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Abstract. 

Tagging studies are now commonplace in ecology. Technological advances in telemetry 

devices have revolutionised our ability to track the movements of individual animals over 
vast spatial scales. This is especially true in marine ecology, where animals move 

through a world that is otherwise unobservable. The aim of many tagging studies is that 
by understanding the movements of the few we might gain some meaningful inference 

about the movements of the many, with clear consequences for conservation and 
management. Achieving this aim requires the scaling of inferences from the individual- 

to the population- and community-levels. Concentrating on the movements of marine 

fish, this scaling process forms the rationale behind this thesis.  

I start at the individual-level by investigating how movement influences stock structure 
and patterns of space use, with important implications for stock recovery. At the 

population-level, I introduce a novel method for behavioural classification, which 
addresses issues surrounding individual variation by assuming that individuals of the 

same species share two broad behavioural modes. Application of this method to the 

movements of two commercially important species reveals clear spatio-temporal 
patterns, as fish switch their horizontal and vertical activity levels on a seasonal basis. I 

step towards the community-level by first scrutinising the scaling relationship between 
body size and movement in marine fish before applying the findings to a dynamic size-

structured community model. I show how changes to the underlying assumptions 
surrounding movement have large emergent consequences for community structure, 

species coexistence and fisheries yield.  

Marine tagging studies are currently underutilised by conservation and management, 

owing to small sample sizes, variations in data quality and a lack of methods for the 
scaling up of inference. Here I provide a body of work that tackles these issues and more 

generally demonstrates the importance of movement to our understanding of fish 
populations and marine communities.  
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Chapter 1.  

Introduction.  

‘Marine organisms do not care about international boundaries; they move where they 
will.’   

   Paul Snelgrove, Oceanographer.  

Movement is a fundamental feature of animal life in an ever-changing marine world. It 
dictates survival and reproduction by allowing individuals to reach resources and mating 

partners, escape predation, and switch optimally between local habitats or transit great 
distances between foraging and spawning grounds. By creating and sustaining individual 

space use patterns (Jetz et al., 2004) and stock structures (Bias et al., 2017; Neat et al., 
2014), movement provides a mechanism by which animals can respond to changes in 

climate (Parmesan and Yohe, 2003) or maintain genetic diversity (Neat et al., 2014; 

Reiss et al., 2009). Additionally, movement by controlling rates of encounter between a 
predator and its prey, provides the cornerstone of community and ecosystem dynamics 

and plays a key role in ecosystem stability (Neutel et al., 2007; Pawar et al., 2012). As a 
result, a greater understanding of movement in a marine world that is both directly 

exploited (fishing) and heavily relied upon (ecosystem services) by humans, is essential 
for its persistence, its management and its conservation (Halpern et al., 2015; Nash et 

al., 2017; Pauly et al., 2005).  

Knowledge of movement in marine animals is a topic of great interest and is often centred 

around a number of key overarching research questions: Where are marine animals now 
and where are they going to be in the future? When do marine animals move and do 

these movements represent a seasonal cycle, a reaction to a resource that varies in 
space or time, or a long-term response to changes in environmental conditions (e.g. sea 

temperature)? What are the long-term drivers of movement, is it simply a function of the 
need to find food or meet potential breeding partners, or a much more enigmatic process, 

influenced by individual plasticity, learned versus innate behaviours or physical 
constraints? And finally, how does movement structure population and community 

dynamics and how can knowledge gained be used to inform conservation and 
management?  

A key advancement in the field surrounds the advent of electronic telemetry devices 
(commonly referred to as tags), capable of recording the movements of individual 

animals as they roam freely through their natural habitats. The data they collect is often 
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difficult to interpret, being a complex, noisy mixture of decisions and responses to a 

three-dimensional environment we know very little about. Additionally, any data gained 
will exhibit high temporal and spatial correlations and be cluttered with bouts of non-

linearity and apparent randomness (Cagnacci et al., 2010). Despite this, these devices 
provide a slim window into a world that is otherwise unobservable and have served as 

the primary driving force behind the heralded ‘golden age’ of animal movement (Hays et 

al., 2016; Hussey et al., 2015; Jonsen et al., 2013). Iconic examples include the first 
ARGOS (Advanced Research and Global Observation Satellite) satellite tracked basking 

shark off the Scottish west coast (Cetorhinus maximus; Priede, 1984), the near 2500km 
long migration of a single American eel (Anguilla rostrate; Béguer-Pon et al., 2015) and 

the vertical thermoregulation strategies of the world’s largest fish, the whale shark 
(Rhincodon typus; Thums et al., 2012). Used to track the movements of marine animals 

inhabiting corals reefs (Brodie et al., 2016; Maljković and Côté, 2011) or transiting across 
entire ocean basins (e.g. Block et al., 2005; Bonfil et al., 2005; Brodie et al., 2018; 

Harrison et al., 2018; Hays et al., 2006; Hindell et al., 2016; Skomal et al., 2009), it is 
clear that the deployment of tags has taught us much about the ecology, space use 

habits and behaviour of species threatened with extinction (e.g. Aarestrup et al., 2009) 

or of significant commercial importance (e.g. Block et al., 2005; Righton et al., 2001).  

Advances in telemetry have been followed by a suite of methodological and quantitative 
developments which make full use of modern-day computing. Ranging in complexity 

from mixed-effect (e.g. Bürkner, 2017; Doherty et al., 2017) or generalised additive 
models (Adlerstein and Welleman, 2000; Costa et al., 2012), to state-space formulations 

capable of inferring behavioural modes (e.g. hidden Markov models; Jonsen et al., 2013; 
Michelot et al., 2016) or refining our estimations of geographical location (e.g. particle or 

Kalman filters; Patterson et al., 2008; Pedersen et al., 2008). Such developments have 

allowed ecologists to ask increasingly more complex questions of their movement data, 
evolving far beyond the intrigue of ‘discovery science’ towards a much more deeper 

understanding of movement behaviour and the ecology of migration (Costa et al., 2012; 
McGowan et al., 2017; Ogburn et al., 2017).  

Regardless of such advances, tagging studies are not without their critics (e.g. Carter et 

al., 2016; Hebblewhite and Haydon, 2010; McGowan et al., 2017; Ogburn et al., 2017)). 

Tags are expensive, liable to malfunction or loss and frequently impact the mortality and 
reproduction of the animals involved (Cooke et al., 2004; McMahon et al., 2012). These 

factors impose severe ethical and functional constraints on sample size (in terms of the 
number of individual animals involved), weaken study design and call into question 

whether the cost of such studies yield the expected gains (Carter et al., 2016; 
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Hebblewhite and Haydon, 2010). Justification for use typically homes in on the big 

research topics of our era: population and community dynamics, spatial and temporal 
management and species conservation. However, examples where the fine-scale 

movements of individual animals have been used to infer population and community 
dynamics are few (but see Fossette et al., 2013; Hindell et al., 2016), as are ‘success 

stories’ where knowledge gained has directly informed management and conservation 

(but see Cooke et al., 2012; Scott et al., 2012). For instance, a recent survey into the 
deployment of satellite tags on sea turtles (Jeffers and Godley, 2016) revealed that 36% 

of published papers (133 out of 369, between 1982-2014) made direct recommendations 
for conservation, but participants only knew of few definitive examples where tagging 

data had been translated from paper to policy (Table 3, Jeffers and Godley, 2016). 
Additionally, an in-depth review into the use of tags in ecology (Hebblewhite and Haydon, 

2010) stated that ‘one of the most difficult problems facing ecologists using tags is how 
to scale-up to the population consequences of movement’.  

There is no doubt that the quantity and quality of animal movement data collected via 
the deployment of tags has rapidly increased, as have the statistical and analytical ways 

in which ecologists can analyse these data. Nonetheless tagging studies, often costing 
millions of dollars (e.g. Block et al., 2011; Harrison et al., 2018), are currently being 

underutilised when it comes to inferring population and community dynamics or 
designing conservation strategies (Hays et al., 2016). The current conservation crisis 

(McGowan et al., 2017), coupled with a reduction in scientific research funding (Ogburn 
et al., 2017), points towards a clear need for a body of work that not only investigates 

how individual movement can inform management and conservation, but also develops 
approaches capable of scaling-up inference from individuals to populations and 

communities.  

In the following sections we will introduce the tag types considered in this thesis and the 

two main modelling frameworks which we will use to investigate the population and 
community level consequences of movement, before providing an overview of our aims 

and objectives.  

 

1.1 Tagging data 

Any number of tag types are now being deployed on mobile marine animals, ranging not 
only in size, cost and complexity but also in their relevance to the underlying ecology of 

the species of interest. In this thesis we will refer to the following three tag types: (1) 
simple mark recapture tags, also called conventional tags; (2) archival data storage tags 
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(DSTs) and (3) partial satellite archival tags (PSATs). Below we provide a brief synopsis 

of each tag type, including details of the data they record and how that data is retrieved, 
their size, their cost, their measurement uncertainty (when appropriate) and examples of 

their use. We will also briefly explore what effect, if any, tags and the tagging procedure 
itself can have on the behaviour, physiology and performance of marine animals.  

 

From this point onwards, we will shift focus from the movements of all marine animals to 
the primary focus of this thesis; the movement of fish.  

1.1.1 Mark recapture tags 

Deployed en masse on thousands of individual fish, these tags are simple plastic ‘name’ 
tags, noting information about the individual’s unique identification and the tag’s return 

address. Tags are typically attached externally to musculature of the animal (typically at 
the base of the first dorsal fin) and will remain in place until the tag either falls off or is 

removed upon recapture. Information gained consist of three data points: (1) the 

individual’s release location (plus release date), (2) the individual’s body size (body 
length or mass) and (3) the individual’s recapture location (plus recapture date). 

Individual tags are small, cheap and must be physically returned (typically by fishermen) 
alongside a recapture date and location before inference can be made.  

Examples of their use are numerous (e.g. Bendall et al., 2009; Brander, 1975; Connolly 

and Officer, 2001; Righton et al., 2007) and prior to the turn of the century they were the 

go to method for investigating the movements of free-roaming marine fish. Typically, fish 
will be tagged on spatially predictable spawning grounds and their recapture locations 

will be subsetted by month (e.g. 6 months after release) or season (e.g. summer vs. 
winter) to provide a broad-scale indication of space use and stock structure (e.g. 

Brander, 1975). Straight-line distances between release and recapture locations will 
inform geographical range estimates and areas where recaptures congregate will 

facilitate the identification of potential foraging and/or spawning grounds (Righton et al., 
2007). Such tagging studies can also contribute to stock abundance estimates and our 

understanding of survival rates (Pine et al., 2003).  

In Chapter 2, evidence from mark recapture studies conducted on Atlantic cod (Gadus 

morhua) in the Irish and Celtic Sea (Bendall et al., 2009; Brander, 1975; Connolly and 
Officer, 2001) will provide a primary information source and will be used to inform our 

interpretation of individual fish movement.  
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Figure 1.1. Example of data storage tag (DST) attached externally to the dorsal 

musculature of an Atlantic cod (Gadus morhua). The costs and benefits of external vs. 

internal tagging are discussed in detail by Righton et al. (2006). Image sourced directly 
from www.cals.ncsu.edu. Website accessed on 11/09/2018.  

1.1.2 Data storage tags (DSTs) 
A tag typically deployed on demersal-dwelling fish that spend very little time near the 

surface of the water but have a high likelihood of capture (Figure 1.1), DSTs are 
preprogramed to measure depth (m; measurement accuracy = ±1%) and environmental 

variables such as sea temperature (°C; measurement accuracy = ±0.1°C) at regular time 
intervals. These time intervals will vary depending on the battery life of the tag or the 

research question of interest, however a 10-minute sampling interval is commonplace in 
the published literature (Hobson et al., 2007; Hunter et al., 2004b). Individual tags are 

relatively small (weighing 1g in water – Cefas Technology Limited), cost around £300 

(Cefas Technology Limited) and are either externally attached (as shown in Figure 1.1) 
or internally implanted into the belly of the fish (see Chapter 2 section 2.2.3 for a brief 

description). All measurements are archived within the tag’s memory and as a result data 
retrieval requires the physical return of the tag, typically by fishermen in return for some 

financial reward. Tag return rates vary but recent authors quote values of approximately 
15-40% (e.g. Hunter et al., 2003; Neat et al., 2014).  

To date, DSTs have been used to investigate the movements of several commercially 

important species including Atlantic cod (Hobson et al., 2009, 2007; Righton et al., 2001) 

and European plaice (Pleuronectes platessa; Hunter et al., 2004b, 2004a) occupying the  
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Figure 1.2. Example of a partial satellite archival tag (PSAT) attached externally to the 
dorsal musculature of an Atlantic Bluefin tuna (Thunnus thynnus). Tagging was 

conducted by ICCAT (International Commission for the Conservation of Atlantic Tunas). 
Image sourced directly from https://www.onthewater.com. Website accessed on 

16/09/2018. Photo by Captain Bobby Rice.  

shelf-seas of the North Atlantic. Insights gained relate to the location of potential foraging 

and spawning grounds (Hunter et al., 2006; Neat et al., 2006), seasonal changes in 
behaviour and distribution (Griffiths et al., 2018) as well as the use of favourable tidal 

currents during migration (Arnold et al., 1994; Hunter et al., 2004b; Righton et al., 2007). 
Additionally, DST data collected throughout the waters surrounding the British Isles have 

shed light on the intricacies of stock structure (Neat et al., 2014).  

. In Chapters 2-4 we will analyse the movements of numerous demersal fish which have 
been tagged with DSTs.  

1.1.3 Partial satellite archival tags (PSATs) 
Often seen as a technological advancement on DSTs, PSATs (also referred to as pop-

up satellite archival tags) are used to record the movements of larger pelagic-dwelling 
fish (Figure 1.2). The reasons for this are twofold: (1) they are heavier, weighing over 30 

grams in water (Microwave Telemetry, Inc.) so ethically must be deployed on larger fish 
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and (2) they require an infrequent satellite link to be established, which can only occur 

when the fish is moving close to the surface of the water (Rutz and Hays, 2009).  

PSATs are preprogramed to record depth (m; measurement accuracy = ±0.5m) and sea 

temperature (°C; measurement accuracy = ±0.1°C) at 10 second to 1 minute sampling 
intervals. Unlike DSTs, where recordings are taken and stored until tag recovery, the 

observations measured by PSATs are transmitted to the ARGOS system on a pseudo-
random schedule. This is to ensure that an equal distribution of data points is transmitted 

throughout tag deployment, meaning the temporal resolution of the animal’s observed 
time series gradually increases as more data is received. However, this does mean that 

instances of battery failure or tag malfunction will yield a sparse time series cluttered with 
missing values and irregular sampling rates. This will also be the case if the fish under 

investigation does any of the following: surfaces at times when the satellite isn’t 
overhead, moves into equatorial regions where satellite coverage is poor or simply 

spends less time close to the surface of the water (Carter et al., 2016). To combat this, 

it is common for researchers to interpolate depth and sea temperature observations to 
the 10 minute sampling interval (e.g. Strøm et al., 2016).  

PSATs are expensive, costing around $4200 per unit (Microwave Telemetry, Inc.) but do 

benefit from a much higher return rate (60%; Bias et al., 2017) as they can be pre-
programmed to ‘pop-off’ their harness and float freely to the surface of the water (‘pop-

off’ dates are typically six or twelve months after release). Retrieval is then logistically 

demanding but relatively straightforward. 

To date PSATs have been used to track the return migration patterns of porbeagle 
sharks (Lamna nasus, Bias et al., 2017), map the space use and spawning habits of 

Atlantic Bluefin tuna (Thunnus thynnus; Block et al., 2005) and record the transoceanic 
movements of great white sharks (Carcharodon carcharias; Bonfil et al., 2005). 

Moreover, PSATs have been the preferred tag type for several major collaborative efforts 
aimed at monitoring the long-term movements of large pelagic predators, for example 

TOPP (Tagging of Pacific Predators; Block et al., 2011; Harrison et al., 2018).   

In Chapter 4 we consider the movements of serval large pelagic predators, including 

Blue (Prionace glauca) and Shortfin mako sharks (Isurus oxyrinchus) tagged with PSATs 
in the North Atlantic (data sourced from Campana et al., 2016)  

1.1.4 Tagging effects on fish behaviour, physiology and performance  
Many of the following chapters will use tagging data to learn about fish behaviour and by 

extension population and community dynamics. Key to this process, is the assumption 
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that the behaviour and movements of tagged animals are analogous to those of the wider 

untagged population (Bridger and Booth, 2003). Numerous studies have aimed to test 
this assumption in fish (e.g. Aarestrup et al., 2002; Jepsen et al., 2008; Righton et al., 

2006), effectively asking whether the tagging procedure or the physical presence of a 
tag has any abnormal effects on the behaviour, physiology and performance of fish in 

the wild. If effects are present, it is essential that they are acknowledged and understood, 

otherwise researchers may make conclusions based on erroneous data, resulting in poor 
fisheries and management plans.  

In recent reviews, negative effects are noted, however the overall trends remain 

inconsistent (Cooke et al., 2011; Jepsen et al., 2015). It is noteworthy that the majority 
of tagging-effect studies have been conducted on freshwater species in laboratory 

environments, owing to the complexity of monitoring indicators of ‘normal’ behaviour in 
the wild (Bridger and Booth, 2003; Cooke et al., 2011; Wargo-Rub et al., 2014). Further, 

many use radio transmitters or acoustic tags (not utilised in this thesis) with authors 

noting that further studies that consider archival data loggers and transmitters (e.g. DSTs 
and PSATs) in wild marine fish are needed (Cooke et al., 2011). Here we briefly review 

some of these effects and consider how we might limit their implications throughout our 
research. 

Swimming performance. Reduced swimming performance is one of the expected effects 

of tagging, especially when transmitters are attached externally (as in PSATs), as the 

tag may exert additional drag or unintentionally alter the streamlined body shape of the 
fish (Jepsen et al., 2015; Thorstad et al., 2013). Comparing between tagged and 

untagged controls, flume-based experiments found that external tags reduced the burst 
swimming speed of Atlantic salmon smolts (Salmo salar; McCleave and Stred, 1975; 

Peake et al., 1997).  Externally tagged juvenile white sturgeon (Acipenser 
transmontanus) also exhibited lower burst speeds than control fish (Counihan and Frost, 

1999). In comparison, Anglea et al. (2004) showed that swimming speeds were 
comparable between surgically implanted juvenile Chinook salmon (Oncorhynchus 

tshawytscha) and untagged fish at 1- and 21-days post-surgery. Investigations into 
endurance instead of speed found no difference between fish tagged with small external 

tags, large external tags, surgically implanted tags and control fish (Thorstad et al., 

2000). Moreover, Koed and Thorstad (2001) noted that adult pikeperch (Sander 
Iucioperca) tagged internally for a time period of one year displayed no reductions in 

swimming performance compared to untagged controls.  
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Growth. Several studies have demonstrated an initial negative effect of tagging on 

growth, followed by a compensatory period in which growth rates trend towards those of 
untagged controls (Baras et al., 2000; Jepsen et al., 2008). Alternatively, some studies 

find only negative effects (e.g. Deng et al., 2012; Greenstreet and Morgan, 1989; Weimer 
et al., 2006) whilst other studies observed no negative effect on fish growth and condition 

(e.g. Anras et al., 1998; Jepsen and Aarestrup, 1999). In a study relevant to our work, 

adult Atlantic cod were found to experience no differences in growth when tagged with 
DSTs, either externally or internally, when compared to control fish (Righton et al., 2006). 

Interestingly, Righton and colleagues (2006) noted that the external attachment of DSTs 
frequently caused wounds and recommended the use of internal implantation whenever 

possible in long-term tagging studies.  

Feeding. Food consumption rates in wild Atlantic salmon were found to be similar among 
tagged and untagged conspecifics (Robertson et al., 2003). Moreover, juvenile 

largemouth bass (Micropterus salmoides) tagged with surgically implanted radio 

transmitters resumed feeding on pellets within 24 hours of surgery (Thompson et al., 
2014), suggesting that tagging had a negligible effect on feeding. 

Behaviour. Tags that are attached externally have been shown to cause irregular 

behaviour in certain species (Bridger and Booth, 2003; Cooke et al., 2011). For instance, 
Collins et al. (2000) observed shortnose sturgeon (Acipenser brevirostrum) frequently 

rubbing themselves against the side of their tanks causing eventual tag loss.  In addition, 

numerous authors note that external tags can be prone to entanglement in certain 
environments (Bridger and Booth, 2003; Thorstad et al., 2013). In comparison, several 

studies have demonstrated that surgically implanted fish display the same behaviour as 
untagged fish (Aarestrup et al., 2002; Jepsen et al., 2008; Thoreau and Baras, 1997). 

For example, Thoreau and Baras (1997) found that tagged fish resumed diurnal activity 
patterns throughout the study period, but that individuals seemed sluggish during the 

first 12-24 hours’ post-surgery. In a recent study, Hedger et al. (2017) investigated the 
effects of different tag types on the behaviour of adult Atlantic salmon. They found that 

the depth distribution of individuals tagged with PSATs and DSTs were comparable. 
However, fish tagged with PSATs were shown to dive less frequently and to shallower 

depths than DST tagged conspecifics (Hedger et al., 2017).  

Buoyancy. Reductions in buoyancy at depth can affect the behaviour and survivability of 

tagged fish (Bridger and Booth, 2003; Cooke et al., 2011). Perry et al. (2001) found that 
Chinook salmon smolts were quick to recover from the tagging procedure but struggled 

to deal with changes in depth (as mimicked by a hyperbaric chamber) when compared 
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to untagged fish. Further, Atlantic cod (Nichol and Chilton, 2006) and tilapia 

(Oreochromis aureus; Thoreau and Baras, 1997) showed a period of re-acclimatisation 
to their capture depth post-implantation. This post-tagging behaviour is shown to last for 

3-7 days in either species (Hobson et al., 2007; Nichol and Chilton, 2006; Thoreau and 
Baras, 1997).  

Predation susceptibility. In some studies, fish tagging has been linked to high rates of 
predation mortality immediately following release (Jepsen et al., 2006, 1998; Koed et al., 

2006), especially when sea temperatures are elevated (e.g. Morris et al., 2000). 
Conversely, studies that have sought to address this topic directly, investigating metrics 

of predator avoidance and rates of predation in controlled experiments, indicated that 
tagged fish are not necessarily easier prey than untagged fish (Anglea et al., 2004; 

Jepsen et al., 2008). For discussions on how the tagging procedure itself can influence 
mortality from an animal welfare perspective, we refer the reader to reviews by Cooke et 

al. (2013) and Wargo-Rub et al. (2014).  

Reproduction. Despite the importance of quantifying the effect of tagging on reproduction 

physiology and spawning behaviour, few studies have been conducted. In those that 
have been conducted, tagged fish have been shown to develop gonads at comparable 

rates to untagged conspecifics (Baras et al., 2000; Close et al., 2003). Sexual activity 
has also been shown to be consistent among tagging treatments in steelhead trout 

(Berejikian et al., 2007).  

To conclude, several studies have demonstrated that tagged fish display the same 

behaviour, physiology and performance as untagged fish (e.g. Aarestrup et al., 2002; 
Jepsen et al., 2008). Consequently, we are confident when drawing meaningful 

conclusions from the long-term movement patterns of DST tagged Atlantic cod and 
European plaice (in Chapters 2 and 3). From our review of the literature it is clear that 

tagging effects are highly species dependent and vary based on the tag type being 
deployed and the tagging method being used. One emergent trend is that tagging effects, 

for instance on fish growth, behaviour and buoyancy control, often occur in the first few 

days post-tagging. To account for this we remove the first two weeks from all our 
movement paths (as in Hobson et al., 2007).  We also ensure that all observed 

movements are checked visually, and any anomalies are investigated. For example, in 
Chapter 2 we remove extra days from the movement paths of two Atlantic cod following 

further analysis.  
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Figure 1.3. General dependence structure of an HMM. Notable is that the HMM 

approach requires observations to be regularly spaced in time and to be measured with 
no or negligible error (Patterson et al., 2017).  

1.2 Hidden Markov models  

Over the last decade, hidden Markov models (HMMs) have emerged as a popular tool 
for animal movement modelling, where they provide a natural framework capable of 

inferring behavioural modes from different types of telemetry data (Patterson et al. 2017; 

Michelot et al. 2016).  HMMs comprise of two parts; a series of observations 𝑋", … , 𝑋%, 
and an underlying state process, 𝑆", … , 𝑆%, adhering to a general dependence structure  

as shown in Figure 1.3. In practice, the series of observations represents an animal’s 
location, and therefore its steps (horizontal or vertical) and turns (change in direction) as 

it moves through a dynamic environment. Whereas, the state process consists of a 
discrete number of states which are typically interpreted as broad proxies for the 

behavioural mode of the animal. Examples of behavioural modes include, exploratory 
and encamped in GPS tagged elks (Cervus elaphus; Morales et al., 2004) or resident 

and migrating in PSAT tagged southern Bluefin tuna (Thunnus maccoyii; Patterson et 
al., 2009).  

 
Favoured, in part, because they match our intuitive understanding that movement is 

governed by a series of unobserved switches in an animal’s motivation (Patterson et al., 
2017), HMMs have been used to investigate a number of ecologically important 

questions. For instance, how Manx shearwaters (Puffinus puffinus) alternate their 
behaviour while at sea (Dean et al., 2012) and how behaviour differs between genders 

in the endangered Florida panther (Puma concolor; van de Kerk et al., 2015). They have 
also been expanded upon to investigate the influence of environmental covariates like 

wind speed (Leos-Barajas et al., 2017b) or seasonality (McKellar et al., 2015), account 
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for periodicities such as diurnal variations (Li and Bolker, 2017) and explore the 

behavioural response of animals to human-induced change (DeRuiter et al., 2017). 
Moreover, their flexibility, statistical tractability and computational efficiency make HMMs 

credible candidates when attempting to investigate population dynamics using individual 
movement (e.g. Jonsen, 2016). 

 
 

1.3 Size spectrum modelling 
A powerful process-based solution to the problem of ecosystem modelling (Pope et al., 

2006), size spectrum models (and many other size-based ecosystem models; Blanchard 
et al., 2017) make full use of the role that body size plays in marine systems (Andersen 

et al., 2016a, 2016b). Focussing on how individual size governs feeding interactions 

(Blanchard et al., 2017), trophic niches (Barnes et al., 2008; Jennings et al., 2001) and 
vital biological rates (e.g. metabolism; Brown et al., 2004), size spectrum models resolve 

an entire fish community as a continuous size distribution (Andersen and Beyer, 2006; 
Andersen and Pedersen, 2010), where the currency of interest (biomass, abundance or 

production) exhibits a characteristic scaling relationship with body size (typically mass or 
weight). Rooted in 50 years of empirical research and dating back to the observations of 

Sheldon and colleagues (Sheldon et al., 1972), size spectrum models have undergone 
a rapid phase of development (Andersen et al., 2016b; Blanchard et al., 2017). This has 

seen them evolve far beyond the ‘community’ size spectrum where species identity and 
differences between populations are ignored (Benoı̂t and Rochet, 2004; Blanchard et al., 

2009; Law et al., 2009), towards trait-based (Andersen and Pedersen, 2010; Houle et 

al., 2013; Jacobsen et al., 2013) and multispecies (Blanchard et al., 2014) extensions of 
the same core concepts. To date size spectrum models have been used to investigate a 

number of important ecological phenomena, including the response of marine 
communities to industrial fishing (Andersen and Pedersen, 2010; Houle et al., 2013), the 

effects imposed by projected climate change scenarios (Blanchard et al., 2012; 
Woodworth-Jefcoats et al., 2013) and the vulnerability of coral reef communities to the 

loss of structural complexity (Rogers et al., 2014). Additionally, the information they 
provide has contributed to the debate surrounding balanced harvesting (Jacobsen et al., 

2013; Law et al., 2016) and has allowed us to gain meaningful insights into the ecological 
effects of community recovery plans (Andersen and Rice, 2010).  

Size spectrum models are perfectly suited to investigate the population and community-
level consequences of individual movement for three core reasons. (1) They are built on 

a foundation of individual-level processes, namely growth, mortality and reproduction, so 



 13 

provide a clear framework for the inclusion of information about individual movement. (2) 

Many are spatially implicit (e.g. Blanchard et al., 2014; Scott et al., 2014), allowing 
interactions between a predator and its prey to vary based on rates of encounter and 

availability. (3) The fact that size spectrum models are size based, means they can be 
readily applied to fisheries (Andersen et al., 2016b), as body size provides an excellent 

descriptor of mesh- and gear-size regulations and is frequently used as a defining feature 

of catch value (Andersen et al., 2015). Thus, the inclusion of movement can be 
scrutinised for the effects it has on community structure, species coexistence and 

estimated yield with fisheries management and conservation in mind. Moreover, despite 
some advances towards the inclusion of movement in size-based ecosystem models 

(e.g. Andersen et al., 2017; Castle et al., 2011; Maury, 2010), size spectrum models 
haven’t been advanced or tested with detailed movement data. This highlights a clear 

avenue for new scientific research.  

 

1.4 Aims of the Thesis 

Tagging data provides a wealth of information about the movements of individual animals 
as they transit through variable habitats, respond to intrinsic and extrinsic pressures and 

alter their distribution in a bid to feed, reproduce and survive (Hays et al., 2016; Hussey 
et al., 2015; Rutz and Hays, 2009). Despite this, tagging data is currently being 

underutilised when it comes to conservation and management (Hays et al., 2016), owing 
in part to the issues of sample size and the scaling of inference (Carter et al., 2016; 

Hebblewhite and Haydon, 2010). Through this thesis we aim to analyse the movements 
of individual fish and provide a viable pathway by which movement observed at the level 

of the individual can be used to gain meaningful insights into population and community 
dynamics. Building on the models introduced above, we use a suite of approaches 

representing both novel methodologies and adaptations to current techniques, which 

allow us to achieve this aim. We consider the movements of hundreds of fish, varying 
not only by their taxonomic identity, trophic position and body size but also by the 

environment in which they inhabit. Moreover, where appropriate, we use our findings to 
make informed recommendations for fisheries management and conservation. 

Sequentially the thesis will step the reader through this scaling process. In Chapter 2 we 

start at the individual level, using the deployment of DSTs in the Irish and Celtic Sea to 
learn about the movements of Atlantic cod. Comparable to the ‘discovery science’ 

justification provided in Ogburn et al. (2017), this chapter uses the movement of twelve 

individual fish to describe patterns of space use, spawning and foraging dynamics and 
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comment on stock structure in an area where species distributions are uncertain. 

Furthermore, because cod stocks in the Irish and Celtic sea have struggled to recover 
from historic exploitation, our work provides new information for fisheries management 

under the caveat of a small sample size.  

In Chapter 3, we move towards the population level, applying a two-state bivariate HMM 

to the horizontal and vertical movements of 46 Atlantic cod and 61 European plaice.  
Initially we consider a basic model, but encounter large amounts of individual variation, 

both in terms of state allocation and data quality. These factors impair our ability to use 
collective individual behaviour to infer population dynamics. To overcome this, we 

introduce a novel adaptation to hidden Markov modelling. We make the explicit 
assumption that fish of the same species share two broad-scale behaviour states and 

allow prior distributions to inform the model about how we expect these states to be 
numerically distributed.  Application of this adapted model ensures that behavioural 

states remain interpretable across multiple individuals, allowing population-level 

inference to be gained about how fish movement behaviour varies in space and time 
throughout the North Sea and the English Channel.   

In Chapters 4 and 5, we consider movement at the community-level. First, in Chapter 4, 

we investigate the scaling relationship between movement and body size in marine fish. 
Scaling (or allometric) relationships are common throughout ecology (e.g. Brown et al., 

2004; Hirt et al., 2017; Jetz et al., 2004) and past studies assume that movement scales 

with body mass according to a taxon independent exponent of 0.133̇ (Andersen et al., 
2016a; Ware, 1978). Fitting to over 550 individual fish, spanning seven orders of 

magnitude in body mass, we show that this assumption is inappropriate in general and 

masks a range of ecologically important phenomena, most notably life stage effects and 
within species variation. In Chapter 5, we apply Chapter 4’s findings to a trait-based size 

spectrum model, allowing our new knowledge about the scaling of movement to govern 
rates of encounter between a predator and its prey. We show how changes to a vital 

search parameter directly influence the individual-level processes of consumption, 
growth and mortality. Scaled up to the community-level, such changes have large 

emergent consequences on community size composition, community biomass, fisheries 
yield and rates of species coexistence. These findings highlight why a more 

comprehensive understanding of movement is critical to future modelling efforts, 

especially when these models are used to investigate important ecological problems.  

In the final chapter, Chapter 6, we synthesise the work presented in Chapters 2-5 and 
discuss how they fit into the dual fields of movement ecology and marine ecosystem 
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modelling. We provide suggestions for future work and draw meaningful conclusions. 

Finally, we emphasise how, by making the most out of their tagging data, ecologists can 
achieve the scaling of inference from individuals to populations and communities with 

clear benefits to conservation and management.  
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Chapter 2.  
 
Movement and stock dynamics of Atlantic cod (Gadus morhua) 

in the Irish and Celtic Sea.  

2.1 Introduction  

Atlantic cod (Gadus morhua) is a highly important demersal fish species found 

throughout the waters surrounding the British Isles. As well as playing a crucial ecological 
role as a tertiary consumer (Essington and Hansson, 2004; Savenkoff et al., 2004), cod 

is a species of high commercial value (FAO, 2012) and has been subjected to decades 

of heavy exploitation (Kurlansky, 1998). Despite concerted efforts to conserve and 
manage the exploitation of cod, many stocks have experienced steep declines in 

abundance and have, to date, shown minimal signs of recovery (Hilborn and Litzinger, 
2009; Kelly et al., 2006; Lilly et al., 2008). Essential to fisheries management is 

information about when, where and how individuals undertake key life-history events 
such as foraging, spawning and migration (Hussey et al., 2015). The tagging of cod to 

gain this information has been ongoing for a number of years and has greatly increased 
our knowledge of individual behaviour (Hobson et al., 2009, 2007; Righton et al., 2001) 

and stock structure (Neat et al., 2014). 

Two stocks that have struggled to achieve recovery are situated in the Irish and Celtic 

Seas. Both stocks are small (in terms of mean landings and mean total biomass; 
Marteinsdottir et al., 2005) and have experienced almost consistent declines in estimated 

abundance, estimated recruitment and reported landings dating back to the 1980s 
(Christensen et al., 2003; Cook et al., 1997; ICES, 2017a; Myers and Worm, 2003). Such 

adverse trends are the reason why both stocks have previously been classified as ‘high 
risk’ by ICES (International Council for the Exploration of the Sea) and have been 

repeatably benchmarked by ICES working groups (e.g. ICES, 2017b, 2013a). Attempts 
to aid stock recovery via the implementation of fisheries management strategies have 

been numerous and multi-faceted. Measures include restrictions on Total Allowable 

Catch (TACs) and fishing effort, changes to mesh size as well as the establishment of 
size-based landing thresholds (e.g. no fish with a body length less than 35cm can be 

landed in British waters; (MMO, 2017)). Additionally, fisheries on both stocks are subject 
to spatial closures during the spawning period (Anon Commission Regulation, 2000; 

Defra, 2015). Many of these measures are explicitly designed to maximize the survival 
of new recruits and juvenile fish, theoretically boosting the annual recruitment of 

individuals to the stock. Recent evidence points towards success in the Celtic Sea, as 
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spawning stock biomass is currently estimated to be above safe biological limits (ICES, 

2017a). However, despite these efforts, cod in the Irish Sea have shown no sustained 
signs of recovery (ICES, 2017a).  

Such failures to facilitate stock recovery spark concern and beg the question as to what 
other factors are impairing the survival, growth and productivity of cod in the Irish Sea. 

Rising sea temperatures will no doubt play a role (Clark et al., 2003; Drinkwater, 2005), 
as will environmental variability (Brander, 2005; Köster et al., 2005; Rose, 2004). Recent 

reports have also pointed towards a multi-species argument (Swain and Sinclair, 2000; 
Trzcinski et al., 2006), where the depletion of cod has allowed other species to prosper 

and supersede cod in the community’s food web. Such changes will have cascading 
effects on the abundance of cod, as any new species will act as both a competitor for 

food and a predator on smaller life stages.  

Another factor that has emerged is whether or not current stock boundaries appropriately 

reflect the underlying structure and biological processes of the population (Ciannelli et 
al., 2013; Kritzer and Sale, 2004; Neat et al., 2014; Reiss et al., 2009). From an 

assessment and management perspective, cod in the Irish and Celtic Sea are assumed 
to be discrete units, displaying little or no mixing across stock boundaries. Tagging 

studies (both via mark recapture methods and telemetry devices) conducted in the area 
yield clear but contrasting evidence for this assumption. For instance, work conducted 

by Bendall et al. (2009) and Neat et al. (2014) demonstrate that fish tagged in the Celtic 

Sea remain exclusively in ICES Divisions VIIf, VIIh and VIIg (see Appendix 2.1) and 
display no evidence of northward migrations. Conversely, cod tagged in the Irish Sea 

have been shown to migrate both southwards into the Celtic Sea (Bendall et al., 2009; 
Neat et al., 2014) and northwards into the waters off the west coast of Scotland (Brander, 

1975; Neat et al., 2014). Knowledge of such movement is critical to fisheries 
management, as fish that cross stock boundaries will be exploited as part of a separate 

stock (e.g. Block et al., 2005). Conversely, fish that remain in reproductively isolated 
units will be prone to localised depletion and are less likely to bounce back from historical 

overexploitation.  

Here, we provide an in-depth description of the movement and spatial ecology of Atlantic 

cod in the Irish and Celtic Sea. Concentrating solely on a handful of very long time series 
(n = 12), produced via the deployment of data storage tags, we investigate the following 

research questions: (1) Whether or not stock mixing between adjacent ICES Divisions is 
present? (2) Where does foraging and spawning occur in the Irish and Celtic Sea? (3) 

How do daily horizontal and vertical movement rates differ between stocks and between 
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foraging and spawning periods? (4) How does the environment that individual fish inhabit 

during the foraging and spawning period differ between these stocks in terms of sea 
temperature, seabed habitat and sea depth, and does it alter the prey that cod consume?  

We acknowledge that our analysis explicitly considers some of the same individuals (n 
= 4) as Bendall et al. (2009). However, we are confident that our work extends this study 

in several important ways. For example, we calculate novel individual and composite 
utilisations distributions for each stock, we thoroughly investigate daily horizontal and 

vertical movement rates, and we also elucidate how the movements of individual fish are 
linked to variances in the underlying properties of the environment they inhabit.  

 

2.2 Methods 

2.2.1 Study area 

Tagging data were collated from a number of different studies and reflect an ongoing 
collaboration between CEFAS (Centre for Environment, Fisheries and Aquaculture 

Sciences), the Marine Institute in Ireland and the Agri-Food and Biosciences Institute 
(AFBI) in Northern Ireland.  Tagging was carried out between 1999 and 2011 and the 

movements of individual fish span five sea areas (Figure 2.1; Table 2.1): the Scottish 
west coast (ICES Division VIa); the Irish Sea (ICES Division VIIa); the Celtic Sea (ICES 

Divisions VIIg and VIIh); the Bristol Channel (ICES Division VIIf) and the western English 
Channel (VIIe). We allocate each fish to the Irish Sea or Celtic Sea stock based on 

release location (Figure 2.1). A single fish (CEL_4683) was released within the British 

Channel but for the sake of simplicity we assume that it is part of the Celtic Sea stock. 
All tagging was carried out during the spawning period (classed here as from 1st January 

to 30th April).  

2.2.2 Data storage tags 

Three different types of data storage tags (DST) were used during this study: (1) the Milli 
or Centi tags made by Star-Oddi (Star-Oddi Marine Device Manufacturing Ltd, 

Gardabaer, Iceland); (2) the LTD1200 or LTD1400 tags made by LOTEK (Lotek Marine 
Technologies Inc., Ontario, Canada); (3) the G5 tag made by CEFAS (Cefas Technology 

Ltd, Lowestoft, UK). Each DST was programmed to record temperature (°C) and depth 
(m) at 10-minute intervals for the duration of deployment.  
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Figure 2.1. Release (circles) and recapture (triangles) locations of Atlantic cod (Gadus 

morhua) tagged in the Irish (green, n = 7) and Celtic Sea (yellow, n = 5). 

2.2.3 Tag implantation  

For full details of internal tag implantation, we refer the reader to Righton et al. (2006). 
In brief, individual cod were first captured using a modified commercial trawl or by line in 

shallow inshore areas. After being brought slowly to the surface (to avoid swimbladder 
rapture; van der Kooij et al., 2007), individual cod (body length > 45cm) were 

anaesthetised in a bath of seawater containing phenoxyethanol. Once anaesthetised, a 
small inclusion was made in the belly of the cod and a sterilised DST was inserted. To 

ensure the DST remained in place a thin plastic filament, often referred to as a spaghetti 
tag, was threaded from the DST, through the external wall of the fish and was secured 

externally. The small incision was then closed and glued. To aid identification, a second 
conventional mark recapture tag was externally stitched into the musculature at the base 

of the first dorsal fin. Each cod was then allowed to recover in a tank of seawater before  
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Table 2.1 Tagging details of cod in the Irish (n = 7) and Celtic Sea (n = 5). All cod were 

tagged with data storage tags (DSTs).  

Fish ID Body 
length 
(cm) 

Stock* Release date Recapture 
date 

Time at 
liberty (days) 

IRE_1430 61 Irish Sea 17/04/1999 25/06/2000 436 

IRE_3183 69 Irish Sea 20/03/2009 29/05/2010 436 

IRE_3184 55 Irish Sea 19/03/2009 11/10/2009 207 

IRE_5569 63 Irish Sea 23/03/2010 06/03/2011 349 

IRE_5595 89 Irish Sea 25/03/2010 05/03/2011 346 

IRE_5596 71 Irish Sea 26/03/2010 15/06/2011 447 

IRE_5621 71 Irish Sea 25/03/2010 02/03/2011 343 

CEL_1477 77 Celtic Sea 20/03/2008 24/09/2009 554 

CEL_1527 71 Celtic Sea 19/03/2008 05/03/2009 352 

CEL_4683 57 Celtic Sea 31/03/2004 05/10/2004 189 

CEL_5613 79 Celtic Sea 08/03/2010 09/01/2011 308 

CEL_5616 81 Celtic Sea 09/03/2010 07/03/2011 364 

*Stock allocation is based on release location – see Figure 2.1.  

 

being released overboard. Prior to release, each cod’s body length (total length; cm) was 

measured and recorded. A GPS location of the vessel at the point of release was also 
noted. 

Since the physical recovery of DSTs requires the cooperation of fishermen, a financial 

reward was offered for the return of the tag as well as the return of the fish carcass (see 
Bendall et al., 2009 for details).   

2.2.4 Estimates of geographic position  

Once a DST has been recovered and the data retrieved, the following information is 

available about an individual cod: an estimated body length (cm), a release location 
(longitude and latitude), a release date (dd/mm/yyyy), a time series of recorded depth 

(m) and a time series of recorded temperature (°C). Nested within the depth recordings 
are periods of time when the fish is at rest of the sea floor. These periods of time are not 

characterised by a flat relationship between depth and time but instead take the form of 
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sinusoidal cycle (Metcalfe and Arnold, 1997). This cycle is indicative of the rise and fall 

of the tide and can be used to geographically reconstruct (± some uncertainty) the 
movement of an individual cod. This method is formalised as the tidal location method 

(TLM) and was first proposed by Metcalfe and Arnold in 1997. Here we use a method 
that couples the TLM with a Bayesian state-space model to estimate, for each day at 

liberty, the nonparametric probability distribution of each daily geographic position 

(longitude and latitude; Pedersen et al., 2008). This method assumes diffusion between 
locations, where the fish’s distribution necessarily evolves over time according to a 

Fokker-Plank equation. Thus, the method is based on fitting a diffusion model to the 
movement between observations, by solving its Fokker-Planck equation numerically on 

a discrete spatial grid. The uncertainty associated with each daily geographic position 
varies as a function of two factors: (1) the quality of the tidal signal detected in the depth 

data and (2) the geographical proximity to tidal amphidromic nodes (Pedersen et al., 
2008).  

2.2.5 Horizontal and vertical movement  

For each cod, we excluded the first two weeks and the last day from each time series 

(depth, temperature and geographic position) to remove any erroneous or irregular 
measurements associated with release and recapture events (as per Hobson et al., 

2007). We calculated vertical movement (m day-1) as the summed absolute difference 
between corresponding depth observations. Horizontal movement (km day-1) was 

calculated as the straight-line distance between daily geographic positions using the 

Great Circle equation.  

After visually inspecting each cod’s movement through time we excluded further days 
from end of two individual cod’s time series’: CEL_5613 (74 days) and IRE_5596 (39 

days). In IRE_5596 we observe an almost instantaneous drop off in depth, temperature 
and daily vertical movement (Appendix 2.2) 40 days prior to recapture. Such trends 

suggest that the tag either fell off or malfunctioned. Interestingly, we suspect that 

CEL_5613 was eaten by a much larger predator, possibly a surface-dwelling seal, 
approximately 75 days prior to tag recapture. Our reasons for suspecting this are 

threefold (Appendix 2.3). First, observed depth and daily vertical movement trend 
towards values of 0, indicating that the tag was spending prolonged periods of time at 

the surface with little or no vertical displacement. Second, daily horizontal movement 
remains fairly consistent suggesting the fish hasn’t been landed by a fast-moving 

commercial fishing vessel. Third, observed temperature peaks, hitting abnormally high 
values (above 30 °C). We assume that such prolonged temperature peaks demonstrate 
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instances of consumption and digestion by an endothermic predator (Jorgensen et al., 

2015).   

2.2.6 Data analysis  

Data analysis was conducted in R (R Core Team, 2016). We subset our dataset into 
three separate analyses. The first considers all of the 4331 daily observations (12 cod) 

and allows us to describe the longer-term movement and space use habits of Atlantic 
cod. The second considers observations made in the foraging period (1st June – 31st 

October; 12 cod). The third considers observations made in the spawning period (1st 
January – 30th April; 9 cod).  

Since each fish was tagged and released with an unknown portion of its spawning 
season having already elapsed, we constrained analysis three to any observations made 

during the second spawning period (i.e. approximately ten months after release for the 
majority of cod considered here). Past studies show that cod have limited space use 

while spawning (Siceloff and Howell, 2013), show strong site fidelity (Robichaud and 
Rose, 2001; Skjæraasen et al., 2011; Zemeckis et al., 2014) and will often spend 10-50 

days in a single spawning aggregation (Dean et al., 2014). For these reasons we chose 
to impose a second constraint on analysis three, and only consider daily observations 

with corresponding horizontal movement rates that are less or equal to 5km. These two 

constraints reduce the sample size considered in the analysis from twelve fish to nine 
fish (number of observations = 690). We lose CEL_4683 and IRE_3184 because they 

lack a second spawning period. We also lose IRE_3183 because its observed horizontal 
movements throughout the spawning period were greater than 5km. CEL_1477 is an 

exceptional long time series and as result contributes two separate foraging periods to 
analysis two. All 12 fish contribute to analysis two (number of observations = 1882).  

Patterns of space use in each analysis are described using utilisation distributions (UDs). 
A UD is essentially a map of the probability of locating a tagged animal over a period of 

time (Worton, 1987). We calculate both individual varying and composite UDs, where a 
composite UD refers explicitly to the collective space use of multiple cod in a given stock. 

