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Abstract 

Strong immune responses to melanoma predict improved survival and better 

responses to immunotherapies. However the host-tumour interactions are not yet fully 

elucidated, especially for early stage tumours and increasing understanding of this 

interaction was the aim of this thesis. The analyses were carried out using 703 primary 

melanoma transcriptomes generated from the Leeds Melanoma Cohort (LMC), 

detailed clinico-histopathological, and additional genomic data. Bioinformatics was 

applied to infer the immune environment within the tumours.  

Using a modified “Immunome Compendium” developed by Angelova et al. [1], 

consensus clustering was applied to identify three immune subgroups: low, 

intermediate and high, associated with survival. Differentially expressed genes 

between the immune subgroups in the LMC were identified and analysed in the 

context of networks and pathways using Reactome FIViz. The oncogene MYC was 

identified as a nodal gene for the Low and NFKB1 for the High Immune Subgroup. The 

expression of both genes showed significant association with protein scores from 

immunohistochemistry and with copy number alterations. The genes from NF-kB and 

IFN-g pathways were more frequently deleted and MYC was amplified in the Low 

Immune Subgroup. These observations were considered as immune evasion 

mechanisms in primary melanoma. 

Furthermore, it was observed that MYC expression was negatively correlated with 

many antigen processing and presentation genes (HLA-B , HLA-C, B2M, TAP1 and 

ERAP1) in the LMC and patient-derived melanoma cell lines and with HLA-B at a protein 

level in the LMC. My hypothesis was that MYC drives immunosuppression at least in 

part by reducing antigen presentation by the histocompatibility complex.   

Finally, it was demonstrated that smoking was detrimental for melanoma specific 

survival overall, with the strongest effect for patients with tumours classified in the 

High Immune Subgroup suggesting a specific effect on tumour progression and it is a 

clear demonstration of an environmental modifier of survival.  
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Chapter 1   

Introduction 

1.1 Aims of this thesis 

• To apply appropriate bioinformatic methods of immune microenvironment 

characterisation to gene expression data from formalin-fixed paraffin embedded 

(FFPE) primary cutaneous melanomas from individuals in a large population-

based cohort. 

• To identify prognostic subgroups based on the bioinformatically identified 

immune infiltration profiles. 

• To identify and describe molecular and environmental immunosuppressive 

factors in primary cutaneous melanoma. 

 

1.2 Aims of this chapter 

The main aim of this chapter was to give an overview of the current knowledge that is 

essential for this thesis: 

• To describe relevant knowledge about cutaneous melanoma. 

• To document known predictors of melanoma specific survival (MSS). 

• To describe the most commonly disrupted molecular pathways in melanoma and 

the available related targeted therapies. 

• To introduce what is published with respect to host immunity-tumour 

interactions and some therapies that might modulate these interactions. 

• To give an overview of the basic immune responses.  

• To describe the methods of characterising immune cells within the tumour 

microenvironment.  

 

1.3 Cutaneous melanoma 

Human skin (cutis) consists of three layers: the epidermis, dermis and subcutis. The 

basal layer of the epidermis (stratum basale) contains melanocytes, which are melanin 
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producing cells. In the skin, melanocytic benign proliferations, which are usually self-

limiting are known as melanocytic naevi or “moles”. Persistent proliferation occurs in 

some people and then the naevi become unusually large (>5mm in diameter), which 

are known as dysplastic or atypical naevi. Even though proliferation is more persistent 

in these naevi, it usually eventually stops. When the proliferations become 

uncontrolled, a proportion of naevi may develop into cutaneous melanoma, however 

this malignant neoplasm may equally arise from skin which is considered as normal. 

Understanding the drivers of proliferation is very important in melanoma and other 

cancers in order to be able to control them therapeutically. In this thesis, I report the 

use of tumour transcriptomics to understand this process and how the host tries to 

control the tumour by deploying immunological responses. For brevity, the term 

“melanoma” will be used to mean cutaneous melanoma throughout this thesis. 

Reported sunburn and sunbathing are established risk factors [2] and this led to the 

development of the intermittent exposure hypothesis [3]. It is hypothesised that the 

continued observed increase in melanoma incidence results from the increased 

exposure to intense sun, especially on holidays. In the UK the current trends towards 

tanned skin colour and accessible sunny holidays for people whose skin type (pale) is 

not photo-adapted might explain the rise in melanoma incidence. In the UK, the 

incidence of melanoma has been increasing since 1990 (it has more than doubled - 

128%) [4]. 

1.4 Melanoma prognosis 

1.4.1 Disease staging using the American Joint Cancer Committee on Cancer 

system (AJCC)  

Clinico-histopathological features which predict survival for melanoma are used by 

clinicians and pathologists to assess the patient prognosis. The formal staging system 

of melanoma used in the UK is that developed by the American Joint Cancer Committee 

on Cancer (AJCC). I have used the 7th edition [5][6] as this was the current version when 

the data for my study were collected. The AJCC system categorises melanoma into four 

main stages and here I use a broad summary. In truth, the classification is rather more 

detailed than indicated below:   
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• Stage I: early primary tumours thinner than 1mm (Breslow thickness, see below) 

• Stage II: primary tumours which are thicker but without evidence of spread to the 

lymph nodes;  

• Stage III: evidence of melanoma spreading to the regional lymph nodes and 

palpable lumps; 

• Stage IV: more aggressive disease spreading to distant organs (viscera, lung, 

brain, etc.). 

Within stage I and II melanoma, the staging is determined initially by the pathologists 

who record the Breslow thickness which is the depth of the melanoma from the 

superficial (granular) layer of the epidermis to the deepest part of the tumour. Breslow 

thickness is measured under the light microscope using a millimetre scale and the 

thicker the depth the worse patient’s prognosis [5][6].  

Stages I and II are further refined by presence/absence of tumour ulceration (also 

assessed using microscopic examination). Ulceration is the absence of an intact 

epidermis covering the melanoma [7][8]. Patients presenting with an ulcerated 

melanoma have a shorter survival than those with a non-ulcerated tumour [9]. For 

stage I, an additional measure to categorise melanoma is mitotic rate. It is the mitotic 

count (number of actively dividing cells) per tumour area of 1 mm2, which is manually 

counted by pathologists using the light microscope. A mitotic rate greater than 1/mm2 

in stage I tumours is associated with decreased patient survival and has been used in 

the 7th Edition of AJCC staging. However it has been recently shown that a high mitotic 

rate indicates poor prognosis and aggressive disease even in thicker tumours (>1mm, 

n=1524) [10]. For this reason, in this thesis, the mitotic rate was analysed 

independently of AJCC staging for the whole study cohort.  

The measurement of Breslow thickness, the detection of ulceration, and the presence 

of metastases is used to categorise the tumours into the so-called TNM classifiers 

(Tumour size, Lymph Node affected, distal Metastases) [5]. Individuals whose tumours 

are thicker than 1mm are usually then offered a staging procedure known as sentinel 

node biopsy. In this procedure dye and a radioactive tracer are used to locate the 

lymph node into which lymph from the tumour drains. The dye collects in the sentinel 

node: the first lymph node into which lymph drains. This node is removed and if that 

and or other nodes are found to contain melanoma cells then the patient is said to 
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have stage III melanoma. Patients may develop nodal tumour masses, which can be felt 

and this is also stage III disease but stage IIIb or IIIc. 

Within the late stages, the number of metastases and the organs affected (stage IV) as 

well as the number of lymph nodes involved (stage III and IV) predict melanoma 

survival [5][6]. Metastases to non-pulmonary visceral sites predict the poorest 

prognosis, such as the liver and brain. There are other clinico-pathological factors 

which also independently predict prognosis but are not included in AJCC staging, such 

as lymphovascular invasion, primary tumour site, patient sex and age, as well as the 

lymphocytes infiltrating the tumour. They are briefly described below. 

1.4.2 Lymphovascular invasion  

Lymphovascular invasion is a term that describes the histological detection of invasion 

within the lumen of vascular and lymphatic vessels by melanoma cells, within or around 

the tumour. It is known to be associated with an increased likelihood of metastasis to 

the sentinel lymph nodes [11][12]. A recent study reported that lymphovascular 

invasion (assessed histologically) independently  predicts poor survival [11].  

1.4.3 Primary tumour site 

Non-ocular melanoma occurs in different anatomic locations: on the head and neck, 

trunk (most common), limbs, genitals, rectum and mucosal sites. Primary tumours 

located at the trunk, head and neck are known to be associated with a poorer prognosis 

than the ones on the extremities [13]. Other studies showed that tumours located on 

acral sites (fingers, palms, soles, and nail beds) have poor prognosis [14][15], which 

could be due at least in part to late diagnosis [16]. Similarly melanoma detected in 

genital and rectal areas were reported to have lower survival rates [17][18]. Overall, 

unsurprisingly, the tumours occurring on sites where they are easy to detect and 

surgically remove are associated with the best prognosis, however there might be 

biological differences among tumours in different body sites. It is generally accepted 

that tumours exposed to sun have higher rates of C>T mutations caused by UV 

radiation than sun-protected tumours [19]. These mutations may induce the 

generation of neo-antigens (described later in this chapter), which might potentially 

attract immune cells to kill the lesion and result in better survival for patients having 



5 
 
tumours in sun-exposed sites. 

1.4.4 Sex 

Sex is an independent predictor of melanoma death [20][21]. Female patients have a 

lower risk of melanoma death than males consistently when analysed within pre- and 

postmenopausal ages categories across the  stages III and IV [20]. The basis of this risk 

difference is not yet fully understood.  

1.4.5 Age 

Age of melanoma patients is an important predictor of survival. Increasing age is an 

independent predictor of melanoma death [22], which is currently hypothesised to 

relate to impaired host responses to the tumour [22][23] and/or changing collagen 

matrix [24] impacting on the tumour invasive front. It has also been observed that older 

patients at diagnosis are more likely to be men than women [22][25], which makes the 

effects of age and sex difficult to disentangle. In multivariable analyses, both factors 

appear to have independent effects on survival. 

1.4.6 Tumour infiltrating lymphocytes (TILs) 

More than a century ago, immune cells occurring within melanoma were thought to 

be causative for skin neoplasia due to a process of inflammation [26]. The idea was 

challenged at the International Congress of Skin Cancer conference in Sydney in 1972 

suggesting instead the anti-melanoma function of lymphocytes [27]. The tumour 

infiltrating lymphocytes (TILs) term was introduced in 1969 by Wallace Clark and 

denoted the histologically detected presence of lymphocytes within and around 

primary melanomas, postulated to be taking part in a host response to the cancer [28]. 

Clark et al. [28] recognised that there were different patterns of lymphocytes within 

the tumours and classified TILs as absent, non-brisk and brisk (Figure 1.1).  

Brisk TILs have been shown to predict an improved outcome (overall and disease free 

survival) in some studies [29][30], but others have failed to prove an independent 

survival advantage [31][32]. The immune response might vary over time during 

melanoma progression, and that fact could explain why the survival benefit of TILs is 

not observed consistently across studies. Another plausible explanation of this 

inconsistency is the heterogeneous nature of the immune infiltrates within and around 
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tumours. There is furthermore, a large degree of inter-observer variation: the scoring 

can be pathologist-dependent, which has so far limited its utility [33][34][35]. 

Nonetheless, a recent study based on a large sample size (n=1865) did confirm that 

patients with higher counts of brisk TILs have very good prognosis [36]. Even if inter-

observer variation can be controlled there may be biological differences which could 

not be captured using standard histopathology: TILs scoring does not indicate exactly 

which type of lymphocytes invade the tumour. Some might be immuno-suppressive, 

while others might be more anti-tumorigenic. 

 

 

Figure 1.1: Clark's classification of tumour infiltrating lymphocytes 

(A) Representation of brisk TILs, which are present within the tumour or 

infiltrating the entire base of the tumour. (B) Representation of non-brisk TILs, 

which are observed in one or more foci of tumour. (C) TILs absent within the 

tumour, where no lymphocytes have infiltrated melanoma (even though they 

could be seen around it). 

 
The Melanoma Institute of Australia (MIA) has proposed a modified version of the 

Clark’s classification, introducing new grades ranging from 0 to 3 [36]: 
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• Grade 0: TILs absent  

• Grade 1: a mild/moderate focal or a mild multifocal TIL infiltrate 

• Grade 2: a marked focal, either a moderate/marked multifocal, or a mild 

dispersed TIL infiltrate 

• Grade 3: a moderate/marked dispersed TIL infiltrate. 

Like Clark’s classification, this grading positively correlates with melanoma specific 

survival [36]. In this thesis, only the Clark’s classification was used assessed by 

unselected clinical dermatopathologists and single observer Dr Sally O’Shea as 

separate variables to test their cross-validation. Throughout later analyses I will point 

out whose classifications were used.  

1.5 Key oncogenic pathways, genetic mutations  

Melanoma progression is associated with activation of pathways that regulate tumour 

growth and proliferation, which I will discuss in this section.  

1.5.1 Mitogen activated protein kinase (MAPK) signalling pathway 

MAPK signalling is a regulator of cell cycle, differentiation, migration, proliferation and 

apoptosis [37]. In healthy cells, this pathway is triggered either by receptor tyrosine 

kinases (RTKs) binding to their accompanying ligands, or integrin adhesion molecules 

on the cellular matrix or the cell membrane leading to further activation of RAS (small 

GTPase) by changing its state from GDP (guanosine diphosphate) to GTP (guanosine 

triphosphate) [37][38]. Activated RAS activates RAF (serine/threonine kinase), 

activating MEK1 and MEK2, then ERK1 and ERK2, resulting in their translocation to the 

nucleus and regulation of several transcription factors (Figure 1.2) [37][38]. The first 

most common driver mutation in melanoma is BRAF, which results in uncontrolled 

activation of the MAPK pathway. The BRAF point mutation V600 is a substitution of 

valine by another amino acid. BRAF mutations occur in ~50 % of cutaneous 

melanoma[39] (with the most common substitution of E (glutamic acid) occurring in 

~90% of these mutations and K (lysine) occurring in the remainder 10%).  

Targeted inhibitors or BRAF +/- MEK inhibitors are used to inhibit the MAPK pathway. 

Recent clinical trial results indicated that combinatory treatment delays therapy 

resistance and improves progression free and overall survival [40]. NRAS is the second 
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most commonly driver mutated gene in melanoma, also activating the MAPK pathway, 

with a frequency of 20-25% [41]. The point mutations occur in codons G12, G13 and 

Q61. However there is no treatment available in clinical practice to date that targets 

NRAS as yet [42].  

1.5.2 Phosphatidylinositide 3 Kinases (PI3K) signalling pathway 

Activation of the PI3K pathway is also involved in melanoma proliferation, cell growth 

and survival [43]. PI3K is activated by G-protein-coupled and tyrosine kinase receptors. 

Activated PI3K produces phosphatidylinositols, which bind to AKT, restraining it at the 

cell membrane. AKT restrained in the cell membrane can be phosphorylated/activated 

[44][45], resulting in the mediation of phosphorylation of downstream proteins (e.g. 

mTOR), which regulate cell cycle, proliferation and survival (Figure 1.2). Oncogenic RAS 

is known to regulate the PI3K pathway, leading to uncontrolled activation of this 

pathway and activating cancer associated genes. In normal cells, PTEN inhibits this 

pathway, by interrupting the reaction of AKT with phosphatidylinositols. In melanoma, 

40-60% of tumours have deletions or mutations in PTEN [46] and they are more 

frequent in BRAF mutated tumours [46]. It was reported that approximately ~20% of 

melanomas have PTEN inhibited/deleted together with BRAF mutations [47][46] and 

that both of these aberrations cooperate in metastatic induction [47]. PI3K and AKT 

inhibitors have been developed, however they are not commonly used in the clinic. 

Another gene that is functionally important in melanoma progression is NF1, which, 

like PTEN, is also involved in the negative regulation of RAS. Mutations of NF1 occur in 

approximately 4% of melanomas [46].  
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Figure 1.2: Simplified overview of the MAPK and PI3K pathways 

 

1.5.3 Genetic mutations 

A study designed for large scale mutation detection identified some more mutated 

genes in cutaneous melanoma: TP53, CDKN2A, MAP2K1, PPP6C, RAC1, SNX31, TACC1, 

and STK19 [48], however with low frequency. This study included 15 primary tumours, 

30 metastatic samples, and 76 short-term cultures derived from metastatic tumour 

tissue from 95 melanomas of cutaneous, 5 of acral, 2 of mucosal, 1 of uveal, and 18 of 

unknown primary origin. 

Additionally a study conducted three years later using 67 primary and 265 metastatic 

samples confirmed some of these mutations: TP53, CDKN2A, MAP2K1, PPP6C, and 

RAC1, and identified some new mutations relatively frequent in melanoma: ARID2, 

IDH1, DDX3X, RB1 [46].  

Moreover, melanoma was shown to be a cancer type with the highest prevalence of 

somatic mutations in a study comparing mutational load across various cancer types 

[49]. This study identified 21 signatures of mutations, one of them (the Signature 7) 
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was characterised by C>T mutations known to be caused by ultraviolet light and this 

signature was particularly high in melanoma [49]. 

Apart from the mutations some frequent copy number changes in specific genes were 

identified in melanoma. For example, commonly amplified gene was MYC [50] and 

deleted were CDKN2A [46][48]and PTEN [50][46][48].  

1.6 The immune response 

Generally, the immune system is described as having two main components: innate 

and adaptive. The innate immune responses are mediated by germline encoded 

receptors and these responses are rapid reactions to pathogens (sometimes described 

as spontaneous), playing a role in both the immediate broad defence against 

challenges and in subsequently activating secondary more specific or adaptive immune 

responses. Pathogens are first recognised, by innate/phagocytic cells using pattern 

recognition receptors (PRRs), then they are ingested and killed. There are two main 

types of PRRs: Toll-like (extracellular pathogen detectors) and NOD-like (intracellular 

pathogen detectors). They recognise foreign DNA and RNA and this recognition triggers 

the production of IFN-a and -b (Toll-like receptors) and NF-kB (NOD-like receptors). 

Another similar process of foreign nucleic acid recognition is stimulator of interferon 

genes (STING) situated on the endoplasmic reticulum and when it is active it leads to 

transcription of interferon genes [51]. This signalling was shown to have significant 

impact on cancer immunity [52]. The major immune cells in innate immunity are:  

• macrophages 

• neutrophils 

• dendritic cells 

• mast cells 

• eosinophils 

• basophils 

• natural killer cells. 

The adaptive immune responses are mediated by somatically rearranging antigen 

receptors (which is a continuous random process). The adaptive responses are less 

rapid (as specific B and T cell clones must be triggered by other immune cells and 
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proliferate to provide effective coverage) but more specific than the innate response 

and its main function is the development of highly specific effector cells and memory 

responses, from two main types of lymphocytes: T and B cells. Both these cells have 

several subtypes, which have distinctive functions. For T cells these are: 

• effector 

• helper 1, 2 and 17 

• regulatory 

• cytotoxic 

• memory 

• natural killer T cell (NKT, different from NK cells) 

• gamma-delta; 

and for B cells:  

• plasma cells  

• memory B cells 

• regulatory B cells. 

T cells mature in the thymus, hence their name, and they can be either CD4+ or/and 

CD8+ (which means they express CD4 or/and CD8 glycoprotein on their surface). All 

subsets of T cells express CD3 and T cell receptors (TCR), forming a TCR complex. This 

complex interacts with HLA class I (CD8 T cells) and II (CD4 T cells). B cells however, 

mature in the bone marrow and express the B cell receptor (BCR). The BCR is a 

transmembrane receptor complex, comprised of the antigen binding component (an 

immunoglobulin molecule) and associated signalling chains (CD79A and B, analogous 

to the CD3 chains of the TCR). The B cell’s key function is antibody (immunoglobulin) 

secretion. The role of antibodies is in neutralising pathogens by direct binding to them. 

B cells also capture antigens using immunoglobulin and present it to T cells via HLA 

class II; a T cell with specificity for the processed antigen captured by the antibodies 

then provides helper function (co-stimulation and cytokines release) that allows the B 

cell to differentiate into an antibody secreting plasma cell. 

All immune cells are derived from the pluripotent hematopoietic stem cells from the 

bone marrow, which have undergone differentiation mainly due to gene expression 

changes in different tissue types (haematopoiesis), shown in Figure 1.3. The first step 
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of differentiation is into common lymphoid and common myeloid progenitor cells. The 

first one matures into T cells, B cells and natural killer cells, the latter one however 

matures into all the other immune cells. Overall in healthy individuals the 

differentiation is fluid, but at the same time well controlled [53]. The classification of 

immune cells is mainly based on the expression of surface molecules, which are 

characterised by the use of standardized cluster of differentiation (CD) nomenclature 

[54], but functional tests are often used to differentiate particular subtypes. However, 

the understanding of subgroup phenotypes and functions continues to evolve. 

 

Figure 1.3: Haematopoiesis, process of differentiation of immune and blood cells [53] 

 

Immune response is a complex process in which many different subtypes of immune 

cells take part. It is possible that in a fight against cancer all of those immune cells may 
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be involved simultaneously or at different stages, therefore understanding this process 

is needed but is very challenging [55][56].  

1.6.1 Host immune response to melanoma 

The immune system is a defence mechanism that primarily protects an individual 

against pathogens but it has become increasingly apparent that it also plays a crucial 

role in the defence against cancer. The first scientist who conceived the idea of the 

immune system potentially controlling cancer proliferation was Paul Ehrlich in 1908 

[57]. However, it was only a half century later in 1957 that the formal hypothesis of 

“cancer immunosurveillance” was proposed by Sir Frank Macfarlane Burnet and Lewis 

Thomas [58].  

For melanoma, the first evidence that the immune response, mainly the TILs might play 

a role in melanoma was the discovery by Clark et al. in 1969 [28]. TILs were later on 

proven to be associated with an improved melanoma specific survival (as described 

before). Melanoma has been said to be the most immunogenic cancer over the past 

decades, based largely upon the observations made by clinical researchers. One of the 

earlier and most striking observations was the spontaneous regression (disappearance) 

of melanoma lesions in certain patients [59]. It is a very rare process speculated to be 

caused by a rapid cytotoxic (tumour killing) specific immune response [60], or by 

stimulation of the immune cells by the melanoma cells present in the lymph nodes [61].  

Other studies reported that some melanoma patients develop vitiligo 

(hypopigmentation), an autoimmune process that destroys melanocytes (acquired 

pigment loss), and that these patients have a better prognosis [62]. It was suggested 

that this higher rate of survival could be explained by higher CD8+ T cell responses to 

melanoma cells in those patients possibly due to recognition of same antigens 

produced by both melanocytes and melanoma [63][64].  

The prominent role of the immune response controlling melanoma was also shown 

while studying patients who received organ transplants who are typically given 

immunosuppressive drugs to avoid the graft rejection. The studies were designed to 

test the hypothesis that transplant recipients were at higher risk of developing skin 

cancer/melanoma. It had become clear that organ recipients indeed were at higher risk 

of developing this type of cancer due to lack of systemic immune surveillance [65]. 
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There were some transplantation cases where the organ of the donor contained 

melanoma cells (unknowingly to the surgeons) and because of the immunosuppressive 

drugs the recipients received during and after transplantation, they developed 

melanoma metastasis to distant organs [65][66]. These observations imply both that 

melanoma cells can exist in healthy organs for many years yet retain the ability to 

proliferate, and that in healthy individuals’ immune responses to melanoma may keep 

tumours in check. 

Overall, melanoma tumours in order to be recognised and attacked by the immune 

system need to provide a supportive niche for the immune cells to infiltrate melanoma 

and activate their effective functions. These functions are mainly induced by tumour 

antigens. Tumour antigens can be classified into: 

• Cancer- germline antigens – expressed by cancer cells and adult reproductive 

tissues (e.g. melanoma associated antigens (MAGE family)) 

• Differentiation – expressed by cancer cells and limited range of normal tissues 

(e.g. produced by melanocytes and melanoma cells to which T cell tolerance is 

incomplete, such as MART-1, melan-A or Tyrosinase) 

• Overexpressed – expressed in cancer cells and normal tissues, but significantly 

overexpressed in tumour cells  

• Viral – expressed by cancer cells as a result of viral infection 

• Neoantigens – expressed in cancer cells and absent from the normal tissues 

peptides considered to be a result of degraded abnormal proteins, which can 

be products of genomic mutations [67][68][69].  

Tumour antigens are processed and presented to the immune system via MHC class I 

molecules. Simplistically, the abnormal endogenous proteins are ubiquitinated and 

fragmented into peptides by the proteasome. Next, these peptides are transported 

from cytosol to endoplasmic reticulum by ATP Binding Cassette Subfamily B Member 

Transporter (TAP) and trimmed by Endoplasmic Reticulum Aminopeptidase (ERAAP). 

Finally these peptides are bound and presented to the immune cells by Major 

Histocompatibility Complex class I (Human Leukocyte Antigen (HLA) class I: HLA-A, HLA-

B, HLA-C), formed with its major component Beta-2-microglobulin (B2M)[53] (Figure 

1.4). 
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Figure 1.4: Schematic representation of antigen processing and presentation via MHC 

class I molecules [53] 

(1) Partially folded MHC class I a chains bind to calnexin till b2-micorglobulin 

binds. (2) When MHC class I a:b2m complex is released from calnexin, then binds 

to a complex of chaperone proteins (calreticulin, ERp57) and then to TAP via 

tapasin. (3) Cytosolic proteins and defective ribosomal products (DRiPs) are 

degraded to peptides by the proteasome and delivered to the ER by TAP. (4) A 

peptide binds to MHC class I molecule and finishes its folding. Next, the MHC class 

I molecule is released from the TAP complex and exported to the cell membrane 

[53].  

 
As mentioned earlier melanoma is considered to be a cancer type with the highest 

prevalence of the somatic mutations [49], which is considered to potentially lead to 

higher numbers of neoantigens, hence being more immunogenic. 

Melanoma can also be recognised by innate responses, mainly by Natural Killer (NK) 

cells [70] and Dendritic cells (DC) [71], for which neoantigen presentation is not 

essential. NK cells have a cytotoxic function: killing infected cells and tumour cells. NK 

cells do not use an antigen receptor, but instead use an array of activating and 
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inhibitory receptors to detect changes in expression levels of host cell surface 

molecules. Activated NK cells kill target cells using granzymes and perforins, which 

induce apoptosis of those target cells and produce TNF, GM-CSF and IFN-gamma to 

modulate innate and adaptive immunity [53]. DCs, however, process and present 

antigens (via HLA class I and II) to T cells. They are sometimes described as professional 

antigen presenting cells (APCs). There are two broad classes of dendritic cells: 

conventional (myeloid) and plasmacytoid (which are much less abundant), which 

produce high levels of IFN-g and IFN-a [72][73].  

 Regulation of host immune response 

Although it is evident that melanomas can provoke anti-tumour responses and can be 

eliminated by that process, at some point some of the tumour cells clearly acquire the 

ability to evade the immune reaction, which results in tumours that grow faster with 

increased ability for invasion and metastasis [74]. For example, the downregulation of 

components of antigen processing and presentation and IFN-g signalling [55] 

contribute to immune evasion, as well as upregulation of b-catenin signalling, which 

inhibits the expression of chemokine (CCL4) that attract the infiltration of CD103+ DCs 

into the tumour [75][76].  

Another type of immune evasion mechanism reported is the up-regulation of 

checkpoint molecules like PD-L1, PD1 and IDO or chemokines by tumour or immune 

cells that activate and attract regulatory immune cells. However the upregulation of 

checkpoint molecules was recently shown to be associated with higher immune 

infiltrates which have a good prognostic value [77]; the expression of checkpoint 

molecules within tumour microenvironment may simply reflect a homeostatic 

response to activation of T cells functioning as a feedback loop. Furthermore, Myeloid 

Derived Suppressor Cells (MDSCs) can have the ability to supress the immune response 

against melanoma. MDSCs originate from the myeloid linage (stem cells from the bone 

marrow). These are a heterogeneous group of cells, which have an ability to suppress 

T cells in pathological conditions, including in cancer overall and melanoma in 

particular [78][79][80]. Similar overall function to MDSCs have Regulatory T cells 

(Tregs). Tregs are CD4 positive expressing the forkhead box P3 (FOXP3) protein which 

is a transcription factor.  As their name implies, they take part in the regulation of 

immune responses. They express checkpoint molecule Cytotoxic T-lymphocyte-



17 
 
associated protein 4 (CTLA-4) (see “Immunotherapies” below). In some cancer types, 

Tregs have been reported to be associated with a poor survival while in other cancers 

it is the opposite [81]. 

Moreover, other components of tumour microenvironment (TME), such as stromal 

cells, cancer-associated fibroblasts (CAFs), vascular components, and adipose cells, and 

their complex interactions might also regulate the effectiveness of immune responses 

against melanoma [82]. All of the them can release different types of cytokines 

affecting of the anti-tumour immune responses as well as tumour progression [82]. For 

example in melanoma lymphatic vessels were shown to have an immuno-suppressive 

role as well as a role in inducing the anti-tumour local inflammation/immune response 

[83][84]. Another study reported that the changes in collagen matrix (related to age) 

were associated with impaired host immune responses to the tumour [24]. Last but 

not least, in melanoma CAFs were reported to contribute to decrease of melanoma 

susceptibility to be killed by NK cells [85], and in general in cancer, they are recognised 

for induction of excessive inflammation within the tumour [86]. 

Finally, the tumour-host interactions might be also affected by genetics, age of the 

patient, microbiome, viral infections, exposure to sunlight, and immune-modifying 

drugs [87]. For example, less sunlight, viral infection and younger age are associated 

with higher immune responses [87]. Moreover, smoking and Vitamin D are known to 

affect systemic immune responses [88][89], but their role in tumour-host interaction is 

not yet understood in melanoma. During my thesis I had access to reported patient’s 

smoking habits and vitamin D blood levels, hence I have explored only these two and 

described in details in Chapter 6.  

1.6.2 Immunotherapies 

Over time, the accumulation of data indicating that immune responses are important 

in melanoma has led to the development of therapies that can boost immunity. Despite 

a slow start in this field, the current lines of immunotherapies are effective in a 

significant proportion of melanoma patients.  

The most promising therapeutic option for stage IV melanoma (advanced metastatic 

stage) are immunotherapies, most commonly checkpoint blockade. Immune 

checkpoint receptors (which are targeted by immunotherapies) negatively regulate T 
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cell activation, and function to limit potential self-induced damage to the host. CTLA-4 

is mainly expressed on activated T-cells and Treg and is closely related to the CD80/86 

ligand, as well as costimulatory molecule CD28. Both CD28 and CTLA-4 compete for 

binding to CD80/CD86 [90][91]. When the receptor is bound to CD80/86, a signal is 

produced to switch off the activated T-cell alternatively - CTLA4 on Treg blocks CD28 

binding to CD80/86 [90][91]. Programmed death ligand 1 (PD-L1), is another 

checkpoint molecule which may be expressed by antigen presenting cells or tumour 

cells. It binds to programmed death 1 receptor (PD-1), which is expressed on 

macrophages, B cells and activated T cells, NK cells, NKT, cells and subsets of DC cells 

[91], causing T cell inactivation. The CTLA-4 inhibitor Ipilimumab (Yervoy) was approved 

by the FDA for metastatic melanoma treatment in 2011 [92], followed by 

Pembrolizumab (Keytruda) and Nivolumab (Opdivo), which block PD-L1 [93][94]. 

The unprecedented therapeutic benefits reported from combined checkpoint blockade 

(anti-PD-1 and anti-CTLA4) have shown the potential to exploit the current body of 

knowledge on the immune response to cancer, but still only around 58% of treated 

patients survive 3 years [95]. Note that these combinations are still in clinical trials and 

have so far only been followed-up for a short period of time.  

Checkpoint blockade is associated with significant toxicity (immune related adverse 

events such as inflammation of multiple organs), which causes significant morbidity 

even treatment related deaths. The toxicity issues are even more problematic where 

checkpoint blockade is used in the adjuvant setting. Most recently a study showed that 

neoadjuvant (first step treatment before the main therapy) setting for 

immunotherapies might be more promising for melanoma patients, however still the 

toxicity rates are very high and more studies are needed to overcome this problem, for 

example by dose reduction [96][97].  

Another type of hopeful immunotherapy is adoptive cell therapy (ACT). This type of 

therapy was introduced in 1998 by Steve Rosenberg, which was based on isolating TILs 

from the tumour, culturing and propagating the cells ex vivo, and finally injecting them 

back to the melanoma patients [98]. Subsequently, similar technique was introduced 

by isolating peripheral immune cells and engineering them with chimeric antigen 

receptors (CARs). The idea behind this treatment is to engineer the patient’s immune 

cells and make them more sensitive to cancer cell recognition. T cells are extracted 
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from the tumour, cultured in vitro, engineered by introducing chimeric antigen 

receptor (CAR) into their genome and transferred back to the patient’s body [99][100]. 

CAR is a treatment combination of antibodies, TCR and co-stimulatory molecules. 

Specifically, CAR is composed of extracellular portion, which usually are antigen binding 

domains derived from variable domains of antibodies, and which are designed to 

recognise specific tumour antigens. The intracellular signalling module of the CAR is 

derived from T cell signalling proteins, mainly CD3z (CD3 molecule and z-chain) and 

additional costimulatory domains from receptors such as CD28, CD134 (OX40), and 

CD137 [101]. When CAR is activated by tumour-associated antigen, it has the ability to 

activate different pathways at the simultaneously, for example T cell effector and 

costimulator functions [99][100], which results in over-activation of T cells. As for 

combined checkpoint inhibitors [102], around 50% of melanoma patients currently 

benefit from adoptive T cell transfer therapy [103][104].  

It is important to study immune responses in melanoma because it is needed to 

understand the failure of immune surveillance and resistance to immunotherapies. The 

increased understanding will help in designing more effective and potentially less toxic 

therapies. There is a possibility that environmental or lifestyle factors might modify the 

host-tumour interactions [87], henceforth studying them might lead to important 

findings that could be added to the patient care.  

1.6.3 Established methods to characterise immune cell subtypes within 

tumour  

1.6.3.1 Histopathological quantification of immune cell infiltration 

Excised melanoma samples are normally prepared for examination by fixation in 

formalin and embedding in paraffin wax (FFPE), although for large samples portions of 

the tumour can be stored fresh-frozen (cryopreservation) for research purposes. FFPE 

is the preferred method in pathology laboratories because the tissue block can be 

stored for a long time and be reanalysed if needed for further diagnoses. On the other 

hand, cryopreservation is preferable for many research processes since the genetic and 

protein material is not degraded by formaldehyde and higher temperature storage, 

which is the main disadvantage of FFPE method. From both FFPE or cryopreserved 

tissue, sections of the tissue are cut, stained (predominantly with Hematoxylin and 
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Eosin (H&E) for histopathological characterisation) and examined using light 

microscopy. The extent of the TILs can be assessed by eye; this is a routine part of 

diagnostic histopathological examination of melanoma within the clinical setting as 

described earlier in this chapter.  

However, to distinguish many of the individual cellular subpopulations within the 

infiltrate, immunohistochemistry (IHC) is required. This method of staining relies on 

the use of antibodies that specifically bind to an epitope (part of an antigen recognised 

by an antibody) expressed by immune cells. The nomenclature of immune cell subtypes 

has been developed on the basis of proteins expressed on their cell surface in blood. 

This method of measuring immune subtypes within the tumour is labour intensive and 

challenging if more than a handful of antigens are to be tested simultaneously. For 

simultaneous multi-antigen detection, multiplex immunochemistry is required, usually 

with usage of fluorochrome rather than standard chromogenic reactions [105]. 

Although this method is commonly used it carries some technical limitations, such as 

signal overlap between fluorophores [105]. To overcome this problem Garry Nolan and 

colleagues at Stanford University developed a more advanced method: Multiplex ion 

beam imaging (MIBI), where up to 100 antigens can be detected on FFPE tissues 

utilising metal isotopes reporters [106] which can be washed off the surface allowing 

consecutive probes to be used. This method is not yet widely used however because it 

is too expensive and requires specialized training for performance and analysis of the 

results. In summary, all types of IHC require a reasonable amount of tumour tissue and 

are time consuming especially when assessing numerous immune cell populations in a 

large number of samples. 

Flow cytometry (or FACS, for Fluorescence-activated cell sorting) of disaggregated 

tissues offers an alternative antibody-based method to measure the numbers and 

proportions of immune cells in tissues. However, in this case the tissue has to be fresh 

– cells need to be alive in order to obtain specific antigen-antibody binding [107]. This 

is rarely available for melanoma primaries at least, due to the very small size of the 

tumours. The concerns are around freezing tissues and effectively destroying their 

architecture precluding accurate staging of the tumour. Furthermore, flow cytometry 

is based on the detection of surface markers (Cluster of Differentiation, CDs) of the 

immune cell types, few of which are exclusive to individual cell populations, such that 
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multiple antibodies are required to differentiate between immune cells. Another key 

difficulty associated with FACS is tissue preparation, mainly its step of disaggregation, 

which might lead to destruction of surface antigens especially when the cells stick to 

each other which is often the case in carcinomas. Moreover, isolation of the cells from 

their original environment might induce different gene expression and protein patterns 

during this process. 

 Bioinformatic methods of immune cells scoring within tumours 

Genomic and transcriptomic tumour profiling has become commonplace, as 

microarrays and sequencing techniques improved and costs fell leading to increased 

accessibility. Fresh or cryopreserved tumours are sampled, nucleic acids extracted and 

isolated and then assayed to generate detailed profiles. DNA or cDNA from RNA 

(depending on the research aim) can be used to generate different types of genetic 

profiles: genome sequences, copy number changes, promoter methylation and whole 

genome transcriptomes, or any combinations of the above. However, in order to have 

all genetic profiles per sample a reasonable amount of genetic material is required. 

Genetic profiling assays were needed with a high enough sensitivity to allow accurate 

signal detection when a very small amount of genetic material is available, and 

preferably effective in formalin fixed tissue.  

The transcriptomic data utilised in this thesis were generated with arrays developed 

specifically to allow analysis of degraded RNA which occurs in formalin fixed blocks. 

This technological advance has allowed the research group to generate a uniquely large 

collection of tumour derived transcriptomes from FFPE primaries (as described in the 

Methods section).��

In my thesis one of the tested hypothesis was that the bioinformatic analysis of 

tumour-derived gene expression profiles would allow inference of the abundance of a 

large number of immune cells subsets infiltrating the tumours using these cells specific 

markers.  

I explored a number of bioinformatic approaches that have recently been published: 

CIBERSORT, the Immunome compendium reported by Bindea et al. [108], subsequently 

updated by Angelova et al. [1]. There are other methods in literature which infer 

immune cell subtypes [109][110][111][112], however they were not considered in this 
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thesis because they either cover a smaller spectrum of cell subtypes [109][111] or only 

RNA sequencing data may be applied to them [110], or they appeared relatively late 

during my PhD (November 2017) [112]. 

1.6.3.2.1 CIBERSORT – “LM22”� 

Newman et al. designed and validated a leukocyte gene signature matrix (immune 

sorting template) termed LM22 [113]. In their study, 547 genes were used to 

distinguish 22 human hematopoietic cell phenotypes:  

The design of the approach was based on isolating immune cell types from the blood 

and generating whole genome transcriptomes for each purified cell type on 

microarrays (HGU133A) (Figure 1.5). After learning the particulars of each cell subtype 

in a machine learning approach (linear support vector regression), CIBERSORT (Cell 

type Identification By Estimating Relative Subsets Of RNA Transcripts) can generate an 

estimate of the relative proportions of these cells in any tissue using their 

transcriptomic data. Newman et al. developed an algorithm to address the problem of 

mixture deconvolution (where a signal, in this instance a measure of gene expression 

was a result of a signal derived from the tissue and something else which might be 

thought of as noise). The deconvolution algorithm was intended to produce a purer 

signal and where the deconvolution fails then the implication is that the data quality 

cannot be relied upon. The “P value of deconvolution” gives the CIBERSORT user a 

measure of whether the sample was well deconvolved or not. It is an empirical p-value 

estimated from simulation or resampling methods. 
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Figure 1.5: Overall representation of CIBERSORT design and application to leukocyte 

deconvolution (adopted from Gentles et al. [113]) 

 

The gene expression data used as input into CIBERSORT can be derived from any tissue 

type. However, the algorithm was developed using RNA-seq data from fresh tissue and 

from a personal communication with the authors, it is unclear whether it could be 

applied to array data generated from FFPE tissue. As a way of evaluating this method, 

I applied CIBERSORT to the array data in the LMC study since it is one of the most well-

developed tool with a dedicated online-accessible software and it is the only one (or 

one of a few) to provide a metric (p-value) indicating success or failure to infer immune 

cell presence. 

1.6.3.2.2 Bindea et al. – the “Immunome”� 

Bindea et al. (2013) [108] used six publicly available gene expression datasets (from 

Gene Expression Omnibus and Array Express databases) derived from purified immune 

cell subsets to establish a reference - the Immunome compendium. In their study, the 

gene expression profiles from immune cells, the normal mucosa and colon cancer cell 

lines, blood and lymph vessels were tested using pairwise correlation to identify a 

unique signature of each of them. For example, if the genes expressed by blood 

vessels/normal mucosa correlated with some of the immune genes, then these 

immune genes were removed from the final gene list. The compendium contained 577 
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genes characterising 24 cell types and the control tissues (colon cancer cell lines, 

normal mucosae, blood and lymph vessels).� 

Each cell subtype has its genes assigned, but some of the genes can be expressed by 

multiple cell subtypes. Bindea and colleagues validated the method using multiple 

techniques and experimental approaches (including DNA microarrays (Affymetrix), 

quantitative polymerase chain reaction (qPCR), FACS, immunohistochemistry, and 

mouse models) and strong correlations were found with all these approaches. The 

inferred presence of cytotoxic, T cell, B cell and other cell subsets in the colon cancer 

tissue was strongly associated with improved patient survival [108]. We have applied 

this method to the FFPE melanomas of the LMC and found similar results [76]. 

However, since its first publication, the Immunome compendium was extended to 

more cell subtypes and was based upon more genes from extensive searches of a much 

larger number of sources [1]. In this thesis, I used this updated version (see below) and 

made some further developments (see Methods section) inspired from the earlier work 

conducted in our group based on the Bindea et al.’s signature [76].  

