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Abstract
This thesis is concerned with the development of both mathematical (variational

formulation) models and simulation (finite-element Galerkin) tools for describing a

physical system consisting of water waves interacting with an offshore wind-turbine mast.

In the first approach, the starting point is an action functional describing a dual system

comprising a potential-flow fluid, a solid structure modelled with nonlinear elasticity, and

the coupling between them. Novel numerical results for the linear case indicate that our

variational approach yields a stable numerical discretization of a fully coupled model of

water waves and an elastic beam.

The drawback of the incompressible potential flow model is that it inevitably does not

allow for wave-breaking. Therefore another approach loosely based on a van-der-Waals

gas is proposed. The starting point is again an action functional, but with an extra

term representing internal energy. The flow can be assumed to have no rotation, so

although it is again described with a potential, compressibility is now introduced. The

free surface is embedded within the compressible fluid for an appropriate van-der-Waals-

inspired equation of state, which enables a pseudo-phase transition between the water

and air phases separated by a sharp or steep transition variation in density. Due to the

compressibility, in addition to gravity waves the model enables acoustic ones, which is

confirmed by a dispersion relation. Higher-frequency acoustic waves can be dampened by

the appropriate choice of time integrators. Hydrostatic and linearized models have been

examined as verification steps. The model also matches incompressible linear potential

flow. However, at the nonlinear level, the acoustic noise remains significant.
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m̃, ñ interface nodes (structure)
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Chapter 1

Introduction

1.1 Motivation

One of the characteristic traits of contemporary civilization is rapid economic growth,

the concomitant advantages of which, such as general higher standards of living and

decreased poverty, have their consequences. Among the most important of these is

increasing energy consumption, as a result of which — and contemporaneously with

the promotion of energy-saving products, policies and lifestyles — mankind has been

searching for alternative and effective sustainable energy sources that support balanced

growth. One of the energy sources that has been actively explored in recent years is

offshore wind energy. On the one hand, going offshore with wind energy is stimulated by

ameliorating negative visual impacts to high-value scenic resources (Sullivan et al., 2012,

2013) and by reducing noise/discomfort for local inhabitants from onshore wind turbines.

On the other hand, the overall greater wind supply in offshore areas translates to better

energy-producing efficacy.

There are two main branches of active research in the field of wind energy, namely

offshore floating platforms with wind turbines and fixed-bottom monopile wind farms

in shallow water: a review is given in Benitz et al. (2015). The first branch is still

in the prototype stage of development and will not be addressed in this work. The

1



Chapter 1. Introduction

Figure 1.1: A monopile offshore wind turbine from a wind farm at Horns Reef in the North Sea.
Source: http://en.stonkcash.com/wind-energy-sustaility/

second branch, i.e. concerning shallow and intermediate-depth-water, fixed-bottom wind

turbines, already exists e.g. in areas of the North Sea, see Fig. 1.1. It is accordingly

considered in this thesis.

The aerodynamics of onshore and offshore wind turbines are essentially the same. The

interesting difference occurs at the bottom of the latter case, namely the structure’s

interaction with water waves. It is extremely important to take this factor into account

when designing a new wind turbine, as otherwise the wave loads can damage or destroy

the whole structure. In mitigating this risk, mathematical modelling proves particularly

useful.

A mathematical model describes the system of interest using mathematical concepts and

language. For our purposes it will be the language of partial differential equations for

continuum mechanics. For real applications, such a model involves certain assumptions

and simplifications about the system it aspires to describe. On the one hand, it is never

2



Chapter 1. Introduction

known a priori whether those assumptions and simplifications were sufficiently justified

and do not adversely affect final predictions of the model. On the other hand, too

many variables and extensive complexity of the model tend to blur our understanding

of the important underlying processes, let alone our ability to monitor and control them.

Moreover, one may not be able to obtain solutions at all or within a reasonable time.

The ultimate criterion of the correctness of the model is whether there is a reasonable-

to-good agreement between its predictions and experimental data. If the model fails to

do so, then it has to be reformulated or improved. Once a model has been verified and

validated for a particular set of conditions, then it can be used with reasonable confidence

to give correct predictions under different conditions within its scope of application.

This fact is widely used in engineering applications and so it is utilised in our case. A

mathematical model of interaction between water waves and an offshore wind-turbine

mast can be used in a design process to determine what loads a real structure will be

exposed to and to predict its response. Before the proposed model is deployable, its

predictions have to be verified against experimental data drawn from a small-scale test

model. There are scientific testing facilities, e.g., at the Maritime Research Institute

Netherlands (MARIN), that specialize in conducting such experiments by using dedicated

water basins with appropriate wavemakers. If a bespoke model does not match relevant

experimental data, then it has to be changed until its predictions are satisfactory. This

iterative interaction of validation and improvement is germane to the spirit of respectable

mathematical modelling; it is sketched in Fig. 1.2.

The aim of the project presented in this thesis was to develop such a mathematical model

of wave impact on a single beam/mast of an offshore wind turbine.

1.2 Objectives

Fixed-bottom offshore wind-turbine models have already been widely studied and can

be found in the literature. A 1-way coupling method was implemented by Bunnik

3
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Mathematical
model

Experimental 
model tests

 Satisfying
agreement?

No

Yes
Use model in 
real structure 

design

Figure 1.2: A sketch of the process of mathematical modelling, verification, validation and
application.

et al. (2015) and tested at MARIN. Sagar et al. (2015) used a volume-of-fluid (VOF)

method and solved the Reynolds-Averaged Navier-Stokes Equations (RANSE). Other

fluid-structure interaction (FSI) problems with 3D finite element (FE) beam models have

also been developed and applied to marine structures by many authors. Therefore, in this

work we will not simply focus on developing another FSI solver, but rather the problem

will be addressed from a novel mathematical perspective.

FSI problems, such as the coupled water-wave and wind-turbine system considered here,

are known to suffer from numerical instabilities as a result of coupling two inherently

distinct problems, where different methods would suit better to solve the two subsystems.

Instabilities depend on the domain size and the density of the structure (Causin et al.,

2005; Förster et al., 2007). In general, numerical FSI solvers can be broadly divided into

two types based on the coupling between the fluid and the structural equations. The first

method is the monolithic approach in which the entire coupled system is solved at once.

An alternative is to use partitioned solvers, which allow to treat the fluid and the structure

in separation, see e.g. Benitz et al. (2015); Hübner et al. (2004). As will be shown, our

algorithm involves elements of both categories. In the problem addressed, the two distinct

subsystems are the nonlinear water-wave dynamics and the nonlinear beam dynamics, the

former of which is described generally in terms of an Eulerian framework comprising an

observer and mathematical coordinate system fixed in space, and the latter of which in
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Chapter 1. Introduction

terms of a Lagrangian framework moving with the material of the wind-turbine mast.

In the standard approach, the problem is posed as a system of equations for separate

domains augmented with coupling conditions. The novelty of our method is based on the

fact that the coupled problem is posed in the form of a single functional. As a starting

point, a variational principle (VP) for surface gravity waves is considered, described in

Luke (1967); Miles (1977), coupled to a nonlinear elastic beam (van Brummelen et al.,

2016). van Daalen et al. (1993) proposed a similar model, but for a point ship, rather than a

continuous structure. The advantage of this approach is that the whole system is described

by a single VP. A solution procedure for the linearized problem will be performed. The

linear VP is first discretized directly in space with a finite element expansion. Subsequent

discretization in time involves a reduction of the whole system to an abstract Hamiltonian

form, to which known, stable discrete schemes can and will be applied. Variation of

this algebraic VP then directly yields a so-called Galerkin finite element model, with

mixed dis/continuous element approximations, an approach considered before in greater

detail in Gagarina et al. (2014, 2016) and Bokhove and Kalogirou (2016). It shall be

shown that, after returning to the original variables, the procedure results in the addition

of novel regularization terms due to the fluid-beam coupling. The final discrete FSI system

preserves conservative properties akin to the ones in the parent continuum system. Our

numerical results for the linearized system indicate that our approach by construction

yields, as anticipated, a stable numerical scheme.

The approach with Luke’s VP involves an irrotational, incompressible, non-dissipative

potential-flow fluid approximation that precludes the modelling of wave-breaking.

Although mathematically interesting, the model has little use in realistic applications.

Therefore an attempt is also made to extend the model so that wave-breaking can be

simulated. One remains within the variational framework, yet compressible flow is

allowed for and an equation of state is added that enables the simulation of a mixture

of water and air phases, and thus (at the two-phase interface) also wave-breaking, which

is the ultimate objective of this work.

5
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1.3 Outline of the thesis

The thesis is organized as follows. Chapter 2 describes the model of the nonlinear

elastic beam, both using an appropriate VP and with equations of motion. The VP is

subsequently linearized and the linear and nonlinear models are compared. Chapter 3

deals with the coupling of the structure with a potential-flow fluid model. First, the

VP for the potential flow is introduced. Second, the model of a fully coupled fluid-

beam system is presented. The addition of a wavemaker to the formulation is discussed.

Chapter 4 describes the solution of the coupled linear model. First, a nonlinear VP

is linearized. Second, the Finite Element Method (FEM) is used to discretize the

system in space. Third, the system is reduced to Hamiltonian form and a temporal

discretization is applied. Both two-dimensional (2D) and three-dimensional (3D) results

are presented. Firedrake (Rathgeber et al., 2016) is used extensively in our computations.

Firedrake is an automated system for the solution of partial differential equations

using the finite element method (FEM). Firedrake uses sophisticated code generation to

provide mathematicians, scientists, and engineers with a very productive way to create

sophisticated high performance simulations.

In Chapter 5, a new, irrotational compressible-fluid model is introduced with the

purpose of simulating breaking waves impacting on an offshore wind turbine;

the ultimate aim of this work. Three different equations of state are proposed,

examined and the results are shown. Chapter 6 contains excerpts of the

various Firedrake code implementations, which have been contributed as tutorials

to the Firedrake website https://firedrakeproject.org/demos/linear_

fluid_structure_interaction.py.html. Chapter 7 summarizes and

concludes the thesis.
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Chapter 2

Elastic beam: mathematical

formulation and FEM

A fluid-structure interaction problem naturally consists of two sub-models. In this chapter,

the focus is put on a description of the beam model used to describe the wind-turbine mast.

First, the fully nonlinear model is formulated. Subsequently, it is linearized. Finally,

numerical simulations of both the nonlinear model and its linearization are compared.

2.1 Nonlinear hyperelastic mast

Let us consider a nonlinear hyperelastic model for an elastic material in which the

geometric nonlinearity of the displacements is taken into account. The latter geometric

nonlinearity leads to the overall nonlinearity of the hyperelastic model (Temam and

Miranville, 2005; van Brummelen et al., 2016). The constitutive law is such that, after

linearization, it satisfies a linear Hooke’s law. The choice of this model is guided by

the goal of coupling the potential-flow water-wave model to either a weakly nonlinear

hyperelastic or a linear elastic model. A priori it is not known whether the coupling

between a nonlinear water-wave model and linear elasticity can lead to a consistent linear

and (partially) nonlinear and conservative coupled model. Consequently, the starting point

7



Chapter 2. Elastic beam: mathematical formulation and FEM

a

X(a, t)

x

z

X̃(a, t)

∂Ωb
0

∂Ω0 \ ∂Ωb
0

Figure 2.1: A sketch of the beam geometry, depicting a cross-section in the x–z plane, in which
a = X(a, 0) is the Lagrangian coordinate in the reference state (boundary denoted by closed solid
line); X(a, t) is the position of a point in the deformed beam (boundary denoted by closed dashed
line) and X̃(a, t) its deflection; ∂Ω0 denotes the structure boundary and ∂Ωb

0 its fixed bottom.

is a fully nonlinear beam model. This question of modelling consistency will be discussed

and addressed again at a later stage, after the analysis of our findings.

Let us first model the positions X = X(a, b, c, t) = (X, Y, Z)T = (X1, X2, X3)T of

an infinitesimal 3D element of solid material as a function of Lagrangian coordinates

a = (a, b, c)T = (a1, a2, a3)T in the reference domain Ω0 with boundary ∂Ω0 and

time t. At time t = 0, X(a, 0) = a is taken, see Fig. 2.1. The displacements

X̃ follow from the positions as X̃ = X − a. The velocity of the displacements is

∂tX̃ = ∂tX = U = (U1, U2, U3)T , where the displacement velocity U = U(a, t) is again

a function of Lagrangian coordinates a and time t. The variational formulation of the

elastic material follows closely the variational formulation of a linear elastic solid obeying

8



Chapter 2. Elastic beam: mathematical formulation and FEM

Hooke’s law. However, the geometric movement makes the model nonlinear since the

material is taken to be Lagrangian with finite rather than infinitesimal displacements.

The variational formulation then comprises the kinetic and potential/internal energies,

i.e., ρ0|U|2/2 and ρ0gZ plus W (E) with E defined below, in the Lagrangian framework.

Hence, the VP for the hyperelastic model in van Brummelen et al. (2016), adjusted to a

format fitting our present purpose, becomes

0 =δ

∫ T

0

∫∫∫
Ω0

ρ0∂tX ·U−
1

2
ρ0|U|2 − ρ0gZ −W da db dc dt . (2.1)

In (2.1), ρ0 = ρ0(a) is a uniform material density and the internal, elastic energy W is

defined as

W =
1

2
λ[tr(E)]2 + µ tr(E2) , (2.2)

in which λ and µ are material parameters called the first and second Lamé constants,

respectively. The Lagrangian-Green strain tensor E is defined by

E =
1

2
(FT · F− I), (2.3)

where I is the identity matrix and in which the deformation gradient F, given by

F =
∂X
∂a

=
∂(X, Y, Z)

∂(a, b, c)
, or equivalently Fij =

∂Xi

∂aj
, for i, j = 1, 2, 3 , (2.4)

yields the determinant J between the Eulerian and Lagrangian frameworks that accounts

for the geometric nonlinearity. The determinant J is given explicitly by

J = det(F) ≡
∣∣∣∣∂(X, Y, Z)

∂(a, b, c)

∣∣∣∣
=XaYbZc + YaZbXc + ZaXbYc −XcYbZa − YcZbXa − ZcXbYa (2.5)

with subscripts denotingXa ≡ ∂aX , etc. A beam is modelled, which is fixed at the bottom

∂Ωb
0, defined here by c = 0 for a ∈ [La1, La2] and b ∈ [Lb1, Lb2], so that X(a, b, 0, t) = 0,

9



Chapter 2. Elastic beam: mathematical formulation and FEM

which implies that δX|∂Ωb
0

= 0. Thus, evaluation of the variation in (2.1) yields

0 =

∫ T

0

∫∫∫
Ω0

ρ0

(
∂tX−U

)
· δU− ρ0∂tU · δX− ρ0δl3δXl

+ ∂ai
(
λtr(E)Fli + 2µEkiFlk

)
δXl da db dc

−
∫∫

∂Ω0\∂Ωb
0

ni
(
λ tr(E)Fli + 2µEkiFlk

)
δXl dS dt , (2.6)

in which the temporal end-point conditions δX(0) = δX(T ) = 0 have been used, as well

as, from (2.3), the definitions

Eij =
1

2
(FkiFkj − δij) = Eji and δEij =

1

2
(FkiδFkj + FkiδFkj). (2.7)

Given the arbitrariness of the respective variations, the resulting equations of motion,

following directly from (2.6), become

δU : ∂tX = U in Ω0 (2.8a)

δXl : ρ0∂tUl = −ρ0gδ3l + ∂ai
(
λtr(E)Fli + 2µEkiFlk

)
= −ρ0gδ3l + ∂aiTli in Ω0 (2.8b)

δXl : 0 = ni
(
λ tr(E)Fli + 2µEkiFlk

)
= niTli on ∂Ω0 \ ∂Ωb

0 (2.8c)

with stress tensor Tli = λ tr(E)Fli + 2µEkiFlk.

2.2 Linearized elastic dynamics

Let us proceed with the linearization of (2.1), together with the transformation from

a Lagrangian to an Eulerian description. Since the ultimate interest is in the dynamics

of the fluid-structure interaction, the gravity term is neglected. Given (see Fig. 2.1) that

10



Chapter 2. Elastic beam: mathematical formulation and FEM

X = a + X̃, expression (2.3) can be written as (Hunter, 1976)

E =
1

2

((∂X̃
∂a

)T
+
(∂X̃
∂a

))
+

1

2

(∂X̃
∂a

)T · (∂X̃
∂a

)
. (2.9)

The linearization entails the assumption that the displacement gradient is small compared

to unity, i.e., ||∂X̃/∂a|| � 1, so that second- and higher-order terms can be neglected.

Therefore, the linearized version e of E is

e =
1

2

((∂X̃
∂a

)T
+
(∂X̃
∂a

))
or eij =

1

2

(∂X̃j

∂ai
+
∂X̃i

∂aj

)
. (2.10)

Moreover, tr(E)2 = EiiEjj ≈ eiiejj and tr(E · E) = E2
ij ≈ e2

ij , whence (2.1) becomes

0 =δ

∫ T

0

∫∫∫
Ω0

ρ0∂tX̃ ·U−
1

2
ρ0|U|2 −

1

2
λeiiejj − µe2

ij da db dc dt, (2.11)

in which the domain is, in a manner inconsistent with the linearization process, still the

original moving domain Ω0. Since the fluid is described in the Eulerian framework, it

is useful to work in the same coordinates with the structure, which, at the linear level,

allows to use one unified Eulerian-or-Lagrangian coordinate system. Therefore (2.11) is

transformed to Eulerian coordinates. For clarity, functions in Eulerian coordinates are

momentarily annotated with a superscript (·)E so that f(a) = fE(x = X(a)). First, since

x = X(a, t) and X = a + X̃, let us note that

∂X̃
∂a

=
∂X
∂a

∂X̃E

∂x
=

(
I +

∂X̃
∂a

)
∂X̃E

∂x
(2.12)

and, hence, one finds that

∂X̃
∂a

=

(
I− ∂X̃E

∂x

)−1

∂X̃E

∂x
≈ ∂X̃E

∂x
(2.13)

and

e ≈ 1

2

((∂X̃E

∂x

)T
+
(∂X̃E

∂x

))
= eE , (2.14)

11



Chapter 2. Elastic beam: mathematical formulation and FEM

in which only linear terms are retained. Given that only quadratic terms have been retained

in (2.11), its implied variation will yield linear equations of motion so that the Jacobian

(2.5) of the transformation between Lagrangian and Eulerian frames can be approximated

by J ≈ 1. Consequently, the Eulerian form of the VP (2.11) is

0 = δ

∫ T

0

∫∫∫
Ωt

ρ0∂tX̃
E ·UE − 1

2
ρ0|UE|2 − 1

2
λeEiie

E
jj − µ(eEij)

2 dx dy dz dt , (2.15)

in which the integration is still inconsistent, when taking into consideration the moving

domain Ωt. In the last step, we showed that, in the limit of small displacements, the

integration must be performed over the fixed domain ΩE
0 as Ωt = ΩE

0 + X̃ , meaning that

the deformed domain is the reference one subject to deformation. A small perturbation of

a three-dimensional domain is considered on a length scale that is proportional to ε. One

can write a general Taylor expansion of the integral in terms of ε

∫ x2+εξ2

x1+εξ1

∫ y2+εη2

y1+εη1

∫ z2+εζ2

z1+εζ1

f(x, y, z) dz dy dx =

∫ x2

x1

∫ y2

y1

∫ z2

z1

f(x, y, z) dz dy dx

+ ε

(∫ y2

y1

∫ z2

z1

ξ2f(x2, y, z)− ξ1f(x1, y, z) dz dy

+

∫ x2

x1

∫ z2

z1

η2f(x, y2, z)− η1f(x, y1, z) dz dx (2.16)

+

∫ x2

x1

∫ y2

y1

ζ2f(x, y, z2)− ζ1f(x, y, z1) dy dx

)
+O(ε2) .

