
Developing Efficient and Effective Intrusion Detection
System using Evolutionary Computation

Hasanen Alyasiri

PhD

University of York

Computer Science

November 2018

Abstract

The internet and computer networks have become an essential tool in distributed com-
puting organisations especially because they enable the collaboration between compo-
nents of heterogeneous systems. The efficiency and flexibility of online services have
attracted many applications, but as they have grown in popularity so have the num-
bers of attacks on them. Thus, security teams must deal with numerous threats where
the threat landscape is continuously evolving. The traditional security solutions are by
no means enough to create a secure environment, intrusion detection systems (IDSs),
which observe system works and detect intrusions, are usually utilised to complement
other defence techniques. However, threats are becoming more sophisticated, with at-
tackers using new attack methods or modifying existing ones. Furthermore, building
an effective and efficient IDS is a challenging research problem due to the environment
resource restrictions and its constant evolution. To mitigate these problems, we propose
to use machine learning techniques to assist with the IDS building effort.

In this thesis, Evolutionary Computation (EC) algorithms are empirically investigated
for synthesising intrusion detection programs. EC can construct programs for raising
intrusion alerts automatically. One novel proposed approach, i.e. Cartesian Genetic
Programming, has proved particularly effective. We also used an ensemble-learning
paradigm, in which EC algorithms were used as a meta-learning method to produce de-
tectors. The latter is more fully worked out than the former and has proved a significant
success. An efficient IDS should always take into account the resource restrictions of the
deployed systems. Memory usage and processing speed are critical requirements. We
apply a multi-objective approach to find trade-offs among intrusion detection capability
and resource consumption of programs and optimise these objectives simultaneously.
High complexity and the large size of detectors are identified as general issues with
the current approaches. The multi-objective approach is used to evolve Pareto fronts
for detectors that aim to maintain the simplicity of the generated patterns. We also
investigate the potential application of these algorithms to detect unknown attacks.

3

Contents

Abstract 3

List of Tables 9

List of Figures 10

Acknowledgements 13

Declaration 15

1 Introduction 17
1.1 Internet Environment . 17
1.2 The Security Problem . 19
1.3 Thesis Hypotheses . 21
1.4 Thesis Overview . 23

2 Intrusion Detection: Concepts and Related Work 25
2.1 Intrusion Detection System (IDS) . 25
2.2 Taxonomy of Intrusion Detection Systems 26

2.2.1 Deployment . 27
2.2.2 Detection Methods . 27
2.2.3 Machine Learning Techniques 28

2.3 Intrusion Detection System Performance Metrics 30
2.4 Related Work . 31
2.5 Discussion . 40
2.6 Conclusions . 41

3 Learning Techniques 43
3.1 Introduction to Evolutionary Computation 43

3.1.1 Genetic Programming (GP) . 45
3.1.2 Grammatical Evolution (GE) 49
3.1.3 Cartesian Genetic Programming (CGP) 52

5

3.1.4 Multi-objective Evolutionary Algorithms 54
3.1.4.1 Advantages of Pareto Front Based Approaches 56
3.1.4.2 Strength Pareto Evolutionary Algorithm (SPEA2) . . 57

3.2 Ensemble Learning . 58
3.3 Previous Work . 60
3.4 Evolutionary Computation: Why? . 66
3.5 Conclusions . 67

4 Datasets Acquisition for Building Intrusion Detection 69
4.1 Intrusion Detection Datasets . 69
4.2 Dataset Feature Extraction . 70
4.3 Feature Type used in our Experiments 71
4.4 Dataset Splitting for Learning Techniques 72
4.5 Datasets Description . 72

4.5.1 Kyoto 2006+ . 72
4.5.2 Phishing Websites Dataset . 73
4.5.3 UNSW-NB15 Dataset . 76
4.5.4 Modern DDoS Dataset . 80
4.5.5 CICIDS2017 Dataset . 82

4.6 Conclusions . 85

5 Performance Evaluation of Evolutionary Computation on Intrusion
Detection 87
5.1 Methodology Framework . 87
5.2 Application of Genetic Programming to Intrusion Detection 89
5.3 Application of Grammatical Evolution to Intrusion Detection 92
5.4 Application of Cartesian Genetic Programming to Intrusion Detection . 94
5.5 The Performance of Evolutionary Computation Techniques 97
5.6 Evolutionary Computation Techniques for Detecting Unknown Attacks 100
5.7 Conclusions . 105

6 Evolving Ensemble Model using Evolutionary Computation for Intru-
sion Detection 107
6.1 Stacking . 107
6.2 Generating Base Learners . 109

6.2.1 Distributed Random Forest (DRF) 109
6.2.2 Extremely Randomized Tree (XRT) 110
6.2.3 Gradient Boosting Machines (GBMs) 110
6.2.4 Generalized Linear Model (GLM) 110

6

6.2.5 Deep Neural Nets (DNNs) . 111
6.3 Evolutionary Computation as a Meta-learner 111
6.4 The Performance of Evolutionary Computation Ensemble Techniques . 112
6.5 Evolutionary Computation Ensemble for Detecting Unknown Attacks . 115
6.6 Conclusions . 118

7 Trade-offs in Intrusion Detection 121
7.1 Multi-objective Evolutionary Genetic Programming for Learning 121
7.2 Discovering Trade-offs in Intrusion Detection Programs 127

7.2.1 Experiment 1: Feature Selection 127
7.2.2 Experiment 2: Memory Consumption 130
7.2.3 Experiment 3: Processing Time 131
7.2.4 Experiment 4: Ensemble Diversity 133
7.2.5 Experiment 5: Detecting Unknown Attacks 135

7.3 Conclusions . 139

8 Summary and Conclusions 141
8.1 Summary of Experimentation . 141
8.2 Thesis Contributions . 143
8.3 Future Research . 144

Bibliography 147

7

List of Tables

2.1 Previous Works Used Adopted Datasets 39

3.1 BNF Grammar Example . 49
3.2 GE Decoding Process . 50
3.3 Previous Works Summary . 68

4.1 Kyoto 2006+ Dataset Features [101] . 73
4.2 UNSW-NB15 Dataset Distribution [38] 78
4.3 UNSW-NB15 Dataset Features Description [38] 79
4.4 Distribution of Modern DDoS Dataset Classes 81
4.5 Modern DDoS Dataset Features Description 81
4.6 CICIDS2017 Dataset Scenarios Distribution 83
4.7 CICIDS2017 Dataset Features Description [109] 84

5.1 GP Settings . 90
5.2 The BNF Grammar Used for the Problem 93
5.3 CGP Settings . 95
5.4 The Performance of GP, GE and CGP on Testing Datasets (%). Average

from 20 Runs, ± Value Indicates the SE. Bold Text Indicates a Better
Results. 98

5.5 Average Number of Terminal and Nonterminal Nodes in Best-Evolved
Rules Learned with Proposed Approaches 99

5.6 The New Attack Distribution of The Modern DDoS Dataset 101
5.7 Overall Performance of Best-Evolved Program (%) 101
5.8 Detection Results by Proposed Approaches (Testing Dataset) 102
5.9 Intrusion Detection Programs- Best Run 102
5.10 Comparison of DR on Attack Categories of UNSW-NB15 Dataset . . . 105

6.1 The Performance of EC Algorithms as a Meta-classifier (%) 113
6.2 Overall Performance of The Best Stacked Programs (%) 115
6.3 Detection Results by Stacking Approaches 115

9

6.4 Intrusion Detection Programs (Meta-classifier) - Best Run 116

7.1 The Performance of Some Programs Evolved by MOGP (Depth = 17) . 124
7.2 Example Programs Output Evolved by MOGP (Depth = 17) 125
7.3 Feature Selection Experimental Results using the Testing Dataset . . . 129
7.4 Feature Selection Experimental Programs Output 129
7.5 The Performance of Standard GE and CGP with Selection Features (%) 129
7.6 Memory Consumption Experimental Results using the Testing Dataset 131
7.7 Memory Consumption Experimental Programs Output 131
7.8 Processing Time Experimental Results using the Testing Dataset . . . 133
7.9 Processing Time Experimental Programs Output 133
7.10 Stacking Experimental Results using the Testing Dataset 135
7.11 Ensemble Diversity Experimental Evolved Programs Output 135
7.12 The Performance of Some Programs (Unknown Variations of Known

Attack Experiment) . 136
7.13 Detection Results of MOGP Evolved Programs 136
7.14 No. of Attack Traffic Detected (DR) by MOGP Evolved Programs . . . 138

10

List of Figures

1.1 Number of Internet Users in the World over the Last Years [3] 19
1.2 Number of New Software Vulnerabilities Reported per Year [8] 20

2.1 Architecture of an IDS [12] . 26
2.2 Ambusaidi et al. Framework of the LS-SVM-based IDS [29] 33
2.3 Rathore et al. IDS Architecture [9] . 34
2.4 Ensemble and Hybrid Models developed by Chebrolu et al. [31] 35
2.5 Ensemble Architecture Proposed by Abraham and Thomas [33] 36
2.6 Zainal et al. Ensemble Experimental workflow [34] 37
2.7 Kamarudin et al. Ensemble Anomaly Detection Model [36] 38

3.1 The Evolutionary Cycle . 44
3.2 GP Syntax Tree of Depth 4 . 46
3.3 Crossover Operator for Genetic Programming 47
3.4 Mutation Operator for Genetic Programming 47
3.5 Flowchart for The Genetic Programming Algorithm [46] 48
3.6 Crossover Operator on Grammatical Evolution 51
3.7 CGP Genotype and Corresponding Phenotype 53
3.8 CGP Genotype and Corresponding Phenotype after Mutation 54
3.9 An Example of a Pareto Front [58] . 55
3.10 Ensemble Methods Workflow . 59

5.1 Methodology Framework . 88
5.2 Fitness Functions Comparison . 89
5.3 GP: Relationship between Accuracy and Number of Generations 92
5.4 GE: Relationship between Accuracy and Number of Generations 94
5.5 CGP: Relationship between Accuracy and Number of Generations . . . 96
5.6 Barplot for CGP Algorithm Decision Making Functions with SE Error

Bars . 97
5.7 Frequent Features Selection (Modern DDoS) 100
5.8 Proposed Approaches Performance . 103

11

5.9 Boxplots Illustrating The Distribution of Each Attack That was De-
tected by Each Algorithm (Each Boxplot Represents an Experiment of
20 Independent Runs) . 104

6.1 Generating an Ensemble of Classifiers using Stacking [63] 108
6.2 General Scheme used for Building our Ensemble Model 112
6.3 Average Frequency of Base Models Selection in Stacked Programs (Kyoto

2006+ dataset, 20 runs) . 114
6.4 Proposed Approaches Performance . 117
6.5 Boxplots Illustrating The Distribution of Each Attack That was De-

tected by Each Algorithm (Each Boxplot Represent an Experiments of
20 Independent Runs) . 118

7.1 Trade-offs Between DR vs. FAR (Phishing Websites) 122
7.2 Global Pareto Front Trade-offs between DR vs. FAR 123
7.3 Global Pareto Front Trade-offs with Different Depths 124
7.4 Caption . 126
7.5 Feature Selection Pareto Fronts and Global Pareto Front Trade-off . . . 128
7.6 Memory Consumption Pareto Fronts and Global Pareto Front Trade-off 130
7.7 Processing Time Pareto Fronts and Global Pareto Front Trade-off . . . 132
7.8 Ensemble Diversity Pareto Fronts and Global Pareto Front Trade-off . . 134
7.9 The Visualisation of Program 2 . 136
7.10 Pareto Fronts and Global Pareto Front Trade-off (Analysis Experiment) 137
7.11 Pareto Fronts and Global Pareto Front Trade-off (Fuzzers Experiment) 137

12

Acknowledgements

I would first like to express uttermost gratitude to my supervisor, John A. Clark for
all his support and advice throughout his supervision period and after it officially ended.

I am extremely grateful to Daniel Kudenko for his support and guidance whenever
it was necessary.

I would like to acknowledge my other thesis-committee members, Howard Chivers,
Siamak Fayyaz Shahandashti and Julio Hernandez-Castro, for their invaluable and in-
sightful comments, which improved this thesis in many ways.

I would like to thank the Iraqi Ministry of Higher Education and Scientific Research,
as represented by the Iraqi Cultural Attaché in London, and the University of Kufa for
supporting my PhD studies.

Also, I am very thankful to my friends for their moral support and the open source
software community.

Finally, I would like to thank my family for their unconditional love, constant sup-
port, encouragement and motivation, which enabled me to overcome any difficulties
that I encountered during my research.

13

Declaration

I declare that this thesis is a presentation of original work and I am the sole au-
thor. This work has not previously been presented for an award at this, or any other,
University. All sources are acknowledged as References.

Contributions from this thesis have been published elsewhere as follows:

• Hasanen Alyasiri, John A Clark, and Daniel Kudenko, “Applying cartesian genetic
programming to evolve rules for intrusion detection system,” in 10th International
Joint Conference on Computational Intelligence, SciTePress, 2018, pp. 176–183.

• Hasanen Alyasiri, John A Clark, and Daniel Kudenko, “Evolutionary computation
algorithms for detecting known and unknown attacks,” in 11th International Con-
ference on Security for Information Technology and Communications, Springer,
2018, pp. 170–184.

15

Chapter 1 | Introduction

1.1 Internet Environment

The internet is currently a popular subject with application developers, information
technology architects, and researchers. It is fast becoming a key instrument in present-
day societies and economies by providing fast and flexible information sharing among
people and businesses. Its underpinning technologies provide a number of attractive
features: ease of use, platform and language independence, interoperability and so on.
This is particularly important for enabling the collaboration between components of
heterogeneous systems. It is rapidly evolving and expanding to adopt new computing
and communication prototypes, for instance cloud computing, Internet of Things (IoT)
devices and smart portable platforms. Cloud computing services enable customers to
access shared system components (i.e. hardware and software) from a remotely lo-
cated site and utilise them on-demand [1]. IoT comprises physical objects equipped
with hardware and software capabilities that will allow them to interact with one an-
other and with other devices and services over the internet to achieve some purpose
[2]. Portable devices have facilitated access from almost everywhere. In addition to
personal usage, corporations and governments have come to be increasingly reliant on
cyberspace for their everyday tasks. Various activities like communications, business
and financial transactions, and even the management of vital infrastructure are now
performed over the internet. Until very recently, in most cases, carefully restricted and
secured media were used to execute most of these tasks. There were some concerns re-
lated to spying and data loss. However, this was limited since systems’ infrastructures
were usually inaccessible from the outside. Nowadays, most organisations are connected
to the internet permanently, and the majority of them are migrating their computing
infrastructures to the cloud.

The complexity of the internet landscape grows continually, introducing new func-
tionalities and mixing technologies with great speed. For instance, web applications
gave millions of users the opportunity to access vast amounts of data and services in a
wide range of areas:

17

Banking and Financial Services: Web applications have changed the economic sec-
tor in various aspects. For instance, a great deal of day-to-day banking is now done
online. Cheques are going out of fashion (and the banks would largely like to see their
demise). Furthermore, financial exchanges, such as currency exchanges or trading por-
tals, have been transformed.
E-commerce: The internet retail is the activity of buying or selling of products over
the internet; it has changed how consumers shop. Typically, e-commerce transactions
include the purchase of physical or digital products online, such as Amazon.
Education and Science: The E-learning paradigm had a huge impact on the learning
process where it has helped to achieve a more effective delivery of knowledge. It eases
the access to online courses and digital libraries offering scientific contents at any time.
Entertainment: Web applications have helped in the evolution of the entertainment
field with the introduction of blogs, multimedia streaming and news feeds. The gaming
industry has a major commitment to the internet, where it has created communities
dedicated to playing specific online games over it.
Communications: Webinars are an example of how web applications have changed
communications. Another example is email, and how individuals’ interactions are con-
ceived differently since social media emerged.
Other areas: These include established areas such as file downloading and sharing
and, more recently, the Internet of Things applications.

As reported by the Internet World Stats [3], internet users constitute more than 55.1%
of the world population. Figure 1.1 shows the growth in the number of internet users
over the last years. This incessant growth implies an increase in the amount of data
generated online, and the services that run over the internet have become major targets
for cyberattack.

18

Figure 1.1: Number of Internet Users in the World over the Last Years [3]

1.2 The Security Problem

In the modern threat landscape, the internet and computer networks have been a very
significant security focus over the last two decades. Cyberspace security is a group of
tools and procedures intended to defend computers, networks, software and data files
from attack, illegal access, alteration or damage. Intrusions are known as attempts to
undermine the confidentiality, integrity, or availability of a system [4]. How to identify
intrusions effectively and efficiently in distributed, resource restricted and constantly
evolving environments is a difficult task. In the presence of such complexity, humans
are not usually able to produce adequate design decisions. Furthermore, intruders’ pro-
file, aims and skills have also changed considerably.

In the recent past, cyber-intruders were considered to usually be young socially iso-
lated individuals [5] driven by a small number of motivations including curiosity, the
thrill of the illicit and/or (for more advanced hackers) peer recognition. Although most
were very talented, these intruders did not possess sufficient financial means to produce
innovative attacks. However, these days sophisticated attacks and motivations have de-
veloped. For example, we now see the use of Advanced Persistent Threats [6] utilising
multiple advanced techniques such as zero-day exploits with social engineering. This
would help them bypass security tools and maintain a presence on the attacked system
for long-term control and data collection. Furthermore, instead of separated obsessed
individuals, intruders have evolved into well-resourced groups with economic or politi-

19

cal motives, attacking high-profile infrastructure from governments to big corporations.
Symantec’s “Internet Security Thread Report” [7] for 2018 revealed that 97% of attacks
analysed have one motive or more. These known motives were 90% intelligence gath-
ering, 11% disruption and 9% financial. Risks have recently become more diverse and
it is difficult for security teams to keep up with the daily appearance of vulnerabilities,
threats, attacks and responses using appropriate countermeasures. For instance, Fig-
ure 1.2 shows the number of publicly identified cybersecurity vulnerabilities per year
since 1999 as reported by the Common Vulnerabilities and Exposures database [8]. In
comparison to 2008, the number of discovered vulnerabilities has increased by a factor
of 3 resulting in an average of 45 new vulnerabilities per day.

Figure 1.2: Number of New Software Vulnerabilities Reported per Year [8]

Security threats against network infrastructure can be categorised as active and passive
[9][10]. Concerning active threats, attackers try to disturb or terminate the targeted
host or network operations using, for example, worms, ransomware and denial of ser-
vice. Whereas, for passive threats, intruders stay hidden and focus on obtaining the
information exchanged, for instance, traffic analysis and eavesdropping. In some cases,
malware, e.g. a keylogger, may be installed to passively monitor and leak information
but carry out no immediately disruptive action.

For example, a recent advanced attack occurred in October 2016. An IoT botnet was
used to attack Dyn, a pioneer internet infrastructure firm. In this attack, a multi-
vector malware called Mirai was developed to take advantage of the vulnerabilities of
IoT devices (mainly IP cameras) and infect them. These devices were turned into an
IoT zombie army that was utilised to carry out massive distributed denial of services
attacks against Dyn making its services unreachable for hours for many clients such as
CNN, Netflix, Twitter and other sites, despite it being up and running normally [11].
Another attack called WannaCry hit many major infrastructures worldwide including
many of England’s National Health Trusts in May 2017. WannaCry had a huge impact

20

and the potential to be hugely profitable. Thousands of computers at hospitals were
infected by this global ransomware attack within hours of its release. The main reason
for this was that it exploits two previously known vulnerabilities in Windows operating
systems. Furthermore, the ransomware turns into a worm, capable of spreading itself to
any vulnerable systems on the victim’s network as well as to other unpatched systems
connected to the internet [7].

To provide a comprehensive threat analysis, security experts should not address only
network and server layer issues but also threats to the application layer. Traditional
protection tools, such as firewalls, security policies, access control and encryption have
failed to protect networks and systems adequately from increasingly sophisticated at-
tacks and malware [12]. For instance, Cisco threat researchers [13] analysed more than
400,000 malicious binaries and found that about 70% had used at least some encryption
as of October 2017. In addition, security teams have major difficulties handling large
volumes of data. The main aim is reducing the risk of losses as far as is practical. The
circumstances require more intelligent countermeasures to maintain the security of net-
works and important systems. Machine Learning (ML) has had success in many areas
of computer science, where it was adopted in real world applications such as products
recommendation, optical character recognition, and the like [14]. Thus, recently secu-
rity teams considered adopting ML to rise above the chaos of the war with attackers.
The automatic classification of malicious behaviours on the internet holds enormous
potential for improving protection. In addition, the extracted knowledge allows discov-
ery of new attack methods, intrusion scenarios and attacker’s objectives and strategies,
and can enhance the ability to distinguish between attacks and legitimate requests.

1.3 Thesis Hypotheses

The internet is a global network that comprises many properties that are complicated
and ill-understood. Humans may possibly benefit from enhanced support to cope with
such complexity. Therefore, we intend to research the usage of ML algorithms to explore
the IDS building process more efficiently than a human could. In particular, we aim to
investigate the use of a branch of ML, namely Evolutionary Computation (EC). The
research community has confidence that the potential is good, for example: "Computa-
tional intelligence will play important roles for cyber intelligence - tracking, analysing,
identifying digital security threats to combat viruses, hackers and terrorists that exist
on the Internet for different purposes, including IoT cyber threats, cyberstalking and
harassment, extortion, blackmail, stock market manipulation, complex corporate espi-
onage, and planning or carrying out terrorist activities" [15]. EC approaches have a

21

number of attractive features, such as producing readable outputs, evolving lightweight
solutions and supplying a collection of solutions with a variety of trade-offs among of-
ten conflicting objectives. We believe that EC can act as a framework for automatic
discovery of insights and intrusion detectors. Our first formal hypothesis is therefore:

Hypothesis 1: evolutionary computation will be able to produce intrusion detection
programs for the internet and computer networks based environments. Programs evolved
using Genetic Programming, Grammatical Evolution and Cartesian Genetic Program-
ming techniques will be able to detect various known and unknown attacks targeting
such environments effectively.

As the number and sophistication of attacks grow, it is far from clear whether any
current approach will lead to effective attack detection. However, based on experience
in many other domains a collection of detectors, of similar or different types, might well
provide a means of achieving practical detection goals. In ML, such collections of prim-
itive elements (e.g. detectors or classifiers) are termed ensembles. We will investigate
their use in this thesis. In particular, we will investigate whether specific combinations
can be found via EC approaches. Our second hypothesis is therefore:

Hypothesis 2: evolutionary computation can act as a meta-learner to evolve a function
for generating stacking models (intrusion detection programs) that are more effective
than previously demonstrated.

Efficiency and effectiveness are equally important aspects of intrusion detection pro-
grams. There have been few resource-aware applications in the intrusion detection
domain that have been implemented in operational real-world settings. Humans are
not experienced enough at making good decisions if complicated trade-offs need to be
considered. A multi-objective evolutionary algorithm, which enables us to optimise one
or more objectives at the same time, is used to discover detectors that are both effective
(i.e. perform well against the standard detection and alarm rates) and efficient (i.e. are
fast and generally consume minimal resources). Therefore, our final hypothesis is:

Hypothesis 3: multi-objective evolutionary computation will be able to explore the
trade-offs between functional (intrusion detection ability) and non-functional (complex-
ity, memory usage and processing time) properties of evolved programs.

22

1.4 Thesis Overview

The remainder of the thesis is structured as follows:

Chapter 2: outlines IDS architecture and provides an IDS taxonomy. Then it gives
a review of the related intrusion detection systems in the literature. Finally, a sum-
mary of the chapter is given together with a discussion of the major problems in the
field.

Chapter 3: describes the learning techniques utilised in this thesis. It starts with a
brief introduction to evolutionary computation as well as details three implementations
namely genetic programming, grammatical evolution and cartesian genetic program-
ming. It subsequently explains how EC can be extended to solve multiple objectives
optimisation issues. The next section presents the ensemble learning paradigm showing
how other learning algorithms can be utilised together with EC to increase the learn-
ing performance. In addition, an overview of the previous implementations of EC to
address IDS problems is given. Lastly, the reasons for adopting ECs are summarised
and conclusions are reached.

Chapter 4: examines the characteristics of datasets utilised for training and testing in-
trusion systems. Details about the features used and the attacks found in each dataset
are explained. Conclusions are summarised in the last section.

Chapter 5: This chapter details how to apply evolutionary computation to obtain
intrusion detection programs. Firstly, an overview of the utilised frameworks is in-
troduced. Next the application of each algorithm to intrusion detection is outlined.
The performance of evolved programs are demonstrated and explained. The results are
reported and compared. Furthermore, the use of proposed frameworks to evolve IDS
rules for classifying unknown attacks is also introduced. Finally, conclusions are drawn.

Chapter 6: aims to evolve a classifier design scheme that incorporates multiple learners
to provide superior predictive performance over a single algorithm. This implemen-
tation converts the input vector space (i.e. base learners’ prediction) into a decision
space to predict the class type. The proposed techniques will combine multiple learn-
ing algorithms into a single and powerful prediction function. The evolved programs
are demonstrated and explained. The results are reported and the performance of
evolved programs are compared. In addition, we demonstrate the adoption of ensemble
paradigms to evolve intrusion detection programs for detecting unknown attacks. The

23

conclusions are presented.

Chapter 7: explores the efficiency of intrusion detection systems in resource constrained
environments. Multi-objective evolutionary computation is used to explore the trade-
offs among intrusion detection program security performance and non-security con-
straints such as complexity, memory consumption and processing time. The traditional
concept of Pareto fronts produces a principled way to examine the trade-offs imple-
mented. In addition, we examine the capability of the evolved programs for detecting
unseen attacks during the training stage. The obtained results are illustrated and anal-
ysed. Finally, the conclusions are summarised.

Chapter 8: concludes the thesis. This chapter firstly shows a summary of the thesis.
The contributions of the thesis are highlighted and future work is discussed.

24

Chapter 2 | Intrusion Detection: Concepts and

Related Work

This chapter introduces the intrusion detection system. It also presents IDS architecture
and taxonomy, with an explanation of each characteristic in the taxonomy. Then it gives
a review of the related works in this area. Finally, it provides a summary and discusses
the main problems in the field.

2.1 Intrusion Detection System (IDS)

“Intrusion detection is the process of monitoring the events occurring in a computer sys-
tem or network and analysing them for signs of possible incidents, which are violations
or imminent threats of violation of computer security policies, acceptable use policies,
or standard security practices” [16]. In recent years, security threats have had a major
effect on the confidentiality, privacy and integrity of services being performed on the
internet. IDS technologies tackle security problems through event gathering, logging,
detection and prevention [4]. Many research studies have been focused on building IDSs
with high detection rates and low false alarms. However, recent investigation [17] has
concluded that IDS should be faster, flexible (instead of having strict thresholds), dy-
namic towards recognising novel patterns and combining logically related false alarms
in order to locate the root cause of alarms. An effective IDS has the potential to tackle
these issues.

The earliest work that put forward the concept of automated threat detection reaches
back to Anderson in 1980 [18]. In his report, Anderson introduced the idea of detecting
unauthorised and malicious activities according to an audit record of the operating
system activities. In 1985, Denning and Neumann proposed a real-time intrusion de-
tection model which is called Intrusion Detection Expert System (IDES). This proposal
considered IDES as system-independent as it observes logins, program executions, file,
device accesses, etc for any signs of anomalies in usage. In 1988, Teresa L et al. [19] im-
proved the model and implemented a real time IDS developed at the SRI International

25

[20]. This system monitors the activities of different types of subjects, such as users
and remote hosts, of a target system to detect security violations by both insiders and
outsiders as they occur.

An IDS contains various modules to monitor and decide whether activities are ma-
licious or non-malicious in an efficient manner. The modules are a system to monitor,
data collection and pre-processing, intrusion recognition engine and a reporting/re-
sponse unit. The monitoring unit(s) collect samples of raw audit data (such as system
logs, network packets, etc.) and pass them to the pre-processing stage. This unit analy-
ses data and extracts features in such a way that the detection engine can later examine
them. The intrusion recognition system searches the treated data for any sign of ma-
licious conduct. Finally, based on detection engine outcomes, the alarm/response unit
takes action. Figure 2.1 shows an IDS organisation and the relations between these
components. The solid lines refer to data/control flow while dashed lines refer to the
response to intrusive activities.

Figure 2.1: Architecture of an IDS [12]

2.2 Taxonomy of Intrusion Detection Systems

It is important for IDS designers and users to understand and study IDS categories in
order to select the best IDS characteristics. There are many ways to classify IDSs. IDS
categories depend on system deployment, detection strategy, utilised machine-learning
techniques, etc. On the other hand, to achieve greater security some IDSs are hybrid
systems and belong to more than one category.

26

2.2.1 Deployment

IDS placements are an important means of giving protection to a system or its moni-
tored environment. The placement of the IDS can be categorised into one of four groups
according to its location.

(a) Host-Based IDS: Applies to systems that are located on and monitor a single
host machine where it gives them the extra privilege of discovering changes re-
lated to file systems [4]. Host-based IDS can also be implemented by observing
the system’s kernel where system calls show the behaviour of the program. In
addition, because the IDS is located at the end of the communication line, they
can also identify some network related attacks. A distributed attack is one of the
most obvious weaknesses of such systems.

(b) Network-Based IDS: monitors packets passing through a network and able to
examine any number of hosts. Network-Based IDS is categorised according to
its architecture into three kinds: stand-alone, distributed or hierarchical [21].
The level of detection may vary from one to another. However, most of them
have modules in charge of investigating traffic from the network, transport, and
application layers in the Open Systems Interconnection (OSI) model. The main
problem occurs when network bandwidth is high. In this case, the IDS might
have some difficulties examining all the packets.

(c) Hybrid IDS: Combines the workloads of both network-based and host-based IDS
systems. Host-based IDSs will be deployed into the critical parts of the protected
environment including servers, databases and the like. These types of IDS pri-
marily depend on the host-based parts and employ the network-based system to
complement the protection [22].

(d) Application-Based IDS: Examines events located at the application level on a
host machine. They can detect intrusion attempts towards a specific application.
It often detects many types of attacks by analysing the application log files.
However, application-based IDSs are known to consume significant application
(and host) resources [22]. An example of an application-based IDS is the web-
application firewall.

2.2.2 Detection Methods

Many techniques have been used to identify intrusions. They can be classified into two
main groups: misuse or anomaly. Recently, both misuse and anomaly based approaches
have been used together in IDSs to improve effectiveness due to their strengths and

27

weaknesses being complementary [21]. Each of these detection methods is presented
below:

(a) Misuse-Based Detection: matches features of current activates against stored pro-
files of characteristic properties of known attacks. Commercial IDSs mostly adopt
misuse-based approaches due to their effectiveness with known attacks and low
false alarm rates. They are also fairly easy to implement. Anytime a new attack
is discovered the system updates the database by adding attack signatures. The
drawback of this approach is that it cannot identify novel attacks, even if they
are slightly modified from a known pattern. The system primarily relies on the
strength of its signature database which requires constant updating [12].

(b) Anomaly-Based Detection: Anomaly-based intrusion detection seeks to detect
“unusual” behaviour of network connections, hosts or users over a period of time
[4]. In this approach, firstly it computes the normal model by profiling the regular
behaviour of user activities. While in detection mode, the system compares the
current monitored activities with these profiles, and any deviation is reported as
being anomalous (i.e. an attack attempt). Due to the constantly changing normal
behaviour by the addition of new features or technologies, IDS requires frequent
updates. The false positives rate (the rate at which regular activities are classified
as anomalies) is often high in this type. However, anomaly-based IDS can detect
emerging attacks which are unrelated to any known attacks. This is particularly
significant in an environment in which novel attacks and new vulnerabilities of
systems are discovered now and then.

(c) Hybrid Detection: An IDS that is a combination of both previous systems. It
is used to increase detection rates of known attacks and lower the false positive
rate for unknown attacks. It requires two processing factors. Triggering an alarm
is based on performing a decision from multiple methodologies. For example, a
method identifies anomalous behaviours while decoding the events, and another
detection engine performs the signature matching [22].

