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ABSTRACT 

 

  

 

Structural Health Monitoring (SHM) aims at monitoring bridges or other engineering 

structures by accessing their condition and alerting the user about new defects in the 

structure by means of autonomous sensing system. For an aircraft structure, the needs for 

a reliable SHM increases considerably due to its expensive value and the requirement of 

higher safety regulations. Due to these reasons and the airline’s sustainable economy, 

Structural Health Monitoring (SHM) techniques seemingly beneficial as a solution for 

automated and continuous monitoring hence reducing the needs for a manual inspection 

and structures disassembly. The technology potentially brings higher revenues to the 

operator by reducing the costly manual inspections and avoiding the situation where the 

aircraft has to be suspended for inspection procedures.  

This study is centered around investigating the effects of operational loading variations on 

damage detection, particularly of an aircraft wing, using Vibration Based Damaged 

Detection (VBDD) using a machine learning framework. It is comprised of two main parts, 

the first of which involves  implementing SHM on a wing box pseudo-fuel-tank structure. 

To do this frequency response function (FRF) data is acquired and analyzed using several 

machine learning approaches.  

Standard Principal Component Analysis (PCA) and nonlinear PCA through kernel 

Gaussian PCA are tested using the data as preliminary techniques of isolating damage 

effects from the loading effects on the selected features. A more concrete damage 

identification model is established using Artificial Neural Network (ANN) via nonlinear 



 

 

 

regression analysis. To obtain a better insight of the data distribution model and 

characteristics, various models based on the Gaussian Mixture Model (GMM) are 

incorporated on the wing box data sets. 

The second part covers the pinnacle of the current work, which involves performing similar 

SHM procedures using VBDD on a full-scale aircraft wing. The same machine learning 

approaches are used for this data acquired from the wing of a small Jabiru airplane. 

Decision trees via Random Forest algorithm is performed in an effort to model the data in 

a hierarchical manner by connecting the data variables of different variance at different 

levels. 

There has been increasing research surrounding operational loading and environmental 

variability in the field of SHM [1]–[6]. However, there is no significant work found in the 

literature on investigating fuel tank loading effects on SHM, particularly on aircraft wings. 

This current study aims to fill this research area by highlighting the influence of fuel tank 

loading variables on damage detection and SHM. 
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ANN: Artificial Neural Network 
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Chapter 1                            

INTRODUCTION 

  

 

 

This chapter introduces the motivation for undertaking the current research, namely 

damage detection under the confounding influence of operational loading conditions within 

Structural Health Monitoring (SHM). In this context, vibration based damage detection 

(VBDD) will be carried out in the interest of monitoring the structural health of an aircraft 

undergoing incremental changes in operational loading. The underlying concept behind the 

SHM framework is briefly described here, followed by a short note on the statistical pattern 

recognition in the field of SHM which is utilized in the current work. In the final part, an 

introduction to the layout of this thesis is presented.  

 

 Motivation 

The primary interest of the current research is to investigate the effect of confounding 

influences arising from operational loading variations, particularly due to changes in the 

fuel tank loading, upon the ability to conduct damage detection on an aircraft wing 

structure. In reality, the changing of fuel load of an operating aircraft typically creates a 

similar effect to a damage present in the structure as illustrated in Figure 1.1. In the aircraft 
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industry, hot spot monitoring is a regulated practice where inspection and maintenance has 

to be carried out in a fixed schedule on certain structures including the wing box, due to 

their high susceptibility to damage. Consequently, this poses a significant challenge if one 

plans to detect any malfunctions in the structure. 

            

Figure 1.1: The changing of mass loading due to the burning of fuel as the operational 

loading variables of an aircraft in flight. 

In the basic premise of Vibration Based Damage Detection (VBDD) theory, the effects of 

changing in mass will alter the natural frequency of the system, similar to the different 

levels of damage that will also alter the stiffness property of the system. Based on this 

principle, the study aims to investigate and explore various ways of unmasking the damage 

effects from the loading-sensitive features by means of Statistical Pattern Recognition 

(SPR) and probabilistic approach. 

In this thesis, Statistical Pattern Recognition (SPR) using Principal Component Analysis 

(PCA) will be exploited and further extended to kernel Gaussian Principal Component 

Analysis (kPCA) to establish a nonlinear form of PCA. The foundation of SPR lies on the 

concept of learning representations from training data in order to distinguish between the 

damage and undamaged states of a new measured data set. This is the idea of machine 

leaning which is to learn the relationship from the data by means of a mathematical and 

statistical approach [1], [7], [8]. This concept is adopted throughout this thesis as the means 

Aircraft fuel 

SHM sensors 

Changes in measured 

vibration response 

Active SHM system (sensors embedded on wing box / hot spot) 

Caused by 

damage? 

Caused by 

burning of fuel? 

https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiL3YLQ_e3LAhWHqw4KHZ8sCRQQjRwIBw&url=https://forum.flitsservice.nl/media/russisch-passagiersvliegtuig-neergestort-in-sinai-t90174-50.html&bvm=bv.118353311,bs.1,d.ZWU&psig=AFQjCNH0yPvq3hdbbyr5jpu1LwlEnpFJTg&ust=1459618504511860


                                                                                                                                            3 

 

 

of accomplishing a pattern recognition in making the decision about the health condition 

of a structure. 

Under the influence of operational loading variations, the feature caused by loading effects 

can be misleading and falsely interpreted as detection of damage. Such false alarms can 

result in costly measures of dismantling and repairing the structure. Therefore, it is crucial 

to differentiate the features caused by damage from those caused by loading, before 

concluding the health condition of the structure by means of SPR.  

Small levels of damage can be challenging to detect due to its effects being nonsignificant 

and the resulting feature mostly remaining hidden in the high dimensional data space. To 

reveal this feature, an intelligent machine learning algorithm should be considered as a 

means to detect the damage. The work in this thesis attempts to address this concern by 

exploring kernel Gaussian PCA, which is a nonlinear form of PCA. Kernel PCA has been 

used very successfully in the fields of facial recognition and pattern recognition [9]–[11] 

following the wide application of linear PCA in these fields [12], [13]. Thus, it will be the 

scope of visualising the data pattern corresponding to various damage severities in the SHM 

paradigm. It is in the interest of the current work to resolve the issues pertaining to linear 

PCA in the scope of visualisation and damage detection. 

Another motivation that drives the current work is the fact that SHM has been accepted and 

recognised as an economically competitive system for aircraft maintenance programmes. 

A significant aspect of considering SHM for structural maintenance is the result of 

successful project collaboration among the main SHM players in the aircraft industry, 

which are Sandia National Labs, Federal Aviation Administration (FAA), Boeing and 

Structural Monitoring Systems (SMS). They have started to work in partnership in 

collecting and verifying the data from SHM sensors mounted on operating aircrafts since 

February 2014 [14]. This development brought a new phase of implementing SHM on 

operating aircrafts using active inflight sensors. The programme implements local based 

damage detection using Comparative Vacuum Monitoring (CVM) sensors fitted on the 

wing box fittings. The approach of using CVM allows damage detection in a localised 
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region on a particular component. The main obstacle is that the sensors can be placed in 

locations where damage does not actually exist, which may result in cost inefficiency.  

In view of SHM implementation into the maintenance of aerospace structures, the current 

study aims to present another approach of SHM, using Vibration Based Damage Detection 

(VBDD) as a global method of detecting damage. Using VBDD as an alternative to local 

inspection methods such as radiography, eddy-current method, acoustic and ultrasonic 

methods, it can provide an economic advantage through internal damage detection without 

the need to dismantle the component. Despite this advantage, there are many challenges 

arising from VBDD, one of which is the operational and environmental variability. A brief 

discussion about this method of detection is presented in Chapter 2. 

SHM strategies that utilise Statistical Pattern Recognition (SPR) via machine learning 

algorithms can be implemented using condition based maintenance, which means that the 

structure is inspected when there is a signal from an offset damage present in the structure. 

Using vibration based SHM techniques, a component or full structure from a complicated 

system can be examined without the need to disassemble and reassemble the structure of 

various components, which can be costly and renders the structure unavailable for service. 

However, there are operational and environmental variability (OEV) factors that need to be 

addressed as they might affect the structural response of the structure while in service. 

These effects can arise from varying OEVs, for instance while the aircraft is on the ground 

for a short transit where fuel loading and payloads are mostly accounted for, compared to 

the aircraft under actual flight conditions. These factors can considerably influence the 

measured structural response by masking any possible effects of damage if the SHM 

procedures are to be implemented as condition based maintenance. 

The changing trend of SHM implementation into new aircraft maintenance programmes 

promises a good prospect for SHM application, especially in its transition from laboratory-

based conditions into real operational environments for commercial passenger aircrafts. 

Moving forward in that direction, the current work presents vibration based SHM using 

piezo electric sensors, focusing on the effects of varying operational loading on damage 

detectability in an aircraft wing. As discussed earlier, the main challenge arising from
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 vibration based SHM is that the measurements derived from the sensors are not only very 

sensitive to the presence of damage in the structure, but are also highly influenced by 

operational loading and environmental variations during the data measurements. To the 

author’s knowledge, up to the present time, there is no research published in the field of 

vibration based SHM concerning the influence of operational fuel loading variations 

particularly on damage detection of aircraft wings.  

The understanding of the dynamic behaviour of the wing structure under the influence of 

operational fuel tank loading is essential to develop a model for damage detection for SHM. 

Having knowledge on the data response under the influence of operational loading 

variations is paramount, and the current work specifically addresses the effects from 

varying fuel tank loading on the damage detection and the identification of damage severity. 

The objective of the current work is to provide a SHM framework for detecting damage 

and damage severity classification of an aircraft wing under the effects of varying fuel tank 

loading. The approach is based on SPR and machine learning algorithms, which are firstly 

used to differentiate various damage severities from various loading conditions. Secondly, 

the features of identified loading variabilities are used to separate those features from the 

undamaged state from the damage states. It also intends to classify the features of various 

damage severities. All of these pattern recognition of the features can be obtained feasibly 

using machine learning paradigms which are encompassed mostly in this current work. 

 

 A brief introduction on SHM 

Structural Health Monitoring (SHM) relates to a series of damage identification strategies 

that monitors the health states of aerospace structures, bridge infrastructures and 

mechanical engineering structures through the evaluation of responses acquired from 

sensors on the structure with minimal human intervention. The key processes involved in 

a SHM strategy includes operational evaluation, data acquisition, feature extraction and 

SPR. All of these components play an important role in reaching the final stage of SHM 



                                                                     6 

 

 

where a decision can be made based on the valid hypotheses of whether the feature can 

reliably indicate damage. Only brief points on the SHM strategy shall be presented here 

and for further detail the reader can refer to [1] on general Structural Health Monitoring 

procedures.  

The field of SHM has developed to a state where a number of fundamental axioms that 

represent SHM principles have emerged. Worden et al. suggest nine axioms for SHM, and 

four of the axioms which are particularly relevant to this work are presented as follows [1]: 

Axiom II:  Damage assessment requires a comparison between two system states. 

Axiom III: Identifying the existence and location of damage can be done in an 

unsupervised learning mode, but identifying the type of damage present and the damage 

severity can generally be done in a supervised learning mode. 

Axiom IVa: Sensors cannot measure damage. Feature extraction through signal processing 

and statistical classification are necessary to convert sensor data into damage information 

Axiom IVb: Without intelligent feature extraction, the more sensitive a measurement is to 

damage, the more sensitive it is to changing operational and environmental conditions. 

 

1.2.1 Operational evaluation 

In SHM strategy, variabilities can arise from many external factors such as temperature 

fluctuations, operational loading variations and humidity. The first step is to set the 

limitations on what is to be monitored and how the monitoring could be performed based 

on these external factors. In the initial stage of SHM, it is important to justify the 

economical and safety benefits behind the SHM work. 
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1.2.2 Data acquisition 

Data acquisition decisions that encompass selection of type, capability and number of 

sensors for acquiring the data response also depend on economic considerations and the 

application specific for that application. At this step, the sensor locations and the bandwidth 

of the acquisition hardware are again determined and justified based on the economic and 

application considerations. Data pre-processing begins after data sensing level where it 

prepares the data for feature extraction. Pre-processing includes data cleansing and data 

normalisation. Data cleansing relates to the removal of data samples with high noise or 

those seemingly deviating from most of the samples belonging to the same class label. 

Normalisation refers to the separation of changes in the system responses caused by benign 

operational and environmental variations from the changes caused by damage. In this 

context, the current work emphasises on the data normalisation in order to obtain the data 

response that can give better representation of the actual structure’s damage condition.  

 

1.2.3 Feature extraction 

The task of feature extraction is to distinguish a selected measured response between an 

undamaged state and a damaged state with the intention to use it as a training or baseline 

set for SPR. A feature that contains the most significant data behaviour, for instance if using 

frequency spectrum, the natural frequencies that are distinct and with larger peaks, should 

be of priority. For damage detection strategy where damage is normally a local 

phenomenon, it is suggested to consider higher frequency modes where damage could be 

likely present. 

With supervised data learning, where prior knowledge about the structural health states and 

environmental and operational loading variabilities are known, and equipped with good 

data pre-processing, the process is more guaranteed to produce a reliable and accurate 

feature extraction. The information from the measured response on the changes in 

frequency peaks due to damage and OEV can be used as a comparison to the measured 

response of the undamaged structure under the equivalent OEVs. From the frequency 
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spectrum response acquired, damage-sensitive features are extracted and selected for 

pattern recognition in the latter stages. 

Features can be selected simply on the basis of engineering judgement. Feature extraction 

can generate a feature vector with less dimensions. Data feature with low dimensionality 

provides significant advantages in SPR as the number of data samples grows significantly 

with the dimensions of the data. 

In this work, Chapter 4 is mostly related to operational evaluation, data acquisition and data 

pre-processing procedures. Chapter 5 and Chapter 6 relate mostly to feature extraction 

using factorised sampling and PCA for dimensional reductions. Chapter 7 presents the 

starting work of SPR using specific machine learning algorithms such as Gaussian Mixture 

Models (GMM) and Neural Network. SPR is briefly described in the next section. 

  

1.2.4 Statistical pattern recognition (SPR) paradigm 

Prior to acquiring samples from a structure that may already be exposed to damage, data 

samples from an undamaged condition should be recorded and be called as the training data 

set. This data from the undamaged structure should be inclusive of all operational or 

environmental conditions in order to establish a comprehensive dynamic behaviour of the 

structure. Under these circumstances, the training set should provide a good representation 

of the structure with no damage and operating in normal conditions. This step then allows 

a comparison between two different states of the structure, one of which is assumed to 

represent an undamaged state which is represented by the training set, and the other which 

possibly contains some damage flaws in the structure. This is the basis for SPR where a 

physical based model is adopted and compared to the changes in measured data from test 

data produced by the structure with an unknown health condition [1], [15]. 

Through machine learning algorithms, statistical pattern recognition (SPR) is performed by 

means of mathematical and statistical framework and associating measured data with given 

class labels of varying damage severities. SPR is exploited using the concept of learning 
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representations from the training data set, from which the basis of this current work is 

established.   

 

1.2.5 A shift into condition-based maintenance 

Since 1991, research efforts related to structural integrity and non-destructive inspection 

led by Sandia National Laboratory was initiated in order to improve aviation safety. This 

move was as a result from the FAA decision to reduce the number of aviation incidents that 

had occurred during that time. In 2011, Sandia National Laboratories, Delta Air Lines and 

an airline manufacturer company had reached a more serious decision and commitment to 

implement SHM in their maintenance programme and to have the SHM technology 

certified and approved by the FAA. This step would allow the SHM technology to be 

implemented throughout all commercial aircrafts to improve inspection, maintenance and 

repair processes without affecting the aircraft turnaround and reducing flying hours [14], 

[16]. 

SHM is beneficial by ensuring that maintenance is performed based on the actual condition 

of the aircraft when it is necessary, rather than fixed schedules and inspection routines. This 

condition-based maintenance can help reduce airplane downtime and improve profit 

margins of the commercial airliner. The work by Sandia and the team also aims to validate 

the sustainability and reliability of built-in sensors on aircrafts under real operating 

conditions and flying in real time. The signal was collected using the acquisition system 

after each flight. The programme also includes installation procedures and to oversee 

monitoring on the inflight test [14], [16]. The main benefits of such SHM applications into 

aircraft maintenance programmes are expected to help save the airline industry time and 

money, especially if sensors are mounted in hard to reach areas and located widely 

throughout the entire aircraft. 
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1.2.6 Global versus local damage detection 

Current damage detection methods using localised experimental techniques such as 

acoustic or ultrasonic, radiography and eddy current methods are quite common in the 

structure’s maintenance . These techniques require the locality of the damage to be known 

and the relevant part for inspection to be readily accessible. Usually, damage like micro-

cracks exist in a complex structure hidden in many other structural materials that need to 

be removed to access the area of damage. Removal of these components involve a 

substantial cost.  

On the other hand, vibration-based damage detection is considered as a global experimental 

method of detecting damage which can provide monitoring over a wide structural area and 

does not necessarily require dismantling of the structure. The basic premise of vibration-

based damage detection is that damage would modify the stiffness, mass or dissipation 

energy properties of the material, which in turn would change the global dynamic response 

properties of the system. This is the basis of vibration-based SHM that examines changes 

in the vibration characteristics of the structure [1], [17], [18]. Intuitively, an indication of 

damage present in the system is based on the changes of the natural frequency peaks 

displayed in the measured response. This is often referred to as an engineering judgement 

where it is used to reflect a sign of damage in the system. 

In terms of damage detection and SHM on aircraft structures however, there has been little 

work currently done on incorporating the changes in fuel tank loading into a damage 

detection strategy.  In the aerospace industry, it is reported that one of the main components 

that is consistently under routine inspection is the aircraft wing box [19][14]. It is one of 

the vital structural components of an aircraft which is concealed inside the wings. It acts as 

a rigid support for the wings and is connected to the main fuselage. The wing box is 

inevitably exposed to fatigue cracks especially around the rivets due to mass loading 

variations from the fuel tank and payload. To the author’s knowledge, to date there has 

been no published work reported on the effect of fuel loading variability on damage 

detection and its sensitivity on commercial aircraft structures, particularly related to the 

wing structure. Some literature reviews on previous research related to aerospace structures 
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particularly using vibration based damage detection will be summarised in Chapter 2, 

where the attention has been focused on static load and dynamic using solid weights and 

temperature variations [20]. 

Despite the capability of the VBDD technique to detect damage based on the change in 

global dynamic properties (natural frequencies, stiffness and dissipation energy) of a 

particular system, damage typically remains a local phenomenon and can normally only be 

recognised on a higher frequency mode of the measured vibration response.  

Another challenge from the vibration test in SHM is the fact that it always has to be a trade-

off between having a very sensitive sensing system to capture the smallest possible damage 

and being able to distinguish this from other significant factors that can affect the vibration 

response. These other significant factors are the influence of the operational and 

environmental variations and the curse of dimensionalities. In VBDD, the number, type 

and location of sensors to mount on the structure are also important to ensure feasibility 

and reliability of the SHM system.  If the sensing system is highly sensitive to damage, it 

is likely that the system will also tend to be highly sensitive to operational loading and 

environmental variations. 

One of the main challenges in data analysis is related to the phenomenon usually known as 

‘the curse of dimensionalities’. This refers to the need for having more data observations 

due to the increased number of data dimensions. This is a typical problem faced during the 

data processing stage. Subject to these limitations, the current study intends to explore the 

techniques in overcoming the challenge arising from the operational loading variations 

through the use of machine learning algorithms and the SPR shall be presented in the later 

chapters of this thesis. 
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 Brief outline of the thesis 

Chapter 2 provides a brief literature review on the subject of damage detection under the 

influence of operational loading and environmental variations through the SPR and 

machine learning algorithms. The focus is on aircraft structures in addition to the present 

research on the civil and engineering structures. 

Chapter 3 covers the underlying mathematical equations associated with the machine 

learning algorithms that are used in this work. Some of the concepts pertaining to the 

algorithms are illustrated in the later chapters where their application in the current work 

will also be covered. 

Chapter 4 details the preliminary experimental work for a vibration SHM which involves a 

replicated wing-box structure. The feature selection is demonstrated based on the effects of 

operational loading variations on the measured Frequency Response Function (FRF). Four 

damage severity classes referring to four levels of incremental cross-sectional cuts are 

introduced into a stringer of the wing box. This chapter also illustrates the implementation 

of the operational loading variations on the laboratory structure.  

Chapter 5 highlights the centre of the current work. It describes the dimensional reduction 

and feature extraction analysis of the selected feature based on Principal Component 

Analysis (PCA). The visualisation of the multivariate data is achieved using PCA through 

establishing a baseline data set (training set) encompassing all loading conditions of the 

undamaged structure (referred as the baseline set). In addition to that, three more models 

of visualisations are considered by computing each data matrices for those models named 

as Principal Component model B, C and D. Each model has its own eigenvalues 

decomposition in addition to the primary baseline model (PC model A as the leading model 

corresponding to the undamaged set). These PC models are determined by various data 

arrangements relating five loading conditions to five structural health conditions (one 

undamaged state and four damaged states). Kernel PCA is then introduced as an attempt to 

improve the separation of the multivariate data and identify the damage severities. Kernel 

PCA depends on the inverse variance (called here as the parameter sigma) and the distance 
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matrix between two structural states. This study proposes a unique approach of computing 

the parameters for the kernel Gaussian function using a coloured scale distance matrix to 

present the change of data distance with the aim to ease the selection process of the inverse 

variance (sigma). 

Chapter 6 extends the work from Chapter 5 by using the data variables obtained from the 

PCA to explore the use of clustering technique based on Gaussian Mixture Model (GMM). 

The main interest is to predict each of the data points that is most likely to fit the Gaussian 

distribution based on the model parameters. Nonlinear regression in the use of Artificial 

Neural Network presents a damage detection framework by introducing a step-target 

benchmark  comprising of different levels to find the most suitable method in separating 

the data variables of various damage classes from various loading conditions. 

Chapter 7 highlights the pinnacle of the current work by using a full-scale aircraft wing 

from a Jabiru airplane. PCA is applied on the vibration data set followed by kernel PCA. 

Q-statistic is demonstrated here in order to identify outliers. ANN is also applied on this 

data set and some studies on the contribution of sample size, number of dimensions and 

size of data groups (damaged and undamaged states) on the network performance are 

presented. In the Jabiru Wing (JW) experiment, two different size of loading variations are 

produced, one by smaller incremental loading and the other has a larger incremental 

loading.  Prediction trees using bag-classification trees are also demonstrated in this chapter 

with the aim of describing the data set in a hierarchical order. 

Chapter 8 concludes the finding in this thesis and the scope of future work is discussed.



 

 

 

Chapter 2                                                                                   

LITERATURE REVIEW 

 

 

 

In this chapter, recent SHM literature reviews on the subject of data normalisation and 

damage detection under the influence of operational loading and environmental variations 

are reviewed with the primary interest on investigations of loading effects on damage 

detection and identification. Prior to that, brief descriptions of the current SHM approach 

with respect to discriminating the operational and environmental variability (OEV) in 

engineering structures such as bridges, buildings and mechanical structures are described. 

A number of Statistical Pattern Recognition (SPR) techniques in the perspective of data 

normalisation are discussed. The highlight in this chapter is to discuss some approaches 

used in discriminating OEVs in aircraft structures.  

 

 Definition of damage according to SHM 

In the context of SHM, engineers or maintenance personnel are interested in the ability of 

a diagnostic method that can conduct damage assessment of the structure, in operation, in 

the earliest time possible.  According to [1], in the study of damage identification in 

structural and mechanical systems, damage can be defined as intentional or unintentional 

changes to the material and/ or geometric properties of the systems. This includes changes 

to the boundary conditions and system connectivity which can adversely affect the present
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 or future performance of these systems. Damage can present in all engineering systems to 

some degree, and usually the system can still continue to perform its intended function, but 

with some reduced performance. In aerospace structures and for systems with a high 

safetyfactor, the damage can progress rapidly and be exaggerated under operational loading 

and extreme temperature conditions, and this can lead to a catastrophic failure if prompt 

maintenance action is not implemented a priori[21].  

 

 Damage-sensitive features generated from vibration-

based approaches 

The main concern of this thesis centres on vibration-based approaches in SHM. In most 

cases, damage would manifest itself as changes to the mass, stiffness and energy dissipation 

of the system. These structural changes can be identified through the shift of the frequency 

response function (FRF) peaks that decrease as the damage intensifies or as the loading 

increases. A broad review of vibration-based condition monitoring with particular attention 

on measuring the changes in vibration modal parameters as an indicator of damage presence 

in structures are provided by [22][17]. In reality, under the OEV presence, the changes in 

frequency measurement due to damage are often masked or  can become unpredictable 

[17]. In this case, the changes in structural response due to damage might not be in 

accordance with the engineering judgment. Previous studies related to OEV are described 

further in the following sections. 

 

 The effects of OEV on SHM 

In view of separating structural changes resulting from the effects of operational and 

environmental variability (OEV) from changes caused by true damage, SHM procedures 

for civil structures such as bridges seem to be at the frontier of SHM as compared to the 

aerospace industry. This may be due the strict FAA regulations set on safety related 
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technology that must be subjected to numerous testing and validation processes under 

realoperating conditions of an inflight aircraft before it can be approved for standard use 

[16]. Having aforementioned, the significant benefits accumulated from implementing 

condition-based maintenance using SHM drives Sandia and its team to push for SHM 

implementation in the real operating environment [14], [16].   

It is recognised that sources of variability present in measured data from the dynamic 

response of a system can be associated with OEV conditions [3], [6]. The effects from the 

OEVs are often described as nonstationary due to the benign operational changes and 

environmental variations in the measured structural response of the structure. This 

nonstationary nature is generally revealed in the structural response as slowly varying 

trends or abrupt changes between regimes [3]. The varying operational conditions can arise 

from variable mass loading including changing fuel levels and changing payloads. 

Operational conditions also include changing operational speeds and changing of excitation 

sources. Varying environmental conditions can consist of thermal effects, wind-loading and 

moisture content. In this current work, operational loading conditions infer to varying fuel 

tank loading. 

In the context of civil engineering structures, many authors have investigated the variability 

of modal properties with consideration to environmental and traffic loading effects [6][23]. 

It is found that the effects of the varying load on the dynamic properties are dependent on 

the type and magnitude of the bridges, whereby for middle and long-span bridges, the 

changes in measured natural frequencies are hardly detectable [24].  In a separate work by 

[25]Soyoz and Feng (2009) which is related to the mass loading and environmental effects 

on a concrete bridge structure, the findings revealed that the structure’s first natural 

frequency varies in the order of ±10%. The significant variations are attributed by the 

changes in its structural mass caused by traffic loading and environmental effects [6].  

It is also reported that the damping ratio of the structure can increase because of energy 

dissipation due to higher traffic loading [24]. A test performed on the I-40 Bridge revealed 

that variations of mass loading from traffic and varying environmental conditions due to 

thermal variations can alter the natural frequencies of the structure by a similar magnitude 



                                                                             17 

 

 

that is caused by severe damage [1]. Temperature variations may also alter the material 

stiffness and the boundary conditions of a structure. Using experimental data obtained from 

Alamosa Canyon Bridge in New Mexico, Farrar et al. noted that the significant change in 

natural frequencies in a 24-hour time period is correlated to surface temperature differences 

across the structure but it is not correlated to the change in ambient temperature. Another 

vibration test on the I-40 Bridge, also in New Mexico, indicated that an increase in damage 

levels caused less effect on the natural frequency compared to the ambient temperature of 

the bridge [6]. 

If these OEV influences are neglected when developing SHM technology, it can falsely 

indicate that the structure is damaged and may result in unnecessary and costly inspection. 

This error is known as false positive indication of damage or Type I error. Similarly, 

variability arising from OEV can also result in false negative indication of damage or Type 

II error [6]. 

In the aerospace industry, this false information and consequently decision on structural 

health condition can potentially cause a catastrophe, posing a greater risk to loss of human 

lives and increasing expenditure for aircraft repair if the faults are misinterpreted as normal 

due to type II errors [6]. 

 

 The OEV in aerospace structures 

To deploy a robust SHM system for aircraft structures requires incorporation of changes 

caused by operational and environmental variability into the features selection. This is a 

vital aspect when adapting SHM for practical application, especially in the aerospace 

industry. At present, most of SHM applications for aircraft structures involve localised 

detection such as differential pressure-based method, removing the OEVs effects from the 

consideration. However, its main disadvantage as described earlier, is that it is often unable 

to detect the presence of damage over a large area of a structural component [14], [16].  
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Sierra-Pérez et al. reported a damage detection method on a wing section of an unmanned 

air vehicle (UAV) under variable load conditions by using a fibre-based detection as strain 

sensors. The authors proposed strain field pattern recognition based on principal component 

analysis (PCA) and its statistical damage indices using T2 index and Q index to classify 

various damage severities under various loading conditions. The work effectively 

incorporated principal component analysis (PCA) when the structure is under variable 

variable operational load conditions in developing a pattern recognition technique using 

strain sensors [20]. 

Another SHM work related to environmental and loading variability is performed by Lim 

et al. (2011) on a metal fitting lug of an aircraft using impedance signals. This system is to 

detect bolt loosening conditions under varying temperature and external loading conditions 

using mounted piezoelectric materials. The performance of damage detection technique 

using kernel Principal Component Analysis (kPCA) has shown improvement on damage 

detectability especially those under temperature variability compared to linear PCA. 

However for detections of damage under static and dynamic loading, the damage is 

successfully detected with the use of linear PCA [26]. 

A damage propagation monitoring method based on Gaussian Mixture Model (GMM) 

using a guided wave and piezoelectric sensor based SHM technique is presented by [27]. 

GMM is constructed based on the GW features acquired under time-varying conditions 

when the structure is in a healthy state. The results indicated that the crack propagation 

under changing structural boundary conditions of an aircraft wing spar can be monitored 

reliably using the optimised GMM. 

One might realise that damage detection via SHM alone will not be feasible without suitable 

machine learning algorithms that are capable of separating the effects of operational and 

environmental variations in the measured response. In the next section, some previous work 

on SHM data normalisation will be presented, with a bias towards the machine learning 

algorithms currently used in this work. Principal Component Analysis (PCA), kernel PCA, 

Gaussian Mixture Model (GMM), Artificial Neural Network (ANN), Bagged 
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Classification Tree (BGT) and Mahalanobis Squared Distance (MSD) are the selected 

machine learning algorithms relevant in the use of machine learning for this work.  

 

 Statistical Pattern Recognition via machine learning 

algorithms 

This section highlights the techniques that can be used in pattern recognition through 

machine learning algorithms. One of the main challenges in pattern recognition and feature 

processing in SHM is the pattern representation and classification of data classes. Some of 

the techniques often used in SHM includes dimensional reduction tool such as PCA, factor 

analysis, singular value decomposition and the nonlinear approach, which includes kernel 

PCA, neural network etc. The taxonomy of dimensional reduction and classifiers technique 

are described in detail in [23].  

Robust regression has been used in [28] as a means to discriminate the environmental and 

operational conditons from the experimental data acquired from Z24 and Tamar Bridges. 

Dervilis et al. (2015) has used the combination of minimum covariance determinant (MCD) 

via the FAST-MCD algorithm and least trimmed square (LTS) estimator via FAST-LTS 

algorithm for removing outliers and revealing the leverage points. This is done in order to 

establish a normal condition set clear from external outliers before applying a normalisation 

technique for damage detection under the influences of operational and environmental 

variations. 

Tibaduiza et al. have purposed statistical reference model based on PCA, damage index (T2 

and Q-statistic) and a self-organizing map (SOM) as a classification tool by grouping in 

clusters data of similar characteristics to establish a baseline pattern for healthy and damage 

states. The vibration-based experiment is integrated with a multi-actuator system whereby 

the piezoelectric transducers (PZTs) reversibly function as sensors and actuators within an 

aluminium plate. The graphical technique has successfully classified all various damage in 

the baseline pattern model with better clustering accuracy by using Q-statistic index than 
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T2 index and selected number of the first principal component score as input features for 

SOM [29].  

Gharibnezhad et al. performs a robust PCA technique by developing a statistical principal 

component that is not sensitive to outliers by substituting the classical covariance with a 

robust covariance matrix estimator called ROBPCA. It uses a combined Projection Pursuit 

approach for dimensional reduction and a robust minimum covariance determinant (MCD) 

to provide accurate estimates in high dimensional data. It is observed that the damage 

clusters in the robust PCA are kept more distant from the healthy pattern which suggests 

better cluster separation and detection [30]. 

 

2.5.1 Data normalisation techniques in SHM 

Data normalisation is an approach implemented to separate changes in damage-sensitive 

features caused by changing operational and environmental conditions from those truly 

caused by damage [2], [6] [24]. At present, there are two popular approaches to perform 

this task. The first approach involves measuring the parameters related to the OEVs. Then 

the features caused by the OEVs that correspond to the normal condition are parameterised 

as a function of the measured OEVs. The second approach, which is the one adopted in this 

study, involves a machine learning algorithm to develop models that assess the effects of 

changing OEVs on damage-sensitive features when the measure of OEV parameters are 

not available. This approach leads the way for data-based models where training data sets 

are obtained from the structure when it is undamaged under the influence of OEVs.  

Data normalisation has been widely used in SHM when the effects of operational and 

environmental variations on damage detection and assessment are considered in the SHM 

process. Some of the data normalisation methods include neural network, novelty detection, 

dimensional reduction, regression modelling and principal component application [1], [2], 

[6], [24], [26], [31] [23].  

Recently, switching of latent based model using Gaussian Tree Process (GTP) has been 

proposed by Worden et al. as a technique to remove measurement variations arising from 
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wide range of variabilities including from the environmental and operational variables 

before a damage can be inferred. This is performed by fitting a Bayesian GTP regression 

model on the second natural frequency of the structure. The results of the latent variables 

models which is named as the response surface model that shows a slow trend of changing 

(switching) data variation between data regimes [32] gives better data characterisation in 

the interest of understanding the data behaviour under environmental and loading variables.   

There are numerous reported work on principal component analysis (PCA) based damage 

detection method under the presence of varying environmental and operational conditions. 

PCA has been addressed in great detail by [33] and in the perspective of pattern recognition 

and machine learning by [34].  PCA has been applied extensively in SHM in many ways 

such as being integrated with the Automatic Clustering Techniques based on Self-

Organising Maps (SOM) [35], as a direct method to identify and distinguish changes due 

to damage from those due to environmental and operational loading conditions, and to 

localize damage through visualization of projected data. PCA also serves as a significant 

primary step for other methods or integrated with other algorithms to improve data 

classification and separation [27][36] [29]. A more recent application is to generate a 

statistical data-driven model using PCA to represent the structure and apply the model to 

detect damage in the structure [37]. 

PCA has been proven to solve many multivariate data analysis problems related to 

dimensional reduction and visualisation, damage detection and correlation analysis. The 

primary concern with PCA is that its restriction is on mapping only linear correlation among 

variables. Nonlinear PCA including Auto-Associative Neural Network (AANN) and kernel 

PCA (KPCA) can reveal the nonlinear correlations presented in data [36], [38] [4].  

A comparative study using four machine learning algorithms which are PCA, AANN, 

KPCA and greedy KPCA  (KPCA with reduced numbers of training set) been done by [39]. 

The goal is to detect structural damage of three-storey frame structure using VBDD under 

the presence of operational and environmental conditions. AN autoregressive model is used 

to extract damage-sensitive features from the time-series domain. The Mahalanobis 

Squared Distance (MSD) is computed and the result shows that KPCA as overall 
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outperforms AANN and PCA. KPCA and greedy KPCA (GKPCA) give the best 

performance in Type I error (false-positive indication of damage) whereas AANN gives 

the best performance in Type II error (false-negative indication of damage). KPCA shows 

its capability to balance between the type I and Type II errors. 

Oh and Sohn have proposed nonlinear principal component analysis by employing kernel 

functions and solving simple eigenvalues in order to characterize the nonlinear relationship 

between extracted damage sensitive features and unmeasured environmental and 

operational parameters. The proposed method is based on unsupervised KPCA which is 

compared with the authors’ previous work on AANN using the same time series data. Both 

analyses are performed to detect damage in the presence of temperature variation on a 

simplified model of a computer hard disk using a numerical model [4]. The authors 

conclude that proposed KPCA method resulted in an unsupervised support vector machine 

PCA results with similar performance in damage diagnosis to those obtained by AANN 

[40]. The finding also indicated that the advantages of KPCA over AANN are as follow:   

 KPCA involves a simple formation of an eigenvalue problem instead of solving 

complex nonlinear optimization problem 

 KPCA can avoid the overfitting problems by employing regularization 

 the flexibility in computing multiple principal components without redesigning 

KPCA. With AANN, the number of nodes in the bottleneck layer should be known 

beforehand and the network parameters need to be optimized. 

Sierra-Pérez et al. presented a new unfolding technique and scaling method to deal with 

variable load conditions of an unmanned aircraft wing section using strain measurement 

technique. The unfolding technique is performed by treating a group of data consisting of 

different load cases as a new single variable, so that the information acquired from all 

sensors are analysed simultaneously. The single data matrix can then be projected into the 

PCA model of a normal baseline model. Finally, a number of principal components are 

retained in order to calculate T2 statistical index (measure the variation of a sample in the 

PCA) and Q statistical index, which measures the smaller change of the variation that are 
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not detected in the PCA. The T2 and Q indices are able to detect some deviations between 

the baseline and the damage cases with the Q index showing higher sensitivity to damage 

[41]. 

Torres-Arrendondo et al. have compared three data-driven multivariate algorithms based 

on PCA, independent component analysis (ICA) and hierarchical non-linear PCA (h-

NLPCA) to build a baseline pattern for damage detection and identification using graphical 

topology known as self-organizing map (SOM) [42]. The test data from healthy and 

damaged states are projected into the different models in order to produce input feature 

vectors of SOM including a cluster map and the U-matrix. Damage identification and 

cluster classification between damage and undamaged states are performed using three 

scores and squared prediction measures. The results show that PCA is able to classify and 

identify damage on the same performance as ICA and h-NLPCA algorithms but with lower 

computational cost and requires less time. 

Sohn (2007) has presented a good review of data normalization methods using regression 

analysis and interpolation analysis. He reported that if the operational and environmental 

variations are unmeasurable, a modelling of the underlying relationship between damage-

sensitive features and OEV sensitive features can be implemented if the signal changes 

caused by damage is orthogonal to the changes produced by OEVs. Other methods reported 

in his work are subspace-based identification method and novelty detection using 

Mahalanobis Squared Distance (MSD) [24]. 

Farrar & Worden (2013) [1] have summarised comprehensive main tehniques explored in 

data normalization as highlighted in the literature: 

Experimental/ conventional method 

Through experiment, the characteristics of normal condition and damaged condition 

features independent from OEV are identified before the features under the influence of 

OEV are examined and gathered for comparison. 
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Regression modelling 

A modelling technique can be developed to predict the influence of OEV parameters on the 

measured response if the OEV parameters can be meassured [28].  