1.6.3.2.3 Updated Immunome by Angelova et al. 

The new Immunome by Angelova et al. [1] identifying uniquely expressed genes by 

immune cell subtypes, was an extension of Bindea et al.’s strategy [108], with however 

some different starting assumptions. Principally, the newer approach comprises 36 

publicly available datasets from Gene Expression Omnibus and Array Express from 

purified immune cell from blood in various diseases. It was a significant increase in data 

sets used compared to Bindea et al. study, which used only 6 sources. All datasets 

utilised by Bindea et al.’s Immunome were also included in Angelova et al.’s. Among 

the genes described to be unique per immune cell score by both methods, only 112 

genes are common to the 2 methods (Figure 1.6). Presumably, the absence of a large 

number of genes of the initial Immunome compendium (Bindea et al.’s) in the updated 

version (Angelova et al.’s) means that by those genes were no longer considered cell-

specific using more extensive data sources.  

The immune cell types proposed by each described method are shown in the Table 1.1: 

Immune cell types proposed by all the three methods and their existence in each of 

them.  
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Figure 1.6: Intersection of genes from Angelova et al. and Bindea et al.’s Immunome 

compendiums 

 
 

Table 1.1: Immune cell types proposed by all the three methods and their existence 

in each of them 

Immune cell type CIBERSORT Bindea Angelova 
activated B cells   x 
activated CD4   x 
activated CD8   x 
activated dendritic cells x x  
activated mast cells x   
B cell  x  
B cells memory x  x 
B cells naïve x   
central memory CD4   x 
central memory CD8   x 
cytotoxic cells  x  
dendritic cells  x x 
effector memory CD4   x 
effector memory CD8   x 
Eosinophils x x x 
immature B cells   x 
immature dendritic cells  x x 
M0 macrophages x   
M1 macrophages x   
M2 macrophages x   
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Immune cell type CIBERSORT Bindea Angelova 
Macrophages  x x 
mast cells  x x 
memory dendritic cells   x 
Monocytes x  x 
myeloid derived suppressor cells   x 
natural killer cells CD56bright  x x 
natural killer cells CD56dim  x x 
natural killer cells  x x 
natural killer T   x 
Neutrophils x x x 
NK cells activated x   
NK cells resting x   
plasma cells x   
plasmacytoid dendritic cells  x x 
resting dendritic cells x   
resting mast cells x   
T cells x  x 
T cells CD4 memory activated x   
T cells CD4 memory resting x   
T cells CD4 naïve x   
T cells CD8 x x x 
T cells follicular helper x x x 
T cells gamma delta x x x 
T central memory cells  x  
T effector memory cells  x  
T helper 1  x x 
T helper 17 cells  x x 
T helper 2  x x 
T helper cells  x  
T regulatory cells x x x 

 

 
CIBERSORT and Angelova et al.’s Immunome provide valuable and promising 

methodology to characterise immune cells within the tumours. All the methods deliver 

some distinct and common immune cell types to be characterised. As shown in the 

Table 1.1 all of the methods proposed very specific immune cell types, which might be 

actually difficult to define their functional differences. Nevertheless, I explored utility 
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of two of them applying them to primary melanoma FFPE-derived gene expressions. 

More technical details of these methods and how I applied them are described in the 

next chapters.
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Chapter 2 

Materials and Methods 

This chapter summaries the Leeds Melanoma Cohort from which the data used in my 

work was generated. Moreover, additional datasets, and standard statistical tests used 

in majority of the chapters of the thesis are described. The more advanced statistical 

and bioinformatic methods applied to only one chapter will be described in full details 

in the relevant chapter. 

2.1 The Leeds Melanoma Cohort (LMC) 

A cohort of 2184 primary cutaneous melanoma patients was recruited in the period 

2000 to 2012 (67% recruitment rate) [114] by Julia Newton-Bishop and research staff. 

The participants were predominantly recruited from a geographically defined area 

(Yorkshire up to the river Tyne) with some additional recruitment from specialist 

centres in order to recruit a larger number of people with rare tumours e.g. acral 

tumours, and people having sentinel node biopsies.  

Lifestyle data, co-morbidities and drug exposures including supplements were 

collected from participants by questionnaire. Clinical data were extracted from medical 

records and in order to derive melanoma specific survival (MSS), follow up was 

conducted using the national cancer registry, medical records in primary, and 

secondary care and by annual questionnaires completed by consenting participants. 

The median follow-up for the cohort at the time of the analysis of the data presented 

in this thesis was 7.5 years. The LMC was reviewed by the North East – York Research 

ethics committee (Jarrow, Tyne and Wear, UK) and received ethical approval - MREC 

1/3/57 and PIAG 3-09(d)/2003. The histological features of the tumours were reported 

by clinical dermatopathologists. Dr Sally O’Shea from our research group (former 

clinical PhD student) also carried out a single observer review of as many of the slides 

from tumours used to generate the transcriptomes as were available. Dr O’Shea 

derived a number of measures of the tumour and its environment which were found 

to be reproducible in inter and intra-observer agreement studies.  
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2.1.1 Sampling of the FFPE primary tumour blocks 

Sampling of the FFPE primary tumour blocks was performed predominantly by Dr 

Jonathan Laye. 5µm primary tumour sections were cut using a microtome and 

mounted onto Superfrost™ glass slides (Solmedia, Romford, UK). The sections were 

dried overnight and then hot-plated for a minimum of 20min at 70°C and subsequently 

following a standard protocol Haematoxylin and Eosin (H&E) staining was performed.  

All the resulting H&E-stained sections of primary tumours were reviewed using light 

microscopy by Prof. Julia Newton-Bishop and Dr Jonathan Laye. Using a fine-tipped 

marker pen, the area of the slide corresponding to the invasive tumour was marked for 

sampling, consistently ensuring that the region selected had the least stromal content 

and the least infiltrating lymphocytes. The intent was to ensure comparability between 

tumours. Necrotic areas were avoided. The marked slide was then used to orientate 

the tumour block so that it could be sampled using a 0.6mm diameter microarray 

needle (Beecher Instruments Inc, USA) taking a core horizontally. Depending upon the 

size of the primary tumour, sampling was performed to yield up to 2 tissue cores. 

Although the 2184 participants were ascertained from the population rather than from 

hospital (and therefore potentially biased) series, the protocol demanded that blocks 

should not be destroyed by sampling less the patient need their sample for clinical 

testing later. Hence we did not sample approximately half the blocks. Unfortunately, 

two batches of arrays were lost attributed to technical difficulties related to 

unexpected loss of reagent function over time. The requirement to avoid block 

destruction for living participants did mean that there was some bias to sampling of 

thicker tumours. The mean thickness for those sampled was 3.0mm compared with 

2.2mm for the whole cohort. 

The DNA and mRNA were isolated from the cores by Dr Jonathan Laye and Dr Ross 

Jewell, preceded with tissue deparaffinisation and digestion. DNA was extracted using 

Qiagen AllPrep® DNA/RNA FFPE kit and Qiagen QiAamp® FFPE tissue kit. RNA was 

isolated using High Pure paraffin RNA kit (Roche Diagnostics Ltd, Burges Hill, UK). All 

the nucleic acid extraction procedures were performed as recommended in 

manufacturers’ protocols. The extracted DNA was used for generation of Copy Number 

Variation data and mutational (NRAS, BRAF) data, while mRNA was used for the 

generation of gene expression data. 
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2.1.2 Measurement of the gene expression 

The mRNA was extracted from 820 tumour cores (703 unique patients and 117 

duplicates). Gene expression was assayed by an external service provider ServiceXS 

(Leiden, Netherlands) using the Whole-Genome DASL (cDNA-mediated Annealing, 

Selection, extension and Ligation) HT12v4 assay (Illumina®) in 3 batches. This array was 

generated for use on formalin fixed tissue in that the probes were short: about 50 bases 

in length in order to enable profiling of partially degraded RNA, which resulted due to 

FFPE archival methods. The generated raw expression data were normalised by Dr 

Jérémie Nsengimana. Firstly, the data were background-corrected and quantile-

normalised in R using the package Lumi [115]. Singular value decomposition (SVD) was 

applied in package Swamp [116] in R in order to evaluate the association between the 

top principal components and technical variables: batch, chip, age of FFPE block, and 

RNA concentration. The variables that were found to be associated with these top 

components were adjusted out, and SVD was applied again with and without data 

permutation to evaluate the remaining “biological” variability in the data. In order to 

detect outliers normalized full intensity plots were examined. Among sample 

duplicates, in the final data set the sample with the highest number of detected genes 

was retained. Generally, the median and interquartile range of genes that were 

detected per sample were 14,784 (P<0.05, range 14,153– 15,304), which was 

consistent with other studies, which used DASL arrays in melanoma 

[117][118][119][120]. Some of the DASL probes were designed to hit: 

• all splice isoforms of a gene 

• or specific splice isoform of a gene, for which multiple isoforms are known to exist 

• or one known single splice isoform  

• or multiple isoforms -  more than one and fewer than all of the splice isoforms of 

a gene, 

however, the majority of probes were the ones targeting all splice isoforms. For some 

of the genes more than one probe was designed and for most of my analyses I 

examined all the probes, then chose the probes with the highest proportion detected 

(throughout the samples at the P<0.05), and eventually annotated them to the gene 

names. However, in the application of one of the immune cell scoring methods 
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(Angelova et al.) to the LMC transcriptome I filtered out the probes that were designed 

to hit only one specific isoform of a gene. I did not apply this filtration to another 

immune cell scoring method - CIBERSORT because this idea emerged long after I 

decided to drop the latter method.  

The LMC gene expression data are accessible from the European Genome-phenome 

Archive (EGA) - accession number: EGAS00001002922. These data were the principal 

data used in this thesis.  

2.1.3 Mutation data  

 NRAS and BRAF mutations from pyrosequencing 

The DNA was used to carry out the NRAS and BRAF mutation screening using 

pyrosequencing [121] by Dr Philip Chambers, Genomics facility, Leeds. The 

pyrosequencing primers were designed to detect BRAF codon 600, NRAS codon 61, and 

NRAS codons 12 &13. These analyses were performed prior to my arrival in Leeds. 

During my PhD we collaborated with the David Adams’ laboratory at the Wellcome 

Sanger Institute to mutation screen a large number of genes see below. 

 Gene panel mutation screen from next generation sequencing (NGS) 

The mutation data were generated at the Wellcome Sanger Institute in Cambridge 

using DNA extracted from the tumours in Leeds. The data were pre-processed by Sofia 

Chen (Marie Skłodowska-Curie PhD student), supervised by David Adams. Briefly, from 

the LMC 521 samples were sequenced on Illumina HiSeq4000. Mutation data were only 

available from 319 of the 703 tumours from which transcriptomic data were generated 

(Figure 2.1) as the 0.6mm cores derived DNA had been exhausted in the process of 

making libraries for copy number data generation in Leeds. 

To detect mutations Sofia used targeted capture custom design, with Agilent 

SureSelectXT baits diluted 1/24 

(https://www.agilent.com/cs/library/catalogs/public/5991-7099EN.PDF).   

The human reference genome assembly GRCh37d5 was used for mapping the reads. 

This step performed using BWA mem and the duplicates were marked using Picard 

MarkDuplicates. For SNPs the calling of mutations was completed using CaVEman 
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v.1.11.2 and the variant annotation was accomplished by using VAGrENT. In order to 

annotate functional consequences of the indels Pindel v.2.2.2 in together with VEP was 

used to. Variants with the low quality were excluded.  

Moreover, variants which had both minor allele frequency (MAF) <0.10 and a coverage 

<30x within the tumour sample were filtered out. The mutational load was provided as 

three variables: mutation count per megabase, exonic mutation per megabase, and 

nonsynonymous mutation per megabase. For my analyses, which were mainly related 

to immune responses I used the mutation count per megabase, which could be 

considered as the most representative of neoantigen load (explained in Chapter 1). The 

mutational load per megabase per sample was obtained by dividing the number of 

mutations per patient by 5.2 (the sequenced regions were 5.2 megabases long). This 

variable, was categorized into tertiles, because these were predictive for melanoma 

specific survival, as initially showed by Sofia Chen’s analyses (private communication). 

2.1.4 Somatic copy number alteration (CNA) data 

Dr Anastasia Filia (former PhD student) generated the whole-genome DNA libraries for 

the Next Generation Sequencing (NGS) using the NEBNext® UltraTM DNA Library Prep 

kit for Illumina® (indexed primers) (New England BioLabs, UK) in Leeds. NGS was run 

on Illumina GAII or HiSeq sequencer. The CNA data from NGS reads were generated by 

Dr Anastasia Filia and Dr Alastair Droop as described in Filia et al. (under revision, 

Scientific Reports, October 2018), however in my thesis the method of the CNA data 

analysis was slightly altered as compared to the previous one and it was carried out by 

my colleague Marie Skłodowska-Curie PhD Student, Joey Mark Santiago Diaz CNA data 

were generated from 303 FFPE tumours, including 276 for which the transcriptomic 

data were also available (Figure 2.1). From the sequenced tumour DNA samples, the 

copy number profiles were estimated from the next generation sequencing (NGS) 

output.  
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Figure 2.1: Venn diagrams representing the numbers of the samples available for 

transcriptomic and CNA or mutational data 

2.1.5 Immunohistochemistry 

Immunohistochemical staining was performed by Dr Jonathan Laye and myself using 

IntelliPath FLX detection reagents (MenaPath, A. Menarini Diagnostics, UK) according 

to manufacturer’s protocol.  

The tissue blocks for immunohistochemistry were chosen based on the availability of 

gene expression data from the tumour and the identification of blocks that could be 

resampled or were no longer needed for clinical purposes due to the patients’ death 

due to any cause. This was therefore a small sample biased in terms of thickness and 

associated mortality given the proportion of samples used from patients who had died 

of melanoma. The samples were the only ones available however and as a reasonable 

proportion of people had died of causes other than melanoma were judged acceptable. 

5µm tissue sections were cut and mounted on Superfrost Plus™ slides (Solmedia, 

Romford, UK), dried overnight and hot plated for 1hr at 70°C. The slides were immersed 

into an antigen retrieval solution (MenaPath Access Revelation, pH 6.4) and placed into 
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a pressure cooker to perform antigen retrieval by heat: the tissue sections were heated 

to 125°C sustained for 2min followed by cooling to 90°C which was then maintained 

for a further 10 seconds. The slides were then washed in warm MenaPath Wash Buffer 

to remove antigen retrieval solution and any remaining wax, and then in distilled water. 

The area of the tumours was circumscribed using a wax pen and the slides returned to 

MenaPath Wash Buffer. Each tissue section was treated with 100µl MenaPath 

Peroxidase Blocking agent for 20min to quench endogenous peroxidase activity within 

the tissue. After briefly rinsing in MenaPath Wash Buffer, the tissue sections were 

treated with 100µl MenaPath Background Blocking Agent with Casein for 20min to limit 

non-specific antibody binding. After further rinsing in MenaPath Wash Buffer, each 

tissue section was incubated with 100µl primary antibody, diluted in Zymed antibody 

diluent (Thermo Fisher Scientific, UK) in accordance with previously optimised 

conditions, and incubated at room temperature for 1h. The slides were then rinsed 3 

times for 3min each in MenaPath Wash Buffer before the addition of 100µl MenaPath 

HRP-polymer to each tissue section and incubated for 30min at room temperature. The 

slides were again washed 3 times for 3min in MenaPath Wash Buffer and then treated 

with MenaPath Purple Chromogen for 10min. Slides were rinsed for 1min in tap water 

and then underwent counterstaining for 30sec in Mayer’s Haematoxylin, followed by 

1min rinse in running tap water. The tissue sections were ‘blued in Scott’s tap water 

for 2 min, rinsed again in running tap water for 1 min and underwent dehydration in in 

a series of 100% ethanol washes (4 washes of 3 min each) and ‘cleared’ in xylene (3 

washes of 3 min each). Coverslips (Solmedia, Romford, UK) were applied onto the 

tissue sections using DPX mounting medium (Solmedia, Romford, UK). 

A purple chromogen was chosen instead of brown in order to avoid confusion with 

melanin. However, we did feel ultimately that the disadvantage of this colour of 

chromogen is that occasionally if the staining is not strong enough it might be difficult 

to assess the positive nuclear staining which would be purple from unstained blue 

ones. 

2.2 Data not originating from LMC 

In addition to various histological and molecular data included in the LMC, in this thesis 

I have also analysed data that are independent to that cohort. Three such datasets 



35 
 

 

were used: The Cancer Genome Atlas (TCGA) metastatic melanoma [46], established 

melanoma cell line cultured in house and patient derived cell lines cultured at the 

University of Zürich. 

2.2.1 The Cancer Genome Atlas - TCGA 

I downloaded the gene expression (measured by RNAseq) and survival data from The 

Cancer Genome Atlas (TCGA) metastatic melanoma, produced using fresh frozen 

tissues. (http://www.cbioportal.org/data_sets.jsp, downloaded in 2016). I have chosen 

to analyse only the metastatic tumours, due to problematic survival data for primary 

tumour. Basically Dr Jérémie Nsengimana observed that these tumours had much 

worse prognosis than the metastatic ones, which was counterintuitive. In general, this 

study used tumours that were highly selected/biased, at very advanced stages and with 

limited clinical metadata. 

Nevertheless, I used in total 339 metastatic samples, representing 80% of the total 

TCGA dataset at that time. The participants in this study were patients from different 

locations, hence it was not data from a population-based cohort like LMC. The overall 

survival (OS) was used in survival analyses performed in this dataset as there was no 

record of the cause of death. The follow up was as follows: Median=353 days, Min=12 

days, Max=3798 days. 

2.2.2 Established melanoma cell lines 

Melanoma cell lines SkMEL28 (ATCC) and MeWo (courtesy of Professor Alan Melcher, 

formerly at Leeds, storing samples in the Leeds CRUK cell line bank) were cultured in 

our lab and their gene expression produced and pre-processed by Dr Anastasia Filia 

(former PhD student) and Dr Alastair Droop. I used these data to identify genes in the 

Angelova et al.’s Immunome which are expressed by melanoma cells and could 

therefore not be considered specific to immune cells. The total RNA was extracted 

following the Qiagen RNA mini kit (QIAGEN). The measurement of the gene expression 

was performed using the Affymetrix GeneChip® Human Genome U133 plus 2.0 Array 

by the service provider at the Patterson Institute, University of Manchester. The data 

pre-processing and quality control was performed by Alastair Droop using Robust 
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Multi-chip analysis (RMA) [122] and affyPLM [123] packages in R available in 

Bioconductor (https://www.bioconductor.org). 

2.2.3 Patient derived melanoma cell lines from Zurich University 

These data were produced and analysed by a colleague Marie-Curie PhD student 

Sabrina Hogan based at the University of Zürich, under the supervision of Prof. Mitchell 

P. Levesque. 

Primary melanoma cells were isolated from clinical samples at the University of Zurich 

as described previously [124]. Melanoma cell cultures were obtained from remaining 

tumour material of patient biopsies after sampling for histological review, using the 

selective adherence method [124]. The protocol used to design these patient-derived 

cultures was adapted to discourage fibroblast cell growth and was reported to be 

successful in 70% of samples submitted to the live cell biobank. 

Total RNA from melanoma cell cultures (N=103) was extracted using the Qiagen RNA 

mini kit (QIAGEN) according to the manufacturer’s protocol. RNA capture was 

performed with the TruSeq RNA Library Prep Kit v2 (Illumina) and the library was 

sequenced on a HiSeq4000. RNA counts were quantified from single-end reads using 

STAR aligner [125].  

2.3 Statistical methods 

All the statistical methods were performed in STATA (SE) v14.1. Some of the 

manipulations of the data (e.g. transposition) were implemented in R v3.3.2 and 

RStudio v1.0.136.  

2.3.1 Variables used in statistical analyses of the LMC samples 

 Categorical variables 

• AJCC stage was used as described in the Introduction and was recorded in 3 

levels: stage I, II, and III, N=695 

• Ulceration was recorded as a binary variable: “yes” vs “no”, N=703 

• TILs as described in the Introduction: absent, brisk and non-brisk, measured by 

clinical histopathologists (N=553). The single observer Dr Sally O’Shea, (N=601) 

reported in the same way, absent, brisk and non-brisk, as described in the 
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introduction (Figure 1). Both of these measures were used separately as a cross-

validation between the measures from the clinic and single observer. Dr O’Shea 

also generated the measures of lymphocytes infiltrate around the cored region, 

however for smaller number of samples, hence I excluded them in my analyses 

• Site of melanoma was used as either binary (“Limbs” vs “Rest”) or with 4 levels: 

“Limbs” (N=299), “Head and neck” (N=80), “Trunk” (N=233) and “Other” (N=90), 

in total N=702. “Other” represent rare, non-sun exposed tumours such as: 

o ear, nose, thorax (N=5) 

o acral (N=19) 

o anal (N=5) 

o cervix (N=1) 

o foot (N=18) 

o hand (N=5) 

o nodal with no known primary (N=3) 

o penis (N=3) 

o perineal (N=1) 

o subungual (N=14)  

o vaginal (N=3)    

o vulval (N=13)    

• Sex was used as a binary variable (females, males), N=703 

• Smoking was analysed as categorical variable as “ever” (N=324) vs “never” 

smokers (N=334); Total N=658 and “smokers” (N=543) vs “still smokers” (N=85) 

• Vascular invasion assessed by the presence of melanoma cells within blood 

vessels recorded as “yes” vs “no”, by clinical histopathologists reporting clinical 

samples N=627 

• NRAS/BRAF Mutation data: NRAS mutant vs BRAF mutant vs “double wild type”, 

N=575 

• Mutational load: mutation count per Mega Base (MB) was categorised into 

tertiles, N=319 
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 Continuous variables 

• Breslow thickness was measured as described in the Introduction: 

median=2.3mm, min=0.33mm, max=20mm, N=692 

• Mitotic rate was quantified as mitotic count within tumour per mm2: median=3, 

min=0, max=83, N=596 

• Age at diagnosis – age of the patient was recorded at diagnosis of primary 

melanoma: median=58.3, min=18.29, max=81.25, N=703 

• Duration of smoking was recorded as a number of years smoked by participants: 

median=0, min=0, max=60.9, N=654. More than half of the patients had never 

smoked (see previous section) 

• Vitamin D levels (nmol/L) in the blood were measured in the NHS biochemistry 

laboratory in Leeds, in a sample taken at recruitment (add average time from 

diagnosis to recruitment). Concentrations of 25-hydroxyvitamin D2 and D3 

(nmol/L) were measured in 100 µL of cryopreserved serum by liquid 

chromatography tandem mass spectrometry. The levels were adjusted for 

season, by rescaling every patient’s record to winter: median=39.5nmol/L, 

min=0nmol/L, max=191.2nmol/L, N=549. This adjustment was based upon the 

observation that levels are on average 20nmol/L higher in summer months than 

at the end of winter 

• Melanoma specific survival (MSS) was used in survival analyses in LMC: 

median=6.3years, min=0.45years, max=14.3years, N=703 

2.3.2 Statistical tests  

Parametric and non-parametric tests were used depending on the distribution of a 

tested variable. 

I used the Student t-test (parametric test) or Mann Whitney U (non-parametric test) 

for comparison of two groups. For more than two groups comparisons, I used the 

Analysis of variance ANOVA (parametric test) or the Kruskal-Wallis (non-parametric) 

test. For multiple pairwise comparisons, after the above tests, I used a post hoc Dunn’s 

test.  
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I ran correlation analyses using the Pearson (parametric test) or Spearman’s rank 

correlation (non-parametric) coefficients. For multiple testing, I utilised Bonferroni 

correction and Benjamini-Hochberg tests, depending on the required stringency and 

the research area common practice. 

 Survival analyses 

Survival analyses were carried out using Cox’s proportional hazards regression 

(univariable and multivariable). Survival data were visualised using the Kaplan Meier 

approach. 

The survival data consist of one observation per case with the data being either of the 

form: (i) case dies at time ! since diagnosis (termed "failure") or (ii) case still alive at 

time (!) after diagnosis (censored observation).  

In the analyses presented here, the failure event will be defined in each analysis but 

will usually reflect "death from melanoma". Cases who have died from causes at time 

! after diagnosis other than melanoma are censored at that time. 

The Cox proportional hazards model assumes that the probability density (probability 

per unit time) for "dying" at time	! (given that an individual survived until !) is equal to 

a hazard function, ℎ(!), times a function of predictor variables. For convenience, the 

effect of the predictor variables is modelled as exp()*+* + )-+- + ⋯ + )/+/) where 

(+*, +-,… +/) are predictor variables and ()*, )-, …)/) are the weights associated with 

the corresponding predictor variable which are typically estimated during analysis by 

maximum likelihood; the estimates of )*, )- etc. are log "hazard ratios" (HRs). The 

insight provided by Sir David Cox was that using the likelihood formulation and this 

precise model, the likelihood is independent of the unknown baseline hazard ℎ2(!). HR 

estimated to be greater than 1 implies decreased survival (increased hazard) while HR 

< 1 implies improved survival. The significance of the Cox proportional hazards was 

estimated by the appropriate likelihood ratio tests with the statistical significance 

being assessed with the chi-square test. 
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Chapter 3 

In silico characterisation of tumour immune microenvironment 

3.1 Aims  

• To evaluate, develop, and apply bioinformatic approaches to characterisation of 

immune cell subtypes infiltrating primary melanomas. 

• To cluster primary melanoma transcriptomes based upon inferred immune cell 

scores. 

• To identify immunologically distinct and prognostic primary melanoma 

subgroups. 

In this chapter, I applied two of the three bioinformatic methods of immune cell 

quantification in silico described in the Introduction to the LMC transcriptomic dataset: 

CIBERSORT [113] and Angelova et al.’s Immunome [1]. As explained earlier, the 

Angelova et al.’s Immunome is an extension of the system described by Bindea et al. 

[108] and used by Dr Jérémie Nsengimana in our research group previously [76]. The 

scores generated based on Bindea et al.’s Immunome were used for some selected 

comparisons in this thesis. 

3.2 Methods 

3.2.1 Application of the CIBERSORT method to the LMC transcriptome 

CIBERSORT - a computer algorithm of gene expression deconvolution to infer immune 

cell infiltrates [113] was developed using Affymetrix data and has not yet been 

evaluated in other settings. The first aim of this chapter was to apply it to FFPE tumour 

array-based transcriptomes (DASL HT12.4). The algorithm can be used interactively 

online or as a downloadable R package. As described in Chapter 1, it is based on linear 

support vector regression (SVR) machine learning to deconvolve the cell mixture in 

gene expression with data resampling to derive an empirical p-value showing the 

success or failure of the algorithm when applied to each sample. As a default, 

CIBERSORT uses as reference the LM22, a transcriptomic signature of 22 purified 

immune cells (547 genes) and it estimates the relative proportion of each of those cells, 
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with the sum of those proportions adding up to 1. The method failure may occur for 

example if there are no immune cell infiltrates at all in the tumour.  

The principal equation that CIBERSORT algorithm utilises is: 

3 = 5	6	7,	where: 

3 = mRNA mixture (measured gene expression in the tumour) 

5	= vector of the unknown (relative) fractions of each cell type in the tumour 

7 = GEP (gene expression profile) matrix of the 22 pure cells on the 547 reference 

genes, the “LM22” signature.  

Note that CIBERSORT allows the user to define their own signature of cells to 

investigate (which can be fewer or more than 22 and may include non-immune cells). 

It is assumed that the size of matrix 7 is much smaller than the size of matrix 3	(i.e. 

many more genes measured overall than the number of genes characterising the cells 

of the signature). 

I applied the online version of this method (http://cibersort.stanford.edu/) to the LMC 

dataset, with the default LM22 signature. The deconvolution p-value was produced 

using Monte Carlo sampling, with 1000 permutations as recommended. For each 

tumour analysed, the tested null hypothesis was that there were no immune infiltrates 

of the LM22 signature (see LM22 signature components in the Introduction, Table 1). 

The algorithm calculates the Pearson correlation between the input gene expression 

matrix (3) and its expectation under the null hypothesis using the inferred cell 

proportions (5	6	7). A significant p-value means that the inferred cell proportions are 

unlikely to be random observations, while a non-significant p-value means that the 

inferred proportions may well represent noise.  

After preliminary checks, I found that the LM22 reference signature had data on a 

different scale to our dataset, due to different approaches to pre-processing and 

transformation. For LM22 the maximum value was 42,851.29 and the minimum 

461.191. The LMC data were on log2 scale with a maximum of 17. Although a simple 

power transformation of the LMC dataset would have made the two scales 

comparable, they would not have been entirely similar (the new maximum value would 

have been 217=131072, 3 times larger than in LM22). 
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To have completely similar scales prior to running CIBERSORT, I collaborated with Dr 

Victor Boudara (Mathematics department, University of Leeds), who devised the 

formula described below and I applied it to the LMC dataset. In essence, I applied two 

data transformations: 

a) The first was to transform one interval (LMC data scale) [y1 ; y2] into a second interval 

(LM22 scale) [x1 ; x2] solving the following system of equations for the constants (a, k): 

1) 

 8	9(:*)
; = +*	

9(:-); = +-
 

Dividing +* by +- gives: 

2) 

<=
<>
= (?=)

@

(?>)@
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logE+*+-

F

log E:*:-
F

 

After obtaining the value of a, to obtain 9 I used: 

3) 

9 =
+*

(:*);
 

After obtaining both constants a and k any value, y, contained in the LMC dataset 

interval [y1 ; y2] can be transformed into, y’, contained in the LM22 signature interval 

[x1 ; x2], by using: 

4) 

:′ = 9:;. 

b) The second data transformation was scaling both the LMC gene expressions and the 

LM22 gene expressions, using standard normal transformation, setting the mean to 0 

and the standard deviation 1. These analyses were conducted in R.   
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3.2.2 Application of Angelova et al.’s Immunome 

The Bindea et al.’s Immunome [108] and its later version by Angelova et al.  [1] were 

developed by using purified immune cells and different tissue types as controls, 

including colorectal cancer cells, because the authors are colon cancer researchers. 

Before applying this approach to melanoma FFPE samples, I performed gene and cell 

filtration to adapt the compendium to the melanoma context. The reason for doing this 

was to ensure as much as was possible that the measured immune cell signals 

originated effectively from the immune cells, not from melanoma cells or 

melanocytes[76]. I applied three filters to the Angelova et al.’ Immunome. 

Firstly, I removed the genes that were expressed among the top 25% across the whole 

genome in a melanocyte cell line (GSE4570) and in our cultured melanoma cell lines, 

MEWO and SK-MEL28 (cells cultured and RNA extracted by Dr Anastasia Filia, former 

PhD student in the lab). SK-MEL28 gene expression was measured in 8 replicates while 

those from MEWO were generated in 7 replicates. The replicates were averaged within 

each dataset and genes were ranked based on this average expression. We considered 

genes that ranked among the top 25% most expressed in each dataset as evidence of 

their substantial expression by melanoma cells with therefore little support that they 

are immune cell specific. Our hypothesis here is that we do not expect immune cells in 

melanoma cell lines. These genes were then removed from the Angelova et al.’s 

Immunome.  

Secondly, I calculated the proportion of genes removed by this filtering step per 

immune cell type and eliminated the whole cell type altogether if less than 10% of its 

genes remained. The exception to this was only if I could find concordant evidence 

from published literature that the reduced number of genes was indeed characteristic 

of the immune cells in question.  

Thirdly, for the remaining immune cells I tested reciprocal correlations between genes 

assigned to each cell type, as the Immunome compendium approach was based on 

genes co-ordinately expressed within a particular cell subtype, i.e. a positive 

correlation between those genes was expected. I reasoned that, for each immune cell 

subtype, gene expression correlations that were observed in the blood might differ 

from what we detect in the tumours and if some genes were negatively correlated with 
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the majority of others, then the evidence of their specificity to that cell type is 

weakened and they should be removed. In the majority of cell scores, most of genes 

were co-expressed as expected but in a few cases there were negative correlations and 

I removed those genes negatively correlating with the majority. The negative or very 

weak correlations could also be a reflection of technical issues with probes, which 

failed the detection of the particular genes, particularly in mRNA degraded by the 

tissue fixation in formalin. This problem could be partially addressed by testing these 

correlations using a dataset generated from fresh frozen tissue with less degraded 

mRNA, such as TCGA. The correlation plots between all genes within each immune cell 

type were constructed in R using “corrplot” package [126][127]. This analysis was 

conducted in both the LMC and the TCGA dataset (for the replication). 

After applying all above described filters, I devised a score for each immune cell type, 

calculated as the mean of expression values of all genes attributed to that cell, after z-

score normalization of the log2 transformed gene expression data as described before 

[76]. The scripts to create the immune cell scores were written in Bash (Unix shell) with 

the help from Dr Victor Boudara and then applied in STATA. The same set of genes per 

immune cell type was applied to LMC and TCGA. 

3.2.3 Consensus clustering of LMC tumours based on the immune cell scores 

Clustering is a grouping/subdivision of the data (objects) based on their similarities and 

it can be performed on genes- or samples basis. It assigns the most similar objects to 

the same group and the most dissimilar ones to distinct groups. Cluster analysis helps 

to find functional structures within large datasets on a comprehensive level, therefore 

it became almost a standard method for simultaneously analysing expressions of 

multiple genes in large experiments [128]. The genomics research field has expanded 

regarding the development of various classes/algorithms of clustering. For example, 

one very commonly clustering type is hierarchical clustering, which produces a 

dendrogram (graphical representation) of similarities between samples and/or genes 

for example with respect to gene expression values [129]. The dendrogram can be cut 

an any level to set the final number of clusters after a visual inspection.  

The other widely used algorithm is K-means, which is based on partitioning the data 

and dividing it into a predetermined number of clusters [130]. It has been shown that 
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K-means usually outperforms hierarchical clustering in finding the optimal number of 

clusters [131][132][133]. The most frequently used similarity measures are Euclidean 

or Pearson correlation distances and both perform reasonably well for clustering 

methods [131][132]. 

Although clustering provides good solutions to subdivide the data, it faces some 

difficulties in the identification of non-overlapping groups/clusters and their final 

number. In fact, visual inspection of dendrograms in HC and predetermining the 

number of clusters in K-Means can be very subjective. It also encounters the problem 

of overfitting, when the sample size is relatively small in comparison to the number of 

analysed genes. To overcome this problem, consensus clustering was introduced, 

which is a resampling based method of identifying sample classes in microarray data 

[134]. Subsets of data are resampled multiple times (for example N=1000) from the 

original dataset and a user-selected clustering algorithm is applied to each subset, 

assuming a growing number of clusters from 2 to a user-defined maximum K. At each 

analysis iteration, each sample is placed in one of the clusters and a consensus score is 

produced, reflecting the sample belonging to each cluster. In an ideal situation a 

sample belongs to one and only one cluster. All analysis iterations should effectively 

classify that sample in its cluster, i.e. no iteration should classify it in other clusters. In 

other words, the sample is put in its cluster with 100% consensus and in other clusters 

with 0% consensus. In reality however, samples will have varying levels of consensus 

scores in each cluster, but after consensus clustering each sample is finally assigned to 

its most likely cluster (one with the highest consensus score). A consensus score is the 

proportion of iterations classifying a sample in a particular cluster and it is stored in a 

H+H matrix, where H is the total number of clusters. 

 A number of metrics are generated in consensus clustering to aid the decision on the 

optimal number of clusters: the consensus heatmap, the consensus cumulative density 

function (CDF) and the delta graph of the area under the CDF [134]. The consensus 

heatmap is a results of clustering of the consensus matrix values using hierarchical 

clustering and the dendrogram is cut at the chosen k threshold. The heatmaps are 

symmetrical and their “cleanliness” at each k indicates the stability; the blue colour 

designates high consensus whereas white no consensus (samples are always classified 

in different clusters). CDF(+) for a consensus matrix indicates the proportion of pairs 
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for which consensus score is less than or equal to +	(0 ≤ + ≤ 1) for each k. The optimal 

number of clusters is the CDF curve for k with the highest proportion of “0” and “1”. 

The delta graph of the area under the curve is the change in the area under the CDF 

when the number of clusters increases. Using this graph the optimal number of clusters 

is when the change of the area under the CDF is the smallest when the number of k 

increases. 

I have used the same parameters for consensus clustering (listed below), as proposed 

previously in consensus cluster analysis [134] within ConsensusClusterPlus [135] 

package in R to generate tumour subgroups. I decided to proceed with the same 

parameters, because, it was shown that they result in obtaining the most stable 

clusters using the gene expression data.  I chose K-means as an algorithm for clustering 

with max K=12, Euclidean distance metric, 5000 repetitions, 80% genes and tumour 

resampling. Consensus heatmap, CDF and delta CDF plots were used to define the 

optimal number of clusters.  

After sample classification, I tested the association between the obtained clusters and 

melanoma specific survival using Cox regression and likelihood ratio tests. The immune 

cell scores were plotted on a heatmap alongside the identified clusters to visualise their 

association (“pheatmap” package in R). 

 Comparison of newly obtained immune signature with existing melanoma 

signatures 

We previously used consensus clustering in our group to identify 6 consensus 

immunome clusters (CICs) in the 703 LMC tumours based on selected immune genes 

[76]. For the current analysis, I chose to apply a dimensionality reduction to the genes 

by using them to calculate scores of 27 immune cells (see previous section) and then 

use these scores in consensus clustering to identify immunologically different tumour 

subtypes. I hypothesised that dimensionality reduction prior to clustering would 

delineate larger and more prognostic subgroups, allowing for enough power for 

downstream analyses aimed at biological characterisation. This hypothesis was driven 

by the observation that among the 6 CICs we reported previously [76], 5 had similar 

profiles of survival (good prognosis, but distinct histological features) and only one was 

different from them (poor prognosis). However, when the CICs prognosis was adjusted 
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for AJCC stage the two low immune CICs had a poor outcome. I tested the agreement 

between the 6 CICs and the new subgroups using Cramer’s V statistic. 

Back in 2015, consensus hierarchical clustering of 1,500 gene expressions with the 

highest variance was used by The Cancer Genome Atlas (TCGA) research network to 

classify 329 melanoma samples. Data were generated using RNA-seq from fresh frozen 

tissue, mostly from metastatic lesions. Three molecular classes were identified: “MITF 

low”, “keratin”, and “immune”, with the most favourable survival for the “immune” 

and least for “keratin” [46]. In this thesis, I will call these classes “TCGA classes”. Dr 

Nsengimana applied the nearest centroid method [136][137] to classify our 703 

primary melanomas into these TCGA classes. I assessed the intersection between these 

TCGA classes and my newly identified clusters using the Cramer’s V statistic.  

3.2.4 Replication of obtained clusters on independent dataset (TCGA) 

In order to assure that the consensus clustering results generated from the LMC were 

not over-fitted, they needed replication on an independent dataset. For this purpose, 

I utilised the TCGA metastatic melanomas, restricting the analysis to the metastatic 

samples (N=339 samples, 80% of the total dataset). These data were downloaded from 

the cBioPortal website (http://www.cbioportal.org). The reason to exclude TCGA 

primaries is because we have discovered in our group (Dr Nsengimana) that their 

survival data records were inaccurate (primary disease was associated with better 

outcome than metastasis). They could therefore bias the survival analysis of clusters.  

To replicate clustering analysis in TCGA, I applied the nearest centroid method [137] in 

R. Firstly, I obtained the centroid vectors by averaging scores of each immune cell 

subtype within each cluster from LMC. Secondly, I scored each immune cell subtype 

for each TCGA sample in the same manner as I had done in the LMC. Thirdly, I 

calculated the Spearman correlation coefficient between each TCGA sample with each 

immune cluster centroid. Finally, the sample was assigned to the immune cluster with 

which it had the highest correlation. Subsequently, I tested the difference in overall 

survival (OS) between the clusters by using the Cox proportional hazard regression.  
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3.2.5 Clinico-histopathological characterisation of the obtained clusters 

I analysed the biological and clinical validity of the clusters by comparing various 

clinico-histopathological variables recorded in our cohort (LMC). I tested the 

differences among the clusters using the chi-square test for categorical variables and 

the Kruskal-Wallis test for continuous variables. The following variables were tested: 

• Age at diagnosis (continuous, years) 

• Site of melanoma (%) (Limbs, Head, Trunk vs Rare, explained in Chapter 2) 

• Sex (% males) 

• BRAF-mutated (%) 

• NRAS-mutated (%) 

• Ulceration status (%) 

• Breslow thickness (continuous, mm) 

• Mitotic rate (continuous, count/mm2) 

• AJCC stage (%) (I vs II vs III) 

• TILs (%) (Brisk, Non-brisk, unclassified, no TILs), defined by dermato-pathologists 

and single observer from the research group, Dr S O’Shea 

• Smoking (% ever smoked) 

• Season-adjusted serum vitamin D at recruitment (continuous, nmol/L) 

• Mutational load (3 groups %). 

3.3 Results 

3.3.1 Application of CIBERSORT to LMC transcriptomes 

Without scale transformation (i.e. using the log2 transformed gene expression in the 

LMC and raw data in the LM22) CIBERSORT was able to successfully deconvolve only 

32% of the samples (226 out of 699) at p£0.005; 37% (259 out of 699) at p£0.05; and 

41% (290 out of 699) at p£0.1. At the time of CIBERSORT exploration only 699 tumour 

data were available. The p-value threshold of 0.005 is the software recommended 

default [138] but I noted that relaxing this threshold did not increase substantially the 

number of deconvolved samples, therefore I remained at the recommend threshold.  

To understand why CIBERSORT produced those results, I assessed the immunological 

characteristics of the samples deconvolved at p£0.005 compared to those not well-
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deconvolved. All the LMC samples have been previously classified in 6 consensus 

immunome clusters (CICs) based on the Bindea et al.’s Immunome [108][76]. The 6 

CICs were in strong agreement with TILs reported by the pathologist: the high and 

intermediate immune clusters (CIC 2, CIC 3 and CIC 5) had highest number of tumours 

with evidence of brisk TILs while the low immune cluster (CIC 4, CIC 1 and CIC 6) 

contained the highest number of tumours with “absent” TILs [76]. Upon applying 

CIBERSORT, the vast majority of successfully deconvolved tumours were in the high 

immune cluster (CIC 2) and to some extent in the intermediate immune clusters (CIC 3 

and CIC 5) (Table 3.1). The majority of poorly deconvolved samples were in the low 

immune clusters (CIC 4, CIC 1 and CIC 6). The contrast was striking between high 

immune CIC2 (136/145 well deconvolved) and all low immune CICs (only 5/70 

deconvolved in CIC1, 3/171 in CIC 4, 5/100 in CIC6) (Table 3.1). 

 

Table 3.1: Matching patients with CIBERSORT deconvolution status at p£0.005 to the 

six “Consensus Immunome Clusters” without scale transformation 

 
Consensus Immunome clusters [76] 

CIC 1 CIC 2 CIC 3 CIC 4 CIC 5 CIC 6 
Number of deconvolved 
samples at P<0.005 

5 136 42 3 28 5 

Number of non-
deconvolved samples 

65 9 41 168 77 95 

 

These results suggested that CIBERSORT can accurately estimate the proportions of 

immune cell subpopulations when there is a relatively high level of infiltration in the 

tumour and is unreliable where there are only a few or no immune cells present in the 

tumour.  