All UDs are calculated via the kernel density estimation (KDE) approach using the 
adehabitatHR package (Calenge, 2015, 2006) in R. Under the KDE approach, a single 

bivariate normal kernel (𝐾) is placed over each geographical position, such that: 

																																																					𝐾(𝑝) = 	
1
2𝜋

exp 7−
1
2
𝑝"𝑝9,																																														[𝐸𝑞𝑛. 2.1] 
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where p is a vector containing the 1, ..., n geographical positions and 𝑝" refers to the 

transpose of that vector. Here we have chosen to use a bivariate normal kernel due to 
commonality in the animal movement literature (e.g. Calenge, 2015, 2006). We do 

however note that other kernel functions are available (e.g. the Epanechnikov kernel) 
and that previous work on the subject demonstrates that the choice of kernel function 

does not greatly change the model’s estimates (Silverman, 1986; Wand and Jones, 

1995). The kernel estimation of the UD is therefore obtained by: 

𝑓@	(𝑝) = 	1/(𝑛ℎ^2	)	D𝐾
E

FGH

{1 ℎ⁄ (𝑝 −	𝑃F)},																																		[𝐸𝑞𝑛. 2.2] 

where 𝑛 is the number of geographical positions, ℎ is a smoothing parameter and 𝑃F is 

the 𝑖"N position of the animal. The smoothing parameter ℎ controls the width of 𝐾 and 
has been shown to be highly influential (Calenge, 2015, 2006). For example, a value of 

ℎ that is too large will result in high levels of oversmoothing and yield a UD that frequently 
predicts the presence of an animal in areas that are not actually visited. Whereas, when 

ℎ is too small the UD has a high variance. Usually, ℎ is estimated in one of three ways. 
One, by the so-called ‘reference bandwidth’ approach where ℎ is estimated as: 

ℎ = 	𝜎	 ×	𝑛QH R⁄ 																																																						[𝐸𝑞𝑛. 2.3]	 

where 

𝜎 = 0.5	 ×	(𝜎TUE 	+	𝜎TW")																																														[𝐸𝑞𝑛. 2.4]	 

and 𝜎TUE and 𝜎TW" are the standard deviations of the longitude and latitude coordinates of 
the animal’s geographic position. Equation 2.4 is derived from assuming that the true 

distribution f is a multivariate gaussian, however this is uncommon in animal movement 
studies where animals will often have multiple modes of attraction.  Two, by Least Square 

Cross Validation (LSCV), where the aim is to estimate an optimum value that minimises 

the difference between f and the estimated UD (by attempting to minimise the Mean 
Integrated Square Error; Seaman and Powell, 1996). Although appealing, the LSCV 

approach failed to converge for our movement data, and as a result (and as advised by 
Calenge, 2015, 2006) we do not consider it a viable approach during further analysis. 

The third way, which we apply here, is based on visual inspection, where successive 
trails are run and a value of ℎ is chosen (as in Silverman, 1986; Wand and Jones, 1995). 

The range of these trails extend from ℎ = 0.1 to ℎ = 0.45 in intervals of 0.05 and include 
the ‘reference bandwidth’ to aid interpretation (see Appendix 2.4 and Appendix 2.5). 

Values of ℎ are chosen per stock and applied to all individual and composite UDs. For 
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cod in the Celtic Sea we use a ℎ value of 0.15. For cod in the Irish Sea we use a ℎ value 

of 0.20. For a visual comparison between each stock’s UD with the chosen ℎ value 
compared to the ℎ value estimated via the ‘reference bandwidth’ approach see Appendix 

2.6 and Appendix 2.7. As is common in wildlife telemetry studies, we extract out the 95% 
probability contours and use them to demonstrate an individual’s ‘home range’ or in case 

of each composite UD, the collective ‘home range’ of a stock (Downs and Horner, 2008). 

To aid clarity, we interpret an individual’s ‘home range’ as a visual description of nearly 
all the areas that a tagged individual might visit during its time at liberty (Dean et al., 

2014).   

For analysis two and three, we summarise temperature (°C) and depth (m) records to 
give daily means and standard deviations for each fish and for each stock. We also 

calculate daily means and standards deviations for the horizontal (km) and vertical (m) 
movement rates of each fish and each stock. We assume that all tagged cod are mature 

adults as their body lengths (Table 2.1) lie within the upper bounds of Atlantic cod’s 

estimated length at first maturity (31-74cm; Froese and Pauly, 2017).  

2.2.7 Other data sources   

One of our aims was to investigate whether changes in seabed depth (m), seabed 

sediment or diet could help explain variances in the movement of individual cod tagged 

in the Irish and Celtic Sea. We sourced seabed depth (m) from the General Bathymetric 
Chart of the Oceans online repository (GEBCO, 2017), which is a global topographic 

dataset with a one-minute (1’) spatial resolution (see Appendix 2.8). We sourced seabed 
sediment data from EMODnet’s (The European Marine Observation and Data Network) 

Seabed Habitats online data portal (EMODnet, 2016), which provides a broad-scale 
habitat map comprising of the following seabed habitat types: coarse sediment; fine mud; 

mixed sediment; mud to muddy sand; rock or other hard substrata; sand; sandy mud to 
muddy sand and seabed (see Appendix 2.9). We sourced diet data from the CEFAS 

Data Hub which provides a detailed fish stomach record for Atlantic cod running from 

1889 to 2011 (Pinnegar, 2014). For the Celtic Sea we used stomach records from ICES 
Divisions VIIf, VIIg and VIIh. For the Irish Sea we used stomach records from ICES 

Division VIIa. To more accurately represent our sample, we constrained the fish stomach 
records to a minimum predator size of 50 cm. We also removed any fish stomach entries 

where the length of the cod was unknown.  

Both seabed depth and seabed habitat datasets were provided as raster objects. Using 
R, we first cropped each dataset and converted each raster object to a large spatial point 

data frame. We then extracted attribute values for each estimated daily geographic 
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position using the over method in the sp package (Pebesma, 2018) in R. Attribute values 

of interest were numerical depth estimates (m) and categorical seabed habitat types.  

As with daily horizontal and vertical movement rates, we summarise seabed depth 

estimates to give daily means and standard deviations for each fish, for each stock and 
for each analysis. We calculated the percentage time spent in each seabed habitat type 

for each stock during the foraging (1st June – 31st October) and spawning (1st January – 
30th April) period. We also calculated the percentage contribution of each prey type to 

the observed diet of cod in the Irish and Celtic Sea.  

All plots were generated using the ggplot2 (Wickham, 2009) and ggmap (Kahle and 

Wickham, 2013) packages in R.  

 

2.3 Results 

In total we consider the movement of 12 individual cod, five that were released in the 

Celtic Sea and seven that were released in the Irish Sea. The average time spent at 
liberty was 361 days (± 101 days).  

2.3.1 Long-term movement patterns 

In the Celtic Sea, we observe extensive and complex movement patterns but no clear 

signs of migration (Figure 2.2, panel A). Three of the five fish (CEL_4683, CEL_5613 
and CEL_5616) moved in a southerly direction after their release, spending prolonged 

periods of time residing in the southern parts of ICES Division VIIg and in the northern 
parts of ICES Division VIIh (Figure 2.3, panel A; Appendix 2.10). CEL_4683 was 

recaptured in October. The other two cod (CEL_5613 and CEL_5616) move northwards 
at the end of year before being recaptured in roughly the same area as their release 

(Figure 2.3, panel A; Appendix 2.10). In both cases release and recapture occurred 

during the spawning period (Table 2.1). The other two fish (CEL_1477 and CEL_1527) 
remained exclusively in the Celtic Sea (ICES Divisions VIIg and VIIh) and despite turning 

back on themselves numerous times, showed no evidence of migration out the area 
(Figure 2.3, panel A; Appendix 2.10). No fish tagged in the Celtic Sea moved north into 

the Irish Sea or moved west into the English Channel (Figure 2.2). All five cod had 
relatively high rates of daily horizontal movement (Table 2.2), which coupled with an 

apparent lack of migration into other ICES Divisions, suggests that individual fish were 
undertaking bouts of extensive localised movement. Despite being released in a number 

of different locations, home range estimates for individual cod in the Celtic Sea are highly 
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overlapping (Figure 2.3, panel B; Appendix 2.11) and are collectively distributed within 

the spatial boundaries of ICES Divisions VIIg and VIIh (Figure 2.2, panel B). 

In the Irish Sea we find no evidence of cod moving south into the Celtic Sea (Figure 2.2, 

pane; A). Individual cod were either tagged and released in the central (n = 5) or eastern 
(n = 2) Irish Sea (Figure 2.1). Cod in the eastern Irish Sea (IRE_5596 and IRE_5621) 

remained almost exclusively within the area and spent large periods of time in the 
shallow inshore waters surrounding the Isle of Man (Figure 2.3, panel A; Appendix 2.10). 

Both IRE_5596 and IRE_5621 did display some changes in space use, moving north 
into the North Channel before very quickly returning to the eastern Irish Sea. Within the 

five fish that were tagged in the central Irish Sea we note two very distinct movement 
patterns (Figure 2.3, panel A; Appendix 2.10). Two cod (IRE_3184 and IRE_5569) 

remained exclusively within the central Irish Sea. Both cod displayed some southerly 
movements however neither individual left the spatial boundaries of ICES Division VIIa. 

The other three cod (IRE_1430, IRE_3183 and IRE_5595) show extensive movements 

north up through the North Channel. IRE_5595 and IRE_1430 move as far north as the 
northern extent of the North Channel whereas IRE_3183 moves all the way out into the 

much deeper water of the North Atlantic Ocean (max seabed depth experienced = 777 
metres). All three cod move out of ICES Division VIIa and move into ICES Division VIa. 

As in the Celtic Sea, home range estimates for cod in the Irish Sea are highly overlapping 
(Figure 2.3, panel B; Appendix 2.11). Despite this, it is clear that spatial extent of those 

home ranges is greater and much more varied within cod tagged in the Irish Sea. 

 
2.3.2 Foraging period 

Cod tagged in the Celtic Sea remain exclusively in the ICES Division VIIg and the 
northern parts of VIIh. Their movements (Figure 2.4, panel B; Appendix 2.12) and home 

ranges (Figure 2.4, panel A; Appendix 2.12) are highly overlapping, as individuals mix 
on what we assume is highly productive foraging grounds. Such spatial overlap is not 

apparent in the Irish Sea. Two cod (IRE_5569 & IRE_3184) remain in the centre of the 

Irish Sea between the Welsh and Irish coasts (Figure 2.4, panel B; Appendix 2.12). Four 
cod remain the North Channel (IRE_1430, IRE_5595, IRE_5596 and IRE_5621), 

whereas one cod (IRE_3183) spends the duration of the foraging period in the very deep 
waters of North Atlantic Ocean (Figure 2.4, panel B; Appendix 2.12). All five of these cod 

move from ICES Division VIIa to ICES Division VIa and are likely to come into contact 
with cod occupying waters off the Scottish west coast.
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Table 2.2 Statistics summarising the movement (horizontal and vertical movement), fish 

depth, sea depth and temperature experienced by cod in the Irish (n = 7) and Celtic sea 
(n = 5). All values are averages (± 1 standard deviation) calculated at the daily level 

across all tagged cod in a given area. For individual cod values we refer the reader to 
Appendix 2.12 and Appendix 2.15.   

 Horizonal 

distance 

travelled (km) 

Vertical distance 

travelled (m) 
Fish depth (m) Sea depth (m) 

Temperature 

(°C) 

Irish Sea (All) 2.5 (± 3.2) 369.9 (± 208.9) 99.8 (± 45.5) 217.8 (± 185.0) 10.5 (± 2.5) 

Celtic sea (All) 4.1 (± 4.6) 97.8 (± 91.3) 106.3 (± 24.5) 115.9 (± 30.2) 9.9 (± 0.7) 

Irish Sea (spawning) 1.8 (± 1.0) 317.1 (± 158.9) 69.3 (± 35.5) 150.1 (± 57.9) 7.9 (± 1.3) 

Celtic sea (spawning) 2.1 (± 1.2) 226.6 (± 121.0) 95.7 (± 16.4) 132.7 (± 41.2) 9.1 (± 0.5) 

Irish Sea (foraging) 1.9 (± 2.3) 394.0 (± 222.5) 121.0 (± 45.6) 253.9 (± 215.9) 12.6 (± 1.7) 

Celtic sea (foraging) 4.0 (± 4.1) 60.8 (± 41.8) 111.8 (± 19.5) 113.4 (± 24.2) 10.2 (± 0.6) 

All, all data points. spawning, 1st January to 30th April. foraging, 1st June – 31st October.   

 

Throughout the foraging period, daily horizontal movement was much larger in cod 
tagged in the Celtic Sea than cod tagged in the Irish Sea (Welch’s t-test: t = 12.7, df = 

1225.2, p value < 0.001; Table 2.2 Appendix 2.13). Conversely, daily vertical movement 
was significantly larger in cod tagged in the Irish Sea than cod tagged in the Celtic Sea 

(Welch’s t-test: t = 47.5, df = 1143.1. p value < 0.001; Table 2.2; Appendix 2.13). Irish 

Sea cod spent the foraging period at greater depths than cod in the Celtic Sea (Welch’s 
t-test: t = 5.9, df = 1491. p value < 0.001; Table 2.2; Appendix 2.13). Such differences in 

movement and depth utilisation suggest that cod in either stock are exploiting their 
environments in very different ways. 

From an environment perspective, cod in the Irish Sea continuously occupied much 

deeper water than cod in the Celtic Sea (Welch’s t-test: t = 20.9, df = 1083.4, p value < 
0.001; Table 2.2; Appendix 2.13). We find that the temperature experienced by cod in 

the Irish Sea is significantly warmer than cod in the Celtic Sea (Welch’s t-test: t = 43.8, 

df = 1359.3, p value < 0.001; Table 2.2; Appendix 2.13). We also note that seabed habitat 
experienced by cod in the Celtic Sea (Figure 2.5, panel A) is different to that experienced 

by cod in the Irish Sea (Figure 2.5, panel C). For instance, cod in the Celtic Sea appear  
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to favour seabed habitat types of sand and sandy mud, whereas the seabed habitat 

profile of cod in the Irish Sea is heavily skewed towards course sediment.    

2.3.3 Spawning period 

During the spawning period, the estimated home ranges of cod in the Celtic and Irish 
Sea were smaller (Figure 2.6, panel B). Three of the four cod (CEL_1477, CEL_1527 

and CEL_5616) tagged in the Celtic Sea remained in ICES Division VIIg (Figure 2.6, 
panel A; Appendix 2.14). The other cod tagged in the Celtic Sea (CEL_5613) remained 

in ICES Division VIIh (Figure 2.6, panel A; Appendix 2.14). In all four cases, the spatial 
use of individual cod during foraging and spawning periods are similar. A similar pattern 

was present in the Irish Sea. Four cod (IRE_1430, IRE_5595, IRE_5596 & IRE_5621) 

occupied waters in the North Channel and the north/north-eastern Irish Sea (Figure 2.6, 
panel A; Appendix 2.14), consistent with their space use during the foraging period 

(Figure 2.4, panel A; Appendix 2.12). The remaining cod (IRE_5595) stayed in the centre 
of the Irish Sea (Figure 2.6, panel A; Appendix 2.14), also consistent with observations 

made during the foraging period (Figure 2.4, panel A; Appendix 2.12).   

Daily horizontal movement during the spawning period was significantly greater in cod 
tagged in the Celtic Sea than those tagged in the Irish Sea (Welch’s t-test: t = 3.2, df = 

359.2, p value = 0.002; Table 2.2; Appendix 2.15). Daily vertical movement during the 

spawning period was also significantly larger in cod tagged in the Irish Sea than those 
cod tagged in Celtic Sea (Welch’s t-test: t = 7.8, df = 533.7, p value < 0.0001; Table 2.2; 

Appendix 2.15). In addition to these differences, horizontal movement was significantly 
greater during the foraging period than during the spawning period (Celtic Sea – Welch’s 

t-test: t = 3.2, df = 566.0, p value = 0.002; Irish Sea – Welch’s t-test: t = 2.7, df = 751.0, 
p value = 0.007; Table 2.2; Appendix 2.15). However, for cod tagged in the Celtic Sea, 

daily vertical movement was significantly greater in the spawning period than in the 
foraging period (Welch’s t-test: t = 20.9, df = 279.0, p value < 0.0001; Table 2.2; Appendix 

2.15). The opposite was true in cod tagged in the Irish Sea, where daily vertical 

movement was significantly greater in the foraging period than in the spawning period 
(Welch’s t-test: t = 8.2, df = 1101.0, p value < 0.0001; Table 2.2; Appendix 2.15).  

During the spawning period, the average depth of individual fish and the average 

temperature experienced was significantly lower in the Irish Sea compared to the Celtic 
Sea (fish depth – Welch’s t-test: t = 12.4, df = 592.5, p value < 0.0001; sea temperature 

– Welch’s t-test: t = 43.8, df = 1359.3, p value < 0.0001; Table 2.2; Appendix 2.15). These 
findings are reversed during the foraging period. Sea depth was significantly deeper in
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the Irish Sea compared the Celtic Sea (Welch’s t-test: t = 4.3, df = 556.8, p value < 

0.0001) however the difference was much less during the spawning period than during 
the foraging period (Table 2.2).  

The seabed sediment experienced by cod during the spawning period was almost 
identical to what is experienced during the foraging period (Figure 2.5). The only notable 

differences were that Celtic Sea cod spent more time in sandy habitats (Figure 2.5, panel 
B) whereas Irish Sea cod displayed an even greater affinity to coarse sediment (Figure 

2.5, panel D).   

2.3.4 Diet   

Stomach content data revealed marked differences in the prey types of similarly sized 
cod (fish size listed in Table 2.1). Celtic Sea cod feed, in the majority, on a range of crabs 

(33%) and crab like crustaceans (22%; Figure 2.7, panel A). Irish Sea cod feed primarily 
on lobsters (36%; Figure 2.7, panel B). Both Irish and Celtic Sea cod also feed of other 

smaller (unidentified) fish species (Irish Sea, 35%; Celtic Sea, 26%).   

 

2.4. Discussion 

In this study, we shed much needed light on the broad-scale movement and spatial 

ecology of Atlantic cod in the Irish and Celtic Sea. In doing so we note four main findings. 

(1) That given our sample size, we find no evidence of stock mixing between the Irish 
and Celtic Sea. However, we do note that mixing is a prevalent feature between cod in 

the Irish Sea and cod stocks situated off the west coast of Scotland (ICES Divisions VIa). 
(2) That despite exhibiting high rates of horizontal movement (4.1 km day-1; Table 2.2), 

cod in the Celtic Sea appear to forage and spawn in very similar locations, a finding that 
is indicative of a resident stock within ICES Divisions VIIf, VIIg and VIIh. Conversely, 

Irish Sea cod seem to be operating as two semi-discrete sub-populations, one situated 
almost exclusively in the centre of the Irish Sea and the second moving between foraging 

grounds in the northern North Channel and spawning grounds in the north/north-eastern 

Irish Sea. (3) That horizontal and vertical movements play critical but very differing roles 
in the foraging and spawning strategies of cod in the Irish and Celtic Sea. For instance, 

we show that horizontal movement is consistently higher in the cod tagged in the Celtic 
Sea than in cod tagged in the Irish Sea whereas the opposite is true for vertical 

movement. (4) That despite occupying very different environments and moving through 
these environments in very different ways, cod in the Irish and Celtic sea feed on very 
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Figure 2.7. Percentage contribution of each prey type to the diet (stomach content) of 

Atlantic cod in the Celtic (A) and Irish (B) Sea. Only prey types that contributed more 
than 1% to the stomach content of Atlantic cod in each area were considered.  

similar prey items; a mix of benthic dwelling crustaceans and smaller (unidentified) fish. 
In the following discussion we will interpret these findings and highlight how they can 

inform the management of these two heavily exploited stocks.  

Here, we find no evidence of that cod in the Celtic Sea move north into the Irish Sea or 
that cod in the Irish Sea move south in the Celtic Sea. This lack of exchange supports 

current stock assessment model and management strategies where Celtic and Irish Sea 

cod are treated as discrete units. However, our findings do contradict past studies where 
mature cod in the Irish Sea have been shown to disperse in a southerly direction towards 

ICES Division VIIg after spawning (Bendall et al., 2009; Brander, 1975; Connolly and 
Officer, 2001). Such differences could be a consequence of a limited sample size, 

highlighting (as discussed in Chapter 1) that any inference gained from the movements 
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of a select number of individual animals can often overlook or skew our understanding 

of population dynamics (Hebblewhite and Haydon, 2010; McGowan et al., 2017). 
However, in this case it is worth noting that all three previously cited studies rely heavily 

on mark recapture methods, where only the release and recapture locations of individual 
cod are known (Bolle et al., 2005). We have already shown that cod in the Irish and Celtic 

sea undergo complex and extensive movement patters, often turning back on 

themselves. For example, cod IRE_1430 displays southerly movements after its release, 
moving down through the centre of Irish Sea before turning back on itself and transiting 

north towards foraging grounds in the northern Irish Sea (Figure 2.4, panel A; Appendix 
2.8; Appendix 2.16). An analogous movement pattern is observed in cod IRE_3184, 

where dispersion to the south is followed by a return to the deeper waters of the central 
Irish Sea after approximately 90 days (Appendix 2.8; Appendix 2.16). Such fine scale 

movements will go unobserved in mark-recapture studies and as result any inference 
gained from the deployment of DSTs must be viewed as an advancement on our 

understanding of cod movement in the Irish Sea.  

Cod in the Celtic Sea are shown to remain exclusively within ICES Divisions VIIf, VIIh 

and VIIg. Despite exhibiting high rates of daily horizontal movement (4.1 km day-1; Table 
2.2), individual (Figure 2.3, panel B) and composite (Figure 2.2, panel B) space use 

patterns of cod in the Celtic Sea are highly overlapping and show minimal variance 
between foraging (Figure 2.4, panel B) and spawning periods (Figure 2.6, panel B). Such 

findings are indicative of a resident stock, who forage and spawn in the same locale. 
Resident stocks are a prevalent feature of cod ecology (Robichaud and Rose, 2004) and 

have been shown to occur in the German Bight, a shallow inshore area off the south-
west coast of Denmark (Griffiths et al., 2018) and the Scalloway area of the Shetland 

Isles (Neat et al., 2006). From a management perspective, stocks that reside in same 

geographical location are notoriously prone to local depletion (Heath et al., 2008; Kritzer 
and Sale, 2004). This is because resident stocks are inherently spatially predictable and 

despite the enforcement of catch control measures (e.g. TACs and mesh size 
restrictions), management at the stock level has minimal control over of spatial 

distribution of fishing effort (Neat et al., 2006; Rose and Kulka, 1999). Despite this, the 
spawning stock biomass of cod in Celtic Sea is increasingly slowly and show signs of 

recovery (ICES, 2017a). We hypothesise that this success may be a direct consequence 
of two factors: (1) the establishment of marine protected areas (MPAs) and (2) the rising 

abundance of crab in the Celtic Sea. A network of MPAs or analogous areas of 

conservation (e.g. Special Area for Conservation or Marine Conservation Zones) have 
been in place in the Western English Channel and Celtic Sea since 2009 (JNCC, 2017). 
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Many of these areas were originally designed to reduce the impact of otter gears on 

vulnerable marine habitats (JNCC, 2017) however because cod remain in the area year-
round they will indirectly benefit from reductions in trawl capture. Using landings data as 

a proxy for abundance, preliminary investigations also suggest that crab (Brown crab, 
Cancer pagurus; Appendix 2.17) have experienced a population boom in the Celtic Sea, 

with reported landings experiencing a three-fold increase between 2005 and 2013 (ICES, 

2013b). We have shown that crab and crab like crustaceans are an important food 
source for cod in this area (Figure 2.7), therefore individuals will benefit from an 

increased availability of prey.  

Despite providing no evidence for the exchange of cod between the Irish and Celtic Sea, 
we do observe several instances when cod in the Irish Sea move north into ICES Division 

VIa. These movements typically occur outside of the spawning period and draw parallels 
to the tendencies of other marine species (e.g. Atlantic Bluefin tuna, Thunnus thynnus; 

Block et al., 2005) who spawn in relative isolation but mix with other populations during 

foraging. In this case, movements north will bring cod from the Irish Sea into contact with 
cod occupying waters off the Scottish west coast and the Firth of Clyde (Neat et al., 

2014). Stocks in these areas have also struggled to recover from historic overexploitation 
and despite an enforced total allowable catch of zero (ICES, 2017c), spawning stock 

biomass remains low (ICES, 2017c). Current hypothesises for this lack of recovery are 
centred around two factors. First, a steady increase in the abundance of grey seals since 

the 1960s which will exert significant predation pressure on cod (Alexander et al., 2015; 
Cook et al., 2015; Houle et al., 2016). Second, the rising importance of the Nephrops 

fishery off the west coast of Scotland (ICES, 2013c) which not only targets one the 
preferred prey items of cod (lobsters e.g. Norway lobster, Nephrops norvegicus; Figure 

2.7) but also exerts high rates of bycatch on cod and other gadoid species (Catchpole et 

al., 2007; ICES, 2013c). Current stock assessment and management strategies in the 
Irish Sea do not consider the exchange of cod northwards into ICES Division VIa (ICES, 

2017a). As a result, it is likely that two potentially important sources of mortality are being 
overlooked, both of which hold significant explanatory power for the impaired recovery 

of cod in the Irish Sea. 

Previous investigations into the movement of cod in the Irish Sea point towards a semi-

discrete stock structure, where cod in the eastern/northern Irish Sea remain separated 
from cod in the western/central Irish Sea for large periods of the annual cycle (Brander, 

1975). Here we add evidence to these conclusions but demonstrate a need for further 
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Table 2.3. Straight-line distance (km) between the release and recapture locations of 

tagged cod in the western and central Irish Sea. Straight-line distances were calculated 
using the Great Circle Equation.   

Fish ID 
Release location (RL1) Recapture location (RL2) Distance 

between RL1 
and RL2 (km) Latitude Longitude Latitude Longitude 

IRE_1430† 53.95 -5.42 54.31 -5.09 45.05 

IRE_3183† 54.76 -5.28 55.38 -6.39 99.08 

IRE_3184* 53.42 -5.40 53.26 -5.39 18.50 

IRE_5569* 53.09 -5.14 53.24 -5.20 17.01 

IRE_5595† 53.85 -4.96 54.67 -5.18 92.15 

*, remain in the central Irish Sea. †, move north into North Channel.  

 

work. First, we show that cod released in the eastern Irish Sea (IRE_5596 and 
IRE_5621) move north into the North Channel but display no signs of east-west or east-

south movements. Moreover, cod released in the western/central Irish Sea either remain 

in the central Irish Sea (IRE_3184 and IRE_5569) or move northwards into the North 
Channel and beyond (IRE_1430, IRE_3183 and IRE_5595). For those that do remain in 

the central Irish Sea, site fidelity is shown to be a prevalent feature as the straight-line 
distance between their release and recapture locations is, on average, only 18 km (Table 

2.3). For those cod that do move north (e.g. IRE_1430 and IRE_5595), it is likely that 
they come into contact with cod from the eastern Irish Sea during the foraging period. 

Such spatial overlap during the foraging period suggests that the North Channel is an 
area of significant importance to cod in the Irish Sea, and merits further investigation (in 

the context of an MPA). Interestingly, if cod in the eastern/northern and western/central 
Irish Sea exhibited a semi-discrete stock structure and only mixed during the foraging 

period, we might expect those cod that moved north out of the central Irish Sea 

(IRE_1430, IRE_3183 and IRE_5595) to display similar evidence of site fidelity (Brander, 
1975; Connolly and Officer, 2001; Pawson, 1993). However, this does not appear to be 

the case (Table 2.3). Theoretically, this lack of movement back down through the North 
Channel and into the central Irish Sea could be a consequence of tag malfunction or an 

unobserved error during data manipulation, as only a handful of very deep depth 
measurements are sufficient to offset the geographically estimation step leading to fairly 

large uncertainties (David Righton, pers coms). We suspect this latter explanation could 
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be valid in cod IRE_3183 as this would provide the first example of cod in the Irish Sea 

moving out into the deeper waters (sea depth greater than 700m, Appendix 2.13) of 
North Atlantic. Alternatively, the lack of return trip could be an ecological phenomenon, 

marking either a distributional shift in the tendencies of the stock (as predicted in 
response to widespread warming by Drinkwater, 2005 and Serpetti et al., 2017), or 

demonstrate a gap in our knowledge about the movement and spawning dynamics of 

cod in the Irish Sea. Either way, further tagging studies are essential. 

In terms of movement rates, we have shown that horizontal and vertical movement play 
very different roles in the foraging and spawning dynamics of cod in the Celtic and Irish 

Sea. Daily horizontal movement is shown to be much greater in the Celtic Sea than in 
Irish Sea. The opposite is true when it comes to vertical movement, as daily vertical 

movement is much larger in cod tagged in the Irish Sea than cod tagged in the Celtic 
Sea. Both of these trends are consistent across the spawning and foraging periods. Such 

differences could simply illustrate how local bathymetry dictates swimming and foraging 

strategy (an idea proposed by Hobson et al., 2009). For example, Irish Sea cod are 
moving through a very deep but highly variable environment (as shown by a standard 

deviation of ± 185.0, Table 2.2). Therefore, it is likely that individuals are travelling in 
midwater and using vertical displacements to move up into the water column in search 

of food. Such behaviour is analogous to the foraging strategies of juvenile Pacific Bluefin 
tuna (Thunnus orientalis; Kitagawa et al., 2007), striped marlin (Tetrapturus audax; 

Sippel et al., 2007) and tiger sharks (Galeocerdo cuvier; Heithaus et al., 2002; Holland 
et al., 1999), where the water column is continually traversed in the search for food. 

Conversely, Celtic Sea cod are consistently recorded at depths that are comparable to 
the estimated seabed depth (Table 2.2), suggesting that individuals travelling 

horizontally along what is shown to be a sandy seabed (Figure 2.5). Such movement will 

be advantageous in terms of prey encounter, as crustaceans such as crabs and other 
small fish are also found in close proximity to the seabed (Adlerstein and Welleman, 

2000).  

We also show that cod in the Celtic Sea significantly increase their vertical movement 
rates during the spawning period. Vertical displacements have been shown by several 

authors to a prominent characteristic of spawning in cod, as individuals undertake 

courtship in close proximity to the seabed (Dean et al., 2014) but move towards the 
surface during spawning release (Brawn, 1961; Hutchings et al., 1999; Meager et al., 

2009). The same increase in vertical activity isn’t found in cod tagged in the Irish Sea, 
however when comparing the movement rates across the two sampled stocks, it is clear 

that vertical movement is just consistently high in the cod tagged in the Irish Sea. 
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Furthermore, when the horizontal movement rates of cod in the either stock are 

compared to the work of others, it is clear that the average movement rates calculated 
here are much lower than in the North Sea (Griffiths et al., 2018; Righton et al., 2007) 

and English Channel (Griffiths et al., 2018; Hobson et al., 2009), where cod are shown 
to move at speeds of 5-50 km day-1. Such findings add support to the contention that 

movement is highly variable in cod, varying from individual to individual, and stock to 

stock, consistent with the concept that behaviour in this species is the result of a complex 
interplay between biological and ecological factors (Hobson et al., 2009; Righton et al., 

2001).  

Two further findings surround the temperature and seabed habitat type experienced by 
cod in the Irish Sea during the foraging period. Given their high rates of vertical activity 

and their preference for benthic-dwelling lobsters (Figure 2.7), our prior expectation was 
that individuals tagged in the Irish Sea would be inhabiting a rocky seabed. Vertical 

movement would therefore become a foraging necessity, as individuals were forced to 

move up and down a variable seabed in their pursuit of prey. Despite such expectations, 
we found that Irish sea cod inhabited a seabed habitat that is dominated by coarse 

sediment (Figure 2.5). This finding reinforces our previous comments surrounding 
midwater movement patterns, as Irish Sea cod are moving vertically into the midwater 

(as supported by a large average difference between sea and fish depth, Table 2.2), as 
opposed to moving along a variable seafloor. Additionally, average sea temperature is 

shown to be very high during the foraging period (12.6 °C, Table 2.2) before dropping off 
during the spawning period (7.9 °C, Table 2.2). Previous work by Neat et al. (2014) 

suggests that Irish Sea cod experience strong seasonal cycles in temperature, a feature 
that is not present in the Celtic Sea, despite its more southerly latitude (Neat et al., 2014). 

Acclimatisation or adaptation to consistently cooler conditions may limit the movement 

of Celtic Sea cod north into the warmer and more variable waters of the Irish Sea. Such 
differences in thermal conditions could help explain why mixing between the two stocks 

is not observed and why Celtic Sea stocks remain resident in ICES Divisions VIIf, VIIh 
and VIIg. Moreover, these findings highlight why studies that aim to investigate blanket 

climate driven range shifts in temperate marine species (e.g. Dulvy et al., 2008; 
Rutterford et al., 2015), must do so with care and knowledge of the biology and ecology 

of the species they are investigating (Heath et al., 2012).  

By describing the movements and spatial ecology of Atlantic cod in the Irish and Celtic 

Sea we have investigated four main research questions and highlighted their importance 
for management. To summarise, we have shown that limited mixing occurs between cod 

in the Irish and Celtic Sea, validating current stock assessment and management 



 42 

strategies. In the Celtic sea we have shown that cod form a resident stock in ICES 

Divisions VIIf, VIIh and VIIg and despite recent signs of recovery, could be highly 
susceptible to continued rates of exploitation as well as climate change. In the Irish Sea 

we have added evidence to past observations that cod form a semi-discrete stock and 
introduced the idea that the North Channel may be of significant importance during the 

foraging period. We have also used recorded movement rates and external data sources 

(temperature and seabed habitat types) to detail how cod move through very different 
environments in a bid to grow, reproduce and ultimately survive. Finally, we have used 

stomach content data and previous investigations to support our theories about the 
recovery of cod in the Irish and Celtic Sea (Alexander et al., 2015; Bendall et al., 2009; 

Brander, 1975; Catchpole et al., 2007; Connolly and Officer, 2001; Neat et al., 2014). 
These findings do not answer the overarching research question; why have cod stocks 

in the Irish and Celtic Sea struggled to recover from historical overexploitation? However, 
our analysis of tagging data is a step towards informing future studies in the area.  

On numerous occasions in this chapter we refer to the need for a greater sample size. 
More information inherently provides a greater level of certainty and allows inferences 

gained to take on a much more actionable quality in the eyes of fisheries managers and 
conservation decision makers. A greater sample size however comes with its own 

complexities. Here, we have simply described the movements of twelve individual cod, 
however this approach cannot be simply extended to the movement of hundreds of fish, 

each of which exhibits its own degree of individual variation. In Chapter 3 we tackle this 
problem head on by introducing a novel methodology for the analysis of three-

dimensional movement in marine fish. By making the explicit assumption that fish of the 
same species behave in a numerically similar way, we use a hidden Markov model 

(HMM) framework coupled with Bayesian priors to gain population-level inference from 

a large dataset of individual movements (Griffiths et al., 2018).  
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Chapter 3.  

Scaling marine fish movement behaviour from individuals to 

populations.  

The following chapter is a slightly extended version of the published article Griffiths et al. 
(2018). A full authors’ contribution statement can be found in the published article. In the 

discussion of this chapter we also refer to a second piece of collaborative work lead by 
Timo Adam (University of Bielefeld, Germany) that has recently been accepted for 

publication in Methods in Ecology and Evolution (Adam et al., in review).  

3.1 Introduction  

The spatial management of the marine world requires in-depth information about how 

animals move, when they move and where they move to. Key to increasing our 
understanding of species space use, movement patterns, and how individuals interact 

with the environment they inhabit, is the rising deployment of small and reliable data 

loggers and transmitters on free-roaming marine animals (Costa et al., 2012; Hays et al., 
2016; Hussey et al., 2015). Capable of recording a range of movement metrics, including 

horizontal and vertical movement alongside basic environmental information such as 
water temperature, salinity and ambient daylight, these devices have revolutionized our 

understanding of fundamental ecology (Hussey et al., 2015), documented ocean-wide 
dispersal events (Block et al., 2011), highlighted areas that are essential for species 

survival (Raymond et al., 2015) and even allowed us to test the effectiveness of current 
conservation policies (Pittman et al., 2014; Scott et al., 2012).  

One of the main motivations for animal-borne telemetry studies is that by understanding 
individual movement behaviour, we might infer the population-, species- and community-

level consequences of movement (Block et al., 2011; Hindell et al., 2016; Raymond et 
al., 2015; Wakefield et al., 2011). This is especially true in marine systems, as individual 

observations provide our only insight into the otherwise unobservable. As highlighted in 
Chapter 1 and Chapter 2, the scaling of inference from individual movement patterns to 

population dynamics requires two important components. The first is an adequate 
sample size (number of individuals) to address the ecological question of interest 

(Hebblewhite and Haydon, 2010) and second, a statistical means by which we gain 

meaningful inference at the individual- and population-level from a finite sample of 
individuals (e.g. Jonsen, 2016; Langrock et al., 2012; McClintock et al., 2013).  
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The issue of sample size has been extensively discussed, especially when considering 

how movement studies can inform marine conservation and spatial management 
(Hebblewhite and Haydon, 2010; McGowan et al., 2017; Nguyen et al., 2017; Ogburn et 

al., 2017). Tags can be expensive (McGowan et al., 2017), are liable to occasional failure 
or loss and often result in individual pathways that are data-poor or have a low number 

of observations. As a result, meeting the minimum sample size of 20+ individuals when 

making simple statistical comparisons between populations is uncommon (Hebblewhite 
and Haydon, 2010), with even greater numbers needed when testing for the effects of 

age, sex and species identity (Lindberg and Walker, 2007). In the absence of a 
collaborative effort across multiple institutions (e.g. Block et al., 2011a; Hindell et al., 

2016), a significant increase in funding or a community-wide shift to data sharing (e.g. 
via online data repositories like Movebank - Kranstauber et al., 2011); it would appear 

that the most viable route towards robust population-level inferences are approaches 
that make the most of the tagging data we already have.  

As the technology underpinning tags continues to advance, so too have the methods 
used to explore the behavioural structure of animal movement data (Gurarie et al., 2016). 

Among these methods are autocorrelation functions (e.g. Boyce et al., 2010), clustering 
algorithms (e.g. van Moorter et al., 2010), changepoint analyses (e.g. Gurarie et al., 

2009; Madon and Hingrat, 2014), frequency-based Fourier or wavelet analyses (e.g. 
Guzmán et al., 2017; Shepard et al., 2006), first passage time approaches (e.g. 

Benhamou, 2004) and multistate random walks (e.g. Forester et al., 2007; Morales et 
al., 2004), many of which have been applied to ecological questions. For instance, fast 

Fourier transforms have been used to identify periodicities in the vertical movements of 
basking sharks (Cetorhinus maximus; Shepard et al., 2006), whereas multiple change 

point algorithms have been used to investigate behavioural changes in the daily 

movements of Macqueen’s Bustards (Chlamydotis macqueenii; Madon and Hingrat, 
2014). Despite such methodological proliferation, hidden Markov models (HMMs) and 

hidden semi-Markov models have taken centre stage in recent years, especially when 
observational error is negligible and behavioural classification is the desired outcome 

(e.g. McClintock et al., 2012; Patterson et al., 2008). Favoured because they match our 
initiative understanding that movement is given by switches in an animal’s 

motivation (Patterson et al., 2017), HMMs provide a mechanistic, computationally 
efficient and statistically robust means of objectively classifying movements into discrete 

states with different statistical properties (Langrock et al., 2012). Moreover, the flexibility 

of the HMM approach means they are capable of dealing with missing observations 
(Parton 2018) as well as varying amounts of temporal non-independence (Langrock et 
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al., 2012). HMMs have also been extended to account for periodicities by linking the 

model’s underlying state process to behavioural patterns that are heterogenous in time, 
such as diurnal variations (e.g. Leos-Barajas et al., 2017b; Towner et al., 2016).  

HMMs have been fitted to multiple individual pathways simultaneously in both the 
frequentist (e.g. Langrock et al., 2012; McKellar et al., 2015) and Bayesian statistical 

paradigms (Jonsen, 2016; McClintock et al., 2013). However, these approaches are 
typically implemented by specialist statisticians and require the coupling of HMM and 

hierarchical structures, producing a hierarchical Hidden Markov model (hHMM).  The 
alternative is the use of HMMs or other state-space approaches that fit on an individual 

by individual basis (e.g. Jonsen et al., 2007; Michelot et al., 2017). This latter, more 
frequently used approach has its advantages, the most notable being an ease of use for 

statisticians and biologists alike. Fitting per individual also has its disadvantages. The 
first is that it requires individual movement paths that are suitably data-rich to achieve 

model convergence, imposing even stricter restrictions on sample size. The second is a 

distinct lack of any formal process by which state one in animal A is ensured consistency 
with state one in animal B. This lack of consistency means that estimated parameters 

can readily inform individual-level movement studies but will result in tricky interspecific 
and intraspecific comparisons, limiting a researcher’s ability to ask post-hoc population-

level questions of their data.  

Our objective is to introduce an alternative framework that uses HMMs to overcome the 

described limitations of individually fitted HMMs whilst maintaining their heralded ease 
of use advantages. Our approach combines an N-state HMM and several hierarchical 

structures but bypasses the need to integrate over the random effects (as in hHMMs; 
Langrock et al., 2012) by using information we gain from our data-rich pathways as a 

priori approximations of each states movement parameters. Doing so not only allows us 
to achieve coherent individual- and population-level state classification, but also ensures 

that we maximise our sample size by gaining meaningful inference from our data-poor 
and data-rich movement paths.  

To illustrate our approach, we apply it to a real ecological problem – quantifying seasonal 
space use patterns in Atlantic cod (Gadus morhua) and European plaice (Pleuronectes 

platessa) in the North Sea and English Channel. Both Atlantic cod and European plaice 
have significant commercial and conservation value and as a result have been the 

subject of several long-term tagging programs (e.g. Hobson et al., 2009, 2007; Hunter 
et al., 2004b, 2004a; Righton et al., 2001). Drawing on this, the rest of this chapter 

considers a case study of 107 individual bivariate movement paths, many of which 
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(n=73) have limited observations and/or lack clear biological signals. Our findings 

demonstrate clear spatio-temporal patterns in the movement behaviour of either species 
that are consistent with individual-level studies (Hobson et al., 2007, 2009; Hunter et al., 

2004b, 2004a; Neat et al., 2014). Furthermore, by analysing a relatively large dataset, 
we provide a unique insight into how differing sub-stocks of cod and plaice shift their 

behaviour on a seasonal basis, with clear consequences for fisheries management and 

conservation.   

 

3.2 Methods 

3.2.1 Case study data 

Movement paths were taken directly from the deployment of data storage tags (DSTs) 
on free-roaming fish in the North Sea or English Channel. The dataset includes 107 

individuals from two species of European demersal fish: Atlantic cod (n=46) and 

European plaice (n=61). All fish were tagged and released between December 1996 and 
June 2011. Fish were broadly separated into sub-stocks based on release location (see 

Figure 3.1) and displayed considerable variation in movement path duration (Appendix 
3.1).  

Each DST was programmed to record depth (m) at 10-minute intervals for the duration 

of deployment. The first two weeks and the last day of every time series were excluded 
to remove any erroneous or irregular measurements associated with release and 

recapture events as per Hobson et al. (2007). For details of tag type, fish catchment, tag 

implantation and measurement accuracy see Righton et al. (2010; Gadus morhua) or  
Hunter et al. (2004b; Pleuronectes platessa). Each movement path is a bivariate time 

series of horizontal and vertical movement per day. Net vertical movement (m day-1) of 
each fish was taken directly from the raw DST data by calculating the absolute difference 

between corresponding 10-minute depth measurements and summing the values for 
each day at liberty. Horizontal movement (m day-1), in comparison, was inferred indirectly 

from the depth data in a two-step approach. First, daily geolocation estimates were 
produced via a Fokker-Planck-based method that combines Metcalfe and Arnold's 

(1997) tidal location method and a Bayesian state-space model (see Pedersen et al., 
2008 for model details). The straight-line distance between daily geographic estimates 

(commonly referred to as ‘step-length’) was then calculated using the Great Circle 

equation. Both vertical (v) and horizontal (h) movement metrics were log (natural log) 
transformed prior to model implementation. Only time series that were longer than 40+  
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Figure 3.1. Release locations of all tagged fish. Atlantic cod (n=46) are shown in red, 

fish are grouped into the English Channel sub-stock (triangles, n=23) or the Southern 

North Sea sub-stock (circles, n=23) based on release location. European plaice (n=61) 
are shown in purple, fish are grouped into three sub-stocks based on release location: 

Central North Sea (circles, n=27), German Bight (triangles, n=10) or Southern North Sea 
(crosses, n=24).  

Days and had complete depth recordings were used in this study. For descriptions of 

horizontal and vertical movement in Atlantic cod and European plaice see Hobson et al. 
(2009, 2007) and Hunter et al. (2004b, 2004a).  

All geolocation estimates (latitude and longitude), date stamps and daily horizontal and 
vertical movement rates, along with estimated state sequences (product of the model 

described in sections 3.2.2 and 3.2.3) are freely available on the CEFAS Data Hub 
(https://doi.org/10.14466/cefasdatahub.54).  

3.2.2 The model  

Previous individual-level studies demonstrate that Atlantic cod and European plaice 

display periods of high activity while in the water column punctuated by periods of 
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relatively low activity while on the seabed (Hunter et al., 2003; Righton et al., 2010). 

Thus, we consider a discrete 2-state HMM. We label state one as ‘resident’ (R), 
representing periods of time with low movement rates. We label state two as ‘migrating’ 

(M), representing a much more active phase where movement rates in the horizontal 
and vertical dimension are greatly increased. As in all attempts to infer behaviour from 

movement observations, state labels must be interpreted with care as they provide 

simplified proxies of unobserved behavioural modes, not direct equivalents (Patterson et 
al., 2017).  

For a movement path of length T, it is assumed that an underlying, non-observed state 

sequence S1, …, ST, taking values in {R, M} describes the persistence within and 
stochastic switching between states. The time varying evolution of this state process 

takes the form of a (first-order) Markov chain, with transition probability matrix Γ 

Γ = 	 7
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for any j, k in {R, M}. Given a state j at time t the observation xt is assumed to be drawn 
from a multivariate normal distribution (MVN):  
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with  

																																																																			𝜇^ = 	k
opq
o^rm																																																												[Eqn. 3.4] 

and 

																																										Σ̂ = 	s
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and H and V represent movements made in the horizontal and vertical dimension, 

respectively. Thus, the complete-data likelihood given a state sequence S1, …, ST is  

																																										𝜔yz𝜙yz(𝑥H)𝛾yz→	y|𝜙y|(𝑥u)…	𝛾y}~z	→	y}𝜙y}(𝑥%)																							[𝐸𝑞𝑛. 3.6] 

where the row vector 𝜔 is the Markov chain initial state probability (which we assume to 

be uniform at t=1) and 𝜙^ refers to the multivariate normal density stated in equation 3.3. 
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We allow distinct parameters for each fish, indexed by i = 1, …, 107, and write these as 

ΓF	, 𝜇^F  and Σ̂F.  

In practice, standard HMM algorithms allow us to calculate the actual likelihood, when 

the states are unobserved, very efficiently by integrating over all possible state 
sequences using the forward algorithm (Zucchini et al., 2016). Framing the model in this 

way enables us to conduct parameter estimation using a Bayesian approach, by 
numerically maximising the posterior density. The classification probability of each state 

at t is then determined using the backward smoothing algorithm (Zucchini et al., 2016). 

More details for how the efficient HMM machinery can be used to conduct statistical 
inference are given in Zucchini et al. (2016), for the particular case of animal movement 

modelling see Patterson et al. (2017). For our case study, we used the R optimisation 
routine optim to numerically maximize the log posterior density. State allocation is carried 

out by selecting the most likely state at each time point separately.  