2.2.3 Machine Learning Techniques

Another division of IDSs is based on what machine learning techniques have been
utilised to construct intrusion detection engines. These techniques are often used as
a means of synthesising event classifiers, indicators of whether an event is normal or
malicious. Various studies implement single learning techniques whereas some systems
combine more than one learning technique, for instance, hybrid or ensemble approaches.

28

(a) Single Classifiers: the intrusion detection dilemma can be addressed by utilising
a single machine learning algorithm only [23]. In the previous works, both super-
vised and unsupervised approaches have been applied to solve these issues. Nor-
mally, the IDS building process goes through two main operations. The learning
(training) responsibility is to measure the estimated distance between the input-
output instances to build a classifier (model). Following the model construction,
it can categorise unseen instances (testing). There is not much flexibility in this
type and IDS performance depends on the learning paradigm used.

(b) Hybrid Classifiers: During the building of an IDS, the usual primary objective is
to gain the best potential accuracy for the targeted task. This purpose normally
requires the concept of hybrid techniques for the problem to be resolved [23]. The
main idea of the hybrid classifier is to integrate multiple ML algorithms which
allows the system efficacy to be considerably enhanced. Additionally, either su-
pervised and/or unsupervised learning techniques, or both types together, can be
used to build the hybrid system. Each technique in hybrid classifiers will perform
a specific task. Different methods have been proposed to hybrid classifiers. For
instance, an algorithm uses raw data as input and produces intermediate out-
puts. The second algorithm will then use the intermediate outputs as the input
and generate the final outcomes. Another example is when an algorithm is used
to tune the parameters of the second algorithm in order to optimise the predic-
tion performance of the second model. The main disadvantage of this kind is
that the constructed paradigms are engineered in a way that usually has non-
interchangeable positions.

(c) Ensemble Classifiers: these combine various machine learning models which al-
lows the overall performance to be effectively enhanced [24]. The idea behind
an ensemble classifier is to boost a weak learning paradigm performance. These
models could be from the same or from different learning paradigms. Combin-
ing strategies are usually of two types: non-trainable such as majority voting
or trainable approaches such as stacking. The difficulty of ensemble approaches
come from the selection of the algorithms creating the ensemble. One of the ad-
vantages of ensemble approaches is their modular structure, where the designer
of an ensemble can easily replace one or more algorithms with a more accurate
one. It is necessary to consider the computational cost that is attached to each
new algorithm. Ensembles help to meet the following challenges of IDSs [17] [25]:

• An Ensemble classifier capable of modelling the problem is based on different
subsets of a dataset or its features. This is particularly important when there
is an insufficient amount of quality training data.

29

• A reduction of false positives and false negatives. This is supported by the
idea that different learning algorithms explore different characteristics of the
problem.

• Ensemble-based algorithms perform just as well when data are not available
in necessary amounts and when we have a large amount of data.

• An ensemble can model with ease various application or parts of a network
(i.e. some models can be developed for some parts or for some levels of
the network) and eventually aggregate together, to secure more effective
performance.

There are many other possible classifications. For example, [22] gives a taxonomy based
on the technology where IDSs may be wired or wireless. Wireless IDSs can be further
classified as fixed or mobile. Regarding the data processing method and the arrange-
ment of its components, IDSs can be centralised or distributed. Furthermore, IDSs have
different types of action depending on the way they are responding. If an IDS responds
to the detection of an attack then it is “active” otherwise it is deemed “passive”, which
means it only generates alarms. An active response could seek either to take actions
on the attacked, or the attacking system.

2.3 Intrusion Detection System Performance Metrics

The effectiveness of a proposed intrusion detection system can be measured according
to how malicious and normal behaviours are classified correctly. For this purpose, the
most widely adopted statistical measure for the binary classification problem is the
confusion matrix. A confusion matrix contains four values: True Positive (TP), True
Negative (TN), False Positive (FP) and False Negative (FN). TP refers to malicious
behaviour being categorised as a threat, and TN indicates normal behaviour being
classed as normal. FN refers to malicious behaviour being categorised as normal and FP
indicates normal behaviour being classed as malicious, both of these are problematic.
False positives waste a great deal of time and can lead to loss of confidence. False
negatives are examples of the detector system not performing its primary task, i.e. to
detect attacks. There are some derived measurements that are also used in this thesis:

Detection Rate (DR) =
TP

(TP + FN)
(2.1)

Accuracy (Acc) =
(TP + TN)

(TN + TP + FN + FP)
(2.2)

False Positive Rate (FPR) =
FP

(FP + TN)
(2.3)

30

False Negative Rate (FNR) =
FN

(FN + TP)
(2.4)

Equation 2.1 indicates the fraction of real attacks that are detected; this is sometimes
referred to as Recall. Equation 2.2 defines the fraction of all instances (attacks or non-
attacks) that are correctly classified. Equation 2.3 describes the fraction of normal
behaviours that are erroneously flagged as malicious, whereas equation 2.4 shows the
rate of anomaly behaviours that are being examined which yield normal test outcomes.
IDS experts consider the effect of false rates as just as critical as the detection accuracy.
Equation 2.5 shows how to calculate the rate of the misclassified instances.

False Alarm Rate (FAR) =
(FPR + FNR)

2
(2.5)

2.4 Related Work

To keep pace, knowledge extraction using machine learning techniques can help defend-
ers complement threat prevention, detection and remediation [13]. These techniques are
used to perform various roles from data pre-processing to a deeper understanding of
data which helps automate the detection process. Despite their success in other areas,
machine learning techniques have not seen much in the way of real-world IDS appli-
cation [14]. However, the characteristics of learning methods, for example, adaptation,
fault tolerance, high computational speed and error resilience in the face of noisy in-
formation match the prerequisites of developing a security tool and could potentially
fill the gaps [12]. In this overview, the first part encompasses various machine learn-
ing techniques that have been implemented in order to identify threats. The second
part lists some results obtained from various techniques deployed against used datasets.

Bouzida and Cuppens [26] adopted two supervised algorithms: multilayer neural net-
work and decision trees (C4.5) for anomaly-based intrusion techniques. Neural networks
showed promise for generalisation accuracy, but were very poor at detecting new at-
tacks. Decision trees showed a high efficiency in both generalisation accuracy and new
attacks discovery. The KDD dataset was used, it extracted from the DARPA dataset.
This dataset comprises 24 attack kinds that could be grouped into four main types
namely Denial of Service (DOS), Remote to User (R2L), User to Root (U2R) and
probing. In addition, they applied their technique to real network traffic from their
laboratory, which contains new attacks not present when DARPA was created. Even
though the achieved results are interesting when compared with earlier works, nonethe-
less the detection rate of a number of attack kinds continues to be poor. There were
two contributions made by this study: adopting the idea of anomaly intrusion detection

31

through considering both normal and known intrusions while in the training stage and
adding a new class for the novel intrusion instances (since these are unrepresented in
the training dataset).

Bankovic et al. [27] implemented a technique that creates a set of rules to classify
network connections as either normal or intrusive and provides an identification of the
attack type. A dimension reduction technique, Principal Component Analysis (PCA),
also known as Karhunen-Loève transform, was used to identify a subset of features
that maintain the most relevant information. For evolving rules, the KDD dataset was
used. The 41 features in the KDD dataset were cut down to only 3 at the first step
by PCA. The second step uses a genetic algorithm to create a set of rules to classify
behaviour as normal or abnormal. Each rule for intrusion detection is an if-then clause
form. The conditional part of the rule is composed of the features connected by the
AND function. The result of each rule is a verification of an intrusion taxonomy. This
approach has the ability to pre-process network data in real-time and offers a high de-
tection rate and low false positive rate. Nevertheless, they considered only three kinds
of attacks which are not sufficient to assess the technique.

Stevanovic et al. [28] studied the utilisation of two unsupervised learning algorithms:
the Self-Organising Map (SOM) and Modified Adaptive Resonance Theory 2 (Modified
ART2) to analyse web logs and detect malicious and non-malicious visitors. Three mil-
lion log records were obtained from web-based accesses into their domain over a period
of four weeks. Before characterising web visitors, they applied data pre-processing in
order to point out unique visitor sessions and generate 10 features for each session.
The SOM clustering method uses multiple rounds of a competitive learning process to
make the underlying algorithm respond in the same way to similar input patterns. The
ART2 algorithm also uses the idea of competitive learning, however, combined with
the winner-takes-all rule, eventually generating different clustering results. In their case
study of web log analysis, they identify four main kinds of website visitors: human vis-
itor, well-behaved crawler, malicious crawler, and unknown.

In [29], Ambusaidi et al. build an IDS using the Least Square SVM algorithm inte-
grated with the feature selection algorithm: Flexible Mutual Information Based Fea-
ture Selection (LS-SVM-IDS+FMIFS). The main idea is to remove features that are
redundant and irrelevant from the data, as these features slow down the classifica-
tion process but likewise affect the IDS classification accuracy. The evaluation showed
that the feature selection algorithm contributes features that are more critical for LS-
SVM-IDS to accomplish better performance and reduce computational cost. Figure 2.2

32

shows the detection framework main stages: (1) data collection in which flows of net-
work packets are obtained, (2) data pre-processing in which training and testing data
are pre-processed, and the significant features that can effectively distinguish various
classes are chosen, (3) classifier training in which the model for classification is formed
using the LS-SVM algorithm, and (4) attack recognition in which the developed model
is employed to detect attacks in the test data. The model was examined utilising 3
datasets that are KDD, NSL-KDD and Kyoto 2006+. The NSL-KDD dataset was in-
troduced to solve some issues in the original KDD dataset. The developed IDS has
accomplished promising achievements in detecting intrusions over computer networks.
In general, LSSVM-IDS + FMIFS has the best efficacy in comparison to the other
state-of-the art algorithms.

Figure 2.2: Ambusaidi et al. Framework of the LS-SVM-based IDS [29]

Najafabadi et al. [30] used machine learning algorithms to build predictive models to
discriminate normal network traffic from malicious network traffic. The proposed archi-
tecture includes a data reduction method (i.e. feature selection) to remove irrelevant
and redundant features which leads to a decrease in the process time. They tested
three classification models (5-nearest neighbor, C4.5 decision tree and Naïve Bayes)
alongside four different feature selection methods. The Kyoto 2006+ dataset is utilised
for training and testing the models. The classification results showed that while feature
selection reduces the number of features, it maintains the same or does not decrease
outcomes significantly. They conclude that the feature selection in the IDS application
domain is an important pre-processing step and it should not be taken lightly.

Rathore et al. [9] proposed an IDS to tackle the issue of dealing with a large amount of
data and a high-speed environment (i.e. Internet and network services). This proposed
system comprises a 4 layered IDS structure, which contains a capturing layer, filtra-
tion and load balancing layer, parallel processing layer (i.e. Hadoop) and the decision-
making layer (see Figure 2.3). DARPA, KDD and NSL-KDD were used for evaluation.
Furthermore, two feature selection approaches and DARPA traffic analysis are used

33

to cut down the number of input features from 41 to 9. In the beginning, the flow of
network packets is collected using a high-speed capturing device. The second layer uses
the In-Memory intruders’ database to carry out efficient searching and comparisons of
the incoming flow’s traffic in order to classify it as an intrusion or normal flow. Then, it
sends the traffic of the unidentified flow with packet header data to the third layer (i.e.
Hadoop) master servers. It also balances the burden by determining which packets are
forwarded to which master server based on the IP addresses. Hadoop has a MapReduce
code that utilises the Map and Reduce function provided with some parameters calcu-
lations code to calculate the 9 features values. Since MapReduce runs simultaneously
the overall performance is boosted. In the end, the feature values are transmitted to
the decision-making layer that categorises the flows as benign, or threats, depending on
their features values. This layer was tested using five ML algorithms namely J48, REP-
Tree, random forest tree, conjunctive rule, SVM and Naïve Bayes. Both REPTree and
J48 achieved the highest performance when it comes to processing time and accuracy.

Figure 2.3: Rathore et al. IDS Architecture [9]

Chebrolu et al. [31] researched the use of Bayesian Networks (BN) and Classification
and Regression Trees (CART) algorithms for IDS. They used these two paradigms
as a hybrid classifier and as an ensemble classifier. The dataset utilised in this study
was the DARPA, from which a subset was randomly chosen. Feature selection was
also implemented to speed up the computation. First, BN and CART were evaluated
separately with full and with subsets of features. The performance on the set of 41

34

features was compared to a set of 17 selected by BN and 12 selected by CART. BN
performed worse with a smaller set of features except on the normal class. CART using a
reduced dataset achieved 100% normal class classification accuracy and a increased U2R
and R2L classification accuracy as well. The ensemble model was tested using a reduced
features set (i.e. 12 and 17) and 41 from the dataset and its workflow is illustrated
in Figure 2.4a. In the ensemble method, the final decisions were reached as follows:
each paradigm’s output is assigned a weight based on the generalisation accuracy. If
both paradigms agree then the final result is chosen accordingly. In case there is a
conflict in the decision given by the paradigm then the one with the highest weight is
favoured. Based on the results, they concluded that the ensemble model provides more
effective performance than the two paradigms working individually. After summarising
the models performance with both ensemble and individual classifiers, they formed a
hybrid IDS architecture shown in Figure 2.4b. Finally, by utilising the hybrid model;
normal, probe and DOS instances were detected more accurately.

(a) Ensemble Model
(b) Hybrid Model

Figure 2.4: Ensemble and Hybrid Models developed by Chebrolu et al. [31]

Xiang et al. [32] proposed a multiple-level hybrid classifier for the IDS. This approach
combined both an unsupervised learner (i.e. Bayesian clustering) and a supervised
learner (i.e. Decision tree C4.5). The KDD dataset was utilised in this work. At the
first stage of classification, the C4.5 model grouped instances into 3 categories DoS,
Probe and Other. Both U2R and R2L attacks and Benign instances are categorised as
Others at this stage. Stage 2 uses Bayesian clustering to separate out Others into (U2R
and R2L) as attacks and Benign instances using only 4 features out of 41. These fea-
tures were chosen after weighing the significance of each feature by applying a collection
of criteria, for instance, information gain. The C4.5 model was utilised to differentiate
U2R and R2L at stage 3 using 14 features only. This step is executed much more easier
given that the Benign instances have been separated out at stage 2. Finally, C4.5 is used
to further categorise each class of attack into its variations. The experimental results
showed a very efficient detection rate with a very low false negative rate, and at the

35

same time it maintained a reasonable false alarm rate level compared with other pop-
ular approaches. However, unknown attacks that are missing from the training dataset
are very low.

Abraham and Thomas [33] proposed an ensemble approach consisting of three base
classifiers (Decision Trees (DT), Support Vector Machines (SVM), and a hybrid sys-
tem composed of DT and SVM). The structure of the ensemble model is illustrated
in Figure 2.5. The IDS model is generated by using KDD as the training dataset. In
this experiment, each model afforded complementary information about the observed
behaviours (i.e. 5 different classes) in order to be categorised. The final outcome of the
ensemble classifier is determined by the highest score of the base models. The score of
each model is measured via assigned weights which represent the individual prediction
performance on the training dataset. Therefore, for a certain example to be categorised
and in case all models provide diverse opinions, then the ensemble classifier uses a mod-
els score. The model possessing the highest score is considered to be the winner and
utilised to decide the final outcome. Evidently, the ensemble method makes use of the
differences in misclassification and enhances the overall performance.

Figure 2.5: Ensemble Architecture Proposed by Abraham and Thomas [33]

Zainal et al. [34] proposed a heterogeneous ensemble by fusing three different classifiers
designed for detecting a single class. They adopted learning algorithms such as the
following: Linear Genetic Programming (LGP), Random Forest (RF), and Adaptive
Neuro-Fuzzy Inference System (ANFIS) to construct a network-based IDS. Each of
the algorithms (i.e. LGP, ANFIS and RF) used the same dataset during the train-
ing. This study used the KDD dataset. Rough Set Technique and Discrete Particle
Swarm Optimisation (RST-BPSO) was employed to extract the important features.
The original 41 features were cut down to 15 for all classes and selected features for
each class are vary. After building base classifiers, the system then used the weighted
voting method to determine the final classification. Overall, the performance of LGP
is better in comparison with the other two algorithms, while both ANFIS and RF are
nearly at the same level. It is shown that the ensemble system performs better than the
best-performing classifier alone. Figure 2.6 depicts the proposed ensemble workflow.

36

Figure 2.6: Zainal et al. Ensemble Experimental workflow [34]

Syarif et al. [35] investigated the implementation of three ensemble paradigms to im-
prove network-based IDSs performance. They used bagging, boosting and stacking
systems to address intrusion detection problems in order to enhance the accuracy and
decrease its false positive rates. The four data mining algorithms utilised as base learn-
ers for those ensemble classifiers were naïve Bayes, J48 (decision tree), JRip (rule
induction) and iBK (nearest neighbor). The NSL-KDD dataset was used. Regarding
the 4 base classifiers utilised, J48 achieved better performance compared with the other
3 methods in terms of the highest accuracy rates, lowest false positive rate and faster
execution time. They reported that proposed approaches achieved a high accuracy in
detecting known attacks, however, it failed to recognise novel attacks effectively. The
utilisation of bagging, boosting and stacking displayed no significant gain in accuracy.
Although stacking was the only paradigm that resulted in a notable decrease in false
positive rates, its execution time was the longest. Therefore, they concluded that it is
unqualified to become an effective solution for the intrusion detection problem. How-
ever, with recent improvements in computing capabilities, this issue could be overcome
easily. In addition, even a small reduction in misclassification error is very important
for the IDS field.

37

Kamarudin et al. [36] proposed an anomaly-based intrusion detection system utilis-
ing an ensemble concept to detect novel attacks targeting web servers. The logitboost
algorithm is employed as a stacking approach along with the RF algorithm as a base
learner because of its power in coping with noise and outliers data. The system was
tested utilising 2 datasets (NSL-KDD and UNSW-NB15) focusing only on HTTP traf-
fic. A hybrid feature selection technique was used as a pre-processing step to select
significant features only, which helped reduce the overall detection time. For NSL-
KDD, the number of features was reduced from 41 to 10, while for UNSW-NB15 the
number of features was reduced from 43 to 5. Figure 2.7 presents the workflow of the
proposed anomaly detection ensemble model. The authors made sure that the attack
traffic in each of the training and testing portions was completely varied. The logit-
boost classifier algorithm achieved excellent overall accuracy and also maintained a low
false alarm rate. However, the results showed that the detection rate of some of the
unknown attacks was very low from both datasets.

Figure 2.7: Kamarudin et al. Ensemble Anomaly Detection Model [36]

Finally, Table 2.1 shows various techniques experimentally deployed on the utilised
datasets in this thesis. In the performance metrics column beside DR, FPR, Acc and
FAR, there is the precision (TP

(TP+FP)
) which describes the fraction of raised attacks

that were predicted correctly. In addition, F1-score (2 ∗ (Recall∗Precision)
(Recall+Precision)

), is a measure
that includes precision as well as recall and shows approximately the average of the
two when they are close.

38

A
u
th
or
(s
)

T
ec
h
n
iq
u
e(
s)

P
re
-p
ro
ce
ss
in
g

S
ta
ge
(s
)

D
at
as
et

U
se
d

S
p
li
t

P
er
ce
nt
ag
e

P
er
fo
rm

an
ce

M
et
ri
c(
s)

A
m
bu

sa
id
ie

t
al
.[
29
]

In
tr
us
io
n
D
et
ec
ti
on

Sy
st
em

:
Le

as
t
Sq

ua
re

Su
pp

or
t
V
ec
to
r
M
ac
hi
ne

Fe
at
ur
e
T
ra
ns
fo
rm

at
io
n

N
or
m
al
iz
at
io
n

Fe
at
ur
e
Se
le
ct
io
n

K
yo
to

20
06
+

T
ra
in
in
g
=

70
%

T
es
ti
ng

=
30
%

D
R

=
99
.6
4%

F
P
R

=
0.
13
%

A
cc

=
99
.7
7%

T
ha

bt
ah

et
al
.[
37
]

A
nt
i-p

hi
sh
in
g
M
od

el
:

Im
pr
ov
ed

Se
lf-
St
ru
ct
ur
in
g
N
eu
ra
l

N
et
w
or
k
ep

oc
h
(5
00
)

Fe
at
ur
e
Se
le
ct
io
n

P
hi
sh
in
g
W
eb
si
te
s

T
ra
in
in
g
=

80
%

T
es
ti
ng

=
20
%

A
cc

=
93
.0
6%

F
1-
sc
or
e
=

92
.3
0%

R
ec
al
l=

91
.1
2%

P
re
ci
si
on

=
93
.7
1%

M
ou

st
af
a
an

d
Sl
ay

[3
8]

N
et
w
or
k
A
no

m
al
y
D
et
ec
ti
on

Sy
st
em

:D
ec
is
io
n
T
re
e

N
/A

U
N
SW

-N
B
15

T
ra
in
in
g
=

60
%

T
es
ti
ng

=
40
%

A
cc

=
85
.5
6%

FA
R

=
15
.7
8%

M
ou

st
af
a
et

al
.[
39
]

A
no

m
al
y
D
et
ec
ti
on

Sy
st
em

:
G
eo
m
et
ri
c
A
re
a
A
na

ly
si
s

Fe
at
ur
e
C
on

ve
rs
io
n

Fe
at
ur
e
R
ed
uc
ti
on

Fe
at
ur
e
N
or
m
al
is
at
io
n

U
N
SW

-N
B
15

T
ra
in
in
g
=

60
%

T
es
ti
ng

=
40
%

D
R

=
91
.3
%

A
cc

=
92
.8
%

F
P
R

=
5.
1%

A
lk
as
as
sb
eh

et
al
.[
40
]

In
tr
us
io
n
D
et
ec
ti
on

Sy
st
em

:
M
ul
ti
la
ye
r
P
er
ce
pt
ro
n

N
/A

M
od

er
n
D
D
oS

T
ra
in
in
g
=

66
%

T
es
ti
ng

=
34
%

A
cc

=
98
.6
3%

Sh
ar
af
al
di
n
et

al
.[
41
]

In
tr
us
io
n
D
et
ec
ti
on

Sy
st
em

:
R
an

do
m

Fo
re
st

N
/A

C
IC

ID
S2

01
7

N
/A

P
re
ci
si
on

=
0.
98

R
ec
al
l=

0.
97

F
1-
sc
or
e
=

0.
97

Ta
bl
e
2.
1:

P
re
vi
ou

s
W
or
ks

U
se
d
A
do

pt
ed

D
at
as
et
s

39

2.5 Discussion

An intrusion detection system is considered to be a key aspect of present-day security
management tools. In IDS research, ML techniques have been applied towards building
IDS solutions, however, they are still facing problems and further research is needed.
After analysing the aforementioned papers in the literature, we identified major chal-
lenges that have been largely ignored or otherwise need further investigation. These
challenges, which are also confirmed to be vital by recent surveys, are listed below:

1. Techniques used to address cybersecurity issues should produce understandable
solutions (i.e. readable and in an easy to comprehend format) [12] [42].

2. IDSs need to be able to deal with new and undocumented attacks from which
signatures are not available [25] [4].

3. "Current IDSs pose challenges on not only capricious intrusion categories, but
also huge computational power" [4].

4. IDS should be able to handle the ever increasing number of network connections
and process the sheer volume of data generated in real-time [25] [42].

A recent survey [42] concluded that data mining and ML methods are a prevalent and
growing research area for cyber security. For instance, ensemble methods have emerged
as a promising way of providing reliable and intelligent IDSs [17], [24]. These meth-
ods can improve the performance of IDSs (i.e. effectiveness) over a single classifier in
terms of both detection rate and false alarms. This is due to the fact that the learning
algorithms operate in a different way upon various classes of attacks (e.g. DoS, Probe,
U2R and R2L) [43]. However, a recent survey indicates that the application of the
heterogeneous ensemble in solving IDS problems is still quite modest [24].

A major limitation of the misuse-based approach is its failure to detect new threats
which are previously unknown to the IDS. However, ML holds real value to security
teams by overcoming skills and resources gaps, this especially stems from its ability to
detect both known and emerging threats [13]. Unknown attacks, which are classified
into two types: unseen variations of known attacks or unseen attacks, are emerging as
one of the most serious threats to any system [13]. An effective IDS must have the
capability to identify attacks that it has never before encountered.

The production of readable output is more and more important as it provides se-
curity analysts with some degree of manual analysis so it is easy to understand and

40

deploy solutions. Finally, due to the highly complex and ill-understood properties of
the examined search space (i.e. environment) the ML methods are the best solution to
explore these properties [44].

2.6 Conclusions

The internet is a medium that provides services to customers using machine-to-machine
interaction on various digital devices. It has become an important factor for many do-
mains, e.g. e-government, e-finance, and e-health. Unfortunately, these services are
vulnerable and under constant risk of attack. The security issues related to these ser-
vices are a major concern to their providers and are directly relevant to the everyday
lives of system users. Furthermore, new attacks emerge every day and current mecha-
nisms are not sufficient in themselves. Therefore, researchers have adopted various ML
techniques to fill these security gaps after the successes achieved by ML in many other
domains.

In this chapter, we have reviewed relevant applications related to developing ML-based
IDSs. The contribution/novelty of the proposed systems is discussed and argued. There
are still issues that have been largely ignored or otherwise need further research. Fur-
thermore, the research often investigates a very limited number of attacks and makes
assumptions about the architectures of solutions. We highlighted the main issues that
need to be considered when designing an IDS. We have argued that ML, perhaps to-
day’s highest profile set of tools and techniques, offers the potential to help address
these issues.

In this thesis, we study the use of ML methods to investigate IDS design space for
this deeply complex environment. Evolutionary computation, which is a group of op-
timisation algorithms based on biological evolution, provides a framework to build
computer programs for IDS that are both effective and efficient. In this rich trade-off
space, the evolved programs suitability for the explored environment is also taken into
account during the IDS design. The following criteria are considered: solution complex-
ity, limited resources and the detection of unseen attacks. The framework used for each
proposed paradigm and the evaluation results are given in the subsequent chapters.

41

Chapter 3 | Learning Techniques

This chapter describes the learning techniques utilised in this thesis. In the begin-
ning, a general introduction to Evolutionary Computation (EC) and a description of
its three implementations: Genetic Programming, Grammatical Evolution and Carte-
sian Genetic Programming. In addition, it explains the concept of the multi-objective
optimisation search paradigm. It goes on to describe the ensemble learning paradigm
to show how multiple learning techniques can be combined to improve the classifica-
tion performance. Finally, this chapter looks at previous applications of EC algorithms
related to the work given in this thesis, reasons for deploying EC and it draws conclu-
sions.

3.1 Introduction to Evolutionary Computation

The term evolutionary computation is defined as a creative process inspired by evolu-
tion in nature, a Darwinian evolutionary system. It is highly suited to addressing real-
world issues having a great complexity. EC techniques have been used by researchers
to tackle numerous tasks, and it performs different roles, for example, searching for an
optimal solution, automatic model design, and the learning of classifiers [12]. The EC
approach has a number of attractive features, for instance producing readable outputs,
evolving lightweight solutions and supplying a collection of solutions with different
trade-offs amongst conflicting objectives [21]. Evolutionary computation has been ex-
tensively studied. Variants of it were shown to offer an effective means to generate
programs automatically. In general, an EC paradigm begins at producing an initial
population including individuals that describe potential solutions to solve a particular
problem. Then these individuals are evaluated to show how well each solves or comes
near to solving the problem. The evolutionary cycle will continue until some termina-
tion criterion is met. Figure 3.1 illustrates the scheme of an evolutionary process with
its primary evolutionary operators.

43

Figure 3.1: The Evolutionary Cycle

Initialisation refers to the creation of the first population. The initial population cre-
ated will have a significant impact on the result. It is often generated randomly, but
techniques that use seeding have also been used (where the initial population members
are generated by another suboptimal technique). Next the estimate of how effective the
individual is at resolving the problem is captured by means of a fitness function. The
main aim here is to optimise the fitness function which correlates with the adopted
objectives.

The simulated evolutionary process seeks to evolve ever-fitter populations of candi-
date solutions, using various operators inspired by biological metaphors for reproduc-
tion and evolution, such as crossover, mutation, and selection. Crossover is a binary
operator that causes solutions to be ‘mated’: two individuals exchange solution com-
ponents to form new ones, often referred to as ‘offspring’. This allows the possibility of
offspring that combine the most effective features of each parent, with fitter offspring
subsequently thriving under the survival of the fittest regime of Darwinian natural se-
lection. (Equally, offspring combining poor traits of parents will be unlikely to survive).
Mutation is a unary operator that causes some solution component to spontaneously
mutate, allowing it to take on values that are potentially not possessed currently by
any candidate solution in the population. Generally, each element of each individual
may be mutated with some small probability. Finally, selection determines which so-
lutions go forward to form the next generation of the population. This implements
some form of the ‘survival of the fittest’ regime (fitter solutions have greater chances of
going forward). By repeating the indicated cycle it is anticipated that later generations
will have fitter individuals and hopefully the process will generate at least one that
‘solves’ the problem, or is otherwise acceptable (i.e. the solution is highly fit, but it is

44

not actually known what is the best possible fitness value).

The selection mechanism helps the survival of the best individuals by choosing in-
dividuals out of the population according to their fitness measurement. In some cases
copies of selected high performing individuals may be chosen to go forward directly to
the new population without undergoing further evolutionary operations; this is known
as elitism. There are other selection schemes, for instance, roulette wheel, rank based,
tournament selection. Tournament selection is utilised in this research. In tournament
selection, a set of individuals is randomly drawn from the population then the best
individual among them is chosen to be a parent. Tournament size refers to the number
of individuals in the aforementioned set. Whereas the probability of an individual being
selected using the roulette wheel scheme is proportionate to its fitness measurement.
It can be briefly described as follows: p(i) = f(i)/

n∑
j=0

f(j) where f refers to the fitness

value and n indicates the number of individuals.

Like natural evolution, an EC individual has two distinct representations: the genotype
which is processed by the genetic search procedures and the phenotype format which it
is evaluated by the environment. The representation of individuals helps EC methods
to connect the ‘real world’ to the ‘EC world’ [45]. It will establish a link between the
circumstance of the original problem and the problem solution space in which evolution
happens. There are different types of EC with differing means of representing problem
solutions. In general, these techniques vary from one another based on how the indi-
viduals are represented. It is important that the researcher examines the benefits and
limitations of many EC representations instead of limiting themselves to one prevailing
structure. Diversity is essential in research just as it is in evolving populations. In this
research, the intention is to use GP (tree-based form), GE (grammar-based form) and
CGP (graph-based form) to evolve detectors for the internet and computer network
attacks. More detail on these techniques is given below.

3.1.1 Genetic Programming (GP)

Genetic Programming generates complete programs and is optimised towards perform-
ing a certain task. It was introduced by Koza in 1992 [46] and considered among the
most commonly used evolutionary algorithms. It has been applied to many problems
and has rivalled or surpassed the accomplishments of various machine learning algo-
rithms, and has produced programs superior to the best programs created by humans
[47]. GP constructs the computer program in the form of a tree which consists of
functions and terminals. The leaves elements in a tree (the terminals) are the possible

45

inputs. These terminals in most cases feature set, constants or other functions with-
out argument. The operation set used on these inputs can be mathematical, Boolean,
program statements (if, loop), and the like. The automatically generated computer
programs evolved out of input/output behaviour can be expressed only using the given
terminal and function sets. GP generates the initial population randomly where the
produced trees should not exceed maximum tree depth predefined by the user. The
tree depth represents the deepest path from the root node of the tree. For illustration
consider the implementation of the equation x ∗ ((x%y)− sin(x)) + exp(x) shown in
Figure 3.2.

Figure 3.2: GP Syntax Tree of Depth 4

In this example, terminal set = {x, y} and function set = {+,−, ∗,%, cos, sin, exp} are
sufficient to produce the tree in Figure 3.2.

