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Abstract

In this thesis, we study the infrared behaviour of propagators in Friedmann-Lemâıtre-

Robertson-Walker (FLRW) spacetimes, of which de Sitter is a special case. For the most

part, we are interested in the infrared behaviour of the graviton two-point function,

in FLRW spacetime. Naively, it is thought that the two-point function requires an

infrared cut-off in order to be well-defined. However, we find a gauge transformation

such that the two-point function can be rendered IR finite, for a large class of FLRW

spacetimes. The graviton two-point function also experiences an infrared divergence

when the separation between the two points is taken to be large. In de Sitter spacetime,

in the Landau gauge, this divergence is found to be logarithmic. However, it is found

that this logarithmic divergence can also be removed by means of a suitable non-

covariant gauge transformation. In finding the large-distance behaviour of the graviton

two-point function, we initially found it useful to find the large-distance behaviour of the

covariant massless vector propagator, in de Sitter spacetime. Through this calculation,

we were able to find a method which could be extended to the more computationally

complex case of the graviton two-point function.
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Structure of thesis

This thesis is a study of the infrared behaviour of propagators in cosmological space-

times. We are concerned with the infrared behaviour of graviton propagators in FLRW

spacetimes, with the main focus being their infrared behaviour in de Sitter spacetime.

Throughout this thesis, two-point function and propagator are used synonymously.

In Chapter 1, we motivate our interest in the study of propagators in curved space-

times. The relevant background material underlying the calculations for the rest of

the thesis is also introduced. First, General Relativity is briefly recapped. Quantum

field theory in flat spacetimes is then introduced, and the key differences between the

flat spacetime theory and curved spacetime theory are highlighted. We study the main

features of the cosmological spacetimes in which we work, before giving a background

on the theory of inflation, which is described by some cosmological spacetimes. The

chapter is concluded with a discussion of linearised gravity, in which we give a sum-

mary of quantisation in this theory, before reviewing the gauge freedom used in later

chapters.

In Chapter 2, we investigate the nature of infrared divergences for the free graviton

and inflaton two-point functions in flat FLRW spacetime. The graviton propagator in

this chapter is in the transverse, traceless, synchronous (TTS) gauge. These divergences

arise because the momentum integral for these two-point functions diverges in the

infrared. It is straightforward to see that the power of the momentum in the integrand

can be increased by 2 in the infrared using large gauge transformations. This is sufficient

for rendering these two-point functions infrared finite for slow-roll inflation. In other

words, if, in the infrared, the integrand of the momentum integral for these two-point

functions behaves like p−2ν , where p is the momentum, then it can be made to behave

like p−2ν+2, by the use of large gauge transformations. On the other hand, it is known

that if one smears these two-point functions in a gauge-invariant manner, the power

of the momentum in the integrand is changed from p−2ν to p−2ν+4. This fact suggests

that the power of the momentum in the integrand for these two-point functions can be

increased by 4 using large gauge transformations. In this chapter, we show that this is

indeed the case. Thus, the two-point functions for the graviton and inflaton fields can
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Structure of thesis

be made finite by large gauge transformations for a large class of potentials and states

in single-field inflation.

In Chapter 3, we study the large-distance behaviour of the covariant massless vector

propagator in the covariant gauge in n-dimensional de Sitter spacetime, where n ≥ 4.

Specifically, the large-distance limit of the massless limit of the vector propagator in

the Stueckelberg theory - an extension of the Proca theory, with an additional gauge-

fixing term - is found. We work to leading order in the de Sitter-invariant Z, as the

large-Z limit corresponds to the large-distance limit of the propagator. In this limit, it

is shown that this propagator tends to a gauge-dependent constant, where the gauge

worked in is described by the Stueckelberg parameter ξ. In the Landau gauge, where

ξ = 0, this constant is found to be 0. This result is in agreement with the 4 dimensional

case discussed in [1].

In Chapter 4, the method described in the previous chapter is applied to a different

propagator: the large-distance behaviour of the graviton propagator in n-dimensional

de Sitter spacetime is found. For the remainder of the thesis, the graviton propagator

is in the covariant gauge. We start from the propagator found in [2], which is written

in terms of two gauge parameters α and β, and find the large-distance limit in the

case when β > 0. The propagator is then expanded in terms of the de Sitter invariant

Z, which is a measure of the spacetime distance between two points, as stated above.

The expected large-distance behaviour, discussed in [2], is found: in the Landau gauge,

when α = 0, the propagator has a logarithmic divergence, and, when α = n+1
n−1 , the

divergence is linear. Additionally, for n = 4 our result reduces to that found in [2]

and [3].

In Chapter 5, the logarithmic divergence present in the large-distance limit of the

propagator, in the Landau gauge, is studied. We show that a covariant gauge trans-

formation can not be used to remove this logarithmic divergence. Instead, it is found

that this logarithmic divergence can only be traded for a linear divergence identical to

the one present when α = n+1
n−1 . However, if one uses a non-covariant transformation,

this logarithmic divergence can be gauged away, as is expected from the conclusions

of [4] and [5].

Finally, in Chapter 6, we summarise the results of the thesis, as well as discussing

some open problems in the area.
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Chapter 1

Preliminaries

In this chapter we motivate our interest in the study of propagators on cosmological

spacetimes. Additionally, we provide the mathematical background behind the calcu-

lations in this thesis. We first review General Relativity, before introducing quantum

field theory in curved spacetimes. Specifically, we highlight the differences found, and

problems encountered, when we no longer work in a flat spacetime. In the majority

of the thesis we work in de Sitter spacetime, so we give an overview of the historical

importance, and mathematical significance, of this spacetime. In this section we also

discuss a wider class of spacetimes in which we work, namely FLRW spacetimes, of

which the conformally flat chart of de Sitter is an example. Next, we provide a sum-

mary of inflation. We then turn our attention to the theory of the quantum fields

propagating on such cosmological spacetimes. We give an overview of linearised grav-

ity, the theory behind most chapters. The theory of massless vector fields, the other

propagator studied, is left to be introduced in Chapter 3. The infrared divergences

of all relevant propagators are then stated. We outline the gauge freedom present in

linearised gravity, before briefly explaining how gauge transformations can be used to

remove infrared divergences. Finally, a summary of the work presented in this thesis

is given.

In what follows, we will use the mostly plus metric convention, as well as natu-

ral units, so ~ = c = 1. We also use the standard index notation, so that brackets

around indices denote symmetry, and square brackets denote antisymmetry. The in-

dices a, b, c, d, e denote spatial and time indices, whereas the indices i, j, k are purely

spatial.
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1.1. MOTIVATIONS CHAPTER 1.

1.1 Motivations for studying propagators on cosmological space-

times

As General Relativity is not a renormalisable theory [8], it has proven hard to find

a full quantum theory of gravity. A natural step towards a full quantum theory of

gravity is to consider a semiclassical theory: quantum field theory (QFT) in curved

spacetimes (CST). In this theory, we combine the curved spacetimes used in General

Relativity with the successful QFT used to describe the other three fundamental forces.

This is a semiclassical theory in which we treat the background spacetime classically

and quantise perturbations about it; gravitational perturbation is incorporated as a

perturbation around a fixed background. We also ignore the backreaction of these

perturbations on the background.

While this does not provide a full theory of quantum gravity, it is still of interest

to study. First, it is a theory which helps us understand what is fundamental in QFT,

as well as learn about the interaction between QFT and gravity. We also note that

we can describe the early universe and extreme astrophysical environments without a

full theory of quantum gravity, so QFT in CST can be a useful tool. Additionally,

other quantum gravity theories, such as string theory, require knowledge of the study

of quantum fields on CST, under certain conditions.

Throughout this thesis, we study propagators in de Sitter and the larger class of

FLRW spacetimes, some of which are inflationary. This is of physical interest as our

universe is believed to have experienced an inflationary period in its early stages of

development. Inflation as a theory of the early universe was proposed as a solution to

the flatness and horizon problems of the standard Big Bang model. Such a theory was

first considered independently by Guth and Sato, in [9] and [10], respectively, before

being modified by the authors of [11] and [12], amongst others. We will give more detail

in later sections of this introduction. The background spacetime for the inflationary

model is a spatially flat FLRW spacetime that expands exponentially. If the expansion

is exactly exponential, the spacetime is de Sitter spacetime. Studying the behaviour

of propagators on these backgrounds is therefore of interest in developing QFT in the

early universe.

1.2 General Relativity

In this section, we give a brief review of General Relativity. We start by looking at the

physical reasoning behind the theory, before giving a brief introduction to its mathe-

matical description. We describe the effect of a curved background on the transport of

vectors on a manifold, which leads to the definition of a covariant derivative. Next, we

define the Riemann tensor, which quantifies the curvature of the spacetime, and some
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relevant contractions of this tensor. Then, we state Einstein’s equations, and discuss

some interesting consequences arising from them. We conclude with a short discussion

on geodesics. For more detail on the concepts discussed in this chapter, we direct the

reader to Carroll [13], amongst others.

Einstein proposed the theory of special relativity in 1905 [14]. The two postulates

of special relativity are that:

1. The laws of physics are the same for observers in different inertial reference frames,

2. The speed of light c is constant in all inertial reference frames.

The next step was to try to incorporate accelerating frames into the theory. General

Relativity was proposed by Einstein in 1907 [15] and then from 1911 onwards in [16],

amongst other, to accomplish this. It is based on the equivalence principle: the effects

of a gravitational field are indistinguishable from the acceleration of a local inertial

reference frame. Hence, there is no way to experimentally find whether we are uniformly

accelerating in free space or feeling the effects of a gravitational field.

Mathematically, we describe General Relativity using the pair (M, gab). A manifold

M is a space that locally “looks like” Rn, and a metric tensor gab describes the geometry

of the manifold. At each point p on the manifold we define the tangent space Tp as

the space of directional derivative operators along curves through p. It is necessary to

compare vectors in Tp to those in Tq, for two points p and q. To this end, we introduce

parallel transport: move ξ ∈ Tp from p to q along a curve γ such that the norm of

ξ is constant, and it is oriented in the same direction. For flat space, if a vector is

transported from a point p along a closed curve back to the point p, it will be brought

back to the same vector. However, on a curved manifold, this is not necessarily the case.

For a pictorial representation of parallel transport, we direct the reader to Figure 1.1.

Figure 1.1: Parallel transport of a vector in flat spacetime along a triangular path.
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1.2. GENERAL RELATIVITY CHAPTER 1.

We will define curvature of a manifold through the action of derivatives. First, we

must define a derivative, on a curved manifold. In the following, vb etc. are components

of a vector in a particular coordinate system. A derivative operator ∇a is a map from

the space of all (k, l) tensor fields to (k, l + 1) tensor fields satisfying the following

conditions:

1. Linearity: ∇a
(
αvb + βwc

)
= α∇cva + β∇awb for α, β ∈ R ,

2. Leibniz rule: ∇a
(
vbwc

)
= ∇avb · wc + vb · ∇awc ,

3. Torsion free derivative: ∇[a∇b]f = 0 for a smooth scalar field f ,

4. Consistency with the notion of tangent vectors as directional derivatives acting

on scalar fields: v(f) = va∇af , where v(f) = df
dλ , and va is tangent to a curve

parametrised by λ. As an aside, a derivative operator gives rise to the notion

of parallel transport: if ua is the tangent vector to the curve, then ua∇aV b = 0

implies that V b is parallelly transported along the curve.

5. Consistency with tensor contraction: ∇cT aa = ∇c
(
T abδ

b
a

)
= (∇cT ab) δba .

Due to the curvature of the manifold, we have lost the notion of a unique derivative

operator. Two derivative operators will agree on functions, by which we mean that

∇af = ∂af , (1.2.1)

for a smooth function f , and where the right-hand side is the partial derivative with

respect to the coordinates. This agreement is not necessarily true for a general tensor

T a1···amb1···bn . We define the derivative operator on vectors and covectors by giving the

connection Cbac:

∇awb = ∂awb − Ccabwc , (1.2.2)

∇awb = ∂aw
b + Cbacw

c . (1.2.3)

Equation (1.2.3) follows from equation (1.2.2) by using property 2 of the derivative

operator, and equation (1.2.1). Due to the symmetry under exchange of the lower two

indices, which follows from the torsion free condition on the derivative, this connection

has n2(n+1)
2 components. From these two relations, the generalisation to higher order

tensors is trivial:

∇aT b1b2···bk c1c2···cl =∂aT
b1b2···bk

c1c2···cl + Cb1adT
db2···bk

c1c2···cl + · · ·

− Cdac1T
b1b2···bk

dc2···cl − · · · . (1.2.4)
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CHAPTER 1. 1.2. GENERAL RELATIVITY

In order to specify a unique derivative, we require the metric-compatibility, i.e.

∇cgab = 0 . (1.2.5)

We quantify the curvature of the manifold by introducing the Riemann tensor. This

can be defined as

2∇[a∇b]wc = Rabcdw
d . (1.2.6)

This tensor is antisymmetric under the exchange of a↔ b and c↔ d, and is symmetric

under the exchange ab↔ cd. Additionally, the Riemann tensor obeys the first Bianchi

identity:

Ra[bcd] = 0 . (1.2.7)

For completeness, we also mention the second Bianchi identity

∇[eRab]cd = 0 , (1.2.8)

which we use later to find some relevant conservation equations.

In a coordinate basis, the Riemann tensor is

Rabcd = ∂cΓ
a
db − ∂dΓacb + ΓaceΓ

e
db − ΓadeΓ

e
cb , (1.2.9)

where the Christoffel symbols Γabc are components of the connection. These components

are defined as

Γabc =
1

2
gad [∂bgcd + ∂cgbd − ∂dgbc] . (1.2.10)

From the Riemann tensor, we can form an additional tensor and scalar. The Ricci

tensor is the contraction

Rab = Rcacb , (1.2.11)

and the Ricci scalar is

R = gabRab . (1.2.12)

We can use the Ricci tensor and scalar to write the Riemann tensor as a traceless tensor

with all the same symmetries of the Riemann tensor. This is the Weyl tensor, and it

is given by

Cabcd = Rabcd −
2

n− 2

[
ga[cRd]b − gb[cRd]a

]
+

2

(n− 1)(n− 2)
ga[cgd]bR . (1.2.13)

In Chapter 2, we will use results relating to the linearised Weyl tensor.

Einstein’s equations, which describe how the curvature of the spacetime and matter
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1.2. GENERAL RELATIVITY CHAPTER 1.

are related, are

Rab −
1

2
Rgab + Λgab = 8πGTab , (1.2.14)

where G is the gravitational constant, Λ is the cosmological constant, gab is the symmet-

ric metric tensor, and Tab is the stress-energy tensor, which describes the matter. Due

to the symmetry of all other tensors in Einstein’s equations, this tensor is symmetric.

It is also conserved:

∇aTab = 0 . (1.2.15)

This can be seen by the following contraction of the second Bianchi identity, given by

equation (1.2.8):

gdbgce [∇eRabcd +∇bReacd +∇aRbecd] = 0 ,

⇒ 2∇cRac −∇aR = 0 . (1.2.16)

In our statement of Einstein’s equations we have included the cosmological constant

term, which gives the vacuum energy of the universe. This cosmological constant term

was introduced as Einstein’s equations initially admitted no static solution, which he

believed would be necessary to accurately describe our universe [17]. However, as it

was later observed that the universe was expanding, there was no longer a need for

this term [18,19]. For this reason, Einstein considered his inclusion of the cosmological

constant as his ‘biggest blunder’1. However, the current accelerated expansion of the

universe implies that Λ is in fact non-zero and positive [20,21]. The de Sitter solution is

a solution of the vacuum Einstein equations with a cosmological constant Λ > 0, with

a physical interpretation, as will be discussed in later sections of the introduction. As

a final remark on this subject, let us point out that the cosmological constant problem

is an open problem in cosmology. This is a fine-tuning problem, where observations of

the vacuum energy of the universe, where Λ is of the order 1 cm−2 [22], are found to be

hugely inconsistent with the theoretical value predicted by QFT, where Λ ≈ 10−55cm−2

[23].

We conclude this section with a brief discussion on geodesics. These are curves

of zero acceleration, and timelike geodesics map out the path a freely falling body

would follow under no external forces. The geodesic distance between two points is

the extremised distance between them. Mathematically, a geodesic is a curve whose

tangent vector, ξa, satisfies

ξa∇aξb = αξb , (1.2.17)

for a constant of proportionality α. In the case of an affinely parametrised geodesic

1According to phycisist George Gamow
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CHAPTER 1. 1.3. QUANTUM FIELD THEORY IN CURVED SPACETIMES

α = 0. Geodesics can also be related to curvature, as a geodesic is a curve whose

tangent vectors remain parallel to each other if they are parallel transported along it.

Indeed, another way of describing curvature is through geodesic deviation: two initially

parallel geodesics can bend towards or away from each other as they propagate through

the spacetime.

1.3 Quantum field theory in curved spacetimes

In this section, we highlight the key points of QFT in CST. This theory combines

QFT in flat spacetime with the curved spacetimes considered in General Relativity.

We highlight the main differences between QFT in flat and curved spacetimes, before

concluding with a brief summary of correlation functions. For a review of QFT in CST,

we direct the reader to, for example, [24, 25]. This section provides a summary of key

facts which can be found in [24, 25], along with flat space results that can be found

in [26].

In order to extend QFT in flat spacetime to a CST background, we use the minimal

coupling prescription, so that

∂a → ∇a , (1.3.1)

ηab → gab , (1.3.2)

dnx→
√
−gdnx , (1.3.3)

where ηab is the Minkowski metric, and g is the determinant of the metric. Using this

new volume element, we define the action S to be

S =

∫
L
√
−gdnx , (1.3.4)

for a Lagrangian L. For a set of fields φ(i) propagating in a curved spacetime with the

line element

ds2 = gab(x)dxadxb , (1.3.5)

we consider an action invariant under diffeomorphisms of the manifold:

S[φ′(x′),∇′φ′(x′), g′ab(x′)] = S[φ(x),∇φ(x), gab(x)] , (1.3.6)

for two coordinate systems x and x′.

The majority of this thesis is concerned with the infrared (IR) behaviour of the

graviton two-point function, so for the remainder of this section we give a brief recap

of important features of two-point functions.

Correlation functions, of which the two-point function is a particular example, are
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1.3. QUANTUM FIELD THEORY IN CURVED SPACETIMES CHAPTER 1.

the vacuum expectation values of products of field operators Φ about a set of spacetime

points xi. In the following we state some interesting two-point functions for a field Φ,

with arbitrary spin. We will specialise to the graviton two-point function at the end of

this section.

The two simplest two-point functions are the Wightman functions:

G+(x, x′) =
〈
0|Φ(x)Φ(x′)|0

〉
, (1.3.7)

G−(x, x′) =
〈
0|Φ(x′)Φ(x)|0

〉
. (1.3.8)

The Feynman propagator is the following time-ordered product of fields:

iGF (x, x′) =
〈
0|T

(
Φ(x)Φ(x′)

)
|0
〉

= Θ(t− t′)G+(x, x′) + Θ(t′ − t)G−(x, x′) , (1.3.9)

where the Heaviside step function is

Θ(t) =

{
1 for t > 0 ,

0 for t < 0 .
(1.3.10)

The notation G(x, x′) is used as these are Green’s functions for an operator P (x), which

acts in the following way

P (x)Φ(x) = 0 , (1.3.11)

where the latter equation is the field equation for Φ(x). We have

P (x)G±(x, x′) = 0 , (1.3.12)

P (x)GF (x, x′) = −δ(4)(x− x′) . (1.3.13)

For the majority of this thesis, we consider the graviton two-point function, which

is the following Wightman function:

Gab:a′b′(x, x
′) =

〈
0|hab(x)ha′b′(x

′)|0
〉
, (1.3.14)

for a metric perturbation hab about a classical spacetime. In Chapter 3, we find the

large-distance behaviour of the covariant massless vector propagator. This is the fol-

lowing Wightman function: 〈
0|Aa(x)Aa′(x

′)|0
〉
, (1.3.15)

where Aa(x) is the vector potential.

We conclude by noting that propagator (Green’s function) and two-point function

(satisfying the homogeneous field equation without the delta function) have been used
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synonymously throughout this thesis because the large-distance behaviour and the IR

divergences are the same for these two quantities.

1.4 Cosmological spacetimes

In this section, we will introduce the two spacetimes in which we work for the rest

of the thesis: de Sitter and FLRW. Here we note that the conformally-flat chart of

de Sitter spacetime is an FLRW spacetime. The majority of this section focuses on

de Sitter, as all chapters, except for Chapter 2, use this spacetime. First, we discuss

the historical and physical significance of de Sitter spacetime. We then see how it is

described mathematically, and mention a few subtleties with definitions of coordinate

systems. We finish with a brief introduction of FLRW spacetime, and state a few

relations relevant to cosmology.

We begin by mentioning the physical and historical significance of de Sitter space-

time, which is the generalisation of Minkowski spacetime. Mathematically, de Sitter

is the maximally symmetric2 solution to the vacuum Einstein equations, with a pos-

itive cosmological constant [27, 28]. As such, it is of special interest to mathematical

physicists. This spacetime is of physical interest as it is an inflationary spacetime. Ad-

ditionally, some spacetimes in the more general FLRW class are inflationary. This will

be expanded on in the next section, so here we merely state that in de Sitter, inflation

is driven by the cosmological constant Λ, which motivates its inclusion in this chapter.

As we are now working in a curved spacetime, we have lost the concept of a unique

vacuum state. The SO(4, 1) symmetry of de Sitter spacetime, along with the Hadamard

condition, is such that we are able to define a natural vacuum state. Hadamard states

are generally taken to be physical states for linearised quantum fields on curved space-

times, for more detail see, for example, [29, 30]. This state is called the Bunch-Davies

vacuum [31], or the Euclidean vacuum, as it is the natural extension of the flat space

vacuum to de Sitter in that the Feynmann propagator in this vacuum state is obtained

by analytic continuation of the Green’s functions on the sphere Sn.

We now look at de Sitter spacetime in more mathematical detail. As previously

mentioned, it is the solution to the vacuum Einstein equations:

Rab −
1

2
gabR+ Λgab = 0 , (1.4.1)

which is equation (1.2.14), with the stress-energy tensor Tab = 0.

We can think of de Sitter as an embedding in Rn+1. In this embedding space, the

2A maximally symmetric spacetime admits the maximum number of Killing vectors, which, for a n
dimensional space, is n(n+1)

2
. Killing vectors satisfy the equation ∇aξb +∇bξa = 0 [13].
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metric, inherited by n-dimensional de Sitter spacetime, is

ds2 = −dX2
1 + dX2

2 + · · ·+ dX2
n+1 , (1.4.2)

subject to the condition that

X ·X =
1

H2
, (1.4.3)

for X = (X1, X2, · · · , Xn+1). This describes a hyperboloid in (n + 1)-dimensional

Minkowski spacetime. The Hubble constant H gives the rate at which the universe is

expanding, and is defined by

H =
v

D
, (1.4.4)

where v is the recessional velocity - the speed at which an object moves from the

observer - and D is the proper distance from the object to the observer. This ratio is

constant in de Sitter spacetime, but the same is not true in FLRW spacetime.

This spacetime can be described by multiple coordinate systems, the most common

of such being the static, global, and conformal coordinates. These coordinate systems,

and their corresponding metrics, are valid on different patches of de Sitter spacetime.

Here, we briefly review the key features of these coordinate systems, using the notation

of [32]. In the latter paper H = 1, so for the following discussion we use this scaling.

We start from Euclidean de Sitter, which is the n-dimensional sphere Sn. This is

represented by the metric

ds2
Sn = dΩ2

n = dϑ2 + sin2 ϑdΩ2
n−1 , (1.4.5)

for ϑ ∈ [0, π], and where dΩ2
n is the metric of the n-dimensional sphere.

From condition (1.4.3), we can define three further coordinate systems to describe

de Sitter spacetime. We perform a Wick rotation on the azimuthal angle, given by

tanφ =
X1

X2
, (1.4.6)

such that

t = iφ , (1.4.7)

for t ∈ R. From this, we find the metric in static coordinates:

ds2
static = − cos2 θdt2 + dθ2 + sin2 θdΩ2

n−2 , (1.4.8)

where

tan θ =

√
(X3)2 + ...+ (Xn+1)2

(X1)2 + (X2)2
. (1.4.9)
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This metric is valid for θ ∈
[
0, π2

)
, along with the earlier condition that t ∈ R.

Alternatively, we could have performed a Wick rotation of the polar angle, such

that

Θ = i
(
ϑ− π

2

)
, (1.4.10)

for Θ ∈ R. Additionally, one defines

tanT = sinh Θ , (1.4.11)

to give the metric in global coordinates:

ds2
global = sec2 T (−dT 2 + dχ2 + sin2 χdΩ2

n−2) , (1.4.12)

valid for T ∈
(
−π

2 ,
π
2

)
. In writing the metric in this form, we have written the metric

of the (n− 1)-sphere in terms of the coordinate χ as

dΩ2
n−1 = dχ2 + sin2 χdΩ2

n−2 , (1.4.13)

for χ ∈ (0, π).

Finally, we consider the metric in conformal coordinates. This is the system that

will be used for the remainder of this thesis. Here, the metric is

ds2
conformal =

1

(−η)2

(
−dη2 + dx2

1 + · · · dx2
n−1

)
, (1.4.14)

where the conformal scaling factor depends on the conformal time η ∈ (−∞, 0). We

can relate this coordinate system back to the global coordinate system by means of the

transformation

η = − cosT

sinT + cosχ
, (1.4.15)

xi =
sinχ

sinT + cosχ
X̂i , (1.4.16)

with

X̂i =
Xi+2√

(X3)2 + ...+ (Xn+1)2
. (1.4.17)

Figure 1.2, below, gives the Penrose diagram of de Sitter spacetime, which sum-

marises the coordinate range where each system is valid.
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Figure 1.2: Penrose diagram of de Sitter spacetime, using global coordinates. The static

patch is region I, and the conformal patch is made up of regions I and II. The future

and past spacelike infinities I± are at the T = ±π
2 , and the cosmological horizons are

T = ±
(
χ− π

2

)
.

