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Chapter 1

Introduction

Unmanned aerial vehicles (UAVs) are of natural potential to be utilized in a system to

measure information on ground or sea surface. The application of such system can be

search and rescue at sea and over land, wild animal monitoring, forest fire monitoring,

etc.. For several reasons, it is not always advisable to monitor an area of interest by

having a single agent to cover the whole space. Firstly, the sensing ability of each agent is

limited by the field of view, sensing range, and resolution of its sensor. Given a required

measuring accuracy, the cost of sensor grows exponentially with the required size of

footprint. Secondly, the loss of the UAV by failure or hostile attack can be devastating

to the whole mission, if there is only one UAV. Thirdly, a single sensor is susceptible to

occlusions caused by the terrain, buildings, or the curve of the earth.

There are two main ways to address these issues. One way is to make use of the

mobility of the UAV agent. An agent with a small sensor footprint can move around

and explore the whole environment, thus covering each part intermittently. This reduces

the requirement on the size of sensors footprint, and can be more flexible to focus sensing

on areas of higher interest. Another way is to divide the whole space into partitions,

and cover them with a set of agents with cheap sensors. Such system should be of

inherent robustness against losses of individual agents, thus improving its reliability

in an adverse environment. Having multiple scattered sensors can also overcome the

influence of occlusion.

In most cases, the two concepts can be combined, to have a system of multiple moving

sensors, to cover and measure the environment. To exploit the potential of such a

system, some problems remain to be solved. Firstly, in a dynamic environment with

spatial and temporal information, it needs to be decided about what trajectory the

agent should follow to schedule the sensing resources, and to obtain and update the real

time information of the whole environment. Secondly, with multiple agents working for

1



Introduction 2

a shared mission at the same time, given limited communication, the agents need to

cooperate to optimize the overall performance of measurement.

1.1 Simultaneous Search and Monitoring of Mobile Tar-

gets

In this section, some more specific scenarios are focused upon. In a situation where a

ship capsized in the sea and the sailors are drifting on the water with life vests. To

achieve a fast-response rescue, we need an UAV system to reach the incident area to

search and locate the sailors, and report to the rescue team. This is illustrated in Figure

1.1. In a natural reserve, we want a system to study the behaviour pattern of several

endangered animals.

Figure 1.1: application of an UAV system in sea rescue

In these applications, we want to obtain and maintain an up-to-date knowledge about

the ground and sea targets. The target detection sensors are of limited resolution, and

the whole environment to observe is normally large. So it is impossible to cover the

whole area by a static sensor. Instead, multiple mobile sensing agents are needed.

Numerous prior work has studied this problem area. They are mainly divided into two

categories: one is searching for unknown targets to obtain their location, the other is

monitoring known scattered targets to update their information. In both categories, the

problem formulations are further divided by how fast the agent can outrun the targets,

how many targets each agent needs to cover, and how big area of the environment can be

measured at the same time. In search missions, the searcher may build a fixed formation

to cover the whole area statically, or sweep in a fixed pattern, or explore dynamically, to

achieve fastest or best chance of detection. In a monitoring missions, the pursuers may

track one individual target, or cover multiple ones, or traverse them in a sequence, to

maintain the knowledge about them. search and monitoring by UAV system are shown

in Figure 1.2 and 1.3.
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Figure 1.2: search in sea rescue

Figure 1.3: monitoring in sea rescue

In the scenarios mentioned at the beginning, however, such dichotomy does not meet the

actual demand. For example, if we send the UAV fleet to search for the lost sailors, after

their location being detected and reported, they may be pushed away by sea waves, and

when the rescue team arrive they may not be found. If we send UAV fleet to monitor

and update the location of the sailors who are currently known, the unfound targets may

not be detected and rescued. This applies to other kinds of targets as well. Thus we

can imply that the search and monitoring are both required. Unknown targets should

be found and known ones should be kept under surveillance.