The displacement X̃ can be treated as a small perturbation, with linear terms in ε in (2.16)

translating to cubic terms in X̃, Ũ and ∂iX̃j in (2.15). Therefore, retaining only quadratic

terms and omitting for brevity the (·)E superscript, e.g. in ΩE
0 , (2.15) becomes

0 = δ

∫ T

0

∫∫∫
Ω0

ρ0∂tX̃ ·U−
1

2
ρ0|U|2 −

1

2
λeiiejj − µe2

ij dx dy dz dt . (2.17)

In the limit of small displacement gradients, the following approximations hold

tr(E)Fli = EjjFli ≈ ejjδli, EkiFlk ≈ eikδlk = eil. (2.18)

12
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By either linearizing (2.8), neglecting the gravity term and using (2.18) or taking the

variation of (2.11) (or (2.17)), the classical linearized equations of motion emerge as

δU : ∂tX̃ = U (2.19a)

δX̃l : ρ0∂tUl = ∂xi(λejjδlj + 2µeil) in Ω0 (2.19b)

δX̃l : 0 = ni(λejjδlj + 2µeil) on ∂Ω0 \ ∂Ωb
0, (2.19c)

in which Ω0 denotes the fixed domain after linearization, with associated fixed boundary

∂Ω0 and fixed bottom ∂Ωb
0.

2.3 Numerical model

To solve partial differential equations numerically, one has to discretize them. For the

spatial discretization and numerical implementation of the model, Firedrake is used

(Rathgeber et al., 2016). The Firedrake environment requires partial differential equations

to be defined in weak form, including the proper definition of the function spaces of

the variables involved and the polynomial order and degrees of quadrature used. Let us

abbreviate the spatial integral notion as
∫∫∫

Ω0
. . . dx dy dz =

∫
. . . dV . The weak form

of equations (2.8), with v as a test function, is∫
∂tX · v dV =

∫
U · v dV (2.20a)∫

∂tU · v dV = −
∫
∇vΦ dV − 1

ρ0

∫
∇vW dV, (2.20b)

in which have been used gravitational potential-energy density Φ = gZ and the directional

derivative

∇v(. . . ) = v · ∂(. . . )

∂X
. (2.21)
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Equations (2.20) can be also derived directly from the VP (2.1). Using (2.1) and

previously introduced notions one gets

0 =δ

∫ T

0

∫
ρ0∂tX ·U−

1

2
ρ0|U|2 − ρ0Φ−W dV dt (2.22a)

=ρ0

∫ T

0

∫
δU · (∂tX−U)− δX ·

(
∂tU + g

∂Φ

∂X
+

1

ρ0

∂W

∂X

)
dV dt . (2.22b)

(2.22b) contains equations (2.20) with appropriate variations instead of test functions. To

ensure that variational structure is preserved in the discretization, we can first discretize

the VP in space and then derive equations of motion. Using Einstein summation

convention we can write

X(x, t) = Xi(t)ϕi(x) = (X1, X2, X3)Ti (t)ϕi(x) (2.23a)

U(x, t) = Ui(t)ϕi(x) , (2.23b)

in which functions are approximated with FE expansion in space, ϕi(x) being basis

functions. Inserting these expansions into (2.1) we get

0 = δ

∫ T

0

∫
ρ0∂tXi ·Ujϕiϕj −

1

2
ρ0Ui ·Ujϕiϕj − ρ0gZiϕi (2.24a)

−Xa
i X

b
jW

ab
ij −Xa

i X
b
jX

c
kW

abc
ijk −Xa

i X
b
jX

c
kX

d
lW

abcd
ijkl dV dt . (2.24b)

The exact form of tensor W will not be presented, as this is for conceptual illustration

only. Taking variations

0 =

∫ T

0

ρ0δUi · (∂tXj −Uj)Aij − δXa
i

(
ρ0∂tU

a
jAij + ρ0gBiδ

a3 (2.25a)

+Xb
jV

ab
ij +Xb

jX
c
kV

abc
ijk +Xb

jX
c
kX

d
l V

abcd
ijkl

)
dt , (2.25b)

in which Aij =
∫
ϕiϕjdV , Bi =

∫
ϕidV and tensor V arises from integrating W in

space, but again, we will not specify their full form. Using the fact that the individual
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variations are independent, we arrive at equations of motion disretized in space

δUi : Aij(∂tXj −Uj) = 0 (2.26a)

δXa
i : ρ0∂tU

a
jAij = −ρ0gBiδ

a3 −Xb
jV

ab
ij −Xb

jX
c
kV

abc
ijk −Xb

jX
c
kX

d
l V

abcd
ijkl . (2.26b)

VP (2.25) contains their weak form

δUi · (∂tXj −Uj)Aij = 0 (2.27a)

δXa
i

(
ρ0∂tU

a
jAij + ρ0gBiδ

a3 +Xb
jV

ab
ij +Xb

jX
c
kV

abc
ijk +Xb

jX
c
kX

d
l V

abcd
ijkl

)
= 0 , (2.27b)

which is also a space-discretized version of (2.20). Hence variational structure is

ensured. Yet, as Firedrake performs space discretization for us, equations (2.20) in space-

continuous form will be used thereafter. At this point (2.20) needs to be discretized in

time. Therefore, some temporal schemes will be introduced and examined. They will be

used both here and later in this work.

2.3.1 Time discretization schemes

As Hamiltonian systems are being solved, symplectic discretization schemes will be used

that are designed for this purpose since they conserve energy (up to bounded oscillations)

during time evolution.

Symplectic Euler scheme

Let us consider a system with a Hamiltonian H(q, p). The equations of motion are

∂tq = ∇pH(q, p)

∂tp = −∇qH(q, p) .
(2.28)
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The general symplectic Euler scheme for this system is

qn+1 = qn + ∆t∇pH(qn+1, pn)

pn+1 = pn −∆t∇qH(qn+1, pn)
(2.29)

or

qn+1 = qn + ∆t∇pH(qn, pn+1)

pn+1 = pn −∆t∇qH(qn, pn+1) .
(2.30)

Stability of the scheme for a harmonic oscillator H(q, p) = 1
2
p2 + 1

2
ω2q2 will be

investigated now, for which (2.29) takes the form

qn+1 = qn + ∆t pn

pn+1 = pn − ω2∆t qn+1 ,
(2.31)

which can be written in the implicit matrix form 1 0

ω2∆t 1

qn+1

pn+1

 =

1 ∆t

0 1

qn
pn

 (2.32)

with equivalent explicit matrix formqn+1

pn+1

 =

 1 ∆t

−ω2∆t 1− ω2∆t2

qn
pn

 . (2.33)

The scheme (2.31) is unconditionally/conditionally stable provided the eigenvalues λ of

the amplification matrix in (2.33) lie within/on the unit disc in the complex λ plane. In

the present case all λ are real, so −1 ≤ λ ≤ 1. The required λ are the roots of the

characteristic polynomial

λ2 + λ(ω2∆t2 − 2) + 1 = 0 , (2.34)
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which yields

λ =
1

2

(
2− ω2∆t2 ± ω∆t

√
ω2∆t2 − 4

)
. (2.35)

Equation (2.35), together with the condition |λ| ≤ 1, give the stability criterion

|ω∆t| ≤ 2 . (2.36)

Although the system is nonlinear, based on this criterion one can still estimate a neutrally

stable timestep so that the oscillations related to the finite mesh resolution are not

amplified; unfortunately, neither are they reduced due to the neutral stability of the

scheme. The maximal ω = ck is given by the largest wave propagation speed c (speed of

sound in water in our case) and a wave vector k = 2π/λw related to shortest wavelength

λw = 2∆x, in which ∆x is the smallest distance between the mesh nodes. Accordingly,

one obtains

∆t ≤ 2∆x

πc
. (2.37)

Störmer-Verlet scheme

An alternative to symplectic Euler scheme is the Störmer-Verlet scheme, which includes

a half-step calculation and, for (2.28), takes the form (Leimkuhler and Reich, 2004)

qn+1/2 = qn +
∆t

2
∇pH(qn+1/2, pn)

pn+1 = pn −∆t∇qH(qn+1/2, pn+1)

qn+1 = qn+1/2 +
∆t

2
∇pH(qn+1, pn+1)

(2.38)

or

pn+1/2 = pn −
∆t

2
∇qH(qn, pn+1/2)

qn+1 = qn + ∆t∇pH(qn, pn+1/2)

pn+1 = pn −
∆t

2
∇qH(qn+1, pn+1) .

(2.39)
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A linear stability analysis leads to the same criterion (2.37) as in the symplectic-Euler

case.

Implicit midpoint scheme

The implicit midpoint scheme for system (2.28) is

qn+1 = qn + ∆t∇pH(
qn + qn+1

2
,
pn + pn+1

2
)

pn+1 = pn −∆t∇qH(
qn + qn+1

2
,
pn + pn+1

2
) ,

(2.40)

which, for the harmonic oscillator, takes the form

qn+1 = qn +
1

2
∆t(pn + pn+1)

pn+1 = pn −
1

2
ω2∆t(qn + qn+1) .

(2.41)

In matrix notation (2.41) becomes, in implicit form, 2 −∆t

ω2∆t 2

qn+1

pn+1

 =

 2 ∆t

−ω2∆t 2

qn
pn

 (2.42)

and hence, in explicit form,qn+1

pn+1

 =
1

4 + ω2∆t

 4 ∆t2

ω4∆t2 4

qn
pn

 . (2.43)

The roots of the characteristic polynomial of the system matrix (2.43) are

λ1 ≡ 1 , λ2 =
4− ω2∆t2

4 + ω2∆t2
, (2.44)

both of which fulfil the condition |λ| ≤ 1 for all ∆t. Therefore the implicit midpoint

scheme is unconditionally stable.
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Chapter 2. Elastic beam: mathematical formulation and FEM

2.3.2 Discretization and implementation

The symplectic Euler scheme applied to equations (2.20) yields∫
Xn+1 · v dV =

∫
Xn · v dx+ ∆t

∫
Un · v dV (2.45a)∫

Un+1 · v dV =

∫
Un · v dx−∆t

∫
∇vΦ dV − ∆t

ρ

∫
∇vW

n+1 dV . (2.45b)

A specific property of system (2.45) is that, although the model is nonlinear, the sole

nonlinearity resides in the internal, elastic energy, i.e., the termW (E) , which is evaluated

at a known time level. That is, despite the mathematical nonlinearity, the numerical

solvers are explicit. This is a consequence of the Hamiltonian in (2.1) being a sum

of a position-dependent potential energy and a velocity-dependent kinetic energy. In

Firedrake, the weak forms (2.45) are directly implemented as given. The function space

used for X and U is the linear continuous Galerkin. The finite element method itself

is described in more detail in Chapter 4, where it is necessary for derivation. Here it is

sufficient to rely on Firedrake’s implementation.

2.4 Results

To see the difference between the linear- and nonlinear-beam models, a straightforward

case is examined. Consider a block of dimensions 2 × 2 × 20m made of material with

density 7700kg/m3 and Lamé parameters λ = µ = 107 N/m2, discretized into 4x4x20

finite element blocks, each consisting of 6 tetrahedra, cf. Fig. 2.2.

Essentially, the difference between the two models’ implementation boils down to the

expression for the Green-Lagrangian strain tensor, cf. (2.9) and (2.10). The nonlinear

model contains an extra quadratic term which is omitted in the linear model. As a result,

the potential energy has additional higher-order terms in the nonlinear model. Hence, the

total energy is larger for the nonlinear model, which is visible in Fig. 2.3.

19



Chapter 2. Elastic beam: mathematical formulation and FEM

Figure 2.2: Initial state of the (non)linear beam test case.
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Figure 2.3: The energy partition of the evolving system as function of time for both the linear and
nonlinear model. In the legend, Ep denotes potential energy, Ek kinetic energy and Et the total
energy.

The difference between the two models is visualized more clearly in Fig. 2.4, which shows

that the difference in potential energy between the two models is an increasing function of

time. This growth occurs because the frequencies of oscillations in the two models start
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Chapter 2. Elastic beam: mathematical formulation and FEM

to deviate due to nonlinear interactions that develop in time.
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Figure 2.4: The difference between the linear and nonlinear potential energy scaled by the total
energy as a growing function of time.

2.4.1 Conclusions

A nonlinear hyperelastic beam model and its linearization have been introduced.

Subsequently, a continuous Galerkin finite-element method has been used to discretize

both systems and a first-order sympletic time integrator. The linear finite-element

model is the building block for the coupled (linear) water-wave and elastic-beam models

investigated in the next two chapters. One less satisfactory aspect, which will also turn-

up in the coupled model, is an inconsistency in the linearization because gravity in the

calculation of the basic, rest state, was ignored. However, strictly speaking the beam needs

to be subjected to a hydrostatic pressure distribution (or on one side in two dimensions).

This inconsistency in the linearization is generally ignored in the continuum-mechanics

literature, see e.g. Antman (1995); Temam and Miranville (2005). Linearization should
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Chapter 2. Elastic beam: mathematical formulation and FEM

take place around the proper lithostatic rest state, for a nearly incompressible solid

subject to a hydrostatic pressure. The problem likely requires a numerical calculation

of the nonlinear lithostatic state, but that can readily be done with our numerical model,

and a subsequent linearization around this rest state, which will include the numerical

determination of certain material parameters emerging in the linear model. Such a

procedure is standard practice in fluid mechanics (Temam and Miranville, 2005). For

the coupled model, such an extension is important because the rest state for the water-

wave domain will –indeed– be hydrostatic. In addition, one can make an asymptotic

analysis for a nearly incompressible solid and compare this with a linearization around a

case without gravity and without hydrostatic pressure forcing.
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Chapter 3

Nonlinear variational modelling of

wave-structure interactions

In this chapter a model is formulated, expressed in terms of a single functional, for Fluid-

Structure Interaction (FSI) consisting of the hyperelastic beam considered in last chapter,

a potential-flow fluid, and the coupling between these two sub-models. The linearization

of this system and the solution of the linearized system is the topic of the next chapter.

3.1 Potential-flow water waves

Water is hereafter considered as an incompressible fluid with density ρ. The vector

velocity field u = u(x, y, z, t) has zero divergence, ∇ · u = 0, with spatial coordinates

x = (x, y, z)T and time coordinate t. Gravity acts in the negative z-direction and the

associated acceleration of gravity is g. The velocity is expressed in terms of a scalar

potential φ = φ(x, y, z, t) such that u = ∇φ. Flow is considered in the 3D Cartesian

domain Ω (see Fig. 3.1) bounded by solid walls at x = 0, x = Lx, y = 0, y = Ly and

the flat bottom at z = 0. The upper surface of Ω is given by the single-valued evolving

free surface z = h(x, y, t), and hence Ω = [0, Lx]× [0, Ly]× [0, h(x, y, t)], within which
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Chapter 3. Nonlinear variational modelling of wave-structure interactions

h(x, y, t)

η(x, y, t)

H0

0

0 Lx

z

x

Ly

∂Ωf

∂Ωw = ∂Ω \ ∂Ωf

Ω

Figure 3.1: Geometry of the fluid domain: a box with rest-state dimensions Lx × Ly × H0

and evolving free surface z = H0 + η(x, y, t) = h(x, y, t). Here η(x, y, t) is the free-surface
perturbation from the rest state that first appears in (4.2).

Luke’s variational principle (VP) (Luke, 1967) for potential-flow water waves reads

0 =δ

∫ T

0

∫∫∫
Ω

−ρ∂tφ dΩ−H dt

≡δ
∫ T

0

∫ Lx

0

∫ Ly

0

∫ h(x,y,t)

0

−ρ
(
∂tφ+

1

2
|∇φ|2 + g(z −H0)

)
dz dy dx dt , (3.1)

in which H0 is the rest-state water level. The energy or Hamiltonian H consists of the

sum of kinetic and potential energies. Integration by parts in time is used together with

Gauss’ law with outward normal n = (−∇⊥h, 1)T/
√

1 + |∇⊥h|2 at the free surface, in

which ∇⊥ = (∂x, ∂y). The passive and constant air pressure is denoted by pa. Then,

variation of (3.1) yields

0 =

∫ T

0

∫ Lx

0

∫ Ly

0

∫ h(x,y,t)

0

ρ∇2φ δφ dz dy dx−
∫
∂Ωw

ρ∇φ · n δφ dS

+

∫ Lx

0

∫ Ly

0

ρ
(
−∂zφ+ ∂xφ ∂xh+ ∂yφ ∂yh+ ∂th

)
|z=hδφ|z=h (3.2)

+ (p− pa)z=h δh dy dx dt,

in which the pressure difference p − pa here acts as a shorthand placeholder for the

Bernoulli expression −ρ
(
∂tφ + 1

2
|∇φ|2 + g(z − H0)

)
and ∂Ωw denotes the solid-wall

and bottom boundaries.
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Chapter 3. Nonlinear variational modelling of wave-structure interactions

The equations of motion emerge from relation (3.2), augmented by the following no-

normal-flow boundary conditions n ·∇φ = 0 on ∂Ωw, with unit outward normal n at

solid walls and bottom ∂Ωw, as follows

x ∈ [0, Lx], y ∈ [0, Ly], z ∈ [0, h];

δφ : 0 = −ρ∇2φ =
δH
δφ

x ∈ [0, Lx], y ∈ [0, Ly], z = h(x, y, t);

(δφ)h : ∂th = −∂xφ ∂xh+ ∂zφ =
δH

(δφ)h
(3.3)

x ∈ [0, Lx], y ∈ [0, Ly], z = h(x, y, t);

δh : ρ∂tφ = −1

2
ρ|∇φ|2 − ρg(h−H0) = −δH

δh
.

The above equations can be extended to include a wavemaker, see equations (6) in

Gagarina et al. (2014) or (3.3) in Gidel (2018).

3.2 Coupled model

At any given time, the domain occupied by the fluid is denoted by Ω and the reference

domain occupied by the hyperelastic material by Ω0. For simplicity, a block shape of

hyperelastic material is considered. The interface between the fluid and solid domains is

parameterized by Xs = X(Ls, b, c, t) and, at rest, X = a for Cartesian a ∈ [Ls, Lx], b ∈

[0, Ly], c ∈ [0, Lz], while the fluid domain at rest is x ∈ [0, Ls], y ∈ [0, Ly], z ∈ [0, H0].

The (outward-from-fluid) unit normal at this interface X(Ls, b, c, t), with b ∈ [0, Ly], c ∈

[0, Lz], is n = ∂bX × ∂cX/|∂bX × ∂cX|. A schematic diagram of the domain at rest is

given in Fig. 3.2, and, hence, the last expression is for the outward normal to the fluid

domain at the fluid-structure interface.
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Figure 3.2: Geometry of the linearized or rest system: fluid (hatched) and elastic beam (cross-
hatched). This 2D representation is in the y = 0 plane, with the y-axis directed into the page, in
which direction the full 3D configuration has uniform depth Ly.