Region I is the static patch, and this is the only region in which static coordinates

can be used. In regions I and II, known as the Poincaré or conformal patch, conformal

coordinates are valid. Finally, as the name would suggest, global coordinates are valid

everywhere. Also of interest are the horizons in this diagram. The future and past

spacelike infinities, I±, are given by T = ±π
2 . Also of interest are the past and future

cosmological horizons. These are given by the lines T = ±
(
χ− π

2

)
, defined by the

observer at θ = 0. These horizons coincide with the coordinate singularity at θ = π
2 .

For the remainder of the thesis, we work with H = constant, not necessarily equal to

1, in de Sitter spacetime.

For the remainder of the section, we give a brief introduction to FLRW spacetime.

We follow the notation of [13], where a more detailed explanation of FLRW spacetime

can be found. The idea behind such a spacetime follows from the Copernican principle:

that the universe essentially looks the same everywhere. This principle is related to

the concepts of homogeneity and isotropy. If a spacetime is homogeneous then it is

the same everywhere, so is translation invariant. If it is isotropic at a point, then, for

an observer at a particular point in spacetime, the spacetime will look identical in all

directions. If a spacetime has both of these properties, then it obeys the Copernican

principle. Finally, we note that if a spacetime is both homogeneous and isotropic it

is maximally symmetric at constant t, which means that it has the maximum number

of Killing vectors. As FLRW spacetimes are homogeneous and isotropic, the fact that
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they are also maximally symmetric follows trivially.

For the remainder of this section, we work in n = 4 dimensions. The class of FLRW

spacetimes are the solution to Einstein’s equations where the cosmological constant

term can be included in the stress-energy tensor, such that

Rab −
1

2
Rgab = 8πGTab , (1.4.18)

There are three different cases of FLRW spacetime. To represent these, we use the

parameter k, which takes three discrete values: 0,±1. It relates to the curvature of the

universe as follows:

k =


+1 for a closed universe with positive curvature ,

0 for a flat universe ,

−1 for an open universe with negative curvature .

(1.4.19)

For the flat space case, we have a metric of the following form

gFLRW
ab = a2(η)ηab . (1.4.20)

We note here that the de Sitter metric in conformal coordinates, given by equa-

tion (1.4.14), had this form, where

a2(η) =
1

(−ηH)2
. (1.4.21)

Other interesting values of this scaling factor are

amatter(t) ∝ t
2
3 , (1.4.22)

aradiation(t) ∝ t
1
2 , (1.4.23)

for the time coordinate t, related to the conformal time coordinate η, by

η =

∫
dt

a(t)
. (1.4.24)

Indeed, for the remainder of this section, it is more convenient to work in terms of the

time coordinate t. The corresponding metric is

ds2 = −dt2 + a2(t)dx2 . (1.4.25)

We conclude by introducing the Friedmann equations, which will be of use in the
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next section. To find these, we write Einstein’s equations in the following form:

Rab = 8πG

(
Tab −

1

2
gabT

)
, (1.4.26)

where T = gabTab. As we consider a FLRW solution, we use the stress tensor of a

perfect fluid,

Tab = (ρ+ p)uaub + pgab , (1.4.27)

where ρ is the energy density, p is the pressure, and ua is the fluid 4-velocity. We

consider a comoving fluid, so that ua = (1, 0, 0, 0). As this satisfies the condition

uaua = −1, the trace of the stress-energy tensor is

T = −ρ+ 3p . (1.4.28)

The first Friedmann equation is found from setting a = b = 0 in Einstein’s equa-

tions, so that

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρ− k

a2
, (1.4.29)

where a dot represents the derivative with respect to the time coordinate t. To find the

second Friedmann equation, we must first find the continuity equation. This is found

from the conservation of the stress tensor Tab, and states that

ρ̇+
3ȧ

a
(ρ+ p) = 0 . (1.4.30)

By multiplying equation (1.4.29) by a2(t), differentiating the resulting formula and

substituting equation (1.4.30), this gives the second Friedmann equation:

ä

a
+

4πG

3
(ρ+ 3p) = 0 . (1.4.31)

We use these relations at the end of the next section, in our discussion of a specific

inflationary theory.

1.5 Inflation

In this section, we introduce the theory of inflation. First, we motivate the theory by

explaining the problems it was introduced to solve. We then give an overview of the

initial theory of inflation, where a first order phase transition provided the mechanism

for the exponential expansion. There are some issues with this theory, so we look at a

modified theory: new inflation, which is a theory with a second order phase transition.

This is studied in the slow-roll approximation. We conclude with a brief discussion of
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the role of the cosmological constant in inflation in de Sitter.

The theory of inflation came around in the late 1970s, and was proposed indepen-

dently by both Guth [9] and Sato [10]. It was introduced to solve the following problems

with the big bang model of the universe:

1. Horizon problem,

2. Flatness problem,

3. Monopole problem.

The horizon problem is that our universe is homogeneous and isotropic: there are

causally disconnected regions of space with the same approximate temperature. The

flatness problem is a fine-tuning problem. The density of our universe is approximately

that of the critical density required for a flat universe. Such a value is very unstable,

so a small deviation leads to a universe very dissimilar to our own. A small deviation

leads to either an open universe, which would result in a large decrease in density, or

a closed universe, which would have reached its maximum size in a period of time on

the order of the Planck time. Initial parameters, such as the Hubble constant, must

be very finely tuned for the universe we live in to have existed for this period of time.

Finally, the monopole problem is simply that there is no experimental evidence to

support the existence of magnetic monopoles. A physical theory should, therefore, be

able to explain why they have not yet been discovered.

We now discuss the mechanism by which inflation occurs, in the initial model,

discussed in [9] and [10]. Briefly, inflation states that there was a period of exponential

expansion in the early universe, which stops when a first order phase transition, through

a critical temperature TC , occurs. At this temperature, one might expect that the

universe would transition from the false vacuum state, to the true vacuum state. Intead,

the universe supercools through this temperature to, say, a temperature TS , orders

of magnitude lower than TC . This is a metastable false vacuum state. Bubbles of

true vacuum then nucleate and expand at the speed of light. Because this transition

occurs at the temperature TS , instead of TC , there is a huge change of entropy, so the

process is not adiabatic. The energy release associated with this phase transition is

such that the universe reheats to a temperature TR, which is of the same order as TC .

The inhomogeneities necessary for the formation of stars and galaxies are explained by

quantum and thermal fluctuations. Observations of such inhomogeneities in the cosmic

microwave background (CMB) can give information about the fluctuations predicted

by the inflationary model [33,34].

We now see how inflation solves the problems stated at the beginning of this chapter.

First, inflation explains the homogeneity of the universe, as all regions in the observable
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universe would have had contact with each other before the epoch of inflation. The

flatness problem is solved as, due to the rapid expansion of the universe, the density

post inflation approaches the critical density of a flat universe. For example, even if the

universe is closed, post-inflation this universe will be locally indistinguishable from flat

space. The solution to the monopole problem is that, before inflation, monopoles would

form. However, due to the rapid expansion of the space after inflation, monopoles will

be very spread out, meaning that it is not unlikely that one will not be present in the

observable universe.

There are, however, problems with this model. The main one is known as the

graceful exit problem, which is associated with the end of inflation [9]. Either inflation

does not end, or after reheating it gives a universe which does not describe the one we

observe. This is the case as, in order for the bubbles of true vacuum to thermalise, they

must collide with other bubbles of true vacuum. In this initial theory, there would not

be enough collisions to evolve into the universe that we observe today. In summary,

this model leaves the universe either too inhomogeneous, or too empty. Inflation also

fails to completely remove the fine tuning problem; in order for inflation to occur we

still need some exact initial conditions. In an attempt to solve these problems, we

move away from this first order phase transition theory of inflation, known as a false

vacuum theory, to that of a second order phase transition, as was considered in, for

example, [11] and [12].

We now discuss a specific theory of inflation, with a second order phase transition.

There are many such theories, but, for simplicity, we consider single-field inflation

[11, 12]. For a more detailed treatment of the theory, we direct the reader to, for

example, [35, 36]. We work in a 4-dimensional FLRW metric, which can be written as

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2dΩ2

]
, (1.5.1)

for a scaling factor a(t), where dΩ2 is the metric of the 2-sphere, and where k =

−1, 0, 1 for open, flat, and closed universes, respectively, as was stated at the end of

Section 1.4. In this section, we work with the time coordinate t, as opposed to the

conformal time η used for the rest of the thesis. The two coordinates are related

through equation (1.4.24).

In this model of inflation, the expansion is driven by a single scalar field, called the

inflaton field. The scalar field is minimally coupled to Einstein gravity, resulting in the

following action:

S =

∫
d4x
√
−g

[
M2
pl

2
R− 1

2
gab∇aφ∇bφ− V (φ)

]
, (1.5.2)
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where

Mpl =
1√

8πG
(1.5.3)

is the Planck mass, and we consider a potential V (φ) such as the one shown in Figure

1.3.

Figure 1.3: The potential of a scalar field which drives inflation. Inflation occurs when

the scalar field slowly rolls down the slope, and reheating occurs around the global

minimum, which is the true vacuum of the system.

As the scalar field slowly rolls down the slope of the potential, the exponential

expansion occurs. Finally, as the potential reaches its minimum, there is a period of

reheating, where the energy released during inflation thermalises the vacuum.

In order to discuss the dynamics of this system, we introduce the parameters

H ≡ ȧ

a
, (1.5.4)

ε ≡ − Ḣ

H2
, (1.5.5)

δ ≡ ε̇

Hε
, (1.5.6)

η ≡ − φ̈

Hφ̇
, (1.5.7)

where a dot denotes a derivative with respect to the time coordinate t. As mentioned

in the previous section, H is the Hubble parameter. Physically, ε is related to the

slope of the potential, as will be seen later in equation (1.5.25), and δ is related to

its curvature. For the rest of this section, η is defined above by equation (1.5.7), as

opposed to denoting the conformal time. In order for inflation to occur, we require
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that

ε� 1 , (1.5.8)

|δ| � 1 , (1.5.9)

|η| � 1 . (1.5.10)

These approximations will be discussed in more detail in the following calculation.

We will work in the slow-roll approximation, which enforces conditions (1.5.8) -

(1.5.10). For the rest of this section, we will find the equations of motion, before

showing that slow-roll inflation is a valid inflationary model.

The equation of motion for the inflaton field φ(t), found from varying the action

given in equation (1.5.2), is

∇a∇aφ+ V ′(φ) = 0 , (1.5.11)

which, as the inflaton field depends on time only, becomes

φ̈+ 3Hφ̇ = −V ′(φ) . (1.5.12)

At the end of the previous section, we found the Friedmann equations, given by equa-

tions (1.4.29) and (1.4.31). When k = 0, and by using

ä

a
= Ḣ +H2 , (1.5.13)

which can be seen by differentiating H, given by equation (1.5.4), it can be seen that

the Friedmann equations are

H2 =
ρ

3M2
pl

, (1.5.14)

Ḣ +H2 = − 1

6M2
pl

(ρ+ 3p) , (1.5.15)

where ρ and p are the energy density and pressure of a perfect fluid. They can be

expressed as follows:

ρ =
1

2
φ̇2 + V (φ) , (1.5.16)

p =
1

2
φ̇2 − V (φ) , (1.5.17)
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using the stress-energy tensor of a scalar field:

Tab = ∇aφ∇bφ− gab
[

1

2
∇cφ∇cφ+ V (φ)

]
(1.5.18)

and that of a perfect fluid, given in Section 1.4 by equation (1.4.27).

From the first Friedmann equation, we see that

H2 =
1

3M2
pl

[
1

2
φ̇2 + V (φ)

]
. (1.5.19)

By differentiating this equation, and using the field equation (1.5.12), it can be seen

that

Ḣ = − φ̇2

2M2
pl

, (1.5.20)

so, from the definition given in equation (1.5.5), we have that

ε =
φ̇2

2M2
plH

2
. (1.5.21)

Finally, taking the derivative of the logarithm of this equation, and using the definitions

given in equations (1.5.5) - (1.5.7), it can be seen that

δ = 2(ε− η) . (1.5.22)

This relation can be used to allow us to work in terms of ε and δ, and eliminate η, as

will also be the case in Chapter 2.

We now use the slow-roll approximation to simplify these equations. From the

condition η � 1, we have φ̈� Hφ̇, so the equation of motion, from equation (1.5.12),

becomes

3Hφ̇ ≈ −V ′(φ) . (1.5.23)

The other necessary condition for slow-roll approximation, that ε � 1, is used to

simplify the first Friedmann equation. Applying this condition to the expression found

in equation (1.5.21) means we neglect the term in equation (1.5.19) corresponding to

the kinetic energy, so that

H2 ≈ V (φ)

3M2
pl

. (1.5.24)

We also note that by substituting the simplified equation of motion, given by equa-
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tion (1.5.23), into equation (1.5.21), we can write the slow-roll parameter

ε ≈ V ′2(φ)

18M2
plH

4
∝
(
V ′(φ)

V (φ)

)2

. (1.5.25)

The slow-roll approximation also allows us to find a simple expression for the length

of time over which the period of inflation occurred. In order to find the extent of

inflation, we use an e-fold, which is the expansion of space by a factor of e. The

number N of e-folds is given by

N ≡
∫ af

ai

d ln a =

∫ tf

ti

H(t)dt , (1.5.26)

which can be seen from the definition of H, given in equation (1.5.4). The boundary

values ai and af are the values of the conformal scaling factor at the start and end

of the inflationary period, at times ti and tf respectively. As stated earlier, inflation

occurs when ε � 1, so we use these values of ε as our boundary values. Rearranging

equation (1.5.21):

H =
φ̇√

2εMpl

, (1.5.27)

we see that this integral becomes

N =

∫ φf

φi

1√
2ε

dφ

Mpl
, (1.5.28)

for φi and φf corresponding to the values of the field at the start and end of the

inflationary period. In order to solve the horizon problem, it is known that we need a

scalar field φ such that NCMB ≈ 40− 60 [37].

We conclude by returning to de Sitter spacetime, and the role of the cosmological

constant. In de Sitter, φ̇ = 0, so V (φ) = constant, hence H is constant in time also.

As mentioned previously, inflation occurs in de Sitter spacetime, and is related to the

cosmological constant. The cosmological constant is the energy density of the vacuum.

In the scalar single-field model of inflation, this is the energy released during the second

order phase transition, which thermalises the true vacuum.

1.6 Linearised Gravity

As linearised gravity is the theory in which we work in most chapters, in this section

we study linearised gravity in FLRW spacetimes. The exception is Chapter 3, where

we study a massless vector field. We find the field equations for perturbations about

a background FLRW spacetime, and look at how the solutions of these equations are
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quantised. All results in this section also apply to de Sitter, when we take a specific

choice of the conformal scaling factor, and we look at the vacuum Einstein equations.

1.6.1 Field equations

We find the field equations for a perturbation about a background FLRW spacetime,

in the transverse, traceless, synchronous gauge. All results in this section can also be

applied to de Sitter spacetime, and any parts of the calculation that differ for each will

be highlighted. This calculation follows the method of [38].

We consider a perturbation about a FLRW background, gab, such that

g̃ab = gab + hab , (1.6.1)

for a symmetric perturbation hab. We also assume that

δρ = δp = δua = 0 . (1.6.2)

We want to write the perturbation as transverse, traceless, and synchronous:

∇ahab = 0 , (1.6.3)

h = 0 , (1.6.4)

uahab = h0a = 0 , (1.6.5)

where the last line follows since we consider a comoving fluid ua = (−1, 0, 0, 0).

We start from Einstein’s equations, given by

R̃ab −
1

2
g̃abR̃ =

κ2

2
T̃ab , (1.6.6)

where κ2 = 16πG, and a tilde represents a quantity calculated using the full metric. In

this thesis, we consider two distinct cases of the stress-energy tensor:

T̃ab dS = −Λg̃ab , (1.6.7)

T̃ab FLRW = (ρ+ p)uaub + pg̃ab , (1.6.8)

where the first case corresponds to de Sitter, and we use the second for FLRW. Here, we

use the stress-energy tensor for an ideal fluid. For the rest of this chapter, we take the

FLRW stress-energy tensor, as the de Sitter case clearly follows by setting ρ = −p = Λ.

We therefore drop the FLRW subscript for the remainder of this discussion.

We will work to linear order in the perturbation hab in what follows. To first order
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in the perturbation hab, we can expand to see

g̃ab = gab − hab +O(h2) , (1.6.9)√
−g̃ =

√
−g
[
1 +

1

2
gabhab

]
+O(h2) , (1.6.10)

and, additionally, in the transverse, traceless, synchronous (TTS) gauge,

T̃ab = Tab + phab , (1.6.11)

T̃ aa = T aa +O(h2) , (1.6.12)

where

Tab = (ρ+ p)uaub + pgab . (1.6.13)

The Riemann tensor is

R̃abcd = ∇cΓ̃adb −∇dΓ̃acb +O(h2) , (1.6.14)

where

Γ̃abc =
1

2
g̃ad [∇bg̃cd +∇cg̃bd −∇dg̃bc] , (1.6.15)

and ∇a is the covariant derivative with respect to the background metric. In general

(unless otherwise specified) indices will be raised / lowered with respect to the FLRW

background metric, which is consistent with the linear order to which we work. The

Riemann tensor is therefore given by

R̃abcd =Rabcd +
1

2
[∇c∇dhab +∇c∇bhad −∇c∇ahdb −∇d∇chab −∇d∇bhac +∇d∇ahcb]

+O(h2) . (1.6.16)

The Ricci tensor is defined to be R̃ab = R̃cacb. Calculating this gives

R̃ab = Rab +
1

2
[∇c∇bhca +∇c∇ahcb −�hab] +O(h2) , (1.6.17)

where we have used the symmetry of the perturbation, and the fact that it is traceless,

in order to simplify the expression. Note also that covariant derivatives commute on a

scalar field. We must now compute the Ricci scalar which is given by:

R̃ = g̃abR̃ab . (1.6.18)

Note that in this case we must use the full metric, g̃ab, to contract indices as R̃ contains
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a term to order h0 in the perturbation. Calculating this and implementing the gauge

conditions given by equations (1.6.3) - (1.6.5) gives:

R̃ = R− habRab +O(h2) . (1.6.19)

Using these expansions, Einstein’s equations (1.6.6) become

1

2
∇c∇ahcb +

1

2
∇c∇bhca −

1

2
�hab −

1

2
Rhab +

1

2
gabh

cdRcd =
κ2

2
phab . (1.6.20)

In order to simplify this equation, we make use of the following expressions for the

Riemann tensor, Ricci tensor, and Ricci scalar, which here are quoted for general n for

later convenience:

Rabcd = H2 [gac gbd − gadgbc + ε(uaucgbd + ubudg
a
c − uaudgbc − ubucgad)] , (1.6.21)

Rab = H2 [(n− 1− ε)gab + ε(n− 2)uaub] , (1.6.22)

R = H2(n− 1)(n− 2ε) . (1.6.23)

By evaluating the commutator of covariant derivatives, and imposing the TTS gauge

conditions, it can be seen that

∇a∇chab = Rach
a
b −Rdbachad ,

= H2(4− ε)hbc , (1.6.24)

where the second line follows by setting n = 4 in equations (1.6.21) and (1.6.22).

Additionally, in terms of the Hubble constant H and the slow-roll parameter ε, in n

dimensions the pressure of the perfect fluid is

κ2p = 2H2ε(n− 2)−H2(n− 1)(n− 2) , (1.6.25)

which is found the following component of Einstein’s equations:

Rii −
1

2
giiR =

κ2

2
Tii , (1.6.26)

using equations (1.6.22), (1.6.23), and where Tii = pgii, as can be seen from equa-

tion (1.6.13).

Using these relations, in n = 4 dimensions the field equations for the perturbation,

given by equation (1.6.20), can be written as

(
�− 2H2

)
hab = 0 . (1.6.27)
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In the next section, we see how we quantise the solutions to these field equations.

1.6.2 Quantisation scheme

In this section, we briefly review the symplectic method of quantisation detailed in [39].

We explicitly look at how the method is used for the tensor perturbations of linearised

gravity: the solutions to the field equation (1.6.27). This method of quantisation is used

in Chapter 2 to normalise the mode functions of both the tensor perturbations, and

the scalar field. It is also used in the construction of the graviton two-point function in

Chapter 4. We conclude by briefly mentioning how this is applied to solutions of the

Klein-Gordon scalar field.

We start from the action for a bosonic field φI , where the index I may represent

spacetime indices corresponding to, for example, a scalar field or linearised gravity.

This action is

S =

∫ √
−gLdnx , (1.6.28)

for a quadratic Lagrangian

L =
1

2
KaIbJ∇aφI∇bφJ +

1

2
SIJφIφJ , (1.6.29)

where KaIbJ = KbJaI and SIJ = SJI . The conjugate momentum is

πcI =
∂L

∂ (∇cφI)
, (1.6.30)

= KcIbJ∇bφJ , (1.6.31)

for the Lagrangian above. The Euler-Lagrange equation of motion is

∇c
(

∂L
∇cφI

)
− ∂L
∂φI

= 0 , (1.6.32)

which, for the Lagrangian given by equation (1.6.29), becomes

∇cπcI − SIJφJ = 0 , (1.6.33)

where the definition of the conjugate momentum, equation (1.6.30), has been used.

We assume that

(φI , π
cJ) = (f

(i)
I , p(i)cJ) , (1.6.34)

where i = 1, 2, are solutions to the Euler-Lagrange equations. For these solutions, we
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define the symplectic current to be

j(1,2)c = f
(1)
I p(2)cI − f (2)

I p(1)cI . (1.6.35)

From the definition of the momentum, given by equation (1.6.30), and the equation of

motion, given by equation (1.6.33) it can be seen that this current is conserved:

∇cj(1,2)c = ∇cf (1)
I · p

(2)cI + f
(1)
I · ∇cp

(2)cI −∇cf (2)
I · p

(1)cI − f (2)
I · ∇cp

(1)cI ,

=
(
KcIbJ −KbJcI

)
∇af (1)

I ∇bf
(2)
J +

(
SIJ − SJI

)
f

(1)
I f

(2)
J ,

= 0 , (1.6.36)

where the last line follows from the symmetries of the tensors KaIbJ and SIJ .

We define the symplectic product(
f (1), f (2)

)
symp

= i

∫
Σ

dΣc

[
f

(1)
I p(2)cI − f (2)

I p(1)cI

]
, (1.6.37)

where a bar denotes complex conjugation, for a Cauchy surface Σc, which is a subset

of the spacetime which is intersected exactly once by every inextendible timelike curve.

As the integrand of this is the conserved current j(1,2)c, the symplectic product is

independent of the choice of Cauchy surface Σc. We therefore make the choice Σ0 = d3x.

For a coordinate system where the metric component g0i = 0, we have the standard

equal-time commutation relations for the components of the tensor perturbation and

their covariant conjugate momenta. These are defined in [40], and we state here for

completeness:

[
φI(t,x), φJ(t,x′)

]
=
[
π0I(t,x), π0J(t,x′)

]
= 0 , (1.6.38)[

φI(t,x), π0J(t,x′)
]

= iδJI δ
(n−1)(x,x′) , (1.6.39)

where the delta function is defined such that∫
f(x′)δ(n−1)(x,x′)

√
g(n−1)dn−1x = f(x) , (1.6.40)

where g(n−1) is the determinant of the spatial metric.

For the remainder of this section, we relate the symplectic product to the equal-time

commutation relations defined above, in order to find a new quantisation condition. In

what follows, we assume that p0I 6= 0 for any I. At the end of this section we discuss

the case π0I = 0.
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To find such a relation, we first show that[
(f (1), φI)symp, (φJ , f

(2))symp

]
= (f (1), f (2))symp , (1.6.41)

under the assumption that φI is a Hermitian field. This follows from the definition

of the symplectic product, given in equation (1.6.37), and the commutation relations,

given by equations (1.6.38) - (1.6.39):

LHS =
[
(f (1), φI)symp, (φJ , f

(2))symp

]
,

= −
∫

d(n−1)x

√
g(n−1)(t,x)

∫
d(n−1)x′

√
g(n−1)(t,x′)×{

f
(1)
I (t,x)

[
π0I(t,x), φJ(t,x′)

]
p(2)0J(t,x′)

+p(1)0I(t,x)
[
φI(t,x), π0J(t,x′)

]
f

(2)
J (t,x′)

}
,

= i

∫
Σ

dΣc

[
f

(1)
I p(2)cI − f (2)

I p(1)cI

]
,

= (f (1), f (2))symp ,

= RHS . (1.6.42)

We now take a more schematic approach to find another expression for the com-

mutator
[
(f (1), φI)symp, (φJ , f

(2))symp

]
. We write the following mode sum:

φI(x) =
∑
σ

Aσf
(σ)
I (x) =

∑
σ

A†σf
(σ)
I (x) , (1.6.43)

where the second equality holds as we consider a Hermitian field. Using this mode

expansion, the commutator becomes[
(f (σ), φI)symp, (φJ , f

(ρ))symp

]
=
∑
α

∑
β

[
Aα

(
f (σ), f (α)

)
symp

, A†β

(
f (β), f (ρ)

)
symp

]
,

= Mσα
[
Aσ, A

†
ρ

]
Mβρ , (1.6.44)

where

Mσρ =
(
f (σ), f (ρ)

)
symp

. (1.6.45)

By combining the two equivalent expressions for the commutator, given by equa-

tions (1.6.41) and (1.6.44), we have that

Mσρ = Mσα
[
Aα, A

†
β

]
Mβρ , (1.6.46)
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which, if the matrix Mσρ is invertible, implies that[
Aσ, A

†
ρ

]
=
(
M−1

)
σρ
. (1.6.47)

In summary, we have derived relation (1.6.47) from the equal-time commutation

relations, and we now adopt this expression as our commutation relation. In practice,

we expand our fields as the mode sum given in equation (1.6.43), calculate the matrix

Mσρ given by equation (1.6.45), before imposing condition (1.6.47).

In Chapter 2, we will calculate expression (1.6.47) and use the resulting relation

to normalise mode functions. To demonstrate that this method gives the standard

commutation relations, we take the example of a Klein Gordon scalar field. For a

scalar field, we have, from evaluating the symplectic product,(
f (k), f (l)

)
symp

= δkl , (1.6.48)

for the modes f (k) defined in equation (1.6.43), which gives the expected commutation

relations [
ak, a

†
l

]
= δkl . (1.6.49)

We also look at the scalar field in more detail in Chapter 2, as here we will normalise

the mode functions for a massless, minimally coupled (MMC) scalar field.