There are two main methods utilised for the creating of the initial population in GP;
full and grow. The full method formulates trees where nodes are selected at random
from the function set until reaching tree depth then the terminal set are selected. Thus,
all terminals in this type are at the same level. However, that does not mean that all
initial trees are equal in size (i.e. having the same number of nodes). In this method,
the range of individual sizes and shapes is somewhat limited [48]. Whereas in the grow
method, nodes are picked from both functions and terminals at any tree level until it
reaches the maximum depth. Following that only terminals are selected. Hence, the
created trees are not going to be full in this method. This method is quite the oppo-
site to the full method, which enables the production of individuals with varied sizes
and shapes [48]. Besides these methods, there is a proposed initialisation technique by
Koza [46] called ramped half-and-half that combines full and grow methods. The main
reason for adopting this technique is to enhance the diversity of the GP population.

46

This done by splitting the population equally into sets. These sets have a variety of
sizes and shapes. During the initialisation phase, half of the individuals are generated
by the full method and the other half by the grow method.

The crossover operator is used for the exchanging of subtrees between two individuals.
In this research, strongly typed GP is used [49] in which only subtrees with similar
constraints (return type) are swapped. The subtree crossover operator is described in
Figure 3.3

Figure 3.3: Crossover Operator for Genetic Programming

As for the mutation evolutionary process, GP applies point mutation in which a random
node in the tree is chosen and replaced with a different random generated subtree. In
strongly typed trees, both exchanged subtrees have the same constraints. Figure 3.4
illustrates the mutation process.

Figure 3.4: Mutation Operator for Genetic Programming

47

Finally, the new individuals take the place of the old individuals in every generation.
Figure 3.5 is a flowchart illustrating the stages of GP algorithm [46]. The index i
indicates an individual in the population of size M. The variable GEN is the number of
the current generation. The fitness value plays a major factor for selecting individual(s)
for breeding, in which GP performs reproduction with a certain probability (Pr) and
performs crossover with a certain probability (Pc).

Figure 3.5: Flowchart for The Genetic Programming Algorithm [46]

48

3.1.2 Grammatical Evolution (GE)

Grammatical Evolution utilises binary string individuals with variable lengths that
are mapped to computer programs via grammars. In 1998, Conor Ryan, J. J. Collins
and Michael O’Neill introduced GE [50]. There are various techniques that utilised the
grammars concept before the GE algorithm, however, GE provides a distinct method
for utilising grammars in an evolution process [51].

To solve a problem using GE, it evolves solutions in a space defined by a Backus
Naur Form (BNF) grammar which expresses programs in an arbitrary language. BNF
is a notation approach for context-free grammars, often used to depict a language by
setting a collection of grammars. This grammar tends to be symbolised by a four-tuple
{N, T, P, S} in which N is the non-terminal set (i.e. functions), T is the terminal set
(i.e. inputs), P is the production rules set, and S is the start symbol of the grammar in
which the generation process begins. Sentences in the language are derived by succes-
sive application of production rules to non-terminals (i.e. replacing a non-terminal that
appears on the left-hand side of a rule with its productions on the right-hand side).
A typical approach is to expand the leftmost non-terminal. The values in the integer
array are interpreted as indices into the relevant production rules (i.e. they indicate
which rule to apply). If a non-terminal can be expanded via k rules (indexed by 0 to
(k− 1)), then an integer value V is deemed to indicate the (V mod k)th rule. Consider
the following grammar as an example:

Predecessor ::= Production Rules Index of Production
S ::= <expr> 0

<expr> ::=
<expr><op><expr>
<pre-op><expr>
<var>

0
1
2

<op> ::=

+
−
/
∗

0
1
2
3

<pre-op> ::=

sqrt
sin
cos
tan

0
1
2
3

<var> ::=
x
1.0

0
1

Table 3.1: BNF Grammar Example

The GE genomes are expressed via variable-length binary strings of 8 bits. This set of

49

bits produces what generally is referred to as a codon value which is utilised to select
the production rule from the BNF grammar. Consider the following genome of a GE
individual which is represented by a sequence of integers:

{210, 35, 46, 67, 136, 53, 143, 25}
Since S is the start symbol it must start the production rule and since it has only 1
expansion (as < expr > and so we start the decoding process at this string. < expr >

has 3 rules and so we interpret 210 as 210 mod 3, i.e. as rule 0, and so we expand
< expr > as < expr >< op >< expr >. We now expand the leftmost non-terminal.
Once again, < expr > has 3 possible rules to expand it, and we select rule (35 mod 3),
i.e. rule 2. Applying this rule gives the string < var >< op >< expr >. This continues
until a final string is obtained with no non-terminals, see the illustration in Table 3.2.

Expression Gene Value
Number of
Production

Index of The
Selected Production

S ... 1 0
<expr> 210 3 210 mod 3 = 0
<expr><op><expr> 35 3 35 mod 3 = 2
<var><op><expr> 46 2 46 mod 2 = 0
x <op><expr> 67 4 67 mod 4 = 3
x ∗ <expr> 136 3 136 mod 3 = 1
x ∗ <pre-op><expr> 53 4 53 mod 4 = 1
x ∗ sin (<expr>) 143 3 143 mod 3 = 2
x ∗ sin (<var>) 25 2 25 mod 2 = 1
x ∗ sin (1.0)

Table 3.2: GE Decoding Process

If we run out of integers before this occurs, a recovery strategy needs to be adopted,
e.g. continuing from the first element of the array, a strategy called wrapping [50].
However, if the sentence is not valid after a certain number of wraps, GE will consider
this chromosome to be invalid.

GE creates the initial population from randomly produced chromosomes, each con-
sidered as a candidate solution to the problem [52]. By default, a single-point crossover
is used to generate new solutions. In a single-point crossover, two positions are chosen
on each binary string at random and their genetic contents are substituted beginning
from these positions (see Figure 3.6). In addition, the mutation operator mutates at
random a single bit on a particular GE genome with a predetermined mutation prob-
ability. Mutation is essential to preserve the diversity of GE individuals through the
evolutionary process [52].

50

Figure 3.6: Crossover Operator on Grammatical Evolution

The steady-state replacement mechanism is applied in the GE algorithm by default to
ensure the validity of solutions in evolution [51]. The invalid solutions are given the
lowest fitness value, however, using a simple replacement mechanism these solutions
may possible remain in the next generations. These invalid solutions may cause a delay
in the evolution process. Thus, the positive effect of having the steady-state mechanism
is its capability to replace the worst solutions in a population with the new solutions.
The following pseudo-code summarises the optimisation steps of the GE algorithm [52]:

1: create initial genotypes
2: determine crossover parameters based on grammarDef.
3: If not given, determine the optimal popSize and iterations
4: generation← 1

5: genotypes← Add suggestions

6: genotypes← Add popSize− len(suggestions) random chromosomes of length seqLen∗numExpr

7: while generation < iteratons do
8: for all genes in each genotype do
9: phenotypes← GrammarMap (grammarDef, gene, wrappings)
10: end for
11: fitnesses← evalFunction(phenotypes) [using plapply]
12: if terminationCost is given and min(fitnesses) < terminationCost then
13: terminate
14: end if
15: genotypes← genotypes[sort by fitness]
16: newGenotypes← genotypes[1:elitism]
17: for i := (elitism+1):popSize do
18: parent1← Select using Roulette Wheel operator

19: parent2← Select using Roulette Wheel operator

20: newGenotypes[i]← Crossover(parent1, parent2, crossover parameters)
21: if random number > mutationChance then
22: Mutate newGenotypes[i]
23: end if
24: end for
25: genotypes← newGenotypes

26: generation← generation+ 1

27: end while
28: bestExpression = EvalExpression(grammarDef, phenotype with best fitness)

51

3.1.3 Cartesian Genetic Programming (CGP)

“Cartesian Genetic Programming is a form of automatic evolution of computer pro-
grams and other computational structures using ideas inspired by Darwin’s theory of
evolution by natural selection” [53]. It was invented by Julian Miller in 1999 and the
representation of electronic circuits was the idea behind its creation. In CGP, a program
is encoded as a linear string of integers representing a directed graph. Each program
is divided into subsets of genes (i.e. genotype) of the same length, representing the
nodes of the graph. The genotype describes from where a node receives its data, what
functions the node carries out on the data, and from where the outcome data wanted
by the user is to be collected [53]. During the genotype decoding process, a number
of nodes are disregarded. This comes about when these nodes’ outcomes are not uti-
lized in the computation of the final output node. When this occurs, these nodes and
their genes are considered as ‘inactive’. Previous investigations [54], [55] have shown
how a significant percentage of inactive nodes can help the efficiency of the evolution
process. Unlike a tree representation, where the route among any couple of nodes is
always unique, the graphs representation permits the reusability of any path among
a couple of nodes. Thus, this helps reduce the computational cost of functions, since
the previously computed subgraphs can be used again. GP and GE algorithms are
susceptible to bloat, a phenomenon where a large portion of the evolved program code
has no influence on the fitness, but whose execution still consumes resources (and so
typically extends execution times). CGP avoids such bloat [55].

CGP’s genotype decoding process is recursive in nature and starts with the output
genes at the beginning [53]. CGP programs may have as many output nodes as neces-
sary. These final output nodes are deemed to be ‘active’. The decoding process iden-
tifies the nodes whose outputs are used as inputs to these nodes. These input nodes
themselves become ‘active’ and the same procedure is repeatedly applied until the
full function is identified, ending with the identification of appropriate terminal input
nodes. The decoding process extracts the active nodes; inactive nodes are not dealt
with and so having inactive genes presents small computational effort. The user de-
fines the number of nodes. Consider the example shown in Figure 3.7. There are 3
input nodes, which are indexed by 0, 1, and 2 (these do not form part of the genotype,
but may be indexed by it). The remaining (computational) nodes of the system are
now numbered contiguously, from 3 to 8. System inputs and computational nodes are
therefore numbered contiguously over the range 0 to 8.

52

Figure 3.7: CGP Genotype and Corresponding Phenotype

In the above figure, the genotype contains structures of three integers for each of its
computational nodes. The underlined genes in the genotype encode the specific func-
tion for each node. There are six possible functions, denoted by the integers 0 to 5: add
(0), subtract (1), multiply (2), divide (3), sin (4) and cos (5). The remaining integers in
each node structure are associated with terminal inputs or with other function nodes
that are located to the left. The number of actual inputs depends on the arity of the
function. The number of formal inputs to a computational node is the maximum arity
of any function in the function set. Any extra inputs will be neglected by function
nodes that require fewer inputs than this maximum. The last nodes in the genotype
identify the output nodes. Here there is only one such node, which takes the value 7.
The choice of node 7 as the output node coupled with the value of the earlier node
which triples it and induces the active and inactive status of all earlier nodes.

Crossover operators have not been widely adopted in CGP. In the beginning, a one-
point crossover operator was applied but caused disruption to the subgraphs inside the
chromosome [53]. In another investigation [56], a new floating-point crossover operator
was found to improve performance for symbolic regression problems. However, extra
work is needed on a variety of problems to be able to evaluate its successes.

The mutation operator is utilized in CGP. A point mutation type is used in which
a value at a randomly chosen gene location is replaced with another valid random
value. If the chosen location is a function then it should be replaced with any function
label from the function list. Whereas if an input location is selected then a valid value
will be the output from any prior nodes or any of the input nodes (i.e. dataset fea-
tures). In addition, a valid value for an output location is the label of the output of any
node in the genotype or the label of the input nodes. The user specifies the mutation
rate. An example of the point mutation operator is shown in Figure 3.8. A single point
mutation takes place in the program gene, altering the output node input connection
from 7 to 8. This makes nodes 6 and 8 active ones, whilst causing nodes 4, 5 and 7 to

53

become inactive. The inactive sections are displayed in dashes. This demonstrates how
a small change in the genotype can at times cause a large change in the phenotype.

Figure 3.8: CGP Genotype and Corresponding Phenotype after Mutation

For individual selection the (1+ λ) Evolutionary Strategy (ES) is normally used in
CGP. Usually λ is selected to be 4. ES sets up a single parent to reproduce 4 children
utilising the mutation operator at each generation. The best individual between the
parent and children is retained in the next generation and the procedure is replicated.
In an ES approach, child genotypes are favoured over the parent. The child replaces his
parent when child genotypes have similar fitness as the parent and there are no children
that are superior to the parent. This is an important characteristic of the paradigm
as it helped to makes good use of redundancy in CGP individuals [53]. A very small
population size is normally used in CGP [56]. Thus, a large number of generations are
expected to be utilized. In spite of this, numerous studies have been noticed that the
average number of fitness assessments needed to work out various problems can be in
favour of CGP when compared with other kinds of GP [53].

3.1.4 Multi-objective Evolutionary Algorithms

In many practical problems, it is common to have more than one desired objective
to be optimised. Thus rather than assessing solutions based on a single fitness score,
every potential solution posses a vector of fitness scores, one for each objective. This
is usually known as a multi-objective optimisation problem. The focus of the multi-
objective concept is to discover the group of solutions with the best (or near best)
trade-offs possible amongst all the objectives. Multi-Objective optimisation seeks to
optimise multiple often conflicting objectives at the same time. The multi-objective
optimisation problem is described in [57] as “the problem of finding a vector of decision
variables which satisfies constraints and optimises a vector function whose elements
represent the objective functions. The term optimise is defined as finding such a so-
lution which would give the values of all the objective functions acceptable to the
decision maker since the objectives are usually in conflict with each other". In contrast

54

to the single objective optimisation, multi-objective optimisation has fitness function
vectors that belong to a multi-dimensional objective space [58]. These vectors can be
either minimised or maximised, susceptible to a number of restrictions and changeable
boundaries.

In general, a multi-objective optimisation outcome is not unique; it is the set of the
best (or near best) solutions possible known as the Pareto set. In this set, a solution x
is considered dominating another solution y (i.e. x > y) when there is no criterion of
y is better than the equivalent component of x and at least one objective value of x is
strictly better than y. Formally and considering maximisation (where i, j ∈ objectives
space):

x > y if ∀i : xi ≥ yi ∧ ∃j : xj > yj

The Pareto front (i.e. Pareto set) consists of the individuals that are not dominated
by another individual. This basically means it contains potentially the best (or near
best) solutions which provide a variety of trade-offs between objectives. Figure 3.9a
illustrates a pairwise comparison between objective function one (f1) and objective
function two (f2) achieved by every solution. A non-dominated front can be produced
by applying the above explanation and checking if there is a solution that dominates
another can be proven. Figure 3.9b displays an example of non-inferior solutions spread
on the Pareto front, they are points D, E and F. For instance, E dominates C since
E(f1) is better than C(f1) and E(f2) is equivalent to C(f2). Whereas points E and
D are not dominating each other since E(f1) is better than D(f1) and E(f2) is worse
than D(f2).

(a) Solution Space (b) Non-dominated Solution

Figure 3.9: An Example of a Pareto Front [58]

55

The advantage of trade-offs among non-dominated solutions renders many system de-
signers interested in exploring a broad range of them prior to making a final choice.
EC algorithms have extensively displayed their potential in resolving many search and
optimisation problems over the last three decades. Moreover, they have the ability to
deal with problems with multiple objectives, which their traditional counterparts lack
[58]. Multi-objective evolutionary computation (MOEC) makes use of the evolution-
ary search to perform multi-objective optimisation. The population-based nature of
evolutionary algorithms is the main motivation behind using EC algorithms to solve
problems with two or more often conflicting objectives. This enables the production of
several solutions of the Pareto front in a single run [59].

3.1.4.1 Advantages of Pareto Front Based Approaches

In principle, a multi-objective optimisation problem in evolutionary computation is
using two methods (i.e. weight-based and Pareto-based) to calculate fitness values
[60]. In weight strategy, a single fitness function is outlined and the relations between
objectives are revealed by weights. However, choosing the appropriate weights is not
an easy task since it has an affect on the obtained solutions. Pareto front approaches
own a number of advantages compared to the classical weighted approach:

• The prior determination of weights that affect the trade-offs among objectives
is not needed anymore. Besides, figuring out such weights will require a deep
understanding of the problem context.

• The relationship among objectives can be revealed easily using the Pareto front.
This is especially important information as it helps the system designer to select
the best solution.

• The obtained Pareto front can be saved and later restored in case of any changes
in requirements which may demand a different solution and thus a different set
of trade-offs.

• The issue of local optima can be overcome by optimising multiple fitness func-
tions. This will help to maintain the diversity of the population and raises the
opportunity of discovering better solutions.

The weight-based strategy does not permit the examination of objectives individually
or even compare trade-offs between them. It describes different trade-offs as equal.
Therefore, SPEA2 [60], which is among the most popular Pareto-based evolutionary
algorithms, is utilised in this research.

56

3.1.4.2 Strength Pareto Evolutionary Algorithm (SPEA2)

As implied by its name, SPEA2 is an upgrade from its earlier implementation. SPEA2
is considered as an elitist method that employs a fixed size archive (external set) to
preserve non-dominated solutions discovered in each generation. In order to generate a
new population (i.e. offspring) in this method, tournament selection is utilised to chose
individuals from the old population and perform evolutionary operations. The archive
set members have a better probability to be chosen compared to other individuals [60].
The process of selection is dependent on the fitness scores of the individuals.

Because it is using an archive with a fixed size, we can witness three possible sce-
narios: non-dominated solutions are equal to, less than, or greater than the predefined
archive size. There is no action needed when it is equal. In case of less than, the archive
is filled using dominated solutions. If it surpasses the archive size, additional archive
solutions are removed using a clustering technique which maintains the properties of
the non-dominated solutions [60]. This procedure is repeated until the archive is able
to accommodate the non-dominated solutions. In essence, the aim is to have a variety
of non-dominated solutions (i.e. widely distributed over the objective space). The so-
lution with a smaller fitness score is better. The fitness score of an individual is based
on two variables as in the following equation:

Fitness (i) = Raw fitness (i) +Density estimation (i) (3.1)

The raw fitness is determined through the strengths of its dominators in both archive
and population. The aim here is to minimised the raw fitness score. Thus if it is equal
to 0 that represents a non-dominated solution. Whereas a high score of raw fitness
implies that it is dominated by many solutions. However, in a situation when the
majority of solutions do not dominate each other, the raw fitness score alone is not
enough. Therefore, SPEA2 utilised density estimation and added it to the raw fitness
score to yield the final fitness score. The density estimation practice is an adaptation of
the k-th nearest neighbour method. The density estimate is assigned the inverse of the
distance to the k-th nearest neighbour in the objective space, in which k is equivalent
to the square root of the sum of the whole individuals (i.e. both regular population
and archive). The main steps of the algorithm [60] are given as follows:

57

Input: N population size
N archive size
T maximum number of generations

Output: A non-dominated set
Step 1 : Initialisation generate an initial population (P0) and create an empty archive

(P0 =Ø)

Step 2 : Fitness assignment calculate fitness values of individuals in Pt and Pt.
Step 3 : Environment selection copy all non-dominated individuals in Pt and Pt to Pt+ 1.

If size of Pt+ 1 exceeds N then reduce Pt+ 1 with the truncation operator, otherwise
if it is less than N then fill Pt+ 1 with dominated individuals in Pt and Pt.

Step 4 : Termination if termination criteria (t ≥ T) is satisfied then set A to the
non-dominated individuals in Pt+ 1 and stop.

Step 5 : Parent Selection perform tournament selection with replacement on Pt+ 1 to fill
the mating pool.

Step 6 : Variation apply variation operators to the mating pool and set Pt to the new population.
Increase generation number (t = t+ 1) and go to Step 2.

3.2 Ensemble Learning

The concept of combining outputs from a set of learners into a single output is de-
scribed as an ensemble [61]. An ensemble may incorporate multiple (heterogeneous or
homogeneous) learners to obtain reliable and more accurate predictions. A variety of
schemes can be employed to produce learners and to incorporate them, i.e. different
datasets can be used to train same learning paradigms and/or the same dataset can
be used to train different paradigms [62]. The main challenge for the ensemble learn-
ing is the selection of the algorithms creating the ensemble and the decision function
which combines the results of these algorithms. Of course, the more algorithms the
better, however, it is essential to consider the computational cost of adding a new al-
gorithm. In his review article [61], Dietterich listed three main reasons for utilising an
ensemble-based system. The statistical reason is associated with the lack of sufficient
data to accurately identify the best hypothesis in the search space. The computational
reason is to address the concern that many ML algorithms may get stuck in local op-
tima during the search for the best hypothesis. Finally, the representational reason is
to overcome the issue of inability of many ML algorithms to effectively represent the
sought decision boundary.

The construction of the ensemble model goes through two main steps: generation and
combination [63]. The generation phase is responsible for creating a set of base clas-
sifiers. In the combination phase, the decision regarding how to combine the base
classifiers outputs into one is made. Currently, a lot of the well-known contemporary

58

machine learning algorithms are in fact built around the ensemble concept. Bagging,
boosting and stacking are considered to be the commonly used ensemble practices [24].
These methods aggregate multiple learning models over to a single model so that it will
reduce variance (bagging), bias (boosting), or increase predictions (stacking). Figure
3.10 illustrates general ensemble methods workflow.

Figure 3.10: Ensemble Methods Workflow

Bagging is one of the earliest and most intuitive ways of assembling, where it imple-
ments in a parallel fashion. The models are fed a variety of bootstrapped copies from
the training dataset so that generated models are little different from each other. These
copies are subsets from the entire training dataset and each copy has been taken out
randomly with replacement. Finally, the outputs from every predictor are assembled to
obtain the final output of the ensemble. Another ensemble technique is boosting where
algorithms are used sequentially. The first algorithm examines all the instances in the
dataset and attaches weights to each of them. The instances with a higher value for
the weight are the ones that were categorised incorrectly by the algorithm. Then, the
next algorithm receives as an input the dataset as well as the weights for all instances
in the dataset. The weights allow the algorithm to focus on the instances that were the
hardest to categorise. The second algorithm updates the instances weight according to
its result and passes the dataset to the third algorithm. This process continues until
the last algorithm of the ensemble has processed the data. Making the final decision
for both these methods could be reached by making use of majority voting. So for any
instance input, the class that has been predicted the most by the learner models will
represent the ensemble’s decision. Nevertheless, there are alternative ways to analyse
and to obtain an optimal combination.

59

The stacking technique is a supervised machine learning paradigm that searches for
the best incorporation among a set of predictors (algorithms). In this type, a second
level algorithm called “meta-learner” is trained to look for the ideal combination of
the base learners. As opposed to bagging and boosting, the stacking method is often
assembling strong, diverse groups of learners with each other. Furthermore, bagging
and boosting when utilised usually produces homogeneous ensembles, in contrast to,
stacking and voting which can be utilised to generate heterogeneous ensembles.

Not all combination approaches need to be learned [24]. A variety of means with good
general motivation can be employed, e.g. “Majority Voting” may assign a class to an
instance when at least the overall models indicate that a particular class is higher than
half of the total number. Similar considerations apply for continuous outputs. If each
classifier produces a set of class probabilities for a particular object, then the averages
for each class can be computed, e.g. “Simple Average”.

3.3 Previous Work

This section reviews various implementations of GP, GE, MOEC and EC ensembles
in intrusion and anomaly detection systems. Machine learning algorithms have been
widely utilised in the research of IDS. In the same way, EC algorithms, which include
global optimisation strategies, are used to resolve this issue. When it comes to intrusion
detection, the issue being resolved is the classification of normal and attack activities.
The first attempt at utilising GP for intrusion detection can be dated back to 1995 by
Crosbie and Stafford [64]. In this study, given a set of extracted features and a set of
functions, GP built autonomous agents that were able to identify normal and intru-
sive scenarios. This method has the advantage of using many small autonomous agents
rather than a single large one. However, the communication among them remains an
issue. Furthermore, the training stage takes a longer time when agents are not ade-
quately initialised. The experimental outcomes showed that GP was computationally
efficient and powerful, in addition, it generated immediately usable programs.

Lu and Traore [65] investigated utilising GP to evolve rules whose aim is to discover
novel or known network attacks on networks. The initially generated rules were selected
based on past knowledge of known attacks where these rules were represented as a parse
tree. GP then evolved new rules out of these rules. The approach was evaluated using
the DARPA benchmark dataset and simulated attacks on a real network environment.
Their investigation showed the ability of the new rules evolved by GP to identify novel
intrusion signatures. The evaluation of the generated rule has low false rates as well as

60

a high detection rate for unknown attacks. Nevertheless, their utilisation of GP made
the implementation procedure require more data and time during the training proce-
dure. Note in this implementation, the detecting is for previously unseen variations of
known attacks (i.e. DoS attack subfamilies).

Yin et al. [66] developed a network anomaly detection system using GP to gener-
ates the detection rules. These rules were evolved from previously learned rules aimed
at classifying the attack traffic from the normal traffic. GP helped to minimise the set
of rules used by the system by discarding underperforming rules. The classic DARPA
dataset and real inside traffic were utilised to generate the rule set. For this dataset,
an omit approach is also introduced to simulate the attributes of artefacts because of
over-optimistic evaluation of detectors. This approach significantly outperformed the
original rule learning algorithm, however, it underperformed when tested with real in-
side traffic. Furthermore, there were a number of attacks that went undiscovered from
the testing stage. Finally, two stages of training are required by the GP algorithm that
led to unwanted inefficiency.

Faraoun and Boukelif [67] attempted to make use of a dynamic GP for multi-class
classification problem applied to create a network-based IDS. This approach evolves
non-linear transformations of the original space (i.e. input data) and generates a new
space with a decreased dimension that leads to a better multi-class classification. The
KDD dataset was used to train and test the proposed approach. GP evolves non-
linearly and can map the 41 attributes of the dataset into a one-dimensional decision
space using a dynamic threshold to discriminate the 5 groups in this dataset (DOS,
R2L, U2R and probing). The comparison with other existing solutions showed that the
GP algorithm can provide competitive results without notably increasing the training
and detection runtime.

Orfila et al. [68] examined the implementation of GP to evolve a network-based IDS,
specifically for the automatic construction of patterns to utilise in the discovery of the
type of activities seen in a system. They produced very lightweight and straightforward
patterns which can be comprehended easily by humans. Their experiment has been ap-
plied to traffic recorded at a medium-sized website of a business venture. A dataset
consisting of packet header information between October 2004 and January 2005 which
is publicly available [69]. The obtained results in this study support the notion that
GP can be successfully used for intrusion detection. However, additional experiments
need to be performed using other datasets to prevent the dependency of the outcomes
on a single dataset. The function collection used provided an additional explanation

61

with regards to why an event should be considered as an intrusion. However, there is
a need to include non-linear behaviour exploration in the solution space.

Blasco et al. [70] make use of a new IDS assessment measurement as a fitness function
to guide GP search for IDS rules. They applied their approach to the KDD dataset.
Their function set was reduced to the one that only produced two logical outcomes (i.e.
0 or 1). The comparison showed that GP produced rules used fewer nodes and func-
tion calls (i.e. shorter rules). Therefore, this method is increasing the throughput while
decreasing the time required to deal with any monitor event. In addition, these rules
are produced in a simple structure. Thus this could help us to understand the reasons
behind why an activity is considered to be malicious. Their conclusions demonstrate
that an intelligent utilisation of GP delivers a system that competes with state-of-the-
art approaches when it comes to effectiveness, productivity and simplicity.

Besides GP, GE is another evolutionary computation paradigm that is adopted to
tackle IDS issues. Wilson and Kaur [71] investigated the possibility of employing GE
to evolve IDS rules on wired networks. It has been utilised to evolve detectors for dif-
ferent classes of attacks. They apply their method to the KDD dataset. GE is proven
to be effective in producing computer programs for the IDS. Their GE implementation
was restricted to a single hypercube of the utilised features which best infer a class
rather than a non-linear separation.

Sen and Clark [44] applied GP and GE to build IDS in a mobile ad hoc networks
environment. Their research shows that both algorithms can be utilised to produce
efficient programs automatically for known attacks, namely ad hoc flooding and route
disruption against routing protocol. GP and GE evolved a program for each attack
separately. These algorithms were assessed on a dataset gathered from simulated be-
haviours with different patterns of traffic and mobility. The experimental outcomes
showed that GP and GE are good at exploring complex relations and GP offers greater
efficacy compared to GE under their (approximation to) ideal parameter settings.

In contrast to GP, GE has seen very limited applications in intrusion detection and
improvements are very likely possible. Furthermore, no single study exists that utilised
CGP for IDS applications.

A GP framework has been adopted to form an ensemble IDS model before. Folino et al.
[72] implemented a distributed IDS using a GP ensemble model. GP operates in a dis-
tributed hybrid multi-island model-based environment to examine events in a network.

62

Every island includes a cellular genetic program whose purpose is to produce a detec-
tor, trained using data stored on each node locally. In addition, these programs were
enhanced with the use of a boosting algorithm AdaBoost.M2. Every genetic program
operates cooperatively, yet independently of the others. After building these programs,
they are integrated to produce the ensemble model by implementing a majority-voting
concept. Folino and Pisani [62] proposed another ensemble using GP operating on
distributed memory and environments, with GP composing several machine-learning
techniques into an ensemble. GP evolved non-trainable combiners using a portion of
the training set (i.e. validation set). Thus the ensemble built and used without the need
for a further phase of training. The function set (i.e. non-trainable combiners) applied
to classifiers that were detailed as following: average, weighted average, multiplication,
maximum and median. These functions are duplicated using various arity usually from
2 to 3. The final evolved combiner function is utilised to categorise new data i.e. the
test set. Both experiments over the KDD dataset have been performed. Both prelim-
inary experiments showed that the proposed systems yielded better results compared
to the efficacies of state-of-the-art algorithms. However, the prediction is worse for the
underrepresented classes (i.e. unseen variations of U2R and R2L attacks) in the train-
ing dataset.

A more recent GP ensemble implementation for classifying low rate DoS attacks is
proposed by Picek et al. [73]. In this study, a one-class GP algorithm is utilised to
evolve a set of classifiers where the training phase included only normal behaviour.
GP classifiers produce a single value compared with a target interval in order to de-
cide instances type. The fitness function was calculated using the accuracy of normal
classification where it was multiplied by the number of features used by the GP tree.
This is important since it forced GP to use more features from the data which may be
relevant to anomaly detection afterwords. Finally, the set of GP classifiers are stacked
using the majority vote and simple average with ensemble members ranging from 3
to 15. These models were tested using three datasets KDD, NSL-KDD and a private
one. The results showed that GP is able to produce more efficient anomaly detection
solutions compared to state-of-the-art algorithms.

We note that utilising GP for evolving ensemble solutions was also studied before,
however, the GP part was understandably different from ours. While some research
has been carried out on GP ensembles for IDS, no studies have been found which
utilised GE as an ensemble method.

MOEC based approaches have been applied to intrusion detection problems before.

63

Badran and Rockett [74] presented a multi-objective GP as a method for features ex-
traction for multiple-category classifiers through producing multi-dimensional decision
space from the input space. The aim of this work is to improve the classification per-
formance among all classes. The two objectives that were set to be optimised using a
Pareto-based multi-objective algorithm were the tree complexity (i.e. number of nodes)
and the misclassification error. Complexity optimisation helps to deal with the bloat
in GP. This approach works on the original format of datasets with no need for a
pre-processing phase. In addition, feature selection and extraction are evolved simulta-
neously. In this experiment, the KDD dataset was used in which the proposed method
achieved better performance in comparison to KDD Cup winner, but with a substan-
tially simpler classification framework.

Gomez et al. [75] carried out a multi-objective technique based on a Pareto frame-
work (MOEA) within the detection unit of Snort for automatic rules generation for
network-based IDS. MOEA aims to simultaneously minimise the number of FP (nor-
mal traffic considered an attack); and FN (attack traffic not detected). Wide ranges of
solutions were obtained using two optimisation methods: single objective (i.e. aggre-
gate function) and the Pareto front. The optimisation mode is used to adjust FP and
FN parameters (i.e. α and β) in minimising the objective function (α ∗FN + β ∗FP).
The experiment showed that multi-objective optimisation could improve results and
provide more solutions that are more suitable for practical purposes. In addition, the
authors showed that increasing the number of individuals and the backtracking rate
(a quality measure) increases the overall achievement of IDS solutions. However, the
authors employed a small number of individuals (i.e. only 3, 5 and 10) which is consid-
ered not enough for classifying millions of instances like those that exist in the dataset
used (i.e. KDD).