The moving fluid and elastic domains are defined by

Ω: x ∈ (0, xs(y, z, t)), y ∈ (0, Ly), z ∈ (0, h(x, y, t)); (3.4a)

Ω0 : a ∈ (Ls, Lx), b ∈ (0, Ly), c ∈ (0, Lz) , (3.4b)

in which xs = xs(y, z, t) is a new variable that describes the position of the moving

fluid boundary. Since it is at the structure surface, a Lagrange multiplier γ = γ(b, c, t) is

used to equate xs
(
y = Y (Ls, b, c, t), z = Z(Ls, b, c, t)

)
to X(Ls, b, c, t). For the coupled

fluid-structure VP, the sum is taken of the two VPs, and augmented with the Lagrange-

multiplier term as follows:

0 =δ

∫ T

0

∫∫∫
Ω

−ρ
(
∂tφ+

1

2
|∇φ|2 + g(z −H0)

)
dx dy dz

+

∫ Ly

0

∫ Lz

0

ργ

(
xs
(
Y (Ls, b, c, t), Z(Ls, b, c, t), t

)
−X(Ls, b, c, t)

)
dc db (3.5)

+

∫∫∫
Ω0

ρ0∂tX ·U−
1

2
ρ0|U|2 − ρ0gZ −

1

2
λ[tr(E)]2 − µtr(E2) da db dc dt .

Note that the waterline height z at the fluid-beam interface is implicitly defined by
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Chapter 3. Nonlinear variational modelling of wave-structure interactions

z = h(xs(y, z, t), y, t), even for the non-breaking waves considered. To avoid the

implicit definition, and because it is here easier to work in a fixed domain, a new

horizontal coordinate χ = Lsx/xs(y, z, t) is introduced before applying the coordinate

transformation

χ = Lsx/xs(y, z, t), y′ = y, z′ = z, t′ = t

such that the fluid domain Ω is now redefined as χ ∈ (0, Ls), y
′ ∈ (0, Ly), z

′ ∈

(0, h(χ, y, t)). Both xs and χ are indicated in Fig. 3.3. The following transformation

x

z

xs

χ

Ls

Figure 3.3: Definition of the variables used in the VP transformation. Here xs(y, z, t) denotes the
position of the fluid-structure interface and χ = Lsx/xs(y, z, t) denotes the transformation of the
domain to one whose dimension is fixed in the x-direction. A cross-section perpendicular to the
y-direction is shown.

rules are required to transform the VP

∂x =
∂χ

∂x
∂χ +

∂y′

∂x
∂y′ +

∂z′

∂x
∂z′ +

∂t′

∂x
∂t′ =

Ls
xs
∂χ (3.6a)

∂y =
∂χ

∂y
∂χ +

∂y′

∂y
∂y′ +

∂z′

∂y
∂z′ +

∂t′

∂y
∂t′ = − χ

xs

∂xs
∂y

∂χ + ∂y′ (3.6b)
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∂z =
∂χ

∂z
∂χ +

∂y′

∂z
∂y′ +

∂z′

∂z
∂z′ +

∂t′

∂z
∂t′ = − χ

xs

∂xs
∂z

∂χ + ∂z′ (3.6c)

∂t =
∂χ

∂t
∂χ +

∂y′

∂t
∂y′ +

∂z′

∂t
∂z′ +

∂t′

∂t
∂t′ = − χ

xs

∂xs
∂t

∂χ + ∂t′ (3.6d)

dx dy dz dt =
xs
Ls

dχ dy′ dz′ dt′. (3.6e)

Due to numerical equality of primed and unprimed y,z and t, primes can be dropped.

Then, in this new coordinate system, VP (3.5) becomes

0 =δ

∫ T

0

∫ Ls

0

∫ Ly

0

∫ h(χ,y,t)

0

−ρ
(
− χ

Ls
∂txs∂χφ+

xs
Ls
∂tφ

+
1

2

Ls
xs

(∂χφ)2 +
1

2

xs
Ls

(− χ
xs
∂yxs∂χφ+ ∂yφ)2

+
1

2

xs
Ls

(− χ
xs
∂zxs∂χφ+ ∂zφ)2 + g(z −H0)

xs
Ls

)
dz dy dχ (3.7)

+

∫ Ly

0

∫ Lz

0

ργ

(
xs
(
Y (Ls, b, c, t), Z(Ls, b, c, t), t

)
−X(Ls, b, c, t)

)
dc db

+

∫ Lx

Ls

∫ Ly

0

∫ Lz

0

ρ0∂tX ·U−
1

2
ρ0|U|2 − ρ0gZ −

1

2
λ[tr(E)]2 − µtr(E2) dc db da dt.

3.2.1 Conclusions

In this chapter, the variational principle governing the nonlinear dynamics of the coupled

water-wave and hyperelastic-beam motions has been derived. The simplified version of

this comprehensive variational principle governing the linear dynamics will be derived

in the next chapter and will form the basis of our monolithic finite-element numerical

discretization of the coupled system. Since this linearized model was our first focus of

attention, the complete nonlinear equations of motion of the coupled model have not been

derived. It is recommended as future work in addition to extending the overall dynamics

with a wavemaker of the waveflap type, such as used at MARIN.
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Chapter 4

Linear variational modelling of

wave-structure interactions:

finite-element method

4.1 Introduction

The variational principle governing the nonlinear dynamics of the coupled water-wave

and hyperelastic-beam motions derived in the previous chapter is now developed into

an implemented algorithmic form. As indicated in the conclusions immediately above,

consideration of the full, nonlinear problem is deferred to future work. Accordingly, the

objectives of the current chapter are threefold.

First, a simplified version of the variational principle is formulated on the basis of

considering only the linearized dynamics of the nonlinear coupled model. Second,

a discretization is sought of the linearized coupled model via a direct space-time

discretization of the simplified variational principle, attention being taken to ensure that

the variation thereof directly leads to a robust, stable and accurate discretization of the

entire coupled system.
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Chapter 4. Linear variational modelling of wave-structure interactions: finite-element method

Finally, the resulting spatio-temporal discretization of the linear coupled water-wave and

elastic-beam dynamics is implemented. Spatial discretization is performed following

a transformation of the system into an intermediate Hamiltonian form, and temporal

discretization is undertaken using a total-energy-preserving Störmer-Verlet scheme

(Leimkuhler and Reich, 2004). Computations were performed using both bespoke code

and Firedrake (Rathgeber et al., 2016) employing finite elements, and the formulation

verified and codes validated by numerical simulations in both two and three dimensions

of water waves impacting on a steel monopile.

The chapter concludes with a discussion of extensions of the model that are able to

accommodate breaking waves.

4.2 Linearization of the variational principle

The starting point is the transformed VP obtained at the end of previous chapter

0 =δ

∫ T

0

∫ Ls

0

∫ Ly

0

∫ h(χ,y,t)

0

−ρ
(
− χ

Ls
∂txs∂χφ+

xs
Ls
∂tφ (4.1a)

+
1

2

Ls
xs

(∂χφ)2 +
1

2

xs
Ls

(− χ
xs
∂yxs∂χφ+ ∂yφ)2 (4.1b)

+
1

2

xs
Ls

(− χ
xs
∂zxs∂χφ+ ∂zφ)2 + g(z −H0)

xs
Ls

)
dz dy dχ (4.1c)

+

∫ Ly

0

∫ Lz

0

ργ

(
xs
(
Y (Ls, b, c, t), Z(Ls, b, c, t), t

)
−X(Ls, b, c, t)

)
dc db (4.1d)

+

∫ Lx

Ls

∫ Ly

0

∫ Lz

0

ρ0∂tX ·U−
1

2
ρ0|U|2 − ρ0gZ −

1

2
λ[tr(E)]2 − µtr(E2) dc db da dt.

(4.1e)

Equation (4.1) is first linearized around a state of rest. Small-amplitude perturbations

around this rest state are introduced as follows

xs =Ls + x̃s, φ = 0 + φ, h = H0 + η, X = x + X̃, U = 0 + U, γ = 0 + γ . (4.2)
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Some of the terms in (4.1) can be simplified as follows. First considered is the term in

(4.1a) ∫ Ls

0

∫ Ly

0

∫ H0+η

0

ρ
χ

Ls
∂tx̃s ∂χφ− ρ

Ls + x̃s
Ls

∂tφ dz dy dχ dt (4.3a)

=

∫ Ls

0

∫ Ly

0

∫ H0+η

0

− ρ

Ls
∂tx̃s ∂χφ+

ρ

Ls
∂tx̃s ∂χφ

+
ρ

Ls
∂χ(χφ) ∂tx̃s −

ρ

Ls
∂t
(
(Ls + x̃s)φ

)
dz dy dχ (4.3b)

=

∫ Ly

0

∫ H0+η

0

ρφs ∂tx̃s dz dy +

∫ Ls

0

∫ Ly

0

ρ

Ls
(Ls + x̃s)φf∂tη dy dχ

− d

dt

∫ Ls

0

∫ Ly

0

∫ H0+η

0

ρ

Ls
xsφ dz dy dχ , (4.3c)

in which Leibniz’ rule has been used to yield the time derivative of the integral, and

then the integral taken of the derivative with respect to χ, thereby obtaining the final

term in (4.3c) as a total time derivative. Temporal integration of this, upon using the

conditions δφ(0) = δφ(T ) = 0 and δxs(0) = δxs(T ) = 0, yields a variation in (3.7)

of zero. Therefore this term can be neglected. The remaining two terms in (4.3c) are

now linearized i.e. terms of third and higher order are similarly neglected, since quadratic

terms in the VP give linear terms in the equations of motion. Thus, the second term in

(4.3c) becomes∫ Ls

0

∫ Ly

0

ρ

Ls
(Ls + x̃s)φf∂tη dy dχ ≈

∫ Ls

0

∫ Ly

0

ρφf∂tη dy dχ . (4.4)

For the first term in (4.3c), Taylor-expansion around H0 yields

∫ Ly

0

∫ H0+η

0

ρφs ∂tx̃s dz dy ≈
∫ Ly

0

∫ H0

0

ρφs ∂tx̃s dz dy . (4.5)

The zeroth order of the expansion is sufficient, as the first order already contains

cubic terms. The definitions of the velocity potentials φs = φ(Ls, y, z, t) and φf =

φ
(
χ, y, h(χ, y, t), t

)
are used at the beam interface and the free surface respectively. The
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first term in (4.1b) linearizes to

1

2

Ls
xs

(∂χφ)2 =
1

2

1

1 + x̃s/Ls
(∂χφ)2 ≈ 1

2

(
1− x̃s

Ls

)
(∂χφ)2 ≈ 1

2
(∂χφ)2 . (4.6)

The second term in (4.1b) linearizes to

1

2

xs
Ls

(− χ
xs
∂yxs ∂χφ+ ∂yφ)2 =

=
1

2

(
χ2

Lsxs
(∂yx̃s)

2(∂χφ)2 +
xs
Ls

(∂yφ)2 − 2
χ

Ls
∂yx̃s ∂zφ ∂yφ

)
≈ 1

2

χ2

L2
s

(∂yx̃s)
2(∂zφ)2 +

1

2
(∂yφ)2 − χ

Ls
∂yx̃s ∂zφ ∂yφ ≈

1

2
(∂yφ)2 ,

(4.7)

upon dropping the higher-order terms; a similar linearization occurs for the first term in

(4.1c). The second term in (4.1c) linearizes to∫ Ls

0

∫ Ly

0

∫ H0+η

0

ρg(z −H0)
(
1 +

x̃s
Ls

)
dz dy dχ (4.8a)

=

∫ Ls

0

∫ Ly

0

1

2
ρgη2 dy dχ− 1

2
ρgLsLyH

2
0 +

∫ Ls

0

∫ Ly

0

∫ H0+η

0

ρg(z −H0)
x̃s
Ls

dz dy dχ

(4.8b)

≈
∫ Ls

0

∫ Ly

0

1

2
ρgη2 dy dχ− 1

2
ρgLsLyH

2
0 +

∫ Ly

0

∫ H0

0

ρg(z −H0)x̃s dz dy , (4.8c)

in which third- and higher-order terms have been omitted. The second term in (4.8c) is

a constant and can be dropped, as its variation vanishes. The−ρg(z−H0)x̃s term in (4.8c)

represents the hydrostatic pressure. Since the dynamics of the mutual fluid-structure

interaction are of interest, the linearization is assumed to occur around an equilibrium

state and hence the hydrostatic term is omitted hereafter. In a similar way, the gravity

force term ρ0gZ in (4.1e) is omitted and the relations in §2.2 are used to simplify the

beam expressions. The subtlety is neglected that, in the equilibrium (hydrostatic and

lithostatic) state, all of λ, µ and ρ0 vary slightly along the structure; they are all assumed

to be constant.

Finally, the Lagrange multiplier γ term (4.1d) is linearized by observing that xs − X =
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Ls + x̃s − Ls − X̃ = x̃s − X̃ and

x̃s
(
y = Y (Ls, b, c, t), z = Z(Ls, b, c, t), t

)
= x̃s

(
y = b+ Ỹ (Ls, b, c, t), z = c+ Z̃(Ls, b, c, t), t

)
= x̃s

(
b, c, t

)
+ (Ỹ , Z̃) · ∂x̃s

∂(y, z)
|y=b,z=c + . . .

(4.9)

In the manipulations in (4.9) X̃ was Taylor-expanded at the interface around the

equilibrium position. Here, X̃ is multiplied by γ, which, on the other hand, is expanded

around zero since γ = 0 at equilibrium when the hydrostatic pressure is neglected.

Therefore, retaining only quadratic terms, the γ term (4.1d) becomes

∫ Ly

0

∫ Lz

0

ργ

(
xs
(
Y (Ls, b, c, t), Z(Ls, b, c, t), t

)
−X(Ls, b, c, t)

)
dc db (4.10a)

≈
∫ Ly

0

∫ Lz

0

ργ

(
x̃s(b, c, t)− X̃(Ls, b, c, t)

)
dc db (4.10b)

≈
∫ Ly

0

∫ H0

0

ργ

(
x̃s(y, z, t)− X̃(Ls, y, z, t)

)
dz dy . (4.10c)

In (4.10c) the transformation from Lagrangian to Eulerian coordinates was performed

in the linear approximation, as in section 2.2, and the integration in z was limited to the

water height at the structural interface. Higher-order terms arising from the integration

from H0 to H0 + η have been neglected. For simplicity of notation, χ is renamed as x to

yield, after incorporating all assumptions, the linearized VP

0 = δ

∫ T

0

∫ Ls

0

∫ Ly

0

ρ∂tηφf −
1

2
ρgη2 −

∫ H0

0

1

2
ρ|∇φ|2 dz dy dx (4.11a)

+

∫ Ly

0

∫ H0

0

ρ∂tx̃sφs + ργ

(
x̃s(y, z, t)− X̃(Ls, y, z, t)

)
dz dy (4.11b)

+

∫ Lx

Ls

∫ Ly

0

∫ Lz

0

ρ0∂tX̃ ·U−
1

2
ρ0|U|2 −

1

2
λeiiejj − µe2

ij dz dy dx dt . (4.11c)

Due to the linearization, the domain is fixed and the full system is formulated in Eulerian

coordinates. After using the temporal endpoint conditions δX̃(x, 0) = δX̃(x, T ) = 0 and
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δη(x, y, 0) = δη(x, y, T ) = 0, the variation in (4.11) yields

δγ : x̃s(y, z, t) = X̃(Ls, y, z, t) at x = Ls (4.12a)

δx̃s : γ = ∂tφs at x = Ls (4.12b)

δφs : ∂tx̃s = ∂xφ at x = Ls (4.12c)

δX̃j(Ls, y, z, t) : − δ1jργ = T1j at x = Ls (4.12d)

δφf : ∂tη = ∂zφ at z = H0 (4.12e)

δη : ∂tφf = −gη at z = H0 (4.12f)

δφ : ∇2φ = 0 in Ω (4.12g)

δU : ∂tX̃ = U in Ω0 (4.12h)

δX̃j : ρ0∂tUj = ∇kTjk in Ω0 (4.12i)

with Ω0 : x ∈ [Ls, Lx], y ∈ [0, Ly], z ∈ [0, Lz], Ω : χ ∈ [0, Ls], y ∈ [0, Ly], z ∈

[0, H0] and linear stress tensor Tij = λδijekk + 2µeij . The Lagrange multiplier γ can

be easily removed from equations (4.12). Without γ and by replacing x̃s(y, z, t) with

X̃s = X̃(Ls, y, z, t), (4.12) becomes

δφs : ∂tX̃s = ∂xφ at x = Ls (4.13a)

δX̃j(Ls, y, z, t) : − δ1jρ∂tφs = T1j at x = Ls (4.13b)

δφf : ∂tη = ∂zφ at z = H0 (4.13c)

δη : ∂tφf = −gη at z = H0 (4.13d)

δφ : ∇2φ = 0 in Ω (4.13e)

δU : ∂tX̃ = U in Ω0 (4.13f)

δX̃j : ρ0∂tUj = ∇kTjk in Ω0 . (4.13g)

System (4.13) can be also obtained if the removal of the Lagrange multiplier γ is
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performed at the level of VP. Then (4.11) takes the form

0 =δ

∫ T

0

∫ Ls

0

∫ Ly

0

ρ∂tηφf −
1

2
ρgη2 −

∫ H0

0

1

2
ρ|∇φ|2 dz dy dx (4.14a)

+

∫ Ly

0

∫ H0

0

ρ∂tX̃sφs dz dy (4.14b)

+

∫ Lx

Ls

∫ Ly

0

∫ Lz

0

ρ0∂tX̃ ·U−
1

2
ρ0|U|2 −

1

2
λeiiejj − µe2

ij dz dy dx dt . (4.14c)

The coupling term (4.14b), derived here, is equivalent to the ad hoc one proposed in Salwa

et al. (2016b).

To further simplify computations, non-dimensional variables are now introduced.

A length scale D is chosen, e.g., beam length, whereafter other units are

nondimensionalized using

V =
√
gD, T =

D

V
, M = ρD3 . (4.15)

Then, coordinates and variables are transformed to non-dimensional ones using

x→ Dx y → Dy z → Dz η → Dη

ρ→ M

D3
ρ ρ0 →

M

D3
ρ0 φ→ V Dφ

X→ DX λ→ M

DT 2
λ µ→ M

DT 2
µ .

(4.16)

Using (4.16) enables transformation of the whole Lagrangian to the non-dimensional one

L →MV 2L, whence the final simplified Lagrangian from the VP (4.14) becomes

L =

∫ Ls

0

∫ Ly

0

[
∂tηφf −

1

2
η2 −

∫ H0

0

1

2
|∇φ|2dz

]
dydx

+

∫ Ly

0

∫ H0

0

∂tXsφs dzdy

+

∫ Lx

Ls

∫ Ly

0

∫ Lz

0

ρ0∂tX ·U−
1

2
ρ0|U|2 −

1

2
λeiiejj − µe2

ij dz dy dx

(4.17)
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with, it is recalled, eij = 1
2
(∂iXj + ∂jXi). Hereafter, although the tilde over the X has

been dropped for simplicity of notation, it still denotes the displacement rather than the

actual beam position.

4.3 Solution of the coupled linear system

Pn,Qn

φnh, η
n
h, X

n
h , P

n
h

L = P
dQ

dt
−H(P,Q)

Eliminate internal φ

Temporal discretization

Recover internal φ

Spatial discretization

Find X-conjugate momentum P

φnh, η
n
h, X

n
h , U

n
h

Recover U

φ, η,X, U

φh, ηh, Xh, Uh

φh, ηh, Xh, Ph

Transform to Hamiltonian form

Figure 4.1: Flow chart schematically depicting the solution method. The subscript (·)h denotes
a spatially discretized function and superscript (·)n the timestep counter.

In Fig. 4.1, is portrayed the discretization procedure of the VP with Lagrangian (4.17).