We conclude this section with a discussion on the case when π0k = 0, when the

matrix Mσρ is not invertible. This is the case in linearised gravity, where the mode

f
(g)
ab = ∇aξ̃b +∇bξ̃a (1.6.50)

is symplectically orthogonal to all modes, meaning that the symplectic product is de-

generate: (
f (g), f (l)

)
symp

= 0 . (1.6.51)

To use the method of quantisation outlined in this section, we must impose a gauge

condition to make the matrix Mσρ invertible. In the case of linearised gravity in FLRW

spacetime, imposing the TTS gauge condition is sufficient. Alternatively, a gauge-fixing

term can be added to the Lagrangian, as is the case in Chapter 4.

1.7 Problematic behaviour of propagators

In this thesis we are interested in two kinds of infrared divergence: the requirement

of an IR cut-off to ensure that a propagator is well-defined, and the divergence which

occurs when separation between points grows. Both of these issues tend to manifest

themselves in the same way, as a term of the form log(αr), where r is the separation
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between points, and α is an IR cut-off.

In this section, we clarify which of the propagators studied exhibit which type of

IR divergence, and finish by detailing where in the thesis each type of divergence is

studied. Throughout this thesis, we are mainly concerned with the IR divergences of

the graviton propagator, but we briefly discuss the MMC scalar field, and the covariant

massless vector propagator, for reasons we detail below.

We start with the MMC scalar field. Our main interest in this theory is due to

its relevance for our later study of the graviton field. It can be seen that, in the TTS

gauge, the graviton field satisfies the same field equation as the MMC scalar field in

FLRW spacetime. The MMC scalar field in de Sitter space, and other spatially flat

FLRW spacetimes, has a two-point function which is divergent in the IR [38]. Hence,

if the scale factor and the state are such that the MMC scalar field has an IR-divergent

two-point function, then the graviton field will have one also [41]. The MMC scalar

field exhibits both IR problems discussed in this section [42], which naively suggests

that the graviton two-point function, in the TTS gauge, will also suffer from both [43].

Indeed, for the single-field inflationary model, the two-point functions for the scalar

and tensor perturbations are IR-divergent in a similar manner.

We now briefly discuss the covariant massless vector propagator. We are interested

in this propagator as the study of its IR divergences will help with our calculations

of the IR divergences of the covariant graviton two-point function. The covariant

massless vector propagator does not require an IR cut-off to be well-defined. As points

approach infinite separation, this propagator approaches a constant in the non-Landau

gauge and it falls off in the Landau gauge [44]. Finding the large-distance behaviour

of the covariant massless vector propagator will be seen to be useful in finding the

large-distance behaviour of the graviton propagator.

We now explore the IR divergences of the graviton propagator, which was the main

aim of this section. In this thesis, we work with two different kinds of graviton two-

point functions. First, in Chapter 2, we study the propagator in the TTS gauge, where

the gauge degrees of freedom are totally fixed, and we have (n−2)(n−1)−2
2 polarisation

states. In Chapters 4 and 5 we study the graviton two-point function in the covariant

gauge, where a gauge fixing term is added in the Lagrangian, so that there are n(n+1)
2

polarisation states. The covariant graviton propagator does not require an IR cutoff.

From the aforementioned correspondence between the field equation for the MMC scalar

field and that of the graviton field in the TTS gauge, one might initially assume that

the graviton propagator suffers from both kinds of IR divergence, in the TTS gauge.

This, however, is found to not be the case. In de Sitter spacetime, it was shown that

there is, in fact, no need for an IR cut-off. Instead, a gauge transformation can be

found to remove this IR divergence, suggesting that this divergence is merely a gauge
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effect [43]. In this thesis, we find a gauge transformation to show this result is true in

FLRW spacetime also. As for the second type of IR divergence, the covariant graviton

propagator does suffer from large-distance growth [2]. However, in de Sitter spacetime

it will be seen that this divergence can also be removed, by means of a suitable gauge

transformation, as was previously seen for the n = 4 dimensional case [4].

For the majority of this thesis, we study the graviton propagator. In Chapter 2, we

work in the TTS gauge and use a gauge transformation to show that this propagator

does not need an IR cut-off to be well-defined. In Chapter 3, we study the large-

distance behaviour of the covariant massless vector propagator. In Chapter 4, we look

at the large-distance behaviour of the graviton propagator, in the covariant gauge.

In Chapter 5, we use a gauge transformation to show that these non-vanishing large-

distance terms can be written in pure gauge form.

1.8 Gauge freedom in Linearised Gravity

In this section we review the gauge freedom in linearised gravity. We discuss the form

of this gauge freedom, and discuss the physical relevance of it. We mention that there is

debate over whether the IR divergences in the graviton two-point function are physical

or merely a gauge artefact, and give some justification of the calculations performed in

Chapters 2 and 5.

For the majority of this thesis, we work in the framework of linearised gravity. We

start this section by mentioning that we work in the TTS gauge, given by conditions

(1.6.3) - (1.6.5) in Section 1.6.1, everywhere except for in the latter half of Chapter 2.

Here, we have the additional complication of a scalar (inflaton) field coupled to gravity.

In these sections, we work in the gauge where the scalar perturbation is equal to 0.

More detail on this gauge will be given in Section 2.5.

In linearised gravity, the gauge freedom is a result of the invariance of the metric

under diffeomorphisms of the manifold. If one considers the following infinitesimal

change of coordinates, parametrised by ξa such that, for two coordinate systems xa

and x′a,

xa = x′a − ξ̃a , (1.8.1)

the perturbation hab, which is the solution of the field equation given in Section 1.6.1,

changes like

δξ̃hab = ξ̃c∂cgab + (∂aξ̃
c)gcb + (∂bξ̃

c)gac , (1.8.2)

which is equivalent to equation (1.6.50). For the specific example of a FLRW metric we

used in the previous section, given by equation (1.4.20), we see that, after the following
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rescaling:

hab = a2(η)Hab , (1.8.3)

ξ̃a = a2(η)ξa , (1.8.4)

we have

δξHab = ∂aξb + ∂bξa − 2Haηabξ0 , (1.8.5)

where the Hubble parameter H is defined in terms of conformal time η, as

H =
a′(η)

a(η)2
, (1.8.6)

where a prime denotes a derivative with respect to conformal time.

In the TTS gauge, the only non-zero components of the perturbation hab are those

that are purely spatial, so it is natural to set ξ0 = 0, and see that

δξHij = ∇iξj +∇jξi , (1.8.7)

= ∂iξj + ∂jξi , (1.8.8)

as all Christoffel symbols Γµij = 0 in Minkowski spacetime. This is the familiar form

of the gauge freedom for linearised gravity in flat spacetime. We will use this gauge

freedom to remove the IR divergence of the graviton two-point function.

As mentioned in the previous section, the physical significance of the IR diver-

gences of the graviton propagator has been studied over the past several years (see,

e.g. [45–68]). There is some debate over the use of ‘large’ gauge transformations [69,70],

i.e. gauge transformations that do not become identity at spatial infinity, to remove

the IR divergence of the graviton two-point function. In de Sitter spacetime, the IR-

divergent piece of the two-point function can be written in pure-gauge form [3, 71]. It

was noted that these divergences can be gauged away by linear gauge transformations

that correspond to global shear transformations [43], which are large gauge transfor-

mations. In this paper, it is argued that it is legitimate to use large non-compactly

supported gauge transformations if one is interested only in local physics. Briefly, this

is because a large gauge transformation can mathematically be made to be compactly

supported, without changing local physics, by multiplication with a smooth compactly

supported function which is equal to 1 in the local region of interest and turned off

smoothly outside. Then the two-point function will be IR finite if the two points are

in the region where this compactly supported function is 1, which is the region of

interest, though it is IR divergent elsewhere. In this thesis, we follow the approach

of [43] and apply a specific large gauge transformation to each mode function rather

44



CHAPTER 1. 1.9. SUMMARY

the corresponding momentum component of a single gauge transformation. In [69] the

Aharonov-Bohm effect is listed as an example where gauge-dependent quantities might

play a role. However, since the IR divergences in the graviton (or inflaton) two-point

function are not a topological effect, this does not serve as a good example for argu-

ing against using large gauge transformations to gauge away IR divergences. We also

point out that the distribution of gravitational fluctuations in momentum space is un-

changed by these large gauge transformations; only the mode function for each value

of the momentum is modified.

1.9 Summary

In this chapter, we have provided motivation behind our interest in the study of propa-

gators in cosmological spacetimes, along with a mathematical basis for the calculations

carried out in the rest of this thesis.

The plan for the rest of the thesis is as follows: in Chapter 2, we work in FLRW

spacetime, and find a gauge transformation such that the IR divergence of the graviton

two point function can be removed, for certain values of the slow-roll parameter ε.

In Chapter 3, we work in de Sitter spacetime, as will be the case for the rest of the

thesis. We find the long-distance behaviour of the covariant massless vector propagator

in n-dimensions. The method involved in this calculation is then used in Chapter 4,

where the n-dimensional large-distance behaviour of the graviton propagator is found.

In Chapter 5 this large-distance divergence is written in pure gauge form. Finally, in

Chapter 6, we discuss open problems related to the work in this thesis.
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Chapter 2

Infrared divergences for free quantum

fields in cosmological spacetimes

In this chapter, we study the IR divergence of the graviton two-point function in FLRW

spacetime, and find a large-coordinate gauge transformation such that this divergence

can, for a large class of FLRW spacetimes, be removed. Mathematically, IR divergences

in the two-point function arise because, for small p, the power of the momentum p in the

integrand of the p-integral is negative and too large for it to converge. Large coordinate

gauge transformations, such as global shear transformations and dilation, render the

two-point functions IR finite for the tensor and scalar perturbations in slow-roll single-

field inflation by increasing the power of p in the IR by 2, from p−2ν , say, to p−2ν+2.

It was shown recently that, if one smears the IR-divergent graviton and inflaton two-

point functions in a gauge-invariant manner, then the power of p mentioned above is

changed from p−2ν to p−2ν+4 [72, 73]. This suggests that there should be large gauge

transformations that change the small-p behaviour of the mode functions of the graviton

and inflaton from p−ν to p−ν+2 so that it changes in the integrands of the two-point

functions from p−2ν to p−2ν+4. In this chapter we find such gauge transformations.

We discuss these gauge transformations first for the tensor perturbations, as they are

universal for any FLRW spacetime. We then discuss the case of single-field inflation

with the emphasis on the scalar perturbations.

2.1 Tensor perturbations of the FLRW metric

We consider the gravitational tensor perturbations around a background FLRW metric

in n dimensions. We let n > 4 throughout this chapter. For definiteness we assume that

the matter consists of a perfect fluid. There are several actions proposed to describe a
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perfect fluid in General Relativity [74–76]. The action due to Schutz [75] is

I =

∫
dnxL , (2.1.1)

where

L =
1

κ2

√
−g R+

√
−g p(µ, S) . (2.1.2)

The quantity S is called the specific entropy, and µ and Va are defined by

µ =
√
−gabVaVb , (2.1.3)

Va = ∇aφ+ α∇aβ + θ∇aS . (2.1.4)

The positive constant κ is related to Newton’s constant GN by κ2 = 16πGN . The

independent variables are gab, α, β, φ, θ, and S. The most relevant fact here is that the

pressure p depends on the metric through equation (2.1.3). By using the relation [75]

∂p

∂µ
=
ρ+ p

µ
, (2.1.5)

where ρ is the energy density, one readily finds the standard Einstein equations with a

perfect fluid:

Rab −
1

2
gabR =

κ2

2
[(ρ+ p)uaub + pgab] , (2.1.6)

where

ua = µ−1Va , (2.1.7)

where the perfect fluid model is used to model the radiation and matter phases of the

early universe.

As is well known, the metric of the form

gab = a2(η)ηab , (2.1.8)

where ηab is the metric of flat spacetime, is a solution of (2.1.6) if ua = ta, where

ta = a(η)

(
∂

∂η

)a
, (2.1.9)
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and if

κ2ρ = (n− 1)(n− 2)

(
a′

a2

)2

, (2.1.10)

κ2p = −2(n− 2)
a′′

a3
− (n− 2)(n− 5)

(
a′

a2

)2

. (2.1.11)

Equation (2.1.11) was derived in Section 1.6.2, and equation (2.1.10) is found in the

same way. A metric of the form in equation (2.1.8) describes a FLRW spacetime.

We consider the tensor perturbation hab, which is a rescaling of the perturbation

considered in Chapter 1 such that hab → a2(η)hab. The metric is therefore written as

gab = a2(η)(ηab + hab) , (2.1.12)

where hab is synchronous, transverse, and traceless. That is, we require that hab have

no component in the direction of ua, i.e. h0a = 0, and that its spatial component

be transverse, ∂jhij = 0, and traceless, δijhij = 0, where ∂j is the spatial derivative

operator in flat space, and where the index is raised by Kronecker’s delta, δij . We

write the space components of hab after choosing this gauge as hij = Hij . From

equation (2.1.6) it is clear that the perturbations described by Hij do not mix with

perturbations of any other fields at first order. We find that Hij satisfies the following

equation to first order [41]:

1

an
∂

∂η

(
an−2 ∂

∂η
Hij

)
− 1

a2
4Hij = 0 , (2.1.13)

where 4 = δij∂i∂j is the Laplacian on flat space. This equation is equivalent to the

field equation (1.6.27), derived in Section 1.6.2.

2.2 Quantisation of the tensor perturbation

In order to quantise the field Hij representing the tensor perturbations, we first expand

the Lagrangian (2.1.2) to second order in h̃ab = a2hab with the conditions ∇ah̃ab = 0

and h̃aa = 0. Thus, we find (up to a total derivative) the quadratic Lagrangian relevant

to the tensor perturbations is as follows:

LT =

√
−g
κ2

[
− 1

2
∇ah̃bc∇ah̃bc −

κ2

2(n− 2)
(ρ− p)h̃abh̃ab +Rabh̃

ach̃bc

+Rbdach̃abh̃cd

]
, (2.2.1)
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where ρ, p, Rab and Rbdac are the background quantities. By substituting (2.1.10),

(2.1.11), and using the formula

Rabcd = H2 [gacgbd − gadgbc + ε(tatcgbd + tbtdgac − tatdgbc − tbtcgad)] , (2.2.2)

where, as defined in Chapter 1,

H =
a′

a2
, (2.2.3)

ε = − H ′

H2a
, (2.2.4)

we can simplify LT as

LT =
1

4κ2
an−2

(
H ′ijH

ij′ +Hij 4H ij
)
, (2.2.5)

where H ′ij is the partial derivative of Hij with respect to conformal time η and where

4 = ∂k∂k is the Laplacian on flat space.

The quantisation of the field Hij(η,x) is standard, as has been discussed in Sec-

tion 1.6.2. It is expanded in terms of the mode functions γ
(s,p)
ij (η,x) and their complex

conjugates as

Hij(η,x) =

∫
dn−1p

(2π)n−1

∑
s

[
as(p)γ

(s,p)
ij (η,x) + a†s(p)γ

(s,p)∗
ij (η,x)

]
. (2.2.6)

The mode functions γ
(s,p)
ij (η,x) are given by

γ
(s,p)
ij (η,x) = ε

(s)
ij (p)fp(η)eip·x , (2.2.7)

where the polarisation tensors ε
(s)
ij (p) are traceless, satisfy ε

(s)
ij (p)pj = 0, and

∑
ij

ε
(s)
ij (p)ε

(r)
ij (p) = δsr . (2.2.8)

The functions fp(η), where p = |p|, satisfy

1

an−2(η)

d

dη

[
an−2(η)

d

dη
fp(η)

]
+ p2fp(η) = 0 , (2.2.9)

which, of course, agrees with (2.1.13). Since the equation of motion (2.2.9) implies

d

dη

{
an−2(η)

[
f∗p (η)

dfp(η)

dη
−

df∗p (η)

dη
fp(η)

]}
= 0 , (2.2.10)
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it is possible to choose the normalisation of fp(η) such that

f∗p (η)
dfp(η)

dη
−

df∗p (η)

dη
fp(η) = − 2iκ2

an−2(η)
. (2.2.11)

With this choice we find

[as(p), a†s′(p
′)] = (2π)n−1δss′δ

n−1(p− p′) . (2.2.12)

We can reach the normalisation condition, given by equation (2.2.11), by considering

the quantisation scheme detailed in Section 1.6.2. We consider the symplectic product

given by equation (1.6.37), repeated here for clarity:

Mσ,σ′ =
(
f (σ), f (σ′)

)
symp

= i

∫
dxn−1

[
f

(σ)∗
ab p(σ′)ab − p(σ)ab∗f

(σ′)
ab

]
. (2.2.13)

From Section 1.6.2, we have the following relation between the symplectic form and

commutation relations: (
M−1

)
σ,σ′

= [aσ(p), a†σ′(p
′)] , (2.2.14)

which we use to impose a normalisation condition on the mode functions. By writing

this symplectic form in terms of the mode functions γij and their respective conjugate

momenta, and using the commutation relation (2.2.12), the relation (2.2.14) can be

evaluated:

−i
∫

dn−1x
√
−g
[
γ

(s,p)
ij (η,x)∗∂0γij(s

′,p′)(η,x)− ∂0γij(s,p)(η,x)∗ · γ(s′,p′)
ij (η,x)

]
= δss

′
(2π)n−1δ(n−1)(p− p′) .

(2.2.15)

Computing the right hand side of this expression for the modes (2.2.7) gives the con-

dition

W (f∗p, fp)(η) = − 2iκ2

an−2(η)
, (2.2.16)

where the Wronskian is defined as

W (f1, f2)(η) := f1(η) · d

dη
f2(η)− d

dη
f1(η) · f2(η) . (2.2.17)

This is exactly the relation (2.2.11) found earlier in this section.

As mentioned in Chapter 1, working in a curved spacetime means we lose the

notion of a unique vacuum state. In FLRW spacetime however, one can define the

vacuum state |0〉 by requiring that as(p)|0〉 = 0 for all s and p. Thus, the choice
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of the function fp(η) satisfying (2.2.11) determines the vacuum state. The two-point

correlation function for Hij(η,x) can be found using (2.2.12) as

∆ij:i′j′(η,x; η′,x′) := 〈0|Hij(η,x)Hi′j′(η
′,x′)|0〉 ,

=

∫
dn−1p

(2π)n−1

∑
s

γ
(s,p)
ij (η,x)γ

(s,p)∗
i′j′ (η′,x′) . (2.2.18)

It will be useful for later purposes to examine the solution fp(η) for small p. If

p = 0, equation (2.2.9) becomes

1

an−2(η)

d

dη

[
an−2(η)

d

dη
fp(η)

]
= 0 . (2.2.19)

Two independent real solutions f0(η) = F
(1)
0 (η) and F

(2)
0 (η), can be chosen as

F
(1)
0 (η) = 1 , (2.2.20)

F
(2)
0 (η) =

∫
dη

an−2(η)
, (2.2.21)

where the constant of integration is chosen suitably in (2.2.21). From rescaling equa-

tion (2.2.16), we see that two independent real solutions, F
(1)
p (η) and F

(2)
p (η), can be

found such that

F (1)
p (η)

dF
(2)
p (η)

dη
− dF

(1)
p (η)

dη
F (2)
p (η) =

1

an−2(η)
, (2.2.22)

and that

F (I)
p (η) = F

(I)
0 (η) +O(p2) , (2.2.23)

for I = 1, 2. This is because the p-dependence in (2.2.9) is through p2. The solutions

fp(η) can be expressed as

fp(η) = iA(T )(p)F (1)
p (η) +B(T )(p)F (2)

p (η) . (2.2.24)

The functions F
(1)
p (η) and F

(2)
p (η) are finite in the limit p → 0, and the source of

IR singularities is the singular behaviour of A(T )(p) in this limit. After choosing the

real solutions F (1)(η) and F (2)(η) it is always possible to choose A(T )(p) and B(T )(p)

to be real. This is done by first choosing B(T )(p) to be real with adjustment of the

phase factor, and then absorbing any imaginary part of A(T )(p) with the redefinition

of

F (2)(η)→ F (2)(η) + [ImA(T )(p)/B(T )(p)]F (1)(η) . (2.2.25)
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Then, equations (2.2.11) and (2.2.22) imply

2A(T )(p)B(T )(p) = κ2 . (2.2.26)

Changing the exact form of the functions A(T )(p) and B(T )(p) alters the function

fp(η), and hence its complex conjugate f∗p (η). This in turn alters the mode functions

γ
(s,p)
ij (η,x) and γ

(s,p)∗
ij (η,x), respectively. From their definition in equation (2.2.7), it

can be seen that these mode functions determine the positive- and negative-frequency

solutions. Hence, the choice of the functions A(T )(p) and B(T )(p) determines the

positive- and negative-frequency solutions. In most of important applications, such

as slow-roll inflation, the ‘positive-frequency’ solution fp(η) is chosen such that

A(T )(p) ≈ C

pν
, (2.2.27)

for ν > 0. Then, by (2.2.26), we find B(T )(p) ∼ pν for small p.

We note that there is some freedom in distributing the p-dependence between

A(T )(p) and F
(1)
p (η) and between B(T )(p) and F

(2)
p (η). We allow this freedom be-

cause in many cases there are standard functions to be chosen as F
(1)
p (η) and F

(2)
p (η).

For example, if a(η) = 1, which corresponds to flat space, then we can choose

F (1)
p (η) = cos pη , (2.2.28)

F (2)
p (η) = p−1 sin pη , (2.2.29)

with η ∈ R, and

f (flat)
p (η) =

iκ
√
p
F (1)
p (η) + κ

√
pF (2)

p (η) , (2.2.30)

so that C = κ and ν = 1/2.

Note that if ν > (n−1)/2, then the two-point correlation function ∆iji′j′(η,x; η′,x′)

is IR divergent because then the integrand in (2.2.18) will behave like p−2ν , where

2ν > n− 1.

In the next section we show that large gauge transformations can be used to make

the integrand less singular in the small p limit, so that, in many applications, the IR

divergences can be eliminated by large gauge transformations.

2.3 The gauge transformations for the tensor perturbations

As discussed in Chapter 1, the linear gauge transformation for hab = a2Hab is

δξ̃hab = ξ̃c∂cgab + (∂aξ̃
c)gcb + (∂bξ̃

c)gac , (2.3.1)
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which can be given, with the definition ξ̃α = a2(η)ξα, as

δξHab = ∂aξb + ∂bξa − 2Haηabξ0 . (2.3.2)

We show in this section that one can choose ξa for each mode function γ
(s,p)
ij (η,x)

such that the integrand for the two-point function ∆iji′j′(η,x; η′,x′) has the power of

p reduced by 4 for small p. That is, if

n− 1

2
6 ν <

n+ 3

2
, (2.3.3)

then, although the graviton two-point function is IR divergent with the mode functions

γ
(s,p)
ij (η,x) behaving like p−ν for small p, it will be IR finite with the gauge-transformed

mode functions.

The gauge transformation we use is given by

ξ0 = 0 , (2.3.4)

ξi = − i

2
A(T )(p)F

(1)
0 (η)

[
ε
(s)
il (p)xl(1 + ip · x)− i

2
ε
(s)
lm(p)xlxmpi

]
e−ρ

2p2 , (2.3.5)

where the factor e−ρ
2p2 , with ρ a positive constant, has been inserted in order not to

introduce spurious ultraviolet divergences. The polarisation tensors ε
(s)
ij (p) have been

defined before [see the sentence containing (2.2.8)]. Notice that they depend only on

the direction of p and not on its magnitude. The part of order p0 inside the square

brackets represents the global shear transformation used in [43]. The part of order p

was obtained by determining the coefficients α and β in the general ansatz

αε
(s)
il (p)xlp · x + βε

(s)
lm(p)xlxmpi , (2.3.6)

which is linear in ε
(s)
ij (p) and pi and quadratic in xi. This is a large gauge transformation

in the sense that ξi does not tend to zero as |x| → ∞. In fact it diverges in this limit.

Now,

δγ
(s,p)
ij (η,x) = ∂iξj + ∂jξi ,

= −iA(T )(p)ε
(s)
ij (p)(1 + ip · x)e−ρ

2p2 , (2.3.7)

where we used F
(1)
0 (η) = 1. Notice that δγ

(s,p)
ij is transverse and traceless. Thus, this

gauge transformation does not violate the gauge conditions we have imposed, though

the transformed field no longer has a non-singular Fourier transform. We find the
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transformed mode functions as

γ̃
(s,p)
ij (η,x) = ε

(s)
ij (p)fp(p)eip·x − iA(T )(p)ε

(s)
ij (p)(1 + ip · x)e−ρ

2p2 ,

= iε
(s)
ij (p)

{
A(T )(p)

[
F (1)
p (η)− F (1)

0 (η)
]

(1 + ip · x)

+A(T )(p)F (1)
p (η)

(
eip·x − 1− ip · x

)
−A(T )(p)(1 + ip · x)(e−ρ

2p2 − 1) +B(T )(p)F (2)
p (η)eip·x

}
,

= ε
(s)
ij (p)

[
A(T )(p)×O(p2) +B(T )(p)F (2)

p (η)eip·x
]
, (2.3.8)

where we have used (2.2.23). Suppose that, in the small p limit, A(T )(p) ≈ Cp−ν , for

ν > (n − 1)/2, so that the graviton two-point function is IR divergent. As a result,

due to (2.2.26), B(T )(p) ∼ pν for small p. Then, the original mode function γ
(s,p)
ij (η,x)

behaves like p−ν whereas the transformed mode function γ̃
(s,p)
ij behaves like p−ν+2.

Thus, if
n− 1

2
6 ν <

n+ 3

2
, (2.3.9)

then the original graviton two-point function ∆iji′j′(η,x; η′,x′) given by (2.2.18) is IR

divergent, whereas the transformed one with γ
(s,p)
ij (η,x) replaced by γ̃

(s,p)
ij (η,x) is IR

finite. Thus, for this range of ν, the IR divergences of the graviton two-point function

can be removed by large gauge transformations.