The result from the first scale transformation (equation 4) produced a slight 

improvement in the total number of deconvolved samples increasing the number only 

modestly, by 38 samples at deconvolution threshold p£0.005 and 48 samples at 

deconvolution threshold p£0.05. The second data transformation (standard normal) 

resulted in 30 more samples deconvolved at p£0.005, 149 additional samples were 

deconvolved at 0.05 level (totalling 408/699).  
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3.3.2 Application of Angelova et al.’s Immunome  

Before applying this method, I applied QC filters to select the genes most 

representative of cell subtypes (Figure 3.1). The first gene filter removed 354 genes 

(genes highly expressed in melanoma cell lines), leaving 458 genes in the list of genes 

present on the Illumina HT12.4 DASL array used in this study, representing 30 distinct 

immune cell types (Subset 1, Figure 3.1). The second filter (removal of cell types where 

the first filtration eliminated >90% of the genes) resulted in the elimination of effector 

memory CD4+ T cell, activated CD8+ T cell and activated CD4+ T cell scores (Subset 2, 

Figure 3.1, Appendix A.1.1). The plasmacytoid dendritic cell score (pDCs) however was 

retained despite having only 1 specific gene (IL3RA), because this gene was also unique 

in representing the pDCs in the previous version of the Immunome compendium [108] 

and is well-known to be highly expressed in pDCs [139][140]. The gene reciprocal 

correlations per immune cell were not always positive in the LMC (Figure 3.2, Appendix 

A.1.2) and eventually the gene filtration based on negatively correlating genes in LMC 

resulted in a final number of 376 genes representing 27 immune cell subsets (Subset 

3, Figure 3.1, Appendix A.1.3).  
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Figure 3.1: QC pipeline for devising the list of genes indicative of specific immune cells 

infiltrating melanoma 

 
In the TCGA dataset, the reciprocal correlation matrices demonstrated fewer negative 

correlations for the majority of the immune cells (Figure 3.2, Appendix A.1.2). To 

further compare correlation matrices in LMC and TCGA datasets using Angelova et al. 

[1]  and Bindea et al.’s [108] Immunome lists, I chose a few cells that are often 

described in literature by a single strong marker, such as FOXP3 for Tregs [141] and 

GATA3 for Th2 [142] but assigned several “specific” genes in the Angelova et al.’s 

Immunome. Figure 3.2 illustrates the correlation between tumour expressions of Treg 

genes by the Angelova et al.’s Immunome in LMC and TCGA. Bindea et al.’s Immunome 

used only FOXP3 to represent Tregs. Figure 3 represents the correlation of the genes 

describing Th2 proposed by Bindea et al. and Angelova et al.’s Immunomes in LMC and 

TCGA.  
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As it can be seen from Figure 3.2, FOXP3, a widely accepted marker of Tregs, negatively 

correlated with majority of other Treg genes in the LMC, but not in TCGA. This might 

be an example of the failure of the probe detecting this gene on DASL array. Therefore, 

prior to the calculation of the Treg score I removed FOXP3, and other genes showing a 

negative correlation the majority (MADCAM1, and RYR1). In general, there was a 

reasonable number of positively correlating genes in the LMC, and in most cases these 

correlations were much stronger in TCGA.  

 

Figure 3.2: An example of correlation matrices of genes for regulatory T cells in the 

LMC and TCGA datasets  

 

For the Th2 comparison, similar observations were made regarding the quality of the 

data (Figure 3.3). Overall, the correlations were stronger in the TCGA dataset, for both 

Angelova et al. and Bindea et al.’s Immunomes. When comparing the genes for scores 

generated based on Angelova et al. versus Bindea et al.’s Immunome in LMC and TCGA, 

it could be observed that GATA3 the marker for the Th2 cell type was negatively 

correlated with majority of the genes in the Bindea et al.’s Immunome both in LMC and 

TCGA, however it was not the case in the Angelova et al.’s Immunome. I removed the 

following genes by the correlation filtration from the Th2 gene specific list: RMBS3, 

HTR2B, ASB2, DNAJC12, and TMPRSS3. 
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Figure 3.3: An example of correlation matrices of genes for Th2 cells in the LMC and 

TCGA imputed by Angelova et al. and Bindea et al.’s Immunomes  

 

After these QC steps, I generated a single score for each immune cell subtype by 

combining tumour expression values for the remaining genes (see Methods). Then I 

tested the association between each immune cell score with melanoma specific 

survival (MSS) (univariable analysis) and the results revealed that in the great majority 

the immune cell scores (17 out of 27 in the LMC) were associated with improved 

survival after Bonferroni correction for multiple testing (P<0.002) and these 

observations were also replicated in TCGA (Table 3.2).  
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Table 3.2: Melanoma Specific Survival (MSS) for each cell type in the LMC and overall 

survival (OS) in TCGA, using univariable Cox proportional hazard model 

Significant associations in the LMC after multiple-testing correction by Bonferroni 

method are shown in bold. 

 LMC (primaries) TCGA (metastases) 

Cell type HR P 95% 
CI low 

95% CI 
high HR P 95% 

CI low 
95% CI 

high 
Activated B cells 0.60 1.18x10-5 0.48 0.75 0.63 2.79x10-6 0.52 0.76 
Central memory CD4 0.54 7.31x10-6 0.41 0.71 0.52 5.46x10-5 0.84 1.27 
Central memory CD8 0.72 9.58x10-3 0.56 0.92 0.55 4.33x10-7 0.89 1.44 
Cytotoxic cells 0.72 3.35x10-4 0.60 0.86 0.65 1.91x10-6 0.38 0.72 
DC 0.51 4.27x10-6 0.39 0.68 0.53 1.81x10-6 0.44 0.70 
Effector memory 
CD8 

0.63 2.97x10-4 0.49 0.81 0.54 1.49x10-8 0.54 0.78 
Eosinophil 1.39 2.13x10-2 1.05 1.84 0.72 5.97x10-2 0.41 0.69 
iDC 0.88 2.87x10-1 0.68 1.12 0.56 1.85x10-6 0.26 0.76 
Immature B cells 0.66 7.16x10-4 0.51 0.84 0.61 1.12x10-5 0.79 1.09 
Macrophages 0.71 1.20x10-2 0.54 0.93 0.68 2.24x10-3 0.51 1.01 
Mast cells 0.51 3.90x10-5 0.37 0.70 0.56 3.50x10-3 0.49 0.76 
MDSC 0.64 9.27x10-5 0.51 0.80 0.62 1.58x10-5 0.44 0.67 
Memory B cells 1.03 8.11x10-1 0.81 1.31 0.65 2.06x10-3 0.50 0.77 
Monocytes 0.94 5.74x10-1 0.75 1.17 0.65 7.30x10-5 0.54 0.87 
Neutrophils 0.68 4.18x10-3 0.52 0.88 0.49 4.83x10-7 0.44 0.69 
NK 0.68 2.39x10-4 0.55 0.83 0.64 4.16x10-5 0.38 0.83 
NK56 bright 0.71 8.60x10-4 0.58 0.87 0.55 4.08x10-7 0.49 0.85 
NK56 dim 0.78 3.39x10-2 0.62 0.98 1.66 1.14x10-3 0.53 0.81 
NKT 0.67 2.43x10-4 0.54 0.83 0.48 3.04x10-6 0.52 0.80 
pDC 0.91 2.09x10-1 0.79 1.05 0.77 1.13x10-3 0.45 0.69 
T cells 0.55 4.58x10-6 0.42 0.71 0.55 2.36x10-7 1.22 2.26 
TFH 0.69 4.00x10-4 0.56 0.85 0.65 3.78x10-6 0.35 0.65 
TGD 0.68 1.19x10-3 0.54 0.86 0.64 3.66x10-6 0.38 0.65 
Th1 0.57 4.55x10-6 0.45 0.73 0.58 1.35x10-7 0.44 0.69 
Th17 0.82 2.45x10-1 0.58 1.15 0.44 2.87x10-3 0.54 0.78 
Th2 0.51 6.17x10-8 0.40 0.65 0.56 6.08x10-8 0.53 0.78 
Treg 0.59 8.19x10-5 0.45 0.77 0.54 5.92x10-7 0.47 0.71 
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3.3.3 Consensus clustering of LMC tumours based on the immune cell scores 

 Final number of clusters 

Consensus cluster analysis of the 703 LMC tumours was conducted using the 27 

immune cell scores. Examination of consensus heatmaps, CDF and delta CDF area plot 

(Figure 3.4) allowed me to decide the optimal number of clusters. The change in delta 

CDF area (Figure 3.4E) suggested 4 or 5 clusters because after that the curve flatlined. 

Further, using the patterns of the consensus heatmaps, the consensus CDF plot, and 

the average cluster consensus plot, 3 clusters appeared as the most stable (Figure 3.4).  

Having each sample assigned to one of the three clusters, for visualisation purposes, 

one-off hierarchical cluster analysis of cell scores (but not the samples) was conducted 

and a heatmap was plotted. The three clusters showed distinct immune phenotypes 

across the vast majority of cells: one cluster of tumours (N=156) showed evidence of 

coordinated infiltration of 22 of the 27 immune cells while, at other end, another 

cluster (N=272) showed the weakest signals for these 22 cells. Between these 2 

extremes there was a cluster of tumours (N=275) displaying the 22 immune cells at 

intermediate level (Figure 3.5). The 3 clusters were called respectively High, Low and 

Intermediate Immune Subgroups (Figure 3.5).  



56 
 

 

 

Figure 3.4: Representation of Consensus Clustering Results 

(A) Sample dendrogram and heatmap with the number of clusters; The heatmaps 

are symmetrical and indicate the stability (“Cleanliness” of the heatmaps), the 

blue colour indicates high consensus (i.e. samples occurring in the same cluster 

with high incidence in the 5000 repetitions) whereas white indicates no 

consensus (samples are always classified in different clusters). (A) k=2; (B) k=3; 

(C) k=4. (D) Cumulative density functions (CDF) of independent runs with k=2 to 

12 in 5000 data resampling. The most stable number of clusters is the one with 

the highest number of “0” and “1” on the x axis. The red and orange curves 

showed these features. (E) Relative change in area under the CDF with increasing 

k. (F) Average cluster consensus plot for k=2 to 12 clusters. 
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Figure 3.5: Heatmap representing immune cell scores across the three identified 

immune subgroups 

The tumour samples (columns) were fixed according to the consensus clustering 

output while the immune scores were hierarchically clustered (rows). 

 

 MSS for the obtained clusters 

The three immune subgroups were associated with MSS: a significantly lower hazard 

of melanoma death was observed for patients assigned to the High compared to Low 

(Hazard Ratio (HR)=0.5, P=0.001, 95% CI 0.3-0.7); and Intermediate Immune Subgroups 

(HR=0.6, P=0.05, 95% CI 0.4-1.0) (Figure 3.6).  
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Figure 3.6: Kaplan Meier plot (MSS) for the three immune subgroups 

The p-value was obtained from the overall Cox proportional hazard regression. 

 

 Comparison of the three immune subgroups with existing molecular 

melanoma signatures 

As already mentioned, our group published previously 6 Consensus Immunome 

Clusters (CICs) in this melanoma cohort [76]. The 3 three Immune Subgroups derived 

here showed a very significant overlap with those 6 CICs (Figure 3.7), with a Cramer’s 

V of 0.72, P=6.61x10-151. The High Immune Subgroup was comprised predominantly of 

three Consensus Immunome Clusters: CIC 2 (High Immune) – 73.1%, CIC 3 

(Intermediate Immune/Keratin Poor) – 16.7% and CIC 5 (Intermediate Immune/Keratin 

High) – 9.6%. The Low Immune Subgroup was predominantly comprised of: CIC 4 (Low 

Immune/Beta-catenin High) – 58.1%, CIC 6 (Low Immune/Keratin Rich) – 31.3% and CIC 

1 (Low Immune/Beta-catenin Low) – 9.2%. These results were therefore consistent. 

However, the Intermediate Immune Subgroup was composed of tumours from all 6 

CICs with a less clear pattern although the most represented groups were CIC 5 and CIC 

3 both of which were already described as having intermediate levels of immune 

infiltrates [76] (Figure 3.7). 
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Figure 3.7: Intersection of the three Immune Subgroups and previously published 

Consensus Immunome Clusters by Nsengimana et al. in LMC [76] 

 

 

Figure 3.8: Kaplan Meier plot for the 6CIC generated by Nsengimana et al. in LMC [76] 

When the 6 CICs were adjusted AJCC stage, both CIC 4 and 6 had equally poor 

survival. For legend, see Figure 3.7. 
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The 3 immune subgroups were also compared to another set of 3 melanoma molecular 

subtypes published by the TCGA called “immune”, “keratin-rich” and “MITF low” 

classes.  

Here too, a good overall concordance was found with Cramer’s V=0.47, P=2.5x10-54, 

albeit weaker than the concordance with the 6 CICs. Specifically, the High Immune 

Subgroup was comprised predominantly of TCGA “immune” class (85.7%), the 

Intermediate Immune Subgroup contained 33.7% of “immune”, 46% of “keratin” and 

20.4% of “MITF low” tumours while Low Immune Subgroup was mainly a mixture of 

“keratin” (53.8%) and “MITF low” (41.1%). In terms of association with melanoma-

specific survival in the LMC dataset, there is a significant difference between “MITF 

low” and “immune” subgroups (HR=1.97, P=0.001, 95% CI 1.3-2.9), while the “keratin” 

and “immune” groups have similar survival profiles (HR=0.98, P=1.97, 95% CI 0.7-1.44). 

(Table 3.3, Figure 3.10, Figure 3.10). Additionally, I tested whether the “keratin” group 

in the LMC could manifest higher expression of keratinocyte specific genes, due to 

sampling of keratinocytes (cells from the outermost layer of the skin) along with 

tumour cells from the thin tumours. I tested the expression of a gene called filaggrin 

(FLG), that is known to be expressed in keratinocytes [143] across the TCGA classes in 

the LMC samples. The results showed that the FLG expression was significantly higher 

in the “keratin” group (P=3.3x10-65), (Figure 3.11). I have also tested the Breslow 

thickness among these group, and it showed to be the lowest in the “keratin” group 

(P=4.4x10-11), (Figure 3.12). For both of the analyses Kruskal Wallis test was used. 
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Figure 3.9: Intersection of the three Immune Subgroups and the TCGA subtypes 

applied to the LMC (N=560) 

 

Table 3.3: Survival analysis of the TCGA classes applied to LMC (N=560) 

 HR P 95% Conf. 
Interval 

Immune - - - - 
Keratin 0.98 0.9 0.66 1.44 
MTF low 1.97 0.001 1.34 2.90 

0 20 40 60 80 100
percent

Low Immune

Intermediate Immune

High Immune

 immune 
 keratin 
 MITF.low 



62 
 

 

 

 

Figure 3.10: Kaplan Meier plot for the TCGA classes applied to LMC (N=560) 

 

Figure 3.11: Expression of FLG across the TCGA classes in the LMC 
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Figure 3.12: Breslow thickness across the TCGA classes in LMC 

 

3.3.4 Validation of the 3 Immune Subgroups in TCGA melanoma metastases 

After classifying TCGA metastatic tumours in the 3 Immune Subgroups using the 

nearest centroid method, a heatmap was drawn in a similar way as in the LMC (Figure 

3.13). Similar overall patterns of immune cell scores were found (Figure 3.13) and the 

association with survival analysis showed a strong agreement with earlier results from 

the LMC: High Immune exhibited a reduced death hazard with compared to Low 

Immune Subgroup (HR=0.3, P=1.0x10-7, 95% CI 0.2-0.5) or to the Intermediate Immune 

Subgroup (HR=0.5, P=4.8x10-5, 95% CI 0.4-0.7) (Figure 3.14).  
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Figure 3.13: Heatmap of immune cell scores across the replicated three Immune 

Subgroups in TCGA 

 

 

Figure 3.14: Kaplan Meier plot for OS differences between the three replicated 

Immune Subgroups in the TCGA dataset (p-value from Cox proportional hazard 

regression)  
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3.3.5 Clinico-histopathological analysis of the Immune Subgroups 

In the LMC data, Breslow thickness, mitotic rate and the proportion of tumours without 

TILs (from both clinical dermatopathologists and a single observer in our research 

group) were significantly lower in the High Immune Subgroup compared to other 

groups (Table 3.4). As expected, the most significant difference was in TILs, with 

tumours classified in High Immune group more frequently displaying brisk TILs (P=4x10-

8). The Low Immune Subgroup had the lowest proportion of tumours with a BRAF 

mutation and the highest proportion with NRAS mutation, although these results were 

borderline significant. Site of melanoma was significantly different among Immune 

Subgroups, tumours arising on the rare sites (non-sun exposed) being more frequent 

in the Low Immune Subgroup. AJCC stage, sex, age at diagnosis, site, smoking and 

serum vitamin D at diagnosis (season-adjusted) were not significantly different 

between the three Immune Subgroups (Table 3.4). 

Table 3.4: Associations of clinico-histopathological characteristics with the three 

immune subgroups in the LMC 

Characteristic Low  
Immune 

Intermediate 
Immune 

High 
Immune P-value (N) 

Number of participants (703) 272 275 156   

Melanoma death (%) 36.0 28.7 18.8 0.001 (666) 
Age at diagnosis (median, 
years) 

58.3 55.7 59.9 0.6 (703) 

Site of melanoma    0.02 (702) 

       Limbs (%) 38.6 45.6 44.2  

       Head (%) 11.0 10.9 12.8  

       Trunk (%) 31.6 33.9 34.6  

       Rare (i.e. sun protected) (%) 18.8 9.5 8.3  

Sex (% males) 43.0 44.7 50.0 0.4 (703) 

BRAF-mutated (%)  40.5 50.4 51.2 0.06 (582) 

NRAS-mutated (%)  29.8 24.4 16.8 0.03 (574) 

Ulcerated (%) 36.0 33.5 28.9 0.32 (703) 

Breslow thickness (median, 
mm) 

2.4 2.3 2.0 0.004 (692) 

Mitotic rate (median, 
count/mm2) 

4.0 3.0 2.5 0.0002 (596) 
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Characteristic Low  
Immune 

Intermediate 
Immune 

High 
Immune P-value (N) 

AJCC stage (%) 
          I 
          II 
          III 

  
29.7 
51.3 
18.96 

  
34.4 
52.6 
12.96 

  
38.5 
48.1 
13.46 

0.17 (695) 

TILs (%) (clinic 
dermatopathologists) 
     Brisk 
     Non-brisk 
     Unclassified 
     No TILs 

  
8.5 
62.2 
7.5 
21.9 

  
13.2 
65.0 
10.0 
11.8 

  
27.3 
55.3 
12.9 
4.6 

4.0x10-7 

(553) 

TILs (%) – (single observer, S 
O’S) 
     Brisk 
     Non-brisk 
      No TILs 

  
4.0 
84.1 
12.0 

  
9.8 
84.6 
5.6 

  
22.7 
73.8 
3.6 

3.62x10-8 

(601) 

Smoking (% ever smoked) 47.2 51.6 48.7 0.6 (658) 

Season-adjusted serum vitamin 
D at recruitment (winter 
median, nmol/L ) 

40.1 41.2 36.1 0.2 (549) 

Mutational load 
     Low 
     Intermediate 
    High 

 
33.6 
31.2 
35.2 

 
26.1 
37.8 
36.0 

 
44.6 
28.7 
26.5 

0.1 (319) 

 

3.4 Summary 

• Immune cell scores were characterised based on Angelova et al.’s Immunome. 

• The tumour samples were clustered based on immune cell scores and three 

immune subgroups were obtained having distinct survival.  

• The three immune subgroups were replicated in the independent metastatic 

melanoma dataset (TCGA). 

• The three subgroups defined by inferring immune cell infiltration had 

correspondingly different histologically detected TILs, the Low Immune tumours 

having fewer TILs. 

• The reported environmental factors of interest e.g. smoking and vitamin D levels, 

and the mutational load did not vary across the three immune subgroups. 
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3.5 Discussion 

3.5.1 Immune cell scores 

In general, meaningful characterisation of immune cells infiltrating tumours from 

potentially noisy and heterogeneous FFPE tumour gene expression data is challenging. 

The aim is important however, as understanding host-tumour interaction might inform 

lifestyle advice for newly diagnosed melanoma patients and understanding of primary 

and acquired resistance to checkpoint therapies. The concept is that bioinformatic 

analysis of transcriptomic data will allow deconvolution of complicated relationships 

between tumour and stromal cells in situ i.e. without the need to disaggregate tissues. 

Moreover, that this would be possible for large numbers of tumours ascertained from 

populations and therefore more typical of the generality of tumours rather than 

selected large tumours big enough to sample and disaggregate. 

As mentioned in the introduction, there are several methods for inferring immune cell 

score, available. In my thesis I have explored CIBERSORT and developed a method 

based on Angelova et al.’s Immunome. I did not test all of the approaches either 

because they were reported to cover a relatively small spectrum of cell subtypes [109] 

or because they required RNA sequencing data (as indicated in the R package code the 

provided by the authors) [110], or they were published relatively late during my PhD 

(November 2017) [112]. 

Generally, these methods do not allow distinction to be made between strong signals 

related to a large number of cells or fewer cells but with higher gene expression per 

cell. Moreover, the gene-cell specificity may be context-dependent, i.e. genes could be 

expressed by more than one cell type (immune or non-immune) depending on the 

tissue or local microenvironment. 

Nonetheless, I have explored some of them in my thesis. I first evaluated the utility of 

an existing cell scoring method (CIBERSORT), which uses as reference gene signatures 

of flow cytometry sorted circulating immune cells (LM22). This method has some 

valuable features that other methods do not have. One of them is that it is available as 

a software easily accessible, it is user friendly, and no bioinformatic knowledge is 

needed in order to run the algorithm. Another one is that it provides the empirical p-

value indicating the level of confidence the user should put in the gene expression 
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deconvolution for each sample. Moreover, the LM22 signature is comprehensive and 

contains some immune cell subsets with subtle differences which might have a 

relevance to melanoma. For example M0, M1, and M2 macrophages are held to be 

distinct in this signature and macrophage polarity has been shown to play a role in 

cancer prognosis [144].  

However, when applied to the LMC dataset, CIBERSORT showed to have some 

limitations. In fact, the algorithm inferred successfully immune cell proportions in a 

minority of tumours. 

Varying the p-value threshold did not make a significant difference. Similar results were 

also found after applying different data transformation strategies. However, and 

interestingly, the tumour samples where CIBERSORT failed to estimate immune cell 

proportions were more likely to be recorded as having no TILs and were classified and 

Consensus Immunome Clusters 1, 6 and 4 which all have been associated with lack of 

immune infiltration [76]. It can be concluded therefore that failure of CIBERSORT to 

find immune cell proportions with a significant p-value is not an artefact but a true 

reflection of very low levels of immune infiltration. I nevertheless consider this as a 

limitation of the method because it is unclear how to use the cell proportions estimated 

with low level of confidence (P>threshold). In its set up, the total of all 22 immune cell 

proportions is 100%, meaning that if there are no immune cell at all in the tumour, 

proportions of all 22 are still estimated but there is no indication on what they actually 

represent. The use of a relative rather than absolute quantitation may be more 

appropriate to compare the extent of different immune cells within a tumour rather 

than comparing tumours.  

Since CIBERSORT was unconvincing, I adopted and modified another method of 

immune cell scoring. The Immunome proposed by Angelova et al. [1] was explored in-

depth in this chapter and the scoring approach I developed using this list was the basis 

for further analyses in my thesis (next chapters). Advantages of the Angelova et al.’s 

Immunome are that it covers a large number of immune cells (31), and can be adapted 

to a specific cancer under study by performing additional (quality control) QC. It allows 

user-defined immune cell scoring on an absolute rather than a relative scale. However, 

this approach has an additional caveat apart from the ones mentioned above. Using 

melanoma and melanocyte cell lines, I found that almost half of the genes proposed by 
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Angelova et al. were expressed at significant levels by melanoma cells or melanocytes. 

It is this observation that prompted the decision to conduct some QC steps (gene 

filtration) before developing the immune scoring method. After this filtering, further 

explorations showed that some of the genes deemed to be specific to certain purified 

immune cell subtypes according to Angelova et al. [1] actually displayed a negative 

correlation with each other in the tumours, implying either the presence of technical 

issues or that these genes might be less useful markers of those cell subsets in 

melanoma than they would be in the peripheral the blood.  In favour of the potential 

bias from technical variation we observed that gene expression correlations within 

immune cell type were less likely to be negative in TCGA melanoma samples, which 

were produced from fresh frozen tissue, therefore with less degraded mRNA compared 

to the LMC. One example was the Treg score. When analysing the gene correlations for 

Treg score, the well-known marker for this cell type – FOXP3 was negatively correlated 

with majority of genes assigned to this cell type in LMC, but not in TCGA. Consequently, 

I concluded that the there is a possibility that in the LMC transcriptome the probe 

designed for this gene was not efficient enough, as it also could be the case for other 

probes.  

It is important to indicate, that when it comes to Bindea et al.’s Immunome the Treg 

score (only the FOXP3 gene, for which the probe in LMC possibly could not be efficient) 

could not be confidently used.  

When I compared the Th2 score using the list of genes proposed by Bindea et al. and 

Angelova et al.’s Immunomes I showed that GATA3 (well recognised marker for Th2 

cells) was negatively correlated with the rest of the proposed genes, but it was not 

observed using Angelova et al.’s Immunome both in LMC and TCGA. 

The examination of correlation of genes assigned to Treg and Th2 scores in TCGA and 

LMC reassured me that the Angelova et al.’s Immunome is more reliable than Bindea 

et al.’s Immunome at least for characterising these two particular cell types. Because 

of this reason and the fact that the Angelova et al.’s Immunome was devised from more 

microarray data than Bindea et al.’s. I used this list, after using the devised filters for 

scoring immune cells in the LMC. Subsequently I proceeded with using these immune 

cell scores for samples clustering. 
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3.5.2 Clustering  

Consensus clustering is widely used method to find stable sample subgroups in high-

dimensional data. I have chosen this approach over one-off clustering because it 

generates helpful metrics to indicate the optimal number of clusters which is 

unavailable in standard clustering [134]. This approach allowed me to identify 3 stable 

immune subgroups, which were well-replicated in TCGA metastases, both in terms of 

overall cell score patterns and in their associations with survival. The concordant 

results were reassuring that the cell scoring method was reproducible in independent 

datasets.  

Replication of the 3 immune subgroups in TCGA metastatic samples suggested that the 

immune infiltration and exclusion mechanism spans the whole range of disease 

progression, i.e. both primary and metastatic tumours may have different levels of 

immune response.  

Additionally, the identified immune subgroups were consistent with the earlier 

reported 6 CICs [76]. Besides using different Immunomes (Bindea et al. vs. Angelova et 

al.), the other differences between the earlier report [76] and the current analysis are 

a more in-depth QC filtering and tumour clustering using cell scores rather than the 

expression of individuals genes. I hypothesized that dimensionality reduction by using 

the immune cell scores in tumour clustering could be more informative and less 

affected by noise. The 3 identified immune subgroups had distinctive survival profiles. 

In comparison with 6 CIC and TCGA (“immune”, “keratin” and “MITF low”) signatures, 

which did not show as distinct survival patterns for each group, the newly identified 

immune subgroups showed to have advantage over these signatures. Interestingly in 

the TCGA (not in the LMC) the “keratin” signature which predicted the poorest 

prognosis was comprised of approximately 74% primary melanomas [46]. In the LMC I 

showed that “keratin” group was comprised of samples that were thinner and 

contaminated by keratinocytes (high FLG expression) comparing to other groups. 

Patients with thin tumours are known to have favourable survival, and this could 

explain why “keratin” group (the thinnest tumours) had comparable survival to the 

“immune” group in the LMC. Taken together, this observation supports our concern 

that in TCGA primary melanomas (mostly categorised as “keratin”) have the poorest 

survival, and should be analysed with caution.  
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The immune cell scores were highly correlated and had similar patterns of distribution 

across the immune subgroups. I have moreover observed that immune cell scores, for 

which the reciprocal gene correlations per score were weak (e.g. Eosinophil, pDC, 

Memory B cells, NK dim), were less distinct among clusters (or contributed less to 

clustering) than those having high correlations, and all of them did not significantly 

predict prognosis. This observations, questioned the reliability of these particular 

immune cell scores for further analyses.  

The high correlation of the majority of immune scores with each other suggests that 

multiple immune surveillance mechanisms (together with immune checkpoint 

pathways) are co-ordinately activated to combat cancerous melanocytic lesion, as it 

has been reported previously [77][76]. However, there is also a concern that applying 

computational methods to gene expressions for cell sorting may not have enough 

power to detect subtle differences in the abundance or the functions of these cells. 

There might be epigenetic or post-translational changes that regulate the immune cell 

function that are not detectable in transcriptomes. Nevertheless, the High Immune 

Subgroup had the highest expression of almost all the immune cells and the best 

melanoma specific survival among the three immune subgroups consistently with 

current literature.  

3.5.3 Clinico-histopathological associations with obtained clusters 

Upon testing the clinico-histopathological associations among the three immune 

subgroups, AJCC stage, age at diagnosis, sex, ulceration, vitamin D or reported smoking 

did not vary across the immune clusters, meaning that these variables were 

independent of the strength of the immune response in this analysis. The three 

immune subgroups showed good overlap with TILs measurements, which gave support 

to the view that using inferred immune cell scores do represent the presence of more 

immune cells. Moreover, overall I observed clear association of the high immune 

responses negatively correlated with tumour thickness and mitotic rates. Tumour site 

was associated with immune subgroup status and this was driven by the finding that 

the majority of samples from “rare sites” (those arising on ‘sun-protected’ sites) were 

classified as low immune. It is well-documented that exposure to ultraviolet light 

induced C>T mutations with may play neo-antigenic role and it has been reported that 
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melanomas in sun-protected body sites have fewer genomic mutations, and therefore 

fewer neoantigens, potentially reducing the attraction of TILs [19]. This is a credible 

explanation for the observed worse survival and higher stage at diagnosis of patients 

with these rare melanomas, as well as the probability of late diagnosis [16]. However, 

the mutational load, which we assumed that could reflect the neoantigen load, was 

not shown to be significantly different across the three immune subgroups. This 

observation was surprising, because it has already been shown that total 

mutational/neoantigen load correlated with better responses to immunotherapies for 

metastatic melanoma patients [145][146][147] and higher immune cell scores for the 

TCGA melanoma data [148]. However, Spranger et al. in the study analysing TCGA 

tumour data showed no association of mutational density with level of T cell infiltration 

in melanoma and other cancers [149]. Moreover, it is important to stress that the 

mutational load data used in these analyses was selected, meaning that the mutation 

count was based only for a panel of 555 genes (see Chapter 2), which might not 

necessarily represent the whole genome/total mutational load. Moreover, the 

mutation data were generated from thicker tumours and only for 319 samples, 

potentially introducing bias and statistical power issues. Lastly, some studies suggested 

that it is a neoantigen quality not quantity that predicts response to immune therapies 

in melanoma and other cancers [150][151] and it was shown that only ~10 of somatic 

mutations, which results in amino acid changes were predicted to bind to MHC class I 

[152]. 

NRAS-mutated tumours were more often classified into the Low Immune Subgroup and 

BRAF-mutated into Intermediate or High Immune Subgroup, although at a borderline 

significance level. This evidence could suggest that rather BRAF mutated tumour might 

be more immunogenic than NRAS mutated tumours and the literature supports this 

observation. BRAF mutated melanomas have been reported to be immunogenic 

[153][154][155] and it was reported by Nsengimana et al. (the researcher in our group),  

that survival benefit from immune cell infiltration was observed in BRAF or wild-type 

tumours while it was absent in NRAS mutated tumours in LMC [76]. Moreover, another 

study analysing 912 higher-risk primary melanomas, demonstrated that NRAS mutated 

tumours had significantly lower TILs than BRAF and WT tumours [156]. This results 

corroborate with the reported evidences that oncogenic Ras reduces antigen 
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presentation complex (MHC class I) on the surface of lymphoma tumour cells [157].  

On a contrary another study showed that patients with NRAS mutated melanoma 

tended to have more favourable survival after treatment from anti PD-L1/PD1 therapy 

[158], but this study was conducted on relatively small samples size (229) and only 

metastatic melanomas. 

In summary, the above results reassured me that the tumour subgroups obtained from 

consensus clustering correspond to biologically distinct entities with potentially 

specific immune surveillance, edition and evasion mechanisms. In the next chapters 

these three immune subgroups were explored as the basis of identifying modulators 

of the immune responses to melanoma. 
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Chapter 4 

Identification of genes and pathways associated with immune 

response to melanoma 

4.1 Aims of the chapter 

• To identify pathways that are associated with immune response to melanoma 

using the genome wide differential expression across the three immune 

subgroups uncovered in Chapter 3. 

• To identify the most nodal genes in those pathways using network analysis.  

• To validate the role of nodal genes as mediating immunosuppression in 

melanoma cell lines. 

4.2 Methods 

4.2.1 Overrepresentation analysis (ORA) 

Overrepresentation analysis is a widely utilised method of studying gene expression 

data in order to identify groups of genes expressed more highly in the analysed groups 

of subjects (i.e. with different phenotypes) [159]. This process is generally divided into 

two stages: first, testing differentially expressed genes between the two phenotypes 

using standard statistical methods; and second, biological interpretation of the 

identified genes by for example pathway enrichment analyses. The ORA can be only 

implemented if the sample size is large enough to find significantly differentially 

expressed genes between the analysed groups [159]. Since the LMC is a large data set, 

I reasoned that this method would be appropriate. 

 Testing differentially expressed genes among the three immune subgroups 

In order to identify biological pathways associated with the immune responses to 

melanoma I carried out an agnostic analysis, which tested the whole transcriptome 

differences between the analysed tumour immune subgroups.  
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I tested differential expression of 29,424 probes among the three immune subgroups 

in LMC using the Kruskal Wallis test in STATA. The significance threshold was set at 

Bonferroni-adjusted a=0.05 for multiple testing (i.e. 2x10-6). Subsequently I matched 

the probes to the gene names and I removed the 376 genes which had been used to 

create the immune cell scores. 

To visualise the expression of significantly differentially expressed genes among the 

three immune subgroups I generated a heatmap using the “pheatmap” package in R, 

with hierarchical clustering of the genes (using the Pearson correlation coefficient as 

distance metric). For differential expression analysis, I only tested the differences 

between the two extreme immune subgroups – Low vs High using the Mann-Whitney 

U test. 

 Biological interpretation of the differentially expressed genes 

I analysed separately the genes that were significantly upregulated in the Low and in 

the High Immune Subgroup (p-value threshold 2x10-6) in Reactome FiViz 5.2.0.beta 

[160] and Centiscape v.2.1 [161] plugins of Cytoscape v.3.5 [162]. Reactome FIViz 

enables analysis of pathways and protein-protein interaction (PPI) networks using just 

a list of gene names as an input or gene expression data (mainly used for correlation 

calculation among the genes). In my analyses I used the gene names that were 

upregulated either in the Low or in the High Immune Subgroup.  

Reactome FiViz has an inbuilt protein functional interaction (FI) network, which was 

predicted by machine learning approach (naïve Bayes classifier) using protein-protein 

interaction (PPI) databases such as: 

• human physical PPIs catalogued in IntAct [163], HPRD[164], and BioGrid [165]  

• human PPIs projected from fly, worm and yeast in IntAct [163] based on Ensembl 

Compara [166]  

• human gene co-expression derived from DNA microarray studies (two data sets 

[167][168])  

• shared GO (Gene Ontology) biological process annotations [169]  

• protein domain-domain interactions from Pfam [170]  
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• PPIs extracted from the biomedical literature by the text-mining engine 

GeneWays [171].  

The naïve Bayes classifier was trained based on the pairwise protein relationships by 

utilising curated pathways from Reactome [172] (training dataset). Subsequently, in 

order to predict functional interactions of the pairs of proteins, the trained naïve Bayes 

classifier was applied. Next, the predicted FIs were merged with the ones from curated 

pathways databases: 

• R – Reactome 

• C – CellMap 

• K – KEGG 

• N – NCI PID 

• P – Panther 

• B – BioCarta, 

where the curation in this instance means that the pathway databases were created 

by researchers who carefully verified the evidence from each source of interaction.  

The pathway enrichment analysis was based on the hypergeometric test, which tests 

if the submitted list of genes or proteins contains more genes/proteins for a given 

pathway than would be expected by chance. The significance of that test is indicated 

by a p-value and its version adjusted for multiple testing by Benjamini-Hochberg 

method [173], i.e. the False Discovery Rate (FDR) for each pathway from the curated 

databases mentioned above. 

The software generates a table with enriched pathways within a given gene set, where: 

“GeneSet” is the pathway name, “Ratio of protein in Geneset” indicates ratios of 

numbers of genes contained in pathways to the total number of genes in the Reactome 

FI network; “Number of protein in GeneSet” is the number of proteins within a given 

pathway; and “Protein from network” indicates number of genes from the input gene 

list per pathway. 

To run this analysis, I firstly uploaded the gene names upregulated in the High and Low 

Immune Subgroups into RectomeFIViz and the PPI network was constructed. Next, I 

tested the pathway enrichment separately for each list, setting the FDR threshold for 

calling pathway significant significantly enriched at a stringent level below 0.001. 
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After having the PPI networks constructed based on the genes of interest from each of 

the 2 immune subgroups I looked for the most important/influential genes within the 

networks. In order to identify these genes in the networks, the “betweenness” metric 

(indicating a key role in communication between proteins) was used as a centrality 

measure in Centiscape [161]. In technical terms betweenness is the number of shortest 

paths going through a node (gene) when connecting each pair of nodes in the network. 

In biological terms the nodes with the highest betweenness centrality are likely to be 

crucial in holding together/controlling the proteins within the network [161]. I 

performed the visual adjustments (size, colour of the nodes as well as edges shapes) of 

the networks in another software package called Gephi v.0.9.1 [174]. 

4.2.2 Patient derived melanoma cell lines analysis 

After identifying key immunosuppressive gene in the Low Immune Subgroup network, 

it was necessary to verify its functional role in an independent dataset. In our data, a 

gene could be expressed by tumour cells, immune cells, both or even by other 

components of tumour microenvironment. In order to explore the gene expression 

associations with the nodal gene we therefore collaborated with Mitch Levesque’s 

group in Zürich to examine the associations with the nodal gene in patient derived 

tumour cell lines, which lack immune cells. The methodology described (Chapter 2) for 

the generation of the cell lines is reported to significantly reduce fibroblast cell 

numbers. 

The statistical analysis of the RNAseq gene expression data originating from the 103 

melanoma cell lines (described in Chapter 2) was carried out by Sabrina Hogan (Marie 

Skłodowska-Curie PhD student at the University of Zurich, Switzerland). The Spearman 

rank correlation test was used to test correlations of the nodal gene (from the network 

created based on genes upregulated in the Low Immune Subgroup) with the whole 

transcriptome in the primary melanoma cell lines. Subsequently, I analysed the 

topmost 50 positively and negatively correlating genes with the nodal gene in 

Reactome FIViz to test the biological pathway enrichment of these genes. 
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4.3 Results 

 Overrepresentation analysis (ORA) 

There were 5324 genes differentially expressed across the genome among the three 

immune subgroups, they are shown Figure 4.1. The heatmap shows a clear clustering 

of High and Low Immune Subgroups while, the Intermediate Immune Subgroup was 

essentially a mixture of these extreme subgroups (Figure 4.1). Excluding this middle 

group, the number of genes differential expressed between the two extreme groups is 

5607, with 3324 upregulated in the High and 2283 upregulated in the Low Immune 

Subgroup.  

4.3.1.1 Low Immune Subgroup 

The pathways significantly enriched in the genes upregulated in the Low Immune 

Subgroup predominantly represented proliferation and metabolic functions. The most 

enriched pathways were the tricarboxylic acid (TCA) cycle and respiratory electron 

transport (FDR=5.3x10-14), mitochondrial translation (FDR=5.3x10-14), ribosomal and 

rRNA processing, and mitosis pathways (Table 4.1, and Appendix A.2.1). The analysis 

of the PPI network of the genes enriched in the Low Immune Subgroup revealed that 

proto-oncogene MYC had the highest betweenness centrality, suggesting that it was 

the most pivotal protein in this network (betweenness=31141) (Figure 4.2). The next 

two genes with relatively high betweenness were: Polo like kinase 1 (PLK1) – 

betweenness=18634, and Protein Phosphatase 2 Scaffold Subunit Alpha (PPP2R1A) 

with betweenness of 11667. For further analyses I have chosen MYC as an 

immunosuppressive candidate due to its highest betweenness measure.  
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Figure 4.1: Heatmap representing significantly diferentially expressed genes (rows) 

across the three immune subgroups (columns)  
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Table 4.1: The top ten enriched pathways in the Low Immune Subgroup 

“GeneSet” is the pathway name, “Ratio of protein in Geneset” indicates ratios of 

numbers of genes contained in pathways to total genes in the Reactome FI 

network; “Number of protein in GeneSet” is the number of proteins within a 

given pathway; and “Protein from network” indicates number of genes from the 

input gene list per pathway. “Nodes” are proteins from the network. 

GeneSet 

Ratio Of 
Protein 

In 
GeneSet 

Number 
Of 

Proteins 
In 

GeneSet 

Protein 
From 

Network P-value FDR 
The citric acid (TCA) cycle 
and respiratory electron 
transport (R) 

0.0148 161 66 1.1x10-16 5.3 x10-

14 

Mitochondrial translation 
(R) 

0.0085 92 58 1.1x10-16 5.3 x10-

14 

Ribosome (K) 0.0142 154 59 1.3x10-14 4.2x10-12 
Generic Transcription 
Pathway (R) 

0.0455 494 121 9.0 x10-14 2.1x10-11 

rRNA processing (R) 0.0165 179 62 2.1 x10-13 4.1x10-11 

Parkinson's disease (K) 0.0131 142 53 7.8 x10-13 1.2x10-10 

Mitotic Prometaphase (R) 0.0091 99 43 1.0 x10-12 1.4x10-10 

Mitotic Metaphase and 
Anaphase (R) 

0.0151 164 57 1.8 x10-12 2.1x10-10 

Oxidative 
phosphorylation (K) 

0.0122 133 50 2.7 x10-12 2.8x10-10 
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Figure 4.2: PPI network of the genes upregulated in the Low Immune Subgroup 

The size of the node indicates its importance (centrality). 