Two limitations of the HMM approach to behavioural classification are mentionable. First, 
the discrete-time approach is only suited to regularly timed observations. This isn’t a 

problem here however when analysing movements recorded via PSATs, where irregular 

sampling is common (see Chapter 1 section 1.1.3), the assumption that state transition 
probabilities and state-dependent distributions are homogeneous will often be improper 

(Langrock et al., 2012). In these cases, a continuous-time HMM, where an observation 
is treated as a sample of an underlying continuous movement model, may be more 

appropriate (Parton, 2018). Such models are scale-invariant and as a result do not 
require regularly spaced observations to infer behaviour (Langrock et al., 2012). The 

second limitation is that observations, be it movement rates or locations in space and 
time, must be observed with no or negligible error. Here we estimate location, and by 

association horizontal displacements, using an adapted tidal geolocation model 
(Pedersen et al. 2008). The original tidal location method of Metcalfe and Arnold (1997) 

certainly has the potential for fairly large uncertainties (in the range of 10-40km; Hunter 

et al., 2004) as locations are estimated one point at a time. In comparison, when the 
fish’s locations are modelled as a sequence, the iterative build-up of information greatly 

reduces this uncertainty (as in Pedersen et al., 2008). Consequently, we are confident 
that the uncertainty surrounding each fish’s movement path is within the scale of the 

observations (David Righton, pers coms) and can be considered negligible (a condition 
advised by Patterson et al., 2017). For example, the standard deviation across one 

thousand possible sample paths in cod 1186 (illustrated in Appendix 3.2) is on average 
8.0 km day-1 (range 0 – 16km day-1), a value that is comparable to those reported in 
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Hobson et al. (2009). Put into context, this uncertainty is comparable to locations 

estimated by the ARGOS system (Hays et al., 2001) and is an order of magnitude better 
than light-based geolocation estimators (Teo et al., 2004). When error is much larger or 

is likely to inform the analysis, Bayesian state-space formulations of the behavioural 
classification problem are often the preferred approach (e.g. Breed et al., 2012; Jonsen 

et al., 2013).  

Periods of relative inactivity (low h and v movement rates) can persist for 3-5 months in 

either species (Metcalfe et al., 2006; Righton et al., 2010). To accommodate this 
persistence within state, we have imposed a prior penalty term on the transition 

probabilities, such that 

																																																																						𝛾HH	~	𝑏𝑒𝑡𝑎(𝛼, 𝛽)																																																		[𝐸𝑞𝑛. 3.7] 

and  

																																																																									𝛾uu	~	𝑏𝑒𝑡𝑎(a	, 𝛽)																																																	[𝐸𝑞𝑛. 3.8] 

where a = 99 and b =1. This prior, termed here after as the transition probability prior, is 

designed to ensure that states R and M correspond to strong seasonal shifts in 
movement behaviour and not day-to-day fluctuations.  

3.2.3 Classifying fish movement  

We apply the model described in section 3.2.2 to all 107 individual movement paths, 

such that each fish gets its own parameter set. Each parameter set consists of 12 
estimated parameters, two transition probabilities and 2 sets of 5 parameters describing 

the mean (𝜇^) and covariance (Σ̂ ) of each state. A total number of 24,624 days (Atlantic 

cod = 9290 days; European plaice = 15,334 days) were considered. As expected, the 
resulting state sequences are predominately made up of two clearly defined behavioural 

modes – one more active and one less active (see Appendix 3.3 and 3.4 for example 
output). However, the parameters describing the numerical structure of these modes 

showed great variation among fish, with no clear consistency. Moreover, a handful of 
movement paths failed to achieve model convergence, as an upper threshold of 

observations is needed for robust parameter estimation (Patterson et al., 2009).  

To avoid the wasteful removal of valuable data or a tedious post-hoc description of the 

individual variation that exists in the HMMs output, we adopted an alternative approach. 
Based on the selection criteria outlined in Appendix 3.5, we select model output from 34 

fish (Atlantic cod, n=11; European plaice, n=23) spread evenly across the five sub-stocks 
(Appendix 3.6). We then calculate summary statistics (means m and variances d) that 
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describe the numerical structure of the two states (Appendix 3.7). These summary 

statistics are used to construct Gaussian distributions (Figure 3.2), 𝑁(𝑚, d) where m and 
d are dimension (h or v) d, state j and species specific given the selected sample. These 

informative distributions (4 per species), termed here after as priors on the model’s 
movement parameters, are then introduced directly into the HMMs likelihood function, 

such that equation 3.6 is multiplied by  

																																																																	��𝜙(𝜇^�	|
�^

	𝑚^�, 𝛿 �)																																										[𝐸𝑞𝑛. 3.9] 

where 𝜙(	∙|	𝑚, d) is the Gaussian density with mean m and variance d. Thus, our 

informative priors act to constrain the mean parameters of each state during the 
classification process.  

This adapted approach is applied to the classification of the remaining 73 individual 
pathways (Atlantic cod, n=35; European plaice, n=38), outputting state sequences that 

comprise comparable states (Figure 3.3). This enables post-hoc comparisons to be 
made at the individual- and population-level with relative ease.  

In order to illustrate how prior inclusion influences the state classification process, we 
have run a single European plaice’s movement through both versions of the model 

(Figure 3.4). Most notable is the reclassification of data points from a migratory state in 
the HMM to a resident state in the adapted HMM. Additionally, because one of our stated 

objectives was to effectively use the information gained from our data rich pathways to 
inform the classification of data poor pathways, we feel it necessary to provide an 

example (see Figure 3.5).  

All HMMs were coded and implemented in R (R Core Team, 2016; example code can 

be downloaded from GitHub: https://github.com/cagriffiths1/Fish_HMM). All plots were 
generated using the ggplot2 (Wickham, 2009) and ggmap (Kahle and Wickham, 2013) 

packages in R. Bathymetric data was sampled from the General Bathymetric Chart of 
the Oceans online repository (GEBCO, 2017), which is a global topographic dataset with 

a one-minute (1’) spatial resolution. 

3.2.4 Prior sensitivity analysis 

When imposing prior distributions in statistical models it is always important to test what 
influence those priors have on the models’ predictions, in our case the model’s estimated 

state sequences. To test the sensitivity of our model to changes in the transition 
probability prior we varied the α and β values that characterise the priors’ beta 

distribution and re-ran the HMM for all 34 ‘selected’ fish. In test 1 (α = 49.5, β = 0.5) we 
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still expect a behavioural switch to occur at an order of every 100 days. However, we 

approximately double our prior’s variance. In test 2 (α = 49, β = 1) the expected rate of 
switching is halved.   

To test the model’s sensitivity to changes in the movement parameter priors, we varied 

the variances (d’s) that describe the spread of each state and re-ran the adapted HMM 

for 10 randomly selected fish from each species. In test A, we increased all d values by 
10%, reflecting a prior expectation of greater variability between the parameters of 

individual fish, and in test B we decreased all d values by 10%, reflecting an expectation 

of reduced variability. During all re-runs of the adapted HMM (Test A and Test B) the 
state transition prior is kept constant, therefore ensuring that any change in state is a 

direct consequence of the changes to the model’s movement parameter prior. 

3.2.5 Univariate modelling  

To assess the advantages of using bivariate responses, we also carried out an analysis 
using a univariate observation model, considering only movements made in the 

horizontal dimension. The same model for transition probabilities is used as described 
above. We apply this approach to the 34 fish (Atlantic cod, n=11; European plaice, n=23) 

previously characterized as data-rich movement paths. Reported comparisons reflect 
the percentage change, if any, in the resultant state sequences for each individual fish.  

3.2.6 Inferring population patterns 

Since population dynamics emerge as the sum of the individuals that comprise the 

population we used individual movement behaviours to explore spatiotemporal patterns. 
Annual temporal patterns of movement behaviour were calculated for each species in 

two ways. First, the daily individual probabilities of each fish being in each state were 

averaged across all individuals and over each week of the year. Secondly, the proportion 
of fish classified to each state was calculated by averaging the daily number of fish in 

each state and smoothing it, again to the weekly time step. Week refers to weeks of the 
year, starting on the 1st January and ending on the 31st December and is independent of 

year.  

Patterns of space use while in either state were visualised using utilization distributions 

(Kie et al., 2010; Womble and Gende, 2013; Worton, 1989). For each species and sub-
stock, utilization distributions were calculated by pooling all daily horizontal geolocations 

for specified time periods and spatially binning them into 5km2 grid cells (Maxwell et al., 
2011; Womble and Gende, 2013). Specified time periods were state dependent and 

based on a weekly averaged probability of observing a given state across all individuals 
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Figure 3.2. Estimated state-dependent distributions (bars) for vertical (left) and 

horizontal (right) movements of all 34-selected fish. Black lines illustrate the movement 
parameter prior distributions 𝑁(𝑚, d) that were constructed based on collective model 

output. Prior distributions are state (resident, solid line; migratory, dashed line), species 
(Atlantic cod, top; European plaice, bottom) and dimension (horizontal or vertical) 

specific.  
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Figure 3.3. Mean bivariate movement rates by state in all 61 European plaice. All 

horizontal and vertical movement rates have been log (natural log) transformed.  

exceeding 0.5. Successive weeks classified to the same behavioural state were then 
grouped. In Atlantic cod this meant locations that were classified to a resident state 

between June – October and locations classified to a migrating state between November 
– May were used. In European plaice locations classified to a resident state between 

April – September and locations classified to a migrating state between October – March 
were used. 
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Figure 3.4. Movement parameter prior’s influence on state classification. Shown are the 

results of running the same movement path through the HMM (A) and the adapted HMM 
(B). Each point is a bivariate movement observation coloured by estimated state. Most 

notable is the re-classification of data points from a migratory state in the HMM to a 
resident state in the adapted HMM. The fish in question is a European plaice from the 

Southern North Sea, tagged on the 3rd November 2004 (path duration = 349 days). All 

horizontal and vertical movement rates have been log (natural log) transformed.  
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Figure 3.5. Influence of movement parameter prior on state classification process. 

Shown are the results of running the same exceptionally data-poor movement path 
(Atlantic cod, path duration = 46 days) through the HMM (A) and the adapted HMM (B). 

The sub-stock’s (English Channel, number of fish = 23) mean movement rate in each 
state is demonstrated by coloured squares.  
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3.3 Results 

 
3.3.1 Individual fish movement 

Mapping the posterior probability of being in a particular state indicated that individual 
fish from either species switch between periods of highly directed movement when in a 

migratory state and periods of random and highly localized movements when in the less 

active resident state (Figure 3.6). Time spent in either state and the transitions between 
states were shown to vary in space and time and can be linked to certain habitats. For 

example, cod 1186 spent 197 days (June - November) consecutively in the resident state 
within the deeper waters of the Celtic Sea and only shifted into a migratory state when 

transiting through the English Channel. In comparison, plaice 1084 undertook long-
distance directed movements after its release in the German Bight, spending 54 days 

consecutively in the migrating state before switching to the resident state in the shallow 
waters of the Central North Sea.  

The majority of individual time series had observations that shifted between resident and 
migratory states (n=41 Atlantic cod, n=60 European plaice). However, a small number 

of individuals (n=6) persisted in a single state for the duration of their time series: one 
European plaice and four Atlantic cod remained in a resident state throughout, whereas 

the movements of one Atlantic cod were consistently classified to the migratory state. All 
6 single state movement paths had short duration times (average movement path 

duration = 56 ± 21 days) and were released throughout the year (November – May).  

3.3.2 Population patterns  

The mean probability of observing a resident state and the proportion of observations 
classified to a resident state varied throughout the year (Figure 3.7). In both species, 

migratory behaviour dominated throughout the winter and into spring, with the onset of 
summer signifying a shift in movement behaviour to the resident state. This shift in state 

occurred earlier in European plaice than in Atlantic cod, with movements of plaice having 

a higher probability of classification to the slower, less active resident state between late 
April and September, compared to June through to November in cod. 

The model predicted large variation in average movement rates within each state (Table 

3.1). Horizontal movement rates of plaice tagged and released in the Southern North 
Sea and German Bight were significantly lower than those tagged in the Central North 

Sea (resident, Welch’s t-test, p < 0.001; migrating, Welch’s t-test, p < 0.001). In the 
resident state, plaice from the Southern North Sea and German Bight moved on average 

6.5 km day-1 horizontally and between 20.0-26.1 m day-1 vertically compared to 13.9 km 
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Figure 3.6. State dependent movement behaviour of two individual fish. Shown in a 
colour scale from red to yellow is the movement behaviour of one Atlantic cod tagged on 

the 25th March 2005 (duration = 300 days). Red points represent a migrating state, yellow 
a resident state and those points shown in orange illustrate times when the model was 

uncertain of state classification (i.e. the daily probability of state classification was less 
than 0.85). Shown in a scale from purple to cyan is the movement behaviour of one 

European plaice tagged on the 14th November 1997 (duration = 253 days). Purple points 
represent a migrating state, cyan a resident state and those points shown in royal blue 

illustrate times when the model was uncertain of state classification. The start and end 
point of each individual’s movement path are shown as a green triangle and a red 

diamond, respectively.  

day-1 horizontally and between 15.6-125.8 m day-1 vertically in the migratory state. In 

comparison, plaice tagged in the Central North Sea exhibited much higher horizontal 
movement rates, moving on average 12.9 km day-1 and 19.5 km day-1 in the resident and 

migratory states, respectively.  

Predicted spatial utilization distributions showed that migration occurred throughout the 

spatial domain, with no clear concentration of migratory activity in either species (Figure 
3.8; Appendix 3.8 and 3.9). In comparison, periods of time spent in a resident state 

produced clear geographical patches of space use while in certain habitats. These 
habitats varied with species (Figure 3.8) and sub-stock (Appendix 3.8 and 3.9), however 
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Figure 3.7. Annual temporal distributions of the resident state in Atlantic cod (red) and 

European plaice (blue). The plotted line in either graph illustrates the mean probability 
of observing a resident state (±1 SE – grey shading). The underlying barplots 

demonstrate the proportion of individual fish that are in a resident state during each 
week. Periods of time when the mean probability of observing a resident state is 

continually >0.5 are illustrated in either species.  
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Table 3.1. State dependent movement rates (horizontal: km day-1, vertical: m day-1) by 

sub-stock in Atlantic cod and European plaice. All values are taken from collated model 
output and are averaged across all fish.  

  Resident state Migrating state 

Species Sub-stock 
Horizontal 
movement 

(km) 

Vertical 
movement (m) 

Horizontal 
movement 

(km) 

Vertical 
movement (m) 

Atlantic cod 
SNS 9.2 31.5 13.9 158.3 

EC 9.6 53.5 13.4 125.4 

European 
plaice 

SNS 6.4 20.0 12.9 115.6 

GB 6.6 26.1 14.9 125.8 

CNS 12.9 26.2 19.5 121.0 

SNS, Southern North Sea. EC, English Channel. GB, German Bight. CNS, Central North Sea. 

 

Southern North Sea cod and plaice both aggregated in the coastal waters off the English 
mainland.  Cod in the English Channel shift to a resident state when in the western mouth 

of the Channel. In the German Bight, 90% of plaice spent most of their time at liberty 
within the area, displaying little or no dispersal. Of those plaice tagged in the Central 

North Sea, 48% were estimated to be in the resident state within the Northern North Sea 
whilst a further 11 fish undertook southern migrations before shifting to a resident mode 

in the shallow waters of the Central North Sea.  

3.3.3 Prior sensitivity analysis 

Minimal change in the classification of states was found during prior sensitivity analysis 
(Table 3.2). Re-running the HMM with changes to the transition probability prior revealed 

an average percentage change in state across all individuals of 1.5% in cod and 1.8% in 
plaice. In comparison, re-running the adapted HMM with changes to the movement 

parameters priors resulted in a percentage change in state that was on average <1% in 

cod and 2.3% in plaice. Such findings demonstrate that the precise details of these priors 
are not crucial, with state classifications and biologically-important results being robust 

to fairly large changes in prior parameters.  
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Figure 3.8. Annual state dependent space use patterns of Atlantic cod (A and B) and 

European plaice (C and D) in the North Sea and English Channel. Plots are spilt into 
periods of resident dominant (A and C) and migrating dominant (B and D), where 

dominancy is defined by a mean probability of observing a given state at a given time 
that exceeds 0.5. All grid cells (5km2) are illustrated in a colour gradient so as to illustrate 

the sum total number of days spent in a certain state in a given grid cell within a specified 

time period. 
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3.3.4 Distribution of state dwell time 

In an HMM, the length of time that an individual spends in one state before switching to 
the other necessarily follows a geometric distribution. Pooling across individuals, we find 

that these distributions are indeed geometric (see Figure 3.9 and Figure 3.10), and so 
the dynamics of the fitted changes in state are consistent with the Markov nature of the 

model. Further model assessment is provided by residual plots in Appendix 3.10 and 

3.11.  

3.3.5 Comparison to univariate modelling 
State allocation was found to be different across the two tested observation models. The 

bivariate model resulted in state sequences that differed from the univariate model in 
8.0% and 23.3% of cases in Atlantic cod and European plaice, respectively. This result 

confirms the need for the bivariate analysis.  

 

Table 3.2. Prior sensitivity results on HMM and adapted HMM state classification 
process.  

Species Prior Sensitivity test Mean (%)* Maximum (%) 

Atlantic cod 

(Gadus morhua) 

Transition 
probability 

1 1.83 (± 2.61) 9.17 

2 1.27 (± 2.52) 8.33 

Movement 
parameter 

A 0.55 (± 1.06) 3.23 

B 0.55 (± 1.06) 3.37 

European plaice 

(Pleuronectes 
platessa) 

Transition 
probability 

1 1.86 (± 2.88) 13.59 

2 1.72 (± 1.70) 5.63 

Movement 
parameter 

A 2.27 (± 2.23) 7.79 

B 2.45 (± 2.49) 8.44 

*Values (± 1 standard deviation) are reported as mean percentage change and maximum percentage 
change in state across all tested movement paths.  
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Figure 3.9. State dwell time distributions by state in Atlantic cod. The first and last period 

of time spent in a given state has been omitted.  

 

3.4 Discussion 

One of the main objectives of animal movement studies is the scaling of inference about 

movement behaviours from individuals to populations (Block et al., 2011; Hays et al., 
2016; Raymond et al., 2015; Wakefield et al., 2011). HMMs (McKellar et al., 2015; 

Michelot et al., 2016; Patterson et al., 2009) or their Bayesian equivalents (Jonsen et al., 
2013; McClintock et al., 2013) provide a powerful way of achieving this objective but only 

when movement behaviours are identified consistently across multiple individuals. Here 
we have achieved this consistency by ‘borrowing’ information from a finite sample of 

individuals and using it to provide our model with data-driven approximations of each 
state. Using this novel extension to HMM methodology, we investigated spatial and  
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Figure 3.10. State dwell time distributions by state in European plaice. The first and last 

period of time spent in a given state has been omitted.  

temporal shifts in movement behaviour from a large sample size of bivariate movement 

pathways. We demonstrated where and when shifts between two ecologically 
meaningful states are most likely to occur and add further confidence to observations of 

seasonal dependence in the movements of commercially important demersal fish. Our 
biological findings complement and advance current understanding and highlight how 

our approach has significant utility in the fields of movement ecology and conservation.    

Our approach to behaviour classification has two major advantages. First, it enabled us 
to gain meaningful inference from 73 (68% of the dataset) additional movement 

pathways, many of which are data-poor and would otherwise be subject to post-hoc 

removal. This retention of all individual-level information is favourable because it 
maximised our sample size and lends more information to our analysis. Second, our 

approach ensures that state labels are allocated consistently across multiple individuals, 
without resorting to large increases in model complexity. As a direct consequence of 
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these two advantages, we were able to ask population-level post-hoc questions of our 

movement data and provide answers that are meaningful for conservation and spatial 
management. 

Studies that classify behaviour based on horizontal and vertical movements are rare (but 
see Bestley et al., 2015; Breed et al., 2013; DeRuiter et al., 2017). Here, we have 

assumed that ht and vt are conditionally dependent given latent states, which is a novel 
addition to the movement ecology literature. Our reasons for doing so are linked to a 

priori information about how the species of interest alter their activity levels within an 
annual cycle (e.g. Hobson et al., 2009). However, we intuitively expect other species 

occupying three-dimensional environments to exhibit similar degrees of coupling. For 
example, Bestley et al. (2015) reveal that the directed horizontal movements in multiple 

Antarctic pinniped species are assiocated with longer dive durations, whereas an 
inverted relationship is noted in blue whales (Balaenoptera musculus) with percieved 

shallow foraging behaviours being characteried by shallow dives and short horizontal 

movements (DeRuiter et al., 2017). Future studies may find similar observation models 
a powerful tool for investigating the dependences of horizontal and vertical movement 

rates (Carter et al., 2016).  

Our estimates of average movement rates are consistent with previous work. In cod, 
horizontal movement rates whilst in the migratory state are shown to be approximately 

13.5km day-1 which is comparable to past observations (Hobson et al., 2009) and 

laboratory studies (Bainbridge, 1957; Videler and Wardle, 1991). In plaice, previous 

research reports that seven tagged individuals swam on average 255 ± 60.2km during 

pre-spawning migrations (Hunter et al., 2003). Assuming an average migration time of 
2-4 weeks (as noted in Hunter et al., 2003), our estimates of horizontal movement rates 

between 13-20km day-1 seem reasonable. Therefore, we are confident that our choice of 
state labels is biologically meaningful for the species in question.  

Much work has considered the horizontal and vertical movements of Atlantic cod 
(Hobson et al., 2009, 2007) and European plaice (Hunter et al., 2004b, 2004a), noting 

strong seasonal dependence in the movement patterns of individual fish. Here we add 
confidence to these findings by providing a mechanistic view of how fish switch between 

two movement modes during their annual cycle. Specifically, we show that cod and 
plaice are more likely to occupy a resident state during the summer months (April – 

September in plaice; June – November in cod). These periods are dominated by low 
horizontal and vertical movement rates, therefore our findings support the hypothesis 

that both species spend their summer in a sedentary state with minimal activity levels 
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(Metcalfe et al., 2006; Righton et al., 2010). Past studies show that these summer 

months are spent in close proximity to the seabed (Hunter et al., 2004b; Righton et al., 
2010), however we note that localised foraging, analogous to the area restricted search 

behaviours (classified by short step lengths and high turning angles) described in striped 
marlin (Sippel et al., 2011), leatherback turtles (Dermochelys coriacea; Jonsen et al., 

2007) and basking sharks (Cetorhinus maximus; Sims et al., 2006) are expected to 

occur. This is especially true in the Atlantic cod who have been shown to ramp up vertical 
excursions, a trend indicative of localised foraging, in weeks prior to pre-spawning 

migration (Righton et al., 2001). Activity levels are greatly increased during the winter 
and early spring (October – March in plaice; December – May in cod), resulting in a 

collective shift in state. As in previous studies (Hobson et al., 2009; Hunter et al., 2004a), 
we interpret this shift to be reflective of pre-spawning migrations, the onset of spawning 

and subsequent post-spawning migrations. One limitation of the two-state model 
considered here is that we cannot directly infer foraging or spawning behaviour. Foraging 

and spawning events are likely to represent an intermediate activity level, with both 
behaviours involving notable vertical displacement to and from the water column 

(Hobson et al., 2009). The inclusion of a third intermediate state would be a relatively 

straightforward extension to the model structure (see Michelot et al., 2017; Peel and 
Good, 2011; Vermard et al., 2010 for examples of HMMs that consider more than 2 

states). However, it is unlikely that the scale of these vertical excursions is large enough 
to allow classification at the daily time step. Further, the task of model selection, in 

particular the choice of the number of behavioural states, is non-trivial and cannot be 
assumed to be analogous to conventional model selection steps. For instance, both Li 

and Bolker (2017) and Pohle et al. (2017) show that information criterion techniques 
repeatedly support models with a higher than expected number of states. Therefore, we 

side with past reviews (e.g. Langrock et al., 2012; Patterson et al., 2017) which advise 
pragmatism and attribute our choice of a two-state model over three or four-state 

alternatives to our prior knowledge of the species, the temporal resolution of the data 

and the research question of interest. If the aim of the study was to identify fine scale 
behavioural processes (e.g. instances of foraging), one solution would be to deploy a 

more sophisticated tag, for example an accelerometer capable of recording acceleration 
rates, where bursts in speed are assumed to represent prey pursuit (see Leos-Barajas 

et al., 2017b) for an example of HMM application to accelerometer data). Alternatively, 
given the current data, we could move towards a more complex modelling approach (e.g. 

Leos-Barajas et al., 2017a). Here we have considered horizontal and vertical movement 
at the daily level, however in reality vertical movement is sampled at a much finer 

temporal resolution (every 10 minutes). Past studies have shown us that vertical 
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observations made at the 10-minute scale are sufficiently resolved to infer bouts of 

localised foraging (Hobson et al., 2007) and the rises and falls often associated with 
spawning (Dean et al., 2014). These fine scale patterns of movement will only be 

observed in the vertical dimension, due to sampling and tag type, however their biological 
interpretation will be somewhat conditional on the broad behavioural state of the fish (i.e. 

foraging will predominantly occur during the broad resident state). As a collaborative 

effort with colleagues at the University of Bielefeld, we have built a hHMM that can jointly 
infer behavioural states across multiple temporal scales and applied it to the movement 

of a single Atlantic cod (Adam et al., in review). Specifically, the model employs a coarse-
scale HMM that classifies daily horizontal movements into the broad states of residency 

and migration; this part of the model is analogous to the univariate model considered 
above. However, nested within each day is a fine-scale HMM which classifies 10-minute 

vertical movement observations to fine-scale behavioural states conditional on the 
current coarse-scale state of the fish. Doing so has three clear benefits. One, it provides 

a more nuanced depiction of animal movement, as behaviour can be inferred at the time 
scale of observation. Two, it permits the classification of fine scale movements (like 

spawning) that are of significant interest to fisheries scientists and management decision 

makers. Three, it provides another example of how the application of robust statistical 
techniques can maximise the inference gained from tagging data.  

Over the last 70 years, landings data for the North Sea and English Channel demonstrate 

that catch per unit effort (CPUE) for demersal species is higher during the summer 
months (Righton et al., 2009). Such increases in CPUE are undoubtedly linked to 

changes in the populations’ underlying movement behaviour, as time spent on the 
seabed results in an increased vulnerability to commercial exploitation (Righton et al., 

2009). By assuming that time spent in a resident state is linked to sea-bottom dwelling, 

we show that cod and plaice aggregate in certain habitat types. For example, cod in the 
English Channel have greatest density in the deeper waters at the western mouth of the 

English Channel. In contrast, cod and plaice in the Southern North Sea aggregate in 
coastal waters off the English mainland. We also demonstrate that plaice in the German 

Bight remain exclusively within this region, suggesting the presence of a sedentary 
resident population in which fish spawn and forage in the same locality (previously noted 

in plaice by Hunter et al., 2004a and in cod by Neat et al., 2006). Such spatial information 
is essential for defining multi-species management measures, as strategies typically 

involve gear restrictions (Moustakas et al., 2006) aimed at limiting the exploitation of 

certain species/life stages  and spatial fisheries closures aimed at protecting areas of 
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particular importance for species survival e.g. foraging and spawning grounds (Hunter et 

al., 2004b; Righton et al., 2007).   

One limitation of our method is the way in which we deal with individual variation. 

Currently we assume that by analysing the movements of a finite sample of data-rich 
pathways (n=34) we gain sufficient information about how the mean movement of each 

state is distributed throughout the population. We then expect the movements of all other 
individuals to be drawn from one of these distributions and make no attempt to explain 

any deviance away from this ‘expected’ process. One way to improve our approach and 
make it more generic would be the inclusion of covariate information (e.g. Phillips et al., 

2015). For example, four Atlantic cod were unexpectedly classified solely to a resident 
state even through their movements occurred throughout the winter (November – April). 

Post-hoc investigations reveal an average body length of ~56cm which lies within the 
predicted range of length at first maturity (31-74cm; Froese and Pauly, 2017). It is likely 

that immature fish act differently to their mature conspecifics (Sippel et al., 2015) and 

that tagging programmes like the one considered here include fish of differing sex and 
age (Carter et al., 2016). Consideration of these factors would be a logical next step. 

However, we believe that the inclusion of body length (see Towner et al., 2016 for an 
ecological example) or other individual covariates within the HMM’s likelihood function 

would provide a fruitful avenue for future research.  

Technological advancements in telemetry devices have led to huge efforts to track the 

movements of free-roaming marine animals (Hays et al., 2016; Hussey et al., 2015). 
Tagging data is now seen as a valuable information source for stock assessment models 

(Sippel et al., 2015), monitoring the effectiveness of conservation efforts (McGowan et 
al., 2017; Raymond et al., 2015) and understanding population dynamics across vast 

spatial scales (Block et al., 2011; Hindell et al., 2016). However, there is no avoiding the 
fact that tags are expensive (McGowan et al., 2017), liable to occasional failure and often 

produce individual pathways that are of limited use (data-poor or a low number of 
observations). Here we illustrate how the adoption of our approach can make tagging 

studies more cost-effective, as inference can still be gained from data-poor movement 
paths without resorting to redeployment or a renewed effort to secure further funding. 

Moreover, we have introduced a methodology that makes the process of scaling up 

inference about movement behaviours from individuals to population more readily 
achievable. In Chapter 4 we will take this scaling of individual-level movement data one 

step further by moving away from behaviour and thinking about how movement 
propagates through a whole marine community. Specifically, we analyse the scaling 
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relationship between movement and body size and theorise how changes the slope of 

this relationship will have emerging community-level consequences.  
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Chapter 4.  

Testing movement allometry in free-roaming marine fish.  

4.1 Introduction  

An animal’s ability to encounter prey, escape predation and ultimately survive in an ever-
changing environment is all a function of movement (Hirt et al., 2017). Mobile organisms 

often transit vast distances on an annual basis to feed and reproduce (Block et al., 2011). 

This ability to re-distribute across varying habitat patches and thermal niches also 
profoundly influences an individual’s ability to cope with changes in climate (Parmesan 

and Yohe, 2003). In Chapters 2 and 3 we discuss how movement observations made 
via the deployment of DSTs greatly increase our understanding of fish movement and 

provide insight into how movement may drive stock dynamics. However, we cannot 
simply tag all fish. Thus, gaining meaningful inference about how movement influences 

species interactions (e.g. predation events) at the community-level requires us to 
consider fish movement in a much broader sense.  

Power law functions where body size (usually body mass; m) is used to characterise the 

scaling of a physiological rate (p) across major taxa based on an intercept a and a slope 

b, are common throughout ecology, and can be written as 

𝑝	 ≈ 	𝛼𝑚�																																																												[𝐸𝑞𝑛. 4.1]. 

To date power law functions have been used to describe metabolism (Barneche et al., 

2014), visual range (Andersen et al., 2016a), predator: prey size ratios (Rall et al., 2012) 
and maximum uptakes rates (Edwards et al., 2012; Marañón et al., 2013). Movement 

(M), be it velocity (e.g. maximum speed; Hirt et al., 2017) or displacement per unit time 
(e.g. daily distance travelled; Carbone et al., 2005), behaves similarly and our current 

understanding of how movement scales with body mass in marine fish is based on a 

taxa independent power law function where:  

𝑀	 ≈ 	𝛼𝑚�.H�̇																																																						[𝐸𝑞𝑛. 4.2]. 

This scaling relationship is derived from the work of Ware (1978) who, using Brett’s work 
(1973, 1965, 1964, 1963) on the energetics of sockeye salmon (Oncorhynchus nerka), 

estimated that optimal cruising speed (the rate of movement that maximises the distance 
travelled per unit energy expenditure) and optimal foraging speed (the rate of movement 

that maximises the flow of surplus energy) in pelagic fish scaled with body length (𝑙) 

according to: 
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𝑀� 	≈ 	𝛼𝑙�.�																																																																		[𝐸𝑞𝑛. 4.3] 

where 𝑀� represents both optimal cruising and optimal foraging speed. To expand, 
Ware’s (1978) work allows an optimal cruising speed at size to emerge as the product 

of a trade-off between the cost of movement (both in terms of the power needed to 
overcome drag and the cost of standard metabolism) and the displacement achieved per 

unit time. Whereas, optimal foraging speed at size (in a pelagic predator that relies solely 

on sight to locate its’ prey) is a trade-off between the cost of movement and the net food 
intake per unit time (F), where F is dependent on the density of prey items, a size-based 

handling time relationship (the time it takes to pursue and consume prey) and visual 
acuity at size (introduced in Chapter 5). In both cases, equation 4.3 is shown to be 

consistent, with validation occurring by comparing estimated rates at size to those 
observed by Brett (1973, 1965, 1964, 1963). Given the generality and size-based nature 

of Ware’s (1978) work it currently has widespread applications in a range of size-based 
marine population and community models (e.g. Hartvig et al., 2011), where it is used to 

quantify how often a predator of size j encounters its prey of size i per unit time. These 
size-based models have greatly increased our knowledge about how size-structured 

populations and/or communities will respond to current and future environmental 

perturbations (Dueri et al., 2014), as well as acting as useful tools in fisheries 
management (Blanchard et al., 2009; Jacobsen et al., 2017, 2013). Despite this, the use 

of the theoretical exponent of 0.13̇ has never been validated using empirical 
observations.  

Several studies have considered the question of how movement scales with body size 
in fish. For instance, maximum speed (Hirt et al., 2017), home range (Nash et al., 2015; 

Tamburello et al., 2015) and maximum migration distance (Hein et al., 2012; Watanabe 
et al., 2015) have all previously been shown to be body size dependent in swimming 

animals. Furthermore, physical and environmental traits such as thermoregulation 

(Watanabe et al., 2015), phylogenetic class (Tamburello et al., 2015) and habitat 
dimensionality (Pawar et al., 2012) have all been used to explain deviances from a 

singular, all-encompassing power law relationship. Despite widespread effort to collect, 
analyse and better understand movement in fish, investigations like those of Watanabe 

et al. (2015) typically rely on species average estimates (i.e. one data point per species) 
and are often forced to simplify the recorded movement process into a very specific type 

of movement (such as maximum speed) to find common ground among varying data 
sources. In doing so these studies ignore intraspecific variation. Moreover, the inference 



 73 

gained from these studies (e.g. Hirt et al., 2017) often lacks relevance to a population or 

community model which needs its assumptions surrounding fish movement to be 
consistent and relevant across a prolonged observations window (e.g. months and 

years).  

Here we expand on previous work in three ways. First, we analyse observations of 

individuals within and across species, a novel addition to the power law literature which 
has previously focussed on mean values per species. Second, we are the first to 

consider movement in both larval and adult fish. Third, by relying on movement 
observations made in situ over a prolonged observation window, we aim to calculate a 

movement rate that is both more representative of movement in the field and more 
relevant to size-based population and community models. This final point is important if 

we hope to validate or invalidate current assumptions.  

Drawing on the rising quality and quantity of marine telemetry devices (Hays et al., 2016; 

Hussey et al., 2015), and the in situ work of some of our collaborators (Jeffrey Leis – 
Adjunct Professor, University of Tasmania), we constructed a dataset of movement from 

over 550 free-roaming marine fish. Our dataset includes 18 species spanning 7 orders 
of magnitude in body mass and includes movement from both adult and larval fish. Using 

movement in the horizontal and vertical dimension, we calculate a new movement metric 
which we term realised movement (𝑀��WT). We define 𝑀��WT	as a mean displacement rate 

(m day-1) per individual averaged over a prolonged observation window (10 minutes in 

larval fish; >40 days in adult fish), during which movement is recorded at regular time 
intervals.  

We use this extensive dataset to investigate the following four questions in a sequential 

manner: (Q1) Does 𝑀��WT scale with body mass in marine fish according to a taxa 

independent exponent of 0.13̇? (Q2) Are our taxa-independent findings replicated by 
models that account for within- and across-species variance? (Q3) Does the scaling of 

movement with body mass change based on life stage? (Q4) In adult fish (body length 
> 30cm) do factors such as: habitat type (demersal-dwelling vs. pelagic-dwelling), 

thermoregulatory strategy (ectothermic vs. endothermic) or phylogenetic class 

(Actinopterygii vs. Chondrichthyes), help explain the variance we observe in individual 
fish movement? For each of the above questions (Q1-4) we pay particular attention to 

the exponent governing the slope of the relationship between movement and body mass 
however we do report estimated intercepts for transparency.   
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4.2 Methods 

4.2.1. Movement data 

Horizontal and vertical movement rates of marine fish were compiled from the literature 

or from unpublished data sources (n = 583; Table 4.1). Individual fish were either tagged 
using data loggers/transmitters (n = 428) or observed swimming in situ in the wild (n = 

155). All tagged fish were assumed to be mature adults and have a species specific 
minimum size that is dictated by the ethical limits of tag deployment (i.e. tag weight 

should not exceed 2% of the body weight of the subject fish, regardless of attachment 
method; Winter, 1996). All fish observed in situ were reared pre-settlement stage pelagic 

larvae of demersal fish. The maximum size of larvae is simply a limitation of these in situ 

procedures, as larger fish move too fast for scuba divers to follow. Thus, our dataset can 
be viewed as two data clusters, one larval and one adult, separated by a body mass 

range of approximately 200 grams (largest larvae = 0.24 g; smallest adult = 199.86 g). 
All body masses were either reported in the literature or calculated from total body 

lengths (cm) using estimated length-mass ratios (Table 4.2). For certain species, only 
fork lengths (FLs) were available. FLs were converted to total lengths (TLs) using 

published conversion factors (Table 4.3).  

In the following sub-sections, we detail the two different types of movement data that 

contribute to our analysis, demonstrate how the sub-sampling of vertical movement has 
informed the scaling of larval movement to the daily level and ultimately calculate a 

realised movement rate for each individual fish.  
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Table 4.2. Length (cm) to mass (g) conversion ratios.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Species log10 (intercept) slope 

Atlantic cod (Gadus morhua) 0.0071 3.08 

European plaice (Pleuronectes platessa) 0.0093 3.02 

Atlantic salmon (Salmo salar) 0.0120 3.00 

Atlantic Bluefin tuna (Thunnus thynnus) 0.0135 2.92 

Orange-spotted grouper (Epinephelus 
coioides) 0.0141 3.07 

Brown-marbled grouper (Epinephelus 
fuscoguttatus) 0.0138 3.04 

Four-finger threadfin (Eleutheronema 
tetradactylum) 0.0068 3.04 

Common ponyfish (Leiognathus equulus) 0.0151 3.15 

Saddletail snapper (Lutjanus malabaricus) 0.0209 2.93 

Longfin batfish (Platax teira) 0.0245† 2.96† 

Australasian snapper (Pagrus auratus) 0.0269 2.94 

Surf bream (Acanthopagrus australis) 0.0128† 3.03† 

Mulloway (Argyrosomus japonicus) 0.0288 2.80 

Porbeagle shark (Lamna nasus) 0.0204 2.94 

Blue shark (Prionace glauca) 0.0046 3.24 

Shortfin mako shark (Isurus oxyrinchus) 0.0054 3.12 

Spiny dogfish (Squalus acanthias) 0.0028 3.08 

Thornback Ray (Raja clavata) 0.0025 3.18 

All intercept and slope values are sourced from FishBase observations (Froese and Pauly, 
2017). † Not observed, sourced from a Bayesian estimation approach (Froese et al., 2014). 
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Table 4.3. Fork length to total body length conversion factors.  

 

 

 

 

 

 

4.2.1.1. Adult movement 

All adult fish were tagged with archival data storage tags (DSTs; n = 321) or partial 
satellite archival tags (PSATS; n = 107). DSTs and PSATs were both pre-programmed 

to record depth (m) and sea temperature (°C) at regular time intervals (typically every 10 
minutes) for the duration of tag deployment. In our dataset, DSTs were generally used 

to record the movement of smaller demersal species (body mass range: 0.19 – 9.1kg), 
whereas PSATs are deployed on larger more pelagic roaming species (body mass 

range: 2.0 – 200.0kg). Adult species include 4 bony fish, 4 sharks and 1 ray (Table 4.1).  

Horizontal and vertical time series were obtained for the majority of adult fish. As in 

Chapter 3, vertical movement (m day-1) was calculated as the absolute difference 
between corresponding depth observations summed to the daily level. Horizontal 

movement (m day-1) was then calculated in a two-stage process. First, a daily 
geolocation (latitude and longitude) was estimated from the recorded depth and 

temperature measurements using a path reconstruction method. Second, Euclidean 
distances between successive geolocations were calculated using the Great Circle 

equation and assumed to represent horizontal movement per day (h). The choice of 

reconstruction method varied by study and tag type (see Table 4.4 and references 
therein), however all methods rely on a state-space formulation of the tracking problem. 

Furthermore, all reconstruction models serve the same purpose: the estimation of one 
geolocation per day that best explains the daily variance in recorded depth and sea 

temperature. Thus, we are confident when comparing across light- and tidal-based 
reconstruction methods.  

To minimise the presence of erroneous or irregular measurements associated with 

release and recapture events, we removed the first two weeks and the last day from 

each time series (as in Griffiths et al., 2018; Hobson et al., 2007). To ensure daily 
movement rates were consistent through time, only tagged fish with time series of at  

Species FL to TL conversion factor Reference 

Porbeagle shark (Lamna 
nasus) 1.12 Campana et al., 2013 

Blue shark (Prionace glauca) 1.17 Campana et al., 2005 

Shortfin mako shark (Isurus 
oxyrinchus) 1.08 Pratt Jr. and Casey, 1983 

FL, Fork length (cm). TL, Total length (cm).  
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Table 4.4. Further details of adult tagging data.  

 

least 40 days were used. Vertical movement (v) was not available for all species (n = 75; 
see Table 4.1). In these four species, horizontal movement (h) is assumed to equal 𝑀��WT.  

 

4.2.1.2. Larvae movement 

All larvae were post-flexion stage (see Figure 4.1 for a morphological illustration) 
meaning individuals were morphologically well developed with good swimming abilities, 

control of their vertical distribution and capable of orientating their horizontal movements 
(Leis, 2006; Leis et al., 2006; Leis and Carson-Ewart, 2003). Larval species include three 

warm temperate and six tropical perciform fish (Table 4.1). For full details of fish rearing, 
transportation and release we refer the reader to Leis et al. (2009a, 2009b, 2006).   

Species 
Tag 
type Habitat 

Thermoregulation 
strategy 

Phylogenetic 
class 

Reconstruction 
method 

Reconstruction 
reference 

Atlantic cod (Gadus 
morhua) DST Demersal Ectothermic  Actinopterygii Tidal-based Pedersen et al., 

2008 

European plaice 
(Pleuronectes 

platessa) 
DST Demersal Ectothermic Actinopterygii Tidal-based 

Pedersen et al., 
2008 

Atlantic salmon† 
(Salmo salar) PSAT Pelagic* Ectothermic Actinopterygii Tidal-based Pedersen et al., 

2008 

Atlantic Bluefin tuna† 
(Thunnus thynnus) PSAT Pelagic Endothermic Actinopterygii Light-based Nielsen and 

Sibert, 2007 

Porbeagle shark 
(Lamna nasus) PSAT Pelagic Endothermic Chondrichthyes 

Tidal-based (15 
fish) † 

Light-based (7 
fish) 

Pedersen et al., 
2008 

Nielsen and 
Sibert, 2007 

Blue shark (Prionace 
glauca) PSAT Pelagic Ectothermic Chondrichthyes Light-based Nielsen and 

Sibert, 2007 

Shortfin mako shark 
(Isurus oxyrinchus) PSAT Pelagic Endothermic Chondrichthyes Light-based 

Nielsen and 
Sibert, 2007 

Spiny dogfish† 
(Squalus acanthias) DST Demersal Ectothermic Chondrichthyes Tidal-based 

Pedersen et al., 
2008 

Thornback Ray (Raja 
clavata) DST Demersal Ectothermic Chondrichthyes Tidal-based 

Pedersen et al., 
2008 

DST, data storage tags. PSAT, pop-up satellite tags. Information on habitat, thermoregulation strategy and phylogenetic class 
were all sourced from FishBase (Froese and Pauly, 2017). *Despite being an anadromous species we classify Atlantic salmon 
as pelagic as individuals were only tracked during their time at sea. †Unpublished tagging data. Atlantic salmon and porbeagle 
were tagged with PSATs (Microwave Telemetry X-Tags, Microwave Telemetry Inc) following the tagging procedure detailed in 
Strøm et al. (2016) and Bias et al. (2017), respectively. Spiny dogfish were tagged with G5 DSTs (CEFAS Technologies) following 
the same tagging procedure detailed for Atlantic cod in Hobson et al. (2009, 2007). Atlantic Bluefin tuna were tagged with PSATs 
(Microwave Telemetry X-Tags, Microwave Telemetry Inc). 
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Figure 4.1. Morphological illustrations of two post-flexion stage larval fish. Each 
individual has been preserved in ethanol prior to imagery. Shown on the left is a Longfin 

batfish (Platax teira; body length = 1.10 cm) and on the right a Saddletail snapper 
(Lutjanus malabaricus; body length = 1.85 cm). Images are taken directly from Leis et 

al. (2009a) and were originally taken by M. M. Lockett and A. C. Hay. Images are not to 
scale.   

Upon release, larval movement was observed following standard in situ procedures (Leis 
and Carson-Ewart, 1998, 1997). Briefly, two scuba divers descended to a depth of five 

metres where the observer (diver one) released an individual fish from a small container. 
Once the larva chose its initial trajectory, both divers followed. Diver one’s sole 

responsibility was to the follow the larvae whilst the second recorded the data. The 
influence a following diver has on larvae movement has been heavily discussed within 

the published literature (Leis and Carson-Ewart, 2003, 2002, 2000).  

Each fish was followed for a maximum of 10 minutes. Swimming depth (m) and direction 

of travel, recorded as degrees relative to magnetic north (3° west of true north in the 
study area), were recorded at 30 second intervals with a dive computer and compass, 

respectively. Speed (cm s-1) was also calculated from distance travelled as measured by 
a calibrated flowmeter at 5-minute intervals. Only movement paths containing complete 

depth recordings (21 data points) and two speed recordings over a full 10-minute 
observation period were considered.  

One issue we faced when integrating larval movement into our dataset was whether 
each fish was moving through a viscous or inertial hydrodynamic regime. Adult 

movement will undoubtedly be occurring in an inertial regime so movement through a 
viscous regime should be considered incomparable. To overcome this, we calculated 

Reynolds numbers (Re; Nachtigall, 2001) 

𝑅𝑒 =
𝑢	.		𝑙
𝑣
																																																														[𝐸𝑞𝑛. 4.4] 
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where 𝑢 is the mean swimming speed (cm s-1) of each larva, 𝑙 is body length (cm) and 𝑣 

is the kinematic viscosity of sea water (cm2 s-1). 𝑣 is calculated as a function of water 
temperature (t) and salinity (s; El-Dessouky and Ettouney, 2002). As larva were 

observed in two main locations, one in Taiwan (t = 27.5°C, s = 34.5 parts per trillion (ppt; 
Leis et al., 2009a, 2009b); and one in New South Wales, Australia (t = 21.5°C, s = 34.5 

ppt; Leis et al., 2006) we calculated separate site-specific 𝑣 values (Taiwan = 0.00887 

cm2 s-1, NSW = 0.01012 cm2 s-1). As in Leis et al. (2009a), we assume that Re values 
less than 300 are indicative of a viscous hydrodynamic regime, whereas Re values 

greater than 1000 are indicative of movement in an inertial regime. Reynolds numbers 
between 300 and 1000 are thought to reflect an intermediate hydrodynamic regime were 

both inertial and viscous forces are influential. As such only larvae with estimated Re 
values > 300 were considered. This cut off is likely to be a little conservative however it 

ensures that all recorded movements occur in an intermediate or inertial hydrodynamic 
regime and allows us to maintain a large majority of our data set.  

As in adult movement, the absolute differences between corresponding depth 
measurements were summed to produce a vertical movement rate (m per 10 minutes; 

𝑣H�). Recorded speeds were converted to horizontal movement (m per 10 minutes; ℎH�) 
in a two-stage process. First, each speed recording was scaled to a metric of horizontal 

movement per five minutes (ℎ�; m) according to: 

ℎ� = 	𝜏�(Dsin	𝛽F

E

FGH

)u + (Dcos	𝛽F

E

FGH

)u																																													[𝐸𝑞𝑛. 4.5] 

where 𝜏 is the recorded speed multiplied by 30 (scales speed from cm per second to cm 
per 30 seconds) and 𝛽	is the direction of travel (°) during each 30 second time interval. 

Second, since each fish has two speed recordings, ℎ� is calculated twice and an average 
(mean) of the two values is taken. This average value is then doubled to produce ℎH�.  

4.2.1.3. Scaling of vertical movement  

Scaling ℎH� and 𝑣H� up to the daily level requires knowledge about the underlying 

processes that drive movement through time. To gain this knowledge, vertical 
movements (recorded at 30 second intervals) were sub-sampled at regular intervals (30 

second, 1 minute, 2 minute, 5 minute and 10 minute). For each fish, we calculate the 30 
second, 1 minute, 2 minute, 5 minute and 10 minute series by taking the absolute 

differences between observations lagged at intervals of 1, 2, 4, 10 and 20, respectively. 
A mean is then taken for each sub-sampled series of absolute differences. Thus, each  
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Table 4.5. Relationship between vertical movement rate and sampling time in larval and 

adult marine fish. Model selection conducted using AIC.  