Look-up tables 

A method of recording features under relevant and complete OEV conditions while the 

structure is in an undamaged condition which is referred to as training phase. When a 

feature from a potential damage state is available, it can be compared to the data in the 

look-up table by using Euclidean distance metric or Mahalanobis squared-distance to 

calculate the feature distance from the undamaged condition. 

Machine learning algorithm 

Involves machine learning algorithm which is trained using the same feature vectors from 

an undamaged structure under influence of OEVs. In the test phase, each input vector is 

transformed into scalar feature known as damage index (DI) using the trained machine 

learning algorithm. Damage can be classified using the novelty detection approach applied 

to the DI. Auto-Associative Neural Networks (AANN), factor analysis, Mahalanobis 

squared-distance (MSD) and Singular value decomposition (SVD) algorithms can be 

implemented using this approach to perform data normalization. 

AANN architecture contains three hidden layers comprising of the mapping, the bottleneck 

layer and the mapping layer. It basically performs the mapping and de-mapping, where it 

simply reproduces the network input. In the case where the measurement of OEV is not 

presented, the number of nodes in the bottleneck layer is chosen such that it represents the 

number of OEVs that cause the variability in the data feature. Firstly, the network is trained 

using the features from the undamaged condition under all OEVs. Then the network is 

tested with features arising from damaged conditions also under the exposure of the 
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equilvalent OEVs. It is anticipated that the prediction error of the network will grow when 

it is tested with the features that come from damaged conditions [1], [6].  

 

Projection method 

It is an intelligent feature selection by selecting damage-sensitive features but insensitive 

to OEV. Principal component analysis (PCA) is one of the approach based on the projection 

method that reduces the feature dimensions and retain the most variance present in the data 

set. Features containing evidence of EOVs but insensitive to damage can also be projected 

in lower dimensional subspace with most variance present in the data set. 

The idea of cointegration comes when it is realized that damage sensitivity and damage 

evidence may be lost in different principal components, as thought damage manifest better 

in longer time scales i.e nonstationary time series than dynamics of the system. 

Cross et al. (2012) has compared three different approaches in finding damage-sensitive 

features that are insensitive to environmetal variations:  

 using original features that show sensitivity to damage but none to environmental 

variations with outlier analysis is the potential technique,  

  using minor principal component analysis by projecting Lamb wave data, the 

temperature dependancy data can be removed which is initilaly proposed by 

Manson [39]   and  

  by using cointegration for creating damage detector which is insensitive to 

environmental variations.  

All these approaches have shown encouraging results especially for cointegration and PCA 

that are able to create features that remain unchanged to temperature variations but very 

sensitive to damage [5].  

Manson [43] used PCA and MSD novelty detection for damage identification by using a 

subset of features which are more sensitive to damage yet insensitive to temperatature 

variations. His approach focuses on isolating those features that are more sensitive to 

damage than the environmental variations. Using Lamb wave propogation data on a 
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composite plate, the feature projection produced by minor prinicipal components 

corresponding to the smallest singular values, has successfully separated the primary 

environmental variations from the desirable damage features [5].    

There are numerous studies introducing Gaussian Mixture Model (GMM) to the field of 

SHM to model the uncertainty and nonlinearity of data signals under time-varying 

condition [44]–[49]. Qiu et all [27] proposed a damage propagation monitoring method 

based on an improved Gaussian Mixture Model (GMM) using a Guided Wave (GW) and 

piezoelectric sensors. With this method, a baseline GMM is first constructed based on GW 

features using PCA when the structure is at normal state. When a new PCA feature is 

obtained during the on-line monitoring, the GMM is updated using dynamic learning and 

split-merge of Gaussian components. The results indicate that crack propagation on a wing 

spar can be monitored reliabily without a structural model and prior knowledge of damage 

and time varying conditions.  

Probability decision tree model is used to build ittertively subdividing the surface of the 

structure in such a way that it takes into account the actual geometry structure. The results 

show an advantage in terms of hierarchical classification and considers the true geometry 

of the structure [50]. A multi-class support vector machine classifier utilising binary 

decision tree is presented by Madzarov et al. [51]. 

 

 

 

 

 



                                                                                                                                          

 

 

Chapter 3                                           

FEATURES PROCESSING 

TECHNIQUES 

 

 

 

To distinguish between normal condition and damage states, features processing techniques 

are performed on measured data. This may be achieved using different machine learning 

algorithms, the choice of which may depends  in which its usage depends on the goal of the 

analysis, either classification, regression or novelty damage detection. Features can be 

thought of as data derived from the acquired measurements which the judgement is in view 

of their capability to distinguish between different structural conditions.  

The foundation of this work relies on the statistical analysis and probabilistic model that 

are used to analyse the Frequency Response Function (FRF) data. The FRF data constitutes 

a number of spectral lines which in this work are referred to as spectral variables. In the 

current context, the differences in the set of spectral variables are as a result of varying 

operational loading and damage state parameters.  
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In statistical analysis, the mean and variance-covariance values are the essential parameters 

if a statistical model is to be established for distinguishing between the undamaged and 

damaged state. This chapter describes mathematical algorithms for Principal Component 

Analysis (PCA), kernel PCA as a generalised nonlinear form of PCA, novelty detection 

indices and Gaussian Mixture Model (GMM). The algorithms described here are for the 

purposes of data visualisation and classification, data separation, damage detection and 

clustering technique respectively. 

 

 Principal Component Analysis (PCA) 

In many scientific applications, PCA is a well known statistical tool for being an effective 

method for data dimensionality reduction and the best known technique for multivariate 

analysis. Pearson (1901) first introduced it and later by Hotelling (1933) who developed it 

further. Only after the advent of electronic computers, PCA became more common in many 

statistical packages.  

PCA is a linear projection technique used for feature extraction, data compression, 

visualization and interpretation. PCA finds combinations of variables or components that 

describe fundamental trends and patterns in a data set. PCA is concerned with describing 

the variance-covariance structure through several linear combinations of the original 

variables. The formulation of PCA is relatively straightforward. Consider a data set, Xn x m, 

with n observations and m measured variables or dimensions. The first step in applying 

PCA is to standardise the data matrix X as PCA is scale sensitive. The mean values of each 

dimensions removed and all variables are made to have equal variance. As a result, the 

trends or patterns on the observations and their standard deviations are removed from the 

data set. The covariance matrix CX is calculated using the standardised variables as: 

 XX
n

C T

X
1

1


   (3.1) 
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This covariance matrix measures the degree of linear relationship between the data 

variables. PCA is computed by finding the eigenvectors and eigenvalues of the covariance 

matrix which is defined as follows: 

 v vXC    (3.2) 

Eigenvectors of CX are the columns of v and the eigenvalues of CX are the diagonal elements 

of  (the off-diagonal elements of  are zero). The eigenvector with the highest 

eigenvalues becomes the first principal component which has the largest variance in the 

dataset. The vectors with significant variance contain the most important underlying pattern 

in the data and consequently contain the largest quantity of information. Therefore, these 

vectors are called the principal components of the data set. Ordering the eigenvectors by 

eigenvalues from the highest to the lowest, arranges the components in order of significance 

and produce a new matrix P. The columns of matrix P are named as loading vectors and 

describe the linear combinations of the original variables that represent each principal 

component.  

The aim is to reduce the number of dimensions and consequently, the components with 

smaller eigenvalues can be eliminated. This results in information loss but because the 

information is insignificant, it can typically be disregarded. If only k-first eigenvectors are 

selected, the final data set will therefore be k-dimensional. The projected matrix T or the 

transformed matrix in the new space is defined by equation (3.3), and the transformed 

matrix T (or score matrix) can be projected back into k-dimensional observation by 

equation (3.4). The difference between the full dimension and reduced k-dimension 

between X and loss of information or named as the residual matrix E is given by equation 

(3.5). The formulation of PCA is stated by equation (3.6). 

 T XP  (3.3) 

 
TX̂=TP   (3.4) 

 ˆX=X+E  (3.5) 
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TX=TP +E  (3.6) 

 

  Kernel PCA for nonlinear feature extraction 

Kernel PCA is a nonlinear generalisation of PCA in such a way that it is performing PCA 

in feature space of arbitrary large dimensionality.  The key idea of performing kernel PCA 

(kPCA) on the data is to extract some features related to some nonlinearity that often hide 

in high dimensionality. The general idea is that this can be performed by mapping the input 

feature into the higher dimensional feature space via a nonlinear mapping function. 

Principal components analysis can then be implicitly performed in the new high 

dimensional feature space by using a substitution by the integral operator of kernel function 

[52].   

Kernel PCA is a relatively efficient method for performing nonlinear PCA simply by 

substituting a nonlinear kernel function that uses dot products in feature space.  This method 

works in a sense that it only requires an eigenvalue solution, without having to work 

implicitly in the higher dimensional feature space.  

The mapping of input data into the feature space is performed by simply solving a dot 

product of input data k(x, y) via nonlinear kernel Gaussian function in an eigenvalue 

solution [52]. 

 

Figure 3.1: The basic idea of kernel PCA by performing PCA in the feature space (right-

hand plot) instead of the input space (left-hand plot) [34] 
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Figure 3.1 illustrates the basic idea of kernel PCA. First, a data set in the original data space 

(left-hand plot) is projected by a nonlinear transformation ( )x into a feature space (right-

hand plot). PCA is then performed in the feature space to obtain the first principal 

component (PC) denoted by v1 (shown in blue line). The green lines in feature space 

represent the linear projections onto the first PC which correspond to the nonlinear 

projections in the original input space. As an advantage, by performing kernel PCA, there 

is no need to carry out the transformation or mapping into the feature space. The 

complicated mapping is substituted by computing only the kernel function which consists 

of a dot product k(x,y) in input space. 

 

3.2.1  The principle 

One of the main concerns about a linear (standard) PCA is the capability to extract 

nonlinear features especially for high dimensional data. In practical case, the data normally 

do not follow linear relationships due to measurement variation and OEV. To overcome 

these issues, a nonlinear form of PCA via kernel function is utilised in this work.  

KPCA uses an efficient method to extract nonlinear features by first mapping the input 

features into higher dimensional feature space by performing a dot product in the input 

space, and then solving the eigenvalues problem without having to work explicitly in the 

feature space [34]. Essentially the principle follows Cover’s theory, which states that given 

training data that is not linearly separable, it can vary linearly and be made linearly 

separable by projecting it into a higher dimensional space via some nonlinear 

transformation using a high dimensional space mapping [52][53][54].  

 

3.2.2 Constructing the kernel matrix 

In this section, the steps of performing standard PCA using kernel methods are presented. 

Note again that this method avoids one from performing standard PCA in the new feature 

space which can be extremely costly and inefficient [52], [55]. Generally, for a nonlinear 
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transformation ( )x from the original-dimensional feature space D to an M-dimensional 

feature space, the case M D must be satisfied. First, assume that the projected new 

features have zero mean, defined as 

1

1
( ) 0  

N

i

i

x
N




                                                     (3.7) 

The covariance matrix of the projected features with dimensional size M M  is  

1

1
( ) ( )

N
T

i i

i

C x x
N

 


                                                   (3.8) 

Its eigenvalues and eigenvectors are indicated by 

 VC Vk k k   (3.9)  

where k=1, 2, …, M. From equation (3.8) and equation (3.9), it gives 

  i i k k k

1

(x ) (x ) v λ v
N

T

i

 


   (3.10) 

which can be restated as 

 
k i

1

v (x )
N

ki

i

a 


   (3.11) 

Now by substituting kv in equation (3.10) with equation (3.11), it yields 

 
k

1 1 1

1
(x ) (x ) (x ) λ (x )

N N N
T

i i kj j ki i

i i i

a a
N

   
  

     (3.12) 

Kernel function can be defined as 

 (x ,x ) (x ) (x )T

i j i j     (3.13) 
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Multiply both sides of equation (3.12) by (x )T

l , gives 

 
1 1 1

1
(x ,x ) (x ,x ) λ (x ,x )

N N N

l i kj i j k ki l i

i j i

a a
N

  
  

     (3.14) 

Using the matrix notation 

 2K λ Kk k ka N a   (3.15) 

where 

 
,K (x ,x ),i j i j   (3.16) 

and a k is the N-dimensional column vector of aki  

  1 2... .
T

k k k kNa a a a   (3.17) 

solvinga k by 

 K λk k ka Na   (3.18) 

then the resulting kernel principal components can be solved using 

 
1

y (x)= (x) v = a (x,x ).
N

T

k k ki i

i

 


   (3.19) 

In general, the projected data set { (x )}i usually does not have zero mean. As the technique 

tends to avoid working directly in the feature space, the data cannot simply be subtracted 

off the mean. The algorithm can be formulated in terms of the kernel function using the 

Gram matrix representation, given by 

 K=K - 1 K - K1 + 1 K1N N N N
  (3.20) 

where 1N equals to N-by-N matrix with all elements equal to 1/N [34]. 
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As stated earlier, the power of kernel methods is that the computation is not explicitly done 

in the feature space but by directly constructing kernel matrix from the training data set 

{xi}. A kernel PCA is a nonlinear generalisation of PCA which can recover the standard 

PCA if using the kernel ( , ) ( )x y x y   . Some commonly used kernels are the polynomial 

kernel and sigmoid (hyperbolic tangent) kernel. For this study, Gaussian kernel has shown 

to be most effective in separating the variables of different damage severities and therefore 

is used to solve the current problem. Gaussian kernel is given by 

(3.21) 

 

where 
2 is the inverse variance in the kernel of which value depends on the data set 

variation.  

 

 Damage Identification Indices 

The transformed matrix T obtained from the Equation 3.3 is also known as score matrix in 

which its columns consist of score vectors ti. Each of the vectors ti is associated with the 

corresponding principal components PCi. PCA can also be used to indicate damage 

severities or abnormalities in a system. Two well known statistics are commonly used to 

measure the indices: the T2-statistic (also known as T2- Hotelling’s or D-statistic) and Q-

statistic (square prediction error (SPE)-statistic). These indices can be used to represent 

variability of the projection in the new space (with T2-statistic) or in the residual subspace 

(using Q-statistic index). These methods are based on the assumption that its underlying 

behaviour follows approximately a multivariate normal distribution which originates from 

the central limit theorem [34]. 

 

2

2

x-y
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3.3.1 T2-statistic 

The Hotelling’s T2-statistic is a generalisation of Student’s t-statistic commonly used in 

multivariate hypothesis testing. It analyses the variation of each sample within the space of 

PCA model. High T2 indices indicate high variation within the normal and damage data 

sets of which is desired where the aim is to distinguishing the data produced by normal 

condition from those by damage conditions. It can be obtained by using the squared score 

value of the test data that has been normalised using matrix  of the test data as illustrated 

in the following equation 

 2 1 T

i i iT t t   (3.22) 

Where it is the i th row vector of the score matrix Ti, which represents the new principal 

component projections. Both score matrix and principal components are correlated as 

defined by equation (3.3). Note that T2 in the reduced space corresponds to the Mahalanobis 

distance in the reduced space. 

To compute the T2 index in the reduced space corresponding to the principal component 

projections in which its focus is to compare the degree of variability between the 

undamaged and damaged states, the following equation is applied by computing the score 

matrix obtained from the PCA 

 
-1 T2

N N N-T × T × -Ti i iT t t   (3.23) 

NT is the mean of the score matrix associated to the undamaged condition and NT is 

the covariance of the similar matrix. Each of the score vectors it  corresponds to a test data 

set characterised by different levels of damage severity. To study the damage severities 

variability, each score vector of a damage state is compared with the score values from the 

undamaged condition using Equation (3.25). Equation 3.25 is equivalent to Mahalanobis 

distance equation calculated in terms of the score values in the PCA setting. It is used in 

the present study to calculate and compare the data variability with the focus of examining 
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damage severities separation in the reduced dimensional space. In other words, T2-statistic 

is a measure of the variation of each sample within the PCA model.  

 

3.3.2 Q-statistic 

Q-statistic reflects the combination value of unused/ unselected principal components in 

regard to the selected principal components used in the T2-statistic. It is desirable to achieve 

a very small Q-statistic index to reflect the optimal projection of the PCA. It is a measure 

of the difference or residual between an original sample space and its projection in a 

reduced space. The Q-statistic of the i th observation vector xi is stated as 

 T T T(I-PP )i i i i iQ x x x x   (3.24) 

ix denotes its projection into the residual subspace. In relation to the PCA, Q-statistic is 

more sensitive than T2-statistic because Q represents a very small change in the system 

characteristic and T2-statistic has larger values and higher variance in the feature space. It 

is noted that any change in the T2-statistic can be detected on the score plots for the relevant 

significant principal components. However, for Q-statistic, the values cannot be recognised 

from the principal components projections plots. This is because Q index relates to the 

residuals that are not included in the score plot. It can be obtained by plotting Q-statistic 

plot separately from T2-statistic. 

 

 Outlier analysis 

In the statistical literature, it is common to find the novelty detection being considered in 

the perspective of an outlier analysis. The fundamental idea is to compute the discordancy 

values associated to the data and then compare the discordancy with a predetermined 

threshold value. The data is simply inferred as discordant or novel if the measure exceeds 

the threshold.  
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The current study involves a multivariate data consisting of multi-dimensional variables. 

Multi-dimensional variables refer to the high number of spectral variables corresponding 

to the changing of frequency series represented as the system’s dynamic characteristics.  

The discordancy test of n observations in m variables can be represented as n points in an 

m-dimensional feature space. In data with higher number of variables such as this study, 

the detection of outliers becomes more challenging as the outliers have ‘more room’ to hide 

[1].   

In this work, the discordancy test is computed using T2-statistic based on score matrix T 

(as stated in Equation 3.3) obtained from the linear PCA. The discordancy test for 

multivariate data is related to the Mahalanobis squared distance D as defined by 

        1( )[ ] ( )TD x x x x  

      (3.25) 

Where  x


is the potential outlier,  x  is the mean of the sample and   is the sample 

covariance matrix. In the context of pattern recognition, the mean and covariance matrix 

are often computed from the training data set (undamaged state).  

 

 Calculation of Thresholds 

A threshold value is necessary to conclude an observation as an outlier or inlier by 

comparing the discordancy value against the threshold value. The threshold value depends 

on both the number of observations and the number of dimensions of the problem. For 

univariate case, the calculation is based on a Gaussian distribution applied on a normal 

condition case with only 5% of the measurement has 1.96 standard deviations from the 

mean. This study involves multivariate analysis where the Gaussian distribution model is 

assumed for the data density. A Monte Carlo method is used to generate the threshold value 

which follows the steps given by [56]. The procedure for this numerical method is 

summarised as below: 
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 Randomly generate a number from a zero mean and a unity standard deviation in 

which it constructs an n p  matrix (n is number of observations and p is number of 

dimensions) 

 The Mahalanobis squared-distance (MSD) using equation (10) is then computed for 

all the rows with the mean and the covariance matrix are either inclusive or exclusive 

measures and the largest value is stored. 

 The process is repeated for a minimum of 1000 trials in which the array consisting of 

all the largest MSD values are then ordered in terms of magnitude and stored. 

 The critical values are calculated based on 5% and 1% test of discordancy values for 

a p-dimensional sample of n observations using MSD in the array above in which 5% 

and 1% of the trials occur. 

The exclusive measures mean that the data produced by damaged condition is not present 

in the the training data which is typically consisting  data set from undamaged condition.  

 

 Gaussian Mixture Models (GMM) 

GMM is a probabilistic model that adopts all of its data points that are assumed to be 

generated by combinations of Gaussian distributions [34]. In GMM, all data points are 

assumed as Gaussian distributed. The goal is to find the probability of each Gaussian 

generating each particular data point. Mixture of Gaussian models result in a useful 

probability distribution model that can approximate any densities models with arbitrary 

accuracy by specifying a sufficient number of components or clusters and using initial 

means and covariances.  

The method begins with a mixture of several components or clusters indexed by c, each 

cluster c is described by a Gaussian density (x , )c c N  known as a component of the 

mixture. Each cluster is described by the parameters mean c , covariance c  and a mixing 

coefficient πc. Under the mixture of Gaussian distribution, the superposition of C Gaussians 
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densities is then defined by the mixing coefficients πc of these individual components. The 

mixture of Gaussians can be described as 

1

(x) (x , )
C

c c c

c

p  


  N                              (3.26)  

                                                             
1

1
C

c

c




  (3.27) 

The second equation is a constraint for the weights that ensures all the Gaussians weights 

sum up to 1, in order to satisfy the requirement for them to be considered as probabilities. 

Next, discrete latent variables z are introduced into the GMM formulation to provide a 

deeper insight into this Gaussians mixture. This will motivate a very useful and essential 

Expectation Maximisation algorithm to find maximum likelihood solutions for the 

Gaussians generating the data point by introducing discrete latent variables z into 

formulation of Gaussian mixtures.  

The joint distribution p(x,z) is then defined in terms of a marginal distribution p(z) and 

conditional distribution p(x|z), which is illustrated in the graphical model in Figure 3.2. The 

marginal distribution over z can be specified in terms of the mixing coefficients πc, such 

that 

 ( 1)c cp z     (3.28) 

where the parameters { c }must satisfy 

 0 1c    (3.29) 

To be valid probabilities, it needs to satisfy 

 
1

1
C

c

c




   (3.30) 

For the conditional distribution of x given a particular z is a Gaussian, it can be written as 
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 (x 1) (x , )c cc
p z   N   (3.31) 

The data x is modelled jointly with an additional variable z that cannot be observed 

(hidden). The unknown value of z helps explain patterns in the values of x. 

The joint distribution is provided p(z)p(x|z) and the marginal distribution of x is then found 

by summing the joint distribution over all possible states of z that gives 

 
1

(x) ( ) (x ) (x , )
C

c c c

z c

p p z p z  


    N   (3.32) 

The marginal distribution of x is a Gaussian mixture equivalent to the form in equation 

(3.26). Noticed that in equation (3.32), the latent variable z is described in terms of the 

observed observations x1, …, xN. 

The advantage of describing the GMM in terms of the joint distribution p(x,z) instead of 

only p(x) is that it simplifies and motivates the EM algorithm in the process to obtain the 

maximum likelihood solution for the parameters. 

Another quantity that plays a significant role is the conditional probability of z given x, 

p(z|x). r(zc) will be used to denote p(zc=1|x) of which value can be obtained using Bayes’ 

theorem: 
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  (3.33) 

Initially, πc is viewed as the prior probability of zc = 1 and the quantity r(zc) becomes the 

corresponding posterior probability once x is observed. r(zc) is viewed as the responsibility 

that component c takes for ‘explaining’ the observation of x. The responsibility also denotes 
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the posterior probability for each component in the mixture distribution from which the 

data set is generated by evaluating the responsibility for each data point. 

Suppose there is a data set of observations {x1, …, xN} and the objective is to model the 

data using GMM. If the data points are drawn independently from the distribution, the 

GMM can be described using the graphical representation in Figure 3.2. From equation 

(3.26), the log of the likelihood function can be stated by 

 

 
1 1

ln (X , , ) ln (x , )
N C

c n c c

n c

p    
 

 
   

 
  N   (3.34) 

 

                                                      

Figure 3.2: Graphical representation of a GMM for an independently drawn N data points 

{xn} corresponding to latent points {zn} where n=1,…,N 

 

 Artificial Neural Network functions 

An alternative approach for models that use linear combinations of fixed basis functions is 

the Artificial Neural Network (ANN). ANN enables those basis functions to be adaptive 

and adjustable during the network training. In the context of pattern recognition paradigm, 

feed-forward neural network is also commonly known as multilayer perceptron (MLP). By 

its name, it illustrates that the model consists of multiple layers of models with 

discontinuous nonlinearities.   

zn π 

µ Ʃ xn 

N 
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In Chapter 6, the wing box data applied with the ANN is presented. In this section, the brief 

principles of ANNs will be described. The functional form of the network model, including 

the parameters of the network comprises a linear combination of adjustable bias functions

(x)j . It can be given as 

 (x,w) (x)
M

j j

j

y f w 


 
  

 


1

  (3.35) 

where f(·) is an activation function. The parameter weight 
jw  and the basis function are 

made adjustable during the training via the differentiable f function. 

To construct the network model, firstly the activation aj is formed from M linear 

combinations of the input variables x1, …,xD  specified as 

 
( ) ( )

D

j ji i j

i

a w x w


  1 1

0

1

  (3.36) 

where j=1, …, M and the superscript (1) denotes the corresponding parameters weights and 

biases located in the first layer. Each of the activations is transformed using a differentiable 

function h(·) which is nonlinear to produce 

  j jz h a   (3.37) 

This transformation follows within hidden units z. Generally, the nonlinear function h(·) is 

sigmoidal functions such as logistic sigmoid or the ‘tanh’ function. The transformation, 

which is corresponding to the hidden units, is illustrated in Figure 3.3.  In the next layer, 

these values are again linearly combined to produce the activations for the outputs. The 

inputs are now zj’s, which previously are the output obtained from the hidden units 

transformation as given by 

 ( ) ( )
M

k kj j k

i

a w z w


  2 2

0

1

  (3.38) 
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where k=1, …, K are the series of outputs. This activation occurs in the second layer of the 

network. Finally, the output unit activations are transformed using a suitable function and 

produce the set of the network outputs yk.  

The choice of the activation function within the output units depends whether the problem 

is regression or classification based solution. In case of regression (as for the study), the 

function is simply the identity, that is yk = ak.  

  k ky a  (3.39) 

 For binary classification problems, a logistic sigmoid function as given below is used as to 

transform each output unit activation. 

  
 

1

1 exp
a

a
 

 
  (3.40) 

Finally, the overall stages, including all network function can be combined to give 

   ( ) ( ) ( ) ( )x,w
M D

k kj ji i j k

j i

y w h w x w w
 

  
    

  
 2 1 1 2

0 0

1 1

  (3.41) 

In this way, the neural network simply comprises a nonlinear function, h with 

corresponding input variables {xi} to a set of output variables {yk} in respect to adjustable 

parameters w. The process of evaluating the overall network outputs can be represented by 

Figure 3.3 which is a forward neural network, whereby the information propagates in 

forward direction. 

It is noted that the bias parameters can be absorbed into the set of weight parameters by 

defining x0=1, which results in simplified form, to give 

 ( )
D

j ji i

i

a w x


 1

1

  (3.42) 
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k kj ji i

j i

y w h w x
 

  
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  (3.43) 

It is also noted that the neural network functions that are differentiable with respect to the 

network parameters w are the central role in neural network training [34]. 

As shown in Figure 3.3, a neuron in a hidden layer (hidden node) computes a weighted 

summation over all inputs in which the result’s threshold is computed to produce a binary 

output y which is either -1 or +1. [57].  

 

Figure 3.2: A Network diagram consisting of two-layer network with one hidden layer 

and one output layer. The white circles denote the nodes while the blue circles are the 

bias [34]. 

first layer second layer 
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Figure 3.3: Schematic diagram of an artificial neuron (node) in a hidden layer. 
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THE EXPERIMENTAL TEST OF 

PSEUDO FUEL TANK-WING BOX 

STRUCTURE 

 

 

 

The work in this chapter presents the first part of the study that centres around an 

experimental work of a replicated wing box structure based on a vibration based damage 

detection (VBDD). This experiment involves a systematic procedure of filling the wing 

box tank with some amount of liquid loading in sequential order in order to introduce some 

operational loading conditions on the wing box structure.  

The aim of the experiment is to develop a structural system of different structural 

conditions that undergoes some incremental loading before performing VBDD. The 

operational loading variations in this experiment is measured in terms of the FRF domain. 

The measured FRF data will be used to investigate the dynamic behaviour of the wing box 

as it is subjected to various operational loading variations. Therefore, the aim is to acquire 

some understanding on the dynamic characteristics of this wing-box structure under the 

influence of operational loading variations for the purpose of damage detection.   
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4.1 Overview 

The core findings of this experimental study are to provide some understandings on the 

structural vibration of an aircraft structure under the controlled environment when variable 

mass loading is introduced in the structure in sequential order under different structural 

conditions. Structural conditions here refer to the undamaged and several damaged 

conditions of the structure when a damage in a form of saw-cut is introduced in the wing 

box stiffener. 

The changing of liquid loading inside the tank is referred as the operational loading 

variability. This is done in the experiment procedure in an attempt to represent a scenario 

of a changing fuel load or a pseudo fuel load experienced by an aircraft structure.  

The first part of this chapter highlights the experimental tasks regarding the procedures 

and configurations of the filling and extraction of liquid water into/from the wing box tank. 

The second part presents the analysis of the FRF data obtained from the experiment in the 

interest of finding the possible damage-sensitive features. By using visualisation plot 

obtained in the FRF, the study attempts to identify the influence of the operational loading 

variables on the fundamental frequency changes.  

 

4.2 The experimental highlights 

The main idea of implementing this experiment is to study the correlation between mass 

loadings and damage variations as produced in the Frequency Response Function (FRF). 

To achieve this goal, a novel experimental work is developed in the aim to simulate a 

scenario of an aircraft wing box loaded with various mass of liquid water that is done in 

systematic and under supervised manner. This is important and interesting in order to get 

a first view and understanding of the vibration data characteristics due to this water mass 

loading onto the wing box structure. The motivation behind this experiment, is to acquire 



                                                48 

 

 

a vibration data set generated by means of sensible operational loading conditions, 

motivated by the aircraft fuel loading onto the aircraft wing-box structure. 

As stated previously, damage variations are introduced in the structure and at the same 

time, the loadings are consistently changing systematically. In this initial section of the 

chapter, the objective is to highlight the experimental strategy in order to produce a good 

and useful vibration signal with minimum noise. With its good practise, the generated data 

set can provide sufficient information and indirectly can improve the structural damage 

assessment task undertaken in future chapters. Some preliminary work related to signal 

processing is attached in the appendix section selection procedure for signal processing 

aspects undertaken in the experimental test are presented in the appendix chapter.

To acquire the data set, a vibrational test using a replicated wing-box structure attached 

with two liquid tanks is performed by using a random signal excitation test. The 

experiment is performed after a comprehensive study on the suitable signal processing 

aspect of the structure with the additional of water loading effects. 

 

4.2.1 Description of structure  

The structure used is a stiffened aluminium panel to represent an aircraft wing box and it 

is a similar structure used in [58] and [38] indicated in Figure 4.1. The top sheet of the 

wing box is a 750 X 500 X 3 mm aluminium sheet. The structure is stiffened by two ribs 

of length of C-channel riveted to the shorter edges and two stiffening stiffeners composed 

of angle section which are bolted along the length of the sheet. Free-free boundary 

conditions are approximated by suspending the wing box from a substantial frame using 

springs and nylon lines of heavy-duty type attached at the corners of the top sheet. The 

structural weight of the wing box is around 6.464 kg.  

The tanks that filled up with water successively is made of two transparent rectangular 

prisms. They are made from clear acrylic Perspex sheet, bonded onto the wing-box top 

plate using strong adhesive (see Figure 9). The tanks are 604 mm X 155 mm X 25 mm in 

size.   Each tank is attached with small inlet for filling of liquid and one open/close outlet 
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for discharging the liquid. The inlets and outlets are 5 mm in diameter size. The tank can 

be filled up to maximum volume of 2.34 L. 

 

Figure 4.1: Physical model of the wing box-water tank bonded with the indication 

location of damage 

 

4.2.2 Sensor/ transducers mounting locations 

Deciding where to locate sensors largely depends on the type of damage and type of 

response to be captured. These issues are very important to ensure observable and 

significant features are achievable, ultimately would ease the pattern recognition in the 

later stage [1].  

Prior performing the experiment, a procedure of locating suitable place to mount the 

accelerometers is briefly implemented. The procedure of a driving point is suggested by 

Damage location 

Liquid tank Liquid tank 

25 mm 100 mm 

200 mm 

200 mm 

155 mm 

Stiffener 

1’ 

Ribs C-channel 
Secured with rivets 
at 30mm centres 

1’ 

2’ 

1’ 

Top sheet 3 mm thick 
Aluminium 

Ribs and stiffener 1/8’ 
thick Aluminium 

Ribs 
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LMS software where an impact hammer is moved from one indicated point to another 

called as ‘Roving method’ and triggered on locations throughout the top surface of the 

structure [59].  

The ideal place for placing the sensors/ transducers is at driving point where most and 

apparent resonance peaks are indicated in the selected frequency bandwidth. This ‘Roving 

method’ uses the principle of reciprocal, which is one of property in linear system. It states 

that the ratio of input force XA applied to the structure at point A to the output or response 

YB at point B, the ratio will be equal to the applied force XB applied at location B and the 

measured response YA measured at location A. This property can presented as 

 

 A B

B A

X X

Y Y
   (2.1) 

        

Figure 4.2: Bottom view- the location of damage, mount of shaker and the accelerometer. 

 

65 mm 

28 mm 

Shaker 
mount 

Damage 
location 

125 mm 

Saw-cut damage  
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Figure 4.2 illustrates the location of selected accelerometers in comparison to damage and 

shaker situated below the wing box. Observe that all FRF measurements are taken for 

analysis and it is indicated that reading from accelerometer S4 provides better FRF data 

signal in terms of FF definition and higher FRF amplitude compared to other sensors as 

shown in Figure 4.3.  

 

Figure 4.3: The actual bottom view of the wing box with sensor placements and shaker 

mount. 

 

S1 indicates accelerometer number 1 and other corresponding sensors located below the 

wing box as, indicated in Figure 4.3.  Intuitively, the sensors should be placed near to the 

damage and not to overlap with the nodes of  resonance modes[38].   As in this test, the 

accelerometer labelled as S4 located near the edge corner of the plate, results in the most 

desired FRF signal. The signal also shows apparent shifting of FRF peaks as a result to 

load changes which will be discussed in details in Section 4.4.  

Shaker mount and 
input force sensor 
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4.2.3 Program configuration 

 

Figure 4.4: A flow diagram of the experimental configuration 

 

Figure 4.4 shows the work-flow of this experiment and the feature selection that will be 

emphasised later in this chapter. The loading process is performed in a cyclic and a 

repetition manner as illustrated in Figure 4.4 where each particular structural conditions 

are divided into undamaged and damage conditions. Figure 4.4 illustrates the steps taken 

with regard to the current experimental work. It started with determining the suitable 

selection of signal processing aspects before implementing the experiment. As described 

previously, it assumed 5 loading conditions in each cycles of increasing and decreasing of 

mass loading for each structural conditions (undamaged and damaged conditions). Future 

selection will be addressed later when completing the data acquisitions and data organising 

process. 



                                                53 

 

 

Loading of liquid into the tank was performed in 2 cycles; the first cycle assumed increase 

of loading from empty to full tank (E-Q-H-TQ-F) and decrease of loading from full to 

empty (F-TQ-H-Q-E). The second cycle repeated the same process. All cycles of mass 

loading classes consists of a particular loading condition. This strategy of cyclic loading 

is done in order to validate the data consistency and repeatability later in machine learning 

with regards to the variabilities that may occur due slight variation of loading amount 

during the filling the tank and emptying liquid mass from the tank (shown in Figure 4.5).  

The experiment was began by measuring the vibration response of the wing box in normal 

condition in series of loading cycles from empty tank to full tank and continue the cycle 

from full tank to empty tank to complete one cycle. This filing up to full and reducing to 

empty was repeated in two cycles (as shown in Figure 4.5).  

  

 

 

 

 

 

 

 

Figure 4.5: The strategy of loading/ unloading and then data measurements in sequence.  

 

This is a practical approach in introducing the loading in changing mode with respect to 

the practical scenario where the loading changes are more eminent and more abrupt 

compared to slower changes of damage severities in a real situation. In this case, the 

loading conditions undergo more changes in a repetitive manner while the structural 

damage conditions change only after completing all the loading conditions. 

Cycle 1 
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FRF data was measured after completing each loading sequence corresponding to the 

specified tank level associated with one particular structural conditions which process was 

indicated in Figure 4.5. The data measured from normal condition structure is categorized 

as a baseline model encompasses all five the loading conditions. There are five different 

loading conditions performed in each case of five structural conditions. Therefore, there 

are 25 loading classes all together which each structural conditions comprises five loading 

conditions.  

The loading process and unloading of liquid water were performed conventionally as 

shown in Figure 4.6. The process configuration is in accordance to the test program (shown 

in Figure 4.4). The wing box plate is excited using the shaker placed underneath the plate. 

The experimental procedure performed in systematic manner, in fact is an important 

strategy of introducing operational loading variation consistently with a minimal 

measurement variations.  

 Water loading and offloading procedure 

                          

Figure 4.6: (Right) The manual filling of water into the wing-box tank. (Left)The 

extraction of liquid out of the tank using a manual switch. 

 

Before performing the experiment, some essential aspects of signal processing are 

examined and tested before the appropriate techniques are chosen according to the 

guidelines provided by the LMS manufacturer [60]. This includes type of excitation signal 

and its frequency range together with windowing selection. For suitable techniques and 
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procedures in signal processing where data pre-processing is concerned, a comprehensive 

reference can be found from [60], [61]. 

 

4.2.4 Introducing load and damage variables 

 Damage initiation 

 

                 

    D1   D2  D3  D4 

Figure 4.7: Quantification of damage severities introduced into one of the stiffeners

A successive increase of damage severity is introduced into an inboard stiffener of the 

wing box by 16%, 31.5%, 47%, and 63% cut of the stiffener depth, corresponding to D1, 

D2, D3 and D4 respectively as shown in Figure 4.7. These cuts quantified to the length of 

4 mm, 8 mm, 12 mm and 16 mm respectively of the 25.4 mm stiffener’s height. The saw-

cuts are introduced successively directly into one of the stiffener by using a hacksaw 

device after completing all operational loading conditions corresponding to the damage 

condition of the saw-cut level. The procedure is done without removing the stiffener as to 

avoid disruption to the signal response in the effects of boundary condition. These issues  

changing structural boundary conditions such as tightening of bolts have been described 

in the previous research by [62]. 

Once completing the loading process for all five loading conditions separately for each 

undamaged condition, data measurements were recorded. The process was repeated again 

for each damage conditions as described in Figure 4.4.  The measurements of all data 

samples can be gathered as loading class based or structural conditions based. Figure 4.8 

shows the overall data acquisitions grouped based on loading conditions. For the sake of 

convenience in machine learning and data processing, all loading class and damage 
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conditions will have 200 number of data measurements respectively. So that, there are 

1000 data measurements to be used in data pre-processing.

Figure 4.8: Summary of total observations samples collected during the wing-box 

experiment (all data set has been arranged according to the mass loading class) 

4.2.5 Data acquisition 

The data acquisition system used in the test is a DIFA SCADAS III of 16-channel and high 

speed data acquisition system, controlled by LMS software running on a Dell desktop PC. 