There do exist some works which attempted to tackle this problem [1–5]. In [1], the

search and tracking (SaT) of one single target is studied. However, with only one target

being searched and monitored, the search and monitoring are in an interleaving pattern

rather than simultaneous. Thus the planning and execution of search and monitoring

are separated into two independent tasks, and do not need to be combined. Therefore

this work can not be applied in the scenarios with multiple targets. In [3–5], target

search and monitoring of multiple targets are combined as a multi-task planning, which
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is solved as a task assignment problem. In such a way, it is a trade-off between tasks,

which do not exploit the synergy of search and monitoring. In [2], search and monitoring

of multiple targets are achieved in a single mission, but the agents only try to reduce

the overall area of the worst case distribution of all targets. Therefore, in the planning,

search and monitoring of any individual target is not specifically considered, which also

ignores the potential cooperation between search and monitoring.

To address this problem, this thesis studies a simultaneous search and monitoring (SSM)

problem, in which a single or multiple UAV searchers are required to continuously search

and monitor several mobile targets in a large environment. The pursuers try to update

the location information of as many targets as possible, through searching for unknown

targets while monitoring known ones in parallel. The concept of SSM is shown in Figure

1.4, and will be further discussed in section 3.4.

Figure 1.4: SSM in sea rescue

1.2 Problem Statement

The detailed problem to solve is discussed in this section. As introduced in Section 1,

to achieve simultaneous search and monitoring with multiple UAV agents, it requires

sensor scheduling and strategy planning for each individual pursuer, and cooperation

between agents.

1.2.1 Sensor Scheduling and Strategy Planning

In most of the search and surveillance problems, the information to acquire is normally

uncertain, such as the probability distribution of the target presence, or the occurrences

of stochastic events. Nevertheless, the goal for the agents is to obtain a general knowledge

of the information, such as the expected number of detections, expected monitoring or
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service levels, overall awareness, or information entropy. Therefore in these problems,

individual stochastic incidents do not affect the overall reward. Thus the gain of the

mission becomes deterministic and predictable w.r.t. the plan of the pursuer. Then a

fixed plan to schedule its sensing resources will be enough to solve the problem.

However, in SSM, the specific information about every target is concerned about. Thus

each contingency, such as detecting a new target or losing a known one, may dramat-

ically change the situation in the environment, and so does the expectation of reward.

Therefore reactions to these events need to be considered in planning, to take into ac-

count the influence of possible future events. When doing the planning, the agent should

search through a decision tree, which contains the branchings triggered by possible tar-

get behaviours, and find the best reactive solution. It can be seen that branchings will

substantially increase the computational complexity in this problem, which is the main

difficulty to overcome. In [6], a problem of searching for a single target is tackled with

both deterministic method and probabilistic method, and the deterministic method is

shown to have better performance than the probabilistic method. This is because, if

there is only one target to be searched, the search terminates when the target is found,

thus a deterministic planner can simply assume that the target would not be found during

search. Hence the deterministic search can be more efficient compared with probabilis-

tic method which is more sensitive to uncertainties on target model. Therefore, this

result does not apply to our scenarios when multiple targets need to be simultaneously

searched and monitored.

In SSM, the targets may move randomly regardless of the actions of the pursuer. If the

probability of each target motion is known, the chance of each branching at each state

can be predicted forwardly to the future. This problem can be formulated as a Partially

Observable Markov Decision Process (POMDP). In other scenarios, the targets can also

proactively evade the pursuer. In such a case, each side of the pursuit and evasion needs

to consider the possible strategy of the other side and plans its best policy, which is a

Partially Observable Stochastic Game (POSG).

The first problem to solve is, given a type of target behaviour, a single pursuer should

plan and execute a strategy for its motion and sensing, thus to obtain and update the

best available knowledge of target information. The kind of target behaviour can be

either random or evasive.
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1.2.2 Multi-agent Cooperation

To exploit the potential of a multi-UAV system, a centralized planning can be an ideal

solution. A chief agent can gather and fuse measurements from other agents, do the plan-

ning for all the agents, and allocate each sub-plan to the corresponding UAV. Nonethe-

less, this kind of robot network requires high bandwidth communication, which is not

scalable. It is not reliable and robust in an adverse environment. Some prior works do

decentralized cooperation with heuristic approaches, either by partitioning the environ-

ment and assign to pursuers, or by having a myopic guidance law for each agent. The

heuristic methods can be scalable and easy to implement, but are difficult to provide

theoretical guarantee of the performance.

Thus a decentralized and non-hierarchical multi-robot system is expected, which only

requires limited communication. The planning should have look-ahead ability. In such

system, each agent do the planning in a distributed way, taking into account the in-

formation acquired through its own sensing and the communication with other agents.