Life stage Model df AIC DAIC 

Larvae 
VM ~ sampling time + (1|species) 4 1561.36 0 

VM ~ 1 + (1|species) 3 1946.83 385.47 

Adult 
VM ~ sampling time + (1|species) 4 3159.32 0 

VM ~ 1 + (1|species) 3 4539.38 1380.06 

df, degrees of freedom. VM, vertical movement rate. The best models are shown in bold. 

 

larval fish has an average vertical movement rate at the 30 second, 1 minute, 2 minute, 
5 minute and 10 minute interval. The relationship between these average vertical 

movement rates and sampling time is then analysed using linear mixed effect models 
(lme4 package; Bates et al., 2015) in R (R Core Team, 2016). Both explanatory 

(sampling time) and response variables (average vertical movement rate) were log 

transformed, and we include species as a categorical random effect on the model’s 
intercept. Our information (number of data points) about each average vertical 

movement rate scales negatively with sampling interval. For example, at the 30 second 
interval 20 data points contribute, whereas only 2 data points contribute to the average 

vertical movement rate at the 5 minute interval. To account for this, we also include a 
vector of prior weights on the models fitting process, allowing values at the 30 second 

interval to have a greater contribution to the model’s log-likelihood.  

Model selection via the Akaike Information Criterion (AIC) favours the more complex 

model (Table 4.5), demonstrating a positive relationship between averaged vertical 
movement and sampling time in larval fish (Figure 4.2). The scaling of this relationship 

is described by an estimated exponent of 0.54 (±0.023) which suggests that vertical 
movement through time follows a somewhat diffusive process. A perfectly diffusive 

process would have an exponent of exactly 0.5. As per these findings, we scale 𝑣H� and 
ℎH� to the daily level by multiplying each value by 1440.54. Thus, we gain a h (m day-1) 

and v (m day-1) estimate for each larval fish that is comparable to the previously 
estimated h and v values for adult fish.  

To add further validation to this approach we carried out a similar sub-sampling 
experiment in adult fish. Again, we sub-sampled vertical movement (recorded every 10 

minutes) at regular time intervals (10 minute, 20 minute, 1 hour, 2 hour and 4 hour) and 
calculate an average vertical movement rate at each sampling interval.  
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Figure 4.2. Sub-sampling of vertical movement (m) through time (30 second, 1 minute, 
2 minute, 5 minute and 10 minute sampling intervals) in larval fish. The best fitting model 

(Table 4.5, exponent = 0.54 ± 0.023) is illustrated (solid black line). Model uncertainty 
(95% confidence intervals, grey shading) is calculated using parametric bootstrapping 

(using the bootMer function in the lme4 package). Both x and y values have been log 
(natural log) transformed. 

In this case, absolute differences between depth observations are lagged at intervals of 

1, 2, 6, 12 and 24. Only depth recordings between the hours of 10am and 2pm were 

used as all larval movement observations occurred during day light hours. Moreover, fish 
are known to display strong diurnal patterns in vertical activity (e.g. Righton et al., 2001), 

therefore by truncating our dataset we attempt to ensure consistency across varying 
observation methods and expected differences in fish behaviour.  
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Figure 4.3. Sub-sampling of vertical movement (m) through time (10 minute, 20 minute, 

1 hour, 2 hour and 4 hour sampling intervals) in adult fish. The best fitting model (Table 
4.5, exponent = 0.55 ± 0.01) is illustrated (solid black line). Model uncertainty (95% 

confidence intervals, grey shading) is calculated using parametric bootstrapping (using 
the bootMer function in the lme4 package). Both x and y values have been log (natural 

log) transformed. 

Again, the relationship between average vertical movement rate and sampling time is 

analysed using linear mixed effect models. The same model formulation as described 
above is considered. However, prior weights are omitted from the models fitting process 

as the number of data points contributing to each average vertical movement rate in 
adults is suitably large. As in larval fish, model selection via AIC (Table 4.5) favoured the 

more complicated model demonstrating a positive relationship between averaged 
vertical movement and sampling time in adult fish (Figure 4.3). The scaling of this 

relationship is described by an estimated exponent of 0.55 (±0.01), demonstrating that 
vertical movement in adult fish also follows a somewhat diffusive process. An exponent 
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of 0.55 (adult fish) is indistinguishable from an exponent of 0.54 (larval fish) adding 

further justification to our scaling of ℎH� and 𝑣H� to the daily level.  

Vertical movement as opposed to horizontal movement was used in sub-sampling of 

movement through time for two reasons. First, data availability in larval fish, as sub-
sampling from 21 vertical observations is more robust than sub-sampling from two 

horizontal observations. Second, temporal comparability exists in the vertical dimension, 
as both adults and larvae were observed at the 10 minute time resolution. This 

comparability was not available in the horizontal dimension.   

4.2.1.4.  Calculating realised movement  

Daily h and v values are then combined to produce an average three-dimensional 
movement rate (𝑀��WT) as per: 

𝑀��WT = 	√ℎu +	𝑣u																																																			[𝐸𝑞𝑛. 4.6].  

Thus, 508 𝑀��WT	values are produced based on movement in both the horizontal and 
vertical dimension. For those 75 adult fish for whom only horizontal movement is 

available we assumed h equals 𝑀��WT.  

4.2.2. Statistical analysis of movement allometry  

We apply the following three linear models to our dataset of fish movement. First, 

ln𝑌 = ln𝛼 + 	𝛽ln𝑋 + ln𝜀																																														[𝐸𝑞𝑛. 4.7] 

where ln𝑌 is a vector of natural log-transformed 𝑀��WT values (response variable), ln𝛼 is 

a fixed effect intercept, 𝛽 is a fixed effect slope, ln𝑋	is a vector of natural log-transformed 
body mass values (predictor variable) and ln𝜀 is the model’s unexplained residual 

variation. Second,  

ln𝑌 = ¦ln𝛼 + ln𝛾�§�¨F�� + ln𝛾§N©TUª + 	𝛽ln𝑋 + ln𝜀																					[𝐸𝑞𝑛. 4.8] 

where the additional vectors, ln𝛾�§�¨F�� and ln𝛾§N©TU represent random effect coefficients 

on the model’s intercept. ln𝛾�§�¨F�� accounts for the residual intercept deviations 

attributable to species uniqueness. ln𝛾§N©TU accounts for the residual intercept deviations 

attributable to patterns of phylogenetic relatedness among species. Third,  

ln𝑌 = ¦ln𝛼 + ln𝛾�§�¨F�� + ln𝛾§N©TUª + ¦𝛽ln𝑋 + 	ln𝜆�§�¨F��ª + ln𝜀							[𝐸𝑞𝑛. 4.9] 

where the additional vector ln𝜆�§�¨F�� accounts for the residual slope deviations 

attributable to species uniqueness.  
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Each model (simple model: Eqn. 4.7; species as a random intercept: Eqn. 4.8; species 

as a random intercept and slope: Eqn. 4.9) is designed to answer a specific research 
question as outlined in the chapter’s introduction. In Q1, we consider the simple model, 

as our aim is to test the taxa independent relationship between movement and mass. 
Thus, we assume that each data point is independent. In Q2, we account for species 

uniqueness as well as patterns of phylogenetic relatedness by considering 

phylogenetically informed random intercept and random intercept and slope models. In 
Q3, we apply all three models to larvae and adult data clusters separately (six models in 

total). Thus, the vectors ln𝑌 and ln𝑋 become life-stage specific. In Q4, we add a second 
fixed effect predictor variable to the random intercept and slope model, such that 𝐸𝑞𝑛. 4.9 

becomes: 

ln𝑌 = ¦ln𝛼 + ln𝛾�§�¨F�� + ln𝛾§N©TUª + ¦𝛽ln𝑋 + 	ln𝜆�§�¨F��ª + 	𝜎 + ln𝜀						[𝐸𝑞𝑛. 4.10] 

where 𝜎 is a categorial variable taking the form of one of the following traits: 
thermoregulation (ectothermic v. endothermic), habitat type (demersal-dwelling v. 

pelagic-dwelling) or phylogenetic class (Actinopterygii vs. Chondrichthyes). In total we fit 
six models, three where each categorical trait is inputted without an interaction term so 

is acting solely as a fixed effect on the models intercept and three where each categorical 
trait is inputted with an interaction term. Trait classification of each adult species can be 

found in Table 4.4. We chose to only fit a random intercept and slope model throughout 

Q4 as it was most supported by model selection in Q3.  

Phylogenetic relatedness is thought to influence broad-scale variation in life-history traits 
(Lynch, 1991). Closely related species will likely share some ancestral state, therefore 

variation in physiological rates (such as movement) might be expected to be a function 
of that shared evolutionary history. To account for phylogenetic relatedness, we created 

a tree containing all 18 fish species. The tree was constructed using the ape (Paradis et 

al., 2004), geiger (Harmon et al., 2008) and phylotools (Revell, 2012) packages in R and 
was viewed using FigTree v1.4.3 (Rambaut, 2009). A dendrogram is provided in 

Appendix 4.2. Our tree is effectively ultrametric as nodes are the same length to 
approximately 0.1 million years. Phylogenetic relationships among species are sourced 

from the published literature (Aschliman et al., 2012; Froese and Pauly, 2017; Rabosky 
et al., 2013; Vélez-Zuazo and Agnarsson, 2011). Two species were missing from the 

aforementioned references – Thornback ray (Raja Clavata) and Mulloway (Argyrosomus 
japonicus). Thornback ray are part of the superorder of cartilaginous fishes (Batoidea) 

but are in a basal group which split from all other sharks approximately 215 million years 
ago (mya; Aschliman et al., 2012); we added Thornback ray accordingly. Less 
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information is available about Mulloway however their family (Sciaenidea – groupers) is 

closely related to the snapper family (Lutjanidae) which contains one of our other 
species, Saddletail snapper (Lutjanus malabaricus). Consequently, we insert Mulloway 

next to Saddletail snapper and assume a divergence date of 47 mya.  

Species may also present unique variations in physiological rates that are independent 

of phylogeny (Barneche et al., 2018). To account for this uniqueness, we have added 
multiple species uniqueness terms. The name species uniqueness is somewhat arbitrary 

however it is best thought of as a description of the intraspecific variation that exists 
within each species’ sample. As species uniqueness terms are introduced alongside a 

phylogenetic correlation matrix, their estimates contribute to the model’s species-level 
effects but are independent of phylogeny. We expect both species uniqueness and 

phylogenetic relatedness to contribute to the variance we observe in the relationship 
between movement and body mass.  

All models are fitted in a Bayesian framework using the brms package (Bürkner, 2017) 
in R. We estimated intercept and slope parameters for each model by taking the mean 

of their posterior. All posterior distributions were estimated using Markov chain Monte 
Carlo (MCMC) methods. Parameter uncertainty is reported as upper (u-95%) and lower 

(l-95%) 95% credible intervals. We include weakly informative priors on each model’s 
intercept and slope. These are Gaussian distributed with a mean of zero and standard 

deviations of 50 (intercept) and 10 (slope), respectively. When appropriate we used a 

Student t prior for each random effect (degrees of freedom = 3, scale = 10). All models 
consider four Markov chains. Each chain runs for 5000 iterations, with 1000 iterations 

removed as a burn-in and a thinning rate of 10.  Convergence is assessed using 
estimated Rhat values, where a Rhat value of 1.00 indicates convergence (Bürkner, 

2017). Phylogenetic information is inputted as a covariance matrix, A. A is calculated in 
a three-stage process: first the tree is pruned to retain all focal species, second the tree 

object is inverted using the inverseA function in the MCMCglmm package (Hadfield, 
2010) and third the inverted matrix is solved using the solve function. Providing a 

covariance matrix and it not its inverse is a unique feature of the brms package (Bürkner, 
2017). 

Previous power law relationships have been tested using species averages (one 
observation per species, e.g. Watanabe et al., 2015). Our sample size at the species 

level is relatively small (18 species), so model convergence is problematic, and any 
inference gained is limited. Despite this we do see the merits of this approach. Fitting a 

species averaged model can be seen as an intermediate stage between a taxa 
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independent model (simple model) where each data point is assumed to be independent 

and a more complex model that accounts for the dual factors of species uniqueness and 
phylogenetic relatedness. To this end, we fitted three additional models, one in Q1 and 

two in Q3, where species-specific mean body masses (ln𝑌¬) were fitted against mean 
𝑀��WT values (ln𝑋¬) using a phylogenetic regression: 

ln𝑌¬ = ¦ln𝛼 + ln𝛾§N©TUª + 	𝛽ln𝑋¬ + ln𝜀																													[𝐸𝑞𝑛. 4.11]. 

We use these additional models as validation tools for the taxa independent approach 

and find that in all three cases estimated intercepts and slopes are highly comparable 

(Appendix 4.1).  

Model comparison uses approximate leave-one-out cross validation (LOO information 
criterion) via the loo package (Bürkner, 2017; Vehtari et al., 2016). LOO is a fully 

Bayesian model selection procedure for estimating pointwise out-of-sample prediction 
accuracy (Hooten and Hobbs, 2015; Vehtari et al., 2016).  We assume a smaller LOO 

indicates a better model fit (Bürkner, 2017). All plots are generated using the ggplot2 
library (Wickham, 2009) in R and make full use of the viridis colour palette (Rudis et al., 

2018).  

We do not consider models with species as a fixed effect as our aim is to identify a 

universal relationship between body mass and movement in marine fish. We do however 
plot the species-level effects of each random factor (in Q2) to highlight how these 

relationships influence the overall model fit. In the species as a random intercept model 
our use of the term ‘species-level effects’ refers to the marginal effects of ln𝛾§N©TU and 

ln𝛾�§�¨F��. In the species as a random intercept and slope model, ‘species-level effects’ 

refers to the marginal effects of ln𝛾§N©TU, ln𝛾�§�¨F�� and ln𝜆�§�¨F��.  

In Q4, we chose not to fit a global model (including all three covariates in a single model) 

as there is a strong association among traits. Instead we aim to identify which trait, if 
any, explains the most deviance in the relationship between body mass and movement 

in adult fish.  

4.3 Results 

Using our data set of fish movement, we demonstrate clear empirical patterns in the 

scaling of body mass (g) with realised movement (m day-1) in marine fish (Table 4.6). In 
Q1 we observe a taxa independent relationship that follows an exponent of 0.30 (Figure 

4.4).  
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Table 4.6. Relationship between log realised movement (m day-1) and log body mass (g) 

in marine fish. Model selection is conducted using LOO information criterion.  

 

This estimate is markedly steeper than the currently accepted taxa independent 

exponent of 0.13̇. Additionally, we show that this finding is consistent with estimates 
derived from a phylogenetic regression fitted to species averaged observations 

(Appendix 4.1).  

In Q2 we have fitted two separate models in an attempt to validate our taxa independent 

findings (Figures 4.5 and 4.6; Table 4.6). In the first of these models (varying intercepts), 
we estimate a population-level exponent of 0.16 which is markedly shallower than in the 

taxa independent case. Observationally, the estimated species-level effects do a 
reasonable job in both the adult and larval data clusters (Figure 4.5), adding support to 

the assumption of a single power law relationship between movement and body mass in 
fish. Moreover, the estimated species-level intercepts are fairly consistent among data 

clusters (Appendix 4.3). Despite this, the population-level relationship does completely 

miss the larval data cluster suggesting a poor overall model fit. 

Data Model  Log(intercept) Slope LOO DLOO 

All 

𝑀��WT ~ body mass [1] 7.14 (l=7.09, 
u=7.2) 

0.30 (l=0.3, 
u=0.31) 

873.99 
(SE=45.96) 266.10 

𝑀��WT ~ body mass + (1|phylo) + (1 | 
species) [2] 

8.06 (l=6.29, 
u=10.11) 

0.16 (l=0.10, 
u=0.22) 

639.98 
(SE=51.05) 32.09 

𝑴𝒓𝒆𝒂𝒍 ~ body mass + (1|phylo) + 
(body mass | species) [2] 

8.51 (l=5.99, 
u=11.50) 

0.10 (l=-0.02, 
u=0.21) 

607.89 
(SE=53.78) 0 

Larvae 
only 

𝑀��WT ~ body mass [3] 6.94 (l=6.56, 
u=7.33) 

0.27 (l=0.17, 
u=0.37) 

333.20 
(SE=19.90) 38.55 

𝑴𝒓𝒆𝒂𝒍 ~ body mass + (1|phylo) + (1 | 
species) [3] 

6.34 (l=5.36, 
u=7.12) 

0.11 (l=-0.06, 
u=0.27) 

294.65 
(SE=19.71) 0 

𝑀��WT ~ body mass + (1|phylo) + (body 
mass | species) [3] 

6.33 (l=5.37, 
u=7.27) 

0.11 (l=-0.11, 
u=0.32) 

296.25 
(SE=19.69) 1.60 

Adult 
only 

𝑀��WT ~ body mass [3] 8.09 (l=7.91, 
u=8.27) 

0.19 (l=0.16, 
u=0.21) 

381.00 
(SE=25.11) 222.83 

𝑀��WT ~ body mass + (1|phylo) + (1 | 
species) [3] 

8.84 (l=8.15, 
u=9.63) 

0.11 (l=0.06, 
u=0.16) 

228.87 
(SE=37.74) 70.70 

𝑴𝒓𝒆𝒂𝒍 ~ body mass + (1|phylo) + 
(body mass | species) [3] 

9.58 (l=7.68, 
u=11.51) 

0.02 (l=-0.13, 
u=0.18) 

158.17 
(SE=37.10) 0 

l, lower 95% credible interval. u, upper 95% credible interval. SE, standard error on LOO estimate. phylo, patterns of 
phylogenetic relatedness among species. species, species uniqueness. Best models are shown in bold. The 
investigation each model is specific to is identified within […]. When a random intercept and slope model is supported 
by LOO information criterion we have documented the estimated marginal effects (log(intercept) and slope) of each 
species (see Appendix 4.3 and 4.4).  
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Figure 4.4. Scaling of realised movement (m day-1) with body mass (g) in marine fish 
(A). The best fitting taxa independent relationship (Table 4.6, exponent = 0.30) is plotted 

(green solid line) alongside the widely accepted 0.13̇ relationship (grey dotted line). Both 
x and y values have been log (natural log) transformed. The posterior distribution of the 
models estimated slope (𝛽) is also shown (B).  

This is likely a consequence of variable sample sizes, as the model’s likelihood will be 
skewed heavily towards the species with larger sample sizes e.g. Atlantic cod (Gadus 

morhua; n=109) and Thornback ray (n=76).  

In the second model, we add complexity by allowing multiple species-level effects 
(varying intercepts and slopes; Figure 4.6). We estimate an even shallower relationship 

between body mass and realised movement, with a population mean exponent of 0.10, 

varying between species with a standard deviation of 0.13. 
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Figure 4.5. Scaling of realised movement (m day-1) with body mass (g) in marine fish 

(A). Plotted is a random intercept model fitted to log (natural log) transformed x and y 

values.  Population-level estimates (black line) and marginal species-level effects 
(varying intercepts but constant slopes) are illustrated. The posterior distribution of the 

estimated population-level slope (B, black) is added to the taxa independent case 
(green) from Figure 4.4. Within the list of species the letters ‘L’ and ‘A’ denote larval and 

adult.  

Again, the overall population-level relationship misses the larval data cluster suggesting 
a skewed result. Model selection favours the more complicated model by some margin 

(DLOO = 32.09; Table 4.6). Examining the species-level effects (Figure 4.6 and Appendix 

4.4), it is clear that larval species all share a positive exponent between 0.08 and 0.18. 
This consistency is lost in adult fish, were the estimated slopes range from being very 

positive in Atlantic bluefin tuna (Thunnus thynnus; 0.32) to fairly negative in European 
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Figure 4.6. Scaling of realised movement (m day-1) with body mass (g) in marine fish 

(A). Plotted is a random intercept and slope model fitted to log (natural log) transformed 

x and y values.  Population-level estimates (dark blue line) and marginal species-level 
effects (varying intercepts and varying slopes) are illustrated. The posterior distribution 

of the estimated population-level slope (B, dark blue) is added to the taxa independent 
case (green) from Figure 4.4 and the intercept varying case (black) from Figure 4.5. 

Within the list of species the letters ‘L’ and ‘A’ denote larval and adult.  

plaice (Pleuronectes platessa; -0.10). It is worth noting that larval fish are 
phylogenetically highly related, therefore correlating species-level intercepts and slopes 

are to be expected to some extent. However, the model’s underlying phylogenetic 

correlation structure is unlikely to explain the variance we observe in adults.  
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Figure 4.7. Scaling of realised movement (m day-1) with body mass (g) in adult (red) and 

larval (orange) fish (A). Plotted is a random intercept and slope model fitted to log (natural 
log) transformed adult x and y values (red). Also plotted is a random intercept model 

fitted to log (natural log) transformed larvae x and y values (orange). Note, the red line 
is only fitted to the adult data and the orange line is only fitted to the larval data. Thus, 

larvae and adults are treated separately. Both models are supported by model selection 

(see Table 4.6). The posterior distribution of each model’s estimated population-level 
slope (B) is shown in red (adults) and orange (larvae).  

In Q3 we investigated whether the exponent governing the relationship between body 

mass and realised movement differed between life stages (Figure 4.7). Confirming our 
observations in Q2, model selection slightly favours the varying intercept model in larvae, 

indicating a shared species-level exponent, whereas a varying intercept and slope model 

is clearly favoured in adults (Table 4.6). In larvae, a population-level slope of 0.11 is 
estimated. In adults, a population-level slope of 0.02 is estimated, which is much 
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shallower than the exponent estimated for the larval data cluster. One thing to note is 

the apparent lack of any consistency among the estimated species-level effects in adults 
(Appendix 4.5). One might expect species with shared covariate information (e.g. habitat 

type, thermoregulatory strategy or phylogenetic class) to exhibit similar scaling 
relationships (intercepts and slopes), however at first glance this does not seem to be 

the case.  

In Q4 we investigated whether or not shared covariate information among adult fish 

explains the species-level deviance we observe in Q3. Despite prior evidence supporting 
all three traits (thermoregulatory strategy, habitat type and phylogenetic class), model 

selection supports the simplest model without the addition of these traits (Table 4.7). 
There is a very small decrease in LOO associated with the inclusion of thermoregulation 

(varying intercept) and phylogenetic class (varying intercept; varying intercept and slope) 

however the difference cannot be considered credible (DLOO < 2.00).  

 

4.4 Discussion  

Movement is one of life’s fundamental processes. Plotting realised movement against 

body mass in marine fish we observe a positive scaling relationship on the log scale. 
This scaling relationship has previously been assumed to be governed by an exponent 

of 0.133̇ based on the theoretical work of Ware (1978). Here we show that this 
assumption is inappropriate in general and masks a range of ecologically important 
phenomena, a finding with wide ranging consequences for basic ecological theory, our 

understanding of predator-prey interactions as well as efforts to model the marine world 

using size-structured population and/or community models. Despite the significance of 
this finding, a more detailed statistical approach that appropriately accounts for the 

nuances of our data set yields differing results and adds complexity to our understanding 
of movement allometry in marine fish. Additionally, we show that life stage is a crucial 

factor when explaining underlying trends in the scaling of movement. However, for the 
present dataset, we find no evidence to support previous work where traits such as 

thermoregulation (Watanabe et al., 2015), habitat type (Pawar et al., 2012) and/or 
phylogenetic class (Tamburello et al., 2015) have been used to describe systematic 

variation in movement allometry in adults. 

In our simple taxon invariant model (Equation 4.7), we estimate an exponent of 0.30 

which is steeper than current assumptions. A steeper scaling relationship means that  
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Table 4.7. Relationship between log realised movement (m day-1) and log body mass (g) 

in adult marine fish. Covariates include thermoregulatory strategy (ectothermic vs. 
endothermic), habitat (demersal-dwelling vs. pelagic-dwelling) and phylogenetic class 

(Actinopterygii vs. Chondrichthyes). All covariates are inputted as categorical values. 
Model selection is conducted using LOO information criterion. 

  

small increases in body mass are partnered by a proportionally greater increase in 

realised movement. In adult fish this change will result in a marked increase in estimated 

movement. For instance, under an exponent of 0.133̇ a fish weighing in at 20kg (average 
mass of an Atlantic bluefin tuna in our data set) would be expected to move at an average 

Model Covariate Log(intercept) Slope LOO  DLOO 

𝑴𝒓𝒆𝒂𝒍 ~ body mass + 
(1|phylo) + (body mass | 
species) 

- 9.58 (l=7.68, 
u=11.51) 

0.02 (l=-0.13, 
u=0.18) 

158.17 
(SE=37.10) 0 

𝑀��WT ~ body mass + 
thermoregulation + (1|phylo) + 
(body mass | species) 

Ectothermic 9.45 (l=7.51, 
u=11.40) 

0.02 (l=-0.14, 
u=0.18) 156.64 

(SE=37.07) 1.53 

Endothermic 9.95 (l=7.62, 
u=12.13) - 

𝑀��WT ~ body mass * 
thermoregulation + (1|phylo) + 
(body mass | species) 

Ectothermic 9.84 (l=7.39, 
u=12.25) 

-0.02 (l=-0.23, 
u=0.19) 158.11 

(SE=37.12) 0.06 

Endothermic 9.37 (l=6.57, 
u=12.51) 

0.08 (l=-0.19, 
u=0.33) 

𝑀��WT ~ body mass + habitat + 
(1|phylo) + (body mass | 
species) 

Demersal 9.24 (l=7.28, 
u=11.13) 

0.01 (l=-0.16, 
u=0.17) 158.49 

(SE=37.20) -0.32 

Pelagic 10.01 (l=8.21, 
u=11.80) - 

𝑀��WT ~ body mass * habitat + 
(1|phylo) + (body mass | 
species) 

Demersal 9.57 (l=7.08, 
u=11.90) 

-0.02 (l=-0.26, 
u=0.21) 158.12 

(SE=37.15) 0.05 

Pelagic 9.70 (l=7.35, 
u=12.06) 

0.05 (l=-0.17, 
u=0.25) 

𝑀��WT ~ body mass + class + 
(1|phylo) + (body mass | 
species) 

Actinopterygii 9.35 (l=6.78, 
u=11.94) 

0.02 (l=-0.14, 
u=0.18) 158.13 

(SE=37.2) 0.04 

Chondrichthyes 9.77 (l=7.24, 
u=12.32) - 

𝑀��WT ~ body mass * class + 
(1|phylo) + (body mass | 
species) 

Actinopterygii 9.15 (l=6.23, 
u=12.39) 

0.05 (l=-0.22, 
u=0.28) 157.64 

(SE=37.12) 0.53 

Chondrichthyes 10.05 (l=6.71, 
u=12.91) 

-0.01 (l=-0.25, 
0.23) 

l, lower 95% credible interval. u, upper 95% credible interval. SE, standard error on LOO estimate. phylo, patterns of 
phylogenetic relatedness among species. species, species uniqueness. The best model is shown in bold. All models 
relate to investigation 4.  



 96 

distance of 4.7km each day. At the same weight and assuming a common intercept, this 

value increases substantially to approximately 24km each day under our estimated 
exponent of 0.30. Moving further each day will incur greater metabolic costs (Brown et 

al., 2004), however any increase in energy requirement would presumably be met by a 
notable increase in prey encounter rate. Moreover, a greater prey encounter rate will 

theoretically increase foraging efficiency and reproductive output, since the increase in 

potential food intake rates may permit energy surplus. Greater levels of movement could 
also aid the processes of migration, dispersal and bridging habitat patches, however in 

the context of foraging efficiency it is important to note that food intake rate per unit time 
will trend towards saturation, either due to increases in prey encounter rates (Barraquand 

and Murrell, 2013) or increases in prey density (Ware, 1972). Therefore, there is a finite 
region within which greater movement rates are beneficial before food intake rates 

plateau (as characterised by a consumer’s function response; e.g. Holling, 1966) and 
the time taken to handle prey items becomes limiting (Ware, 1978). 

The reverse is true in larvae, with estimated movement rates being less under an 
exponent of 0.30 when compared to current assumptions. For example, based on a 

logged intercept value of 4.17 (Table 4.6), a fish weighing in at 0.05g (average mass of 
our larval data cluster) would be expected to move at average daily distances of 512.4m 

and 845.2m under scaling exponents of 0.30 and 0.133̇, respectively. A reduction in 
movement at small sizes may increase the likelihood of mortality, both via starvation and 
predation, as processes of pursuit and escape are functions of an individual’s movement 

potential. Furthermore, because any change in exponent is influential across multiple 
orders of magnitude in body mass, the potential consequences to predator-prey 

interactions, biomass fluxes and community wide stability will be numerous. In the 
absence of fishing, we hypothesise that our proposed change to movement allometry in 

fish would cause biomass peaks at high size classes as consumption rates rise to meet 

metabolic demands. Increases in large fish abundance would have cascading predation-
driven trophic effects (as shown in response to fishing in Andersen and Pedersen, 2010), 

resulting in a systemic shift in community structure. This new community would, in theory, 
be subject to top-down regulation and would in turn would become inherently unstable, 

as consumer-resource dynamics become frequently more boom-or-bust. These 
predictions are hypothetical however they are consistent with the three-dimensional 

predictions of Pawar et al. (2012) and the observed cross-system differences in stability 
made by Rip and Mccann (2011). We consider these broad-scale consequences and 

how they interact with fishing in much more detail in Chapter 5.  
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A steeper scaling exponent in fish is not without precedent. Maximum speed (cm s-1, Hirt 

et al., 2017), cruising speed (cm s-1, Acuña et al., 2011; m s-1, Watanabe et al., 2015) 
and maximum migration distance (km, Hein et al., 2012) have all been shown to scale 

with body mass according to exponents between 0.20 and 0.36. Daily displacement 
(km), probably the most parsimonious movement metric to the one considered here in 

terms of temporal scale, has also been shown to scale with body mass according to an 

exponent of 0.25 in terrestrial mammals (Carbone et al., 2005). Moreover, our taxa-
independent findings (exponent = 0.30; Table 4.6) are captured by our species average 

model (exponent = 0.31; Appendix 4.1). Despite such support, we feel it necessary to 
highlight the limitations of the taxa independent and species average approach. In the 

taxa independent case we have allowed the model to assume statistical independence 
among data points. Our reasons for doing so are simple, to achieve a taxon independent 

fit. However, given that our data set contains multiple species and multiple observations 
within each species, the assumption of independence is almost certainly violated. 

Furthermore, although patterns of phylogenetic relatedness are built into the species 
average model we are tentative about drawing meaningful conclusions from a model 

fitted to so few observations (n = 18). Despite being an over-simplification, is it clear from 

Figure 4.4 that a taxon independent fit to our data would not adhere to an exponent of 

0.133̇ and as a result our steeper finding is likely to hold utility to taxa independent 
modellers that strive to estimate trends of abundance or biomass across wide body mass 

ranges, e.g. the community size spectrum (see Benoı̂t and Rochet, 2004; Blanchard et 
al., 2009; Law et al., 2009).  

To address these statistical imperfections, we have fitted two more detailed models to 

our data set of fish movement. The first, the intercept varying model, estimates a scaling 
exponent of 0.16 which is comparable to the work of others (e.g. Acuña et al., 2011). 

The second, the intercept and slope varying model, estimates an average scaling 

exponent of 0.10. Both of these estimates, 0.16 and 0.10, have 95% credible intervals 
that incorporate Ware’s (1978) theoretical scaling exponent but not our taxa-independent 

findings. Thus, we show that an exponent of 0.133̇ (Ware, 1978) can be seen as a 
reasonable approximation of an average relationship between body mass and 
movement in marine fish, however it can only be obtained by allowing for the estimation 

of species level effects.  

Model selection favours these more complicated multi-level models by some margin 
(Table 4.6). By fitting them we have formally accounted for the dual factors of species 

uniqueness and phylogenetic relatedness. However, because our data set is highly 

variable, any output must be interpreted with care and any inference gained must be 
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weighed against the structure of the model used. For instance, all of the larval species 

considered are very closely related, and we therefore expect them to share very similar 
parameter estimates. The same is not true in adults as the time since divergence 

between a cartilaginous shark species (e.g. Shortfin mako shark, Isurus oxyrinchus) and 
a bony fish species (e.g. Atlantic cod) is suitably large. A similar pattern exists in 

morphology, where the larval species considered (all pre-settlement stage pelagic larvae 

of demersal fish) share similar body shapes, being deep-bodied and compressed (as 
described in Leis et al., 2009b, 2009a). In comparison, the body shape of adults varies 

vastly from the elongated, streamline thunniform shape of an Atlantic Bluefin tuna to a 
flat, cross-sectionally compressed European plaice. These morphological differences 

partially coincide with phylogeny however it is interesting that the body shape of the 
larvae species considered is much more comparable to that of batoids (e.g. Thornback 

ray) than for example gadoids (e.g. Atlantic cod). It is not totally clear what effect these 
differences will have on the model’s population-level parameters. However, it is clear to 

see that the variance in species-level effects is much greater in adults compared to 
larvae (Appendix 4.4).  

One thing that is important to note, especially when comparing our estimations to the 
work of others (e.g. Carbone et al., 2005; Hirt et al., 2017; Ware, 1978), is the temporal 

resolution at which movement is observed (as discussed in section 4.2.1.3). Here, we 
are explicitly considering displacement at the daily level due to the structure of our data, 

however in the work of others this temporal resolution is often different (e.g. Hein et al., 
2012). Such differences could yield different scaling exponents and therefore it is 

important to acknowledge that the relationship between speed and displacement will 
vary with temporal scale.  

To conclude our discussion in regard to Q1 and Q2, it is clear that there is a positive 
scaling relationship between movement and body mass in marine fish. However, the 

scaling exponent governing this relationship remains uncertain. Our findings, ranging 
from 0.10 to 0.31, mirror the spread that exists in the published literature. To our 

knowledge, we are first study to analyse movement across 7 orders of magnitude in body 
mass and are first to consider a data set with multiple intraspecific observations. 

Consequently, we can be confident that our work contributes to the field and adds 

understanding to how movement scales with body mass in marine fish.  

Further work will be essential to advancing our efforts. Tagging data sets are becoming 
increasingly open access via online depositories (e.g. MoveBank; Kranstauber et al., 

2011) or more readily shared via large collaborative efforts (e.g. Hindell et al., 2016).  As 
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they do, we hope to add to our data set and provide a more comprehensive analysis of 

movement scaling in fish. Moreover, as telemetry devices and their technology evolve, 
the likelihood of plugging the gap between larval and adult data clusters will hopefully 

become more likely. One area of particular interest is how the species-variation we 
observe in our estimated species-level effects propagate through a larger sample. For 

example, our findings suggest that movement in European plaice scales negatively with 

body mass. It would be interesting to find out whether this is purely a species or sample 
effect, or whether this outlier is a prevalent trend in flatfish. Species like European plaice 

spend prolonged periods of time on the seabed (Ewan Hunter et al., 2004b) and 
predominantly feed on sessile benthic invertebrates (Amara et al., 2001), therefore the 

need to actively pursue mobile prey is reduced (as shown in Holmes and Gibson, 1983). 
Along these lines, Domenici (2003) and Langerhans and Reznick (2010) both used 

meta-analyses to show that swimming performance exhibits clear relations with body 
shape and environment under laboratory conditions. For instance, they find that fish 

occurring in structurally complex environments (e.g. benthic habitats) have evolved 
differing morphologies (characterised by lower caudal fin aspect ratios) and favour short 

bursts of speed (characterised by high acceleration rates and high turning angles) 

compared to their more streamlined open-water counterparts who generally exhibit lower 
drag coefficients and higher endurance (for an empirical example see Blake et al., 2005). 

If flatfish or other species that have evolved to function in complex habitat types really 
do share an altogether different movement allometry than other fish types (e.g. roaming 

pelagic predators), then this would spark interesting debate surrounding movement and 
foraging efficiency and how they are influenced by body shape and habitat type. 

Alternatively, if our species-level variance only increased throughout a larger 
interspecific sample it would call into question the validity of a single all-encompassing 

power law relationship.   

We also showed that movement scaling is different between life stages. This additional 

step was certainly opportunistic but made the most out of the data set and poses some 
very interesting questions. For instance, we show that movement scaling is steeper in 

larvae than it is in adults. Larval fish are subject to very high mortality rates in the wild 
and other aspects of larval biology have frequently shown that only the best performers 

survive (e.g. fastest growers; Vigliola and Meekan, 2002). A steeper scaling exponent 
could therefore be a direct consequence of this evolutionary pressure, as individuals 

attempt to maximise their growth rates through prey encounters as well as their ability to 

evade predators. In theory both of these aspects would boost their likelihood of survival 
and in turn would be favoured by evolution. From an evolutionary perspective, adult fish 
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find themselves in a completely different situation. As adults they have successfully 

overcome the high predation pressure of their larval and juvenile life stages, so 
theoretically the need to move at, or near to, their maximum at all times is diminished. 

Instead they must carefully balance continued survival with the need to reproduce. 
Consequently, movement is allowed to become a much more targeted process as 

individuals migrate and pursue prey but also prioritise the conservation of energy through 

shifts in movement behaviour (as shown in Chapter 3). This build-up of energy may then 
be used during annual spawning events allowing individuals to contribute to the next 

generation. It therefore seems reasonable that a reduction in movement allometry could 
be an indicator of this evolutionary process, especially considering that larger adult fish 

have be shown to contribute disproportionally to reproduction (Barneche et al., 2018). 
Additionally, being older and bigger will presumably afford individuals the luxury of 

optimising their movements instead of moving simply to survive. An alternative 
explanation for our findings may be linked to growth. Larvae do not grow isometrically 

and change their shape considerably during development (Fuiman, 1983; Webb and 
Weihs, 1986). As body size increases larvae progressively become more elongated 

(their length increases disproportionality to their mass) and their body shape becomes 

increasingly more streamlined, which reduces the power needed to overcome drag 
(Langerhans and Reznick, 2010). Such changes in morphology will, in theory, boost 

swimming performance (both in terms of speed and displacement) as Reynolds numbers 
increase (the fish passes from a viscous to an inertial flow regime) and swimming at high 

speeds becomes energetically less costly (Muller and Videler, 1996; Voesenek et al., 
2018). As a result, it is difficult to disentangle whether the observed differences in scaling 

at small body sizes, both within- and across-species, is driven by the need to survive or 
simply a consequence of morphological development. Future work will certainly help 

unravel this issue and we propose that further analyses consider individual body shape 
as well as individual body mass when attempting to explain the scaling of realised 

movement rates in marine fish. This is especially true in analyses that consider larval 

fish.  

In adults, it is also noteworthy that we find that differences in thermoregulation, habitat 
type and phylogenetic class provide no additional explanatory power to our analysis. Our 

prior belief certainty expected one of these factors to be a significant explanatory 
variable, especially given that all three factors feature in a number of recent high impact 

publications (e.g. Pawar et al., 2012; Tamburello et al., 2015; Watanabe et al., 2015). 

This lack of evidence could simply be a consequence of sample size, as despite including 
near 600 observations, our interspecific sample size of 18 is relatively small when 
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compared to work of Watanabe et al. (2015) or Tamburello et al. (2015). Linking back to 

the previous chapter, a finding that supported the inclusion of habitat type would have 
been of most interest, as differences in movement behaviour, search space and prey 

density provide a compelling theory as to why movement scaling might vary between a 
pelagic and a demersal environment (as discussed in Pawar et al., 2012). Further work 

on a much larger sample will again shed light on this and would undoubtedly provide a 

fruitful avenue for future research.  

In conclusion, the aims of this chapter were straightforward: to collect, analyse and gain 
meaningful inference about how movement scales with body size in marine fish. In doing 

so we have added knowledge to an emergent research field. Three take home messages 
stand out. First, that realised movement (a movement metric calculated as displacement 

at the daily level from in situ movement observations) scales with body mass in a similar 
way to cruising and maximum speed in marine fish. Second, that by accounting for the 

dual factors of phylogenetic relatedness and species uniqueness our findings changed 

significantly. As a result, we advise that future meta-analyses on fish movement take 
care when choosing the most appropriate statistical model for their data set. If we had 

solely relied on the simple or species average model, then our findings and the wider 
scale conclusions drawn from them at the community level, would be significantly 

different. Third, that life stage is an important evolutionary driver of movement allometry 
in marine fish.  

Movement is a principle component of animal physiology. In roaming visual predators, it 
dictates the volume of water that can searched per unit time and in turn influences the 

processes of energy acquisition, morality and growth. In this chapter’s Introduction we 
made explicit reference to how Ware’s (1978) theoretical work has widespread use in a 

range of size-structured population and community models. Previous and ongoing work 
has shown that q, the parameter that controls search volume scaling, is one of the most 

influential parameters in these models (Bannister et al. in prep.; Law et al., 2009; Plank 
and Law, 2012). For instance, Bannister et al. (in prep) have shown that even a 10% 

shift in q results in large deviations in critical community indicators such as total biomass, 
species coexistence and community size spectrum. In the following chapter (Chapter 5) 

we take our empirical findings surrounding movement allometry in marine fish and apply 

them to one of these models.  
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Chapter 5.  
 
Movement allometry in a trait-based size spectrum model.  

5.1 Introduction  

Marine systems are highly size-structured. Fish grow several orders of magnitude in 

body mass during their lifetime, starting life as very small larvae (approximately 1 
milligram) and growing to sizes at maturation ranging from 10 grams to 50 kilograms 

(Werner and Gilliam, 1984). Throughout this development, individuals will feed on prey 
that are a fraction of their own size, gaining the energy needed for somatic growth, 

movement and reproduction, whilst inflicting mortality on their prey (Kerr and Dickie, 

2001; Law et al., 2009). This size-structuring of fundamental individual-level processes 
is part of the reason why many consider body size to be a ‘master trait’ in marine ecology 

(Andersen et al., 2016a, 2016b; Blanchard et al., 2017). It is also the reason why size, 
as opposed to taxonomic identity, is considered by many to be a more indicative of 

trophic position in marine food webs (Jennings et al., 2001).  

Marine systems are undergoing phases of rapid change, as the size composition of 

marine communities across the globe respond to the direct and indirect effects of climate 
change (e.g. Blanchard et al., 2012; Maury et al., 2007b, 2007a; Woodworth-Jefcoats et 

al., 2013) and fishing (e.g. Andersen and Pedersen, 2010; Andersen and Rice, 2010; 
Worm et al., 2009). Motivated by the need to preserve ecosystem services (Rogers et 

al., 2014), attempts to model the emergent properties of a marine community have 
become a frequent feature of the published literature. One such attempt leans heavily 

on the importance of body size in marine systems and allows community dynamics to 
emerge as a function of many individual-level processes. These models are commonly 

referred to as size spectrum models as they resolve an entire fish community as a size 
distribution, where changes in abundance among discrete size classes are a direct 

consequence of fluxes in growth and mortality (Andersen et al., 2016b; Blanchard et al., 

2017). These fluxes give rise to a community-level power law relationship between log 
mass and log abundance (commonly called a size spectrum; Edwards et al., 2017), 

where the slope of the relationship (community slope) reveals the size composition of 
the community (Andersen and Beyer, 2006).  

The theory behind size spectrum models dates back to observations of equal biomass 

of plankton in logarithmically binned body mass classes (Sheldon et al., 1972). This 
observation lead to two principle conjectures: (1) that the abundance of individuals in 

marine systems scales negatively with size and (2) that the biomass of smaller prey is 
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consistently equal to the biomass of larger predators. Since Sheldon’s hypothesises, 

observed size spectra have shown remarkable regularity, spanning not only different 
communities (e.g. Hua et al., 2013; Kelly-Gerreyn et al., 2014; Rodriguez et al., 2001; 

San Martin et al., 2006) but also a number of different ecosystems (Sprules et al., 2016). 
Consequently, size spectrum models have emerged as key tools in any marine 

ecosystem modeller’s toolbox. To date, size spectrum models have been used to 

investigate how fishing drives trophic cascades (Andersen and Pedersen, 2010), to 
quantify the concept of balanced harvesting (Jacobsen et al., 2013; Law et al., 2016), to 

simulate the impact of rising temperatures (Maury et al., 2007b, 2007a) and to explore 
the potential impacts of a changing climate on fish production (Blanchard et al., 2012; 

Woodworth-Jefcoats et al., 2013). Additionally, they have even been used to contrast 
processes of early and late density dependence (Andersen et al., 2017) and show how 

structural habitat complexity is a critical feature on coral reefs (Rogers et al., 2014).   

The advantages of size spectrum models are numerous (see Andersen et al., 2016b or 

Blanchard et al., 2017 for reviews). They are flexible, provide a middle ground between 
a simple Lotka-Volterra predator-prey equation and an end-to-end whole ecosystem 

model (Fulton et al., 2011) in terms of model complexity and can be used with relative 
ease via the mizer package (Scott et al., 2014) in R (R Core Team, 2016). Moreover, 

because their internal dynamics are all built around individual-level processes, they are 
mechanistic by design, reliant on a relatively small number of parameters (approximately 

18 in the version considered here) and have low computational requirements (Andersen 
et al., 2016b). Modellers have increasingly used this approach to either capture 

multispecies communities by incorporating species-specific parameter values (e.g. 
Blanchard et al., 2014; Zhang et al., 2016) or have used fixed parameters across species 

applied to multiple systems (e.g. Jacobsen et al., 2017). However, there are large 

uncertainties surrounding the parameters that describe those fundamental individual-
level process and species-specific differences that could substantially affect model 

predictions.  

In Chapter 4, we show that the scaling of movement (measured as daily displacement) 
with body mass in marine fish is an area of relatively large uncertainty. Size spectrum 

models currently assume that the rate at which an individual encounters viable prey items 

per unit time is a function of three processes: (1) the availability of prey, (2) the size 
suitability of prey and (3) the individual’s search volume. The availability of prey at any 

given time will vary based on the size composition of the community and size of the 
predator. The size suitability of prey will be some function of an individual’s preferred 

predator-prey mass ratio (PPMR), a topic that has received significant attention in the 
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literature (see Barnes et al., 2010; Jennings et al., 2001; Ursin, 1973). On the other hand, 

an individual’s search volume (𝑉) can be thought of an individual moving at velocity (𝑣) 
and having a search area that is assumed to be a circle with radius 𝐿�, the maximum 

sighting range. Search volume is typically modelled as a power law relationship:  

𝑉(𝑚) = 	𝛾𝑚³																																																														(𝐸𝑞𝑛	5.1) 

where 𝛾 (gQH	yrQH) is the search volume factor (see Methods section 5.2.2), m 

represents the individual’s body mass and q is the exponent of search volume. Search 
volume with represent to 𝐿 is 

𝑉(𝐿) ∝ (𝐿�)u 	×	𝐿�· = 	 𝐿u�b�·,																																																(𝐸𝑞𝑛	5.2) 

where 𝑑T dictates the scaling of movement with length in marine fish. Assuming an 

allometric relation between length and mass with exponent b, 

𝑉(𝑚) ∝ 	𝑚u� ¹⁄ b	�· ¹⁄ ,																																																						(𝐸𝑞𝑛	5.3)		 

therefore, with 𝑠 = 1.0 (Andersen and Beyer, 2006) and 𝑑T = 0.4, a value that stems from 
optimal foraging theory and dictates the scaling of movement (optimal cruising and 

optimal foraging speed; Ware, 1978), and b = 3.0 (Andersen and Beyer, 2006), 

𝑞 = 	2 3» + 𝑑T 3» ≈ 0.8.																																																					(𝐸𝑞𝑛	5.4) 

Based on tagging observations, we hypothesise that 𝑑¼, the scaling of movement with 

mass i.e. 𝑑¼ =	𝑑T 𝑏⁄ , could actually vary anywhere between 0.10 and 0.31, plus or minus 
some fairly large uncertainty (see Chapter 4). Further, we also expect 𝑠 to be inherently 

uncertain as the distance at which a predator of size j can distinguish a prey of size i will 
vary based on ambient light levels, water turbidity and because prey tend to be 

inconspicuous (Andersen et al., 2016a; Ware, 1978). For further discussion on this topic 
we refer the reader to Andersen et al. (2016a). Note, Ware’s (1978) theoretical work is 

based on swimming speed (cm s-1) whereas our work (in Chapter 4) explicitly considers 

movement as daily displacement (m day-1). As the relationship between speed and 
displacement will likely vary with time, such differences require acknowledgment and 

could lead to subtle differences in the value of 𝑑¼ in marine fish.  