Hoz et al. [76] proposed a network-based anomaly detection approach that includes
a multi-objective paradigm for the application of feature selection. Using fewer fea-
tures helps to reduce the complexity and improves the overall performance. The multi-
objective optimisation algorithm implemented in this study is the Non-dominated Sort-
ing Genetic Algorithm II (NSGA-II). NSGA-II evolved the non-dominated solutions
(i.e. Pareto front) through the optimisation process. These solutions hold adequate in-
formation that helps to decide the features that allow a better labelling for each class.
For the classification purpose, authors made use of the distinguishing characteristics
of a clustering technique named Self-Organizing Maps (SOMs). They have examined
Growing Hierarchical SOM (GHSOM) a clustering procedure that enhances solution
efficiency through a relabelling technique. This clustering procedure benefits from clus-

64

ters that are previously trained via GHSOM to provide a better classification for the
incoming events. The experiments were performed with the KDD-NSL dataset. In this
implementation, the authors used the most effective set of features rather than the full
feature set which helped to reduce the GHSOM solution size. This provided a more
accurate detection rate with a lightweight processing that led to an increase in the
computational efficiency of the IDS. Consequently, it becomes feasible to the security
team to carry out other actions (e.g. IP blocking), in real time. Jaccard index, which
has been used as an indication for the set of features selected for each activity type,
is utilised as one of the objectives. The experiment showed that the feature set that
optimises the Jaccard index along with the relabelling techniques improved the results
obtained compared to other proposed methods.

Kumar and Kumar [77] proposed a multi-objective genetic algorithm, namely Archive
based Micro Genetic Algorithm 2 (AMGA2) and an ensemble concept to model effective
intrusion detection. The AMGA2 approach conducted a simultaneous consideration of
a number of objectives such as the detection rate of each attack class, error rate, ac-
curacy and diversity. A MultiLayer Perceptron (MLP) is utilised to generate a wide
selection of base classifiers. A three-phase approach was utilised in which AMGA2
evolved individuals with a simple genome structure in the first phase. A Pareto front
of non-dominated solutions is achieved during this phase. In the second phase, an en-
tire solution group is further enhanced in order to identify the most effective ensemble
solutions. This is performed by examining the interaction of the solutions and another
Pareto front is produced. In the third phase, a majority voting technique is utilised to
combine the predictions of individuals to produce the final prediction of an ensemble
solution. To evaluate and validate the proposed model, two datasets namely KDD,
KDD-NSL and ISCX 2012 [78] were used. The results showed that the proposed model
could produce a high detection rate especially for minority attack classes when com-
pared with bagged MLP and boosted MLP techniques. However, the method used a
static means for choosing a suitable ensemble model, and the diversity between indi-
viduals and their ensembles is preserved implicitly.

Sen et al. [79] proposed utilising GP together with multi-objective evolutionary compu-
tation to build IDS in mobile ad hoc networks (MANETs) space. In this work, SPEA2
was used to evolve intrusion detection programs that show trade-offs amongst security
elements and the power consumed by each program. The aim was to optimise three
objectives simultaneously (i.e. detection rate, false positive rate and energy consump-
tion). Both single objective and multiple objectives applications were implemented and
compared. According to the outcomes, the multiple objective implementation, under

65

some circumstances, explored the trade-off space more effectively. Furthermore, SPEA2
counteracts the appearance of bloat in evolved individuals which offers an improvement
since their goal is to evolve small-sized programs. The authors extended their work in
[44] by investigating the energy usage of cooperative intrusion detection programs.
In this implementation, besides optimising the previous objectives they included the
number of neighbours (i.e. nodes) in a cooperative IDS. Each neighbour engages in the
detection by forwarding their local knowledge to other nodes in the network. Reducing
the number of nodes will help reduce energy/bandwidth consumption. The results show
that EC techniques helped increase the effectiveness of the cooperative IDS.

There is no previous work to our knowledge in applications of the SPEA2 algorithm
to IDS problem properties such as processing times, diversity and unknown attacks. In
addition, multi-objective implementation was understandably different in terms of the
features selection mechanism, and the examined environment for memory consumption.

The summary of the reviewed papers is presented in Table 3.3

3.4 Evolutionary Computation: Why?

The internet and computer network environments are complex, dynamic and fast grow-
ing. These environments are becoming more sophisticated, as are the threats against
them with attackers using new attacks or modifying existing ones. It is challenging
to differentiate threats from normal behaviours in these kinds of environments. To
overcome such difficulties various artificial intelligence algorithms have been utilised.
Algorithms that have been used to build IDSs possess strengths as well as weaknesses.
It is difficult to say one algorithm is more superior than others are. Furthermore, var-
ied algorithms are in many cases utilised with each other to increase effectiveness.
Intrusion detection architectures incorporating various algorithms are also proposed.
Machine learning can be the power behind the automation of security processes that
enable security teams to keep up with the velocity and scale of what is being deployed in
such environments. In order to make adequate IDS design, It is not quite clear whether
the human perception can be the best possible option for these contexts compared to
algorithms. In addition to that, the resources restriction needs a variety of trade-offs
to be considered between multiple conflicting objectives. Humans are not usually able
to make good choices when complex trade-offs need to be made.

In this research, EC algorithms are proposed to discover automatic solution designs
for such complex space. Although techniques from different disciplines have been pro-

66

posed to solve IDS problems, EC is a standout among the most promising approaches.
The EC framework can easily address the IDS problem. We can often see what the pro-
gram is doing. EC approaches are very flexible where obtained IDS programs have some
degree of manual analysis making them easy to understand. Using these approaches,
researchers [80], [81] have been able to show that the evolved programs utilise far fewer
features in comparison to other ML approaches. EC approaches have a number of at-
tractive features, such as creating human-readable and lightweight detection rules, and
offering a collection of solutions with different trade-offs amongst conflicting objectives
[21]. These features are very significant for security teams [68]. These algorithms are
considered distribution-free methods (i.e. no previous knowledge is required regarding
the data statistical distribution), and there is no need for data pre-processing as it
functions on the original format of the data directly [46]. Data relationships can be
explored through modelling linear, non-linear or any application-specific operations.
They include an intelligent self-configuration environment for solution selection/con-
struction [74]. This helps to perform a dynamic method for selecting the most discrimi-
native features of observed behaviours. The generated solutions can be used directly in
the intended environment and can also result in a human-readable format that allows
to easily understand the logic behind its evolved decision. These attributes are the
main reasons for choosing EC-based approaches. Furthermore, multi-objective applica-
tions enable us to improve multiple conflicting objectives at the same time. Therefore,
they can be employed to evolve detection programs that are both effective (i.e. detect
attacks without a high false alarm rate) and efficient (i.e. take into consideration re-
sources restriction). These characteristics render EC very attractive for synthesise of
intrusion detection programs.

3.5 Conclusions

This chapter provides an overview of the learning algorithms that are applied through-
out this thesis. It starts with a discussion about different stages of the evolutionary
cycle with a focus on the three implementations: GP, GE and CGP. It then examines
how EC approaches can be extended to address the multiple objectives optimisation
problems. Next, it covered the concept of ensemble and its kinds, which will be applied
with EC frameworks to increase the performance of the detectors. In addition, it pre-
sented a survey of the applications of the proposed algorithms to the field of intrusion
detection systems. Finally, the reasons why EC algorithms are adopted in this research
is also reviewed.

67

Y
ear

A
u
th
ors

A
lgorith

m
D
ataset

F
in
d
in
gs

1995
C
rosbie

and
Stafford

[64]
G
P

Sim
ulated

D
ata

G
P

w
as

com
putationally

effi
cient

and
pow

erful,in
addition,it

generated
im

m
ediately

usable
program

s.

2004
Lu

and
T
raore

[65]
G
P

D
A
R
PA

G
P

able
to

identify
novelintrusion

signatures.T
he

generated
rule

has
low

false
rates

as
w
ellas

a
high

detection
rate

for
unknow

n
attacks.

2005
Y
in

et
al[66]

G
P

D
A
R
PA

and
Sim

ulated
D
ata

G
P

evolved
new

rules
out

of
initially

learned
rules,w

hich
outperform

ed
the

initial
rules

used
for

detecting
netw

ork
attacks.

2005
Folino

et
al.[72]

G
P

K
D
D
99

G
P

based
on

the
ensem

ble
concept

proved
an

effective
m
ethod

for
the

intrusion
detection

problem
.

2006
Faraoun

and
B
oukelif

[67]
G
P

K
D
D
99

G
P

can
provide

com
petitive

results
w
ithout

notably
increasing

the
training

and
detection

runtim
e

2007
W

ilson
and

K
aur

[71]
G
E

K
D
D
99

G
E

is
proven

to
be

effective
in

producing
com

puter
program

s
for

the
ID

S
2009

O
rfila

et
al.[68]

G
P

LB
N
L

G
P

rules
m
uch

sim
pler

than
C
4.5

algorithm
and

perform
ed

better.

2010
B
lasco

et
al.[70]

G
P

K
D
D
99

G
P

delivers
a
system

that
com

petes
w
ith

state-of-the-art
approaches

w
hen

it
com

es
to

effectiveness,productivity
and

sim
plicity.

2011
Sen

and
C
lark

[44]
G
P,G

E
and

SP
E
A
2

Sim
ulated

D
ata

G
P

and
G
E

are
good

at
exploring

com
plex

relations.T
he

SP
E
A
2
technique

helped
increase

the
effectiveness

of
the

cooperative
ID

S.
2012

B
adran

and
R
ockett

[74]
M
O
G
P

K
D
D
99

M
O
G
P

provided
a
sim

plicity
in

the
generated

classifier
w
ith

com
parable

effi
cacy.

2013
G
om

ez
et

al.[75]
M
O
E
A

K
D
D
99

M
O
E
A

considered
m
ore

suitable
for

practicalpurposes
than

the
single

objective
technique

since
it
produces

a
w
ide

set
of

solutions
w
ith

different
trade-offs.

2014
H
oz

et
al.[76]

N
SG

A
-II

K
D
D
-N

SL
N
SG

A
-II

evolved
non-dom

inated
solutions

that
hold

adequate
inform

ation
helped

to
decide

the
features

that
provide

a
better

labelling
for

every
class.

2015
K
um

ar
and

K
um

ar
[77]

A
M
G
A
2

K
D
D
99,K

D
D
-N

SL
and

ISC
X

2012
A
M
G
A
2
produced

ensem
ble

solutions
w
ith

high
detection

rates
especially

for
m
inority

attack
classes

com
pared

to
state-of-the-art

ensem
ble

m
ethods.

2015
Folino

and
P
isani[62]

G
P

K
D
D
99

G
P

com
posed

severalM
L
techniques

into
an

ensem
ble

classifier
that

yielded
better

results
com

pared
to

the
effi

cacies
of

state-of-the-art
algorithm

s.

2018
P
icek

et
al.[73]

G
P

K
D
D
99,N

SL-K
D
D

and
a
private

one
T
he

stacked
of

G
P

classifiers
w
as

able
to

produce
m
ore

effi
cient

anom
aly

detection
solutions

com
pared

to
state-of-the-art

algorithm
s.

Table
3.3:P

revious
W
orks

Sum
m
ary

68

Chapter 4 | Datasets Acquisition for Building

Intrusion Detection

Datasets have a critical role in training and testing intrusion systems. This chapter
describes the datasets we utilised in our experiments. Collecting datasets and analysing
behaviours should increase awareness and the ability to detect attacks in the future.
However, one of the main challenges of today’s research is obtaining representative data
to derive meaningful and comprehensive results and reflect upon them. Unfortunately,
generating a reliable benchmark dataset is not an easy task. Various studies argued that
finding the right dataset is the most significant challenge and the results of analysing
small environments might not hold for large systems [12], [14], [17], [42], [82]. The
environments used to generate these datasets along with the feature set and existing
attacks in them, are described in this chapter. Lastly, conclusions are given.

4.1 Intrusion Detection Datasets

System behaviours are diverse, complex and constantly evolving. This may affect the
ability of protection systems to detect and mitigate attacks. The effectiveness of evolved
IDSs may depend very much on the realism of the dataset(s) used to train the system.
Limited studies were performed on the evaluation of the characteristics of datasets used
for building an IDS. A recent study [82] outlined the major criteria in datasets such
as including environment configurations, capture full packet, contain attack diversity,
maintain the traffic payload, generate metadata, extract the feature set and labelled
behaviours.

There are various methods used for gathering data such as using a simulation en-
vironment, honeypot, firewall alerts, web-server access logs and deploying a high-
performance network monitor system with payload capture. A honeypot is considered
one of the most useful and effective tools to collect and observe attack techniques and
behaviours [83]–[85]. Deploying a honeypot to play the role of a router will provide
researchers with a malicious traffic dataset and help especially with capturing routing

69

traffic [86]. Firewall logs or IDS alerts are another source of data and can be used for
making passive measurements of live networks [87] and gathering different parameters
of HTTP header files that contain GET/POST requests data that pass values to various
web applications [88]. Web server access logs are datasets that store detailed informa-
tion about various users’ access and their sessions and are considered to be useful ways
to monitor different behaviour on the web [89]. Another example, deploying a high-
performance network monitor system with full-payload capture for different periods in
time on a website is given in [90]. In [44], the authors have used a network simulation
environment as the source of data to train and test their IDS. The collected data could
be enriched by adding various elements of information, for instance, the geographical
localisation of packets’ source addresses, passive OS fingerprinting on tcpdump logs,
and well-known blacklists of IP addresses. Moreover, an enriched dataset may augment
an entry with the relevant working days, working hours, holidays and so on. Honeypot
environment descriptions, analyses of observed sources’ ports and honeypot machines
attacked in parallel, or in sequence, may also be used to augment the dataset [84], [91],
[92]. Datasets may also encompass cases of multiple attack simulations, penetration
tests and/or vulnerabilities discovery tools to ensure the dataset contains a wide range
of threats [93].

Public datasets such as the DARPA/Lincoln Labs 1998 [94] and the KDD 1999 [95]
are used by different studies as ready collected data and contain various attacks. Tsai
et al. [23] found that KDD and DARPA datasets were used by most studies with only
a very few studies using their own datasets. However, KDD and DARPA are presently
over a decade old and thus are considered inadequate for current research [14], [82].

4.2 Dataset Feature Extraction

Typically, after the dataset gathering is completed, researchers will start a pre-processing
stage to extract a feature set. These features will be used in training and evaluating
the IDS prior to deployment. Features vary in their significance for the purposes of
intrusion detection. To be able to draw out a set of features that describe environment
behaviours various techniques could be executed, such as Argus [96], which monitors
and analyses network flow and also produces detailed network flow status reports, and
Flowcalc [97], which measures flow statistics from network traffic data. The selection
of methods utilised to examine the intended environment certainly depends on the sort
of investigation conducted in the following stages [98]. The available information ele-
ments vary in their significance for the purposes of intrusion detection. Some ‘features’
of data may collectively discriminate between malicious and acceptable behaviours.

70

Other features may simply serve to act as ‘noise’ for detection purposes.

Before applying learning algorithms to the problem of creating intrusion detectors
researchers tend to apply feature reduction to increase system performance and reduce
redundancy. Most datasets suffer from irrelevant and redundant features so eliminat-
ing superfluous features will improve the processing time and accuracy. Tsai et al. [23]
noted during their review of 55 studies between 2000 and 2007 that the level of IDS
classification accuracy improved by applying feature selection. Some experience has
shown that certain features could provide a good indication of the type of attacks.
Stevanovic et al. [89] demonstrated how using 9 features including 2 novel ones with
7 classification algorithms improved their performance during the experiments they
conducted. Various manual and automatic techniques for identifying high performing
features are available [93].

One of the most critical steps in building an IDS is deciding which set of extracted
features to include. With very large datasets and models that have a high computa-
tional cost, impressive efficiency can be realised by identifying the most (and least)
useful features of a dataset prior to running a model. High dimensionality of the ex-
planatory variables can cause both long computation times and a risk of overfitting
during the training phase. In addition to that, it is challenging to understand models
that use a large number of features. Generally, there are two main kinds of feature
selection methods: filter and wrapper [29], [99]. Filter methods consider the relation-
ship between features and the desired output to compute the relative importance of
features. Meanwhile, wrapper methods create models with a subset of feature and mea-
sure their model performances. It would be preferable to have the capability to choose
the important features prior to the proposed algorithm’s learning stage. This shortens
the training time in addition to rendering it easier to interpret the outcomes.

4.3 Feature Type used in our Experiments

Our proposed techniques have been evaluated using five widely different types of
datasets (i.e. environments). These datasets are fully labelled containing realistic nor-
mal and malicious scenarios. Extracted features contain three types: numeric, symbolic
and binary. Using EC approaches has noteworthy advantages since it operates on the
original format of utilised data with no pre-processing and with no presumption of any
prior distribution [74]. However, we did not employ all the available features. Firstly,
we did not use the symbolic type to avoid increasing the complexity of the learning
algorithm due to the requirement to process symbolic features such as protocol type,

71

packet type and flag. In the same vein, avoiding adding an extra stage for pre-processing
symbolic features in the IDS system layout as in [29], [39], [67], [68]. Secondly, some
attributes are changing constantly such as IP addresses and port numbers due to many
reasons, for example, spoofing by attackers for malicious purposes or hiding the actual
IP by proxies for the legitimate aim of protecting privacy. Thus, any detectors rely-
ing on these attributes may not generalise well in real world applications [30], [100].
However, features that describe flow statistics between IP addresses or to/from port
numbers are included.

4.4 Dataset Splitting for Learning Techniques

Adopted datasets are publicly available and they are used by the security research
community. Unfortunately, different studies have used different splitting percentages
(i.e. training and testing) of these datasets for various reasons such as:

1. Choosing only a few kinds of attack.

2. Compiling a small version of the dataset.

3. Creating a new dataset by combining its training and testing parts.

4. Filtering a dataset to fit analyses concerning the distribution of normal and attack
data.

These discrepancies are an issue since one can argue that utilising different proportions
of the dataset will promote different results. There is a large computation cost to
mimicking each and every dataset’s settings in order to compare them. One of our
aims is to use a common testbed where there is a wide variety of security threats under
examination. In addition, it should be easy for future research to replicate the results
for comparison. Therefore, this study adopts the original split of used datasets provided
by the originators and indicates the splitting percentages if required.

4.5 Datasets Description

4.5.1 Kyoto 2006+

The Kyoto 2006+ dataset [101] contains 3 years of real traffic data, from November
2006 to August 2009, gathered from the two honeypots and legitimate servers that
were implemented at Kyoto University. They employed various kinds of real and vir-
tual machines as honeypots such as Windows machines (e.g., Windows XP SP2, fully

72

patched Windows XP, and Windows XP with no patches), Linux/Unix machines (e.g.,
Solaris 8, MacOS X), mail servers, network printers, home appliances (e.g. TV set,
HDD Recorder) and so on. The main known cyber threats that researchers observed
in their honeypots were Trojans, Worms, Phishing attacks, Email spam and Shellcode.
In addition, there is a percentage of unknown threats that did not activate any IDS
alarms, and yet included shellcodes. They extracted 24 important features from the
raw traffic data collected by the honeypot systems. There were 14 statistical features
inspired by the 41 features of the KDD99 dataset; they also extracted 10 additional
features to help investigate what sorts of threats were encountered more effectively.
Table 4.1 shows the final feature set that was used for this study :

Id Feature Name Description
1 Duration The length of the connection in seconds
2 Service The connection’s service type. e.g., http, telnet
3 Source Bytes The number of bytes sent by the source IP address
4 Destination Bytes The number of bytes sent by destination IP address

5 Count
The number of connections between the same source and
destination IP addresses in the past two seconds

6 Same_srv_rate % of connections to the same service in Count
7 Serror_rate % of connection that have “SYN” errors in Count
8 Srv_serror_rate % of connections that have “SYN” errors in Same_srv_rate

9 Dst_host_count
The number of connections whose source IP address is also
the same as that of the current connection

10 Dst_host_srv_count
The number of connections whose service type is also the
same as that of the current connection

11 Dst_host_same_src_port_rate
% of connections with the same source port of the current
connection in Dst_host_count

12 Dst_host_serror_rate % of connections that have “SYN” error in Dst_host_count

13 Dst_host_srv_serror_rate
% of connections that have “SYN” errors in
Dst_host_srv_count

Table 4.1: Kyoto 2006+ Dataset Features [101]

For the experiments on Kyoto 2006+ dataset, we chose to evaluate our frameworks
on the dataset collected on 27, 28, 29, 30 and 31 August 2009. We selected 152,460
samples randomly. We split it into 70% for training which contains 58.19% attacks and
30% for testing which contains 57.96% attacks.

4.5.2 Phishing Websites Dataset

Phishing is known as the art of mimicking an internet site of a credible enterprise
aiming to steal customer’s credentials and other sensitive data, for example, accounts

73

details and social security numbers [102]. The percentage of URLs related to phishing
activity in web traffic grew by 182.6% in 2017 compared to 2016 [7]. The well-known
phishing websites dataset produced by Mohammad et al. published in UCI repository
[103] is utilised. This dataset consists of 11,055 website samples. It has 4,898 examples
labelled as phishing websites, whereas the remaining examples are labelled as genuine.
The phishing websites were obtained from Phishtank [104], which is an anti-phishing
community site that provides a phishing verification means by which users can publish,
confirm, monitor and share phishing data. Furthermore, they used Millersmiles [105],
which is regarded as a leading source of reports regarding spoof emails and phishing
scams. The genuine websites were obtained from the yahoo directory [106] as well as
from the starting point directory [107]. Most of this dataset’s attributes are binary (0,
1) or ternary (0, 1, -1) where the values 1, 0, and -1 refer to legitimate, suspicious and
phishing, respectively. This dataset contains 30 features that have proven its ability to
make sound and effective predictions for phishing websites. These important features
have been classified into 4 categories according to their impact on a website. The de-
scription of every categorise and its features are as follows [102], [103]:

Address Bar based Features: this refers to all features associated with the ad-
dress bar that displays the current Uniform Resource Locator (URL) of the analysed
internet site.

1. having_IP_Address refers to using an IP address instead of the domain name
in the URL, and sometimes may even be changed to hexadecimal code.

2. URL_Length relates to hiding a suspicious part by using a long URL.

3. Shortining_Service refers to adopting shortening technique services which
make the URL smaller in length.

4. having_At_Symbol checks whether the URL’s has a “@” symbol.

5. double_slash_redirecting The presence of // in the URL indicates there is
a redirection to another website.

6. Prefix_Suffix using dash symbol (-) makes the URL seem legitimate for its
users.

7. having_Sub_Domain indicates the number of sub domains in the URL.

8. SSLfinal_State refers to checking the trust and age certificates attached to
HTTPS (Hyper Text Transfer Protocol with Secure Sockets Layer) of a website.

9. Domain_registeration_length indicates the domain expiry date where nor-
mally phishing websites live for a short period of time.

74

10. Favicon refers to a visual reminder of the website identity and they checked
whether it is likely to be a phishing website if loaded from an external domain.

11. port is used to indicate whether a particular service is open or closed and examine
its favoured status.

12. HTTPS_token using a HTTPS token in the domain part of the URL to ma-
nipulate the users.

Abnormal Based Features: contains all features arising from recording the abnormal
behaviours revealed in the internet site.

13. Request_URL indicates whether external objects embedded in a webpage are
loaded from another domain.

14. URL_of_Anchor used to examine the hyperlink tag (i.e. <a>) status in the
webpage source code.

15. Links_in_tags used to check the percentage of links in used tags such as
<meta>, <script> and <link> in a website.

16. Server Form Handler SFH refers to the handler of submitted information and
it is considered phishing if it contains an empty string or "about:blank" and
suspicious if information is handled by external domains.

17. Submitting_to_email indicates whether the personal information submitted
was redirected to a personal email.

18. Abnormal_URL refers to a phishing behaviour when the hostname is not in-
cluded in the URL.

HTML and JavaScript based Features: includes all features associated with HTML
and JavaScript source code of the pages incorporated in the analysed internet site.

19. Redirect indicates how many times a website has been redirected.

20. on_mouseover refers to using JavaScript code "onMouseOver" in the webpage
source code to show a fake status bar to the users.

21. RightClick using JavaScript code to disable right-click function, so webpage
source code becomes unavailable to the users.

22. popUpWidnow indicates inviting the users to fill out their personal information
through pop-up windows.

75

23. Iframe is an HTML tag that is utilised by phishers to make the browser execute
a visual delineation for misleading purposes.

Domain based Features: consists of all the features taken from the domain part in
the URL of the analysed internet site.

24. age_of_domain used to indicate the minimum age of the domain where usually
the legitimate ones live for 6 months or more.

25. DNSRecord checks the Domain Name System (DNS) record of the website
where the record of phishing websites is usually empty or not found.

26. web_traffic indicates the number of visitors to the website which helps deter-
mine its popularity. The not popular or not recognised websites refer to phishing
behaviour.

27. Page_Rank aims to estimate how important the webpage is on the internet.
The more the better.

28. Google_Index shows whether the website is indexed by Google or not. The
phishing websites are usually not indexed.

29. Links_pointing_to_pagemeasures the number of links pointing to a website.
The more the better.

30. Statistical_report uses various published statistical reports on phishing web-
sites to examine whether the host of the website exists or not.

Phishing websites dataset is divided randomly into 80% for training which contains
44.39% phishing instances and 20% for testing where the percentage of phishing in-
stances is 43.96%.

4.5.3 UNSW-NB15 Dataset

The dataset from the Cyber Range Lab of the Australian Centre for Cyber Security
(ACCS) is used [38], [108]. In this dataset, a hybrid of real up-to-date normal and ab-
normal/malicious network traffic activities were generated in a synthetic environment.
The UNSW-NB15 dataset is regarded as complex due to it matching the behaviours
seen amongst some types of attacks and normal traffic. This dataset contains over 2
million sample data elements from two different simulation periods. In UNSW-NB15,
there are nine categories of attacks [38]:

76

1. Fuzzers: a technique where the attacker tries to uncover new and unknown vul-
nerabilities in a program, operating system, or network by feeding it with the
widest possible range of unexpected input of random data to make it crash.

2. Analysis: Variety of intrusions which aim to penetrate internet applications using
ports (e.g., port scans), emails (e.g., spam), and web scripts (e.g., HTML files).

3. Backdoor: an intruder attempts to gain remote access to a device through by-
passing authentication methods. As a result, he/she will be able to alter files,
steal sensitive data and/or install malicious software.

4. Denial of Service (DoS): an intrusion that causes computer resources to be so
heavily used as to prevent the authorised requests from accessing a device.

5. Exploit: a sequence of instructions that make use of a glitch, bug or vulnerability
and generates an unintentional or unsuspected behaviour on a host or network.

6. Generic: an attack that is executed against all block-cipher to produce a collision
with no consideration of the details of how that block-cipher is implemented.

7. Reconnaissance: can be defined as a probe; an attack that gathers information
about a computer network to evade its security controls.

8. Shellcode: an attack in which the attacker penetrates a slight piece of code start-
ing from a shell to control the compromised machine.

9. Worm: a type of computer malware which once it is installed by unaware users
it can spread itself on the targeted system. It causes damage to the host network
by exhausting its bandwidth and/or modifying and deleting system files.

There were 47 different reliable features that were extracted from the raw network
packets. The final features that we adopted in our experiments are listed in Table 4.3
alongside their descriptions. The UNSW-NB15 dataset features are generated utilising
tools such as Argus and Bro-IDS. In addition, authors wrote procedures to create
new features based on relations among extracted features (e.g., is_sm_ips_ports and
ct_state_ttl). They included a variety of packet-based features and flow-based features.
These features are grouped into five sets:

(a) Flow features: involve the identifier attributes between hosts (i.e. client or server)
for instance IP address, port number and protocol type.

(b) Basic features: include protocol connection properties.

(c) Content features: contain the attributes of TCP/IP; additionally they include
some properties of http services.

77

(d) Time features: involve the attributes time, for instance, arrival time between
packets, start/end packet time, and round-trip time of TCP protocol.

(e) Additional generated features: This category can be further divided into two
groups: general-purpose features, whereby each feature has its own purpose, in
order to protect the service of protocols, and connection features that are built
from the flow of 100 recorded connections based on the sequential order of the
last time feature.

Table 4.2 compares the experimental data of UNSW-NB15 dataset alongside its distri-
bution of each category between training and testing datasets.

Category Training Set Testing Set
Normal 56,000 37,000
Analysis 2,000 677
Backdoor 1,746 583
DoS 12,264 4089
Exploits 33,393 11,132
Fuzzers 18,184 6,062
Generic 40,000 18,871
Reconnaissance 10,491 3,496
Shellcode 1,133 378
Worms 130 44
Total Records 175,341 82,332

Table 4.2: UNSW-NB15 Dataset Distribution [38]

The UNSW-NB15 dataset was split with an approximately 60%:40% proportion of the
training and testing datasets sequentially with no redundant instances amongst the
training and testing dataset. 68.06% of training instances are attacks whereas 55.06%
of testing instances are attacks.

78

Id Feature Name Description
1 dur Record total duration
2 sbytes Source to destination bytes
3 dbytes Destination to source bytes
4 rate Number of packets per second
5 sttl Source to destination time to live
6 dttl Destination to source time to live
7 sloss Source packets retransmitted or dropped
8 dloss Destination packets retransmitted or dropped
9 sload Source bits per second
10 dload Destination bits per second
11 spkts Source to destination packet count
12 dpkts Destination to source packet count
13 swin Source TCP window advertisement value
14 dwin Destination TCP window advertisement value
15 Stcpb Source TCP base sequence number
16 dtcpb Destination TCP base sequence number
17 smeansz Mean of the packet size transmitted by the srcip
18 dmeansz Mean of the packet size transmitted by the dstip
19 trans_depth The connection of http request/response transaction
20 response_body_len The content size of the data transferred from http
21 sjit Source jitter (mSec)
22 djit Destination jitter (mSec)
23 sinpkt Source inter-packet arrival time
24 dinpkt Destination inter-packet arrival time
25 tcprtt Setup round-trip time, the sum of ’synack’ and ’ackdat’
26 synack The time between the SYN and the SYN_ACK packets
27 ackdat The time between the SYN_ACK and the ACK packets
28 is_sm_ips_ports If srcip = dstip and sport = dsport, assign 1 else 0
29 ct_state_ttl No. of each state according to values of sttl and dttl
30 ct_flw_http_mthd No. of methods such as Get and Post in http service
31 is_ftp_login If the ftp session is accessed by user and password then 1 else 0
32 ct_ftp_cmd No of flows that has a command in ftp session
33 ct_srv_src No. of rows of the same service and srcip in 100 rows
34 ct_srv_dst No. of rows of the same service and dstip in 100 rows
35 ct_dst_ltm No. of rows of the same dstip in 100 rows
36 ct_src_ltm No. of rows of the srcip in 100 rows
37 ct_src_dport_ltm No of rows of the same srcip and the dsport in 100 rows
38 ct_dst_sport_ltm No of rows of the same dstip and the sport in 100 rows
39 ct_dst_src_ltm No of rows of the same srcip and the dstip in 100 records

Table 4.3: UNSW-NB15 Dataset Features Description [38]

79

4.5.4 Modern DDoS Dataset

A new dataset that contains contemporary kinds of Distributed Denial of Service
(DDoS) attack is used [40]. DDoS is an attempt to disrupt an online service and make it
unavailable for its intended users by overwhelming it with traffic from multiple sources.
Radware researchers observed in 2017 that the prevalence of DDoS attacks rose 10%.
Moreover, they witnessed an increase in application layer attacks compared to network
layer attacks [11]. A network simulator (NS2) was utilised to generate this dataset. It
simulated different types of the attack targeting application and network layers. The
generated dataset includes 4 kinds of DDoS attack as follows: (HTTP Flood, SIDDOS,
UDP Flood, and Smurf). The five types of traffic in this dataset are described below
[40]:

1. Smurf is malicious network traffic done by spoofing IP addresses in a network
for sending a massive amount of Internet Control Message Protocol (ICMP) echo
request packets to the target server. With enough ICMP responses forwarded,
the victim machine is brought down.