Such distributed planning can coordinate the scheduling of every agent, thus can achieve

a synergy and avoid redundant overlap of efforts. This problem is formulated into a De-

centralized Partially Observable Markov Decision Process (Dec-POMDP), or a Partially

Observable Stochastic Game (POSG), for the cases with randomly moving or evasive

targets. This thesis uses game theoretic methods to plan the distributed cooperation.

1.3 Contributions

To solve the problems mentioned in Section 1.2, this thesis presents the following con-

tributions:

1. Combining search and monitoring as a cooperation. Instead of having

an intuitive combination by treating two tasks separately and having a trade-off

between them, this work combines the search and monitoring as a cooperation. In

a dynamic situation, a target can change between know and unknown by being

detected or being lost. Thus the two problems are interconnected, and should have

a synergy to better react to possible detection or loss of a target. This combination

is achieved by building an united goal. This is the first work which combines the

search and monitoring in an explicit and synergistic way.

2. Solving POMDP with a heuristic reactive policy. To have an online solution

of POMDP, a novel policy reconstruction method is proposed. It makes room for

decomposing a policy and having intuitive approximation. A heuristic branching
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rule is proposed to approximate the sensible reactions that an optimal strategy

would make. It is combined with policy reconstruction to generate a heuristic

reactive policy. Such policy shows better performance than two other baseline

methods, and have practical computational efficiency.

3. Solving the search evasion game as a dynamic guaranteed search prob-

lem. It is intractable to solve search evasion game precisely, so an assumption

about the information available to the targets is made. This simplifies the search

evasion game to a novel dynamic guaranteed search problem. Such dynamic guar-

anteed search works better than a conventional fixed pattern guaranteed search.

4. Solving the decentralized cooperative SSM with partial open-loop feed-

back control The concept of partial open-loop feedback control is innovatively

applied on the distributed cooperation. It allows the agent to focus on local in-

formation, but still achieve the cooperation implicitly. The local policy can then

be designed with heuristics as in the case of single pursuer SSM. The advantage

of such cooperation is achieved in simulation.

1.4 Publications

The research described within this thesis represents the original efforts of the author.

Some of it has previously been published in the form of peer-reviewed papers. These

papers are as follows.

1. H. Zhang, S. Veres, A. Kolling. “Simultaneous Search and Monitoring by Un-

manned Aerial Vehicles”, in proceedings of 2017 56th IEEE Conference on Decision

and Control, IEEE, 2017, pp. 903–910

2. H. Zhang, S. Veres. “Simultaneous Search and Monitoring of Evasive Targets by

an Unmanned Aerial Vehicle”, in proceedings of 2018 12th International UKACC

Conference on Control, UKACC, 2018, pp. 277–282

Paper 1 consists of the content from Chapter 3 and 4. The content of Chapter 5 comes

from paper 2. The combination of Chapter 4 and 6 is in a paper which is about to be

submitted to a Journal.

1.5 Outline

The thesis is organised as follows.
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1. The Literature Review of related work is done in Chapter 2. It introduces a general

background on robot search and pursuit evasion. Such background demonstrates

the separation of search and monitoring, from which this thesis is inspired. It

then reviewed the problems of POMDP, POSG, and Dec-POMDP, which are the

mathematical frameworks of this work;

2. The problem formulation of this research is represented in Chapter 3. The models

of the environment, the pursuers, and the targets are build first. The concept of

simultaneous search and monitoring is then presented;

3. The simultaneous search and monitoring between a single pursuer and multiple

randomly moving targets is studied in Chapter 4;

4. The simultaneous search and monitoring between a single pursuer and multiple

evasively moving targets is studied in Chapter 5;

5. The Cooperative simultaneous search and monitoring by multiple pursuers is stud-

ied in Chapter 6, which extends the results from Chapter 4 and 5.

6. The conclusion of this thesis is drawn in Chapter 7.



Chapter 2

Related Studies

Robot search and pursuit evasion is a problem for a single or multiple robot system

trying to detect or capture one or more targets [7]. There is one category of pursuit

evasion game, that both the pursuers and the evaders have unlimited sensing range and

are of comparable speed, such as tiger and lady [8], cop and robber [9], and homicidal

chauffeur game [10]. The goal of the pursuers are to catch the evaders and vice versa

for the evaders, and the problem is normally solved with differential or combinatorial

methods. These games assume perfect information for both sides, and the planning

focuses on the kinetics of the agents.