The system is reduced to Hamiltonian form, in which a known stable time discretization
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scheme can be applied. Though ultimately a space-time discrete system of equations

is sought, it is much easier to work with the space-discretized system than with the

continuous one, as it invites the use of matrix inverses and partial rather than functional

derivatives. Therefore, spatial discretization is first undertaken by using continuous C0-

Galerkin finite element expansions directly substituted into the VP. Since the variable

X is conjugated through coupling to both U and φ, the first step is to find its single

conjugate momentum P. It transpires that the interior φ degrees of freedom are not

independent, and can be expressed in terms of the free-surface ones φf and P at the

common boundary. The resulting system has a standard Hamiltonian structure with

Lagrangian L = P dQ/dt − H(P,Q, t), where Q = Q(t) and P = P(t) are the conjugate

vectors of unknowns, see Fig. 4.1. For such a system, stable, second-order, conservative

temporal schemes such as the Störmer-Verlet method are known. One is thus left with

a fully discretized VP and the resulting algebraic equations of motion follow. To avoid

computing full-system matrix inverses, φ is reintroduced in the interior, together with U

instead of P at properly determined time levels. Details are provided next.

4.3.1 FEM space discretization

To find a spatial discretization,C0–Galerkin finite element expansions of the variables are,

given an appropriate mesh tessellation of the fixed fluid and beam domains, substituted

directly into the VP. The basis functions are ϕ̃i(x, y, z) in the fluid domain with the

limiting basis function ϕ̃α(x, y) = ϕ̃α(x, y, z = H0) at the free surface z = H0,

and X̃k(x, y, z) in the structural domain. Both the fixed fluid and beam domains have

coordinates ~x = (x, y, z) = (x1, x2, x3). At the common interface x = Ls (see Fig. 3.2),

it is assumed that the respective meshes join up with common nodes. However, since

there are two meshes, these nodes are denoted by indices m and n on the fluid mesh

and by m̃ and ñ on the solid mesh. There is a mapping between these two node sets,

namely m = m(m̃). Here, i and j denote nodes in the fluid domain, α and β nodes at its

surface, m and n or m̃ and ñ nodes at the common fluid-structure boundary, and k and l
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nodes in the structure domain. Primed indices refer to the nodes below the water surface,

and αn denotes the surface nodes at the common boundary. Indices a, b = 1, 2, 3 are

the coordinate indices used for X and x. The Einstein summation convention is assumed

for all indices. Finally, with the subscript h denoting the numerical approximations, the

expansions are

φh(~x, t) = φi(t)ϕ̃i(~x) φfh(x, y, t) = φα(t)ϕ̃α(x, y) ηh(x, y, t) = ηα(t)ϕ̃α(x, y)

Xa
h(~x, t) = Xa

k (t)X̃k(~x) Ua
h(~x, t) = Ua

k (t)X̃k(~x) .

(4.18)

Substitution of (4.18) into (4.17) yields the spatially discrete Lagrangian function

L = η̇αMαβφβ + Ẋa
kNklU

a
l + Ẋ1

m̃Wm̃nφn −H(η, φ,X, U) , (4.19)

with Hamiltonian

H(η, φ,X, U) =
1

2
ηαMαβηβ +

1

2
φiAijφj +

1

2
Ua
kNklU

a
l +

1

2
Xa
kE

ab
klX

b
l , (4.20)

wherein a superscript dot indicates a time derivative, and in which the matrices are given

by

Mαβ =

∫
x

∫
y

ϕ̃αϕ̃β dy dx, Aij =

∫
Ω

∇ϕ̃i · ∇ϕ̃j dV,

Wm̃n =

∫
y

∫ H0

0

X̃m̃ϕ̃n dzdy, Nkl = ρ0

∫
Ω0

X̃kX̃l dV,

Bab
kl =

∫
Ω0

∂X̃k

∂xa

∂X̃l

∂xb
dV, Eab

kl = λBab
kl + µ

(
Bcc
klδab +Bba

kl

)
.

(4.21)

Provided that in both fluid and beam domains the basis functions come from the same

function space, one can identify X̃m̃ ≡ φ̃m(m̃). In other words, if the numbering is taken

into account, at the fluid-beam interface basis functions are the same in the fluid and the
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beam. The matrices in (4.21) are symmetric; in particular, it is highlighted that

Bab
kl = Bba

lk and Eab
kl = Eba

lk . (4.22)

Unlike in the continuous case, cf. remarks after (2.1), the Dirichlet boundary condition

can be incorporated directly into the Lagrangian, i.e., by imposing Xa
kb

= 0 and Ua
kb

= 0,

with (·)kb denoting the structure-base nodes. Then (4.19) becomes

L = η̇αMαβφβ + Ẋa
k′Nk′l′U

a
l′ + Ẋ1

m̃′Wm̃′nφn −H(η, φ,X, U) ,

H(η, φ,X, U) =
1

2
ηαMαβηβ +

1

2
φiAijφj +

1

2
Ua
k′Nk′l′U

a
l′ +

1

2
Xa
k′E

ab
k′l′X

b
l′ ,

(4.23)

with primed structural indices denoting nodes excluding those at the beam bottom. The

next step is to compute the momentum conjugate to Xa
k′ ,

Ra
k′ =

∂L

∂Ẋa
k′

= Nk′l′U
a
l′ + δa1δk′m̃′Wm̃′nφn , (4.24)

in which δij is the Kronecker delta symbol. Rearrangement of (4.24) yields

Ua
k′ = N−1

k′l′R
a
l′ − δa1N

−1
k′l′δl′m̃′Wm̃′nφn , (4.25)

in which it is to be noted that N−1
k′l′ is the inverse not of the full matrix Nkl, but of the

system excluding the nodes at the beam bottom. Therefore, after using Ra
k′ instead of Ua

k′ ,

the Lagrangian takes the form

L = η̇αMαβφβ + Ẋa
k′R

a
k′ −H(φα, ηα, X

a
k′ , R

a
k′), (4.26)
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in which the Hamiltonian (computed using the Lagrangian L in (4.19) and (4.25)) is given

by

H(φα, ηα, X
a
k′ , R

a
k′) = η̇αMαβφβ + Ẋa

k′R
a
k′ − L

=
1

2
ηαMαβηβ +

1

2
φiAijφj +

1

2
φmM̃mnφn

−R1
k′N

−1
k′l′δl′m̃′Wm̃′nφn

+
1

2
Ra
k′N

−1
k′l′R

a
l′ +

1

2
Xa
k′E

ab
k′l′X

b
l′ ,

(4.27)

in which

M̃mn = (N−1)m̃′ñ′Wm̃′mWñ′n . (4.28)

To facilitate the computations, the vector P is introduced and defined by

Ra
k′ = Nk′l′P

a
l′ , (4.29)

which obviates the need to compute the inverse of the full matrix N , instead requiring

only the part in the definition of M̃mn. The inverse (N−1)m̃′ñ′ in (4.28) is the submatrix

of the inverse of Nk′l′ including interface but excluding beam-bottom nodes. Therefore,

the substitution of (4.29) into (4.26) using (4.27) yields

L = η̇αMαβφβ + Ẋa
k′Nk′l′P

a
l′ −H(φα, ηα, X

a
k′ , P

a
k′) , (4.30)

with the Hamiltonian

H(φα, ηα, X
a
k′ , P

a
k′) =

1

2
ηαMαβηβ +

1

2
φiAijφj +

1

2
φmM̃mnφn

− P 1
m̃′Wm̃′nφn +

1

2
P a
k′Nk′l′P

a
l′ +

1

2
Xa
k′E

ab
k′l′X

b
l′ .

(4.31)

That not all terms in (4.31) are positive definite will be discussed in more detail later.

Note that the Hamiltonian depends explicitly on only the surface degrees of freedom φα.

Therefore, it is possible to eliminate the interior degrees of freedom φi′ , with the primed

index i′ denoting the nodes in the interior of the fluid excluding those on the free surface,
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in order to reduce the system to the general Hamiltonian form. Therefore, the equations

of motion are derived by applying the VP to the Lagrangian (4.30); after rearranging and

using arbitrariness of respective variations as well as suitable end-point conditions, there

follows

0 =

∫ t1

0

L dt

=

∫ t1

0

{
η̇αMαβδφβ −Mαβφ̇βδηα − ηαMαβδηβ − φiAijδφj − φmM̃mnδφn

+
(
Wm̃′n φn δP

1
m̃′ + P 1

m̃′Wm̃′n δφn
)

+
(
Ẋa
k′ Nk′l′ δP

a
l′ −Nk′l′ Ṗ

a
l′ δX

a
k′ − P a

k′ Nk′l′ δP
a
l′

)
−Xa

k′E
ab
k′l′δX

b
l′

}
dt .

(4.32)

Hence, by renaming certain indices, the following equations are obtained

δηβ : φ̇α = −ηα (4.33a)

δφα : Mαβ η̇β = φiAiα+(φmM̃mn − P 1
m̃′Wm̃′n)δαn (4.33b)

δφj′ : φiAij′ = (−φmM̃mn + P 1
m̃′Wm̃′n)δnj′ (4.33c)

δP a
k′ : Nk′l′Ẋ

a
l′ = Nk′l′P

a
l′−δa1δk′m̃′Wm̃′nφn (4.33d)

δXa
k′ : Nk′l′Ṗ

a
l′ = −Eab

k′l′X
b
l′ , (4.33e)

in which the new coupling terms introduced by the present formulation are underlined.

Defining the matrix C by

Ci′j′ = Ai′j′ + δi′mM̃mnδnj′ , (4.34)

(4.33c) can be split into internal and surface degrees of freedom and inverted to express

internal ones in terms of surface ones and P at the interface

φi′ = C−1
i′j′

(
−φαAαj′+P 1

m̃′Wm̃′nδnj′ − φαδαmM̃mnδnj′
)
. (4.35)
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The interior degrees of freedom are removed from the Lagrangian by substituting (4.35)

into (4.26) to obtain

L =η̇αMαβφβ −
1

2
ηαMαβηβ −

1

2
φαDαβφβ

+ P a
k′G

a
k′αφα

+ P a
k′Nk′l′Ẋ

a
l′ −

1

2
P a
k′F

ab
k′l′P

b
l′ −

1

2
Xa
k′E

ab
k′l′X

b
l′ ,

(4.36)

where Schur decomposition matrices D,F and G have been introduced; their explicit

forms are omitted. The structure of (4.36) is as follows: the first line describes the fluid,

the second the coupling, and the third the beam. In a more visual matrix notation, (4.36)

has the structure

L =(η̇, ~̇X)

M φ

N ~P

− 1

2
(η, ~X)

M 0

0 E

 η

~X


− 1

2
(φ, ~P )

 D −GT

−G F

φ
~P

 .

(4.37)

The classical Hamilton’s equations of an abstract system emerge when a generalized

coordinate vector and its conjugate vector are introduced, i.e.

Q =
(
η1, . . . , ηNf

, X1
1 , . . . , X

1
Nb
, X2

1 , . . . , X
2
Nb
, X3

1 , . . . , X
3
Nb

)
P =

(
M1αφα, . . . ,MNfαφα, N1k′P

1
k′ , . . . , NNbk′P

1
k′ ,

N1k′P
2
k′ , . . . , NNbk′P

2
k′ , N1k′P

3
k′ , . . . , NNbk′P

3
k′

)
,

(4.38)

with Nf degrees of freedom at the free surface and Nb degrees of freedom in the beam

(recall, fixed-bottom nodes are excluded), using which the Lagrangian can be written in

the form

L =
dQ

dt
· P− H(Q,P) (4.39)
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with Hamiltonian H(P,Q). After introducing the following (symmetric) matrices

MQ =

M 0

0 E


MP =

M−1DM−1 −M−1GTN−1

−N−1GM−1 N−1FN−1

 ,

(4.40)

the Hamiltonian in (4.39) can be written as

H(Q,P) =
1

2
QTMQQ +

1

2
PTMPP . (4.41)

4.3.2 Time discretization

The Störmer-Verlet scheme (see Marsden and West (2001) for a definition, and Bokhove

and Kalogirou (2016) for a variational derivation) is used to discretize (4.39) to second-

order accuracy in time. The resulting difference equations are

Pn+1/2 = Pn − 1

2
∆t
∂H(Qn,Pn+1/2)

∂Qn
,

Qn+1 = Qn +
1

2
∆t

(
∂H(Qn,Pn+1/2)

∂Pn+1/2
+
∂H(Qn+1,Pn+1/2)

∂Pn+1/2

)
,

Pn+1 = Pn+1/2 − 1

2
∆t
∂H(Qn+1,Pn+1/2)

∂Qn+1
.

(4.42)

In the linear case considered, for which the Hamiltonian is given by (4.41), (4.42) yields

the explicit scheme

Pn+1/2 = Pn − 1

2
∆tMQQ

n,

Qn+1 = Qn + ∆tMPP
n+1/2,

Pn+1 = Pn+1/2 − 1

2
∆tMQQ

n+1.

(4.43)
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After some manipulations (described in detail in Appendix B), in terms of original

physical variables the discretization to be implemented is

φn+1/2
α = φnα −

1

2
∆tηnα (4.44a)

Nk′l′(U
a
l′ )
n+1/2+δa1δk′m̃′Wm̃′nδni′φ

n+1/2
i′ = Nk′l′(U

a
l′ )
n − 1

2
∆tEab

k′l′(X
b
l′)
n

+ δa1δk′m̃′Wm̃′nφ
n
n − δa1δk′m̃′Wm̃′nδnαφ

n+1/2
α (4.44b)

Ai′j′φ
n+1/2
i′ −(U1

m̃′)
n+1/2Wm̃′nδnj′ = −Aαj′φn+1/2

α (4.44c)

Mαβη
n+1
β = Mαβη

n
β + ∆tAαiφ

n+1/2
i −∆t(U1

m̃′)
n+1/2Wm̃′nδnα (4.44d)

(Xa
k′)

n+1 = (Xa
k′)

n + ∆t(Ua
k′)

n+1/2 (4.44e)

φn+1
α = φn+1/2

α − 1

2
∆tηn+1

α (4.44f)

Nk′l′(U
a
l′ )
n+1+δa1δk′m̃′Wm̃′nδni′φ

n+1
i′ = Nk′l′(U

a
l′ )
n+1/2 − 1

2
∆tEab

k′l′(X
b
l′)
n+1

+ δa1δk′m̃′Wm̃′nφ
n+1/2
n − δa1δk′m̃′Wm̃′nδnαφ

n+1
α (4.44g)

Ai′j′φ
n+1
i′ −(U1

m̃′)
n+1Wm̃′nδnj′ = −Aαj′φn+1

α . (4.44h)

Let us remark that equations (4.44a), (4.44d), (4.44e) and (4.44f) can be solved in the

separate fluid and structure domains, while (4.44b), (4.44c), (4.44g) and (4.44h) have to

be solved in both domains simultaneously. Therefore, the scheme is a variant of the mixed

partitioned-monolithic approach, see e.g., Hübner et al. (2004).

The Firedrake environment (see start of section 4.4) used to obtain 3D results accepts

equations in the weak form as an input. Therefore, the weak-form equivalent of (4.44),

with more general structural geometry, is∫
vφn+1/2 dSf =

∫
v(φn − 1

2
∆tηn) dSf (4.45a)∫

ρ0v ·Un+1/2 dVS+

∫
n · v φn+1/2 dSs = ρ0

∫
v ·Un dVS

− 1

2
∆t

∫
(λ∇ · v∇ ·Xn + µ∂aX

n
b (∂avb + ∂bva)) dVS+

∫
n · v φn dSs (4.45b)
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∫
∇v · ∇φn+1/2 dVF−

∫
vn ·Un+1/2 dSs = 0 (4.45c)∫

vηn+1 dSf =

∫
vηn dSf + ∆t

∫
∇v · ∇φn+1/2 dVF

−∆t

∫
vn ·Un+1/2 dSs (4.45d)∫

v ·Xn+1 dVS =

∫
v · (Xn + ∆tUn+1/2) dVS (4.45e)∫

vφn+1 dSf =

∫
v(φn+1/2 − 1

2
∆tηn+1) dSf (4.45f)∫

ρ0v ·Un+1 dVS+

∫
n · vφn+1 dSs = ρ0

∫
v ·Un+1/2 dVS

− 1

2
∆t

∫ (
λ∇ · v∇ ·Xn+1 + µ∂aX

n+1
b (∂avb + ∂bva)

)
dVS

+

∫
n · v φn+1/2 dSs (4.45g)∫

∇v · ∇φn+1 dVF−
∫
vn ·Un+1 dSs = 0 , (4.45h)

in which dSf denotes integration over the free surface, dSs the fluid-structure interface,

dVF the fluid domain, dVS the structure domain, and n is, as before, the unit outward-

normal vector of the fluid domain. In general, the quantities on the left-hand side are

unknowns. The procedure for solving equations (4.45) is summarised as follows. The

result of (4.45a) is φn+1/2 at the free surface. It is used as a Dirichlet boundary condition

in (4.45b) and (4.45c), which are solved simultaneously to get φn+1/2 in the whole fluid

domain and Un+1/2. Next, η is updated in (4.45d) and X in (4.45e). Then (4.45f)

yields φn+1 at the free surface. Again, it is used as a Dirichlet boundary condition in

the simultaneously solved (4.45g) and (4.45h) for the final update of the full φ and U. In

addition, the beam-bottom no-motion boundary condition is applied, i.e., X(0, y, z, t) = 0

in (4.45e) and U(0, y, z, t) = 0 in (4.45b), (4.45c), (4.45g) and (4.45h).

The numerical results obtained via the described approach are now presented and

discussed.
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4.4 Results

Firedrake (Rathgeber et al., 2016) is an open-source FEM automation package written in

python, that uses PETSc for numerical computations. It accepts equations in weak form

and automatically assembles the system matrices. Therefore, in this case the scheme in

the form (4.45) was used, with linear continuous Galerkin test functions. For the purposes

of illustration and validation, computations were performed first in two dimensions (no

y-dependence), with bespoke code (no use of Firedrake for automation), constructing

directly the matrices in (4.44). Later, the two-dimensional code in Firedrake was shown

to produce the same results. Once the scheme was verified to yield a stable solution,

computations in three dimensions using the Firedrake software were performed.

4.4.1 2D results

Parameter values used in this case are shown in Table 4.1. In order to render visible the

beam deformations, Lamé constants are taken to be approximately 104 times smaller than

those for the steel used to make wind-turbine masts. As previously mentioned, Dirichlet

boundary conditions were assumed for the beam, which is fixed (zero displacement and

velocity) at its base z = 0 whereas other boundaries can move freely. A solution with zero

initial movement and displacement in the beam is presented, and, in the fluid, the first

mode of an analytical solution, with deflected initial free surface and no fluid velocity, the

natural period of which is T = 5.3s. The energy in the system is presented in Fig. 4.2,

in which it is clear that, although there is always an energy exchange between the water

and beam, the total energy remains bounded, due to the energy conservation of the space

and time discretization. Oscillations in the energy depend on the timestep used, as shown

in Fig. 4.3. As expected, the method is second-order accurate in time, i.e., halving the

timestep decreases the difference between the numerically computed energy and the exact

one by a factor of four. The method is also expected to be second-order accurate in

space, as linear basis functions are used in the finite element expansion. To verify this the
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formula is used for the convergence rate derived for regularly refined-by-halving meshes

from Aitken extrapolation

s = log2

||φf − φm||
||φm − φc||

, (4.46)

in which φc, φm and φf is the solution on coarse, medium and fine meshes, respectively,

and || · || denotes either the L2 or L∞ norm. The convergence rate s computed by (4.46)

is shown in Fig. 4.4, which shows an oscillatory behaviour around the value of s = 1.7.

Snapshots of the initial condition (no flow, free surface deflected) and evolved state are

shown in Fig. 4.5.