2. User Datagram Protocol (UDP) flood is a type of network layer attack,
where the UDP is a connectionless protocol. The intruders dispatch a large vol-
ume of UDP traffic to overwhelm the target server, the server then becomes
unresponsive to other clients.

3. SQL Injection DDOS is an application layer attack, where intruders begin
from the client side, a web browser for instance, by inserting a malicious code
element (i.e. SQL statement) and forwarding it to the server-side database. This
code will be executed indefinitely making the service unavailable for legitimate
clients.

4. HTTP flood is a type of application attack. HTTP flood attacks are volumetric
attacks, where attackers send what seem to be legitimate HTTP GET or POST
requests for a web server or application. The attackers act as a legitimate user
requesting services whereas in fact they exhaust server resources responding to
every single request.

5. Normal transaction data.

Table 4.4 lists number of instances in each category.

80

Category No. of Records
Smurf 12,590
UDP Flood 201,344
SIDDOS 6,665
HTTP Flood 4,110
Normal 1,935,959

Table 4.4: Distribution of Modern DDoS Dataset Classes

In this dataset, each simulated network traffic is converted to 27 different features. The
final feature set that we used in our experiments is presented in Table 4.5 with their
description.

Id Feature Name Description
1 pkt_id Packet identifier
2 pkt_size Total packet size in bytes
3 seq_number Sequence number
4 fid Flow identifier
5 number_of_pkt Total number of packets
6 number_of_byte Total number of bytes
7 pkt_in Total time of packet inside queue
8 pkt_out Total time of packet outside queue
9 pkt_r Time of packet received
10 pkt_delay_node Time packet delay within node
11 pkt_rate Average packet rate
12 byte_rate Average byte rate
13 pkt_avg_size Average packet size
14 utilization Bandwidth utilization
15 pkt_delay Total time packet delay
16 pkt_send_time Time of sending packet
17 pkt_reserved_time Time of receiving packet
18 first_pkt_sent Time of first packet sent
19 last_pkt_reseved Time of last packet received

Table 4.5: Modern DDoS Dataset Features Description

This dataset was randomly partitioned, and its training and testing parts have no
redundancy (i.e. there are no duplicate records). To obtain realistic results, the dataset
was split into 34% testing and 66% training. 10.37% of training set instances are attack
samples compared to 10.44% in the testing dataset.

81

4.5.5 CICIDS2017 Dataset

A more recent dataset named CICIDS2017 that was intended for cybersecurity and
intrusion detection research is utilised [41]. This dataset covers a more diverse set of
attack scenarios than the previous datasets. The dataset was created by the University
of New Brunswick’s and Canadian Institute for Cybersecurity over a period of five days.
They used a comprehensive network infrastructure to generate normal and the most up-
to-date common attack behaviours. This network included necessary equipment such as
router, firewall, switches, various kinds of server and different versions of the common
three operating systems, namely Windows, Linux and Macintosh. In this dataset, the
authors created six attack profiles based on the last updated list of common attack
families and executed them by using related tools and codes. The CICIDS2017 dataset
attack scenarios are [41]:

1. Brute Force Attack: This type of attack is based on a trial and error approach
targeting the victim system until it succeeds. The main usage of this attack is
password cracking, however, it can be used for discovering hidden pages and
content in a web application.

2. Heartbleed Attack: It is a bug in the popular OpenSSL cryptography library,
which is widely utilised in the implementation for securing communications over
networks. This attack is performed by sending a malformed heartbeat request
with a small payload and large length field to the vulnerable system to leak
memory contents.

3. Botnet: A number of compromised devices connected to the internet and used by
an intruder to execute different tasks. For instance, stealing information, sending
spam, besides getting access to the device and its connection.

4. DoS Attack: Beside traditional DoS attacks, the authors implemented low rate
DoS attacks where a single machine keeps connections open with minimal band-
width that consumes the server resources and takes it down.

5. DDoS Attack and PortScan: Authors executed the latest updated list of
common DDoS attack tools. PortScan is an attack that is executed to check
ports status in order to identify available services that are currently running on
a server.

6. Web Attack: This type of attack is coming out daily targeting various web
applications and can expose an organisation’s valuable resources to the outside
world. They implemented various web attacks such as SQL Injection, in which
an attacker generates a string of SQL commands, and then utilises it to force the
database to reply with sensitive information. Cross-Site Scripting (XSS) occurs

82

when developers do not examine their code properly to discover the possibility
of script injection. In addition, Brute Force over HTTP, which involves trying a
list of passwords to discover the administrator’s password.

7. Infiltration Attack: It is an attempt to compromise the network from inside
via the utilisation of a vulnerable software. In the case of success, a backdoor
will be installed on the victim’s system which leads to the performance of various
attacks on the victim’s network, for instance, IP sweep, full port scan and service
enumerations.

In order to extract the network traffic features, authors utilised the CICFlowMeter
[109], which is a bidirectional flows based feature extractor written in Java that can
extract 83 statistical features. These features are calculated separately in the forward
and reverse directions from the observation of traffic flows. In the second step, they
find the most influential feature set for classifying each category in this dataset out
of extracted features, as shown in Table 4.7. The CICIDS2017 was not divided by the
provider into training and test datasets; therefore, we split it into training and test
datasets using a ratio of 70% and 30% respectively. Both portions contain 20% attack
instances. We observed that the CICIDS2017 dataset contains missing and duplicate
information. This information has been removed. Table 4.6 shows the CICIDS2017
dataset classes distribution between the training and test portions.

Scenario Label Training Testing
Normal 1,589,806 681,514
FTP-Patator 5,574 2,361
SSH-Patator 4,124 1,773
Heartbleed 7 4
DoS slowloris 4,068 1,728
DoS Slowhttptest 3,887 1,612
DoS Hulk 161,067 69,057
DoS GoldenEye 7,233 3,060
Web Attack Brute Force 1,062 445
Web Attack XSS 462 190
Web Attack Sql Injection 16 5
Infiltration 26 10
DDoS 89,580 38,445
Bot 1,335 621
PortScan 111,266 47,538
Total Records 1,979,513 848,363

Table 4.6: CICIDS2017 Dataset Scenarios Distribution

83

Id Feature Name Description
1 Bwd_Packet_Length_Min Minimum size of packet in backward direction

2 Subflow_Fwd_Bytes
The average number of bytes in a sub flow in the
forward direction

3 Total_Length_of_Fwd_Packets
The total number of bytes sent in an initial window in the
forward direction

4 Fwd_Packet_Length_Mean Mean length of a flow
5 Bwd_Packet_Length_Std Standard deviation length of a flow
6 Flow_IAT_Min Minimum inter-arrival time of packet

7 Fwd_IAT_Min
Minimum time between two packets sent in the forward
direction

8 Flow_IAT_Mean Mean inter-arrival time of packet
9 Flow_Duration Duration of the flow in Microsecond

10 Fwd_IAT_Std
Standard deviation time between two packets sent in
the forward direction

11 Active_Min Minimum time a flow was active before becoming idle
12 Active_Mean Mean time a flow was active before becoming idle

13 Bwd_IAT_Mean
Mean time between two packets sent in the backward
direction

14 Fwd_IAT_Mean
Mean time between two packets sent in the forward
direction

15 Init_Win_bytes_forward
The total number of bytes sent in an initial window in the
forward direction

16 ACK_Flag_Count Number of packets with ACK

17 Fwd_PSH_Flags
Number of times the PSH flag was set in packets
travelling in the forward direction (0 for UDP)

18 SYN_Flag_Count Number of packets with SYN
19 Flow_Packets/s Number of flow packets per second

20 Init_Win_bytes_backward
The total number of bytes sent in an initial window in the
backward direction

21 Bwd_Packets/s Number of backward packets per second
22 PSH_Flag_Count Number of packets with PUSH
23 Average_Packet_Size Average size of packet

Table 4.7: CICIDS2017 Dataset Features Description [109]

84

4.6 Conclusions

IDS has been the subject of a great deal of research but remains a challenging prob-
lem. Various approaches were used for collecting data for the purpose of evaluating
IDSs. Many evaluations have been carried out using a limited number of very old
datasets. Furthermore, the research often investigates a very limited number of attacks
and makes assumptions about the architectures of solutions. Thus it is difficult to
compare the various implementations proposed. A common testbed that contains var-
ious datasets, or better yet, testing in genuine environments utilising various scenarios
would be especially desirable for the intrusion detection community [25]. This chap-
ter has summarised various issues regarding datasets used for building and evaluating
IDSs. As a result of the investigative work performed, we have identified five datasets
to be used in our experiments in this thesis. We can observe the following:

1. These are five radically different kinds of environment that were utilised to gen-
erate these datasets.

2. These are labelled datasets and are in current use by the scientific community.

3. These datasets contain at least two classes: normal and attack, with a variety of
up-to-date attacks and their variations.

85

Chapter 5 | Performance Evaluation of Evo-
lutionary Computation on Intru-
sion Detection

This chapter discusses the details of the implementation of evolutionary computation
techniques in order to discover intrusion detection programs. Firstly, an overview of the
framework that was utilised is introduced, then the application of each algorithm (GP,
GE and CGP) to intrusion detection is outlined. The evolved programs are presented
and explained. The results are reported and a comparison of the performance of the
evolved programs is made. Lastly, the efficacy of the proposed techniques for evolving
intrusion detection programs to detect unknown attacks are reported.

5.1 Methodology Framework

Our approaches use a supervised learning module based on evolutionary computation
algorithms for detecting cyber threats. Our programs will be expressed over features ex-
tracted from available datasets. Other researchers have already extracted features from
these datasets as part of their own attempts to derive intrusion detectors. Hence, we
will start at the learning phase and measure the performance of each features relation-
ship generated (i.e. behavioural signatures). During the training phase, we use three
forms of the implementations: GP, GE and CGP. The training phase finishes when
either all instances are categorised correctly, or else a maximum number of generations
has been reached. The best-evolved programs then feed into the testing phase to be
evaluated. The basic architecture of our approach for producing programs is shown in
Figure 5.1.

Initially, an EC framework was constructed and it began with the process function
set (i.e. operators) selection, since the function set affects the search for the decision
boundary that is sought. We tested 6 different frameworks. The main differences be-
tween them are the utilised function set and how the final decision was made. The first

87

framework utilised a small set of mathematical operators (+, −, * and protected (/))
and the evolved output is compared with 0 as the threshold to make the final decision.
The second used an enriched function set with more complex mathematical functions
such as (exp, log, sqrt and ln). The Ephemeral Random Constants (ERC) concept with
a range from 1 to -1 was introduced in the third framework. In the fourth framework,
we evolved the discrimination threshold alongside the program instead of using 0. The
inclusion of relational functions (>, >=, <, <=, == and !=) which return Booleans
values (i.e. true: attack, false: normal) used in the fifth framework. The final and cur-
rently used framework which incorporated various mathematical, relational and logical
operators is described in this chapter. However, due to applying proposed methods to
five widely different environments. There is no ultimate winner from these frameworks
as each framework performed differently on each environment (i.e. dataset). However,
the currently employed methodology was the best-performing one collectively. In other
words, the method used showed a steady performance across all the environments that
were tested.

Figure 5.1: Methodology Framework

During each generation every individual in the population is subjected to the process of
natural selection. The cost function used in our experiments is defined in equation (5.1)
where we aim to maximise both TP and TN. Both are important since misclassifying
normal behaviours wastes a great deal of time and can lead to loss of confidence. Low
TP is an example of the IDS system not performing its primary tasks (i.e. to detect
attacks).

Fitness = (
TP − Anomaly Count

Anomaly Count
)2 + (

TN −Normal Count
Normal Count

)2 (5.1)

If all instances are classified correctly (the ideal) then the cost is clearly 0. In our
experiments, both TP and TN are equally important (i.e. having the same weight

88

in the equation). We compared the cost function used in our experiments against
two traditional metrics utilised to evaluate an IDS (i.e. classification accuracy and
misclassification error). Figure 5.2 shows the comparison taken from the experiments
of each proposed method using the UNSW-NB15 dataset. In comparison, Equation(5.1)
achieved better performance than the other metrics in this case. However, no notable
differences were found between these fitness functions when applied to other datasets.

Figure 5.2: Fitness Functions Comparison

5.2 Application of Genetic Programming to Intrusion
Detection

The method employed here is that GP enforces data type constraints (as input and
output) in the evolved programs [49]. Normally GP uses trees as data structures. Inputs
to the GP evolution process (i.e. instances to be classified) will be sets of feature values
extracted from a dataset’s instances. These features may occur directly in the dataset’s
instance values or else be derived from such values. For example, a dataset instance
may comprise the fields of a network packet. An average of the most recent 10 packet
lengths may also be synthesised as an attribute. Function nodes consist of a set of
mathematical, relational and logical operators. These operators are of two types: a
binary which takes 2 inputs and a unary which takes one input only. Relational nodes
take 2 inputs and return an output of a Boolean type whereas logical operators take
2 Boolean inputs and return an output of a Boolean type. Function and terminal sets
together with GP parameters settings utilised for individual representation are given

89

in Table 5.1. Using this set of functions, evolved individuals will cover both linear and
non-linear separation. We provided a rich set of functions and expect our techniques
to select judiciously from them. These functions have been used before to address IDS
problems [44], [67], [79], [110]–[112]. The protected (/) is used to examine whether the
second argument value is 0 and if so, it returns 1 as an output value.

Objective Evolve intrusion detection programs

Function Set

The binary operators: +,−,∗,protected(/),power,max,min,percent
The unary operators: sqrt, abs, ceil, exp, floor, log, ln, sin, cos,

tan, tanh
The relational operators: >, >=, <, <=, ==, !=
The logical operators: AND, OR

Terminal Set The feature set given by utilised datasets
Population Size 1,000
Generations 50
Crossover Probability 0.9
Reproduction Probability 0.1
Tournament Size 7

Table 5.1: GP Settings

The ECJ [113] toolkit is used for the GP implementation. The GP parameters de-
ployed in this research are given in Table 5.1. In addition, there is no elitism operation
performed in the implementation. The rest of the parameters were determined auto-
matically by the package (i.e. the defaults were assumed). The parameter selections
could certainly influence the system performance. Nevertheless, predefined settings of
these tools are utilised in order to make future comparisons easier. We can render
no claim to having optimised these settings. In fact, identifying the best parameter
settings is a very difficult task faced when EC algorithms are applied to nearly any
problem. Our selection of parameters is intended to demonstrate that good results can
be accomplished with these parameters. Better results could potentially be achieved
by using greater computational resources. If IDS developers were to employ our meth-
ods to produce IDS rules for their specified environments then a degree of parametric
examination would be advised. Once more, no claim to optimality can be made, but
experimentation might proceed until the developers were satisfied with the evolved
programs’ abilities, and that also applies to the various other techniques.

This syntax produces an ‘if’ statement. The root node in GP tree either contains
comparison or relational operators and returns a Boolean value. The following exam-
ple is of an evolved program produced by the GP algorithm applied on the modern
DDoS dataset:

90

(f i d ∗ number_of_pkt) <= Tanh [byte_rate]) &&
(pkt_id <= number_of_byte)

Given that the output of proposed algorithms are algebraic expressions, we used the
FullSimplify function, which "tries a wide range of transformations on an expression
involving elementary and special functions and returns the simplest form it finds" [114],
from Mathematica to simplify the outputs. Despite the promising results achieved by
this implementation, it might be better to take variables values (i.e. dataset features)
used by the algebraic expression into account in future investigations.

The GP algorithm is run 20 times on the training dataset and the best evolved program
from each run is evaluated on the testing dataset. The relationship amongst classifi-
cation accuracy and the number of generations in each dataset from the best-evolved
program produced by the GP algorithm is shown in Figure 5.3. In most cases, the
maximum fitness value is achieved at the 50th generation and it is steady thereafter.
As can be seen from this figure, the best program shows a performance on the testing
which is nearly as effective as on the training, with the exception of the UNSW-NB15
dataset due to its complexity. In addition, bloat has also been observed in our GP
experiments. This problem could be resolved by punishing the cost function, for in-
stance, by also including tree size optimising, or adapting multiple fitness functions.
In a subsequent chapter, a multi-objective GP method that aims to optimise multiple
objectives simultaneously is employed.

91

Figure 5.3: GP: Relationship between Accuracy and Number of Generations

5.3 Application of Grammatical Evolution to Intru-
sion Detection

For GE, the objective is to evolve computer programs to detect attacks. The problem
is outlined using a grammar and a fitness function. Table 5.2 shows BNF grammars
utilised by GE in order to evolve the solutions. This grammar produces an ‘if’ state-
ment. This allows detection rules of the form of “if <condition> then raise alarm” to
be generated. The input features and the functions utilised in this grammar are similar
to those used in GP. The cost function described by equation 5.1 is also utilised in the
GE algorithm also.

92

S ::= <rule>
<rule> ::= ifelse (<condition>) { raise alarm (), no alarm () }
<condition> ::= <condition>AND<condition>, <condition>OR<condition>, <rel.op>
<rel.op> ::= <op>(<expr>, <expr>)
<op> ::= >, >=, <, <=, ==, !=
<expr> ::= <binary.op>(<expr>, <expr>), <unary.op>(<expr>), <var>
<unary.op> ::= sqrt , abs , ceil , exp , floor , log , ln , sin , cos , tan , tanh
<binary.op> ::= +, −,∗, protected (/) , power, max, min, percent
<var> ::= The feature set given by utilised datasets

Table 5.2: The BNF Grammar Used for the Problem

The following is an example of an evolved expression (i.e. condition) produced by the
GE algorithm taken from the UNSW-NB15 dataset:

(s l oad > s t t l) && (s t t l > Max[smean , Min [ct_dst_ltm ,
Log [ct_flw_http_mthd ^ Tanh [Ce i l i n g [s t t l]]]]])

GE was implemented using the package gramEvol [115] in this research. The GE param-
eters used in the experiments had a population size of 1000, the number of generations
was set to 50 and without elitism. The rest of the parameters determined were auto-
matically set by the package. The maximum search depth in the case of cyclic grammar
and was limited to the number of production rules in the grammar. The number of
integer codons in the chromosome is determined by sequence length per expression
multiplied by the number of expressions. Random points are selected and a classic
single-point crossover is performed. Each chromosome may mutate with a probability
of a mutation occurring which ranges between 0 and 1. It is set to 1/(1+chromosome
size)) for genetic algorithm and 10/(1+chromosome size)) for evolution strategy [115].

In Figure 5.4, the performance of the best-evolved individual generated by the GE
algorithm is demonstrated for each dataset. It shows the relationship amongst the clas-
sification accuracy of the best-evolved programs and the number of generations. Al-
though for GE based experiments we observed fewer evolved programs suffering from
bloat than in their counterparts evolved from GP experiments. However, in contrast to
the best individuals formed utilising GP with the same parameter settings and search
space, the GE overall performance is less. An examination of the outcomes shows that
the candidate solutions in several executions converge too early and become stuck at
local optima in a rather early phase as shown in Figure 5.4. This issue could be over-
come through the adaptation of the ensemble technique since it explores the search
space from many different starting points [61].

93

Figure 5.4: GE: Relationship between Accuracy and Number of Generations

5.4 Application of Cartesian Genetic Programming
to Intrusion Detection

The same objective was set for CGP. A problem is outlined using function nodes along
with input nodes (i.e. dataset features) which are parts of a CGP graph, and the cost
function. Function nodes consist of a set of mathematical, relational and logical op-
erators which are provided in Table 5.3. Equation (5.1) is used to evaluate a CGP
individual. CGP parameter settings were determined empirically via preliminary ex-
perimentation. The rest of the parameters were decided automatically by the packages.

94

Objective Evolve intrusion detection programs

Function nodes

Binary input arity: +, −,∗, protected (/), power, max, min, percent,
>= , <, <= , == , ! =, AND, OR

Single input arity: sqrt, abs, ceil, exp, floor, log, ln, sin, cos,
tan, tanh

Input nodes The feature set given by utilised datasets
Population Size 5
Generations 10,000 (except modern DDoS dataset where it is set to 2,000)
Mutation Probability 0.01
Number of Nodes Maximum is 500 (not including input and output nodes)

Table 5.3: CGP Settings

The ECJ [113] toolkit is used to implement CGP. The number of output nodes for
CGP experiments was set to 2. To obtain a binary classification decision (normal vs.
anomaly), evolved output nodes compared their values using greater than operator (i.e.
o0 > o1). The following is an example of CGP evolved outputs taken from the phishing
websites dataset experiment:

Cos [Exp [Links_pointing_to_page <= Pre f i x_Su f f i x]] >
(URL_of_Anchor + (Min [Pre f ix_Suf f ix , Sin [Shor t in ing_Serv i ce]]
| | Ln [SSLf inal_State]))

Figure 5.5 shows the relationship between accuracy and the number of generations for
the best evolved solution over each dataset by CGP. For CGP experiments, 20 runs
are performed. The best solution showed a similar overall performance in the testing
and in the training with the exception of the UNSW-NB15 dataset. For the experiment
on the modern DDoS dataset, the number of generations was reduced from 10,000 to
2,000 due to stagnation of the fitness value after reaching 2,000 generations for all
runs. The results of the best CGP programs are better than those of their GP and GE
counterparts.

95

Figure 5.5: CGP: Relationship between Accuracy and Number of Generations

The functions utilised to represent the problem in all the proposed techniques are
identical. In this thesis, employed GP enforces the rules (i.e. strongly typed) which is
similar to the GE grammar. This helps the generation of conditionally structured rules
(i.e. IDS programs). For instance, only relational or logical operators which return a
Boolean value can be positioned at the root node of the GP tree. Thus, GP and GE
outcomes are a Boolean decision (i.e. true: attack, false: normal). The CGP output
node can be connected to the output from any previous nodes [53]. Thus, we evolved
two CGP output nodes and experimented with various relational and logical functions
(i.e. >, <, OR and AND). These functions showed no statistically significant difference
in the performance achieved among them. However, greater than operator (i.e. o0 >
o1) evolved programs with shorter execution times (i.e. the speed of processing). For
example, Figure 5.6 shows a comparison of the processing times between these functions

96

from experiments conducted on phishing websites and modern DDoS datasets. Each
barplot indicates the average of 20 runs with an error bar on top which shows the
standard error around the average. The Standard Error (SE) of the average indicates
the change in average with different experiments conducted each time (i.e. the precision
of averages). It can be calculated using (Standard Deviation/

√
sample size). The

sample size in our case refers to the number of runs.

Figure 5.6: Barplot for CGP Algorithm Decision Making Functions with SE Error Bars

5.5 The Performance of Evolutionary Computation
Techniques

In order to evaluate the classification performance of our detectors, we examine the
detection rate, false alarm rate and classification accuracy achieved by the best-evolved
program at the end of each run. We find that every time we ran the proposed algorithms
to evolve programs, the generated programs are different and thus the results obtained
from each program are also different. Therefore, to obtain a statistically significant
measure that does not depend on the initial random seed, the results were expressed as
the average and the standard error of the average for 20 independent runs. The results
from the testing phase are presented in Table 5.4. A few conclusions can be drawn
from these results. For instance, CGP outperformed GP and GE especially in the
UNSW-NB15 and the CICIDS2017 datasets which were the most complex. Whereas,
GP showed a better performance compared to GE in almost all cases.

97

Dataset
GP GE CGP

DR FAR Acc DR FAR Acc DR FAR Acc

Kyoto 2006+
98.78
±
0.44

1.64
±
0.27

98.42
±
0.29

98.79
±
0.13

1.88
±
0.04

98.22
±
0.05

99.65
±

0.06

0.70
±

0.07

99.35
±

0.04

Phishing Website
85.63
±
0.61

11.47
±
0.35

88.87
±
0.32

83.64
±
0.00

12.65
±
0.00

87.78
±
0.00

89.99
±

0.35

8.31
±

0.14

91.88
±

0.13

UNSW-NB15
90.67
±
0.84

19.19
±
0.80

81.80
±
0.75

88.50
±
1.17

24.34
±
0.51

76.95
±
0.45

94.20
±

0.73

13.46
±

0.52

87.31
±

0.53

Modern DDoS
87.39
±
0.00

7.15
±
0.02

97.15
±
0.04

86.76
±
0.28

8.14
±
0.28

95.88
±
0.55

87.38
±
0.00

7.13
±
0.01

97.19
±
0.03

CICIDS2017
88.86
±
0.92

10.20
±
0.77

90.36
±
0.88

75.91
±
1.08

21.10
±
0.42

80.69
±
0.68

92.16
±

0.64

6.91
±

0.46

93.16
±

0.49

Table 5.4: The Performance of GP, GE and CGP on Testing Datasets (%). Average
from 20 Runs, ± Value Indicates the SE. Bold Text Indicates a Better Results.

The proposed algorithms showed encouraging performance when tested using the Ky-
oto 2006+ dataset. However, they varied in their efficacy with the rest of the testbed.
The DRs achieved by the GE algorithm were the lowest, especially for the CICIDS2017
dataset. Whereas the GP system recorded its lowest DR in the phishing website dataset.
The highest FARs and lowest Accs were produced by the proposed methods in the
UNSW-NB15 dataset experiments. In the modern DDoS dataset, the proposed meth-
ods have shown comparable performances. A possible explanation for this variation in
the results may be the difference between datasets (i.e. various environments) and the
nature of the threats in them. However, this is essential since we wanted to test our
systems using different integration testing environments. A possible way to increase al-
gorithm performance effectiveness is by adopting the ensemble technique which would
help boost knowledge extraction from the search space. In the next chapter, EC algo-
rithms are used as a stacking approach to evolve IDS programs.

It is important to sustain the diversity of EC algorithms in order to guarantee we
have examined a large area of the search space and not limited their search to an
unprofitable area. Table 5.5 presents the average number of terminal and nonterminal
nodes in the best-evolved programs over the 20 runs from each dataset. Terminals refer
to dataset features whereas nonterminal corresponds to functions. In this table, it can
be seen that GP and CGP paradigms the diversity of their solutions compared to the

98

GE paradigm.

Dataset
GP GE CGP

Terminal Nonterminal Terminal Nonterminal Terminal Nonterminal
Kyoto 2006+ 27 56 4 6 35 58
Phishing Website 7 12 3 4 19 27
UNSW-NB15 36 48 4 6 19 25
Modern DDoS 36 58 5 7 22 32
CICIDS2017 55 67 3 4 29 32

Table 5.5: Average Number of Terminal and Nonterminal Nodes in Best-Evolved Rules
Learned with Proposed Approaches

Based on the experience of numerous researchers over many years, it seems that EC
methods have been particularly fruitful in areas having unknown or poorly understood
interrelationships among the relevant features [48]. They have proved successful where
the application is new or otherwise not well understood. Furthermore, EC methods pro-
vided novel solutions, unveil unforeseen relationships among features; and, sometimes
discover new concepts that can then be employed in a wide variety of circumstances.
The analysis of best programs was evolved by the proposed methods for the modern
DDoS dataset. We want to illustrate how often each feature in this dataset contributed
to the construction of the evolved programs. From Figure 5.7, last-pkt_reseved was
the most frequently used feature for both GP and CGP. Whereas pkt_delay holds the
highest count, where it appeared in 17 out of 20 programs evolved by the GE paradigm.
This can help security teams to examine each feature and potentially find out the rea-
sons for the classification errors. Thus, introducing a new variant of the features used
(e.g. capture it based on different time windows) and/or aggregate multiple features
information to produce more useful ones. Furthermore, the proposed methods did not
employ the whole feature set available while constructing the solutions. Hence, any
reduction in the solution size that is able to provide a given overall performance is
necessary for the computational efficiency of the IDS. Consequently, if the activities
are accurately detected using lightweight processing, it becomes feasible to the security
team to carry out other actions (e.g. IP blocking) in real time [76].

99

Figure 5.7: Frequent Features Selection (Modern DDoS)

5.6 Evolutionary Computation Techniques for Detect-
ing Unknown Attacks

Not only has the volume of attacks dramatically increased nowadays, but also the land-
scape of these attacks has become more assorted, with attackers operating harder to
find new methods of attack [7]. To test the robustness of our proposed approaches, we
have ensured that attack traffic in both training and testing datasets was significantly
different. This means that the attack types in the training dataset are different from
the testing dataset. This will show the EC frameworks capability to learn features of
known attacks which may hold the symptoms of unknown attacks. In this implemen-
tation, the detection of previously unseen variations of known attacks (i.e. subfamilies)
and unseen attacks are both tested. The same GP, GE and CGP frameworks settings
from the previous investigation were adopted here. Twenty independent runs were per-
formed and the number of instances of unknown attacks that were detected is reported.
The detection of attacks existing only in the testing stage and absent from the training
stage indicates the potential capability to detect novel attacks.

To evaluate the capability of the proposed methods for detecting previously unseen
variations of known attacks, we use the training and testing portions of the modern
DDoS dataset. This dataset includes 4 subfamilies of DDoS attack. Table 5.6 presents
the new distribution of this dataset where only network layer DDoS attacks appear in

100

the training (i.e. Smurf and UDP Flood). Whereas application layer DDoS attacks (i.e.
SIDDOS and HTTP Flood) exist in the testing portion only. The network layer attack
instances were removed from the training portion and added to the testing portion.

Attack Name
Attack Traffic
in Training Set

Attack Traffic
in Testing Set

Smurf 8,341 4,249
UDP Flood 132,441 68,903
SIDDOS 0 6,665
HTTP Flood 0 4,110
Total Records 140,782 83,927

Table 5.6: The New Attack Distribution of The Modern DDoS Dataset

Table 5.7 displays the overall achievements of the best-evolved programs and the algo-
rithms which provide similar performance results.

Approach
Modern DDoS

DR FAR Acc
GP 88.15 6.60 97.44
GE 88.10 6.44 97.76
CGP 88.16 6.65 97.35

Table 5.7: Overall Performance of Best-Evolved Program (%)

The number of attacks detected in the testing dataset is presented in Table 5.8. Al-
though the Smurf attack was included in the training dataset, it can be noted that
it is the most challenging attack for all classifiers. This is due to the nature of the
attack which is very similar to normal traffic [40]. However, other algorithms such as
MLP, Random Forest and Naïve Bayes employed in [40] detected 1396, 1414 and 140
instances only from the Smurf attack, respectively. The proof of concept implementa-
tion shows the proposed approaches can detect application layer attacks especially the
HTTP Flood, which were absent from the training dataset.

Table 5.9 shows the outputs from the best-evolved programs using the proposed meth-
ods in this experiment. An instant observation is that the size (i.e. number of nodes) of
the solutions utilising GE is smaller and easier to interpret in comparison to the ones
evolved by GP and CGP. This can be justified by the fact that GE evolution operators,
which randomly select and change various portions of the solutions and generating so-
lutions complying to the outlined grammar, are much more difficult than the operators
in GP and CGP. An advantage of the proposed algorithms is the representation of the
evolved solution. Examining the evolved output can provide useful insights into how

101

the algorithm learns to solve a given problem. From Table 5.9, it is apparent that the
GP algorithm selected 3 out of 19 features to construct its best individual. However,
it shows that the GP needed control over the growth of the program (i.e. number of
nodes) as that affects the understandability of the program. This could be achieved
through the adaptation of the multi-objective GP concept [79]. In contrast, the GE
algorithm utilised 4 features. Finally, CGP used 8 features to build its graph and the
graph shows the implicit reuse of the node (Ln[pkt_rate]/pkt_rate).