 

Previously our group reported that b-catenin signalling is upregulated in 42% of LMC 

tumours overall and in 73% of one particular tumour subset with the poor immune 

responses confirming its immunosuppressive function [76]. In Chapter 3, I showed that 

the three immune subgroups and 6 CICs (associated with b-catenin signalling pathway) 

were in a strong agreement. The agnostic analysis of the genes upregulated in the Low 

Immune Subgroup showed that MYC might be the crucial gene involved in the immune 

evasion, but the gene coding for beta catenin (CTNNB1) was also involved in this 

network. This observation could indicate co-operation of MYC and CTNNB1, which was 

not surprising, because it has been suggested that MYC is a target of b-catenin [75]. 
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Therefore, I asked what was the relation of MYC and CTNNB1 in terms of association 

with the Low Immune Subgroup. I dichotomised both MYC and CTNNB1 based on 

median expression and generated combinations of these new binary variables: 

• CTNNB1/MYC low (N=230) 

• MYC dominant, i.e. CTNNB1 low/ MYC high (N=122) 

• CTNNB1 dominant, i.e. MYC low/ CTNNB1 high (N=135) 

• CTNNB1/MYC high (N=216). 

Figure 4.3 shows that tumours with both MYC and CTNNB1 high were most frequent in 

the Low Immune Subgroup (47%). This subgroup also contained 18% of tumours with 

MYC dominant and 17% of tumours with CTNNB1 dominant. The CTNNB1 dominant 

subgroup was equally distributed across the three immune subgroups (17%, 23%, 

17%), while MYC dominant was more frequent in the Low than High Immune Subgroup 

(18% vs 9%) (Table 4.2).  

  

 

Figure 4.3: Percentages of 4 groups based on MYC and CTNNB1 expression across the 

three immune subgroups 

  

0 20 40 60 80 100
percent

Low Immune

Intermediate Immune

High Immune

1 CTNNB1/MYC low 2 MYC dominant
3 CTNNB1 dominant 4 CTNNB1/MYC high
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 Table 4.2: Distribution of frequency of the MYC/CTNNB1 groups across the three 

immune subgroups, Chi2 P=1.7x10-20 

 CNNTB1/ 
MYC low 

MYC 
dominant 

CNNTB1 
dominant 

CNNTB1/ 
MYC high Total 

High Immune (N) 94 14 26 22 156 
(%) 60.26 8.97 16.67 14.1 100 
Intermediate 
Immune (N) 

85 60 63 67 275 

(%) 30.91 21.82 22.91 24.36 100 

Low Immune (N) 51 48 46 127 272 
(%) 18.75 17.65 16.91 46.69 100 

Total (N) 230 122 135 216 703 
(%) 32.72 17.35 19.2 30.73 100 

 

4.3.1.2 High Immune Subgroup 

The analysis of the genes upregulated in the High Immune Subgroup (n=2283) 

indicated that they were mostly enriched in genes active in immune pathways, as 

expected. The top enriched pathways were: Interferon alpha/beta and gamma 

signalling (FDR=2x10-14), antigen processing and presentation (FDR=2x10-14), 

chemokine signalling (FDR=2.7x10-11), and NF-kB signalling (FDR=9.8x10-11) (Figure 4.4, 

Table 4.3 and Appendix A.2.2). All these pathways are known to be activated in various 

immune cells and in general in immune microenvironment. The up-regulation of these 

pathways confirmed the up-regulation of the immune cell scores in this immune 

subgroup. 

The nodal gene in this network was a transcription factor NFKB1 (Nuclear factor NF-

kappa-B) encoding the p105/p50 subunit of NF-kB (Figure 4.4). The betweenness 

measure for NFKB1 was 19838. The second node with highest centrality measure was 

tyrosine-protein kinase - FYN (betweenness =11863) and Signal transducer and 

activator of transcription 1-alpha/beta -  STAT1 (betweenness =6834). 
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Table 4.3: The top 12 enriched pathways in the High Immune Subgroup.  

“GeneSet” is the pathway name, “Ratio of protein in Geneset” indicates ratios of 

numbers of genes contained in pathways to total genes in the Reactome FI 

network; “Number of protein in GeneSet” is the number of proteins within a 

given pathway; and “Protein from network” indicates number of genes from the 

input gene list per pathway. “Nodes” are proteins from the network. 

GeneSet 

Ratio Of 
Protein 

In 
GeneSet 

Number 
Of 

Protein 
In 

GeneSet 

Protein 
From 

Network 
P-value FDR 

Interferon alpha/beta 
signaling(R) 

0.0063 68 42 1.1x10-16 2.0x10-14 

Antigen processing and 
presentation(K) 

0.0071 77 39 1.1x10-16 2.0x10-14 

Influenza A(K) 0.0161 175 56 1.1x10-16 2.0x10-14 
Interferon gamma 
signaling(R) 

0.0067 73 47 1.1x10-16 2.0x10-14 

Signaling by Interleukins(R) 0.0423 460 99 1.1x10-16 2.0x10-14 

Herpes simplex infection(K) 0.017 185 57 2.2x10-16 3.3x10-14 
Cytokine-cytokine receptor 
interaction(K) 

0.0244 265 67 7.9x10-15 1.0x10-12 

Th17 cell differentiation(K) 0.0098 107 39 9.6x10-14 1.1x10-11 

Chemokine signaling 
pathway(K) 

0.0172 187 52 2.7x10-13 2.7x10-11 

NOD-like receptor 
signalling pathway(K) 

0.0156 170 49 3.7x10-13 3.3x10-11 

TNF signalling pathway(K) 0.0101 110 38 9.7x10-13 7.8x10-11 

NF-kappa B signalling 
pathway(K) 

0.0087 95 35 1.3x10-12 9.8x10-11 
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Figure 4.4: PPI network of the genes upregulated in the High Immune Subgroup 

The size of the node indicates the gene importance (centrality).  

 

4.3.2 Patient derived melanoma cell lines analysis 

The identification of MYC as the gene with the highest centrality (betweenness) among 

the genes of the Low Immune Subgroup network and at the same time having a 

negative correlation with the High Immune genes suggested that it might play a key 

role in immune evasion/escape. However, MYC is widely expressed in different tissues 

and different cell types [143] and we have no indication of which cells is expressing it 

in our dataset. It was therefore important to test whether gene expression correlated 

with protein expression and which cells within the tumours express that protein. This 

is discussed in Chapter 5. 
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Given that the transcriptomic data set was derived from tumour cells, however other 

cell types of tumour microenvironment (e.g. stroma) could influence the mRNA levels, 

I hypothesised that looking at the correlates of MYC expression in tumour cell lines 

could give insights about MYC’s role in immune evasion restricting the analysis to the 

pure melanoma cells. 

Therefore, I collaborated with Sabrina Hogan (a colleague Marie Skłodowska-Curie PhD 

student) based at the University of Zürich. The Zürich group generated RNAseq data 

from 103 patient derived early passage melanoma cell lines. I asked Sabrina to take an 

agnostic approach to testing the correlations between MYC expression and the whole 

transcriptome in those cell cultures. These cell lines were lacking immune cells, which 

usually die in tumour cultures, and were fibroblast deficient (as described in Chapter 

2). After the analysis, genes were ranked by their correlation coefficient with MYC. I 

was interested in the most negatively correlating genes as they could imply down-

regulatory effect of MYC. Interestingly of the 50 genes most significantly negatively 

correlated with MYC five are involved in antigen processing and presentation (Figure 

4.5): 

• Major histocompatibility complex class I, B (HLA-B):  

(R=-0.57, P=1.6x10-10) 

• Major histocompatibility complex class I, C (HLA-C): 

(R=-0.45, P=1.8x10-6) 

• Beta-2-microglobulin (B2M):  

(R=-0.45, P=2.69x10-6) 

• Transporter 1, ATP Binding Cassette Subfamily B Member (TAP1):  

(R=-0.44, P=4.45x10-6) 

• Endoplasmic Reticulum Aminopeptidase 1 (ERAP1): 

(R=-0.44, P=5.0x10-6). 

In LMC the correlation of MYC with the genes above were: 

• HLA-B (R=-0.17, P=3.7x10-6) 

• HLA-C (R=-0.15, P=7.4x10-5) 

• B2M (R=-0.17, P=8.5x10-6) 

• TAP1 (R=-0.25, P=1.1x10-11) 
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• ERAP1 (R=-0.17, P=5.5x10-6) 

And in the TCGA metastatic samples: 

• HLA-B (R=-0.24, P=5.1x10-6) 

• HLA-C (R=-0.22, P=3.7x10-5) 

• B2M (R=-0.24, P=5.5x10-6) 

• TAP1 (R=-0.17, P=0.001) 

• ERAP1 (R=-0.14, P=0.006). 

When these 50 genes most negatively correlating with MYC in cell lines were tested for 

pathway enrichment in Reactome FIViz, the most significantly enriched pathways were 

class I MHC mediated antigen processing & presentation (FDR=1.2x10-6), and 

interferon gamma singling (FDR=1.2x10-4) (Table 4.4). On the other hand, the 50 genes 

most positively correlating with MYC were enriched in senescence-associated 

secretory phenotype (SASP) (FDR= 6.16x10-3) and the cell cycle (FDR= 6.16x10-3) (Table 

4.5). Altogether these results showed that MYC was negatively correlated with 

immunity and positively with senescence and proliferation, which were similar to the 

ones obtained using the LMC transcriptome.  

 



 
 

 

 

Figure 4.5: The 25 genes most positively and negatively correlated with MYC in melanoma cell lines data (Analysis by Sabrina Hogan)  

 

Table 4.4: Enriched pathways in the gene list negatively correlated with MYC in patient derived melanoma cell lines  

“GeneSet” is the pathway name, “Ratio of protein in Geneset” indicates ratios of numbers of genes contained in pathways to total genes in the Reactome FI 

network; “Number of protein in GeneSet” is the number of proteins within a given pathway; and “Protein from network” indicates number of genes from 

the input gene list per pathway. “Nodes” are proteins from the network. 

GeneSet 
Ratio Of Protein 

In GeneSet 
Number Of Protein 

In GeneSet 
Protein From 

Network P-value FDR Nodes 
Class I MHC mediated antigen processing 
& presentation(R) 0.0174 189 5 3.25E-08 1.20E-06 HLA-B, TAP1, HLA-C, SEC24D, B2M 

Antigen processing and presentation(K) 0.0071 77 4 8.67E-08 1.56E-06 HLA-B, TAP1, HLA-C, B2M 

Interferon gamma signaling(R) 0.0067 73 3 1.04E-05 1.25E-04 HLA-B, HLA-C, B2M 

Phagosome(K) 0.0142 154 3 9.54E-05 8.59E-04 HLA-B, TAP1, HLA-C 
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Table 4.5: Enriched pathways in the gene list positively correlated with MYC in patient derived melanoma cell lines 

“GeneSet” is the pathway name, “Ratio of protein in Geneset” indicates ratios of numbers of genes contained in pathways to total genes in the Reactome FI 

network; “Number of protein in GeneSet” is the number of proteins within a given pathway; and “Protein from network” indicates number of genes from 

the input gene list per pathway. “Nodes” are proteins from the network. 

GeneSet 
Ratio Of Protein 

In GeneSet 
Number Of Protein 

In GeneSet 
Protein From 

Network P-value FDR Nodes 

Senescence-Associated Secretory Phenotype (SASP)(R) 0.0048 52 2 1.37E-04 6.16E-03 CDK2, CDC16 

APC/C-mediated degradation of cell cycle proteins(R) 0.0076 83 2 3.46E-04 6.16E-03 CDK2, CDC16 

Progesterone-mediated oocyte maturation(K) 0.009 98 2 4.82E-04 6.16E-03 CDK2, CDC16 

Ribosome biogenesis in eukaryotes(K) 0.0094 102 2 5.22E-04 6.16E-03 NOP56, WDR43 
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4.4 Summary 

Whole transcriptomic differential expression analysis of the immune subgroups 

followed by enrichment and network analysis indicated that: 

• The pathways enriched in the Low Immune Subgroup were associated with 

proliferation and cell cycling. 

• The nodal gene identified in the Low Immune Subgroup, with the most central 

role in holding the network together was MYC. 

• From the presented results based on LMC, TCGA and cell lines supported by the 

literature: MYC was considered as an immune evasive candidate, functioning via 

down regulation of HLA-B or possibly more MHC class I molecules. 

• The pathways enriched in the High Immune Subgroup were associated with many 

crucial immune pathways. 

• The nodal gene identified in the High Immune Subgroup was NFKB1, a 

transcription factor known to be expressed in all cell types and for its role in 

immune reactions. 

4.5 Discussion 

The three immune subgroups generated based on imputed immune cell scores (as 

described in the previous chapter) allowed the identification of key pathways and 

genes associated with the immune response to melanoma. 

4.5.1 Methodological aspects 

With the advent of large-scale gene expression data, many tools to analyse pathway 

enrichment have emerged, such as Database for Annotation, Visualization and 

Integrated Discovery (DAVID) [175], which is no longer updated, Kyoto Encyclopedia of 

genes and Genomes (KEGG) [176], Gene Set Enrichment Analysis (GSEA) [177], and 

Reactome [178]. These tools however are limited to only one type of data analysis, 

which is generally pathway enrichment. For the analysis of the genes upregulated in 

the Low and High Immune Subgroups I intended to use a tool used to analyse pathway 

enrichment and protein-protein interaction networks. The pathway enrichment 
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analyses give an overview of the biological characterisation of the input gene list, 

whereas network analysis enables to identify small subsets of those genes, which are 

functionally the most important. Amongst the most known bioinformatic software, 

that provide a possibly of these two types of analyse are: STRING ((https://string-

db.org)) and Reactome FIViZ [160]. However, STRING does not support an analysis of 

more than 20,000 genes, hence I used Reactome FIViz. This tool has several additional 

advantages when compared to STRING, for example (as mentioned in the background 

section) it allows direct analysis of gene expression and mutational data, although I did 

not use this function during my analysis. As an input for Reactome FIViz, I have only 

used the gene names, not gene expression, because the gene list already came from 

differential expression analyses with upregulation in one group of tumours compared 

to another, which meant that all the genes in the list were positively correlated. 

Irrespective of the software used, the biological networks predicted using curated 

databases can be affected by curation bias [179][180]. For example, more studied 

genes/protein are likely to have more identified annotations and network connections 

than those less studied. It is well known that transcription factors, whose function is to 

control other genes, are among the most well studied molecules due to their wide-

ranging impact. It was therefore not entirely surprising that genes with the highest 

centrality in both the Low Immune and High Immune Subgroups were transcription 

factors (MYC and NFKB1). Validation of these genes in an independent experiment of 

melanoma cell cultures, in particular MYC for its role in immune evasion, was necessary 

and provided convincing results. 

Additionally, in order to ensure validity of the results obtained on the gene expression 

level through the network analyses, they were compared to protein data from 

immunohistochemistry staining and to DNA copy number alteration data in the next 

chapter (Chapter 5). 

4.5.2 Biological aspects 

The genes upregulated in the Low Immune Subgroup were associated with 

proliferation and metabolic activity, suggesting that tumours in this subgroup were 

very aggressive. These agnostic genomic results are consistent with the results showed 

in Chapter 3, where the mitotic number assessed by dermatopathologists was 
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significantly higher in the Low Immune Subgroup, and the subgroup was associated 

with poorer survival. The most pivotal gene in the protein-protein interaction network 

in this subgroup was MYC, a widely studied proto-oncogene known to regulate the 

transcription of many genes involved in cell growth, apoptosis and metabolism by 

forming a heterodimer with its partner MAX (MYC-associated factor) and binding to E-

box (enhancer box) of target genes [181].  

In melanoma it has been previously reported, that MYC was involved in metastases and 

invasiveness [182]. However, in recent years researchers have examined MYC from a 

slightly different biological viewpoint, such as its involvement in immunosuppressive 

processes, and were able to provide some evidence for that in various cancer types 

[183][184][185], but not for melanoma. Given this evidence from literature and my 

observation of a negative correlation between MYC expression and immune pathways 

in the LMC dataset, I explored a possible immunosuppressive function of MYC in 

primary melanoma by further using cell line data from a collaboration (Sabrina Hogan, 

University of Zürich). The agnostic analysis of the cell line transcriptome revealed a 

similar trend as seen in patients of LMC dataset, i.e. that MYC was negatively associated 

with the immune function overall and the antigen processing machinery in particular. 

This was consistent with the report by Versteeg et al. [186], in which an inverse 

relationship between HLA class I and MYC expression was seen in melanoma cell lines. 

Evidence that MYC down-regulates the expression HLA-B, by directly binding to its 

proximal promoter independently of MAX has also been reported in melanoma cell 

lines [187]. These studies however were performed around 20 years ago, and up to 

nowadays this relationship of MYC and HLA-class I was not shown in human melanoma 

samples. More recently it was shown that MYC disrupts HLA class II-mediated immune 

recognition in human B cell tumours [188].  

The comparisons between MYC and CTNNB1 expression in the tumours indicated that 

both MYC and CTNNB1 could contribute to the immune evasion simultaneously as the 

Low Immune Subgroup was comprised mostly of samples with both MYC and CTNNB1 

high expression. The whole genome comparison between the MYC and CTNNB1 

dominant groups revealed that there was no clear distinction seen in relation to the 

immunosuppressive pathways between these two groups in the whole dataset, 

however the genes upregulated in the MYC dominant group were associated with 
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keratinization. These observations might suggest that the MYC dominant group was 

contaminated by the expression of genes originating from keratinocytes. Similar results 

and conclusions were shown by Dr Jérémie Nsengimana in the analyses of b-catenin 

signalling as an immune evasion mechanisms in the LMC [76]. In this study, it was found 

that only MYC was upregulated (not CTNNB1) in the CIC6, which was called immune 

low/keratin high and it was thin group of samples. To make sure that MYC overall was 

not associated with keratin contamination I tested a correlation of MYC and FLG 

(filaggrin expressed by keratinocytes) using Spearman correlation, and the results 

confirmed that there was no correlation (R=0.007, P=0.8). 

In summary the above evidences suggested that the immune evasive mechanisms 

driven by MYC and CTNNB1 were not mutually exclusive and they co-occurred in a large 

proportion of the Low Immune Subgroup tumours. It is of note that, although MYC is 

downstream of b-catenin pathway, it does not eliminate the possibly that MYC is 

controlled by different mechanisms such as MYC amplifications, which was tested and 

this is reported in Chapter 5. Additionally, literature suggested that MYC might also 

control b-catenin signalling [149].  

Overall, my observations and those from the literature manifest evidence that MYC is 

contributing to the immune evasion in primary melanoma by impairing the antigen 

presentation and processing machinery at several levels including by reducing the 

protein levels of HLA-B on the cell membrane.  

Unsurprisingly the genes upregulated in the High Immune Subgroup were assigned 

overall to the immune function. Many immune checkpoint genes were also identified 

in this subgroup, as well as Tregs and MDSCs. Taking together upregulation of 

immunosuppressive and immuno-stimulating genes/immune cell scores in the high 

Immune Subgroup suggested a coordination of the immune cell populations as a whole 

or that the interpretation of immune cell subgroup infiltration from transcriptomic 

datasets may be insensitive to some subtle variations. However, it was recently 

reported that Treg numbers and checkpoint molecules increase as a results of a 

homeostatic mechanism when CD8+ T cell numbers increase in melanoma [189][76]. 

NFKB1 was the most nodal gene within the network created based on genes 

upregulated in the High Immune Subgroup. The majority of important NFKB family 
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genes such as Nuclear Factor Kappa B Subunit 2 (NFKB2), Proto-oncogene cRel (REL), 

Transcription factor p65 (RELA), Transcription factor RelB (RELB), and many more, were 

also upregulated in the High Immune Subgroup indicating activation of that pathway 

(Appendix A.2.2).  

However, the expression of an important gene (RELA) coding for a protein that forms 

a heterodimer with NF-kB p105 (NFKB1) before its translocation to the nucleus and 

activation of transcription, did not vary across the immune 3 subgroups. This might 

reflect that this protein is constitutively expressed (meaning that its expression does 

not vary) in different tissues types and their biological states.  

Nevertheless, the products of NKFB1 such as NF-kB p105 precursor, which after 

phosphorylation becomes p50, might form different combination of heterodimers and 

homodimers with the rest of the NF-kB family members. The functions of each dimer 

vary, and they either might activate the transcription of target genes or repress it [190]. 

Using only gene expression data, we were not able to investigate this process deeper.  

NF-kB singling is known for its immune regulatory functions as well as for regulation of 

apoptosis and cell survival [190]. Abnormal NF-kB singling and NFKB1 gene expression 

particularly was found to have carcinogenic functions and promote tumour progression 

by inflammation (for example via STAT3) as well as to act as tumour suppressor 

[190][191][192]. Importantly, these functions depend on which components of tumour 

microenvironment (such as immune cells, cancer associated fibroblast, or tumour cells) 

have the abnormal NF-kB singling [193]. Assuming that the signal of NF-kB pathway of 

the LMC tumours was coming from the tumour cells, (which was tested in the next 

chapter), the results from this chapter suggested that this gene and overall NF-kB 

signalling was associated with higher anti-tumour immune responses. However, this 

observation did not explain the causality of the tumour NF-kB signalling activation. It 

could be that the immune cells attracted to the tumour microenvironment produced 

signals to activate NF-kB signalling by the tumour cells. Or on a contrary tumour cells 

prior being attracted by the immune cells, had NF-kB signalling active resulting in 

secretion of chemo attractant cytokines, which facilitated recognition of the tumour 

by the immune cells.  
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One study examined the expression of tumour NF-kB genes in lung cancer, and 

reported that this pathway promoted T cell- mediated immune surveillance [194]. 

Moreover, another study showed that hyper-activation of NF-kB signalling within the 

tumour microenvironment contributes to reprograming of chemokine 

microenvironment to enhance recruitment of cytolytic T cells in colorectal tumours 

[195]. Gastric cancer was also shown to be caused by loss of NFKB1 particularly with 

aberrant inflammation within the tumour [196].  

The literature supported the observations reported in this chapter such as positive 

association of NF-kB signalling and NFKB1 with high immune signals within the tumour, 

however it is crucial to test where the NF-kB signalling gene expression originated from 

(see next chapter).   



96 
 

 

Chapter 5 

Evaluation of the transcriptomic results on DNA and protein 

level 

5.1 Aims 

Herein the results from the previous chapters, which were based on the gene 

expression level, were evaluated by using protein immunohistochemistry (IHC) and 

DNA copy number alteration data (CNA). These analyses were performed only in a 

subset of the tumours due to technical and ethical reasons.   

The aims were:  

• To analyse CNA data for MYC and NFKB1, pathways and other genes from the top 

enriched pathways from the previous chapter aiming to observe some 

associations between CNAs and gene expression, the three immune subgroups 

and survival.  

• To perform immunohistochemical staining for MYC, HLA-B and NFKB1 (NF-kB 

p105) and correlate the results with mRNA level of the corresponding genes 

aiming to observe the positive correlations. 

5.2 Evaluation of CNA 

5.2.1 Introduction 

CNA data used in this thesis were generated based on next generation sequencing 

(NGS) of the FFPE tumours. The methods for analysis of structural variation of the 

genome in cancer have been identified previously using NGS data [197], however 

samples from fresh tissues were generally used, not FFPE. The performance of NGS 

highly depends on the quality of the DNA extracted from the analysed tissues [198] and 

it is well known that the genetic material extracted from FFPE tissues is degraded but 

in melanoma, it is very often the only available. In addition, melanomas are generally 

very small (compared to other tumours), and the quantity of the genetic material 

available is therefore limited. Moreover, the presence of melanin in melanoma tissue 
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further complicates the processing of genomic material as it has been shown to interact 

with polymerase in PCR manipulations, inhibiting its function [199] and affecting library 

production for sequencing.  

Our group has developed methods which enabled to produce reliable CNA data from 

FFPE samples from relatively small quantities of DNA in the range of 25-1000ng (Filia 

et al., in press). Joey Mark Santiago Diaz (a colleague Marie Skłodowska-Curie PhD 

student in the group) has developed quality control and analysis pipelines for these 

data as part of his PhD project, and these data are now available. 

5.2.2 Methods 

Using the CNA data for 276 samples, I evaluated the amplifications and deletions of the 

nodal genes (MYC and NFKB1) identified in the network analyses in Chapter 4. 

Moreover, because the NF-kB and IFN-g pathways were the most enriched pathways 

in the High Immune Subgroup, I subsequently asked if some of additional genes within 

these pathways were disrupted in the Low Immune Subgroup. For the NF-kB pathway, 

I chose these key genes involved in its signalling: 

• Nuclear Factor Kappa B Subunit 2 (NFKB2)  

• Proto-oncogene cRel (REL)  

• Transcription factor p65 (RELA)  

• Transcription factor RelB (RELB). 

Furthermore, following a discussion with Prof. Ulf Klein (an immunologist from 

University of Leeds, specialising in NF-kB signalling), I included the following genes 

associated with positive regulation of this signalling pathway: 

• Conserved Helix-Loop-Helix Ubiquitous Kinase (CHUK) [200] 

• Interleukin-1 receptor-associated kinase-like 2 (IRAK2) [201] 

• Mitogen-activated protein kinase kinase kinase 14/ NF-kB-inducing kinase 

(MAP3K14/NIK) [202] 

• Myeloid differentiation primary response protein MyD88 (MYD88) [203] 

• Mitogen-activated protein kinase kinase kinase 7 (MAP3K7/TAK1) [204] 

• Inhibitor of nuclear factor kappa-B kinase subunit beta (IKBKB) [205] 

• NF-kappa-B inhibitor alpha (NFKBIA) [206]. 
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Interleukin-1 receptor-associated kinase-like 1 (IRAK1)[207] and Inhibitor of nuclear 

factor kappa-B kinase subunit gamma (IKBKG)[208] were also suggested, but the CNA 

data did not cover these genes, because they were located in the “black listed” (difficult 

to be sequenced) regions of the genome. 

From the IFN-g signalling pathway I have assessed copy number changes of the key 

genes involved in this signalling: tyrosine-protein kinase (JAK1 and JAK2), signal 

transducer and activator of transcription 1-alpha/beta (STAT1), and interferon gamma 

(IFNG)[209]. In addition to these genes, I included b-catenin (CTNNB1) to test whether 

activation of b-catenin pathway is controlled by changes on DNA level. 

The CNA data were generated at a continuous scale as normalised zero-centred read 

counts of DNA sequences per window of 10kb. Negative values indicate DNA fragment 

deletion and positive value indicate DNA fragment amplification. I used the median 

value of the ratio of the sample read count to normal control read count of the 

windows (10K) covering the gene of interest as the copy number estimate. Most of the 

analysed genes spanned more than one 10K window except MYC, which covered only 

one 10K window and initial analyses for MYC were not conclusive and therefore I chose 

to analyse a region commonly amplified in cancer around MYC (23091 bases) [210] 

rather than MYC alone. 

To define amplifications and deletions, I developed an ad-hoc categorisation of 

continuous CNA data into amplification and deletion, based on visual examination of 

the CNA distribution for all genes of interest. An arbitrary cut-off, value of |0.3| (ratio 

of a read count of tumour to normal) was used. I defined deletion and amplification as 

cut-off point of windows (covering a gene region) median at below -0.3 or above 0.3 

respectively for the majority of the genes and at below -0.45 or above 0.45 for one 

gene (JAK2). These cut-offs however do not indicate whether the aberration is homo- 

or heterozygous although the assumption is that the deeper the aberration the higher 

chances for homozygous change or even polyploidy. 

It was examined whether copy number alterations of the genes of interest were 

associated with the three immune subgroups using the Fisher’s exact test. I analysed 

the expression level of corresponding genes among the aberrations using Kruskal-

Wallis test for each gene. Moreover, I tested the survival of patients with and without 
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the aberrations in Cox proportional hazard regression models, unadjusted and adjusted 

for AJCC stage. I further tested whether the prediction of survival for patients with MYC 

and NFKB1 aberrations was additive by including them jointly in the analysis.  

For the CNA visualisation I used the ComplexHeatmp package in R [211] to create 

“Oncoprint” graph, which enables to visualise/detect mutual exclusivity of the 

aberrations.  

As stated in Chapters 3 and 4, our group reported evidence that b-catenin signalling 

pathway is upregulated in 30% of LMC tumours overall and in 59% of the low immune 

tumours indicating its immunosuppressive function [76]. Apart from testing interaction 

of MYC and CTNNB1 on gene expression level in previous chapter, I also examined the 

overlap between b-catenin gene expression and the possible immunosuppressive 

mechanisms driven by deletions of NF-kB pathway genes and their joint effect on 

survival using Cox-proportional hazard regression. I created and tested a NF-kB CNA 

score (NFKB1, NFKB2, CHUK, MAP3K7, IRAK2, MYD88) for which at least one alteration 

was observed within a tumour. The result from this kind of analysis could indicate 

whether these pathways were independent from each other. 

5.3 Evaluation of Immunohistochemical staining 

5.3.1 Methods 

Stored unstained FFPE sections of available primary tumours from the LMC were used 

to assess the protein-level and mRNA level correlations. The terms of the ethical 

approval for this study were that it should be avoided to destruct of tumour blocks 

which might be required by the patient for further clinical testing, hence a limited 

number of samples was available for this analysis. The sections for IHC could only be 

cut from tumour blocks of deceased study participants both either from melanoma or 

non-melanoma causes. Dr Jonathan Laye and Tracey Mell sectioned the tumour blocks 

and mounted the 5µm sections on Superfrost Plus slides (Thermo Fisher Scientific, UK). 

Dr Jonathan Laye and I performed immunohistochemical staining of the slides using 

IntelliPath FLX detection reagents (MenaPath, A. Menarini Diagnostics, UK) by heat 

antigen retrieval, blocking, and Hematoxylin counter-staining according to 
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manufacturer’s protocol. Both procedures were described in the Materials and 

Methods section. 

The most influential genes (MYC and NFKB1) identified from the analysis of the protein-

protein interaction networks, which were created using genes upregulated in the High 

and Low Immune Subgroup (see Chapter 4) were examined. Moreover, HLA-B was also 

analysed, which was negatively correlated with MYC in the LMC, TCGA (metastatic 

samples) and in melanoma cell lines, consistently with literature [187]. The antibodies 

(Abcam, UK) used for staining were: anti-MYC (ab32072; suggested antibody 

concentration: 5 µg/ml), anti-NF-kB p105 (ab32360; suggested antibody 

concentration: 1/250 - 1/500), and anti-HLA-B (ab193415; suggested antibody 

concentration: 1/20 - 1/200).  

 Antibody optimisation 

The antibodies were optimised using the available tissues that are known to express 

the analysed proteins in high levels. The tissue type for the antibody staining was 

chosen based on the data at the Human Protein Atlas [143]. Moreover, the Human 

Protein Atlas and UniProt portal [212] provided the information of the cellular 

localisation of protein of interest. 

The optimisation of an antibody is a process by which we can test whether the antibody 

is specific to the analysed protein (detected in the predicted cellular localisation) as 

well as to assess which concentration would be the most suitable to allow scoring of 

the staining of the tissue of interest – here melanoma tumours. Mainly the staining 

should not be too strong to overcall the positive staining and also should not be too 

weak to miss the specific staining. 

The staining for the antibody optimisation was performed by Dr Jonathan Laye and 

myself using IntelliPath FLX detection reagents (MenaPath, A. Menarini Diagnostics, 

UK) according to manufacturer’s protocol.  

The anti-MYC antibody was optimised using healthy human tonsil tissue in four 

different concentrations (µg/µl): 1:50, 1:100, 1:150, and 1:200. The anti-HLA-B was 

optimised on healthy human skin tissue in concentrations (µg/µl): 1:50, 1:100, 1:150. 

Finally, the anti-NF-kB p105 was optimised on healthy human sentinel lymph node 
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biopsies in six concentrations (µg/µl): 1:100, 1:200, 1:250, 1:375, 1:500, 1:600. The 

concentration of the antibody for the subsequent tumour staining was chosen based 

on its optimal intensity to detect the signal.  

 Scoring of the stained slides 

The scoring of the tumours after staining was developed by pairs of observers (by 

myself for all of the slides and by independent assessors: Prof. Julia Newton-Bishop, Dr 

Jonathan Laye and Sathya Muralidhar (Marie Skłodowska Curie PhD student) for 

selected antibodies). All the assessors were blinded to the transcriptomic data while 

scoring.  

Anti-MYC staining was performed on 48 slides. Light microscopy at 10X magnification 

was used to evaluate the expression of MYC and HLA-B due to homogenous staining. 

Staining scores for these two proteins were recorded from the regions immediately 

surrounding the tumour core - the ‘punch hole’ (Figure 5.1). MYC was assessed by 

nuclear staining as this protein is known to function within the nucleus as it is a 

transcription factor [143][212] (Table 5.1). 

 

Figure 5.1: Example of a tumour with the two “punch holes” after the core sampling 

using 0.6mm microarray needle 
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Table 5.1: Scoring system for MYC IHC staining 

IHC MYC Staining 
Cored region staining description Score 

Nuclear staining absent 0 
Weak to moderate nuclear staining 1 
Intense nuclear staining 2 

 

The same scoring levels were utilised to assess the staining of HLA-B, however 

restricted to membranous staining, because it is the final localisation of this protein to 

present antigens to the immune cells [143][212]. (Table 5.2). In total 30 slides were 

stained for HLA-B. 

Table 5.2: Scoring system for HLA-B IHC staining 

IHC HLA-B Staining 
Cored region staining description Score 

Membranous staining absent 0 
Weak to moderate membranous 
staining 

1 

Intense membranous staining 2 
 

In the tumours that were sampled/cored more than once the staining scores were 

generated and if these were contradictory the slides were not used for subsequent 

analyses. Anti-NF-kB p105 was evaluated in cytoplasm as it is known to be detected in 

this location in inactive form and in the nucleus, for detection of its active transcription 

factor function [143][212]. The staining of NF-kB p105 for 29 tumours was evaluated 

using 20X magnification for cytoplasm around the core and 40X magnification for nuclei 

across the whole slide. Cytoplasmic staining was graded as in Table 5.3. 

Table 5.3: Scoring system for cytoplasmic NF-kB p105 IHC staining 

IHC NF-kB p105 Staining 
Tumour area staining description Score 

Cytoplasmic staining absent 0 
Weak cytoplasmic staining 1 
Moderate cytoplasmic staining 2 
Intense cytoplasmic staining 3 
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Because the nuclear activity of NF-kB signalling is transient and not all the nuclei were 

positive at the same time, the scoring was assessed as follows: if more than 5 nuclei 

were positive in the tumour I recorded the staining as “positively stained”, otherwise 

as “negatively stained” (Table 5.4).  

Table 5.4: Scoring system for nuclear NF-kB p105 IHC staining 

IHC NF-kB p105 Staining 
Tumour area staining description Score 

<5 nuclei positively stained Negative 
≥5 nuclei positively stained Positive 

 

NF-kB p105 is known to be expressed by the immune cells, hence the infiltrated 

lymphocytes were scored as well for cytoplasmic and nuclear staining, either “positive” 

or “negative” (Table 5.5).  

Table 5.5: Scoring system for TILs NF-kB p105 IHC staining 

IHC NF-kB p105 Staining 
TILs staining description Score 

Cytoplasmic/nuclear staining absent Negative 
Cytoplasmic/nuclear staining present Positive 

 

Additional quantification of MYC and HLA-B staining was performed using light 

microscopy in conjunction with Nuance software v.3.0.1.2 (PerkinElmer, Inc.). Tissue 

sections were examined under 20X magnification, and consecutive MYC and HLA-B-

stained images of the most representative part of the tumour were digitally scanned. 

Spectral analysis was performed to quantify the light signal derived from 

immunohistochemical chromagen, haematoxylin counterstain and signal co-localised 

from both chromagen and counterstain. Threshold levels were arbitrarily set to fix the 

strength of haematoxylin and chromagen signal deemed to be positive and for each 

tumour the signals were recorded as the percentage of positive pixels per scoring area.  

The chromagen percentage score was utilized to quantify HLA-B staining. Because 

haematoxylin is a largely nuclear stain, MYC staining was quantified using the co-
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localised signal derived from chromagen and counterstain to derive a MYC-nuclear 

expression score.  

 Statistical analysis 

For the statistical analyses of MYC (tumour nuclear) and HLA-B (tumour membranous) 

staining, I tested the variation of the mRNA expression of the corresponding proteins, 

across tumours scored 0 to 2 for staining using Kruskal-Wallis test as well as between 

pooled scores: negative (0) and positive (1 and 2 pooled together), using Mann-

Whitney U test in order to obtain higher statistical power. For NF-kB p105 staining I 

tested NFKB1 mRNA expression change among the cytoplasmic four scores as well as 

pooled scores: negative (0) and positive (1,2 and 3 pooled) and nuclear scores 

(negatively vs positively stained) also in order to obtain higher statistical power. I 

moreover compared the nuclear staining of the tumour and nuclear staining of the TILs 

using the Chi-squared test. For the continuous scoring (using the Nuance software) of 

HLA-B and MYC I performed Spearman’s rank correlation between mRNA and IHC 

staining excluding samples where MYC was detected in less than 1% of pixels, which I 

considered as absent.  

5.4 Results 

5.4.1 DNA copy number changes in primary melanoma in relation to immune 

response 

Since up-regulation of MYC and down-regulation of NFKB1 expression (identified as the 

nodal genes) were observed in the Low Immune Subgroup, I hypothesised that 

amplifications of MYC and deletions of NFKB1 could be more common in these 

tumours. Using CNA from a subset (N=276) of the LMC tumours firstly the histograms 

for the CNA data per each gene were examined (Figure 5.2). Usually it was observed 

that for a particular gene, either deletion or amplifications were observed.  
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Figure 5.2: Examples of histograms representing the distribution of CNA for selected 

genes 

Amplifications and deletions were generally exclusive per analysed gene. 

 

MYC amplifications were found in 29% and NFKB1 deletions in 14% of the Low Immune 

Subgroup, which was significantly higher than in the Intermediate or the High Immune 

Subgroup (P= 0.02 for MYC, P=0.0003 for NFKB1) (Table 5.6, Figure 5.3). Among the 

genes involved in the positive regulation of NF-kB signalling there were deletions in 

NFKB2 (26%), CHUK (22%), MYD88 (5%), IRAK2 (5%), MAP3K7 (17%), JAK2 (10%), and 

STAT1 (4%) in the whole dataset (Table 5.6, Figure 5.3). These copy number changes 

were not mutually exclusive (Figure 5.3) and were much more frequent in the Low 

Immune than in other subgroups (Table 5.6, Figure 5.3). The most significant 

distribution of the CNA across the three immune subgroups was observed for JAK2 

(P=2x10-8), where 25% of samples had deletions in the Low Immune Subgroup, while 

only 1.6% in the High Immune Subgroup. Another gene with strong significant 

distribution of CNAs across the three immune subgroups was NFKB2 and were 
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comparable to NFKB1. 38.6% of samples with NFKB2 deletions were identified in the 

Low Immune Subgroup, while 9.4% in the High Immune (P=0.0001). 

 

Figure 5.3: Graphical representation (“Oncoprint”) of the significantly altered genes 

across the three immune subgroups  

The two bottom rows represent CTNNB1 gene expression and the survival status.  
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Table 5.6: Table representing CNA changes of all the analysed genes across the 

immune subgroups 

 High 
Immune 

Inter. 
Immune 

Low 
Immune Total CNA P  

TOTAL (N) 64 116 96   
MYC      
No change (N) 57 93 68 218  
No change (%) 89.06 80.17 70.83 78.99  
Amplification (N) 7 23 28 58  
Amplification (%) 10.94 19.83 29.17 21.01 0.02 

NFKB1      
No change (N) 63 112 82 257  
No change (%) 98.44 96.55 85.42 93.12  
Amplification (N) 1 2 1 4  
Amplification (%) 1.56 1.72 1.04 1.45  
Deletion (N) 0 2 13 15  
Deletion (%) 0 1.72 13.54 5.43 0.0003 

NFKB2      
No change (N) 58 87 59 204  
No change (%) 90.62 75 61.46 73.91  
Amplification (N) 0 1 0 1  
Amplification (%) 0 0.86 0 0.36  
Deletion (N) 6 28 37 71  
Deletion (%) 9.38 24.14 38.54 25.72 0.0001 

CHUK      
No change (N) 59 93 63 215  
No change (%) 92.19 80.87 65.62 78.18  
Deletion (N) 5 22 33 60  
Deletion (%) 7.81 19.13 34.38 21.82 0.0002 

IRAK2      
No change (N) 63 109 87 259  
No change (%) 98.44 93.97 90.62 93.84  
Amplification (N) 1 0 1 2  
Amplification (%) 1.56 0 1.04 0.72  
Deletion (N) 0 7 8 15  
Deletion (%) 0 6.03 8.33 5.43 0.04 
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 High 
Immune 

Inter. 
Immune 

Low 
Immune Total CNA P  

MAP3K14      
No change (N) 63 106 86 255  
No change (%) 98.44 91.38 89.58 92.39  
Amplification (N) 1 4 3 8  
Amplification (%) 1.56 3.45 3.12 2.9  
Deletion (N) 0 6 7 13  
Deletion (%) 0 5.17 7.29 4.71 0.2 

MYD88      
No change (N) 62 108 87 257  
No change (%) 96.88 93.1 90.62 93.12  
Amplification (N) 2 2 0 4  
Amplification (%) 3.12 1.72 0 1.45  
Deletion (N) 0 6 9 15  
Deletion (%) 0 5.17 9.38 5.43 0.02 

MAP3K7      
No change (N) 61 98 64 223  
No change (%) 95.31 84.48 66.67 80.8  
Amplification (N) 0 3 3 6  
Amplification (%) 0 2.59 3.12 2.17  
Deletion (N) 3 15 29 47  
Deletion (%) 4.69 12.93 30.21 17.03 0.00005 

REL      
No change (N) 62 103 85 250  
No change (%) 96.88 88.79 88.54 90.58  
Amplification (N) 2 11 8 21  
Amplification (%) 3.12 9.48 8.33 7.61  
Deletion (N) 0 2 3 5  
Deletion (%) 0 1.72 3.12 1.81 0.3 
RELB      
No change (N) 61 108 87 256  
No change (%) 95.31 93.1 90.62 92.75  
Amplification (N) 3 8 8 19  
Amplification (%) 4.69 6.9 8.33 6.88  
Deletion (N) 0 0 1 1  
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 High 
Immune 

Inter. 
Immune 

Low 
Immune Total CNA P  

Deletion (%) 0 0 1.04 0.36 0.7 
RELA      
No change (N) 58 103 80 241  
No change (%) 90.62 88.79 83.33 87.32  
Amplification (N) 4 3 3 10  
Amplification (%) 6.25 2.59 3.12 3.62  
Deletion (N) 2 10 13 25  
Deletion (%) 3.12 8.62 13.54 9.06 0.1 
IKBKB      
No change (N) 63 103 73 239  
No change (%) 98.44 88.79 76.04 86.59  
Amplification (N) 1 8 13 22  
Amplification (%) 1.56 6.9 13.54 7.97  
Deletion (N) 0 5 10 15  
Deletion (%) 0 4.31 10.42 5.43 0.001 

NFKBIA      
No change (N) 55 100 79 234  
No change (%) 85.94 86.21 82.29 84.78  
Amplification (N) 6 6 6 18  
Amplification (%) 9.38 5.17 6.25 6.52  
Deletion (N) 3 10 11 24  
Deletion (%) 4.69 8.62 11.46 8.7 0.5 
JAK2      
No change (N) 63 113 71 247  
No change (%) 98.44 97.41 73.96 89.49  
Amplification (N) 0 0 1 1  
Amplification (%) 0 0 1.04 0.36  
Deletion (N) 1 3 24 28  
Deletion (%) 1.56 2.59 25 10.14 2x10-8 

STAT1      
No change (N) 56 109 91 256  
No change (%) 87.5 93.97 94.79 92.75  
Amplification (N) 6 4 0 10  
Amplification (%) 9.38 3.45 0 3.62  
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 High 
Immune 

Inter. 
Immune 

Low 
Immune Total CNA P  

Deletion (N) 2 3 5 10  
Deletion (%) 3.12 2.59 5.21 3.62 0.02 

JAK1      
No change (N) 62 106 80 248  
No change (%) 96.88 91.38 83.33 89.86  
Amplification (N) 2 5 11 18  
Amplification (%) 3.12 4.31 11.46 6.52  
Deletion (N) 0 5 5 10  
Deletion (%) 0 4.31 5.21 3.62 0.05 
IFNG      
No change (N) 60 107 83 250  
No change (%) 93.75 92.24 86.46 90.58  
Amplification (N) 1 5 4 10  
Amplification (%) 1.56 4.31 4.17 3.62  
Deletion (N) 3 4 9 16  
Deletion (%) 4.69 3.45 9.38 5.8 0.4 
CTNNB1      
No change (N) 63 102 85 250  
No change (%) 98.44 87.93 88.54 90.58  
Amplification (N) 1 6 1 8  
Amplification (%) 1.56 5.17 1.04 2.9  
Deletion (N) 0 8 10 18  
Deletion (%) 0 6.9 10.42 6.52 0.02 

 

Deletions rather than amplifications of CTNNB1 were seen in the Low Immune 

Subgroup (10.4% in Low immune and none in High immune, P=0.02) (Table 5.6), 

although the gene expression was unaffected by these deletions (P=0.2) (Table 5.7). 