Table 4.1: Parameter values used in the 2D computations.

Parameter Value Comment
g 9.8 m/s2 gravitational acceleration

Lx ×H0 20 m× 10 m water domain
LBx × LBz 2 m× 20 m beam domain

ρ 1000 kg/m2 water density
ρ0 7700 kg/m2 beam density (steel)
λ 1× 107 N/m first Lamé constant
µ 1× 107 N/m second Lamé constant

NW
x ×NW

z 20× 10 no. of elements in water
NB
x ×NB

z 4× 20 no. of elements in beam

4.4.2 3D results

Parameter values for this case are shown in Table 4.2. The mesh consists of layers of

tetrahedra in the z-direction, and the fluid domain is asymmetric in the xy plane. The

beam is represented by a hollow cylinder, which is meshed with layers of 8 blocks

comprising 4 tetrahedra each. Snapshots of the system evolution are shown in Fig. 4.8.

The applied initial condition is one of a beam in equilibrium adjacent to a fluid whose

free-surface elevation is the first mode of a harmonic analytical solution (without the

beam) with oscillation period of 4s. Fig. 4.6 presents the energy transfer in the system.

The convergence of the results with decreasing time step is shown in Fig. 4.7.
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Figure 4.2: Energy apportionment (in J) in the 2D system. From top to bottom (see
key), curves represent energies of the total system (medium, horizontal), total water (thick,
wavy), potential/kinetic water (thick dotted/dashed oscillatory), total beam (thin, wavy) and
potential/kinetic beam (thin dotted/dashed oscillatory).
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Figure 4.3: Convergence of the temporal energy as a function of timestep in 2D: relative error
curves for timesteps ∆t (upper curve) and ∆t/2 (lower curve) have amplitudes in the ratio four to
one, confirming second-order convergence.
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Figure 4.4: Rate of convergence, s in (4.46), of φ against time, computed using 3 regularly refined
meshes and two norms: L2 (solid line) and L∞ (dashed line). As the mesh size tends to zero, the
theoretical limit of Aitken acceleration yields s = 2.

Table 4.2: Parameter values used in the 3D computations.

Parameter Value Comment
g 9.8 m/s2 gravitational acceleration

Lx × Ly ×H0 10 m× 10 m× 4 m water domain
Ri 0.6 m beam inner radius
Ro 0.8 m beam outer radius
H 12 m beam height
ρ 1000 kg/m3 water density
ρ0 7700 kg/m3 beam density (steel)
λ 1× 107 N/m2 first Lamé constant
µ 1× 107 N/m2 second Lamé constant
NW
z 4 no. of layers in water

NB
z 12 no. of layers in beam
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Figure 4.5: Temporal snapshots of the 2D water-beam geometry during flow evolution. Although
the computational domain is fixed, results have been post-processed into physical space to
visualize the deformations. Initial condition of no flow (top) with motion initiated by free-surface
displacement. Solutions after 3s (middle) and 5s (bottom).

50



Chapter 4. Linear variational modelling of wave-structure interactions: finite-element method

0 2 4 6 8 10
time [s]

0

20000

40000

60000

80000

100000

120000

140000

En
er

gy
 [J

]

Water energy(time)
potential
kinetic
total

0 2 4 6 8 10
time [s]

0

200

400

600

800

1000

1200

1400

1600

En
er

gy
 [J

]

Beam energy(time)
potential
kinetic
total

Figure 4.6: Energy apportionment (in J) in the 3D system: water (top) and beam (bottom).
Curves represent total (continuous), potential (dotted) and kinetic (dashed) energies. Note from
the disparate vertical scales in the two plots that the total beam energy is much less than that of
the water.
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Figure 4.7: Convergence of the method as a function of the timestep in 3D: the full timestep
(upper curve, grey) and half timestep (lower curve, black) relative-error curves have amplitudes in
the ratio four to one, confirming second-order convergence.
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Figure 4.8: Temporal snapshots of the 3D water-beam geometry during flow evolution. Although
the computational domain is fixed, results have been post-processed into physical space to
visualize the deformations. (Top left) initial condition; no flow; motion initiated by free-surface
displacement. Physical flow geometries after 1.1 s (bottom left), 3.8 s (top right) and 5.9 s (bottom
right). Colours, white to black, indicate flow-potential values. A beam deflection is clearly evident.
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4.5 Discussion

A fully coupled nonlinear variational model of a free-surface fluid-structure interaction

has been formulated. The main benefit is the incorporation of a complex multi-domain,

evolving-geometry, single-valued free-surface, transient problem within a unifying and

computationally tractable framework with a novel approach to use the Lagrange multiplier

γ to constrain the beam and fluid common boundary. After elimination of the Lagrange

multiplier and the hydrostatic term, the system (4.13) of linearized water-wave dynamics

coupled to an elastic beam, i.e., a system of linearized fluid-structure interaction (FSI)

equations, is equivalent to the FSI with the ad hoc coupling derived in Salwa et al.

(2016b). The linear equations have been discretized using a dis/continuous variational

FEM, employing techniques from Bokhove and Kalogirou (2016), leading to a fully

coupled and stable linear FSI with overall energy conservation, i.e., without any energy

loss between the subsystems, as there are bounded oscillations in the total energy

decreasing with the size of timestep, due to the symplectic solver used. In the final scheme

(4.44) there appears an extra coupling term in the equation (4.44d) for the free-surface

deviation at the fluid-structure boundary that is not obvious from the continuous equation

(4.13c). This is a novel aspect that emerges from the variational approach. The numerical

extension of these FSI to the nonlinear realm is planned as future research.

The next extension of the model will be to allow for rotational flow to model wave

breaking where the free surface can overturn. Non-potential flow and the mixture theory

Benitz et al. (2015); Bokhove et al. (2016) of the water-air phase can be used for this

purpose. An alternative, which will be exploited, is to propose a compressible, van-

der-Waals-like potential-flow fluid model, that enables the modelling of wave-breaking

without actually introducing rotational flow.

The code used in the 3D computation is available here: https://doi.org/10.

5281/zenodo.816221. A simplified 2D version is also published as a tutorial on

Firedrake’s website and presented in Chapter 6.
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Chapter 5

Towards modelling and simulating

breaking waves

5.1 Introduction

The main advantage of the incompressible potential-flow model is its simplicity and speed

in calculations; it is accordingly considered an industrial benchmark for applications.

However, the same simplicity can be a drawback when the simulation of more complex

behaviour is required. In reality, impact events with steep waves usually involve wave

breaking, which cannot be simulated with plain, incompressible potential flow due to

lack of rotational degrees of freedom. Therefore, to correctly simulate real fluid-structure

interaction one has to resort to different models.

One such model, analysed and developed in this chapter, is the attempt to simulate wave

breaking through the use of an air-water mixture model, e.g. see Bokhove et al. (2016);

Dumbser (2011). In this alternative approach, the free-surface “interface” is considered

as a limiting transition quantified by the density jump between two constituent phases

(and, optionally, an intermediate “transition zone”) of ideal gases of variable density. An

equation of state is then introduced on the basis of a van-der-Waals-like fluid model with

a pseudo phase transition between the two phases, which herein are taken as water and air.
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The van-der-Waals system studied is a potential-flow limit of flow equations that are now

heavily studied in the research community, including applications with floating bodies and

dynamic structures (Golay et al., 2015). We note, however, that despite remaining within

potential-flow formalism, the fluid under consideration is no longer incompressible.

The theory is verified through several models based on combinations of C0 and/or C∞

equations of state and/or sound speeds which admits progression through: first, a sharp-

interface model; second, a smooth-interface model of which the sharp-interface is the

limiting form, and; third, an infinitely differentiable model whose limiting form is also

the sharp-interface one but which does not suffer (at the computational stage) from the

discontinuities of the first two models.

Validation of the theory is achieved by noting that, in the incompressible limit, results

therefrom agree to demonstrably high accuracy with those obtained from independent

computations performed on the corresponding potential-flow model.

5.2 Compressible van-der-Waals-like fluid

The van-der-Waals-like fluid model presented below enables simplified treatment of

breaking waves; its formulation and properties are now investigated.

5.2.1 Model formulation

Consider a compressible stratified fluid under the influence of gravity in a closed cuboid

as domain with a modified van-der-Waals-like equation of state (EOS). The corresponding

variational principle reads

0 =δ

∫ T

0

L[ρ, φ] dt ≡ δ

∫ T

0

∫ Lx

0

∫ Ly

0

∫ H

0

ρ∂tφ+
1

2
ρ|∇φ|2

+ ρgz + ρU(ρ)− ρ
(
gz +Q(ρ0(z)) +

p

ρ
|ρ=0

)
dx dy dz dt (5.1)
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with: Lagrangian L[ρ, φ] depending on density ρ = ρ(x, y, z, t) as a function of spatial

coordinates (x, y, z) and time t, and the velocity potential φ = φ(x, y, z, t) such that

the velocity u = ∇φ; internal energy U(ρ); constant acceleration of gravity g; domain

scales Lx, Ly and H in the three spatial directions; and, final time T . Note that this is an

extension of Luke’s VP (3.1). The internal energy U = U(ρ) and the related Q(ρ) are

chosen to be a function of density ρ as follows. The second thermodynamic law for the

adiabatic process is

du = p dV = p d

(
m

ρ

)
= −pm

ρ2
dρ . (5.2)

Therefore, the internal energy density per unit mass is

U =

∫ ρ

0

p(ρ̃)

ρ̃2
dρ̃. (5.3)

Moreover, one has

δ
(
ρU(ρ)

)
=ρU ′δρ+ Uδρ ≡ Q(ρ)δρ

=
p

ρ
δρ+

∫ ρ

0

p(ρ̃)

ρ̃2
dρ̃ δρ

=
p

ρ
δρ|ρ=0 +

∫ ρ

0

1

ρ̃

∂p(ρ̃)

∂ρ̃
dρ̃ δρ

=

(
p

ρ
|ρ=0 +Q(ρ)

)
δρ , (5.4)

in which integration by parts was used as well as the definition

Q(ρ) ≡
∫ ρ

0

1

ρ̃

∂p(ρ̃)

∂ρ̃
dρ̃ . (5.5)

Given these relations, variations of (5.1) become

0 =

∫ T

0

∫ Lx

0

∫ Ly

0

∫ H

0

(
∂tφ+

1

2
|∇φ|2 +Q(ρ)−Q(ρ0)

)
δρ+

−
(
∂tρ+ ∇ · (ρ∇φ)

)
δφ dV (5.6)

+ ρn · ∇φ δφ dS dt.
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The arbitrariness of δρ and δφ in (5.6) subsequently yields the following equations

δφ : ∂tφ+
1

2
|∇φ|2 +Q(ρ)−Q(ρ0) = 0 (5.7a)

δρ : ∂tρ+ ∇ · (ρ∇φ) = 0 (5.7b)

δφ|∂Ω : ρn · ∇φ = 0 . (5.7c)

The gradient of (5.7a) should give the inviscid momentum equation

∂tu + u · ∇u = −1

ρ
∇p+ g . (5.8)

Since ∇Q = 1
ρ
∇p, it is assumed that ∇Q(ρ0) = (0, 0, dQ(ρ0)

dz
)T = (0, 0,−g)T , as ρ0 =

ρ0(z) is the density in the hydrostatic state. The static case with φ = 0 or constant then

defines the hydrostatic density profile ρ0(x) through:

−g =
dQ (ρ0(z))

dz
=

1

ρ0(z)

dp

dz
=

1

ρ0(z)

dρ0(z)

dz

dp

dρ0(z)
. (5.9)

Three candidate EOSs are now considered.

5.2.2 Equations of state

C0 EOS with discontinuous sound speed

The first simplified van-der-Waals fluid-type EOS considered consists of two linear

sections, one for each of the “air” and “liquid” branches of the model, connected by a

constant-pressure branch as follows:

p(ρ) =


c2
aρ ρ ≤ ρa

pa = c2
aρa ρa < ρ < ρw

pa + c2
w(ρ− ρw) ρ ≥ ρw

(5.10)
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with c2
a = RT � c2

w with R = 287 J/kg · K and T ≈ 270 K, such that ca ≈ 316m/s, and

cw ≈ 1500m/s. Given this equation of state consider the equilibrium hydrostatic rest state

for a given mass M =
∫ H

0
ρ dz in a container of height H . When the pressure exceeds pa,

the density jumps from ρa to ρw at the unknown level h, 0 ≤ h ≤ H , which models the

free-surface position; at rest, h = H0. The hydrostatic solution of (5.9) with equation of

state (5.10) is

ρ0(z) =

ρa exp(− g
c2a

(z − za)) for ρ0 ≤ ρa, z ≥ za

ρw exp(− g
c2w

(z − zw)) for ρ0 ≥ ρw, z ≤ zw .
(5.11)

For ρa < ρ0 < ρw, zw < z < za the density is not defined. The simplest way to resolve

this apparent anomaly is to assume that the transition zone has zero width za = zw = H0,

and that there is a jump in density across the interface

ρ0(z) =

ρa exp(− g
c2a

(z −H0)) for z > H0

ρw exp(− g
c2w

(z −H0)) for z ≤ H0 .
(5.12)

Because of the shape of the solution, (5.10) will be referred to as the “sharp- interface” or

“two-phase” model. In the limit ρa → 0, ca → ∞, cw → ∞ such that c2
aρa = pa, (5.12)

takes the form

ρ0(z) =

0 for z > H0

ρw for z ≤ H0

(5.13)

and (5.10) becomes

p(z) =

pa for z > H0

pa − ρwg(z −H0) for z ≤ H0

, (5.14)

which represent an incompressible fluid with constant density ρw and surface at z =

H0. Quantification of how this limit is approached in the sharp-interface model is

demonstrated in the two sub-figures in the top row of Fig.5.1.
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Figure 5.1: Two-phase (top), three-phase (middle) and C∞ (bottom) interface models. Density
(left) and pressure (right) in the limit ρa → 0, ca → ∞, cw → ∞, c2

aρa = pa = 1000 hPa,
ρw = 1000 kg/m3 with colors: blue, green, red to brown as the values approach the incompressible
limit (black). The interface is located at H0 = 40m, while the total tank height H = 80m.
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The value of the term Q(ρ)−Q(ρ0) in (5.7a) with equation of state (5.10) is

Q(ρ)−Q(ρ0) = c2
a ln

min(ρ, ρa)

min(ρ0, ρa)
+ c2

w ln
max(ρ, ρw)

max(ρ0, ρw)
. (5.15)

C0 EOS and speed of sound

An alternative to (5.10) is an equation of state that describes a “smooth-interface” or

“three-phase” region,

p(ρ) =


c2
aρ ρ ≤ ρ∗

pa + c2
m (ρ− (ρa + ρw)/2) ρ∗ < ρ < ρ∗∗

pa + c2
w(ρ− ρw) ρ ≥ ρ∗∗

(5.16)

in which pa = c2
aρa, and cm is a small sound speed in the transition region, cm < ca, cw.

The continuity of pressure yields

ρ∗ =
(
pa − c2

m(ρa + ρw)/2
)
/(c2

a − c2
m) and (5.17a)

ρ∗∗ =
(
c2
wρw − c2

m(ρa + ρw)/2
)
/(c2

w − c2
m). (5.17b)

With the equation of state (5.16) the term Q(ρ)−Q(ρ0) in (5.7a) becomes

Q(ρ)−Q(ρ0) =c2
a ln

min(ρ, ρ∗)

min(ρ0, ρ∗)
+ c2

w ln
max(ρ, ρ∗∗)

max(ρ0, ρ∗∗)

+ c2
m



0, ρ0 ≤ ρ ∧ (ρ∗∗ ≤ ρ0 ∨ ρ ≤ ρ∗)

ln min(ρ,ρ∗∗)
max(ρ0,ρ∗)

, ρ0 ≤ ρ ∧ ρ0 < ρ∗∗ ∧ ρ∗ < ρ

0, ρ < ρ0 ∧ (ρ∗∗ ≤ ρ ∨ ρ0 ≤ ρ∗)

ln max(ρ,ρ∗)
min(ρ0,ρ∗∗)

, ρ < ρ0 ∧ ρ < ρ∗∗ ∧ ρ∗ < ρ0

. (5.18)
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The hydrostatic density resulting from (5.9) with the equation of state (5.16) is

ρ0(z) =


ρ∗ exp(− g

c2a
(z −H∗)), z ≥ H∗

ρ∗∗ exp(− g
c2m

(z −H0)), H∗ > z > H0

ρ∗∗ exp(− g
c2w

(z −H0)), H0 ≥ z

, (5.19)

in whichH∗ = H0 + c2m
g

ln ρ∗∗
ρ∗

to ensure density continuity, andH0 is defined as the height

at which the interface starts. In the limiting case ca, cw →∞, cm → 0, ρa → 0, c2
aρa = pa,

it is found that ρ∗ → 0 and ρ∗∗ → ρw. Assuming also that c2
m ln ρ∗

ρ∗∗
→ 0, which holds if

cm tends to zero as 1
ca

, results (5.13) and (5.14) are obtained, i.e. as in the sharp-interface

model. Quantification of the smooth-interface results is depicted in the two sub-figures in

the middle row of Fig. 5.1, in which comparison of top and middle rows clearly evidences

the limiting approach of the smooth-interface model to the sharp-interface one.

C∞ EOS and speed of sound

Both equations of state (5.10) and (5.16) have the drawback that they are not differentiable

(smooth) in the whole domain, as a direct result of which the numerical solution proves

problematic. Therefore another equation of state is proposed that asymptotically tends to

(5.10), but is C∞.

The starting point is to introduce an equation of the form

y±(x, a, b) =
a

2

(
x±

√
x2 +

4b2

a2

)
(5.20)

which represents two branches of hyperbola centered at the coordinate origin, with

asymptotes y = 0 and y = ax and crossing the y-axis at y = ±b; the described set-

up is depicted in Fig. 5.2. This function admits proposal of an infinitely differentiable

approximation of the equation of state (5.10):

p(ρ, ba, bw) = y−(ρ− ρa, c2
a, ba) + y+(ρ− ρw, c2

w, bw) + pa . (5.21)
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Figure 5.2: The hyperbola, described by setting a = b = 1 in equation (5.20) centred at the origin,
with lower branch (‘−’-blue), upper branch (‘+’-yellow), asymptotes y = 0 and y = x (green),
crossing y- axis at b = ±1.