Prey encounter is a critical component of any size spectrum model, as it contributes to 
the amount of food that can be consumed per unit time and subsequently impacts rates 

of growth, mortality and reproduction. Thus, q can be thought of as a principal model 

parameter which, when changed, could have large consequences. This is especially true 
when it is considered that a sensitivity analysis run on multiple versions of the size 
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spectrum repeatably found q to be one of the model’s most influential parameters 

(Bannister et al., in prep). A need for further work is made even more compelling by two 
facts. First, that the sensitivity analysis in question only considered a range of q between 

0.72 and 0.88 (0.8 ± 10%), whereas our empirical work suggests a much wider q range 
from ~0.64 to ~0.98. Second, that q is also used to calculate lambda (𝜆), the exponent 

of the model’s resource spectrum (details can be found in Methods section 5.2.2), which 

has also been shown to be a highly influential model parameter in terms of species 
biomasses and size-based indicators such as the slope of the community size spectrum 

(Bannister et al., in prep). Consequently, a thorough sensitivity analysis into how 
changes in q propagate through a size spectrum model would appear to be a logical next 

step with interest to marine ecosystem modellers and fisheries scientists, as well as 
management decision makers.  

Focusing on the trait-based version of the size spectrum model (see Andersen et al., 

2016b for a review), we show that a varying q value has large effects on the size 

composition of our theoretical community. Changes in q are shown to directly impact 
estimated community slopes as well as the ability of the community to retain its largest 

species but appear to have minimal effects on relative total biomass. Importantly, by 
imposing a range of fishing efforts, we show that the scaling of fish movement, via higher 

or lower q values, alters the resilience of marine communities to harvesting.  

5.2 Methods 

In the following sections we provide a brief description of the trait-based size spectrum 

model that is used throughout this analysis and detail how our experimental design 
allows us to test the interacting community-level consequences of a varying q and a 

varying fishing effort.  

5.2.1 Model description 

Much of the following description is adapted from of the work of Andersen and Pedersen 
(2010), Hartvig et al. (2011) and Jacobsen et al. (2013). All models are implemented 

using the mizer package (version 0.2) in R (R Core Team 2016, version 3.4.0, ‘You 
Stupid Darkness).   

Originally developed by Andersen and Beyer (2006), the trait-based version of the size-
spectrum model (as is the case in all size-spectrum models) is based on the individual-

level processes of encounter, growth, mortality and reproduction. All parameters are 
related to individual size (m), and in most cases are either estimated directly from the 

physiology of individual fish or derived from scaling relationships like the one considered 
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in Chapter 4. The equations governing the model are given in Table 5.1 and all model 

parameters are stated in Table 5.2. We place our chosen parameter set in the context 
of the published literature in Appendix 5.1. 

The model’s framework is built around two central assumptions: (1) that fish
eat other organisms across a range of sizes expressed as a fraction of their own size, 

thus feeding is independent of species identity and (2) that the most important traits of a 
species are its asymptotic (maximum) size and maturation size, which are assumed to 

be strongly correlated (Beverton and Holt, 1959; Prince et al., 2015). The model resolves 
a fish community as a continuum of ‘species’ with increasing asymptotic body sizes 

(Andersen et al., 2016b; Andersen and Beyer, 2006). During implementation, the 
continuum is represented as a discrete number of asymptotic size classes, which are 

referred to as ‘species’ for the sake of simplicity. Each species i is characterised by its 
asymptotic size M and its population by its size distribution 𝑁F	(𝑚). Species are typically 

spread evenly over a chosen asymptotic size range and the number of species used is 

not important so long as it is greater or equal to ten (Jacobsen et al., 2013). Here, we  

Table 5.1. Model equations.  

 

Community size spectrum 𝑁¨(𝑚) =	D 𝑁F
F

 (E1) 

Size selection of food items  𝜑¦𝑚§��©/𝑚ª = 	𝑒𝑥𝑝¾−(ln	(𝛽𝑚§��©/𝑚))u/(2𝜎u)¿ (E2) 

Encountered food 𝐸(𝑚) = 𝑉(𝑚)À𝑚§��©𝑁¨(𝑚§��©)𝜑(𝑚§��©/𝑚)𝑑𝑚§��© (E3) 

Feeding level 𝑓(𝑚) = 𝐸(𝑚)/(𝐸(𝑚) + 𝐶¼WÂ) (E4) 

Maximum consumption 𝐶¼WÂ = ℎ𝑚E (E5) 

Allocation to reproduction  
𝜓(𝑚,𝑀) =	 Ä1 + (

𝑚
𝜂𝑀)

QH�Æ
QH
(
𝑚
𝑀)

HQE (E6) 

Somatic growth 𝑔(𝑚) = (1 − 𝜓(𝑚))(𝛼𝑓(𝑚)𝐶¼WÂ − 𝑘�𝑚§	 (E7) 

Predation mortality 𝜇§¦𝑚§��©ª = 	À¦1 − 𝑓(𝑚)ª𝑉(𝑚)𝑁¨(𝑚)𝜑(𝑚§��©/𝑚)𝑑𝑚 (E8) 

Background mortality 𝜇¹(𝑀) =	𝜇�𝑀EQH (E9) 

Resource spectrum 𝛿𝑁�
𝛿𝑡 = 	 𝑟�𝑚EQH(𝜅� − 𝑁�) −	𝜇§𝑁� 

(E10) 

Resource carrying capacity 𝜅�(𝑚) = 	𝜅𝑚Ê (E11) 

*m, individual mass. M. asymptotic (maximum) size. c, community. p, predation. b, background. r, 
resource.  
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use 10 species with M values ranging from 10 to 200,000 g. Thus, our chosen size range 

(0.001 g – 220 kg) covers the empirical size range (0.002 g – 200 kg) considered in 
Chapter 4.  

Each individual fish is described by its individual body mass (m) and by its asymptotic 
size M. Relying on mechanistic based submodels of growth, mortality and reproduction, 

the model calculates 𝑁F	(𝑚) in units of numbers per volume per mass. The dynamics of 
the model’s continuum are governed by the conservation equation (McKendrick, 1926; 

von Foerster, 1959): 

𝛿𝑁F
𝛿𝑡

+	
𝛿𝑔F(𝑚)𝑁F

𝛿𝑚
=	−𝜇F(𝑚)𝑁F																																					(𝐸𝑞𝑛	5.5) 

where the individual-level processes of growth 𝑔F(𝑚) and mortality 𝜇F(𝑚) dictate the rate 

at which an individual fish either gains somatic mass via the consumption of prey or is 
removed from the community via predation. Scaling from individual- to the community-

level, equation 5.5 therefore controls changes in number of fish and biomass in any given 
size class.  

To grow, an individual must encounter and ingest food.  Food items are selected from 
the whole community size spectrum (E1) according to a log-normal size selection 

function (E2). The key component of this size selection function is a fixed PPMR 𝛽 
(Jennings et al., 2001; Ursin, 1973). The rate at which a predator encounters food items 

(E3) is a product of available food and a size dependent search volume. Search volume 
is detailed in equations 5.1 - 5.4. The amount of encountered food that is consumed per 

unit time is then modelled as a Holling type II functional response (E4), thus a size 
dependent upper limit is imposed on consumption rate.  

Consumed food items are assimilated with a fixed efficiency of 𝛼 and are used initially to 
meet metabolism demand 𝑘�𝑚§. Any remaining energy is allocated to somatic growth 

(E7) and reproduction (E6), the latter of which only becomes active when an individual’s 
size approaches its maturation size. When an individual is fully mature all of this 

remaining energy is allocated to reproduction over somatic growth. This formulation (E7 
and E6) means that growth and reproduction are linked within the model and are both 

food dependent. Furthermore, the use of E6 means that under a regime where 

consumption rate is equal to maximum consumption, a von Bertalanffy-like growth curve 
is produced (Hartvig et al., 2011).  
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Table 5.2. Model parameters.  

 

Once mature, an individual uses the energy that has been allocated to reproduction to 
produce eggs. Eggs hatch to become larvae and their introduction at the smallest size 

class is regulated by a Beverton-Holt (Beverton and Holt, 1957) like stock-recruitment 

relationship. Maximum recruitment is calculated using equilibrium theory (Andersen and 
Pedersen, 2010) and a multiplier, 𝑘�. As in Jacobsen et al. (2017), we also chose to 

impose an additional restraint on larval survival, this is imposed via the reproductive 

Parameter Value Definition  Reference 

physiology 

𝛼 0.6 Assimilation efficiency* Kitchell and Stewart, 1977 

𝑛 2/3 Exponent of maximum intake Andersen and Pedersen, 2010 

ℎ 30	𝑔HQE	𝑦𝑟QH Factor for maximum intake Andersen and Pedersen, 2010 

𝑝 0.75 Exponent of standard metabolism* West et al., 1997 

𝑘� 4 𝑔HQ§	𝑦𝑟QH Factor metabolism coefficient* Winberg, 1956 

𝜇� 0.6 𝑔HQE	𝑦𝑟QH Background mortality factor* Andersen and Pedersen, 2010 

𝜂 0.25 Size at 50% maturation relative to Mi Beverton, 1992 

𝜀 0.1 Reproductive efficiency Jacobsen et al., 2017 

𝑘U 50 Recruitment multiplier*  Scott et al., 2014 

foraging 

𝛽 100 Preferred predator-prey weight ratio* Jennings et al., 2001; Ursin, 
1973 

𝜎 1.3 Width of selection function* Andersen and Pedersen, 2010 

𝛾 free 𝑔QH	𝑦𝑟QH Search volume factor - 

𝑞 free Search volume exponent - 

𝑓� 0.5 Expected average feeding level*  Scott et al., 2014 

resource (primary production) 

𝜅� 0.005	𝑔ÊQH	𝑚Q� Resource spectrum carrying capacity* Andersen and Pedersen, 2010 

𝑟� 4HQ§𝑦𝑟QH  Growth rate of resource spectrum* Savage et al., 2004 

𝜆 free Exponent of the resource spectrum Scott et al., 2014 

fishing 

𝑚Ì 0.1 Minimum size selectivity of the fishery, 
relative to Mi 

Jacobsen et al., 2017 

𝜉 0.5 Selectively of the fishery Jacobsen et al., 2017 

g, grams. yr, years. m, mass. M, asymptotic (maximum) size. i, species. *, default values within the mizer 
package. free, parameters that vary as a function of q (see Figure 5.1).  
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efficiency parameter 𝜀. Reproductive efficiency is designed to represent losses due to 

egg mortality and spawning effort (Andersen et al., 2016b).  

Mortality is modelled as a direct function of two processes. The first is predation mortality 

which is the consequence of prey encounter and subsequent consumption (E8). The 
second is background mortality which is included to limit the build-up of excessively large 

individuals in the absence of fishing (E9). A third mortality rate, starvation mortality, is 
common throughout the literature (e.g. Hartvig and Andersen, 2013; Jacobsen et al., 

2013) but is not currently built into the mizer package.  

As in Andersen and Pedersen (2010), we also include a background resource spectrum 

which acts as a food source for smallest of size classes. As is default in the mizer 
package the dynamics of the resource spectrum are modelled as a semi-chemostat 

growth function with allometric scaling of regeneration (E10) and a carrying capacity 
given by the theoretical equilibrium spectrum (E11). The background resource spectrum 

has a continuous size range, ranging from 10-10 to 1 g.  

All model runs make full use of the set_trait_model wrapper function provided by the 
mizer package. The community spectrum is discretised with 100 size bins. We use a 

time step of 0.1 years and run each model for a total of 500 years. After approximately 

100 years the model’s solution achieves convergence, trending towards a stable 
estimation of abundance at size and a dynamic steady state.  

5.2.2 Varying q 

Based on the empirical findings of Chapter 4, we constructed a sequence of 34 possible 

𝑑¼ (scaling exponent between movement and mass) values where the first value of 𝑑¼  

is -0.02 and thirty fourth value of 𝑑¼   is 0.31. Values increase incrementally by 0.01. This 

range is non-random and is designed to include the empirical estimates made in Chapter 
4 and their associated uncertainties (see Table 4.6). To ensure consistency, we also 

manually added a 35th value, where 𝑑¼ = 	0.13̇. This ensures that the theoretical value 
proposed by Ware (1978) is explicitly considered. Thus, our sequence of possible 
𝑑¼	values increases from 34 to 35.  

We convert our 35 possible 𝑑¼ values to a sequence of 35 possible q values using 

equation 5.4. Further, to account for the unknown levels of uncertainty surrounding the 

scaling of maximum sighting range (𝐿�) in marine fish, we have expanded the range of q 
considered by ±20%. Thus, we add 7 values the top and bottom of the current range, 

such that q1 equals 0.0576̇ and q49 equals 1.0466̇. This sequence of possible q values is 
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then sequentially inputted into the described model, meaning the model is projected 49 

different times, producing 49 different theoretical fish communities.  

Varying q in this way will directly alter encounter rates across the whole size range of the 

community spectrum (see Appendix 5.2). Some species will benefit, allowing processes 
of consumption, growth and reproduction to be maximised whilst other species will lose 

out. Alongside its role on equation 5.1, q has two other roles within the internal dynamics 
of the model. First, it is used to calculate the exponent of the resource spectrum (𝜆) 

𝜆 = 2 + 𝑞 − 𝑛																																																						(𝐸𝑞𝑛	5.6) 

where n is the exponent of maximum intake. Second, because 𝜆 varies as a function of 
q, and 𝜆 is used to calculate 𝛾, the factor for search volume (g-1 year-1), 

𝛾F(𝑓U) = 	
𝑓�ℎF𝛽FuQÊexp	(−(𝜆 −

2)u𝜎Fu
2 )

(1 −	𝑓U)√2𝜋𝜅�𝜎F
																															(𝐸𝑞𝑛	5.7) 

𝛾 also varies as a function of q (see Figure 5.1). Thus, between model runs we allow 𝜆 
and 𝛾 to vary as a function of a changing q. It is, however, important to acknowledge that 

equations 5.5, 5.6 and 5.7 consider a marine community that is in perfect equilibrium 
(often referred to as the scale-invariant model) where the total abundance of all species 

of all sizes (including those in the background resource spectrum) follows a perfect 
power law relationship (i.e. the process of growth and natural mortality are in balance). 

Consequently, any change in the value of q has the potential to the shift the slope of that 
power law relationship and furthermore the introduction of fishing mortality will act to 

spoil to that equilibrium. This caveat will become significant when drawing meaningful 

conclusions.  

5.2.3 Fishing mortality 

One of the principal uses of size spectrum models is to gain a more in-depth 

understanding of the consequences of fishing (e.g. Andersen and Pedersen, 2010). 

Fishing typically removes intermediate to large individuals from the community, resulting 
in top-down trophic cascades (Andersen and Pedersen, 2010). These cascades are 

driven by rises and falls in predation pressure and food availability, both of which are 
linked in some way to an individual’s encounter rate. As a result, the inclusion of fishing 

mortality is a logical next step in our analysis.  

Fishing mortality is imposed using a standard ‘trawl-type’ selectivity function, where 
individuals of each species i, become instantaneously ‘available’ to the fishery at size 

0.1Mi. Once individuals are ‘available’ they are caught at a constant catchability rate of 
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Figure 5.1. Relations between q and its dependent parameters: gamma (factor of search 
volume; A) and lambda (exponent of the resource spectrum; B). Gamma (g-1 year-1) is 

shown to decrease as a function of q whilst lambda increases linearly with q.  

50% (𝜉; Jacobsen et al., 2017). We allow fishing effort (f; year-1), a measure of fishing 

intensity, to vary according to a sequence from 0 to 1 in increments of 0.05 (21 possible 
f values).  The chosen exploitation pattern is comparable to the selective fishing pattern 

used in Jacobsen et al. (2013), where juveniles are protected and individuals are 
recruited to the fishery as they approach some fraction of their asymptotic size. It allows 

us to test the interacting consequences of a varying q and a varying f and explore 
species-specific rates of coexistence and extinction. Thus, we run the model a total of 

1029 times (21 multiplied by 49), where each projected community is characterised by 
its own unique combination of q and f parameters.  

5.2.4 Interaction matrix  

One additional parameter that seems open to discussion in the published literature is the 

rate at which cannibalism is allowed to occur in the model (Andersen et al., 2016b; 
Canales et al., 2016). As prey selection is size based, cannibalism is an intrinsic model 

feature and is controlled by the model’s interaction matrix 𝜑. The interaction matrix 
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describes the likelihood with which each pair of species will interact (in terms of 

encounter) and takes the form of a 10 by 10 matrix. Here, we set all	𝜑 values to be 1 (as 
is default in mizer), meaning that prey selection is entirely size based and that all species 

are viable food items to all species, including conspecifics. Further, to test how sensitive 
our findings are to the chosen interaction matrix, we re-ran the analysis with all 𝜑 values 

fixed at 0.5. In this second analysis, prey selection remained entirely size based, and all 

species were still able to feed from all other species however their rates of interaction 
were halved. We assign the initial analysis (all 𝜑 values fixed at 1) to the notation 𝜑H and 

the second analysis (all 𝜑 values fixed at 0.5) to the notation 𝜑�.�.  

The model’s interaction matrix is used in E3 to scale encounter rates and subsequent 
predation mortality.  

5.2.5 Model output 

From each model we output four commonly used ecological indicators: (1) community 

slope, (2) total biomass (g m3), (3) total yield of the fishery (g m3) and (4) species 
coexistence. The first three indicators are relatively common in the published literature, 

while the fourth serves as a useful measure of community composition.  

Community slope was derived as the slope of a linear regression fitted to each model’s 

estimated log abundance and log mass and was calculated using the 
getCommunityslope mizer function. Total biomass of the fish community was calculated 

as an aggregate biomass of all 10 species using the getBiomass mizer function. Total 
yield of the fishery was calculated as an aggregate yield from all 10 species using the 

getYield mizer function. Each of the above calculations wa made sequentially at the 0.1-
year increment (5000 calculations), we then calculated a mean value from the final 500 

increments. An averaged value wa used to ensure that cyclic solutions were handled 

appropriately. Each calculation considered the whole community size spectrum, from 1 
– 220,000 grams but did not consider the background resource spectrum. Preliminary 

investigations revealed that the trait-based model produced absolute total biomass and 
absolute total yield estimates that were unrealistically small, for example under a q value 

of 0.8 and an f value of 0.15 we estimated a total biomass of 0.0646 g m3 and a total 
yield of 0.0005 g m3. Consequently, we opted to interpret these indicators in relative 

terms to a null model, where the null model is the community projected under a q value 
of 0.8 and f values of 0 and 0.05 for total biomass and total yield, respectively.  

Species coexistence is a derived metric and describes the number of species that are 
able to coexist in the community, without collapsing, under a given q and f parameter 
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set. As in Worm et al. (2009), we used 10% of unfished biomass as a definition for 

collapse. The biomass of each species through time wa, again, extracted from the model 
using the getBiomass mizer function. We then calculated collapse and subsequent 

coexistence from averaged values taken from the final 500 increments.   

Gaining meaningful inference across a grid of 1029 possible values is no easy task, as 

a result we have chosen a number of empirical derived values and use them to refine 
our interpretation. In the q dimension, we select the following values based on the 

findings of Chapter 4:  

a. q = 0.66̇, where 𝑑¼ = 0 (no relationship between body size and d) 

b. q = 0.76̇, where 𝑑¼ = 0.10 (varying intercept and slope model – Chapter 4) 

c. q = 0.8, where 𝑑¼ = 0.13̇ (Ware 1978) 

d. q = 0.826̇, where 𝑑¼ = 0.16 (varying intercept model – Chapter 4) 

e. q = 0.96̇, where 𝑑¼ = 0.30 (simple model – Chapter 4). 
 

In the f dimension, we select fishing efforts of 0, 0.25 and 0.7 based on the work of 

Andersen and Rice (2010). These f values are designed to reflect the following 

exploitation regimes: no fishing (f=0), fishing at sustainable levels (f=0.25) and heavy 
exploitation (f=0.7). The latter regime (f=0.7) has previously been used to mimic the state 

of fishing in the North Sea (Andersen and Rice, 2010; Pope et al., 2006).  

All plots are generated using the ggplot2 library (Wickham, 2009) in R and make full use 
of the viridis colour palette (Rudis et al., 2018).  

5.3 Results 

Projecting over a large matrix of possible q and f values, we observe large changes in 
community slope and rates of species coexistence, as well as variation in total yield 

compared to the null model. We also found that the total biomass of community was 
reasonably consistent and only exhibited large relative differences at low values of q.  

In terms of community slope (Figure 5.2), smaller q values (below 0.75) result in a 
community that is highly sensitive to small changes in f. Under fishing efforts between 0 

and 0.05, community slopes are between -3 and -5. However, it is worth noting that, even 

in the absence of fishing, a q value of 0.66̇ results in a highly variable community 
spectrum (Figure 5.3), characterised by steep declines in abundance (at sizes greater 

than 150 g) compared to the null model (q = 0.8). Once f surpasses a critical threshold 
value of approximately 0.15, community slopes very quickly crash to values below -10.  
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Figure 5.2. Community slope as a function of a varying q (rounded to 3 decimal places) 

and a varying f. All slope estimates have been discretised to aid visual interpretation. All 
𝜑 values are fixed at 1.0. A lower threshold of -10 has been imposed because values 

beyond this point are indicative of a truncated size spectrum where abundance at large 
size class has been completely lost.  
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Figure 5.3. Abundance at size (A), and relative abundance at size (B) for each of our 

empirically derived q values. Abundance was calculated as the sum total of all ten 
species, where the abundance of a single species represents an averaged estimate 

taken from the last 500 model time steps. Relative abundance at size was calculated 
relative to the null model (q = 0.8). In B, the null model is plotted as a grey dashed line 

at y = 0. Abundance and mass were log (natural log) transformed to aid visual 
interpretation. In all cases fishing effort (f) is fixed at f = 0. All 𝜑 values are fixed at 1.0. 

 
Thus, the community very quickly loses its largest individuals and becomes dominated 

by biomass at small size classes. This pattern is clearly illustrated by plots of abundance 

against mass, where abundance at larger size classes (greater than 1500 g) very quickly 
diminishes towards nominally low values under fishing efforts of 0.25 (Figure 5.4) and 

0.7 (Figure 5.5). At q values of approximately 0.8 or higher, fishing efforts between 0 and 
0.45 result in community slopes between -2 and -4. However, as f increases, we see a 
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Figure 5.4. Abundance at size (A), and relative abundance at size (B) for each of our 

empirically derived q values. Abundance was calculated as the sum total of all ten 
species, where the abundance of a single species represents an averaged estimate 

taken from the last 500 model time steps. Relative abundance at size was calculated 
relative to the null model (q = 0.8). In B, the null model is plotted as a grey dashed line 

at y = 0. Abundance and mass were log (natural log) transformed to aid visual 
interpretation. In all cases fishing effort (f) was fixed at f = 0.25. All 𝜑 values are fixed at 

1.0.  

clear and gradual response. Communities characterised by higher q values are able to 

maintain a shallower community slope for longer, despite increases in fishing. In fact, at 
q values of 0.9 and above community slopes are maintained at values between -2 and -

4 independent of the fishing effort being imposed. This resilience to increases in f is 

illustrated further in Table 3, as communities projected with q values of 0.8, 0.826̇ and 

0.96̇ share very similar community slopes under f values of 0 and 0.25. This then changes 
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Figure 5.5. Abundance at size (A), and relative abundance at size (B) for each of our 

empirically derived q values. Abundance was calculated as the sum total of all ten 
species, where the abundance of a single species represents an averaged estimate 

taken from the last 500 model time steps. Relative abundance at size was calculated 
relative to the null model (q = 0.8). In B, the null model is plotted as a grey dashed line 

at y = 0. Abundance and mass were log (natural log) transformed to aid visual 
interpretation. In all cases fishing effort (f) was fixed at f = 0.7. All 𝜑 values are fixed at 

1.0.  

at higher fishing efforts, as the difference in community slope between q=0.8 and q=0.96̇ 
raises from 0.19 to 3.50 under f values of 0.25 and 0.7, respectively.  

Relative total biomass remains fairly consistent across a large range of q (0.70 – 1.046̇) 
and f values (0 – 1) indicating minimal variation from the null model (Figure 5.6). Relative 

differences peak when the community is projected under a q value of 1.046̇ and an f 
value of 0.05. However, it is notable that even in this extreme case total biomass has  
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Figure 5.6. Relative total biomass as a function of a varying q (rounded to 3 decimal 

places) and a varying f. All values are relative to the null model (q = 0.8 and f = 0). All 𝜑 
values are fixed at 1.0. 
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only increased by 2.8% compared to the null model.  Below a q value of approximately 

0.7, we do observe some reductions in relative total biomass. For instance, at a q value 

of 0.576̇ the total biomass of the community is 39.1% smaller than under the null model. 
These remain consistent despite increases in fishing effort. Focusing in on our empirical 

values of interest, some difference is observed (Table 5.3). This is especially true when 

comparing estimates made under a q = 0.8 and a q = 0.66̇ parameter set, but overall 
neither varying q nor varying f seems to have much effect on the community’s projected 

biomass.  

Plotting relative total yield across our range of possible q and f values produces clear 

yield curves (Figure 5.7). The yield of the trawl-type selectivity function reaches its 

maximum at intermediate q values (q = 0.776̇ to 0.8) and f values between 0.2 and 0.35. 
From these maximum values yield drops off substantially, resonating away in a wave-

like fashion as both q and f increase. Using our empirically chosen values as an example 

(Table 5.3), total yield is shown to be larger when q equals 0.776̇ compared to the null 
model, whereas q values larger than 0.8 lead to reductions in total yield. This pattern is 

found to consistent under both sustainable (f = 0.25) and heavy (f = 0.7) fishing pressure. 

In fact, increasing q from 0.8 to 0.96̇ results in nearly a 50% reduction in yield. 
Additionally, we find that relative total yield completely drops off below a q value of 

approximately 0.7, irrespective of the fishing effort imposed on the community. For 

example, a community projected under a q value of 0.66̇ has a total yield that is 100% 
smaller than under a q value of 0.8. This suggests that the community comprises of very 

small fish, where the likelihood of growing past the 0.1Mi availability threshold is heavily 
constrained by reductions in encounter rates at larger size classes.  

Species coexistence is maximised at high q and low f values, where higher encounter 
rates per unit time allow larger individuals to thrive (Figure 5.8). As in community slope 

and total yield, values drop off at low values of q (q < 0.716̇), irrespective of fishing effort, 
further illustrating that a critical threshold exists in the q dimension. Below this threshold 
encounter rate scaling, and hence food intake, is found to be insufficient to sustain the 5 

largest species in our theoretical community. Between q values of 0.726̇ and 0.766̇ we 
again observe a clear and gradual response to an increasing q and f, where small 
increases in q allows the community to retain its 7th largest species despite increases in 

fishing effort. At q values greater and equal to 0.776̇, the community is much more 
resilient to increases in fishing. At low fishing efforts (f less than 0.60), the community 
consists of 9 or more species. This then drops off to 8 species at larger fishing efforts. 

This pattern clearly demonstrates that large search volume exponents are essential to  
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Figure 5.7. Relative total yield as a function of a varying q (rounded to 3 decimal places) 

and a varying f. All values are relative to the null model (q = 0.8 and f = 0.5). All 𝜑 values 
are fixed at 1.0. 
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avoid collapse in larger species, especially when the community is exposed to heavy 

levels of exploitation. 

When the analysis is re-run with a different interaction matrix, we do observe some 

differences, especially in terms of community slope and species coexistence. For 

example, we find that q values of 0.876̇ and above are needed to maintain a community 
slope between -2 and -4 (Appendix 5.3). This threshold in the q dimension is markedly 

higher than during the initial analysis (when all 𝜑 values are fixed at 1.0). Further, we 
find that the number of communities with a community slope value below -10 increases, 

extending from 0.576̇ to 0.846̇ in the q dimension and from 0.3 to 1.0 in the f dimension. 
A similar response is present within species coexistence, with all ten species again 
coexisting at high q and low f values, however the range is markedly reduced (Appendix 

5.4). In comparison, we find that the trends observed in terms of relative total biomass 
(Appendix 5.5) and relative total yield (Appendix 5.6) are consistent across the two 

interaction matrices considered. For example, we find that the change in total biomass 

relative to the null model is minimal across a wide range of q (0.70 – 1.046̇) and f (0 – 1) 
values. Whereas total yield again produces clear yield curves and peaks at intermediate 

q (0.776̇ to 0.8) and f values (0.35 – 0.5). 

5.4 Discussion  

Here, we expose a trait-based size spectrum model to an empirically informed range of 
q values. In doing so, we note four key findings. (1) That the value of q greatly influences 

the size composition of the estimated community but has no clear effect on the 
community’s total biomass. (2) That high q values, akin to those estimated by our simple 

model in Chapter 4, result in a community that is much more resilient to increases in 
fishing pressure. (3) That a minimum critical threshold is present in the q dimension, 

below which any reasonable increase in f results in a rapid collapse of species 

abundance at intermediate to large size classes. (4) That our general findings are robust 
to changes in the model’s interaction matrix (𝜑). n the following discussion we will outline 

the mechanisms behind these findings with particular focus on the individual-level 
processes of prey encounter, consumption and growth. We will also relate any observed 

trends to the published literature and highlight some take-home messages that will be of 
interest to marine modellers, fisheries scientists as well as management decision 

makers.  

Most size spectrum models implement a fixed q value of 0.8 (e.g. Hartvig et al., 2011; 

Jacobsen et al., 2013). Setting q at 0.8 and f at 0, our trait-based model resolves a 
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community of 10 coexisting species which is characterised by a normalised abundance 

community slope of approximately -3.05, which is equivalent to a normalised biomass 
slope of -2.05. This slope estimate is a little steeper than those reported for normalised 

biomass in fish and epifaunal predator communities in the North Sea (-1.2 to -2.25; 
Bianchi et al., 2000; Blanchard et al., 2009). However, given its relatively close proximity 

to past findings (Bianchi et al., 2000; Blanchard et al., 2009) and the model’s 

convergence towards a smooth community size spectrum (Appendix 5.7), we are 
confident that the null model (q = 0.8) provides a stable platform from which comparisons 

can be made.  

Regardless of the fishing pressure being imposed, a community projected with a low q 

value (between 0.576̇ and 0.746̇ in 𝜑H and between 0.576̇ and 0.796̇ in 𝜑�.�) is 
characterised by two components. First, a marked decrease in the abundance of large-

bodied fish. Second, a superabundance of small-bodied fish. When q is low, large-bodied 
fish have relatively lower search volumes per unit time than under null conditions (i.e. 

when q is set at 0.8). Lower search volumes reduce will reduce rate at which an individual 

encounters prey and imposes severe constraints on food consumption. As somatic 
growth only occurs once metabolic demands are met, any reductions in food 

consumption will limit the rate of which individuals can grow through the size classes. 
Once scaled up to the community-level, our findings support the conjecture that a 

reduction in search volume will greatly reduce the abundance of large-bodied fish 
resulting in a truncated size spectrum and a much steeper community slope. As shown 

in many studies, this truncation of the size spectrum will only be exacerbated by fishing 
(Andersen and Pedersen, 2010; Houle et al., 2013; Zhang et al., 2016), as any individual 

who does emerge at high size classes will have high likelihood of fisheries induced 

mortality.  Even when fishing is absent, a q value of 0.66̇ is unable to support community 
abundance above a size threshold of approximately 60 grams (Figure 5.3). Beyond this 

size threshold (~60 grams) abundance at size suffers a complete collapse and the 

community size spectrum veers away from an expected smooth relationship towards 
patterns of extreme volatility (Figure 5.3). These observations lead us to hypothesise 

that a critical threshold must exist in the q dimension, below which large-bodied fish are 
not viable parts of the community. By plotting abundance at size for each species across 

a range of q values (Appendix 5.8) we demonstrate that a q value above 0.76 is needed 
before the two largest species (species 9 and 10) are able to persist. This threshold value 

will be highly model dependent and is unique to our chosen parameter set. However, 
this provides a useful example of how small changes in the scaling of movement with  
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Figure 5.8. Species coexistence as a function of a varying q (rounded to 3 decimal 
places) and a varying f. All 𝜑 values are fixed at 1.0. 
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mass can have large emerging consequences on the size composition of fish 

communities.  

A superabundance of small-bodied fish when q is fixed at low values is not surprising. 

By constraining the abundance of large-bodied fish a lower q value supresses the 
predation mortality being exerted on smaller individuals. Additionally, small bodied fish 

benefit directly from an increased search volume per unit time relative to the null case 
(when q = 0.8). Both of these factors allow smaller fish to prosper, as processes of 

consumption and growth can be maximised whilst the likelihood of mortality is reduced. 
This results in a community size composition that is dominated by biomass at small sizes 

classes. Interestingly we observe a clear ‘hump’ in the size spectrum when q is set at a 

value of 0.66̇ (Figure 5.3). This non-linearity is consistently present when fishing is 
imposed on the community (Figure 5.4 and Figure 5.5) and occurs at body masses of 

approximately 20-80 grams. We theorise that this ‘hump’, where abundance at size is 
disproportionality greater than expected is indicative of a growth induced bottle neck. 

Before this point conditions for growth are optimal allowing individuals, especially the 

juveniles of larger-bodied species who are not subject to fishing mortality, to grow quickly 
through the size classes. However, at some theoretical point the shallower scaling of 

search volume with mass will act to constrain encounter rates, limiting consumption and 
growth. These lower rates will again limit the energy that can be allocated to somatic 

growth causing a ‘pile up’ of individuals at size. This trend is analogous to the findings of 
Andersen and Pedersen (2010) who note a similar ‘pile up’ of individuals as a cascading 

response to fishing and adds further evidence to our theory of a critical q threshold in 
size-structured communities.  

Compared to the null model, communities projected with a higher q value are 
characterised by a shallower community slope. These changes in size composition are 

a direct consequence of a change in q, as intermediate- and large-bodied fish are 
permitted to search a larger volume of water per unit time, boosting rates of prey 

encounter, consumption and growth. Larger consumption rates allow individuals to grow 
through the size classes more quickly and as theorised in the discussion of Chapter 4 

this leads to an accumulation of individuals at large size classes. In the absence of 
fishing, this accumulation is another example of a growth induced ‘pile up’ in the size 

spectrum. However, in this scenario, the extent of the ‘pile up’ is restricted by the model’s 

internal background mortality rate (𝜇�) and further constrained by top-down predation. 
For example, although intermediate-bodied fish may benefit from an increased search 

volume, its likelihood of successfully growing through the size classes is reduced by the 
high predation pressure being exerted on its size range by an increased abundance of 
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large-bodied fish. This results in an abundance size spectrum that is almost identical in 

shape to the null model but has a large peak at the uppermost extent of the size range 
(Figure 5.3). Once fishing is introduced into the model, large fish are removed from the 

community which releases the intermediate-bodied fish from that predation pressure. 
This release allows those intermediate fish that have not been fished out of the system 

to grow through the size classes and assume the position of top predator. These fluxes 

in growth and abundance will occur throughout the size spectrum, as fishing first 
removes individuals, which displaces predation mortality and ultimately allows other 

individuals to grow into the gaps. This fishing induced trophic cascade is identical in 
principle to what we observe in the null model and mirrors the findings of Andersen and 

Pedersen (2010). However, because q is higher, the individual-level processes of prey 
encounter, consumption and growth will happen at much higher rates. Higher individual-

level growth rates mean that the community’s abundance at size will be regenerated 
quickly, allowing larger-bodied species to persist in a community despite increases in 

fishing mortality. Such emergent community-level features highlight how small changes 
to an individual-level process can have a large effect on community dynamics.  

Interestingly when q is fixed at lower values (between 0.576̇ and 0.746̇ in 𝜑H and between 

0.576̇ and 0.796̇ in 𝜑�.�), we observe clear winners and losers. Small fish benefit from 
higher search volumes allowing them to become superabundant whilst large fish struggle 
to consume enough to food to sustain life. This is not the case when q is high, with plots 

of relative abundance (panel B in Figures 5.3 – 5.5) illustrating minimal difference in 
abundance at small size classes compared to the null model. Our prior expectation was 

that under higher q values (> 0.9), small-bodied fish would become much less abundant, 
as their search volumes per unit time are reduced in relative terms. This would have 

reverberating consequences, as any size-structured food web will be inherently sensitive 
to changes in the abundance of small prey. The absence of this phenomenon in the 

modelled communities’ merits further investigation, especially when it is considered that 

the predation mortality on smaller-bodied species will only be increased by peaks in the 
abundance of large fish. We initially had two theories to explain this. Theory one 

surrounds the assumption of cannibalism. In the both analyses (𝜑H and 𝜑�.�) we assume 
that cannibalistic feeding interactions occur at the same order as all other interspecific 

feeding interactions. Cannibalism is known to be widespread among fish (Andersen et 
al., 2016b; Canales et al., 2016; Persson et al., 2000; Smith and Reay, 1991), however 

by allowing fish to feed on their conspecifics we have provided an alternative feeding 
pathway. Thus, in a scenario of high growth rates but low prey abundance, large fish 

could, in theory, be relying heavily on the consumption of their conspecifics. If this was 
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true, it would provide another example of how cannibalism prompts species coexistence 

in size-structured fish communities (as shown in Hartvig and Andersen, 2013). Theory 
two is by no means independent of theory one and involves the process of reproduction. 

Because large-bodied fish are encountering more prey per unit time they will presumably 
be able to allocate more energy to reproduction. More stored reproductive energy means 

more eggs can be produced per unit time. More eggs mean more larvae and a much 

greater influx of individuals at small size classes. These larvae stages will act to replace 
the abundance at size of small-bodied fish and will in turn act as a food source for larger 

predators. Some of these larger predators will be conspecifics thus processes of 
cannibalism and reproduction can be considered to be interacting responses of the 

community to increases in q. Plotting species abundance at size in the absence of fishing 
(Appendix 5.9), we are able to demonstrate that it is not that smaller species are not 

losing out, their abundance at size is lower, albeit marginally, when q is high (q = 0.966̇). 
However, it is clear that under higher q values the larger species within the community 
(e.g. species 10), are exhibiting elevated abundances at size across their entire size 

range. Such increases will bolster the community’s abundance at small-size classes and 
will presumably supplement the diet of larger fish. We show that the spawning stock 

biomass is greater in larger species (species 9 and 10) when q is high (q = 0.966̇; 
Appendix 5.10) providing direct evidence for theory two. However, we currently unable 
to separate rates of cannibalistic predation mortality from other forms of predation 

mortality within mizer and recommend that future work replicates our analysis under 

varying levels of cannibalism. Past studies have shown that cannibalism can remove up 
to 40% of a cohort in Atlantic cod (Neuenfeldt and Köster, 2000), therefore it is clear that 

a better understanding of cannibalism is needed (Andersen et al., 2017).  

Past studies show us that size spectrum models are particularly useful when attempting 
to examine the community- and ecosystem-level impacts of fishing (Andersen et al., 

2016b; Blanchard et al., 2017; Edwards et al., 2017). Here we have introduced a 

selective community-wide exploitation pattern where individuals from all 10 species are 
removed according to a standard trawl-type selectivity function. In doing so we predict 

that relative total yields are high at intermediate q (between 0.776̇ and 0.8 in both 𝜑H and 
𝜑�.�) and f values (between 0.2 and 0.5 in both 𝜑H and 𝜑�.�). In the f dimension, an 
association between high yields and immediate fishing efforts is somewhat intuitive and 

has been shown in occur in Hake (Merluccius merluccis; ICES, 2018) and several other 
commercial fish stocks in the waters surrounding the British Isles (e.g. Haddock 

(Melanogrammus aeglefinus; ICES, 2017d) and Herring (Clupea harengu; ICES, 2016)). 
By continuously fishing at sustainable levels, the rate of removal will be proportional to 
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rate of productivity (Francis, 1974; Jacobsen et al., 2013; Zhou et al., 2012), thus 

exploitation can be sustained at some optimal rate for a longer period time. Such 
optimality is analogous to the original theory behind Maximum Sustainable Yields (MSY; 

as detailed in Beverton and Holt, 1957; Graham, 1935; Schaefer, 1957, 1954) however 
whether or not this optimality is achievable in a complex and dynamic multi-species world 

is subject to large debate (e.g. Hilborn and Ovando, 2014; Ulrich et al., 2017; Worm, 

2016). In q dimension, communities projected with intermediate q values (between 0.776̇ 
and 0.8) contain many small-bodied fish as well as some larger-bodied fish. This size 

composition, given our chosen exploitation pattern, will produce higher yields when 

compared to either a truncated size spectrum (e.g. when q = 0.66̇) or a community that 

is dominated by abundance at high size classes (e.g. when q = 0.96̇). This might not 
necessarily be the case when an alternative exploitation pattern is considered. For 
example, an unselective balanced harvesting scenario, like the one used in Jacobsen et 

al. (2013), may produce higher relative yields when q is set at low values. This is because 
the idea behind balanced harvesting is that exploitation should be in accordance with the 

productivity of the individual or species (Jacobsen et al., 2013; Law et al., 2012), and a 
small-fish dominated community will be inherently highly productive (Andersen et al., 

2009). Conversely, an industrial fishing gear that solely targets larger, more valuable fish 
(as used in Andersen and Pedersen, 2010) will theoretically achieve maximal yields 

when q is high.  

It is clear that the potential avenues for future work in this project are numerous. We 

have already highlighted how changes to the rate of cannibalism will allow us to further 
explore the community-level consequences of a changing q with a particular focus on 

species coexistence rates. Additionally, by considering alternative exploitation patterns 
we can investigate how q induced changes in size composition may alter estimated 

yields and the likelihood of achieving fisheries management goals such as MSY, optimal 
yield or ‘pretty good yield’ (Hilborn, 2010; Houle et al., 2013). However, as in any 

modelling study, it is critical that any inference gained is examined with regard to the 
model’s assumptions and the limitations of the approach. One such limitation surrounds 

the value of 𝜆 (exponent of the resource spectrum). Past observations and theory dictate 

that the size spectrum of primary production scales with an exponent that is close to 2 
(Boudreau and Dickie, 1992; Rinaldo et al., 2002; Sheldon and Parsons, 1967). Here, 

we have allowed the value of 𝜆 to explicitly vary as q changes. For instance, when q is 

set at 0.976̇, 𝜆 is assumed to be 2.31. This parameter value is much higher than in a 
number of published applications of the trait-based model, where 𝜆 typically takes the 

value of 2.05 (Andersen and Beyer, 2006; Hartvig et al., 2011). These differences will 
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have two reverberating consequences. First, they directly alter the shape of the 

background resource spectrum and will change the food available to small size classes 
(in the fish size spectrum). Second, because equations 5.5 – 5.7 consider a marine 

community that is in perfect equilibrium (where the total abundance of all species of all 
sizes follows a perfect power law relationship), theory dictates that any change in q will 

consequently produce a 𝜆 that maintains this equilibrium. Both of these consequences 

merit further investigation aimed at disentangling the relationship between q and 𝜆.  

In Chapter 4 of this thesis we learn that the scaling of movement (measured as daily 
displacement) in marine fish is an area of relatively large uncertainty. Motivated by the 

need to explore how this uncertainty manifests itself the community level, we have 
exposed a widely-used trait-based size spectrum model to an empirically informed range 

of q values. In doing so we note three take-home messages. (1) That by changing rates 
of prey encounter, q directly influences the individual-level processes of consumption, 

growth and mortality.  (2) Scaling up to the community-level, variation in q causes large 

emergent effects on community size composition both in terms of community slope and 
species coexistence, as well as altering how a community responds to fishing. (3) That 

the future application of size spectrum models to ecologically important questions must 
consider the inherent uncertainty surrounding q and the possible effects that a change 

in q can have on a model’s output.  
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Chapter 6.  

General Discussion.  

The rising quality and quantity of movement data, coupled with methodological 
advancements, have led to a ‘golden age’ in animal movement (Hays et al., 2016; 

Hussey et al., 2015; Jonsen et al., 2013). However, authors still query the level of 
inference that can be gained by deploying tags on individual animals, when the ultimate 

aim is to inform conservation and management (Carter et al., 2016; Hebblewhite and 
Haydon, 2010; McGowan et al., 2017; Ogburn et al., 2017). The aim of this thesis was 

to address these queries, taking what we have observed at the level of the individual and 

analysing it in such a way as to infer the individual-, population- and community-level 
consequences of movement.   

In the following sections we will summarise our key findings, comment on several 

emergent research themes and provide direction for future work.  

6.1 Key findings 

Throughout this thesis we present a sequential guide for the analysis of individual tagging 

data, which effectively steps through the complexities of the scaling-up process. We start 
at the individual level by investigating how tag deployment on individual fish informs our 

understanding of stock structure (Chapter 2), and end with how changes to the scaling 
of movement governs species coexistence and community structure (Chapter 5). Our 

key findings maintain this sequential approach: 

(1) At the individual-level, tagging studies inform our understanding of stock structure 

and allow us to uncover how individual fish alter their distributions on a seasonal 
basis. In Chapter 2, we observe minimal signs of stock mixing between cod in 

the Irish and Celtic seas, supporting current stock assessment and management 
strategies (ICES, 2017a). However, we do show that cod in the Irish sea move 

north, coming into contact with cod off the west coast of Scotland. This finding, 
coupled with distinct patterns of seasonal space-use and stock-specific 

movement characteristics, yields important insights for conservation and 

management. Potential management implications include the positioning of 
marine protected areas (MPAs) or no-take zones and the adaptation of stock 

boundaries to better reflect the fish they aim to protect. 
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(2) Hidden Markov models (HMMs) provide a flexible framework via which collective 

individual movement behaviour can be used to explore population-level spatio-
temporal trends.  In Chapter 3, we introduce a novel bivariate HMM, which uses 

prior distributions to address key obstacles faced by ecologists when using 
individual movement to ask population-level questions of their data. The most 

notable of these obstacles being large variations in data quality. Application of 

our approach to a relatively large sample size, consisting of over one hundred 
demersal fish, facilitated the coherent classification of daily horizontal and vertical 

movements into two broad behavioural modes (resident and migrating; Griffiths 
et al., 2018). In the resident state, individual fish are more vulnerable to capture 

by trawl-based fishing methods (Righton et al., 2009). Consequently, knowing 
when and where this state occurs has important ramifications for fisheries 

management and species conservation. 
 

(3) Movement follows a power law relationship with body mass in marine fish. In 
Chapter 4, we sought to investigate whether simple rules govern seemingly 

complex movement patterns. Tested across 583 individuals taken from 18 

species and spanning 7 orders of magnitude in body mass, we demonstrate that 
current assumptions surrounding the scaling of movement with body mass (e.g. 

Ware, 1978) are valid but mask important ecological phenomenon, notably 
within-species variations and life-stage effects. Crucially, we show the 

importance of considering phylogenetic and species-level effects when 
approximating taxon-independent relationships.  

 
(4) Size-based ecosystem models are highly influenced by small changes to the 

scaling of movement. In Chapter 5 we apply our findings from Chapter 4 to a trait-
based size spectrum model (Scott et al., 2014). We show that empirically 

informed changes to a single parameter (q) has large emergent consequences 

for community size composition and rates of species coexistence. Additionally, 
by considering a range of fishing efforts, we demonstrate how the scaling of 

movement has the potential to alter estimated fisheries yields and the resilience 
of marine communities to fishing. Our findings have important consequences for 

size-based ecosystem models which are frequently used to ask key ecological 
questions, e.g. how marine systems have or will respond to fishing (Andersen 

and Pedersen, 2010; Andersen and Rice, 2010; Blanchard et al., 2017; Houle et 
al., 2013).   
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6.2 Limitations and future work 

Throughout this thesis, we have discussed numerous avenues for future work and made 

a conscious effort to highlight the limitations of our work and acknowledge any caveats. 

In the following text we summarise these caveats by chapter and then discuss areas of 
limitation that require further work.  