For the vast majority of other genes, the copy number changes were highly correlated 

with mRNA expression of the corresponding gene (Table 5.7). For example, the results 

were the most prominent for NFKB2 (FC=1.6, P=1.5x10-11). 
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Table 5.7: Variation in gene expression between the groups of tumours with and 

without CNA (for the genes significantly varying across the three immune 

subgroups) 

Gene name Fold 
change P 

MYC 0.8 0.0006 

NFKB1 1.2 0.008 

NFKB2 1.6 1.5x10-11 

CHUK 1.2 0.004 

IRAK2 1.7 0.003 

MYD88 1.2 0.02 

MAP3K7 1.2 4.8x10-10 

STAT1 1.1 0.7 
 

Importantly, copy number changes of MYC (amplifications) and NFKB1 (deletions) were 

strongly predictive of poor prognosis overall in univariable analysis and when AJCC 

stage was adjusted (MYC amplifications: adjusted HR=1.8 (95% CI 1.8-2.6, P=0.006; 

NFKB1 deletions: adjusted HR=1.5 (95% CI 1.1-2.1, P=0.007) (Table 5.8, Table 5.9). 

Seven patients who had both amplifications of MYC and deletion of NFKB1 had an even 

worsened prognosis (adjusted HR=3.7, 95% CI 1.6-8.5, P=0.002), (Table 5.8, Table 5.9), 

suggesting an additive detrimental effect of these copy number changes. The 

unadjusted survival analyses of MYC and NFKB1 CNAs are plotted on Figure 5.4. It is of 

note, that all seven patients with alterations in both genes have died. 

Other deletions associated with melanoma specific survival were observed in NFKB2, 

CHUK, IRAK2, MYD88, MAP3K7, JAK2, STAT1 (Table 5.8), and CHUK, MYD88, IRAK2 or 

JAK2 remained significant when adjusted for AJCC stage (Table 5.9).  

  



112 
 

 

Table 5.8: Univariable melanoma specific survival anaysis of CNAs 

Gene name HR P 95% Conf. 
Interval 

MYC 1.79 0.004 1.20 2.66 

NFKB1 1.67 0.001 1.24 2.26 

NFKB2 1.22 0.044 1.01 1.48 

CHUK 1.32 0.007 1.08 1.61 

IRAK2 1.40 0.044 1.01 1.93 

MYD88 1.57 0.004 1.15 2.15 

MAP3K7 1.24 0.054 1.00 1.54 

JAK2 1.51 0.001 1.18 1.95 

STAT1 1.04 0.871 0.63 1.72 
 

 

Table 5.9: Melanoma specific survival anaysis of CNAs adjusting AJCC stage 

Gene name HR P 95% CI 

MYC 1.76 0.006 1.18 2.64 

NFKB1 1.52 0.007 1.12 2.05 
Amp of MYC + Del of 
NFKB1 

3.70 0.002 1.60 8.52 

NFKB2 1.16 0.136 0.95 1.42 

CHUK 1.31 0.009 1.07 1.60 

IRAK2 1.38 0.053 1.00 1.91 

MYD88 1.49 0.013 1.09 2.04 

MAP3K7 1.14 0.252 0.91 1.43 

JAK2 1.40 0.009 1.09 1.81 

STAT1 0.97 0.908 0.59 1.60 
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Figure 5.4: Kaplan Meier plots for amplifications of MYC vs no change, deletion of 

NFKB1 vs no change, and amplification of MYC + deletion of NFKB1 vs no change  
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As our group previously reported that b-catenin pathway is involved in immune 

evasion, I tested its relation with deletions in the NF-kB pathway to see if the 2 

mechanisms are interrelated or independent. I compared the CNAs of genes from the 

NF-kB pathway and CTNNB1 expression dichotomised into high (30%) and low (70%) 

using the software Xtile [213] by Dr Jérémie Nsengimana [76]. This analysis showed 

some overlap between the two immune evasion mechanisms but also some 

heterogeneity. More specifically, 15% of tumours had increased CTNNB1 expression 

alone, 32% had a deletion in at least one gene of the NF-kB pathway without CTNNB1 

overexpression, whilst 31% had both (i.e. increased CTNNB1 and a deletion in at least 

one gene). Figure 5.3 showed that tumours of the Low immune group were more likely 

to have NFKB1 deletions and high CTNNB1 overexpression, as well as more deaths. In 

prognostic terms, in the whole LMC dataset the effect of CTNNB1 upregulation was 

HR=2.2, P=5x10-5, 95%CI 1.5-3.1; the effect of any deletion in the NF-kB pathway was 

HR=2.03, P=2x10-4, 95%CI 1.4-3; and the effect of a combination of these two pathways 

was HR=3.4, P=5x10-5, 95% CI 2.2-5.5 (Figure 5.5, Table 5.10).  

 

 

Figure 5.5: Kaplan Meier plot for combination of Beta-catenin and NFKB CNA scores 
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Table 5.10: Melanoma specific survival analysis of combined Beta-catenin expression 

and NFKB CNA scores 

Combinations of the scores HR P 95% CI 
B-catenin Low/NFKB score Low - - - 
B-catenin High/NFKB score Low 2.03 0.019 1.12 3.67 
B-catenin Low/NFKB score High 2.02 0.005 1.24 3.29 
B-catenin High/NFKB score High 3.35 5x10-5 2.02 5.55 

 

5.4.2 Immunohistochemical staining 

 Antibody optimisation 

The concentrations of the antibodies were chosen based on visual examination of the 

intensity of staining. For the anti-MYC antibody optimised on healthy human tonsil 

tissue I used the concentration of 1:100 (Appendix A.3.1). The same concentration was 

used for anti-HLA-B antibody optimised on healthy human skin (Appendix A.3.2). A 

concentration of 1:250 was selected for the anti-NF-kB1 antibody optimised on healthy 

human sentinel lymph node biopsies. (Appendix A.3.3). 

 Scoring of the stained slides and statistical analysis 

The anti-MYC staining in the melanoma tumours was primarily observed in the nuclei 

and the staining was mostly homogenous, when assessing the staining by eye under 

light microscope. There was a trend to stronger staining for MYC protein in association 

with gene expression across the three staining groups 0, 1 and 2 but this did not reach 

statistical significance (P=0.14). There was a significant correlation when comparing 

high staining (scores 1 and 2 pooled) and absence of staining (0) (P=0.06) (Figure 5.6).  

The staining of HLA-B was predominantly observed on the cellular membrane (as 

expected given the HLAs function) and similarly to MYC the staining was mostly 

homogenous. The transcriptomic expression for HLA-B was incremental across the 

three ascending categories of membranous scores (P=0.006) (Figure 5.7). I observed 

similar results when I reduced the number of categories to 2 (negative and positive 

staining), however with increased significance (P=0.002) (Figure 5.7). 
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Figure 5.6: Example photograph of negative (top left) and positive (top right) nuclear 

staining of MYC (magnification 20x) in tumour cells 

The box and dot plots represent mRNA expression of MYC across the three 

protein scoring categories (top) and two scoring categories (bottom). 
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Figure 5.7: Example photograph of negative (top left) and positive (top right) 

membranous staining of HLA-B (magnification 20x) of tumour cells 

The box and dot plots represent gene expression of HLA-B across the three 

scoring categories (top) and two scoring categories (bottom). 
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The staining for NF-kB p105 in 29 tumours was observed in the tumour cell nuclei and 

in the cytoplasm, although the cytoplasmic staining was always seen as a pink blush, 

and it was problematic to assess whether it was target specific. NKFB1 gene expression 

did not vary significantly across the cytoplasmic staining scores of NF-kB p105 (P=0.4, 

P=0.1, Figure 5.8). The staining of the nuclei was clearer and more distinct, but the 

positive cells were so rare that looking only around the core would result in too many 

negative scores. Therefore, I counted the positive nuclei across the whole tumour 

(Figure 5.8). The NFKB1 expression was significantly higher in positively stained 

tumours (more than 5 positive nuclei) than in negatively stained (less than 5 nuclei 

stained) (P=0.04). The nuclear staining of NF-kB p105 in the tumour strongly correlated 

with the nuclear staining of the TILs, P=3x10-5 (Table 5.11). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 (following page): Example photograph of negative (top left) and positive 

(top right) nuclear staining of NF-kB p105 (magnification 20x) in both tumour 

cells and TILs 

The star on the right picture shows the positive staining of the TILs. The box and 

dot plots represent gene expression of NFKB1 across the three scoring categories 

(top) and two scoring categories (middle) of the membranous staining. The 

bottom graph shows the gene expression of NFKB1 between two categories of 

nuclear staining. 
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Table 5.11: Cross tabulation of samples with nuclear postive and negative staining of 

NF-kB p105 of the tumour and TILs. Fisher’s exact P=3x10-5 

TILs nuclear 
staining 

Tumour cell nuclear staining 
Score 0 Score 1 Total 

Score 0 10 1 11 

Score 1 2 16 18 

Total 12 17 29 
 

The IHC scoring at the continuous scale using Nuance software could be analysed using 

3 types of metrics: a) percentage of haematoxylin staining (non-antibody specific 

nuclear staining), b) percentage of chromagen staining (overall antibody signal), and c) 

co-localised staining of haematoxylin and chromagen (antibody specific nuclear 

staining). Figure 5.9 below shows examples of such signals. 

 

Figure 5.9: Representative images of negative and positive co-localised signal for MYC 

(top panel) and negative and positive total chromagen signal for HLA-B (bottom 

panel)  

Blue colour indicates haematoxylin, pink is chromagen and yellow show co-

localised signal of haematoxylin and chromagen.  
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The correlation analyses showed that haematoxylin staining for MYC and HLA-B were 

positively correlated (R=0.6, P=0.002), which indicated consistency in staining (Figure 

5.10).  

 

Figure 5.10: Scatterplot representing the HLA-B scoring (percentage of positive pixels 

for haematoxylin) on the y-axis and MYC (percentage of positive pixels for 

haematoxylin) on the x-axis 

 

The correlation of HLA-B (chromagen) and MYC (haematoxylin + chromagen) on the 

continuous scale was negative (Spearman’s rank correlation: R=-0.6, P=0.02). However, 

this analysis was only the case where more than 1% of pixels were detected for MYC 

(Figure 5.11). For less than 1%, there does not seem to be an association. 
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Figure 5.11: Scatterplot representing the HLA-B scoring (percentage of positive pixels 

for chromagen) on the y-axis and MYC (percentage of positive pixels for both 

haematoxylin and chromagen) on the x-axis 

The vertical dashed line indicates MYC detection at less than 1%, which was 

ignored in deriving the best fit (red line). 

5.5 Summary 

In this chapter I showed that: 

• Tumours classified in the Low Immune Subgroup had more CNAs, many of which 

were deletions of genes from NF-kB and IFN-g signalling.  

• In the subset of genes tested, tumour gene expression (mRNA), as determined 

from the transcriptomes correlated with DNA CNAs: lower expression was 

associated with genomic deletion, whilst increased expression was associated 

with amplifications. 

• Majority of observed CNAs predicted poor survival such as amplification of MYC 

and deletions of NF-kB and IFN-g signalling genes. 

• The tumour gene expression levels correlated with protein levels assessed by IHC. 

• MYC and HLA-B were negatively correlated on protein level as they were at mRNA 

level. 
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5.6 Discussion 

The aim of this chapter was to evaluate the observations made on the gene expression 

level using CNA data and protein scores obtained by using IHC. 

5.6.1 CNA 

The main question stated regarding the CNA data was whether the observation made 

on gene expression level in relation to immune responses can be also seen on the DNA 

level. Indeed, it was observed that there was a strong agreement for the results 

obtained from the transcriptomic and CNAs data. 

From the technical perspective, it is important to note that the CNA data was obtained 

from the DNA extracted from tumours that were thicker than average due to 

insufficient material for extraction of RNA and DNA from smaller tissue. Moreover, the 

approach I took to categorise the CNA data could be considered as arbitrary, because 

the categorisation of the continuous CNA data to define amplifications and deletions 

of a given gene can be challenging and there is no set threshold. There are existing 

methods to estimate the relative copy number within tumour data, such as GISTIC 

[214] or ABSOLUTE [215] algorithms. However, at the time I was analysing the CNA 

data none of them had been yet applied to these data. 

However, none of these limitations suggest a bias towards the observed results and 

the concordance between transcriptomic expression and CNA indicates a good 

robustness of the approaches used. 

I observed the variation of CNAs in key genes across the three immune subgroups. MYC 

was identified to be overexpressed in the Low Immune Subgroup on the gene 

expression level and the CNA data showed that the amplifications of MYC were more 

frequently present in that subgroup. Likewise, genes involved in NF-kB and IFN-g 

signalling were downregulated in the Low Immune Subgroup and I hypothesised that 

it might be due to deletions of these genes, which was confirmed by CNA data: many 

of these genes indeed were deleted much more frequently in the Low than in the High 

Immune Subgroup. As expected, the majority of observed DNA structural aberrations 

strongly predicted poor prognosis, and this observation confirm the importance of 

these results. The gene expression level was significantly correlated with CNAs for the 

majority of tested genes. One explanation for the few instances where there was no 
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correlation (for example CTNNB1) could be that gene expression is controlled by many 

other factors (such as promoter methylations, which was confirmed in TCGA data by 

Nsengimana et al. [76]) among which structural variation has only a minor role. 

Moreover, the gene expression might be suppressed or enhanced depending on the 

biological states of the cells irrespective of the DNA copy number.  

The landscape of CNA was already revealed in melanoma and the most frequently 

altered genes were identified [46][50][48]. For example MYC is known to be commonly 

amplified in melanoma [50] and as well as in other cancers [216]. Some of these studies 

were investigating the overall landscape of CNAs across the all melanoma sample types 

analysed together [50][48], and other was focused on categorised samples by driver 

mutations such as BRAF, NRAS and NF1 [46],. None of these studies however directed 

their questions towards effectiveness of the immune responses affected by these 

CNAs.  

The results from this chapter indicate that tumours which manifest low immune cell 

infiltration might have an immune evasion process induced by various mechanisms, 

including deletions of key immune genes (NFKB2, CHUK, IRAK2, MYD88, MAP3K7, JAK2, 

STAT1), amplifications of oncogenes (MYC), and up-regulation of b-catenin signalling. 

Moreover, the fact that these mechanisms were not mutually exclusive suggested that 

some of the tumours could be heterogenic, i.e. different tumour clones acquired 

diverse mechanism of immune evasion. 

These are impactful observations, because if indeed the aberrations induce 

impairment of immune responses to melanoma, they should be further investigated 

regarding immunotherapy resistance. For example mutations in JAK2 gene has already 

been reported to be involved in acquired and primary resistance to anti PD-1 therapy 

[217][218]. In summary, these results might suggest that a significant proportion of 

melanoma tumours in the Low Immune Subgroup may have an intrinsic resistance to 

immunotherapies. 

5.6.2 IHC 

The results from the transcriptomic data were also evaluated using the 

immunohistochemical staining. This approach enables to assess the protein level 

within the cell as well as its cellular localisation. It is a standard method for protein 
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level assessment in FFPE samples, although with some limitations. Firstly, scoring of 

staining of melanoma tumours is challenging due to the strong pigmentation (melanin) 

within some of the tumours, which occasionally cannot be distinguished from the 

actual staining of the protein of interest. To mitigate this problem, we used purple 

instead of brown chromagen, nevertheless the problem still occurred for very 

pigmented tumours. For such tumours it was difficult to differentiate positive purple 

staining among very dark pigment, hence were excluded from the analyses. Secondly, 

staining can sometimes be irregular putatively as a reflection of tumour heterogeneity 

and this becomes a problem when a region surrounding one core is positive and 

another core negative. In this instance the sample was dropped, because it was not 

known which core was used for nucleic acid extraction. Moreover, assessing the 

staining for multiple proteins performed on separate slides for each protein is time 

consuming. There are methods available for simultaneous multi-antigen detection, 

but, usually they require usage of fluorochrome rather than chromagen [105][106] and 

are much more expensive than single-antigen detection. Finally, due to ethical issues 

tumour blocks were available only for samples from deceased patients, which 

restricted the statistical power and also may have potentially biased the results.  

Despite these caveats, I was able to demonstrate a positive association of IHC scores 

for the three proteins (MYC, HLA-B, and NF-kB p105) with measured gene expression 

in the tumours. However, in case if the gene expression did not correlate with IHC 

staining, the explanation could be that the protein of interest was posttranslationally 

modified, which could affect the epitope structure and the interaction with the 

antibody.  

Importantly staining was seen in the cellular components that were expected, for MYC 

and NF-kB p105 in the nucleus and HLA-B on the cellular membrane. There was a 

similar negative correlation between HLA-B and MYC on the protein level as on gene 

expression level in both the LMC dataset and patient-derived melanoma cell lines. 

However, the MYC-HLA-B correlation at protein level was negative only when MYC was 

detectable in the slides in more than 1% (Figure 6). Under this threshold, which is very 

low and could reflect the absence of MYC protein, HLA-B protein took a wide range of 

values, suggesting the existence of other regulators of HLA-B in the absence of MYC. 

One example of a cause of low cell surface expression of HLA-B could be 
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posttranslational modifications of this protein as reported by Dellgren et al. [219]. 

Nevertheless, this result was remarkable given the challenge of MYC and HLA-B protein 

scoring on different slides from the same FFPE tumour block, which was very 

challenging. Ideally the experiment should be designed to performed dual (multi-

antigen) staining for both MYC and HLA-B with different colours of chromagen per 

antigen.  

Furthermore, IHC staining analysis showed that tumour nuclear localization of NF-kB 

p105 significantly positively correlated with TILs and with the gene expression of 

NFKB1, suggesting a reciprocal interaction of NF-kB signalling between tumour and 

immune cells. This fact and the observation that the deletions of the genes involved in 

the NF-kB signalling pathway were more frequent in the Low Immune Subgroup and 

were associated poor survival confirmed that this signalling pathway indeed might play 

a prominent role in tumour immune surveillance and progression, as discussed in 

Chapter 4. 
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Chapter 6 

Survival analysis of prognosis predictors in melanoma in 

relation to immune response 

6.1 Aims 

In Chapter 3, I reported the identification of three immune subgroups of primary 

melanomas. In this chapter I describe an investigation of the determinants of survival 

within the immune subgroups. The aims were: 

• To analyse the association between reported (smoking) or measured 

environmental factors (vitamin D levels) and melanoma specific survival (analysis 

adjusted for known prognosis predictors) in the whole dataset and in each of the 

three immune subgroups. 

To perform survival analyses taking under consideration total mutational load: 

• To test the association between a measure of mutational load and melanoma 

specific survival (analysis adjusted for known prognosis predictors). 

• To test this association within each of the immune subgroups. 

6.2 Background 

In Chapter 1, the known predictors of prognosis, such as AJCC stage, sex, age, mitotic 

rate, and site of melanoma were already described. As recently reviewed by Chen and 

Mellman et al. [87], effective cancer cell killing by immune cells is a multistep process 

which can be rendered ineffective at multiple points along the way. Chen and Mellman 

et al. described the potential effects of variation in host genetics, differences in the 

microbiome, environmental exposures, therapeutic agents and cancer cells themselves 

leading e.g. to inability to present tumour antigen/neoantigens, or suppression of 

immune responses by checkpoint molecule expression. I have already described 

evidence (Chapter 4 and 5) that tumour variation e.g. deletion of genes coding for the 

NF-kB signaling pathway or expression of oncogenic MYC might play a role in 

suppressing the immune responses in melanoma.  



128 
 

 

In this chapter I present an analysis of two environmental exposures, smoking and 

vitamin D levels for which the Leeds Melanoma Research Group has already identified 

a role in melanoma specific survival. Moreover, I present the initial analysis of LMC 

mutational load data (with the assumption that it might represent the neoantigen 

load). Overall, I report here an investigation of possible interaction effects on survival 

from these variables and immune responses.  

6.2.1 Environmental factors 

The Leeds Melanoma Research Group has previously explored the biological 

significance of microscopic ulceration and identified some evidence for a role for 

environmental exposures in melanoma progression. The group first performed an 

immunohistochemical study of ulcerated tumours and reported them to have higher 

vascularity and more macrophages [220]. Subsequent transcriptomic studies identified 

a “chronic wound healing” - chronic inflammatory gene expression phenotype [120]. 

The group then argued that if there was chronic inflammation in tumours, then 

ulceration might be more frequent in people with systemic inflammation [221]. 

Ulceration was shown to be more common in the obese patients, the vitamin D 

deficient, smokers and diabetics in univariable analysis but only smoking and vitamin 

D deficiency were associated independently with ulceration and poorer melanoma 

specific survival [221].  

I chose then to look at smoking and vitamin D levels as predictive of survival in the 

three immune subgroups. Since smoking and vitamin D levels (Chapter 3) did not vary 

across the three immune subgroups, I hypothesised that they might interact with these 

groups in terms of survival.  

The Leeds Melanoma Research Group has had a long-standing interest in the role of 

vitamin D in melanoma progression since participants in the Leeds Melanoma Cohort 

displayed an inverse relationship between vitamin D levels and tumour thickness [114]. 

Melanoma specific survival was also superior in those with higher levels of vitamin D 

independently of tumour thickness [221]. Four subsequent studies from three 

continents also reported an inverse relationship between vitamin D levels at diagnosis 

and Breslow thickness [222][223][224][225]. Vitamin D has been shown to inhibit 

cancer cell proliferation in vitro [226], to be negatively correlated with blood levels of 
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C Reactive Protein (an inflammatory marker) [227] and that low levels are associated 

with autoimmunity and increased risk of infection [89]. These observations led to the 

hypothesis that vitamin D may be antiproliferative for melanoma cells but that it may 

also have a beneficial effect via reduction of systemic inflammation [228]. 

In my thesis I have used vitamin D levels in the survival analysis: I have not attempted 

to learn anything more about the role of vitamin D in melanoma progression. An in 

depth biological investigation of this environmental factor was a PhD project 

(simultaneous to my project) of Sathya Muralidhar, Marie Skłodowska-Curie PhD 

student.  

Cigarette smoking is a globally detrimental environmental factor and it is known to be 

the preventable cause of deaths from many different cancer types [229] and this factor, 

as well as deficiency of vitamin D was of interest to the Leeds Melanoma Research 

Group. The contribution of smoking and risk of melanoma development is uncertain 

and some studies even proposed a controversial protective effect of tobacco smoking 

on melanoma development [230][229][231]. As mentioned above, the Leeds 

Melanoma Research Group has reported that cigarette smoking was associated with 

poor melanoma specific survival and with ulceration in the LMC [221]. A later (2017) 

study performed by an independent research group confirmed that smoking was 

predicting poor outcome and additionally revealed that that it was associated with a 

greater likelihood of melanoma metastasis to sentinel lymph nodes [232]. This study 

and one more additionally reported that higher tumour thickness was associated with 

smoking [232][233]. 

These evidences indicate that a biological interaction between smoking and melanoma 

progression might occur, however the exact mechanisms behind this have not yet been 

elucidated.  

Some studies reported that cigarette smoking affects immune responses systemically: 

that it might induce systemic inflammation or cause immunosuppression [88]. A study 

analysing systemic inflammatory markers from participants suffering from prostate, 

lung, colorectal, and ovarian cancer, demonstrated that smokers had higher levels of 

some of these inflammatory markers than non-smokers [234]. Smoking associated 

tissue inflammation was mostly reported for lung cancer [235], as this tissue is directly 
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exposed to inhaled chemicals from the cigarettes. In other types of cancer this 

phenomenon was not widely studied, yet smoking was described as a risk factor for 

various cancer types [88].  

The Bauer laboratory compared measures of the circulating immune cells between 

smokers and non-smokers and were able to identify associated methylation of some 

genes, which were occasionally followed by changes in their expression [236][237]. 

One of these genes was GRP15, which is known to be hypo-methylated in CD3+ T cells 

in smokers and this alteration in CpG sites was assumed to mediate enhanced gene 

expression of GPR15. However the causative effect of smoking on methylation of 

GPR15 was not evidenced [237]. GPR15 is non-the-less considered to be a biomarker 

of smoking being overexpressed in circulating immune cells in smokers in comparison 

to non-smokers [236][237] but its full biological function and significance is not yet 

understood. It was however proposed that the high expression of GPR15 might be 

involved in inflammatory states in the intestine and skin epithelial cells in smokers 

[238].  

In this chapter I report an investigation of the relationship between immune status, 

smoking and GPR15 expression in the LMC transcriptomic data set. 

6.2.2 Mutational load 

Adaptive immunity requires that tumour cells express antigenic peptides which might 

serve as neoantigens or self-antigens to which T cell tolerance is incomplete e.g. as a 

result of restricted tissue expression [239]. Neoantigens are peptides generated by the 

degradation of abnormal proteins, which are detected by the cell as intruders 

potentially harmful for the cell functions. Tumour antigens/neoantigens are presented 

via MHC class I to the immune cells (as described in Chapter 1). In order to trigger 

effective immune responses against melanoma the neoantigens must be broken down 

into smaller molecules that can be successfully presented to the effector immune cells 

present within the tumour microenvironment [87][239]. 

In principle it is expected that melanoma tumours having a high mutational load (and 

hence putatively more neoantigens) will have a more favourable survival, due to the 

greater likelihood of activation of adaptive anti-tumour immune responses. It is of note 

however, that the survival effect might be moderated by other immune factors that 
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play an important role in anti-tumour immunity and do not require antigen 

presentation, such as innate immune responses. For example, if a tumour of a patient 

does not produce/present neoantigens but generates signals that activate e.g. NK cells, 

which effectively kill the tumour cells, the patient might still manifest relatively good 

survival.  

For primary melanoma, there has not yet been any reported association between 

mutational load and survival. However, many studies concentrating on 

immunotherapy treatment responses in metastatic melanoma have shown survival 

benefit for patients having higher mutational load [145][146][147] (as described in 

Chapter 3). As I defined in Chapter 3, I found no significant difference in mutational 

load across the three immune subgroups. Although, as discussed earlier, since the data 

were generated for candidate cancer genes rather than on the whole genome, these 

mutation data might not represent the true neoantigen load that triggers immune 

responses. Nevertheless, these data were used to test whether an association with 

survival in relation to the three immune subgroups could be observed.  

6.3 Methods 

6.3.3 Survival analysis 

The survival analyses were firstly performed for environmental together with clinico-

histopathological factors. The mutational load variable was afterwards analysed 

adjusting the factors significantly predicting prognosis in the first analysis. This order 

was reasoned by the fact that the data for mutational load was available only for 319 

of the 703 tumours, which would significantly reduce the power of the overall model if 

all variables were tested together. 

 Environmental factors 

Firstly, using a univariable Cox proportional hazard model, the association between the 

clinical and environmental variables (AJCC staging, age at diagnosis, sex (females vs 

males), site of melanoma (limbs vs the rest), smoking (ever vs never) and vitamin D 

levels at recruitment (season-adjusted) with MSS were tested in the whole 703 LMC 

dataset. I used the variable “ever/never” smokers as this gave the most power for the 
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whole survival model but repeated all analyses using 2 other variables describing 

smoking habits: duration of smoking and packs of cigarettes smoked per year.  

Subsequently, the significant clinical and environmental predictors from the 

univariable model were tested in a multivariable model adjusting the immune 

subgroups. 

Finally, a multivariable Cox proportional hazard analysis was conducted within each 

immune subgroup using the predictors that showed the strongest degree of 

independence from the previous analysis (Figure 6.1).  

 

Figure 6.1: Schematic work-flow of the survival analyses 

 

 Mutational load 

The derivation of the mutation count variable was explained in Chapter 2. Briefly, it 

represented the mutation count per megabase for a panel of 555 genes, which was 

split into tertiles (high, low, intermediate) (Figure 6.2).  
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Figure 6.2: Histogram representing the density of samples for the total mutation 

count per megabase for 555 gene panel 

The red lines show the points where the data were divided into three groups 

(high, low, intermediate).  

 

Association between the three groups of total mutational load in the whole data set 

(N=521) and survival was tested using a univariable Cox proportional hazard model. 

Subsequently a multivariable Cox proportional hazard model for mutational load was 

applied adjusting other prognostic factors. Finally taking the predictors with the 

strongest degree of independence from the multivariable analysis in the whole dataset 

I tested their association with survival within each of the three immune subgroups 

using a multivariable model. 

Taken together, the variables used for the survival analyses were: 

• Age at diagnosis (continuous, years) 

• Site of melanoma (%) - Rest (Head, Trunk, Rare) vs limbs, (see details in Chapter 

2) 

• Sex (females vs males) 

• Mitotic rate (continuous, count/mm2) 
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• AJCC stage (%) (I vs II vs III trend) 

• Smoking (ever vs never) 

• Duration of smoking (years) 

• Reported packs of cigarettes smoked per year 

• Season-adjusted serum vitamin D at recruitment (continuous, nmol/L), 

• Categorised mutational load (high vs intermediate vs low). 

All these variables were described in detail in Chapter 2. 

6.3.4 Comparative analysis of the tumours by smoking status 

In order to explore the biological role of smoking, I then took an agnostic approach to 

analysis of the transcriptomic data. I hypothesised that if smoking was mediating an 

effect on host tumour interaction, then associated biological pathways would be 

identified in differential gene analyses comparing smokers with non-smokers. I also 

considered a candidate gene approach: I asked if the expression of genes coding for 

cytokines and their receptors, and inferred immune cell subgroups were associated 

with reported smoking. I listed the genes for 133 cytokines and their receptors from 

the Human Genome Organisation (HUGO) database (https://www.genenames.org). 

These and the immune cell scores were compared between smokers and never 

smokers using the Kruskal Wallis test and those with Benjamin-Hochberg FDR<0.05 

were considered significant. The analyses were repeated however with the restriction 

to the immune subgroup for which the smoking status predicted prognosis in the 

strongest manner. 

I sought to replicate a published finding that GPR15 expression is a marker of smoking 

in the blood [236][237] by testing the variation of this gene by smoking status in the 

tumours with the Kruskal Wallis test. To test whether GPR15 was associated with 

inflammatory states in the LMC tumour samples, as suggested in the literature [238] I 

tested the expression correlation with the list of genes coding for 133 cytokines and 

their receptors from the HUGO database (https://www.genenames.org) as above in 

the High Immune Subgroup.  
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6.4 Results 

6.4.1 Environmental factors 

In a univariable Cox proportional hazard model, AJCC staging, smoking (ever/never), 

duration of smoking, average packs of cigarettes smoked per year, site of melanoma, 

age at diagnosis, sex and tumour mitotic rate were significantly predictive of MSS while 

vitamin D levels was not statistically significant (Table 6.1).  

Table 6.1: Table representing results from univariable Cox proportional hazard model 

AJCC stage was categorized as stage I, II or stage III. Mitotic rate is the count of 

mitoses per mm2. Duration of smoking was measured in years. Sex was tested for 

males vs females. Site of melanoma was tested for rest vs limbs. Smoking was 

tested as ever vs never. HR means melanoma specific death hazards ratio. 

Predictor HR P 95% CI 
AJCC stage 2.46 1.2x10-16 1.99 3.05 

Age at diagnosis 1.03 2.4 x10-8 1.02 1.05 

Mitotic rate 1.03 2.2 x10-7 1.02 1.04 

Sex (males) 1.5 0.008 1.1 1.9 

Duration of smoking 1.02 3.4 x10-6 1.01 1.03 

Site (rest) 1.91 1.5 x10-5 1.41 2.59 

Packs per year 1.02 6.5 x10-5 1.01 1.03 

Smoking (ever) 1.63 0.001 1.21 2.20 

Vitamin D 0.99 0.089 0.99 1.00 
 

In the multivariable Cox model when testing the independence factors found 

significant in the univariable model, the AJCC, smoking (ever vs never), site of 

melanoma, age at diagnosis, and mitotic rate remained significant (Table 6.2). When 

the significant predictors of MSS were tested within each of the immune subgroups, 

using the multivariable model, different variables were found to be significant in each 

of the subgroups. Interestingly, smoking (ever vs never) remained the most striking 

predictor of prognosis in the High Immune Subgroup (Table 6.2). The hazard ratio was 

significantly different among the subgroups P<0.03 (Test for HR equality).  
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Table 6.2: Multivariable Cox proportional hazard model for the environmental and 

clinico-histopathological variables significantly predicting prognosis (including 

“smoking”: never/ever) in the univariable model, in the whole dataset and each 

immune subgroup 

AJCC stage was categorized as stage I, II or stage III. Site of melanoma was tested 

for rest vs limbs. Age at diagnosis was reported in years. Mitotic rate is the count 

of mitoses per mm2. HR means melanoma specific death hazard ratio. 

Predictor HR SE z P 95% CI 
OVERALL (N=666) 
AJCC stage 2.05 0.26 5.58 <10-7 1.59 2.64 
Smoking (ever) 1.45 0.25 2.14 0.03 1.03 2.04 
Site (rest) 1.64 0.32 2.51 0.01 1.11 2.41 
Age at diagnosis 1.03 0.01 4.26 <10-4 1.02 1.05 
Sex (males) 0.97 0.17 -0.14 0.89 0.69 1.38 
Mitotic rate 1.02 0.01 2.67 0.01 1.00 1.03 
Inter. cluster vs Low 0.76 0.14 -1.52 0.13 0.53 1.08 
High cluster vs Low 0.63 0.16 -1.86 0.06 0.39 1.03 
LOW IMMUNE (N=202) 
AJCC stage 2.01 0.37 3.82 <10-3 1.40 2.87 
Smoking (ever) 0.92 0.23 -0.34 0.73 0.56 1.51 
Site (rest) 1.98 0.56 2.42 0.02 1.14 3.43 
Age at diagnosis 1.03 0.01 3.1 0.002 1.01 1.06 
Mitotic rate 1.01 0.01 1.11 0.27 0.99 1.03 
INTERMEDIATE (N=207) 
AJCC stage 1.75 0.39 2.51 0.01 1.13 2.72 
Smoking (ever) 1.78 0.51 1.99 0.05 1.01 3.13 
Site (rest) 1.36 0.41 1.02 0.31 0.75 2.46 
Age at diagnosis 1.03 0.01 2.32 0.02 1.00 1.06 
Mitotic rate 1.04 0.01 3.55 <10-3 1.02 1.06 
HIGH IMMUNE (N=122) 
AJCC stage 3.99 1.47 3.74 <10-3 1.93 8.23 
Smoking (ever) 4.59 2.35 2.97 0.003 1.68 12.53 
Site (rest) 2.52 1.31 1.78 0.08 0.91 6.99 
Age at diagnosis 1.05 0.02 2.24 0.03 1.01 1.10 
Mitotic rate 1.02 0.04 0.37 0.71 0.93 1.11 
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The Kaplan Meier plot in Figure 6.3 is a graphical representation of the smoking effect 

in the whole LMC cohort. Ever smoking was associated with a significantly worsened 

survival. 

 

Figure 6.3: Kaplan Meier plot for ever vs never smoking in the whole dataset 

P from multivariable analysis adjusting for prognostic factors. 

 

In Figure 6.4 to Figure 6.6, Kaplan Meier plots show the different survival profiles 

associated with smoking in Low, Intermediate and High Immune Subgroups 

respectively. It can be seen that the effect of having ever smoked was the strongest in 

participants with tumours assigned to the High Immune Subgroup. There is a clear 

trend with the increasing strength of immune responses: no smoking effect (P=0.73) in 

low immune tumours, moderate effect (HR=1.8, P=0.05) in intermediate immune 

tumours and very strong effect (HR=4.6, P=0.003) in high immune tumours. 
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Figure 6.4: Kaplan Meier plot for ever vs never smoking in the Low Immune Subgroup 

P from multivariable analysis adjusting for prognostic factors. 

 

Figure 6.5: Kaplan Meier plot for ever vs never smoking in the Intermediate Immune 

Subgroup 

P from multivariable analysis adjusting for prognostic factors. 
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Figure 6.6: Kaplan Meier plot for ever vs never smoking in the High Immune Subgroup 

P from multivariable analysis adjusting for prognostic factors. 

 

I replicated the above observation using two more variables describing reported habits 

of smoking: duration of smoking and average packs smoked per year. All these 

variables were strong hazard factors for melanoma death in the High Immune 

Subgroup (HR=1.04, P=<0.001; HR=1.03, P=0.01, respectively) and less so in the 

Intermediate Immune Subgroup (HR=1.01, P=0.19; HR=1.02, P=0.09, respectively), 

with the weakest effect seen for average cigarette packs smoked per year in the Low 

Immune Subgroup (HR=0.01, P=0.23; HR=1.01, P=0.02, respectively). The difference in 

strengths of these HRs within one immune subgroup reflects the different units they 

correspond to: for example the effect of smoking for one year is not the same as 

smoking one pack per year.  

AJCC stage and age at diagnosis strongly predicted MSS in each of the immune 

subgroups (Table 6.2, Table 6.3, Table 6.4). Site of melanoma was the strongest 

predictor of MSS in the Low Immune Subgroup (Table 6.2, Table 6.3, Table 6.4). Mitotic 

rate had the strongest effect in the Intermediate Immune Subgroup (Table 6.2, Table 

6.3, Table 6.4).  
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Table 6.3: Multivariable Cox proportional hazard model for the environmental and 

clinico-histopathological variables significantly predicting prognosis (including 

the “duration of smoking” variable) in the univariable model, in the whole 

dataset and each immune subgroup 

AJCC stage was categorized as stage I, II or stage III. Site of melanoma was tested 

for rest vs limbs. Age at diagnosis was reported in years. Mitotic rate is the count 

of mitoses per mm2. HR means melanoma specific death hazard ratio. 

Predictor HR SE z P 95% CI 
OVERALL (N=527) 
AJCC stage 2.03 0.26 5.49 <10-3 1.58 2.61 
Duration of smoking 1.02 0.01 2.9 0.004 1.00 1.03 
Site (rest) 1.65 0.32 2.56 0.01 1.12 2.43 
Age at diagnosis 1.03 0.01 4.04 <10-3 1.02 1.05 
Sex (males) 0.91 0.17 -0.49 0.62 0.64 1.30 
Mitotic rate 1.02 0.01 2.88 0.004 1.01 1.03 
Inter. cluster vs Low 0.81 0.15 -1.14 0.26 0.56 1.17 
High cluster vs Low 0.65 0.16 -1.75 0.08 0.40 1.05 
LOW IMMUNE (N=200) 
AJCC stage 1.95 0.36 3.64 <10-3 1.36 2.79 
Duration of smoking 1.01 0.01 1.2 0.23 0.99 1.02 
Site (rest) 1.78 0.49 2.07 0.04 1.03 3.06 
Age at diagnosis 1.03 0.01 2.79 0.005 1.01 1.05 
Mitotic rate 1.01 0.01 1.13 0.26 0.99 1.03 
INTERMEDIATE (N=207) 
AJCC stage 1.74 0.38 2.5 0.01 1.13 2.68 
Duration of smoking 1.01 0.01 1.3 0.19 0.99 1.03 
Site (rest) 1.43 0.43 1.19 0.23 0.79 2.60 
Age at diagnosis 1.03 0.01 2.25 0.03 1.00 1.06 
Mitotic rate 1.04 0.01 3.61 <10-3 1.02 1.06 
HIGH IMMUNE (N=120) 
AJCC stage 3.14 1.13 3.19 0.001 1.55 6.34 
Duration of smoking 1.04 0.01 3.14 0.002 1.01 1.06 
Site (rest) 1.97 1.04 1.29 0.20 0.70 5.53 
Age at diagnosis 1.04 0.02 1.9 0.06 1.00 1.09 
Mitotic rate 1.04 0.05 0.93 0.35 0.96 1.14 
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Table 6.4: Multivariable Cox proportional hazard model for the environmental and 

clinico-histopathological variables significantly predicting prognosis (including 

the “packs cigarettes per year” variable) in the univariable model, in the whole 

dataset and each immune subgroup 

AJCC stage was categorized as stage I, II or stage III. Site of melanoma was tested 

for rest vs limbs. Age at diagnosis was reported in years. Mitotic rate is the count 

of mitoses per mm2. HR means melanoma specific death hazards ratio. 