The two parameters ba,w dictate the proximity to (5.10) which is recovered without error

when b = 0: see Fig. 5.3 for a graph of (5.21). In finding the hydrostatic state, the

following integral is required

∫
1

x

d y±(x− x0, a, b)

dx
dx =

a

2

{
lnx± ln

(
x− x0 +

√
(x− x0)2 +

4b2

a2

)

± x0√
x2

0 + 4b2

a2

[
ln

(
x2

0 − x0x+
4b2

a2
+

√
x2

0 +
4b2

a2

√
(x− x0)2 +

4b2

a2

)
− lnx

]}

(5.22)

up to the integration constant. Then (5.9) can be solved numerically, yielding a

hydrostatic-state pressure p(z) and density profile ρ0(z) that are shown at the bottom
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Figure 5.3: Equations of state: pressure as a function of density for theC∞ model (blue) compared
with the two-phase model (5.10) (yellow) and three-phase model (5.16) (green). Parameter values
are: ca = 25 m/s, cw = 30 m/s, cm = 7 m/s, pa = 1000 hPa, ρa = 160 kg/m3, ρw = 1000 kg/m3,
ba = 0.1pa, bw = 0.2pa.

of Fig. 5.1. Next, with (5.22) the driving terms can be computed analytically as

Q(ρ)−Q(ρ0(z)) in (5.7a). Using also (5.5) and (5.21), there results

Q(ρ)−Q(ρ0(z)) = (5.23)

=
c2
a

2

{
ln

ρ

ρ0

− ln

 ρ− ρa +
√

(ρ− ρa)2 + 4b2a
c4a

ρ− ρa +
√

(ρ0 − ρa)2 + 4b2a
c4a


− ρa√

ρ2
a + 4b2a

c4a

ln

 ρ2
a − ρaρ+ 4b2a

c4a
+
√
ρ2
a + 4b2a

c4a

√
(ρ− ρa)2 + 4b2a

c4a

ρ2
a − ρaρ0 + 4b2a

c4a
+
√
ρ2
a + 4b2a

c4a

√
(ρ0 − ρa)2 + 4b2a

c4a

− ln
ρ

ρ0

}

+
c2
w

2

{
ln

ρ

ρ0

+ ln

 ρ− ρw +
√

(ρ− ρw)2 + 4b2w
c4w

ρ− ρw +
√

(ρ0 − ρw)2 + 4b2w
c4w


+

ρw√
ρ2
w + 4b2w

c4w

ln

 ρ2
w − ρwρ+ 4b2w

c4w
+
√
ρ2
w + 4b2w

c4w

√
(ρ− ρw)2 + 4b2w

c4w

ρ2
w − ρwρ0 + 4b2w

c4w
+
√
ρ2
w + 4b2w

c4w

√
(ρ0 − ρw)2 + 4b2w

c4w

− ln
ρ

ρ0

} .
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The value of Q(ρ)−Q(ρ0(z)) so computed is shown as a function of ρ and z in Fig. 5.4.

Figure 5.4: Driving term Q(ρ)−Q(ρ0(z)) as a function of ρ and z. Parameter values are as given
in the caption of Fig. 5.3 with the addition of H0 = 40m.

5.3 Linear waves

The next test problem used to verify system (5.7) is one comprising linear waves. It is

assumed that (tilded) perturbations around the hydrostatic state ρ0(z) are given by φ =

0 + φ̃ and ρ = ρ0(z) + ρ̃, in which perturbations are considered to be small so that their

quadratic and higher-order terms can be neglected. The resulting linearization is

∂tφ̃+Q′0ρ̃ = 0 (5.24a)

∂tρ̃+ ρ′0∂zφ̃+ ρ0∇2φ̃ = 0 (5.24b)
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n ·∇φ̃ = 0 , (5.24c)

in which the following notation has been used:

dQ

dρ
|ρ0(z) = Q′(ρ0) ≡ Q′0 (5.25a)

dρ0(z)

dz
≡ ρ′0 . (5.25b)

The perturbation ρ̃ is first eliminated by taking the temporal derivative of (5.24a) and

substituting ∂tρ̃ from (5.24b) to get

∂ttφ̃−Q′0(ρ′0∂zφ̃+ ρ0∇2φ̃) = 0 . (5.26)

The substitution of φ̃(x, z, t) = φ̂(z)ei(kx−ωt) leads to an equation for φ̂ in the z-direction

only:

Q′0ρ0φ̂
′′ +Q′0ρ

′
0φ̂
′ + (ω2 −Q′0ρ0k

2)φ̂ = 0 . (5.27)

Q′0
d

dz
(ρ0φ̂

′) + (ω2 −Q′0ρ0k
2)φ̂ = 0 . (5.28)

After substituting expressions for ρ0 and Q′0 there results

c2φ̂′′ − gφ̂′ + (ω2 − c2k2)φ̂ = 0 . (5.29)

The general solution of (5.29) is

φ̂(z) = C+ exp
[ z

2c2

(
g +

√
g2 + 4c4k2 − 4c2ω2

)]
+ C− exp

[ z
2c2

(
g −

√
g2 + 4c4k2 − 4c2ω2

)]
, (5.30)
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in which the constants C± are discussed below. To simplify further expressions, the

following notation is introduced:

∆α ≡ g2+4c4
αk

2−4c2
αω

2 , G±α ≡
1

2c2
α

(g±
√

∆α) and E±βα ≡ exp
[
G±αHβ

]
.

(5.31)

The particular solutions are denoted as

φ̂±α (z) ≡ exp

[
z

2c2
α

(
g ±

√
g2 + 4c4

αk
2 − 4c2

αω
2
)]

. (5.32)

5.3.1 One-phase model

The constants C± arising in (5.30) are now sought within the context of the dispersion

relation, first in the simplest case of a single phase (with no interface). Since there is

only one phase, subscripts are dropped from the terms defined in (5.31). Two boundary

conditions emerge from (5.24c), namely φ̂′(0) = 0 and φ̂′(H) = 0, which yield the 2× 2

linear system  (φ̂+)′(0) (φ̂−)′(0)

(φ̂+)′(H) (φ̂−)′(H)

 C+

C−

 = ~0 . (5.33)

System (5.33) has a solution if the determinant of its matrix is zero, which gives

(ω2 − c2k2) sinh

(
H

2c2

√
∆

)
= 0 . (5.34)

There are three cases to consider:

I) For ∆ > 0, equation (5.34) is satisfied if and only if ω = ±ck. Boundary conditions

yield C+ = 0 and, denoting C− ≡ C, the solution takes the form: φ̂(z) = C.

II) For ∆ = 0 (5.34) is automatically satisfied and the dispersion relation is ω2 = g2/4c2+

c2k2. However, boundary conditions require that C+ = C− = 0, so the solution is trivial,

i.e. φ̂(z) = 0.
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III) For ∆ < 0 there exists a nontrivial solution satisfying (5.34) if

sinh

(
i
H
√
−∆

2c2

)
= i sin

(
H
√
−∆

2c2

)
= 0 , (5.35)

which holds if
H
√
−∆

2c2
= nπ , n ∈ {1, 2, . . . } , (5.36)

or

ω2 =
g2

4c2
+ c2k2 +

c2n2π2

H2
. (5.37)

Note that n = 0 gives case II. The solution then takes the form

φ̂(z) = C exp
( gz

2c2

)
cos
(nπz
H

)
. (5.38)

5.3.2 C0 EOS and discontinuous speed of sound

In the sharp-interface, or two-phase model (5.10), the sound speed is

c =

 ca for z > H0

cw z ≤ H0

(5.39)

and there are now four integration constants C±w,a. In addition to the two boundary

conditions, as previously, φ̂′(0) = 0 and φ̂′(H) = 0, continuity across the interface is

demanded of φ, so φ̂(H−0 ) = φ̂(H+
0 ), and of the flux, so ρ0φ̂

′|z=H−0 = ρ0φ̂
′|z=H+

0
; see

equation (5.28). These yield the 4× 4 linear system


(φ̂+

a )′(H) (φ̂−a )′(H) 0 0

0 0 (φ̂+
w)′(0) (φ̂−w)′(0)

φ̂+
a (H0) φ̂−a (H0) −φ̂+

w(H0) −φ̂−w(H0)

ρa(φ̂
+
a )′(H0) ρa(φ̂

−
a )′(H0) −ρw(φ̂+

w)′(H0) −ρw(φ̂−w)′(H0)




C+
a

C−a

C+
w

C−w

 = ~0 ,

(5.40)
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which has nontrivial solution only if the determinant of its matrix is zero, which yields

0 =G−a
2
G+
wρw

(
−e(H+H0)G−a +H0G

+
a

)
−G+

aG
−
wG

+
wρwe

H0(G−a +G+
w)+HG+

a

+G−a

(
G−we

H0G
+
w

(
G+
a ρa

(
eH0G

−
a +HG+

a − eHG
−
a +H0G

+
a

)
+G+

wρwe
HG−a +H0G

+
a

)
−G+

aG
+
w

(
ρa

(
eH0(G−a +G−w)+HG+

a − eH0(G+
a +G−w)+HG−a

)
− ρwe2H0G

−
a +HG+

a

))
(5.41)

Equation (5.41) can be solved numerically for ω(k); the dispersion-relation curves are

shown in Fig. 5.5 in which, unfortunately, the gravity-wave branch is not present.

0.00 0.02 0.04 0.06 0.08 0.10
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Dispersion relation ω(k)

Figure 5.5: Dispersion curves computed from (5.41) for the pseudo two-phase model. Parameter
values are: cw = 120m/s, ca = 100m/s, cm = 2m/s, H0 = 40m, H = 80m, ρw = 1000kg/m3,
pa = 105Pa. The black curve represents the gravity-wave dispersion relation, and its presence
reveals the absence of gravity-wave modes in the solution of the dispersion relation (5.41).
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5.3.3 C0 EOS and speed of sound

In the case of a smooth interface, or three-phase model (5.16), the sound speed is given

by

c =


ca z ≥ H∗

cm for H0 < z < H∗

cw z ≤ H0

(5.42)

and there are now six integration constants C±a,m,w. To determine them, two boundary

conditions, φ̂′|z=0,H = 0, are first used, as above. In this case, continuity conditions

across both sides of the interface can be used. First, continuity of the flow potential gives

φ̂(H+
0 ) = φ̂(H−0 ) and φ̂(H+

∗ ) = φ̂(H−∗ ). Second, continuity of the flux gives ρ0
dφ̂
dz

.

However, since density ρ0 is continuous in this model, this reduces to flow continuity.

Thus the residual conditions are φ̂′(H+
0 ) = φ̂′(H−0 ) and φ̂′(H+

∗ ) = φ̂′(H−∗ ). These

result in 6 × 6 homogeneous linear system, similar to (5.33), for the vector of unknowns

(C+
a , C

−
a , C

+
w , C

−
w , C

+
m, C

−
m)T with system matrix



(φ̂+
a )′(H) (φ̂−a )′(H) 0 0 0 0

0 0 (φ̂+
w)′(0) (φ̂−w)′(0) 0 0

φ̂+
a (H∗) φ̂−a (H∗) 0 0 −φ̂+

m(H∗) −φ̂−m(H∗)

(φ̂+
a )′(H∗) (φ̂−a )′(H∗) 0 0 −(φ̂+

m)′(H∗) −(φ̂−m)′(H∗)

0 0 φ̂+
w(H0) φ̂−w(H0) −φ̂+

m(H0) −φ̂−m(H0)

0 0 (φ̂+
w)′(H0) (φ̂−w)′(H0) −(φ̂+

m)′(H0) −(φ̂−m)′(H0)


.

(5.43)
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Equating the determinant of (5.43) zero yields the implicit dispersion relation. Using the

further notation

W = E+0
m E−0

m (G−m −G+
m)

W+ = G−mE
−0
m (G−wE

+0
w −G+

wE
−0
w )−G+

wG
−
wE
−0
m (E+0

w − E−0
w )

W− = G−wG
+
wE

+0
m (E+0

w − E−0
w )−G+

mE
+0
m (G−wE

+0
w −G+

wE
−0
w )

W 0 =
G+
mE

+∗
m W+ +G−mE

−∗
m W−

G−aE
−H
a G+

aE
+∗
a −G+

aE
+H
a G−aE

−∗
a

,

(5.44)

the dispersion relation is

G+
aG
−
a (E−Ha E+∗

a − E+H
a E−∗a )

G−aE
−H
a E+∗

a −G+
aE

+H
a E−∗a

=
W+G+

mE
+∗
m +W−G−mE

−∗
m

W+E+∗
m +W−E−∗m

, (5.45)

which, as before, can be solved numerically. The integration constants may be expressed

as follows

C+
w = CWG−w

C−w = −CWG+
w

C+
m = CW+

C−m = CW−

C+
a = CW 0G−aE

−H
a

C−a = −CW 0G+
aE

+H
a .

(5.46)

The dispersion curves are presented in Fig. 5.6. Unlike the two-phase case, the gravity-

wave branch is now represented up to k = 2 m−1.
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Figure 5.6: Dispersion curves for three-phase model, for which results up to k = 2 m−1 now
agree with the gravity-wave dispersion relation shown by the black line. Parameter values are
(top) ca = 100 m/s, cw = 120 m/s, ca = 2 m/s and (bottom) ca = 316 m/s, cw = 1500 m/s,
ca = 1 m/s.
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5.3.4 Fluid in a box

In this section the flow is considered of pseudo three-phase model in a box with boundary

conditions dφ
dx
|x=0,L = 0, for which the solution takes the form

φ = φ̂(z) cos kx cosωt (5.47a)

ρ = ρ0(z)
(

1 +
ω

c2
φ̂(z) cos kx sinωt

)
(5.47b)

with k =
nπ

L
, n ∈ Z , (5.47c)

in which

c =


cw z ≤ H0

cm for H0 < z < H∗

ca z ≥ H∗

. (5.48)

The profile of φ̂ is presented in Fig. 5.7 and compared, for z ≤ H0, with the φ obtained

independently from linear potential-flow water-waves theory: the agreement between the

results of the two models is manifestly clear.
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1.5

2.0
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2 /s

]

(z), a = 0.2m
 gas
 incompressible

Figure 5.7: The profile of φ̂ (red line) from the three-phase gas model compared, for z ≥ 0, with
φ from linear potential-flow water-wave theory (dashed blue line). Parameter values are ca = 100
m/s, cw = 120 m/s, ca = 2 m/s.
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Figure 5.8: Linear ρ at x = 0 and ωt = 0, π2 ,
3π
2 corresponding to initial (hydrostatic, black),

maximal (red) and minimal (min) displacement values. The reconstructed position of the free
surface is obtained as the intersection of extrapolated solutions from different regions (dashed
lines). The free-surface deviation η from the equilibrium given by linear potential-flow water
waves with amplitude 0.2m is added for comparison (blue and red dots). Parameter values are as
in the caption of Figure 5.7.

Because of the jump in the value of c, the solution (5.47b) for ρ also contains a jump, see

Fig. 5.8, which is a result of the linearization of Q(ρ) in (5.7a) yielding (5.24a). In the

nonlinear model there is no discontinuity, so one attempt to improve this solution to be

useful as an initial value for the nonlinear solver is the following. Note that, in Fig. 5.8, the

free-surface level from the linear potential-flow water waves lies close to the intersection

of extrapolated lines, i.e., the solutions from different regions. The intersection point can

be then associated with the water level. Fig. 5.9 shows a comparison between the water

levels reconstructed in this way and obtained from the incompressible linear potential-

flow model.
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Figure 5.9: Free-surface level obtained by finding the intersection point between extrapolated
solutions of the water and middle regions, compared with linear potential-flow water waves at
their maximal deviation of amplitude of 0.01m. Parameter values are as in the caption of Figure
5.7.

5.4 Nonlinear results

The dispersion-relation approach of the previous section is precluded in the case of

nonlinearity, which demands that all results be obtained numerically. To this end, finite

element (FE) computations are automated in Firedrake (Rathgeber et al., 2016), which

accepts the weak form of the equations of motion. In the present case, the weak form of

the equations of motion (5.7) is∫ (
∂tφ+

1

2
|∇φ|2 +Q(ρ)−Q(ρ0)

)
δρ dV = 0 (5.49a)∫ (

δφ ∂tρ− ρ∇φ · (∇δφ)
)

dV = 0 . (5.49b)

Firedrake automates FE discretisation in space, yet temporal discretisation has to be

performed manually. To this end, the implicit midpoint scheme can be used:∫ ( 1

∆t
(φn+1 − φn) +

1

2
|∇(φn + φn+1)/2|2

+Q
(
(ρn + ρn+1)/2

)
−Q(ρ0)

)
δρ dV = 0 (5.50a)
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∫ ( δφ
∆t

(ρn+1 − ρn)− (ρn + ρn+1)/2∇(φn + φn+1)/2 ·∇δφ
)

dV = 0 . (5.50b)

Since the in-built nonlinear solver of Firedrake may have difficulty with the nonlinearity

in Q(ρ), an alternative is to consider a partial Picard iteration starting with φ(k=1) = φn,

yielding an iteration scheme with iterates∫ ( δφ
∆t

(ρ(k+1) − ρn)− (ρn + ρ(k+1))/2∇(φn + φ(k))/2 ·∇δφ
)

dV = 0 (5.51a)∫ ( 1

∆t
(φ(k+1) − φn) +

1

2
|∇(φn + φ(k+1))/2|2+

+Q
(
(ρn + ρ(k+1))/2

)
−Q(ρ0)

)
δρ dV = 0, (5.51b)

in which convergence is assured if and only if, for some suitable threshold value of ε,

temporal iterates satisfy |φ(k+1) − φ(k)|L∞ < ε; an analogous result is demanded on

temporal iterates of ρ, and another norm could also be used.

An alternative to Picard iteration is the use of the symplectic Euler scheme in the following

form: ∫ ( δφ
∆t

(ρn+1 − ρn)− ρn+1∇φn ·∇δφ
)

dV = 0 (5.52a)∫ ( 1

∆t
(φn+1 − φn) +

1

2
|∇φn|2 +Q(ρn+1)−Q(ρ0)

)
δρ dV = 0. (5.52b)

Equations (5.52) can be reformulated as∫
ρn+1

(
δφ−∆t∇φn ·∇δφ

)
dV =

∫
ρnδφ dV (5.53a)∫

φn+1δρ dV =

∫ (
φn −∆t

(
1

2
|∇φn|2 +Q(ρn+1)−Q(ρ0)

))
δρ dV . (5.53b)

Since the left-hand side of (5.53a) is a bilinear form of an unknown function ρn+1 and a

test function δφ, it can be solved with a linear solver. Once (5.53a) is solved, both ρn+1

and the right-hand side of (5.53b) are known. Therefore an explicit integration step can
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be again performed with a linear solver, thereby entirely avoiding the use of nonlinear

solvers. This approach has the disadvantage that there is a timestep criterion based on the

minimum mesh size and the maximum wave frequency present in the discrete model.

5.4.1 C0 EOS and discontinuous speed of sound

The schemes outlined above have been tested with different initial states in two

dimensions. First, a hydrostatic state was verified for all three equations of state: if the

scheme functions properly, the initial profile should be preserved, i.e., there should be no

motion. Second, the linear solution from section 5.3.4 was tried but the results showed

that small free-surface deflections were overwhelmed with rapidly excited acoustic waves.

The third attempt was therefore to use as an initial configuration a gravity wave with a

higher amplitude. The free surface of the hydrostatic state was accordingly moved at

each point using a formula for the free-surface deflection taken from linear potential-flow

water waves. Specifically, for the initial free-surface deviation η0(x) = a cos kx, the

starting density for the two-phase model is (cf. equation (5.12))

ρinit(x, z) =

ρa exp(− g
c2a

(z −H0 − η0(x))) for z > H0 + η0(x)

ρw exp(− g
c2w

(z −H0 − η0(x))) for z ≤ H0 + η0(x) .
(5.54)

It is recalled that k = 2π
λ

with λ being the wave length. The results for λ = 2L, where L

is the length of the domain, are presented in Fig. 5.10. The excitation of acoustic modes

is evident. Moreover, the solution is unstable in the long term and inevitably ends up with

divergent results. The time tdiv at which this divergence occurs is timestep- and mesh-

resolution dependent; some examples are shown in Table 5.1. The gravity-wave period

for this value of L is 10.57s, computed with T = 2π/
√
k tanh(kH0). The same formula

can be used to get an estimate of the maximal timestep needed to simulate the shortest

gravity waves for a given mesh. For the mesh used to obtain the results in Fig. 5.10,

∆x = 4m and minimal ∆z = 0.7m, which gives an estimate of ∆tmax = 0.67s. On the
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other hand, for cw = 120m/s, stability criterion (2.37) requires that ∆t ≤ 0.0037s.