Below, we apply the general observation described above to the particular case with

the conformal scaling factor a(η) = (−η/η0)−λ, where η0 and λ are positive constants,

and where η runs from −∞ to 0. In this case the field equation (2.2.9) becomes

f ′′p (η) +
(n− 2)λ

η
f ′p(η) + p2fp(η) = 0 . (2.3.10)

A solution to this equation is

fp(η) = C(T )(p)(−pη)νH(1)
ν (−pη) , (2.3.11)

ν =
1

2
[1 + (n− 2)λ] , (2.3.12)

where H
(1)
ν (z) is the Hankel function of the first kind. The constant λ can be related

to the slow-roll parameter ε defined by (2.2.4) as

ε = 1− 1

λ
. (2.3.13)

We note that both the radiation phase and matter phase correspond to fixed values of

ε [77]. Since ε is time independent, the slow-roll parameter δ, introduced in Section 1.5,
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is

δ :=
ε′

2Haε
= 0 . (2.3.14)

The mode functions γ
(s,p)
ij (η,x) defined by (2.2.7) transform under the scaling (η,x)→

(αη, αx), where α is a positive constant, as

γ
(s,p)
ij (αη, αx) = f(α)γ

(s,αp)
ij (η,x) , (2.3.15)

where

f(α) =
CT (p)

CT (αp)
. (2.3.16)

Thus, if one defines the vacuum state |0〉 in Section 2.2 by adopting the function fp(η)

defined by (2.3.11), then it respects the scaling symmetry (η,x) → (αη, αx). This

state is the natural vacuum state in this sense and is generally adopted for the slow-roll

inflationary models, for example. (The derivatives of the graviton two-point function

that are IR finite acquire a constant factor under this scaling for slow-roll inflation [73].)

For this reason we study this case below.

The normalisation constant C(T )(p) can readily be found up to an overall phase

factor by using the large η limit of (2.2.11) with

H(1)
ν (z) ≈

√
2

πz
ei(z−π

2
ν−π

4
) . (2.3.17)

We find

C(T )(p) = −κ
√
πη0√

2(pη0)ν
. (2.3.18)

Thus, for small p,

C(T )(p) ∼ p−ν = p−
1
2

[1+(n−2)λ] . (2.3.19)

We can write fp(η) in the form (2.2.24) with

F (1)
p (η) = − π

2νΓ(ν)
(−pη)νYν(−pη) , (2.3.20)

F (2)
p (η) = −2ν−1Γ(ν)η0

(pη0)2ν
(−pη)νJν(−pη) , (2.3.21)

A(T )(p) = κ

√
η0

π

2ν−
1
2 Γ(ν)

(pη0)ν
, (2.3.22)

B(T )(p) = κ

√
π

η0

(pη0)ν

2ν−
1
2 Γ(ν)

, (2.3.23)

where Jν(z) and Yν(z) are the Bessel functions of the first and second kinds, respec-

tively.
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In Section 2.2, we stated that F
(1)
p (η) − F (1)

0 (η) = O(p2), if ν > (n − 1)/2, i.e. if

the original two-point function is IR divergent. We now show that this is, indeed, the

case. We define

Gν(z) := zνYν(z) , (2.3.24)

as, for z = pη, we have F
(1)
p (η) ∝ Gν(z). All we need to show is that Gν(z)−Gν(0) =

O(z2) for small z. If ν is not an integer, then we have

zνYν(z) = − 1

sin(πν)
zνJ−ν(z) + cot(πν)zνJν(z) , (2.3.25)

where

Jν(z) =

∞∑
k=0

(−1)k

k!Γ(k + 1 + ν)
z2k+ν . (2.3.26)

The second term in (2.3.25) is O(z2ν). The original two-point function is IR divergent

if ν > (n− 1)/2 because the power of p in the integral for small p is p−2ν whereas the

integration measure is dp pn−2. Thus, for n > 3, if the original two-point function is IR

divergent, then the second term in (2.3.25) is O(z2) or higher, which can be neglected.

Then since

zνJ−ν(z) =

∞∑
k=0

(−1)k

k!Γ(k + 1− ν)
z2k , (2.3.27)

it is clear that Gµ(z)−Gµ(0) = O(z2).

If ν = N is a positive integer, then

zNYN (z) =
2

π

[
log
(z

2

)
+ γ
]
zNJN (z)− 1

π

N−1∑
k=0

[
(N − k − 1)!

(z
2

)2k
]

− 1

π

∞∑
k=0

[
(−1)k

(
φ(k) + φ(N + k)

k!(N + k)!

)(z
2

)2k+2N
]
, (2.3.28)

where φ(p) =
∑p

n=1
1
n . Therefore, as the power of z increases in increments of 2 in the

first sum, the same argument as above holds and we conclude that GN (z)−GN (0) =

O(z2), which concludes our discussion.

Returning to our discussion of slow-roll, from (2.3.9) we find that, if

1 6 λ <
n+ 2

n− 2
, (2.3.29)

then the two-point function (2.2.18) is IR divergent, but that the two-point function

formed from the mode functions acted on by the large gauge transformations, given by

(2.3.5), is IR finite. In terms of the slow-roll parameter ε, this condition can be written
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as

0 6 ε <
4

n+ 2
, (2.3.30)

the case ε = 0 being the de Sitter limit. Interestingly, the spacetime with ε < 0

(0 < λ < 1) (Big Rip spacetime [78]) causes no IR problems.

The case λ = 0 gives Minkowski space, so we neglect this, and, instead, briefly

discuss the case with λ < 0. Here, we have a(η) = (η/η0)|λ| and the variable η runs

from 0 to +∞ in order to have an expanding universe. The function fp(η) that we can

adopt in this case is

f (λ<0)
p (η) = −C(T )(p)(pη)νH(2)

ν (pη) , (2.3.31)

where C(T )(p) is given by (2.3.18) and where ν = 1
2 |(n− 2)λ+ 1|. In a way similar to

the positive λ case, we find that the two-point function (2.2.18) is IR divergent but can

be rendered IR finite by the large gauge transformations given by (2.3.5) if

2− 6

n+ 4
< ε 6 2− 2

n
. (2.3.32)

Combining this case and (2.3.30) for positive λ, we find that the two-point function

(2.2.18) is IR divergent if

0 6 ε 6 2− 2

n
, (2.3.33)

but the gauge transformations (2.3.5) render it IR finite unless

4

n+ 2
6 ε 6 2− 6

n+ 4
. (2.3.34)

It is known that the two-point function for the linearised Weyl tensor, which is a

local gauge invariant, is also IR divergent if and only if [69]

4

n+ 2
6 ε 6 2− 6

n+ 4
, (2.3.35)

for the vacuum state chosen here. This implies that it is impossible to render the

graviton two-point function IR finite by any gauge transformations outside this range

of values for ε because the linearised Weyl tensor is invariant under any gauge trans-

formation, large or otherwise.

For 0 6 ε� 1, i.e. for slow-roll inflationary FLRW universe, our result clearly shows

that the IR divergence of the two-point function for the tensor perturbations can be

eliminated by large gauge transformations. In the next section we show that we can

do the same for the scalar perturbations in this spacetime.
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2.4 Scalar perturbations in single-field inflation

We now consider inflationary FLRW spacetime such that the inflation is driven by a

scalar, inflaton, field

φ̃(η,x) = φ(η) + ψ(η,x) (2.4.1)

with the background field φ(η) depending only on conformal time η. The linear gauge

transformations are given by (2.3.1) on the gravitational field and

δψ = Lξ̃φ = ξ̃a∂aφ , (2.4.2)

is the transformation of the perturbation ψ of the inflaton. We start by considering

the parts of the components of the graviton hab and inflaton ψ invariant under local

gauge transformations and then write down the action in terms of those gauge invariant

variables. It is only after writing down the action that we make a gauge choice.

The components of the gravitational field hab can be written in terms of 4 gauge

invariant quantities. There is one gauge invariant tensor, Hkl, which is the transverse

traceless part of hkl. Additionally, we have one gauge invariant transverse vector,

denoted Vk. We have two gauge invariant scalars, labelled S and Σ; we shall see later

that there is only one dynamical gauge invariant scalar, which is a linear combination

of S and Σ. (For full details of this decomposition, see [79].) Writing the components

of the perturbation hab in terms of these quantities gives

h00 = S + 2X ′0 + 2HaX0 , (2.4.3)

h0k = Vk +X ′k + ∂kX0 , (2.4.4)

hkl = Hkl + δklΣ + 2∂(kXl) − 2HaδklX0 . (2.4.5)

In this form the gauge transformation (2.3.1) can be attributed to that of the fields

Xa:

δXa = ξa . (2.4.6)

We similarly write the perturbation ψ of the inflaton in terms of this vector Xa and

another gauge invariant scalar Ψ as

ψ = Ψ−X0φ
′ . (2.4.7)

In fact, this equation defines the scalar Ψ.

Now, we consider the Einstein-Hilbert action, along with the action for a minimally
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coupled scalar field φ̃,

I =
1

κ2

∫
R̃
√
−g̃dnx− 1

2

∫ √
−g̃dnx

[
g̃ab(∂aφ̃)(∂bφ̃) + V (φ̃)

]
, (2.4.8)

for some potential V (φ). One expands this action to second order and substitutes

(2.4.3)-(2.4.5) and (2.4.7) into the resulting quadratic action. Varying the action with

respect to Vk and S results in the following constraint equations [79]:

Vk = 0 , (2.4.9)

S = (n− 3)Σ . (2.4.10)

Here we are working in the space of functions where the Laplacian 4 is invertible.

Then, by introducing the Sasaki-Mukhanov variable [77],

Q ≡ 2Ha

φ′
Ψ− Σ , (2.4.11)

which describes the scalar perturbations, and the non-dynamical variables S and Vk

through equations (2.4.9) and (2.4.10), one finds the following action [79]:

I(2) =
1

4κ2

∫ [
H ′klH

′
kl +Hkl4Hkl

]
an−2dnx+

n− 2

4κ2

∫ [
Q′2 +Q4Q

]
εan−2dnx

+
n− 2

4κ2

∫ (
4Σ− H′

H Q
′
)2

(n− 1− ε)H2a2
an−2dnx . (2.4.12)

Lagrange’s equation for Σ is the constraint equation:

4Σ = −εHaQ′ . (2.4.13)

After this constraint is imposed, the field equation for Q takes the following form:

Q′′ + (n− 2 + 2δ)HaQ′ −4Q = 0 , (2.4.14)

where the slow-roll parameter δ is given by (2.3.14).

The tensor perturbation Hkl here can be treated in exactly the same way as in

Sections 2.1 and 2.2 and the results obtained there will apply for single-field inflation

as well. The Sasaki-Mukhanov variable Q can be quantised in the standard manner.

One finds

Q(η,x) =

∫
dn−1p

(2π)n−1
a(p)qp(η)eip·x + h.c. , (2.4.15)
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where the function qp(η) satisfies

q′′p(η) + (n− 2 + 2δ)Haq′p(η) + p2qp(η) = 0 . (2.4.16)

We now follow the method from Section 2.2. By considering the Wronskian for this

equation, we find that we can require

q∗p(η)q′p(η)− qp(η)q∗′p (η) =
2iκ2

(n− 2)ε(η)an−2(η)
. (2.4.17)

The operators a(p) and a†(p) then satisfy

[a(p), a†(p′)] = (2π)n−1δn−1(p− p′) . (2.4.18)

Defining the vacuum state |0〉 by requiring that a(p)|0〉 = 0 for all p, we find the

two-point function for Q(η,x) as

∆(η,x; η′,x′) := 〈0|Q(η,x)Q(η′,x′)|0〉

=

∫
dn−1p

(2π)n−1
qp(η)q∗p(η

′)eip·(x−x′) . (2.4.19)

Now, we analyse the solutions qp(η) for small p. For p = 0, the equation of motion

(2.4.16) becomes

q′′p(η) + (n− 2 + 2δ)Haq′p(η) = 0 . (2.4.20)

Two independent real solutions q0(η) = Q
(1)
0 (η) and Q

(2)
0 (η) can be chosen as

Q
(1)
0 (η) = 1, (2.4.21)

Q
(2)
0 (η) =

∫
dη

ε(η)an−1(η)
, (2.4.22)

where the constant of integration in (2.4.22) is suitably chosen. As in the tensor case,

two independent solutions Q
(1)
p (η) and Q

(2)
p (η) can be chosen for nonzero p such that

Q(1)
p (η)

dQ
(2)
p (η)

dη
− dQ

(1)
p (η)

dη
Q(2)
p (η) =

1

ε(η)an−2(η)
, (2.4.23)

and

Q(I)
p (η) = Q

(I)
0 (η) +O(p2) , (2.4.24)

for I = 1, 2. Again, in most applications, such as slow-roll inflation, the solutions qp(η)

61



2.5. IR DIVERGENCES IN SINGLE-FIELD INFLATION CHAPTER 2.

are chosen as

qp(η) = iA(S)(p)Q(1)
p (η) +B(S)(p)Q(2)

p (η) , (2.4.25)

such that

A(S)(p) ≈ C ′

pν′
, (2.4.26)

where C ′ and ν ′ are positive constants, for small p. As in the tensor case, we can let

B(S)(p) ∼ pν
′

as p → 0. If ν ′ > (n − 1)/2, then the two-point function ∆(η,x; η′,x′)

given by (2.4.19) is IR divergent. The IR divergences of the two-point functions for the

tensor perturbations and Sasaki-Mukhanov variable are reflected in those for the gravi-

ton hab and the inflaton ψ. In the next section we shall see that these IR divergences

can be gauged away by large gauge transformations if ν ′ < (n+ 3)/2.

2.5 IR divergences in single-field inflation

In this section we show that, even if the two-point functions for the tensor and scalar

perturbations are IR divergent, one can eliminate these divergences by large gauge

transformations, as long as they are not very severe. Since the mechanism for the

IR-divergence elimination has been discussed already for the tensor perturbations in

Section 2.3, here we focus on the scalar perturbations.

We start with the graviton field in the gauge where the perturbation ψ in the scalar

field is set to 0. Due to equation (2.4.6), the gauge is fixed by choosing the fields Xa.

We choose them as follows:

X0 =
Ψ

φ′
, (2.5.1)

Xk = 0 . (2.5.2)

Then we find, from (2.4.3)-(2.4.5), that

h00 =
1

Ha
Q′ , (2.5.3)

h0k =
1

2
∂k

(
1

Ha
Q− ε4−1 Q′

)
, (2.5.4)

hkl = Hkl − δklQ , (2.5.5)

ψ = 0 . (2.5.6)

We now sketch how the latter expressions are derived. We start from the expressions

for the components of the metric perturbation given in terms of quantities that are

invariant under local gauge transformations. These are given by equations (2.4.3)-

(2.4.7). Using the gauge condition (2.5.1), and the definition of the Sasaki-Mukhanov
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variable given in equation (2.4.11), we find

X0 =
Ψ

φ′
=

1

2Ha
(Q+ Σ) . (2.5.7)

Taking the derivative of this with respect to η, we find

X ′0 =
1

2Ha
(Q+ Σ)′ +

1

2
(ε− 1) (Q+ Σ) , (2.5.8)

and we recall that Xk = 0 for all k.

Let us first consider the h00 component. Equation (2.4.3), given here again for

convenience, is

h00 = S + 2X ′0 + 2HaX0 . (2.5.9)

Using (2.5.7) and (2.5.8) and the equation of motion for the gauge invariant scalars, S

and Σ, given by (2.4.10) and (2.4.13), we find

h00 = −εHa(n− 3)4−1 Q′ +
1

Ha

(
Q− εHa4−1 Q′

)′
+ ε
(
Q− εHa4−1 Q′

)
,

=
1

Ha
Q′ −4−1ε

[
Q′′ + (n− 2 + 2δ)HaQ′ −4Q

]
,

=
1

Ha
Q′ , (2.5.10)

where the quantity in the square brackets vanishes because of the equation of mo-

tion (2.4.14) for Q. The component h0k is

h0k = Vk +X ′k + ∂kX0 ,

=
1

2
∂k

(
1

Ha
Q− ε4−1 Q′

)
, (2.5.11)

where the last line follows from the gauge conditions (2.5.1) and (2.5.2), and equa-

tions of motion (2.4.9)-(2.4.13). The expression for hkl also readily follows from these

conditions:

hkl = Hkl + δkl [Σ− (Σ +Q)] ,

= Hkl − δklQ . (2.5.12)

The expressions for hab given in equations (2.5.10), (2.5.11), and (2.5.12), are exactly

those given by equation (2.5.3) - (2.5.5).

This gauge corresponds to imposing the following conditions on the components of
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the graviton and scalar fields:

∂l
(
hkl −

1

n− 1
δklδ

ijhij

)
= 0 , (2.5.13)

ψ = 0 . (2.5.14)

Note that the condition (2.5.13) states that the traceless part of hkl is transverse. Thus,

the field components hab can be expressed as

h00(η,x) =

∫
dn−1p

(2π)n−1
a(p)γ

(p)
00 (η,x) + h.c. , (2.5.15)

h0k(η,x) =

∫
dn−1p

(2π)n−1
a(p)γ

(p)
0k (η,x) + h.c. , (2.5.16)

hkl(η,x) =

∫
dn−1p

(2π)n−1

[
a(p)γ

(p)
kl (η,x) +

∑
s

as(p)γ
(s,p)
kl (η,x)

]
eip·x + h.c. , (2.5.17)

where γ
(s,p)
kl (η,x) are defined by (2.2.7), and where

γ
(p)
00 (η,x) =

1

H(η)a(η)
q′p(η)eip·x , (2.5.18)

γ
(p)
0k (η,x) =

i

2
pk

[
qp(η) +

ε(η)

p2
q′p(η)

]
eip·x , (2.5.19)

γ
(p)
kl (η,x) = −δklqp(η)eip·x . (2.5.20)

The space components of the two-point function of hab are

〈0|hkl(η,x)hk′l′(η
′,x′)|0〉 =

∫
dn−1p

(2π)n−1

[
γ

(p)
kl (η,x)γ

(p)∗
k′l′ (η′,x′)

+
∑
s

γ
(s,p)
kl (η,x)γ

(s,p)∗
k′l′ (η′,x′)

]
. (2.5.21)

The other components are given by

〈0|hab(η,x)ha′b′(η
′,x′)|0〉 =

∫
dn−1p

(2π)n−1
γ

(p)
ab (η,x)γ

(p)
a′b′(η

′,x′) , (2.5.22)

where at least one of the indices a, b, a′ and b′ is the time index 0. The IR properties

of these two-point functions are determined by the small-p behaviour of the integrand

for the p-integral.

Assuming the properties of qp(η) stated in Section 2.4, in particular that for small
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p one has

qp(η) ≈ iA(S)(p)
[
1 +O(p2)

]
, (2.5.23)

with

A(S)(p) ∼ p−ν′ , (2.5.24)

B(S)(p) ∼ pν′ , (2.5.25)

for ν ′ > (n − 1)/2, it is clear that the small-p behaviour of the derivative, q′p(η), is

better by a factor of p2, i.e. q′p(η) ∼ 1/pν
′−2 for small p. As a result, we find

γ
(p)
00 (η,x) ∼ 1/pν

′−2 , (2.5.26)

γ
(p)
0k (η,x) ∼ 1/pν

′−1 , (2.5.27)

for small p. We now show that large gauge transformations similar to those given

by (2.3.5) can be used so that all functions γ
(p)
ab (η,x) and γ

(s,p)
ab (η,x) are modified to

behave like 1/pν
′−2 rather than 1/pν

′
.

Let us define

Q̃(1)
p (η) :=

1

p2
Q(1)′
p (η) , (2.5.28)

and we note that the function Q̃
(1)
0 (η) := limp→0 Q̃

(1)
p (η) is well defined because

Q
(1)′
p (η) = O(p2). Then,

γ
(p)
00 (η,x) ≈ i

H(η)a(η)
p2A(S)(p)Q̃(1)

p (η)eip·x , (2.5.29)

γ
(p)
0k (η,x) ≈ −1

2
pkA

(S)(p)
[
Q(1)
p (η) + ε(η)Q̃(1)

p (η)
]

eip·x , (2.5.30)

γ
(p)
kl (η,x) ≈ −iδklA

(S)(p)Q(1)
p (η)eip·x , (2.5.31)

for small p. The tensor modes are modified as described in Section 2.3. For the scalar

modes, we make the large gauge transformation with ξ0 = 0 and

ξi =
i

2
A(S)(p)Q

(1)
0 (η)

[
(1 + ip · x)xi −

i

2
pix

2

]
e−ρ

2p2

+
1

2
A(S)(p)pi

∫
dη
[
Q

(1)
0 (η) + ε(η)Q̃

(1)
0 (η)

]
e−ρ

2p2 . (2.5.32)

The first line was obtained in a way similar to the method used in Section 2.3. The sec-

ond line gauges away the O(p) term in γ
(p)
0k (η,x). Then the two-point functions (2.5.21)

and (2.5.22) are modified in such a way that the tensor mode functions γ
(s,p)
kl (η,x) are

replaced by γ̃
(s,p)
kl (η,x) given by (2.3.8) and that the functions γ

(p)
ab (η,x), given by
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(2.5.18) - (2.5.20), are replaced by

γ̃
(p)
00 (η,x) = γ

(p)
00 (η,x) , (2.5.33)

γ̃
(p)
0k (η,x) = −1

2
pk

{
A(S)(p)

[
Q(1)
p (η)−Q(1)

0 (η)
]
− iB(S)(p)Q(2)

p (η)

+ε(η)A(S)(p)
[
Q̃(1)
p (η)− Q̃(1)

0 (η)
]

−iε(η)p−2B(S)(p)Q(2)′
p (η)

}
eip·x

−1

2
pkA

(S)(p)
[
Q

(1)
0 (η) + ε(η)Q̃

(1)
0 (η)

]
(eip·x − e−ρ

2p2) , (2.5.34)

γ̃
(p)
kl (η,x) = −iδkl

{
A(S)(p)

[
Q(1)
p (η)−Q(1)

0 (η)
]

(1 + ip · x)

+A(S)(p)Q(1)
p (η)

(
eip·x − 1− ip · x

)
−A(S)(p)(1 + ip · x)(e−ρ

2p2 − 1)− iB(S)(p)Q(2)
p (η)eip·x

}
.

(2.5.35)

Thus, all components of γ̃
(p)
ab (η,x) behave like pν

′−2 or better for small p. This implies

that, although the two-point function for the metric perturbation is IR divergent if

max(ν, ν ′) >
n− 1

2
, (2.5.36)

the two-point function modified by the large gauge transformations given by (2.3.5)

and (2.5.32) is IR divergent only if

max(ν, ν ′) >
n+ 3

2
. (2.5.37)

We now return to our explicit slow-roll example universe. If the slow-roll parameter

ε (> 0) is constant, i.e. if the scale parameter takes the form a(η) = (−η/η0)−λ, then the

tensor perturbation Hab satisfies the same equation as in Section 2.3, so the functions

F
(1)
p (η), F

(2)
p (η), and the constants A(T )(p), B(T )(p), are given by (2.3.20), (2.3.21),

(2.3.22) and (2.3.23). As for the scalar perturbation Q, the function qp(η) satisfies the

same equation as fp(η). Taking into account the normalisation condition (2.2.11) we

find

qp(η) = C(S)(p)(−pη)νH(1)
ν (−pη) , (2.5.38)

where ν = [1 + (n− 2)λ]/2 as before, and

C(S)(p) = −κ
√
πη0√

2(n− 2)ε(pη0)ν
. (2.5.39)
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Then we can let

Q(1)
p (η) = − π

2νΓ(ν)
(−pη)νYν(−pη) , (2.5.40)

Q(2)
p (η) = −2ν−1Γ(ν)η0

(pη0)2ν
(−pη)νJν(−pη) , (2.5.41)

A(S)(p) = κ

√
η0

π(n− 2)ε

2ν−
1
2 Γ(ν)

(pη0)ν
, (2.5.42)

B(S)(p) = κ

√
π

(n− 2)εη0

(pη0)ν

2ν−
1
2 Γ(ν)

, (2.5.43)

As an aside, the discussion that Q
(1)
p (η)−Q(1)

0 (η) = O(p2) for constant ε or for slow-roll

inflation is almost identical to the one presented earlier in Section 2.3.

By using the recursion formula for the Bessel functions,

d

dz
[zνJν(z)] = zνJν−1(z) , (2.5.44)

and similarly for Yν(z), we find

Q̃(1)
p (η) = − πη

2νΓ(ν)
(−pη)ν−1Yν−1(−pη) , (2.5.45)

p−2Q(2)′
p (η) = −2ν−1Γ(ν)η0η

(pη0)2ν
(−pη)ν−1Jν−1(−pη) . (2.5.46)

The function Q̃
(1)
p (η) is non-singular as p→ 0 as concluded from the general discussion.

The range of the parameter ε for which the IR divergences can be gauged away is the

same as that for the tensor perturbations and given by (2.3.29) or, equivalently, by

(2.3.30) if λ > 0. The discussion for the case λ < 0 is also exactly the same as the

tensor-perturbation case.

The scale factor corresponding to the slow-roll inflation can be written as

a(η) = (−η/η0)−
1

1−ε+εδ ln(−η/η0) , (2.5.47)

where ε > 0, and ε, |δ| � 1, in a range of η where ε and δ can be treated as constants1.

We work to first order in ε and δ. One readily finds that the slow-roll parameters

agree with the parameters ε and δ in (2.5.47) to lowest order. The discussion of the

IR divergences for the tensor perturbations will be exactly the same as in Section

2.3 except that here the slow-roll parameter ε is assumed to be much smaller than 1.

The discussion for the scalar perturbations is changed slightly if δ 6= 0. Noting that

1One cannot write a(η) in this form over the long range of η for which variations in η and δ need
to be taken into account.
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Ha = −[(1− ε)η]−1 to first order, one finds that equation (2.4.16) becomes

q′′p(η) +
(n− 2)(1 + ε) + 2δ

η
q′p(η) + p2qp(η) = 0 . (2.5.48)

By comparing this equation with (2.2.9), we find that two independent solutions can

be chosen as

qp(η) ∝ (−pη)ν
′
H

(1)
ν′ (−pη) (2.5.49)

and its complex conjugate, where

ν ′ =
1

2
[1 + (n− 2)(1 + ε) + 2δ] . (2.5.50)

The normalisation constant can be found from (2.4.17). By noting that we can write

ε(η) = ε0(−η/η0)−2δ , (2.5.51)

to next leading order in ε and δ, where ε0 is a constant, we find

qp(η) = C(S′)(−pη)ν
′
H

(1)
ν′ (−pη) , (2.5.52)

where

C(S′)(p) = −κ
√
πη0

2(n− 2)ε0(pη0)ν′
. (2.5.53)

The functions Q
(1)
p (η), and Q

(2)
p (η), and the constants A(S)(p), and B(S)(p), are given

by replacing ν by ν ′ and ε by ε0 in (2.5.40)-(2.5.43).