 

Wing-box tank level Structural conditions Total acquisitions 

 
 
 

Normal 80 

Damage 1  60 

Damage 2                   60          320 

Damage 3  60 

Damage 4  60 

 
 

Half-quarter-full 

Normal 40 

Damage 1  40 

Damage 2                  40         200 

Damage 3  40 

Damage 4  40 

 
 
 

Normal 40 

Damage 1  40 

Damage 2                  40         200 

Damage 3  40 

Damage 4  40 

 
 

Three-quarter-full 

Normal 40 

Damage 1  40 

Damage 2                   40          200 

Damage 3  40 

Damage 4  40 

 
 

Normal 80 

Damage 1  80 

Damage 2                  80          400 

Damage 3  80 

Damage 4  80 

Total observations samples                              1320 

Quarter-full  

Three-quarter-

full 

Empty 

tank  

Full tank  

Half full 
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The measurements were recorded using frequency range of 0-2048 Hz with a resolution 

of 0.25 Hz. With this resolution and sampling rate, the samples were presented in terms of 

spectral lines in total 8192 spectral lines. The wing box was excited with a white Gaussian 

signal through LDS shaker powered by an amplifier of similar brand. The response was 

measured using PCB piezoelectric accelerometers mounted vertically on top of the wing 

box (Figure 4.3). The excitation signal was measured by a standard PCB force transducer. 

The base measurements used in the test are FRFs acquired using input sensor which is 

located at shaker mount on the plate. Prior locating the best place to attach the sensors, an 

impact test is done to detect the location where significant energy amplitude present using 

a hover method.  

In this test, the structure is excited using random signal. The signal is applied with Hanning 

window to improve the signal continuity and the measurements are performed with 8-

averages.  It is essential to note that Gaussian signal is selected due to its better 

generalisation of data measurements compared to periodic signal. In view of variabilities 

that may present during the test, periodic signal will be sensitive to the unmeasured 

variability such as the fitting conditions other than the variability introduced and specified 

in the experiment. Prior the test, a preliminary test on the suitable signal processing 

properties to use including the comparison between periodic chirp and Gaussian signal in 

regard to Hanning and Uniform window with different averages are studied and 

undertaken before reaching to a decision on the signal processing.  

 

4.3 Data decomposition 

In the signal post-processing phase where assessment of the structural health is done, it is 

crucial to select beforehand, an appropriate arrangement for the multivariate data in the 

matrix form for the more convenient implementation of machine learning process. How 

the data samples are arranged and organised depending on the variables of interest and 

whether the data should be centralised and normalised prior to the use  machine learning 

algorithm are some important aspects to consider.  In this case, the variable of main interest 
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is the damage and loading is the operational condition that is expected to be the main 

driving force of the system dynamic characteristics. It is desirable to detect damage 

accurately and free from any masking effects of the loading variables.  

In this experiment, the signals collected from the LMS acquisition system and were 

gathered in a three-dimensional (3D) matrix (Figure 4.9). In the 3D matrix, K represents 

the number of observations or experimental trials, L denotes the loading class, N represents 

the number of spectral lines selected and J is the series of sensors used. Because this 

experiment is performed in an independent test for each mass loading and is discontinued 

before the next mass loading, the 3D data matrix consists of one operational loading.  

To extract the data, the 3D matrix shall be reduced into a bi-dimensional matrix by 

selecting the particular accelerometer that produces better definition and clearer shifting 

of the FRF peaks in regard to the changes in damage sensitivities. It is acknowledged that 

accelerometer number 4 is the most suitable choice in view of this criterion as suggested 

in many SHM references [1], [63].  

 Once the data signal is unfolded into the 2D matrix (Figure 4.9) in which each rows and 

columns represent the number of samples and the number of spectral dimensions 

respectively. Then, every loading conditions are join successively into another loading 

class in seceding order as one matrix corresponding to one type of structural condition 

(Figure 4.10).  

All data samples from undamaged conditions are grouped into one matrix, named as a 

baseline set and becomes a reference set in this study. Establishing a baseline set that 

incorporates all operational loading variables has been reported in some earlier work in 

novelty detection in changing environment and concluded that it is a very effective strategy 

in normalizing the changing operational and environmental variations in the data set [2].    
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Figure 4.9: Collected data (a) initial 3D-matrix and (b) repeated for different structural 

conditions. 

 

Figure 4.10: General scheme for data organization in the multivariate loading case after 

selecting the best sensor for data decomposition. 

(a) (b) 
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Figure (4.10) illustrates a decomposition of the experimental signal reduced from the three-

dimensional matrix into two-dimensional (K x N)JL matrix corresponding to sensor J and 

tank load L. The data acquisition composed of FRF data from one loading condition (Li) 

where i can assume empty, quarter-full, half-full, three-quarter full and full tank. The data 

matrix  XKL X N  comprised of the observations for all loading classes (in the rows) in 

ascending order and selected number of spectral dimensions before applying PCA on the 

data matrix. The same procedure data decomposition is repeated for structural conditions 

D1, D2, D3 and D4 and they are categorised as test sets.   

 

4.4 The system’s dynamic characteristic 

One of the key aspects identified in the dynamics response of the structure when loaded 

with mass of water is that the lower frequencies modes showing very distinctive shifting 

and high definition of the FRF peaks compared to those peaks in the highest frequency 

range (Figure 4.11). 

 

 

Figure 4.11: Comparisons of lower frequencies modes to the higher frequencies modes 

for operational loading variables under undamaged and damage structural condition 

Shifting of natural frequencies 

due to loading 

Shifting of natural 

frequencies due to loading 

changes 
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One obvious indication from the overall plot is that the mass loading plays a significant 

effect in the global dynamic response compared to damage phenomenon. This requires 

more detailed analysis focusing on the smaller region of the frequency range. 

 

Figure 4.12: Showing distinctive shifting of the FRF peaks (lower frequency range). 

Zooming in the lower-frequency response between spectral lines 200 and 500 of the 

previous plot, Figure 4.12 indicates very clear shifting of the FRF peaks. Note that, this 

FRF results are presented before the response from damage variables are plotted along the 

loading variables. 

Intuitively, these global dynamic modes effects give desirable conditions in SHM as they 

indicate clear shifting in the natural frequencies. However, many studies related to 

vibration based damaged detection has revealed that damage is a local phenomenon and 

the effects can be found typically on higher frequency mode [1], [4]. According to the 

basic principle of vibration based damage detection, any changes to the mass and stiffness 

properties can alter the global dynamic response of a system. In this case, extra care should 

be taken to verify if these shifting are damage-sensitive or only loading-sensitive 

especially if the shifting lies on the lower-frequency global mode. 
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Figure 4.13: A zooming into the above FRF shows no damage-sensitive about damage 

data signal 

Consequently, the FRF plots associated with damage variables are plotted on the same plot 

previously shown in Figure 4.12.  By focusing on the range from 200 to 250, Figure 4.13 

reveals that the sensitivities of the FRF peaks are in fact initiated by loading changes and 

not by damage. These damage effects also include the most severed case (D4) but still it 

does not influence the sensitivity of the FRF peaks. It is shown that these global modes of 

natural frequencies are conclusively dominated by the changing of mass loading. 

These are the main challenge in SHM considering operational loading variability, which 

requires one to differentiate the effects of damage from the more dominant effects of 

changing of mass loading illustrated on these FRF peaks. On a positive note, under a 

supervised learning, data labels can provide basic information about the underlying data 

that cause changes to the dynamic properties of the system. 

In this test, the mass loading is introduced successively under several quantified damage 

conditions. A selection of frequency range between the spectral lines between 200 and 500 

displays mostly the global frequency modes of the system (Figure 4.14). The result reveals 

that damage effects cause insignificant shifting in FRF peaks in comparison to the 

variables of mass loading. The damage-sensitive FRF peaks begin to emerge on the higher
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spectral lines, in this case around the spectral lines 400 to 500 as indicated by the dash-

box in Figure 4.14. 

 

Figure 4.14: Operational loading variations with all damage variables present- the box 

with dash-line indicates presence of damage sensitivity. 

The results in Figure 4.13 and 4.14 affirm the dominant effects of operational loadings that 

overshadow the effects of the damage variables. Further examination on the changes of 

these FRF peaks, confirms that there are small damage sensitivity on the peaks as indicated 

by a dash-line box, H Q E in Figure 4.14. These findings conclude the dominance effects 

of operational loading variables in regards to the structural damage. 

With respect to higher spectral range where a possibility having peaks with higher damage 

sensitivity is higher, following plots show such characteristics.    

In the spectral range dimensions of between 1800 and 2200 (425 Hz and 550 Hz), where 

local modes of natural frequencies having higher influence in that higher frequency range, 

it presumably the damage identification and detection is better (Figure 4.15). They are true 

in the sense of damage identification and separation. The FRF peaks are higher in 

magnitude but shown to be less definitive. Despite good separation of various damage 

severities in these higher frequency range, the peaks in lower frequency range is more 

defined and the changes of FRF peaks are more evident. In fact, it can briefly provide 

general judgement on the progression of damage under the operational loading variations. 
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Figure 4.15: Individual operational tank loading plots of various structural conditions 

analysed in the higher frequency range. 

In the aspect of damage detection and SHM, practically, the idea of using the shifting of 

natural frequencies is not convenience and inaccurate if the whole purpose of SHM is to 

be realised. There have been long-standing work concerning the detection and 

Q

E

Q 
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characterisation of structural damage by examining the changes in structural vibration 

response [17], [22], [64].  

An intelligent way is advisable by using the appropriate machine learning tool in order to 

discriminate the effects of operational loading variations from the damage features rather 

than using visualisation method as shown previously as the means to achieve the purpose 

of SHM. This concern leads to the next work that focuses on feature extraction in bringing 

out the damage-sensitive feature out of the dominance load variables effects. In fact, this 

is the key challenge in this work in the perspective of damage detection. A standard linear 

PCA is to be applied for this purpose and it is highlighted after making some strategies (in 

data organization) to ensure a more efficient use of PCA. 

Despite the minor effects of the damage variables on the FRF changes, the good news is 

that the damage-sensitivity are observable and identifiable by increasing the plot resolution 

(zooming the plot) as highlighted in Figure 4.16. Using a range of selected spectral range 

which the focuses on damage-sensitive peaks and spans across all loading conditions, it 

can be a representation of one of the important characteristics of the system. Such 

representation is called as a feature in terms of data pre-processing prior to its application 

in the machine learning which will discussed in the next section. 

 

Figure 4.16: A zooming from the dash-box in Figure 4.14 highlighting the damage 

sensitive feature
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From the finding based on Figure 4.16 and Figure 4.17, it illustrates that the vibration 

response of the wing box can provide some brief indications on the changing of damage 

severity to the extent of large damage quantification (Damage 4). This damage sensitive 

feature lies in the lower range of frequency range of between 350 and 450 spectral lines 

(87.5 Hz and 112.5 Hz).  

 

Figure 4.17: A close-up view of higher operational load with all damage variables 

4.5 Features selection and extraction 

In the SHM perspective, the performance of a damage detection system heavily depends 

on the how much data information represented by the selected features prior to the machine 

learning applications. The selected features should contain most information about the 

system dynamic behaviour especially for damage variations (damage-sensitive) as 

highlighted by the FRF changes [1]. 
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The purpose of establishing good feature is for the use in the machine learning algorithm 

which its performance results heavily dependent on this feature. It has been demonstrated 

in the previous section of System’s dynamic characteristic how the potential candidate of 

damage sensitive feature to choose. The potential feature at the selected frequency range 

displays detectable changes in the natural frequency due to varying load and damage 

severity changes. The clear advantage dealing with data in FRF domain, the criteria of 

frequency peaks shift due to load and damage change plays a key role in selecting good 

sensitive feature.  

It has been indicated the selection process of the feature after examining all range of 

frequency spectrum in spectral dimensions. As a result, the spectral range of between 

spectral lines 350 to 450 is concluded as the feature candidate. They are selected based on 

the distinct changes of FRF peaks due to damage variations surrounded by the dominant 

effects of operational loadings and minimum noise around the signal.   

In the current study, the selected feature serves as the input data for the machine learning 

algorithms that will used later in the study in Chapter 5 and Chapter 6. A good feature 

selection enables the extraction of underlying characteristics of the structure and 

subsequently allow sufficient pattern recognition to provide reasonable assessments on the 

system health condition. 

 

Figure 4.18: Selected feature showing damage sensitivity.  

Quarter-

full tank

Half-full 

tank 

Empty tank 
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Figure 4.19: The extent of a selected feature encompassing Full-tank, Three-quarter-full 

and Half-full tank 

As indicated in the plots of Figure 4.18 and Figure 4.19, detectable damage sensitive is 

observed from the spectrum ranged from 350 to 450 spectral lines which are now being 

selected as the damage-sensitive feature under loading variables for this work.  

 

4.6 Data pre-processing prior to machine learning   

In this stage, the data is manipulated before processing it with a machine learning 

algorithm in order to make it more convenient use with machine learning algorithm. Here, 

the selected damage-sensitive feature, which comprised of the spectral lines from 350 to 

450 spectral lines (the total of 101 dimensions) is already established as the data feature. 

The essential part to remember that, this selected feature of 101 dimensions of frequency 

spectral lines consists of five different mass loadings with each mass loading. By each 

mass loading, it involves of four different damage conditions and one undamaged (normal) 

condition. There are number of interesting methods for different data organization that 

been reported for the last 5 years, mostly involved with the use of the PCA[65][66] [19] 

In order to establish a more practical way in dealing of multi variate data of varying mass 

loading consisting with different structural health conditions, a baseline or reference set
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is established. This imply that the whole normal (undamaged) structural condition of mass 

loadings are gathered and combined  into a group. This data group will be the reference 

data points for other damaged conditions of any operational loads. The baseline set consists 

of 200 data samples of healthy condition comprising 40 samples in  each loading class in 

empty tank, quarter-full, half-full, three-quarter-full and full tank loading conditions.  

The same configuration is used for test sets which each set describes one particular damage 

class spanning across all loading conditions. Hence, there are 200 data samples for each 

structural conditions where in each structural conditions consist of 5 loading conditions. 

There are 1000 data samples that will be used for the purpose of machine learning. The 

details of the data configuration will be described in Chapter 5. 

 

4.7 Summary 

The experimental work performed in this chapter has addressed how the experiment is 

configured and implemented systematically concerning the operational loading variables 

and damage variables.  

The underlying dynamic characteristics of the system under the influence of mass loading 

has been outlined. The findings reveal that the loading variations produce more significant 

effects on the shifting of the FRF peaks and more dominant compared to the damage 

effects. It is demonstrated that there is a higher sensitivity to loading variation detected in 

the lower frequency range whereas damage sensitivity is more subtle and can be 

recognised in few of the FRF peaks after the global frequency mode in slightly higher 

frequency range. The damage-sensitive feature is shown to be masked by the loading-

sensitive feature which are more dominant over the damage-sensitive feature through all 

the frequency response. 

It has been demonstrated how feature selection under the effects of operational loading 

variables has to be exercised with extra concern due to the masking effects of the loading 
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variables. Damage sensitivity features are present within each peaks corresponding to 

loading variables.  Zooming has to be used to highlight these damage-sensitive features. 

The data feature selected in this chapter will be used in the machine learning algorithms in 

Chapter 5 and 6. The performance of this machine learning approach critically depends on 

the quality of the selected feature performed in this chapter.  

The procedure of feature selection is carried out with the availability of data labels 

(supervised learning). In real case scenarios, this privilege is not always available. This 

case will be explored in Chapter 7 where examinations of FRF shifting are not permissible 

due to high of data variables and complexity 

 

  



  

Chapter 5                                       

MULTIVARIATE DATA 

VISUALISATION AND DAMAGE 

DETECTION UNDER OPERATIONAL 

LOADING  

 

 

 

This chapter highlights primarily visualisations approach using Principal Component 

Analysis (PCA) and novelty detection based on some principal component (PC) models. 

PCA technique is used in this chapter using the data set obtained from the wing-box 

experiment described previously in Chapter 4. It is identified that the multi-variate data 

sets presented in FRF series obtained from the VVBD test reveals a challenging task in 

interpreting and examining the damage severity changes under the effects of changing load 

in the purpose of damage detection and SHM. A technique of visualisation is proposed as 

opposed to the examination of the shifting of the FRF peaks. PCA is performed to produce 

some new representations of the data set that can reveal the underlying characteristics and 

isolate the effects of loading variables from the damage variables in a basis of the highest 
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data variance found in the data set and projected the new variables in direction of the 

highest variance. This chapter first describes the application using a standard PCA follow 

by a kernel PCA performed as a generalised nonlinear form of feature extraction using the 

given data set. PCA is a well-known linear feature extraction technique whereas kernel 

PCA is used here with concern to extract some nonlinearity and hidden features that 

typically ‘live’ in the high dimensional data space.  

 

5.1 The scope of the chapter 

The motivation for choosing PCA in this work is mainly for dimensional reduction and 

extracting data features from the high dimensional space to a more compact and useful 

data representation. Under varying operational loading and structural conditions, the main 

challenge underlying the work is will be to identify if the effects from the structural 

damage on the feature derived from the PCA can be distinguished from the effects arise 

from pseudo-fuel loading. 

For this purpose, the standard PCA is performed and projected onto a two-dimensional 

plot by the first and second principal components. A kernel PCA is implemented to acquire 

a hidden feature that may lies inside the high dimensional data space. Both PCA projection 

methods are compared and utilised as visualisation techniques in the context of SHM.  

The study explores some different data arrangements, named as Principal Component (PC) 

models A, B, C and D by configuring the multivariate data sets corresponding to loading, 

damage or loading/damage variations. One of these arrangement sets is then incorporated 

into a covariance matrix before eigenvalues decomposition is performed.  

As a supervised learning, the multivariate data comprises five loading conditions: empty, 

quarter-full, half-full, three-quarter full and full tank load and classified corresponding to 

the structural conditions. It has five different structural conditions to be considered: 

undamaged, D1, D2, D3 and D4. The PC model depends on the loading matrix or 

coefficient matrix calculated from the PC model covariance matrix.  
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In the first part of this chapter, it presents visualisations based on the PC models 

corresponding to specific data set arrangements. In the second part, novelty test for 

detecting damage based on the PC models are computed using Mahalanobis Squared 

Distance (MSD) function. The results of the discordancy test are compared between the 

standard PCA and kernel PCA.  

 

5.2 Overview 

The main challenge in interpreting the effects of various loading conditions using the 

original FRF plot is that the multivariate data sets seemed to overlap and redundant. The 

issue escalates especially when there is damage present and the changes of the FRF 

become more subtle. Previously in the Chapter 4, the selected feature also shows that the 

FRF shift caused by loading are more dominant compared to the FRF shift initiated by the 

presence of damage. This kind of data characteristic demands a better way of re-expressing 

the data set in the most meaningful vector basis in the hope that this new representation of 

the original data set can reveal the underlying feature better.  

In another perspective, it is widely known that the standard PCA is a powerful technique 

for linear dimensionality and feature extraction [52], [67]. Emphasising on its description, 

PCA attempts to find a linear subspace of lower dimensionality than the original feature 

space, where the new features have the largest variance [34]. Hence, the main objective in 

this chapter is to project a new representation of a feature from the original FRF data set 

into a lower dimensional space using a new basis of a linear combination of the feature 

such that the variance of the projected data is maximised.  

The primary aim work in this chapter is to ascertain if the standard PCA is able to extract 

and unmask the damage feature from the more dominant loading features and transform 

them accordingly based on their loading and damage class.  

Due to the limitation of the standard PCA that projects the data set only onto a linear 

dimensional space, a nonlinear PCA shall be incorporated into the work to compare with 
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the standard PCA to determine if it can improves the detectability of the damage feature. 

The nonlinear PCA utilised using kernel Gaussian function is applied and the work here 

addresses a novel way in establishing the kernel parameter by searching the average value 

of the smallest distance between two vectors using dissimilarity matrix plots.  

This chapter also describes various plots for visualising purposes based on different 

Principal Component (PC) models. The PC models are developed by projecting the data 

set using different transformation or coefficient matrix.  These PC models are produced by 

orthogonal transformations with maximal variance of the feature data set based on 

different data configurations. The work embodied in this chapter can be outlined based on 

the following tasks:  

 The effects of standardising a dataset in the PCA application 

 Highlighting the novel way of selecting parameters when applying a kernel Gaussian 

function into PCA via a similarity matrix   

 Presenting different strategies of organising a reference set or a baseline model prior 

to PCA application in the aim to reveal the features caused by damage in the overall 

data set 

 Evaluating damage detectability of each baseline model by applying statistical T-

squared analysis based on the Mahalanobis Squared Distance (MSD). A threshold by 

Monto Carlo computation is used as a benchmark between undamaged and test data 

sets in the reduced dimensional space. 

 

5.3 PCA implementation 

Generally, before implementing a data analysis using any machine learning techniques, 

data pre-processing is vital in terms of reducing high dimensional data and extracting the 

features sensitive to damage [6], [31], [58]. This is important in order to get the 

summarised information described by the multivariate data. Concerning this factor, PCA 
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is selected to transform the original variable into a more predictable representation of 

important principal components that retains most of the important information. 

PCA is a widely used non-parametric tool for dimensional reduction of unsupervised 

learning problems. In the current work, taking the advantage of its supervised learning 

mode, it will be able to determine if PCA can classify and distinguish between the features 

caused by loading and damage. The primary objective and benefits driven from the PCA 

implementation particularly for this work are briefly described here.   

 Feature extraction and pattern recognition 

The main concern of this chapter is to determine whether the effects of damage and load 

are separable by using PCA. As described previously in chapter 3 in equation (3.1), the 

transformation basis is established based on the maximum variance of the data set. The 

covariance matrix Cx measures the covariance between all possible pairs of spectral 

variables denoted by X. Each row of matrix X corresponds to all spectral variable 

measurements (FRF amplitude) belonged to an observation and each column corresponds 

to the FRF amplitude for each spectral dimension measured for all observations in the 

matrix group.  

The off-diagonal terms of the covariance values reflect the redundancies and noise in the 

system. Large off-diagonal values correspond to high redundancies and noise in the data 

set. In other words, there is certain amount of high correlation between variables. The 

variance values in the diagonal terms corresponding to interesting behaviour of the 

structure [65], [68]. The goal of the PCA suggestively is to maximize the variance and to 

to minimise the redundancy of the covariance in the off diagonal terms by making the off-

diagonal elements close to zero. It means that by making zero correlation between pairs of 

the spectral variables which can be achieved through diagonalising the covariance matrix.  

Figure 5.1 shows the original data feature as acquired from the wing box experiment that 

shows the response looks almost similar in behaviour trend and very difficult to interpret 
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without proper data group labels. In this context, PCA is used to improve the interpretation 

by focusing on the maximal variance of the few first principal components which often 

realise the most important characteristics of the system. 

 

Figure 5.1: The original data feature with high spectral dimensions that inclusive of all 

operational loadings and damage data. 

Figure 5.1 shows the original vibration data acquired in FRF series, which is obviously 

difficult to recognise without distinctive colour labels. The letter E, Q, H, TQ and F denote 

the operational loading conditions. The letter N, D1, D2, D3 and D4 represent undamaged 

and damage severities groups in ascending order with D1 as the lowest damage. The plot 

in Figure 5.1 indicates that the FRF changes due to the changing of loading variation (from 

E and Q and up to F load. E and Q load located between spectral lines 410 to 440 show 

higher variability among the data set associated to undamaged and D1, D2, D3 and D4. 

Whereas the FRF changes present within the spectral lines between 370 and 410 show 

lower variability in the ‘damage’ data sets for H, TQ and F load. This changing data 

characteristic would be sensitive to PCA (in terms of data variation) and would be useful 

to determine if this characteristic is better highlighted in the principal components 

projection.  
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 Reducing the number of spectral dimensions 

As mentioned previously, the key priority is to reduce the number of spectral dimensions 

in the selected feature from the original high of 101 dimensions to a linear combination of 

the variables for better interpretation and visualization of the data variables. In PCA, the 

dimensionalities are reduced by transforming the original spectral dimensions into a small 

set of principal components of new variables without losing the the important information 

in the original spectral variables. 

From the machine learning perspective, smaller number of components of variables are 

more desirable in analysing the relationship among the variables. Like in the current case 

study, by combining the original spectral variables in the direction where the data most 

spread out (maximal variance), it avoids the problem such as the singularity problems.  

The key point to note is how many numbers of principal components should be retained in 

order to avoid a considerable loss of data information. It is desirable to have the total 

principal components that accounts for more than 80 percent of the total variation in the 

data set [33]. The projection of the PCs which having most of the data set variation is 

reasonably a truthful presentation of the total variables in the data set [33](Mujica et al. 

2011).                 

                                                                                                                               

5.3.1 Preparing the data prior to the PCA application 

The key procedure prior to applying PCA is to prepare the data to ensure its mean equals 

to zero. In the current work where it involves multivariate loading and damage, it is 

essential to ensure the reference set or the baseline set which comprises of all undamaged 

data sets from all loading conditions has zero mean. All data set comprises of various 

loading conditions corresponding to a structural condition are subtracted by the mean of 

the baseline data set (undamaged state consists of all loading conditions). This is an 

effective step in order to get a more useful data visualization and interpretation of the 

multivariate data set.
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PCA is very sensitive to variance and scaling of the original variables. Due to high 

variability in the multivariate data set, it is a good step to scale the data to a unit variance 

by standardizing the data. In the context of this study, standardisation refers to dividing 

the mean-centred data by the standard deviation of the undamaged data set. Standardised 

data set gives variance equals to one and the covariance lies between -1 and 1. The value 

of zero reflects no linear relationship between the two variables, -1 if the relationship 

between the two variables are perfectly inverse and +1 if the variables have perfect linear 

relationship [69]. In establishing the association between data sets of the undamaged and 

other damaged conditions, each test data set (gathered from a particular damage condition) 

is subtracted by the mean of the undamaged condition and standardised using the standard 

deviation of the undamaged data. 

From Figure 5.2, it shows that the effects of standardizing the FRF test data set (damage 

data set from all loading conditions) by a unit variance of the undamaged baseline set. To 

perform standardising, each vector of test data is subtracted by the mean of baseline set 

and divided by the standard deviation of the baseline set. The amplitude of the test data 

after being standardized causes larger amplitude and larger separation between the 

baseline and test data. 
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Figure 5.2: Comparisons of the effects of mean-removed data set (middle plot) and 

standardizing (bottom plot) with the original data set (top plot) measured in half-full 

loading condition.
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(a) 

(b) 

Figure 5.3: (a): Mean of baseline data set is subtracted from each test data samples.     

(b):  Mean-removed data is standardised by the standard deviation of the baseline data 

set. Plus sign indicates the centre (mean) of the data set. 
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The transformation using the first two principal components (Figure 5.3, (a) and (b)) have 

shown that the loading class are clearly separable from each loading class. The principal 

components projections show that data correspond to smaller damage are very close to the 

data group of undamaged condition. These data sets seemed overlap especially in higher 

load class (half-full, three-quarter- full and full load).  

The standardised data set shows a positive effect in making a larger separation between 

the undamaged and test data set in empty and quarter full load class. The results of the 

linear PCA shown in the top figure of Figure 5.3 display the transformation after the mean 

of the baseline data is removed from the data and making the overall mean of the data 

projected at the centre (0,0). Mean-removed of data set is the pre-requisite to a PCA 

implementation so that the variables are comparable.  

One of the foremost observations from the linear principal components (PC) projections 

is that the loading groups are distinctively separated. However, the damage severities 

groups especially among the lower damage groups overlap considerably. In contrast, using 

standardized data set prior to eigenvalues decomposition, it improves the separation of 

damage groups especially those from smaller damage groups in empty and quarter-full 

load. Note that, in the previous original FRF plot, the variability among the data set from 

undamaged and damage conditions in the empty and quarter full load are higher and 

potentially more separable compared to the higher loading class (half-full, three-quarter 

full and full load). 

The ultimate point is that, a standard PCA is shown as capable to separate the multivariate 

loading class effectively but the separation between the undamaged and damage severities 

groups in each loading class is unsatisfactory. Interestingly, the loading data sets are 

indicated to be on an ascending order pattern and this basically indicates that PCA is 

suitable to provide data interpretation and prediction regarding the system’s operational 

loading conditions. Through PCA, a more feasible interpretation and prediction on the 

system’s changing load is looking to be more achievable. However, the damage severities 

are observed to be overlapped especially for the higher loading class. Because of this 

factor, a kernel PCA is opted for use. It is also in the key interest of any SHM landscape 
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is to establish if a structure has damage or not. Another desired performance of a SHM is 

to be able to predict and monitor structural integrity through its data feature. It will be 

highlighted on these two capabilities in the next section by kernel PCA which are applied 

on the wing box data set.  

 

5.4 Kernel PCA 

Kernel PCA (KPCA) is nonlinear form of PCA first introduced by [52] and since then has 

been used in many applications including for dealing with the effects from the 

environmental and operational variations [70]. KPCA is vey effective in exploiting the 

complicated structure of the high dimensional data [26], [36], [40], [52], [55]. 

It is performed by using what is known as a ‘kernel trick’ by computing the dot products 

via the kernel Gaussian representation instead of having to transform the input data 

nonlinearly into the high dimensional space. In the ‘kernel trick’, the kernel function is 

solved in the data input space and avoid the complex computation of the transformation in 

the high dimensional feature space. 

In separating the load data set, is is demonstrated that linear PCA can effectively be used 

to separate various loading groups and track the loading trajectory path. However, for a 

more complicated variable structure such as for the D1 and D2 test data (which are 

associated to the smaller damage groups), linear PCA could not separate the feature 

distinctively.  

In this context, kernel PCA is introduced and implemented. In a previous study for facial 

recognition, kernel PCA has shown its distinctive performance [55]. The fact that Kernel 

PCA is the nonlinear form of PCA, it can reveal more complicated features and underlying 

patterns in the data set. 

The key objective in this work is to improve the separation between baseline set 

(undamaged condition) and damage severities under all loading conditions. The basic
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structure of the algorithm of the kernel PCA is inspired by the work in [55] and is adapted 

to the current multivariate-variate data problem. In the original application of kernel PCA, 

it was used to determine some micro expression from amazement to calmness of the human 

face, in contrary to linear PCA where it was shown to be limited to the basic orientation 

of the human face. The algorithm of the adapted kernel PCA to the wing box under 

operational loading and damage variables is attached on the Appendix A in this thesis. 

The modifications are introduced in the algorithm specifically in the procedure for finding 

the the optimal Gaussian parameter σ, sigma. It involves constructing a distance matrix, 

also known as similarity matrix in a square form based on the Euclidean distance. Using a 

colour bar plot to represent the overall distance between data points from the same class 

or inter-class, it makes the evaluation of the optimal standard deviation more convenient 

and simpler. 

In the following section, the procedures for implementing kernel PCA as s continuity from 

previous Chapter 3 are presented. A strategy for searching of the parameters related to the 

distance between data points and the standard deviation for the kernel Gaussian is 

demonstrated.  

 

5.4.1 Constructing the kernel matrix 

The ‘trick’ of  kernel PCA is obtained by solving the kernel matrix K from the training 

data set {xi} using equation 
2 2( , ) exp( / 2x y x y    , hence it avoids from solving 

the eigenvalues in the high dimensional feature space. Gaussian function illustrates a 

distance of between vector x and vector y and the standard deviation σ of the training data 

matrix. 

The construction of kernel begins with computation of the distance matrix using Euclidean 

distance. A distance matrix places an important element in a kernel Gaussian function as 

it computes the distance of each data points that represent the data in the feature space as 

well as the standard deviation that governs the kernel function. The distance calculation is 
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based on Euclidean distance. Due to its importance and become complicated in solving 

multivariate problems, it is worth for brief definition and an illustration to describe of its 

practical use in the multivariate case problems. 

An Euclidean distance between two data vectors X, which x = (x1, x2, …,xn) and Y = (y1, 

y2, …,yn) given by the Pythagorean formula:

2 2 2

1 1 2 2( , ) ( ) ( ) ... ( )n nd X Y x y x y x y      

     
2

1

( )
n

i i

i

x y


                          (5.1) 

Or it may also be represented by 

    (5.2) 

That is also equivalent to 

   (5.3) 

 

To illustrate the applications of this distance metric in the constructing the kernel, a simple 

case consists of three row vectors is demonstrated before it is used in more complicated 

case such in the current work. 

Based on Euclidean distance, as shown by Figure 5.4, the distance is computed between 

the first row vector and the second row vector and from the first row vector to the third 

row vector until all the rows are completed. The values obtained are then stored in the first 

column for the E class. Once the operation using the Q class is completed, it stores the 

values in the second column and repeats the same distance calculation. The last column 

stored for the H class with the similar operation (Figure 5.5).  

 

( ) ( )X Y X Y X Y    

2 2
2X Y X Y X Y    
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E = 1-by-40 

Q = 1-by-40 

H = 1-by-40 

Figure 5.4: A simple 3 row vectors of data matrix before calculating for its distance matrix. 

 

Figure 5.5: The distance matrix of size 3-by-3 depicts the distance values between row 

vector E, Q and H.  

 

                 

Figure 5.6: shows loading configuration for data set is grouped and arranged before 

Euclidean distance is computed between baseline set (left matrix) and test data set (right 

matrix). 
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Figure 5.6 shows each matrix is encompassed in a matrix of 40-by-101 (40 data 

observations with 101 spectral dimensions) and arranged in ascending order form empty 

load to full tank and follow the distance calculation.  

To simplify the selection process of the parameter sigma, a distance matrix with a colour 

bar scale is used. It provides an alternative way to represent the inter relation of various 

loadings in terms of distance between various loading groups. It is also known as a 

similarity matrix because it compares and calculate the distance of the pair matrix for 

similarity. The calculation of the sigma requires details consideration from each loading 

set. By means of distance matrix equipped with its colour distance scale, the selection is 

performed based on the each block (group) of loading class. Each block represents the 

group of distance points in each loading class (40-by-40). It also ease the interpretation 

and gives summarized information in choosing the appropriate sigma values.  

 

 

Figure 5.7: A distance matrix of the baseline set {Li} ={Ei, Qi, Hi, TQi, Fi} encompasses 

all loadings from the undamaged condition. 

The distance matrix using Euclidean distance comprises of all loading data set and 

arranged in ascending form, begins from empty load and up to full tank. The colour scale 

used in the matrix indicates the degree of distance between the pair of loading class. Pure 

blue regime indicates the smallest distance and pure yellow colour shows the highest 

Black line marks zero distance 
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distance of data in the distance matrix. A dark line runs across the diagonal represent zero 

distance when the row data elements are subtracted by the same row elements in the same 

load class. 

As expected, the smallest distance lies on the diagonal matrices of the same loading set. 

The highest distance occurs between the quarter full and empty load, [Qi] – [Ei] and half 

full and empty load, [Hi] – [Ei] where i = 1, 2, …, 40 is the observations in each row  of 

the load matrix (Figure 5.7). The black line runs across the diagonal indicates zero distance 

for similar data when i from one load subtracts by the same load. This distance matrix 

shows strong agreement with the results of the FRF plots in terms of distance of loading 

parameters where the data signals from empty, quarter and half-full are most far apart 

compared to three-quarter and full load (Figure 5.1). 

 

 

Figure 5.8: A distance matrix for pair wise distance of undamaged and D1 type test set. 

 

The test set comprises of 4 levels of damage severities and each damage level is compared 

to the undamaged group separately. Figure 5.8 depicts the distance matrix between the 

undamaged set and D1 test data set. In comparison between the undamaged and test data 

set, a distance matrix is produced by subtracting the first row vector of baseline data set 

by every row vector in the  test data matrix and the distance values are stored as the the 

first column in the distance matrix. The process is repeated for the next row in the baseline 
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set with each rows in the test data until completed. The distance matrix in colour scheme 

provides some summarized information of load and damage effects in term of data 

distance.  

In the following discussion, it would be demonstrated how the parameter sigma is 

determined specifically under multivariate load and damage. Intuitively, the parameter 

sigma can be selected based on the rank of the blocks or bands of the particular test data 

matrix in ascending distance order. In one square band consists of 40 rows and 40 columns  

corresponding to the total number of measurements in one class for both load and damage 

class. 

 

5.4.2 The effects of varying the standard deviation of the kernel 

As stated previously, two important parameters that ensures a kernel Gaussian is effective 

in solving the problems are 
2

x y which is the Euclidean distance between the training 

and test data as well the 2 , the  inverse variance in the distance matrix. Both parameters 

are related by  

2 2( , ) exp( / 2x y x y        (5.4) 

After modelling and calculating the distance matrix of every load matrices in pairwise 

manner, it becomes more convenient to seek a suitable parameter sigma that may be used 

to increase the separation and variation between the data points from different damage 

severities groups. Intuitively, to capture the smallest data distance of two different classes, 

the standard deviation (σ) should be larger than the average of the minimum distance 

between the undamaged and D1 test data [55]. Noting that the smallest distance matrix is 

determined from the distance matrix of undamaged and D1 data set. Zero values is not 

included as they represent the distance of its own data points. 

In a previous work related to face recognition [55], the parameter sigma (σ)  is selected to 

be smaller than the inter-class distance (between training and test data set) and larger than
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 the inner class distance (between data points of the same class). However, uniquely for 

the current work, it deals with multivariate loading class and multivariate damage class. A 

similarity matrix plot is proposed to ease the selection of the sigma.  

Emphasising that the current objective is to detect damage under the multivariate loading, 

thus the selection of the kernel parameters (distance and sigma) should able to improve the 

separation among the smaller damage groups and undamaged group. The smallest distance 

between undamaged and D1 of all loading classes are computed from the distance matrix 

and its average of the smallest distance for all the damage classes are determined.  

In this study, the undamaged and test data represented in the kernel matrix is tested with 

some different values of parameter σ based on the values in distance matrix.

  mean(D )NN

i    (5.5) 

Where Di
NN represents the smallest distance with elimination of zero distance between 

each data point in a row. 

The first step, parameter sigma (σ) is set to be the minimum in each column in distance 

matrix and the average is then calculated. This strategy can highlight and increase the 

separation of data variables with lower variance (damage severities groups in three-quarter 

full and full load) as illustrated in Figure 5.12. On the other hand, using larger sigma values 

will result in similar results to the linear PCA. The parameter sigma selected will be used 

in the Gausian function as the inverse variance (Equation 5.4). This enables the separation 

of damage severities group to improve significantly. It capable in improving the separation 

between the baseline set and test data set of lower damage condition. This is very 

encouraging considering that loading effects can be easily detected by using linear PCA 

but not the case of separating damage features.  
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Figure 5.9: Euclidean distance between pair wise matrix of undamaged and test data 

corresponding to D1, D2, D3 and D4. 

 

  

Figure 5.10: Distance matrix for undamaged and test data sets. Number one (1) indicates 

the smallest distance between undamaged and D1 test data of various loadings where the 

value of parameter sigma is calculated from.
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Figure 5.11: Sorting the distance matrix in ascending order. 

 

Figure 5.9 describes a strategy of using the distance matrix in terms of colour scales 

representation to indicate the distance between undamaged and test data sets. It serves as 

an insight and guidelines for the selection of sigma parameter (σ)  by focusing on the colour 

regime that denotes the minimum distance.  