Tests with Störmer-Verlet and modified midpoint schemes yielded qualitatively similar

results. Also, changing Newton nonlinear solver to Richardson one in Firedrake, or

directly implementing Picard iteration did not improve the final outcome. Similar results,

i.e. divergence at similar time, have been obtained for the three-phase model. The C∞

model exhibited even worse behaviour, not yielding a stable solution for nonlinear waves.

Table 5.1: Simulation time until divergence tdiv for a given timestep size for the symplectic Euler
scheme, on a reference mesh (left) and one that has been refined by splitting (right).

Reference mesh
∆t[s] tdiv[s]

10−3 7.7
10−4 8.7

5 · 10−5 12.6
10−5 8.1

Refined mesh
∆t[s] tdiv[s]

10−3 2.35
10−4 2.85

5 · 10−5 2.8
10−5 2.7

5.5 Conclusions

Several models for simulating wave breaking were analysed in this chapter. Common

to all approaches was the underlying consideration of an air-to-water free surface as a

transition, whose sharpness can be parameterised, in densities across the interface of

a two-phase (optionally three-phase) van-der-Waals-like fluid model. The progression

of models culminated in an infinitely differentiable one, validation of which was

demonstrated by showing through numerical experiments that its limiting (transition-

gradient) form yielded results that agreed to high accuracy with those obtained from

corresponding potential-flow models. The research undertaken in the chapter can be

considered as preliminary work whose results suggest the following recommendations

for future research.

• The linear-wave solutions of the mixture system from Bokhove et al. (2016) should
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be derived (exactly), in the potential-flow limit, and with a sharp interface, around

the resting, hydrostatic state. These linear equations are the same as the linearized

system of the two-layer (water and air) potential-flow equations found in Whitham

(1999) (§13.7). The resulting solutions should then be used in the study of the

linearized wave solutions of the van-der-Waals-system, derived in the later parts of

this chapter, as these will be improved solutions yielding a better comparison with

the van-der-Waals solutions.

• The hydrostatic state of the C∞ EOS should be investigated, including its

convergence to the hydrostatic state in the incompressible limit, as was done for

the other EOS.

• The system of equations for the C∞ case, linearized around the hydrostatic state,

should be studied more carefully in several ways. First, the discretization of this

linearized system can be studied within Firedrake, to test the temporal discretization

and solvers. Second, a zonal harmonic-wave Ansatz can be used to reduce the

equations to (z, t)-coordinates, thus facilitating a study of: (a) harmonic-wave

solutions, with a further, finite-element discretization in the vertical, akin to the

one for the nonlinear system implemented in Firedrake, as well as; (b) time

discretizations testing a further, finite-element discretization in the vertical, akin

to the one in Firedrake. In essence, (b) is a linear-stability analysis of the numerical

system, which could address the convergence issues hitherto observed.

• Given these outcomes of linear stability and convergence, the preconditioners

of semi-implicit time-stepping schemes for the nonlinear system should be

investigated, which could further address the observed stalling of convergence of

the iterative solvers.

• Various non-symplectic solvers can be investigated, including those that dampen

the acoustic waves and those that are a combination of symplectic solvers with a

dedicated filtering of the acoustic modes.
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Figure 5.10: Density-profile evolution in the 2D two-phase model (left) compared with the profile
in the incompressible, linear potential-flow water-wave model mapped onto the same mesh (right)
at times 0 (top) 2 (middle) and 5 seconds (bottom). The top figures also display the mesh, for which
the uniform horizontal spacing is ∆x = 4m and the minimum vertical spacing is ∆z = 0.7m. The
initial state for the gas model is constructed as the hydrostatic state with a shifted level of the
free surface at each point, the shift corresponding to the level from the incompressible case. The
growth of acoustic modes with time is clearly evident. Parameter values used (see main text for
description) are: a = 8m, λ = 160m, cw = 120m/s, ca = 100m/s, cm = 2m/s, H0 = 40m,
H = 80m, L = 80m, ρw = 1000kg/m3, pa = 105Pa.
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Code tutorial

“Firedrake is an automated system for the portable solution of partial differential

equations using the finite element method (FEM)” (Rathgeber et al., 2016). It has

been used extensively to implement the models in preceding chapters and it largely

helped to facilitate the overall process. Since Firedrake is in ongoing development,

users are welcome to contribute to it. Therefore a simplified 2D version of the linear

potential flow fluid interacting with the elastic beam has been added to Firedrake

demos available on its website. In this chapter this tutorial is presented, that

is directly available at https://firedrakeproject.org/demos/linear_

fluid_structure_interaction.py.html.

6.1 Linear mixed fluid-structure interaction system

The tutorial demonstrates the use of subdomain functionality and shows how to describe

a system consisting of multiple materials in Firedrake.

The work is based on the articles Salwa et al. (2016b) and Salwa et al. (2017).

The model considered consists of fluid with a free surface and an elastic solid. The notions

of fluid/water and structure/solid/beam will be used interchangeably. For simplicity (and
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speed of computation) a model is considered in 2D, however it can be easily generalized

to 3D. The starting point is the linearized version (domain is fixed) of the fully nonlinear

variational principle. In non-dimensional units:

0 =δ

∫ tend

0

∫ (
∂tηφ−

1

2
η2

)
dSf −

∫
1

2
|∇φ|2dxF

+

∫
n · ∂tXφ dss

+

∫
ρ0∂tX ·U−

1

2
ρ0|U|2 −

1

2
λeiiejj − µeijeij dxS dt ,

in which the first line contains integration over fluid domain, second, fluid-structure

interface, and third, structure domain. The following notions are used:

• η - free surface deviation

• φ - fluid flow potential

• ρ0 - structure density (in fluid density units)

• λ - first Lamé constant (material parameter)

• µ - second Lamé constant (material parameter)

• X - structure displacement

• U - structure velocity

• eij = 1
2

(∂Xj

∂xi
+ ∂Xi

∂xj

)
- linear strain tensor;

• i, j denote vector components

• dSf - integration element over fluid free surface

• dss - integration element over structure-fluid interface

• dxF - integration element over fluid domain

• dxS - integration element over structure domain
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After numerous manipulations (described in detail in Salwa et al. (2017)) and evaluation

of individual variations, the time-discrete equations, with symplectic Euler scheme, to be

implemented in Firedrake, are:∫
vφn+1 dSf =

∫
v(φn −∆tηn) dSf∫

ρ0v ·Un+1 dxS+

∫
n · v φn+1 dss = ρ0

∫
v ·Un dxS

−∆t

∫ (
λ∇ · v∇ ·Xn + µ

∂Xn
j

∂xi

(
∂vi
∂xj

+
∂vj
∂xi

))
dxS+

∫
n · v φn dss∫

∇v · ∇φn+1 dxF−
∫
vn ·Un+1 dss = 0∫

vηn+1 dSf =

∫
vηn dSf + ∆t

∫
∇v · ∇φn+1 dxF−∆t

∫
vn ·Un+1 dss∫

v ·Xn+1 dxS =

∫
v · (Xn + ∆tUn+1) dxS .

The underlined terms are the coupling terms. Note that the first equation for φ at the free

surface is solved on the free surface only, the last equation for X in the structure domain,

while the others are solved in both domains. Moreover, the second and third equations

for φ and U need to be solved simultaneously. The geometry of the system with initial

condition is shown in Fig. 6.1.

Now the code used to solve the system of equations above is presented. One starts with

appropriate imports:

from f i r e d r a k e import ∗

import math

import numpy as np

Then, parameters of the simulation are set:

# p a r a m e t e r s i n S I u n i t s

t e n d = 5 . # t i m e o f s i m u l a t i o n [ s ]

d t = 0 .005 # t i m e s t e p [ s ]
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Figure 6.1: Geometry and initial condition in the system. Fluid with deflected free surface (blue)
and the structure (red).

g = 9 . 8 # g r a v i t a t i o n a l a c c e l e r a t i o n

# water

Lx = 2 0 . # l e n g t h o f t h e t a n k [m] i n x−d i r e c t i o n ;

# needed f o r comput ing i n i t i a l c o n d i t i o n

Lz = 1 0 . # h e i g h t o f t h e t a n k [m] ;

# needed f o r comput ing i n i t i a l c o n d i t i o n

rho = 1000 . # f l u i d d e n s i t y i n kg /mˆ2 i n 2D [ water ]

# s o l i d p a r a m e t e r s

# − a s u f f i c i e n t l y s o f t m a t e r i a l i s used t o be a b l e

# t o s e e n o t i c e a b l e s t r u c t u r a l d i s p l a c e m e n t

rho B = 7700 . # s t r u c t u r e d e n s i t y i n kg /mˆ2 i n 2D

lam = 1 e7 # N /m i n 2D − f i r s t Lame c o n s t a n t

mu = 1 e7 # N /m i n 2D − second Lame c o n s t a n t

# mesh

mesh = Mesh ( ” L domain . msh” )

# numbers below must match t h o s e d e f i n e d i n t h e mesh f i l e
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f l u i d i d = 1 # f l u i d subdomain

s t r u c t u r e i d = 2 # s t r u c t u r e subdomain

b o t t o m i d = 1 # s t r u c t u r e bo t tom

t o p i d = 6 # f l u i d s u r f a c e

i n t e r f a c e i d = 9 # f l u i d −s t r u c t u r e i n t e r f a c e

# c o n t r o l p a r a m e t e r s

# t o a v o i d s a v i n g da ta e v e r y t i m e s t e p :

o u t p u t d a t a e v e r y x t i m e s t e p s = 20

c o u p l i n g = True # t u r n on c o u p l i n g t e r m s

The equations are in nondimensional units, hence they are transformed:

L = Lz

T = L / math . s q r t ( g∗L )

t e n d /= T

d t /= T

Lx /= L

Lz /= L

rho B /= rho

lam /= g∗ rho ∗L

mu /= g∗ rho ∗L

rho = 1 . # or e q u i v a l e n t l y rho /= rho

Let us define function spaces, including the mixed one:

V W = F u n c t i o n S p a c e ( mesh , ”CG” , 1 )

V B = V e c t o r F u n c t i o n S p a c e ( mesh , ”CG” , 1 )

mixed V = V W ∗ V B

Then, functions are defined. First, in the fluid domain:
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p h i = F u n c t i o n (V W, name=” p h i ” )

p h i f = F u n c t i o n (V W, name=” p h i f ” ) # a t t h e f r e e s u r f a c e

e t a = F u n c t i o n (V W, name=” e t a ” )

t r i a l W = T r i a l F u n c t i o n (V W)

v W = T e s t F u n c t i o n (V W)

Second, in the beam domain:

X = F u n c t i o n ( V B , name=”X” )

U = F u n c t i o n ( V B , name=”U” )

t r i a l B = T r i a l F u n c t i o n ( V B )

v B = T e s t F u n c t i o n ( V B )

And last, mixed functions in the mixed domain:

t r i a l f , t r i a l s = T r i a l F u n c t i o n s ( mixed V )

v f , v s = T e s t F u n c t i o n s ( mixed V )

tmp f = F u n c t i o n (V W)

tmp s = F u n c t i o n ( V B )

r e s u l t m i x e d = F u n c t i o n ( mixed V )

Auxiliary indicator functions are needed, that are 0 in one subdomain and 1 in the other.

They are needed both in ”CG” and ”DG” space. The fact is used that the fluid and structure

subdomains are defined in the mesh file with an appropriate ID number that Firedrake is

able to recognise. That can be used in constructing indicator functions:

V DG0 W = F u n c t i o n S p a c e ( mesh , ”DG” , 0 )

V DG0 B = F u n c t i o n S p a c e ( mesh , ”DG” , 0 )

# H e a v i s i d e s t e p f u n c t i o n i n f l u i d

I W = F u n c t i o n ( V DG0 W )

p a r l o o p (
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’ f o r ( i n t i =0 ; i < f . d o f s ; i ++ ) f [ i ] [ 0 ] = 1 . 0 ; ’ ,

dx ( f l u i d i d ) , { ’ f ’ : ( I W , WRITE)} )

I cg W = F u n c t i o n (V W)

p a r l o o p ( ’ f o r ( i n t i =0 ; i<A. d o f s ; i ++) ’

+ ’A[ i ] [ 0 ] = fmax (A[ i ] [ 0 ] , B [ 0 ] [ 0 ] ) ; ’ ,

dx , { ’A’ : ( I cg W , RW) , ’B ’ : ( I W , READ)} )

# H e a v i s i d e s t e p f u n c t i o n i n s o l i d

I B = F u n c t i o n ( V DG0 B )

p a r l o o p ( ’ f o r ( i n t i =0 ; i<f . d o f s ; i ++ ) f [ i ] [ 0 ] = 1 . ; ’ ,

dx ( s t r u c t u r e i d ) , { ’ f ’ : ( I B , WRITE)} )

I c g B = F u n c t i o n ( V B )

p a r l o o p ( ’ f o r ( i n t i =0 ; i<A. d o f s ; i ++) ’

+ ’ f o r ( i n t j =0 ; j <2; j ++) ’

+ ’A[ i ] [ j ] = fmax (A[ i ] [ j ] , B [ 0 ] [ 0 ] ) ; ’ ,

dx , { ’A’ : ( I cg B , RW) , ’B ’ : ( I B , READ) } )

Indicator functions are used to construct normal unit vector outward to the fluid domain

at the fluid-structure interface:

n ve c = Face tNormal ( mesh )

n i n t = I B ( ”+” ) ∗ n ve c ( ”+” ) + I B ( ”−” ) ∗ n ve c ( ”−” )

Now special boundary conditions can be constructed that limit the solvers only to the

appropriate subdomains of our interest:

c l a s s MyBC( D i r i c h l e t B C ) :

def i n i t ( s e l f , V, va lue , marke r s ) :

# C a l l s u p e r c l a s s i n i t

# We p r o v i d e a dummy subdomain i d .

super (MyBC, s e l f ) . i n i t (V, va lue , 0 )
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# O v e r r i d e t h e ” nodes ” p r o p e r t y which s a y s where

# t h e boundary c o n d i t i o n i s t o be a p p l i e d .

s e l f . nodes =np . u n i que ( np . where (

marke r s . d a t . d a t a r o w i t h h a l o s = = 0 ) [ 0 ] )

def s u r f a c e B C ( ) :

# T h i s w i l l s e t nodes on t h e t o p boundary t o 1 .

bc = D i r i c h l e t B C ( V W, 1 , t o p i d )

# We w i l l use t h i s f u n c t i o n t o d e t e r m i n e new BC nodes

# ( a l l t h o s e t h a t aren ’ t on t h e boundary )

f = F u n c t i o n ( V W, d t y p e =np . i n t 3 2 )

# f i s now 0 everywhere , e x c e p t on t h e boundary

bc . apply ( f )

# Now MyBC can be used t o c r e a t e

# a ” boundary c o n d i t i o n ” t o z e r o o u t a l l t h e nodes

# t h a t are ∗ n o t ∗ on t h e t o p boundary :

re turn MyBC( V W, 0 , f )

# same as above , b u t i n t h e mixed space

def s u r f a c e B C m i x e d ( ) :

bc mixed = D i r i c h l e t B C ( mixed V . sub ( 0 ) , 1 , t o p i d )

f m i x ed = F u n c t i o n ( mixed V . sub ( 0 ) , d t y p e =np . i n t 3 2 )

bc mixed . apply ( f m i x e d )

re turn MyBC( mixed V . sub ( 0 ) , 0 , f m i x e d )

B C e x c l u d e b e y o n d s u r f a c e = s u r f a c e B C ( )

B C e x c l u d e b e y o n d s u r f a c e m i x e d = s u r f a c e B C m i x e d ( )

B C e x c l u d e b e y o n d s o l i d = MyBC( V B , 0 , I c g B )
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Finally, one is ready to define the solvers of our equations. First, equation for φ at the free

surface:

a p h i f = t r i a l W ∗ v W ∗ ds ( t o p i d )

L p h i f = ( p h i f − d t ∗ e t a ) ∗ v W ∗ ds ( t o p i d )

LVP phi f = L i n e a r V a r i a t i o n a l P r o b l e m ( a p h i f , L p h i f ,

p h i f , bcs = B C e x c l u d e b e y o n d s u r f a c e )

LVS phi f = L i n e a r V a r i a t i o n a l S o l v e r ( LVP phi f )

Second, equation for the beam displacement X, where it is also fixed to the bottom by

applying zero Dirichlet boundary condition:

a X = d o t ( t r i a l B , v B ) ∗ dx ( s t r u c t u r e i d )

L X = d o t ( (X + d t ∗ U) , v B ) ∗ dx ( s t r u c t u r e i d )

# no−mot ion beam bot tom boundary c o n d i t i o n

BC bottom = D i r i c h l e t B C ( V B , E x p r e s s i o n ( [ 0 . , 0 . ] ) , b o t t o m i d )

LVP X = L i n e a r V a r i a t i o n a l P r o b l e m ( a X , L X , X,

bcs = [ BC bottom , B C e x c l u d e b e y o n d s o l i d ] )

LVS X = L i n e a r V a r i a t i o n a l S o l v e r ( LVP X )

Finally, solvers for φ, U and η in the mixed domain are defined. In particular, value of

φ at the free surface is used as a boundary condition. Note that avg (...) is necessary for

terms in expressions containing n int , which is built in ”DG” space:

# phi−U e q u a t i o n s :

#no−mot ion beam bot tom boundary c o n d i t i o n i n mixed space

BC bottom mixed = D i r i c h l e t B C ( mixed V . sub ( 1 ) ,

E x p r e s s i o n ( [ 0 . , 0 . ] ) , b o t t o m i d )

# boundary c o n d i t i o n t o s e t p h i f a t t h e f r e e s u r f a c e

B C p h i f = D i r i c h l e t B C ( mixed V . sub ( 0 ) , p h i f , t o p i d )

delX = n a b l a g r a d (X)

de lv B = n a b l a g r a d ( v s )
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T x dv = lam ∗ d i v (X) ∗ d i v ( v s )

+ mu ∗ ( i n n e r ( delX , de lv B + t r a n s p o s e ( de lv B ) ) )

a U = rho B ∗ d o t ( t r i a l s , v s ) ∗ dx ( s t r u c t u r e i d )

L U = ( rho B ∗ d o t (U, v s ) − d t ∗T x dv ) ∗ dx ( s t r u c t u r e i d )

a p h i = d o t ( g r ad ( t r i a l f ) , g r ad ( v f ) ) ∗ dx ( f l u i d i d )

i f c o u p l i n g :

a U += d o t ( avg ( v s ) , n i n t ) ∗ avg ( t r i a l f ) ∗ dS

# avg ( . . . ) n e c e s s a r y here and below

L U += d o t ( avg ( v s ) , n i n t ) ∗ avg ( p h i ) ∗ dS

a p h i += − d o t ( n i n t , avg ( t r i a l s ) ) ∗ avg ( v f ) ∗ dS

LVP U phi = L i n e a r V a r i a t i o n a l P r o b l e m ( a U + a p h i , L U ,

r e s u l t m i x e d , bcs =[ BC phi f , BC bottom mixed ] )

LVS U phi = L i n e a r V a r i a t i o n a l S o l v e r ( LVP U phi )

# e t a

a e t a = t r i a l f ∗ v f ∗ ds ( t o p i d )

L e t a = e t a ∗ v f ∗ ds ( t o p i d )

+ d t ∗ d o t ( g r ad ( v f ) , g r ad ( p h i ) ) ∗ dx ( f l u i d i d )

i f c o u p l i n g :

L e t a += − d t ∗ d o t ( n i n t , avg (U) ) ∗ avg ( v f ) ∗ dS

LVP eta = L i n e a r V a r i a t i o n a l P r o b l e m (

a e t a , L e t a , r e s u l t m i x e d ,

bcs = B C e x c l u d e b e y o n d s u r f a c e m i x e d )