2.6 Discussion

In this chapter we studied the nature of IR divergences in the free two-point functions

for the tensor perturbations in general FLRW spacetime, and the scalar perturbations

in single-field inflation. These IR divergences occur because for small momentum p, the

mode functions behave like p−ν with ν > (n− 1)/2, in n dimensions. We pointed out

that global shear transformations and dilation can increase the power by 1, i.e. from

p−ν to p−ν+1, and showed that in fact there are large gauge transformations which

increase the power of p in the IR limit of the mode functions by 2. This implies that

the two-point functions for the tensor and scalar perturbations can be made IR finite by

large gauge transformations in a larger set of FLRW spacetimes (for the scale-invariant

vacuum state) than previously thought. Our focus was on the slow-roll inflation, but

the reduction of the power of p in the IR in the p-integration is valid for any potential

V (φ) including those leading to bouncing cosmologies [80].
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Our findings are consistent with the fact that the graviton and inflaton fields

smeared in a gauge-invariant manner are equivalent to the linearised Weyl tensor and

another tensor whose p-dependence is less singular than the original fields by a factor

of p2 [72,73] (see also [81]). This is because the latter work indicates that the terms of

order p0, as well as those of order p, are of pure-gauge form, and this is what we have

verified.

Unlike the global shear transformations and dilation, we have not found a simple

geometric interpretation for the large gauge transformations that gauge away the terms

of order p in the mode functions, which is an extension of the global shear transforma-

tions and dilation. It would be interesting to find a geometric picture of these gauge

transformations. We note that, in this context, that the vectors ξi specifying these

gauge transformations are hypersurface orthogonal.

It would not be straightforward to incorporate interactions in the method of gauging

away IR divergences presented in this chapter, for example, to discuss three-point

functions relevant to non-Gaussianities. The obvious drawbacks are its non-locality and

lack of manifest translation invariance. It would be interesting to investigate whether

these difficulties could be overcome to construct perturbation theory for inflationary

models that were manifestly IR finite.

We return to this result in Chapter 5. However, for the next couple of chapters we

are concerned with the large-distance behaviour of propagators.
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Chapter 3

Large-distance behaviour of the covari-

ant massless vector two-point function

in de Sitter spacetime

In this chapter, we study the large-distance behaviour of the covariant massless vector

propagator in de Sitter spacetime. To this end, we will consider the massless limit

of the Stueckelberg theory [82], a theory of a massive vector field, with an additional

gauge-fixing term. A useful summary of this theory is provided by Ruegg and Ruiz-

Altaba [83]. The massless limit of the Stueckelberg theory, with finite Stueckelberg

parameter ξ, is equivalent to the massless vector theory, with covariant gauge-fixing

term.

The large-distance behaviour of the covariant massless vector propagator in de

Sitter spacetime is well-known [1, 44]. For points with large (spacelike or timelike)

separations, the vector propagator tends to a non-zero constant in 4 dimensions, for

ξ 6= 0 [1], where we clarify that by large spacelike separation we mean when the

conformal spacelike distance between two points becomes large. We show that the

propagator behaves in the same way for general n dimensions, for n ≥ 4, in order

to verify that this behaviour is not unique to 4 dimensions. Knowledge of the long-

distance behaviour of the vector propagator in n dimensions is also useful in calculations

involving dimensional regularisation. We are also interested in establishing a method

of finding the large-distance limit of a propagator in de Sitter spacetime so that we can

apply it to the case of a graviton propagator.

3.1 Preliminaries

We consider the Stueckelberg theory [82], which is an extension of the Proca theory,

with an additional gauge-fixing term. We give a brief description of the Stueckelberg
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theory in this section, and further details necessary for the calculation will be provided

throughout the chapter. The Stueckelberg theory for massive vector fields would usually

include a scalar of the same mass, which transforms under a gauge transformation such

that we have a gauge symmetry, even in the massive case [84,85]. In the massless case,

the vector field alone possesses a gauge symmetry, so we ignore the scalar field in what

follows.

The Stueckelberg Lagrangian for a massive vector field is given by

L = −1

4

√
−g
[
F abFab + 2m2AbA

b +
2

ξ
(∇aAa)2

]
, (3.1.1)

where the field strength tensor Fab = ∇aAb−∇aAb, and ξ is the Stueckelberg parameter.

Different values of this parameter correspond to different gauges. For example, ξ = 0

corresponds to the Landau gauge, and ξ → ∞ gives the unitary gauge. We take the

massless limit of this theory, which corresponds to the standard massless vector theory,

with a covariant gauge-fixing term. As is the case for the rest of this thesis, we work

in de Sitter spacetime, described by the metric

ds2 =
1

(−Hη)2

(
−dη2 + dx2

)
, (3.1.2)

where H is a positive constant, and the conformal time η ∈ (−∞, 0).

In order to find the large-distance behaviour of the propagator, we will work in terms

of the de Sitter invariant Z. This invariant arises through embedding n-dimensional

de Sitter spacetime in (n+ 1)-dimensional Minkowski spacetime. In this way, de Sitter

spacetime is thought of as the set of points Xi in Minkowski spacetime such that

X · X = 1
H2 . The de Sitter invariant of two spacelike separated points, x and x′, is

defined in terms of the geodesic separation of two points, denoted σ(x, x′), as

Z(x, x′) = cos
[
Hσ(x, x′)

]
, (3.1.3)

where the geodesic separation is defined to be

σ(x, x′) =

∫ 1

0

[
gab

∂xa(λ)

∂λ

∂xb(λ)

∂λ

] 1
2

dλ , (3.1.4)

where x(0) = x and x(1) = x′. For spacelike separated points, |Z| < 1. For timelike

separated points, where Z > 1, it is defined through analytic continuation. There is no

geodesic connecting two points in the region where Z < −1.

We work in conformal coordinates, so, for two points X and X ′, Z is defined in this
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coordinate system as

Z = X ·X ′ = 1− ||x− x′||2 − (η − η′)2

2ηη′
. (3.1.5)

The parameter Z is a measure of the geodesic distance between two spacetime points

X and X ′, and the large-distance limit corresponds to the limit |Z| → ∞. To see this,

we study both the large spacelike and timelike separations, as follows. First, when

||x − x′|| → ∞ - when the spatial distance between the two points is large - it can

be seen from the definition of Z given above that Z → −∞. Second, when η′ is held

fixed and η → 0, which corresponds to future infinity in our coordinate system, the de

Sitter invariant Z → ∞. Hence, it is consistent to take the limit |Z| → ∞ to find the

large-distance behaviour of the propagator.

We work in a basis of products of the following tensors: na(x, x
′), na′(x, x

′),

gab(x, x), ga′b′(x
′x′), and gab′(x, x

′), which are defined below. In the following, un-

primed indices refer to the point x, and primed indices refer to the point x′, so we can

omit the arguments of these tensors without ambiguity. Indices are raised and lowered

using the metric tensors gab and ga′b′ , for unprimed and primed indices, respectively.

By definition, as can be found in [86], for example, the parallel propagator gab′ is the

unique solution to

∇cσ(x, x′)∇cgab′(x, x′) = 0 . (3.1.6)

Additionally

lim
x′→x

gab′(x, x
′) = gab(x, x) . (3.1.7)

The unit vectors

na =∇aσ(x, x′) , (3.1.8)

nb′ =∇b′σ(x, x′) , (3.1.9)

are tangent to the geodesic at the points x and x′, respectively. These vectors have

opposite direction to each other, so that

gab
′
na = −nb′ . (3.1.10)

The massless limit of the vector two-point function, as found by Fröb and Higuchi
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[44], is

lim
m2→0

〈0|Aa(x)Ab′(x
′)|0〉 =

Hn−4

(4π)
n
2

[
n− 2

n− 3
I(0)(Z)∂a∂b′Z +

1

n− 3
I(0)′(Z)(∂aZ)(∂b′Z)

]
+

(
ξ − n− 1

n− 3

)
∂a∂b′4̃(Z) , (3.1.11)

where

I(0)(Z) =
Γ(n− 2)

Γ
(
n
2

) 2F1

(
n− 2, 1;

n

2
;
1 + Z

2

)
, (3.1.12)

and 2F1(a, b; c; z) is the hypergeometric function. Additionally, we have defined

4̃(Z) = − lim
m2→0

∂

∂m2
(4m2(Z)−4m2(−1)) , (3.1.13)

where

4m2(Z) =
Hn−2

(4π)
n
2

Iµ(Z) , (3.1.14)

and

Iµ(Z) =
Γ
(
n−1

2 + µ
)

Γ
(
n−1

2 − µ
)

Γ
(
n
2

) 2F1

(
n− 1

2
+ µ,

n− 1

2
− µ;

n

2
;
1 + Z

2

)
, (3.1.15)

for

µ =

√
(n− 1)2

4
− m2

H2
. (3.1.16)

We here note that ξ = 0 corresponds to the massless vector two-point function found by

Tsamis and Woodard [87], and the massless vector propagator for ξ = 1, when n = 4,

was given by Allen and Jacobson [88].

We now calculate the relevant derivatives of Z to express the propagator in a more

convinient form. These derivatives are calculated by Allen and Jacobson [88], and we

present them here for later use. No approximations are made in these calculations, so

the following results are exact. From the definition of Z, given by equation (3.1.3), one

obtains

∂b′Z = −H
√

1− Z2nb′ , (3.1.17)

so

(∂aZ)(∂b′Z) = H2(1− Z2)nanb′ , (3.1.18)

and

∂a∂b′Z = H2 [gab′ + (1− Z)nanb′ ] , (3.1.19)

where the results of Allen and Jacboson [88] have been used to evaluate ∂b′na, which
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we quote here for completeness:

∂b′na = − H√
1− Z2

(gab′ + nanb′) . (3.1.20)

The results (3.1.18) and (3.1.19) are frequently referred to in the rest of this chapter.

The final term of the propagator, given by equation (3.1.11), is ∂a∂b′4̃(Z). We

want to write this in terms of derivatives of Z. We use the chain rule, along with the

results of this section, to express this term as

∂a∂b′4̃(Z) = (∂a∂b′Z)4̃′(Z) + (∂b′Z)(∂aZ)4̃′′(Z) ,

= H2 [gab′ + (1− Z)nanb′ ] 4̃
′
(Z) +H2(1− Z2)nanb′4̃

′′
(Z) , (3.1.21)

where the derivatives of the function 4̃(Z) will be found later in the chapter.

Using these expressions, we split the propagator into gauge-independent and gauge-

dependent parts, and write it as

lim
m2→0

〈0|Aa(x)Ab′(x
′)|0〉 = 〈0|Aa(x)Ab′(x

′)|0〉GI + 〈0|Aa(x)Ab′(x
′)|0〉GD , (3.1.22)

where the first term is made up of the gauge-independent terms of the propagator, and

the second term comprises of the gauge-dependent term. Explicitly, from, equation

(3.1.11), we have

〈0|Aa(x)Ab′(x
′)|0〉GI = AGI(Z)gab′ +BGI(Z)nanb′ , (3.1.23)

〈0|Aa(x)Ab′(x
′)|0〉GD = AGD(Z)gab′ +BGD(Z)nanb′ , (3.1.24)

where

AGI(Z) =
Hn−2

(4π)
n
2

n− 2

n− 3
I(0)(Z) , (3.1.25)

AGD(Z) = H2

(
ξ − n− 1

n− 3

)
4̃′(Z) , (3.1.26)

and

BGI(Z) =
Hn−2

(4π)
n
2

[
n− 2

n− 3
(1− Z)I(0)(Z) +

1

n− 3
(1− Z2)I(0)′(Z)

]
, (3.1.27)

BGD(Z) = H2

(
ξ − n− 1

n− 3

)[
(1− Z)4̃′(Z) + (1− Z2)4̃′′(Z)

]
. (3.1.28)

The leading order behaviour of the functions AGI(Z) and AGD(Z) is different to that

of BGI(Z) and BGD(Z); we therefore find Ai(Z) and Bi(Z) separately.
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As different methods are used to find the large-distance behaviour of the gauge-

independent and gauge-dependent terms of the propagator, we find the large-Z be-

haviour of the gauge-independent and gauge-dependent parts separately. Derivatives

of Z appear in all terms of the propagator, so we start by finding an explicit expression

for these.

3.2 Large-distance limit of the gauge-independent terms in the

propagator

In this section we find the |Z| → ∞ limit of the gauge-independent part of the propa-

gator, given by equation (3.1.23). As we have already found ∂a∂b′Z and (∂aZ)(∂b′Z),

it only remains to find the large-Z behaviour of I(0)(Z) and I(0)′(Z), which is the focus

of this section.

First, we find the large-distance behaviour of I(0)(Z), defined in equation (3.1.12),

and repeated here for clarity:

I(0)(Z) =
Γ(n− 2)

Γ
(
n
2

) 2F1

(
n− 2, 1;

n

2
;
1 + Z

2

)
. (3.2.1)

This function is proportional to the hypergeometric function, which can be written as

the following series expansion:

2F1(a, b; c; z) = 1 +
ab

c
z +O(z2) , (3.2.2)

defined for |z| < 1. In order to study the behaviour of I(0)(Z) in the limit |Z| → ∞,

we use the well known transformation property [89]

2F1(a, b; c; z) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(1− z)−a 2F1

(
a, c− b; a− b+ 1;

1

1− z

)
+

Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

(1− z)−b 2F1

(
b, c− a; b− a+ 1;

1

1− z

)
, (3.2.3)

as we can use the above series expansion of the hypergeometric function to write

2F1

(
a, b; c;

1

1− Z

)
→ 1 +O

(
Z−1

)
. (3.2.4)
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Using the transformation (3.2.3), it can be seen that

I(0)(Z) =
Γ(n− 2)Γ(3− n)

Γ
(
2− n

2

) (
1− Z

2

)−(n−2)

2F1

(
n− 2,

n

2
− 1;n− 2;

2

1− Z

)
+

Γ(n− 3)

Γ
(
n
2 − 1

) (1− Z
2

)−1

2F1

(
1, 2− n

2
; 4− n;

2

1− Z

)
. (3.2.5)

We note that, despite the apparent singularity due to the integer n case of the Γ(3−n)

factor in equation (3.2.5), the result of this section is well-defined. This is because the

singular terms combine with singular terms which occur at higher orders in the expan-

sion of the hypergeometric function second line of equation (3.2.5), to give a well-defined

contribution in the n → integer limit. This term behaves like [(1 − Z)/2]−(n−2) logZ,

which is still suppressed in comparison with [(1− Z)/2]−1.

We now take the |Z| → ∞ limit of equation (3.2.5), where we work to O
(
Z−2

)
,

which is valid as the neglected terms have no effect on the large-distance behaviour of

the propagator. This can be seen most clearly from the explicit expressions for AGI(Z)

and BGI(Z), given by equations (3.1.25) and (3.1.27), respectively. In BGI(Z), I(0)(Z)

appears when multiplied by a factor of (1−Z), and in AGI(Z), I(0)(Z) appears without

being multiplied by any function of Z, so terms of order Z−2 can be neglected in the

|Z| → ∞ limit.

Expanding the hypergeometric function in the first term of the right hand side of

equation (3.2.5), it can be seen that, in the large-Z limit, the leading order term is

Γ(n− 2)Γ(3− n)

Γ
(
2− n

2

) (
1− Z

2

)−(n−2)

, (3.2.6)

which, for n > 2, is of lower order than Z−2. As we consider n > 4, we are free to ignore

the first hypergeometric function from the transformation given by equation (3.2.3).

Details of n = 2, 3, 4 cases are described by Fröb and Higuchi [44].

We therefore need only consider terms originating from the series expansion of the

second hypergeometric function in equation (3.2.5). Taking the large-distance limit, it

can be seen that

I(0)(Z)→ Γ(n− 3)

Γ
(
n
2 − 1

) (1− Z
2

)−1

+O
(
Z−2

)
. (3.2.7)

Therefore, in the |Z| → ∞ limit, we find,

I(0)(Z)∂a∂b′Z → 2H2 Γ(n− 3)

Γ
(
n
2 − 1

)nanb′ +O (Z−1
)
. (3.2.8)
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We now find the large-distance behaviour of the function I(0)′(Z). In order to

calculate I(0)′(Z), first note that the derivative of the hypergeometric function is

d

dz
2F1(a, b; c; z) =

ab

c
2F1(a+ 1, b+ 1; c+ 1; z) . (3.2.9)

The derivative of I(0)(Z), defined by (3.1.12), is therefore

I(0)′(Z) =
d

dZ
I(0)(Z) ,

=
Γ(n− 1)

nΓ
(
n
2

) 2F1

(
n− 1, 2;

n

2
+ 1;

1 + Z

2

)
. (3.2.10)

We now use the same method used above to find the large-distance behaviour of I(0)(Z).

In the following, when taking the large-Z limit of the series expansion of hyperge-

ometric functions, we work to O
(
Z−3

)
. It can be seen that this is valid as I(0)′(Z)

only appears in the propagator in the function BGI(Z), given by equation (3.1.27). It

appears here multiplied by a factor of (1−Z2), the contribution of I(0)′(Z) to BGI(Z)

from terms proportional to Z−3 and higher are vanishing in the large-Z limit.

Again, using transformation (3.2.3),

I(0)′(Z) =
Γ(n− 1)Γ(3− n)

2Γ
(
2− n

2

) (
1− Z

2

)−(n−1)

2F1

(
n− 1,

n

2
− 1;n− 2;

2

1− Z

)
+

Γ(n− 3)

2Γ
(
n
2 − 1

) (1− Z
2

)−2

2F1

(
2, 2− n

2
; 4− n;

2

1− Z

)
. (3.2.11)

As in the previous calculation, the integer n singularity from the Γ(3−n) factor in the

following equation is cancelled by higher order contributions from the expansion of the

second hypergeometric function in equation (3.2.3).

The leading order term in the expansion of the first line of equation (3.2.11) is

Γ(n− 1)Γ(3− n)

2Γ
(
2− n

2

) (
1− Z

2

)−(n−1)

, (3.2.12)

which, for n > 3, is O
(
Z−3

)
, so we neglect contributions to I(0)′(Z) from the first

hypergeometric function in equation (3.2.11).

In the large-Z limit, it can be seen that

I(0)′(Z)→ Γ(n− 3)

2Γ
(
n
2 − 1

) (1− Z
2

)−2

+O
(
Z−3

)
, (3.2.13)

which is found from the leading order contribution of the series expansion of the hy-
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pergeometric function on the second line in equation (3.2.11). As quick check we note

that the same result for the large-distance of I(0)′(Z) can be attained by differentiating

the large-Z limit of I(0)(Z), found in equation (3.2.7).

For large-Z, we therefore see that

I(0)′(Z)(∂aZ)(∂b′Z)→ −H2 Γ(n− 3)

Γ
(
n
2 − 1

)nanb′ +O (Z−1
)
, (3.2.14)

as, in the limit |Z| → ∞,

1− Z2

(1− Z)2
=

1 + Z

1− Z
→ −1 +O

(
Z−1

)
. (3.2.15)

Finally, we combine the results for the large-distance behaviour of I(0)(Z), given by

(3.2.8), and I(0)′(Z), given by equation (3.2.14) with the results of Section 3.1, to see

that the large-distance behaviour of the gauge-independent terms of the propagator is

〈0|Aa(x)Ab′(x
′)|0〉GI =

Hn−2

(4π)
n
2

Γ(n− 1)

Γ
(
n
2

) 1

n− 3
nanb′ +O

(
Z−1

)
, (3.2.16)

where the prefactor involving gamma functions has been written in a slightly different

form, for later convenience.

3.3 Large-distance limit of the gauge-dependent terms in the prop-

agator

A different approach must be used to find the large-Z behaviour of the gauge-dependent

term of the propagator, given by equation (3.1.24), as it has a different form to the

term discussed in the previous section. Specifically, we must find the limit as |Z| → ∞
of

4̃(Z) = −H
n−2

(4π)
n
2

lim
m2→0

∂

∂m2
(Iµ(Z)− Iµ(−1)) , (3.3.1)

where

Iµ(Z) =
Γ
(
n−1

2 + µ
)

Γ
(
n−1

2 − µ
)

Γ
(
n
2

) 2F1

(
n− 1

2
+ µ,

n− 1

2
− µ;

n

2
;
1 + Z

2

)
, (3.3.2)

µ =

√
(n− 1)2

4
− m2

H2
, (3.3.3)

as defined in Section 3.1, repeated here for convenience. Additionally in Section 3.1, we

wrote the function 4̃(Z) in terms of the functions 4̃′(Z) and 4̃′′(Z), and derivatives
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of Z. For convenience, we repeat this expression here:

∂a∂b′4̃(Z) = (∂a∂b′Z)4̃′(Z) + (∂b′Z)(∂aZ)4̃′′(Z) ,

= H2 [gab′ + (1− Z)nanb′ ] 4̃
′
(Z) +H2(1− Z2)nanb′4̃

′′
(Z) . (3.3.4)

It therefore only remains to find the large-distance behaviour of the functions 4̃′(Z)

and 4̃′′(Z).

We first calculate the large-distance limit of the first and second derivatives of 4̃(Z).

The large-distance behaviour of the functions 4̃′(Z) and 4̃′′(Z) are then calculated,

using the same method. To find 4̃′(Z) and 4̃′′(Z), we first differentiate 4̃(Z), defined

in equation (3.3.1), once with respect to Z, to find that

4̃′(Z) = −H
n−2

(4π)
n
2

lim
m2→0

∂

∂m2

(
d

dZ
Iµ(Z)− d

dZ
Iµ(−1)

)
,

= − Hn−2

2(4π)
n
2

lim
m2→0

∂

∂m2

[
Γ
(
n+1

2 + µ
)

Γ
(
n+1

2 − µ
)

Γ
(
n
2 + 1

)
× 2F1

(
n+ 1

2
+ µ,

n+ 1

2
− µ;

n

2
+ 1;

1 + Z

2

)]
,

(3.3.5)

where elementary properties of the gamma function are used to simplify the prefactor.

The second term in the first line of the latter equation, proportional to Iµ(−1), vanishes,

as this has no dependence on Z. Similarly, we see that

4̃′′(Z) = −H
n−2

(4π)
n
2

lim
m2→0

∂

∂m2

(
d2

dZ2
Iµ(Z)− d2

dZ2
Iµ(−1)

)
,

= − Hn−2

4(4π)
n
2

lim
m2→0

∂

∂m2

[
Γ
(
n+3

2 + µ
)

Γ
(
n+3

2 − µ
)

Γ
(
n
2 + 2

)
× 2F1

(
n+ 3

2
+ µ,

n+ 3

2
− µ;

n

2
+ 2;

1 + Z

2

)]
.

(3.3.6)

In order to find the large-distance limit of 4̃′(Z) and 4̃′′(Z), given by equations (3.3.5)

and (3.3.6) respectively, we first find the large-Z limit of the hypergeometric function,

which appears as a factor in both functions. We then find the derivative with respect

to m2 of this, before taking the limit m2 → 0.

We first apply the transformation of the hypergeometric function used in previous

sections, given by equation (3.2.3), and use the series expansion of the hypergeometric
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function, given by equation (3.2.2). This gives

4̃′(Z)→− Hn−2

2(4π)
n
2

lim
m2→0

∂

∂m2

Γ
(
n+1

2 − µ
)

Γ(2µ)

Γ
(

1
2 + µ

) (
1− Z

2

)−(n+1
2
−µ)

+O
(
Z−(n+3

2
−µ)
)
, (3.3.7)

which is the leading order term in the expansion of the second hypergeometric function

in equation (3.2.3). In this expression, we have neglected terms from the first hyper-

geometric function in equation (3.2.3), which we now justify. In the limit m2 → 0,

which corresponds to µ→ n−1
2 , the large-Z expansion of the first hypergeometric func-

tion in equation (3.2.3) has a leading term of order (1− Z)−n. As is seen in equation

(3.1.21), in the propagator, the function 4′(Z) is multiplied by a factor of O(Z). Any

contribution to the propagator will therefore vanish, for n > 2, in the large-Z limit.

Similarly,

4̃′′(Z)→− Hn−2

4(4π)
n
2

lim
m2→0

∂

∂m2

Γ
(
n+3

2 − µ
)

Γ(2µ)

Γ
(

1
2 + µ

) (
1− Z

2

)−(n+3
2
−µ)

+O
(
Z−(n+5

2
−µ)
)
. (3.3.8)

Again, this term is the leading order term in the expansion of the second hypergeometric

function in equation (3.2.3). We now justify why we can neglect terms originating from

the first hypergeometric function in equation (3.2.3). In the large-Z and m2 → 0 limits,

the expansion of the first hypergeometric function in equation (3.2.3) gives a leading

term of order (1 − Z)−(n+1). As is seen from equation (3.1.21), in the propagator the

function 4′′(Z) appears when multiplied by a term of O(Z2). Any contribution to the

propagator will therefore vanish, for n > 2, in the large-Z limit. As we look in the case

when n > 4, we work to the order of Z given in equations (3.3.7) and (3.3.8).

Equations (3.3.7) and (3.3.8) have the same basic structure. We therefore define

χ(µ,Z) = lim
m2→0

∂

∂µ

[
f(µ)

(
1− Z

2

)−g(µ)
]
∂µ

∂m2
, (3.3.9)

where

f(µ) =
Γ(l − µ)Γ(2µ)

Γ
(

1
2 + µ

) , (3.3.10)

g(µ) = l − µ . (3.3.11)

Equation (3.3.9) gives the leading order behaviour of equations (3.3.7) and (3.3.8), for
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l = n+1
2 and l = n+3

2 , respectively, up to an overall multiplicative constant. From the

definition of µ, given by (3.1.16),

∂µ

∂m2
= − 1

2H2µ
, (3.3.12)

and we see that, as already mentioned, as m2 → 0, µ → n−1
2 . The function χ(µ,Z),

given by equation (3.3.9), becomes

χ(µ,Z) = − 1

H2(n− 1)
lim

µ→n−1
2

[(
f ′(µ)− f(µ)g′(µ) log

(
1− Z

2

))(
1− Z

2

)−g(µ)
]
.