Sorting the distance vectors in ascending order allows easier selection of sigma parameter 

corresponding to the lowest distance based on the block of group data in one class (Figure 

5.10). Selecting the parameter sigma with respect to the second lowest distance of distance 

matrix (Figure 5.11) creates different projection that allow separation of classes of larger 

distance (between loading classes) compared to the sigma of the first block.  The sigma 

values shown to have a profound effect on the damage detection and data separability.  
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Figure 5.12: The result of using an average of the minimum distance calculated from the 

distance matrix. 

Figure 5.13 displays the zooming in the three-quarter full class that clearly illustrates the 

pattern of the data variables corresponding to respective damage severities groups. 

Figure 5.14 displays a zoomed view on high-density data groups using the average of the 

smallest distance of sigma value (σ)  and the result shows no data overlapping including 

for groups with smaller dimensions which are group UD, D1 and D2. 

The result in using the smallest parameter sigma (marked as param on figures) in the kernel 

function indicate that the damage separation among the damage severities groups could be 

achieved. From Figure 5.15, the smaller variability in three quarter full and full load causes 

the feature to be more separable as compared to the empty, quarter-full and half-full 

loading class. Subsequently, an important justification can be made based on this 

observation with respect to the sigma value selection. 

 

KPCA: Sigma, σ=mean (min(DIST)) 

Empty tank, quarter-full and half-full load 
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Figure 5.13: A zoomed view inside three-quarter-full load by the same parameter. 

 

 

Figure 5.14: A zoomed view on highly dense data set using the same sigma parameter. 
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Figure 5.15:  A further zoom into the high-density data groups of the Figure 5.15. 

Zooming into Figure 5.14, reveals that despite the loading effects are not clearly separated 

on the first level, the projection manages to highlight the separation among the damage 

severities groups after zooming in the region (second level of feature resolution, Figure 

5.15). On this level feature space, Figure 5.15 reveals the zoom-in of the variables of three-

quarter full load showing distinct separation of damage variables. Next, the parameter is 

changed using the second block of distance block to identify any changes from the 

increasing the sigma.   In this case, sigma (σ)  from the block 2 in the distance matrix can 

be used (Figure 5.11). The result shows a different perspective where the projection 

manages to encompass all loading conditions on the feature space at the same level with 

good indication of damage severities (Figure 5.16).  

Some underlying remarks can be derived with respect to the sigma selection. Some factors 

to consider in choosing parameter sigma: 

 the parameter sigma (σ)  can be considered from the second lowest distance block in 

the distance matrix based as shown in Figure 5.10 highlights the overall loading 

conditions. Block number 2 indicates the sigma value to be determined. This sigma 

can highlight complete features of both loading and damage variables on one 
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 projection with the capability to track the structural health conditions based on 

particular loading conditions (Figure 5.16). 

 It reveals that, as the damage severity increases, the variables tend to move towards 

a focal point away from the baseline variables resembling an ellipse pattern (Figure 

5.16). For normal condition, the variables from various loading classes form a large 

ellipse shape ascending in load in a clockwise rotation.  

 Using the average of the smallest distance as in block 1, data trajectory of all loading 

conditions is not possible to be visualised and monitoring the changes of structural 

conditions are restricted. However, it is useful in novelty detection test described 

later in Section 5.6 with the aim of detecting the smallest damage. 

 

 

Figure 5.16: Result from using the average distance values from the second distance 

block as shown in Figure 5.11. 

The results so far highlight the advantage in using kernel Gaussian PCA in separating the 

damage variables from the undamaged variables. The important parameter in the analysis 

is the parameter sigma (σ)  which refers to as the average of the smallest distance computed 

from the distance matrix. The selection is dependent on the sequence of block inside the 

distance matrix where the smallest distance located in the first block (40-by-40 matrix) 
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inside the 200-by-200 distance matrix is considered. The distance measures the Euclidean 

distance between undamaged (baseline set) and a particular test data is generally 

considered. 

As it is shown, the smallest distance between the two sets causes a separation between 

three-quarter and full load and their damage severities associated with the loading 

conditions at the first level. For separation between empty, quarter-full and half full, it 

requires a more detailed or deeper level of focus to see the separation of these classes 

including the associated damage severities. This characterised as hierarchical visualisation 

which will be covered in Chapter 7 using decision trees. 

In relation to that, KPCA can generalises the different level of separation by choosing a 

slight higher sigma. This has a strong potential application in monitoring of structural 

conditions and damage progressions as demonstrated in Figure 5.16. For the purpose of 

monitoring, the second lowest block (row 41 to row 80 of the 200-by-200) in distance 

matrix has shown to provide complete overall data trajectory patterns of baseline and 

damage features.  In the following chapter, the capability of kernel PCA to separate 

between undamaged and damage variables from loading variabilities is further 

investigated and tested via various principal component models. 

 

5.5 PC models for discriminating loading effects  

It is desirable to determine if the effects of the operational loading can be isolated from 

damage and to ascertain the extent of the damage severities. To achieve these goals, PCA 

models are built from using a reference data set, which is reconfigured according to four 

possible cases, named as PC model A, B, C and D. Initially, standard PCA is applied on 

the reference set using eigenvalues decompositions. From the PCA computation, a loading 

matrix (transformation matrix) is applied to the test data set and projected into the first and 

second principal component projection (sometimes known as score 1 and score 2). The 

type of training set is described under each section of the PC models. Feature projection 

of the test data is desirable to be variant from the reference or baseline feature set.
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 The separation and orientation of the test feature with respect to the feature model is the 

desired goal as it potentially provides an indication for presence of damage.   

 

5.5.1 PC Model A 

PC of Model A is established by incorporating an undamaged condition comprising all 

operational loading conditions as its baseline data set. The model is used to provide an 

undamaged feature in comparison to some test variables produced from different structural 

conditions. A separation from the baseline data path could highlight some indication for a 

possibility of damage in the structure. On another note, a comparison with the baseline 

feature in the principal component projection space heavily depends on the quality of data 

signal used and it should be cleansed from any unwanted outliers and excessive noise 

before applied with the principal components of the baseline model.  

The model A is viewed as the most likely case that can be available in real scenario given 

that the undamaged sets can easily be obtained and recorded before damage occurs. This 

model is motivated by the fact that, in general, data sets from various damage severities 

are not always available. In this context, a test data can assume a structural health condition 

with unknown damage severities. The test data is applied with the principal components 

of the baseline and compared in terms of separation between the features of the baseline 

and test variables.   
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Figure 5.17: Model A: PCA is performed on a healthy structure comprises of complete 

operational loads 

The principal components of model A are computed based on the eigenvalues 

decomposition of the model covariance matrix that encompasses of overall loading 

conditions L1, L2, …,L5 corresponding to empty load, quarter full and up to full load of 

undamaged structural condition (Figure 5.17). The first object to compute is the 

eigenvectors and then ranked them according to the highest eigenvalues in descending 

order and apply the principal components on the test set from various damage seventies. 

Any deviation from the baseline data path highlight a potential damage. 

By establishing this model, the covariance, which is comprised of the baseline data set, is 

dominated by variance from the loading effects and no influence from the damage 

variables. The key question is, can the PCA manage to provide some indication of damage 

presence in the test test data set. The projection results from the linear PCA show the data 

Each score projected into the baseline space for comparison 
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set is distinctly separated in terms of loading severities, however the damage severities 

seems to overlap between undamaged and lower damage groups (Figure 5.18). 

The kernel PCA significantly outperforms the linear PCA in highlighting and separating 

different damage severities. For loading class identification, linear PCA is sufficient to 

perform the task. For damage class identification especially for the variables that lie on 

smaller dimensional length for instance D1 and D2 variables, nonlinear PCA has the 

capability to perform. 

Noting that, the main purpose of establishing PC model A is to monitor the structural 

health conditions by analysing the separation between the baseline variables (undamaged 

variables) and the damage variables. Kernel PCA is shown to fulfil this expectation as 

highlighted in Figure 5.19. 

 

 

Figure 5.18: The linear PCA using eigenvalues decomposition of a covariance matrix of 

whole observation sets from undamaged loading conditions.  
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Figure 5.19: Kernel PCA applied on the similar baseline model to the linear PCA. 

Deeper analysis on the results from the linear PCA (Figure 5.18) and kernel PCA 

projections (Figure 5.19) highlight that kernel PCA is clearly provide a model basis for 

tracking the data pattern to monitor the changes in structure’s conditions. Whereas in the 

standard PCA, it is almost impossible to find a trajectory pattern for monitoring damage 

conditions for the whole loading system in form of close loop.  

Focusing on half-full load loading class (Figure5.20 (a)) in order to examine the data 

separation, the standard PCA fails to distinguish between undamaged and the small 

damage classes (D1 and D2). In contrary to linear PCA, kernel PCA (Figure5.20 (b)) 

shows a trend of damage classes in correlated with damage severity levels.  

The nonlinear PCA manages to separate all damage features in all loading class as shown 

in Figure 5.20-Figure 5.21.  In many cases, linear PCA is unable to distinguish and separate 

the undamaged data from the lower damage class of D1, D2 and D3.Only in empty load, 

the separation of damage data from the undamaged data is distinct.  
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Contrary to the linear PCA, kernel PCA significantly improves the visualization for 

loading clusters as well as all level of damage classes inside one projection space. 

Computing the distance matrix and the parameter sigma at each data set of different 

structural condition, it gives a leading advantage by having a localised data model at each 

structural state condition by using the Gaussian function. A zoomed view at each loading 

state (Figure 5.20-Figure 5.21) also reveals a unique data pattern in each damage set as 

they moving away from the undamaged data.  

(a)

(b) 

Figure 5.20: (a) A zoomed view based on Figure 5.18 to visualise the projection of linear 

PCA with respect to damage class separation. (b) Kernel PCA projection based on the 

same loading class from the overall projection of loading classes shown in Figure 5.19.
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(a) 

(b) 

Figure 5.21: (a) The result of standard PCA after zooming three-quarter full load in 

Figure 5.21. (b) Kernel PCA transformation result on the zoomed view of three-quarter 

full load obtained from Figure 5.19. 

Highlighting on three-quarter full load in Figure 5.21(b), the results from kernel Gaussian 

PCA, display a great performance in terms of damage classifications and data pattern 

recognition in the interest of tracking damage level in that load. Kernel Gaussian  PCA 

successfully establishes a tracking pattern for the loading system. Linear PCA  is found to 

be struggle separating the damage classes corresponding to their damage level 5.21(a). 

In PC model A, the use of undamaged condition as a baseline set proves to give an 

advantage to a SHM model. Damage class separation between the undamaged condition 
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and small damage conditions is achieved through sigma taking the second lowest block in 

data distance.   

It is shown that for the case of damage monitoring of a loading system, the sigma values  

in the kernel function
2

( , ) exp
2

x y
K x y



  
  

 
plays an important role in making the 

damage variables separable. Ideally, sigma should be chosen to be the smallest data 

distance in order to capture the separation between the undamaged and the smallest 

damage. However, in the case of an overall loading system, tracking the structural damage 

states is desirable and by using the second lowest sigma (from the second lowest distance 

block in the distance matrix (illustrated in Figure 5.11). In summary, PC model A forms a 

promising damage monitoring under operational loading system in the use of kernel 

Gaussian PCA by adapting the distance function and the inverse variance to each damage 

conditions (test data sets) that make kernel technique is localised with respect to each each 

structure’s condition. 
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5.5.2 PC Model B 

 

Figure 5.22: PC model based on the empty tank associated with various structural 

conditions as a reference set.  

In model B, the study attempts to focus on the relationship in terms of data distance 

between the damage and undamaged variables at each loading state. It aims to provide a 

PCA model that is more sensitive to damage variation rather than the loading variation. It 

has been illustrated in the previous PC of model A, linear PCA unsatisfactorily distinguish 

the damage variables from the undamaged variables. This model tries to ascertain if linear 

and nonlinear PCA can discriminate the loading effects and focus more on the damage 

severities variations in the feature space.   

To achieve this, an empty tank load comprising all structural conditions is incorporated as 

the baseline and the eigenvalues decomposition is performed (Figure 5.22) and applied 

any loading conditions having about similar damage type. One main concern, is that if this 

model has realistic values on real application of SHM. To illustrate a practical case for 
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aerospace maintenance, for instance some aircraft components are known to suffer from a 

typical type of local damage (crack) in the wing box centre section  at the shear fittings 

area [71]. One of the strategy to implement PC model B that is to collect the data under 

these damage severities for data monitoring SHM. Under one loading condition, data from 

several damage states can be stored as a reference data set for comparison to a new test 

data set independence to various loading.  

 

Figure 5.23: The transformation of data set by the linear PCA using damage sensitive 

principal components.  

What is apparent based on Figure 5.23 is that the separation of damage severities are more 

distinct for empty and quarter full load than the half-full load and higher. There are high 

data overlaps within the undamaged and smaller damage severities (D1, D2 and D3). 

Empty tank seems to be the only loading class that has recognisable data separation. 
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Figure 5.24: The result of kernel PCA using PC model B using damage severities as 

reference. 

Results from Figure 5.24 reveals a very interesting finding in regards to damage severities 

and overshadow the loading variables. The variables are ordered in correlation with 

damage level, in a counter-clock wise pattern. Each damage severities group transformed 

in its own region with smallest data variation concentrated on the centre of the space and 

sets with larger data variation lie away from the centre point. Empty loading class has the 

largest data variance and transformed most far from the centre space. The loading groups 

from half-full load and and higher are concentrated nearer to the focal point (intersection 

point), a point where the smallest data variability can collapse. 

Figure 5.25 highlights the region near the focal point where the higher loading class are 

more densely concentrated. It is very clear that the each damage severities are transformed 

corresponding to their data groups regardless of their loading class. This model effectively 

discriminate loading conditions from the damage features.  
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Figure 5.25: A zooming in PC model B based on damage severities of empty loading class.  

For this PC model, for sigma parameter selection, the smallest distance block (block 1) 

from the distance matrix as described in Figure 5.10 is chosen. The smallest distance of 

the sigma allows the smallest distance between the data points in each damage class to be 

detected and used in the kernel function for calculating the principal components. Note 

that, the amount of variance in the first, second and third principal component in the KPCA 

plot is very small (Figure 5.29) compared to the kernel principal component model A is 

more than three times larger (Figure 5.21) 

Again the main advantage drawn from kernel PCA is that each kernel is generated at each 

loading set consists of various damage severities. Therefore, the localised kernel functions 

acting on each individual loading set and principal components were computed based on 

the loading set’s kernel. In the application aspect of this model, any new data can be 

applied on the principal components of the training model and identify the severities of the 

damage variables from the partitioning of the damage severities.  

Some downsides from this model are that the training data established as the reference set 

has to include all possible damage types and severities. The author sees this model has a 

potential place in application for structure where a particular damage is typical known to 
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occur. In many engineering field including in aerospace, common type of damage is 

known. It can discriminate the dominant effects from another parameter effectively and 

gives enlightenment on more important parameter such as damage in the context of 

multivariate data analysis and damage identification in SHM.

 

5.5.3 PC Model C 

 

Figure 5.26: Individual baseline model of each load tank in focus of damage monitoring 

 

The motivation behind this model is to provide a reference mapping for each loading and 

its structural conditions, so that it can be used as a comparison for other loadings and their 

structural conditons. To realize this, principal components are computed form each loading 

set including its damage severities occur during that loading (Figure 5.26). The main 

advantage of this model is the effects from the loading parameters are discriminated 

naturally and leaving only theeffects of structural conditions (damage-sensitive feature) in 

the projection space. This model should be able to capture better data separation and 
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damage identification given that it has only one parameter influences the eigenvalues 

decomposition.  

(a) 

(b) 

Figure 5.27: The comparison between (a) linear PCA (b) and kernel PCA for empty load. 

The kernel PCA projection in Figure 5.27 shows the result by selecting the sigma where it 

considers the second lowest distance block (row 41-80) in distance matrix as the same 

procedure shown in Figure 5.11. It produces distinct track of data pattern, establishing a 

curvature path that can be used to monitor the structural conditions. It is observed that, for 

linear PCA in Figure 5.27-Figure 5.28, only straight data path is established and tracking 

the path of damage severities is not very convenient. This is one of the key feature of kernel 
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PCA that allows principal components projection on nonlinear projection trait [34], [52]. 

This characteristic brings strong benefit in monitoring structural damage conditions that 

indicates to the changes of structural health condition by looking from the data position on 

the track path.   

 

(a) 

(b) 

Figure 5.28: Using the particular quarter-full loading data set (a) Linear PCA (b) kernel 

PCA 

In the current model (Figure 5.28), the main interest is acquire the track of the data pattern 

so that the damage severities can be monitored. On other hand, choosing the smallest 

distance block from the distance matrix causes the focus on separation among the 

undamaged, D1 and D2 data variables which have about same data variance size (Figure 

Sigma 
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5.29). D3 and D4 data are not affected by the sigma because it needs larger sigma to 

highlight the separation of the larger damage variables. 

 

Figure 5.29: Using the sigma from the smallest distance block.  

In another aspect, it successfully widen the separation between the undamaged and the 

smaller damage variables (D1 and D2) which is not possible by linear PCA. 

Sigma 
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(a) 

(b) 

Figure 5.30: Half-full load (a) linear PCA and (b) kernel PCA  

 

Figure 5.30 also shows the similar behaviour when using the sigma values from the second 

block of the lowest distance from distance matrix. It is identified that, if a higher sigma is 

adapted, a clear pattern of data track is not achievable.  

So far, it is identified a smaller sigma enables a better capture of data sets that has smaller 

variance as in this case it refers to undamaged, D1 and D2 data sets. The block of distance 

of the second lowest distance or the middle distance block are identified can give good data 

tracking along the curvature. Noting that, a few misclassified data points from undamaged 

and D2 data points into D1 class (Figure 5.30) originated from the actual FRF data.

Sigma 
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(a) 

(b) 

Figure 5.31: Three quarter-full load: (a) standard PCA (b)Kernel PCA  

 

Figure 5.31 shows three-quarter full load data track from using a sigma from the middle 

block (row 81-120) of the distance matrix. Noting that some overlapped green and red label 

data points within undamaged class are preserved from the original FRF features. Linear 

PCA (Figure 5.31(a)) shows greater data overlap with no possibility of damage tracking.  

 

 

Sigma 
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(a) 

(b) 

Figure 5.32: (a) Transformation by linear PCA (b) kernel PCA 

 

The full tank load also exhibits the similar pattern for data track with its sigma values 

calculated uniquely for its data sets at this loading condition with four different structural 

conditions (Figure 5.32). Again, sigma is computed from the mean of the middle distance 

block in the distance matrix in ascending order. 

The PC model C highlight its potential use when some damages occurred in a particular 

loading and the aim is to identify damage through visualization using PCA. Using kernel 

PCA, it is shown that a damage monitoring system by establishing its data track, the damage 

severities can be traced along the curvature. In term of practicality, this model has one 

Sigma 
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drawback which is gathering the damage data set as its training set. However, it has been 

explained    in PC model B where uses various damage data as   a training set, it is useful 

for an application that certain damage are known to occur especially in aerospace 

maintenance engineering[14]. Next, another PC model is explored where in this case it 

assumes all loading and damage data as its training set. 

 

5.5.4 PC Model D 

 

Figure 5.33: A baseline model built from complete operational loading associated with 

normal and various damage severities. 

 

This model (Figure 5.33) establishes all data sets including the loading and damage data as 

a training set. It has been shown that how the effects of loading or damage on model PC A 

and model B respectively in computing the principal components. 
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The training data set of model D  is 1000-by-101 is then standardized on the matrix before 

performing the eigenvalues decomposition. As mentioned previously, a distance matrix is 

established to analyse the block that can be used as a candidate for the parameter sigma 

computation. In the linear PCA projection space, we observed that much of the overlapping 

occur within undamaged and the lower damage level. Moving into this direction, the block 

with smallest distance is extracted to enable a better capture of data in the lower damage 

class.   

 

Figure 5.34: The distance matrix of combined loading classes associated with various 

structural conditions. 

 

Figure 5.35: The sorted distance matrix in increasing values computed for combined data 

sets of PC model D 
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The distance matrix in Figure 5.34 shows the overall pairwise distance of the combined all 

data sets. It shows significant degree of variability of between undamaged and undamaged/ 

damaged data sets and also between two loading data sets. By sorting the distance in 

ascending order, clearer order of variability is obtained and sigma value can be chosen more 

conveniently (Figure 5.35). The sorted distance matrix in increasing values with the dash 

box indicates the block where the min distance is considered for the standard deviation as 

it shown to provide most appropriate data separation between undamaged and damage 

class. 

Figure 5.36: Result of the linear PCA using combined data sets 
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Figure 5.37: Results of using the kernel PCA 

The selection of the sigma is selected from the average of minimum distance in block of 

the second lowest distance indicated by the dash box (Figure 5.35). As explain previously, 

that the second block with smallest distance allows the sigma to capture the variation 

between damage variables and between loading variables. Choosing the sigma from the 

first block with the smallest distance has shown to emphasis on the distance among damage 

data (inner-class distance) in local load but it neglects the inter-class variability.  

The results from the first and second principal components projections of both the linear 

and kernel PCA (Figure 5.36 and Figure 5.37) show there is no significant improvement on 

the separation among the smaller damage and undamaged variables in the use of kernel 

PCA. The reason is because there is no adjustment on parameter sigma to adapt the 

variability of each data class. There is only one sigma parameter used globally for whole 

data sets. Certainly, this general model of variability cannot provide an appropriate and 

good variability model for each loading class. Variability model infers to the establishment 

of kernel parameters which consider the sigma that represents the inverse variance distance 

and distance between two vectors of data sets. 

In order to improve data variability and reduce data overlapping, the large matrix can be 

partitioned in two separate groups. The first group comprises empty and quarter full load. 

The lower loading classes which are found from the original FRF to have higher variability 
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whereas the second group of half, three quarter and full tank load data set have smaller 

variance. By partitioning these two data groups which are based on variability allow the 

parameter sigma to be adjusted locally to their data variability. The following plots 

demonstrate the results of such partitioning technique.  

In this partitioning case where it includes data set from empty and quarter-full load with 

larger variance, it is beneficial to use larger sigma to capture the separation in both loading 

data set that comprises undamaged and other four damage classes.  

 

Figure 5.38: Distance matrix is used to visualize data variability and separation. 

Figure 5.38 shows the separation between the data points in each variables in distance 

matrix form. The variables in the distance matric include undamaged and all damage classes 

in empty and quarter-full load. Noted that, the highest separation occur between undamaged 

empty and D4 quarter-full located at the last block (40-by-40) of the distance matrix. Then 

to choose the sigma parameter, it requires the smallest distance among the data variables. 

Hence, by ordered the distance matrix in ascending form as done previously, gives more 

convenience in which block of rows to select. 
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Figure 5.39: Distance matrix provides convenient way in considering the parameter sigma. 

 

 

Figure 5.40: Linear PCA by portioning of empty and quarter full from other load set 
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Figure 5.41: The result of partitioning empty and quarter-full load from other loading class 

In case of combining empty load and quarter-full load, a higher sigma from block (row 

161-200) in the corresponding ascending distance matrix reveals complete the data trend 

to monitor the change of structural condition (Figure 5.41).  The attention is on tracking the 

damage in both loading sets rather than the inter-distance of loading class. In this 3-D view 

of this plot (Figure 5.41), it describes the structural changes nonlinear geometry of the data 

path. Compared to the linear PCA, the monitoring can only be taken in a straight geometry 

line. Noting also the high variance in the the first three principal components is stretching 

and enlarge the data separation. 

 

Figure 5.42: Kernel PCA using sigma from the second lowest block in distance matrix
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Selecting smaller parameter sigma from the block with the second lowest distance (row 41 

to 80), the feature projection shown to emphasis on the data variability among its damage 

variables and show less distinct data path of the two loading sets (Figure 5.42). For 

monitoring purposes, it is more favourable to consider a higher sigma parameter that 

includes high varieties of data distance preferably in the middle distance range to get 

reasonable data separation. Using dissimilarity or distance matrix, it can easily evaluated 

by looking at the colour distribution at each block rows. 

 

Figure 5.43: Kernel PCA using the smallest sigma from the the first block in the distance 

matrix 

 

Using the smallest sigma from the row block 1-40 sigma in distance (Figure 5.43), the 

smaller variance allows better separation of damage variables within empty load class 

variables but performs poorly on quarter-full load. 

 

 

 

 



                                                                                                  123 

 

Figure 5.44: Kernel PCA on combined three-quarter full and full load data sets 

Figure 5.44 shows the results using the sigma parameter acquired from the block in the 

distance matrix in Figure 5.39 which parameter lies in the intermediate range of data  

variability. The result is not encouraging due to some data overlapped especially in the 

three-quarter-full load. 

 

 

Figure 5.45: The same figure simplified into 2D plot of the above plot. 

It is shown that from Figure 5.45, combining the loading classes having approximate equal 

size of variance despite partitioning them based on the approximately equal size in 

variability does not improve significantly the data separation between damage severity 
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classes. The result of kernel PCA (Figure 5.45) displays lower separation of smaller damage 

and undamaged variables in both three-quarter full and full load. As mentioned earlier, the 

generalized sigma used on both combined load (empty and quarter full, three-quarter full 

and full load) is not able to model the data variability locally or adapt to the variability of 

at each loading class. Having a global sigma parameter for the whole matrix for the kernel 

Gaussian computation seemed does not improve data separation between the undamaged 

and the smallest damage variables. 

On a positive note, the kernel Gaussian PCA has its inherent pattern of data trajectory in 

the use of sigma value selected from the average of the second smallest distance in the 

distance matrix. Whereas, a smaller sigma parameter can potentially focus on the smaller 

variability in the loading set. The selection of the sigma is important to ensure it either 

separating the damage variables or establishing a data trajectory pattern  for SHM purposes. 

 

5.6  Novelty detection 

In the previous section, features from PC models are projected into the first and second 

principal components projections and highlighted using 2-D and 3-D plots. The feature 

visualisations provide the first step in novelty detection before it proceeds to any machine 

learning technique. In the next stage, the features obtained from the visualization plots are 

applied with the T-squared statistics to measure the distance of each damage test data and 

the undamaged data set. 

In Features Processing Techniques (Chapter 3), T-squared statistics are described in the 

context of PCA. In the SHM perspective and damage detection architecture, a higher T-

square index is desirable because it indicates large separation between the damage 

condition and undamaged condition and potentially increases damage detectability.  

In the following section, the reduced dimensional data from PCA are analysed in terms of 

its variability regarding the separation between damage severities and undamaged 

condition. Each of the observation in the score matrix (principal components projections) 
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is checked against the undamaged condition by computing MSD. In the context of SHM, 

damage detection is recognised if the data observation detected above the threshold. With 

supervised learning and labels exist for all data set, the true or false of damage detection 

can simply be identified.  

 

5.6.1 Novelty detection of PC Model A  

The features performance in the reduced dimensional space are measured by considering 

how far is the undamaged data separated from the  damaged condition using T-squared 

statistics. The variance (eigenvalues) in the first fifty principal components are extracted to 

give a good representation of the most important information from the structural 

characteristic.  

In linear PCA, combining all operational loading conditions as its baseline data set causes 

true damage detection only for empty and quarter full load with systematic increase in T-

squared index corresponding to the increase in damage severities. However, as the load 

increases beyond half-full, the performance of the novelty detection becomes unsatisfactory 

but improving on the full tank load (Figure 5.46).  

 

Figure 5.46: Novelty test result based on baseline model of undamaged data set that spans 

all loading conditions tested against all test data sets 
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In higher operational load, especially for three quarter full load (Figure 5.46), it fails to 

detect the presence of damage in a satisfactory manner. Novelty detection for empty and 

quarter-full load show good novelty detection. In half full and full load, the detection 

performs better than the three quarter full with only data points from the smallest damage, 

D1 measured below the threshold line and this can potentially cause a false damage 

detection. 

 

Figure 5.47: MSD distance on the principal components projections using 50 principal 

components. 

Figure 5.48: Kernel PCA using the overall baseline of undamaged data set with 100 

principal components
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In kernel PCA based on kernel PC model A (Figure 5.48), the separation between the test 

data and the undamaged baseline data is large and profound that the undamaged are 

separated remarkably from all damage variables in all loading classes. In fact, increasing 

number of PCs in the the novelty test can improve damage detection performance. All 

damage variables are effectively identified as damage compared to the standard PCA result. 

However, the correlations of damage severities are not consistent with its T-square index. 

This can be due to the large variabilities in the distance matrix arise from the combined 

loading sets and the sigma that is calculated from the distance matrix that is difficult to 

adjust to the high variability from the large variance.  

It had been investigated and as expected that varying the sigma values alter the variability 

trend of damage severities and their T-squared index from the reference set. In this case, 

the sigma is adapted to each structural health condition (in configuration as Figure 5.17) to 

obtain appropriate damage variabilities. Despite some data is not correlated with the 

damage severities level (Figure 5.48), generally it produces  novelty detection result in the 

context of damage detection under the influence of operational loading variations. 

The results of the novelty detection should not be identical to the visualisation plot of the 

same model described in Figure 5.19 because the sigma values are adjusted differently for 

these two cases, used either for novelty detection or for health monitoring of the structure. 

As stated earlier, for visualisation model, the aim is to establish a data tracking technique 

to monitor the structural health conditions. In novelty detection, the object is detect damage 

presence by measuring the data from the undamaged set and conclude as damage if the data 

points are positioned above the threshold. 

The results also demonstrate that if more eigenvectors (more PCs) are considered in the 

novelty detection (outlier analysis), potentially it can produce better damage detection. The 

distance index between test data and the baseline increased due to more of the principal 

components selected in the eigenvalues decomposition, which is hundred PCs (Figure 

5.48). Noting that, the visualisation plot compared to Figure 5.19 considers only two main 

leading eigenvectors in the feature projection compared to more of principal components 

are selected for the T-squared analysis. This is another reason for the incompatible results 

between T-squared plot and KPCA visualisation plot. 
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It is important to note that, despite the kernel PCA produces profound novelty detection, 

the performance relies mainly on the parameter sigma which are computed locally at each 

structural condition in the case of PC model A. The values can be tuned so that the distance 

of the test data from the baseline set are distinct with good damage consistency.  

 

5.6.2 Novelty detection of PC Model B  

In this model, a reference set encompasses all of the damaged data sets of  an empty tank 

load is applied. If only one loading condition is used as a reference set in the MSD function, 

it means that the mean and covariance matrix is based only on one loading condition and it 

may not be so robust in terms of loading variability because in reality, the loading can easily 

change during the operation. Hence, the test data is compared with the overall loading 

conditions before calculating the T-squared index using the MSD function.  

The T-squared results using the transformed data from the linear PCA evidently show 

relatively inaccurate damage detection where many test data from various damage 

severities detected as undamaged (Figure 5.49) and this can cause false negative damage 

detection. On contrary, kernel PCA (Figure 5.50) effectively produces accurate novelty 

detection for all test data sets. The results are very encouraging as all damage severities 

including the smallest damage are positively detected as damage and lies above the similar 

threshold line (Figure 5.50) without not much tuning of the sigma. The sigma is just simply 

calculated from the average of the minimum distance of each distance matrix corresponding 

to the each loading conditions.   
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Figure 5.49: Novelty test based on linear PCA data variables 

 

Figure 5.50: Novelty test based on kernel PCA using PC model B 

 

PC model B via its kernel algorithm successfully isolate the loading variability from the 

damage variables. Via kernel PCA, the damage variables are measured indicating the 

distance index in an ascending order corresponding to the damage severities (Figure 5.53). 

Revisit the construction of covariance of this model, it organizes an empty load with its 

corresponding damage states, the eigenvalues decomposition is computed based on only 

the empty load consists of all damage severities in the loading class. The T-squared plot 

demonstrates an excellent result with the damage severities increase corresponding to the 
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higher distance index in all loading classes. This PC model stresses the advantage and 

feasibility of computing the sigma parameter for small variability data set in each loading 

class. The small variability is produced by each of damage data set and because of that, the 

sigma is simply taken as the smallest distance excluding zero. In comparison to the PC 

model A (Figure 5.17), each structural condition class has huge variability due to the 

combined of various loading conditions. Small variability in each class enables the sigma 

to be better generalised as variable predictor as it switches from one loading to another 

loading class. 

 

5.6.3 Novelty detection of PC Model C  

As discussed previously, model C has no effects from operational loading variations in 

regards to its principal components as the eigenvalues decomposition is performed on each 

covariance of each loading condition individually. Each loading class contains its own 

damage variables under each loading condition.  For kernel PCA, a distance matrix with a 

sigma calculated the smallest value based on the distance matrix are established from each 

loading class and plotted in Figure 5.52.

There is a clear trend of different variability in each loading class consisting all damage 

data set in T-squared of the linear PCA where there is switch from high variability in empty 

and quarter-full load to lower variance in half-full, three-quarter full and full tank load 

(Figure 5.51). The novelty detection is satisfactory; however note that, there is few data 

points falsely detected as undamaged in the half-full load.  

The trend of switching of variability throughout the loading class becomes more systematic 

in kernel PCA. Noting that, the variability in quarter-full is increased and it seems the 

smallest sigma in the kernel function on each loading class has normalised the distance 

matrix (the denominator of the distance matrix which is 2 x σ2).  When computing the T-

squared in MSD function, the effects from the kernel Gaussian produced a more stabilised 

variance throughout the loading class. This is one of the key finding from the current work 

which involves multivariate data (Figure 5.52).
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Figure 5.51: A switching trend of damage variability through the loading class.

 

 

Figure 5.52: Novelty test of kernel PCA using PC model C of which each loading class is 

join subsequently.

dip of variability 
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Figure 5.53: A zoomed view of the previous figure reveals novelty detection for linear 

PCA (right) and kernel PCA (KPCA) application (left). 

 

As anticipated, the kernel PCA of model C performs good novelty detection (Figure 5.52 

and Figure 5.53) using one sigma parameter and a distance matrix corresponding to each 

loading condition. Kernel PCA manages to detect all damage class including the smallest 

damage class and the data points of damage class are projected well above the threshold 

line (Figure 5.53, right plot).  

However, notice that there is some data ‘jump’ from D3 and D2 data variables on smaller 

damage group on the T-squared plot observed in the three-quarter full load. This ‘jump’ is 

inherited from the original FRF data signal. The data behaviour can also be observed on 

the linear PC model A in Figure 5.21 (a) and Figure 5.45. The cause of such behaviour can 

be due to the noise and variations during the implementation of the experimental procedure 

(loading of water, shaker stringer replacement and different tightening of bolt on the 

structure).

By selecting the smallest distance in the distance matrix, the selected sigma gives good 

performance in separating the lowest damage data set from the undamaged data set. This is 

the main benefit in kernel PCA where the parameter sigma can be adjusted according to the 

aim of analysing the multivariate data, it is either for tracking the structural damage or for 

detecting the minimum damage.  
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5.6.4 Novelty detection of PC Model D  

In previous models, it is highlighted how one of the effects from loading or damage could 

be isolated by some arrangements of data set. In current Model D, the data matrix combines 

all undamaged and damage data sets into one matrix in which the principal components are 

computed. It causes both loading and damage effects on the variability from the combined 

data class in the matrix. 

 

Figure 5.54: The variability results for joining all data sets in which the eigenvalues 

decomposition is performed. 

 

From the linear PCA projection in Figure 5.54 using the combination of whole data sets, it 

is observed that there is a clear switch in variability across the loading class. The MSD plot 

shows a trend of a larger variance in empty and quarter-full load data set and reduced 

variance at half-full and full load. The three-quarter full class seemed to exhibit the smallest 

damage variability in its loading class. The damage detection is not encouraging especially 

for the three-quarter full load.   

In kernel PCA, the same procedure is performed that is a distance matrix is established for 

the large matrix (1000-by-1000). The sigma parameter is selected from the smallest 

distance on the distance matrix (excluding zero). MSD is computed based on the data 

matrix which follows the configuration in Figure 5.6. Of course, the key advantage from 
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the kernel PCA application is that the damage detection is giving nearly 100% accurate 

(Figure 5.55). Notice that, the effect of sigma squared normalising the distance matrix is 

insignificant compared to the individual loading class (model C). Nevertheless, it is 

successful in the novelty detection test compared to the linear PCA. This result signifies 

how a local model of distance matrix and its sigma is more effective in increasing the data 

separation than the global distance matrix and its sigma parameter.  

 

Figure 5.55: The combined of all data sets matrix applied with the kernel PCA and 

compared with reference set of all undamaged loading data set. 

 

Obviously, as highlighted in the previous model, three-quarter full load is shown to have 

the smallest data variability compared to other loading classes. Due to the advantage of the 

kernel Gaussian function, the distance is still enlarged and separated from the undamaged 

data set. As a result, the observation data are all escaped above the threshold to give 

accurate novelty detection. Figure 5.56 highlights the data points fall close to the threshold. 
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Figure 5.56: The zoomed view from the previous figure focusing on the observations data 

close to the threshold line. 

A small sigma reveals better variability or separation distance for damaged and undamaged 

data sets under empty, quarter and half-full loading due to a higher variance in the class. 

The distinct and separated data sets from these classes inherited from the FRF data which 

are also observed to exhibit FRF peaks that are distinguished and separated from each 

classes. These characteristics heavily influence the novelty detection using the T-squared 

and the projection in the feature space as illustrated by the kernel PCA and the linear PCA. 

Kernel PCA enables larger separation between data set of the test data set that associated 

to various structural conditions.  

As described previously, the parameter sigma must be set to the average of the minimum 

distance of multivariate data class to capture the smallest distance of neighbouring data 

points from test data sets but should be it must be larger than the distance between loadings 

class. This strategy applied in order to determine the sigma value by calculating the 

minimum distance for the mean of each data point distance as illustrated by equation (8).  
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In respect to the usage of kernel PCA, separating the loading data based on significant 

different of variability can improve damage detectability. Data set from higher variability 

such as the empty and quarter full load requires larger parameter sigma in order to capture 

the neighbourhood distance. On the other hand, data groups from lower variance, for 

instance the three-quarter full and full load give better performance with much smaller 

sigma as been highlighted in Figure 5.55. 

 

5.6.5 Novelty detection on partitioning data class 

Having knowledge about the data variability characteristics and the advantage having a 

local kernel Gaussian model on each loading class, it is not a bad idea to partition the 

loading classes between the high variance and much lower variance data class. This is 

performed to explore if it is still possible to gain the benefits of kernel Gaussian algorithm 

and produce better novelty detection compared to the previous model, which is a 

combination of all data classes.  

The results of the first partitioned group from higher variance group, which is the empty 

and quarter full load, reveal better novelty detection in both linear and kernel PCA with a 

sign of systematic ascending order of damage severities (Figure 5.57 and Figure 5.58). 

Kernel PCA is shown to perform extremely well with 100% accurate damage detection 

compared to the linear PCA which has false positive damage detection on its quarter-full 

load. 