(1) In Chapter 2 we have described the movement patterns of cod in the Irish and 

Celtic Seas and gained information about stock structure and stock mixing based 
on the movement paths of twelve individuals. This small sample size may not 

adequately reflect that of the whole population, however we, like the majority of 

tagging studies, have assumed that it does (Carter et al., 2016; Hebblewhite and 
Haydon, 2010; McGowan et al., 2017; Ogburn et al., 2017). As discussed 

previously, small sample sizes are often a consequence of financial limitations, 
tag loss or failure, or low numbers of individual observations (McGowan et al., 

2017). However, in the case of cod in the Irish Sea an altogether different factor 
is contributing to our low sample size; since the early 2000s, ICES has been 

advising zero total allowable catch (TAC) for cod, which results in a reduction in 
tag return rates as less cod are being landed. (ICES, 2017e, 2016b, David 

Righton, pers coms). This provides an interesting example of how science has 
influenced fisheries management (by recommending reductions in TAC) and in 

doing so has temporarily reduced the amount of data gained from the deployment 

of data storage tags. A second caveat that requires acknowledgment surrounds 
the use of diet data, which is sourced from the stomachs of dead fish (Pinnegar, 

2014). Here, we used diet data to further our understanding of feeding 
interactions and ultimately how any differences in prey type may underpin 

differences in the rate of stock recovery. However, it is important to note that 
stomach content analysis only provides a snapshot in time, informing us about 

what has recently been consumed and not an individual’s historical feeding habits 
(Baker et al., 2014). These trends may not always represent an individual’s 

preferential prey and consequently may skew any inferences made.  
 

(2)  In Chapter 3 we have used a two-state bivariate HMM to learn about spatial-

temporal behavioural patterns in two species of demersal fish (Griffiths et al., 
2018). In doing so, we have assumed that two behavioural states are sufficient 

to describe the underlying movement process and that these states are shared 
by multiple individuals. Moreover, we assume that we gain enough information at 

the daily level, in both the vertical and horizontal dimensions, to ascertain 
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biologically relevant switches between those behavioural states. All of these are 

simplifying assumptions and have the potential to affect the outcomes of our 
research. A more detailed discussion of these topics in the context of limitations 

and future work can be found below, as well as examples of how these 
assumptions might differ in other species.  

 

(3) In Chapter 4 we use tagging data to explore the relationship between movement 
and mass in marine fish.  One of the main aims was to evaluate whether the 

theoretical work of Ware (1978) was supported by empirical observations. We 
have shown that it is, but only when species-level effects are considered. 

However, it is important to acknowledge that the movement rate used in our work, 
being a daily displacement rate, does differ from that of Ware (1978) and other 

investigations (e.g. Hirt et al., 2017), where speed is often considered the 
response variable. The relationship between speed and displacement will likely 

vary temporally and as a result our findings must be interpreted accordingly. Two 
additional caveats surround our finding that life stage is a significant explanatory 

variable (i.e. that the relationship between movement and mass differs between 

adults and larvae). First, that we have not considered the morphological 
differences that exist between larvae and adults, which could also explain the 

variance observed, as larvae do not grow isometrically (Fuiman, 1983; Webb and 
Weihs, 1986). Second, we currently lack data pertaining to intermediately-sized 

fish (body mass range: 0.5 – 200 grams), highlighting another gap in our current 
investigation that requires more research. 

 
(4) Finally, in Chapter 5 we explore the community level consequences of a changing 

relationship between movement and mass using a trait-based size spectrum 
model. In doing so, we manipulate the scaling of search volume by varying the 

parameter q. This has the knock-on effect of changing the parameters 𝜆 and 𝛾, 

as detailed in equations 5.5 – 5.7. A caveat of this process is that these equations 
consider a marine community that is in a state of equilibrium, where the total 

abundance of all species follows a perfect power law relationship (Gustav Delius, 
pers coms). The nature of this equilibrium will therefore change with any change 

in q and will become invalid when fishing mortality is introduced. Any future work 
must consider this caveat whilst also acknowledging that the model’s other 

parameters are also expected to be uncertain and merit a more global sensitivity 
analysis (e.g. Bannister et al., in prep). Additionally, we have made fairly broad 

conclusions about what effect a change in q can have on fisheries yields relative 
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to a null model. These conclusions must be interpreted with care as only one type 

of fishing has been considered. Our results may change when other exploitation 
patterns, e.g. balanced harvesting (Jacobsen et al., 2013; Law et al., 2012), are 

introduced.  

Alongside the aforementioned caveats, three points standout and merit further mention. 

The first resolves around the generality of our approach to other marine animals. 
Throughout Chapters 2 and 3 we have leaned heavily on our prior knowledge about 

demersal fish, especially the fact they spent prolonged period of time residing on or in 
close proximity to the seafloor (Hobson et al., 2007; Ewan Hunter et al., 2004b; Righton 

et al., 2001). Due to this prior knowledge we have utilised a range of data sources when 
explaining the movements of individual fish. For instance, we have used seabed habitat 

type (EMODnet, 2016) to describe changes to the environment that individuals inhabit 
and drawn meaningful conclusions about foraging by coupling stomach content data 

(Pinnegar, 2014) with prey species abundance estimates. Further to this, by knowing 

that demersal fish behave in this way, we have been able to make explicit assumptions 
about the movement patterns of fish (e.g. by exploiting the dependence between 

horizontal and vertical movement) and infer the population-level consequences of 
movement. For example, in Chapter 3 we have used periods of relative inactivity (low 

horizontal and vertical movement), observed across multiple individuals, to highlight 
when and where two commercially important species might be more vulnerable to 

capture by trawling (Righton et al., 2009). Such prior knowledge has provided a 
foundation for the scaling-up of individual movement and improved our ability to make 

recommendations for conservation and management. However, application of this 
approach to other marine species will require careful thought. For instance, pelagic fish 

move through an environment that is completely different to their demersal counterparts. 

Often described as a vast expanse, the pelagic realm is a three-dimensional world, 
devoid of structural complexity, where there is no hiding from predators and prey pursuit 

is a highly active process (Pawar et al., 2012). Such differences in habitat will have large 
effects on the movement patterns of individuals and mean that alternative data sources 

will have to be utilised and differing assumptions will need to be made. For example, 
past studies show that large pelagic predators track thermal fronts (e.g. Kitagawa et al., 

2007), therefore sea temperature may provide a much more informative descriptor of 
individual movement. Moreover, work conducted by DeRuiter et al. (2017), noted that 

foraging behaviour in blue whales (Balaenoptera musculus) is characterised by large 

vertical displacements and small horizontal steps, whereas directed bouts of travel are 
characterised by moderate vertical displacements and large horizontal steps. This 
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contradicts our assumptions about the dependence structure between horizontal and 

vertical movement in demersal fish and would require further model adaptation.  

The second stems directly from our work on HMMs. In Chapter 3 we have sought to 

scale the movement of individuals to the level of the population. To achieve this, we have 
made a number of simplifying assumptions, for example, that movement is described by 

only two broad-scale behavioural states and that these states are shared but multiple 
individuals. We have also summarised observations made in the vertical dimension 

(every 10 minutes) to the daily level, leading to an overall loss of information. These 
steps have allowed us to analyse the movements of over 100 fish in a matter of minutes 

(Griffiths et al., 2018), however our ecological inferences are constrained to broad-scale 
spatio-temporal trends. On the other hand, we have demonstrated, via a collaborative 

project (Adam et al., in review), that a multi-scale multi-state hierarchical HMM can 
provide a much more comprehensive understanding of fish movement, pinpointing not 

only diurnal foraging patterns but also the use of selective tidal stream transport in 

Atlantic cod (Gadus morhua). Despite such fine-scale inference, increases to model 
complexity come at the cost of high computational demands and limited scope for 

application to a large sample size. These two projects highlight both the flexibility and 
adaptability of HMMs in analysing animal movement but come with the caveat that 

researchers must think carefully when matching a model type with a chosen research 
question.  

The third involves the development of size-spectrum models so they explicitly 
incorporate movement through space and time and its’ effects on the individual-level 

processes of encounter, growth and mortality. Past size-based models have explicitly 
considered the spatial domain, for example Castle et al. (2011) introduce simple rules 

based on optimal foraging theory to allow individuals to either actively move towards 
areas of high prey density or move away from areas of high predator density. These 

‘prey-seeking’ and ‘predator-avoiding’ behaviours are relatively simplistic reflections of 
complex movement patterns however they predict systemic changes to community 

abundance and community slope. Concentrating on tuna, Maury (2010) breaks his sized-
based model into three ecosystems: epipelagic, mesopelagic and migratory 

communities. Movement in the both the horizontal and vertical dimension are then 

incorporated via environmentally forced sub-models, dictating the vulnerability of 
individuals to predation. Additionally, in a recent study, Andersen et al. (2017) allow the 

dynamics of sized-based fish population to vary in space based on a simple argument; 
that the area occupied by a size group follows a power law relationship with body size, 

expanding at a fixed rate as individuals grow. This inclusion gives rise to emergent 
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patterns of density dependence and is used to explain that why the process of density-

dependent regulation is different in small (e.g. lakes) vs. large habitats (e.g. marine 
systems). The inclusion of movement, shown by these three examples, is not trivial but 

marks an important advancement in the development of marine ecosystem models 
(Andersen et al., 2017; Law et al., 2016). Based on our findings in Chapter 4, we see 

three clear avenues for model extension. First, the inclusion of life-stage specific 

movement parameters. In Chapter 4, we show that movement scales differently with 
body mass in larvae compared to adults, therefore its inclusion would provide an 

interesting first step. Second, we note that species-level effects are significant, and it is 
highly possible that each unique fish species exhibits its own scaling relationship 

between movement and body mass. This could be explored using a multi-species 
version of the size-spectrum, for example the North Sea model (Blanchard et al., 2014; 

Scott et al., 2014), by allowing q to vary by species. The third, is more of a model 
development than an extension. Currently the individual-level processes of metabolism 

and movement are controlled by the independent scaling exponents, p and q, 
respectively (Andersen and Pedersen, 2010; Hartvig et al., 2011; Scott et al., 2014; 

Gustav Delius pers coms). In Chapter 5, when we increase the value of q, encounter 

rates respond, allowing the processes of feeding and growth to be maximised at large 
size classes. However, in reality we would expect this increase in movement to come at 

the cost of higher metabolic rates (Barneche et al., 2014; Brown et al., 2004; Pawar et 
al., 2012). Such a dependence would offset some of benefits of higher encounter rates, 

as a greater proportion of assimilated energy would be allocated to meet metabolic 
demands. This would undoubtedly alter our estimated ecological indicators, and have 

unknown consequences on community structure, fisheries yield and size composition. 
As a result, we recommend that future implementations of the trait-based size spectrum 

consider this disconnect when making ecological inferences.  

6.3 Broader implications and practical recommendations 

Throughout this thesis we have sought to analyse the movements of marine fish in a way 

that not only highlights how tagging data could be used to infer population and 
community dynamics, but also provides information that can inform conservation policy 

and management. In Chapter one, we have described the stock structure of cod in the 

Irish and Celtic Seas. For centuries Atlantic cod have been a popular target for the 
European fishing industry and its management in EU waters is discussed each year 

within the EU Fisheries Council. The movement data presented here has the potential 
to inform EU stock management policy, both in supporting and adding confidence to 

existing stock boundaries. Tracking data from cod in the North Sea is currently utilised 
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in this way (Hays et al., 2019; D. Righton et al., 2007). On the other hand, unexpected 

results, such as the dispersal of cod north into the much deeper waters of the North 
Channel, can help guide future management decisions and update current stock 

assessment models. For example, we recommend that next year’s stock assessment for 
cod in the Irish Sea accounts for the possible loss of cod north and any additional 

mortality that could arise as cod interact with a highly valuable Nephrops fishery.  

Behaviour in demersal fish can also provide tangible evidence for conservation policy 

and spatial management.  Any switch from migration to prolonged residency can be used 
to identify essential fish habitats that are necessary for spawning, breeding, feeding and 

growth (Griffiths et al., 2018). Such habitats, for instance the Herds Deep in the eastern 
English Channel, might provide ideal candidates for spatial management measures 

where the aim is not only protecting the species of interest but also the preservation of 
the habitat it needs to prosper. Further, information gained about the different tendencies 

of stocks that often share very similar waters can also help shape conservation best 

practice. For example, in Chapter 3 we show that cod in the German Bight are restrictive 
in their movement patterns, retaining a localised distribution throughout the year. Such 

residency behaviour and a lack of adult dispersal means that a conservation network of 
small MPAs might prove sufficient when it comes to stock recovery actions (similar 

suggestions have been made in coral reef fish e.g. Lee et al., 2015), In comparison, fish 
that migrate across stock boundaries (e.g. cod and plaice in the Southern North Sea), 

will require a much more dynamic management strategy capable of rapid change in both 
space and time (e.g. Maxwell et al. 2015). Moreover, movement behaviour can be linked 

to indices of catchability and vulnerability (Righton et al., 2009). For instance, time spent 
near the seabed will increase the vulnerability of demersal fish to capture by bottom 

trawl. Such information could inform fisheries management, aid the minimisation of 

bycatch and can help tailor gear and mesh size restrictions.  

In Chapters 4 and 5 we shift focus, stepping away from the distributions and movement 
patterns of fish, to the assumptions that underpin some of our best attempts to 

theoretically model the marine world and its response to change. The management 
implications of this work are less clear than those in Chapters 2 and 3 but what it is clear 

is that these types of size-based models have the potential to inform the ecosystem 

approach to fisheries management (Hyder et al., 2015; Thorpe et al., 2015). Several of 
these size-based models have been used to assess the impact of fishing on community 

and ecosystem dynamics and have greatly improved our understanding of fisheries 
interactions (Blanchard et al., 2014; Plagányi, 2007; Thorpe et al., 2015). However, 

relatively few size-based models are currently used in management and policy decisions. 
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This restricted uptake is often linked to the assumption that model outputs are highly 

uncertain, owing to both structural and parameter uncertainty (Bannister et al., in prep.; 
De Oliveira and Thorpe, 2019; Spence et al., 2018). Here we attempt to validate one 

such parameter with empirical observations, and then explore how sensitive a size-
based model is to changes in that parameter. In doing so, we contribute to the 

development of these models and provide a step towards their wider utilisation.  

 
6.4 Final remarks 

It is clear from this thesis and the work of others (e.g. Block et al., 2011; Castle et al., 

2011; Jonsen, 2016) that our knowledge of animal movement and its consequences for 
population and community dynamics is still evolving. It is also clear that the deployment 

of tags, despite costing large amounts, provides a wealth of information that is currently 
an untapped resource (Hays et al., 2016; Hussey et al., 2015; Ogburn et al., 2017). Here 

we don’t necessary provide a complete solution to the problems faced by ecologists 

when attempting to use tagging data to inform conservation and management. For 
example, there is no easy solution to a lack of sample size (Hebblewhite and Haydon, 

2010), and issues will always arise when attempts to describe complex movement 
patterns don’t appropriately communicate their associated uncertainties (Ogburn et al., 

2017).   

We do, however, provide a guide for how movement observations made at the level of 

the individual can be used to investigate the consequences of movement at the 
individual-, population- and community-level. Such scaling-up of ecological inference 

provides a direct pathway via which tagging data can become a tangible information 
source for conservation and management. Thus, our final remark is a call for 

collaboration. Here we have been afforded the luxury of a relatively large sample size, 
however this will not always be the case. For example, in Chapter 4 a greater propensity 

for data sharing would have increased our certainty surrounding the scaling of movement 
with body mass in marine fish. By sharing data, movement ecology as a research field 

can combat declines to scientific funding, step towards inferences at much larger 
geographical scales (e.g. Harrison et al., 2018; Hindell et al., 2016) and become more 

influential to the decision-making process (Ogburn et al., 2017).  

  



 140 

  



 141 

References 

Aarestrup, K., Nielsen, C., Koed, A., 2002. Net ground speed of downstream migrating radio-
tagged Atlantic salmon (Salmo salar L.) and brown trout (Salmo trutta L.) smolts in relation to 
environmental factors. Hydrobiology 483, 95–102. https://doi.org/10.1023/A 

Aarestrup, K., Okland, F., Hansen, M.M., Righton, D., Gargan, P., Castonguay, M., Bernatchez, 
L., Howey, P., Sparholt, H., Pedersen, M.I., McKinley, R.S., 2009. Oceanic Spawning Migration 
of the European Eel (Anguilla anguilla). Science (80). 325, 1660–1660.  

Acuña, J.L., López-Urrutia, Á., Colin, S., 2011. Faking giants: The evolution of high prey clearance 
rates in jellyfishes. Science (80). 333, 1627–1629. https://doi.org/10.1126/science.1205134 

Adam, T., Griffiths, C.A., Leos-Barajas, V., Meese, E., Lowe, C., Righton, D.A., Blackwell, P.G., 
Langrock, R. Joint modelling of multi-scale animal movement data using hierarchical hidden 
Markov models. In review.  

Adlerstein, S. A, Welleman, H.C., 2000. Diel variation of stomach contents of North Sea cod 
(Gadus morhua) during a 24-h fishing survey: an analysis using generalized additive models. 
Can. J. Fish. Aquat. Sci. 57, 2363–2367. https://doi.org/10.1139/f00-249 

Alexander, K.A., Heymans, J.J., Magill, S., Tomczak, M.T., Holmes, S.J., Wilding, T.A., 2015. 
Investigating the recent decline in gadoid stocks in the west of Scotland shelf ecosystem using a 
foodweb model. ICES J. Mar. Sci. 72, 436–449. 

Amara, R., Laffargue, P., Dewarumez, J.M., Maryniak, C., Lagardére, F., Luzac, C., 2001. 
Feeding ecology and growth of O-group flatfish (sole, dab and plaice) on a nursery ground 
(Southern Bight of the North Sea). J. Fish Biol. 58, 788–803. https://doi.org/10.1111/j.1095-
8649.2001.tb00531.x 

Andersen, K.H., Berge, T., Gonçalves, R.J., Hartvig, M., Heuschele, J., Hylander, S., Jacobsen, 
N.S., Lindemann, C., Martens, E.A., Neuheimer, A.B., Olsson, K., Palacz, A., Prowe, A.E.F., 
Sainmont, J., Traving, S.J., Visser, A.W., Wadhwa, N., Kiørboe, T., 2016a. Characteristic Sizes 
of Life in the Oceans, from Bacteria to Whales. Ann. Rev. Mar. Sci. 8, 217–241. 
https://doi.org/10.1146/annurev-marine-122414-034144 

Andersen, K.H., Jacobsen, N.S., Farnsworth, K.D., 2016b. The theoretical foundations for size 
spectrum models of fish communities. Can. J. Fish. Aquat. Sci. 73, 575–588. 
https://doi.org/10.1139/cjfas-2015-0230 

Andersen, K.H., Beyer, J.E., 2006. Asymptotic Size Determines Species Abundance in the Marine 
Size Spectrum. Am. Nat. 168, 54–61. https://doi.org/10.1086/662677 

Andersen, K.H., Brander, K., Ravn-Jonsen, L., 2015. Trade-offs between objectives for 
ecosystem management of fisheries. Ecol. Appl. 25, 1390–1396. https://doi.org/10.1890/14-
1209.1 

Andersen, K.H., Farnsworth, K.D., Pedersen, M., Gislason, H., Beyer, J.E., 2009. How community 
ecology links natural mortality, growth, and production of fish populations. ICES J. Mar. Sci. 66, 
1978–1984. 

Andersen, K.H., Jacobsen, N.S., Jansen, T., Beyer, J.E., 2017. When in life does density 
dependence occur in fish populations? Fish Fish. 18, 656–667. https://doi.org/10.1111/faf.12195 



 142 

Andersen, K.H., Pedersen, M., 2010. Damped trophic cascades driven by fishing in model marine 
ecosystems. Proc. R. Soc. B Biol. Sci. 277, 795–802. https://doi.org/10.1098/rspb.2009.1512 

Andersen, K.H., Rice, J.C., 2010. Direct and indirect community effects of rebuilding plans. ICES 
J. Mar. Sci. 67, 1980–1988. https://doi.org/10.1093/icesjms/fsq035 

Anglea, S.M., Geist, D.R., Brown, R.S., Deters, K.A., McDonald, R.D., 2004. Effects of Acoustic 
Transmitters on Swimming Performance and Predator Avoidance of Juvenile Chinook Salmon. 
North Am. J. Fish. Manag. 24, 162–170. https://doi.org/10.1577/M03-065 

Anon Commission Regulation (EC), 2000. No. 304/2000 of 9 February 2000 establishing 
measures for the recovery of the stocl of cod in the Irish sea (ICES Division VIIA). Off. J. Eur. 
Communities L35, 10–11. 

Anras, M.L.B., Bodaly, R.A., McNicol, R., 1998. Use of an Acoustic Beam Actograph to Assess 
the Effects of External Tagging Procedure on Lake Whitefish Swimming Activity. Trans. Am. Fish. 
Soc. 127, 329–335.  

Arnold, G.P., Greer Walker, M., Emerson, L.S., Holford, B.H., 1994. Movements of cod (Gadus 
morhua l.) in relation to the tidal streams in the southern North Sea. ICES J. Mar. Sci. 
https://doi.org/10.1006/jmsc.1994.1021 

Aschliman, N.C., Nishida, M., Miya, M., Inoue, J.G., Rosana, K.M., Naylor, G.J.P., 2012. Body 
plan convergence in the evolution of skates and rays (Chondrichthyes: Batoidea). Mol. 
Phylogenet. Evol. 63, 28–42. https://doi.org/10.1016/j.ympev.2011.12.012 

Bainbridge, B.Y.R., 1957. The speed of swimming of fish as related to size and the frequency and 
amplitude of the tail beat. J. Exp. Biol. 35, 109–133. https://doi.org/10.1098/rspb.1971.0085 

Baker, R., Buckland, A., Sheaves, M., 2014. Fish gut content analysis: robust measures of diet 
composition. Fish Fish. 15, 170–177. https://doi.org/10.1111/faf.12026 

Bannister, H., Spence, M.A., Blackwell, P.G., Hyder, K., Blanchard, J.L., Webb, T.J. Derivative-
based global sensitivity analysis of a multispecies size spectrum fisheries model. In prep. 

Baras, E., Malbrouck, C., Houbart, M., Kestemont, P., Mélard, C., 2000. The effect of PIT tags on 
growth and physiology of age-0 cultured Eurasian perch Perca fluviatilis of variable size. 
Aquaculture 185, 159–173. https://doi.org/https://doi.org/10.1016/S0044-8486(99)00346-4 

Barneche, D.R., Kulbicki, M., Floeter, S.R., Friedlander, A.M., Maina, J., Allen, A.P., 2014. Scaling 
metabolism from individuals to reef-fish communities at broad spatial scales. Ecol. Lett. 17, 1067–
1076. https://doi.org/10.1111/ele.12309 

Barneche, D.R., Robertson, D.R., White, C.R., Marshall, D.J., 2018. Fish reproductive-energy 
output increases disproportionately with body size. Science (80). 360, 642–645. 

Barnes, C., Bethea, D., Brodeur, R., Spitz, J., Ridoux, V., Pusineri, C., Chase, B., Hunsicker, 
M.E., Juanes, F., Kellermann, A., Lancaster, J., Menard, F., Bard, F., Munk, P., Pinnegar, J.K., 
Scharf, F., Rountree, R., Stergiou, K., Sassa, C., Sabates, A., Jennings, S., 2008. Predator and 
prey body sizes in marine food webs. Ecology 89, 881. https://doi.org/10.1890/07-1551.1 

Barnes, C., Maxwell, D., Reuman, D.C., Jennings, S., Barnes, C., Maxwell, D., Reuman, D.C., 
Jennings, S., 2010. Global patterns in predator — prey size relationships reveal size dependency 
of trophic transfer efficiency. Ecology 91, 222–232. 

Barraquand, F., Murrell, D.J., 2013. Scaling up predator – prey dynamics using spatial moment 
equations. Methods Ecol. Evol. 4, 276–289. https://doi.org/10.1111/2041-210X.12014 



 143 

Bates, D., Mächler, M., Bolker, B.M., Walker, S.C., 2015. Fitting Linear Mixed-Effects Models 
Using lme4. J. Stat. Softw. 67. https://doi.org/10.18637/jss.v067.i01 

Béguer-Pon, M., Castonguay, M., Shan, S., Benchetrit, J., Dodson, J.J., 2015. Direct 
observations of American eels migrating across the continental shelf to the Sargasso Sea. Nat. 
Commun. 6, 1–9. https://doi.org/10.1038/ncomms9705 

Bendall, V., Cuaig, M.Ơ, Schön, P.-J., Hetherington, S., Armstrong, M., Graham, N., Righton, D., 
2009. Spatio-temporal dynamics of Atlantic cod (Gadus morhua) in the Irish and Celtic Sea: 
results from a collaborative tagging programme, ICES CM 2009/J:06. 

Benhamou, S., 2004. How to reliably estimate the tortuosity of an animal’s path: straightness, 
sinuosity, or fractal dimension? J. Theor. Biol. 229, 209–220.  

Benoı̂t, E., Rochet, M.-J., 2004. A continuous model of biomass size spectra governed by 
predation and the effects of fishing on them. J. Theor. Biol. 226, 9–21. 
https://doi.org/10.1016/S0022-5193(03)00290-X 

Berejikian, B.A., Brown, R.S., Tatara, C.P., Cooke, S.J., 2007. Effects of Telemetry Transmitter 
Placement on Egg Retention in Naturally Spawning, Captively Reared Steelhead. North Am. J. 
Fish. Manag. 27, 659–664. https://doi.org/10.1577/M06-142.1 

Bestley, S., Jonsen, I.D., Hindell, M.A., Harcourt, R.G., Gales, N.J., 2015. Taking animal tracking 
to new depths: synthesizing horizontal-vertical movement relationships for four marine predators. 
Ecology 96, 417–427. 

Beverton, R.J., 1992. Patterns of reproductive strategy parameters in some marine teleost fishes. 
J. Fish. Res. Board Canada 41, 137–160. 

Beverton, R.J., Holt, S., 1959. A review of the lifespans and mortality of fish in nature and the 
relation to growth and other physiological characteristics, in: Ciba Foundation Colloquium on 
Ageing (Volume 5). pp. 142–177. 

Beverton, R.J., Holt, S., 1957. On the dynamics of exploited fish populations, Fishery 
Investigations Series II, Vol. XIX, Ministry of Agriculture. Fish. Food 1, 957. 

Bianchi, G., Gislason, H., Graham, K., Hill, L., Jin, X., Koranteng, K., Manickchand-Heileman, S., 
Payá, I., Sainsbury, K., Sanchez, F., Zwanenburg, K., 2000. Impact of fishing on size composition 
and diversity of demersal fish communities. ICES J. Mar. Sci. 57, 558–571. 
https://doi.org/10.1006/jmsc.2000.0727 

Bias, G., Coupeau, Y., Seret, B., Calmettes, B., Lopez, R., Hetherington, S., Righton, D., 2017. 
Return migration patterns of porbeagle shark (Lamna nasus) in the Northeast Atlantic: 
implications for stock range and structure. ICES J. Mar. Sci. 74, 1268–1276. 
https://doi.org/10.1093/icesjms/fsw233 

Blake, R.W., Law, T.C., Chan, K.H.S., Li, J.F.Z., 2005. Comparison of the prolonged swimming 
performances of closely related, morphologically distinct three-spined sticklebacks Gasterosteus 
spp. J. Fish Biol. 67, 834–848. https://doi.org/10.1111/j.0022-1112.2005.00788.x 

Blanchard, J.L., Andersen, K.H., Scott, F., Hintzen, N.T., Piet, G., Jennings, S., 2014. Evaluating 
targets and trade-offs among fisheries and conservation objectives using a multispecies size 
spectrum model. J. Appl. Ecol. 51, 612–622. 



 144 

Blanchard, J.L., Heneghan, R.F., Everett, J.D., Trebilco, R., Richardson, A.J., 2017. From 
Bacteria to Whales: Using Functional Size Spectra to Model Marine Ecosystems. Trends Ecol. 
Evol. 32, 174–186. https://doi.org/10.1016/j.tree.2016.12.003 

Blanchard, J.L., Jennings, S., Holmes, R., Harle, J., Merino, G., Allen, J.I., Holt, J., Dulvy, N.K., 
Barange, M., 2012. Potential consequences of climate change for primary production and fish 
production in large marine ecosystems. Philos. Trans. R. Soc. B Biol. Sci. 367, 2979–2989. 
https://doi.org/10.1098/rstb.2012.0231 

Blanchard, J.L., Jennings, S., Law, R., Castle, M.D., McCloghrie, P., Rochet, M.-J., Benoît, E., 
2009. How does abundance scale with body size in coupled size-structured food webs? J. Anim. 
Ecol. 78, 270–80. https://doi.org/10.1111/j.1365-2656.2008.01466.x 

Block, B.A., Jonsen, I.D., Jorgensen, S.J., Winship, A.J., Shaffer, S.A., Bograd, S.J., Hazen, E.L., 
Foley, D.G., Breed, G.A., Harrison, A.L., Ganong, J.E., Swithenbank, A., Castleton, M., Dewar, 
H., Mate, B.R., Shillinger, G.L., Schaefer, K.M., Benson, S.R., Weise, M.J., Henry, R.W., Costa, 
D.P., Harrison, A.., Ganong, J.E., Swithenbank, A., Castleton, M., Dewar, H., Mate, B.R., 
Shillinger, G.L., Schaefer, K.M., Benson, S.R., Weise, M.J., Henry, R.W., Costa, D.P., 2011. 
Tracking apex marine predator movements in a dynamic ocean. Nature 475, 86–90. 
https://doi.org/10.1038/nature10082 

Block, B.A., Teo, S.L.H., Walli, A., Boustany, A., Stokesbury, M.J.W., Farwell, C.J., Weng, K.C., 
Dewar, H., Williams, T.D., 2005. Electronic tagging and population structure of Atlantic bluefin 
tuna. Nature 434, 1121–1127. https://doi.org/10.1029/2002PA000862 

Bolle, L.J., Hunter, E., Rijnsdorp, A.D., Pastoors, M.A., Metcalfe, J.D., Reynolds, J.D., 2005. Do 
tagging experiments tell the truth? Using electronic tags to evaluate conventional tagging data. 
ICES J. Mar. Sci. 62, 236–246. https://doi.org/10.1016/j.icesjms.2004.11.010 

Bonfil, R., Meyer, M., Scholl, M.C., Johnson, R., O’Brien, S., Oosthuizen, H., Swanson, S., Kotze, 
D., Paterson, M., 2005. Transoceanic Migration, Spatial Dynamics, and Population Linkages of 
White Sharks. Science (80). 310, 100–103. https://doi.org/10.1126/science.1114898 

Boudreau, P.R., Dickie, L.M., 1992. Biomass Spectra of Aquatic Ecosystems in Relation to 
Fisheries Yield. Can. J. Fish. Aquat. Sci. 49, 1528–1538. https://doi.org/10.1139/f92-169 

Boyce, M.S., Pitt, J., Northrup, J.M., Morehouse, A.T., Knopff, K.H., Cristescu, B., Stenhouse, 
G.B., 2010. Temporal autocorrelation functions for movement rates from global positioning 
system radiotelemetry data. Philos. Trans. R. Soc. B Biol. Sci. 365, 2213–2219. 
https://doi.org/10.1098/rstb.2010.0080 

Brander, K.M., 2005. Cod recruitment is strongly affected by climate when stock biomass is low. 
ICES J. Mar. Sci. 62, 339–343. https://doi.org/10.1016/j.icesjms.2004.07.029 

Brander, K.M., 1975. The population dynamics and biology of cod (Gadus morhua L.) in the Irish 
Sea. 

Brawn, V., 1961. Reproductive Behaviour of the Cod (Gadus callarias L.). Behaviour 3, 177–198. 

Breed, G.A., Bowen, W.D., Leonard, M.L., 2013. Behavioural signature of intraspecific 
competition and density dependence in colony-breeding marine predators. Ecol. Evol. 3, 3838–
3854. https://doi.org/10.1002/ece3.754 

Breed, G.A., Costa, D.P., Jonsen, I.D., Robinson, P.W., Mills-Flemming, J., 2012. State-space 
methods for more completely capturing behavioural dynamics from animal tracks. Ecol. Modell. 
235–236, 49–58. https://doi.org/https://doi.org/10.1016/j.ecolmodel.2012.03.021 



 145 

Brett, J.R., 1973. Energy expenditure of sockeye salmon (Oncorhynchus nerka) during sustained 
performance. J. Fish. Res. Board Canada 30, 379–387. 

Brett, J.R., 1965. The relation of size to rate of oxygen consumption and sustained swimming 
speed of sockeye salmon (Oncorhynchus nerka). J. Fish. Res. Board Canada 22, 1491–1501. 

Brett, J.R., 1964. The respiratory metabolism and swimming performance of young sockeye 
salmon. J. Fish. Res. Board Canada 21, 1183–1226. 

Brett, J.R., 1963. The energy required for swimming by young sockeye salmon with a comparison 
of the drag force on a dead fish. Proc. Trans. R. Soc. Canada 1, 441–457. 

Bridger, C.J., Booth, R.K., 2003. The Effects of Biotelemetry Transmitter Presence and 
Attachment Procedures on Fish Physiology and Behaviour. Rev. Fish. Sci. 11, 13–34. 

Brodie, S., Lédée, E.J.I., Heupel, M.R., Babcock, R.C., Campbell, H.A., Gledhill, D.C., Hoenner, 
X., Huveneers, C., Jaine, F.R.A., Simpfendorfer, C.A., Taylor, M.D., Udyawer, V., Harcourt, R.G., 
2018. Continental-scale animal tracking reveals functional movement classes across marine taxa. 
Sci. Rep. 8, 1–9. https://doi.org/10.1038/s41598-018-21988-5 

Brodie, S., Taylor, M.D., Smith, J.A., Suthers, I.M., Gray, C.A., Payne, N.L., 2016. Improving 
consumption rate estimates by incorporating wild activity into a bioenergetics model. Ecol. Evol. 
6, 2262–2274. https://doi.org/10.1002/ece3.2027 

Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M., West, G.B., 2004. Toward a metabolic 
theory of ecology. Ecology 85, 1771–1789. https://doi.org/10.1890/03-9000 

Bürkner, P.-C., 2017. brms : An R Package for Bayesian Multilevel Models Using Stan. J. Stat. 
Softw. 80. https://doi.org/10.18637/jss.v080.i01 

Cagnacci, F., Boitani, L., Powell, R.A., Boyce, M.S., 2010. Animal ecology meets GPS-based 
radiotelemetry: A perfect storm of opportunities and challenges. Philos. Trans. R. Soc. B Biol. Sci. 
365, 2157–2162. https://doi.org/10.1098/rstb.2010.0107 

Calenge, C., 2015. Home Range Estimation in R: the adehabitatHR Package, R Vignettes. 
https://doi.org/10.1111/j.1365-2656.2006.01186.x 

Calenge, C., 2006. The package ‘adehabitat’ for the R software: A tool for the analysis of space 
and habitat use by animals. Ecol. Modell. 197, 516–519. 
https://doi.org/10.1016/j.ecolmodel.2006.03.017 

Campana, S.E., Fowler, M., Dorey, A., Joyce, W., 2013. Population dynamics of Northwest 
Atlantic porbeagle (Lamna nasus), with an assessment of status and projections for recovery. 
Can. Sci. Advis. Secr. 3848. 

Campana, S.E., Joyce, W., Fowler, M., M, S., 2016. Discards, hooking, and post-release mortality 
of porbeagle (Lamna nasus), shortfin mako (Isurus oxyrinchus), and blue shark (Prionace glauca) 
in the Canadian pelagic longline fishery. ICES J. Mar. Sci. 73, 520–528. 
https://doi.org/10.1093/icesjms/fst034 

Campana, S.E., Marks, L., Joyce, W., Kohler, N., 2005. Catch, By-Catch and Indices of 
Population Status of Blue Shark (Prionace Glauca) in the Canadian Atlantic. ICCAT Col.Vol. Sci. 
Pap. 58, 891–934. 

Canales, T.M., Law, R., Blanchard, J.L., Baum, J., 2016. Shifts in plankton size spectra modulate 
growth and coexistence of anchovy and sardine in upwelling systems 1. Can. J. Fish. Aquat. Sci. 
73, 611–621. https://doi.org/10.1139/cjfas-2015-0181 



 146 

Carbone, C., Cowlishaw, G., Isaac, N.J.B., Rowcliffe, J.M., 2005. How Far Do Animals Go? 
Determinants of Day Range in Mammals. Am. Nat. 165, 290–297. 

Carter, M.I.D., Bennett, K.A., Embling, C.B., Hosegood, P.J., Russell, D.J.F., 2016. Navigating 
uncertain waters: a critical review of inferring foraging behaviour from location and dive data in 
pinnipeds. Mov. Ecol. 4–25. https://doi.org/10.1186/s40462-016-0090-9 

Castle, M.D., Blanchard, J.L., Jennings, S., 2011. Predicted Effects of Behavioural Movement 
and Passive Transport on Individual Growth and Community Size Structure in Marine 
Ecosystems. Adv. Ecol. Res. 45, 41–66. 

Catchpole, T.L., Tidd, A.N., Kell, L.T., Revill, A.S., Dunlin, G., 2007. The potential for new 
Nephrops trawl designs to positively effect North Sea stocks of cod, haddock and whiting. Fish. 
Res. 86, 262–267. https://doi.org/10.1016/j.fishres.2007.06.023 

Christensen, V., Guénette, S., Heymans, J.J., Walters, C.J., Watson, R., Zeller, D., Pauly, D., 
2003. Hundred-year decline of North Atlantic predator fishes. Fish Fish. 4, 1–24. 

Ciannelli, L., Fisher, J.A.D., Skern-Mauritzen, M., Hunsicker, M.E., Hidalgo, M., Frank, K.T., 
Bailey, K.M., 2013. Theory, consequences and evidence of eroding population spatial structure 
in harvested marine fishes: A review. Mar. Ecol. Prog. Ser. 480, 227–243. 
https://doi.org/10.3354/meps10067 

Clark, R.A., Fox, C.J., Viner, D., Livermore, M., 2003. North Sea cod and climate change – 
modelling the effects of temperature on population dynamics. Glob. Chang. Biol. 9, 1669–1680. 
https://doi.org/10.1046/j.1529-8817.2003.00685.x 

Close, D.A., Fitzpatrick, M.S., Lorion, C.M., Li, H.W., Schreck, C.B., 2003. Effects of 
Intraperitoneally Implanted Radio Transmitters on the Swimming Performance and Physiology of 
Pacific Lamprey. North Am. J. Fish. Manag. 23, 1184–1192. https://doi.org/10.1577/MO2-057 

Collins, M., Cooke, D., Smith, T., 2000. Telemetry of shortnose and Atlantic sturgeons in the 
south-eastern USA, in: Biotelemetry 15: Proceeding of the 15th International Symposium on 
Biotelemetry. Janean, Alaska, USA, pp. 17–23. 

Connolly, P., Officer, R., 2001. The use of tagging data in the formulation of the Irish Sea cod 
recovery plan. ICES CM 2001/O:05. 

Cook, R.M., Holmes, S.J., Fryer, R.J., 2015. Grey seal predation impairs recovery of an over-
exploited fish stock. J. Appl. Ecol. 52, 969–979. https://doi.org/10.1111/1365-2664.12439 

Cook, R.M., Sinclair, A., Stefánsson, G., 1997. Potential collapse of North Sea cod stocks. Nature. 
https://doi.org/10.1038/385521a0 

Cooke, S.J., Hinch, S.G., Donaldson, M.R., Clark, T.D., Eliason, E.J., Crossin, G.T., Raby, G.D., 
Jeffries, K.M., Lapointe, M., Miller, K., Patterson, D.A., Farrell, A.P., 2012. Conservation 
physiology in practice: How physiological knowledge has improved our ability to sustainably 
manage Pacific salmon during up-river migration. Philos. Trans. R. Soc. B Biol. Sci. 367, 1757–
1769. https://doi.org/10.1098/rstb.2012.0022 

Cooke, S.J., Hinch, S.G., Wikelski, M., Andrews, R.D., Kuchel, L.J., Wolcott, T.G., Butler, P.J., 
2004. Biotelemetry: A mechanistic approach to ecology. Trends Ecol. Evol. 19, 334–343. 
https://doi.org/10.1016/j.tree.2004.04.003 

Cooke, S.J., Nguyen, V.M., Murchie, K.J., Thiem, J.D., Donaldson, M.R., Hinch, S.G., Brown, 
R.S., Fisk, A., 2013. To Tag or not to Tag: Animal Welfare, Conservation, and Stakeholder 



 147 

Considerations in Fish Tracking Studies That Use Electronic Tags AU - Cooke, Steven J. J. Int. 
Wildl. Law Policy 16, 352–374. https://doi.org/10.1080/13880292.2013.805075 

Cooke, S.J., Woodley, C., Eppard, M.B., Brown, R.S., Nielsen, J., 2011. Advancing the surgical 
implantation of electronic tags in fish: a gap analysis and research agenda based on a review of 
trends in intracoelomic tagging effects studies. Rev. Fish Biol. Fish. 21, 127–151. 

Costa, D.P., Breed, G.A., Robinson, P.W., 2012. New Insights into Pelagic Migrations: 
Implications for Ecology and Conservation. Annu. Rev. Ecol. Evol. Syst. 43, 73–96. 
https://doi.org/10.1146/annurev-ecolsys-102710-145045 

Counihan, T.D., Frost, C.N., 1999. Influence of externally attached transmitters on the swimming 
performance of juvenile white sturgeon. Trans. Am. Fish. Soc. 128, 965–970. 

De Oliveira, J.A.A., Thorpe, R.B., 2019. Comparing conceptual frameworks for a fish community 
MSY (FCMSY) using management strategy evaluation—an example from the North Sea. ICES 
J. Mar. Sci. fsz015. https://doi.org/10.1093/icesjms/fsz015 

Dean, B., Freeman, R., Kirk, H., Leonard, K., Phillips, R.A., Perrins, C.M., Guilford, T., 2012. 
Behavioural mapping of a pelagic seabird: combining multiple sensors and a hidden Markov 
model reveals the distribution of at-sea behaviour. J. R. Society Interface 10, 20120570. 
https://doi.org/10.1098/rsif.2012.0570 

Dean, M., Hoffman, W., Zemeckis, D., Armstrong, M., 2014. Fine-scale diel and gender-based 
patterns in behaviour of Atlantic cod (Gadus morhua) on a spawning ground in the Western Gulf 
of Maine. ICES J. Mar. Sci. 71, 1474–1489. https://doi.org/10.1093/icesjms/fsw066 

Defra, 2015. Marine Strategy Part Three: UK programme of measures. 

Deng, Z.D., Martinez, J.J., Colotelo, A.H., Abel, T.K., LeBarge, A.P., Brown, R.S., Pflugrath, B.D., 
Mueller, R.P., Carlson, T.J., Seaburg, A.G., Johnson, R.L., Ahmann, M.L., 2012. Development of 
external and neutrally buoyant acoustic transmitters for juvenile salmon turbine passage 
evaluation. Fish. Res. 113, 94–105. https://doi.org/https://doi.org/10.1016/j.fishres.2011.08.018 

DeRuiter, S.L., Langrock, R., Skirbutas, T., Goldbogen, J.A., Calambokidis, J., Friedlaender, A.S., 
Southall, B.L., 2017. A multivariate mixed hidden Markov model for blue whale behaviour and 
responses to sound exposure. Ann. Appl. Stat. 11, 362–392. https://doi.org/10.1214/16-
AOAS1008 

Doherty, P.D., Baxter, J.M., Gell, F.R., Godley, B.J., Graham, R.T., Hall, G., Hall, J., Hawkes, 
L.A., Henderson, S.M., Johnson, L., Speedie, C., Witt, M.J., 2017. Long-term satellite tracking 
reveals variable seasonal migration strategies of basking sharks in the north-east Atlantic. Sci. 
Rep. 7, 1–10. https://doi.org/10.1038/srep42837 

Domenici, P., 2003. Habitat, body design and the swimming performance of fish, in: Vertebrate 
Biomechanics and Evolution. BIOS Scientific Publishers Ltd, Oxford, pp. 137–160. 

Downs, J.A., Horner, M.W., 2008. Effects of Point Pattern Shape on Home-Range Estimates. J. 
Wildl. Manage. 72, 1813–1818. https://doi.org/10.2193/2007-454 

Drinkwater, K.F., 2005. The response of Atlantic cod (Gadus morhua) to future climate change. 
ICES J. Mar. Sci. 62, 1327–1337. https://doi.org/10.1016/j.icesjms.2005.05.015 

Dueri, S., Bopp, L., Maury, O., 2014. Projecting the impacts of climate change on skipjack tuna 
abundance and spatial distribution. Glob. Chang. Biol. 20, 742–53. 
https://doi.org/10.1111/gcb.12460 



 148 

Dulvy, N.K., Rogers, S.I., Jennings, S., Stelzenmüller, V., Dye, S.R., Skjoldal, H.R., 2008. Climate 
change and deepening of the North Sea fish assemblage: A biotic indicator of warming seas. J. 
Appl. Ecol. 45, 1029–1039. https://doi.org/10.1111/j.1365-2664.2008.01488.x 

Edwards, A.M., Robinson, J.P.W., Plank, M.J., Baum, J.K., Blanchard, J.L., 2017. Testing and 
recommending methods for fitting size spectra to data. Methods Ecol. Evol. 8, 57–67. 
https://doi.org/10.1111/2041-210X.12641 

Edwards, K.F., Thomas, M.K., Klausmeier, C.A., Litchman, E., 2012. Allometric scaling and 
taxonomic variation in nutrient utilization traits and maximum growth rate of phytoplankton. 
Limnol. Oceanogr. 57, 554–566. https://doi.org/10.4319/lo.2012.57.2.0554 

El-Dessouky, H., Ettouney, H., 2002. Fundamentals of Salt Water Desalination, 1st ed. 

EMODnet, 2016. European Marine Observation Data Network (EMODnet) Seabed Habitats 
project. 

Essington, T.E., Hansson, S., 2004. Predator-dependent functional responses and interaction 
strengths in a natural food web. Can. J. Fish. Aquat. Sci. 61, 2215–2226. 
https://doi.org/10.1139/f04-146 

Food and Aquaculture Organisation of the United Nations (FOA)., 2012. The State of World 
Fisheries and Aquaculture 2012. Food and Aquaculture Organisation of the United Nations, 
Rome. 209 pp.  

Forester, J.D., Ives, A.R., Turner, M.G., Anderson, D.P., Fortin, D., Beyer, H.L., Smith, D.W., 
Boyce, M.S., 2007. State-space models link elk movement patterns to landscape characteristics 
in Yellowstone National Park. Ecol. Monogr. 77, 285–299. https://doi.org/10.1890/06-0534 

Fossette, S., Witt, M.J., Miller, P., Nalovic, M.A., Albareda, D., Almedia, A., Broderick, A.C., 
Chacón-Chaverri, D., Coyne, M.S., Domingo, A., Eckert, S., Evans, D., Fallabrino, A., Ferraroli, 
S., Formia, A., Giffoni, B., Hays, G.C., Hughes, G., Kelle, L., Leslie, A., Lopez-Mendilaharsu, M., 
Luschi, P., Prosdocimi, L., Rodriguez-Heredia, S., Turny, A., Verhage, S., Godley, B.J., 2013. 
Pan-Atlantic analysis of the overlap of a highly migratory species, the leatherback turtle, with 
pelagic longline fisheries. Proc. R. Soc. B 281, 20133065. 

Francis, R.C., 1974. Relationship of Fishing Mortality to Natural Mortality at the Level of Maximum 
Sustainable Yield Under the Logistic Stock Production Model. J. Fish. Res. Board Canada 31, 
1539–1542. https://doi.org/10.1139/f74-189 

Froese, R., Pauly, D., 2017. FishBase. World Wide Web electronic publication. URL 
www.fishbase.org, version (10/2017) 

Froese, R., Thorson, J.T., Reyes, R.B., 2014. A Bayesian approach for estimating length-weight 
relationships in fishes. J. Appl. Ichthyol. 30, 78–85. https://doi.org/10.1111/jai.12299 

Fuiman, L.A., 1983. Growth gradients in fish larvae. J. Fish Biol. 23, 117–123. 
https://doi.org/10.1111/j.1095-8649.1983.tb02886.x 

Fulton, E. A, Link, J.S., Kaplan, I.C., Savina-Rolland, M., Johnson, P., Ainsworth, C., Horne, P., 
Gorton, R., Gamble, R.J., Smith, A.D.M., Smith, D.C., 2011. Lessons in modelling and 
management of marine ecosystems: the Atlantis experience. Fish Fish. 12, 171–188. 
https://doi.org/10.1111/j.1467-2979.2011.00412.x 

GEBCO, 2017. General Bathymetric Chart of the Oceans. URL 
http://www.bodc.ac.uk/projects/international/gebco/gebco_digital_atlas (accessed 11.17.16). 