(3.3.13)

It now remains to find f ′(µ) and g′(µ). As f(µ) consists of gamma functions, we start

by noting that the derivative of the gamma function is given by

Γ′(x) = Γ(x)ψ0(x) , (3.3.14)

where the digamma function ψ0(n) has the following value at x = n ∈ N,

ψ0(n) = −γ +
n−1∑
k=1

1

k
, (3.3.15)

and, for a half-integer argument,

ψ0

(
n+

1

2

)
= −γ − 2 ln 2 +

n∑
k=1

2

2k − 1
, (3.3.16)

where γ is the Euler-Mascheroni constant. We therefore find that

f ′(µ) =

[
−Γ′(l − µ)Γ(2µ) + 2Γ(l − µ)Γ′(2µ)

Γ
(

1
2 + µ

) −
Γ(l − µ)Γ(2µ)Γ′

(
1
2 + µ

)(
Γ
(

1
2 + µ

))2
]
,

= −f(µ)Q(l) , (3.3.17)

where we define

Q(l) = ψ0

(
l − n− 1

2

)
− 2ψ0(n− 1) + ψ0

(n
2

)
. (3.3.18)

We also find, trivially, that

g′(µ) = −1 . (3.3.19)

By evaluating the functions f(µ), g(µ), f ′(µ), and g′(µ), given by equations (3.3.10),

(3.3.11), (3.3.17), and (3.3.19), respectively, at µ = n−1
2 , and substituting into equation
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(3.3.13), we see that

χ(µ,Z) =
1

H2(n− 1)

Γ(l − n−1
2 )Γ(n− 1)

Γ
(
n
2

) [
Q(l)− log

(
1− Z

2

)](
1− Z

2

)−(l−n−1
2

)

.

(3.3.20)

We can now use this expression for χ(µ,Z), given by (3.3.20), to find 4̃′(Z) and 4̃′′(Z),

as defined in (3.3.7) and (3.3.8) respectively. Remembering to include the n-dependent

constant prefactor, and to put in the corresponding values of l, we find

4̃′(Z)→− Hn−4

(4π)
n
2 (n− 1)

Γ(n− 1)

Γ
(
n
2

) [
Q

(
n+ 1

2

)
− log

(
1− Z

2

)]
1

1− Z
+O

(
Z−2

)
,

(3.3.21)

and

4̃′′(Z)→− Hn−4

(4π)
n
2 (n− 1)

Γ(n− 1)

Γ
(
n
2

) [
Q

(
n+ 3

2

)
− log

(
1− Z

2

)]
1

(1− Z)2

+O
(
Z−3

)
. (3.3.22)

To see why we work to these orders of Z in 4̃′(Z) and 4̃′′(Z), we refer back to the

gauge-dependent terms in the propagator, given by equation (3.1.24). As the function

4̃′(Z) appears in the propagator through AGD(Z), given by equation (3.1.26), and

through BGD(Z), given by equation (3.1.28), when multiplied by (1 − Z), all non-

leading order contributions to the propagator from equation (3.3.21) vanish, so we

are free to neglect these terms. The function 4̃′′(Z) only appears in the propagator

through BGD(Z), where it is multiplied by (1 − Z2). The only contribution to the

propagator from 4̃′′(Z) therefore comes from this leading order term, so we are free to

neglect terms of order Z−3 and higher.

These expressions for the large-Z behaviour of 4̃′(Z), given by equation (3.3.21),

and 4̃′′(Z), given by equation (3.3.22), can now be combined with the results of Section

3.1 to see that the large-Z behaviour of ∂a∂b′ 4 Z, given by equation (3.1.21), is

∂a∂b′4̃(Z)→ Hn−2Γ(n− 1)

(4π)
n
2 (n− 1)Γ

(
n
2

)nanb′ +O (Z−1
)
, (3.3.23)

where we have used the fact that

Q

(
n+ 1

2

)
−Q

(
n+ 3

2

)
= ψ0(1)− ψ0(2) = −1 . (3.3.24)
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The latter follows from the definition of Q(l), given by equation (3.3.18), and the

representation of the digamma function given by equation (3.3.15).

In the limit that |Z| → ∞, the gauge-dependent term in the propagator, as defined

in equation (3.1.24), is therefore

〈0|Aa(x)Ab′(x
′)|0〉GD =

(
ξ − n− 1

n− 3

)
Hn−2Γ(n− 1)

(4π)
n
2 (n− 1)Γ

(
n
2

)nanb′ +O (Z−1
)
. (3.3.25)

We will now combine this with the result of Section 3.2 to find the propagator in the

|Z| → ∞ limit.

3.4 Large-distance behaviour of the propagator

We now combine the results of the previous sections to find an expression for the

|Z| → ∞ limit of the propagator. Using definitions from Section 3.1, it can be seen

that

lim
m2→0

〈0|Aa(x)Ab′(x
′)|0〉 = [AGI(Z) +AGD(Z)]gab′ + [BGI(Z) +BGD]nanb′ , (3.4.1)

for AGI(Z), AGD(Z), BGI(Z), and BGD(Z) defined by equations (3.1.25) - (3.1.28).

As equations (3.2.16) and (3.3.25) both have no terms proportional to gab′ , we find

that

AGI(Z) +AGD(Z)→ O
(
Z−1

)
, (3.4.2)

as |Z| → ∞. Additionally, combining terms proportional to nanb′ in equations (3.2.16)

and (3.3.25), we see that

BGI(Z) +BGD → ξ
Hn−2Γ(n− 1)

(4π)
n
2 Γ
(
n
2

)
(n− 1)

+O
(
Z−1

)
. (3.4.3)

as |Z| → ∞.

We therefore see that, in |Z| → ∞ limit, the propagator is proportional to nanb′ ,

and tends to

lim
m2→0

〈0|Aa(x)Ab′(x
′)|0〉 → ξ

Hn−2Γ(n− 1)

(4π)
n
2 Γ
(
n
2

)
(n− 1)

nanb′ +O
(
Z−1

)
, (3.4.4)

which is a non-zero gauge-dependent constant. Hence, in the limit |Z| → ∞, the two-

point function vanishes in the Landau gauge, but tends to a non-zero constant in a

general gauge where ξ 6= 0. Our result reduces, for n = 4, to the result found by

Youssef [1], which is that

β(Z)→ ξH2

24π2
. (3.4.5)
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3.5 Discussion

In this chapter, we have found the large-Z behaviour of the covariant massless vector

propagator in n-dimensional de Sitter space. As in the n = 4 case discussed by Youssef

[1], in the large-Z limit, it was found that the propagator tends towards a gauge-

dependent constant. It was found that this constant is equal to zero in the Landau

gauge, where ξ = 0.

A method similar to the one used in this chapter to calculate the long-distance

behaviour of the covariant massless vector propagator could be used to find the long-

distance behaviour of the graviton two-point function, although it is expected that

there will be additional difficulties associated with this calculation. For example, we

will have to work to higher orders of the de Sitter-invariant Z, as the graviton two-

point function exhibits a linear divergence in Z. Additionally, the graviton two-point

function, found by Fröb, Higuchi, and Lima [2], for example, has a larger number of

terms than the vector two-point function. Both of these facts mean that the calculation

of the large-distance behaviour of the graviton two-point function becomes far more

lengthy than the calculation carried out in this chapter. This calculation will form the

next chapter of this thesis.
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Chapter 4

Large-distance behaviour of the covari-

ant graviton propagator

In this chapter we find the large-distance behaviour of the covariant graviton propaga-

tor, in de Sitter spacetime. Although the large-distance behaviour of this propagator

is known for the 4-dimensional case [3], for calculations involving dimensional regular-

isation knowledge of that of the n-dimensional graviton propagator is necessary. It is

therefore of interest to study the large-distance behaviour of such a propagator. In the

previous chapter, the large-distance behaviour of the covariant massless vector prop-

agator was found, so we use this as a basis for the calculation. We follow the basic

method set out in that chapter, but extend this to the more computationally complex

case of the graviton propagator. Specifically, it is no longer sufficient to work to just

leading order in the series expansions used in the previous chapter, and the graviton

propagator has a more complex, tensor, structure than that of its vector counterpart.

4.1 Preliminaries

We consider perturbations hab about de Sitter spacetime, which can be represented by

the metric

ḡab = a2(η)ηab + κhab , (4.1.1)

where ηab is the Minkowski metric, the conformal time η ∈ (−∞, 0), and the confor-

mal scale factor a2(η) = 1
(−Hη)2

, for H constant. Here we scale the perturbation by

the constant κ ≡
√

16πGN . As in previous chapters, we use the mostly plus metric

convention.

As can be seen in [2], the Lagrangian density is written as the following sum of

terms:

L ≈ Linv + Lgf . (4.1.2)
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The first term of the Lagrangian density is found from the Einstein-Hilbert Lagrangian

density:

Lgrav ≡
√
−ḡ
κ2

(R̄− 2Λ) . (4.1.3)

This is expanded to second order in the perturbation to give

Linv ≡ −
√
−g
4

[
∇chab∇chab −∇c∇ch+ 2∇ahab∇bh− 2∇ahab∇bhbc

+ 2H2

(
habh

ab +
n− 3

2
h2

)]
. (4.1.4)

The most general quadratic covariant gauge fixing term involving two derivatives is

added to the Lagrangian density. This term has the form

Lgf ≡ −
1

2α
GbG

b√−g , (4.1.5)

for

Gb ≡ ∇ahab −
1 + β

β
∇bh . (4.1.6)

Different values of the parameters α and β correspond to different gauges. Of particular

interest to us is the Landau gauge, which corresponds to the limit α→ 0.

We start from the graviton propagator found in [2]. Here, a Fierz-Pauli mass term:

Lmass = −m
2

4

√
−g
(
habh

ab − h2
)
, (4.1.7)

which was introduced in [2] as an IR regulator [90]. The massless limit was taken after

the propagator was found. We will find the large-distance limit of the propagator found

after the massless limit has been taken.

As in Chapter 3, we work with a propagator found using the Bunch-Davies vacuum

state. In [2], the tensor perturbation is divided into two parts: the tensor-vector and

scalar parts, denoted h
(T+V )
ab and h

(S)
ab , respectively. Following this method, we write

the metric perturbation the following sum:

hab = h
(T+V )
ab + h

(S)
ab . (4.1.8)

The propagator formed from these modes contains no cross-terms, i.e. terms of the

form 〈0|h(TV )
ab (x)h

(S)
a′b′(x

′)|0〉 = 0, so we are free to consider the scalar and tensor-vector

parts independently. When β > 0, it can be seen that, in the large-distance limit,

the contribution to the propagator from the scalar modes vanishes. This result is

straightforward, as will be seen in Section 4.3. In all other sections of this chapter,
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we consider the propagator in the tensor-vector sector only, so the remainder of this

section will introduce the propagator in this sector.

As in the previous chapter, in order to find the propagator in the large-distance

limit, we work in terms of the de Sitter invariant Z. We initially introduced this

invariant in equation (3.1.3), which we repeat here for convenience:

Z(x, x′) = cos
[
Hσ(x, x′)

]
. (4.1.9)

Again, we work in a basis of tensors constructed from gab, ga′b′ , ga′b, na, and na′ , which

are defined in Section 3.1.

The graviton propagator in the tensor-vector sector, as found in [2], for example, is

4ab:a′b′(x, x
′) =

Hn−2

(4π)
n
2

[
G(TV,1)(Z)gabga′b′ +G(TV,2)(Z)[gabna′nb′ + ga′b′nanb]

+G(TV,3)(Z)nanbna′nb′ + 4G(TV,4)(Z)n(agb)(a′nb′)

+ 2G(TV,5)(Z)ga(a′gb′)b

]
, (4.1.10)

where the functions G(TV,k)(Z) in equation (4.1.10) are made up of polynomials in Z

multiplied by linear combinations of the functions

I(k)
µ (Z) =

Γ (a+ + k) Γ (a− + k)

2kΓ
(
n
2 + k

) 2F1

(
a+ + k, a− + k;

n

2
+ k;

1 + Z

2

)
, (4.1.11)

and

Ĩ(k)
µ (Z) ≡ − 1

2µ

∂

∂µ
I(k)
µ (Z) , (4.1.12)

where

a± =
n− 1

2
± µ , (4.1.13)

with µ = n±1
2 in the tensor-vector sector.

Before stating the explicit expressions for the functions G(TV,k)(Z), we quote some

results from [2], which are used throughout the calculation. We make use of the fol-

lowing relations between I
(k)
µ (Z) and Ĩ

(k)
µ (Z):

(1− Z2)I(k+2)
µ (Z)− (n+ 2k)ZI(k+1)

µ (Z)

+

[
µ2 − (n− 1)2

4
− k(n+ k − 1)

]
I(k)
µ (Z) = 0 , (4.1.14)

(1− Z2)Ĩ(k+2)
µ (Z)− (n+ 2k)ZĨ(k+1)

µ (Z)

+

[
µ2 − (n− 1)2

4
− k(n+ k − 1)

]
Ĩ(k)
µ (Z) = I(k)

µ (Z) . (4.1.15)
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In addition, for more specific values of I
(k)
µ (Z),

(1− Z2)I
(2)
n−1
2

(Z)− nZI(1)
n−1
2

(Z) =
Γ(n)

Γ
(
n
2

) , (4.1.16)

(1− Z2)I
(3)
n+1
2

(Z)− (n+ 2)ZI
(2)
n+1
2

(Z) =
Γ(n+ 2)

2Γ
(
n
2 + 1

) . (4.1.17)

Using these equations, the functions I
(4)
n+1
2

(Z), I
(3)
n+1
2

(Z), Ĩ
(4)
n±1
2

(Z), Ĩ
(3)
n−1
2

(Z), and I
(2)
n−1
2

(Z)

can been eliminated from the expressions for G(TV,3)(Z) and G(TV,4)(Z) given in [2].

The resulting expressions are given below.

For ease of notation, we suppress the argument of the functions I
(k)
µ (Z), Ĩ

(k)
µ (Z),

and G(TV,k)(Z), so in the following, unless otherwise stated, all functions are assumed

to be functions of Z. The functions G(TV,k) are as follows. First, the coefficient of the

gabga′b′ component of the propagator is

G(TV,1) =
−2

n− 1

[
1

n− 2
ZI

(2)
n+1
2

+ Z2Ĩ
(2)
n−1
2

+ nZĨ
(1)
n−1
2

− 2

n− 2
ZI

(1)
n−1
2

− n− 1

n− 2

Γ(n− 1)

Γ
(
n
2

) ]

+
α

n− 1

[
1

n− 1
ZI

(2)
n+1
2

+ 2ZĨ
(2)
n+1
2

]
. (4.1.18)

The coefficient of the gabna′nb′ + ga′b′nanb component of the propagator is found to be

G(TV,2) =− 2

n− 1
(1− Z2)

[
− 1

n− 2
I

(3)
n+1
2

− ZĨ(3)
n−1
2

− (n+ 1)Ĩ
(2)
n−1
2

+
1

n− 2
I

(2)
n−1
2

]
− α

n− 1
(1− Z2)

[
1

n− 1
I

(3)
n+1
2

+ 2Ĩ
(3)
n+1
2

]
. (4.1.19)
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The coefficient of the nanbna′nb′ component of the propagator is

G(TV,3) = − 2

n− 1

[
1

n− 2

[
2(n+ 1)(1− Z)2 + (n+ 2)(n+ 4)Z

]
I

(2)
n+1
2

+
[
(n+ 1)(n+ 2) + 4(n+ 1)Z − (n− 2)Z2

]
Ĩ

(2)
n−1
2

+ [2n(n+ 1)− n(n− 2)Z] Ĩ
(1)
n−1
2

+ 2[Z + n+ 1]I
(1)
n−1
2

+
n− 1

n− 2
[2(n+ 1)Z + n(n+ 4)]

Γ(n− 1)

Γ
(
n
2

) ]

+
α

n− 1

[
2(1− Z2) [2Z + (n+ 2)] Ĩ

(3)
n+1
2

+ 4(1− Z) [Z + n+ 1] Ĩ
(2)
n+1
2

+
1

n− 1

[
4Z2 + (n2 + 2n+ 4)Z + 4n

]
I

(2)
n+1
2

+(n+ 1)(2Z + n+ 2)
Γ(n− 1)

Γ
(
n
2

) ]
.

(4.1.20)

The coefficient of the n(agb)(a′nb′) component of the propagator is

G(TV,4) = − 2

n− 1

[
1

n− 2

[
n+ 1

2
(1− Z)2 + (n+ 2)Z

]
I

(2)
n+1
2

+

[
n+ 1

2
(1 + 2Z)− n− 1

2
Z2

]
Ĩ

(2)
n−1
2

]

− 2

n− 1

[ [
n(n− 1)

2
(1− Z) + n

]
Ĩ

(1)
n−1
2

+

[
n+ 1

2
+
n− 1

n− 2
Z

]
I

(1)
n−1
2

+
n− 1

2(n− 2)
[(n+ 1)Z + 2n]

Γ(n− 1)

Γ
(
n
2

) ]

+
α

n− 1

[
(1 + Z)(1− Z2)Ĩ

(3)
n+1
2

+ (1− Z) [n+ 1 + Z] Ĩ
(2)
n+1
2

+
1

n− 1
[Z(1 + Z) + n] I

(2)
n+1
2

+
n+ 1

2
(Z + 1)

Γ(n− 1)

Γ
(
n
2

) ]
.

(4.1.21)
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Finally, the coefficient of the ga(a′gb′)b component of the propagator is

G(TV,5) = − 2

n− 1

[
1

n− 2
ZI

(2)
n+1
2

+

[
n+ 1

2
− n− 1

2
Z2

]
Ĩ

(2)
n−1
2

− n(n− 1)

2
ZĨ

(1)
n−1
2

+
n− 1

n− 2
ZI

(1)
n−1
2

+
n(n− 1)

n− 2

Γ(n− 1)

Γ
(
n
2

) ]

+
α

n− 1

[
1

n− 1
ZI

(2)
n+1
2

+ (1− Z2)Ĩ
(3)
n+1
2

− nZĨ(2)
n+1
2

+
n+ 1

2

Γ(n− 1)

Γ
(
n
2

) ]
.

(4.1.22)

As the tensor-vector sector of the two-point function is traceless, only three of these

coefficients are independent: G(TV,3) and G(TV,5) can be written in terms of the other

functions G(TV,k) in the following way:

G(TV,3) = 4G(TV,4) − nG(TV,2) , (4.1.23)

G(TV,5) = −n
2
G(TV,1) − 1

2
G(TV,2) . (4.1.24)

The first equation is manifest when equations (4.1.14) - (4.1.17) are used to remove

I
(3)
n+1
2

, Ĩ
(3)
n−1
2

, and Ĩ
(2)
n−1
2

, from G(TV,2) and G(TV,4), and the second can similarly be seen

when equations (4.1.14) - (4.1.17) are used to remove I
(3)
n+1
2

, Ĩ
(3)
n−1
2

, and I
(2)
n−1
2

, from

G(TV,2). Equations (4.1.23) and (4.1.24) can be used later as a consistency check for

the large-distance behaviour of the functions G(TV,k).

4.2 Large-distance behaviour of I
(k)
µ (Z) and Ĩ

(k)
µ (Z)

In this section we find the large-distance behaviour of the functions I
(k)
µ and Ĩ

(k)
µ , which

will then be used in later sections to find the large-distance behaviour of the graviton

propagator.

As I
(k)
µ is proportional to the hypergeometric function, we consider the series ex-

pansion used in the previous chapter, which states that

2F1(a, b; c; z) = 1 +
ab

c
z +

a(a+ 1)b(b+ 1)

c(c+ 1)

z2

2!
+O(z3) , (4.2.1)

which is defined for |z| < 1. In order to find an expression for 2F1(a, b; c; z) which is valid
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in the large-Z limit, we must first use the well-known expression, see, for example, [89],

2F1(a, b; c; z) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(1− z)−a 2F1

(
a, c− b; a− b+ 1;

1

1− z

)
+

Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

(1− z)−b 2F1

(
b, c− a; b− a+ 1;

1

1− z

)
, (4.2.2)

which we also made use of in Chapter 3.

From the definition of I
(k)
µ , given in equation (4.1.11), we have the following values

a = a+ + k , (4.2.3)

b = a− + k , (4.2.4)

c =
n

2
+ k , (4.2.5)

where a± is defined in equation (4.1.13). Singular terms in the first line of equa-

tion (4.2.2) arise from a gamma function taking a negative integer value, i.e. as

b − c = −2µ = −(n ± 1). However, these combine with singular terms, which oc-

cur at higher orders in the series expansion in the second line of equation (4.2.2),

to give a well-defined contribution in the n → integer limit. This term behaves like

[(1−Z)/2]−(n−1)/2−µ−k logZ, which is still suppressed in comparison with [(1−Z)/2]−1.

As stated in the previous section, the parameter µ = n±1
2 . For these values of

µ, a+ > a−, where a± is defined in equation (4.1.13). Therefore, after we apply

the above transformation, we neglect the first term on the right hand side of equation

(4.2.2), which we claim contributes a term to the propagator which vanishes in the limit

|Z| → ∞. It can be seen that we are justified in neglecting this term by expanding it as

the series given in equation (4.2.1). To leading order, it is proportional to Z−(n−1
2

+µ+k).

From the expressions for the functions G(TV,k) given in equations (4.1.18) - (4.1.22), it

can be seen that the factors in G(TV,k) that arise from this neglected hypergeometric

function are, at most, of order Z−n. As these vanish in the limit |Z| → ∞, (for n > 0),

we neglect the first term in the transformation given by equation (4.2.2) for the rest of

the calculation.

We write the second term of equation (4.2.2) as the series given by equation (4.2.1),

and use this to write I
(k)
µ , defined in equation (4.1.11), as

I(k)
µ = J (k)

µ + J (k+1)
µ +O

(
Z−g(µ,k+2)

)
, (4.2.6)

where

J (k)
µ = f(µ, k)

(
2

1− Z

)g(µ,k)

, (4.2.7)

93



4.2. LARGE-Z LIMIT OF I
(K)
µ (Z) AND Ĩ
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and

f(µ, k) =
Γ
(
n−1

2 − µ+ k
)

Γ(2µ)

2kΓ
(
µ+ 1

2

) , (4.2.8)

g(µ, k) =
n− 1

2
− µ+ k . (4.2.9)

As seen in equation (4.1.12), Ĩ
(k)
µ is proportional to the derivative of I

(k)
µ , so writing

the function I
(k)
µ in the form given by equation (4.2.6) gives a useful expression for Ĩ

(k)
µ .

In order to find this expression, we first find the derivative of J
(k)
µ . We use the results

of the previous chapter to see that

∂

∂µ
J (k)
µ = f(µ, k)

[
Q(µ, k) + log

(
1− Z

2

)](
2

1− Z

)g(µ,k)

, (4.2.10)

where

Q(µ, k) = −ψ0

(
n− 1

2
− µ+ k

)
+ 2ψ0(2µ)− ψ0

(
µ+

1

2

)
, (4.2.11)

and ψ0(x) is the digamma function, the derivative of the logarithm of the gamma

function. Series expansions for integer and half-integer arguments of the digamma

function are given by equations (3.3.15) and (3.3.16) respectively, in Section 3.3.

To the order presented in equation (4.2.6) we have

∂

∂µ
I(k)
µ =

∂

∂µ
J (k)
µ +

∂

∂µ
J (k+1)
µ +O

(
Z−g(µ,k+2)

)
,

=f(µ, k)

[
Q(µ, k) + log

(
1− Z

2

)](
2

1− Z

)g(µ,k)

+ f(µ, k + 1)

[
Q(µ, k)− 1

g(µ, k)
+ log

(
1− Z

2

)](
2

1− Z

)g(µ,k+1)

+O
(
Z−g(µ,k+2)

)
+O

(
Z−g(µ,k+1) logZ

)
,

=

[
Q(µ, k) + log

(
1− Z

2

)]
I(k)
µ −

f(µ, k + 1)

g(µ, k)

(
2

1− Z

)g(µ,k+1)

+O
(
Z−g(µ,k+2)

)
+O

(
Z−g(µ,k+1) logZ

)
, (4.2.12)

where we have used the recursion relation

Q(µ, k + 1) = Q(µ, k)− 1

g(µ, k)
. (4.2.13)
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which can be seen from the following recursion relation for the digamma function:

ψ0(n+ 1) = ψ0(n) +
1

n
, (4.2.14)

Combining this expression for the derivative with equation (4.1.12), we see that the

large-distance behaviour of Ĩ
(k)
µ is

Ĩ(k)
µ =− 1

2µ

[
Q(µ, k) + log

(
1− Z

2

)]
I(k)
µ +

1

2µ

f(µ, k + 1)

g(µ, k)

(
2

1− Z

)g(µ,k+1)

+O
(
Z−g(µ,k+2)

)
+O

(
Z−g(µ,k+1) logZ

)
, (4.2.15)

where, in the latter equation, and for the rest of this section, I
(k)
µ is valid up to the order

presented in equation (4.2.6). We have now found the |Z| → ∞ limit of I
(k)
µ , given by

equation (4.2.6), and Ĩ
(k)
µ , given by equation (4.2.15). We use these expressions to find

the large-distance behaviour of the functions G(TV,k).

In most cases, we need only work to leading order in the expansion of I
(k)
µ given in

equation (4.2.6), as contributions from higher order terms vanish in the limit |Z| → ∞.