 In kernel PCA, using the same procedure (building a distance matrix and find the smallest 

distance from the sigma), the algorithm effectively separates between each 

damaged/undamaged class as shown in Figure 5.58.  
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Figure 5.57: Novelty test using linear PCA on combined data from empty and quarter 

full load. 

 

Figure 5.58: Novelty test using kernel PCA on partitioned empty and quarter full load  

In another portioned group, comprised of half-full, three-quarter full and full load, the 

kernel PCA processed data  manage to produce generally accurate novelty detection 

(Figure 5.59). However, the performance is shown to be better for smaller partitioned 

group comprising three-quarter full and full load (Figure 5.60). Another smaller partition, 
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which comprises of the three-quarter full and full load is performed with the kernel 

Gaussian algorithm. It reveals more accurate damage detection with indication of similar  

variability in damage variables (Figure 5.60). The result indicates that the smaller 

partitioned class with about similar data variability can improve novelty detection.  

 

Figure 5.59: T-squared distance using kernel PCA on joining data sets of lower 

dimensional length (half full, three-quarter and full load) 

 

Figure 5.60: T-squared index using kernel PCA based on data partitioning by including 

three quarter full and full load from data set 

 

Three-quarter full 
tank 

Full tank 
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5.7 Discussions and Summary 

This chapter presents various ways of data representation for the covariance matrix before 

performing eigenvalues decomposition. Standard and kernel PCA are applied on the PC 

models showing more promising results for the generalised nonlinear PCA. Two main 

findings are derived from using both techniques; visualisation of structural health changes  

and novelty damage detection using Mahalanobis squared distance (MSD). Some 

important findings related to these works are discussed and summarised in the following 

section. 

  

5.7.1 PCA as the inheritance to the FRF peaks  

In this chapter, nonlinear PCA based on Gaussian kernel are demonstrated and compared 

with linear PCA. PCA is applied on the vibration data acquired from the wing box 

experiment under varying effects of liquid loading and damage severities. PCA is used on 

the data set to reduce the high dimensions and to obtain only the most significant feature 

with all the unwanted noise and data redundancies are omitted from the feature. The PCA 

data are shown to inherit a very important data behaviour from the operational loading 

conditions. The PCA data (all the principal components projections) inherit the peaks of 

the FRF magnitude which represent the structure’s natural frequencies. 

It is observed that there is a changing trend of data variability during the loading transition 

as the loading switched from one loading condition to another loading condition. One 

underlying finding observed from the PC projections is that the features’ variability are 

intrinsic to the characteristic of the FRF peaks produced from the experiment. Given the 

data signal is highly coherence (less noise), the FRF peaks of the spectral variables which 

correspond to largest variance, the effects would be indicated on the PC projections. If the 

data signals are close or overlaid to one another, the resulted features from the PCA 

associated to the overlaid signals have the tendency of overlapping. Here, the effects of 

proper feature selection play an important role in avoiding this scenario.   
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5.7.2 Kernel PCA as a damage severities separator 

In this work, kernel PCA is applied on the data set to ascertain if it can improve the 

separation between the overlapping data features that are present in the standard PCA. 

Kernel PCA is shown that it can separate the features associated to damage severities 

group. It is indicated that kernel PCA can transform the features into a curved orientation 

in its projection space whereas a standard PCA is limited to only a straight line projection. 

In the context of SHM, this emerge a useful benefit in monitoring structural integrity. 

 

5.7.3 The fundamentals process in modelling kernel PCA 

Incorporating kernel Gaussian PCA into the data set, an essential step is to create a distance 

matrix which represents the distance between each data observation in data sets. Each data 

matrix is created for each loading condition (for baseline model of PC model A) or for 

each structural conditions (damage model of PC model B). Each distance matrix is also 

created for each loading conditions (PC model C) and also for a combined loading and test 

data sets (PC model D).  

From the created distance matrix respective to each model, the parameter sigma, which 

represents the average of the smallest distance, computed on the block in the distance 

matrix represents the data distance between undamaged and the smallest damage class. 

The block matrix that highlights the location in the distance matrix where the desirable 

distance were calculated based on the indication of the colour scheme indicated the 

distance matrix. Each cell in the distance matrix displays a similar colour scale for the 

same data class and varies as it moves to different cell along the distance matrix. Each 

block has the same size of each damage class. To ease further on the computation of sigma, 

each rows in the distance matrix is rearranged in ascending form.  

With the aim to make larger separations between the data classes, the strategy is to choose 

a sigma that is large enough to capture the neighbouring data points and much smaller than 

the inter-class distance [55]. The key finding revealed that, for the purpose of monitoring 

the overall structural health conditions throughout all loading conditions, the sigma should 
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not be calculated from the first block of the smallest distance in the distance matrix but at 

least on the second block or higher in order to capture a better generalized model for larger 

data separation. For novelty damage detection, the sigma is selected from the first block 

of the distance matrix in order to choose the smallest distance. Both parameters of sigma 

and distance matrix are then applied with the Gaussian function to increase separation of 

each data points.  

 

5.7.4 The advantage of establishing different PC models 

Another key finding reveals that the main advantage for using and adopting different PCA 

models in isolating the varying loading conditions from damage detection. In visualization 

technique, the main concern is to visualise the projection and to discover how the structural 

health conditions are changing with respect to the first and second principal components 

projections. The first and second principal components projections correspond to the 

largest data variance of the variable components of the data set with respect to the dynamic 

property (natural frequencies) contained in the feature.  

 

PC model A 

Model A represents a more practical and realistic case where a training set is established 

from an undamaged condition consists of all loading conditions. The principal components 

projections using kernel PCA algorithm for this model demonstrates that based on a 

baseline set comprises all undamaged conditions, damage severities can be tracked along 

its path of data pattern representing the systematic loading, which each path represents 

different structural conditions. Each track which indicates one specific structural condition 

of all operational loading conditions has specific trait for different damage severities. 

Within a loading condition, a distinct data pattern effective show correlated increase in 

data separation as the damage severities increase. 
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PC model B 

For PC model B, a reference data set is established based on an empty tank load consists 

of a particular structural condition that in reality it might contain with one potential damage 

severity. In this model, damage severities are the highlights in the principal components 

projection. The results effectively highlight the classifications of different damage 

severities in a systematic order of damage severities. As mentioned earlier, model B has a 

potential practical use in some fields in engineering such as the aerospace where a typical 

damage type that is common to occur in some aircraft structure can be used as a reference 

model. The damage propagation present in the structure can be monitored and send alarm 

if the novelty detection is far above the threshold.    

 

PC model C  

Model C reveals a direct approach where a particular loading condition is analysed 

individually by performing linear and nonlinear Gaussian PCA on each data set. 

Obviously, using this model, loading effects are discriminated from the PC features. 

Novelty detection for kernel PCA illustrates an improved detection for the smallest 

damage severity group compared to the standard PCA. 

 

PC model D 

In model D, the multivariate data from undamaged and damaged condition are combined 

into one single matrix. Here, the results have shown that kernel PCA is not effective in 

separating the damage severities group. This study reaffirms of the need to implement 

kernel PCA locally at every structural conditions (for PC model A) or loading conditions 

(model B and C). Finally, the finding reveals how the partitioning of data features 

associated to higher variability from those with smaller variability can produce reliable 

novelty damage detection. 
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5.7.5 Summary 

By establishing distinct PC models, it is demonstrated how loading effects on the feature 

could be discriminated from damage effects. The PC models are established on numbers 

of possible scenarios which for instance, the ‘data’ from structure under normal condition 

is available. The second situation is when the ‘data’ form the structure under various 

damage conditions are found. This operational loading conditions are known except the 

damage conditions, a specific damage type is anticipated to occur under unspecified 

loading conditions or both loading and damage are unknown. These PC models have 

shown to produce different visualisations and the benefits that mainly driven by its field 

of application and the availability of data information. 

The study has shown that the changes in loading and structural conditions could be better 

visualized and tracked through its data trajectory and pattern recognition using kernel 

Gaussian PCA. Using kernel PCA, it naturally increases the separation between the 

baseline and test data, hence offer great potential in SHM for system under similar 

conditions. 

Another main highlight from the findings in this chapter is that kernel PCA has superior 

performance compared to the linear PCA with respect to the orientation and separation of 

the feature. Kernel PCA algorithm via Gaussian function is found to expand and widen the 

feature space and as a result, the features are more spread out compared with linear PCA.   

Kernel PCA with Gaussian function has shown its superior performance by means of 

creating a kernel Gaussian model locally within each structural conditions or loading 

conditions. The main challenge of the kernel Gaussian PCA lies on finding the sigma 

parameter (inverse variance) as to optimise the data separation under the multivariate case.  

 

 



                                                                                                                                         144  

 

Table 5.1: Comparisons of parameter sigma in each data set concerning the use in 

visualisation and novelty detection. 

Table 5.1 describes the values of the parameter sigma (σ) for different PC models and 

structural conditions. This parameter is incorporated as the inverse variance (1/σ2) in the 

Gaussian function and also known as the precision [34]. It determines the quality of the 

data projected on the feature space and therefore plays an important role to ensure the 

separation and pattern of the data trajectory. 

In this study, it has shown that the parameter values can be adapted according to the type 

of analysis to be performed. For visualisation purposes, the parameters assume slightly 

higher sigma compared to using its application in novelty detection. One remarkable 

finding is that, each data set from a loading class associated with a particular structural 

condition has distinct data characteristic or trait with respect to variance and that can be 

visualised better using kernel PCA. The parameters are adapted to each loading class or 

structural conditions locally and this is the superiority and flexibility of the kernel PCA. 

To conclude this chapter, it outlines some underlying principles with regards to PCA. 

 Standard/ linear PCA can be an effective as the first tool for dimensional reduction 

and ‘data variability discriminator’. The latter term means under a situation where 

two variabilities are present in the data, linear PCA can be applied to discriminate or 

overshadow one of the variabilities. As a result, only the effect from one variable 

parameter is present in the data set. Visualizations and novelty detection test for data

Sigma: Visualisations

Baseline model (under all loadings) Baseline: 11.959  D1: 11.75  D2: 11.96  D3: 12.82  D4: 13.67

Damage severities model 9.81

Loading class model E: 92.377  Q: 40.271  H:29.807  TQ:40.916  F:30.995

Combined load and damage model 11.252

Novelty detection

Baseline model (under all loadings) Baseline: 1.24  D1: 2.84  D2: 3.17   D3: 7.64   D4: 11.16

Damage severities model 5.51

Loading class model E: 14.04  Q:7  H:7.48  TQ:10.14  F:9.85

Combined load and damage model 1.225
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  sets driven/ influenced by only one variable parameter (as for this study, the effect 

form the variable damage is in the main interest). 

 Kernel technique for generalized non-linear PCA can be used to examine in depth 

the changing trend in data variabilities using both the visualizations of feature space 

in high dimensions. The trend of data variability as subjected to changes in system 

properties (as in this case is mass) can be displayed in more informative and 

widespread manner. In this case, for example, the variability in damage classes 

(Figure 5.52) under the changes in loading demonstrates a decreasing trend in data 

variability when the system’s mass is increasing. 

It would be of great interest, to consider other machine learning techniques such as data 

clustering using the feature obtained via the kernel Gaussian PCA for this data set. A 

probabilistic model framework that can be used as a prediction tool for various damage 

severities class will be discussed in Chapter 6. For this purpose, the graphical Gaussian 

Mixture model via clustering method will be explored in the following chapter to evaluate 

the prediction of the data class from various damage severities under varying operational 

loading conditions.  In the next chapter, a technique where the basis functions can be 

adjusted and tuned during training will be discussed. It is called an Artificial Neural 

Network (ANN).  It will be demonstrated how this technique greatly offer different 

perspective of damage detection and structure’s health monitoring than the current’s 

visualisation and novelty detection techniques. 

 

 

 

 



 

 

 

Chapter 6                                                                                                        

CLUSTERING AND NON-

LINEAR REGRESSION FOR 

AN SHM SYSTEM UNDER 

OPERATIONAL LOADING                                                                                                      

  

 

 

6.1  Overview             

In Chapter 5, the study has presented four PC models for data visualisations based on 

different data set arrangements in the covariance matrix before performing PCA. It is also 

demonstrated that by using kernel PCA as a generalised nonlinear PCA, a more efficient 

way for extracting hidden and nonlinear features via a nonlinear transformation can be 

achieved. The results derived from standard PCA highlight dimensional reduction and 

feature extraction on a basis of linear transformation whereas kernel PCA presents a holistic 

approach in solving the problems related to data overlapping by improving the data class 

separation. This is addressed by adapting a basis function (kernel Gaussian) to the training 

set (baseline set) and to each test set (associated with damaged conditions). Using the data 

sets obtained from the PCA in the previous chapter, this chapter will demonstrate two 

different approaches by using clustering and nonlinear regression analysis.
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The main concern is to obtain a probabilistic classifier model based on a parametric model 

approach by using GMM. This chapter is mainly divided into two parts. In the first part, 

probabilistic models are established based on Gaussian mixture model (GMM) with respect 

to building clusters in the context of latent and observed variables using the data sets. In 

the context of visualisation, GMM offers an interesting solution by classifying the variables 

(obtained from the kernel PCA) in the maximum likelihood estimation (MLE) approach. 

To implement GMM, the efficient Expectation Maximisation (EM) algorithm is used. The 

goal is to classify various damage classes by incorporating clusters on each group of the 

data points that are likely to assume different Gaussian distribution models. The data sets 

are obtained from the feature derived from the kernel PCA as described in the previous 

chapter.  

In the second part, a nonlinear regression method as performed by neural network (ANN) 

will be presented. The input data is acquired from the feature corresponding to the standard 

PCA results. ANN provides a different perspective in adapting its basis functions in 

parametric forms during training, improving the performance and testing the network with 

a ‘new’ data set. The goal of performing ANN is to predict data inputs of various damage 

severities and loading classes given the respective target vectors. The key advantage of 

using ANN for this work lies in the use of nonlinear functions, parameter optimisations and 

training algorithms in improving damage severity identification based on the maximum 

likelihood and Bayesian framework. By specifying the neural network with a sequence of 

target vectors, the network can learn the relationship between the variables (obtained from 

the PCA) and the specified target vectors.   

With respect to GMM, the concept of posterior probabilities, which refers to the 

responsibilities of each distribution model in producing each data point in the data set, is 

introduced.  

With the benefit of the availability of the data labels, which is commonly referred to as a 

supervised learning, the results of the GMM clustering can be simply determined if they 

are accurate. In a practical scenario, complete data labels will not always be available. 

However, in the context of SHM, the minimum requirement is that one should have a 
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baseline data of undamaged condition as a reference set. Therefore, any damage present 

can be identified by observing distinct separation from the baseline feature.The study will 

present a different approach of using initial values for the GMM parameters in the 

beginning of the EM iteration process. These initial values related to the information of 

parameters (mean and covariance) is associated with the class of baseline data set, which 

are usually available. Noted that, EM is found to be sensitive to the choice of initial values, 

thus different sets of initial values would display different clustering results [72].  

 

6.2 Background of Gaussians mixture model (GMM) 

The motivation for choosing Gaussian mixture model for the current study is to establish a 

predictive model for each data cluster based on Gaussian distribution models. The basic 

idea is that generally data points are assumed to adopt a normal distribution and each of the 

density models is associated to different damage severities. This chrematistic depends on 

the mean and covariance as well the mixing proportions in the probability framework. In 

the study, the data is justified to follow the Gaussian distribution as it is generated using 

Random signal in addition to the theory of Central Limit, which states that enough random 

samples from any distribution will lead towards a normal distribution. 

GMM is a superposition of linear combinations of the basic Gaussian distributions as 

shown in Figure 6.1. This combination is essential when it comes to model real data sets to 

improve characterisation of the data set. This is due to the fact that with only a simple 

Gaussian density model, it is unable to capture the characterization of the data set [34]. 

Such superposition formulates probabilistic models are known as Gaussian Mixture Model 

in which parameters are defined by the means and covariances as well as the mixing 

proportions of the Gaussian components.   
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Figure 6.1: Three Gaussian distributions in one dimension (blue lines) shown with a 

Gaussian mixture distribution as the sum of individual distributions (red line) [34].  

The fitting of the Gaussian mixture distribution is implemented using maximum likelihood 

and the iterative Expectation-Maximisation (EM) algorithm to estimate the parameters 

(means and covariances) of the Gaussian distributions. In this work, EM is utilised in the 

GMM framework to estimate the maximum likelihood solutions. Latent variables are 

introduced as the unobserved variables in the framework so that the joint distributions are 

more tractable over the expanded space of observed and latent variables.  

GMM can be formulated by choosing enough number of Gaussian components C, means 

µ and covariance Ʃ to describe the Gaussian distributions for the data set. It uses an 

Expectation and Maximisation algorithm (EM) to fit the parameters of the model, 

consisting of the means, covariances and mixing proportions of the Gaussians components. 

GMM is an extended version of k-means clustering. In k-means clustering, each cluster is 

specified by its mean in feature space and each data point is assigned to the cluster with the 

nearest means using Euclidean distance. In the case where data groups may overlap (Figure 

6.2) or if described by non-circular shape, it will be difficult for k-means to assign the data 

points to their right cluster, as k-means clustering does not consider the size and orientation 

of the cluster. This shortcoming of k-means clustering is avoided with the GMM. 
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Figure 6.2: An example showing the case of data sets overlap randomly generated using 

two different Gaussian distribution models 

In GMM, the clusters are modelled using a combination of Gaussian components, specified 

not only by their means but also by the covariance matrix that describes the ellipsoidal 

shape of the data density. Gaussian mixture model fits a Gaussian distribution to the data 

points by maximising the likelihood solution using the EM algorithm.  GMM is a popular 

technique for many classification problems such as an unsupervised learning, in which the 

basic properties such as the number of cluster components, their means and covariance 

matrix can be unknown. With respect to the non-probabilistic k-means algorithm, GMM 

has another advantage because it can deal with overlapping data classes that assumes 

different orientations and shapes. This makes GMM as a more flexible clustering technique 

compared to the linear k-means clustering. With the implementation of maximum 

likelihood and the EM algorithm, this allows a soft clustering method feasible on the data 

sets. Soft clustering relates that the data points can be assigned to more than one component 

(cluster) of the Gaussians.   

Figure 6.3 shows contour ellipses representing different covariance matrices with different 

orientations to describe the size and orientation of each cluster. In the case of variables 

dependency and correlation between the variables X and Y as observed in the current data 

set, a full covariance type whose ellipse has nonzero values at its off-diagonal is used.  

Diagonal and identity matrix which has zero values on the covariance elements (off-

diagonal) shows non-correlation. A full covariance structure is used to represent the 

+ mean 
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correlations between the spectral variables. In the case of the other two diagonal covariance 

matrix, the covariance matrices assume zero elements for their off-diagonal terms to 

describe zero relationship between variables. 

.  

Figure 6.3: The comparisons of different covariance types to show the correlation 

between variable X and Y 

In the next section, the maximum likelihood and Expectation and Maximisation (EM) are 

described briefly in the context of the parameters of the Gaussian components, consisting 

of the means, covariances and the mixing proportions. The probabilistic model generated 

by GMM assigns each data point to the relevant components of the mixture using Bayes’ 

theorem. Bayes’ theorem introduces conditional probabilities in which the posterior and 

prior probabilities have an important role in this GMM. In chapter 3, a detailed description 

on the mathematical backgrounds on the joint distribution of the Gaussians mixture have 

been described. In the context of posterior probability, each component (cluster) in the 

mixture distribution has a computed responsibility value in which it denotes a degree of 

responsibility the cluster has for generating each data point. 
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6.3 EM for GMM 

Before proceeding with the implementation of an elegant and powerful method using the 

iterative EM algorithm in the maximum likelihood framework, it is worth emphasizing that 

there is a significant problem related to the GMM with the maximum likelihood framework. 

The problem arises due to the presence of singularities. This is a common problem that 

occurs whenever the Gaussian components collapse onto a particular data point. This 

implies that when one of the components of the mixture model has its mean exactly equal 

to one of the data points, this would result the covariance term in the denominator term  to 

go to infinity and the maximum log likelihood function will also go to infinity [34]. Next, 

an elegant and powerful EM algorithm is motivated here by giving a general treatment for 

GMM to obtain the maximum likelihood solutions with the latent variables. 

Let the process begin by reinstating the equation (3.34) from Chapter 3: 
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where the Gaussian distribution is based on the multivariate form, 
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where µ is the D-dimensional mean vector, Ʃ is the D X D covariance matrix and 

denotes the determinant of Ʃ. 

Setting the derivatives of equation (6.1) with respect to the means µc of the Gaussians 

components to zero, the maximum of the log likelihood function is obtained: 
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Note that the posterior probabilities or the responsibilities appear on the right hand side of 

the derivatives of the log likelihood function in equation (6.1).  

Multiplying by 
1

c

  and rearrange the equation (6.3) gives 
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The mean for the cth Gaussian component µc is computed by taking a weighted mean of all 

data points in the data set whose weighting factor for data point xn is given by the posterior 

probability r(znc) in which the component c is responsible for generating the data point xn. 

Defining Nc as total number of data points effectively assigned to cluster c. The sum of this 

soft membership or fractional weight assigned to cluster c is described as 
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The covariance matrix in the frame of maximum likelihood solution is given in terms of 

the weighted responsibility for the component c that generates the data point can be stated 

as 
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It is the equivalent form with the corresponding result for a single Gaussian with each data 

point weighted by the corresponding posterior probability r(znc) and multiplied by the 

inverse Nc. 
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c  is the mixing coefficient for the cth component given by the average responsibility which 

the component takes for explaining the data points. In other words, it is the total 

responsibility allocated to cluster c normalised by the total number of data N, given as 

                                                                c
c

N

N
                           (6.7) 

EM implements GMM iteratively in two steps. The first step is the E-step that choose the 

parameter means   and covariance   and mixing coefficients as fixed values. The current 

values for the parameters are used to evaluate the posterior probabilities or responsibilities 

given in equation (3.34). Then for each data point xn and each cluster c, the responsibility 

r(znc) or the posterior probabilities that measures the corresponding probability which the 

component c is responsible for generating xn is computed. The latent variable z is used in 

corresponding with the observed observations x as a joint distribution. The probability of 

x, p(x) assigned to component c with a weighted Gaussian πc is normalised by the total 

values of c which gives a similar form of equation (3.33). Here the responsibility of data 

point x belongs component c is reinstated as: 
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Practically, r(znc) is a number of data points by number of clusters that sums to one over 

the index c. If x is very likely to be under the Gaussian component c, it will get high 

responsibility value r(znc). The denominator just makes the sum of r(znc) equal to one. 

The second step in EM is the maximisation step. It starts with the probability assignment 

r(znc) and update the clusters’ parameters c , c  and c . The parameters are weighted by 

r(znc) so that if xn is a strong member of cluster c, this weight will be nearly one, but if xn is 

not very well explained by cluster c then it will not influence the average very much. 

For each cluster c, the parameters are updated using the estimate weighted by the 

probabilities r(znc). By updating the new means, covariances and mixing coefficients 
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followed by maximisation, it guarantees to increase the log likelihood solution and make it 

converge. The EM assumes many iterations to reach a convergence and therefore requires 

significantly higher computation compared to the k-means algorithm.  

In this work a confidence ellipsoid with an obtained score that satisfies a 99% probability 

threshold for each component is used as this set is typically used in many applications  [72]. 

These scores determine the length of major and minor axes of the ellipsoids. 

In the next section, GMM is applied onto the data feature acquired from the kernel PCA 

baseline model A (eigenvalues decomposition from baseline model of undamaged 

condition from all loading sets) and kernel PCA model D (matrix of all combined data set 

of undamaged and damaged conditions from all loading sets) under some different 

initialisations. 

 

6.3.1 EM steps for GMM 

The goal of implementing GMM is to construct a classifier by maximising the likelihood 

function with respect to the parameters (the means, covariances of the components and the 

mixing coefficients) [34]. 

1. Initialise the means c , covariances c  and mixing coefficients c and evaluate the 

initial value of the log likelihood. 

2. In E step, evaluate the responsibilities using the current parameter values as illustrated 

in equation (6.8). 

3. In M step, update the parameters c , c  and c using the current responsibilities using 
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where 
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4. Evaluate the log likelihood and check for the convergence 
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If the convergence is not achieved, continue to step 2 and repeat the steps. 

 

6.4 The application of GMM as a damage predictive 

model  

Having informally described the treatment of EM in the context of GMM, the algorithm 

will then be applied on the data set obtained from the kernel PCA. Each data point will be 

assigned to a Gaussian mixture model according to the maximum likelihood framework. 

The implementation of GMM in this work is performed using  the Statistics and Machine 

Learning toolbox of User's Guide (R2017b) [72]. The rationale of taking the kernel PCA 

as the data input for the GMM is because the data class is more discrete compared to those 

obtained from the linear PCA. Consequently, this can help to avoid the problem due to 
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singularity during the EM iteration process. To implement GMM, some criteria are 

introduced in terms of the parameter initialisations. The initialisations for mean, covariance 

and mixing proportions of which values are fixed during the beginning of the E step takes 

one of the following forms:  

 The initial values of the parameters for the means, covariance and number of 

components correspond to the parameter values of the undamaged condition 

components. 

 Each data point in the data set is associated and connected with the categorical 

class label its data points. 

 Naturally perform the clustering without using any information about the 

number of components and their parameters (means and covariances), only by 

using k-means algorithm. 

 

6.4.1 Classifier model using kernel PC model A data input 

The first step is to construct a GMM classifier based on the undamaged baseline model 

obtained from kernel PC model A (Figure 6.4). This GMM classifier takes the initial values 

from the baseline model. The advantage of such a model is due to its convenience in that it 

only needs to establish the parameters from the undamaged state compared to a more costly 

damaged state. Practically, new test data obtained using the same kernel PCA model will 

be used with the same initial values of the parameters belonging to the undamaged 

condition. 

EM algorithm will then update the parameter values, evaluate the maximum log likelihood 

of the posterior probability and repeat the steps until the criteria for convergence is met. 

The goal of this model is to obtain a probability model based on the mixture of Gaussian 

distribution model for each data group associated with a damage severity through all 

loading conditions. By fitting the ellipsoidal shapes on the data clusters based on the 

maximum log likelihood function, the results are then compared with the original data 

groups to check its performance. This study aims to validate if GMM based on the 

maximum likelihood function can correctly classify the damage severity groups and form 
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the clusters that form ellipsoidal shapes on the data points based on the means and 

covariances of the undamaged state.  

The results from Figure 6.5 show the fitting of ellipsoids on each data test using the GMM-

EM algorithm that takes the number of Gaussian components as five, which represents the 

five loading conditions. The GMM algorithm fits the ellipsoidal on each Gaussian 

component produced from different structural health conditions. The highlight of the results 

is that it shows a potential application as a predictive model with the condition that the data 

should be pre-processed by PCA prior to GMM so that the features are present in discrete 

data groups as shown in Figure 6.4. The advantage of this model is that it only requires the 

parameters from the baseline data set. Note that if a higher number of components are used, 

the complexity of the likelihood problem also increases.   

 

Figure 6.4: The original data from kernel PCA utilised in the GMM. 
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Figure 6.5: Using only the initial means and covariance of the baseline data group 

(undamaged condition). 

 

 

Figure 6.6: Zooming in on the half-full load to highlight the cluster characteristics with 

respect to changes in damage severity. 

 

  

X   mean 

 X   mean 
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In Figure 6.5, the GMM algorithm assigns the new data points to their corresponding 

Gaussian components arbitrary well when the data set corresponding to a specific damage 

condition is applied to the algorithm. For subsequent new data sets as indicated by green, 

red, cyan colours, their initial values for the means and covariances are all corresponding 

to the baseline parameters. A zoomed view on the half-full load class results in Figure 6.6 

shows a consistent cluster translation, moving away from the undamaged (UD) state as the 

damage level grows. It reveals very accurate prediction of test data that uses only the 

baseline set as the initial conditions. The result is encouraging, considering that all the 

means and covariances of the initial values of the test data are based only on the baseline 

model of the undamaged condition.  

However, the main setback of this model is that the number of Gaussians should be 

specified and each new data set is applied corresponding to a specific damage condition. 

This situation should not give many obstacles since the number of components can be easily 

determined from the PCA analysis. As has been demonstrated earlier in the last chapter, 

the loading effects are effectively isolated from the damage effects by using PCA and with 

GMMs, the clusters associated with various damage states are grouped together denoting a 

specific operational loading condition (Figure 6.5).  

Practically, this model can be used to establish a predictive model by observing the 

separation of the cluster from the clusters belonging to the baseline set. It implies that as 

the clusters of damage states move away from the baseline clusters, the damage is more 

severe and require greater attention from the maintenance personnel.  

In the next figure, the overall baseline and test data are applied all together at once, which 

means the algorithm computes all 25 classes based only on their labels (Figure 6.7). 



                                                                                                                                          161 

 

 

 

Figure 6.7: Fitting GMM by connecting each observation to its label for all 1000 

observation data points. 

The results of GMM classification of all data points by linking each data point to its 

respective labels or names are generally excellent (Figure 6.7). All the ellipsoids revealed 

good consistency in correlation to damage severities that describe the increase in damage 

as the clusters demonstrate higher separation from the baseline cluster. No other parameters 

are required except the total number of components which needs to be specified. A close 

view onto the damage clusters at the quarter-full load (Figure 6.9) reveals the orientation 

and shape of the damage clusters in more detail, which is in agreement with the actual 

feature as in Figure 6.8.   

 
UD 

  X mean 
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Figure 6.8: The original data points associated with the corresponding damage severity. 

 

Figure 6.9: A zoom in on a quarter full load that describes the Gaussian density model. 

 

However, it is observed that, the EM-GMM algorithm includes some top end data points 

from undamaged (UD) class (as illustrated in Figure 6.8 by a dash-oval) into D1 cluster 

(Figure 6.9). This is expected as the small portion of data points of UD class lay close to 

the D1 groups and predicted to be generated by the Gaussian component belonging to D1 

class. As a result, the small set of data points is included into the D1 ellipsoid as illustrated 

in Figure 6.9. 
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Figure 6.10: The original kPCA feature showing the position of each damage severity 

groups. 

 

Figure 6.11: A zoom in on half-full load to show clearer results of the classification. 

 

In the case of the half-full load, it is observed that the UD and D1 clusters (Figure 6.11) 

have a different data density model by the way the ellipsoids are made with respect to their 

original feature in Figure 6.10 after the GMM implementation. Rationally, the data points 

(belonging to UD and D1 class) that seemed to be likely generated by the two distinct 

Gaussian distributions are clustered independently as two components as illustrated by 

Figure 6.11. Nevertheless, the rest of the clusters are correlated with damage severities.   
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Figure 6.12: The original feature showing all the data groups corresponding to various 

classes of damage severity. 

 

Figure 6.13: The result of the GMM classification for varying damage severities in three-

quarter full load. 

 

In the three-quarter full load class (Figure 6.13), the clustering of the data points belonging 

to various damage severities are showing some encouraging results. All the data clusters 

are highly correlated with the original feature (Figure 6.12) with respect to the damage 

level. With regard to the data group UD laying close to D1 class, the corresponding data 

points are assigned proportionally to their respective classes (Figure 6.13) by comparing 

with the original feature.  It can be stated that from these observations (Figure 6.12 and 

Figure 6.13), the orientation of data groups consisting of densely distributed data points 

play a significant role in classifying them as one Gaussian component.  
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The results from these two approaches (initialisation by the baseline parameters and 

connecting data points to corresponding labels) have shown positive outcomes as the data 

classifiers model based on the EM algorithm and the mixture of Gaussian distributions 

framework. One main concern found in the analysis is that one needs to specify the number 

of Gaussian components (or clusters) to be suitably created by the algorithm. On the other 

hand, the positive remark is that the number of components can be easily determined from 

the PCA results. Another setback realised is that given the data groups sit very close 

together, the orientation of clusters or to an extent the data points, can be wrongly assigned 

as clusters corresponding to a different class.  

Generally, based on these findings, GMM shows relatively promising results for damage 

cluster classifications given the true labels in the categorical array and also based on the 

means and covariances values of the baseline data set. The result has also shown that the 

GMM-EM algorithm performs very well with respect to correlation with the level of 

damage severity.  

In the next GMM-EM test, the data set derived from the kernel PC model D is implemented 

using a different approach in selecting the initial GMM parameters. 

 

6.4.2 Utilising kernel PC model D in GMM prediction analysis  

In the following analysis, the GMM-EM algorithm is applied to classify the various damage 

severities under one specific loading condition. This is in comparison to the earlier model 

in which data are classified under various loading classes. In this model, it concerns the 

accuracy and orientation of the data clusters corresponding to the damage severity.  

The data set from model D of the empty load and quarter full load is applied. In the first 

test, only data from the empty load is applied. It is useful to test the data groups of each 

loading set individually as given more components in the algorithm, the computation 

becomes more complicated and its iteration takes much longer. In this test, the means and 

covariance parameters are explicitly specified for each component parameter.  
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Figure 6.14: The original data set with damage specifications. 

 

 

Figure 6.15: The first approach for finding the initial values with k-means algorithm. 

 

The result obtained in Figure 6.15 shows a promising classification model using k-means 

algorithm initialisation method. Using k-means algorithm, the initial choice for the means 

is performed arbitrarily and the solution in the log likelihood is to converge when the 

change in the function falls below a certain threshold. The threshold is calculated based on 

a chi-square distribution of which its value exceeds 99% of the samples. The classifier 

successfully classifies the data groups into each cluster in comparison to the original data 

groups in Figure 6.14. 
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Figure 6.16: The second approach using the initial mean and covariance of the first 

cluster. 

 

Figure 6.17: The third approach by connecting each observations to its label. 

 

Overall, the results in using these three approaches are generally promising with the 

initialisation method by k-means clustering (Figure 6.15) and connecting data points with 

their labels (Figure 6.17) which are comparatively accurate. Again, the main concern are 

the data groups that are located close together. Here, UD, D1 and D2 clustering are slightly 

different in comparison to the original feature in Figure 6.14 when the initial parameters 

are initially fixed by the undamaged parameters (Figure 6.16).  
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Figure 6.18: The second approach using the initial mean and covariance of the first 

cluster. 

 

Figure 6.19: The third approach by connecting each observations to its label. 

 

As overall, the results in using these three approaches generally are promising with the 

initialisation method by k-means clustering (Figure 6.15) and connecting data points with 

their labels (Figure 6.17) which are comparatively accurate. Again, the main concern is that 

the data groups that located close together. Here, UD, D1 and D2 clustering are slightly 

different in comparison to the original feature in Figure 6.14 when the initial parameters 

are initially fixed by the undamaged parameters (Figure 6.16).  
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A zoomed view on result of the approach using initialised baseline parameters and the data 

points labels (Figure 6.18), it is indicated that classification of D1 data has wrongly 

recognised the upper portion of D2 data group as part of D1 data group by the second 

approach of using baseline’s initial parameters. In respect to k-means clustering, the 

methods successfully classify these data groups. It is understandably, that high data 

separation in D2 data class allow the upper half of the data groups to be assigned to either 

D1 class or correctly included into D2 data class.  

  

Figure 6.20: The comparison between the second approach (baseline parameters) (left) 

and third approach corresponding to data points label (right plot). 

It can be identified from the earlier PCA result that in fact the actual number of components 

(clusters) is ten. However, for the purpose of verifying the robustness of this technique and 

to test the algorithm on the current problem, the actual number of components are implicitly 

unspecified. The algorithm is then used to generate clusters based on the number of 

components specified from the range between 1 to 12 (Figure 6.19). During the 13th 

iteration, when computing the covariance for the 8th components, an error shows up in the 

process, indicating the error is due to an ill-conditioned covariance created. This is not a 

real surprise as it is recognised that, making the algorithm to generate more than 8 

components, there is high possibility for singularity to occur as the data points are overlap 

for UD and D1 data class as illustrated in the Figure 6.20.  
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Figure 6.21: GMM naturally assigns eight clusters for overall data groups. 

 

 

Figure 6.22: The original data groups corresponding to respective damage class. 

 

The result in Figure 6.19 corresponds to the original feature (Figure 6.20) describing the 

clustering of the data groups by iteratively specifying the number of components from 1 to 

10. During the iteration, it is found that the algorithm only managed to perform the 

iterations up to 8 components before reaching the convergence of the maximum log 

likelihood solution (Equation 6.3). The singularity issue is raised when the components are 
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overlap as illustrated in the actual feature plot of Figure 6.20. Nevertheless, it is acceptable 

to say that, the result in Figure 6.19 indicates that the data distribution model generated in 

this experiment can potentially be modelled based on GMM with some restrictions to the 

overlap data class. Nevertheless, the mixture of Gaussians can be used to provide some 

general indications to the data behaviours in respect to changing of loading conditions and 

damage severities based on the PCA data features as the input to the GMM-EM algorithm.  

As a brief conclusion, the maximum log likelihood framework has the prospect to be used 

in SHM in respect to the effects of loading variations with some limitations due to 

singularity. Potentially, it can be used as a generative model given under the situation that 

there is a lack of real data set. It can be used as a predictive model of a parametric model 

with the goal of monitoring the structural health. It is important to note that, the role of 

PCA in providing data inputs for the GMM-EM algorithm. The quality of the features 

obtained from the PCA can affect the performance of the GMM classification. It is 

highlighted that, the main issue raised in using GMM is with overlap data groups where the 

singularity problem can occur. 

Previously, with GMM, a classifier model based on a probability model is established. Data 

points of different damage class are assigned to each clusters based on mixtures of Gaussian 

distributions and maximum likelihood framework. In the following work, a non-linear 

regression analysis based on the powerful Artificial Neural Network (ANN) will be 

introduced. It will present the input-target mapping model which is a non-linear regression 

model by using the data inputs from the PCA. 

In that section, ANN will be addressed with respect to training algorithms and a 

regularization approach as to generate accurate fitting results. It shall begin by introducing 

neural network, its descriptions of underlying parameters and highlights the optimization 

technique in order to avoid overfitting of the data set. The final finding will conclude its 

results for comparing the maximum likelihood with the Bayesian approach concerning of 

determining the optimal network parameters.
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6.5 Introduction to neural network 

Neural network finds its origins back in the1940s as scientists and engineers attempted to 

find mathematical representations of information processing in the way of biological 

systems [34]. At present, with the advancement of computer technology, the field of ANN 

is evolving quickly and has became a powerful tool for many real applications. It has good 

records of accomplishment in solving large-scale problems especially where linear models 

have limitations [34].  

The main advantage of neural network is that it allows the nonlinear basis functions to be 

adaptive and adjustable in the form of parametric model during training. Training here 

refers to the process of learning from the given sets of input features by the network neurons 

(nodes) by adjusting the weights. By doing so, the neurons can perform the pattern 

recognition task correctly. The most successful neural network in pattern recognition 

landscape is the feed-forward neural network that is also known as a multilayer perceptron 

(MLP) [34], [73]. The benefit of the MLP lies on the continuous nonlinearities activation 

functions through its multiple layers where the input data is transformed into the output. 