LVS eta = L i n e a r V a r i a t i o n a l S o l v e r ( LVP eta )

Let us set the initial condition. No motion at the beginning in both fluid and structure

is chosen, zero displacement in the structure and deflected free surface in the fluid. The

shape of the deflection is computed from the analytical solution:

# i n i t i a l c o n d i t i o n i n f l u i d based on a n a l y t i c a l s o l u t i o n
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# compute a n a l y t i c a l i n i t i a l p h i and e t a

n mode = 1

a = 0 . ∗ T / L∗∗2 # i n nondim u n i t s

b = 5 . ∗ T / L∗∗2 # i n nondim u n i t s

l ambda x = np . p i ∗n mode / Lx

omega = np . s q r t ( lambda x ∗np . t a n h ( lambda x ∗Lz ) )

x = mesh . c o o r d i n a t e s

p h i e x a c t e x p r = a∗ cos ( lambda x ∗x [ 0 ] ) ∗ cosh ( lambda x ∗x [ 1 ] )

e t a e x a c t e x p r = −omega∗b \

∗ cos ( lambda x ∗x [ 0 ] ) ∗ cosh ( lambda x ∗Lz )

b c t o p = D i r i c h l e t B C (V W, 0 , t o p i d )

e t a . a s s i g n ( 0 . )

p h i . a s s i g n ( 0 . )

e t a e x a c t = F u n c t i o n (V W)

e t a e x a c t . i n t e r p o l a t e ( e t a e x a c t e x p r )

e t a . a s s i g n ( e t a e x a c t , b c t o p . n o d e s e t )

p h i . i n t e r p o l a t e ( p h i e x a c t e x p r )

p h i f . a s s i g n ( phi , b c t o p . n o d e s e t )

A file to store data for visualization:

o u t f i l e p h i = F i l e ( ” r e s u l t s p v d / p h i . pvd ” )

To save data for visualization, the position of the nodes in the mesh is changed, so that

they represent the computed dynamic position of the free surface and the structure:

def o u t p u t d a t a ( ) :

o u t p u t d a t a . c o u n t e r += 1

i f o u t p u t d a t a . c o u n t e r \

%o u t p u t d a t a e v e r y x t i m e s t e p s ! = 0 :
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re turn

m e s h s t a t i c = mesh . c o o r d i n a t e s . v e c t o r ( ) . g e t l o c a l ( )

mesh . c o o r d i n a t e s . v e c t o r ( ) . s e t l o c a l (

m e s h s t a t i c + X. v e c t o r ( ) . g e t l o c a l ( ) )

mesh . c o o r d i n a t e s . d a t . d a t a [ : , 1 ] += e t a . d a t . d a t a r o

o u t f i l e p h i . w r i t e ( p h i )

mesh . c o o r d i n a t e s . v e c t o r ( ) . s e t l o c a l ( m e s h s t a t i c )

# −1 below t o e x c l u d e c o u n t i n g p r i n t o f i n i t i a l s t a t e

o u t p u t d a t a . c o u n t e r = −1

In the end, one proceeds with the actual computation loop:

t = 0 .

o u t p u t d a t a ( )

whi le t <= t e n d + d t :

t += d t

p r i n t ( ’ t ime = ’ , t ∗ T )

# s y m p l e c t i c E u l e r scheme

LVS phi f . s o l v e ( )

LVS U phi . s o l v e ( )

tmp f , tmp s = r e s u l t m i x e d . s p l i t ( )

p h i . a s s i g n ( tmp f )

U. a s s i g n ( tmp s )

LVS eta . s o l v e ( )

tmp f , = r e s u l t m i x e d . s p l i t ( )

e t a . a s s i g n ( tmp f )

LVS X . s o l v e ( )

o u t p u t d a t a ( )

The result of the computation, visualised with paraview, is shown here:
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https://youtu.be/C4CpFmxKZGw.

The mesh is deflected for visualization only. As the model is linear, the actual mesh used

for computation is fixed. Colours indicate values of the flow potential φ.

A python script version of this demo can be found here: https:

//firedrakeproject.org/demos/linear_fluid_structure_

interaction.py.

The mesh file is here: https://firedrakeproject.org/demos/L_domain.

msh. It can be generated with gmsh from this file: https://firedrakeproject.

org/demos/L_domain.geo. with a command: gmsh −2 L domain.geo.

An extended 3D version of this code is published at this address: https://zenodo.

org/record/1162196.
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Chapter 7

Conclusions

7.1 Summary

7.1.1 Achievements and concomitant extensions

The achievement of this thesis has been the development of a mathematical model (using

a variational formulation) and its successful implementation (using a Galerkin finite

element method) as a simulation tool for describing a physical system consisting of water

waves interacting with an offshore wind-turbine mast.

For the mathematical model, the starting point is an action functional describing a

dual system comprising a potential-flow fluid, a solid structure modelled with nonlinear

elasticity, and the coupling between them. A linearized model has been developed of

the fluid-structure (i.e. wave-mast) coupling, based on the variational principle for the

fully coupled nonlinear model. Numerical results obtained for the linear case indicate

that the present variational approach yields a stable numerical discretization of a fully

coupled model of water waves and an elastic beam. The energy exchange between

the subsystems has been demonstrated to be in balance, yielding a total energy that

shows only small and bounded oscillations with second-order convergence in time.

Similarly, (second-order) convergence is observed for spatial mesh refinement. While
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the finite-element discretization of the nonlinear hyperelastic beam structure has been

formulated and implemented and the finite-element discretization and implementation

of the nonlinear water-wave equations is available (Gidel, 2018), both via geometric

variational techniques, our linear finite-element formulations of the coupled model has

not yet been extended to the nonlinear régime.

Within the context of applying the simulation tool to realistic wave-mast interactions,

the main drawback of the incompressible potential-flow model is that it inevitably does

not admit wave-breaking. Moreover, coupling of nonlinear waves with the beam proves

challenging due to the finite motion of the domains being described at the nonlinear

level in two different formalisms, namely Eulerian for the fluid and Lagrangian for the

beam. As a result, computational meshes of the two subsystems no longer match at the

fluid-structure interface, whereas nonlinear coupling transpires to be prone to numerical

instability. Rather than pursuing this direction, another model was proposed that is loosely

based on a van-der-Waals gas. The starting point is again an action functional, but with

an extra term representing internal energy. The flow can be assumed to have no rotation,

so it is again described with a potential, but now compressibility is incorporated. The

functional thus yields a rotationless momentum equation. The free surface is embedded

within the compressible fluid for an appropriate van-der-Waals-inspired equation of state,

which admits a pseudo-phase transition between the water and air phases separated by

a sharp or steep transition in density. Due to the compressibility, in addition to gravity

waves the ideal-gas model leads to acoustic waves. Though there is an inherent risk

that the results will be dominated by acoustic waves, their higher frequencies admit

the possiblity of filtering and dampening using suitable implicit time integrators. Both

hydrostatic and linearized models have been examined as verification steps. With a proper

choice of equation of state that models also a finite-width interface, the dispersion relation

confirms that there are multiple wave modes present, including gravity water waves.

The model also matches incompressible linear potential flow, which is an important

verification step. However, at the nonlinear level, the acoustic noise proves significant.
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When dealing with the control and dampening of acoustic noise in the ideal-gas model,

the model can — similarly to the incompressible potential-flow case of the first approach

— be readily coupled to a hyperelastic beam, but now with a nonlinear fluid and (possibly)

breaking waves. Ongoing efforts are being made both to analyse and to implement

this development and, once implementation of the model is validated, it can be directly

deployed by the marine industry as a helpful simulation tool in the quantification of

offshore-wind turbine design.

7.1.2 Outreach

As the work presented in this thesis was part of an European Industry Doctorate,

public outreach was an inherent part of it. A personal website http://www1.

maths.leeds.ac.uk/˜mmtjs/, a Facebook page https://www.facebook.

com/surfsupeueid/ and online blog https://blogsurfsup.wordpress.

com/ have been regularly updated with work progress. Moreover, a few public talks

for a general non-scientific audience have been given. These included:

• 5th March 2018 - Talk for seniors - University of the Third Age in Starachowice,

Poland - Modelling of sea waves; Freak waves

• 17th November 2015 and 6th March 2018 - High School talk - II High School in

Starachowice, Poland - Modelling of sea waves; Freak waves

• 2nd November 2015 - Talk at Cafe Scientifique - New Headingley Club, Headingley,

Leeds (UK) - Legendary freak waves and their evolution in the scientific world

• 12th September and 10th October, 2015 - School of Mathematics Open days

- University of Leeds (UK) - Demonstrations with small scale wave maker,

comparison with simulations and explanation of the modeling process.
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7.1.3 Experiment

During the development of the mathematical model and simulation, a small-scale table-

top experiment was conducted. The wave tank was constructed by Booker et al. (2015),

and it consisted of an elongated water tank with a wavemaker at one end and a beach to

dampen the waves at the other. For this project, a beam model was included; it comprised

an insulating foam pipe fastened to the bottom of the tank through a platform made of

modelling foam, see Fig. 7.1. The wave maker was driven with a motor connected to

Arduino platform. The end-user could control the wave making with a back-end interface

written in C/C++. The experiment was intended as an introduction to a large-scale one to

Figure 7.1: The wave tank set-up with a wave-maker (left), beach (right) and a beam.

be conducted at Maritime Research Institute Netherlands (MARIN), see http://www.

marin.nl, where part of the work on the project was done. The recording of the table-

top experiment was also useful in outreach presentations for non-scientific audiences.
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Appendices

A Derivation of temporal discretization

In this appendix, the details of the derivation of the temporal scheme for linear coupled

potential flow-elastic beam system are presented. Given eq. (4.43), in terms of original

variables, the interim equations of motion arising from the VP for (4.36) become

φn+1/2
α = φnα −

1

2
∆tηnα,

Nk′l′ (P
a
l′ )

n+1/2 = Nk′l′ (P
a
l′ )

n − 1

2
∆tEab

k′l′(X
b
l′)
n,

Mαβ η
n+1
β = Mαβ η

n
β + ∆t

(
Bαβ φ

n+1/2
β − Ua

k′α(P a
k′)

n+1/2
)
,

Nk′l′ (X
a
l′)
n+1 = Nk′l′ (X

a
l′)
n + ∆t

(
−Ua

k′α φ
n+1/2
α + F ab

k′l′(P
b
l′)
n+1/2

)
,

φn+1
α = φn+1/2

α − 1

2
∆tηn+1

α ,

Nk′l′ (P
a
l′ )

n+1 = Nk′l′ (P
a
l′ )

n+1/2 − 1

2
∆tEab

k′l′(X
b
l′)
n+1.

(A.1)

The matrices B,F and U appearing in (A.1) contain the inverse of matrix C which was

introduced both to remove the interior φ degrees of freedom and to reduce the system to

the Hamiltonian form. However, once the temporal scheme is obtained, one would like

to avoid the costly computation of the inverse of C. Therefore, guided by (4.35), see also

Gagarina et al. (2014), φi′ is re-introduced in the interior as

Ci′j′φ
n+1/2
i′ =− Aαj′φn+1/2

α + (P 1
m̃′)

n+1/2Wm̃′nδnj′ − δmαφn+1/2
α m̃mnδnj′ . (A.2)
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After some manipulations, one finds that the final discrete spatio-temporal, fluid-structure

interaction equations (cf. (4.33)) are

φn+1/2
α = φnα −

1

2
∆tηnα (A.3a)

Nk′l′(P
a
l′ )

n+1/2 = Nk′l′(P
a
l′ )

n − 1

2
∆tEab

k′l′(X
b
l′)
n (A.3b)

(Ai′j′+δi′mM̃mnδj′n)φ
n+1/2
i′ = −Aαj′φn+1/2

α + ((P 1
m̃′)

n+1/2Wm̃′n − M̃mnφ
n+1/2
α δαm)δnj′

(A.3c)

Mαβη
n+1
β = Mαβη

n
β + ∆tAαiφ

n+1/2
i

+ ∆t(φn+1/2
m M̃mn − (P 1

m̃′)
n+1/2)Wm̃′nδnα (A.3d)

Nk′l′(X
a
l′)
n+1 = Nk′l′(X

a
l′)
n + ∆tNk′l′(P

a
l′ )

n+1/2 −∆tδa1δk′m̃′Wm̃′nφ
n+1/2
n

(A.3e)

φn+1
α = φn+1/2

α − 1

2
∆tηn+1

α (A.3f)

Nk′l′(P
a
l′ )

n+1 = Nk′l′(P
a
l′ )

n+1/2 − 1

2
∆tEab

k′l′(X
b
l′)
n+1 , (A.3g)

in which, as in (4.33), the newly derived coupling terms are underlined.

Implementation of the above formulation leads to a system that conserves energy to

second order in the timestep, in keeping with Störmer-Verlet theory. However, using

P is inconvenient, as it does not directly represent a physical variable. Moreover, the time

evolution of the separate components of (4.31) reveals an equal and opposite monotonic

increase in three terms that involve coupling, which annihilate each other when composed

to form the physical energy. This behaviour is possibly related to the fact that not all

terms in (4.31) are positive definite. As a result of this observation one is motivated to

reformulate (A.3) in terms of the original physical variable (structural velocity)

Ua
k′ = P a

k′ − δa1N
−1
k′m̃′Wm̃′nφn , (A.4)

which is itself motivated by (4.24) and (4.29). When this approach is used, the

Hamiltonian (4.31) once more becomes the positive definite (4.23). Equation (A.3) is,
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as a result, amended to the form (4.44).
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B. Hübner, E. Walhorn, and D. Dinkler. A monolithic approach to fluid-structure

interaction using space-time finite elements. Computer Methods in Applied Mechanics

and Engineering, 193(2326):2087 – 2104, 2004. ISSN 0045-7825. doi: 10.

1016/j.cma.2004.01.024. URL http://www.sciencedirect.com/science/

article/pii/S0045782504000696.

S. Hunter. Mechanics of Continuous Media. Ellis Horwood, 1976.

B. Leimkuhler and S. Reich. Simulating Hamiltonian Dynamics. Cambridge University

Press, 2004.

J. C. Luke. A variational principle for a fluid with a free surface. Journal of Fluid

Mechanics, 27:395–397, 1967.

J. E. Marsden and M. West. Discrete mechanics and variational integrators. Acta

Numerica, 10:357514, 2001. doi: 10.1017/S096249290100006X.

J. W. Miles. On Hamilton’s principle for surface waves. Journal of Fluid Mechanics, 83:

153–158, 1977.

F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T. McRae,

G. Bercea, G. R. Markall, and P. H. J. Kelly. Firedrake: automating the finite element

method by composing abstractions. ACM Transactions on Mathematical Software,

43(3):24:124:27, 2016. doi: 10.1145/2998441. URL http://arxiv.org/abs/

1501.01809.

H. Sagar, J. Ley, and B. el Moctar. Hydroelasticity effects of wave induced loads on

offshore monopile structure. 7th International Conference on Hydroelasticity in Marine

Technology, Split, Croatia, pages 82–101, 9 2015.

T. Salwa, O. Bokhove, and M. Kelmanson. Variational coupling of wave slamming against

elastic masts. 31st International Workshop on Water Waves and Floating Bodies,

IWWWFB, Michigan, USA, pages 149–152, 2016a. URL http://www.iwwwfb.

org/Abstracts/iwwwfb31/iwwwfb31_39.pdf.

103

http://www.sciencedirect.com/science/article/pii/S0045782504000696
http://www.sciencedirect.com/science/article/pii/S0045782504000696
http://arxiv.org/abs/1501.01809
http://arxiv.org/abs/1501.01809
http://www.iwwwfb.org/Abstracts/iwwwfb31/iwwwfb31_39.pdf
http://www.iwwwfb.org/Abstracts/iwwwfb31/iwwwfb31_39.pdf


BIBLIOGRAPHY

T. Salwa, O. Bokhove, and M. Kelmanson. Variational modelling of wave-

structure interactions for offshore wind turbines. Extended paper for Int. Conf.

on Ocean, Offshore and Arctic Eng., OMAE2016, Busan, South-Korea, page 10,

6 2016b. URL http://proceedings.asmedigitalcollection.asme.

org/proceeding.aspx?articleID=2570974.

T. Salwa, O. Bokhove, and M. A. Kelmanson. Variational modelling of wave–structure

interactions with an offshore wind-turbine mast. Journal of Engineering Mathematics,

107(1):61–85, Dec 2017. ISSN 1573-2703. doi: 10.1007/s10665-017-9936-4. URL

https://doi.org/10.1007/s10665-017-9936-4.

R. Sullivan, L. Kirchler, S. Roch, K. Beckman, and P. Richmond. Wind turbine visibility

and visual impact threshold distances in western landscapes. Proceedings, National

Association of Environmental Professionals, 37th Annual Conference, May 2124, 2012,

Portland, 2012.

R. G. Sullivan, L. B. Kirchler, J. Cothren, and S. L. Winters. Offshore wind turbine

visibility and visual impact threshold distances. Environmental Practice, 15(1):3349,

2013. doi: 10.1017/S1466046612000464.

R. Temam and A. Miranville. Mathematical modeling in continuum mechanics.

Cambridge University Press, 2005.

E. H. van Brummelen, M. Shokrpour-Roudbari, and G. J. van Zwieten. Elasto-

Capillarity Simulations Based on the Navier-Stokes-Cahn-Hilliard Equations, pages

451–462. Springer International Publishing, Cham, 2016. ISBN 978-3-319-40827-

9. doi: 10.1007/978-3-319-40827-9 35. URL http://dx.doi.org/10.1007/

978-3-319-40827-9_35.

E. van Daalen, E. van Groesen, and P. Zandbergen. A Hamiltonian formulation for

nonlinear wave-body interactions. Eighth International Workshop on Water Waves and

Floating Bodies, IWWWFB, pages 159–163, 1993. URL http://doc.utwente.

nl/30984/.

104

http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleID=2570974
http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleID=2570974
https://doi.org/10.1007/s10665-017-9936-4
http://dx.doi.org/10.1007/978-3-319-40827-9_35
http://dx.doi.org/10.1007/978-3-319-40827-9_35
http://doc.utwente.nl/30984/
http://doc.utwente.nl/30984/


BIBLIOGRAPHY

G. B. Whitham. Linear and Nonlinear Waves. New York ; Chichester : Wiley, 1999.

105


	Abstract
	Acknowledgements
	Contents
	List of figures
	List of tables
	Nomenclature
	Introduction
	Motivation
	Objectives
	Outline of the thesis

	Elastic beam: mathematical formulation and FEM
	Nonlinear hyperelastic mast
	Linearized elastic dynamics
	Numerical model
	Time discretization schemes
	Discretization and implementation

	Results
	Conclusions


	Nonlinear variational modelling of wave-structure interactions
	Potential-flow water waves
	Coupled model
	Conclusions


	Linear variational modelling of wave-structure interactions: finite-element method
	Introduction
	Linearization of the variational principle
	Solution of the coupled linear system
	FEM space discretization
	Time discretization

	Results
	2D results
	3D results

	Discussion

	Towards modelling and simulating breaking waves
	Introduction
	Compressible van-der-Waals-like fluid
	Model formulation
	Equations of state

	Linear waves
	One-phase model
	C0 EOS and discontinuous speed of sound
	C0 EOS and speed of sound
	Fluid in a box

	Nonlinear results
	C0 EOS and discontinuous speed of sound

	Conclusions

	Code tutorial
	Linear mixed fluid-structure interaction system

	Conclusions
	Summary
	Achievements and concomitant extensions
	Outreach
	Experiment


	Appendices
	Derivation of temporal discretization

	Bibliography