Specifically, all factors in G(TV,1), G(TV,2), and G(TV,5) that arise from non-leading order

terms in the expansion of I
(k)
µ vanish in the limit |Z| → ∞. In these cases, we can just

consider

I(k)
µ = f(µ, k)

(
2

1− Z

)g(µ,k)

+O
(
Z−g(µ,k+1)

)
, (4.2.16)

so that

Ĩ(k)
µ = − 1

2µ

[
Q(µ, k) + log

(
1− Z

2

)]
I(k)
µ +O

(
Z−g(µ,k+1)

)
. (4.2.17)

In order to find an expression for I
(k+1)
µ and Ĩ

(k+1)
µ , we make use of the following

relations:

f(µ, k + 1) =
1

2
g(µ, k)f(µ, k) , (4.2.18)

g(µ, k + 1) = g(µ, k) + 1 , (4.2.19)

which follow from the definitions of f(µ, k) and g(µ, k), given by equations (4.2.8) and

(4.2.9) respectively. Using these relations, and the recursion relation for Q(µ, k) found

earlier in equation (4.2.13) we find

I(k+1)
µ =

1

1− Z
g(µ, k)I(k)

µ +O
(
Z−g(µ,k+2)

)
, (4.2.20)
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and

Ĩ(k+1)
µ = − 1

1− Z
g(µ, k)

2µ

[
Q(µ, k) + log

(
1− Z

2

)
− 1

g(µ, k)

]
I(k)
µ +O

(
Z−g(µ,k+2)

)
,

(4.2.21)

where the second expression is especially useful in the calculation of G(TV,1), G(TV,2),

and G(TV,5).

4.3 The scalar sector

We now have the information necessary to justify the omission of the graviton propa-

gator in the scalar sector from the rest of this chapter. As in [2], we write the graviton

propagator in the scalar sector as

4(S)
ab:a′b′(x, x

′) =
Hn−2

(4π)
n
2

5∑
k=1

F
(S,k)
ab:a′b′ , (4.3.1)

where

F
(S,1)
ab:a′b′ = F (S,1)gabga′b′ , (4.3.2)

F
(S,2)
ab:a′b′ = H−2F (S,2)(gabZ;a′Z;b′ + ga′b′Z;aZ;b) , (4.3.3)

F
(S,3)
ab:a′b′ = H−4F (S,3)Z;aZ;bZ;a′Z;b′ , (4.3.4)

F
(S,4)
ab:a′b′ = H−4F (S,4)Z;(aZ;b)(a′Z;b′) , (4.3.5)

F
(S,5)
ab:a′b′ = 2H−2F (S,5)Z;a(a′Z;b′)b , (4.3.6)

where λ ≡ 2(n− 1)− (n− 2)α, and we use the standard notation Z;a = ∇aZ.

The functions F (S,k) are

F (S,1) =
λ

(n− 1)2(n− 2)

(
Z2I

(2)
S + ZI

(1)
S

)
+

2n+ λβ

(n− 1)(n− 2)

(
Z2Ĩ

(2)
S + ZĨ

(1)
S

)
− 4

(n− 1)(n− 2)
ZI

(1)
S , (4.3.7)

F (S,2) =− λ

(n− 1)2(n− 2)

(
ZI

(3)
S + 2I

(2)
S

)
− 2n+ λβ

(n− 1)(n− 2)

(
ZĨ

(3)
S + 2Ĩ

(2)
S

)
+

2

(n− 1)(n− 2)
I

(2)
S , (4.3.8)

F (S,3) =
1

(n− 1)(n− 2)

[
λ

n− 1
I

(4)
S + (2n+ λβ)Ĩ

(4)
S

]
, (4.3.9)
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F (S,4) =
1

(n− 1)(n− 2)

[
λ

n− 1
I

(3)
S + (2n+ λβ)Ĩ

(3)
S

]
, (4.3.10)

F (S,5) =
1

(n− 1)(n− 2)

[
λ

n− 1
I

(2)
S + (2n+ λβ)Ĩ

(2)
S

]
. (4.3.11)

We follow the notation in [2], and define I
(k)
S ≡ I(k)

µS , and Ĩ
(k)
S ≡ Ĩ(k)

µS , where

µS =

√
(n− 1)2

4
− (n− 1)β . (4.3.12)

We now investigate the large-distance behaviour of the components F
(S,k)
aba′b′ . The

tensor structure consists of combinations of the derivatives of Z, so we first find the

large-distance behaviour of these derivatives. From Section 3.1, we have, to leading

order in Z,

Z;a ∝ Zna +O
(
Z0
)
, (4.3.13)

Z;ab′ ∝ Znanb′ +O
(
Z0
)
. (4.3.14)

We now find the large-distance behaviour of the functions I
(k)
S and Ĩ

(k)
S . We need

only consider leading order behaviour of the expansions I
(k)
µ and Ĩ

(k)
µ found at the end

of Section 4.2. From equation (4.2.6), we see that

I
(k)
S ∝ Z−

n−1
2

+µS−k +O
(
Z−

n−1
2

+µS−k−1
)
, (4.3.15)

and, from equation (4.2.17), we have

Ĩ
(k)
S ∝ log

(
1− Z

2

)
I

(k)
S +O

(
Z−

n−1
2

+µS−k
)
. (4.3.16)

From rearranging equation (4.3.12) for β:

(n− 1)β =

(
n− 1

2
+ µS

)
·
(
n− 1

2
− µS

)
, (4.3.17)

it is clear that if β > 0 then

µS −
n− 1

2
< 0 . (4.3.18)

From the definitions of F (S,k), given by equations (4.3.7) - (4.3.11), and the large-

distance behaviour of the derivatives of Z, given by equations (4.3.13) and (4.3.14), it

can be seen that all components F
(S,k)
ab:a′b′ have the same leading order behaviour in the
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large-distance limit:

F
(S,k)
ab:a′b′ ∝ Z

µS−n−1
2 log

(
1− Z

2

)
C

(S,k)
ab:a′b′+O

(
ZµS−

n−3
2 log

(
1− Z

2

))
+O

(
ZµS−

n−1
2

)
.

(4.3.19)

for constant tensors C
(S,k)
ab:a′b′ . From inequality (4.3.18) we see that, as |Z| → ∞,

F
(S,k)
ab:a′b′ → C

(S)
ab:a′b′ ×O

(
Z−1 log(Z)

)
, (4.3.20)

for some constant tensor C
(S)
ab:a′b′ . This was the result we expected from the conclusions

of [2], [4], and [91]. For the remainder of this chapter, we are therefore free to focus on

the propagator formed from the tensor-vector modes.

4.4 Large-distance behaviour of the covariant graviton propagator

We now find the large-distance behaviour of the propagator. From [2] and [3], where the

large-distance behaviour of the graviton propagator was found for n = 4 dimensions,

we have some idea about the kind of behaviour to expect. It is found that, along with

constant terms, in the large-distance limit the propagator has terms proportional to

both Z and logZ. In the Landau gauge, α = 0, we expect to find no linear divergence.

Additionally, the logarithmic divergence is known to vanish when α = n+1
n−1 . We find

the large-distance behaviour of the functions G(TV,k) separately, before combining these

results to find the large-distance behaviour of the propagator.

Due to their relative simplicity, we first find the |Z| → ∞ limit of the functions

G(TV,1), G(TV,2), and G(TV,5). These functions are given in terms of I
(k)
µ and Ĩ

(k)
µ in

Section 4.1 by equations (4.1.18), (4.1.19), and (4.1.22), respectively. We use the large-

distance expansions of I
(k)
µ and Ĩ

(k)
µ given in Section 4.2. As we take the limit |Z| → ∞,

we need only work to leading order in (1 − Z)−1 in the expansions of I
(k)
µ and Ĩ

(k)
µ .

Hence, we use equations (4.2.16) - (4.2.21), as higher order terms present in the more

general expansions, given by equation (4.2.6) and equation (4.2.15), give vanishing

contributions to G(TV,1), G(TV,2), and G(TV,5) in this large-distance limit.

The method involved in finding each function G(TV,k), for k = 1, 2, 5, is the same:

we write the relevant function G(TV,k) in terms of the functions I
(k)
µ and Ĩ

(k)
µ , as is

presented in Section 4.1. Using the relations from Section 4.2, given by equations

(4.2.17) and (4.2.21), the function Ĩ
(k)
µ is eliminated from the expression for the large-

Z behaviour of G(TV,k). We then evaluate the remaining terms, involving I
(k)
µ only, in

the limit |Z| → ∞.
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Using this method, we find that

G(TV,1) =− 2

n− 1

Γ(n− 1)

Γ
(
n
2

) [
−2n− 3

n− 1
+Q

(
n− 1

2
, 1

)
+ log

(
1− Z

2

)]
+

α

n+ 1

Γ(n− 1)

Γ
(
n
2

) [
−n− 3

n− 1
+ 2Q

(
n− 1

2
, 1

)
+ 2 log

(
1− Z

2

)]
+O(Z−1) +O(Z−1 logZ) , (4.4.1)

G(TV,2) =
2

n− 1

Γ(n− 1)

Γ
(
n
2

) [
−2n− 3

n− 1
+Q

(
n− 1

2
, 1

)
+ log

(
1− Z

2

)]
+

α

n+ 1

Γ(n− 1)

Γ
(
n
2

) [
3n− 5

n− 1
− 2Q

(
n− 1

2
, 1

)
− 2 log

(
1− Z

2

)]
+O(Z−1) +O(Z−1 logZ) , (4.4.2)

G(TV,5) =
Γ(n− 1)

Γ
(
n
2

) [
−2n− 3

n− 1
+Q

(
n− 1

2
, 1

)
+ log

(
1− Z

2

)]
+ α

n− 1

n+ 1

Γ(n− 1)

Γ
(
n
2

) [
n− 5

2(n− 1)
−Q

(
n− 1

2
, 1

)
− log

(
1− Z

2

)]
+O(Z−1) +O(Z−1 logZ) , (4.4.3)

where the following recurrence relations for Q(µ, k), defined by equation (4.2.11) in

Section 4.2, have been used to simplify the expressions:

Q(µ, k + 1) = Q(µ, k)− 1

g(µ, k)
, (4.4.4)

Q

(
n+ 1

2
, k + 1

)
= Q

(
n− 1

2
, k

)
+

2

n− 1
. (4.4.5)

As a check, it can be seen that the logarithmic divergence does indeed vanish when

α = n+1
n−1 . Additionally, it can be seen that Q

(
3
2 , 1
)

= 2, which is used to verify that,

when n = 4, our result is in agreement with the result of [2].

The calculation of the large-distance behaviour of the remaining two terms in the

propagator is slightly more involved. This is for a couple of reasons. First, as can be

seen by equations (4.1.20) and (4.1.21) in Section 4.1, G(TV,3) and G(TV,4) are more

complicated than the other three functions. Second, we must work to higher than

leading order in the series expansion of the hypergeometric function. This is because the

functions I
(k)
µ and Ĩ

(k)
µ are multiplied by third and fourth powers of Z, so contributions

from the higher order terms in the expansions of I
(k)
µ and Ĩ

(k)
µ , given by equations (4.2.6)

and (4.2.15), respectively, no longer vanish in the limit |Z| → ∞. We therefore use

equation (4.2.15), in order to write Ĩ
(k)
µ in terms of I

(k)
µ , instead of the simpler relations

used in the calculation of the large-distance behaviour of G(TV,1), G(TV,2), and G(TV,5).
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We follow the same basic method as outlined earlier: we write the relevant function

G(TV,k) in terms of the functions I
(k)
µ and Ĩ

(k)
µ , as is presented in Section 4.1. Equation

(4.2.15) is used to rewrite all terms involving Ĩ
(k)
µ in terms of I

(k)
µ only. The limit

|Z| → ∞ is taken, to see that

G(TV,3) =
2(n− 2)

n− 1

Γ(n− 1)

Γ
(
n
2

) [
−2n− 3

n− 1
+Q

(
n− 1

2
, 1

)
+ log

(
1− Z

2

)]
+

2α

n+ 1

Γ(n− 1)

Γ
(
n
2

) [
(n− 1)Z − n2 + 7n− 10

2(n− 1)
− (n− 2)Q

(
n− 1

2
, 1

)
−(n− 2) log

(
1− Z

2

)]
+O(Z−1) +O(Z−1 logZ) ,

(4.4.6)

G(TV,4) =
Γ(n− 1)

Γ
(
n
2

) [
−2n− 3

n− 1
+Q

(
n− 1

2
, 1

)
+ log

(
1− Z

2

)]
+α

n− 1

n+ 1

Γ(n− 1)

Γ
(
n
2

) [
1

2
Z +

n− 5

2(n− 1)
−Q

(
n− 1

2
, 1

)
− log

(
1− Z

2

)]
+O(Z−1) +O(Z−1 logZ) , (4.4.7)

where equations (4.4.4) and (4.4.5) have been used to write the large-distance limits in

this form. As was found for G(TV,1), G(TV,2), and G(TV,5), the logarithmic divergence

vanishes for α = n+1
n−1 , and the linear divergence vanishes in the Landau gauge, α = 0.

When n = 4, our results agree with [2].

Using the large-distance limits found for all functions G(TV,k), it can be seen that

the relations between the functions G(TV,k) in Section 4.1, given by equations (4.1.23)

and (4.1.24), also hold in the |Z| → ∞ limit.

In summary, the large-distance behaviour of the propagator is found to be

4ab:a′b′ =
2Λ

n− 1

[
1− αn− 1

n+ 1

] [
− gabga′b′ + [gabna′nb′ + ga′b′nanb]

+(n− 2)nanbna′nb′ + 2(n− 1)n(agb)(a′nb′)

+(n− 1)ga(a′gb′)b
]

log

(
1− Z

2

)
+

2αΛ(n− 1)

n+ 1

[
nanbna′nb′ + n(agb)(a′nb′)

]
Z + ΛCab:a′b′

+O(Z−1) +O(Z−1 logZ) , (4.4.8)

where

Λ =
Hn−2

(4π)
n
2

Γ(n− 1)

Γ
(
n
2

) , (4.4.9)
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and the constant tensor

Cab:a′b′ =

[
2n− 3

n− 1
−Q

(
n− 1

2
, 1

)][
2

n− 1
[gabga′b′ − [gabna′nb′ + ga′b′nanb]]

−2(n− 2)

n− 1
nanbna′nb′ − 4n(agb)(a′nb′)

−2ga(a′gb′)b

]
+

α

n+ 1

[ [
−n− 3

n− 1
+ 2Q

(
n− 1

2
, 1

)]
gabga′b′

+

[
3n− 5

n− 1
− 2Q

(
n− 1

2
, 1

)]
[gabna′nb′ + ga′b′nanb]

−
[
n2 + 7n− 10

n− 1
+ 2(n− 2)Q

(
n− 1

2
, 1

)]
nanbna′nb′

+

[
(n− 5)− 2(n− 1)Q

(
n− 1

2
, 1

)]
[2n(agb)(a′nb′) + ga(a′gb′)b]

]
.

(4.4.10)

In equation (4.4.8), we have grouped terms according to their dependence on Z, which

will be of use in the next chapter.

4.5 Discussion

In this chapter we have found the large-distance limit of the covariant graviton propa-

gator in de Sitter spacetime. The propagator is found to be linearly divergent in this

limit, in a general gauge such that α 6= 0. It is logarithmically divergent in the Landau

gauge, which corresponds to α = 0. From the conclusions of [2], these results were

expected. In the next chapter, we look to find a gauge transformation to render the

graviton two point function IR finite.
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Chapter 5

Pure gauge form of the covariant gravi-

ton propagator

In this chapter we focus on the logarithmic divergence of the covariant graviton two-

point function in the Landau gauge. As in the previous chapter, we work in de Sitter

spacetime. We expect that this divergence can be written in pure gauge form. We

attempt to use a covariant gauge transformation to remove this divergence, and al-

though we find this not to be possible, it leads to the interesting conclusion that the

logarithmic divergence can only be traded for a linear one. It is, however, possible to

remove this divergence if a non-covariant gauge transformation is used, and we find

such a transformation at the end of the chapter. From the results of [5], where the

physical graviton two-point function was found to be well behaved in the IR, we expect

to be able to find such a gauge transformation. In n = 4 dimensions, the growing large-

distance contribution of the graviton propagator has been written in pure gauge form,

in [4]. In order to show that this is not merely a feature of the n = 4 dimensional field

theory, and is not specific to the TTS gauge, we explicitly find a gauge transformation

such that the large-distance growth of the covariant graviton propagator vanishes.

5.1 Preliminaries

In this section we state the large-distance limit of the propagator, in the Landau gauge.

Additionally, we review the form that the gauge freedom, originally seen in Chapter 2,

takes. As in the previous chapter, unless otherwise stated, all functions are assumed

to be functions of Z.

In the Landau gauge, the large-distance limit of the propagator, which is found by
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setting α = 0 in equation (4.4.8), is

4ab:a′b′ = Λ log

(
1− Z

2

)[
2

n− 1
[−gabga′b′ + gabna′nb′ + ga′b′nanb]

+
2(n− 2)

n− 1
nanbna′nb′ + 4n(agb)(a′nb′) + 2ga(a′gb′)b

]
+ΛC

(1)
ab:a′b′ +O

(
Z−1

)
+O

(
Z−1 logZ

)
. (5.1.1)

The n-dependent constant Λ is defined by equation (4.4.9) in the previous chapter, and

is repeated here for completeness:

Λ =
Hn−2

(4π)
n
2

Γ(n− 1)

Γ
(
n
2

) , (5.1.2)

and the constant tensor

C
(1)
ab:a′b′ =

[
2n− 3

n− 1
−Q

(
n− 1

2
, 1

)][
2

n− 1

[
gabga′b′ − [gabna′nb′ + ga′b′nanb]

−nanbna′nb′
]
− 4n(agb)(a′nb′)

−2ga(a′gb′)b

]
. (5.1.3)

As discussed in Chapters 1 and 2, we use a gauge transformation which corresponds

to the following change in the quantum operator

hab → hab +∇aξb +∇bξa , (5.1.4)

where ξa is also a quantum operator. As an aside, we note that, since the change in

the gauge alters the mode functions, when multiplied by the annihilation (or creation)

operator, as

aIh
(I)
ab → aIh

(I)
ab + aI

(
∇aξ̃(I)

b +∇bξ̃(I)
a

)
, (5.1.5)

the transformation vector ξa above is an operator in general. Then the two-point

function changes as:

〈0|hab(x)ha′b′(x
′)|0〉 →〈0|hab(x)ha′b′(x

′)|0〉+ 2∇(a〈0|ξb)(x)ha′b′(x
′)|0〉

+ 2∇(a′〈0|hab(x′)ξb′)(x)|0〉+ 4∇(a∇(a′〈0|ξb)(x)ξb′)(x
′)|0〉 ,

=〈0|hab(x)ha′b′(x
′)|0〉+ 2∇(aGb)a′b′(x, x

′) + 2∇(a′Gb′)ab(x, x
′) ,

(5.1.6)
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where

Gaa′b′(x, x
′) = 〈0|ξa(x)ha′b′(x

′)|0〉+∇(a′〈0|ξ|a|(x)ξb′)(x
′)|0〉 . (5.1.7)

This transformation leaves the two-point function of a local gauge-invariant tensor, for

example the linearised Weyl tensor, invariant, but leads to the following transformation

of the propagator:

4̃ab:a′b′ = 4ab:a′b′ − Gab:a′b′ , (5.1.8)

where

Gab:a′b′ = 2∇(aGb)a′b′ + 2∇(a′Gb′)ab . (5.1.9)

The tensor Gba′b′ is symmetric under the exchange of a′ ↔ b′, and we initially require

that ga
′b′Gaa′b′ = 0. In the following section, we find the only transformation of this

kind that could remove the logarithmic divergence, which leads to some interesting

consequences.

We conclude this section with a brief review of the de Sitter invariant Z. This is

originally defined in conformal coordinates in equation (3.1.5), which we repeat here

for convenience:

Z = 1− ||x− x′||2 − (η − η′)2

2ηη′
. (5.1.10)

As discussed in Chapter 3, Z → −∞ when the spacelike distance between two points

is large, and at large timelike separations Z →∞.

5.2 Covariant gauge transformation to remove logarithmic diver-

gence

In this section, we show that it is not possible to use a covariant gauge transformation to

remove the logarithmic divergence present in the large-distance limit of the propagator,

in the Landau gauge. Specifically, we show that it is not possible to find a covariant

gauge transformation of the form described in the previous section such that 4̃ab:a′b′

tends to, at most, order Z0 as |Z| → ∞.

The gauge transformation is given by equation (5.1.9), which we repeat here for

clarity:

4̃ab:a′b′ = 4ab:a′b′ −
∑
i

G(i)
ab:a′b′ , (5.2.1)

where we now consider a sum of terms of the form given in equation (5.1.9). We require

that

G(i)
ab:a′b′ = 2∇(aG

(i)
b)a′b′ + 2∇(a′G

(i)
b′)ab , (5.2.2)

where

G
(i)
aa′b′ = f (i)(Z)T

(i)
ba′b′ , (5.2.3)
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and ga
′b′T

(i)
ba′b′ = 0. Additionally, as discussed at the end of the previous section, we

require that G
(i)
ba′b′ is symmetric under the exchange of a′ ↔ b′. We now show that there

is no transformation of this form such that the logarithmic divergence of the graviton

propagator is removed.

The only bitensors with the symmetries described in the previous paragraph are

ga′b′na, nana′nb′ , and ga(a′nb′). The most general combination of these is

T
(i)
aa′b′ = αiga′b′na + βinana′nb′ + γiga(a′nb′) , (5.2.4)

for αi, βi, and γi constants. In order to ensure that we have a traceless tensor, we

impose the additional condition

αin+ βi − γi = 0 . (5.2.5)

From the definition of G(i)
ab:a′b′ , given in equation (5.2.2), we see that it is useful to

denote the fully symmetric combination of the derivative of the tensor T
(i)
aa′b′ to be

T (i)
ab:a′b′ = 2∇(aT

(i)
b)a′b′ + 2∇(a′T

(i)
b′)ab . (5.2.6)

Using T
(i)
aa′b′ , as defined in equation (5.2.4), we find this to be

T (i)
ab:a′b′ =4αiAgabga′b′ + [2A(−αi + βi − γi)− 2γiC] [gabna′nb′ + ga′b′nanb]

+ 4βi(2C −A)nanbna′nb′ + [8βiC − 4γiA]n(agb)(a′nb′) + 4γiCga(a′gb′)b ,

(5.2.7)

where the following relations from [88] have been used:

∇anb = A(gab − nanb) , (5.2.8)

∇anb′ = C(gab′ + nanb′) , (5.2.9)

∇agbc′ = −(A+ C)(gabnc′ + gac′nb) , (5.2.10)

for

A =
HZ√
1− Z2

, (5.2.11)

C = − H√
1− Z2

, (5.2.12)

where, again, we suppress the argument of these functions. The gauge transformation,
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defined by equation (5.2.2), is

G(i)
ab:a′b′ = −2H

√
1− Z2f (i)′(Z)

[
n(aT

(i)
b)a′b′ + n(a′T

(i)
b′)ab

]
+ T (i)

ab:a′b′f
(i)(Z) , (5.2.13)

which, from the definition of T
(i)
aa′b′ given by equation (5.2.4), can be seen to be

G(i)
ab:a′b′ = −2H

√
1− Z2f (i)′(Z)

[
αi[gabna′nb′ + ga′b′nanb] + 2βinanbna′nb′

+ 2γin(agb)(a′nb′)

]
+ T (i)

ab:a′b′f
(i)(Z) . (5.2.14)

Using the expression for T (i)
ab:a′b′ given by equation (5.2.7), we find that the gauge trans-

formation, in terms of the functions f (i), and the constants, αi, βi, and γi, is

G(i)
ab:a′b′ =− 2

[
H
√

1− Z2αif
(i)′(Z) + [αi(n+ 1)A+ γiC] f (i)

]
[gabna′nb′ + ga′b′nanb]

+ 4βi

[
−H

√
1− Z2f (i)′(Z) + (2C −A)f (i)

]
nanbna′nb′

+ 4
[
−H

√
1− Z2γif

(i)′(Z) + [2βiC − γiA]f (i)
]
n(agb)(a′nb′)

+ 4γiCf
(i)ga(a′gb′)b + 4αiAf

(i)gabga′b′ . (5.2.15)

We now have a general transformation of the form in equation (5.2.2). We now find

the transformed propagator, as given in equation (5.2.1). We look to find functions

f (i)(Z), along with values of the constants αi, βi, and γi, such that the divergence in

the propagator, given in equation (5.1.1), is removed.

It is immediately obvious that any contribution proportional to gabga′b′ or ga(a′gb′)b

must come from the final term in equation (5.2.14). We first write the logarithmic

divergence of the coefficient of the ga(a′gb′)b term in the propagator in pure gauge form.

Comparing the coefficient of ga(a′gb′)b in the above equation with the coefficient of

ga(a′gb′)b in equation (5.1.1), we see that we must set

f (1)(Z) = − Λ

2γ1H

√
1− Z2 log

(
1− Z

2

)
, (5.2.16)

α1 = 0 , (5.2.17)

β1 = 1 , (5.2.18)

γ1 = 1 . (5.2.19)

The constants α1, β1, and γ1 are consistent with the condition, given by equation

(5.2.5), imposed to ensure that the transformation Gaa′b′ is traceless. The transforma-
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tion is

G(1)
ab:a′b′ =4Λ

[
−1 + Z

2
+ log

(
1− Z

2

)]
[nanbna′nb′ + n(agb)(a′nb′)]

+ Λ log

(
1− Z

2

)[
−[gabna′nb′ + ga′b′nanb] + ga(a′gb′)b

]
, (5.2.20)

which changes the propagator as follows:

4̃ab:a′b′ =4ab:a′b′ −G
(1)
ab:a′b′ ,

=
Λ

n− 1
log

(
1− Z

2

)[
− 2gabga′b′ + (n+ 1)[gabna′nb′ + ga′b′nanb]

]
+ 2Λ

[
(1 + Z)− n

n− 1
log

(
1− Z

2

)]
nanbna′nb′ + 2Λ(1 + Z)n(agb)(a′nb′)

+O
(
Z−1

)
+O

(
Z−1 logZ

)
. (5.2.21)

We now use the same method to write the logarithmic divergence of the coefficient

of the gabga′b′ term in the propagator in pure gauge form. As the transformation

described by equation (5.2.20) has no term proportional to gabga′b′ , we are free to just

compare the coefficient of gabga′b′ in equation (5.2.15) with the coefficient of gabga′b′ in

equation (5.1.1). From this, we see we must set

f (2)(Z) = − Λ

2α2(n− 1)H

√
1− Z2

Z
log

(
1− Z

2

)
, (5.2.22)

β2 = −nα2 , (5.2.23)

γ2 = 0 . (5.2.24)

Again, α1, β1, and γ1 are consistent with condition (5.2.5), which imposes the traceless

condition. In the limit |Z| → ∞,

G(2)
ab:a′b′ =

Λ

n− 1
log

(
1− Z

2

)[
− 2gabga′b′ + (n+ 1)[gabna′nb′ + ga′b′nanb]

−2nnanbna′nb′
]

+ΛC
(5)
ab:a′b′ +O(Z−1) +O

(
Z−1 logZ

)
, (5.2.25)

and

C
(5)
ab:a′b′ = − 1

n− 1
[gabna′nb′ + ga′b′nanb] +

2n

(n− 1)
nanbna′nb′ . (5.2.26)
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In the large-distance limit, the transformed propagator then becomes

4̃ab:a′b′ =4ab:a′b′ −G
(1)
ab;a′b′ − G

(2)
ab:a′b′ ,

=2ΛZ[nanbna′nb′ + n(agb)(a′nb′)] + ΛC
(2)
ab:a′b′ +O

(
Z−1

)
+O

(
Z−1 logZ

)
,

(5.2.27)

where

C
(2)
ab:a′b′ = C

(1)
ab:a′b′ − C

(5)
ab:a′b′ , (5.2.28)

and the constant tensor C
(1)
ab:a′b′ is defined in equation (5.1.3).