The network comprises mathematical representations has greater practical values compared 

to the multiple perceptron models with discontinuous nonlinearities [34].  

In this work, the attention will be restricted to the regression neural network using feed 

forward fitting function. The aim of any neural network is to minimise the sum-of-squares 

error function based on the selected network parameters. The error function is a quadratic 

function with a linear derivative in respect to the parameter w’s which can be written as 

 (w) y( ,w)-t
N

n n

n

E x

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2

1

1

2
  (6.14) 

where {xn} is input vectors and {tn} is target vectors and n=1,…,N.
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The work in this study centred on regression analysis where the prediction of a continuous 

variable y from an input vector x. Its aim is to create a mapping from input variables of 

vectors {xn} to output values y(xn, w) by approximating the outputs to the given target 

vectors {tn} where n=1,…,N as closely as possible. As stated previously, the pre-processed 

data expressed in terms of the PCA feature variables have particular patterns are used as 

the neural network inputs which their corresponding categorical conditions are known. This 

application is known as a supervised learning and the purpose is to train the neural network. 

The recognition performance of the trained network is then used to evaluate the new test 

data which is not included in the training database.   

In this study, the exercise is implemented using Matlab Neural Network toolbox for its 

comprehensive and convenience toolbox. The highlights of this work includes a Bayesian 

treatment used to determine the network parameters in comparison to the maximum 

likelihood approach. Both approaches are finally compared with respect of minimising the 

error function. 

 

6.6 ANN architecture 

A feed-forward neural network with multilayer perceptron is one of the most effective and 

successful pattern recognition technique for model regression and classification when 

dealing with large data sets and high data dimensionalities [34]. In most neural network 

applications, the main interest will be to obtain the best generalisation performance of the 

trained network on a given test set which is not included in a training database. Good 

generalisation performance ensures the network with new data input produces optimum 

balance between over-fitting and under-fitting.  

It has been identified that a two-layer MLP with sigmoid non-linearities can approximate 

most functions with arbitrary accuracy [34], [57]. Based on this justification, the problem 

of defining the network architecture reduces to one of choosing the number of hidden 

nodes. The schematic diagram of the two-layer MLP network with the transformation from 
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the inputs to the outputs are equivalent to those shown in Figure 3.2 and Figure 3.3 of 

Chapter 3.  

The central element in neural network is the network training based on the data inputs 

which is performed by a specified training algorithm through its nonlinear activation 

functions located in the hidden layer (s). Each of data inputs are transformed using a 

differentiable and nonlinear activation functions in a forward propagation into the next 

output layer before transformed to give the network outputs. 

The parameters weights and biases are adjusted with respect to minimizing the errors of the 

mean square function performed by the training function. An important consideration to 

note that if the number of hidden nodes are too high or the layer size is too large, there is a 

tendency for the neural network to over fit the data and it can give poor data generalization 

when testing the network with new input vectors. However, it can allow the network to 

train and solve for problems that are more complex if it provided with more hidden layers. 

The recommended practise is to begin with a simple one hidden layer and observe if the 

fitting error is small [34], [74]. Most of the practical and medium sized problems perform 

well with one hidden layer when given appropriate parameters [34].  

 

6.7 Define the architecture 

The first step is to define the type of multilayer network to use in the study and select the 

nonlinear transformation function in the hidden layer suitable for the current study. There 

are numerous terminologies used regarding the number of layers in the neural network. In 

this study, the terminology  recommended by [34], [57] such as in Figure 6.21 is adopted 

in which the layers consisting the weights regarded as the layers of the network. Therefore, 

the network is considered as a 2-layer neural network. 

By designing the neural network architecture, better understanding of the transformation 

process of the input variables into the output variables via the continuous and differentiable 

nonlinear activation functions in terms of parameter W can be attained. Figure 7.21 
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describes the neural network architecture used in the current study. The terminologies used 

in the architecture are defined as follow: 

 

Figure 6.23: Network diagram for the two layer neural network corresponding to the 

current network architecture used for this study. 

Defining the terminologies used in Figure 6.21, X1,…,D is the inputs variables (principal 

components), D is the total number of input variables, W1
1, 1,…, W1

M, D  are the parameter 

weights of the hidden layer, M is total number of hidden nodes, and K is the total number 

of output variables. The superscript (1) and (2) indicates the corresponding parameter in 

the hidden layer (first layer) and the output layer (second layer) of the network respectively. 

Bias b1 and b2 are the biases for the first and second layers.  a1
1 is the input unit activations 

and a1
2 is the output unit activations. Each of the input unit activations a1 units is 

transformed using a differentiable nonlinear activation function h to give hidden units z. 

Often the nonlinear activation function is chosen to be sigmoidal functions such as ‘tanh’. 

In the second layer, the output unit activations a2 are transformed using an appropriate 

activation function to give the network outputs yK. In case of regression problem, a linear 

function which is the identity yK = aK is used. The number of weights in the first layer is 

determined by the number of hidden nodes and number of input variables used in the 
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 23 

23 



                                                                                                                                          176 

 

 

network as in this network it is W1 = [23 x 15]. In the same concept, the number of weights 

for the output layer is given by W2 = [2 x 23], where the value XD = 15 is the number of 

input variables D, zM = 23 is number of hidden nodes and yK = 2 is the number of output 

variables.  

The network learns the nonlinearity of the training data by using a powerful yet a simple 

training method which is a backpropagation technique. It uses a gradient descent which is 

applied to a MSE function. Generally, the backpropagation method refers to the 

modification of weights that begins between the hidden layer and output layers so that the 

fitting error can be decreased based on the MSE function. The errors are propagated 

backwards trough the network to evaluate the derivative function. For full details of the 

technique can be found in [74].   

Despite the clear advantage of ANN in solving complex practical problems in pattern 

recognition, it is important to acknowledge some of the challenges and limitation 

concerning neural network. The main challenge is that it requires an estimate of the 

parameter hidden nodes in establishing the network so that the number of parameter 

weights can be determined. In the following section, it will describe some of the general 

best practice in ANN implementation. This posed as a general guideline and a summary of 

steps in implementing ANN for the current study. 

As mentioned earlier, in general the problem of the 2-layer feedforward MLP neural 

network is mainly due to determine the optimal number of hidden nodes for the network. 

The numbers of these hidden nodes contributes to the overall network performance. This 

problem can affect the generalisation performance of the neural network. Other selection 

of network properties depends on the nature of the problems either it is regression or 

classification. This includes type of activation function, training algorithms used in the 

network training and regularisation to be used. Essentially, the free selection of the hidden 

nodes control the weights and biases in the network and they can be changed and adjusted 

during training to produce better predictive performance.  

If too many of hidden neurons included, it potentially results in overfittings or poor 

generalization of the training data.  On other hand, if very few of them is used, the network
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 might missed some features of the training data and learn them inadequately; this may 

result in large error in training data set and result to poor fittings of the input variables onto 

the target vectors. In general, the number of nodes in the hidden layer should be more than 

the number of variable inputs and outputs to avoid loss of information loss. 

The selection of hidden nodes (neurons) should ideally balance the performance of the 

network in respect to the prediction error and overfitting of the features as well to control 

the total number of weights in the network. The optimum selection of number in neurons 

would provide good generalization of target prediction using new test data by the trained 

network. 

 

6.8 General practice in ANN 

The main challenge encountered in processing the data using neural network at the first 

time is to determine the appropriate use of number of hidden nodes, M. Because M is a free 

parameter, it can be adjusted to give the best generalisation performance. The important of 

M is significant because it determines the weights and biases for the network in case there 

is limited number of data inputs and the number of outputs in the network. This section 

provides 

 

6.8.1 Number of training examples 

Information theory recommends that the number of weights, W should be of the same order 

as the number of training inputs used in the network, P [57]. The free parameters of network 

weights W in relation to the network topology I-M-O multilayer perceptron is given as 

 W = (I + 1) M + (M + 1) O (6.15) 
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where I is the number of inputs, M is the number of hidden nodes and O is the number of 

output units. Each of the hidden and output units has a bias weight associated with the units. 

Tarassenko 1998 summarised the recommendations for estimating the parameter W as [57] 

A lower bound for training patterns P = W                                                                           

A realistic upper bound for P = 10 W  

Applying the guidelines as given in equation (7.15) and the realistic upper bound to the 

data set together with the parameters I = 15, P = 700, O = 2, gives 

W = 18 M + 2                     

where P = W for lower bound and P = 10 W for upper bound                                                                                                               

Using equation (7.15) for lower bound: 700 = 18 M + 2                                                                                                          

and for the upper bound: 70 = 18 M + 2              

the estimates give    39 ≥ M ≥ 4         

A practical approach is to perform iterations using the training inputs corresponding the 

fixed neural network architecture while changing the range values of M and plot against 

the MSE. The details of the approach is discussed in Section 7.8.6. In this current work, a 

more detailed study on the selection of the optimal number of hidden nodes is carried out 

in order to achieve the best generalized performance of the network.  

A practical approach on choosing the optimum number of the hidden nodes can be based 

on the performance of validation set result corresponding to its smallest MSE as illustrated 

in Section 7.8.6. Based on the practical approach, M = 23 is found to be the appropriate 

value with respect to good generalisation performance of new input data set.  

 

6.8.2 Selecting the number of PCs for network input 

It should be noted that, neural network is a data driven model and the quality of the model 

depends on the quality of the data set used in network training. Therefore, with respect to 
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making the PCA results as the input to the neural network, the selection of the total number 

of PCs to be selected is an important factor.  

The input data acquired from the standard PCA features is given as: Nx1000 matrix where 

N is the number of principal components (PCs) for 1000 observation points. The choice of 

N should ideally represent most of the variance calculated from the combination of 

principal components. This is essential so that most of the information related to the 

structure dynamic behaviour under the effects of the loading changes is retained in the 

selected number of PCs. 

In the case of current work, it is observed that when N= 15, the total variance meets the 

97% of total variance. Obviously, a higher N (N>15) gives higher data variability. A 

comparison of N=15, 20, 25 and 30 principal components initially are used as the inputs 

for the neural network and the results are compared to identify which N gives the most 

accurate fitting of the target values. It is shown, the values of Ns give about the same 

performance. Thus, for a better computation of the network, N= 15 is chosen.   

Target data takes the matrix in the form of 2-by-1000 matrix. The target for 1000 data 

observations has two dimensions in which the first dimension represents the load and the 

second dimension takes on the damage severity class. The best practise is to normalise both 

the inputs and the target vectors to ensure the network output always fall into a normalized 

range. With the previous PCA implementation, the data used for the neural network inputs 

has been standardised. The advantage of standardising the data set is discussed in Section 

5.3.1. Using the feedforward function in the neural network toolbox, it  is automatically 

normalized the inputs and targets data so that the outputs fall into the range between -1 and 

1 [75]. 

 

6.8.3 The configuration of data for training, validation and testing set 

Before training of the network begins, the general practise is to divide the data set into three 

subsets. The first subsets is the training data sets where most of the data is applied for 

training the network. The observations consist of 1000 data points that are divided into: 



                                                                                                                                          180 

 

 

70% for training (700 samples) - this set is used only for network training of the network   

15% for validation (150 samples) - this validation set generalizes the performance and halt 

the training when the error in validation set stops improving. 

15% for testing (150 samples) - this is a complete independent test and no effect of the 

training or network generalization. This data set is used later for calculating the network 

performance. 

It is important to have the majority of data used for training to ensure most of data pattern 

and characteristics are learnt by the basis functions of the network. In this case, 70% of 

total data set is used for training of the network [75].  

The way the data is divided can be randomly or in predetermined way. The arrangement of 

the data set of the network input randomly selected from the overall data set, corresponding 

to the configuration set described above. 

 

6.8.4 Specifying nonlinear activation function 

The transformation of previous outputs and the weights into the next network layer should 

be performed via a continuous nonlinear activation function. The nonlinear function 

selected in this work, make use of tan sigmoid (hyperbolic tangent, tanh) for hidden layer(s) 

and a linear function for output layer. The choice of sigmoid non-linearity for the hidden 

nodes that are continuous and differentiable functions allow the parameter w the error 

function E (Figure 6.14) to be differentiated with respect to each weight in the network.  

The choice of sigmoid nonlinearities for the hidden nodes together with the use of a squared 

error criterion at the output of the network provide the basis of the learning algorithm for 

the MLP [34], [57]. 

The choice of these activation functions depend on the nature of the data set and the 

distribution of the target variables [34]. The choice of tan sigmoid is suitable for most 

pattern recognition problems. In the relation to the current study, the radial base function 
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(RBF) is also applied as to investigate whether its use as the nonlinear transformation 

function can improve the generalisation performance. It was indicated that as in the context 

of current data, the radial base function (Gaussian function) performs relatively in similar 

performance as the hyper tangent (tansig) transfer function.    

In this study, neural network is performed using Matlab neural network toolbox where a 

two layer-feed forward network with tan sigmoid transfer function is used in its hidden 

layer and a linear function for the output layer of the activation functions. 

  

6.8.5 Specifying a function to train the network 

The process of training the network involves the tuning values of the weights and biases of 

the network in order to optimize the performance of the network training. For training of 

the network specifically for function-fitting problem, the Levenberg-Marquardt (LM) back-

propagation is used to calculate the gradient. Back propagation describes the training of a 

multi-layer perceptron using gradient descent that applies the sum-of-squares function. This 

training function uses the Jacobian for the calculation and applies mean squared errors to 

calculate its performance. The benefits and detailed explanation of this algorithm in terms 

of neural network application can be found in [76]. 

LM drives the fastest training in this feedforward network with better performance 

especially for fitting function (nonlinear regression) compared to other available training 

functions [77]. The training of the network using LM is determined by the gradient 

performance which it stops training when the gradient is less than 1e-5 or when the 

performance of the validation set fails to improve after 6 iterations (whichever comes first). 

This method is recognized as the early stopping used for neural network regularization. 

 

6.8.6 Specifying the number of hidden layers and neurons 

In most cases of using input-output fitting network, the usage of one hidden layer would be 

appropriate and with sufficient number of neurons in the hidden layer, the network can 
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generally arbitrary map the input data very well. Generally, more hidden layers require 

more computational resources and cause high complexities in the network. For best 

practise, it is a good step to start with one hidden layer and see if it gives the desire 

performance [34]. 

In addition to that, it has been proven that the two-layer network perceptron can fit high 

dimensional data arbitrary well [34][57]. Based on this premise, a prediction model of two-

layer network is used with the goal to establish a relationship between the input data from 

PCA features and the corresponding load and damage as the network target vectors. 

One practical approach in finding the optimum number of hidden nodes, M is to plot a MSE 

against M (Figure 6.22).  Using the fixed neural network architecture and the training data 

set, the training using the 2-layer feed forward neural network is performed with its 

properties (activation functions, training algorithm) equivalent to those described earlier in 

this general practice steps. Here the range of M = 2 up to M= 30 are used in the training in 

which every M has 10 random starts (iterations) as illustrated in Figure 6.22.  

 

 

Figure 6.24: Performance of the training data set using 10 different initialization values 

for hidden nodes from 1 to 30. 
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Figure 6.25: The minimum error of the validation set as indicated by the red line (M=15).  

 

In order to determine the optimum number of hidden nodes M with respect to the best 

generalisation performance, one has to examine the mean square error of the validation set 

(Figure 6.23). In practice, M can be selected by choosing the node that has the smallest 

validation error. The validation set is required in respect to generalisation performance 

because the training stops after the error in the validation set begins to rise. A simple task 

which to verify the selection of M is to train the network several times using the same value 

of M to ensure that the repeated MSE values are in the close and acceptable range. It can 

be confirmed again that if M is the right choice by using the test set on the network. If the 

error increases or there is large difference in error between the test and validation set after 

using the M hidden nodes, it indicates an overfitting problem. M should provide a stable 

performance of the network with different initializations during the iteration. Based on 

Figure 6.23, the smallest error occurs at M=15. Initially, the network is tested several times 

using M=2 up to M= 30 and it shows after several iterations, M=23 gives better stability 

and good generalization in respect to validation and test set.  

After it is assured that the selection of M gives the best generalisation performance based 

on the network using the parameters that gives some of the lowest MSE, the network is 

saved for testing. A similar test of the same network architecture is then performed using 

M=23 hidden nodes in which the performance results from the training, validation and test 
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sets are described in 6.24. The Bayesian framework is also compared with LM training 

algorithm. 

 

Figure 6.26: The performance analysis based on the training, validation and test set 

showing a vertical green dot line where the network best performance is attained. 

 

Figure 6.27: In comparison to a training using Bayesian framework. Notice of the much 

longer iterations used. 

 

Figure 6.24 shows the performance of training that occurs at the iteration 23 using M  

hidden nodes. The validation and test set showing the similar characteristics in the mean 

square error which indicates that the test data is not overfit.
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From this training of the network, the final result of the mean square error is small with the 

validation and test errors have similar characteristics. At the iteration 23, no significant of 

overfitting is detected. Finally, using a similar network architecture and parameters, 

prediction of the input variables to the target vectors linear regression between the networks 

outputs and the corresponding targets using the tool provided in training window in Matlab. 

Using Bayesian approach based on the same network architecture shows improved 

prediction performance (Figure 6.25). It significantly takes longer iterations to achieve the 

convex solution however it does not require validation data set as it uses all data set. The 

mapping results of the input variables using the PCA features to the corresponding load 

and damage severities target vectors using the defined neural network parameters are 

presented in Section 6.10. Before that, general principles of maximum likelihood and 

Bayesian frameworks in the regression analysis perspective are discussed in the following 

section. 

 

6.9 Comparisons of maximum likelihood and 

Bayesian neural network 

So far, the exercise performed in this study involves the use of maximum likelihood 

estimation (MLE) approach to find the model parameters. In addition to that, Bayesian 

approach is described in ANN as a comparison to the training MLE algorithm. Note that, 

both training algorithms are used as to regularize the optimization in finding the best 

generalised network and to avoid from over fitting the data.  

The main reason for applying of these methods of training algorithm is to estimate the 

network parameters which are the weights and biases. It is essential to understand the main 

difference between these two estimators before applying in the network. Here, it will briefly 

describe briefly the principles of these two methods used for parameter optimization in the 

scope of the current work. 
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Maximum likelihood estimation (MLE) approach is commonly found in many machine 

learning algorithms including as it is previously used for clustering technique of Gaussian 

mixture model (GMM) in the first part of this chapter. For a simple illustration to relate 

directly to the current work, the explanation will be centred on a regression analysis. 

Previously, maximum log likelihood function is used to fit data points to Gaussian models 

based on the means, covariances and the mixing proportions. MLE is applied again in 

neural network in the context of fitting the inputs variables on the corresponding target 

vectors  with respect to obtain the minimum mean-squared-error MSE. Note that, 

minimum MSE is equivalent to maximising loglikehood function.  

In terms of probabilistic interpretation, the neural outputs can be predicted using 

conditional distribution. For a regression problem, consider the target vector t that can take 

any real values, assume a Gaussian distribution with an x-dependent mean and becomes 

the predicted output of the neural network specified by 

                                             1( x,w) ( y(x,w), )p t t  N   (6.16) 

Where   represents the precision or also known as inverse variance of the Gaussian noise. 

This is a conditional distribution that shows to be sufficient to take the output unit 

activation function to be the identity (linear function x = y) because such network can 

approximate any continuous function from x to y. Given a data set of N independent, 

identically distributed observations X = {x1, …, xN} with the corresponding target values 

t = {t1, …, tN}, the corresponding likelihood function can be established as 

 
1
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N

n nn
p p t 


    (6.10) 

The error function can be produced by taking the negative logarithm as 
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where the parameters w and β are learnt using the error function. The selections of 

obtaining the w and β here are based on minimizing an error function rather than 
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maximizing the log likelihood as usually done in the neural network applications [34]. For 

analytical reasons and simplicity, the computation is done in the logarithm of the log 

likelihood than the likelihood itself. This is because the logarithm is monotonically 

increasing (strictly increasing) and maximizing the log likelihood is also maximizing the 

likelihood.  Maximising the likelihood is minimizing the sum-of-squares function as 

described by 

                                            
2

1

1
(w) { (x ,w) }

2

N

n n

n

E y t


                                                    (6.12) 

The value E(w) is denoted by wML which corresponds to the maximum likelihood. Once 

the iterative for the optimization is done, the value of β can be determined using 
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For the case of multiple targets as it is usually be, the conditional distribution of the target 

values is described as 

                                            
1(t x,w) ( (x,w), I)p t y  N                                        (6.14) 

The noise precision where K is the number of target variables, can be written as  

                                         
2

1

1 1
(x ,w )

N

n ML n

nML

y t
NK 

                                          (6.15) 

Next, Bayesian framework for optimisation of neural network parameters will be 

addressed. The main difference of MLE and Bayesian learning approach is that MLE 

views the true parameters that it seeks as fixed where as in Bayesian approach, it considers 

the parameters to be random variables and training of data set allows the distribution 

corresponded to the variable to be converted into a posterior probability density [78]. 

In multi-layer network, the log of the posterior distribution will be non-convex, 

corresponding to multiple local minima in the error function. As a result, no exact solution 
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can be found. To encounter this, two assumptions are made: the posterior approximated 

by a Gaussian and the covariance of this Gaussian is small. With these assumptions, the 

network function is approximately linear with respect to the parameters over the the space 

of the posterior probability which is non-zero. Having established the models, it provides 

an evidence frame work to provide point estimates for the hyper parameters and to explore 

models with different number of hidden nodes [34], [79], [80].   

Consider predicting a single continuous target variable t from the inputs vector x and 

suppose that the conditional distribution P (t | x) is Gaussian with an x-dependant mean 

given by the output of a neural network y(x,w) and with precision β (inverse variance), 

written as 

                                             
1(t x,w, ) ( (x,w), I)p t y  N                                            (6.16)  

 A prior distribution over the weights w is selected that is Gaussian in the form of 

 
1(w ) (w 0, I)p   N   (6.17)  

For an i.i.d (identical and independently distributed) data set of N observations x1, …,xN 

with a corresponding set of targets values t={t1, …, tN}, the likelihood function is stated 

as 

 
1

n
1

( w, ) ( (x ,w), )
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

t N   (6.18) 

then the resulting posterior distribution is written as 

 (w , , ) (w ) ( w, )p p p   t t   (6.19) 

As a result, the nonlinear dependence of y(x,w) on w will be  non-Gaussian. A Gaussian 

approximation is found to to the posterior distribution using the Laplace approximation. A 

local maximum is searched first of the posterior using iterative optimization. Maximizing 

the logarithm of the posterior which can be written as 
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The above equation corresponds to a regularized sum-of-squares error function. Assume 

for a moment that  and   are fixed, a maximum posterior can be found using a standard 

nonlinear optimization algorithms such as conjugate gradients and error backpropagation 

to calculate the derivatives. For details of this Bayesian method, readers are encouraged to 

refer to [34], [74] for further explanations on this method. Results of the neural network 

After describing the general procedures and framework with respect to neural network 

implementation, now the network will be used to test the data sets from the standard PCA. 

The results from the standard PCA of a combined data set (PC model D) are used as inputs 

with a selected number of principal components. 

Optimal number of nodes (neurons) in the hidden layer, total number of principal 

components as the inputs, the activation functions and the training algorithm all been 

selected so that the mapping performance of the neural network with the lower mean 

square error is achieved. It is essential to recognise that, there are other regularization 

methods applicable in neural network that can be used for parameters optimization to 

enhance the network performance[34], [74].               

                                                                                                                                 

6.9.1 Developing a benchmark for damage level and loading  

One of the novelty found in this study, is to introduce a reference target set for operational 

loading system that possibly has some damage on. Using features obtained from the 

standard PCA, the mapping onto a target benchmark divides different damage severities 

into different level built within each loading condition as shown in Figure 6.27. This 

benchmark consists of constant vectors depending on the number of loading class and 

damage class considered in the study. These constant vectors represent each damage class 

and load class respectively. The 1000-by-2 matrix of the target network with the first 
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column represents the load vector and the second column of the damage vector class 

respectively. 

 

Figure 6.28: The target of loading vectors assume undamaged data set from the 

operational loading class to produce the output. 

 

Figure 6.29: The Operational-load-effects-SHM model of its target vectors are constants 

values divided by the number of classes of loading and damage conditions. 

 

Figure 6.26 displays the total number of loading conditions with each loading class 

includes its total number of observations. The damage severities shown in Figure 6.27 
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describes how the damage level is divided according to its severities. This benchmark 

represents target values in order of damage severities and loading class. In fact, this 

benchmark encompasses part of the novelty in the study where it aims to establish a 

relationship between damage severities and loading class through this regression analysis. 

A matrix comprises 1000-by-2 matrix is established that marks 1000 observation samples 

in each rows. In the first column, loading class Li given a value {0, 0.25, 0.5, 0.75, 1} 

represents empty tank, quarter-full load, half-full load, three-quarter-full load and full load 

respectively. In the second column of the target matrix, damage severities Di is 

incorporated to be as {0, 0.25, 0.5, 0.75, 1} placed within each loading class which takes 

the value of Li. Similar to previous chapters, Di represents Undamaged, D1, D2, D3 and 

D4. 

It is in the interest of the study to investigate if neural network is capable in mapping the 

input variables obtained from the standard PCA (of PC model D)  which the matrix of each 

loading and damage class are join into one matrix  before eigen decomposition is 

performed on the single matrix. In the context of a supervised learning problem, the inputs 

data have to be arranged in correlation to the target values so that the input vectors match 

the order of damage severities in each loading class. 

 

6.9.2 Fitting of the input-target variables using the network 

The plots presented here are produced using the neural network with the parameters as 

described in previously in this chapter. In this section, the mapping of input PCA features 

to the target benchmark using ANN is presented. The performance results of the defined 

neural network model include a comparison between  LM training function (maximum 

likelihood framework) and the Bayesian framework training algorithm. The results of 

testing the neural network model shown here are based on the combination of the training, 

validation and test sets so that there will be complete data observations in the analysis. 

It is obvious that, the network predicts the data pattern corresponding to undamaged 

condition of all loading conditions very well (Figure 6.28 and Figure 6.29). In this scope, 
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it is observed that Bayesian Regularization (BR) outperforms the Levenberg-Marquadt 

(LM) training network.  

 

Figure 6.30: Training the data set with LM algorithm and test the network with overall 

undamaged data set. 

 

Figure 6.31: By comparison with the above plot, Bayesian regularization approach is 

described. 

 

The prediction results raised from various loading conditions show excellent separation 

for the undamaged condition. This is expected as the data inputs initially obtained from 
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the standard PCA result have previously shown good separation for all loading class as 

indicated in the PCA visualisation result (Figure 6.36). The higher interest will now focus 

on the identification of damage severities especially for the smaller damage severities 

groups that previously shown to be overlap (Figure 6.36). 

(a)

(b) 

Figure 6.32: The plots show the all damage severities within each loading class Empty 

tank and Quarter-full tank using (a) LM training function and (b) Bayesian 

Regularisation approach. 
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The mapping of the PCA data to the correct target benchmark (shown in Figure 6.30) 

corresponding to various damage severities and loading conditions is excellent. BR has 

shown to perform better than LM using the overall 1000 data observation. As expected, 

the data associated with the highest damage D4 display the smallest error in mapping the 

data input to the target vectors.

 

(a)

(b) 

Figure 6.33: The continuous prediction results from the previous plot showing half-full, 

three-quarter full and full tank in comparison of training functions to LM and Bayesian 

approach. 
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It is interesting to note that, all damage severities are capable to differentiate themselves  

and mapped into respective damage targets distinctly. It is also identified that BR 

outperforms LM approach in predicting the mapping input features from the PCA to the 

target benchmark as illustrated in Figure 6.31. 

As overall, the trained ANN architype successfully perform the mapping given the PCA 

features as the network input and the novelty benchmark as their target.  

 

Table 6.6.1: The results in mean of sum-squared-error between LM and Bayesian 

regularization (BR) 

 

In this test for the trained network, the overall ANN results reveal that using BR, the MSE 

is 2.4 times smaller compared to that MSE produced by LM training function (Table 6.1). 

This justify that the MSE can be reduced if using BR approach. However, it is worth to 

mention that, the duration of training for the network takes much longer compared to the 

LM approach. Another positive point to consider is that, by using BR the needs for 

optimum network size and the concern of overfitting the data are not exist. The non-evident 

framework also generalises better in a smaller data set as it requires no validation set; all 

data set is used in the training   [77].    

The logical argument is whether a neural network is reliable given a new test data set that 

it has not ‘seen’ before in the training. To implement this by using LM evident based 

approach, 50% of the 1000 data observations is used to create the network and another 

50% is used to fully test the network. In this way, the trained network is tested with data 

set which is not previously in the training set.  The result has shown to be comparable 

those from the 70% training set + 15% testing set + 15% validation sets which are 

combined to test the network as shown in the next figures of Figure 6.32. It is indicated 

that the MSE has increased slightly when the test data is new data set and the number of 

Method MSE

LM 8.75E-04

BR 3.60E-04

LM/BR 2.4297
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training data is reduced. However, the network has shown to be able to map the PCA 

features into the corresponding target vectors reasonably well (Figure 6.32).  

 

 

 

Figure 6.34: Using 50% of the data set for training, validation and testing of the network. 

Another 50% of the unused data set are reserved for testing the network. 

 

The overall ANN results are promising when network is linked to the PCA results. The 

integration between the linear PCA (as the network inputs) and ANN (to produce nonlinear 

mapping) enables excellent damage identification under various loading conditions. It is 

worth highlighting here that, referring to Figure 5.36 in Chapter 5 where similar data sets  
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are used in the neural network. It reflects how mapping of the input patterns from the 

standard PCA to a defined target matrix through a two-layer (single hidden layer) feed-

forward neural network can solve the problem related data interpretation and identification 

of damage severities due high overlapping of data classes.  

 

6.10 Conclusion 

The findings first highlight the applications of using GMM before it addresses a nonlinear 

regression analysis based on neural network for separating and identifying damage 

severities under operational loading conditions. Using mixtures of Gaussian distribution, 

the study explores how the data distribution raised from different loading conditions can 

be identified based on the data density characteristics. The results show how damage 

clustering can be established via GMM function based on the mean, covariances and 

mixing coefficients of the components. Based on maximum likelihood framework, EM 

algorithm is used to estimate the parameter means and covariances for each components 

and then optimised the weights for each data set. 

In the section related to GMM, the study has demonstrated how different initializations 

selected for the mean and covariance either by using baseline set or by k-means algorithm 

can produce different outcomes in clustering the data groups corresponding to different 

damage severity. GMM can also potentially used to generate a probabilistic predictive 

model in monitoring of damage severity for a structure under the operational loadings 

changes. It can predict relatively accurate data points to be assigned to the most likely 

distribution model belonged to different damage severity when using data sets obtained 

from the kernel PCA.  

The establishment of the ellipsoids during clustering the data feature can help a user to 

understand the behaviour of the data set and it potentially can become a generative model 

for SHM. This implied that if the undamaged data set is not available, damage monitoring 

can also be done by generating the data point equivalent to the undamaged model. If a new
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data set is mapped into a cluster that far from the undamaged condition cluster, it should 

alert the user about the high chance of the presence of damage.      

Using MLP neural network via nonlinear regression analysis, it has been illustrated how 

damage severities under the effects of operational loading conditions can be effectively 

mapped into their corresponding target values. The target benchmark consists of constant 

vectors that represent the number of loading class and the number of damage severities 

class provides a distinctive damage identification model for varying loading system . 

Utilising feed forward network functions and backpropogation error in evaluating the 

gradient of the mean-square error function, the network effectively mapped the input from 

the linear PCA data into their respective target vectors. 

The study also highlights a comparison of training algorithm LM with Bayesian 

framework that shows trained network using Bayesian approach performs twice better if 

using LM training function. However Bayesian approach takes much longer time for its 

iteration and it requires more computational resources to reach a minimum solution for the 

MSE. In this case, it is suitable only for smaller number of observations of around 1000 

data samples. For instance, when using with the Jabiru wing data samples that consist of 

more than 2000 data samples, the iteration takes significantly longer time and produce not 

far better result than using LM algorithm.  

Using the simplest network consisting one hidden layer and an output layer with the  

logistic sigmoid function (‘tanh’) for the hidden layer  and a linear identity function for 

the output layer, the optimised network is successfully map the data input from the PCA 

data onto the target vectors effectively representing the number of loading class and the 

damage severity class. A conclusive remark about the ANN, using the data inputs produced 

form the standard PCA, the prediction of the PCA features mapped into the target vectors 

corresponding to the number of damage and loading groups is encouraging and has a 

considerable place of opportunity in SHM for damage identification for structure under 

varying load. 



 

 

  

Chapter 7                                                                   

A DAMAGE DETECTION IN A FULL-

SCALE AIRCRAFT WING  

 

 

 

7.1 Overview 

In the previous chapter, a dimensional reduction technique via standard PCA is 

implemented in the aim of reducing the high number of spectral dimensions and 

subsequently extract the underlying feature. Kernel PCA is also used as a nonlinear 

extension of the standard PCA to extract some hidden features related to nonlinearities and 

to improve separation between the data class.  

This chapter extends the work of the previous two chapters of Chapter 5 and Chapter 6 by 

applying the previous machine learning algorithms on data set produced by a full-scale 

aircraft wing VBDD test as opposed to the wing box structure. The majority of the work in 

this chapter mirrors the previous work in that it investigates the effects of variable loading 

on damage detection. 



                                                                                                                                 200 

 

  

In the previous chapters, the essential and well-known machine learning algorithms such 

as the kernel PCA, GMM and ANN regression analysis were implemented on the wing box 

data set, which may be considered as a laboratory structure. One may question the 

simplicity of the structure and it may be the case that it does not possess the same level of 

complexity as a real operating structure. 

In this chapter, the aim remains the same as the previous chapters but now, it moves a step 

closer to real application by performing on a full-scale aircraft wing. This will be achieved 

through an experimental test of the wing in which its fuel tank undergoing incremental 

loading changes. The full-scale wing was obtained from a Jabiru aircraft, manufactured by 

Jabiru Ltd from Australia. The general view of the wing and the aircraft is shown in Figure 

7.1. Due to some safety issues, the aircraft was grounded and the wing was detached from 

the main fuselage and purchased by the Dynamics Research Group for research at the 

University of Sheffield. The novelty of this work lies in the attempt to perform damage 

detection on a real aircraft wing in the presence of varying fuel tank loading in the interest 

of SHM.  

Having produced some encouraging results from the kernel PCA on the wing box data, the 

work now shifts into a full-scale wing in an effort to establish data trajectory for monitoring 

the structural conditions. It was shown previously in Chapter 5 that kernel PCA, under the 

effects of loadings, could provide a way of monitoring structural health by tracking the data 

set’s trajectory in the feature space. Now, nonlinear regression analysis using ANN is to be 

applied on the Jabiru wing (JW) data set after the promising result obtained for the wing-

box structure. In the last section of this chapter, a decision tree classification model using 

Random Forest algorithm is presented as an alternative to the earlier GMM technique.  

In the early part of this chapter, FRF characteristics of the JW of an undamaged condition 

will be examined under varying fuel tank loading. It will be analysed again when some 

damage severities classes are introduced on the wing part under the similar effects of 

varying fuel tank load.  
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Figure 7.1: The exact model of which the aircraft wing used in the experimental study. 

The Jabiru J-170. 

 

7.2 Description of the Jabiru aircraft wing 

The Jabiru aircraft is an Australian ultralight and light-sport aircraft consists of 2-seater 

capacity with the maximum gross weight of 600 kg (Figure 7.1). The wing is a semi-

cantilever, stressed skin type with a main spar. It is a moulded structure with a series of 

ribs, bonded to the fibreglass skin, fuels tanks and to the spar through the moulding process. 

The wing is a strut-braced high-wing of which the strut supports each wing and connects 

to the fuselage. Each wing weights about 27 kg without fuel load. 

 Jabiru aircraft specification 

Model: J170-UL                                                                                                                    

Aircraft maximum weight:  600 kg                                                                                   

Wing span (from one wingtip to the other wingtip): 9.66m                                                    

Fuel capacity: 135 litres                                                                                                       

Wing area: 9.56 m2                                                                                                           

Wing loading: 62.8 kg/m2 
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Figure 7.2: The overall wing structure fitted to the metal rig at the wing root  

 

 

Figure 7.3: Overall experimental set-up with its data acquisition system for the Jabiru 

wing.  

 

The starboard wing was bolted to a steel support at the wing root and has a free support 

provided by a modified aluminium strut inserted through the wing bracket located below 

the wing of which the strut and the bracket could be visualised clearer in Figure 7.6. The 
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strut was a substituted part as the original strut was removed when the wing was detached 

from the aircraft. The newly replaced strut was suspended from a special-built aluminium 

frame using nylon lines that hold both ends of the rod to the high durable springs attached 

to the frame (Figure 7.3).  

 

7.3 Experimental overview 

To implement the VBDD test, a random excitation signal was applied on the structure using 

an electrodynamic shaker. The sampling frequency used in this test was 4096 Hz with 

frequency resolution of 0.25 Hz. In the results, the calculated frequency was 2048 Hz which 

was the Nyquist frequency. From this point, the data acquisition will be referred to in terms 

of spectral lines. The 0-2048 Hz frequency range with 0.25 Hz frequency resolution will 

result in 8192 spectral lines. A higher frequency range of 0-4096 Hz was used so that it be 

would potentially manage to detect a localised damage at higher frequencies.     

 

Figure 7.4: The overall placement of accelerometers fitted below the wing. 

 

The vibration response was acquired and processed DIFA SCADAS III of 16-channel and 

high speed data acquisition system, controlled by the LMS software running on a Dell 

desktop PC. The wing was excited using Ling electrodynamic shaker, powered by an 

amplifier used to generate a random excitation. The shaker unit was attached below the fuel 

S1,…,S12: 

Accelerometers 
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tank of the wing (Figure 7.4). Approximately half of the wing area marked with light blue 

shown in Figure 7.4 indicates the approximated area of the fuel tank inside the wing. The 

base measurements used in the test were the FRFs acquired using a force sensor. Similar 

window processing used for the wing box was applied again on the Jabiru wing. The signal 

was applied using the most common one, the Hanning window so that better frequency 

definitions (resolutions) could be generated. The measurements were performed with 8-

averages to produce an appropriate smoothing effect on the frequency spectrum [61] [1]. 

12 PCB piezoelectric type accelerometers were used to measure the response and they were 

all mounted below the wing using a cyanoacrylate (Loctite brand) of a super glue type 

adhesive. This was performed in line with the recommendation in the  [81] as the amount 

(thickness) can contribute in achieving good frequency response. A relatively large number 

of accelerometers were considered because it was attempt to include a vast area of the wing 

to determine the best signal response. The signals obtained were evaluated and those with 

good frequency definition and sensitive to the properties changes in the structure were 

selected. The prior criteria considered when positioning the accelerometers was that they 

should not be mounted directly onto the wing’s ribs to avoid the low amplitude of the 

natural frequencies due to their stiffness. Initial observation on FRF signals produced by 

sensors mounted on this location generally result in smaller FRF amplitude.  