 149 

Graham, M., 1935. Modern Theory of Exploiting a Fishery, and Application to North Sea Trawling. 
ICES J. Mar. Sci. 10, 264–274. https://doi.org/10.1093/icesjms/10.3.264 

Greenstreet, S.P.R., Morgan, R.I.G., 1989. The effect of ultrasonic tags on the growth rates of 
Atlantic salmon, Salmo salar L., parr of varying size just prior to smolting. J. Fish Biol. 35, 301–
309. https://doi.org/10.1111/j.1095-8649.1989.tb02979.x 

Griffiths, C.A., Righton, D.A., Patterson, T.A., Blanchard, J.L., Wright, S.R., Pitchford, J.W., 
Blackwell, P.G., 2018. Scaling marine fish movement behaviour from individuals to populations. 
Ecol. Evol. 1–14. https://doi.org/10.1002/ece3.4223 

Gurarie, E., Andrews, R.D., Laidre, K.L., 2009. A novel method for identifying behavioural 
changes in animal movement data. Ecol. Lett. 12, 395–408. https://doi.org/10.1111/j.1461-
0248.2009.01293.x 

Gurarie, E., Bracis, C., Delgado, M., Meckley, T.D., Kojola, I., Wagner, C.M., 2016. What is the 
animal doing? Tools for exploring behavioural structure in animal movements. J. Anim. Ecol. 85, 
69–84. https://doi.org/10.1111/1365-2656.12379 

Guzmán, D.A., Flesia, A.G., Aon, M.A., Pellegrini, S., Marin, R.H., Kembro, J.M., 2017. The fractal 
organization of ultradian rhythms in avian behaviour. Sci. Rep. 1–13. 
https://doi.org/10.1038/s41598-017-00743-2 

Hadfield, J.D., 2010. MCMC methods for multi-response generalized linear mixed models: the 
MCMCglmm R package. J. Stat. Softw. 33, 1–22. https://doi.org/10.1002/ana.22635 

Halpern, B.S., Frazier, M., Potapenko, J., Casey, K.S., Koenig, K., Longo, C., Lowndes, J.S., 
Rockwood, R.C., Selig, E.R., Selkoe, K.A., Walbridge, S., 2015. Spatial and temporal changes in 
cumulative human impacts on the world’s ocean. Nat. Commun. 6, 1–7. 
https://doi.org/10.1038/ncomms8615 

Harmon, L.J., Weir, J.T., Brock, C.D., Glor, R.E., Challenger, W., 2008. GEIGER: Investigating 
evolutionary radiations. Bioinformatics 24, 129–131. 
https://doi.org/10.1093/bioinformatics/btm538 

Harrison, A.-L., Costa, D.P., Winship, A.J., Benson, S.R., Bograd, S.J., Antolos, M., Carlisle, A.B., 
Dewar, H., Dutton, P.H., Jorgensen, S.J., Kohin, S., Mate, B.R., Robinson, P.W., Schaefer, K.M., 
Shaffer, S.A., Shillinger, G.L., Simmons, S.E., Weng, K.C., Gjerde, K.M., Block, B.A., 2018. The 
political biogeography of migratory marine predators. Nat. Ecol. Evol. 
https://doi.org/10.1038/s41559-018-0646-8. https://doi.org/10.1038/s41559-018-0646-8 

Hartvig, M., Andersen, K.H., 2013. Coexistence of structured populations with size-based prey 
selection. Theor. Popul. Biol. 89, 24–33. https://doi.org/10.1016/j.tpb.2013.07.003 

Hartvig, M., Andersen, K.H., Beyer, J.E., 2011. Food web framework for size-structured 
populations. J. Theor. Biol. 272, 113–122. https://doi.org/10.1016/j.jtbi.2010.12.006 

Hays, G., Hobson, V., Metcalfe, J.D., Righton, D., Sims, D.W., 2006. Flexible foraging movements 
of leatherback turtles across the North Atlantic Ocean. Ecology 87, 2647–2656. 

Hays, G.C., Bailey, H., Bograd, S.J., Bowen, W.D., Campagna, C., Carmichael, R.H., Casale, P., 
Chiaradia, A., Costa, D.P., Cuevas, E., Nico de Bruyn, P.J., Dias, M.P., Duarte, C.M., Dunn, D.C., 
Dutton, P.H., Esteban, N., Friedlaender, A., Goetz, K.T., Godley, B.J., Halpin, P.N., Hamann, M., 
Hammerschlag, N., Harcourt, R., Harrison, A.-L., Hazen, E.L., Heupel, M.R., Hoyt, E., Humphries, 
N.E., Kot, C.Y., Lea, J.S.E., Marsh, H., Maxwell, S.M., McMahon, C.R., Notarbartolo di Sciara, 
G., Palacios, D.M., Phillips, R.A., Righton, D., Schofield, G., Seminoff, J.A., Simpfendorfer, C.A., 



 150 

Sims, D.W., Takahashi, A., Tetley, M.J., Thums, M., Trathan, P.N., Villegas-Amtmann, S., Wells, 
R.S., Whiting, S.D., Wildermann, N.E., Sequeira, A.M.M., 2019. Translating Marine Animal 
Tracking Data into Conservation Policy and Management. Trends Ecol. Evol. 2491, 1–15. 
https://doi.org/https://doi.org/10.1016/j.tree.2019.01.009 

Hays, G.C., Ferreira, L.C., Sequeira, A.M.M., Meekan, M.G., Duarte, C.M., Bailey, H., Bailleul, 
F., Bowen, W.D., Caley, M.J., Costa, D.P., Eguíluz, V.M., Fossette, S., Friedlaender, A.S., Gales, 
N., Gleiss, A.C., Gunn, J., Harcourt, R., Hazen, E.L., Heithaus, M.R., Heupel, M., Holland, K., 
Horning, M., Jonsen, I., Kooyman, G.L., Lowe, C.G., Madsen, P.T., Marsh, H., Phillips, R.A., 
Righton, D., Ropert-Coudert, Y., Sato, K., Shaffer, S. A., Simpfendorfer, C. A., Sims, D.W., 
Skomal, G., Takahashi, A., Trathan, P.N., Wikelski, M., Womble, J.N., Thums, M., 2016. Key 
Questions in Marine Megafauna Movement Ecology. Trends Ecol. Evol. 31, 463–475. 
https://doi.org/10.1016/j.tree.2016.02.015 

Hays, G.C., Godley, B.J., Luschi, P., Santidrian, P., 2001. The implications of location accuracy 
for the interpretation of satellite-tracking data. Anim. Behav. 61, 1035–1040.  

Heath, M.R., Kunzlik, P.A., Gallego, A., Holmes, S.J., Wright, P.J., 2008. A model of meta-
population dynamics for North Sea and West of Scotland cod-The dynamic consequences of 
natal fidelity. Fish. Res. 93, 92–116. https://doi.org/10.1016/j.fishres.2008.02.014 

Heath, M.R., Neat, F.C., Pinnegar, J.K., Reid, D.G., Sims, D.W., Wright, P.J., 2012. Review of 
climate change impacts on marine fish and shellfish around the UK and Ireland. Aquat. Conserv. 
Mar. Freshw. Ecosyst. 22, 337–367. https://doi.org/10.1002/aqc.2244 

Hebblewhite, M., Haydon, D.T., 2010. Distinguishing technology from biology: a critical review of 
the use of GPS telemetry data in ecology. Philos. Trans. R. Soc. B Biol. Sci. 365, 2303–2312. 
https://doi.org/10.1098/rstb.2010.0087 

Hedger, R.D., Rikardsen, A.H., Thorstad, E.B., 2017. Pop-up satellite archival tag effects on the 
diving behaviour, growth and survival of adult Atlantic salmon Salmo salar at sea. J. Fish Biol. 90, 
294–310. https://doi.org/10.1111/jfb.13174 

Hein, A.M., Hou, C., Gillooly, J.F., 2012. Energetic and biomechanical constraints on animal 
migration distance. Ecol. Lett. 15, 104–110. https://doi.org/10.1111/j.1461-0248.2011.01714.x 

Heithaus, M.R., Dill, L.M., Marshall, G.J., Buhleier, B., 2002. Habitat use and foraging behaviour 
of tiger sharks (Galeocerdo cuvier) in a seagrass ecosystem. Mar. Biol. 140, 237–248. 
https://doi.org/10.1007/s00227-001-0711-7 

Hilborn, R., 2010. Pretty Good Yield and exploited fishes. Mar. Policy 34, 193–196. 
https://doi.org/10.1016/j.marpol.2009.04.013 

Hilborn, R., Litzinger, E., 2009. Causes of Decline and Potential for Recovery of Atlantic Cod 
Populations. Open Fish Sci. J. 2, 32–38. https://doi.org/10.2174/1874401X00902010032 

Hilborn, R., Ovando, D., 2014. Reflections on the success of traditional fisheries management. 
ICES J. Mar. Sci. 71, 1040–1046. https://doi.org/10.1093/icesjms/fsu034 

Hindell, M.A., McMahon, C.R., Bester, M.N., Boehme, L., Costa, D., Fedak, M.A., Guinet, C., 
Herraiz-Borreguero, L., Harcourt, R.G., Huckstadt, L., Kovacs, K.M., Lydersen, C., McIntyre, T., 
Muelbert, M., Patterson, T., Roquet, F., Williams, G., Charrassin, J.B., 2016. Circumpolar habitat 
use in the southern elephant seal: Implications for foraging success and population trajectories. 
Ecosphere 7, 1–27. https://doi.org/10.1002/ecs2.1213 



 151 

Hirt, M.R., Jetz, W., Rall, B.C., Brose, U., 2017. A general scaling law reveals why the largest 
animals are not the fastest. Nat. Ecol. Evol. 1, 1116–1122. https://doi.org/10.1038/s41559-017-
0241-4 

Hobson, V.J., Righton, D., Metcalfe, J.D., Hays, G.C., 2009. Link between vertical and horizontal 
movement patterns of cod in the North Sea. Aquat. Biol. 5, 133–142. 
https://doi.org/10.3354/ab00144 

Hobson, V.J., Righton, D., Metcalfe, J.D., Hays, G.C., 2007. Vertical movements of North Sea 
cod. Mar. Ecol. Prog. Ser. 347, 101–110. https://doi.org/10.3354/meps07047 

Holland, K.N., Wetherbee, B.M., Lowe, C.G., Meyer, C.G., 1999. Movements of tiger sharks 
(Galeocerdo cuvier) in coastal Hawaiian waters. Mar. Biol. 134, 665–673.  

Holling, C.S., 1966. The Functional Response of Invertebrate Predators to Prey Density. Mem. 
Entomol. Soc. Canada 98, 5–86. https://doi.org/DOI: 10.4039/entm9848fv 

Holmes, R.A., Gibson, R.N., 1983. A comparison of predatory behaviour in flatfish. Anim. Behav. 
31, 1244–1255. https://doi.org/https://doi.org/10.1016/S0003-3472(83)80031-1 

Hooten, M.B., Hobbs, N.T., 2015. A guide to Bayesian model selection for ecologists. Ecol. 
Monogr. 85, 3–28. https://doi.org/10.1890/07-1861.1 

Houle, J.E., Farnsworth, K.D., Rossberg, A.G., Reid, D.G., 2012. Assessing the sensitivity and 
specificity of fish community indicators to management action. Can. J. Fish. Aquat. Sci. 69, 1065–
1079. 

Houle, J.E., Andersen, K.H., Farnsworth, K.D., Reid, D.G., 2013. Emerging asymmetric 
interactions between forage and predator fisheries impose management trade-offs. J. Fish Biol. 
83, 890–904. https://doi.org/10.1111/jfb.12163 

Houle, J.E., de Castro, F., Cronin, M.A., Farnsworth, K.D., Gosch, M., Reid, D.G., 2016. Effects 
of seal predation on a modelled marine fish community and consequences for a commercial 
fishery. J. Appl. Ecol. 53, 54–63. https://doi.org/10.1111/1365-2664.12548 

Hua, E., Zhang, Z., Warwick, R.M., Deng, K., Lin, K., Wang, R., Yu, Z., 2013. Pattern of benthic 
biomass size spectra from shallow waters in the East China Seas. Mar. Biol. 160, 1723–1736. 
https://doi.org/10.1007/s00227-013-2224-6 

Hunter, E., Berry, F., Buckley, A., Stewart, C., Metcalfe, J.D., 2006. Seasonal migration of 
thornback rays and implications for closure management. J. Appl. Ecol. 43, 710–720. 
https://doi.org/10.1111/j.1365-2664.2006.01194.x 

Hunter, E., Metcalfe, J.D., Arnold, G.P., Reynolds, J.D., 2004a. Impacts of migratory behaviour 
on population structure in North Sea plaice. J. Anim. Ecol. 73, 377–385. 

Hunter, E., Metcalfe, J.D., Holford, B.H., Arnold, G.P., 2004. Geolocation of free-ranging fish on 
the European continental shelf as determined from environmental variables II. Reconstruction of 
plaice ground tracks. Mar. Biol. 144, 787–798. https://doi.org/10.1007/s00227-003-1242-1 

Hunter, E., Metcalfe, J.D., O’Brien, C.M., Arnold, G.P., Reynolds, J.D., 2004b. Vertical activity 
patterns of free-swimming adult plaice in the southern North Sea. Mar. Ecol. Prog. Ser. 279, 261–
273. https://doi.org/10.3354/meps279261 

Hunter, E., Metcalfe, J.D., Reynolds, J.D., 2003. Migration route and spawning area fidelity by 
North Sea plaice. Proc. R. Soc. B Biol. Sci. 270, 2097–2103. https://doi.org/10.1098/rspb.2003. 



 152 

Hussey, N.E., Kessel, S.T., Aarestrup, K., Cooke, S.J., Cowley, P.D., Fisk, A.T., Harcourt, R.G., 
Holland, K.N., Iverson, S.J., Kocik, J.F., Flemming, J.E.M., Whoriskey, F.G., 2015. Aquatic animal 
telemetry: A panoramic window into the underwater world. Science (80). 348, 1255642. 
https://doi.org/10.1126/science.1255642 

Hutchings, J. A, Bishop, T.D., McGregor-Shaw, C.R., 1999. Spawning behaviour of Atlantic cod, 
Gadus morhua: evidence of mate competition and mate choice in a broadcast spawner. Can. J. 
Fish. Aquat. Sci. 56, 97–104. https://doi.org/10.1139/f98-216 

Hyder, K., Rossberg, A.G., Allen, J.I., Austen, M.C., Barciela, R.M., Bannister, H.J., Blackwell, 
P.G., Blanchard, J.L., Burrows, M.T., Defriez, E., Dorrington, T., Edwards, K.P., Garcia-Carreras, 
B., Heath, M.R., Hembury, D.J., Heymans, J.J., Holt, J., Houle, J.E., Jennings, S., Mackinson, S., 
Malcolm, S.J., McPike, R., Mee, L., Mills, D.K., Montgomery, C., Pearson, D., Pinnegar, J.K., 
Pollicino, M., Popova, E.E., Rae, L., Rogers, S.I., Speirs, D., Spence, M.A., Thorpe, R., Turner, 
R.K., van der Molen, J., Yool, A., Paterson, D.M., 2015. Making modelling count - increasing the 
contribution of shelf-seas community and ecosystem models to policy development and 
management. Mar. Policy 61, 291–302. 
https://doi.org/https://doi.org/10.1016/j.marpol.2015.07.015 

ICES, 2018. ICES Advice on fishing opportunities, catch, and effort Greater Northern Sea, Celtic 
Seas, and Bay of Biscay and Iberian Coast ecoregions hke.27.3a46-8abd - Hake. 

ICES, 2017a. ICES WGCSE REPORT 2017 - Report of the Working Group for the Celtic Seas 
Ecoregion (WGCSE). 

ICES, 2017b. Report of the Benchmark Workshop on the Irish Sea Ecosystem (WKIrish3). 

ICES, 2017c. ICES Advice on fishing opportunities, catch, and effort Celtic Seas Ecoregion 
(Division VIa - West of Scotland) - Atlantic cod. https://doi.org/10.17895/ices.pub.3100 

ICES, 2017d. ICES Advice on fishing opportunities, catch, and effort Celtic Seas, Greater North 
Sea and Oceanic Northeast Atlantic ecoregions had.27.7. b–k - Haddock.  

ICES, 2017e. Report of the Working Group on Celtic Seas Ecoregion (WGCSE), ICES CM 
2017/ACOM:13. Copenhagen, Denmark. 

ICES, 2016a. ICES Advice on fishing opportunities, catch, and effort Celtic Seas Ecoregion - 
Herring. 

ICES, 2016b. Report of the Benchmark Workshop on sharing information on the Irish Sea 
ecosystem, stock assessments and fisheries issues, and scoping needs for assessment and 
management advice (WKIrish1), ICES CM 2015/BSG:01. Dublin, Ireland. 

ICES, 2013a. Report of the Benchmark Workshop on Roundfish Stocks. 

ICES, 2013b. Report of the Working Group on the Biology and Life History of Crabs (WGCRAB). 

ICES, 2013c. ICES Advice Book 5. 

Jacobsen, N.S., Burgess, M.G., Andersen, K.H., 2017. Efficiency of fisheries is increasing at the 
ecosystem level. Fish Fish. 18, 199–211. https://doi.org/10.1111/faf.12171 

Jacobsen, N.S., Gislason, H., Andersen, K.H., 2013. The consequences of balanced harvesting 
of fish communities. Proc. R. Soc. B Biol. Sci. 281. https://doi.org/10.1098/rspb.2013.2701 



 153 

Jeffers, V.F., Godley, B.J., 2016. Satellite tracking in sea turtles: How do we find our way to the 
conservation dividends? Biol. Conserv. 199, 172–184. 
https://doi.org/10.1016/j.biocon.2016.04.032 

Jennings, S., Pinnegar, J.K., Polunin, N.V.C., Boon, T.W., 2001. Weak cross-species 
relationships between body size and trophic level belie powerful size-based trophic structuring in 
fish communities. J. Anim. Ecol. 70, 934–944. https://doi.org/10.1046/j.0021-8790.2001.00552.x 

Jepsen, N., Aarestrup, K., 1999. A comparison of the growth of radio-tagged and dye-marked 
pike. J. Fish Biol. 55, 880–883. https://doi.org/10.1111/j.1095-8649.1999.tb00725.x 

Jepsen, N., Aarestrup, K., Økland, F., Rasmussen, G., 1998. Survival of radiotagged Atlantic 
salmon (Salmo salar L.) and trout (Salmo trutta L.) smolts passing a reservoir during seaward 
migration. Hydrobiologia 371, 347. https://doi.org/10.1023/A:1017047527478 

Jepsen, N., Holthe, E., Økland, F., 2006. Observations of predation on salmon and trout smolts 
in a river mouth. Fish. Manag. Ecol. 13, 341–343. https://doi.org/10.1111/j.1365-
2400.2006.00509.x 

Jepsen, N., Mikkelsen, J.S., Koed, A., 2008. Effects of tag and suture type on survival and growth 
of brown trout with surgically implanted telemetry tags in the wild. J. Fish Biol. 72, 594–602. 
https://doi.org/10.1111/j.1095-8649.2007.01724.x 

Jepsen, N., Thorstad, E.B., Havn, T., Lucas, M.C., 2015. The use of external electronic tags on 
fish: an evaluation of tag retention and tagging effects. Anim. Biotelemetry 3, 49. 
https://doi.org/10.1186/s40317-015-0086-z 

Jetz, W., Carbone, C., Fulford, J., Brown, J.H., 2004. The scale of animal space use. Science 
(80). 356, 266–268. https://doi.org/10.1126/science.1102138 

Joint Nature Conservation Committee (JNCC)., 2017. Offshores Marine Protected Areas in the 
Western Channel and Celtic Sea. http://jncc.defra.gov.uk/page-6903. 

Jonsen, I.D., 2016. Joint estimation over multiple individuals improves behavioural state inference 
from animal movement data. Sci. Rep. 6, 20625. https://doi.org/10.1038/srep20625 

Jonsen, I.D., Basson, M., Bestley, S., Bravington, M.V., Patterson, T.A., Pedersen, M.W., 
Thomson, R., Thygesen, U.H., Wotherspoon, S.J., 2013. State-space models for bio-loggers: A 
methodological road map. Deep Sea Res. Part II 88–89, 34–46. 
https://doi.org/10.1016/j.dsr2.2012.07.008 

Jonsen, I.D., Myers, R.A., James, M.C., 2007. Identifying leatherback turtle foraging behaviour 
from satellite telemetry using a switching state-space model. Mar. Ecol. Prog. Ser. 337, 255–264. 

Jorgensen, S.J., Gleiss, A.C., Kanive, P.E., Chapple, T.K., Anderson, S.D., Ezcurra, J.M., Brandt, 
W.T., Block, B.A., 2015. In the belly of the beast: Resolving stomach tag data to link temperature, 
acceleration and feeding in white sharks (Carcharodon carcharias). Anim. Biotelemetry 3, 1–10. 
https://doi.org/10.1186/s40317-015-0071-6 

Kahle, D., Wickham, H., 2013. ggmap: Spatial Visualization with ggplot2. R J. 5, 144–161. 

Kelly-Gerreyn, B.A., Martin, A.P., Bett, B.J., Anderson, T.R., Kaariainen, J.I., Main, C.E., 
Marcinko, C.J., Yool, A., 2014. Benthic biomass size spectra in shelf and deep-sea sediments. 
Biogeosciences 11, 6401–6416. https://doi.org/10.5194/bg-11-6401-2014 

Kelly, C.J., Codling, E.A., Rogan, E., 2006. The Irish Sea cod recovery plan: some lessons 
learned. ICES J. Mar. Sci. 63, 600–610. https://doi.org/10.1016/j.icesjms.2005.12.001 



 154 

Kerr, S.., Dickie, L.., 2001. The Biomass Spectrum: A Predator-prey Theory of Aquatic 
Production. Columbia University Press, New York. 

Kie, J.G., Matthiopoulos, J., Fieberg, J., Powell, R.A., Cagnacci, F., Mitchell, M.S., Gaillard, J.-
M., Moorcroft, P.R., 2010. The home-range concept: are traditional estimators still relevant with 
modern telemetry technology? Philos. Trans. R. Soc. B Biol. Sci. 365, 2221–2231.  

Kitagawa, T., Boustany, A.M., Farwell, C.J., Williams, T.D., Castleton, M.R., Block, B.A., 2007. 
Horizontal and vertical movements of juvenile bluefin tuna (Thunnus orientalis) in relation to 
seasons and oceanographic conditions in the eastern Pacific Ocean. Fish. Oceanogr. 16, 409–
421. https://doi.org/10.1111/j.1365-2419.2007.00441.x 

Kitchell, J.F., Stewart, D.J., 1977. Applications of a Bioenergetics Model to Yellow Perch (Perca 
flavescens) and Walleye (Stizostediun vitreum vitreum). J. Fish. Res. Board Canada 34, 1922–
1935. 

Koed, A., Baktoft, H., Bak, B.D., 2006. Causes of mortality of Atlantic salmon (Salmo salar) and 
brown trout (Salmo trutta) smolts in a restored river and its estuary. River Res. Appl. 22, 69–78. 
https://doi.org/10.1002/rra.894 

Koed, A., Thorstad, E.B., 2001. Long-term effect of radio-tagging on the swimming performance 
of pikeperch. J. Fish Biol. 58, 1753–1756. https://doi.org/10.1111/j.1095-8649.2001.tb02329.x 

Köster, F.W., Möllmann, C., Hinrichsen, H.H., Wieland, K., Tomkiewicz, J., Kraus, G., Voss, R., 
Makarchouk, A., MacKenzie, B.R., St. John, M.A., Schnack, D., Rohlf, N., Linkowski, T., Beyer, 
J.E., 2005. Baltic cod recruitment - The impact of climate variability on key processes. ICES J. 
Mar. Sci. 62, 1408–1425. https://doi.org/10.1016/j.icesjms.2005.05.004 

Kranstauber, B., Cameron, A., Weinzerl, R., Fountain, T., Tilak, S., Wikelski, M., Kays, R., 2011. 
The Movebank data model for animal tracking. Environ. Model. Softw. 26, 834–835. 
https://doi.org/10.1016/j.envsoft.2010.12.005 

Kritzer, J.P., Sale, P.F., 2004. Metapopulation ecology in the sea: from Levin’s’ model to marine 
ecology and fisheries science. Fish Fish. 5, 131–140. https://doi.org/Doi 10.1111/J.1467-
2979.2004.00131. 

Kurlansky, M., 1998. Cod: a biography of the fish that changed the world. Penguin Books, New 
York. 

Langerhans, B.R., Reznick, D.N., 2010. Ecology and Evolution of Swimming Performance in 
Fishes: Predicting Evolution with Biomechanics, in: Fish Locomotion: An Eco-Ethological 
Perspective. CRC Press, Oxford, pp. 200–248. 

Langrock, R., King, R., Matthiopoulos, J., Thomas, L., Fortin, D., Morales, J.M., 2012. Flexible 
and practical modeling of animal telemetry data: hidden Markov models and extensions. Ecology 
93, 2336–2342. 

Law, R., Plank, M.J., James, A., Blanchard, J.L., 2009. Size-spectra dynamics from stochastic 
predation and growth of individuals. Ecology 90, 802–811. 

Law, R., Plank, M.J., Kolding, J., 2016. Balanced exploitation and coexistence of interacting, size-
structured, fish species. Fish Fish. 17, 281–302. https://doi.org/10.1111/faf.12098 

Law, R., Plank, M.J., Kolding, J., 2012. On balanced exploitation of marine ecosystems: results 
from dynamic size spectra. ICES J. Mar. Sci. 69, 602–614. 



 155 

Lee, K.A., Huveneers, C., Macdonald, T., Harcourt, R.G., 2015. Size isn’t everything: movements, 
home range, and habitat preferences of eastern blue gropers (Achoerodus viridis) demonstrate 
the efficacy of a small marine reserve. Aquat. Conserv. Mar. Freshw. Ecosyst. 25, 174–186. 
https://doi.org/10.1002/aqc.2431 

Leis, J.M., 2006. Are Larvae of Demersal Fishes Plankton or Nekton? Adv. Mar. Biol. 51, 57–141. 

Leis, J.M., Carson-Ewart, B.M., 2003. Orientation of pelagic larvae of coral-reef fishes in the 
ocean. Mar. Ecol. Prog. Ser. 252, 239–253. https://doi.org/10.3354/meps252239 

Leis, J.M., Carson-Ewart, B.M., 2002. In situ settlement behaviour of damselfish (Pomacentridae) 
larvae. J. Fish Biol. 61, 325–346. https://doi.org/10.1006/jfbi.2002.2030 

Leis, J.M., Carson-Ewart, B.M., 2000. Behaviour of pelagic larvae of four coral-reef fish species 
in the ocean and an atoll lagoon. Coral Reefs 19, 247–257. 
https://doi.org/10.1007/s003380000115 

Leis, J.M., Carson-Ewart, B.M., 1998. Complex Behaviour of Coral-Reef Fish Larvae in Open 
Water and Near Shore Pelagic Environments. Environ. Biol. Fishes. 

Leis, J.M., Carson-Ewart, B.M., 1997. In situ swimming speeds of the late pelagic larvae of some 
Indo-Pacific coral-reef fishes. Mar. Ecol. Prog. Ser. 159, 165–174. 
https://doi.org/10.3354/meps159165 

Leis, J.M., Hay, A.C., Howarth, G.J., 2009a. Ontogeny of in situ behaviours relevant to dispersal 
and population connectivity in larvae of coral-reef fishes. Mar. Ecol. Prog. Ser. 379, 163–179. 
https://doi.org/10.3354/meps07904 

Leis, J.M., Hay, A.C., Trnski, T., 2006. In situ ontogeny of behaviour in pelagic larvae of three 
temperate, marine, demersal fishes. Mar. Biol. 148, 655–669. https://doi.org/10.1007/s00227-
005-0108-0 

Leis, J.M., Piola, R.F., Hay, A.C., Wen, C., Kan, K.P., 2009b. Ontogeny of behaviour relevant to 
dispersal and connectivity in the larvae of two non-reef demersal, tropical fish species. Mar. 
Freshw. Res. 60, 211–223. https://doi.org/10.1071/MF08186 

Leos-Barajas, V., Gangloff, E.J., Adam, T., Langrock, R., van Beest, F.M., Nabe-Nielsen, J., 
Morales, J.M., 2017a. Multi-scale Modeling of Animal Movement and General Behaviour Data 
Using Hidden Markov Models with Hierarchical Structures. J. Agric. Biol. Environ. Stat. 22, 232–
248. https://doi.org/10.1007/s13253-017-0282-9 

Leos-Barajas, V., Photopoulou, T., Langrock, R., Patterson, T.A., Watanabe, Y., Murgatroyd, M., 
Papastamatiou, Y.P., 2017b. Analysis of animal accelerometer data using hidden Markov models. 
Methods Ecol. Evol. 8, 161–173. https://doi.org/10.1111/2041-210X.12657 

Li, M., Bolker, B.M., 2017. Incorporating periodic variability in hidden Markov models for animal 
movement. Mov. Ecol. 5, 1–12. https://doi.org/10.1186/s40462-016-0093-6 

Lilly, G.R., Wieland, K., Rothschild, B.J., Sundby, S., Drinkwater, K.F., Brander, K., Ottersen, G., 
Carscadden, J.E., Stensen, G.B., Chouinard, G.A., Swain, D.P., Daan, N., Enberg, K., Hammill, 
M.O., Rosing-Asvid, A., Svedang, H., Vazques, A., 2008. Decline and Recovery of Atlantic Cod 
(Gadus morhua) Stocks throughout the North Atlantic, in: Kruse, G.H., Drinkwater, K.F., Ianelli, 
J.N., Link, J.S., Stram, D.L., Wespestad, V., D, W. (Eds.), Resiliency of Gadoid Stocks to Fishing 
and Climate Change. Alaska Sea grant College program, Fairbanks., pp. 39–66. 
https://doi.org/10.4027/rgsfcc.2008.03 



 156 

Lindberg, M.S., Walker, J., 2007. Satellite Telemetry in Avian Research and Management: 
Sample Size Considerations. J. Wildl. Manage. 71, 1002–1009. https://doi.org/10.2193/2005-696 

Lynch, M., 1991. Methods for the analysis of comparative data in evolutionary biology. Evolution 
(N. Y). 45, 1065–1080. 

Madon, B., Hingrat, Y., 2014. Deciphering behavioural changes in animal movement with a 
‘multiple change point algorithm- classification tree’ framework. Front. Ecol. Evol. 2014, 2-30.  

Maljković, A., Côté, I.M., 2011. Effects of tourism-related provisioning on the trophic signatures 
and movement patterns of an apex predator, the Caribbean reef shark. Biol. Conserv. 144, 859–
865. https://doi.org/10.1016/j.biocon.2010.11.019 

Marañón, E., Cermeño, P., López-Sandoval, D.C., Rodríguez-Ramos, T., Sobrino, C., Huete-
Ortega, M., Blanco, J.M., Rodríguez, J., 2013. Unimodal size scaling of phytoplankton growth and 
the size dependence of nutrient uptake and use. Ecol. Lett. 16, 371–379. 
https://doi.org/10.1111/ele.12052 

Marine Management Organisation (MMO)., 2017. Minimum Conservations Reference Sizes 
(MCRS) in UK waters. https://www.gov.uk/government/publications/minimum-conservation-
reference-sizes-mcrs 

Marteinsdottir, G., Ruzzante, D., Nielsen, E.E., 2005. History of the North Atlantic cod stocks, 
ICES CM, 2005/AA19, pp. 17. 

Maury, O., 2010. An overview of APECOSM, a spatialized mass balanced “Apex Predators 
ECOSystem Model” to study physiologically structured tuna population dynamics in their 
ecosystem. Prog. Oceanogr. 84, 113–117. https://doi.org/10.1016/j.pocean.2009.09.013 

Maury, O., Faugeras, B., Shin, Y.-J., Poggiale, J.-C., Ben Ari, T., Marsac, F., 2007a. Modelling 
environmental effects on the size-structured energy flow through marine ecosystems. Part 1: The 
model. Prog. Oceanogr. 74, 479–499. 

Maury, O., Shin, Y.-J., Faugeras, B., Ben Ari, T., Marsac, F., 2007b. Modelling environmental 
effects on the size-structured energy flow through marine ecosystems. Part 2: Simulations. Prog. 
Oceanogr. 74, 500–514. https://doi.org/10.1016/j.pocean.2007.05.001 

Maxwell, S.M., Breed, G.A., Nickel, B.A., Makanga-Bahouna, J., Pemo-Makaya, E., Parnell, R.J., 
Formia, A., Ngouessono, S., Godley, B.J., Costa, D.P., Witt, M.J., Coyne, M.S., 2011. Using 
satellite tracking to optimize protection of long-lived marine species: Olive ridley sea turtle 
conservation in central Africa. PLoS One 6, e19905. 
https://doi.org/10.1371/journal.pone.0019905 

McCleave, J., Stred, K., 1975. Effect of Dummy Telemetry Transmitters on Stamina of Atlantic 
Salmon (Salmo salar) Smolts. J. Fish. Res. Board Canada 32, 559–563. 

McClintock, B.T., King, R., Thomas, L., Matthiopoulos, J., McConnell, B.J., Morales, J.M., 2012. 
A general discrete-time modelling framework for animal movement using multistate random 
walks. Ecol. Monogr. 82, 335–349. https://doi.org/10.1890/11-0326.1 

McClintock, B.T., Russell, D.J.F., Matthiopoulos, J., King, R., 2013. Combining individual animal 
movement and ancillary biotelemetry data to investigate population-level activity budgets. 
Ecology 94, 838–849. https://doi.org/10.1890/12-0954.1 

McGowan, J., Beger, M., Lewison, R.L., Harcourt, R., Campbell, H., Priest, M., Dwyer, R.G., Lin, 
H.Y., Lentini, P., Dudgeon, C., McMahon, C., Watts, M., Possingham, H.P., 2017. Integrating 



 157 

research using animal-borne telemetry with the needs of conservation management. J. Appl. 
Ecol. 54, 423–429. https://doi.org/10.1111/1365-2664.12755 

McKellar, A.E., Langrock, R., Walters, J.R., Kesler, D.C., 2015. Using mixed hidden Markov 
models to examine behavioural states in a cooperatively breeding bird. Behav. Ecol. 26, 148–
157. https://doi.org/10.1093/beheco/aru171 

McKendrick, A.G., 1926. Applications of Mathematics to Medical Problems. Proc. Edinburgh 
Math. Soc. 44, 98–130. https://doi.org/10.1017/S0013091500034428 

McMahon, C.R., Harcourt, R., Bateson, P., Hindell, M.A., 2012. Animal welfare and decision 
making in wildlife research. Biol. Conserv. 153, 254–256. 
https://doi.org/10.1016/j.biocon.2012.05.004 

Meager, J.J., Skjaeraasen, J.E., Ferno, A., Karlsen, O., Lokkeborg, S., Michalsen, K., Utskot, 
S.O., 2009. Vertical dynamics and reproductive behaviour of farmed and wild Atlantic cod Gadus 
morhua. Mar. Ecol. Prog. Ser. 389, 233–243. https://doi.org/10.3354/meps08156 

Metcalfe, J.D., Arnold, G., 1997. Tracking fish with electronic tags. Nature 387, 665–666. 
https://doi.org/10.1038/42622 

Metcalfe, J.D., Hunter, E., Buckley, A.A., 2006. The migratory behaviour of North Sea plaice: 
Currents, clocks and clues. Mar. Freshw. Behav. Physiol. 39, 25–36.  

Michelot, T., Langrock, R., Bestley, S., Jonsen, I.D., Photopoulou, T., Patterson, T.A., 2017. 
Estimation and simulation of foraging trips in land-based marine predators. Ecology 98, 1932–
1944. https://doi.org/10.1002/ecy.1880 

Michelot, T., Langrock, R., Patterson, T., 2016. moveHMM: An R package for the statistical 
modelling of animal movement data using hidden Markov models. Methods Ecol. Evol. 7, 1308–
1315. https://doi.org/10.1111/2041-210X.12578 

Morales, J.M., Haydon, D.T., Frair, J., Holsinger, K.E., Fryxell, J.M., 2004b. Extracting more out 
of relocation data: building movement models as mixtures of random walks. Ecology 85, 2436–
2445. https://doi.org/10.1890/03-0269 

Morris, W., Follmann, E., George, J., O’Hara, T., 2000. Surgical implantation of radio transmitters 
in Arctic broad whitefish in Alaska, in: Biotelemetry 15: Proceeding of the 15th International 
Symposium on Biotelemetry. Junean, Alaska, USA, pp. 193–201. 

Moustakas, A., Silvert, W., Dimitromanolakis, A., 2006. A spatially explicit learning model of 
migratory fish and fishers for evaluating closed areas. Ecol. Modell. 192, 245–258. 
https://doi.org/10.1016/j.ecolmodel.2005.07.007 

Muller, U.K., Videler, J.J., 1996. Inertia as a ‘safe harbour’: do fish larvae increase length growth 
to escape viscous drag? Rev. Fish Biol. Fish. 6, 353–360. 

Myers, R.A., Worm, B., 2003. Rapid worldwide depletion of predatory fish communities. Nature 
423, 280–283. 

Nachtigall, W., 2001. Some aspects of Reynolds number effects in animals. Math. Methods Appl. 
Sci. 24, 1401–1408. 

Nash, K.L., Cvitanovic, C., Fulton, E.A., Halpern, B.S., Milner-Gulland, E.J., Watson, R.A., 
Blanchard, J.L., 2017. Planetary boundaries for a blue planet. Nat. Ecol. Evol. 1, 1625–1634. 
https://doi.org/10.1038/s41559-017-0319-z 



 158 

Nash, K.L., Welsh, J.Q., Graham, N.A.J., Bellwood, D.R., 2015. Home-range allometry in coral 
reef fishes: comparison to other vertebrates, methodological issues and management 
implications. Oecologia 177, 73–83. https://doi.org/10.1007/s00442-014-3152-y 

Neat, F.C., Bendall, V., Berx, B., Wright, P.J., Cuaig, M., Townhill, B., Schon, P.J., Lee, J., 
Righton, D., 2014. Movement of Atlantic cod around the British Isles: Implications for finer scale 
stock management. J. Appl. Ecol. 51, 1564–1574. https://doi.org/10.1111/1365-2664.12343 

Neat, F.C., Wright, P.J., Zuur, A.F., Gibb, I.M., Gibb, F.M., Tulett, D., Righton, D.A., Turner, R.J., 
2006. Residency and depth movements of a coastal group of Atlantic cod (Gadus morhua L.). 
Mar. Biol. 148, 643–654. https://doi.org/10.1007/s00227-005-0110-6 

Neuenfeldt, S., Köster, F.W., 2000. Trophodynamic control on recruitment success in Baltic cod: 
The influence of cannibalism. ICES J. Mar. Sci. 57, 300–309. 
https://doi.org/10.1006/jmsc.2000.0647 

Neutel, A.M., Heesterbeek, J.A.P., Van De Koppel, J., Hoenderboom, G., Vos, A., Kaldeway, C., 
Berendse, F., De Ruiter, P.C., 2007. Reconciling complexity with stability in naturally assembling 
food webs. Nature 449, 599–602. https://doi.org/10.1038/nature06154 

Nguyen, V.M., Brooks, J.L., Young, N., Lennox, R.J., Haddaway, N., Whoriskey, F.G., Harcourt, 
R., Cooke, S.J., 2017. To share or not to share in the emerging era of big data: perspectives from 
fish telemetry researchers on data sharing. Can. J. Fish. Aquat. Sci. 74, 1260–1274. 
https://doi.org/10.1139/cjfas-2016-0261 

Nichol, D.G., Chilton, E.A., 2006. Recuperation and behaviour of Pacific cod after barotrauma. 
ICES J. Mar. Sci. 63, 83–94. https://doi.org/10.1016/j.icesjms.2005.05.021 

Nielsen, A., Sibert, J.R., 2007. State–space model for light-based tracking of marine animals. 
Can. J. Fish. Aquat. Sci. 64, 1055–1068. https://doi.org/10.1139/f07-064 

Ogburn, M.B., Harrison, A.-L., Whoriskey, F.G., Cooke, S.J., Mills Flemming, J.E., Torres, L.G., 
2017. Addressing Challenges in the Application of Animal Movement Ecology to Aquatic 
Conservation and Management. Front. Mar. Sci. 4, 70. https://doi.org/10.3389/fmars.2017.00070 

Paradis, E., Claude, J., Strimmer, K., 2004. APE: Analyses of phylogenetics and evolution in R 
language. Bioinformatics 20, 289–290. https://doi.org/10.1093/bioinformatics/btg412 

Parmesan, C., Yohe, G., 2003. A globally coherent fingerprint of climate change impacts across 
natural systems. Nature 421, 37–42. https://doi.org/10.1038/nature01286 

Parton, A., 2018. Bayesian inference for continuous-time step-and-turn movement models. 
University of Sheffield. 

Patterson, T.A., Basson, M., Bravington, M. V., Gunn, J.S., 2009. Classifying movement 
behaviour in relation to environmental conditions using hidden Markov models. J. Anim. Ecol. 78, 
1113–1123. https://doi.org/10.1111/j.1365-2656.2009.01583.x 

Patterson, T.A., Parton, A., Langrock, R., Blackwell, P.G., Thomas, L., King, R., 2017. Statistical 
modelling of individual animal movement: an overview of key methods and a discussion of 
practical challenges. AStA Adv. Stat. Anal. 101, 399–438. https://doi.org/10.1007/s10182-017-
0302-7 

Patterson, T.A., Thomas, L., Wilcox, C., Ovaskainen, O., Matthiopoulos, J., 2008. State-space 
models of individual animal movement. Trends Ecol. Evol. 23, 87–94. 
https://doi.org/10.1016/j.tree.2007.10.009 



 159 

Pauly, D., Watson, R., Alder, J., 2005. Global trends in world fisheries: Impacts on marine 
ecosystems and food security. Philos. Trans. R. Soc. B Biol. Sci. 360, 5–12. 
https://doi.org/10.1098/rstb.2004.1574 

Pawar, S., Dell, A.I., Savage, V.M., 2012. Dimensionality of consumer search space drives trophic 
interaction strengths. Nature 486, 485–489. https://doi.org/10.1038/nature11131 

Pawson, M., 1993. Tagging identifies southern and western cod stocks. Fish. News. 

Peake, S., McKinley, R.S., Scruton, D.A., Moccia, R., 1997. Influence of Transmitter Attachment 
Procedures on Swimming Performance of Wild and Hatchery-Reared Atlantic Salmon Smolts. 
Trans. Am. Fish. Soc. 126, 707–714.  

Pebesma, E., 2018. Map overlay and spatial aggregation in sp, R Vignettes.  

Pedersen, M.W., Righton, D., Thygesen, U.H., Andersen, K.H., Madsen, H., 2008. Geolocation 
of North Sea cod (Gadus morhua) using hidden Markov models and behavioural switching. Can. 
J. Fish. Aquat. Sci. 65, 2367–2377. https://doi.org/10.1139/F08-144 

Peel, D., Good, N.M., 2011. A hidden Markov model approach for determining vessel activity from 
vessel monitoring system data. Can. J. Fish. Aquat. Sci. 68, 1252–1264. 
https://doi.org/10.1139/f2011-055 

Perry, R.W., Adams, N.S., Rondorf, D.W., 2001. Buoyancy compensation of juvenile chinook 
salmon implanted with two different size dummy transmitters. Trans. Am. Fish. Soc. 130, 46–52.  

Persson, L., Bystrom, P., Wahlstrom, E., 2000. Cannibalism and competition in Eurasian Perch: 
Population dynamics of an ontogenetic omnivore. Ecology 81, 1058–1071.  

Phillips, J.S., Patterson, T.A., Leroy, B., Pilling, G.M., Nicol, S.J., 2015. Objective classification of 
latent behavioural states in bio-logging data using multivariate-normal hidden Markov models. 
Ecol. Appl. 25, 1244–1258. https://doi.org/10.1890/14-0862.1.sm 

Pine, W.E., Pollock, K.H., Hightower, J.E., Kwak, T.J., Rice, J.A., 2003. A review of tagging 
methods for estimating fish population size and components of mortality. Fish. Res. 28, 10–23. 

Pinnegar, J.K., 2014. DAPSTOM - An Integrated Database and Portal for Fish Stomach Records. 

Pittman, S.J., Monaco, M.E., Friedlander, A.M., Legare, B., Nemeth, R.S., Kendall, M.S., Poti, M., 
Clark, R.D., Wedding, L.M., Caldow, C., 2014. Fish with chips: Tracking reef fish movements to 
evaluate size and connectivity of Caribbean marine protected areas. PLoS One 9, e96028.  

Plagányi, É., 2007. Models for an ecosystem approach to fisheries. FOA Fisheries Technical 
Paper No. 477. Rome. 

Plank, M.J., Law, R., 2012. Ecological drivers of stability and instability in marine ecosystems. 
Theor. Ecol. 5, 465–480. https://doi.org/10.1007/s12080-011-0137-x 

Pohle, J., Langrock, R., van Beest, F.M., Schmidt, N.M., 2017. Selecting the Number of States in 
Hidden Markov Models: Pragmatic Solutions Illustrated Using Animal Movement. J. Agric. Biol. 
Environ. Stat. 22, 270–293. 

Pope, J.G., Rice, J.C., Daan, N., Jennings, S., Gislason, H., 2006. Modelling an exploited marine 
fish community with 15 parameters - results from a simple size-based model. ICES J. Mar. Sci. 
63, 1029–1044. https://doi.org/10.1016/j.icesjms.2006.04.015 



 160 

Pratt Jr., H.L., Casey, J.G., 1983. Age and Growth of the Shortfin Mako, Isurus oxyrinchus , Using 
Four Methods. Can. J. Fish. Aquat. Sci. 40, 1944–1957. https://doi.org/10.1139/f83-224 

Priede, I.G., 1984. A basking shark (Cetorhinus maximus) tracked by satellite together with 
simultaneous remote sensing. Fish. Res. 2, 201–216. https://doi.org/10.1016/0165-
7836(84)90003-1 

Prince, J., Hordyk, A., Valencia, S., Loneragan, N., Sainsbury, K., 2015. Revisiting the concept 
of Beverton–Holt life-history invariants with the aim of informing data-poor fisheries assessment. 
ICES J. Mar. Sci. 72, 194–203. 

R Core Team, 2016. A Language and Environment for Statistical Computing. R Foundation for 
Statistical Computing, Vienna. 

Rabosky, D.L., Santini, F., Eastman, J., Smith, S.A., Sidlauskas, B., Chang, J., Alfaro, M.E., 2013. 
Rates of speciation and morphological evolution are correlated across the largest vertebrate 
radiation. Nat. Commun. 4, 1958. https://doi.org/10.1038/ncomms2958 

Rall, B.C., Brose, U., Hartvig, M., Kalinkat, G., Schwarzmuller, F., Vucic-Pestic, O., Petchey, O.L., 
2012. Universal temperature and body-mass scaling of feeding rates. Philos. Trans. R. Soc. B 
Biol. Sci. 367, 2923–2934. https://doi.org/10.1098/rstb.2012.0242 

Rambaut, A., 2009. FigTree version 1.4.3. 