By comparison of coefficients in the logarithmically divergent terms of the prop-

agator with coefficients of equation (5.2.15), we see that the only possible form that

the functions f (1)(Z) and f (2)(Z) can take are those given by equations (5.2.16) and

(5.2.22). We conclude that, when using a gauge transformation of the form given by

equation (5.2.1), we can only trade the logarithmic divergence for a linear one. In-

terestingly, this is the same linear divergence that appears when one considers the

large-distance limit for the propagator when α = n+1
n−1 . Hence, we can apply any con-

clusions reached about the large-distance behaviour of the propagator in the Landau

gauge to the large-distance behaviour of the propagator in the gauge where α = n+1
n−1 .

In the next section, we show that there is no covariant gauge transformation of the

form described by equation (5.1.8) that removes the linear divergence in the propagator,

given in equation (5.2.27), shown in this section to be equivalent to the logarithmic

divergence in the propagator, given in equation (5.1.1).

5.3 Covariant gauge transformation: No-go theorem

In this section we show that the linear divergence in the transformed propagator, found

at the end of Section 5.2, can not be written in pure gauge form by using the covariant

gauge transformation outlined in the previous section. This suggests that the linear

and logarithmic divergences can be traded, but not simultaneously removed.

We consider a transformation of the form given by equation (5.1.9), where we take

the general tensor

Gaa′b′ = α̃(Z)ga′b′na + β̃(Z)nana′nb′ + γ̃(Z)ga(a′nb′) , (5.3.1)

and no longer require that this tensor is traceless - so we no longer require the functions

α̃(Z), β̃(Z), and γ̃(Z) to satisfy equation (5.2.5). The fully symmetric combination of
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covariant derivative of this tensor, introduced in equation (5.1.9), is

Gab:a′b′ = 4Aα̃(Z)gabga′b′ +
[
2A(−α̃(Z) + β̃(Z)− γ̃(Z))− 2Cγ̃(Z)

−2H
√

1− Z2α̃′(Z)
]
[gabna′nb′ + ga′b′nanb]

+
[
4(2C −A)β̃(Z)− 4H

√
1− Z2β̃′(Z)

]
nanbna′nb′

+
[
8Cβ̃(Z)− 4Aγ̃(Z)− 4H

√
1− Z2γ̃′(Z)

]
n(agb)(a′nb′)

+4Cγ̃(Z)ga(a′gb′)b , (5.3.2)

where the functions A and C are defined in the previous section, by equations (5.2.11)

and (5.2.12), respectively.

We now find the transformed propagator

4̄ab:a′b′ = 4̃ab:a′b − Gab:a′b′ , (5.3.3)

where 4̃ab′a′b′ is given by equation (5.2.27). It is convenient to rescale the functions

g̃(Z) = α̃(Z), β̃(Z), or γ̃(Z), such that

g(Z) =
H√

1− Z2
g̃(Z) . (5.3.4)

By differentiating the above equation, it can be seen that

H
√

1− Z2g̃′(Z) = (1− Z2)g′(Z)− Zg(Z) . (5.3.5)

In terms of the scaled functions, equation (5.3.2) becomes

Gab:a′b′ =4Zα(Z)gabga′b′

+ 2
[
Z(β(Z)− γ(Z)) + γ(Z)− (1− Z2)α′(Z)

]
[gabna′nb′ + ga′b′nanb]

− 4
[
2β(Z) + (1− Z2)β′(Z)

]
nanbna′nb′

− 4
[
2β(Z) + (1− Z2)β(Z)

]
n(agb)(a′nb′) − 4γ(Z)ga(a′gb′)b . (5.3.6)

We now show that there are no functions α(Z), β(Z), and γ(Z) such that the

transformed propagator 4̄ab:a′b′ is, at most, of order Z0 in the limit |Z| → ∞. Requiring

that 4̄ab:a′b′ is constant in Z is equivalent to the condition that, as |Z| → ∞,

Gab:a′b′ → 4̃ab:a′b′ + Cab:a′b′ , (5.3.7)
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for a constant tensor

Cab:a′b′ =c1gabga′b′ + c2[gabna′nb′ + ga′b′nanb] + c3nanbna′nb′ + c4n(agb)(a′nb′)

+ c5ga(a′gb′)b +O(Z−1) , (5.3.8)

where ci are constants. Looking at equation (5.3.7) component-wise, we see that we

must simultaneously satisfy the following equations:

Zα(Z)→ c1 , (5.3.9)

Z(β(Z)− γ(Z)) + γ(Z)− (1− Z2)α′(Z)→ c2 , (5.3.10)

−2β(Z)− (1− Z2)β′(Z)→ 1

2
ΛZ + c3 , (5.3.11)

−2β(Z)− (1− Z2)γ′(Z)→ 1

2
ΛZ + c4 , (5.3.12)

γ(Z)→ c5 . (5.3.13)

We now show that equations (5.3.9) - (5.3.13) can not simultaneously be satisfied.

By subtracting equation (5.3.11) from equation (5.3.12), we see that, as |Z| → ∞,

(1− Z2)(β′(Z)− γ′(Z))→ c4 − c3 . (5.3.14)

Integrating this, before taking the limit |Z| → ∞, gives

β(Z)− γ(Z)→ (c4 − c3)

∫ Z dZ

1− Z2
=
c4 − c3

2
log

∣∣∣∣Z + 1

Z − 1

∣∣∣∣+ c6 → c6 , (5.3.15)

where c6 is a constant of integration. Using the expression given for γ(Z) given in

equation (5.3.13), we conclude that

β(Z)→ c5 + c6 . (5.3.16)

We now use this limiting value for the function β(Z) in equation (5.3.12) to find a

contradiction with equation (5.3.13). Equation (5.3.12) becomes

(Z2 − 1)γ′(Z)→ 2ΛZ + c4 + 2(c5 + c6) . (5.3.17)

Integrating this gives

γ(Z)→ Λ log(Z2 − 1) + (c4 + 2(c5 + c6))

∫ Z dZ

Z2 − 1
→ Λ log(Z2 − 1) + c7 , (5.3.18)

where c7 is another integration constant. This is in contraction with the limiting value
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of γ(Z) as found in equation (5.3.13). We therefore conclude that it is not possible

to find a covariant gauge transformation to remove the logarithmic divergence of the

propagator. However, in the next section, we show that this divergence can be gauged

away non-covariantly, as is expected from the results of [4].

5.4 Non-covariant gauge transformation

In this section we show we can write the logarithmic divergence of the graviton prop-

agator in the Landau gauge in pure gauge form, in a non-covariant manner, for large

spacelike and timelike separations separately.

Before we look at such a non-covariant gauge transformation, we write the propaga-

tor in a more convenient form. This is achieved by using a covariant gauge transforma-

tion of the form given by equation (5.1.8) in Section 5.1. As in the previous section, we

relax the traceless condition, so no longer require equation (5.2.5) to hold, and consider

Gaa′b′ =
Λ

2iH(n− 1)
log

(
1− Z

2

)[
ga′b′na + (2n− 3)nana′nb′ + 2(n− 1)ga(a′nb′)

]
,

(5.4.1)

for Λ defined by equation (4.4.9). In the notation of Section 5.2, to find the gauge

transformation Gab:a′b′ we substitute

f(Z) =
Λ

2iH(n− 1)
log

(
1− Z

2

)
, (5.4.2)

α = 1 , (5.4.3)

β = (2n− 3) , (5.4.4)

γ = 2(n− 1) , (5.4.5)

into equation (5.2.15). In the limit |Z| → ∞, this gives

Gab:a′b′ =2Λ

[
1

n− 1
[−gabga′b′ + (2n− 3)nanbna′nb′ ] + 2n(agb)(a′nb′)

]
log

(
1− Z

2

)
+ ΛC

(3)
ab:a′b′ +O

(
Z−1

)
+O

(
Z−1 logZ

)
, (5.4.6)

where

C
(3)
ab:a′b′ =

2

n− 1
[gabna′nb′ + ga′b′nanb] +

4(2n− 3)

n− 1
nanbna′nb′ + 8n(agb)(a′nb′) . (5.4.7)
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The transformed propagator is

4̃ab:a′b′ =4ab:a′b′ −Gab:a′b′ ,

=2Λ[−nanbna′nb′ + ga(a′gb′)b] log

(
1− Z

2

)
+ ΛC

(4)
ab:a′b′ +O

(
Z−1

)
+O

(
Z−1 logZ

)
, (5.4.8)

where4ab:a′b′ is the graviton propagator in the Landau gauge, given by equation (5.1.1),

and

C
(4)
ab:a′b′ = C

(1)
ab:a′b′ − C

(3)
ab:a′b′ , (5.4.9)

where the constant tensor C
(1)
ab:a′b′ is defined in equation (5.1.3).

We now write this propagator in terms of conformal coordinates, (η,x), before

finding a non-covariant gauge transformation to remove the logarithmic divergence. In

what follows, we neglect terms of order Z0, as the constant term, C
(4)
ab:a′b′ has no effect

on the final result. We therefore neglect it for the rest of the section. Purely spatial

indices are denoted by i, j, k, and the index 0 refers to conformal time.

The propagator, given by equation (5.4.8), is composed of the bivectors na and gaa′ ,

defined in Section 3.1. These can be expressed in terms of Z as follows:

na(x, x
′) = − 1

H
√

1− Z2
∂aZ(x, x′) , (5.4.10)

gaa′(x, x
′) =

1

H2

[
∂a∂a′Z(x, x′)− 1

1 + Z(x, x′)
∂aZ(x, x′) · ∂a′Z(x, x′)

]
. (5.4.11)

Equation (5.4.10) is found from the definitions of Z and na, given by equation (3.1.5)

and equation (3.1.8), respectively. The expression for gaa′(x, x
′) can be found using

equation (5.2.9), repeated here for clarity:

∇a′na = − H√
1− Z2

[gaa′ + nana′ ] . (5.4.12)

Combined with the latter result for na, this gives equation (5.4.11). We now write these

bivectors in terms of the conformal coordinates, and define r2 = ||x−x′||2, ri = xi−x′i,
and ri′ = x′i − xi, so that ri′ = −ri. In terms of these quantities,

Z(η, r) = 1− r2 − (η − η′)2

2ηη′
, (5.4.13)
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and it can be seen that

∂0Z(η, r) =
r2 + η2 − η′2

2η2η′
, (5.4.14)

∂0′Z(η, r) =
r2 − η2 + η′2

2ηη′2
, (5.4.15)

∂iZ(η, r) = −∂i′Z(η, r) = − 1

ηη′
ri . (5.4.16)

Additionally,

∂0∂0′Z(η, r) = −r
2 + η2 + η′2

2η2η′2
, (5.4.17)

∂0∂i′Z(η, r) = − 1

η2η′
ri , (5.4.18)

∂i∂0′Z(η, r) =
1

ηη′2
ri , (5.4.19)

∂i∂i′Z(η, r) =
1

ηη′
δii′ . (5.4.20)

It can then be seen that the components of the tangent vector are

n0 = − r2 + η2 − η′2

Hη
√

4η2η′2 − (η2 + η′2 − r2)2
, (5.4.21)

n0′ = − r2 − η2 + η′2

Hη′
√

4η2η′2 − (η2 + η′2 − r2)2
, (5.4.22)

ni =
2ri

H
√

4η2η′2 − (η2 + η′2 − r2)2
, (5.4.23)

ni′ = − 2ri

H
√

4η2η′2 − (η2 + η′2 − r2)2
, (5.4.24)

and the components of the parallel propagator are

g00′ = − 1

H2ηη′
r2 + (η + η′)2

(η + η′)2 − r2
, (5.4.25)

gij′ =
2

H2ηη′
rirj

(η + η′)2 − r2
+

1

H2ηη′
δij′ , (5.4.26)

g0i′ = − 2

H2ηη′
η + η′

(η + η′)2 − r2
ri , (5.4.27)

gi0′ =
2

H2ηη′
η + η′

(η + η′)2 − r2
ri . (5.4.28)

We use these components to find the propagator, defined by equation (5.4.8), in the

large-distance limit.
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We first scale the graviton mode functions hab such that

hab → a−2(η)hab , (5.4.29)

where, for de Sitter spacetime, a2(η) = 1
(−Hη)2

. This rescales the propagator in the

following way:

4′ab:a′b′(x, x′) = H4η2η′2 4ab:a′b′ (x, x
′)(x, x′) , (5.4.30)

so in the following all scaled propagators will be denoted by a prime. We consider the

following diffeomorphism of the rescaled mode functions, as discussed in Section 1.8,

δξ(x,x′)hab(x, x
′) = ∂aξb(x, x

′) + ∂bξa(x, x
′)− 2Haηabξ0(x, x′) , (5.4.31)

which transforms the rescaled propagator, given by equation (5.4.30), in the following

way,

4̄′ab:a′b′(x, x′) = 4̃′ab:a′b′(x, x′)−Bab:a′b′(x, x′) , (5.4.32)

where

Bab:a′b′(x, x
′) =2∂(aAb)a′b′(x, x

′) + 2∂(a′Ab′)ab(x, x
′) +

2

η
ηabA0a′b′(x, x

′)

+
2

η′
ηa′b′A0′ab(x, x

′) , (5.4.33)

for

Aba′b′ = ∂(a′
〈
0|ξ|b|ξb′)|0

〉
+Ha(η′) 〈0|ξbξ0′ηa′b′ |0〉 , (5.4.34)

where Aaa′b′ = Aab′a′ . The components Aaa′b′ will be given later in this section. We note

the similarity between this non-covariant gauge transformation, and the one considered

in the covariant case, defined by equation (5.1.9).

We first find the transformed propagator in the Z → −∞ limit. As stated in Section

3.1, this limit corresponds to the limit r → ∞. In the large-r limit, the propagator,

given by equation (5.4.8), has only two non-vanishing components: 4̃′0i:0′j′(x, x′), and

4̃′ij:k′l′(x, x′). By this, we mean that all other components are of order, at most, O(r0).

These two non-vanishing components are

4̃′0i:0′j′(x, x′) =4Λ
rirj′

r2
log r + 2Λδij′ log r +O(r0) +O

(
r−1 log(r)

)
, (5.4.35)

4̃′ij:k′l′(x, x′) =16Λ
rirjrk′rl′

r4
log r + 4Λ

[
δik′rjrl′ + δil′rjrk′ + δjk′rirl′ + δjl′rirk′

r2

]
log r

+ 2Λ
[
δik′δjl′ + δil′δjk′

]
log r +O(r0) +O

(
r−1 log(r)

)
. (5.4.36)

We now find a transformation Bab:a′b′ such that we can write these components in pure
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gauge form. To do this, we take

Ajk′l′(x, x
′) = −2Λ

rjrk′rl′

r2
log r − 1

2
Λ
[
δjk′rl′ log r + δjl′rk′ log r

]
, (5.4.37)

Ajk′0′(x, x
′) = −2Λ(η′ − η)

rjrk′

r2
log r − Λ(η′ − η)δjk′ log r , (5.4.38)

A0k′l′(x, x
′) = 2Λη

rk′rl′

r2
log r , (5.4.39)

Aj0′0′(x, x
′) = A0k′0′(x, x

′) = A00′0′(x, x
′) = 0 . (5.4.40)

It can be seen, from the definition of Baba′b′ , given by equation (5.4.33), that

B0i:0′j′(x, x
′) =4Λ

rirj′

r2
log r + 2Λδij′ log r , (5.4.41)

Bij:k′l′(x, x
′) =16Λ

rirjrk′rl′

r4
log r + 4Λ

[
δik′rjrl′ + δil′rjrk′ + δjk′rirl′ + δjl′rirk′

r2

]
log r

+ 2Λ
[
δik′δjl′ + δil′δjk′

]
log r + Λcij:k′l′(x, x

′) , (5.4.42)

where

cij:k′l′(x, x
′) = −8

rirjrk′rl′

r4
−
δil′rjrk′ + δjl′rirk′ + δik′rjrl′ + δjk′rirl′

r2
. (5.4.43)

Hence

B0i:0′j′(x, x
′) = 4̃′0i:0′j′(x, x′) +O(r0) +O

(
r−1 log(r)

)
, (5.4.44)

Bij:k′l′(x, x
′) = 4̃′ij:k′l′(x, x′) +O(r0) +O

(
r−1 log(r)

)
. (5.4.45)

We conclude that we can write the divergent components of the propagator in pure

gauge form. We now show a transformation of this form does not introduce additional

divergences in other, formerly vanishing, components of the propagator. It can be seen

from the definition of Bab:a′b′ that

B00:0′0′(x, x
′) = B00:0′i′(x, x

′) = B0i:0′0′(x, x
′) = B00:i′j′(x, x

′) = Bij:0′0′(x, x
′) = 0 .

(5.4.46)

The final two components are non-zero, but as

B0i:i′j′(x, x
′) = Bij:i′0′(x, x

′) = O
(
r−1 log(r)

)
, (5.4.47)

no new divergences have been introduced.

In summary, in the limit Z → −∞, we find the transformed propagator, from
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equation (5.4.32), to be

4̄′ab:a′b′(x, x′) = 4̃′ab:a′b′(x, x′)−Bab:a′b′(x, x′)→ c−ab:a′b′ , (5.4.48)

for the tensor c−ab:a′b′ = O(r0), and for the components of Bab:a′b′(x, x
′) given by equa-

tions (5.4.44), (5.4.45), (5.4.46), and (5.4.47).

Finally, we find the transformed propagator in the Z → ∞ limit. As stated in

Section 3.1, this limit is equivalent to the limit η → 0, for fixed η′, which corresponds

to future timelike infinity. For simplicity, we take this limit when xi → xi′ , giving

the additional condition that ri, ri′ → 0. Without loss of generality, the two points

can be arranged so that xi = xi′ using the de Sitter transformation if the two points

becomes separated by infinite timelike distance. In this limit, the propagator, defined

in equation (5.4.8), has only two logarithmically divergent components:

4̃′0i:0′j′(x, x′) =
1

2
δij′ log η +O(η0) +O(η log η) , (5.4.49)

4̃′ij:k′l′(x, x′) = −1

2

(
δik′δjl′ + δil′δjk′

)
log η +O(η0) +O(η log η) . (5.4.50)

Again, we find a transformation Bab:a′b′ such that we can write these components

in pure gauge form. Taking

Ajk′l′(x, x
′) =

1

8

[
δjk′rl′ + δjl′rk′

]
log η , (5.4.51)

A0k′0′(x, x
′) = −1

4
rk′ log η , (5.4.52)

Ajk′0′(x, x
′) = Aj0′0′(x, x

′) = A0k′l′(x, x
′) = A00′0′(x, x

′) = 0 , (5.4.53)

we find that

B0i:0′j′(x, x
′) = 4̃′0i:0′j′(x, x′) +O(η0) +O(η log η) , (5.4.54)

Bij;k′l′(x, x
′) = 4̃′ij:k′l′(x, x′) +O(η0) +O(η log η) , (5.4.55)

as required. We now check that no other components of Bab:a′b′ introduce divergences.

As most components of Aaa′b′ are equal to zero, we immediately see that

B00:0′0′(x, x
′) = B00:i′j′(x, x

′) = Bij:0′0′(x, x
′) = 0 , (5.4.56)
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identically. The remaining components of Bab:a′b′ are

B00:0′i′(x, x
′) = − 1

2η
ri′ +

1

2η
ri′ log η → 0 , (5.4.57)

B0i:0′0′(x, x
′) =

1

2η′
ri log η → 0 , (5.4.58)

B0i:j′k′(x, x
′) =

1

8η

[
δij′rk′ + δik′rj′

]
− 1

2η′
δj′k′ri log η → 0 , (5.4.59)

Bij:k′0′(x, x
′) = − 1

2η
δijrk′ log η → 0 , (5.4.60)

where the final equalities are true as ri, ri′ → 0, as we work in the case when xi → xi′ .

In conclusion, we have not introduced any additional divergences to the transformed

propagator 4̄′ab:a′b′(x, x′) by using a transformation of this form.

In summary, in the limits r →∞ and η → 0, we find the transformed propagator,

from equation (5.4.32), to be

4̄′ab:a′b′(x, x′) = 4̃′ab:a′b′(x, x′)−Bab:a′b′(x, x′)→ c+
ab:a′b′ , (5.4.61)

for the tensor c+
ab:a′b′ = O(η0), and for the components of Bab:a′b′(x, x

′) given by equa-

tions (5.4.54) - (5.4.60).

In this section we have shown that the logarithmic divergence in the Landau gauge,

or indeed the linear divergence in the gauge where α = n+1
n−1 , can be removed using a

non-covariant gauge transformation.

5.5 Discussion

We expected that the logarithmic divergence of the graviton propagator, in the Landau

gauge, could be written in pure gauge form using a covariant gauge transformation.

However, when a transformation of this kind is used, the logarithmic divergence could

only be traded for a linear divergence identical to the one present in the large-distance

limit of the propagator in the case when α = n+1
n−1 . It was then shown that this linear

divergence could not be written in pure gauge form covariantly. However, as shown in

the final section, it is possible to non-covariantly gauge away the logarithmic divergence

in the Landau gauge. We note that this chapter provides consistency with the results

of [4], where a gauge transformation was found to remove the logarithmic behaviour of

the covariant graviton propagator in n = 4 dimensions.

118



Chapter 6

Conclusions and Outlook

In this thesis, we studied the IR divergences of propagators. Two different types of

IR divergences were investigated: when the propagator requires an IR regulator to

be well-defined, and when the propagator grows at large separations. Both types of

IR divergence manifest themselves in the same way, in that they tend to give a term

proportional to log(αr), for a separation r and an IR cut-off α. We summarise below

how we treated each type of divergence, before giving more detail on the results found

in each chapter of this thesis. Finally, a number of open problems relevant to the work

presented in this thesis are discussed.

Although it would appear to be necessary to introduce an IR cut-off to define the

graviton propagator in the TTS gauge, a gauge transformation was found such that it

was possible to render it IR finite, in a large class of FLRW spacetimes. Such a regulator

was therefore found not to be necessary. Indeed, there is no need for an IR cut-off to

define the covariant two-point function coming from the Euclidean propagator. To show

that the covariant graviton propagator experiences the second type of IR divergence

in de Sitter spacetime, whereas the covariant massless vector propagator does not,

we found the large-distance limits of these propagators. In the case of the graviton

two-point function, a gauge transformation was found to remove this divergence.

In Chapter 2, we studied the IR divergences of the graviton two-point function in

FLRW spacetime.In this chapter we initially consider the two point function in the

TTS gauge. Later in the chapter, when single-field inflation is incorporated, we work

in the gauge where the scalar perturbation vanishes. The two-point function was found

from the tensor and scalar perturbations in slow-roll single-field inflation. The tensor

and scalar, perturbations were written as a mode sum, where each mode function

was proportional to p−ν , in the IR limit. From a power counting argument, the two-

point function was found to be IR divergent for ν > n−1
2 , which is the case for most

applications. However, due to the equivalence between the graviton two-point function
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and the linearised Weyl tensor, in FLRW spacetime, it was expected that the terms in

the mode functions of order p0 and p could be written in pure-gauge form. It was shown

that this was indeed the case. Using a large-coordinate gauge transformation, we were

able to transform our mode functions such that they were proportional to p−ν+2. The

resulting two-point function is only IR divergent for ν > n+3
2 , which is the same range

of values for which the linearised Weyl tensor is IR divergent. Hence, the graviton

two-point function was found to be IR finite for a larger range of FLRW spacetimes

originally thought. To give an example of its use, this gauge transformation was applied

to a slow-roll inflationary universe. This transformation is equally applicable for an

arbitrary potential V (φ).

In Chapters 3 and 4, we focussed on the IR divergences resulting from the large-

distance separation of propagators, in de Sitter spacetime. In Chapter 3, the large-

distance behaviour of the covariant massless vector propagator was studied. In this

limit, the propagator is equal to a gauge-dependent constant. In the Landau gauge,

this constant vanishes. This method was extended, in Chapter 4, to find the large-

distance limit of the covariant graviton two-point function. This propagator was found

to experience both linear and logarithmic divergences. In the Landau gauge, the diver-

gence was found to be purely logarithmic, and in the case when the parameter α = n+1
n−1 ,

the divergence is linear. There is, however, no value of the parameters α, β, such that

these divergences simultaneously vanish.

Finally, in Chapter 5, we found a gauge transformation to remove the IR divergence

of the graviton propagator. In the previous chapter, it was found that the propagator

was, in the large-distance limit, logarithmically divergent, in the Landau gauge. By the

use of a covariant gauge transformation, it was found that this logarithmic divergence

can be traded for a linear one, but that it could not be removed. However, a non-

covariant gauge transformation was found such that the logarithmic divergence could

be removed.

We conclude by suggesting a number of open problems which might be of interest to

the reader. The first couple of these concern the results of Chapter 2. As mentioned at

the end of this chapter, there is no geometric explanation for the gauge transformation

used to remove the term proportional to p in the graviton mode functions. Finding

such an interpretation might give some reasoning on why our transformation takes the

form it does. Finally, it would be of interest to find a physical explanation as to why,

in Chapter 5, it was not possible to find a covariant gauge transformation to remove

the logarithmic divergence.
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