Attack Name
GP GE CGP

No. of Attack
Traffic Detected

DR
(%)

No. of Attack
Traffic Detected

DR
(%)

No. of Attack
Traffic Detected

DR
(%)

Smurf 1,552 36.52 1,539 36.22 1,552 36.52
UDP Flood 62,015 90 61,981 89.95 62,023 90.01
SIDDOS 6,310 94.67 6,315 94.74 6,313 94.71
HTTP Flood 4,110 100 4,110 100 4,110 100
Total Records 73,987 88.15 73,945 88.10 73,998 88.16

Table 5.8: Detection Results by Proposed Approaches (Testing Dataset)

Algorithm Best-evolved Program

GP

(Sqrt[Tan[Tan[Log[last_pkt_reseved]]]]) >= (Sin[Floor[Min[
Floor[Sqrt[seq_number + Tan[Log[last_pkt_reseved]]]],
last_pkt_reseved]] / Log[(seq_number + Tan[Sqrt[Min[Sqrt[
seq_number + Tan[Log[last_pkt_reseved]]], last_pkt_reseved]]])
+ Floor[Min[Sqrt[seq_number + Tan[Log[last_pkt_reseved]]],
Sqrt[seq_number + Tan[Log[Ln[(seq_number + pkt_size)]]]]]]
/ Ln[(seq_number + Tan[Log[last_pkt_reseved]]) + pkt_size]]])

GE pkt_delay > ((last_pkt_reseved + seq_number) / byte_rate)

CGP

((fid % (Cos[Tan[utilization]] + (fid == Exp[seq_number]))) <
(Ln[pkt_rate]/pkt_rate)) > (((Ln[pkt_rate]/pkt_rate) * Log[Abs[
pkt_in]]) >= (Ln[(Tan[last_pkt_reseved]) && (Sin[seq_number]
<= Abs[Log[pkt_id/fid]])]/(Ln[Ceiling[Cos[first_pkt_sent] &&
first_pkt_sent]])))

Table 5.9: Intrusion Detection Programs- Best Run

The UNSW-NB15 dataset was adopted for testing the capability of the proposed meth-
ods at recognising an unseen attack (i.e. the attack is missing while training the al-
gorithm). As presented in Table 4.2, there were 9 types of attack in this dataset. We
investigated each attack separately by removing its training instances and adding them

102

to the testing portion. For each investigation, we ran each proposed algorithm 20 times,
which brings the total of the independent runs for all attacks to (20 * 9 = 180). Figure
5.8 compares the overall performance from each algorithm. Each barplot indicates the
average of 180 runs and the error bar on top refers to the SE around the average.
Overall, we can see from the presented results that the CGP approach managed to
achieve better performance than the other techniques and was followed by GP.

Figure 5.8: Proposed Approaches Performance

Figure 6.5 shows the distributions of the responses and the average achieved by the
best-evolved program from each algorithm for each tested unknown attack (i.e. missing
during the training). Each boxplot represents the investigation of an attack. The CGP
average scores were better than GP and GE for 4 attacks namely: Backdoor, DoS,
Exploits and Worms. On the other hand, GE achieved higher average scores than the
other algorithms for 4 attacks namely: Fuzzers, Generic, Reconnaissance and Shellcode.
In contrast, GP provided a better average score for the Analysis attack, and better av-
erage scores than GE for DoS and Exploits attacks. Regarding the distributions of the
responses, CGP outcomes are less spread out than GP and GE in most cases. Ulti-
mately, these variations in the behaviour towards attacks make it possible to combine
these signatures and store them together in an IDS database.

The unknown attacks detection percentages are summarised in Table 5.10, they were
achieved by the best individual from each unknown attack experiment. It can be seen
that the proposed algorithms were able to recognise unseen attacks. However, the DR of
the Fuzzers attack was low compared to others. And also the DR of the Exploits attack
was low with the GE algorithm. This is due to lower variances among some malicious
records and normal records in the UNSW-NB15 dataset [39]. However, the proposed
techniques have achieved a higher DRs percentage for the attacks in the UNSW-NB15
dataset than [39] but with a lower classification accuracy percentage than their system

103

accuracy (92.8%).

Figure 5.9: Boxplots Illustrating The Distribution of Each Attack That was Detected
by Each Algorithm (Each Boxplot Represents an Experiment of 20 Independent Runs)

In this investigation, both unknown attacks experiments showed that the proposed
algorithms do not require prior information about an attack in the training to be able
to classify it. However, there is still a need to have attack behaviours present in the
training phase which might mirror the symptoms of unknown attacks.

104

Attack Name
GP GE CGP

No. of Attack
traffic Detected

DR
(%)

No. of Attack
traffic Detected

DR
(%)

No. of Attack
traffic Detected

DR
(%)

Analysis 2,253 84.16 2,147 80.20 2,229 83.29
Backdoor 2,309 99.14 2,226 95.57 2,260 97.03
DoS 15,872 97.05 15,623 95.53 16,050 98.14
Exploits 42,544 95.55 29,873 67.09 42,891 96.33
Fuzzers 12,957 53.43 12,476 51.45 8,482 34.98
Generic 58,797 99.87 58,593 99.52 58,836 99.94
Reconnaissance 13,161 94.09 12,658 90.49 13,689 97.86
Shellcode 1,387 91.79 1,319 87.29 1,488 98.47
Worms 169 97.12 149 85.63 168 96.55

Table 5.10: Comparison of DR on Attack Categories of UNSW-NB15 Dataset

5.7 Conclusions

In this chapter, it was revealed that evolutionary computation techniques uncover the
complex relationships between various tested environments. The first hypothesis of this
research is supported by the evaluation outcomes. The proposed approaches are capable
of mapping the input vector space (i.e. features) into a decision space to discriminate
between classes (i.e. normal vs. anomaly). One interesting feature of these approaches
is the ability to evolve a detector (i.e. behavioural signatures) that can detect a wide
range of attacks. In addition, the experimental results demonstrated that our proposed
approaches showed a robust performance in detecting unknown attacks that the sys-
tems were not trained on. These results suggest that the proposed methods recognised
new attack methods well based on their similarity to known attacks. GP, GE and
CGP emerged as reliable predictors for finding previously unseen attacks/subfamilies
of known attacks. In general, CGP was the best performing paradigm compared to GP
and GE.

105

Chapter 6 | Evolving Ensemble Model using
Evolutionary Computation for In-
trusion Detection

In the previous chapters, the standard EC algorithms for evolving IDS rules were
discussed. In this chapter, we propose an EC classifier design scheme that incorporates
multiple learners to provide superior predictive performance over a single algorithm.
The proposed techniques (GP, GE and CGP) combine multiple learning algorithms
into a single and powerful prediction function. The proposed techniques will work as a
secondary learning process called meta-learner. The evolved programs are demonstrated
and explained. The results are reported and the performance of evolved programs are
compared. Lastly, adopting ensemble paradigms to evolve intrusion detection programs
for detecting unknown attacks are described.

6.1 Stacking

Stacking is the informal term used to reference Stacked Generalization [116]. The main
idea behind stacking is finding the optimal combination from a collection of (hetero-
geneous or homogeneous) learning algorithms. Stacking is a type of ensemble that
comprises of training a second level, known as a meta-learner, to find the optimal com-
bination of the first level (i.e. base learners). Each base learner employs diverse kinds
of knowledge representation and learning biases, thus the input space will be investi-
gated differently and a variety of learners will be acquired [117]. Unlike other types of
ensemble, the goal in stacking is to combine strong, diverse sets of learners [118]. In
general, stacking is often used to produce heterogeneous ensembles. Obtaining the right
combination of base learners is one of the issues that stacking implementation faces
[117]. In this work, a heterogeneous stacking scheme is employed for constructing IDS
programs which hopefully will outperform the single classifiers. There are several issues
that emerge when utilising an ensemble of the stacking type, for instance, the algo-
rithms that are utilised to create the base learners, their parameters settings and their

107

number [63]. These issues have been addressed through the adoption of the automatic
machine learning concept and EC algorithms described in the subsequent sections.

Figure 6.1 illustrates the steps normally used in order to construct the stacked model.
Firstly, we generate the first level classifiers by training K learning algorithms using
the training dataset. Then, the K base classifiers that are used to create the meta-date
form both training and testing datasets (Figure 6.1a). The meta-data have K attributes
driven by the response of the K classifiers to each instance (i.e. class probability or pre-
dicted class) associated with the actual class. Once meta-data have been built, a second
level algorithm (i.e. meta-learner) is trained on collating the meta-data to build the
meta-classifier (Figure 6.1b). The main purpose here is to find the best combination of
the base classifiers. Finally, the meta-classifier is then used to predict the class of the
new instances in the testing meta-data (Figure 6.1c).

(a)

(b)

(c)

Figure 6.1: Generating an Ensemble of Classifiers using Stacking [63]

108

6.2 Generating Base Learners

The algorithms used to generate the pool of classifiers for this experiment are imple-
mented in the H2O.ai platform [118]. H2O.ai includes many common machine-learning
algorithms and implements the best in class algorithms at scale. The Automatic Ma-
chine Learning (AutoML) function in the platform is used to build base learning mod-
els. This function automates the supervised machine learning model training process.
AutoML performs basic data pre-processing if required, such as imputation, one-hot
encoding and standardisation. During the model generation stage, it implements ran-
dom grid search and model parameters tuning using the validation set to produce the
best performing models. AutoML trains and cross-validates a distributed random for-
est, an extremely randomised forest, a random grid of gradient boosting machines, a
fixed grid of generalised linear model, and a random grid of deep neural nets. In Au-
toML, the max models parameter is set to 10 (i.e. number of models generated) and
stopping rounds (i.e. early stopping according to convergence of stopping metric) was
set to 6. Stopping rounds were utilised to stop training the model when there is no
improvement in the performance. The rest of the parameters were determined auto-
matically by the platform. In practice, the default cross-validation folds in AutoML
is set to 5 while training the base learners. Note that it is possible to produce more
than one model from the same family. However, these models vary in their parameters
settings. The implementation was in R using the following command (where x assigned
feature vector and y assigned actual outcome):

R> aml <− h2o . automl (x = x , y = y ,
tra in ing_frame = tra in ,
va l idat ion_frame = val id ,
max_models = 10 ,
stopping_rounds = 6 ,
seed=1)

The following supervised learning algorithms (i.e. base learners) in AutoML were con-
sidered for generating a pool of individuals as an input vector space for the proposed
algorithms [118] [119][120]:

6.2.1 Distributed Random Forest (DRF)

This is a tree based technique and it is considered to be a powerful paradigm for clas-
sification and regression problems. When implemented over a dataset, DRF generates
multiple decision trees. It takes the average of the classification trees, each created
on different random samples from the dataset. Each of these trees is a weak learner

109

built on a subset of rows and columns. Increasing the number of trees will decrease the
variance. The average prediction over all of the constructed trees will generate the end
outcome, whether it is predicting a class type or a probability. Trees in the random
forest model are independent. It is easy to use, non-linear, and provides feedback on the
importance of each predictor in the model, making it one of the most robust algorithms
for noisy data. DRF it is an ensemble method of type bagging.

6.2.2 Extremely Randomized Tree (XRT)

This is a tree based ensemble model similar to the random forest. Like random forests,
an arbitrary subset of candidate features is utilized. However, the randomness in XRT
goes one step further in terms of how splits are performed. It consists of randomly
chosen candidate features and a threshold is picked to determine when to split a tree
node. Furthermore, XRT does not implement the bagging technique to create a set of
training patterns for each tree. The whole learning sample is utilised to train all the
trees. This model usually leads to more diversified trees.

6.2.3 Gradient Boosting Machines (GBMs)

This is a decision tree based model where a model in the shape of an ensemble of weakly
predicted trees is created. GBM builds consecutive classification trees on all the features
of the dataset in a completely distributed manner. These trees are dependent on one
another. Thereafter, it fits those consecutive trees as one model. The ensemble of type
boosting is the central idea here. GBM gives a higher weight to the instances that are
difficult to classify with a tree (i.e. model), so the subsequent tree pays more attention
to these instances. Finally, using this technique helps to decrease bias.

6.2.4 Generalized Linear Model (GLM)

GLM is a statistical tool that generates a linear model over the inputs in a dataset to
predict the response variable. H2O.ai fits this model according to the maximum likeli-
hood estimation using repeatedly reweighted least squares. The flexibility of the model
structure unifies the typical regression methods (such as linear regression and logistic
regression for binary classification). GLM generates linear regression by permitting the
linear model to become linked to the outcome variable by using a link function and by
permitting the magnitude of the variance of each measurement to be a function of its
expected value.

110

6.2.5 Deep Neural Nets (DNNs)

"H2O.ai DNN is based on a multi-layer feedforward artificial neural network that is
trained with stochastic gradient descent using back-propagation" [118]. A neuron is a
function that takes multiple numeric inputs and gives out one numeric output. The
network can incorporate a large number of hidden layers composed of neurons besides
activation functions (i.e. tanh, rectifier and maxout). Each compute node trains a copy
of the global model parameters on its local data and supplies regularly to the global
model via model averaging across the network. The layers amongst the input layer and
the output layer are known as the hidden layers. Each neuron in each hidden layer has
a weight for each of its inputs, and modifying those weights is how the network learns.

6.3 Evolutionary Computation as a Meta-learner

In this technique, various algorithms are used on the same dataset and feature set in
order to build different learner models. After a number of models are built using part of
the dataset i.e. training, the predictions of these models are combined and a common
decision is taken. In phase two, GP, GE and CGP are used to create the actual stacked
model. When using each technique the ensembles are coded as genetic programs, each
individual representing a possible aggregation of the available base learners. The main
difference is the representation of individuals. Learning the stacking procedure via pro-
posed methods leads to possibly non-linear combination mechanisms that could better
exploit the outputs of multiple learners. This is unlike a stacking scheme led by weight-
ing or majority voting strategies that linearly combine multiple learners, which is not
the best ensemble building option [121]. During the combination process (i.e. stacking),
we considered the continuous outputs (i.e. probability) as meta-data, rather than the
discrete outputs (i.e. label) of the base classifiers. The main reason for that is the type
of operations performed by our proposed algorithms on this dataset. There are two
types of actions that proposed algorithms executed while creating the stacked model:
selecting ensemble members from a pool of base models and evolving the combination
among selected base models (i.e. base models fusion). This also leads to automatic
determination of the size of the ensemble instead of predefined size (i.e. fixed).

The stacking approach has proven successful across a large number and types of
datasets; however, it is considered to be time-consuming due to the fact that it needs to
train a second level learner (i.e. meta-learning) [62]. To avoid a further phase of train-
ing, we split the training portion into 80% training, used to train base models, and 20%
validation, used by the proposed techniques for building ensemble models (see Figure

111

6.2). Thus, recomputed the stacked model require with a moderate computational effort
in the event of any changes in the data.

Figure 6.2: General Scheme used for Building our Ensemble Model

The proposed paradigms offer an intelligent self-configuration environment to perform
models selection and integration for constructing the ensemble. This helped them to
perform a dynamic method instead of a static one for selecting stacked solution mem-
bers. In addition, the challenges related to determining the size of the ensemble have
been addressed. Each ensemble is either represented as a tree for GP, a grammar for GE
and as a graph while running CGP. In this implementation, the input vector elements
are in the form of prediction probabilities generated by stacked members. Equation 5.1
is used as a fitness function for the stacking solutions. The GP framework from the
previous implementation in Table 5.1 and its parameters settings were adopted here as
well. The grammar introduced in Table 5.2 and the standard GE parameters settings
were extended to evolve the ensemble model. Finally, standard CGP parameters set-
tings (see Table 5.3) are utilised here with the exception that the number of generations
was modified to 2,000. This is due to the stagnation of the fitness value after reaching
2,000 generation for all runs.

6.4 The Performance of Evolutionary Computation
Ensemble Techniques

The average values from 20 runs and the SE around the average are depicted in Ta-
ble 6.1. It can be observed from the results that the stacking approach performed
better than standard implementations in almost all experiments. The purpose of the

112

stacking learning phase was to improve the effectiveness of the security performance
of IDS evolved programs. GE stacking demonstrated a superior performance for all
datasets compared to GE standard implementation. On the other hand, both GP and
CGP stacking programs improved achievement compared to standard programs in most
cases. However, both methods displayed slightly declined efficacy on the modern DDoS
dataset in terms of false alarms and accuracy. The results showed that the aggregated
knowledge of used ML techniques was effective, leading to better results compared
with the single base classifier. The proposed stacking techniques were almost identical
in their performance with marginal differences. The main reason for that is the new
search space (i.e. meta-data), which is generated by the base models, provides com-
plementary information. Thus, the proposed methods search through similar decisions
boundaries reached by the base models.

Dataset
GP Stacking GE Stacking CGP Stacking

DR FAR Acc DR FAR Acc DR FAR Acc

Kyoto 2006+
99.94
±

0.004

0.14
±

0.001

99.87
±

0.001

99.93
±

0.002

0.14
±

0.001

99.87
±

0.001

99.94
±

0.002

0.14
±

0.001

99.87
±

0.001

Phishing Website
97.52
±

0.084

3.25
±

0.034

96.65
±

0.044

97.63
±

0.085

3.28
±

0.033

96.60
±

0.042

97.33
±

0.076

3.22
±

0.045

96.70
±

0.051

UNSW-NB15
96.28
±
0.07

11.30
±

0.049

89.46
±

0.044

96.19
±

0.097

11.05
±

0.103

89.67
±

0.083

96.29
±

0.048

11.29
±

0.048

89.47
±

0.041

Modern DDoS
87.44
±

0.007

7.29
±

0.025

96.86
±

0.051

87.37
±

0.013

7.04
±
0.05

97.37
±
0.1

87.40
±

0.004

7.18
±

0.017

97.10
±

0.033

CICIDS2017
99.91
±
0

0.1
±
0

99.87
±
0

99.91
±

0.001

0.11
±
0

99.87
±
0

99.92
±

0.001

0.10
±
0

99.87
±
0

Table 6.1: The Performance of EC Algorithms as a Meta-classifier (%)

In this testbed, no differences in the performance were observed between standard,
stacking and the prior study (see Table 2.1) experimented on the modern DDoS dataset.
A possible explanation for this might be that there is an underrepresentation of some
of the behavioural types and/or the extracted feature set does not accurately describe
the search space. In future investigations, it might be possible to evolve a specialist
IDS program (i.e. distinguish one class of instances from the other, instead of normal
vs. attacks). In addition, it could obtain a more meaningful feature set that is able to
represent the types of traffic effectively.

113

The type of programs that can learn with the proposed approaches are described be-
low. Figure 6.3 provides the average frequency (Kyoto 2006+ dataset, 20 runs) of base
models selection during ensemble construction (i.e. the best individual from each run).
From this figure, it can be seen that GMB_5 was the most frequently used model;
however, the proposed approaches vary in their selection. Looking at this figure, the
CGP average frequency for selecting each base model was the highest, followed by GP.
The least chosen model for GE was GLM whereas DNN was the least picked one by
GP and CGP. From Figure 6.3 it can be seen that there is not a conclusive trend
regarding utilisation of base models. Furthermore, some of the best individuals (i.e.
stacking programs) output evolved by the proposed methods were relatively small but
with high performance, for example:

GP : GBM_0 ^ GBM_3 <= Cos [GBM_3 + 2 ∗ GBM_5]

GE : Cos [Exp [GBM_4]] > GBM_3

CGP : Abs [Log [Max [DRF, GBM_2]]] > Log [Tan [(Log [GLM]) <= GBM_3]]

This variety of results reveals the adaptive properties that the proposed methods pos-
sess for producing ad hoc stacking programs.

Figure 6.3: Average Frequency of Base Models Selection in Stacked Programs (Kyoto
2006+ dataset, 20 runs)

114

6.5 Evolutionary Computation Ensemble for Detect-
ing Unknown Attacks

Unknown attacks are emerging as one of the most serious threats to a system [13].
An experimental assessment to evaluate the suitability of the proposed stacking mech-
anisms to investigate detecting unseen attacks was performed. The same settings of
the proposed algorithms previously used were adopted. Table 6.2 compares the perfor-
mance of the best-evolved stacking program out of 20 runs evaluated using the modern
DDoS dataset given in Table 5.6 with each algorithm. The aim is to recognise unseen
variations of known attacks. In comparison with the best-evolved standard program
implementation, the techniques performances were similar. The results in Table 6.3
demonstrate that the proposed stacking techniques can detect the majority records of
application layer DDoS attacks (i.e. unseen variations of known attacks). However, like
standard implementations, the Smurf attack detection percentage remained very low.

Approach
Modern DDoS Table (5.6)
DR FAR Acc

GP Stacking 88.22 6.80 97.04
GE Stacking 88.17 6.62 97.40
CGP Stacking 88.19 6.74 97.16

Table 6.2: Overall Performance of The Best Stacked Programs (%)

Attack Name
GP Stacking GE Stacking CGP Stacking

No. of Attack
Traffic Detected

DR
(%)

No. of Attack
Traffic Detected

DR
(%)

No. of Attack
Traffic Detected

DR
(%)

Smurf 1,551 36.50 1,540 36.24 1,554 36.57
UDP Flood 62,062 90.07 62,031 90.02 62,041 90.04
SIDDOS 6,323 94.86 6,319 94.80 6,320 94.82
HTTP Flood 4,110 100 4,110 100 4,105 99.87
Total Records 74,046 88.22 74,000 88.17 74,020 88.19

Table 6.3: Detection Results by Stacking Approaches

The best-evolved program outputs are shown in Table 6.4. As can be seen from the
table, the GP stacking individual suffers from redundancy in the code. Again, this
could be overcome through the utilisation of the multi-objective GP implementation.
Although, the best individual from GE stacking did not suffer from redundancy. How-
ever, we did notice best individuals from other runs with this issue. In the CGP stacked
program, the node (GBM_4 * Sin[GBM_5]) was implicitly reused 5 times whereas

115

nodes such (Exp[GBM_5]) and (Ceiling[XRT]) were reused 3 and 2 times respectively.
This is one of the advantages of using a graph representation. In addition, there were
various base models selected in the stacked model generation where GP used 4 models.
Whereas GE and CGP used 6 and 7 models, respectively. GBM models and the DNN
model were picked by all proposed algorithms. This shows how the proposed methods
automatically determine the members of the ensemble model. Overall, 9 out of 10 base
models were used.

Algorithm Best Meta-classifier

GP Stacking

(GBM_4 < Max[GBM_3 / Floor[Tanh[Max[Exp[Sin[Max[Sqrt[GBM_5] / GBM_3,
Tanh[Exp[DNN]]] / GBM_3]/GBM_3 ^ 2, Tanh[Max[Sqrt[GBM_5] / GBM_3,
Tanh[Exp[GBM_3]], Tanh[Exp[Sin[Sin[Abs[DNN]]]]]]/GBM_3]]]] / GBM_3] / Max[
Sqrt[GBM_5] / GBM_3, DNN], Tanh[Exp[Sin[Abs[DNN]]]]]) || (DNN <= Tanh[
Max[Exp[-Sin[Sin[Exp[DNN]]] Sqrt[GBM_5], GBM_5]] / GBM_3])Tanh[Max[Exp[
-Sin[Sin[Exp[DNN]]] Sqrt[GBM_5], GBM_5]] / GBM_3])

GE Stacking
(GBM_3 < Ln[GBM_3]) || (-((-1 + GBM_4^2)/((1 + GBM_4 ^ 2) (-1 + GLM +
2 / (1 + DNN ^ 2) + GBM_0))) >= DRF)

CGP Stacking

Tan[Cot[GBM_4 * Sin[GBM_5] > Ceiling[XRT]] / ((Tan[Sqrt[Exp[GBM_5] ^ (
GBM_3/GLM)]] <= Abs[DNN / Min[GBM_4, GBM_4 * Sin[GBM_5]]]) >= (
GBM_1 <= (GBM_5 <= XRT)))] > (Floor[Abs[Max[Max[DNN, GBM_4 * Sin[
GBM_5]] ^ Exp[GBM_5] - Cos[GBM_3 / GLM] + Min[GBM_4, GBM_4 * Sin[
GBM_5]]]] ^ (GBM_3 / 2) * ((Max[DNN, GBM_4 * Sin[GBM_5]] ^ Exp[GBM_5]
!= Ceiling[XRT])/(GBM_4 + XRT)) ^ GBM_3] * Log[GBM_1])

Table 6.4: Intrusion Detection Programs (Meta-classifier) - Best Run

To examine our stacking frameworks capability in detecting unseen attacks, we used the
UNSW-NB15 dataset for this purpose. There are 9 categories of attack in this dataset
and we tested our stacking implementations capability for each attack separately. We
executed each framework 20 times for each attack which brings the total of runs in
this experiment to 180. The barplots, in Figure 6.4, represent the averages of DR, FAR
and Acc measurements for 180 runs. The error bars on top show the SE around the
averages. This figure depicts two investigations, standard and ensemble. Overall, the
ensemble implementations showed a better performance, however, the standard CGP
has achieved relatively close performances to the ensemble ones.

116

Figure 6.4: Proposed Approaches Performance

For each attack class, the boxplot corresponding to each method (standard and stack-
ing) of 20 runs is plotted in Figure 6.5. These boxplots show the spread of responses (i.e.
the number of times the unknown attack was detected) alongside the average. Com-
pared with Chapter 5 standard implementations, stacking approaches provided better
performance for 6 attacks out of 9 namely: Backdoor, DoS, Exploits, Reconnaissance,
Shellcode and Worms. In addition, the stacking boxplots appear to have smaller vari-
ability than standard ones, which indicates a constant in their performance. Although,
in this investigation, the overall performance of stacking techniques were better than
standard techniques. However, standard techniques produced preferable outcomes for
3 attacks namely: Analysis, Fuzzers and Generic. The Fuzzers attack was noticeably
worse in the stacking implementations. Looking at the DRs of the base models for
these attacks may indicate the lack of satisfactory results. The DRs vary from 80.05%
to 92.04% for the Analysis attack and from 21.29% to 67.16% for the Fuzzers attack
and from 56.26% to 99.94% for the Generic attacks. The detection range of the Fuzzers
attack is the lowest which may contribute to the decline in the capability of the meta-
classifiers.

117

Figure 6.5: Boxplots Illustrating The Distribution of Each Attack That was Detected
by Each Algorithm (Each Boxplot Represent an Experiments of 20 Independent Runs)

6.6 Conclusions

In this chapter, we extend our GP, GE and CGP frameworks to learn ensemble solu-
tions for solving the problem of detecting cyber threats. The proposed approaches are
beneficial since they provided security teams with better-performing IDS programs.
The ensemble construction through the proposed techniques allows for more complex
stacked solutions spaces to arise. Empirical results on benchmark datasets were re-
ported. The assessment exposed the effectiveness of the proposed approaches. In gen-
eral, Stacked solutions outperformed the standard models. However, a clear benefit of
stacked approaches applied to the modern DDoS dataset could not be identified in this
analysis, to the best of our knowledge this is due to underrepresentation of some classes.

An analysis of the evolved solutions showed how each proposed method forms the

118

meta-classifier from the base models. We also evolved stacked models for detecting un-
known attacks. However, comparing standard and ensemble methods showed that they
achieved differently on unseen attacks, but with lower false alarms in favour of ensemble
methods. Finally, there is no significant difference observed in the performance between
the stacked approaches for both investigations (known-known and known-unknown).

In the next chapter, we intend to show how the multi-objective EC algorithm could be
applied to synthesise intrusion detection programs that generate potentially the best
(or near best) trade-offs among security and non-security factors.

119

Chapter 7 | Trade-offs in Intrusion Detection

In the previous two chapters we have detailed experiments that focus on the effec-
tiveness (i.e. security performance) of evolved IDS programs. This chapter provides
a new means to develop intrusion detection system for resource constrained environ-
ments. The programs evolved using GP are analysed, and it was found that a variety of
trade-offs can be produced among the classification accuracy and other criteria of these
programs. To be able to identify these trade-offs, multi-objective evolutionary compu-
tation described in Section 3.1.4 is utilised. The experimental outcomes are presented
and discussed. Finally, conclusions are outlined.

7.1 Multi-objective Evolutionary Genetic Program-
ming for Learning

In this research, evolutionary algorithms, which enable us to enhance several objectives
at the same time, are employed to find programs that are both effective (i.e. perform
well against the standard detection and alarm rates) and efficient (i.e. are fast and
generally consume little resource). This is a dual-objective problem and we use GP
combined with a suitable MOEC method. MOEC enables system designers to discover
a set of solutions instead of a single solution. In general, standard EC algorithms are
able to simultaneously find a optimal solution for all objectives. In order to do that a
classical weighted sum method is used to combine individual fitness functions into a
single objective. However, assigning a proper weight vector also counts on the scaling
of each individual fitness function which is often a difficult task. Consequently, the
solution acquired by using this method mostly counts on the predefined weight vector.
In addition, there is no guarantee in the case of a single objective (aggregated objec-
tives) that the solution which has the best performance on the second objective will
be selected, which would not be the case in a multiple objectives search. On the other
hand, combining MOEC with GP avoids the emergence of bloat [44], [48], [122] and
reduces overfitting effectively [123]. This also will present opportunities to improve the
comprehensibility of the output and encourage generalisation.

121

An example of the multiple objectives optimisation technique is given here performed
on the phishing websites dataset. We evolved programs using SPEA2, an extension
to ECJ combined with GP to explore trade-offs among two conflicting security objec-
tives in an intrusion detection system: detection rate described in equation (2.1) and
false alarm rate calculated using equation (2.5). The fitness of an individual (evolved
program) is depicted by the two objectives. A set of optimal solutions is acquired by
utilising MOGP method. Figure 7.1 displays the Pareto fronts, which show the opti-
mal evolved programs at the end of 50 generations of 10 independent runs. The chart
represents detection rate (maximised) versus false alarm rate (minimised) when their
metrics are optimised concurrently. As we can see, there is an obvious trade-off amongst
these two objectives: while the detection rate increases, false alarms increase too.

Figure 7.1: Trade-offs Between DR vs. FAR (Phishing Websites)

Each run generates a set of non-dominated solutions (i.e. Pareto front). We can see
from the above figure that a solution in one Pareto front may dominate or be dominated
by a solution from another Pareto front. That is why we decided to unite these fronts
and produce a global Pareto front that contains all non-dominated solutions across
these 10 Pareto fronts. To achieve that we utilise R package called "rPref" described
in [124]. This package generates a Skyline of a dataset by selecting tuples which are
Pareto-optimal with respect to given optimisation goals. Only those tuples are returned

122

which are not dominated by any other tuple. A tuple dominates another tuple if it is
better in all relevant dimensions and strictly better in at least one dimension. We
passed the obtained Pareto fronts from MOGP runs to the Skyline and generated the
global one. Figure 7.2 presents the global Pareto front associated with the run number
that contributes the non-dominated solutions to it. This is clearly indicates the need
to perform multiple runs.

Figure 7.2: Global Pareto Front Trade-offs between DR vs. FAR

We extended our implementation to check the effect of increasing MOGP tree depth
since MOEC will help control the size of the evolved solutions. We ran a second exper-
iment with tree depth = 17 under the same objectives and compared its global Pareto
front with that obtained when depth = 6. Figure 7.3 demonstrates the comparison
which clearly shows that the tree depth (17) experiment contributes more solutions to
the global Pareto front.

123

Figure 7.3: Global Pareto Front Trade-offs with Different Depths

Some optimal programs from the phishing websites dataset experiment, when their
tree depth is set to 17, are shown in Figure 7.4 and Table 7.2. The overall performance
of these programs applied on the testing portion is demonstrated in Table 7.1. In
comparison with the standard GP execution (depth = 6), the best-evolved program
achieved 89.09%, 8.47%, 91.81% of DR, FAR and Acc respectively with the tree size
equal to 79. It clearly can be seen that MOGP not only maintains the solutions size but
improved the performance as well compared to standard implementation. The Pareto
front contains many other evolved solutions which have a variety of trade-offs.

Program No.
MOGP (depth = 17)

Tree Size
DR (%) FAR (%) Acc (%)

1 94.23 7.72 92.03 49
2 93.20 10.78 88.73 27
3 96.91 9.93 89.23 29

Table 7.1: The Performance of Some Programs Evolved by MOGP (Depth = 17)

124

Program No. Evolved Program

2
Abs[Abnormal_URL] == Cos[SSLfinal_State] || Exp[Exp[Links_pointing_to
_page] + Prefix_Suffix] <= Links_in_tags / Prefix_Suffix || SSLfinal_State
<= Log[Log[URL_of_Anchor * Log[URL_of_Anchor]]]

3

URL_of_Anchor != Ceiling[Sqrt[URL_of_Anchor]] || (Prefix_Suffix < Cos[
web_traffic] && Max[Prefix_Suffix, Log[Cos[web_traffic]]] >= URL_of_Anchor)
|| SSLfinal_State < Max[Prefix_Suffix, Tanh[Cos[Abnormal_URL]]] ||
RightClick > SSLfinal_State

Table 7.2: Example Programs Output Evolved by MOGP (Depth = 17)

In this research, a steady state MOGP technique is employed to discover more complex
relationships than a standard GP could. The default parameters defined in koza.params
and spea2.params that are included in the ECJ package are utilised, with the exception
of the following:

• Number of generations: 50.