Predictor HR SE z P 95% CI 
OVERALL (N=507) 
AJCC stage 2.13 0.28 5.75 <10-3 1.65 2.76 
Packs per year 1.02 0.00 3.48 0.001 1.01 1.03 
Site (rest) 1.65 0.32 2.58 0.01 1.13 2.40 
Age at diagnosis 1.03 0.01 3.24 0.001 1.01 1.04 
Sex (males) 0.97 0.18 -0.14 0.89 0.68 1.40 
Mitotic rate 1.01 0.01 2.11 0.04 1.00 1.03 
Inter. cluster vs Low 0.79 0.15 -1.24 0.21 0.55 1.14 
High cluster vs Low 0.57 0.15 -2.16 0.03 0.35 0.95 
LOW IMMUNE (N=190) 
AJCC stage 1.98 0.36 3.75 <10-3 1.38 2.82 
Packs per year 1.01 0.01 2.38 0.02 1.00 1.03 
Site (rest) 1.98 0.56 2.43 0.02 1.14 3.44 
Age at diagnosis 1.02 0.01 2.13 0.03 1.00 1.05 
Mitotic rate 1.00 0.01 0.34 0.73 0.98 1.02 
INTERMEDIATE (N=202) 
AJCC stage 1.89 0.44 2.72 0.01 1.19 2.98 
Packs per year 1.02 0.01 1.71 0.09 1.00 1.04 
Site (rest) 1.44 0.42 1.23 0.22 0.81 2.57 
Age at diagnosis 1.03 0.01 2.05 0.04 1.00 1.05 
Mitotic rate 1.03 0.01 3.22 0.001 1.01 1.06 
HIGH IMMUNE (N=116) 
AJCC stage 4.28 1.74 3.58 <10-3 1.93 9.51 
Packs per year 1.03 0.01 2.49 0.01 1.01 1.05 
Site (rest) 1.50 0.76 0.8 0.43 0.55 4.07 
Age at diagnosis 1.04 0.02 1.63 0.10 0.99 1.08 
Mitotic rate 1.03 0.05 0.66 0.51 0.94 1.12 
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Smoking is known to be associated with deprivation [240]. The deprivation index in the 

LMC cohort was recorded as a Townsend score, based on the residence area (post 

code). Therefore, I took advantage of the information included in LMC and tested if the 

smoking effect (ever vs never) on survival was confounded by deprivation status. 

The results showed that the hazard ratio and the P value for the detrimental effect of 

smoking on MSS was the same before and after adjustment for Townsend score: 

HR=1.6 P=0.001, indicating that the smoking effect was unlikely to be confounded by 

deprivation. 

Taken together, reported smoking was shown to be associated with worse outcome 

independently to other known melanoma specific survival predictors and socio-

economic status, with the strongest effect being observed in the High Immune 

Subgroup.  

6.4.2 Comparative analysis of the tumours by smoking status 

 Agnostic analysis of the transcriptomic data 

I tested whole transcriptome differences in the tumours excised from smokers 

compared with non-smokers. No gene was significantly differentially expressed by 

tumours removed from participants who smoked and those who did not, after multiple 

testing correction (Benjamini-Hochberg FDR<0.05) in the whole dataset (see the top 20 

genes in Appendix A.4.1) and in the High Immune Subgroup (top 20 genes in Appendix 

A.4.2). 

 Clinico-histopathological factors and immune cell scores  

Subsequently, in order to understand the biological differences in the tumours 

between smokers and never smokers I tested whether the clinico-histopathological 

characteristics differed between these two groups. In the whole dataset, smoking was 

associated with thicker tumours (Breslow Thickness) (P=0.008), and with a higher 

mitotic rate at a borderline significant level (P=0.09) (Table 6.5). However, smoking 

status did not differ with ulceration status as previously reported in LMC [221], but this 

is likely to reflect weaker statistical power compared for the previous study which was 

based on more than 2000 patients [221]. When the analysis was restricted to the High 

Immune Subgroup, only mitotic rate came close significance at P=0.08 (Table 6.6). 
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Table 6.5: Variation of clinico-histopathological features of the tumours between 

ever and never smokers in the whole dataset 

Characteristic Ever smokers Never 
Smokers P-value (N) 

Number of participants (658) 334 324  - 

Ulcerated (%) 35.1 35.2 0.2 (658) 
Breslow thickness (median, 
mm) 

2.4 2.1 0.008 (648) 

Mitotic rate (median, 
count/mm2) 

4 3 0.09 (559) 

TILs (%) (as determined by 
clinic dermatopathologists) 
     Brisk 
     Non-brisk 
     Unclassified 
     No TILs 

  
 
13.9 
63.9 
8.7 
13.5 

  
 
15.8 
60.1 
9.8 
14.3 

 
 
0.9 (518) 

TILs (%) – (single observer, S 
O’S) 
     Brisk 
     Non-brisk 
      No TILs 

  
11.7 
81.7 
6.6 

  
9.9 
81.2 
8.9 

 
0.5(567) 
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Table 6.6: Variation of clinico-histopathological features of the tumours between 

ever and never smokers in the High Immune Subgroup  

Characteristic Ever smokers Never 
Smokers P-value (N) 

Number of participants (152) 74 78   

Ulcerated (%) 34 26 0.27 (152) 
Breslow thickness (median, 
mm) 

2.2 1.95 0.51 (149) 

Mitotic rate (median, 
count/mm2) 

3.5 2 0.08 (129) 

TILs (%) (clinic 
dermatopathologists) 
     Brisk 
     Non-brisk 
     Unclassified 
     No TILs 

  
23 
65.6 
9.8 
1.6 

  
32.8 
46.3 
13.4 
7.5 

 
0.1 (128) 

TILs (%) – (single observer, S 
O’S) 
     Brisk 
     Non-brisk 
      No TILs 

  
20.6 
76.5 
2.9 

  
25.3 
70.4 
4.2 

 
0.7(139) 

 

As there was an interaction effect on survival between immune subgroups and 

smoking, I further asked if there were differences in immune cell scores by smoking. I 

tested the differential expression of 27 immune cell scores between ever and never 

smokers in the whole dataset and in the High Immune Subgroup. However, this analysis 

did not show any significant results even before adjusting for multiple testing (Table 

6.7). The score for plasmacytoid dendritic cells was only close to being significant 

(higher in smokers) prior to multiple testing correction in the High Immune Subgroup 

(P=0.07). 
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Table 6.7: Differences in immune cell scores between ever and never smokers in the 

whole dataset and the High Immune Subgroup  

Negative Z score indicates higher score in ever smokers. 

 Whole data High Immune Subgroup 

Cell Type Z score P value Z score P value 

Activated B cells -0.74 0.46 0.36 0.72 

Central memory CD4 -0.78 0.44 -0.31 0.76 

Central memory CD8 -0.51 0.61 -0.72 0.47 

Cytotoxic cells -0.94 0.35 1.52 0.13 

DC -0.04 0.97 -0.87 0.38 

Effector memory CD8 -0.80 0.42 0.54 0.59 

Eosinophil -0.48 0.63 -0.13 0.89 

iDC -1.21 0.23 -0.28 0.78 

Immature B cells -1.28 0.20 -0.01 0.99 

Macrophages -0.61 0.54 0.52 0.6 

Mast cells -0.89 0.37 -1.04 0.3 

MDSC -1.28 0.20 -0.22 0.82 

Memory B cells -1.52 0.13 -0.87 0.39 

Monocytes -1.66 0.10 -0.62 0.53 

Neutrophils -0.09 0.93 0.61 0.54 

NK -0.94 0.35 0.52 0.61 

NK56 bright -0.46 0.65 1.6 0.11 

NK56 dim 1.02 0.31 0.04 0.97 

NKT -0.01 1.00 0.9 0.37 

pDC -1.09 0.28 -1.8 0.07 

T cells -0.60 0.55 -0.37 0.71 

TFH -0.17 0.86 1.23 0.22 

TGD -1.01 0.31 0.63 0.53 

Th1 -0.70 0.48 0.28 0.78 

Th17 0.90 0.37 0.78 0.43 

Th2 -0.87 0.38 -0.98 0.33 

Treg -0.60 0.55 0.09 0.93 
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 GPR15 

Since GPR15 is known as a marker of smoking in circulating immune cells [236][237], I 

tested whether its tumour expression was associated with smoking status in the LMC. 

Surprisingly, the data showed that GPR15 expression was not significantly higher in the 

tumours of ever compared to never smokers in the whole dataset of 703 tumours 

(P=0.12), but GPR15 expression was significantly higher in tumours of ever smokers 

compared to never smokers of the High Immune Subgroup, even though the statistical 

power was lower in this subset (P=0.02) (Table 6.8). Using still smoker vs non-smoker 

as an alternative definition of the smoking variable, GPR15 expression was slightly 

higher in tumours of still smokers in both the whole dataset (P=0.01) and the High 

Immune Subgroup (P=0.002) (Table 6.9).  

Table 6.8: Association of GPR15 gene expression between ever and never smoking in 

the whole dataset and the High Immune Subgroup 

GPR15 
Ever (mean of 
log2 gene 
expression) 

Never (mean of 
log2 gene 
expression) 

Fold 
change P 

Whole dataset 8.0 7.9 1.07 0.12 

High Immune 8.5 8.1 1.32 0.02 
 

Table 6.9: Association of GPR15 gene expression between non and still smokers in 

the whole dataset and the High Immune Subgroup 

GPR15 
Non-smokers  
(mean of log2 
gene expression) 

Still smokers  
(mean of log2 
gene expression) 

Fold 
change P 

Whole dataset 7.9 8.3 1.32 0.01 

High Immune 8.1 9.0 1.87 0.002 
 

Moreover, when I tested the expression of GRP15 across the three immune subgroups 

restricting the analysis only to “ever smokers” or “never smokers”, I observed that 

GRP15 was significantly higher in the High Immune Subgroup only in ever smokers 

(Figure 6.7). 
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Figure 6.7: Expression (log2 scale) of GPR15 across the three immune subgroups 

restricted to never (top) and ever smokers (bottom) 

 Analysis of GPR15 expression in peripheral blood transcriptomes 

As our group have also generated gene expression data from peripheral blood from 

melanoma patients in an independent patient cohort, Dr John Davies (Senior 

statistician in the group) tested the whole transcriptome differences between non-

smokers and still smokers. Importantly the most significantly differentially expressed 

gene after multiple correction was GPR15 (P=1.5x10-5, data not shown), which 

corroborated the existing literature, suggesting that GPR15 is higher in peripheral 

blood in smokers than non-smokers. 
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 GPR15 and cytokines 

Following the literature suggestions that GPR15 might be involved in inflammatory 

conditions and the above results that GPR15 correlated with smoking status 

particularly in the High Immune Subgroup I further tested the correlation between 

GPR15 tumour expression and the expression genes coding for cytokines and their 

receptors. 

The top positively correlating gene with GPR15 was Chemokine (C-X-C motif) ligand 3 -

CXCL3 (R=0.27, P=0.001). Among the other strong positively correlating genes (coding 

for cytokines and their receptors) with GPR15 in the High Immune Subgroup were: 

Interleukin 6 - IL6 (R=0.14, P=0.09), Interleukin 6 Receptor - IL6R (R=0.19, P=0.016), and 

Interleukin 6 Signal Transducer: - IL6ST (R=16, P=0.01) genes. It is of note that the 

correlations with GPR15 expression values were weak overall and the results were not 

corrected for multiple testing. The 0.05 alpha threshold would be 0.0004 after multiple 

testing correction (Bonferroni, 133 tests) and none of the correlations reaches this 

level. However, it is of interest that 12 genes reached significance (unadjusted 0.05 

level, Table 7) when no more than 7 were expected by chance. 

Table 6.10: Cytokines and their receptors most strongly correlated with GRP15 in the 

High Immune Subgroup, Spearman’s rank correlation  

Gene name P-value R 
CXCL3 0.001 0.27 

IL18R1 0.003 0.24 
IL7R 0.01 0.22 
CCL21 0.01 0.21 
IL6ST 0.01 0.20 
CCL19 0.02 0.19 
IL15 0.02 0.19 
IL6R 0.02 0.19 
IL32 0.04 0.17 
CXCL12 0.03 0.17 
CXCR6 0.05 0.16 
CCR4 0.05 0.16 

IL11RA 0.07 0.15 

IL6 0.09 0.14 
CCR2 0.08 0.14 
IL9 0.08 0.14 
CXCR4 0.08 0.14 
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A similar analysis conducted in TCGA dataset (metastatic tumours) confirmed that the 

expression of IL6ST and IL6R were positively correlated with GPR15 in the High Immune 

Subgroup (R=0.4, P=0.0003; R=0.3, P=0.01, respectively), while IL6 (R=-0.2, P=0.9) and 

CXCL3 (R=-0.2, P=0.1) were not. 

In the whole LMC dataset, none of these three genes was correlated with GPR15: IL6 

(R=0.04, P=0.3), IL6R (R=0.05, P=0.2), IL6ST (R=-0.03, P=0.5). In the whole TCGA dataset 

IL6R (R=0.13, P=0.02) and IL6ST (R=0.2, P=0.0004) were positively correlated with 

GPR15, but less so than in the High immune Subgroup. To add a layer of complexity, 

IL6 (R=0.2, P=0.0004) was positively correlated with GPR15 in the whole TCGA dataset, 

although it was not in the High Immune Subgroup.  

Summarising, the correlation between IL6R and IL6ST with GPR15 were consistent in 

the LMC and TCGA High Immune Subgroup. 

 GPR15 and ulceration 

To further explore the relationship between GPR15 and inflammation, I tested whether 

the expression of GPR15, CXCL3, IL6, IL6R, and IL6ST varied with ulceration status since 

the Leeds Melanoma Group has reported that tumour ulceration was associated with 

transcriptomic evidence of wound healing inflammation in a subset of this cohort (200 

tumours) [120]. While GPR15, CXCL3, IL6R, and IL6ST expression did not significantly 

vary between ulcerated and non-ulcerated tumours (P=0.5, 0.9, 0.8, 1.0, respectively), 

IL6 itself was significantly more expressed in ulcerated than in non-ulcerated tumours 

(P=1.2x10-5) (Figure 6.8), consistently with the earlier report  [120]. 

Taken together these data suggest that GPR15 might be associated with inflammatory 

IL6 signalling in the High Immune Subgroup as the results from the LMC were consistent 

with TCGA. Moreover, GPR15 correlated positively with CXCL3, however only in the 

LMC which could potentially be the result of biological differences between primary 

and metastatic tumours. Or possibly this observation was a result of chance. 
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Figure 6.8: Expression of GPR15 (top) and IL6 (bottom) between non-ulcerated and 

ulcerated tumours 

 

6.4.3 Mutational load 

The survival analysis of the three immune subgroups by mutational load in the whole 

dataset showed that a high mutational load predicted the most favourable prognosis 

(HR=0.6, P=0.06) and no difference was seen between low and intermediate 

mutational loads (HR=1.3, P=0.3) (Figure 6.9). Similar results were observed in the Low 

Immune Subgroup (Figure 6.10), while in the Intermediate Subgroup none of the 

mutational load groups predicted prognosis (Figure 6.11. In the High Immune 

Subgroup, the results showed that high mutational load predicted even better 

prognosis compared to other subgroups (in fact all 21 patients who were classified in 

the High Immune Subgroup and had high mutational load survived), but intriguingly 
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the low mutational load predicted better prognosis than the intermediate (Figure 

6.12).



 
 

 

 

Mutational load HR P 95% CI 

Low  - - - - 
Intermediate 1.3 0.3 0.79 2.1 
High 0.6 0.06 0.3 1.02 

Figure 6.9: Kaplan Meier plot for three mutational load groups in the 

whole dataset (N=301) 

Table represents the results from a univariable Cox proportional 

hazard model. 

 

Mutational load HR P 95% CI 

Low  - - - - 
Intermediate 1.0 1.0 0.5 2.0 
High 0.4 0.03 0.2 1.8 

Figure 6.10: Kaplan Meier plot for three mutational load groups in the 

Low Immune Subgroup (N=117)  

Table shows the results from univariable Cox proportional hazard 

model. 
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Mutational load HR P 95% CI 

Low  - - - - 
Intermediate 0.8 0.6 0.3 1.9 
High 0.6 0.3 0.2 1.7 

Figure 6.11: Kaplan Meier plot for three mutational load groups in the 

Intermediate Immune Subgroup (N=107) 

Table represents the results from a univariable Cox proportional 

hazard model. 

 

Mutational load HR P 95% CI 

Low  - - - - 
Intermediate 3.7 0.02 1.2 11.08 
High - - - - 

Figure 6.12: Kaplan Meier plot for three mutational load groups in the 

High Immune Subgroup (N=77) 

Table represents the results from univariable Cox proportional 

hazard model. 
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In the whole dataset, when mutational load survival analysis was adjusted for known 

melanoma prognosis predictors it remained significantly protective of melanoma 

death (trend test, HR=0.65, P=0.02), (Table 6.11). In the stratified adjusted analysis, the 

mutational load significantly predicted prognosis in the Low and High Immune 

Subgroups (HR=0.5, P=0.01; HR=0.4, P=0.05, respectively) and the HRs were 

comparable. Importantly smoking (ever vs never) still predicted prognosis significantly 

in the High and Intermediate Immune Subgroups (HR=5.8, P=0.03; HR=5.1, P<10-3) in 

these analyses including mutation load, but was not significant in the Low Immune 

Subgroup (HR=1.0, P=0.1) (Table 6.11). 

Table 6.11: Multivariable Cox proportional hazards model for the variables 

significantly predicting prognosis in the univariable model including smoking 

(never/ever) and mutational load in the whole dataset and within immune 

subgroups 

AJCC stage was categorized as stage I, II or stage III. Site of melanoma was tested 

for rest vs limbs. Age at diagnosis was reported in years. Mitotic rate is the count 

of mitoses per mm2. Mutational load was categorised as high, intermediate or 

low. HR means melanoma specific death hazards ratio. 

Predictor HR SE z P 95% CI 

OVERALL (N=240) 
AJCC stage 1.66 0.35 2.39 0.02 1.10 2.52 

Smoking (ever) 1.94 0.54 2.35 0.02 1.12 3.36 

Site (rest) 1.26 0.39 0.74 0.46 0.69 2.30 

Age at diagnosis 1.05 0.01 3.44 0.00 1.02 1.07 

Mitotic rate 1.02 0.01 1.86 0.06 1.00 1.03 

Inter. cluster vs Low 1.06 0.33 0.17 0.86 0.57 1.94 

High cluster vs Low 0.64 0.23 -1.25 0.21 0.31 1.30 

Mutational load 0.65 0.12 -2.42 0.02 0.46 0.92 

LOW IMMUNE (N=90) 
AJCC stage 1.49 0.46 1.28 0.20 0.81 2.73 

Smoking (ever) 0.99 0.38 -0.03 0.98 0.46 2.12 

Age at diagnosis  1.05 0.02 2.64 0.01 1.01 1.09 

Mitotic rate 1.01 0.01 0.74 0.46 0.99 1.03 

Mutational load 0.50 0.13 -2.60 0.01 0.30 0.84 
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Predictor HR SE z P 95% CI 

INTERMEDIATE (N=82) 
AJCC stage 1.59 0.66 1.10 0.27 0.70 3.60 

Smoking (ever) 5.12 2.85 2.93 0.00 1.72 15.24 

Age at diagnosis 1.04 0.02 1.64 0.10 0.99 1.09 

Mitotic rate 1.06 0.01 3.98 0.00 1.03 1.09 

Mutational load 0.74 0.24 -0.92 0.36 0.39 1.41 

HIGH IMMUNE(N=68) 
AJCC stage 1.89 1.00 1.21 0.23 0.67 5.31 

Smoking (ever) 5.76 4.56 2.21 0.03 1.22 27.16 

Age at diagnosis 1.08 0.04 2.11 0.04 1.01 1.17 

Mitotic rate 1.09 0.09 1.14 0.25 0.94 1.27 

Mutational load 0.44 0.18 -1.99 0.05 0.20 0.99 

 

6.5 Summary 

• Vitamin D did not predict prognosis in the whole data, nor in immune subgroups. 

• Smoking strongly predicted death from melanoma in an immune dependent 

manner: the strongest in the High Immune Subgroup (in the analyses including 

and excluding the mutational load variable). 

• GPR15 was associated with smoking status and correlated with expression of 

genes in the IL6 signalling pathway in the High Immune Subgroup, with replication 

in metastatic tumours (TCGA dataset).  

• GPR15 was equally expressed in non-ulcerated and ulcerated tumours while IL6 

was more highly expressed in ulcerated tumours. 

• High mutational load predicted the most favourable prognosis, particularly in the 

High Immune Subgroup in the univariable analysis but the effect was comparable 

between High and Low immune subgroups in multivariable analyses.  
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6.6 Discussion 

6.6.1 Effect of clinico-histopathological and environmental factors on 

prognosis in different immunological contexts 

 Clinico-histopathological factors 

AJCC stage was one of the strongest independent survival predictors in primary 

melanoma in the whole dataset and it remained consistently significant in stratified 

analysis by the immune subgroups. This observation indicated that irrespective of the 

level of immune response within melanoma AJCC stage is still a strong prognostic 

marker. Higher mitotic rate was borderline significant for melanoma death overall and 

subgroup analysis suggested that the strongest association was within the 

intermediate immune subgroup.  

Site of melanoma significantly predicted prognosis mainly in the Low Immune 

Subgroup, however this effect was driven by the fact that the rare (sun protected) sites 

were mostly classified into this group, and as mentioned in Chapter 1 these are the 

tumours that have the worse prognosis for the melanoma patients [14][15][17][18] 

possibly due to low C>T mutation rates [19], or late diagnosis [16].  

 Smoking 

The environmental exposures were analysed: vitamin D levels and smoking, however 

only smoking showed to be an important, very strong predictor of MSS in an immune 

dependent manner. The effect of cigarette smoking was the strongest in the High 

Immune Subgroup even though this was the smallest subset and the analysis had 

therefore the lowest statistical power. Higher cancer specific death associated with 

smoking was reported in breast cancer [241], head and neck [242], ovarian [243], 

prostate [244], and colorectal cancer [245]. However, none of these studies has tested 

the dependency on the immune responses.  

The absence of differentially expressed genes in tumours in relation to cigarette 

smoking in the agnostic analysis, despite a significant association with melanoma death 

was surprising. If overall survival was used it might have been hypothesised that the 

detrimental effect of smoking was related to non-melanoma deaths but our study has 
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used accurate measures of cause of death and therefore we were confident that the 

increased hazard of death in smokers was related to melanoma itself. If I had more 

time during my PhD I would repeat the survival analyses testing the overall survival in 

order to explore whether the smoking effect was also related to non-melanoma 

specific death, although the number of non-melanoma death is limited. 

Given the well reported association of smoking with markers of systemic inflammation 

e.g. C reactive protein levels [246], we explored the association of smoking with 

immune cell scores but no significant associations were seen either for immune cells 

or for genes coding for immune checkpoint molecules. It is commonly accepted that 

smoking might induce either pro- or anti-inflammatory systemic states [247][248] 

implying complex effects on host/tumour interaction. 

There are a number of hypotheses which might explain the lack of detectable immune 

differences in the tumours of smokers vs non-smokers. The first hypothesis is that 

smoking may impair tumour cell killing functionally even when immune cells are 

present in the tumour, by downregulating the functions of adaptive and innate 

immune cells [88]. The second hypothesis is that inference of immune cell 

subpopulation from transcriptomic data might be insensitive to subtle changes in 

immune function. Or this changes were not related to the gene expression level but for 

example to protein modifications (so called non-genetic modifications). Third, the 

immune cells inferred within melanomas could be a reflection a chronic inflammatory 

state (from smoking or other causes) rather than specific anti-melanoma inflammation 

[88][248]. That is that the inferred T cells might not be targeted to tumour cells: rather 

that they are present within tumour cells as they may be present in other tissues in 

smokers. 

Furthermore, some studies showed that smoking might affect patient microbiome in 

the gut, which in turn might affect systemic immune responses [249]. Interestingly, 

recently researchers studying responses to immunotherapy in melanoma patients have 

shown that microbiome might indicate the outcome of this therapy. One study 

reported that higher diversity and relative abundance of bacteria of the 

Ruminococcaceae family [250] were associated with better responses to 

immunotherapy. Of note, another study analysing changes in microbiome of side-

stream smoking mice (irrespective of cancer) reported that the relative abundance of 
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Ruminococcus albus (Ruminococcaceae family) in these animals was decreased [251]. 

Another study reported that microbial diversity increases after smoking cessation in 

human samples [252]. In conclusion, these reports suggest that smoking might have an 

impact on anti-tumour immune response and immunotherapy outcomes by affecting 

patients’ microbiome, followed by changes in systemic responses. 

Cigarettes are composed of 4.500 compounds five of which are cancerogenic [253]. 

The major compound of cigarettes is nicotine, but it is not clear whether it acts as 

carcinogen, however it has been proposed to cause immunosuppression 

[253][254][255]. It is of note, that e-cigarettes, a relatively new method of “safe” 

smoking electronic nicotine delivery system (ENDS), might also be harmful and affect 

immune responses. It has been recently shown that the e-cigarette liquid induces 

inflammatory states of alveolar macrophages in vitro [256]. On the other hand, e-

cigarette vaping was reported to induce downregulation of immune genes in nasal 

epithelial cells [257]. 

Taken together, it is clear from the literature review that smoking does affect the 

systemic or tissue-specific immune responses as it might also be for e-cigarettes, 

however in melanoma it remains to be elucidated. In our study, cigarette smoking 

reduced patients survival, more so in those with strong immune infiltration, indicating 

that smoking impairs immune cell function rather than limit their numbers. 

In summary the results obtained from the survival analyses stress the importance of 

smoking cessation, for both classical cigarettes and e-cigarettes for melanoma patients 

and those at risk of developing melanoma. Additionally, because the strongest risk was 

seen in the High Immune Subgroup it also reinforces the view that smoking might 

generate a “false positive” immune responses within the tumour, which do not kill the 

tumour. Therefore, smoking habits of the patients should be taken under consideration 

in immunotherapy clinical trials.  

 GPR15 

The observation of GPR15 over-expression in smokers corroborated the literature, 

which suggested this gene as smoking biomarker. However, it was not proven that 

smoking directly increases GPR15 expression. It is rather proposed that smoking might 

induce the excess of the GPR15 positive immune cells [237]. GPR15 is an orphan 
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chemokine receptor and with as yet unidentified natural ligand [238] and it is known 

to be expressed in immune cells, colon mucosa, but also in skin and bladder [238]. The 

knowledge about biological functions of GPR15 within each tissue type is limited, 

however it is proposed that it might be involved in their chronic inflammation, due to 

attraction of homing T cells into skin and colon [238][258]. 

In this chapter, I reported a positive correlation between GPR15 and genes involved in 

IL6 signalling in the High Immune Subgroup, from 2 datasets (the LMC and TCGA). IL6 

signalling is perceived as being involved in chronic and systemic inflammation 

[259][260]. Furthermore, IL6 was shown to regulate almost all hallmarks of cancer in 

various cancer types, including inhibition of apoptosis, promotion of survival, 

proliferation, angiogenesis, invasiveness and metastasis [261]. However, the exact role 

of IL6 signalling in melanoma is still not fully understood [262]. The Leeds Melanoma 

Research Group has reported evidence of its involvement in microscopic ulceration of 

primary melanoma, a marker of a chronically inflamed tumour, associated with 

systemic inflammation [220][221]. GPR15 did not significantly vary between ulcerated 

and non-ulcerated tumours, however IL6 itself was more highly expressed in ulcerated 

tumours. It would be interesting to follow up the correlation of GPR15 with the 

cytokines in more details, however the time did not allow me to do so.  

Summarising, the GPR15 expression in the melanoma tumours was significantly 

associated with smoking status and borderline with IL6 signalling in the High Immune 

Subgroup, which could support the hypothesis that the presence of the immune cells 

within melanoma tumour of the smokers was a non-melanoma specific (chronic) 

inflammation phenomenon. Clearly this is an important issue which encourages for 

further investigation, which should include IHC staining for GPR15 to define the origin 

of its transcript signal.  

6.6.2 Mutational load and prognosis 

The survival analyses including the mutational load variable had reduced sample size 

than the analyses excluding this variable, and therefore reduced statistical power. 

The high mutational load was associated with better outcome for melanoma patients 

overall and in the High and Low Immune Subgroups, but not in the Intermediate 

Subgroup. The results remained significant even after adjusting for other strong 
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survival predictors. The high mutational load was associated with the most favourable 

outcome, but the poor outcome was related to intermediate mutational load, which is 

counterintuitive and challenging to understand. It may be explained by small sample 

size and calls follow up. In Chapter 3 it was shown that the mutational load did not vary 

across the three immune subgroups, which could be a true observation, or simply a 

result from the limitations of our dataset: the mutational data used for these analyses 

were not ideal as discussed in Chapter 3, since they covered a small number of genes. 

Nevertheless, assuming that the data truly reflected the unmeasured whole genome 

mutational load and that the mutational load could reflect the neoantigen load, it could 

be suggested that in LMC primary tumours the immune responses were not driven by 

it. All the results taken together suggested that melanoma cells need to have an 

effective antigen presentation machinery (as it is the case in the tumours from the High 

Immune Subgroup) in order to present the neoantigens to the immune system and only 

then the survival will improve (no death was observed among 21 High Immune patients 

with high mutation load up to 10 years after diagnosis). This observation was not 

surprising, as the literature proposes that either having downregulation and/or absent 

neoantigens are known immune evasive mechanisms in cancer [87] and that high 

mutational load was associated with better immunotherapy responses in melanoma  

[145][146][147] and other cancers [263], however lack of association between 

mutational lad and level of T cell infiltration across TCGA tumours was shown [264]. 

Therefore, even on a limited scale (i.e. based on a candidate gene panel), mutation 

data have the potential to be informative for the efficient use of immunotherapies. It 

would be interesting to conduct a comparative analysis of this economical approach 

and the costlier whole genome sequencing. 
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Chapter 7 

Final Discussion  

7.1 Methodology 

7.1.1 LMC 

The Leeds Melanoma Cohort data set contains a collection of rich clinical, 

histopathological, exposure/environmental, and transcriptomic data from primary 

cutaneous melanoma tumours.  

The transcriptomic data were the basis of the analyses in this thesis (703 samples), 

which were replicated in independent datasets (TCGA and patient derived melanoma 

cell lines), validated by immunohistochemical staining (IHC) and further expanded to 

analysis of copy number alterations (CNAs) and mutational data, albeit for consequent 

reduced sample sizes.  

The development of checkpoint therapies and their positive impact on patient survival 

has reduced the focus on understanding the biological processes underlying the 

immune responses to the primary tumours [87], hence studies focusing on primary 

untreated melanoma, are in need. Therefore, the LMC is considered as a unique 

collection of the data, which allows us to address this research question. 

The LMC is one of the biggest population ascertained cohorts worldwide and this 

unique collection of data allowed me to perform agnostic genetic and survival analyses 

with statistical power.  

 Limitations of the data originating from the LMC 

LMC patients were predominantly treatment naive, in that only 16 of the 703 patients 

have been known to have received checkpoint therapies, as the period of recruitment 

(2000-2012) preceded frequent usage. However, as time passes more of them will 

receive such treatment at late relapse. The Leeds Melanoma Research Group is 

therefore in the process of seeking national data from Systemic Anti-Cancer Therapy 

(SACT) dataset to update the treatment information. I have reduced the chance of 

treatment responses influencing my findings by removing the 16 treated participants 
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and by repeating the survival of the three immune subgroups and the results were 

unchanged. 

The transcriptomic and genomic LMC data were generated from FFPE tumour blocks. 

The storage of the tumours in formalin means that the tumour samples remain intact 

with the original and intratumoural shapes, allowing histopathological examination 

beyond the original clinical examination. The fixation process however affects the 

protein and particularly genetic material structures. DNA and RNA extracted from FFPE 

samples are usually degraded, and their strands are shortened [265] or may form 

crosslinks with proteins [266][267]. These changes might impact on the quantity of the 

extracted genetic material, introducing noise into the final data and/or meaning that 

some of the genes or their transcripts might not be detected by the probes or 

sequencing. Researchers have established procedures of extracting DNA and RNA from 

FFPE samples to reach higher efficiency and developed methods of gene expression 

analysis in order to overcome these problems and these were used by Leeds Melanoma 

Research Group. For example, the gene expression was measured using the Whole-

Genome DASL HT12v4 assay (Illumina®), which was particularly intended for the FFPE 

samples, by designing short probes (50bases) to enable the detection of degraded RNA. 

Note that this platform is not on the market any longer. Tumour samples might also be 

stored fresh and frozen in liquid nitrogen and this method affects the genetic material 

to a lesser degree than formalin fixation, however as mentioned above storage of 

samples as FFPE is preferred due to the preservation of the tumour structures, which 

are important for histopathological and immunohistochemical assessments. The 

studies benefitting from fresh frozen samples derive their samples from tumours which 

are large enough at excision for the pathologist to be satisfied to sacrifice a small 

proportion for research. Therefore, the sample sets built using this approach are 

inevitably biased towards thicker tumours. The TCGA data set was therefore 

predominantly composed of metastases and, even so, required the pooling of samples 

from international research centres. I have listed the use of formalin fixed tumours 

here as a weakness because of degradation of RNA but the Leeds Melanoma Research 

Group regard the design as a strength as the sample set is derived from population 

ascertained participants with primary disease and although there is some bias towards 

the use of thicker tumours, the bias is much less extreme than for example in TCGA. 
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Importantly, because this is a population-based cohort, the design allows extrapolation 

to findings to the general population of melanoma patients, not just for those for 

whom a metastatic biopsy can be obtained. 

Heterogeneity of tumours is a well-documented feature of all cancers. The Leeds 

Melanoma Research Group chose to derive RNA from small tissue micro array (TMA) 

needles as when tumour sampling began, the quantity of RNA required was 

considerably larger than is now required. Using a 0.6mm diameter core allowed the 

generation of sufficient RNA without damaging the tumour block which the patient 

might require in the future for clinical testing. The group consistently sampled a region 

of the invasive tumour with the least stroma and inflammation order to make the 

samples comparable within the cohort. However, the gene expression data were 

usually analysed only from one cored region and these bulk tumour data could not 

therefore delineate the distinct tumour gene expression patterns, for example in case 

of heterogeneous tumours.  

This sampling method does not allow the distinction of the origin of the gene 

expression signal from the distinct components of the tumour microenvironment, such 

as fibroblasts, immune cells, blood vessels etc. However, it was the intent to sample 

the tumour in its microenvironment and indeed my project was dependent on this 

approach. The use of laser microdessection [268][269], can be adopted if the intent is 

to study specific cell populations or single cells from the tissue on the glass slide 

however it is very expensive and not logistically feasible for a large number of samples. 

Another method to address the heterogeneity issue could be single cell RNA 

sequencing from different parts of the tumour, however for this a fresh tissue (just 

after excision) is needed. Non-the-less single cell analyses are being carried out 

increasingly and these will complement the approach described in my thesis. 

The use of a TMA needle to sample the blocks generates relatively generous quantities 

of RNA but requires histopathological expertise in sampling. The haematoxylin and 

eosin stained slides were reviewed by Prof. Julia Newton-Bishop and Dr Jonathan Laye 

and were marked using a microfine felt tip pen. The intent was to sample the deepest 

part of the tumour but at a depth where a core would remain predominantly within 

tumour. In fact ,using the package Estimate [270], Nsengimana et al. reported [76] that 

the tumour purity was comparable to that reported in the literature for most sampling 
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techniques [46][117] and can therefore be judged as successful. In some tumours 

tongues of epidermis can be found even deep within the tumour. Moreover, some of 

tumour samples were relatively thin and the needle used for the core extraction could 

reach the keratin components and then the gene expression could be diluted by the 

gene signals from the “healthy” skin surrounding the tumour. Some of the results 

confirmed this concern, such as the “keratin” TCGA class in LMC (Chapter 3; and MYC 

dominant group (Chapter 4). However it is an inherent issue for transcriptomic studies 

devised to investigate host-tumour interaction as keratin tumour classes were 

reported by TCGA consortium (keratin group was predominantly (74%) comprised of 

primary tumours in TCGA) [46] and by Cirenajwis et al. (“normal-like” group was 

comprised of 62% of primary tumours and 31% of metastases of which 23% were local 

metastases) [136].  

Finally, the samples for which transcriptomic data could be combined with IHC, CNA or 

mutational data were available, were on average thicker (as generating sufficient RNA 

and DNA for all approaches requires bigger tumours) and the sample size was therefore 

smaller. This could be considered as biased/selected data, not representing the LMC as 

a whole.  

In summary, although some of the data originating from LMC could be potentially 

biased this dataset was nevertheless more representative of the population 

ascertained cohort compared to TCGA data, which was selected and from different 

centres and populations.  

7.1.2  Bioinformatic analyses to infer immune microenvironment of 

melanoma tumours 

Immunotherapies, especially checkpoint blockades showed a great success in 

melanoma treatment and this achievement is also emerging for other cancers 

[271][272]. For melanoma only a proportion (~50%) of patients benefit from these 

therapies [95] and on average similar response rates are observed in other cancers 

[272]. Therefore, understanding of the interaction of the tumour and immune 

microenvironment is critical to improving the impact of these therapies. 

Immunotherapies principally act by unleashing/increasing anti-tumour immune 

responses. The failure of the response to these therapies might be due to the absence 
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of the immune cells within the microenvironment. The lack of immune responses 

within the tumour is likely to be mediated by primary or acquired resistance 

mechanisms, such as immune evasion (discussed later on) or immune editing [273]. 

Another explanation of ineffective immunotherapies might be insufficiency of usage of 

the anti-checkpoint molecules antibodies (anti-PD1, anti-PD-L1, anti-CTLA4) blocking 

the immune responses, as these are not the only existing checkpoint molecules. 

The studies to recognise the patients’ response to immunotherapies are designed to 

understand different tumour types on the molecular level, the host immune responses 

and their interactions. 

Immunological research has traditionally used the reductive experiments such as in 

vitro examination of the functioning of the immune cells. By contrast, the bioinformatic 

approaches enable the study of more complex interactions on a greater scale (while 

requiring validation by in vitro and in vivo). This is what I have attempted to explore 

during this PhD work. 

I have used the inferred immune cell scores derived from relatively small areas of the 

tumours and categorised the tumours based on these scores, examining the whole 

transcriptome and clinico-histopathological characteristics resulting in the 

identification of three different immune microenvironments.  

Bioinformatic characterisation of the tumour immune microenvironment using gene 

expression data is rather challenging. At the beginning of my PhD project,  few 

bioinformatic methods to infer immune cell scores were available, but over time new 

approached emerged and many of them are based only on RNA-seq data [274]. In my 

thesis I have explored CIBERSORT and developed a method based on Angelova et al.’s 

Immunome, because these methods were available at the time of my initial analyses, 

were the most suitable for the microarray data and allowed inference of large numbers 

of different immune cell scores. 

Although CIBERSORT is an attractive algorithm for deconvolution of the immune cells 

from bulk tumour data, I observed that it had some limitations. For example, it failed 

to estimate the immune cell proportions from the tumours that manifested 

weak/moderate immune signals and more than a half of the samples could not be 

characterised. Therefore, this method was not used for analysis of the LMC samples.  
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Application of the Angelova et al.’s Immunome for the characterisation of the immune 

cell scores within the LMC tumours, leaves uncertainties as to the origin of the 

measured gene expression signals (it was not clear from the literature or my 

examination of transcriptomes derived from melanoma cell lines) whether the 

expression of some genes originated from the melanoma or immune cells and specific 

adjustments were necessary. I found that almost half of the “Immunome” genes were 

highly expressed by the melanocytes and melanoma cell lines.  

Nonetheless, the successful use of Angelova et al.’ Immunome to colon cancer was 

reported [1]. In the LMC the immune cell scores were created after application of the 

gene filtrations steps (based upon gene expression by melanoma/melanocyte cell lines 

and excluding negatively correlating genes per cell type specific-score) and the results 

related to these scores were replicated in the fresh frozen NGS TCGA data. 

Clustering of tumour samples is commonly performed based on gene expression data 

[132]. In studies designed to find global tumour subtypes within a given dataset 

information on a large numbers of genes are used [46][136]. However, to address 

specific questions, only the genes of interest might be utilised for clustering. For 

example, Dr Jérémie Nsengimana applied the Bindea et al.’s Immunome (immune 

genes) to cluster LMC tumours and identified 6 immunologically and histologically 

different subgroups [76]. In my work I reasoned that using the 27 immune cell scores 

instead of hundreds of genes could reduce the dimensionality for clustering and result 

in more stable clusters, which would be less affected by the variation caused by 

histological or technical differences. Indeed, three immunologically different stable 

clusters (with distinct survival) were obtained, which were replicated in metastatic 

tumours from TCGA. The clustering analysis of the immune cell scores revealed that 

the majority of the immune cell scores were strongly correlated. Overall it was 

observed that the immune genes were highly correlated with each other and high 

expression of these cells was associated with good survival. This fact could mask 

putative subtle differences of the immune cell scores, which were highly related to 

each other at least on the gene expression level.  

My findings are in some ways similar to those reported in a recent publication, in which 

Pan-Cancer clustering of TCGA tumours was performed based on 6 immune signatures: 

Wound healing, IFN-gamma dominant, Inflammatory, Lymphocyte depleted, 
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Immunologically quiet, and TGF-beta dominant [275]. Although a direct comparison 

between Thorsson’s clustering and mine is slightly problematic as Thorsson et al. 

developed clusters based on 6 immune signatures, which were dissimilar from the 27 

immune cell scores I generated in the LMC. Moreover, the Thorsson’s signatures were 

not adjusted to cancer genes before the generation of immune signatures as it was 

performed in the LMC by removal of “melanoma” genes from the list of genes used to 

create the immune cell scores. The Pan-Cancer research group showed that melanoma 

samples were mainly dominant in: Wound healing, IFN-gamma dominant, 

Inflammatory, and Lymphocyte depleted clusters [275]. The number of immune 

clusters to which melanoma samples were assigned was comparable to the number of 

clusters obtained in LMC (four vs three), but the immune clusters were slightly 

dissimilar phenotypically from the ones identified in LMC. However, the Thorsson’s 

Inflammatory cluster could be compared to the LMC High Immune Subgroup, and both 

of these immune clusters were associated with good survival. The Thorsson’s 

Lymphocyte depleted cluster could be compared to the LMC Low Immune Subgroup, 

for which the survival was poor both in LMC and Pan-Cancer. The Thorsson’s Wound 

healing, IFN-gamma clusters were not identified in the LMC. However, the survival for 

these clusters could be compared to the LMC Intermediate Immune Subgroup, for 

which it was moderate in comparison to the rest of the immune subgroups.  