Raymond, B., Lea, M.A., Patterson, T., Andrews-Goff, V., Sharples, R., Charrassin, J.B., Cottin, 
M., Emmerson, L., Gales, N., Gales, R., Goldsworthy, S.D., Harcourt, R., Kato, A., Kirkwood, R., 
Lawton, K., Ropert-Coudert, Y., Southwell, C., van den Hoff, J., Wienecke, B., Woehler, E.J., 
Wotherspoon, S., Hindell, M.A., 2015. Important marine habitat off east Antarctica revealed by 
two decades of multi-species predator tracking. Ecography (Cop.). 38, 121–129. 
https://doi.org/10.1111/ecog.01021 

Reiss, H., Hoarau, G., Dickey-Collas, M., Wolff, W.J., 2009. Genetic population structure of 
marine fish: Mismatch between biological and fisheries management units. Fish Fish. 10, 361–
395. https://doi.org/10.1111/j.1467-2979.2008.00324.x 

Revell, L.J., 2012. phytools: An R package for phylogenetic comparative biology (and other 
things). Methods Ecol. Evol. 3, 217–223. https://doi.org/10.1111/j.2041-210X.2011.00169.x 

Righton, D., Kjesbu, O.S., Metcalfe, J.D., 2006. A field and experimental evaluation of the effect 
of data storage tags on the growth of cod. J. Fish Biol. 68, 385–400. 
https://doi.org/10.1111/j.1095-8649.2005.00899.x 

Righton, D., Metcalfe, J.D., Connolly, P., 2001. Different behaviour of North and Irish Sea cod. 
Nature 411, 2001. 

Righton, D., Quayle, V.A., Hetherington, S., Burt, G., 2007. Movements and distribution of cod 
(Gadus morhua) in the southern North Sea and English Channel: Results from conventional and 
electronic tagging experiments. J. Mar. Biol. Assoc. United Kingdom 87, 599–613.  

Righton, D.A., Andersen, K.H., Neat, F., Thorsteinsson, V., Steingrund, P., Svedäng, H., 
Michalsen, K., Hinrichsen, H.-H., Bendall, V., Neuenfeldt, S., Wright, P.J., Jonsson, P., Huse, G., 
Van Der Kooij, J., Mosegaard, H., Hüssy, K., Metcalfe, J.D., 2010. Thermal niche of Atlantic cod 
Gadus morhua: Limits, tolerance and optima. Mar. Ecol. Prog. Ser. 420, 1–13. 
https://doi.org/10.3354/meps08889 



 161 

Righton, D.A., Townhill, B., Van Der Kooij, J., 2009. Catch me if you can: archival tagging studies 
can help assess changes in the accessibility of Atlantic cod (Gadus morhua) to trawl gears. ICES 
CM 2009/J:08. ICES C. J:08. 

Rinaldo, A., Maritan, A., Cavender-Bares, K.K., Chisholm, S.W., 2002. Cross-scale ecological 
dynamics and microbial size spectra in marine ecosystems. Proc. R. Soc. B Biol. Sci. 269, 2051–
2059. https://doi.org/10.1098/rspb.2002.2102 

Rip, J.M.K., Mccann, K.S., 2011. Cross-ecosystem differences in stability and the principle of 
energy flux. Ecol. Lett. 14, 733–740. https://doi.org/10.1111/j.1461-0248.2011.01636.x 

Robertson, M.J., Scruton, D.A., Brown, J.A., 2003. Effects of surgically implanted transmitters on 
swimming performance, food consumption and growth of wild Atlantic salmon parr. J. Fish Biol. 
62, 673–678. https://doi.org/10.1046/j.1095-8649.2003.00055.x 

Robichaud, D., Rose, G.A., 2004. Migratory behaviour and range in Atlantic cod: Inference from 
a century of tagging. Fish Fish. 5, 185–214. https://doi.org/10.1111/j.1467-2679.2004.00141.x 

Robichaud, D., Rose, G.A., 2001. Multiyear homing of Atlantic cod to a spawning ground. Can. J. 
Fish. Aquat. Sci. 58, 2325–2329. https://doi.org/10.1139/cjfas-58-12-2325 

Rodriguez, J., Tintore, J., Allen, J.T., Blanco, J.M., Gomis, D., Reul, A., Rulz, J., Rodriguez, V., 
Echevarria, F., Jimenez-Gomez, F., 2001. Mesoscale vertical motion and the size structure of 
phytoplakton in the ocean. Nature 410, 360–362. 

Rogers, A., Blanchard, J.L., Mumby, P.J., 2014. Vulnerability of coral reef fisheries to a loss of 
structural complexity. Curr. Biol. 24, 1000–1005. https://doi.org/10.1016/j.cub.2014.03.026 

Rose, G.A., 2004. Reconciling overfishing and climate change with stock dynamics of Atlantic 
cod (Gadus morhua) over 500 years. Can. J. Fish. Aquat. Sci. 61, 1553–1557. 
https://doi.org/10.1139/f04-173 

Rose, G.A., Kulka, D.W., 1999. Hyperaggregation of fish and fisheries: how catch-per-unit-effort 
increased as the northern cod (Gadus morhua) declined. Can. J. Fish. Aquat. Sci. 56, 118–127.  

Rudis, B., Ross, N., Garnier, S., 2018. The viridis color palettes.  

Rutterford, L.A., Simpson, S.D., Jennings, S., Johnson, M.P., Blanchard, J.L., Schön, P.J., Sims, 
D.W., Tinker, J., Genner, M.J., 2015. Future fish distributions constrained by depth in warming 
seas. Nat. Clim. Chang. 5, 569–573. https://doi.org/10.1038/nclimate2607 

Rutz, C., Hays, G.C., 2009. New frontiers in biologging science. Biol. Lett. 5, 289–292. 
https://doi.org/10.1098/rsbl.2009.0089 

San Martin, E., Harris, R.P., Irigoien, X., 2006. Latitudinal variation in plankton size spectra in the 
Atlantic Ocean. Deep. Res. Part II Top. Stud. Oceanogr. 53, 1560–1572.  

Savage, V.M., Gillooly, J.F., Brown, J.H., West, G.B., Charnov, E.L., 2004. Effects of body size 
and temperature on population growth. Am. Nat. 163, 429–441. 

Savenkoff, C., Castonguay, M., Vézina, A.F., Despatie, S.-P., Chabot, D., Morissette, L., Hammill, 
M.O., 2004. Inverse modelling of trophic flows through an entire ecosystem: the northern Gulf of 
St. Lawrence in the mid-1980s. Can. J. Fish. Aquat. Sci. 61, 2194–2214. 
https://doi.org/10.1139/f04-154 

Schaefer, M.B., 1957. A study of the dynamics of fishery for yellowfin tuna in the Eastern Tropical 
Pacific Ocean. Bull. Inter-American Trop. Tuna Comm. 2, 247–285. 



 162 

Schaefer, M.B., 1954. Some aspects of the dynamics of populations important to the 
management of the commercial marine fisheries. Bull. Inter-American Trop. Tuna Comm. 1, 27–
56. 

Scott, F., Blanchard, J.L., Andersen, K.H., 2014. mizer: An R package for multispecies, trait-
based and community size spectrum ecological modelling. Methods Ecol. Evol. 5, 1121–1125. 
https://doi.org/10.1111/2041-210X.12256 

Scott, R., Hodgson, D.J., Witt, M.J., Coyne, M.S., Adnyana, W., Blumenthal, J.M., Broderick, A.C., 
Canbolat, A.F., Catry, P., Ciccione, S., Delcroix, E., Hitipeuw, C., Luschi, P., Pet-Soede, L., 
Pendoley, K., Richardson, P.B., Rees, A.F., Godley, B.J., 2012. Global analysis of satellite 
tracking data shows that adult green turtles are significantly aggregated in Marine Protected 
Areas. Glob. Ecol. Biogeogr. 21, 1053–1061. https://doi.org/10.1111/j.1466-8238.2011.00757.x 

Seaman, E.D., Powell, R.A., 1996. An Evaluation of the Accuracy of Kernel Density Estimators 
for Home Range Analysis. Ecology 77, 2075–2085. https://doi.org/10.2307/2265701 

Serpetti, N., Baudron, A.R., Burrows, M.T., Payne, B.L., Helaouët, P., Fernandes, P.G., 
Heymans, J.J., 2017. Impact of ocean warming on sustainable fisheries management informs the 
Ecosystem Approach to Fisheries. Sci. Rep. 7, 1–15. https://doi.org/10.1038/s41598-017-13220-
7 

Sheldon, R.., Parsons, T.., 1967. A Continuous Size Spectrum for Particulate Matter in the Sea. 
J. Fish. Board Canada 24, 909–915. https://doi.org/10.1139/f67-081 

Sheldon, R.W., Prakash, A., Sutcliffe, W.H., 1972. The Size Distribution of Particles in the Ocean. 
Limnol. Oceanogr. 17, 327–340. https://doi.org/10.4319/lo.1972.17.3.0327 

Shepard, E.L.C., Ahmed, M.Z., Southall, E.J., Witt, M.J., Metcalfe, J.D., Sims, D.W., 2006. Diel 
and tidal rhythms in diving behaviour of pelagic sharks identified by signal processing of archival 
tagging data. Mar. Ecol. Prog. Ser. 328, 205–213. https://doi.org/10.3354/meps328205 

Siceloff, L., Howell, W.H., 2013. Fine-scale temporal and spatial distributions of Atlantic cod 
(Gadus morhua) on a western Gulf of Maine spawning ground. Fish. Res. 141, 31–43.  

Silverman, B., 1986. Density estimation for statistics and data analysis. Chapman and Hall, 
London, UK. 

Sims, D.W., Witt, M.J., Richardson, A.J., Southall, E.J., Metcalfe, J.D., 2006. Encounter success 
of free-ranging marine predator movements across a dynamic prey landscape. Proc. R. Soc. B 
273, 1195–1201. https://doi.org/10.1098/rspb.2005.3444 

Sippel, T., Holdsworth, J., Dennis, T., Montgomery, J., 2011. Investigating Behaviour and 
Population Dynamics of Striped Marlin (Kajikia audax) from the Southwest Pacific Ocean with 
Satellite Tags 6.  

Sippel, T., Paige Eveson, J., Galuardi, B., Lam, C., Hoyle, S., Maunder, M., Kleiber, P., Carvalho, 
F., Tsontos, V., Teo, S.L.H., Aires-da-Silva, A., Nicol, S., 2015. Using movement data from 
electronic tags in fisheries stock assessment: A review of models, technology and experimental 
design. Fish. Res. 163, 152–160. https://doi.org/10.1016/j.fishres.2014.04.006 

Sippel, T.J., Davie, P.S., Holdsworth, J.C., Block, B.A., 2007. Striped marlin (Tetrapturus audax) 
movements and habitat utilization during a summer and autumn in the Southwest Pacific Ocean. 
Fish. Oceanogr. 16, 459–472. https://doi.org/10.1111/j.1365-2419.2007.00446.x 



 163 

Skjæraasen, J.E., Meager, J.J., Karlsen, Ø., Hutchings, J.A., Fernö, A., 2011. Extreme spawning-
site fidelity in Atlantic cod. ICES J. Mar. Sci. 68, 1472–1477. 
https://doi.org/10.1093/icesjms/fsr055 

Skomal, G.B., Zeeman, S.I., Chisholm, J.H., Summers, E.L., Walsh, H.J., McMahon, K.W., 
Thorrold, S.R., 2009. Transequatorial Migrations by Basking Sharks in the Western Atlantic 
Ocean. Curr. Biol. 19, 1019–1022. https://doi.org/10.1016/j.cub.2009.04.019 

Smith, C., Reay, P., 1991. Cannibalism in teleost fish. Rev. Fish Biol. Fish. 1, 41–64. 
https://doi.org/10.1007/BF00042661 

Spence, M.A., Heath, M.R., Blanchard, J.L., Rossberg, A.G., Mackinson, S., Heymans, J.J., 
Speirs, D.C., Thorpe, R.B., Blackwell, P.G., 2018. A general framework for combining ecosystem 
models. Fish Fish. 19, 1031–1042. https://doi.org/10.1111/faf.12310 

Sprules, W.G., Barth, L.E., Giacomini, H., 2016. Surfing the biomass size spectrum: some 
remarks on history, theory, and application. Can. J. Fish. Aquat. Sci. 73, 477–495. 
https://doi.org/10.1139/cjfas-2015-0115 

Strøm, J.F., Thorstad, E.B., Chafe, G., Sørbye, S.H., Righton, D., Rikardsen, A.H., Carr, J., 2016. 
Ocean migration of pop-up satellite tagged Atlantic salmon from the Miramich River in Canada. 
ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsw220 

Swain, D.P., Sinclair, A.F., 2000. Pelagic fishes and the cod recruitment dilemma in the Northwest 
Atlantic. Can. J. Fish. Aquat. Sci. 57, 1321–1325. https://doi.org/10.1139/cjfas-57-7-1321 

Tamburello, N., Côté, I.M., Dulvy, N.K., 2015. Energy and the Scaling of Animal Space Use. Am. 
Nat. 186, 196–211. https://doi.org/10.1086/682070 

Teo, S.L.H., Boustany, A., Blackwell, S., Walli, A., Weng, K.C., Block, B.A., 2004. Validation of 
geolocation estimates based on light level and sea surface temperature from electronic tags. Mar. 
Ecol. Prog. Ser. 238, 81–98. https://doi.org/10.3354/meps283081 

Thompson, B.C., Porak, W., Allen, M.S., 2014. Effects of Surgically Implanting Radio Transmitters 
in Juvenile Largemouth Bass. Trans. Am. Fish. Soc. 143, 346–352.  

Thoreau, X., Baras, E., 1997. Evaluation of surgery procedures for implanting telemetry 
transmitters into the body cavity of tilapia Oreochromis aureus. Aquat. Living Resour. 10, 207–
211. 

Thorpe, R.B., Quesne, W.J.F. Le, Luxford, F., Collie, J.S., Jennings, S., 2015. Evaluation and 
management implications of uncertainty in a multispecies size-structured model of population and 
community responses to fishing. Methods Ecol. Evol. 6, 49–58. https://doi.org/10.1111/2041-
210X.12292 

Thorstad, E.B., ØKland, F., Finstad, B., 2000. Effects of telemetry transmitters on swimming 
performance of adult Atlantic salmon. J. Fish Biol. 57, 531–535. https://doi.org/10.1111/j.1095-
8649.2000.tb02192.x 

Thorstad, E.B., Rikardsen, A.H., Alp, A., Økland, F., 2013. The Use of Electronic Tags in Fish 
Research – An Overview of Fish Telemetry Methods. Turkish J. Fish. Aquat. Sci. 13, 881–896. 
https://doi.org/10.4194/1303-2712-v13 

Thums, M., Meekan, M., Stevens, J., Wilson, S., Polovina, J., 2012. Evidence for behavioural 
thermoregulation by the world’s largest fish. J. R. Sciety Interface 10, 20120477.  



 164 

Towner, A. V., Leos-Barajas, V., Langrock, R., Schick, R.S., Smale, M.J., Kaschke, T., Jewell, 
O.J.D., Papastamatiou, Y.P., Hopkins, W., 2016. Sex-specific and individual preferences for 
hunting strategies in white sharks. Funct. Ecol. 30, 1397–1407. https://doi.org/10.1111/1365-
2435.12613 

Trzcinski, M.K., Mohn, R., Bowen, W.D., 2006. Continued Decline of an Atlantic Cod Population: 
How Important Is Gray Seal Predation? Ecol. Appl. 16, 2276–2292. 

Ulrich, C., Vermard, Y., Dolder, P.J., Brunel, T., Jardim, E., Holmes, S.J., Kempf, A., Mortensen, 
L.O., Poos, J.J., Rindorf, A., 2017. Achieving maximum sustainable yield in mixed fisheries: A 
management approach for the North Sea demersal fisheries. ICES J. Mar. Sci. 74, 566–575. 
https://doi.org/10.1093/icesjms/fsw126 

Ursin, E., 1973. On the prey size preferences of cod and dab. Meddelelser fra Danmarks Fisk. 
Havundersogelser 7, 85–98. 

van de Kerk, M., Onorato, D.P., Criffield, M.A., Bolker, B.M., Augustine, B.C., Mckinley, S.A., Oli, 
M.K., 2015. Hidden semi-Markov models reveal multiphasic movement of the endangered Florida 
panther. J. Anim. Ecol. 84, 576–585. https://doi.org/10.1111/1365-2656.12290 

van der Kooij, J., Righton, D., Strand, E., Michalsen, K., Thorsteinsson, V., Svedäng, H., Neat, 
F.C., Neuenfeldt, S., 2007. Life under pressure: Insights from electronic data-storage tags into 
cod swimbladder function. ICES J. Mar. Sci. 64, 1293–1301. 
https://doi.org/10.1093/icesjms/fsm119 

van Moorter, B., Visscher, D.R., Jerde, C.L., Frair, J.L., Merrill, E.H., 2010. Identifying Movement 
States From Location Data Using Cluster Analysis. J. Wildl. Manage. 74, 588–594.  

Vehtari, A., Gelman, A., Gabry, J., 2016. Practical Bayesian model evaluation using leave-one-
out cross-validation and WAIC. Stat. Comput. 1–20. https://doi.org/10.1007/s11222-016-9696-4 

Vélez-Zuazo, X., Agnarsson, I., 2011. Shark tales: A molecular species-level phylogeny of sharks 
(Selachimorpha, Chondrichthyes). Mol. Phylogenet. Evol. 58, 207–217.  

Vermard, Y., Rivot, E., Mahévas, S., Marchal, P., Gascuel, D., 2010. Identifying fishing trip 
behaviour and estimating fishing effort from VMS data using Bayesian Hidden Markov Models. 
Ecol. Modell. 221, 1757–1769. https://doi.org/10.1016/j.ecolmodel.2010.04.005 

Videler, J.J., Wardle, C.S., 1991. Fish swimming stride by stride: speed limits and endurance. 
Rev. Fish Biol. Fish. 1, 23–40. https://doi.org/10.1007/BF00042660 

Vigliola, L., Meekan, M.G., 2002. Size at hatching and planktonic growth determine post-
settlement survivorship of a coral reef fish. Oecologia 131, 89–93. 
https://doi.org/10.1007/s00442-001-0866-4 

Voesenek, C.J., Muijres, F.T., Leeuwen, J.L. Van, 2018. Biomechanics of swimming in developing 
larval fish. J. Exp. Biol. 221, jeb149583. https://doi.org/10.1242/jeb.149583 

von Foerster, H., 1959. Some remarks on changing populations, in: Frederick, S. (Ed.), The 
Kinetics of Cellular Proliferation. New York, NY: Grune & Stratton, pp. 982–407. 

Wakefield, E.D., Phillips, R.A., Trathan, P.N., Arata, J., Gales, R., Huin, N., Robertson, G., 
Waugh, S.M., Weimerskirch, H., Wakefield, E.D., Phillips, R.A., Trathan, P.N., Arata, J., Gales, 
R., Huin, N., Robertson, G., Waugh, S.M., Weimerskirch, H., Matthiopoulos, J., 2011. Habitat 
preference, accessibility, and competition limit the global distribution of breeding Black-browed 
Albatrosses. Ecol. Monogr. 81, 141–167. 



 165 

Wand, M., Jones, M., 1995. Kernel smoothing. Chapman and Hall/CRC. 

Ware, D.M., 1978. Bioenergetics of pelagic fish: theoretical change in swimming speed and ration 
with body size. J. Fish. Res. Board Canada 35, 220–228. https://doi.org/10.1139/f78-036 

Ware, D.M., 1972. Predation by Rainbow Trout (Salmo gairdneri): The Influence of Hunger, Prey 
Density, and Prey Size. J. Fish. Res. Board Canada 29, 1193–1201. https://doi.org/10.1139/f72-
175 

Wargo-Rub, A.M., Jepsen, N., Liedtke, T.L., Moser, M.L., Weber III, S., 2014. Surgical insertion 
of transmitters and telemetry methods in fisheries research. Am. J. Vet. Res. 75, 402–416. 
https://doi.org/10.2460/ajvr.75.4.402 

Watanabe, Y.Y., Goldman, K.J., Caselle, J.E., Chapman, D.D., Papastamatiou, Y.P., 2015. 
Comparative analyses of animal-tracking data reveal ecological significance of endothermy in 
fishes. Proc. Natl. Acad. Sci. U. S. A. 112, 6104–6109. https://doi.org/10.1073/pnas.1500316112 

Webb, P., Weihs, D., 1986. Functional locomotor morphology of early life history stages of fishes. 
Trans. Am. Fish. Soc. 115, 115–127. 

Weimer, E.J., Duehr, J.P., Brown, M.L., 2006. Comparison of Two External Transmitter Types on 
Two Sizes of Bluegills and Yellow Perch. North Am. J. Fish. Manag. 26, 670–675. 
https://doi.org/10.1577/M05-149.1 

Werner, E.E., Gilliam, J.F., 1984. The ontogenetic niche and species interactions in size-
structured populations. Annu. Rev. Ecol. Syst. 15, 393–425.  

West, G. B., Brown, J. H. & Enquist, B.J., 1997. General Model for the Origin of Allometric Scaling 
Laws in Biology. Science (80). 276, 122–126. https://doi.org/10.1126/science.276.5309.122 

Wickham, H., 2009. ggplot2: Elegant Graphics for Data Analysis. 

Winberg, G.., 1956. Rate of metabolism and food requirements of fishes. J. Fish. Res. Board 
Canada 194, 1–253. 

Winter, J., 1996. Advances in underwater biotelemetry, in: Murphy, B., Willis, D. (Eds.), Fisheries 
Techniques. American Fisheries Society, Bethesda, Maryland., pp. 555–590. 

Womble, J.N., Gende, S.M., 2013. Post-Breeding Season Migrations of a Top Predator, the 
Harbor Seal (Phoca vitulina richardii), from a Marine Protected Area in Alaska. PLoS One 8, 
e55386.  

Woodworth-Jefcoats, P.A., Polovina, J.J., Dunne, J.P., Blanchard, J.L., 2013. Ecosystem size 
structure response to 21st century climate projection: Large fish abundance decreases in the 
central North Pacific and increases in the California Current. Glob. Chang. Biol. 19, 724–733.  

Worm, B., 2016. Averting a global fisheries disaster. Proc. Natl. Acad. Sci. 113, 4895–4897. 
https://doi.org/10.1073/pnas.1604008113 

Worm, B., Hilborn, R., Baum, J.K., Branch, T. a, Collie, J.S., Costello, C., Fogarty, M.J., Fulton, 
E. a, Hutchings, J. a, Jennings, S., Jensen, O.P., Lotze, H.K., Mace, P.M., McClanahan, T.R., 
Minto, C., Palumbi, S.R., Parma, A.M., Ricard, D., Rosenberg, A. a, Watson, R., Zeller, D., 2009. 
Rebuilding global fisheries. Science (80). 325, 578–85. https://doi.org/10.1126/science.1173146 

Worton, B.J., 1989. Kernel Methods for Estimating the Utilization Distribution in Home-Range 
Studies. Ecology 70, 164–168. 



 166 

Worton, B.J., 1987. A review of models of home range for animal movement. Ecol. Modell. 38, 
277–298. https://doi.org/10.1016/0304-3800(87)90101-3 

Zemeckis, D.R., Hoffman, W.S., Dean, M.J., Armstrong, M.P., Cadrin, S.X., 2014. Spawning site 
fidelity by Atlantic cod (Gadus morhua) in the Gulf of Maine: implications for population structure 
and rebuilding. ICES J. Mar. Sci. 71, 1356–1365. 

Zhang, C., Chen, Y., Ren, Y., 2016. An evaluation of implementing long-term MSY in ecosystem-
based fisheries management: Incorporating trophic interaction, bycatch and uncertainty. Fish. 
Res. 174, 179–189. https://doi.org/10.1016/j.fishres.2015.10.007 

Zhou, S., Yin, S., Thorson, J.T., Smith, A.D.M., Fuller, M., Walters, C.J., 2012. Linking fishing 
mortality reference points to life history traits: an empirical study. Can. J. Fish. Aquat. Sci. 69, 
1292–1301. https://doi.org/10.1139/f2012-060 

Zucchini, W., MacDonald, I.L., Langrock, R., 2016. Hidden Markov models for time series: an 
introduction using R (second edition). Chapman and Hall/CRC. 

  



 167 

 

 

 

 

 

Appendices 

Appendix documents for Chapters 2-5.  

  



 168 

 

  



 169 

Appendix 2 

Appendix 2.1. 

 

Figure. Spatial occurrence of ICES Divisions in the waters surrounding the British Isles. 

ICES Divisions of interest are VIa, VIIa, VIIf, VIIg and VIIh. Map taken from www.ices.dk.  
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Appendix 2.2. 

 

Figure. Observed depth (m), temperature (°C) and movement rates (horizontal (km day-

1) and vertical (m day-1) movement) of cod IRE_5596 through time. The cod is question 
was released in the Irish Sea on the 26th March 2010 and was recaptured on the 15th 

June 2011, spending 447 days at liberty.  
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Appendix 2.3. 

 

 

Figure. Observed depth (m), temperature (°C) and movement rates (horizontal (km day-

1) and vertical (m day-1) movement) of cod CEL_5613 through time. The cod is question 

was released in the Celtic Sea on the 8th March 2010 and was recaptured on the 9th 
January 2011, spending 308 days at liberty. 
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Appendix 2.4. 

Figure. Composite utilisation distributions calculated under a range of h values for 
Atlantic cod in the Celtic Sea. h* indicates the h value calculated using the ‘reference 

bandwidth’ approach.  
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Appendix 2.5. 
 

Figure. Composite utilisation distributions calculated under a range of h values for 

Atlantic cod in the Irish Sea. h* indicates the h value calculated using the ‘reference 
bandwidth’ approach.  
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Appendix 2.6. 
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Appendix 2.7. 
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Appendix 2.8.  

 

Figure. Bathymetric data in the waters surrounding the British Isles. Depth (m) has been 
discretised into six groups to add visual interpretation. Bathymetric data was sourced 

from the General Bathymetric Chart of the Oceans online repository (GEBCO, 2017), 
which is a global topographic dataset with a one-minute (1’) spatial resolution.  
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Appendix 2.9. 

 

Figure. Seabed habitat types in the waters surrounding the British Isles. Habitat data is 
sourced from EMODnet’s (The European Marine Observation and Data Network) 

Seabed Habitats online data portal (EMODnet, 2016).  
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Appendix 2.10.  

Figure. Estimated geographic positions of individual cod during their time at liberty in the 
Irish (n = 7) and Celtic (n = 5) Sea.  
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Appendix 2.11. 

Figure. Estimated individual home ranges of cod tagged in the Irish (n = 7) and Celtic (n 

= 5) Sea.  
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Appendix 2.12.  

Figure. Estimated geographic positions of individual cod during the foraging period (1st 
June – 31st October) in the Irish (n = 7) and Celtic (n = 5) Sea.  
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Appendix 2.13.  

Table. Statistics summarising the movement (horizontal and vertical movement), fish 

depth, sea depth and temperature experienced of individual cod in the Irish (n = 7) and 

Celtic sea (n = 5). All values are averages (± 1 standard deviation) calculated at the daily 
level for the duration of the foraging period (1st June – 31st October).  

 

Fish ID Area 
Horizonal distance 

travelled (km) 

Vertical 

distance 

travelled (m) 

Fish depth (m) Sea depth (m) 
Temperature 

(°C) 

IRE_1430 Irish Sea 1.3 (± 0.8) 161.5 (± 38.1) 64.4 (± 3.6) 117.2 (± 7.9) 12.2 (± 1.9) 

IRE_3183 Irish Sea 1.5 (± 0.8) 601.1 (± 158.4) 153.0 (± 22.6) 762.6 (± 14.7) 12.7 (± 1.7) 

IRE_3184 Irish Sea 3.3 (± 4.6) 344.4 (± 127.2) 107.8 (± 14.9) 140.7 (± 15.5) 12.7 (± 1.0) 

IRE_5569 Irish Sea 3.1 (± 3.1) 186.4 (±102.4) 76.1 (± 28.0) 122.7 (± 21.1) 14.0 (± 1.3) 

IRE_5595 Irish Sea 1.6 (± 0.9) 619.7 (±188.0) 165.1 (± 48.2) 200.5 (± 59.2) 12.5 (± 1.7) 

IRE_5596 Irish Sea 1.5 (± 0.8) 396.9 (± 120.2) 137.4 (± 24.0) 230.2 (± 22.0) 12.3 (± 1.7) 

IRE_5621 Irish Sea 1.6 (± 1.4) 441.7 (± 210.6) 141.6 (± 29.1) 188.6 (± 41.4) 12.1 (± 1.5) 

CEL_1477 Celtic Sea 2.9 (± 2.0) 56.9 (± 44.3) 100.6 (± 1.4) 99.5 (± 3.9) 10.0 (± 0.4) 

CEL_1527 Celtic Sea 3.9 (± 3.8) 86.5 (± 56.8) 98.5 (± 14.1) 98.6 (± 9.7) 10.4 (± 0.3) 

CEL_4683 Celtic Sea 5.0 (± 4.7) 61.7 (±26.6) 101.4 (± 1.9) 106.0 (± 19.9) 11.2 (± 0.4) 

CEL_5613 Celtic Sea 3.8 (± 3.3) 34.6 (± 23.7) 148.2 (± 2.6) 150.9 (± 12.4) 10.0 (± 0.3) 

CEL_5616 Celtic Sea 5.5 (± 6.3) 66.8 (± 24.8) 115.4 (± 6.7) 118.9 (± 24.2) 9.7 (± 0.4) 
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Appendix 2.14. 

Figure. Estimated geographic positions of individual cod during the spawning period (1st 
January – 30th April) in the Irish (n = 5) and Celtic (n = 4) Sea.  
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Appendix 2.15. 

Table. Statistics summarising the movement (horizontal and vertical movement), fish 

depth, sea depth and temperature experienced of individual cod in the Irish (n = 5) and 

Celtic sea (n = 4). All values are averages (± 1 standard deviation) calculated at the daily 
level for the duration of the spawning period (1st January – 30th April).  

 

Fish ID Area 

Horizonal 

distance 

travelled (km) 

Vertical distance 

travelled (m) 
Fish depth (m) Sea depth (m) 

Temperature 

(°C) 

IRE_1430 Irish Sea 1.7 (± 1.0) 225.3 (± 97.7) 59.8 (± 15.1) 116.8 (± 14.7) 8.6 (± 0.7) 

IRE_5569 Irish Sea 1.8 (± 1.0) 343.4 (± 178.9) 37.4 (± 21.7) 132.2 (± 10.7) 6.8 (± 1.5) 

IRE_5595 Irish Sea 1.6 (± 0.7) 451.6 (± 100.0) 91.6 (± 16.5) 194.6 (± 59.6) 8.4 (± 0.7) 

IRE_5596 Irish Sea 1.9 (± 1.1) 314.5 (± 170.9) 69.5 (± 43.4) 161.0 (± 86.3) 7.5 (± 1.3) 

IRE_5621 Irish Sea 1.9 (± 0.9) 374.8 (± 147.5) 104.9 (± 31.8) 183.6 (± 20.3) 8.6 (± 0.9) 

CEL_1477 Celtic Sea 2.0 (± 1.3) 233.5 (± 124.4) 94.8 (± 15.5) 141.4 (± 42.4) 9.1 (± 0.4) 

CEL_1527 Celtic Sea 2.0 (± 1.3) 214.2 (± 95.6) 89.8 (± 9.4) 101.0 (± 8.9) 9.0 (± 0.7) 

CEL_5613 Celtic Sea 3.4 (± 2.5) 55.9 (± 3.9) 144.5 (± 3.0) 154.3 (± 15.5) 9.7 (± 0.1) 

CEL_5616 Celtic Sea 2.2 (± 1.4) 237.8 (± 138.6) 102.4 (± 18.9) 151.8 (± 42.6) 9.2 (± 0.5) 
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Appendix 2.17.  

 

 

Figure. Landings (tonnes) of brown crab (Cancer pagurus) in the Celtic Sea from 2000 
to 2012. All values are extracted from Table 5 (page 13) in ICES WGCRAB REPORT 

2013 (Report of the Working Group on the Biology and Life History of Crabs).  
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Appendix 3 

Appendix 3.1.  

Table. Summary of movement paths by sub-stock.  

 

   Movement path duration (days) 

Species Sub-stock n* Minimum Mean Maximum 

Atlantic cod 

(Gadus morhua) 

Southern North Sea 23 40 97 295 

English Channel 23 41 145 364 

European plaice 

(Pleuronectes 

platessa) 

Southern North Sea 24 42 205 399 

German Bight 10 56 183 356 

Central North Sea 27 49 131 368 

*n, number of individual fish.  
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Appendix 3.2. 
 

Figure. Uncertainty associated with the geolocation of a single Atlantic cod (cod 1186) 

tagged with a data storage tag (DST) in the English Channel. Pictured are one thousand 
possible sample paths (A) and the top ten most probable sample paths (B). The ten most 

probable paths are calculated in a two-step process. First, each track is given a p value 
based on the cumulative probability associated with each daily location conditional on 

the observed depth (m) and whether or not a tidal signal has been detected. Second, the 
top ten ‘most probable’ paths are selected, where selection is based on the minimisation 

of that p value. For further methodological details see Pedersen et al. (2018). Cod 1186 
is also illustrated in a behavioural context in Figure 3.6. Release and recapture locations 

are shown in green and red, respectively. Seabed depth is sourced from the General 
Bathymetric Chart of the Oceans online repository (GEBCO, 2017). 
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Appendix 3.3.  
 

 

Figure. HMM output for an individual movement path (number of days = 295). Shown 

are the time-varying changes in state as the model switches between a resident (gold) 
and a migrating (red) state. The fish in question is an Atlantic cod in the Southern North 

Sea sub-stock, tagged on the 17th April 2001 and recaptured on the 5th February 2002. 
All horizontal and vertical observations have been log (natural log) transformed.  
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Appendix 3.4.  

 

Figure. HMM output for an individual movement path (number of days = 192). Shown 

are the time-varying changes in state as the model switches between a resident (cyan) 
and a migrating (purple) state. The fish in question is a European plaice in the Southern 

North Sea sub-stock, tagged on the 18th December 1997 and recaptured on the 27th 
June 1998. All horizontal and vertical observations have been log (natural log) 

transformed.  

 

 

  



 191 

Appendix 3.5. 

a So as to encompass any underlying seasonal shift in movement behaviour (Metcalfe et al. 2006; 
Righton et al., 2010).  

b One more active and one less active state (Metcalfe et al. 2006; Righton et al., 2010).  

c For vertical movement types we refer to Hobson et al. (2009, 2007 - Atlantic cod) and Hunter et 
al. (2004a, 2004b; European plaice).   

 

Figure. Criteria used to select individual movement paths based on published movement 

types. Selection is species-specific. 
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Appendix 3.6.  

Table. Summary of selected movement paths by sub-stock.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Species Sub-stock n* Average duration of movement path (days) 

Atlantic cod 

(Gadus morhua) 

Southern North Sea 4 160 

English Channel 7 174 

European plaice 

(Pleuronectes 
platessa) 

Southern North Sea 10 241 

German Bight 7 201 

Central North Sea 6 171 

*n, number of individual fish. 
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Appendix 3.7.  

 

Figure. Prior state-distributions by state in Atlantic cod (n=11) and European plaice 
(n=23). Points and lines are movement path specific, points show the mean bivariate 

movement rate per state and ellipses show the highest density region sampled from each 
state covariance matrix. Plotted are all movement paths that were selected and 

synthesized into movement parameter priors following initial HMM runs. All horizontal 
and vertical observations have been log (natural log) transformed.  
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Appendix 3.8. 

 

 

Figure. Spatial utilisation distributions by state and sub-stock (English Channel: A and 
B; Southern North Sea: C and D) in Atlantic cod. Plots are spilt into periods of resident 

dominant (A and C) and migrating dominant (B and D), where dominancy is defined by 
a mean probability of observing a given state at a given time that exceeds 0.5. Resident 

dominancy runs from June to October. Migrating dominancy runs from November to May. 
All grids cells (5km2) are illustrated in a colour gradient so as to illustrate the sum total 

number of days spent in a certain state in a given grid cell within a specified time period.  
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Appendix 3.9.  

 

Figure. Spatial utilisation distributions by state and sub-stock (Southern North Sea: A 

and B; German Bight: C and D; Central North Sea: E and F) in European plaice. Plots 
are spilt into periods of resident dominant (A, C, E) and migrating dominant (B, D, F), 

where dominancy is defined by a mean probability of observing a given state at a given 

time that exceeds 0.5. Resident dominancy runs from April to September. Migrating 
dominancy runs from October to March. All grids cells (5km2) are illustrated in a colour 

gradient so as to illustrate the sum total number of days spent in a certain state in a given 
grid cell within a specified time period.  
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Appendix 3.10. 

 

Figure. Observed vs. fitted values for a single Atlantic cod (movement path duration = 

114 days). Observed points (coloured) are plotted alongside the estimated sample (all 
46 fish) mean of each state (black cross). Dashed ellipses are calculated from the 

estimated sample covariance and centred on the estimated mean of each state. 
Horizontal and vertical observations have been log (natural log) transformed.  
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Appendix 3.11. 

 

Figure. Observed vs. fitted values for a single European plaice (movement path duration 
= 289 days). Observed points (coloured) are plotted alongside the estimated sample (all 

61 fish) mean of each state (black cross). Dashed ellipses are calculated from the 
estimated sample covariance and centred on the estimated mean of each state. 

Horizontal and vertical observations have been log (natural log) transformed.  
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Appendix 4 

Appendix 4.1.  

Table. Taxa independent vs. species average model fit.  

 

Data Model Model equation n Log(intercept) Slope 

All 

Taxa independent 𝑀��WT ~ body mass [1] 583 
7.14 

(l=7.09, u=7.2) 

0.30 

(l=0.3, u=0.31) 

Species average 𝑀��WT ~ body mass + 
(1|phylo) [1] 18 

7.06 

(l=6.36, u=7.73) 

0.31 

(l=0.27, u=0.36) 

Larvae 

Taxa independent 𝑀��WT ~ body mass [3] 155 
6.94 

(l=6.56, u=7.33) 

0.27 

(l=0.17, u=0.37) 

Species average 𝑀��WT ~ body mass + 
(1|phylo) [3] 9 

7.09 

(l=4.00, 
u=10.14) 

0.32 

(l=-0.26, u=0.93) 

Adult 

Taxa independent 𝑀��WT ~ body mass [3] 428 
8.09 

(l=7.91, u=8.27) 

0.19 

(l=0.16, u=0.21) 

Species average 𝑀��WT ~ body mass + 
(1|phylo) [3] 9 

8.05 

(l=6.01, 
u=10.86) 

0.21 

(l=-0.01, u=0.39) 

l, lower 95% credible interval. u, upper 95% credible interval. n, number of data points considered. In species average 
models, 𝑀��WT and body mass values are species specific averages. phylo, patterns of phylogenetic relatedness among 
species. The investigation each model is specific to is identified within […]. 
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Appendix 4.2.  

 

Figure. Dendrogram used in phylogenetic regressions in Chapter 4. Latin names of each 

species are used.  
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Appendix 4.3.  

Table. Estimated species-level effects within the random intercept model fitted to all fish 

movement data in Chapter 4.  

 

Species Log(intercept)* Common 
slope Life stage 

Atlantic cod (Gadus morhua) 0.03 0.16 Adult 

European plaice (Pleuronectes platessa) 0.31 0.16 Adult 

Atlantic salmon (Salmo salar) 0.84 0.16 Adult 

Atlantic Bluefin tuna (Thunnus thynnus) 0.13 0.16 Adult 

Porbeagle shark (Lamna nasus) 0.53 0.16 Adult 

Blue shark (Prionace glauca) 0.30 0.16 Adult 

Shortfin mako shark (Isurus oxyrinchus) 0.62 0.16 Adult 

Spiny dogfish (Squalus acanthias) 0.37 0.16 Adult 

Thornback Ray (Raja clavata) 0.05 0.16 Adult 

Orange-spotted grouper (Epinephelus coioides) -0.98 0.16 Larvae 

Brown-marbled grouper (Epinephelus fuscoguttatus) -1.07 0.16 Larvae 

Four-finger threadfin (Eleutheronema tetradactylum) -1.43 0.16 Larvae 

Common ponyfish (Leiognathus equulus) -1.71 0.16 Larvae 

Saddletail snapper (Lutjanus malabaricus) -1.32 0.16 Larvae 

Longfin batfish (Platax teira) -1.39 0.16 Larvae 

Australasian snapper (Pagrus auratus) -2.35 0.16 Larvae 

Surf bream (Acanthopagrus australis) -1.49 0.16 Larvae 

Mulloway (Argyrosomus japonicus) -2.20 0.16 Larvae 

*Estimated log(intercepts) are reported as deviates from the population estimate of 8.06. 
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Appendix 4.4.  

Table. Estimated species-level effects within the random intercept and slope model fitted 

to all fish movement data in Chapter 4.  

 

Species Log(intercept)* Slope† Life stage 

Atlantic cod (Gadus morhua) 0.14 -0.01 Adult 

European plaice (Pleuronectes platessa) 1.49 -0.20 Adult 

Atlantic salmon (Salmo salar) 0.85 0.01 Adult 

Atlantic Bluefin tuna (Thunnus thynnus) -1.86 0.22 Adult 

Porbeagle shark (Lamna nasus) 1.78 -0.09 Adult 

Blue shark (Prionace glauca) 0.57 0.00 Adult 

Shortfin mako shark (Isurus oxyrinchus) 1.37 -0.06 Adult 

Spiny dogfish (Squalus acanthias) 0.54 -0.01 Adult 

Thornback Ray (Raja clavata) 0.28 -0.03 Adult 

Orange-spotted grouper (Epinephelus coioides) -1.62 -0.02 Larvae 

Brown-marbled grouper (Epinephelus fuscoguttatus) -1.71 -0.01 Larvae 

Four-finger threadfin (Eleutheronema tetradactylum) -1.94 0.05 Larvae 

Common ponyfish (Leiognathus equulus) -2.09 0.08 Larvae 

Saddletail snapper (Lutjanus malabaricus) -1.84 0.03 Larvae 

Longfin batfish (Platax teira) -2.06 0.00 Larvae 

Australasian snapper (Pagrus auratus) -2.90 0.04 Larvae 

Surf bream (Acanthopagrus australis) -2.17 0.01 Larvae 

Mulloway (Argyrosomus japonicus) -2.91 -0.01 Larvae 

*Estimated log(intercepts) are reported as deviates from the population estimate of 8.51. †Estimated slopes are 
reported as deviates from the population estimate of 0.10.  
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Appendix 4.5.  

Table. Estimated species-level effects within the random intercept and slope model fitted 

to all adult fish movement data in Chapter 4.  

 

Species Log(intercept)* Slope† Thermoregulat
ion strategy Habitat Phylogenetic class 

Atlantic cod  

(Gadus morhua) 
-0.82 0.05 Ectothermic Demersal Actinopterygii 

European plaice  

(Pleuronectes platessa) 
0.99 -0.21 Ectothermic Demersal Actinopterygii 

Atlantic salmon  

(Salmo salar) 
1.15 -0.07 Ectothermic Pelagic Actinopterygii 

Atlantic Bluefin tuna  

(Thunnus thynnus) 
-3.24 0.33 Endothermic Pelagic Actinopterygii 

Porbeagle shark  

(Lamna nasus) 
2.07 -0.14 Endothermic Pelagic Chondrichthyes 

Blue shark  

(Prionace glauca) 
-0.10 0.03 Ectothermic Pelagic Chondrichthyes 

Shortfin mako shark  

(Isurus oxyrinchus) 
0.91 -0.04 Endothermic Pelagic Chondrichthyes 

Spiny dogfish  

(Squalus acanthias) 
-0.15 0.02 Ectothermic Demersal Chondrichthyes 

Thornback Ray  

(Raja clavata) 
-0.67 0.03 Ectothermic Demersal Chondrichthyes 

*Estimated intercepts are reported as differences from the population estimate of 9.58. †Estimated slopes are reported 
as differences from the population estimate of 0.02. 
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Appendix 5 

Appendix 5.1. 

Table. Main parameter values employed in the trait-based size spectrum literature 

compared to those used in Chapter 5. The parameters that we allow to vary (𝑞, 𝜆 and 𝛾) 
are not listed. Parameter names and units are listed in Table 5.2.  
 
𝑓� 𝛼 ℎ 𝑛 𝑘� 𝑝 𝛽 𝜎 𝜇� 𝜅� 𝑟� 𝜀 Reference 

0.6 0.6 85 0.75 10 0.75 100 1.0 0.84 0.005 4 - Hartvig et al., 
2011 

- 0.6 40 2/3 4 0.75 100 1.3 3.0 0.005 4 - Andersen and 
Rice, 2010 

- 0.6 20 0.75 2.4 0.75 100 1.3 2.0 0.005 4 - Jacobsen et al., 
2013 

varied 0.6 85 0.75 10 0.75 100 1.0 0.84 0.005 4 - Hartvig and 
Andersen, 2013 

0.5 0.6 30 2/3 4 0.75 100 1.3 0.6 0.005 4 - Andersen and 
Pedersen, 2010 

- 0.6 varied 0.75 0.8*h 0.75 100 1.3 - 0.005 4 0.1 Jacobsen et al., 
2017 

- 0.6 85 0.75 10 0.75 100 2 0.84 0.005 4 0.1 Houle et al., 
2013 

 0.6 20 0.75 2.4 0.75 100 1.3 2 0.005 4 0.1 Houle et al., 
2012 

0.5 0.6 30 2/3 4 0.75 100 1.3 0.6 0.005 4 0.1 
Parameters 

used in Chapter 
5 

varied, parameter is estimated or allowed to vary based on the aims of study. -, parameter value not 
listed or not used. 
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Appendix 5.2. 

 

 

Figure. Relationship between search volume (V; year-1) and body mass (grams) at q 

values of empirical interest. Search volume and mass have log (natural log) transformed 
to aid visual interpretation. 
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Appendix 5.3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure. Community slope as a function of a varying q (rounded to 3 decimal places) and 
a varying f. All slope estimates have been discretised to aid visual interpretation. All 𝜑 

values are fixed at 0.5. A lower threshold of -10 has been imposed because values 
beyond this point are indicative of a truncated size spectrum where abundance at large 

size class has been completely lost.
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Appendix 5.4. 

 

Figure. Species coexistence as a function of a varying q (rounded to 3 decimal places) 

and a varying f. All 𝜑 values are fixed at 0.5. 
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Appendix 5.5. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. Relative total biomass as a function of a varying q (rounded to 3 decimal places) 
and a varying f. All values are relative to the null model (q = 0.8 and f = 0). All 𝜑 values 

are fixed at 0.5.



 210 

Appendix 5.6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure. Relative total yield as a function of a varying q (rounded to 3 decimal places) 
and a varying f. All values are relative to the null model (q = 0.8 and f = 0.5). All 𝜑 values 

are fixed at 0.5. 
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Appendix 5.7.  
 

 

Figure. Abundance at size of each species when the community is projected under a q 

value of 0.8 and a fishing effort of 0. The community’s abundance at size is also 

illustrated (black line) and represents the sum total of each species’ abundance at size. 
Abundance and mass were log (natural log) transformed to aid visual interpretation. All 

𝜑 values are fixed at 1.0. 
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Appendix 5.8.  

 

 

Figure. Abundance at size of each species when the community is projected under a 
range of q values and a fixed fishing effort of 0. Abundance and mass have been log 

(natural log) transformed to aid visual interpretation. All 𝜑 values are fixed at 1.0. 
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Appendix 5.9.  

 

Figure. Species specific abundance at size when the community is projected under a 

select number of empirically derived q values and a fixed fishing effort of 0. Only the 
three smallest (species 1 – 3) and the three largest species (species 8 -10) are illustrated. 

Abundance and mass were log (natural log) transformed to aid visual interpretation. All 

𝜑 values are fixed at 1.0. 
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Appendix 5.10. 

 

 

 

Figure. Spawning stock biomass (SSB) of each species when the community is 
projected under empirically derived q values and fixed fishing efforts of 0 (A) and 0.25 

(B). SSB is calculated using the getSSB wrapper function in the mizer package (Scott et 
al., 2014) and represents the total mass of all mature individuals. Each SSB was 

calculated as an averaged value taken from the last 500 model iterations. SSB has been 
log (natural log) transformed to aid visual interpretation. All 𝜑 values are fixed at 1.0. 

  



 215 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THE END 