• Number of runs: 10 (with different seeds).

• Population size: 1000.

• SPEA2 archive size: 100.

• Evolutionary operators (probability): crossover (0.9) and mutation (0.1).

• Selection: Tournament Selection, size 7.

Furthermore, the same function set used in standard GP experiments is adopted here
as well. These settings were chosen based on producing the best results during extensive
experimental work. The experiments were conducted on Intel Core i7 CPU @ 3.40 GHz
with 16 GB RAM running the 64-bit Windows 10 operating system.

125

Figure 7.4: The Visualisation of The Evolved Program 1 (Depth = 17) using The
ExpressionTreePlot Function From Mathematica [114]

126

7.2 Discovering Trade-offs in Intrusion Detection Pro-
grams

Nowadays, the types of intrusions are changing continuously and becoming increasingly
complex. This made IDS an ongoing and challenging task for network administrators
and security professionals. IDS system designers are concerned with the development of
both effective and efficient solutions. In the context of constructing IDSs there would
appear to be very little in the way of methodology to handle both aspects simul-
taneously. There is untapped potential in the use of evolution search techniques to
discover IDS rules considering both functional and non-functional performance crite-
ria. There have been few resource-aware applications in the IDS domain that have
been implemented in operational “real world” settings. We are engaged in developing
multi criteria trade-offs among the detection ability of intrusion detection programs
and their resource consumption. The main reason is that humans are not especially
skilled at making optimal decisions when it comes to complex trade-off choices. Almost
all research concentrates on the major performance criteria (i.e. the various detection
and alarm rates); very few research papers address the issues of trade-offs that involve
resource consumption.

IDS is usually implemented in software, however, a significant part of IDS performance
depends on the capability of the devices running these programs. For instance, if the
CPU has already been specified for the device, then it is essential that the software
solution be efficient enough so that scheduling the given set of tasks on the processor
is possible. Furthermore, due to the possibility of deploying IDS programs into vari-
ous devices that vary in their resources, IDS programs requirements (i.e. software and
hardware) must take into account limited resources. The multi-objective method offers
the ability to satisfy such needs. In this research IDS rules demands, such as reduced
complexity, lower memory consumption and faster processing time, are investigated.
In addition, the capabilities for detecting known and unknown attacks are discovered
using multi-objective optimisation techniques.

7.2.1 Experiment 1: Feature Selection

Currently, network environments are transmitting ever-increasing amounts of data and
it is very difficult for IDSs to examine all extracted features of the data flow. The main
idea is to create the detection programs based on the input features and the opera-
tions performed upon them. That is why having redundant features slows down the
detection process, and makes it difficult to process a large amount of traffic in real

127

time [27]. Ideally, we would be able to feed the most discriminating features to the
algorithm before the learning stage (i.e. building IDS programs) began. This reduces
training time and makes it easier to interpret the outputs. Feature selection is the pro-
cess of identifying the feature subset that actually has an influence on the outcome. It
can improve computational efficiency due to the smaller number of features, avoid the
curse of dimensionality and visualising the data becomes more intuitive [125] [76].

We now aim to investigate 3 conflicting objectives: security (detection rate and false
alarm rate) and non-security (number of features) using our MOGP approach. Figure
7.5 illustrates Pareto fronts of the three objectives and the united Pareto front ob-
tained after 10 runs. However, the number of runs, which provided solutions that are
non-dominated by any other solutions, is 3. The colours in these 3 dimensional figures
refer to the solution achievement on the z-axis (in this case the number of features).

Figure 7.5: Feature Selection Pareto Fronts and Global Pareto Front Trade-off

The achievements of some of these evolved programs are presented in Table 7.3 and
the programs output are demonstrated in 7.4. Program 1 used 2 features only (i.e.
ct_state_ttl and sttl) out of 39 available in the UNSW-NB15 dataset. Whereas, pro-
gram 2 adopted 6 features (i.e. ct_state_ttl, ct_dst_src_ltm, res_bdy_len, dur,
sloss and dinpkt) compared to 3 features utilised by program 3 (i.e. ct_state_ttl,
is_sm_ips_ports and sttl). Programs 1 and 3 achieved the highest detection rate
recorded by standard GP experiments on this dataset. However, they had a relatively
high false alarm rate. Programs with almost the same security performance as acquired
by standard GP, but with a fewer number of features are evolved by using the MOGP

128

technique. More importantly, the tree (i.e. program) size was reduced dramatically us-
ing this implementation compared with the best-evolved program by standard GP with
tree size equal to 80 that contains 16 features.

Program No.
MOGP

No. of Features
DR (%) FAR (%) Acc (%)

1 99.07 21.62 80.47 2
2 97.56 16.23 85.16 6
3 98.88 21.63 80.44 3

Table 7.3: Feature Selection Experimental Results using the Testing Dataset

Program No. Evolved Program
1 Cos[Sqrt[Cos[Sqrt[ct_state_ttl]]]] > Cos[sttl + Min[Sqrt[ct_state_ttl], Tan[sttl]]]

2
(Log[Sin[ct_state_ttl]] >= Sin[Log[Sin[Log[ct_dst_src_ltm]]]]) || (Sin[Log[Log[
Max[res_bdy_len, Log[Log[Sin[Log[Max[res_bdy_len, Log[Log[dur]]]]]]]]]]]
>= Max[sloss, Sin[Log[Sin[Log[dinpkt]]]]])

3
Max[Sin[ct_state_ttl], Sin[Sin[ct_state_ttl]]] > Max[Abs[is_sm_ips_ports],
Abs[Sin[Sin[Sin[sttl]]]]]

Table 7.4: Feature Selection Experimental Programs Output

To further test the robustness of MOGP as a features selection technique, we adopted
standard GE and CGP implementations from Chapter 5. We run each algorithm using
the selected features 20 times and compared their outcomes with the outcomes using the
full set of features (i.e. Table 5.4). It is shown from the results in Table 7.5 that the GE
algorithm improved the performance of all the measurements when adopting features
from MOGP programs. On the other hand, the CGP algorithm when using features
selected by programs 1 and 3 managed to enhance detection rate only compared to
using the full set. Whereas features selected by program 2 helped CGP achieve the
best performance on the UNSW-NB15 dataset. This clearly indicates that the MOGP
technique helped to provide an insight into which features are powering the predictions
the most.

Features
from

GE CGP
DR FAR Acc DR FAR Acc

Program 1 98.79 ± 0.02 21.77 ± 0.1 80.31 ± 0.08 98.79 ± 0.01 21.65 ± 0 80.41 ± 0
Program 2 92.44 ± 0.56 18.73 ± 1.06 82.39 ± 0.93 96.40 ± 0.15 12.42 ± 0.17 88.47 ± 0.14
Program 3 98.93 ± 0.02 21.83 ± 0.13 80.26 ± 0.12 98.96 ± 0.02 21.59 ± 0.01 80.48 ± 0.01

Table 7.5: The Performance of Standard GE and CGP with Selection Features (%)

129

7.2.2 Experiment 2: Memory Consumption

The trade-offs among intrusion detection strength and memory consumption of IDS
programs are also taken into consideration. Researchers suggest enhancing the sys-
tem throughput with the use of embedded memory applications, however, there is a
necessity to reduce the amount of required memory since embedded memory is very
expensive [126]. There are various proposed IDSs that have considered reducing mem-
ory usage either by improving string matching [127] [126] or optimising the memory
requirements of each sensor node in a wireless network [128]. In contrast, our framework
focuses on the rule itself by forcing the evolving process to consider the least memory
hungry rules. In this investigation, we will show how security performance is also af-
fected by memory saving. Normally the greater the number of features employed, the
higher the memory consumption. For memory measurement, we used the Java Agent
for Memory Measurements (JAMM) [129]. JAMM computes Java object memory use
at runtime. MOGP tries to evolve memory-efficient IDS programs.

Figure 7.6 shows the optimal solutions and global optimal solutions of 10 runs found for
the phishing websites dataset. It presents the plots of detection rate and false alarms
which are evolved conditionally on the memory usage of the programs. These charts
show that the programs with higher security performances (detection rate and low false
alarm rate) values use more memory, as expected.

Figure 7.6: Memory Consumption Pareto Fronts and Global Pareto Front Trade-off

130

Table 7.6 compares the performance of some programs to their memory consumption.
These programs have a better detection accuracy compared to standard GP and pro-
vide a reduction in memory usage. The best-evolved standard GP program consumes
memory of 4,600 bytes tested on the same dataset. Table 7.7 shows the evolved pro-
grams output, where it clearly can be seen that the more complex the program is, the
more memory it requires. Note that the memory computation is based on the memory
usage required by an evolved program over the whole testing dataset and not based on
a single instance in the dataset.

Program No.
MOGP

Memory Size (bytes)
DR (%) FAR (%) Acc (%)

1 89.40 9.37 90.77 1,920
2 95.57 9.27 90.14 2,784
3 96.39 8.90 90.45 3,456

Table 7.6: Memory Consumption Experimental Results using the Testing Dataset

Program No. Evolved Program

1
Exp[Min[age_of_domain, Prefix_Suffix]] + SSLfinal_State <= Floor[Cos[
Statistical_report] ^ Min[SSLfinal_State, Tan[URL_of_Anchor]]]

2

Min[Exp[URL_of_Anchor], Tanh[Tan[SSLfinal_State]]] < Cos[web_traffic]
&& Prefix_Suffix <= Redirect && ((Tanh[Max[double_slash_redirecting,
HTTPS_token]] >= URL_of_Anchor && Tanh[Tanh[web_traffic]] >=
URL_of_Anchor && URL_Length <= port) || RightClick > SSLfinal_State)

3

Prefix_Suffix <= Redirect && ((Cos[web_traffic] >= URL_of_Anchor &&
Tanh[Max[double_slash_redirecting, HTTPS_token]] >= URL_of_Anchor &&
Min[Exp[URL_of_Anchor], Tanh[Tan[SSLfinal_State]]] < Cos[web_traffic]
&& (Tanh[Tanh[web_traffic]] >= URL_of_Anchor || Tan[SSLfinal_State] <=
Redirect)) || RightClick > SSLfinal_State)

Table 7.7: Memory Consumption Experimental Programs Output

7.2.3 Experiment 3: Processing Time

The steady rise in link speeds and the need for more sophisticated packet processing
impose challenges towards IDSs [130]. Thus, one of the crucial parts of an IDS is how
fast its programs can classify an event. Many incorporate IDSs with different techniques
(software/hardware) in order to speed up the processing of the data and be able to
process in real time. For instance, they used feature extraction [27], Hadoop [9] and
graphics processing units [130]. In this experiment, we optimised the IDS programs

131

overall processing time which includes both data reading time and time spent in detec-
tion. Note time for the pre-processing steps is not included in this experiment as they
are already performed for the utilised datasets. However, a study [131] concluded that
75% of the total processing time in IDSs is accounted for by rules checking. MOGP tries
to optimise evolved programs processing times while maintaining detection rates and
false alarms. The calling of the Java runtime library System.nanoTime() before and
after the program evaluation is assigned as a non-security objective is to be reduced as
much as is practical.

MOGP was run 10 times. Every run generated a Pareto front of non-dominated pro-
grams. Figure 7.7 illustrates the Pareto fronts and its union Pareto front (only 9 runs
contributed to it) taken from the Kyoto 2006+ dataset. Programs with excellent secu-
rity performance have a tendency to require more processing time as displayed.

Figure 7.7: Processing Time Pareto Fronts and Global Pareto Front Trade-off

The performance of evolved programs is demonstrated on the testing dataset, including
their processing times and memory consumption are presented in Table 7.8. In this
implementation, only the detection rate showed an improvement compared to standard
GP programs. However, MOGP returns a set of programs with far shorter processing
times than the best-evolved standard GP program with (138.76 ms). Table 7.9 shows
the output of the programs evolved using MOGP.

132

Program No.
MOGP

Time (ms) Memory Size (bytes)
DR (%) FAR (%) Acc (%)

1 99.72 1.55 98.64 15.99 1,896
2 100 1.42 98.80 7.80 1,728
3 99.99 1.40 98.81 13.60 1,872

Table 7.8: Processing Time Experimental Results using the Testing Dataset

Program No. Evolved Program

1
Ceiling[Cos[Abs[serror_rate]]] >= Sqrt[Log[dst_host_srv_serror_rate] /
Sqrt[Floor[Cos[service]]]]

2 service > dst_host_srv_count || Sqrt[Floor[Cos[service]]] <= dst_host_count

3
dst_host_srv_count <= service || count < Cos[service] || Tanh[dst_host
_same_src_port_rate] <= Cos[service]

Table 7.9: Processing Time Experimental Programs Output

7.2.4 Experiment 4: Ensemble Diversity

Ensembles essentially aim to overcome individual model weaknesses by appealing to
the capabilities of multiple models. The weaknesses of any individual model should
be outweighed by the classification strength of the others. This generally means that
classification errors are "smeared out" across the classifiers, or put another way, their
strengths and weaknesses are complementary. In many cases, all models may directly
agree but in others we only need the ensemble to be right. Diversity is a measure
that defines the degree of disagreement in the output of the base models utilised to
build an ensemble. The diversity concept in the context of classifier combination does
not just indicate that the base models should be different; it also indicates that the
base models make errors in different instances [121]. In order to analyse the ensemble
diversity effect on evolved programs, MOGP will be used to guide the building of
the ensemble systems. This could be achieved by incorporating an ensemble diversity
measure as a penalty into the MOGP fitness measurement. To measure diversity among
ensemble members, the Kohavi-Wolpert (KW) [132] measurement was adopted. The
KW is defined in equation (7.1).

Kohavi−Wolpert (KW) =
1

(NL)2
+

N∑
j=1

l(zj)(L− l(zj)) (7.1)

Where N refers to the number of instances, L denotes to the number of the base mod-
els in the ensemble. Finally, l(zj) contains the number of base models that correctly
classified the instance zj. KW values range from 0 and 1, where 0 indicates no diversity

133

and 1 indicates the highest possible diversity.

The MOGP algorithm is run to evolve functional properties (detection rate and false
alarm rate) and a non-functional property (stacked model diversity) in intrusion de-
tection programs. The algorithm aims to maximise both detection rate and ensemble
diversity while minimising the false alarm rate. The aim of this experiment is the se-
lection of optimal sets of base models using the MOGP approach. This would help to
produce accurate, diverse and small ensembles. Figure 7.8 shows the plot diagrams for
the three objectives of both Pareto fronts and the union of 10 runs. These results were
obtained from the experiment on the modern DDoS dataset.

Figure 7.8: Ensemble Diversity Pareto Fronts and Global Pareto Front Trade-off

The pool of individuals consisted of only 10 members. However, there is a trade-off
made based on the diversity measure used. The performance of some of these stacked
programs evolved based on the testing dataset reported in Table 7.10. The MOGP
evolved programs output are shown in Table 7.11. The results clearly demonstrate
how MOGP helps to enhance stacked programs compared to the GP stacking method.
Program 1 has the highest diversity measure. This program uses 2 base models with
tree size = 3 compared to the best-evolved GP stacking program which uses 7 models
with tree size = 114. It is important to bear in mind that the enhanced property is
the solutions complexity rather than the performance. The main reason for that is the
utilised base models have produced relatively similar outcomes.

134

Program No.
MOGP Stacking

Diversity
DR (%) FAR (%) Acc (%)

1 87.19 6.41 98.64 0.022
2 87.19 6.42 98.62 0.014
3 87.30 6.84 97.78 0

Table 7.10: Stacking Experimental Results using the Testing Dataset

Program No. Evolved Program
1 GBM_4 < GBM_5

2
GBM_2 < GBM_5 || ((Sin[Exp[Sin[GBM_0 / (DNN / Log[GBM_4])] + Sin[
Sin[Exp[DNN]]]]] + Sin[Sin[Abs[GBM_5]] / (DNN / Log[GBM_4])] > DNN ||
GBM_4 <= GBM_3) && Tanh[GBM_4] <= Cos[DNN])

3 GBM_4 ^ Tan[Sqrt[GBM_0]] > DNN || DRF <= GBM_4 ^ Tan[DRF]

Table 7.11: Ensemble Diversity Experimental Evolved Programs Output

7.2.5 Experiment 5: Detecting Unknown Attacks

Cybersecurity attacks can originate from new and unexpected sources [7]. A compre-
hensive attacks signature database is an essential component of modern IDS. However,
signatures generally only detect known attacks [36]. To help with the problem, these
maintained signatures (i.e. programs) need to make their capability to recognise un-
known attacks more robust. Every evolved program during the training phase sees
various instances of normal and attack behaviour. Later, the best-evolved individual
tries to predict the instances of normal and attacks in the testing dataset. In this ex-
periment, however, during the training phase, MOGP programs are evolved without
seeing all the attacks and later its performance was tested on the complete set of at-
tacks. The MOGP approach optimises the security objectives of evolved programs by
increasing the detection rate and decreasing false alarms.

Firstly, the evaluation of the performances of the MOGP technique is conducted for
unseen subfamilies by the known attack experiment. The experiment was executed on
the modern DDoS dataset described in Table 5.6. Despite MOGP being able to avoid
complex solutions compared to the standard GP, however, the evolved programs did
not produce any improvements in the security performance. Some good results are
demonstrated in Table 7.12. The tree representation of program no. 2 is illustrated in
Figure 7.9. As can be seen from this figure, MOGP produced a far less complex solu-
tion than the best-evolved solution by standard GP (see Table 5.9). Table 7.13 shows
the percentages of detection for each attack, with good outcomes for application layer

135

DDoS attacks especially. In this experiment, the Smurf attack continues to be the least
identified attack.

Program No.
MOGP Modern DDoS Table (5.6)
DR (%) FAR (%) Acc (%)

1 88.22 6.68 97.24
2 88.17 6.59 97.44
3 88.10 6.28 98.05

Table 7.12: The Performance of Some Programs (Unknown Variations of Known Attack
Experiment)

Attack Name
Program 1 Program 2 Program 3

No. of Attack
Traffic Detected

DR
(%)

No. of Attack
Traffic Detected

DR
(%)

No. of Attack
Traffic Detected

DR
(%)

Smurf 1,559 36.69 1,555 36.59 1,523 35.84
UDP Flood 62,061 90.07 62,022 90.01 61,997 89.97
SIDDOS 6,318 94.79 6,315 94.74 6,316 94.76
HTTP Flood 4,110 100 4,110 100 4,110 100
Total Records 74,048 88.22 74,002 88.17 73,946 88.10

Table 7.13: Detection Results of MOGP Evolved Programs

Figure 7.9: The Visualisation of Program 2

Secondly, we aim to test the MOGP implementation capability in detecting unseen at-
tacks. The MOGP framework for optimising security objectives (i.e. detection rate and
false alarm rate) run 10 times with each attack present in the UNSW-NB15 dataset.
There are 9 attacks in this dataset. Figure 7.10 and Figure 7.11 show MOGP Pareto
fronts and global front obtained from the Analysis attack and the Fuzzers attack ex-
periment, respectively. There were 5 different runs contributing to the global front of

136

the Analysis experiment, whereas only 3 runs contributed in the case of the Fuzzers
experiment. These figures illustrate the trade-offs made between DR and FAR by the
Pareto front programs.

Figure 7.10: Pareto Fronts and Global Pareto Front Trade-off (Analysis Experiment)

Figure 7.11: Pareto Fronts and Global Pareto Front Trade-off (Fuzzers Experiment)

The DRs of known and unknown attacks accomplished by some of the MOGP evolved
programs from every experiment are presented in Table 7.14. There are many other
non-dominated programs which have different performances. The highlighted cell refers
to the missing attack during the training. It is apparent from this table that DRs of the
attack records varied from one MOGP program to another. The lowest detected attack
was Fuzzers which ranged from (47.11%) to (83.63%). Whereas the Generic attack was
fairly easy to recognise with DRs ranging from (99.36%) to (99.78%). Overall, these
programs were able to detect unknown attacks.

137

A
n
alysis

B
ackd

oor
D
oS

E
xp

loits
Fu

zzers
G
en

eric
R
econ

n
aissan

ce
S
h
ellcod

e
W
orm

s

A
nalysis

E
xperim

ent
2,200

(82.18%
)

566
(97.08%

)
3,839

(93.88%
)

9,981
(89.66%

)
2,856

(47.11%
)

18,752
(99.36%

)
3,105

(88.81%
)

329
(87.03%

)
37

(84.09%
)

B
ackdoor

E
xperim

ent
660

(98.95%
)

2,237
(96.04%

)
3,907

(95.54%
)

9,440
(84.80%

)
4,254

(70.17%
)

18,801
(99.62%

)
3,372

(96.45%
)

365
(96.56%

)
43

(97.72%
)

D
oS

E
xperim

ent
656

(96.89%
)

568
(97.42%

)
15,773

(96.45%
)

9,968
(89.54%

)
4,887

(80.61%
)

18,812
(99.68%

)
3,350

(95.82%
)

363
(96.03%

)
43

(97.72%
)

E
xploits

E
xperim

ent
659

(97.34%
)

581
(99.65%

)
3,961

(96.86%
)

41,755
(93.77%

)
5,070

(83.63%
)

18,827
(99.76%

)
3,369

(96.36%
)

364
(96.29%

)
43

(97.72%
)

Fuzzers
E
xperim

ent
675

(99.70%
)

579
(99.31%

)
4,000

(97.82%
)

10,603
(95.24%

)
14,250

(58.77%
)

18,804
(99.64%

)
3,390

(96.96%
)

366
(96.82%

)
44

(100%
)

G
eneric

E
xperim

ent
623

(92.02%
)

576
(98.79%

)
3,902

(95.42%
)

10,314
(92.65%

)
3,631

(59.89%
)

58,744
(99.78%

)
3,282

(93.87%
)

335
(88.62%

)
39

(88.63%
)

R
econnaissance

E
xperim

ent
656

(96.89%
)

568
(97.42%

)
3,910

(95.62%
)

9,928
(89.18%

)
4,715

(77.77%
)

18,808
(99.66%

)
13,189

(94.29%
)

363
(96.03%

)
43

(97.72%
)

Shellcode
E
xperim

ent
656

(96.89%
)

568
(97.42%

)
3,952

(96.64%
)

10,025
(90.05%

)
4,888

(80.63%
)

18,818
(99.71%

)
3,352

(95.88%
)

1,447
(95.76%

)
43

(97.72%
)

W
orm

s
E
xperim

ent
659

(97.34%
)

580
(99.45%

)
3,993

(97.65%
)

10,635
(95.53%

)
4,677

(77.15%
)

18,828
(99.77%

)
3,380

(96.68%
)

364
(96.29%

)
165

(94.82%
)

Table
7.14:N

o.ofA
ttack

Traffi
c
D
etected

(D
R
)
by

M
O
G
P

E
volved

P
rogram

s

138

7.3 Conclusions

In this chapter we extended our optimisation framework to employ MOEC to design
robust solutions for complex environments. The multi-objective approach is beneficial
since it can provide a set of optimised IDS programs. A security analyst can choose
a solution in line with the purpose of the examined environment and modify the IDS
settings according to need. We showed that the knowledge of the Pareto optimal solu-
tions presents a principled means to differentiate the trade-offs involved.

This work showed that various trade-offs could be produced among classification ac-
curacy and other properties. These trade-offs are recognised by utilising a MOGP
approach. A multiple-objective approach offers a more efficient way of examining the
trade-off space, especially when conflicts exist. Evidence suggests that for these environ-
ments the potential to produce good trade-offs will be especially necessary. Programs
with equal (or better) classification accuracy than acquired by GP but with lower
resource consumption are evolved by utilising our MOGP approach. Better still, a col-
lection of solutions offering a variety of trade-offs is produced. It is left to the engineers
to choose which particular solutions are suitable for a specific deployment.

These experiments are unusual since they trade off security abilities (detection rate
and false alarms) against non-security attributes (complexity, memory and time). The
inherent complexity of an environment’s infrastructure and functions renders it chal-
lenging to see how IDS programs, with the best possible trade-offs, could be acquired
via the means of standard system development. To summarise, an approach based on
optimisation emerges as a natural and effective option for the challenge.

139

Chapter 8 | Summary and Conclusions

In this chapter we summarise the research and provide the conclusions to our work. The
thesis hypotheses introduced in Chapter 1 are also reviewed to demonstrate how the
work carried out in this research supports them. To conclude, open issues and future
work are presented.

8.1 Summary of Experimentation

The security of the internet and computer networks are crucial problems. A great deal
of collaboration has occurred to produce standards to help, but new attacks emerge
every day and current mechanisms are not sufficient in themselves. The major problems
for existing mechanisms for intrusion detection systems can be summarised as follows:

1. The lack of a common testbed.

2. Limited IDS capability for detecting known and unknown attacks.

3. Significant computational overheads incurred by IDS programs.

The first two are concerned with the trend functional capabilities of an IDS and the
efficiency with which it can carry out its task. The third concerns a problem with whole
are, namely the difficulty of providing a rigorous and meaningful evaluation of the ca-
pability. Many evaluations have been carried out using a limited number of datasets.
Researchers often investigate a very limited number of attacks and make assumptions
about the architectures of the solutions. In this thesis, four widely different deployment
environments containing a contemporary set of threats and their variants are investi-
gated. In the context of intelligent IDSs, we are not only concerned with the power of
classifying known attack behaviours, but the potential for detecting novel attacks. Ex-
tant research in the use of ML for IDS has rarely considered non-functional properties.
It usually targets only the typical detection and alarm rates. Then again, the problem
of resource constraints is crucial. The restricted resources of IDS rules are factors to
consider as well. The main objective of this thesis is developing intrusion detection
systems that are able to accurately detect the internet and computer network threats

141

and do so with a low resource consumption, high speed and a simple design. In order
to accomplish this goal, evolutionary computation algorithms have been used to evolve
such intrusion detection programs. These approaches work directly on the datasets
without any pre-processing. The thesis also presents the first application of Cartesian
genetic programming synthesis of an intrusion detection system.

This thesis contains detailed descriptions regarding the use of evolutionary compu-
tation algorithms to the detection of threats targeting the internet and computer net-
works. The performance of programs evolved using GP, GE and CGP are tested in
various environments that contain different kinds of threats (and their variations). The
standard implementation of these paradigms showed a good capability to transform
the features given as input into a decision (normal vs. anomaly). These programs were
able to profile the symptoms of normal and anomalous behaviours. CGP evolved pro-
grams with better performance than those generated by GP and GE. These paradigms
provided some degree of manual analysis where we were able to explore feature vectors
and operators relations appearing in the evolved programs. The implementations were
able to show a robust capability in detecting previously unseen attack behaviours. The
frameworks and parameter settings used for GP, GE and CGP were also investigated
and the paradigms were compared. As presented in hypothesis 1: evolutionary compu-
tation are able to discover intrusion detection programs for the internet and computer
networks based environments. To assess this hypothesis we conducted different experi-
ments.

The heterogeneous ensemble exploits the benefit of having multiple expert systems.
Ensemble solutions evolved by GP, GE and CGP outperformed those evolved by their
standard individual implementations, especially in achieving a higher detection rate.
The number of false alarms decreased dramatically. However, experiments in the mod-
ern DDoS dataset did not show much improvement in terms of false alarms. The pro-
posed paradigms worked as a meta-learner which provided a means to choose base
models dynamically instead of stacking all of them. In this implementation, the pro-
posed paradigms performed relatively similarly to each other. Also, we explored the
effectiveness of the stacking paradigm to address the unseen attacks issue. The ex-
perimental results showed that the detection rate increased for some attacks (seen or
unseen) and decreased for others compared to standard implementations. However,
stacking programs produced lower false alarms and better accuracy. Hypothesis 2: evo-
lutionary computation can act as a meta-learner to evolve a function for generating
stacking models (intrusion detection programs) that are more effective than previously
demonstrated is supported with the results in Chapter 6.

142

In Chapter 7, non-functional objectives like solution complexity, memory consumption,
processing times and unknown attacks are investigated. Multi-objective evolutionary
computation technique offers the designer a collection of solutions which demonstrate
a variety of trade-offs between these objectives.

MOGP is utilised to explore the correlations amongst detection rate, false alarm rate
and non-functional properties of evolved programs. In the results, there are programs
which are made less complex by considering features reduction while evolving. In the
same vein, ensemble solutions were optimised through increasing the diversity of the
stacked base models. The trade-offs amongst the IDS capability, memory consumption
and processing time needed are examined utilising a multi-objective optimisation ap-
proach, and interesting outcomes have been achieved. Finally, MOGP is extended to
deal with unseen attacks. The evolved programs showed a higher detection rate than
do standard and stacking programs. However, these programs had a higher false alarm
rate compared to stacking programs. Hypothesis 3: multi-objective evolutionary com-
putation will be able to explore the trade-offs between functional (intrusion detection
ability) and non-functional (complexity, memory usage and processing time) properties
of evolved programs is supported by these results.

8.2 Thesis Contributions

The contributions of this thesis are outlined as follows:

Demonstration of the use of evolutionary computation techniques for the
synthesis of an intrusion detection system: This thesis shows that GP, GE and
CGP can be utilised to evolve effective detectors for known and unknown attacks. To
the best of our knowledge, it is the first application of CGP technique to the intrusion
detection problem and the work provides a comparison with the other EC approaches.

Demonstration of the effectiveness of evolutionary computation techniques-
based ensemble for synthesising intrusion detection systems: This research
extended learning techniques from a single classifier system framework into a multiple
classifiers system using the ensemble concept. An ensemble classifier has the ability to
incorporate the strengths of various classifiers in a way that means their weaknesses
are compensated for. This thesis showed that GP, GE and CGP techniques can be used
to build stacked models capable of differentiating environment behaviours more effec-
tively. In these systems the percentage of false alarms reduced dramatically in most

143

cases. In addition, stacked models showed an ability to detect unknown attacks. There
has been no detailed investigation of using GE and CGP based ensembles for intrusion
detection problems before.

Efficiency: This research proposes an approach that explores various trade-offs be-
tween security and non-security properties of evolved programs. Our technique can
be applied to create a collection of solutions with the optimal trade-offs that could
be obtained. These sets of programs provide a variety of trade-offs amongst intrusion
detection capability and its utilised features (needed inputs), memory consumption
and processing times. These needs are discovered by using the multi-objective opti-
misation technique, which provides a more efficient means of building IDS programs.
Furthermore, MOGP investigates security properties of evolving programs to detect
both known and unknown attacks. Finally, these present an implementation of a new
perspective on the selection of base learners for stacked IDS programs, using the con-
cepts of diversity and Pareto optimality. This helped clarify why an ensemble obtains
particular learners. This research represents a novel application of SPEA2 to multi-
objective IDS considering properties such as processing times, diversity and unknown
attacks. Even though feature selection and memory consumption implementations have
been investigated before in other approaches, SPEA2 was understandably different in
terms of the features selection mechanism and the investigated environment for mem-
ory consumption. A final selection between programs offering different trade-offs rests
with the system designer.

8.3 Future Research

The design of robust defence techniques appears to be a never-ending task. In this
thesis, we have presented contributions to prevent contemporary threats. These contri-
butions leave space for extended work and open new research challenges. This section
will present possible areas for future research:

Applying evolutionary computation techniques to new environments: In this
thesis, we present how to utilise evolutionary computation algorithms to the problem
of intrusion detection and how to examine a variety of trade-offs amongst properties
in resource-restricted environments. The work introduced in this research could be ad-
justed with ease to a specific environment, for instance, IoT. It is anticipated that for
IoT the capability to obtain potentially the best (or near best) trade-offs will be espe-
cially significant given that these networks may often be even more resource-restricted.