The natural frequencies captured from all the accelerometers were examined and found that 

those accelerometers in the region indicated by the dashed lines as shown in Figure 8.4 

were relatively high in natural frequencies. The enclosed area as indicated by dashed lines 

was in the vicinity of the shaker and the wing bracket for the strut (Figure 8.4). It can be 

observed that, the response were judged by the definition of the natural frequencies, 

meaning that how distinct the peaks were with minimum noise. At this point, the natural 

frequencies becomes the selection criteria on the basis of the underlying assumption that 

the damage and loading will alter the system’s dynamic characteristic that is governed by 

the stiffness, mass and dissipation energy of the system [1].  The response data will be 

discussed in more details in Section 7.4  
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Figure 7.5: (left) Showing the process of water loading into the fuel tank and extracting the 

water from the fuel tank (right) 

 

7.3.1 Loading definition 

The loading of water into the wing’s fuel tank strictly followed a systematic program that 

is sequential. Beginning from the empty tank, the loading was done in incremental and 

sequential manner until reaching specific loading states at 1.5L, 3L with an increment of 

1.5L then loaded with a smaller increment of 0.3L to achieve  3.3L, 3.6L, 3.9L, 4.2L, 4.5L 

consecutively and finally achieving 6L with higher 1.5L of water increment as illustrated 

in Figure 7.5 (left). Upon reaching each loading state, the vibration test was conducted and 

the vibration measurements in the FRF domain was recorded.  

After reaching 6L fuel tank load capacity limit, the load was then extracted from the fuel 

tank reduced to 4.5L, 3.9L, 3.6L, 3.3L, 3L, 1.5L and empty tank in sequential and 

incremental order as in the previous loading process as illustrated in Figure 7.5 (right). This 

process was conducted mechanically using an electrical pump that extracted the water via 

a tube connected to the fuel tank outlet at the wing root. A valve was used to stop the water 

flow once it reached the determined amount.  The process of loading and unloading of fuel 

tank load was performed in the specified order in two cycles with one cycle comprising 

loading and unloading the fuel tank and repeated for the next cycle with the same 

configuration. The motivation of performing the loading and offloading in such way is to 

simulate a more realistic change of operational fuel loading under small and large 
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Outlet lever 

Water pump 

Outlet hose  
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variations. Previously in wing-box experiment, the loading of water was into two special 

containers attached to the top of the structure, currently in Jabiru wing experiment, the 

loading was introduced directly into the fuel tank in smaller loading variation. The purpose 

is to investigate the capability of the previously applied machine learning algorithms with 

the more realistic scenario.     

 

7.3.2 Damage types definition 

In the experimental test, a real saw-cut damage is initiated into the wing bracket, which 

forms as part of the wing internal ribs. The bracket holds the strut onto the wing. The strut 

acts as as secondary support by holding the wing at its the middle length and attach it to the 

ground part of the fuselage 

The saw-cut damage was introduced into the wing bracket to which the wing support strut 

was attached in progressive manner (as shown in Figure 7.6). Due to a removal of the strut 

from the wing, as to provide extra support to the wing, a replaced strut was fitted into a 

newly made hole on the bracket (Figure 7.6).  

         

Figure 7.6: The saw-cut damage consists of three different lengths indicated by length of 

arrows introduced on the strut bracket underneath the wing.  

 

Three saw-cut damages introduced into the bracket corresponded to the cut measured 

approximately 8 mm, 12 mm and 16 mm represented by D1, D2 and D3 respectively as 

shown in Figure 7.6. Real damage was decided on the wing rather than artificial damage as 

Wing bracket 
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to introduce the real damage effects into the structure and avoid the effects of fixing 

conditions if to use other than real damage [38].   

 

7.3.3 Data acquisition 

In this experiment, a total of 1120 observation samples were measured in terms of FRF 

domain, inclusive of the real and imaginary parts for the undamaged condition set and 

grouped as one matrix and labelled as a baseline set (reference set). After completing the 

data acquisitions for the undamaged condition and the signals were examined if they had 

provided desired response in terms of high frequency amplitude, frequency definition and 

sharp transition due to small loading variations.  

Since the experiments were not repeatable after damage was introduced, any issues 

regarding to accelerometers placements and mountings, adjustments of the shaker and other 

issues pertaining to experimental configurations were solved before damage was 

introduced. The samples associated with each damaged conditions were recorded after 

introducing damage and completing the loading procedure in similar procedure as the 

undamaged condition. Upon completing the FRF measurements for the all three damaged 

conditions, they were compared with the baseline set under similar loading conditions. In 

total, 1140 samples were recorded inclusive of three sets of damage conditions in which 

each set comprised 380 samples and associated with D1, D2 and D3 structural condition 

respectively. The data was grouped corresponding to the structural conditions of the wing 

and its fuel tank loadings as described in the following Table 7.7: 
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Table 7.7.1: Data samples descriptions acquired and recorded in the test.

 

7.4 Dynamic Response Data 

The dynamic response of the aircraft wing under variable loadings will be discussed before 

compared with the structure when implicated with damage. The vibration response of the 

Jabiru wing in FRF was analysed with the main attention on the frequency peaks that 

represent the resonance frequencies of the Jabiru wing. In total, 12 accelerometers were 

used to measure the vibration response of the wing which were distributed widely across 

the wing. All signal from all the accelerometers were examined and the response 

corresponded to sharp transitions and high frequency definition were selected. It is revealed 

that the accelerometers located under the fuel tank along the trailing edge result in better 

frequency definitions. The accelerometers numbered 4, 7 and 11 (shown in Figure 8.4) were 

concluded for further analysis in data processing and machine learning application. 

Wing condition Tank load Wing condition Tank load

N E x 160 samples D1 Ex 60 samples

N 1.5Lx 120 samples D1 1.5Lx  40 samples

N 3Lx 120 samples D1 3Lx  40 samples

N 3.3Lx 120 samples D1 3.3Lx 40 samples

N 3.6Lx 120 samples D1 3.6Lx  40 samples

N 3.9Lx 120 samples D1 3.9Lx  40 samples

N 4.2Lx 120 samples D1 4.2Lx  40 samples

N 4.5Lx 120 samples D1 4.5Lx  40 samples

N 6Lx 120 samples D1 6Lx  40 samples

Total 1120 samples 380 samples

Wing condition Tank load Wing condition Tank load

D2 Ex 60 samples D3 Ex 60 samples

D2 1.5Lx  40 samples D3 1.5Lx  40 samples

D2 3Lx  40 samples D3 3Lx  40 samples

D2 3.3Lx 40 samples D3 3.3Lx 40 samples

D2 3.6Lx  40 samples D3 3.6Lx  40 samples

D2 3.9Lx  40 samples D3 3.9Lx  40 samples

D2 4.2Lx  40 samples D3 4.2Lx  40 samples

D2 4.5Lx  40 samples D3 4.5Lx  40 samples

D2 6Lx  40 samples D3 6Lx  40 samples

Total 380 samples 380 samples
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The key finding from the FRF analysis is that it reveals of the global and local modes of 

natural frequencies throughout the frequency range of the wing. The global modes are 

associated with the vibration of the whole structure. The global natural frequencies modes 

can be identified as frequencies that are clearly observed at all the sensors. Their presence 

was detected in the lower region mode. On the other hand, local modes relates to vibration 

of individual of the individual panels of aircraft wing structure and can be found at much 

higher frequency range, as in this structure, the local modes are detected above 500Hz.  

Figure 7.7 shows the global frequencies mode that are distinctively detected in the lower 

region with better frequency definition compared to those local frequencies mode in the 

higher region. 

Some previous studies described the advantage of using local modes when detecting local 

damage in the structure [1], [82]. In fact, it is revealed that damage is typically a local 

phenomenon and it is usually detected in the higher frequency range of the vibration.  In 

the interest of detecting damage, the local modes located in the higher frequency range will 

be considered for feature selection.  

 

 

Figure 7.7: FRF plots measured from an undamaged JW using the selected 

accelerometers in the presence of global frequency modes.

Empty tank load of undamaged condition  
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The vibration test also reveals some interesting findings of the anti-resonance, where the 

amplitude at certain frequency drops to a minimum value. There are some studies related 

to using anti-resonance to provide useful dynamic properties of a test structure [83].  The 

phenomenon of anti-resonance is caused by destructive interference that can happened due 

to an interaction between the external driving force and with another oscillator [84]. In the 

scope of the current study, the focus is on a feature selection process and damage detection 

under the effects of operational loading variabilities by the use of machine learning 

algorithms.  

 

7.5 Feature selection  

An important step prior to the machine learning stage is to prepare the data set by cleansing 

and organizing them so that a more convenient machine learning implementation can be 

achieved. During cleansing process, key attention was given whether to accept or reject 

the data signal from the selected feature. For instance, if a noisy data signal measured from 

an undamaged condition or a data influenced by change of fixing conditions in the 

experiment is included in the feature selection, it can possibly be identified as an outlier 

and results in false positive damage detection. It is highlighted in many SHM literatures 

that performance of a machine learning is highly influenced by the quality of the selected 

feature [1], [6], [85]. 

The initial steps should be to plot the FRF plot acquired form accelerometer 11 as the most 

appropriate data signal in respect to frequency high definition and good transitions 

between loading class. This includes only main loading class (E, 1.5L, 3L, 4.5L and 6L) 

before examining all the peaks. Figure 7.8 displays a frequency range between 500Hz and 

900 Hz that shows good sensitivity to the variation of water loading. The peaks are in 

better frequency definition and have larger amplitudes at the frequency range. Note that, 

at this point, only data set from undamaged conditions are considered. This approach is 

relatively practical as loading effects shown to be more distinguished on the shifting of the 

FRF peaks than the damage effects. The global frequency modes located in the lower 
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frequency range of 100 Hz to 300 Hz aslo show to be loading-sensitive but later found to 

show little sensitivity to damage. 

 

Figure 7.8: Overall FRF plot comprises 20 observations for each loading conditions spans 

from 20 Hz to 2000 Hz (the noise at the start and end the of FRF has been eliminated). 

 

When the feature from undamaged condition is compared with the smallest damage (D1 

data set) under the same loading variables, some indications of the peaks shifting due to 

damage can be detected (Figure 7.9). It is obvious that the shifting due to damage is 

significantly smaller compared to the shifting caused by loading variations. This 

characteristic is expected as the loading variations introduced are significantly larger 

compared to the damage and this is a typical phenomenon in SHM.    
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Figure 7.9: The selected feature: Comparison of undamaged (solid lines) and D1 saw-cut 

(dash lines) respective to the main loading groups. 

 

At this stage of data pre-processing, the data signal is labelled and organised according to 

their class. Here, a feature is selected based on the sensitivity to load changes and damage. 

In the previous wing box experiment, it was indicated that some features located in the 

higher frequency range shown to be sensitive to load variability would also showed some 

sensitivities to damage.  

So far, a potential feature is considered using a simple method by plotting the original data 

signal on one plot and comparing the feature from undamaged condition with the damaged 

state. In reality, however, this will not be a typical case. The main challenge is that when 

the labels of the data class are not always available. One way to overcome this problem, is 

to implement PCA that is well-known dimensional reduction technique for unsupervised 

data problem. Here it is utilised to transform the original data to combinations of data 

variables so that the effects of variability from the loading and damage can be better 

visualised and identified. At this stage, it is essential to examine the result of the PCA 

transformation to ensure all data points collapse into the right class.  

Here, PCA was also utilized to verify if a data point associated with a class falls into its 

corresponding class. If a small number of observations in which the data point collapse 
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into another data class, it has to be discriminated from the observations before introducing 

test data. If the outliers are remained in the data set, it can result in false interpretation of 

the loading class as illustrated in Figure 7.10. The cause of these outliers can be due to 

many reasons as for this case; it is mainly because of the nature of the large experimental 

work such as the variability from the instrumentation (adjusting the wing stabilizer and the 

height of the the stringer) and water loading variances during the filling and extracting of 

water process.  

It was found out that, there was a possibility, there few of the data points corresponding to 

the smaller inter-class variance loading class (3L, 3.3L, 3.6L, 3.9L, 4.2L and 4.5L) falsely 

projected into its next neighbouring loading class. Inter-class variance here infers to the 

variance of different data class and not the inner variance of within the class itself. This 

behaviour was not observed in the loading case of higher inter-class variance (E, 1.5L and 

6L) class. In Figure 7.10, a small group of data variables associated with 3L class (circled 

in red line) was observed to fall into its neighbouring class of 3.3L loading class. The same 

problem raised for 3.3 loading class (in red circle) where it collapsed into 3.6L loading 

class. The small data group that deviated from the majority of the data points associated 

with the same loading class can be considered as outliers and was discriminated from the 

loading class. This phenomenon was also observed in the plot of their original data signals 

so PCA helped to verify this problem. This is an essential step before applying test data 

set from various damage severities classes in comparison to the undamaged baseline data 

set, so that it helps to avoid a false damage or loading interpretation. 
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Figure 7.10: Initial PCA application reveals of some outliers from 3L class and 3.3L 

class that included into a wrong class belonged to the adjacent loading class. 

 

It is essential to examine all of the frequency range including the higher frequency 

spectrum so that the selected feature is the most appropriate one. Having feature that is 

sensitive to loading and damage, it can establish useful visualisation results and can give 

better damage detection used in outlier analysis at later stage. Using a standard PCA, it 

was performed on each block comprised 1000 spectral dimensions as shown in Figure 

7.11. Note that, the first block begins at spectral line 230 and the last block at spectral 7000 

to exclude the high noise signals. A complete data characteristic from E to 6L of loading 

process can be obtained and included on a single projection when consider a full trend of 

the FRF signals as a result in changing of load. In the following section, it will be described 

the use of PCA on each block of spectral dimensions and to observe different 

characteristics in respect to loading variations.  

Note that, at this stage, data sets from damage conditions are not included  because the 

main concern at this point is to obtain visualisation of the complete trajectory 

corresponding to the baseline data variables. Data sets corresponding to damage conditions 

will be applied on the baseline set after selecting the appropriate feature. 
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Figure 7.11: An illustration that shows how feature selection is divided and analysed in 

the JW data set. 

The main indicator of the selected feature should be that the data class of different loadings 

display distinctive separations for all nine loading classes and assume a trajectory pattern 

for the purpose of monitoring the structural condition. In the previous visualisation results 

of wing-box experiment as highlighted by Figure 5.18 and Figure 5.19, there is an 

advantage if the projection can describe the trajectory or track pattern in respect to SHM. 

Adding the data set from the damage conditions under similar loading conditions, as the 

wing-box result highlighted, the test data path (damage conditions) will assume the similar 

track pattern. The expected challenge is that the possibility of data overlap between the 

baseline and test set.  

Practically, distinguishing the effects of operational loadings would not always be the main 

issue. Furthermore, loading parameter is typically a controlled parameter compared to the 

damage parameter, which is under normal circumstances, is unknown. In the following 

results, using standard PCA, it will be shown the process of extracting desired FRF features 

before it is considered as the main feature for the Jabiru wing.  
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Figure 7.12: The potential feature candidate due to the distinctive data separation 

including for class with smaller incremental load. 

 

 

Figure 7.13: Distinct data separation but capture incomplete trace of data pattern. 

 

Figure 7.12 displays systematic order of loading class with distinctive separation of class 

including the smaller inter-class variance. It exhibits a full tracking pattern that can be 

useful in SHM when test data is projected along the baseline set. In comparison to Figure 

7.12, the projection shown in Figure 7.13 indicates the effects of using a shorter range of 

spectral dimensions of 500-800 spectral lines in the PCA. The effects that can be seen from 

using shorter dimensional range is that there relatively incomplete trajectory (more 

information loss due to less number of dimensions) with more of straight trajectory pattern.
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Figure 7.14: PCA on higher spectral dimensions using baseline data sets. 

 

 

Figure 7.15: PCA on the next block consists of spectral lines 2001 – 3000. 

 

Moving into higher spectral dimensional range, PCA is applied on the selected range of 

spectral lines as shown in Figure 7.14 and Figure 7.15, it is indicated that the separation 

between data classes with smaller incremental load is less distinctive with some data 

overlaps especially between 3.3L and 3.6L loading class compared to the previous feature 

with 230-1000 spectral lines. Presence of overlapping within these small incremental 

loading classes make this feature is not favourable for use. 
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Figure 7.16: Using PCA for feature extraction performed for the 3001- 4000 spectral 

lines of frequency range 750 Hz – 1000 Hz. 

 

Figure 7.17: PCA extraction for the frequency range of 1000 Hz to 1250 Hz. 

 

The results from Figure 7.16 show very high of data overlapping around the loading classes 

of small loading increments between spectral lines 3001 and 4000. The next feature 

extraction using higher frequency range 1000Hz to 2000 Hz indicates encouraging 

variables separation particularly for smaller inter-class variance. However, there is highly 

overlapped data variables between E and 1.5 loading class. In the interest of establishing 

a damage-sensitive feature, this spectral range seems appropriate but the results show less 

sensitive to large variability make it unfavourable for selection. From the results of feature 

extraction, it can be described that, the feature comprises 230th to 1000th spectral lines is
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 the most appropriate to use as the feature for the JW. This feature set will be usedn and 

will be applied with the test data consists of damage 1 (D1), damage 2 (D2) and damage 3 

(D3) with comparison to the baseline data set.  

In this section, it has been demonstrated how a standard PCA can be utilized in the process 

of selecting a feature that exhibits different data characteristic in terms of the variables 

separation and data trajectory. In the next section, the focus will be to examine the test data 

sets and applying them with the coefficients (loading matrix) of the baseline PCA (of 

undamaged condition) after standardising the test set over the baseline set. 

 

7.5.1 Q-statistic for inspecting outliers 

Before implementing the PCA dataset with any machine learning algorithms, it is essential 

to verify whether the data set has a good-fit based on the full dimensional data sets. Q-

statistics are the residual or the difference between the score projection in full dimensional 

space and the projection in reduced dimensional space. In the interest of determining how 

well each data set in the PCA model conforms to the original dimensional space space. 

In Chapter 2 of Section 3.3.2, definitions Q-statistic was explained. To implement Q-

statistic, the difference between the T-squared values in the full space and the reduced 

space was computed. The residuals from test data set and baseline set are compared and 

computed using a Mahalanobis Square Distance (MSD) function to seek any data 

abnormalities lie in the data space.  

Q-statistic also indicates the extent of each spectral variable contributing to the sum of 

squared error due to the lack of fit between the full dimensions and lower dimensions. For 

this case study, Q-statistic can explain if the reduction of dimensions contribute to high 

error. If the values of Q-statistic is high which indicates large error between the PC models 

and the original model, a straightforward solution will be to consider higher number of 

principal components to reduce the residual error.
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The first step is would be to perform PCA based on the baseline set (undamaged condition) 

and apply the coeeficients on the test data. Prior to that, the baseline set is standardised 

and  the test set is standardised using the mean and standard deviation of the baseline set.   

This model is parallel to the PC model A described previously in Chapter 6 under Section 

6.5.1. In dealing with larger data sets consist of many variables, the technique based on Q-

statistic can shed some quality of data acquisitions and some outliers related to variability 

due to the high noise which are not caused by damage can be removed.   

Some outliers are detected when dealing with the D2 and D3 data set. There is few data 

points in D2 and D3 that observed to deviated from the most of data points corresponding 

the same data group as displayed by Figure 7.18. One way to solve it is to remove these 

outliers from the test set detected in the residuals using a confidence interval. Based on 

99.7% confidence interval with an equivalent constant of the value of 3, the data points 

are evaluated if they fall within the mean of the Q-statistic (Figure 7.19). The following 

results illustrate the effects of outliers are being removed from the damage data set.  

 

Figure 7.18: The results using Q residuals test for test data set. 
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Figure 7.19: The result of Q residuals after removing the outliers from D2 and D3 test 

set.  

The Q residuals obtained (Figure 7.18) show the raw data lack-of-fit between the full space 

observations and the dimensional reduced space. It indicates some extreme outliers within 

D1 and D2 data set that cause inaccurate comparison with the baseline data set. As MSD 

is very sensitive to outliers, any extreme values that deviate from the rest of the data set 

would be exposed in the plot (Figure 7.18) and the associated data samples are excluded 

in the data set before implementing further machine learning task. By removing outliers in 

the data set, the damage detection results provide more accurate and reliable damage 

detection (Figure 7.19). 

 

7.6 Data visualization and feature extraction 

The goal in this section is to demonstrate the data transformation of the vibration data set 

from the JW, originally in high dimensional space to a reduced two-dimensional space for 

the purpose of visualization and pattern recognition. This is achieved by using a standard 

PCA and the kernel Gaussian PCA. The key advantage of introducing kernel PCA as a 

nonlinear form of PCA lies on the capability of computing the principal components in 

high dimensional feature space related to input space by using nonlinear mapping function  

by means of kernel function computed in input space [52]. By obtaining principal 
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components in high dimensional space, it potentially provides better data characteristics 

and deeper features that normally lives in a possibly high dimensional space including the 

more complete data trajectory pattern from the Jabiru wing data. Previously, in the wing-

box data set, kernel PCA had been utilised very well to expose the hidden variables by 

improving the data separation.  

In this chapter, based on the baseline model that follows the procedure explained in Section 

5.5.1 of Chapter 5, standard PCA is initially performed before implementing the kernel 

PCA. The PCs projections associated with test data sets are then projected onto the same 

plot as the baseline projection.  

To implement kernel PCA on the JW data set, the procedure follows the similar steps as 

finding the inverse variance (parameter sigma) based on the mean of the selected smallest 

distance and the distance matrix applied as described in Chapter 5 of Section 5.4 for the 

baseline set. Basically, the technique involves dot products (x,y) ( (x) (y))k     and  

instead of having to solve the nonlinear mapping  into high dimensional space, the ‘kernel 

trick’ representations is used to solve the nonlinear transformations. The kernel used in 

this work is given by   (x,y) exp x - yk  
2 2

2 similar to the one used in the wing-box 

data set and follow the mathematical principals in Section 3.2.2 of Chapter 2.  

The first step is to display the PCs projections of baseline data set using the selected feature 

set as described previously. In the following results, comparisons of standard PCA and 

kernel PCA are illustrated. 

Based on the result from Figure 7.20 using standard PCA, it is indicated that variables 

from each loading conditions are clearly separated including the loading classes associated 

with the smaller loading increments. For the kernel PCA transformation as shown in Figure 

7.21, the separation of the loading class has shown to improve and build better data 

trajectory. 
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Figure 7.20: 2-D visualization using the undamaged data set (baseline set). 

 

 

Figure 7.21: The result of performing kernel PCA on the similar baseline set. 

 

7.6.1 PCA for saw-cut damage 

At this stage, PCA is applied on the test data set from the JW damage conditions and 

projected on the plot consists of PCs projections corresponding to undamaged condition. 

The goal is to visualise the PCs projections and to verify if the new projections associated 
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with damage conditions can provide an indication for a damage possibility in the wing. 

This is achieved by comparing the new PCs projections to the existing PC projections 

(from undamaged condition) with respect to their separation.  

 

 

Figure 7.22: A comparison of the data transformation between the linear PCA (top 

figure) and the Gaussian kernel PCA (bottom figure) using undamaged condition data set 

as the baseline with respect to D1 data set. 

Referring to Figure 7.22, kernel PCA has achieved a greater degree of data separation 

between undamaged and D1 data set. The data class from the smallest saw-cut (D1) shown 

not overlap with the PC projections of the baseline set. It has also established better data 

trajectory in form of nonlinear curve compared to the linear PCA which is restricted to a 

straight trajectory. Adding PC projections from other test data from higher damage 
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severity, D2 and D3 test set, the results in the standard PCA show significant data 

overlapping between the baseline and all test data PC variables. 

 

Figure 7.23: Linear PCA transformation in the comparison of undamaged and all 

damaged conditions based on the undamaged data set as the baseline. 

 

Figure 7.24: The result obtained from nonlinear transformation via kernel 
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In contrary, kernel PCA has set a greater degree of data separation among the baseline set 

and the all test sets. Noting the damage severities are not correlated with the degree of 

separation except for the empty fuel load. In the author’s perception this can be due to the 

degree of damage introduced in the wing bracket which is only 4 mm increase from D1 to  

D2 and D3 respectively. 

A close view around the class associated with small loading increments as illustrated in 

Figure 7.25, it reveals some effects of small loading variability on damage variability. 

From the linear PCA result, it shows that due to the effects of small loading variability and 

damage severities, linear PCA can project the variables associated with damage condition 

into variables corresponding to next loading class associated with undamaged condition 

given the loading variability is small (marked by red ellipse). Pertaining to the result shown 

in Figure 7.25, variables belonged to the class associated with D2 and D3 structural 

conditions and 3L loading condition are projected into subsequent 3.3L loading class 

belonged to undamaged condition. These variables marked by red ellipse indicate the 

variables having such problem as illustrated in Figure 7.25. 

 

 

Figure 7.25:  A zoom-in view around the classes of small loading increment. The red-

dash ellipses mark the variables projected into wrong data classes. 
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Figure 7.26: Damage severities corresponding to classes of small incremental loading 

using kernel PCA. 

This clearly shown that standard PCA has restricted capability in discriminating damage 

conditions from loading conditions when it involves small variability. This is the 

underlying problem in SHM where both small loading variability and damage variability 

present similar effects on the FRF data signal and there is a limitation using linear PCA 

for such problem. 

On the other hand, the study verifies that by utilising kernel Gaussian PCA, the problem 

related to the linear PCA projection particularly for variables with small loading variability 

and damage severities classes can be greatly reduced. As seen in Figure 7.26, all variables 

irrespective of different damage conditions are projected into their particular loading 

classes.  There are several possible explanations for the superior performance of kernel 

PCA in respect to this JW case study:                                                                                                                                        

 The kernel function created from distance matrix is computed uniquely based on 

each test data set in which each set is associated with one damage condition and 

encompassed all loading conditions. 

 The inverse variance is also adapted from each test set via the distance matrix. As 

the distance matrix measures the data distance between baseline set and the test set, 

the inverse variance which is calculated based on this distance of the selected 

smallest distance represent the variability in the test data.  
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 The effects of the inverse variance in the denominator of the exponential term in the 

kernel  (x,y) exp x - yk  
2 2

2 provides a capability for the variables to be 

better identified and more separated when the inverse variance is small. Note that 

x y
2
 denotes the Euclidean distance calculated in the distance matrix. 

Kernel Gaussian PCA has proven of its ability to enlarge the distance between variables 

of different test data before general treatment of PCA is applied on the adaptive kernel. By 

eigenvalues decomposition,    V,E eig K , PCs are computed from the eigenvectors V 

which are sorted with respect to the eigenvalues E in ascending order using the centralised 

kernel matrix K. 

The zoomed view on of the loading class in Figure 7.27 below signifies the capability of 

the kernel representation in the interest of SHM and damage identification. The results 

from standard PCA and kernel PCA are compared to illustrate the positive effects on using 

the kernel PCA. The variables from undamaged, D1 and D3 are highly overlapped among 

each groups in comparison to variables projected using the kernel PCA which are clearly 

separated and correlated properly with damage severities. 
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Figure 7.27: The results of standard PCA and kernel PCA focusing on empty fuel load. 

 

 

7.6.2 JW novelty detection 

In this analysis, MSD is used to compute the distance of the principal components (PCs) 

projections between baseline set and each test sets. It is worth mentioning that, in kernel 

PCA, it involves finding the eigenvectors of the N x N matrix (number of observations, N) 

rather than the D x D matrix (number of spectral dimensions, D). Therefore, the user has 

to determine approximate the number PCs to include the outlier analysis. 

Empty tank: Linear PCA 
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Figure 7.28: Novelty detection for the JW using standard PCA. 

 

Figure 7.29: The novelty detection result using PCs variables obtained from kernel PCA. 

 

In respect to this JW data set, it is identified that 50 principal components in the reduced 

dimensional space is appropriate in the outlier analysis. A higher PCs than 50 is shown to 

cause no much improvement on the novelty detection and if lower number of PCs makes 

the novelty detection to perform unsatisfactorily.  

The novelty detection from the standard PCA shows the damage detection fails to detect 

the lowest damage D1 as damage for almost all loading class. The variables of D1 is falsely 
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identified as undamaged known as false negative detection. This scenario can make the 

damage unnoticed and can increase the possibility of higher severed damage in shorter 

period of time if the initial damage is overlooked and unresolved 

On the other hand, the damage detection for all variables obtained from the kernel PCA 

clearly gives 100% accurate damage prediction for all loading class (Figure 7.29). In 

addition, the score variables associated with each test set clearly separated from the 

threshold line. The variables also show to be correlated well for D1 test set but switched 

between D2 and D3. It is observed of a trend in each test data through all data observations 

as the loading is slowly switched from one class to another due the large and small increase 

of loading. This effect of a slow changing between data variations as the mass loading is 

changing from one class to the next class gives better identification of damage severities 

in addition to the accurate damage detection which cannot be indicated in a standard PC. 

A similar trend of switching latent variables is higlighted recently using Treed Gaussian 

Process in [32]. 

 

7.6.3 Identifying key spectral variables 

Using the features computed from the PCA, the highest variance represented by the 

dimensional variables in the principal components can be found via the coefficients or the 

loadings matrix of the PCA. It tells the contribution of the spectral variables in the two 

first principal components. Principal component 1 and 2 (coefficients) constitute the 

eigenvectors corresponding to the largest eigenvalues or highest data variability measured 

for all the dimensions. Using this criteria, the spectral variable correspond to the most 

significant FRF peaks in the PCA can be identified and should be included in the feature 

selection. 

Figure 7.30 represents all spectral variables (230 -1000 spectral lines) included in the PCA. 

The blue lines denote the vectors of each 771 spectral variables showing their direction 

and length. They vectors indicate how each variables contribute to the principal 

components in the PCA plot. The red dots in the plot represent the data observations with 
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their their coordinates indicate their scores values for the first PC which is the horizontal 

axis and second PC indicated by the vertical axis [72]. 

 

Figure 7.30: The plot of coefficient vectors on the standard PCA of the baseline data set. 

 

The information about the spectral dimensions (spectral variables) associated with the FRF 

peaks that gives the highest coefficients on the PC projection can provide indication for 

spectral range should be considered in feature selection. The highest coefficients of the 

first principal component (horizontal axis) indicate the highest variance or eigenvalues 

corresponding to spectral variable 569 and 570 which is one of the FRF peaks as indicated 

in the FRF plot in Figure 7.33. The spectral number 650, which shows significant 

contribution on the PCA (Figure 7.31) in terms of the highest variance, is also one of the 

main FRF peaks in empty fuel tank load as indicated in the FRF plot in Figure 7.33. This 

technique allows better decision on feature selection by focusing on the variables that 

contribute higher coefficients (loading) values in the PCA plot. Hence, using this 

information, one can reduce the feature’s dimensions by concentrating more on the spectral 

variables that have highest coefficients in the first two principal components. 
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Figure 7.31: Zooming-in into the component 1 of the above plot: 

The zoomed view on component 1 in Figure 7.31 highlights the spectral variable 650 and 

569-570 that show the largest coefficients values on the first PC. These spectral variables, 

which has the highest coefficients, correspond to the FRF peaks as shown in Figure 7.33. 

Figure 7.32 shows the spectral variables (in blue lines) on the second PC which indicate 

spectral line 407 to 409 and this range of spectral dimensions should be included in the 

feature to ensure good data variability and structure’s characteristics in term of the change 

of frequency peaks. 

 

Figure 7.32: Zooming-into the component 2: 
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Figure 7.33: The peaks associated to the highest coefficient of the principal component 

1is shown on the FRF plot. 

The technique via PCA in finding the spectral variables of the FRF that contribute 

significantly to the PCA is discussed. Having appropriate number of feature dimensions 

are favourable in the machine learning perspective. In high data dimensions comprised of 

many loading classes, one of the challenge is will be to choose the appropriate number of 

spectral dimensions for its feature as shown in Figure 7.34. Plotting the coefficients of the 

first and second PCs, one is able to identify the spectral dimensions that contribute to the 

highest variance in the PCA and identify them on the FRF plot for its feature selection. 

Using this information, one can include these FRF peaks in the feature and possibly reduce 

the size of the feature by excluding the variables associated with low variance as illustrated 

by Figure 7.34.  
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Figure 7.34: The location where the peaks with highest variance from the selected feature 

is chosen (from 230 to 1000 spectral dimensions). 

 

7.7  Neural Network Regression model 

In this chapter related to neural network regression which data labels are known, the aim 

is to map the input features obtained from the standard PCA to the target vectors. The 

target benchmark is divided into 2-column matrix with some arbitrary values 

corresponding to the numbers of damage and loading classes in similar process for the 

wing-box case study. The network is created based on the general procedures and 

guidelines explained in Chapter 6 of Section 6.8.  

The network designed for the JW data set is a multilayer perceptron consists of one hidden 

layer and one output layer. The transfer function used in the hidden layer is a radial basis 

function (RBF). It has been found that the network gives good generalisation performance 

with 25 hidden nodes and 20 PCs as the input vectors. In this case, training algorithm 

Levenberg-Marquete will be used for training the network. The training is performed on 

the 70% of the overall dataset that is randomly selected from the overall data set. 15% of 

data set is used for validation and another 15% for a new testing.  

For the JW case, radial base function (Gaussian function) is used as the the network 

transfer function. Using this transfer function, each inputs values is squashed with a bell-
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shaped function centred at 0 in to the interval [0 1] with fixed variances. Here the net input 

for the RBF is the vector distance between the input vectors p and the weight matrix w. 

Several benefits have been identified using RBF (Radial basis function) [86]. Among them 

is the decision boundary that is hyper-ellipse compared to sigmoidal unit which uses 

hyperplane.  With RBF activation function, it produces local response function through 

the exponential of distance squared  exp w - p
2

rather than the dot product x w as 

used in sigmoidal unit to produce linear response. RBF trains faster than sigmoidal unit 

function but it requires more hidden nodes (one hidden node for each input pattern) for its 

local representation. The network specification used for the mapping of PCA features into 

damage and loading target vectors for the JW is summarised as follow: 

 

  

 

 

Table 7.7.2: Neural network specification for the JW 

 

In designing three neural network models based on the specified parameters in Table 7.2, 

the study aims to investigate                                                                          

 the effects of having unequal proportion size of data set associated with 

undamaged and damage conditions in a training data se

Network
Network 

architype
Training method

Training 

algorithm 

MLP Feedforward

I-H-O (1 input 

layer, 1 

hiddenlayer , 1 

output layer

Backprogation
Levenberg-

Marquadt

Number of 

hidden nodes

Number of inputs 

patterns

Number of 

output nodes

Hidden nodes 

transfer function

Output nodes 

transfer function

25 20 PCs 2
Radial basis function 

(RBF)
Linear

Training set Validation set Testing set Error function

Data set 

configuration
0.7 0.15 0.15 MSE



                                                                                                                                         237 

 reducing number of data dimensions. 

 

 

7.7.1 The neural network with the higher dimensional spectrum 

The input of overall data samples are randomly divided into subsets of training set, 

validation set and testing set using the ‘dividerand’ function based on the ratio specified 

in Table 7.3. Initially, the network is created based on the specified network parameters 

defined in Table 7.2 using the overall data sample 2253 with 771 spectral dimensions 

ranged between 230 and 1000. The network is trained several times until good accuracy is 

found. In the first network model, testing the trained network with respect to using all data 

samples gives the performance error as 1.898e-4. The overall configurations of the first 

network is summarised as   

 

 

 

Table 7.7.3: Data configuration of the network 1of the JW 

 

The mapping results using the first network model is presented in the following page. It is 

clear that the trained network effectively mapped the features from the linear PCA to their 

respective loading and damage classes. In each plots, there are 3 loading classes in which 

each loading class includes 4 structural conditions (Undamaged, D1, D2 and D3). The 

network has to map each of 20 feature patterns into one of those 36 classes (comprised of 

9 loading class in which each loading class consists of 4 structural conditions). There are 

no significant change in performance in terms of the fitting error between networks outputs 

and the network target when the mapping is performed on loading class of either small 

increments or large loading increments.   

Network Baseline set Damage1 Damage2 Damage3 Damage sets

1 1120 380 373 380 1133

Network Dimensions Total observationsTraining set (70%) Testing set (15%) MSE

1 771 2253 1577 338 1.898e-04.
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(a): Fuel tank loading class E, 1.5L and 3 L inclusive of 4 structural health conditions. 

 

(b): Fuel tank of smaller incremental loading- 3.3L, 3.6L and 3.9 L inclusive of 4 

structural health conditions. 
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(c): Subsequent fuel tank loading class 4.2L, 4.5L and 6 L inclusive of 4 structural health 

conditions. 

Figure 7.35: Overall mapping of input pattern from standard PCA score data to the 

benchmark target of 4 damage class and 9 loading classes using defined JW neural 

network. 

 

7.7.2 Reducing the baseline samples and dimensions in neural network 

In this section, the network generalization is evaluated by reducing the number of samples 

of the baseline data set as well to equalise the number of samples for the baseline and 

damaged data set (and referred as network 2). In the previous network (network 1), the 

baseline data is made up of 2.84 times more number of observations than each damage 

sets. Despite the high number of overall data samples that is 2253 data samples, the main 

concern is that whether the generalisation can be affected due to the disproportion number 

of data samples between undamaged and damaged set.  

To verify this ambiguity, the number of samples in baseline set and in all damage sets are 

made to be proportionate. Using the same network’s parameters and training function, the 

network 2 composed of reduced number of observations is trained and tested using the 

similar network parameters and architype. The performance of the network 2 is computed 
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and after testing the trained network several times to find the smallest error which is 

6.588e-4. 

The third network model is implemented using the same network parameters and training 

function but now both data samples and number of dimensions are reduced. The number 

of spectral dimensions is reduced from 771 to 301 which reduced to more than half of its  

dimensional size. The input feature used for the network 3 is shown in Figure 7.36 which 

shown to be almost impossible for anyone to differentiate between the undamaged and all 

damaged sets based on visualisation. It is also shown the loading class of small loading 

increments (3L to 3.9L) overlapped with their subsequent class and this visualisation 

brings no meaning in the context of damage monitoring without further use of an 

appropriate machine learning.     

 

Figure 7.36: The input feature from the standard PCA with reduced number of samples 

and dimensional size. 

 

The results of the mapping from the PCA input features to the target vectors for network 

2 (reduced samples number) and network 3 (reduced samples number and dimensional 
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size) are presented on the following page. Each tests comprising 9 loading classes (E to 6 

L)in which each class consist of 4 structural conditions (Undamaged, D1, D2, D3). For 

clarity, the first plot displays 4 of the loading conditions and succeeding 5 loading 

conditions on the other plot. 

Initial examination of the damage detection and identification based on the mapping of 

PCA features to the arbitrary stepwise target benchmark produces distinguishable damage 

severities on each steps with each loading class is highly distinguished (Figure 7.37 – 

Figure 7.38). The result of using more spectral dimensions (Figure 7.37 (a)) produces 

slightly better prediction compared to the result in lower spectral dimensions (Figure 7.37 

(b)). 