Additionally, another similarity that was observed between the Pan-Cancer and mine 

analysis was for example, higher expression of CTNNB1 associated with “Lymphocyte 

Depleted” cluster associated with the worse survival in the Thorsson et al.’s study [275] 

and alike observation was made in the LMC. 

Summarising, the three immune subgroups displayed a biologically informative 

subgrouping of the tumours, which was productively investigated from the 

transcriptomic, genomic and environmental perspective. These groups allowed us to 

discover new, and confirm already known, immunosuppressive pathways in 

melanoma. Moreover, the impact of smoking could only be discovered in this immune 

dependent manner, facilitated by having sufficient information to test the survival of 

the non- and smokers in each of the immune subgroup with adequate statistical power. 
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7.2 Host immune responses  

Understanding the immune responses to melanoma and to cancer generally has 

become one of the main focuses in cancer research as discussed above. 

Currently the understanding of host-tumour interaction is focused on studies 

investigating the primary and acquired resistance to immunotherapies.  However, as 

mentioned above, it is important to uncover the initial/basic mechanisms of immune 

evasion/editing in the primary tumours. It is crucial to study the primary tumours as 

the understanding at the level of metastatic disease might be too late for the patient 

to be cured. Understanding the immune responses to early stage primary melanomas 

might result in discovery of prognostic biomarkers, identification of more effective 

adjuvant therapies and lifestyle factors which affect the overall immune response. 

The anti-cancer immune responses can be disrupted in each step of the path leading 

to cancer killing: from the release of the cancer antigens through priming, activation 

and trafficking of the T cells into the tumour, to the final cancer killing phase (described 

by Chen and Mellman [87]).  

Firstly, the release of cancer antigens/neoantigens is one of the initial mechanisms for 

tumours to be recognised by the immune system. Higher neoantigen load was 

proposed to have an impact on responses to immunotherapies and patients’ survival 

in various cancers, particularly in melanoma [145][146][147]. Alexandrov et al. 

described several mutational signatures and one of them was “signature 7” (rich in C>T 

mutations, the UV exposure signature), which was particularly highly enriched in 

melanoma. This signature was further shown to predict better survival and high 

immune cell scores in the TCGA dataset [148]. All the evidence suggests that 

neoantigen load/signature might trigger the immune responses. However, the whole 

machinery of neoantigen presentation is essential for effective antigen presentation. 

Loss of any major component of this process might impact on immunogenicity of the 

cancer cell (as discussed next). In this thesis, it was shown that in primary melanoma 

high mutational load was associated with better outcome. However, there was no 

overt relationship between the level of immune infiltration and the neoantigen load. 

Similar observation was made by Spranger et al. when analysing the TCGA data for 

various tumour types including melanoma, where it was shown no significant 
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difference of mutational load between inflamed and non-inflamed tumours [264]. One 

possible explanation for this could be incomplete data on the mutational/neoantigen 

load for the LMC, since it was represented by only a 555 gene panel.  Another 

explanation could be that it is not the load itself but quality of the presented antigens 

which is the most important factor [150][151]. 

Next, in order to present the neoantigens to the immune cells, tumours  are required 

to have the active antigen processing and presentation machinery. The down-

regulation of HLA class I signalling and losses in B2M were shown to be inversely 

correlated with two gene cytolytic score (GMZA, PRF1)  in various cancers, including 

melanoma [276] and to be involved in affecting the immunotherapy responses [277].  

The gene expression of antigen processing and presentation via HLA class I and II were 

significantly lower in the Low Immune Subgroup, which was not surprising. However, 

in this work the direct inverse relationship with HLA class I genes and the oncogene 

MYC was proposed as a novel finding. It suggested that this oncogene is not only 

involved in tumour progression by stimulating proliferation, but also by contributing to 

immune evasion. The negative association of MYC and HLA-B was already proposed in 

1994 by observation of melanoma cell lines [187]. However up to now it was not shown 

in human melanoma samples.  

A recent study by Jerby-Arnon et al. (November 2018) analysing single cell RNA 

sequencing from treated and non-treated patients by checkpoint blockade, reported 

that non responding tumours manifested up-regulation of MYC targets and down-

regulation of HLA class I molecules [278], which is partially consistent with the results 

from this thesis.  

Other mechanisms of immune evasion related to tumour intrinsic oncogenic pathways, 

including MYC were reported in various cancers [279]. For example, MYC was reported 

to up-regulate PD-L1 and CD47 molecules on human leukaemia and lymphoma cells 

[280], and to down-regulate HLA class II in human B cells tumours [188]. If I had 

additional time during my PhD, I would perform an experiment to prove this 

observation by knocking down, or overexpressing MYC in melanoma cell lines, and 

testing the expression of HLA-B and antigen processing and presentation genes using 

(quantitative Reverse Transcription Chain Reaction) RT-qPCR. 
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Moreover another oncogenic pathway such as loss of PTEN (a tumour suppressor gene) 

was demonstrated to impact on the reduction of T cell infiltration and T cell killing in 

melanoma mouse models and human samples treated by anti-PD1 therapy [281]. The 

work of this thesis did not uncover specifically PTEN involvement in immune responses 

on the gene expression level, however if I had more time I would test the CNA of this 

gene across the three immune subgroups. 

Summarising all the evidence of MYC functioning as a tumour immune suppressor, 

suggests that patients who do not respond to immunotherapy could be given MYC 

inhibitors to sensitize non responding tumours. MYC has already been considered as 

drug target as it is well known oncogene, but translation research has been difficult to 

target MYC directly in solid tumours [282]. The MYC induced tumours might require 

other targeting approaches such as for example an oncotic viral activity, which was 

reported to be permissive to tumours driven by MYC [283].  Alternatively, one study 

based on xenograft melanoma mice models, has suggested antisense oligonucleotides 

as viable treatment option in human patients after observing tumour shrinkage and 

expanded lifetime in mice [284].  

Even though tumours that manifest generation of neoantigens and have an effective 

antigen processing and presentation machinery need to provide a suitable niche for 

the effective infiltration of the immune cells into the tumour microenvironment. One 

of the results from this work, which could potentially explain the regulation of this 

process in melanoma was the observation of the down-regulation and losses of the 

components of tumour NF-kB signalling associated with lower immune infiltration and 

worse melanoma specific survival. These results could be considered as an immune 

evasion mechanism acquired by the tumour. Abnormal NF-kB signalling and NFKB1 

gene expression was particularly found to have carcinogenic functions and promote 

tumour progression as well as to act as tumour suppressor [190][191]. However, the 

deletions, and down-regulation of genes belonging to this pathway were not shown to 

be involved in immune evasion in melanoma and other solid cancers according to my 

literature search. However, one study described that loss of NFKB1 was causal for 

gastric cancer development specifically with aberrant inflammation within the tumour 

[196]. Moreover tumour NF-kB signalling was reported to be associated with T cell 

infiltration and not with proliferation in mice and human lung cancer [285]. 
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Additionally, a hyper-activation of NF-kB signalling within the tumour 

microenvironment was shown to contribute to reprograming of chemokine 

microenvironment to enhance recruitment of cytotoxic T cells into colorectal tumours 

[195]. 

In the LMC, the immunohistochemical staining analysis showed that tumour nuclear 

localization of NF-kB significantly correlated with lymphocytic infiltration, suggesting a 

reciprocal NF-kB-driven phenotype generated between the tumour and its 

surrounding microenvironment as described in the two studies mentioned above 

[285][195].  These results and the inferior survival for the patients with losses of the 

NF-kB pathway might highlight a potential warning for the implementation of targeted 

therapeutic inhibition of the NF-kB pathway in melanoma (Beleyer et al. [286][287]), 

because it could have adverse immune effects if in fact tumour NF-kB activated 

pathways are actively attracting T-cells to the melanoma tumour microenvironment.  

NF-kB signalling is a complicated process, particularly in cancer. Understanding its 

functioning in melanoma using only gene expression data is challenging, since it can 

only explain the level of association not causation. However, the CNA data could 

partially delineate the causative effect of the deleted genes. The observation 

concerning losses of NF-kB pathway genes could be further validated by performing a 

knock out e.g. for NFKB1 from the human tumour cells and test how does this affect 

the gene expression of downstream targets of NF-kB signalling. Most importantly it 

could be tested whether these cells were indeed less immunogenic by conducting 

immune cell killing experiments.  

b-catenin signalling is a pathway already shown to affect the immune cells trafficking 

(mainly dendritic cells) into the tumours [75] – the middle stage of the melanoma killing 

path. This pathway was revealed to be upregulated in a great proportion of primary 

melanoma tumours in LMC [76], and to regulate immune responses in other cancers 

[288] and this thesis reports analyses supporting these results. b-catenin is known to 

regulate MYC, however the reciprocal regulation was also proposed [149]. Moreover, 

it was recently reported by Prof. David Fisher from Harvard University (oral 

presentation at the 15th International Congress of the Society for Melanoma Research 

in Manchester, October 2018) that gain of function amplifications in methyltransferase 
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G9A/EHMT2 (Euchromatic Histone Lysine Methyltransferase 2) might be involved in 

cancerogenic processes in melanoma and other cancers. Moreover, G9A was shown to 

increase the WNT/b-catenin pathway, which subsequently contributed to decreasing 

the immune responses (data not published). His research group proposed that G9A 

suppresses DKK1 a repressor of WNT/b-catenin pathway in melanoma mouse models 

and in vitro. In our collaborative analyses we have confirmed some of these results by 

using the LMC data. We performed differential gene expression between G9A high and 

low copy number changes and observed that among top pathways associated with G9A 

high tumours was WNT signalling and among the genes were MYC and DKK1. 

Moreover, we observed that high G9A copy number was significantly higher in the CIC 

4 (Low Immune/b-catenin high) from Nsengimana et al.’s consensus immune clusters. 

Once the tumour is infiltrated and recognised by the immune cells it may evolve and 

affect the immune cells so that they become inefficient in their killing functions 

(mechanism described as “immune suppression”). One of the most recognised immune 

suppressive mechanisms in cancer including melanoma is persistent activation of 

regulatory immune cells within the tumour microenvironment, such as Tregs 

[289][81][290] and MDSCs [291][292]. Moreover, up regulation of checkpoint 

molecules such as PD-L1, PD1 and IDO by the tumour or immune cells within the 

tumour microenvironment, are considered to be involved in suppressing the activation 

of T cells [87]. However, some studies including the one from the Leeds Melanoma 

Research Group, reported that checkpoint molecules and regulatory immune cells 

correlate with the overall immune cells abundance and improved survival, and this 

observation is considered as homeostatic feedback [189][76][293]. Overall, the 

immune homeostatic feedback is important in terms of prevention of the development 

of excessive inflammation i.e. by checks and balances. The results of this thesis 

corroborated these observations, as all the immune cell scores were highly correlated 

and the immune checkpoint molecules were significantly upregulated in the High 

Immune Subgroup.  

Another mechanism affecting responsiveness of the immune system in different 

phases of the melanoma killing path is impaired interferon gamma signalling 

[294][295]. The disruption of this signalling might result in down-regulation of antigen 

processing and presentation as well as in lower production of cytokines that might 
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attract anti-tumour immune cells [218][296]. I observed that the genes involved in 

interferon signalling were downregulated in the Low Immune Subgroup and JAK2 

deletions were frequently observed in this subgroup. Mutations/deletions of JAK2 have 

recently been reported to be involved in primary and acquired resistance to anti PD-1 

therapy in melanoma metastatic tumours [217][218]. The results from this thesis 

indicate an early onset of these aberrations in melanoma progression, which might 

further impact on patients’ responsiveness to immunotherapies. 

Summarising the overview acquired from all the results from transcriptomic, and CNA 

data together allowed me to conclude that immune evasive pathways were not 

mutually exclusive, and moreover their co-existence was shown to worsen the 

patient’s survival. It could be concluded that the tumours in which many immune 

evasive pathways were observed could imply higher tumour heterogeneity, and 

different immune evasive mechanisms being active. Moreover, these observations 

suggest that a great proportion of melanoma tumours in the Low Immune Subgroup 

could have an intrinsic resistance to immunotherapies. 

Finally, environmental factors might influence systemic immune responses, which 

might have a further effect on recognition or killing of the tumour by the immune cells. 

One of the well-studied determinant of inflammatory/suppressor effect on systemic 

immunity is cigarette smoking [247][248].  

In this thesis, it was shown that cigarette smoking decreased the protective effects of 

immune cells within the tumours in the High Immune Subgroup. Importantly, these 

results were consistent when using three different variables describing habits of 

smoking and it was shown that it was not cofounded by deprivation status. It was also 

observed that GPR15 expression, a known biomarker for smoking in the circulating 

blood [237], was significantly associated with smoking in the LMC tumours. 

Furthermore, GPR15 was suggested to be associated with chronic inflammatory 

pathologies [258]  and in LMC and TCGA it was observed that GPR15 suggestively 

correlated IL6 signalling, an inflammatory pathway. However this observation would 

need a further validation on the protein level and testing for whether it was related to 

systemic or in situ inflammation. 
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The literature is rich in describing the studies regarding cancer specific survival and 

cigarette smoking. For example smoking was shown to shorten survival for breast 

[241], head and neck [242], ovarian [243], prostate [244], and colorectal cancer [245] 

patients. Previously in the LMC it was demonstrated that smoking was associated with 

worse outcome [221]. However, none of these studies showed the interaction between 

smoking and the immune responses. Hence our results might be considered as novel 

and clinically relevant, stressing the importance of smoking cessation and 

incorporation into the studies analysing immunotherapy responses. Moreover, since it 

is not clear whether the survival effect of smoking in melanoma patients was due to 

different cigarette compounds, or mostly nicotine, it is important to stress that e-

cigarettes might be potentially as harmful as cigarettes due to nicotine. As a result of 

relatively short existence of e-cigarette (vaping) there is not much evidence that the 

nicotine delivery system affects the immune responses systemically.  However the 

system were shown to affect immune responses in vitro [256] and in the human nasal 

tissue [257].  

 

Summarising, the strength of this study was the ability to discover new and confirm 

already reported immune evasive mechanisms in primary melanoma using gene 

expression, copy number and protein level data. Furthermore, I made the novel 

observation that the survival associated with a well-known environmental factor such 

as smoking interacted with immune responses measured at the gene expression level. 

All the novel results from this thesis might be further investigated in relation to 

immunotherapy responses in melanoma and other cancers. 
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Chapter 8 

Appendix A 

A.1 Creation of the immune cell scores 

A.1.1 Percentage calculation of the remained genes per immune cell score 

after the first filtration step 

Cell type Before 
(number of genes) 

After 
(number of genes) 

% of genes 
remained 

Removed 

mDC 21 0 0.0 x 

pDC 18 1 5.6 

 

Effector_memory_CD4 14 1 7.1 x 

Activated_CD8 24 2 8.3 x 

Activated_CD4 35 3 8.6 x 

Monocytes 25 5 20.0 

 

Memory_B_cells 14 5 35.7 

 

NK56_bright 8 3 37.5 

 

MDSC 85 37 43.5 

 

Th2 25 11 44.0 

 

NK56_dim 17 8 47.1 

 

Central_memory_CD4 21 10 47.6 

 

iDC 21 11 52.4 

 

Eosinophils 15 8 53.3 

 

Central_memory_CD8 18 10 55.6 

 

Effector_memory_CD8 42 25 59.5 

 

TFH 10 6 60.0 

 

Immature_B_cells 24 15 62.5 

 

Neutrophils 16 10 62.5 

 

NK 17 11 64.7 

 

Cytotoxic_cell 9 6 66.7 

 

NKT 12 8 66.7 

 

TGD 43 30 69.8 

 

TH17 26 19 73.1 

 

Mast_cells 42 31 73.8 

 

Treg 26 20 76.9 

 

DC 34 27 79.4 

 

T_cells 86 69 80.2 

 

Macrophages 22 18 81.8 

 

Th1 37 31 83.8 

 

Activated_B_cell 18 17 94.4 

 

 



 
 

 

A.1.2 Correlation matrices of the genes per immune cell scores  
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A.1.3 Final list of genes per immune cell scores after filtration process 

Probe Gene Cell_type 
ilmn_1777998 ARHGAP25 Activated_B_cells 
ilmn_2068274 CLEC9A Activated_B_cells 
ilmn_1770673 AKNA Activated_B_cells 
ilmn_1688959 CD27 Activated_B_cells 
ilmn_1780397 TRAF3IP3 Activated_B_cells 
ilmn_1786176 CD37 Activated_B_cells 
ilmn_2233783 CD38 Activated_B_cells 
ilmn_1695025 CD2 Activated_B_cells 
ilmn_1748473 GIMAP4 Activated_B_cells 
ilmn_1687052 PAX5 Activated_B_cells 
ilmn_1665943 MAP4K1 Activated_B_cells 
ilmn_1677505 CCL21 Activated_B_cells 
ilmn_1726597 FAM65B Activated_B_cells 
ilmn_1665647 CD180 Activated_B_cells 
ilmn_1768016 TNFRSF17 Activated_B_cells 
ilmn_1782729 CLECL1 Activated_B_cells 
ilmn_2327860 MAL Central_memory_CD4 
ilmn_1689160 DPEP2 Central_memory_CD4 
ilmn_1656287 SPOCK2 Central_memory_CD4 
ilmn_1681301 AIM2 Central_memory_CD4 
ilmn_1741143 TXK Central_memory_CD4 
ilmn_1791226 NXN Central_memory_CD4 
ilmn_1788481 ADAM19 Central_memory_CD4 
ilmn_1730986 MALT1 Central_memory_CD4 
ilmn_1789955 PNRC1 Central_memory_CD4 
ilmn_1752520 SLFN11 Central_memory_CD8 
ilmn_1716736 CD80 Central_memory_CD8 
ilmn_1770768 SLAMF1 Central_memory_CD8 
ilmn_2120210 RCAN2 Central_memory_CD8 
ilmn_2395981 PYHIN1 Central_memory_CD8 
ilmn_3235514 GPR183 Central_memory_CD8 
ilmn_1693552 CD300A Central_memory_CD8 
ilmn_1656011 RGS1 Central_memory_CD8 
ilmn_2222443 KLRK1 Central_memory_CD8 
ilmn_2079655 KLRB1 Cytotoxic_cells 
ilmn_1716983 LILRA2 Cytotoxic_cells 
ilmn_1652825 IL10RA Cytotoxic_cells 
ilmn_2196078 SLAMF6 Cytotoxic_cells 
ilmn_2326953 LAT2 Cytotoxic_cells 
ilmn_1724422 SELL Cytotoxic_cells 
ilmn_1780465 CLEC5A DC 
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Probe Gene Cell_type 
ilmn_2176063 FCGR1A DC 
ilmn_1655987 STAB1 DC 
ilmn_1751095 CD300E DC 
ilmn_1714602 CD86 DC 
ilmn_1652381 SIGLEC5 DC 
ilmn_1670490 PDPN DC 
ilmn_2307903 VCAM1 DC 
ilmn_1783593 CCL13 DC 
ilmn_1726666 GPX3 DC 
ilmn_1752658 NGFR DC 
ilmn_1691339 CLEC1A DC 
ilmn_1759787 THBD DC 
ilmn_1794038 FAM49A DC 
ilmn_1719547 INHBA DC 
ilmn_1785902 C1QC DC 
ilmn_1727689 TNFAIP2 DC 
ilmn_1795754 CLIC2 DC 
ilmn_1682259 CLEC4C DC 
ilmn_1677693 GPR109B DC 
ilmn_1678841 UBD DC 
ilmn_1725320 SIGLEC1 DC 
ilmn_1680144 HLA-DQA2 DC 
ilmn_2376458 CSF2RA DC 
ilmn_2218856 CCL3L1 DC 
ilmn_1684850 PRKAR2B DC 
ilmn_1787529 C3AR1 Effector_memory_CD8 
ilmn_1722981 TLR5 Effector_memory_CD8 
ilmn_2101278 RGS18 Effector_memory_CD8 
ilmn_1715885 PTPN22 Effector_memory_CD8 
ilmn_2409720 SLA2 Effector_memory_CD8 
ilmn_1673030 CMKLR1 Effector_memory_CD8 
ilmn_2097410 DAPP1 Effector_memory_CD8 
ilmn_1664828 APOBEC3H Effector_memory_CD8 
ilmn_1684349 IL2RB Effector_memory_CD8 
ilmn_1724181 IL15 Effector_memory_CD8 
ilmn_2368318 FGR Effector_memory_CD8 
ilmn_2405684 BIRC3 Effector_memory_CD8 
ilmn_2074762 FCRL6 Effector_memory_CD8 
ilmn_1702534 CD244 Effector_memory_CD8 
ilmn_1701237 SH2D1B Effector_memory_CD8 
ilmn_1784141 JAKMIP1 Effector_memory_CD8 
ilmn_1666902 GPR114 Effector_memory_CD8 
ilmn_1654319 HAPLN3 Effector_memory_CD8 
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Probe Gene Cell_type 
ilmn_1731233 GZMH Effector_memory_CD8 
ilmn_1778977 TYROBP Effector_memory_CD8 
ilmn_2112580 FCGR3A Effector_memory_CD8 
ilmn_2331121 FCGR2C Effector_memory_CD8 
ilmn_2386453 KLRD1 Effector_memory_CD8 
ilmn_1730628 RNASE2 Eosinophil 
ilmn_2113126 RNASE3 Eosinophil 
ilmn_1653766 CCL24 Eosinophil 
ilmn_1715823 FBXO16 Eosinophil 
ilmn_1772631 EPX Eosinophil 
ilmn_1700428 HLA-DOB Immature_B_cells 
ilmn_1697309 NCF1 Immature_B_cells 
ilmn_1792075 CD22 Immature_B_cells 
ilmn_1815168 HVCN1 Immature_B_cells 
ilmn_1664063 FAM129C Immature_B_cells 
ilmn_2333774 TAGAP Immature_B_cells 
ilmn_2106725 NCF1B Immature_B_cells 
ilmn_1699599 FCRL3 Immature_B_cells 
ilmn_2105223 FCRL5 Immature_B_cells 
ilmn_1661646 BANK1 Immature_B_cells 
ilmn_2226183 FCRL1 Immature_B_cells 
ilmn_1784774 P2RY10 Immature_B_cells 
ilmn_3247998 STAP1 Immature_B_cells 
ilmn_1676003 PNOC Immature_B_cells 
ilmn_1791329 FCRL2 Immature_B_cells 
ilmn_1773963 GNA15 MDSC 
ilmn_1681067 PIK3R5 MDSC 
ilmn_1701947 GPR34 MDSC 
ilmn_2394161 ST8SIA4 MDSC 
ilmn_1701914 CD274 MDSC 
ilmn_1744212 INPP5D MDSC 
ilmn_1662451 FCER2 MDSC 
ilmn_2396444 CD14 MDSC 
ilmn_1795183 RNASE1 MDSC 
ilmn_1689518 PECAM1 MDSC 
ilmn_2133316 GIMAP7 MDSC 
ilmn_1686405 KDR MDSC 
ilmn_1760189 NAIP MDSC 
ilmn_1754894 C1orf162 MDSC 
ilmn_3242540 CD163L1 MDSC 
ilmn_2345898 SLA MDSC 
ilmn_2383611 PTPRE MDSC 
ilmn_1726342 BIN2 MDSC 
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Probe Gene Cell_type 
ilmn_1752307 FLT1 MDSC 
ilmn_1755643 MGAT4A MDSC 
ilmn_2366330 FERMT3 MDSC 
ilmn_1734855 SELPLG MDSC 
ilmn_1676575 IKZF1 MDSC 
ilmn_1695851 PARVG MDSC 
ilmn_1688231 TREM1 Macrophages 
ilmn_1690783 TREML1 Macrophages 
ilmn_2365091 FCAR Macrophages 
ilmn_2357419 LILRA5 Macrophages 
ilmn_2379599 CD163 Macrophages 
ilmn_1713686 IL34 Macrophages 
ilmn_1734748 LILRA1 Macrophages 
ilmn_3192001 CCL14 Macrophages 
ilmn_1709613 IGF1 Macrophages 
ilmn_2371280 CSF3R Macrophages 
ilmn_1792473 AIF1 Macrophages 
ilmn_2331087 MS4A7 Macrophages 
ilmn_1782741 CD300LB Macrophages 
ilmn_1715991 SDPR Mast_cells 
ilmn_2054297 PTGS2 Mast_cells 
ilmn_1785732 TNFAIP6 Mast_cells 
ilmn_1763344 ADCYAP1 Mast_cells 
ilmn_2339835 PTGS1 Mast_cells 
ilmn_2208413 ARHGAP15 Mast_cells 
ilmn_1663519 SLC24A3 Mast_cells 
ilmn_1808226 RGS16 Mast_cells 
ilmn_2299095 SIGLEC6 Mast_cells 
ilmn_1723944 TARP Mast_cells 
ilmn_3243061 SIGLEC14 Mast_cells 
ilmn_1680424 CTSG Mast_cells 
ilmn_1783956 ATP8B4 Mast_cells 
ilmn_1770772 CMA1 Mast_cells 
ilmn_1700081 FST Mast_cells 
ilmn_1815690 TIE1 Mast_cells 
ilmn_1806721 MS4A2 Mast_cells 
ilmn_1766551 CPA3 Mast_cells 
ilmn_1792323 HDC Mast_cells 
ilmn_1735712 KRT1 Mast_cells 
ilmn_1731777 NTRK1 Mast_cells 
ilmn_2310896 NLRP3 Mast_cells 
ilmn_2377746 RUNX2 Memory_B_cells 
ilmn_2164164 AICDA Memory_B_cells 
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Probe Gene Cell_type 
ilmn_1738517 FCRL4 Memory_B_cells 
ilmn_1679798 TLR9 Memory_B_cells 
ilmn_2066151 TEK Monocytes 
ilmn_1723035 OLR1 Monocytes 
ilmn_1668063 FCN1 Monocytes 
ilmn_2112357 CD300LF Monocytes 
ilmn_1651826 BASP1 Monocytes 
ilmn_1658926 NOTCH3 NK 
ilmn_2339294 LILRB5 NK 
ilmn_1781824 FASLG NK 
ilmn_2409384 SIGLEC7 NK 
ilmn_1770433 PIK3CG NK 
ilmn_1729915 PILRA NK 
ilmn_1795236 SIGLEC9 NK 
ilmn_1658399 KLRG1 NK 
ilmn_1796247 CRTAM NK 
ilmn_1688373 LST1 NK 
ilmn_1803945 HCP5 NK56_bright 
ilmn_1798270 C11orf75 NK56_bright 
ilmn_2178226 KRT86 NK56_bright 
ilmn_2352090 GPRC5C NK56_dim 
ilmn_1776640 MPL NK56_dim 
ilmn_1805404 GRIN1 NK56_dim 
ilmn_1705814 KRT80 NK56_dim 
ilmn_1698952 TNFRSF11A NKT 
ilmn_1667232 KIR2DL3 NKT 
ilmn_2190842 KIR3DL2 NKT 
ilmn_1786810 KIR2DL1 NKT 
ilmn_1752647 KLRC1 NKT 
ilmn_1750761 NCR1 NKT 
ilmn_1790692 GNLY NKT 
ilmn_2131828 KIR3DL1 NKT 
ilmn_1802096 ABTB1 Neutrophils 
ilmn_2363392 TNFSF14 Neutrophils 
ilmn_1678939 VNN2 Neutrophils 
ilmn_1669317 GPR77 Neutrophils 
ilmn_2092118 FPR1 Neutrophils 
ilmn_1740875 FPR2 Neutrophils 
ilmn_1688580 CAMP Neutrophils 
ilmn_3243190 EMR4P Neutrophils 
ilmn_1698367 CD84 TFH 
ilmn_1715131 CCR7 TFH 
ilmn_1780368 GPR18 TFH 
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Probe Gene Cell_type 
ilmn_1806725 PDCD1 TFH 
ilmn_2399363 CLEC4A TGD 
ilmn_1701248 TREM2 TGD 
ilmn_1711332 TFEC TGD 
ilmn_2415303 CLEC10A TGD 
ilmn_2203271 FPR3 TGD 
ilmn_1693009 FGL2 TGD 
ilmn_1731503 MARCO TGD 
ilmn_2359800 MS4A6A TGD 
ilmn_2203926 MRC1 TGD 
ilmn_1701195 PLA2G7 TGD 
ilmn_1738992 MNDA TGD 
ilmn_1761778 TNFSF8 TGD 
ilmn_1676372 CD209 TGD 
ilmn_1686623 CSF1R TGD 
ilmn_1791771 HCK TGD 
ilmn_1782070 NPL TGD 
ilmn_2085862 SLC15A3 TGD 
ilmn_1731240 FGF7 TGD 
ilmn_1795762 PLEK TGD 
ilmn_1810275 SLC7A7 TGD 
ilmn_1750961 TM6SF1 TGD 
ilmn_2123743 FCER1G TGD 
ilmn_1670302 HK3 TGD 
ilmn_1702231 C1orf54 TGD 
ilmn_1747622 CD33 TGD 
ilmn_1780533 RNASE6 TGD 
ilmn_1667224 SLAMF8 TGD 
ilmn_2382403 FCGR2B TGD 
ilmn_2342835 P2RY14 T_cells 
ilmn_1790350 TPRG1 T_cells 
ilmn_2370336 MS4A4A T_cells 
ilmn_1717197 CD3G T_cells 
ilmn_2086143 CCR4 T_cells 
ilmn_2355953 LILRB4 T_cells 
ilmn_1719433 CD1D T_cells 
ilmn_1668822 BATF T_cells 
ilmn_1772674 IL21 T_cells 
ilmn_1721762 IL18RAP T_cells 
ilmn_1740633 PRF1 T_cells 
ilmn_1674640 CXCR6 T_cells 
ilmn_1749362 CD28 T_cells 
ilmn_1710186 CCL17 T_cells 
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Probe Gene Cell_type 
ilmn_1696463 SPI1 T_cells 
ilmn_1781700 IL18R1 T_cells 
ilmn_2389211 LAIR1 T_cells 
ilmn_1723520 CD1A T_cells 
ilmn_1719756 ZAP70 T_cells 
ilmn_1769782 LAX1 T_cells 
ilmn_1728106 TNF T_cells 
ilmn_1736311 POU2F2 T_cells 
ilmn_1739667 JAK3 T_cells 
ilmn_2207291 IFNG T_cells 
ilmn_1749591 ITGAL T_cells 
ilmn_2377669 CD247 T_cells 
ilmn_2109416 NAPSB T_cells 
ilmn_1651316 CD69 T_cells 
ilmn_1722411 HRH2 T_cells 
ilmn_1775501 IL1B T_cells 
ilmn_1798204 IL21R T_cells 
ilmn_1739421 CCR8 T_cells 
ilmn_1726230 CD1B T_cells 
ilmn_1683774 IL2RA T_cells 
ilmn_2059744 IL7 T_cells 
ilmn_2160476 CCL22 T_cells 
ilmn_1785202 STAT4 T_cells 
ilmn_1699908 IL12RB1 T_cells 
ilmn_1725519 CCL11 T_cells 
ilmn_2098126 CCL5 T_cells 
ilmn_2384188 NFATC1 T_cells 
ilmn_1666594 IRF8 T_cells 
ilmn_2337928 CXCR5 T_cells 
ilmn_2312340 LILRB2 T_cells 
ilmn_1671509 CCL3 T_cells 
ilmn_1681132 IL12B T_cells 
ilmn_1766363 FLT3 T_cells 
ilmn_2406132 LILRB3 T_cells 
ilmn_1699160 ITK T_cells 
ilmn_2377109 LCK T_cells 
ilmn_1778143 GRAP2 T_cells 
ilmn_1683456 CCL7 T_cells 
ilmn_2099528 BTLA T_cells 
ilmn_2335754 CD1E T_cells 
ilmn_1786303 LILRA3 T_cells 
ilmn_2353732 CD8A T_cells 
ilmn_2320888 CXCR4 T_cells 
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Probe Gene Cell_type 
ilmn_1654210 CD1C T_cells 
ilmn_2073307 IL10 T_cells 
ilmn_2316974 LILRB1 T_cells 
ilmn_1739794 CD3E T_cells 
ilmn_1683178 JAK2 T_cells 
ilmn_2325837 CD3D T_cells 
ilmn_1702385 LILRA4 T_cells 
ilmn_2061043 CD48 Th1 
ilmn_2175912 ITGB2 Th1 
ilmn_1792538 CD7 Th1 
ilmn_1746565 CD6 Th1 
ilmn_1677793 P2RX5 Th1 
ilmn_1653498 IGSF6 Th1 
ilmn_2359907 CD68 Th1 
ilmn_2376205 LTB Th1 
ilmn_1671353 IL12A Th1 
ilmn_1777519 ITGB7 Th1 
ilmn_2342066 METRNL Th1 
ilmn_2340217 PTPRC Th1 
ilmn_1802653 EBI3 Th1 
ilmn_1693826 HAVCR2 Th1 
ilmn_1813379 TNFRSF9 Th1 
ilmn_1673363 CD97 Th1 
ilmn_2415786 CD96 Th1 
ilmn_1730176 ITGAX Th1 
ilmn_2145033 CCR5 Th1 
ilmn_1708348 ADAM8 Th1 
ilmn_1795464 LTA Th1 
ilmn_1692714 TBX21 Th1 
ilmn_1662843 CD53 Th1 
ilmn_1685009 ITGAM Th1 
ilmn_2342579 IL7R Th1 
ilmn_2334210 ITGB4 Th1 
ilmn_1684943 TRAT1 Th1 
ilmn_2208903 CD52 Th1 
ilmn_1743570 CEACAM3 Th17 
ilmn_1715603 IL23A Th17 
ilmn_1769925 C2CD4A Th17 
ilmn_1749744 SH2D6 Th17 
ilmn_1774983 IL17A Th17 
ilmn_2227195 CCDC65 Th17 
ilmn_2043079 ILDR1 Th17 
ilmn_2188247 IL17F Th17 
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Probe Gene Cell_type 
ilmn_1788109 IL17C Th17 
ilmn_1761766 GPR25 Th17 
ilmn_1655549 SIGLEC10 Th2 
ilmn_2338348 UBASH3A Th2 
ilmn_2170813 LAMP3 Th2 
ilmn_1675677 TMPRSS3 Th2 
ilmn_2406656 GATA3 Th2 
ilmn_1751400 SKAP1 Th2 
ilmn_2376431 CCR2 Th2 
ilmn_2125017 TIGIT Treg 
ilmn_1769129 CCL19 Treg 
ilmn_1788531 SIT1 Treg 
ilmn_1739393 SELE Treg 
ilmn_1698218 TRAF1 Treg 
ilmn_1677827 TLR7 Treg 
ilmn_1796642 NCF2 Treg 
ilmn_2313672 IL1RL1 Treg 
ilmn_1723004 CD72 Treg 
ilmn_1715417 SELP Treg 
ilmn_2414762 TLR10 Treg 
ilmn_1749006 RCSD1 Treg 
ilmn_2341229 CD34 Treg 
ilmn_2129668 TGFB1 Treg 
ilmn_1763487 CTLA4 Treg 
ilmn_1772387 TLR2 Treg 
ilmn_1705047 TLR8 Treg 
ilmn_1793730 TM7SF4 iDC 
ilmn_1750678 TIMD4 iDC 
ilmn_1797236 TGM2 iDC 
ilmn_1795715 DPYD iDC 
ilmn_1796409 C1QB iDC 
ilmn_1724066 PLCB2 iDC 
ilmn_1656057 PLAU iDC 
ilmn_1747344 IL3RA pDC 
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A.2 Enriched pathways 

A.2.1 Top enriched pathways in the Low Immune Subgroup  

“GeneSet” is the pathway name, “Ratio of protein in Geneset” indicates ratios of numbers of genes contained in pathways to total genes in the 

Reactome FI network; “Number of protein in GeneSet” is the number of proteins within a given pathway; and “Protein from network” indicates 

number of genes from the input gene list per pathway. “Nodes” are proteins from the network. 

GeneSet 

Ratio Of 
Protein In 
GeneSet 

Number Of 
Protein In 
GeneSet 

Protein From 
Network P-value FDR Nodes 

The citric acid 
(TCA) cycle and 
respiratory 
electron 
transport(R) 

0.0148 161 66 1.11E-16 5.27E-14 ATP5C1, UQCRC1, UQCRC2, ECSIT, DLD, ATP5A1, SLC16A1, 
UQCRB, UQCRH, UQCRQ, NDUFC1, NDUFB9, NDUFB7, NDUFB3, 
NDUFB2, NDUFA8, NDUFA7, NDUFA4, NDUFA1, SUCLA2, BSG, 
ATP5S, ATP5J, ATP5H, ATP5O, ATP5E, ATP5D, NDUFAF2, 
NDUFAF1, COX7B, COX7C, COX8A, COX5B, COX5A, COX6C, 
NDUFAB1, TACO1, COX6A1, SDHC, COX6B1, NDUFB11, COX11, 
CYC1, PDHA1, CYCS, UQCRFS1, NDUFS5, NDUFS4, NDUFS2, 
NDUFS1, LRPPRC, IDH3A, PDK2, PDHX, COX7A2L, SUCLG1, 
TRAP1, DLAT, PDP2, NDUFA13, NDUFA11, NDUFA10, ATP5G3, 
ATP5G2, ATP5G1, ATP5F1 

Mitochondrial 
translation(R) 

0.0085 92 58 1.11E-16 5.27E-14 MRPL19, MRPL16, MRPL14, MRPL15, MRPL12, MRPL13, 
MRPL10, MRPL11, MRPL27, MRPL28, MRPL23, MRPL24, 
MRPL21, MRPL30, MRPL36, MRPL34, MRPL35, MRPL32, 
MRPL33, MRPL42, MRPL40, MRPL48, MRPL45, MRPL46, 
MRPL43, MRPL53, MRPL51, MRPL4, MRPL3, MRPL2, MRPL1, 
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GeneSet 

Ratio Of 
Protein In 
GeneSet 

Number Of 
Protein In 
GeneSet 

Protein From 
Network P-value FDR Nodes 

MRPL9, GADD45GIP1, MRPS17, MRPS15, MRPS28, MRPS26, 
MRPS27, MRPS24, MRPS23, MRPS2, MRPS21, MRPS7, MRPS5, 
MRPS9, MRPS35, MRPS36, MRPS33, MRPS34, MRPS30, 
MRPS18B, MRPS18A, GFM2, MRRF, TUFM, DAP3, TSFM, MTIF2 

Ribosome(K) 0.0142 154 59 1.32E-14 4.17E-12 MRPL19, MRPL16, MRPL14, MRPL15, MRPL12, MRPL13, 
MRPL10, MRPL11, MRPL27, MRPL28, MRPL23, MRPL24, 
MRPL21, MRPL30, RPLP1, RPLP0, MRPL36, MRPL34, MRPL35, 
MRPL32, MRPL33, MRPL4, MRPL3, MRPL2, MRPL1, MRPL9, 
RPL23A, MRPS17, MRPS15, MRPS2, MRPS21, MRPS7, MRPS5, 
MRPS9, RPL26L1, RPL4, RPL32, RPL34, RPL8, RPL6, RPL7, RPL36, 
RPL39, RPL22, RPL29, RPL12, RPS2, RPL10A, RPS7, RPS5, RPL7A, 
RPL37A, RPL36A, RPL35A, RPS15, RPS13, MRPS18A, RPS21, 
RPS3A 

Generic 
Transcription 
Pathway(R) 

0.0455 494 121 9.03E-14 2.14E-11 CSNK2A1, CSNK2A2, NR2F6, ZNF45, MED20, PMS2, ATAD2, 
CENPJ, STK11, CDC25C, MSH2, SMYD2, MNAT1, EXO1, RABGGTB, 
BIRC5, E2F1, E2F7, NDUFA4, TRIM28, CSNK2B, KCTD15, 
SUPT4H1, WWTR1, COX7B, BRCA1, COX7C, HNF4A, COX8A, KIT, 
YAP1, PCNA, COX5B, COX5A, TCEB2, TCEB1, NPM1, COX6C, 
RPA3, TACO1, COX6A1, COX6B1, CCNB1, COX11, TFAP2A, 
SUPT5H, CYCS, YWHAE, CHD4, TRIAP1, YWHAQ, YWHAG, TGIF1, 
TAF9, AURKB, AURKA, TGS1, SSRP1, ERCC3, ERCC2, TAF4, TAF2, 
GLS, MYC, PIP4K2B, MED1, NEDD4L, PRDX5, PRELID1, PLK2, GPI, 
PHF20, ING2, TEAD1, TEAD4, GTF2H2, GTF2H4, LRPPRC, YEATS4, 
USP7, SUPT16H, GTF2F1, GTF2F2, FANCI, CDK8, CDK5, RHEB, 
CDK2, RFC5, RFC3, RFC4, TFDP2, POLR2C, POLR2D, RBBP8, 
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GeneSet 

Ratio Of 
Protein In 
GeneSet 

Number Of 
Protein In 
GeneSet 

Protein From 
Network P-value FDR Nodes 

POLR2E, POLR2F, RBBP7, POLR2I, TP53RK, KAT5, CHEK1, 
COX7A2L, RRAGB, RRAGD, DNA2, TPX2, RPTOR, PRMT5, PRMT1, 
SGK1, NR6A1, CDK5R1, KCTD1, TBL1XR1, SMAD2, KDM5B, THRA, 
HSPD1, ERBB2, BAX 

rRNA 
processing(R) 

0.0165 179 62 2.15E-13 4.08E-11 RPLP1, RPLP0, TRMT112, NSUN4, BYSL, TSR1, ISG20L2, 
HSD17B10, NOP56, NOP58, RPL23A, NOL11, UTP14A, EXOSC7, 
EXOSC5, EXOSC4, PES1, EXOSC8, BOP1, DKC1, RPP21, RPP25, 
DDX49, UTP15, UTP18, RPL4, RPL32, RPL34, RPL8, RPL6, RRP9, 
RPL7, RPL36, RPL39, RPL22, RPL29, GAR1, PNO1, RIOK2, RPL12, 
RPS2, WDR18, WDR12, RPL10A, RPS7, RPS5, NHP2, WDR3, 
RPL7A, NOB1, RPL37A, RPL36A, RPL35A, PWP2, RPS15, RPS13, 
RPS21, NOL9, EMG1, RPS3A, SENP3, SKIV2L2 

Parkinson's 
disease(K) 