144

Improving our approach: In this work, we have primarily concentrated on IDS
detection capabilities. However, our approaches could be improved in the following two
ways: incorporation of active responses and improving how quickly defenders recover
from an attack. The second would be helped by our evolved programs identifying the
type of the attack (and not just whether the system is under attack). Further improve-
ments may also be sought by using complementary base learners, i.e. we would aim to
synthesise classifiers with complementary weaknesses.

Adaptive systems: The works presented have been designed as an off-line learn-
ing approach based on available data and circumstances. However, when the protected
environment experiences changes, the algorithms need to be retrained. To overcome
this drawback, adaptive IDSs readjust automatically. In order to do that, the idea
is that rather than stopping learning immediately after the training phase, the algo-
rithms continue gaining knowledge throughout the operation of the system. Hence, the
system learns from wrongly categorised cases. This procedure may deal with various
issues linked with IDSs: it decreases high false positive rates, avoids retraining and the
systems adjust to changing environments. This is an important issue for future research.

Application to other contexts: Aside from purely security-related matters, EC al-
gorithms have been widely used to address various real-world applications. The authors
are wondering how current implementations could be used to investigate non-security
contexts, for instance, medicine, biology and bioinformatics applications. In addition,
the MOGP implementation could be utilised for other domains in which there are
conflicting objectives.

145

References

[1] P. Mell and T. Grance, “The nist definition of cloud computing,” 2011.

[2] A. Whitmore, A. Agarwal, and L. Da Xu, “The internet of things—a survey of
topics and trends,” Information Systems Frontiers, vol. 17, no. 2, pp. 261–274,
2015.

[3] Internet world stats. [Online]. Available: https://www.internetworldstats.
com/emarketing.htm (visited on 10/01/2019).

[4] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung, “Intrusion detection sys-
tem: A comprehensive review,” Journal of Network and Computer Applications,
vol. 36, no. 1, pp. 16–24, 2013.

[5] T. Jordan and P. Taylor, “A sociology of hackers,” The Sociological Review,
vol. 46, no. 4, pp. 757–780, 1998.

[6] C. Tankard, “Advanced persistent threats and how to monitor and deter them,”
Network security, vol. 2011, no. 8, pp. 16–19, 2011.

[7] “Symantec internet security threat report,” 2018. [Online]. Available: https:
//www.symantec.com/.

[8] Cve security vulnerability database. [Online]. Available: https://www.cvedetails.
com/browse-by-date.php (visited on 10/02/2019).

[9] M. M. Rathore, A. Ahmad, and A. Paul, “Real time intrusion detection system
for ultra-high-speed big data environments,” The Journal of Supercomputing,
vol. 72, no. 9, pp. 3489–3510, 2016.

[10] E. Cambiaso, I. Vaccari, E. Punta, S. Scaglione, S. Bianchi, A. Zarca, R. Trapero,
P. Sobonski, and D. Rivera, “Attacks threats analysis and contingency actions,”
2018. [Online]. Available: http://www.anastacia-h2020.eu/.

[11] “Radware’s global application and network security report,” 2018. [Online].
Available: https://www.radware.com/.

147

https://www.internetworldstats.com/emarketing.htm
https://www.internetworldstats.com/emarketing.htm
https://www.symantec.com/
https://www.symantec.com/
https://www.cvedetails.com/browse-by-date.php
https://www.cvedetails.com/browse-by-date.php
http://www.anastacia-h2020.eu/
https://www.radware.com/

[12] S. X. Wu and W. Banzhaf, “The use of computational intelligence in intrusion
detection systems: A review,” Applied Soft Computing, vol. 10, no. 1, pp. 1–35,
2010.

[13] “Cisco 2018 annual cybersecurity report.” [Online]. Available: https://www.
cisco.com/c/en_uk/products/security/security-reports.html.

[14] R. Sommer and V. Paxson, “Outside the closed world: On using machine learn-
ing for network intrusion detection,” in IEEE Symposium on Security and Pri-
vacy (SP), IEEE, 2010, pp. 305–316.

[15] H. He, C. Maple, T. Watson, A. Tiwari, J. Mehnen, Y. Jin, and B. Gabrys,
“The security challenges in the iot enabled cyber-physical systems and opportu-
nities for evolutionary computing & other computational intelligence,” in IEEE
Congress on Evolutionary Computation (CEC), IEEE, 2016, pp. 1015–1021.

[16] K. Scarfone and P. Mell, “Guide to intrusion detection and prevention systems
(idps),” NIST special publication, vol. 800, p. 94, 2007.

[17] G. Kumar and K. Kumar, “The use of artificial-intelligence-based ensembles
for intrusion detection: A review,” Applied Computational Intelligence and Soft
Computing, vol. 2012, p. 21, 2012.

[18] J. P. Anderson, “Computer security threat monitoring and surveillance,” Tech-
nical Report, James P. Anderson Company, 1980.

[19] L. Teresa, R. Jagannathan, L. Rosanna, L. Sherry, D. L. Edwards, P. G. Neu-
mann, H. S. Javitz, and A. Valdes, “Ides: The enhanced prototype, a real-time
intrusion detection system,” Technical Report SRI Project 4185–010, SRI-CSL-
88–12, CSL SRI International, Computer Science Laboratory, SRI Intl., 1988.

[20] D. Denning and P. G. Neumann, Requirements and model for IDES-a real-time
intrusion-detection expert system. SRI International, 1985.

[21] S. Sen, “A survey of intrusion detection systems using evolutionary computa-
tion,” Bio-Inspired Computation in Telecommunications, pp. 73–94, 2015.

[22] S. hafez Amer and J. A. hamilton Jr, “Intrusion detection systems (ids) taxonomy-
a short review,” This is a paid advertisement. STN 13-2 June 2010: Defensive
Cyber Security: Policies and Procedures 2, p. 23,

[23] C.-F. Tsai, Y.-F. Hsu, C.-Y. Lin, and W.-Y. Lin, “Intrusion detection by ma-
chine learning: A review,” Expert Systems with Applications, vol. 36, no. 10,
pp. 11 994–12 000, 2009.

148

https://www.cisco.com/c/en_uk/products/security/security-reports.html
https://www.cisco.com/c/en_uk/products/security/security-reports.html

[24] A. A. Aburomman and M. B. I. Reaz, “A survey of intrusion detection sys-
tems based on ensemble and hybrid classifiers,” Computers & Security, vol. 65,
pp. 135–152, 2017.

[25] G. Folino and P. Sabatino, “Ensemble based collaborative and distributed in-
trusion detection systems: A survey,” Journal of Network and Computer Appli-
cations, vol. 66, pp. 1–16, 2016.

[26] Y. Bouzida and F. Cuppens, “Neural networks vs. decision trees for intrusion
detection,” in IEEE/IST Workshop on Monitoring, Attack Detection and Miti-
gation (MonAM), 2006, pp. 81–88.

[27] Z. Banković, D. Stepanović, S. Bojanić, and O. Nieto-Taladriz, “Improving net-
work security using genetic algorithm approach,” Computers & Electrical Engi-
neering, vol. 33, no. 5-6, pp. 438–451, 2007.

[28] D. Stevanovic, N. Vlajic, and A. An, “Detection of malicious and non-malicious
website visitors using unsupervised neural network learning,” Applied Soft Com-
puting, vol. 13, no. 1, pp. 698–708, 2013.

[29] M. A. Ambusaidi, X. He, P. Nanda, and Z. Tan, “Building an intrusion detection
system using a filter-based feature selection algorithm,” IEEE transactions on
computers, vol. 65, no. 10, pp. 2986–2998, 2016.

[30] M. M. Najafabadi, T. M. Khoshgoftaar, and N. Seliya, “Evaluating feature
selection methods for network intrusion detection with kyoto data,” Interna-
tional Journal of Reliability, Quality and Safety Engineering, vol. 23, no. 01,
p. 1 650 001, 2016.

[31] S. Chebrolu, A. Abraham, and J. P. Thomas, “Feature deduction and ensemble
design of intrusion detection systems,” Computers & security, vol. 24, no. 4,
pp. 295–307, 2005.

[32] C. Xiang, P. C. Yong, and L. S. Meng, “Design of multiple-level hybrid classifier
for intrusion detection system using bayesian clustering and decision trees,”
Pattern Recognition Letters, vol. 29, no. 7, pp. 918–924, 2008.

[33] A. Abraham and J. Thomas, “Distributed intrusion detection systems: A com-
putational intelligence approach,” in Information Security and Ethics: Concepts,
Methodologies, Tools, and Applications, IGI Global, 2008, pp. 1639–1659.

[34] A. Zainal, M. A. Maarof, and S. M. Shamsuddin, “Ensemble classifiers for net-
work intrusion detection system,” Journal of Information Assurance and Secu-
rity, vol. 4, no. 3, pp. 217–225, 2009.

149

[35] I. Syarif, E. Zaluska, A. Prugel-Bennett, and G. Wills, “Application of bagging,
boosting and stacking to intrusion detection,” in International Workshop on
Machine Learning and Data Mining in Pattern Recognition, Springer, 2012,
pp. 593–602.

[36] M. H. Kamarudin, C. Maple, T. Watson, and N. S. Safa, “A logitboost-based
algorithm for detecting known and unknown web attacks,” IEEE Access, vol. 5,
pp. 26 190–26 200, 2017.

[37] F. Thabtah, R. M. Mohammad, and L. McCluskey, “A dynamic self-structuring
neural network model to combat phishing,” in International Joint Conference
on Neural Networks (IJCNN), IEEE, 2016, pp. 4221–4226.

[38] N. Moustafa and J. Slay, “The evaluation of network anomaly detection systems:
Statistical analysis of the unsw-nb15 data set and the comparison with the kdd99
data set,” Information Security Journal: A Global Perspective, vol. 25, no. 1-3,
pp. 18–31, 2016.

[39] N. Moustafa, J. Slay, and G. Creech, “Novel geometric area analysis tech-
nique for anomaly detection using trapezoidal area estimation on large-scale
networks,” IEEE Transactions on Big Data, 2017.

[40] M. Alkasassbeh, G. Al-Naymat, A. B. Hassanat, and M. Almseidin, “Detecting
distributed denial of service attacks using data mining techniques,” International
Journal of Advanced Computer Science and Applications, vol. 7, no. 1, pp. 436–
445, 2016.

[41] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a new
intrusion detection dataset and intrusion traffic characterization.,” in ICISSP,
2018, pp. 108–116.

[42] A. L. Buczak and E. Guven, “A survey of data mining and machine learning
methods for cyber security intrusion detection,” IEEE Communications Surveys
& Tutorials, vol. 18, no. 2, pp. 1153–1176, 2016.

[43] G. Kumar and K. Kumar, “Ai based supervised classifiers: An analysis for in-
trusion detection,” in Proceedings of the International Conference on Advances
in Computing and Artificial Intelligence, ACM, 2011, pp. 170–174.

[44] S. Sen and J. A. Clark, “Evolutionary computation techniques for intrusion
detection in mobile ad hoc networks,” Computer Networks, vol. 55, no. 15,
pp. 3441–3457, 2011.

[45] A. E. Eiben and J. E. Smith, Introduction to evolutionary computing. Springer,
2015, vol. 53.

150

[46] J. R. Koza, Genetic programming: on the programming of computers by means
of natural selection. MIT press, 1992, vol. 1, isbn: 0262111705.

[47] W. Banzhaf, P. Nordin, R. Keller, and F. Francone, Genetic Programming-
An Introduction: On the Automatic Programming of Computer Programs and
its Applications. Morgan Kaufman, San Francisco, dpunkt. verlag, Heidelberg,
1998.

[48] R. Poli, W. B. Langdon, N. F. McPhee, and J. R. Koza, A field guide to genetic
programming. Lulu.com, 2008.

[49] D. J. Montana, “Strongly typed genetic programming,” Evolutionary computa-
tion, vol. 3, no. 2, pp. 199–230, 1995.

[50] C. Ryan, J. J. Collins, and M. O. Neill, “Grammatical evolution: Evolving pro-
grams for an arbitrary language,” in European Conference on Genetic Program-
ming, Springer, 1998, pp. 83–96.

[51] M. O’Neill and C. Ryan, “Grammatical evolution,” IEEE Transactions on Evo-
lutionary Computation, vol. 5, no. 4, pp. 349–358, 2001.

[52] F. Noorian, A. M. de Silva, and P. H. Leong, “Gramevol: Grammatical evolution
in r,” Journal of Statistical Software, vol. 71, no. i01, 2016.

[53] J. F. Miller, “Cartesian genetic programming,” in Cartesian Genetic Program-
ming, Springer, 2011, pp. 17–34.

[54] J. F. Miller and P. Thomson, “Cartesian genetic programming,” in European
Conference on Genetic Programming, Springer, 2000, pp. 121–132.

[55] J. F. Miller and S. L. Smith, “Redundancy and computational efficiency in carte-
sian genetic programming,” IEEE Transactions on Evolutionary Computation,
vol. 10, no. 2, pp. 167–174, 2006.

[56] J. Clegg, J. A. Walker, and J. F. Miller, “A new crossover technique for cartesian
genetic programming,” in Proceedings of the 9th annual conference on Genetic
and evolutionary computation, ACM, 2007, pp. 1580–1587.

[57] A. Osyczka, “Multicriteria optimization for engineering design,” in Design opti-
mization, Elsevier, 1985, pp. 193–227.

[58] K. Deb, “Multi-objective evolutionary algorithms,” in Springer Handbook of
Computational Intelligence, Springer, 2015, pp. 995–1015.

[59] C. A. C. Coello, G. B. Lamont, and D. A. Van Veldhuizen, Evolutionary algo-
rithms for solving multi-objective problems. Springer, 2007, vol. 5.

[60] E. Zitzler, M. Laumanns, and L. Thiele, “Spea2: Improving the strength pareto
evolutionary algorithm,” TIK-report, vol. 103, 2001.

151

[61] T. G. Dietterich, “Ensemble methods in machine learning,” in International
workshop on multiple classifier systems, Springer, 2000, pp. 1–15.

[62] G. Folino and F. S. Pisani, “Combining ensemble of classifiers by using genetic
programming for cyber security applications,” in European Conference on the
Applications of Evolutionary Computation, Springer, 2015, pp. 54–66.

[63] M. P. Sesmero, A. I. Ledezma, and A. Sanchis, “Generating ensembles of het-
erogeneous classifiers using stacked generalization,” Wiley Interdisciplinary Re-
views: Data Mining and Knowledge Discovery, vol. 5, no. 1, pp. 21–34, 2015.

[64] M. Crosbie and G. Spafford, “Applying genetic programming to intrusion de-
tection,” in Working Notes for the AAAI Symposium on Genetic Programming,
Cambridge, MA: MIT Press, 1995, pp. 1–8.

[65] W. Lu and I. Traore, “Detecting new forms of network intrusion using genetic
programming,” Computational intelligence, vol. 20, no. 3, pp. 475–494, 2004.

[66] C. Yin, S. Tian, H. Huang, and J. He, “Applying genetic programming to evolve
learned rules for network anomaly detection,” in International Conference on
Natural Computation, Springer, 2005, pp. 323–331.

[67] K. Faraoun and A. Boukelif, “Genetic programming approach for multi-category
pattern classification applied to network intrusions detection,” International
Journal of Computational Intelligence and Applications, vol. 6, no. 01, pp. 77–
99, 2006.

[68] A. Orfila, J. M. Estevez-Tapiador, and A. Ribagorda, “Evolving high-speed,
easy-to-understand network intrusion detection rules with genetic program-
ming,” in Workshops on Applications of Evolutionary Computation, Springer,
2009, pp. 93–98.

[69] Lbnl/icsi enterprise tracing project - project overview. [Online]. Available: http:
//www.icir.org/enterprise-tracing/ (visited on 11/08/2018).

[70] J. Blasco, A. Orfila, and A. Ribagorda, “Improving network intrusion detection
by means of domain-aware genetic programming,” in International Conference
on Availability, Reliability, and Security (ARES’10), IEEE, 2010, pp. 327–332.

[71] D. Wilson and D. Kaur, “Using grammatical evolution for evolving intrusion
detection rules,” WSEAS Transactions on Systems, vol. 6, no. 2, p. 346, 2007.

[72] G. Folino, C. Pizzuti, and G. Spezzano, “GP ensemble for distributed intrusion
detection systems,” Pattern Recognition and Data Mining, pp. 54–62, 2005.

152

http://www.icir.org/enterprise-tracing/
http://www.icir.org/enterprise-tracing/

[73] S. Picek, E. Hemberg, D. Jakobovic, and U.-M. O’Reilly, “One-class classifica-
tion of low volume dos attacks with genetic programming,” in Genetic Program-
ming Theory and Practice XV, Springer, 2018, pp. 149–168.

[74] K. Badran and P. Rockett, “Multi-class pattern classification using single, multi-
dimensional feature-space feature extraction evolved by multi-objective genetic
programming and its application to network intrusion detection,” Genetic Pro-
gramming and Evolvable Machines, vol. 13, no. 1, pp. 33–63, 2012.

[75] J. Gómez, C. Gil, R. Baños, A. L. Márquez, F. G. Montoya, and M. Montoya,
“A pareto-based multi-objective evolutionary algorithm for automatic rule gen-
eration in network intrusion detection systems,” Soft Computing, vol. 17, no. 2,
pp. 255–263, 2013.

[76] E. De la Hoz, E. de la Hoz, A. Ortiz, J. Ortega, and A. Martıénez-Álvarez, “Fea-
ture selection by multi-objective optimisation: Application to network anomaly
detection by hierarchical self-organising maps,” Knowledge-Based Systems, vol. 71,
pp. 322–338, 2014.

[77] G. Kumar and K. Kumar, “A multi-objective genetic algorithm based approach
for effective intrusion detection using neural networks,” in Intelligent Methods
for Cyber Warfare, Springer, 2015, pp. 173–200.

[78] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward developing
a systematic approach to generate benchmark datasets for intrusion detection,”
computers & security, vol. 31, no. 3, pp. 357–374, 2012.

[79] S. Sen, J. A. Clark, and J. E. Tapiador, “Power-aware intrusion detection in
mobile ad hoc networks,” in International Conference on Ad Hoc Networks,
Springer, 2009, pp. 224–239.

[80] D. Song, M. I. Heywood, and A. N. Zincir-Heywood, “Training genetic program-
ming on half a million patterns: An example from anomaly detection,” IEEE
transactions on evolutionary computation, vol. 9, no. 3, pp. 225–239, 2005.

[81] A. Abraham and C. Grosan, “Evolving intrusion detection systems,” in Genetic
systems programming, Springer, 2006, pp. 57–79.

[82] A. Gharib, I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “An evaluation
framework for intrusion detection dataset,” in 2016 International Conference on
Information Science and Security (ICISS), IEEE, 2016, pp. 1–6.

[83] A. Ghourabi, T. Abbes, and A. Bouhoula, “Characterization of attacks collected
from the deployment of web service honeypot,” Security and Communication
Networks, vol. 7, no. 2, pp. 338–351, 2014.

153

[84] F. Pouget and M. Dacier, “Honeypot-based forensics,” in AusCERT Asia Pacific
Information Technology Security Conference, 2004.

[85] U. Thakar, N. Dagdee, and S. Varma, “Pattern analysis and signature extraction
for intrusion attacks on web services,” International Journal of Network Security
& its Applications (IJNSA), vol. 2, no. 3, 2010.

[86] A. Ghourabi, T. Abbes, and A. Bouhoula, “Data analyzer based on data mining
for honeypot router,” in International Conference on Computer Systems and
Applications (AICCSA), IEEE, 2010, pp. 1–6.

[87] S. I. S. Center, Sans isc: Demonstrating the value of your intrusion detection
program and analysts. [Online]. Available: https://isc.sans.edu/diary.
html?date=2012-09-02 (visited on 11/08/2018).

[88] Y. Park and J. Park, “Web application intrusion detection system for input val-
idation attack,” in Third International Conference on Convergence and Hybrid
Information Technology, IEEE, 2008, pp. 498–504.

[89] D. Stevanovic, A. An, and N. Vlajic, “Feature evaluation for web crawler detec-
tion with data mining techniques,” Expert Systems with Applications, vol. 39,
no. 10, pp. 8707–8717, 2012.

[90] T. Auld, A. W. Moore, and S. F. Gull, “Bayesian neural networks for internet
traffic classification,” IEEE Transactions on neural networks, vol. 18, no. 1,
pp. 223–239, 2007.

[91] F. Pouget, M. Dacier, and V. Pham, “On the advantages of deploying a large
scale distributed honeypot platform,” in Proceedings of the E-Crime and Com-
puter Evidence Conference, 2005.

[92] E. Alata, M. Dacier, Y. Deswarte, M. Kaaâniche, K. Kortchinsky, V. Nicomette,
V.-H. Pham, and F. Pouget, “Collection and analysis of attack data based on
honeypots deployed on the internet,” in Quality of Protection, Springer, 2006,
pp. 79–91.

[93] A. Ghourabi, T. Abbes, and A. Bouhoula, “Behavior analysis of web service
attacks,” in IFIP International Information Security Conference, Springer, 2014,
pp. 366–379.

[94] Mit lincoln laboratory, darpa intrusion detection evaluation data sets. [Online].
Available: https://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-
detection-evaluation-dataset (visited on 09/03/2018).

[95] Kdd cup 99 dataset. [Online]. Available: http://kdd.ics.uci.edu/databases/
kddcup99/kddcup99.html (visited on 09/03/2018).

154

https://isc.sans.edu/diary.html?date=2012-09-02
https://isc.sans.edu/diary.html?date=2012-09-02
https://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-evaluation-dataset
https://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-evaluation-dataset
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[96] Argus. [Online]. Available: https://qosient.com/argus/ (visited on 11/08/2018).

[97] Flowcalc. [Online]. Available: http://mutrics.iitis.pl/flowcalc (visited on
11/08/2018).

[98] G. Folino, F. S. Pisani, and P. Sabatino, “A distributed intrusion detection
framework based on evolved specialized ensembles of classifiers,” in European
Conference on the Applications of Evolutionary Computation, Springer, 2016,
pp. 315–331.

[99] M. B. Kursa and W. R. Rudnicki, “Feature selection with the boruta package,”
J Stat Softw, vol. 36, no. 11, pp. 1–13, 2010.

[100] S. Khanchi, A. Vahdat, M. I. Heywood, and A. N. Zincir-Heywood, “On botnet
detection with genetic programming under streaming data label budgets and
class imbalance,” Swarm and evolutionary computation, vol. 39, pp. 123–140,
2018.

[101] J. Song, H. Takakura, Y. Okabe, M. Eto, D. Inoue, and K. Nakao, “Statistical
analysis of honeypot data and building of kyoto 2006+ dataset for nids evalua-
tion,” in Proceedings of the First Workshop on Building Analysis Datasets and
Gathering Experience Returns for Security, ACM, 2011, pp. 29–36.

[102] R. M. Mohammad, F. Thabtah, and L. McCluskey, “Intelligent rule-based phish-
ing websites classification,” IET Information Security, vol. 8, no. 3, pp. 153–160,
2014.

[103] R. M. Mohammad, L. McCluskey, and F. Thabtah, UCI machine learning repos-
itory: Phishing websites data set, 2015. [Online]. Available: https://archive.
ics.uci.edu/ml/datasets/phishing+websites.

[104] Phishtank | join the fight against phishing. [Online]. Available: https://www.
phishtank.com/ (visited on 11/08/2018).

[105] Phishing scams and spoof emails at millersmiles.co.uk. [Online]. Available: http:
//www.millersmiles.co.uk/ (visited on 11/08/2018).

[106] Yahoo search - web search. [Online]. Available: https://uk.search.yahoo.
com/?guccounter=1 (visited on 11/08/2018).

[107] Starting point directory. [Online]. Available: http://www.stpt.com/directory/
(visited on 11/08/2018).

[108] N. Moustafa and J. Slay, “Unsw-nb15: A comprehensive data set for network
intrusion detection systems,” in Military Communications and Information Sys-
tems Conference (MilCIS), IEEE, 2015, pp. 1–6.

155

https://qosient.com/argus/
http://mutrics.iitis.pl/flowcalc
https://archive.ics.uci.edu/ml/datasets/phishing+websites
https://archive.ics.uci.edu/ml/datasets/phishing+websites
https://www.phishtank.com/
https://www.phishtank.com/
http://www.millersmiles.co.uk/
http://www.millersmiles.co.uk/
https://uk.search.yahoo.com/?guccounter=1
https://uk.search.yahoo.com/?guccounter=1
http://www.stpt.com/directory/

[109] Cicflowmeter: A network traffic biflow generator and analyzer. [Online]. Avail-
able: http://netflowmeter.ca/ (visited on 11/02/2019).

[110] Y. Zhang and S. Bhattacharyya, “Genetic programming in classifying large-scale
data: An ensemble method,” Information Sciences, vol. 163, no. 1-3, pp. 85–101,
2004.

[111] T. A. Pham, Q. U. Nguyen, and X. H. Nguyen, “Phishing attacks detection
using genetic programming,” in Knowledge and Systems Engineering, Springer,
2014, pp. 185–195.

[112] T. A. Le, T. H. Chu, Q. U. Nguyen, and X. H. Nguyen, “Malware detection using
genetic programming,” in Computational Intelligence for Security and Defense
Applications (CISDA), 2014 Seventh IEEE Symposium on, IEEE, 2014, pp. 1–
6.

[113] S. Luke, ECJ evolutionary computation library, 1998. [Online]. Available: https:
//cs.gmu.edu/~eclab/projects/ecj/.

[114] W. R. Inc., Mathematica, Version 11.3, Champaign, IL, 2018.

[115] F. Noorian, A. M. de Silva, and P. H. Leong, “Gramevol: Grammatical evolution
in r,” Journal of Statistical Software, 2015.

[116] D. H. Wolpert, “Stacked generalization,” Neural networks, vol. 5, no. 2, pp. 241–
259, 1992.

[117] F. J. Ordóñez, A. Ledezma, and A. Sanchis, “Genetic approach for optimizing
ensembles of classifiers,” in FLAIRS conference, 2008, pp. 89–94.

[118] H2O.ai, H2o: R interface for h2o, Package version 3.18.0.2, Mar. 2018. [Online].
Available: http://www.h2o.ai.

[119] D. Cook, Practical machine learning with H2O: powerful, scalable techniques for
deep learning and AI. " O’Reilly Media, Inc.", 2016.

[120] M. Landry, S. Aiello, E. Eckstrand, A. Fu, and P. Aboyoun, Machine learning
with r and h2o, Jun. 2018. [Online]. Available: http://h2o.ai/resources/.

[121] N. Acosta-Mendoza, A. Morales-Reyes, H. J. Escalante, and A. Gago-Alonso,
“Learning to assemble classifiers via genetic programming,” International Jour-
nal of Pattern Recognition and Artificial Intelligence, vol. 28, no. 07, p. 1 460 005,
2014.

[122] S. Bleuler, M. Brack, L. Thiele, and E. Zitzler, “Multiobjective genetic program-
ming: Reducing bloat using spea2,” in Proceedings of the Congress on Evolu-
tionary Computation, 2001, pp. 536–543.

156

http://netflowmeter.ca/
https://cs.gmu.edu/~eclab/projects/ecj/
https://cs.gmu.edu/~eclab/projects/ecj/
http://www.h2o.ai
http://h2o.ai/resources/

[123] L. Shao, L. Liu, and X. Li, “Feature learning for image classification via mul-
tiobjective genetic programming,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 25, no. 7, pp. 1359–1371, 2014.

[124] P. Roocks, “Computing pareto frontiers and database preferences with the rpref
package,” RJ, vol. 8, no. 2, pp. 393–404, 2016.

[125] Y. Zhu, J. Liang, J. Chen, and Z. Ming, “An improved nsga-iii algorithm for fea-
ture selection used in intrusion detection,” Knowledge-Based Systems, vol. 116,
pp. 74–85, 2017.

[126] H. Lu, K. Zheng, B. Liu, X. Zhang, and Y. Liu, “A memory-efficient parallel
string matching architecture for high-speed intrusion detection,” IEEE Journal
on Selected Areas in Communications, vol. 24, no. 10, pp. 1793–1804, 2006.

[127] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, “Deterministic memory-
efficient string matching algorithms for intrusion detection,” in Twenty-third
Annual Joint Conference of the IEEE Computer and Communications Societies,
IEEE, vol. 4, 2004, pp. 2628–2639.

[128] M. Stehlik, A. Saleh, A. Stetsko, and V. Matyas, “Multi-objective optimization
of intrusion detection systems for wireless sensor networks.,” in ECAL, 2013,
pp. 569–576.

[129] J. Ellis, Java agent for memory measurements. [Online]. Available: https://
github.com/jbellis/jamm (visited on 10/02/2018).

[130] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P. Markatos, and S. Ioannidis,
“Gnort: High performance network intrusion detection using graphics proces-
sors,” in International Workshop on Recent Advances in Intrusion Detection,
Springer, 2008, pp. 116–134.

[131] J. B. Cabrera, J. Gosar, W. Lee, and R. K. Mehra, “On the statistical dis-
tribution of processing times in network intrusion detection,” in 43rd IEEE
Conference on Decision and Control, IEEE, vol. 1, 2004, pp. 75–80.

[132] R. Kohavi and D. H. Wolpert, “Bias plus variance decomposition for zero-one
loss functions,” in ICML, vol. 96, 1996, pp. 275–83.

157

https://github.com/jbellis/jamm
https://github.com/jbellis/jamm

	Abstract
	List of Tables
	List of Figures
	Acknowledgements
	Declaration
	Introduction
	Internet Environment
	The Security Problem
	Thesis Hypotheses
	Thesis Overview

	Intrusion Detection: Concepts and Related Work
	Intrusion Detection System (IDS)
	Taxonomy of Intrusion Detection Systems
	Deployment
	Detection Methods
	Machine Learning Techniques

	Intrusion Detection System Performance Metrics
	Related Work
	Discussion
	Conclusions

	Learning Techniques
	Introduction to Evolutionary Computation
	Genetic Programming (GP)
	Grammatical Evolution (GE)
	Cartesian Genetic Programming (CGP)
	Multi-objective Evolutionary Algorithms
	Advantages of Pareto Front Based Approaches
	Strength Pareto Evolutionary Algorithm (SPEA2)

	Ensemble Learning
	Previous Work
	Evolutionary Computation: Why?
	Conclusions

	Datasets Acquisition for Building Intrusion Detection
	Intrusion Detection Datasets
	Dataset Feature Extraction
	Feature Type used in our Experiments
	Dataset Splitting for Learning Techniques
	Datasets Description
	Kyoto 2006+
	Phishing Websites Dataset
	UNSW-NB15 Dataset
	Modern DDoS Dataset
	CICIDS2017 Dataset

	Conclusions

	Performance Evaluation of Evolutionary Computation on Intrusion Detection
	Methodology Framework
	Application of Genetic Programming to Intrusion Detection
	Application of Grammatical Evolution to Intrusion Detection
	Application of Cartesian Genetic Programming to Intrusion Detection
	The Performance of Evolutionary Computation Techniques
	Evolutionary Computation Techniques for Detecting Unknown Attacks
	Conclusions

	Evolving Ensemble Model using Evolutionary Computation for Intrusion Detection
	Stacking
	Generating Base Learners
	Distributed Random Forest (DRF)
	Extremely Randomized Tree (XRT)
	Gradient Boosting Machines (GBMs)
	Generalized Linear Model (GLM)
	Deep Neural Nets (DNNs)

	Evolutionary Computation as a Meta-learner
	The Performance of Evolutionary Computation Ensemble Techniques
	Evolutionary Computation Ensemble for Detecting Unknown Attacks
	Conclusions

	Trade-offs in Intrusion Detection
	Multi-objective Evolutionary Genetic Programming for Learning
	Discovering Trade-offs in Intrusion Detection Programs
	Experiment 1: Feature Selection
	Experiment 2: Memory Consumption
	Experiment 3: Processing Time
	Experiment 4: Ensemble Diversity
	Experiment 5: Detecting Unknown Attacks

	Conclusions

	Summary and Conclusions
	Summary of Experimentation
	Thesis Contributions
	Future Research

	Bibliography

