amount of

elementary operations, before it can terminate. Different inputs of size n are likely

to have different execution times, therefore the worst case scenario is assessed to

provide an upper bound on the number of elementary operations required. There-

fore, evaluating the time complexity of an algorithm is equivalent to expressing the

number of elementary operations as a function of the input size, as follows,

t(n) = O (f(n)) , (C.1)

where t(n) denotes the number of elementary operations as a function of the input

size n for the algorithm to execute in the worst case scenario. The function f(n) de-

scribes the asymptotical behavior of t(n). The notation O(·) represents the Landau

big O notation, and it is used to illustrate the complexity of the algorithm when n

tends to infinity. For example, when f(n) = n the complexity is said to be linear,

and when f(n) = nk with k ∈ N∗ the complexity is said to be polynomial. The eval-

uation of the time complexity of an algorithm is important in practice, especially

in the case of online time-sensitive applications. An algorithm with poor perfor-

mance could provide outdated outputs or use an important amount of computing

resources. An algorithm with a time complexity at most polynomial is said to be

tractable and fast, whereas a time complexity worst than polynomial is considered

as slow. Different algorithm complexities are represented Figure C.1. Other less

common time complexity measures consider the best and average cases, however

these performance indexes are less used than the worst case analysis.

C.3 Space Complexity

The space complexity of an algorithm is another important performance index as it

defines the amount of memory required in order to run the algorithm. Similarly to

the time complexity, the space complexity is composed of a fixed part independent of

the input as well as a part linked to the input size called the input space. The total

amount of memory needed to execute an algorithm includes the instruction space

to store the algorithm instructions, the environmental stack in the case where an
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other routines are called, to store the variables while the other routines are executed

and the data space that is used to store the variables. Subsequently, the assessment

of the space complexity is achieved by finding the relation between the amount of

memory needed and the input size, such that

s(n) = O (g(n)) , (C.2)

where s(n) denotes the amount of memory necessary to run the algorithm in the

worst case scenario with an input of size n. The function g(n) represents the asymp-

totical behaviour of the algorithm space complexity. In some cases, there is a possi-

ble trade-off between the time and the space complexities. In other words, the time

complexity of an algorithm can be improved by using more space and vice versa.

In practice, the space complexity is important to be able to select the appropriate

hardware. Different asymptotical complexity behaviours are represented Figure C.1.

C.4 Polynomial versus Non-polynomial

The complexity of an algorithm is linked to the number of steps completed during

the execution of the algorithm, in the case where the algorithm is used to solve a

problem, the complexity of the best algorithm that exists can either be at most

polynomial time or more complex. These problems are ranked into two main classes

called Polynomial Deterministic (P) and Non-deterministic Polynomial (NP). Any

problems belonging to the class P can be solved in polynomial time, and therefore, a

given solution can also be verified with polynomial time complexity. A problem from

the class NP cannot be solved easily, in polynomial time, however, a given solution

can be checked in polynomial time. Consequently, any problems in the class P also

belong to the class NP. Proving or disproving that the class P is equal to the class NP

is still an open research question in the field of computer science (Cook, 1971). If P

is different from NP, it would imply that there exists some problems that cannot be

solved efficiently, in polynomial time, but whose solution can be checked quickly. On

the contrary, if P and NP are equal, then new efficient algorithms can be developed in

order to solve the problems that are believed to be currently difficult to tackle. The

problems in NP can be solved with a complexity worst than polynomial, for example

with an exponential or factorial complexity, often corresponding to the exhaustive

search of the set of feasible solutions (Papadimitriou and Steiglitz, 1998). Some

problems in NP have been shown to be at least as difficult to solve as the hardest

problems in NP, these problems compose a new class called NP-complete. Finally,

a larger class of problems called NP-hard gathers the problems that are at least as

hard as the hardest problems in NP. By construction, any problem in NP reduces
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Figure C.1: Algorithm complexity against input size n.
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in polynomial time to a NP-hard problem. Consequently, the class NP-complete

can be perceived as the intersection between the class NP and the class NP-hard,

since all NP-complete problems are in NP and are at least as difficult as the hardest

problems belonging to NP.
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Laplace, P. S. (1820). Théorie analytique des probabilités. Courcier, Paris.

Laub, A. J. (1979). A Schur method for solving algebraic Riccati equations. IEEE

Transactions on Automatic Control, 24:913–921.



References 207

Lawrence, D. A. and Rugh, W. J. (1995). Gain scheduling dynamic linear controllers

for a nonlinear plant. Automatica, 31:381–390.

Leininger, G. G. (1979). Diagonal dominance for multivariable Nyquist array meth-

ods using function minimisation. Automatica, 15:339–345.

Leith, D. J. and Leithead, W. E. (2000). Survey of gain-scheduling analysis and

design. International Journal of Control, 73:1001–1025.

Lepschy, A. M., Mian, G. A., and Viaro, U. (1992). Feedback Control in Ancient

Water and Mechanical Clocks. IEEE Transactions on Education, 35:3–10.

Liberzon, D. (2003). Switching in Systems and Control. Birkhauser, Boston.

Lin, H. and Antsaklis, P. J. (2009). Stability and stabilizability of switched linear

systems: A survey of recent results. IEEE Transactions on Automatic Control,

54:308–322.

Linke-Diesinger, A. (2008). Systems of commercial turbofan engines: an introduction

to systems functions. Springer-Verlag, Berlin Heidelberg.
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