0.0131 142 53 7.80E-13 1.23E-10 ATP5C1, UQCRC1, UQCRC2, GPR37, ATP5A1, UQCRB, UQCRH, 
UQCRQ, NDUFC1, SLC25A5, SLC25A4, NDUFB9, NDUFB7, 
NDUFB3, NDUFB2, NDUFA8, NDUFA7, NDUFA4, NDUFA1, ATP5J, 
ATP5H, ATP5O, ATP5E, ATP5D, COX7B, COX7C, COX8A, COX5B, 
COX5A, COX6C, NDUFAB1, COX6A1, SDHC, COX6B1, NDUFB11, 
CYC1, CYCS, UQCRFS1, NDUFS5, NDUFS4, NDUFS2, NDUFS1, 
COX7A2L, VDAC2, VDAC1, NDUFA13, NDUFA11, NDUFA10, 
ATP5G3, ATP5G2, ATP5G1, ATP5F1, SNCA 

Mitotic 
Prometaphase(R) 

0.0091 99 43 1.00E-12 1.36E-10 CSNK2A1, CSNK2A2, CDCA5, NCAPG, CDCA8, CENPA, CENPF, 
APITD1, CENPI, CENPL, CENPM, CENPN, CENPO, CENPQ, NDC80, 
BIRC5, CSNK2B, KIF2C, MAD2L1, ERCC6L, BUB1B, CCNB2, CCNB1, 
NUP133, AURKB, SMC4, SEH1L, SKA1, RAD21, PLK1, NUF2, 
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GeneSet 

Ratio Of 
Protein In 
GeneSet 

Number Of 
Protein In 
GeneSet 

Protein From 
Network P-value FDR Nodes 

HDAC8, ZW10, ZWINT, AHCTF1, XPO1, RANBP2, KIF18A, CKAP5, 
ITGB3BP, BUB1, CLASP1, CLASP2 

Mitotic Metaphase 
and Anaphase(R) 

0.0151 164 57 1.76E-12 2.08E-10 PSMD8, PSMD4, PSMD2, PSMD3, PSME3, CDCA5, CDCA8, 
CENPA, PSMB7, PSMB4, PSMB5, CENPF, APITD1, CENPI, CENPL, 
CENPM, CENPN, CENPO, CENPQ, ANAPC5, NDC80, BIRC5, CDC16, 
KIF2C, MAD2L1, ERCC6L, BUB1B, BANF1, PSMD10, PSMD12, 
PSMD11, PSMD14, PSMD13, UBE2C, NUP133, AURKB, SEH1L, 
SKA1, ANAPC11, RAD21, PLK1, NUF2, ESPL1, HDAC8, PPP2R1A, 
ZW10, ZWINT, AHCTF1, XPO1, RANBP2, PTTG1, KIF18A, CKAP5, 
ITGB3BP, BUB1, CLASP1, CLASP2 

Oxidative 
phosphorylation(K) 

0.0122 133 50 2.69E-12 2.78E-10 ATP5C1, UQCRC1, UQCRC2, ATP5A1, UQCRB, UQCRH, UQCRQ, 
NDUFC1, NDUFB9, NDUFB7, NDUFB3, NDUFB2, NDUFA8, 
NDUFA7, NDUFA4, NDUFA1, ATP6V1E2, ATP5J, ATP5H, ATP5O, 
ATP5E, ATP5D, ATP6V1C1, COX7B, COX7C, COX8A, COX5B, 
COX5A, COX6C, NDUFAB1, COX6A1, SDHC, COX6B1, NDUFB11, 
COX11, CYC1, UQCRFS1, NDUFS5, NDUFS4, NDUFS2, NDUFS1, 
COX7A2L, NDUFA13, NDUFA11, NDUFA10, ATP6V1D, ATP5G3, 
ATP5G2, ATP5G1, ATP5F1 

Alzheimer's 
disease(K) 

0.0157 171 58 2.92E-12 2.78E-10 ATP5C1, UQCRC1, UQCRC2, EIF2AK3, GRIN2C, ATP5A1, UQCRB, 
UQCRH, NAE1, UQCRQ, NDUFC1, NDUFB9, NDUFB7, NDUFB3, 
NDUFB2, HSD17B10, NDUFA8, NDUFA7, NDUFA4, NDUFA1, 
ATP5J, ATP5H, ATP5O, APH1B, ATP5E, ATP5D, COX7B, COX7C, 
COX8A, COX5B, COX5A, COX6C, NDUFAB1, COX6A1, SDHC, 
COX6B1, NDUFB11, CYC1, CYCS, GSK3B, UQCRFS1, NDUFS5, 
NDUFS4, NDUFS2, NDUFS1, PPP3R1, BACE2, CDK5, COX7A2L, 
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GeneSet 

Ratio Of 
Protein In 
GeneSet 

Number Of 
Protein In 
GeneSet 

Protein From 
Network P-value FDR Nodes 

CDK5R1, NDUFA13, NDUFA11, NDUFA10, ATP5G3, ATP5G2, 
ATP5G1, ATP5F1, SNCA 

Huntington's 
disease(K) 

0.0178 193 62 4.81E-12 4.14E-10 ATP5C1, UQCRC1, UQCRC2, PPARGC1A, ATP5A1, UQCRB, 
UQCRH, UQCRQ, NDUFC1, SLC25A5, SLC25A4, NDUFB9, NDUFB7, 
NDUFB3, NDUFB2, NDUFA8, NDUFA7, NDUFA4, NDUFA1, ATP5J, 
ATP5H, ATP5O, ATP5E, ATP5D, RCOR1, COX7B, COX7C, COX8A, 
COX5B, COX5A, COX6C, NDUFAB1, COX6A1, SDHC, COX6B1, 
NDUFB11, CYC1, CYCS, UQCRFS1, NDUFS5, NDUFS4, NDUFS2, 
NDUFS1, TAF4, CREB3L4, CLTC, POLR2C, POLR2D, POLR2E, 
POLR2F, POLR2I, COX7A2L, VDAC2, VDAC1, NDUFA13, NDUFA11, 
NDUFA10, ATP5G3, ATP5G2, ATP5G1, ATP5F1, BAX 

Cell Cycle 
Checkpoints(R) 

0.0151 164 52 3.95E-10 3.12E-08 PSMD8, PSMD4, PSMD2, PSMD3, GTSE1, PSME3, PSMB7, 
PSMB4, PSMB5, CDC25C, CDC25A, ANAPC5, PKMYT1, MCM10, 
EXO1, HERC2, BRCC3, CDC16, BRCA1, RPA3, MAD2L1, BUB1B, 
UBE2V2, PSMD10, PSMD12, PSMD11, PSMD14, PSMD13, CCNB2, 
CCNB1, UBE2C, YWHAE, YWHAQ, YWHAG, RNF8, ANAPC11, 
CDC7, CDC6, CDK2, RFC5, RFC3, RFC4, MCM3, MCM4, RBBP8, 
KAT5, CHEK1, DNA2, TP53BP1, CLSPN, H2AFX, WEE1 

Eukaryotic 
Translation 
Initiation(R) 

0.0103 112 41 5.25E-10 3.83E-08 RPLP1, RPLP0, EIF1AX, EIF4EBP1, EIF5B, EIF4B, RPL23A, EIF3M, 
EIF3K, EIF3I, EIF3H, EIF3F, EIF3D, PABPC1, RPL4, RPL32, RPL34, 
RPL8, RPL6, RPL7, RPL36, RPL39, RPL22, RPL29, RPL12, RPS2, 
RPL10A, RPS7, RPS5, EIF2B3, EIF2B2, RPL7A, RPL37A, RPL36A, 
RPL35A, RPS15, RPS13, RPS21, EIF2S2, EIF2S3, RPS3A 
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GeneSet 

Ratio Of 
Protein In 
GeneSet 

Number Of 
Protein In 
GeneSet 

Protein From 
Network P-value FDR Nodes 

Non-alcoholic fatty 
liver disease 
(NAFLD)(K) 

0.0139 151 48 1.71E-09 1.15E-07 AKT2, AKT3, UQCRC1, UQCRC2, EIF2AK3, PKLR, UQCRB, UQCRH, 
UQCRQ, PIK3CB, NDUFC1, NDUFB9, NDUFB7, NDUFB3, NDUFB2, 
NDUFA8, NDUFA7, NDUFA4, NDUFA1, PIK3R2, COX7B, COX7C, 
COX8A, COX5B, COX5A, COX6C, NDUFAB1, COX6A1, SDHC, 
COX6B1, NDUFB11, CYC1, CYCS, GSK3B, UQCRFS1, NDUFS5, 
NDUFS4, NDUFS2, NDUFS1, IRS2, MLXIP, COX7A2L, NDUFA13, 
NDUFA11, NDUFA10, ADIPOR1, ADIPOR2, BAX 

S Phase(R) 0.0113 123 42 2.40E-09 1.51E-07 PSMD8, PSMD4, PSMD2, PSMD3, PSME3, CDCA5, PSMB7, 
PSMB4, PSMB5, CDC25A, MNAT1, POLA1, PCNA, RPA3, PSMD10, 
PSMD12, PSMD11, PSMD14, PSMD13, POLD2, POLE4, POLE2, 
MYC, RAD21, CDC6, CDK4, CDK2, RFC5, RFC3, RFC4, MCM3, 
MCM4, SKP2, ESCO1, DNA2, FEN1, GINS1, GINS2, GINS3, LIG1, 
CKS1B, WEE1 

Mitotic G2-G2/M 
phases(R) 

0.016 174 52 2.81E-09 1.66E-07 PSMD8, PSMD4, PSMD2, PSMD3, GTSE1, PSME3, DYNLL1, 
PSMB7, PSMB4, PSMB5, CENPF, CENPJ, NEK2, CDC25C, CDC25A, 
PKMYT1, TUBGCP5, TUBGCP4, MNAT1, HSP90AB1, FOXM1, 
E2F1, CETN2, DYNC1I2, DYNC1H1, PSMD10, PSMD12, PSMD11, 
PSMD14, PSMD13, CCNB2, CCNB1, YWHAE, YWHAG, CCNA2, 
AURKA, CEP70, CEP76, PLK4, PLK1, PHLDA1, FKBPL, HMMR, 
CDK2, CEP152, PPP2R1A, TPX2, XPO1, TUBG1, CKAP5, CLASP1, 
WEE1 

Cell cycle(K) 0.0114 124 40 2.59E-08 1.43E-06 CDC25C, CDC25A, ANAPC5, PKMYT1, E2F1, CDC16, PCNA, 
MAD2L1, BUB1B, CCNE2, CCNE1, CCNB3, CCNB2, CCNB1, 
YWHAE, GSK3B, YWHAQ, YWHAG, CCNA2, MYC, ANAPC13, 
PRKDC, ANAPC11, RAD21, PLK1, CDC7, CDC6, CDK4, CDK2, 
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GeneSet 

Ratio Of 
Protein In 
GeneSet 

Number Of 
Protein In 
GeneSet 

Protein From 
Network P-value FDR Nodes 

TFDP2, ESPL1, MCM3, MCM4, TTK, CHEK1, SKP2, PTTG1, SMAD2, 
BUB1, WEE1 

Mitotic G1-G1/S 
phases(R) 

0.012 130 40 8.81E-08 4.58E-06 PSMD8, PSMD4, PSMD2, PSMD3, PSME3, DHFR, PSMB7, PSMB4, 
PSMB5, CDC25A, MNAT1, MCM10, E2F1, POLA1, PCNA, RPA3, 
CCNE2, CCNE1, PSMD10, PSMD12, PSMD11, PSMD14, PSMD13, 
CCNB1, RRM2, POLE4, POLE2, MYC, CDC7, CDC6, CDK4, CDK2, 
TFDP2, MCM3, MCM4, SKP2, TOP2A, TYMS, CKS1B, WEE1 

Nucleotide 
Excision Repair(R) 

0.0094 102 34 1.34E-07 6.71E-06 ACTL6A, DDB1, RUVBL1, INO80C, MNAT1, CETN2, PCNA, RPA3, 
UBE2V2, PPIE, POLD2, ERCC3, ERCC1, ERCC2, ERCC8, GTF2H2, 
GTF2H4, USP7, CHD1L, COPS4, COPS5, COPS2, COPS8, RFC5, 
RFC3, RFC4, POLR2C, POLR2D, POLR2E, POLR2F, POLR2I, PRPF19, 
LIG1, LIG3 
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A.2.2 Top enriched pathways in the CTNNB1 dominant group in the whole dataset 

 “GeneSet” is the pathway name, “Ratio of protein in Geneset” indicates ratios of numbers of genes contained in pathways to total genes in the 

Reactome FI network; “Number of protein in GeneSet” is the number of proteins within a given pathway; and “Protein from network” indicates 

number of genes from the input gene list per pathway. “Nodes” are proteins from the network. 

GeneSet 

Ratio Of 
Protein In 
GeneSet 

Number Of 
Protein In 
GeneSet 

Protein 
From 

Network P-value FDR Nodes 
Melanogenesis(K) 0.0093 101 3 3.36E-04 0.0221 GNAI2, CTNNB1, WNT2 
role of brca1 brca2 and atr in cancer 
susceptibility(B) 

0.0018 20 2 3.50E-04 0.0221 RAD1, ATR 

Generic Transcription Pathway(R) 0.0455 494 5 3.97E-04 0.0221 PPP2R5C, POLR2C, RAD1, TAF9B, 
ATR 

p53 pathway feedback loops 2(P) 0.0022 24 2 5.02E-04 0.0221 CTNNB1, ATR 
Tight junction(K) 0.0126 137 3 8.14E-04 0.026 GNAI2, PARD6A, CTNNB1 
Transcriptional regulation of 
pluripotent stem cells(R) 

0.0033 36 2 1.12E-03 0.026 FOXP1, POLR2C 

Hippo signaling pathway(K) 0.0142 154 3 1.14E-03 0.026 PARD6A, CTNNB1, WNT2 
ATR signaling pathway(N) 0.0034 37 2 1.18E-03 0.026 RAD1, ATR 
Fanconi anemia pathway(N) 0.0041 45 2 1.74E-03 0.0322 RAD1, ATR 
TGF-beta receptor signaling(N) 0.0043 47 2 1.89E-03 0.0322 PARD6A, CTNNB1 
Basal cell carcinoma(K) 0.0051 55 2 2.57E-03 0.0397 CTNNB1, WNT2 
Rap1 signaling pathway(K) 0.0195 212 3 2.83E-03 0.0397 GNAI2, PARD6A, CTNNB1 
CDC42 signaling events(N) 0.0064 70 2 4.12E-03 0.0492 PARD6A, CTNNB1 
Gastric acid secretion(K) 0.0069 75 2 4.71E-03 0.0492 SSTR2, GNAI2 
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GeneSet 

Ratio Of 
Protein In 
GeneSet 

Number Of 
Protein In 
GeneSet 

Protein 
From 

Network P-value FDR Nodes 
HTLV-I infection(K) 0.0237 258 3 4.92E-03 0.0492 CTNNB1, WNT2, ATR 
Regulation of nuclear beta catenin 
signaling and target gene 
transcription(N) 

0.0074 80 2 5.34E-03 0.0492 MDFIC, CTNNB1 

Signaling events mediated by 
Hepatocyte Growth Factor Receptor 
(c-Met)(N) 

0.0074 80 2 5.34E-03 0.0492 PARD6A, CTNNB1 

Wnt signaling pathway(P) 0.0247 268 3 5.46E-03 0.0492 PPP2R5C, CTNNB1, WNT2 
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A.2.3 Top enriched pathways in the MYC dominant group in the whole dataset 

“GeneSet” is the pathway name, “Ratio of protein in Geneset” indicates ratios of numbers of genes contained in pathways to total genes in the 

Reactome FI network; “Number of protein in GeneSet” is the number of proteins within a given pathway; and “Protein from network” indicates 

number of genes from the input gene list per pathway. “Nodes” are proteins from the network. 

GeneSet 

Ratio Of 
Protein In 
GeneSet 

Number Of 
Protein In 
GeneSet 

Protein 
From 

Network P-value FDR Nodes 
Keratinization(R) 0.0099 108 18 1.11E-16 2.26E-14 SPRR2E, KRT80, KLK5, KLK8, 

EVPL, CASP14, SPRR2A, DSP, JUP, 
KRT1, SPINK5, KRT10, KRT5, 
KRT15, KRT14, PKP3, DSC1, DSC3 

Validated transcriptional targets of 
deltaNp63 isoforms(N) 

0.0041 45 4 1.09E-05 1.11E-03 SFN, TP63, KRT5, KRT14 

a6b1 and a6b4 Integrin signaling(N) 0.0032 35 3 1.70E-04 0.0115 COL17A1, EGFR, SFN 
Bladder cancer(K) 0.0038 41 3 2.69E-04 0.0131 EGFR, MYC, FGFR3 
p53 pathway(P) 0.004 44 3 3.31E-04 0.0131 SFN, TP63, SERPINB5 
Posttranslational regulation of 
adherens junction stability and 
dissassembly(N) 

0.0044 48 3 4.26E-04 0.0131 EGFR, DSP, JUP 

Validated transcriptional targets of 
TAp63 isoforms(N) 

0.0045 49 3 4.52E-04 0.0131 EVPL, TP63, SERPINB5 

Direct p53 effectors(N) 0.0121 132 4 6.72E-04 0.0168 EGFR, SFN, TP63, SERPINB5 
Central carbon metabolism in 
cancer(K) 

0.0062 67 3 1.11E-03 0.0245 EGFR, MYC, FGFR3 
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GeneSet 

Ratio Of 
Protein In 
GeneSet 

Number Of 
Protein In 
GeneSet 

Protein 
From 

Network P-value FDR Nodes 
p73 transcription factor network(N) 0.0069 75 3 1.54E-03 0.0275 MYC, SFN, TP63 
Glucocorticoid receptor regulatory 
network(N) 

0.0072 78 3 1.72E-03 0.0275 SFN, KRT5, KRT14 

Regulation of nuclear beta catenin 
signaling and target gene 
transcription(N) 

0.0074 80 3 1.85E-03 0.0275 MYC, SFN, KRT1 

E-cadherin signaling in 
keratinocytes(N) 

0.0019 21 2 1.89E-03 0.0275 EGFR, JUP 

MicroRNAs in cancer(K) 0.0275 299 5 1.97E-03 0.0275 EGFR, MYC, TP63, SERPINB5, 
FGFR3 

p53 pathway feedback loops 2(P) 0.0022 24 2 2.46E-03 0.032 MYC, TP63 
Dorso-ventral axis formation(K) 0.0026 28 2 3.32E-03 0.0399 EGFR, ETS2 
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A.2.4  Top enriched pathways in the High Immune Subgroup 

“GeneSet” is the pathway name, “Ratio of protein in Geneset” indicates ratios of numbers of genes contained in pathways to total genes in the 

Reactome FI network; “Number of protein in GeneSet” is the number of proteins within a given pathway; and “Protein from network” indicates 

number of genes from the input gene list per pathway. “Nodes” are proteins from the network. 

 

Ratio Of 
Protein 
In 
GeneSet 

Number 
Of 
Protein In 
GeneSet 

Protein 
From 
Network P-value FDR Nodes 

Interferon 
alpha/beta 
signaling(R) 

0.0063 68 42 1.11E-16 1.99E-14 JAK1, RNASEL, STAT1, STAT2, PSMB8, SOCS3, SOCS1, PTPN6, 
IFI35, RSAD2, IFI27, BST2, ISG15, ISG20, ADAR, IRF3, IRF1, IRF2, 
IRF7, IRF5, IRF9, SAMHD1, MX1, IFNAR2, IFITM3, IFITM1, 
IFITM2, IFIT1, IFIT3, IFIT2, HLA-B, HLA-C, HLA-A, HLA-F, HLA-E, 
TYK2, IFI6, OASL, OAS1, OAS2, OAS3, GBP2 

Antigen 
processing and 
presentation(K) 

0.0071 77 39 1.11E-16 1.99E-14 RFX5, PSME1, PSME2, HLA-DRB5, HLA-DRB4, HLA-DRB3, HLA-
DRB1, HLA-DPA1, HLA-DMA, HLA-DMB, KIR3DL3, HLA-DPB1, 
HLA-DOA, KIR2DL5A, HLA-DRA, CIITA, IFI30, CTSS, CTSB, CD74, 
CD8B, KIR2DL4, TAPBP, CD4, HLA-DQA1, KIR2DS3, KIR2DS5, 
HLA-DQB1, TAP2, TAP1, B2M, HLA-B, HLA-C, HLA-A, HLA-F, 
HLA-E, KLRC2, KLRC3, KLRC4 
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Ratio Of 
Protein 
In 
GeneSet 

Number 
Of 
Protein In 
GeneSet 

Protein 
From 
Network P-value FDR Nodes 

Influenza A(K) 0.0161 175 56 1.11E-16 1.99E-14 HLA-DRB5, HLA-DRB4, EIF2AK2, EIF2AK4, HLA-DRB3, HLA-
DRB1, IKBKB, IKBKE, JAK1, HLA-DPA1, RNASEL, HLA-DMA, HLA-
DMB, STAT1, STAT2, HLA-DPB1, HLA-DOA, SOCS3, TNFRSF10A, 
NFKB1, TNFRSF10D, CXCL10, HLA-DRA, MYD88, CIITA, PIK3CD, 
CCL2, ICAM1, TNFSF10, RSAD2, PIK3R1, IL18, IL33, IL6, ADAR, 
DDX58, IRF3, IRF7, IRF9, MX1, HLA-DQA1, IFIH1, IFNGR1, HLA-
DQB1, IFNAR2, MAP2K3, PML, TYK2, TLR4, TLR3, FAS, NFKBIA, 
CASP1, OAS1, OAS2, OAS3 

Interferon 
gamma 
signaling(R) 

0.0067 73 47 1.11E-16 1.99E-14 HLA-DRB5, HLA-DRB4, HLA-DRB3, HLA-DRB1, JAK1, HLA-DPA1, 
PTAFR, STAT1, HLA-DPB1, PIAS1, SOCS3, SOCS1, HLA-DRA, 
CIITA, PTPN6, IFI30, ICAM1, TRIM26, TRIM21, TRIM22, IRF3, 
IRF1, IRF2, IRF7, IRF5, IRF9, HLA-DQA1, TRIM8, TRIM5, IFNGR1, 
HLA-DQB2, HLA-DQB1, PML, B2M, HLA-B, HLA-C, HLA-A, HLA-F, 
HLA-E, SP100, OASL, OAS1, OAS2, OAS3, GBP2, GBP1, CAMK2G 

Signaling by 
Interleukins(R) 

0.0423 460 99 1.11E-16 1.99E-14 PSME1, PSME2, PDGFB, IL22RA2, IL18BP, IKBKB, IKBKG, JAK1, 
DUSP5, RAPGEF1, PTAFR, STAT1, STAT3, PSMB8, PSMB9, 
F13A1, RORA, PIM1, MAP3K8, SOCS3, SOCS1, NFKB1, NFKB2, 
CXCL10, MYD88, RASGRF2, PIK3CD, KSR1, TNFRSF1B, IL2RG, 
CCL2, FYN, PTPN6, IL27RA, ICAM1, PIK3R1, CCR1, STAT5B, IL24, 
SYK, IL18, OSMR, IL32, IL33, KITLG, PDGFRB, PDGFRA, IL4R, 
RASGRP1, RASGRP4, RASGRP3, IRAK2, IL6, MMP2, IRAK3, 
MMP9, IL9R, PSMB10, PTK2B, CD4, JUNB, HIF1A, HMOX1, 
TIMP1, ZEB1, ALOX5, CSF2, CSF1, FGF1, IL13RA1, RASAL3, 
MCL1, BCL6, LAT, SOS1, CEBPD, NOD1, NOD2, IL15RA, IL1R1, 
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Ratio Of 
Protein 
In 
GeneSet 

Number 
Of 
Protein In 
GeneSet 

Protein 
From 
Network P-value FDR Nodes 

IL1R2, TWIST1, LIF, GFRA1, TYK2, GFRA2, VAV1, RHOU, IL11RA, 
HGF, LIFR, CSF2RB, CXCL2, CASP1, BLNK, RASA4, MUC1, S1PR1, 
CAMK2G 

Herpes simplex 
infection(K) 

0.017 185 57 2.22E-16 3.31E-14 C3, HLA-DRB5, HLA-DRB4, EIF2AK2, EIF2AK4, HLA-DRB3, HLA-
DRB1, IKBKB, IKBKG, IKBKE, JAK1, HLA-DPA1, RNASEL, HLA-
DMA, HLA-DMB, STAT1, STAT2, HLA-DPB1, HLA-DOA, SOCS3, 
NFKB1, HLA-DRA, MYD88, CCL2, CD74, IL6, DDX58, IRF3, IRF7, 
IRF9, CFP, HLA-DQA1, IFIH1, IFNGR1, HLA-DQB1, IFNAR2, TAP2, 
TAP1, TRAF3, TRAF5, PML, IFIT1, HLA-B, HLA-C, HLA-A, HLA-F, 
HLA-E, TYK2, TLR3, SP100, ARNTL, FAS, NFKBIA, CASP8, OAS1, 
OAS2, OAS3 
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Ratio Of 
Protein 
In 
GeneSet 

Number 
Of 
Protein In 
GeneSet 

Protein 
From 
Network P-value FDR Nodes 

Cytokine-
cytokine receptor 
interaction(K) 

0.0244 265 67 7.88E-15 1.01E-12 PDGFB, IL22RA2, PDGFC, CRLF2, CXCL13, CXCL14, CXCL16, 
LEPR, TNFRSF8, TNFRSF4, TNFRSF11B, TNFRSF10A, 
TNFRSF10D, CXCL10, CXCL11, CXCL12, FLT4, TNFSF13B, 
TNFRSF1B, IL2RG, CCL8, CCL2, TNFRSF6B, TNFSF10, TNFSF11, 
CCR1, TNFSF13, CD40, TNFRSF13B, IL24, IL18, OSMR, CD70, 
KITLG, PDGFRB, PDGFRA, IL4R, IL6, IL9R, TNFSF4, IFNGR1, 
CCL18, CCL16, CCL25, CCL23, CSF2, CSF1, IL13RA1, IFNAR2, 
CX3CR1, IL15RA, IL1R1, IL1R2, LIF, CX3CL1, CXCR3, CD40LG, 
FAS, CCL4L1, IL11RA, HGF, LIFR, CSF2RB, TGFB3, CXCL9, CXCL2, 
TGFBR2 

Th17 cell 
differentiation(K) 

0.0098 107 39 9.58E-14 1.07E-11 HLA-DRB5, HLA-DRB4, HLA-DRB3, HLA-DRB1, IKBKB, IKBKG, 
JAK1, HLA-DPA1, HLA-DMA, HLA-DMB, STAT1, STAT3, HLA-
DPB1, RORA, HLA-DOA, NFKB1, HLA-DRA, IL2RG, IL27RA, 
STAT5B, PPP3CC, IL4R, IL6, CD4, PRKCQ, HIF1A, HLA-DQA1, 
NFATC2, IFNGR1, RARA, HLA-DQB1, AHR, LAT, IL1R1, RUNX1, 
TYK2, NFKBIA, NFKBIE, TGFBR2 

Chemokine 
signaling 
pathway(K) 

0.0172 187 52 2.71E-13 2.68E-11 PREX1, LYN, IKBKB, IKBKG, STAT1, STAT2, STAT3, CXCL13, 
CXCL14, CXCL16, RAP1A, NFKB1, CXCL10, CXCL11, CXCL12, 
PIK3CD, ARRB2, ROCK1, ROCK2, CCL8, CCL2, PIK3R1, CCR1, 
STAT5B, GNGT2, RAC2, GNAI2, PAK1, RASGRP2, GRK5, GRK6, 
PTK2B, ADCY4, ADCY3, ADCY7, CCL18, CCL16, CCL25, CCL23, 
SOS1, CX3CR1, CX3CL1, VAV3, VAV1, WAS, CXCR3, CCL4L1, 
ELMO1, NFKBIA, CXCL9, CXCL2, DOCK2 
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Ratio Of 
Protein 
In 
GeneSet 

Number 
Of 
Protein In 
GeneSet 

Protein 
From 
Network P-value FDR Nodes 

NOD-like 
receptor 
signaling 
pathway(K) 

0.0156 170 49 3.75E-13 3.34E-11 TXNIP, RBCK1, IKBKB, IKBKG, IKBKE, JAK1, RIPK3, RNASEL, 
STAT1, STAT2, NFKB1, MYD88, CCL2, CTSB, IL18, CYBA, 
CARD16, IL6, TNFAIP3, IRF3, IRF7, IRF9, ATG12, MEFV, GSDMD, 
TMEM173, CARD9, IFNAR2, ITPR1, PSTPIP1, TRAF3, TRAF5, 
RNF31, NOD1, NLRC4, NOD2, TYK2, TLR4, NLRP1, NFKBIA, 
CXCL2, CASP8, CASP5, CASP1, OAS1, OAS2, OAS3, GBP2, GBP1 

TNF signaling 
pathway(K) 

0.0101 110 38 9.68E-13 7.84E-11 IKBKB, CASP10, IKBKG, RIPK3, MAP3K8, MAP3K5, SOCS3, 
NFKB1, CXCL10, PIK3CD, TNFRSF1B, CCL2, ICAM1, PIK3R1, IL6, 
TNFAIP3, MMP9, CREB3L1, JUNB, CSF2, CSF1, MAP2K3, BCL3, 
MAP3K14, TRADD, TRAF3, TRAF5, CEBPB, NOD2, CFLAR, LIF, 
CX3CL1, FAS, MLKL, NFKBIA, CXCL2, CASP7, CASP8 

NF-kappa B 
signaling 
pathway(K) 

0.0087 95 35 1.32E-12 9.77E-11 LYN, IKBKB, IKBKG, TICAM2, LY96, NFKB1, NFKB2, CXCL12, 
MYD88, TNFSF13B, ICAM1, TNFSF11, BTK, CD40, SYK, RELB, 
CARD11, TNFAIP3, DDX58, PRKCQ, PLCG2, MAP3K14, LAT, 
TRADD, TRAF3, TRAF5, CFLAR, IL1R1, GADD45B, TLR4, CD40LG, 
CCL4L1, NFKBIA, CXCL2, BLNK 

Measles(K) 0.0125 136 42 2.17E-12 1.48E-10 EIF2AK2, EIF2AK4, IKBKE, JAK1, STAT1, STAT2, STAT3, 
TNFRSF10A, NFKB1, TNFRSF10D, MYD88, PIK3CD, IL2RG, FYN, 
TNFSF10, PIK3R1, STAT5B, CCND3, CCND2, IL6, TNFAIP3, ADAR, 
DDX58, IRF3, IRF7, IRF9, MX1, PRKCQ, CDKN1B, IFIH1, IFNGR1, 
TACR1, IFNAR2, CBLB, SH2D1A, TYK2, TLR4, FAS, NFKBIA, 
OAS1, OAS2, OAS3 



 
 

 

215 

 

Ratio Of 
Protein 
In 
GeneSet 

Number 
Of 
Protein In 
GeneSet 

Protein 
From 
Network P-value FDR Nodes 

Osteoclast 
differentiation(K) 

0.0121 132 41 3.34E-12 2.14E-10 IKBKB, IKBKG, JAK1, STAT1, STAT2, NCF4, TNFRSF11B, SOCS3, 
SOCS1, NFKB1, NFKB2, PIK3CD, LCP2, FYN, FCGR2A, TNFSF11, 
BTK, PIK3R1, PPP3CC, SYK, RELB, CYBA, OSCAR, SIRPB1, IRF9, 
JUNB, PLCG2, NFATC2, FOSL2, CYLD, IFNGR1, CSF1, IFNAR2, 
MAP3K14, IL1R1, TYK2, CAMK4, SIRPG, NFKBIA, BLNK, TGFBR2 

Viral 
myocarditis(K) 

0.0054 59 27 4.24E-12 2.50E-10 HLA-DRB5, HLA-DRB4, HLA-DRB3, HLA-DRB1, HLA-DPA1, HLA-
DMA, HLA-DMB, BID, HLA-DPB1, HLA-DOA, HLA-DRA, FYN, 
ICAM1, CD40, RAC2, LAMA2, HLA-DQA1, HLA-DQB1, SGCA, 
HLA-B, HLA-C, HLA-A, HLA-F, HLA-E, CD40LG, CASP8, MYH6 

Natural killer cell 
mediated 
cytotoxicity(K) 

0.0124 135 41 6.61E-12 3.70E-10 HCST, BID, KIR2DL5A, TNFRSF10A, TNFRSF10D, PIK3CD, LCP2, 
SH3BP2, FYN, GZMB, PTPN6, ICAM2, ICAM1, TNFSF10, PIK3R1, 
PPP3CC, RAC2, SYK, PAK1, MICB, KIR2DL4, PTK2B, PLCG2, 
KIR2DS3, KIR2DS5, NFATC2, IFNGR1, CSF2, IFNAR2, LAT, SOS1, 
HLA-B, HLA-C, HLA-A, HLA-E, SH2D1A, VAV3, VAV1, FAS, 
KLRC2, KLRC3 

Staphylococcus 
aureus 
infection(K) 

0.0052 56 26 7.71E-12 3.82E-10 C2, C3, HLA-DRB5, HLA-DRB4, HLA-DRB3, HLA-DRB1, HLA-
DPA1, PTAFR, HLA-DMA, HLA-DMB, HLA-DPB1, HLA-DOA, HLA-
DRA, C1S, C1R, FCGR2A, ICAM1, MASP1, CFB, CFD, CFH, CFI, 
HLA-DQA1, HLA-DQB1, C1QA, C5AR1 
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Ratio Of 
Protein 
In 
GeneSet 

Number 
Of 
Protein In 
GeneSet 

Protein 
From 
Network P-value FDR Nodes 

Tuberculosis(K) 0.0165 179 48 7.80E-12 3.82E-10 RFX5, C3, HLA-DRB5, HLA-DRB4, HLA-DRB3, HLA-DRB1, 
CASP10, JAK1, HLA-DPA1, HLA-DMA, HLA-DMB, BID, STAT1, 
HLA-DPB1, HLA-DOA, CORO1A, NFKB1, HLA-DRA, MYD88, 
CIITA, APAF1, KSR1, FCGR2A, CTSS, PPP3CC, SYK, IL18, CD74, 
IRAK2, VDR, IL6, HLA-DQA1, MRC2, IFNGR1, HLA-DQB1, 
CARD9, CLEC4E, CLEC7A, TRADD, LSP1, CR1, CEBPB, NOD2, 
TLR1, TLR4, TGFB3, CASP8, CAMK2G 

Th1 and Th2 cell 
differentiation(K) 

0.0085 92 33 1.15E-11 5.41E-10 RBPJ, HLA-DRB5, HLA-DRB4, HLA-DRB3, HLA-DRB1, IKBKB, 
IKBKG, JAK1, HLA-DPA1, HLA-DMA, HLA-DMB, STAT1, HLA-
DPB1, HLA-DOA, MAF, NFKB1, HLA-DRA, IL2RG, STAT5B, 
PPP3CC, IL4R, CD4, MAML1, PRKCQ, HLA-DQA1, NFATC2, 
IFNGR1, HLA-DQB1, NOTCH1, LAT, TYK2, NFKBIA, NFKBIE 
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A.2.5  Genes differentially expressed between CNNTB1 dominant and MYC 

dominant group in the Low Immune Subgroup 

probe gene detected05 z p_value 
ilmn_1663158 ZNF174 0.8375 -5.9197 3.23E-09 
ilmn_2084391 RAD18 0.7729167 -5.819325 5.91E-09 
ilmn_2335198 NCOA1 0.7020833 -5.648805 1.62E-08 
ilmn_2248863 ZBTB38 0.8708333 -5.635275 1.75E-08 
ilmn_1654112 PARD6A 0.8333333 -5.595262 2.20E-08 
ilmn_1688041 TMEM53 0.9166667 -5.36422 8.13E-08 
ilmn_1764297 ARF6 0.9083334 -5.350971 8.75E-08 
ilmn_1652309 TTC8 0.81875 -5.337494 9.42E-08 
ilmn_1794560 TMEM93 0.8416666 -5.2772 1.31E-07 
ilmn_3248941 C6orf225 0.8270833 -5.170131 2.34E-07 
ilmn_1699362 IK 0.8270833 -5.156789 2.51E-07 
ilmn_1809259 HRASLS2 0.4958333 -5.089804 3.58E-07 
ilmn_2356786 ADD1 0.875 -5.063047 4.13E-07 
ilmn_1765880 C16orf57 0.9458333 -5.063033 4.13E-07 
ilmn_1700419 HSPC171 0.8104166 -5.02957 4.92E-07 
ilmn_1660223 CREBL2 0.90625 -5.026237 5.00E-07 
ilmn_2155516 QTRTD1 0.8083333 -4.962656 6.95E-07 
ilmn_3237779 TMEM184C 0.8604167 -4.956006 7.20E-07 
ilmn_1741462 FAHD1 0.7916667 -4.9225 8.55E-07 
ilmn_1718265 ATG5 0.5541667 -4.922486 8.55E-07 
ilmn_1798053 SEPT14 0.6229166 -4.902463 9.46E-07 
ilmn_1807807 SKA2 0.9041666 -4.88233 1.05E-06 
ilmn_1715901 FBXL17 0.7791666 -4.878997 1.07E-06 
ilmn_1659082 ZCRB1 0.7958333 -4.868945 1.12E-06 
ilmn_2371470 C1orf124 0.75 -4.842653 1.28E-06 
ilmn_3234775 SLAIN2 0.8104166 -4.828843 1.37E-06 
ilmn_1746426 TOMM70A 0.8979167 -4.825456 1.40E-06 
ilmn_1812254 KIF5A 0.7854167 -4.822095 1.42E-06 
ilmn_1667201 WDR51B 0.6875 -4.822095 1.42E-06 
ilmn_1708580 PDZK1IP1 0.4229167 4.808724 1.52E-06 
ilmn_1665761 BCL11B 0.7333333 4.838964 1.30E-06 
ilmn_1722718 BMP2 0.4604167 4.848866 1.24E-06 
ilmn_1730223 RNF39 0.55 4.855559 1.20E-06 
ilmn_1770922 TMEM45A 0.86875 4.862252 1.16E-06 
ilmn_1795359 SPRR2A 0.4354167 4.865612 1.14E-06 
ilmn_1674386 PITX1 0.6604167 4.875638 1.09E-06 
ilmn_1765668 IL20RB 0.6666667 4.889078 1.01E-06 
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probe gene detected05 z p_value 
ilmn_2094952 NUAK2 0.7354167 4.909115 9.15E-07 
ilmn_1752813 UGT1A6 0.3604167 4.919279 8.69E-07 
ilmn_2067656 CCND2 0.8729166 4.982777 6.27E-07 
ilmn_2110271 OLFM2 0.825 5.006159 5.55E-07 
ilmn_1798577 SLC6A11 0.55 5.009548 5.46E-07 
ilmn_1763491 CKMT1B 0.6145833 5.009987 5.44E-07 
ilmn_1750785 SYTL1 0.4 5.196902 2.03E-07 
ilmn_1768772 DEGS2 0.4583333 5.23041 1.69E-07 
ilmn_1712283 WNT10B 0.38125 5.310663 1.09E-07 
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A.3 Representative images of antibody optimisation 

A.3.1 Representation of antibody optimisation for MYC. Magnification 20X 

 
A.3.2 Representation of antibody optimasation for HLA-B. Magnification 20X 
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A.3.3 Represation of antibody optimasation for NF-kB p105. Maginifcation 

20X 
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A.4 Top genes differentially expressed by smoking status (never/ever) 

in the whole dataset and in the High Immune Subgroup 

A.4.1 The top 20 genes differentially expressed by smoking status 

(never/ever) in the whole dataset. The negative z indicates that the 

gene is higher in ever smokers 

probe gene z P-value FDR 
ilmn_1772163 PRKY -4.16 0.00003 0.14 
ilmn_1693338 CYP1B1 -4.09 0.00004 0.14 
ilmn_1732039 DDX3Y -4.26 0.00002 0.15 
ilmn_1756506 CYorf15B -4.16 0.00003 0.15 
ilmn_1721218 KRT13 4.09 0.00004 0.16 
ilmn_2052433 CYorf14 -4.20 0.00003 0.16 
ilmn_1730670 FSTL3 -4.01 0.00006 0.17 
ilmn_1787831 ODF3L2 4.02 0.00006 0.17 
ilmn_1783142 RPS4Y1 -4.28 0.00002 0.18 
ilmn_1776195 TMSB4Y -3.94 0.00008 0.20 
ilmn_2090059 ZFY -3.92 0.00009 0.20 
ilmn_1734205 RASSF1 -4.49 0.00001 0.21 
ilmn_1678425 WFDC8 -3.85 0.00012 0.23 
ilmn_1685690 JARID1D -3.81 0.00014 0.24 
ilmn_1770266 ZNF354B -3.86 0.00011 0.24 
ilmn_1667750 SLC4A5 3.83 0.00013 0.24 
ilmn_2056795 USP9Y -3.80 0.00015 0.24 
ilmn_1741674 PPP1R9A 4.30 0.00002 0.25 
ilmn_1670821 CYorf15A -3.69 0.00022 0.28 
ilmn_2179083 LOXL4 3.71 0.00020 0.29 

 

A.4.2 The top 20 genes differentially expressed by smoking status 

(never/ever) in the High Immune Subgroup. The negative z indicates 

that the gene is higher in ever smokers 

probe gene z P-value FDR 
ilmn_2098126 CCL5 1.49 0.14 0.96 
ilmn_1722825 FLJ36701 1.49 0.14 0.96 
ilmn_2053679 ACADM 1.49 0.14 0.96 
ilmn_1707799 DGKK -1.51 0.13 0.96 
ilmn_1704870 PGLYRP1 -1.48 0.14 0.96 
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probe gene z P-value FDR 
ilmn_2062524 RBBP4 1.49 0.14 0.96 
ilmn_1740505 SGMS1 -1.48 0.14 0.96 
ilmn_1683475 TOMM40 1.51 0.13 0.96 
ilmn_1813344 C20orf7 1.48 0.14 0.96 
ilmn_1726786 TNRC6B 1.48 0.14 0.96 
ilmn_1722059 SAFB 1.51 0.13 0.96 
ilmn_1735959 CNOT4 -1.49 0.14 0.96 
ilmn_1789653 PBLD -1.51 0.13 0.96 
ilmn_2149815 CYP2F1 1.48 0.14 0.96 
ilmn_1748889 PCDHGA7 -1.49 0.14 0.96 
ilmn_1713301 DGCR2 -1.48 0.14 0.96 
ilmn_1656134 CNOT7 -1.51 0.13 0.96 
ilmn_3249351 SNORA35 -1.48 0.14 0.96 
ilmn_2173651 TBC1D3 -1.48 0.14 0.96 
ilmn_1768035 MMP12 -1.48 0.14 0.96 
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