The accuracy of mapping the features to the stepwise target for each loading classes with 

small incremental loading is lightly reduced compared to the classes with larger 

incremental loading (Figure 7.38(a) and Figure 7.38 (b)).  

The calculation of the network performance in terms of MSE for the second network which 

has double of spectral dimensions compared to network 3 is 6.588e-4. Network 3, which 

has much smaller number of spectral dimensions, gives slightly lower performance at 

6.988e-4. 
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(a) Equal numbers of data observations in each structural conditions (771 spectral 

dimensions) 

(b) Equal numbers of data observations in each structural conditions and reduced 

dimensions (301 spectral dimensions)  

Figure 7.37: (a) A comparison of the network result when using the inputs of much 

higher dimensions (230-1000 spectral lines) and (b) the lower dimensions of 500-800 

spectral lines. 
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(a) Equal numbers of samples in each structural conditions with 771 spectral dimensions 

in smaller incremental loading. 

 

(b) Equal numbers of samples in each structural conditions and reduced dimensions 

Figure 7.38: Comparison of the results among smaller incremental loading classes.  

 

The pinnacle of the work has established that the neural network again remarkably 

distinguish the features of various loading and damage severity classes and mapped them 

appropriately to their respective stepwise target vectors. Having investigated the effects of 

data samples between the damaged and undamaged condition of unequal size, it is found 
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that the size of samples play significant role in improving the neural network performance. 

In this study, it shows that by having 50% more data samples for training the network can 

improve the network performance 3 times better using standard MLP feedforward 

backpropagation with single hidden layer network. Having higher number of spectral 

dimensions does not necessarily guarantee better network performance. In this case of JW, 

the network performance with higher dimensional inputs performs only 1.06 times better 

than the network having less than half of the dimensional inputs. The finding also describes 

that the MSE is shown to increase for neural network to fit the features for 3.6L , 3.9L, 

4.2L and 4.5L loading class due to its small incremental loading. The details of the neural 

network in comparison their samples size distribution among the baseline set (undamaged 

set) and the three damage conditions are presented in Table 7.4 as follow. The table also 

describes a comparison between Network 2 and Network 3 with respect to the size of input 

dimensions in terms of MSE performance.  

 

 

 

Table 7.7.4: The comparisons between the training and testing sets in their numbers 

distribution in each network. 

 

Network Baseline set Damage1 Damage2 Damage3 Damage sets

1 1120 380 373 380 1133

2 373 373 373 373 1119

3 373 373 373 373 1119

Network Dimensions Total observationsTraining set (70%) Testing set (15%) MSE

1 771 2253 1577 338 1.898e-04.

2 771 1492 1044 224 6.59E-04

3 301 1492 1044 224 6.99E-04

Network MSE ratio to network 1

1 1

2 3.471

3 3.681
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As a conclusion, the results summarise the improved generalisation of the network when 

using higher size of data samples compared to using higher number of spectral dimensions. 

Having more data samples for training regardless of the distribution size among the 

undamaged or damaged condition sets can improve significantly the network performance. 

As a result, the network can learn the system characteristics more details and provide good 

generalisation and reducing the MSE. Having significantly, higher number of spectral 

dimensions (more than double) does not guarantee an improved network performance as 

highlighted by the network 2 and network 3 in Table 7.42. The study successfully provides 

an effective technique in discriminating the loading effects from damage identification 

process using only one hidden layer standard feedforward backpropagation network.  

 

7.8 Classification trees 

In chapter 6, the study has described GMM as a parametric classification model in 

predicting the data features of various loading classes associated with undamaged and 

damaged conditions by establishing clustering onto the mixtures of Gaussian distribution 

density model. In this chapter, a non-parametric method in classifying multi-class variables 

performed in a hierarchical and powerful ensemble method of decision trees is presented. 

The classification tree model described here is based on the technique proposed by 

Breiman et al. [87] 

 

Figure 7.39: A simple decision tree for a binary classification from an input space X1 and 

X2 [88].
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In a single decision tree (Figure 7.39), the tree predicts classifications based on two 

predictors, predictors X1 and X2. Beginning at top node (t0), it examines the values of the 

variables or predictors to decide which branch to follow by creating splits at first level to 

reach t1 and t2.  At the second level (at node t1), the tree makes another partition to separate 

t3 from t4 and assigned each those as c2 and c1. When the branch has reached a leaf node, 

the data is classified. The tree model develops multilevel clusters in a hierarchical way 

where clusters at one level are linked to the clusters at the next level.  

 

7.8.1 Prediction trees 

In this section, further descriptions on how a decision tree predicts each class for the 

training samples is described. Prediction trees uses recursive partition as a representation 

of its splitting of its tree branches. Recursive partitioning can be inferred as the partitioning 

the data space into smaller regions. The partitioning of the data space is continued and 

repeated until it reaches a data set that is purer than the parent set so that it can be fitted 

with a simple model with less complicated feature. In each cell (or leaf), a model is just a 

constant estimate of a particular class. Suppose the data samples (xi, yi), (x2, y2), …, (xn, 

yn) are all the samples belong to the leaf k. The model for leaf k is described as just 

1
ˆ

n

ii
y y

n
  which is the sample mean of the response variable in that cell (leaf) k. 

In this chapter, a technique known as Bagging and the Random Forest algorithm are 

discussed as they are interrelated and used in the tree model. Bagging is a technique applied 

as a step in the Random Forest algorithm. They applied on the JW data sets of reduced 

dimensions using Matlab Statistics and Machine Learning toolbox under ‘TreeBagger’ 

function. 
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7.8.2 Explanation of bagging 

Bagging is a technique for generating multiple versions of a predictor and then find an 

aggregated predictor based on these generated predictors. The aggregation averages over 

the versions when it predicts a numerical outcome and gives numerous votes when 

predicting a class. Multiple versions are produced by making bootstraps that replicates the 

learning sets and making these as new learning sets. The underlying of bagging technique 

used here is based on Bagging Predictors by Breimen L (1996) [89].   

Bootstrap aggregating is the acronym for bagging. It describes the way the resampling is 

done. Bootstrapping means a type of resampling where large number of smaller samples 

are withdrawn repeatedly from the original sample set with replacement. Replacement here 

means the smaller samples are replaced back into the main sample set each time when the 

smaller sample is withdrawn from the main sample. The bootstrap aggregation of an 

ensemble of many tree predictors can reduce the effects of overfitting and improves 

generalization. It grows the decision trees in the ensemble using bootstrap samples 

extracted randomly from the input data set.  

Bagging classification is a superior method in tree predictions category. It works by 

averaging the noisy and unbiased models so that a new model with low variance is created. 

The technique works on the random forests algorithm that grows many classification trees 

and gives the best prediction of the class with the most votes over all the trees in the forest 

[88].  

 

7.8.3 How Random Forest algorithm works 

Having described the Bagging technique which is done as a step in Random Forest 

algorithm, now a brief description of the algorithm is briefly described. Random Forests 

are a combination of tree predictors in such that each tree has its own random vectors 

values sampled independently with the same distribution for all trees in the forest [88]. 

The bagging technique is done as a step in Random Forest algorithm [88] which works on 
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a large collection of decorrelated decision trees. The details of the algorithm are presented 

by the author, Breiman in which the theorems and proof  can be found in [88].  Before 

proceeding to the bagging method, consider the criteria for each tree:  

 The number of training data samples are selected randomly from the original 

sample with replacement and would be the training set for growing the tree.  

 The input number of variables m is chosen randomly out of M variables (m < M). 

The selected variables m determines the split at each node that is based on the best 

split of the variables m. The number of m is made unchanged throughout the forest 

growing of many prediction trees. 

 Each tree is grown to the deepest level and it involves no pruning. 

It is important to note that cross-validation and separating the testing set are all conducting 

internally in the algorithm. Now the process of bagging of trees is illustrated. Suppose that 

the training samples S that submitted to the algorithm to build the classification model- the 

training matrix has feature variables of fa1, fb1 and fc1 of the first sample up to the N samples. 

L1 up to LN are the training class. These are the feature variables a, b and c in the training 

class and the aim is to create a random forest in order to classify this sample set. The 

sample set S is specified as 

                                          

1 1 1 1

 

        

                 

       

a b c

aN bN cN N

f f f L

S

f f f L

 
 


 
  

     (8.1) 

From the sample set, Random Forests create individual random subsets and establish its 

own decision trees for each subset. All the samples are used for the training and one third 

of the samples would be retained for testing the tree. 

It is important to note that, the choice of subsets variables are randomly selected from the 

sample sets so that subsets would have many variation in the decision trees. The decisions 

trees are then ranked as explained next. The process can be described as follows 
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Note that each subset S1 up to SM has different values from the sample set and would have 

its own decision tree. As a result, the decision trees of the subsets would have different 

classification variation. All the decision trees are then used to create the ranking of the 

classifier. The decision tree that receives the highest vote is the most popular classifier. 

To describe this process more clearly, the linear PCA dataset from empty fuel tank load 

data set, E from the JW is provided with its corresponding categorical labels of E(N), 

E(D1), E(D2) and E(D3) for the training samples and implement the steps as described in 

the Random Forests algorithm (Figure 7.40).  

The bagging of trees classification is performed based on Matlab Statistics and Machine 

learning toolbox utilising Random Forests algorithm [90]. The inputs comprise the 

principal component 1 and 2 and their corresponding labels set. Via the bagged 

classification technique and the Random Forest algorithm, the decision trees are selected 

based on the number of times the tree classifier is described by the algorithm or referred 

as the tree that receives the highest vote (most popular). 

Figure 7.40: An illustration that shows how the random forests is created 

Decision tree 2 

Decision tree 1 

Decision tree M 
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Figure 7.41: The training data samples of which the empty tank load is used as the 

training sample. 

Figure 7.42 provides the ranking results of the bagged classification trees obtained using 

the bootstrap-aggregated decision trees via the random forest algorithm as described 

previously. The class 1 is the most popular tree classifier for the sample set and shall be 

used as the classifier model for the structure of the similar characteristic.  

 

 

Class 1 
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Figure 7.42: These decisions trees are classified and ranked with the highest vote for the 

most popular class at the input x1 and x2. 

Random Forest algorithm classifies Class 1 as the most likely predicted models followed 

by class 2 and class 3. Noticed that in Figure 7.42, the first prediction tree, which has the 

highest votes, has seven leaves nodes and that is equivalent to the number damage clusters 

in the original PCA data space. Analysing the prediction tree of Class 1, the split of the 

damage groups and prediction of the damage classes are very excellent in reference to the 

actual PCA data in Figure 7.41.  

Some interpretations can also be derived from the random forest classifier in terms of the 

proximities between the splits that represent the correlation of each class variables. The 

most popular classifier of class 1, based on the proximity of their splits, variable E(N) on 

the bottom left corner is more correlated to the E(D1) due to their same split. Leaves that 

are most far from each other and on opposite branch are very decorrelated. These are the 

Class 2 

Class 3 
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four variables class belonged to E(D2) and E(D3) class located on the right side of the tree 

branch separated by the main branch of the first classifier. 

  

7.8.4 The JW data set on bagged classification model 

The data samples obtained from the linear PCA from the JW experiment applies Random 

Forest algorithm (Figure 7.43) for tree classification. Spanning across the PCA data space 

lies a region of high data density which involves classes of small incremental loading. 

Before the bagged trees classification is applied, a simple partitioning of the data groups 

into subgroups is described as what the prediction tree is inspired and motivates the binary 

decision trees approach. The divisions represent the split of the nodes which is carried out 

automatically with the Random Forest algorithm. 

 

Figure 7.43: Simple partitions of the standard PCA scores of the JW  

 

Figure 7.43 demonstrates the use of partitions to classify damage groups of various loading 

conditions with restriction on dividing the groups in deeper level which requires higher 

resolution. 
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Figure 7.44: A zoomed view into the regions of concentrated data points  

 

Figure 7.44 shows the subdivisions of damage class is implemented automatically using 

the Random Forest algorithm. The advantage of using bagged classification trees in the 

JW data set is related to that the nature of the data set which is hierarchical. This translates 

into meaning that the loading classes should be in the upper nodes while damage level 

states assume the nodes in the leaves (the deepest nodes). 
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Figure 7.45: A classification tree using overall PCA data sets of the JW. 

Figure 7.45 shows the complete JW data set obtained from the standard PCA where the 

branches make up the loading sets. The final split of the branches (no more division 

partitioning) reach the damage class that lie in the sub-divisions of the data space and find 

the data purer than the upper node. 

The classification tree derived from the random forest algorithm has revealed some 

interesting findings that the GMM classifier does not address. This result of Figure 7.45 

creates 55 splits in the tree classifier. In total, there are 4 structural conditions associated 

with 9 loading classes which make up to 36 classes over all data points. The main 

advantage of this prediction tree is that the leaf nodes represent single damage class thus 

eliminate the problem of overlapping data sets. The prediction tree describes the 

relationship of each data class as shown by the proximities of the loading and damage 

variables. The bagging method effectively produce many deeper trees naturally, which 

represents damage severities (indicated by colour shapes). The prediction of the damage 

severities classes are excellent which makes the classification using prediction trees very
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 promising. Another advantage derived from this classification tree is the branches of the 

tree also follow the direction and systematic pattern as displayed by the linear PCA data 

sets in Figure 7.36. The other branch leads to portioning of divisions that represent the 

other loadings. In addition to that, it is observed that, the sequence of the division is in 

agreement with the loading sequence in the PCA data space. 

 

 

Figure 7.46: The highlighted part of the lowest branch on the right side of the tree. 

The split is done by aggregating the binary values the principal component 1or principal 

component 2 to reach the data sets that are purer compared to their parent data sets of 

previous node. To explain further on prediction trees in Figure 7.46, say the process begins 

at terminal node (top node) by simply gives a sequence of binary questions related to the 

features position with respect to predictor x1 and x2. For instance, for data point,  x is > 

x1==16.188 or  x < x1==16.188, the next branch leads to the next partition and it asks 

another question until x falls in the corresponding cell of the right partition. The question 

asked  depends on the previous question and the process of asking binary question 
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continues until the data points in the partition is pure, which now indicates the group 

belongs to the right damage class. The next Figure 7.47 highlights the most left and lowest 

branch of the same decision tree, validated by the PCA data scores of the 4.5L loading 

class. 

 

Figure 7.47: Validating the tree classifier results with the zoom-in PCA data plot into 

4.5L data class.
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It focuses the left side of tree branches of the classifier over all data sets and it reveals an 

accurate damage class prediction through their leaf nodes representations. Next plot shows 

how the bagged classification performance can be evaluated. 

 

Figure 7.48: It shown that the out-of-bag error decreases with the increase number of 

grown trees. 

Out-of-bag error estimates the data samples that are out of bag for each tree. The result in 

Figure 7.48 shows that accuracy of the tree prediction increases when using more trees in 

the forest. In JW prediction of ensemble trees, 39 of grown trees are specified in ‘Bagged 

Tree’ classification function in Matlab Statistical Machine Learning Classification. This 

performance validation for the bagged classification tree proves to be highly accurate. The 

performance corresponds to the overall JW tree ensemble in Figure 7.45.  This concludes 

that using many trees in ensemble trees prediction, there is good prospect for the variables 

to be correctly classified and become unbiased in many tests with many trees. 
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7.9 Conclusions   

In this chapter, the FRF measured from the JW aircraft was analysed and discussed. The 

response shows that the structure exhibits global mode and local mode of vibration. The 

local mode of vibration provides an advantage in detecting damage and therefore it is used 

as a potential feature for machine learning application.  

Applying the kernel Gaussian PCA using parameterised Gaussian function locally, 

improves the data separation in principled manner. Locally here means that the parameter 

for the smallest distance is computed at each level of structural conditions of the data sets 

consisting of all loading conditions. In fact, this is an advantage because the training or the 

reference set are established from undamaged condition only comprising all loading 

conditions. Having new test data produced by different structural conditions, the test set 

can compare to the reference set if the data deviates significantly from the threshold line. 

The standard PCA has shown to be robust by means of finding and extracting an appropriate 

feature of high dimensional data sets. Coupled with Q-statistic and T-squared, it can 

compose a comprehensive technique in evaluating the data variability including for the 

damage detection. In fact, PCA as a powerful non-supervised technique, that can be used 

for finding the classes of high variability (loading variables). Incorporated with the kernel 

Gaussian PCA, nonlinear projection of data with small variability benign the damage class 

can be discovered with distinction and remove overlap data. 

In neural network regression analysis using JW data sets, it is shown that the MSE 

performance is not significantly difference from the high dimensional data compared to 

low dimensional data of the same feature. Having different size of data sets for baseline or 

damage sets do not necessarily effect the overall performance of the neural  network. The 

more important criteria is to have more more data samples for the network training so that 
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the network can learn adequate data patterns before testing of new data set. In terms of 

dimensional size, reducing the number of data dimensions does not affect the network 

performance considerably compared to if reducing the number of data samples. For large 

data sets such as the JW, training function of Bayesian framework is not recommended to 

use as it assumes high computational resources and significant processing time and brings 

no improved results. 

In the nonlinear classification using prediction tree, the real advantage observed is that 

algorithm based on Random Forest works exceptionally well for large data sets with no 

problems about the curse of dimensionalities. Despite a supervised learning mode, 

prediction trees has a high advantage due to its simplicity for being utilised in the SHM if 

incorporated with the PCA. PCA works on an unsupervised mode, has shown to be effective 

in discriminating the loading effects from the smaller damage effects. 

By using the bootstrap aggregation in making many replicates of training sets using its 

samples and building many decision trees in the random forest algorithm, the most popular 

tree is selected. The result from this work has shown to produce a prediction tree as a 

damage classifier with very small classification error. Another advantage of the 

classification tree- the splits of the nodes can go naturally deep to find the purest data set 

that is the true class of the data variable with no issues of class overlapping 

It is a simple binary classification but can produce remarkable classification especially for 

large data sets in which have different level of data variability. In fact, bagged classification 

trees has the natural capability to classify the data hierarchically, creating the variables of 

the highest variance take up the upper branch and the variables with the smallest variance 

occupy the deepest  leaves or be at the lowest branch in the prediction tree.       

 

 



                                          

                                                      

 

  

 

Chapter 8                                           

CONCLUSIONS AND FUTURE WORK  

 

 

 

The main contribution  from this work is centered on the visualisation techniques via KPCA 

projection plots and novelty detection via outlier analysis using KPCA data sets. The 

advantage of using KPCA can be seen from the ability to adapt the parameter (σ) locally 

according to the each test sets. Another secondary contribution comes from the application 

of ANN (for establishing the mapping between linear PCA input data and the target output 

vectors), GMM (modelling the KPCA data set according Gaussian distribution density 

model) and Bagged decision trees (as a hierarchical classification and prediction tree based 

model). This thesis has outlined several main methods and procedures of damage detection 

under the effects of operational loading conditions. These can be divided into six main 

categories: 

 Feature extraction and dimensional reduction using a standard PCA      

 Generalised nonlinear feature extraction using kernel PCA     

 Damage novelty detection via statistical model of T2-statistic 

 Probabilistic classifier model using GMM 

 Nonlinear mapping of PCA features to binary stepwise target benchmark via ANN 
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 Hierarchical model of prediction tree model using bagging and Random Forest 

algorithm  

The current work has highlighted its attempt to discriminate the features developed by 

operational loading variations from those caused by damage. In this context, the above 

procedures were performed on the data sets derived from the aircraft wing which underwent 

incremental loading inside its fuel tank and was also exposed to various damage severities. 

The aim of this thesis is to unravel underlying patterns in this experimental data and provide 

insight into the effects of loading on damage features.   

 

8.1 Discriminating the loading effects by using PCA 

The first evaluation obtained from the PCA reveals that the effects of operational loading can 

be discriminated from damage-sensitive features. PCA was found to be capable of producing 

positive results in isolating loading effects from the vibration response and causing the damage 

features to overshadow the loading effects. The results of the PCA have indicated that the data 

signal processed with PCA can be transformed as a combination of new variables and 

projected according to a particular variable group associated with each loading class. In the 

case of the wing-box test, which involves large variance in loading changes, PCA can 

effectively isolate all features of damage severity from the influence of more dominant loading 

effects.  

On the contrary, for the Jabiru wing (JW) vibration-based damage detection (VBDD) test, 

loading classes with smaller incremental loading are introduced. The problem arises when the 

feature caused by damage and small loading increments are transformed on the region space 

which does not occur in the case of higher incremental loading classes. Without utilising 

machine learning algorithm, the damage feature might be mistaken and interpreted as 

undamaged data belonging to a higher loading class (Figure 7.25). In this context, kernel PCA, 

ANN and ensemble of prediction tree show unparalleled and outstanding result within their 

own framework.
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In the context of data pre-processing for the FRF response of the JW, data cleansing of the 

data set is thought to be necessary to remove extreme outliers. These outliers are caused by 

some changes of fixing conditions of the stringer’s height due to the significant changes of the 

structural weight and the possibility of water sloshing effects in the tank during the test. This 

is seen as an essential step before the novelty test and other machine learning algorithms are 

used on the data set to prepare for quality data sets. The phrase ‘garbage in, garbage out’ is 

particularly applicable at this stage. 

As an advantage of supervised learning, it effectively establishes various PC models based on 

different data arrangements described in the covariance matrix. The aim is to isolate the effects 

of operational loading variations, so that the score variables (PC projections) can manifest 

signs of damage severities in the feature space.  

The study has proven that standard PCA exhibits some limitations on both novelty detection 

and visualisation particularly for small damage severity class. On a positive note, due to its 

capability in revealing the data sets with the highest variance and to work even under 

unsupervised learning, standard PCA has been used intensively in the earlier part of the work. 

The result suggests that PCA can effectively serve as the first data investigative tool to acquire 

the underlying structure of the data before attempting to use more advanced machine learning 

algorithms.  

 

8.2 Kernel Gaussian PCA as a nonlinear feature 

extractor 

In addition to the standard PCA as a tool in discriminating the loading effects from damage 

signs on the features, a kernel Gaussian PCA is utilised. Kernel PCA is applied as a second 

step tool as a nonlinear form of PCA to extract the hidden features located in high dimensional 

space, which is restricted in the linear PCA projections. In this context, the technique has been 

more accurate in separating two classes of different structural conditions compared to the 

linear PCA, with less parameterisations required in comparison to other nonlinear PCA 
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techniques such as the auto-associative neural network. The results have shown to be very 

encouraging with respect to data visualisation and novelty detection (T-squared analysis) in 

comparison to standard PCA where problems related to data overlapping are normally 

encountered. Having positive outcomes from the kernel PCA, the technique requires a 

selection of  an important hyper parameter sigma (σ)  that is used as an inverse variance (1/σ2) 

in the nonlinear mapping transformation function based on the kernel Gaussian or Radial 

Based Function (RBF). The work has established a novel way of selecting the parameter using 

a distance matrix colour-scaling plot for the purpose of assisting the user to visualise the 

distance between the data class.  Based on Euclidean distance matrix, the inverse variance can 

be computed on the basis that the sigma parameter value (σ) should be smaller than the average 

inter-class data distance and larger than the average of inner class data distance. Another main 

benefit of using kernel Gaussian PCA, besides improving data separation between undamaged 

condition and damaged condition classes, is the formation of full data trajectory. Having 

established a full data trajectory facilitates a monitoring of the structural condition changes 

through its nonlinear form of feature patterns produced by the nonlinear kernel function. 

The superiority of the kernel Gaussian PCA lies on its flexibility of the kernel that is 

introduced locally at each test data set and adapted to the variability of each set.  The positive 

indication from this is that the variability trend, as the loading switches from one loading class 

to the next, is more evident and viable for damage detection and prediction model (Figure 

7.29). 

 

8.3 Underlying multivariate data phenomenon due to 

incremental loading 

Under substantial loading variations, the study has discovered that the load-sensitive features 

are more apparent on the lower region of the frequency spectrum while damage-sensitive 

features are more prominent and localised on the higher range of the FRF data. This discovery 

is in agreement with the basic premise of VBDD that the damage is typically a local 
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phenomenon and the substantial alteration of the structural stiffness, mass and energy 

dissipation generally affects the global dynamic properties of the system [1]. 

The first essential step involved in data pre-processing is to identify and select the feature that 

exhibits underlying data information that best describes the changes in structural health 

condition. With respect to JW data, more challenges were observed as a result of smaller 

incremental loading, which produced the features and similar effects as those caused by 

damage. In addition, more attention is necessary to remove any significant outliers which can 

be validated using Q-statistic test. Failure in handling those extreme outliers can potentially 

result in false damage detection. Kernel PCA has performed effectively to overcome such 

problems and making the damage-sensitive features more separable from those loading-

sensitive features.  

The major discovery with respect to data characteristics under the influence of loading and 

damage variations is the amount of the incremental loading is a determined factor in the ability 

to detect the presence of damage in the PCA processed data. For instance, a small incremental 

loading in the system produced a similar effect of damage in the PCA projection, hence leaving 

both effects of damage and loading on the same region in the feature space.  In view of dealing 

with this issue, kernel PCA has shown to be able to mask the damage effects from the loading 

features effectively in the feature space (Figure 7.26).  

 

8.4 GMM as a predictive model in SHM with loading 

variation influence  

In this study, Gaussian mixture model (GMM) is implemented with the aim of verifying the 

technique to classify the data groups according to their true damage conditions in the 

probability framework. The results of this study have shown that the performance of algorithm 

is sensitive to the initial values for the GMM parameters (mean and covariance and number of 

components). The study has used a training data set (undamaged state under all loading 
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conditions) in order to establish a baseline set as a reference for further test data sets (damaged 

states under all loading conditions) undergoing similar operational loading conditions. 

It has to be stressed here about the issue of singularity of the covariance that may occur during 

the iteration of the EM algorithm. This case happens when the data points are produced by a 

small change of damage severity between different groups or when the data points are highly 

correlated among different data classes. Despite this challenge, Gaussian mixture probability 

models can potentially be used to provide a good predictive model by manipulating the 

parameter values related to the GMMs. In other words, the means and the ellipsoids of the 

corresponding GMMs can be used to validate if the new test set can be inferred with damage. 

GMM establishes clustering naturally over all data group densities that is most likely to be 

generated by the particular Gaussian distribution models. The advantage is that the data sets 

that assume and fit very well to the Gaussian distribution model will result in effective GMM 

results. 

On the other hand, GMM technique can provide good data classifications for the purpose of 

damage severity identification even if the data labels are not available. Using k-mean 

algorithm to calculate the initial conditions, the algorithm naturally predicts each data point 

that is likely to be generated by a specified Gaussian distribution model (Figure 6.19). GMM 

can be used to generate a predictive probabilistic model based on the data features acquired 

from the kernel PCA.  It can also potentially be established as a generative model, generating 

a similar GMM for the baseline data set if the baseline set is not available. In view of SHM, a 

comparison of the baseline feature of an undamaged condition to a new test set can be carried 

out to determine any departed features from the baseline set which can indicate the possibility 

of damage present in the system. 

 

 

 



                                                                                                                                               266 

8.5 Neural network regression for damage prediction 

model under loading variables 

In Chapters 6 and 7, neural network regression was performed on the multivariate data set. In 

fact, ANN forms one of the backbone in this study with the aim of producing an effective 

damage detection framework. This nonlinear regression method of ANN is established byfeed-

forward MLP using only a single hidden layer network. Despite using only a single hidden 

layer, the result has shown to be effective in predicting damage and loading levels respectively. 

Using only standard PCA data scores as the network input, the neural network successfully 

map them to their respective target vectors. These target vectors are simply arbitrary numbers 

determined by the number of damage severities and loading classesconsidered in the network 

input. Again, ANN requires data labels to be known in order to establish successful mapping 

of input to target values. 

The main concern of using ANN is that it requires a process of selecting an appropriate number 

of hidden layer networks, optimum number of hidden nodes, suitable training functions for 

the network training, and that it may require some regularisation before one can reach the 

optimal solution for the network. It should be noted that it is recommended practice to start 

training the network with the most simple network architecture and adjust the network size if 

the results are not satisfactory [34], [77].  

Another important finding is the comparison between maximum likelihood and Bayesian 

approach in calculating the network parameters and fitting the data output on the targets, which 

shows that the Bayesian approach can potentially perform better than the maximum likelihood 

approach based on the LM training function given the size of the data samples are not large. 

The study using the JW data sets reveals that the performance of the network is mostly affected 

by the number of data samples used in the training rather than the number of spectral 

dimensions and the size distribution among the data categories (undamaged and damaged 

classes) (Table 7.4).
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8.6 Random forest model as hierarchical damage 

classifier  

Finally, Random Forest classification is tested on the multivariate loading and damage data 

set to discover the capability of the Random Forest algorithm to predict the damage classes 

over all the different loading conditions. In this work, bagged classification trees performed 

by the Random Forest algorithm has represented an impressive method in predicting the 

damage variables under the effects of loading variables that require no parameterisation. The 

splits of the nodes can go naturally deep to find the pure data set that signifies zero data overlap 

between damage classes. It is a simple binary classification technique but is able to work very 

well with large data sets without any issues pertaining to singularity. The results from the 

prediction tree have indicated a good correlation with the linear PCA data sets. 

The model provides a greater extent of prediction and visualisation performance of damage 

class through the distance between their splits. The overall structure of the prediction tree 

represents a more convenient way with better interpretability for large data variables that 

involve different damage classes associated with different loading conditions in comparison 

to a direct visualisation from the PCA score plot. Bagged classification trees have the 

capability to enhance the data classification and work better with larger data sets. Essentially, 

classification tree models have a natural way of classifying the data variables hierarchically, 

whereby the variables with the highest variance assume the upper branch and the variables 

with the smallest variance occupy the deepest leaves nodes in the prediction tree.                      

 

8.7 Future work 

In view of the GMM approach, some restrictions are observed while performing the technique, 

including the need to specify the number of Gaussian components before performing the EM 

algorithm, in addition to the singularity problem that can exist. One approach of overcoming 

this limitation is by introducing a Bayesian treatment in the framework of variational 



                                                                                                                                               268 

inference. Bishop et al. has explained this preferred approach in using Gaussian mixture 

classification model in comparison to the present maximum likelihood estimation (MLE) [34]. 

A generalised nonlinear PCA implemented via kernel method has shown to improve the 

separation between the classes of damage severity. The sigma selection for the inverse 

variance in the kernel Gaussian function represents the essential parameter in order to obtain 

a successful kernel PCA transformation model. In relation to the current work, the sigma 

selection is performed manually through the distance matrix. In this context, it can be more 

convenient and comprehensive if the selection process can be conducted in an iterative and 

automatic manner. This will help the user to choose the inverse variance that is validated 

against each test set and the baseline set and rank the value according to the T-square index. 

The EM algorithm is ideal for this purpose as it involves the Expectation step (calculate the 

Euclidean distance between data class) and Maximisation step (maximise the distance between 

baseline and damage class) in the MLE approach. 

It will be beneficial to compare PCA with other dimensional reduction techniques such as the 

Fisher’s linear discriminant. The technique is not far different from PCA, only in that this 

linear classification model takes account of the class labels to provide much better class 

separation. Thus, it assumes a supervised learning mode compared to PCA that can use both 

supervised and non-supervised learning criteria. 

An improvement for this study should consider the removal of external outliers using MCD 

which has shown positive SHM result in real bridges [28]. The result obtained from the MSD 

computation using the KPCA variables show there are Type I errors that indicate a false 

positive error on the T-squared index plot (Figure 7.29) even after introducing Q-statistic 

analysis as an effort to remove outliers from data set.  

On the side of data instrumentation, currently piezo-electric sensors have been utilised to 

capture the vibration response and measured experimental data in the FRF domain. It will be 

promising to use other SHM based techniques such as the Guided wave due to its high damage 

sensitivity and long monitoring range [1], [91][92][93]. From the aspect of practicality, it will 

be promising to adopt an active sensing system particularly for detecting many types of 

damage on metal and composite including cracks, corrosion, delamination etc. [94]. This
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 active sensing involves an excitation signal being sent to an actuator and other sensors picking 

up the structure response from the excitation signal which potentially works well on the 

composite surface of an aircraft wing [91], [93] . 

In terms of incorporating a robust SHM damage detection technology for an aircraft structure, 

a more comprehensive understanding of all EOVs pertaining to an inflight aircraft is vital. The 

current work is concerned with the operational loading variation due to fuel tank loading.  

To achieve a more robust SHM system, the next step would be to consider another variability 

such as temperature variation in addition to the present operational loading variabilities. In the 

context of practical application for operating aircrafts, the sensing system has to be extremely 

durable to withstand the harsh operating environment of an operating inflight aircraft. 

Realistically it is expected to be more challenging and costly, but essentially may bring the 

realisation of VBDD based SHM into practical application for operating inflight aircrafts one 

step closer.          

 

 



 

                                    Appendix A             

The kernel PCA Algorithm for the SHM                                                 

            

  

 

Kernel PCA is the nonlinear form of PCA which better exploits the hidden and overlapped 

data features of high dimensional features space. In this appendix, the actual algorithm 

used in Matlab adapted into multivariate loading and damage data sets is presented. The 

purpose is to demonstrate to the reader of how the technique of selecting appropriate 

parameter sigma with respect to the SHM application is done. The selection is based 

whether it is for monitoring (visualisation) or damage detection (outlier analysis). This 

algorithm is inspired from the work by[55] that is used successfully to construct human 

face expression models. This algorithm has been adapted to the current work concerning 

the SHM of the wing box structure under the changing of operational mass loading. It can 

be used directly on Matlab software after giving the input data. 

 

===========CONSTRUCTING KERNAL PCA FOR SHM================ 

%For kernel PCA, two data sets are used to compute the Eucludean distance, 

% undamaged and test set 

%Require inverse variance (sigma parameter squared)
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%--------baseline set of all joined undamaged loading conditions--------- 

Normal_baseline_dataset=[training_data_empty;training_data_quarter_tank;... 

 

training_data_half_tank;training_data_threeQ_tank; training_data_full_tank]; 

 

%centralised and stadardised baseline set 

mean_BaselineData = mean(Normal_baseline_dataset); 

rep_meanBaselineData= repmat(mean_BaselineData,200,1); 

centered_baseline=Normal_baseline_dataset- rep_meanBaselineData; 

std_train=std(Normal_baseline_dataset); 

std_trainData=zscore(Normal_baseline_dataset); 

%establish kernel matrix X 

%compute the covariance of the Gaussian kernel matrix K for the baseline 

% X= (Normal_baseline_dataset-rep_meanBaselineData); 

X=std_trainData; 

N=size(X,1); 

 

%based on Eucludian distance, calculate the distance matrix, D of data set  

XX=sum(X.*X,2); 

XX1=repmat(XX,1,N); 

XX2=repmat(XX',N,1); 

 

D=XX1+XX2-2*(X*X'); 

D(D<0)=0; 

D=sqrt(D); 

D(D==0)=inf; %excluding zero values 

D(D<1e-6)=inf; %excluding very small values 

D_sort=sort(D); %arrange the distance in ascending order 

D_2ndminBlock=D_sort(41:80,:);%consider distance block from 

%the second smallest distance 

 

D_2nd_min=min(D_2ndminBlock);%find the minimum distance from the block
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D_2nd_mean=mean(D_2nd_min);%find the average 

para=D_2nd_mean %this is parameter sigma 

%compute the kernel matrix k: 

%squared distance and inverse variance (sigma squared) 

 K=D.^2; 

K0=exp(-K./(2*para.^2)); 

     

%centering the feature space for Sum(transformation(Xk))=0 

N=size(X,1); 

oneN=ones(N,N)/N; 

K_norm=K0-oneN*K0-K0*oneN+oneN*K0*oneN;  

 

%% eigenvalue analysis 

[V,E]=eig(K_norm/N); 

eigValue=diag(E); 

[~,IX]=sort(eigValue,'descend'); 

eigVector=V(:,IX); 

eigValue=eigValue(IX); 

norm_eigVector=sqrt(sum(eigVector.^2)); 

eigVector=eigVector./repmat(norm_eigVector,size(eigVector,1),1); 

 

% dimensionality reduction 

% specify number of eigenvectors (number of Principal Components) 

eigVector=eigVector(:,1:100); 

 

%calculate the PC variance (latent)  

eigValue=eigValue(1:101,1); 

latent=eigValue(1:50,1); 

latent_baselineA1=100*eigValue(1,1)/sum(eigValue(:,1)) 

latent_baselineA2=100*eigValue(2,1)/sum(eigValue(:,1)) 

latent_baselineA3=100*eigValue(3,1)/sum(eigValue(:,1))
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%project the principal components on the high dimensional space 

Y3 = K_norm*eigVector; 

%plot 3D dimensional space of the KPCA projections 

 

%------------------Damage 1 data set--------------------------------------- 

 

%construct test set 1 using all loading conditions corresponding to D1 

 

test_D1_dataset = [testing_data_empty_D1;test_data_D1_quarter_tank;... 

test_data_D1_half_tank; test_data_D1_threeQ_tank;test_data_D1_full_tank]; 

     

%standardised the test set 1 agaist the baseline set 

test_D1_norm=(test_D1_dataset) - (rep_meanBaselineData); 

std_testD1=test_D1_norm./std_train; 

X_D1= std_testD1; 

N_D1=size(X_D1,1); 

  

%calculate Eucludean distance between baseline and test set 1 

XXn=sum(X.*X,2); 

XXd=sum(X_D1.*X_D1,2); 

 

XX1=repmat(XXn,1); 

XX2=repmat(XXd',N,1); 

 

D1=XX1+XX2-2*(X*X_D1'); 

D1(D1<0)=0; 

D1=sqrt(D1); 

D1(D1==0)=inf; %exclude zero 

D1(D1<1e-6)=inf;%exclude very small distance 

D_min=min(D1); %calculate the smallest distance from distance matrix 

D1_sort=sort(D1) 

%consider the second block from the rank distance D1_sort (similiar to



                           

%baseline set 

D1_2ndminBlock=D1_sort(41:80,:); % each block has 40 rows (40 

observations)D1_2nd_mean=mean(D1_2ndminBlock); 

D1_2nd_mean=mean(D1_2nd_mean); 

paraD1=mean(D1_2nd_mean) 

 

%construct kernel of the test set1 

D1(D1==inf)=0; 

K=D1.^2; % squared Eucludiean distance 

Kd1=exp(-K./(2*paraD1.^2)); %compute the kernal matrix k 

  

%centralised the feature space of the kernal using the Gram matrix  

oneN_D1=ones(N_D1,N_D1)/N_D1; 

K_D1=Kd1-oneN_D1*Kd1-Kd1*oneN_D1+oneN_D1*Kd1*oneN_D1; 

 

%Project test data D1 in high dimensional space based on the  

%loading coeeficient of the baseline setPCs of baseline baseline 

 

Y3_D1=K_D1*eigVector; 

 

%plot 3D of the kPCA projections 

%repeat the same process for following  damage test sets in same procedure 

% as Damage 1 test set 
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