However, for the problem in this thesis, it focuses more on the information gathering in

a unknown or adversarial environment, where the pursuers have limited sensing range

or imperfect sensor. This review does not include the pursuit evasion game with per-

fect information, but focuses on the problems which are more relevant to this thesis.

Section 2.1 first introduces the general background of robot search and pursuit evasion,

by reviewing the related works in a task-oriented perspective, which includes target

search, target monitoring, and multi-robot cooperation. The motivation of this work,

which is to combine search and monitoring, is inspired by such background. Then, in a

methodology-oriented perspective, Section 2.2 discuss some underlying problem frame-

work which are commonly involved in these scenarios, including Partially Observable

Markov Decision Process (POMDP), Partially Observable Stochastic game (POSG),

and Decentralized Partially Observable Markov Decision Process (Dec-POMDP). These

problem framework and the solutions will be the foundation of the methodology in this

thesis.

9
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2.1 Scenarios in Robot Search and Pursuit Evasion

2.1.1 Target Search

When some targets are scattered and hidden in the environment, and when there is

very few information known a priori, the whole environment can be treated in a general

way. A distribution of information can be used to estimate the possible target location,

rather than using a specific position. Given such distribution, an UAV system can be

deployed into the environment to detect the possible hidden targets. The targets may

be static or mobile. For mobile targets, they can move randomly or evasively. Based

on the sensing ability of the pursuer and the nature of the target behaviour, there are

six main categories of problem formulations for target search: static coverage search,

dynamic coverage search, probabilistic search, search evasion game, guaranteed search,

and awareness coverage.

2.1.1.1 Searching Static Targets

When the targets are statically scattered in the environment, the problem is relatively

simple. The pursuer agents just need to cover the environment constantly or intermit-

tently with sensor, thus putting all targets under measurement.

Static Coverage

When there are enough number of agents, so that the union of the sensor footprints

can cover the whole area of interest, then a static distribution of UAVs is sufficient for

the search mission. It is very obvious that if the sensing of all agents is perfect, all the

targets will be found right after the area is fully covered. Thus the works on this study

mainly focus on the problem with the assumption of imperfect sensing. In these works,

the targets may be detected at each time instant with a probability, and such probability

is related to the set-up of the UAV formation.

A common assumption made in their work is that, at certain position, the probability

of detecting a target increases with the estimated density of targets and decays with

its distance to the closest sensor. A strategy is studied by many works which deploys

the agents to a set of static positions, to achieve the coverage with highest expectation

for target detection. In [11], the author built an utility function to represent the gain

for total covering effect, with respect to the location distribution of agents. The utility

function can be decentralized to each agent, then the gradient of the local utility function

can be the navigation law for each agent. Such navigation law drives the agents toward a

set of positions, which is a local optimal solution. The author made an assumption that
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the cost function of an agent to sense certain point increases proportional to the square

of the distance between the agent and that point. Then the author obtained the result

that, the global optimal distribution for agents is the set of centroids of all voronoi

cells. It is a very promising result because the optimal deployment, which is simply

the centroid positions, is easy to compute in a distributed manner. The navigation

law for each agent can be a distributed gradient function. Thus the complicated real

time optimization problem is avoided. In [12], the author extended the work in [11]

by introducing adaptation for the information density of targets. In this work, the

information density for target, which can be viewed as the probability distribution for

target existence, is assumed to be unknown, but the density at certain point can be

measured by the agent nearby. The Author designed a local adaptation law for the

information density function for each robot, and a parameter consensus law is devised

to obtain a global estimation. Then a control law can be designed to drive the agents

towards the estimated centroid of its voronoi cell, and such estimation is keep being

updated by sensing. It is guaranteed that with such control and estimation law, the

agent distribution will converge to the set of global optimal locations. Nevertheless, the

results of above works are based on the assumption that the cost function of an agent

to sense certain point follows a specific pattern, which may not necessarily be accurate

in all applications. Thus the application of such an elegant result is limited.

The static coverage problem is further discussed in works [13–16].

Dynamic Coverage

If the area of interest is large, or if there are not enough UAVs available, the agents

cannot sense the whole area with a static formation. Thus the agents should explore

the environment dynamically to find out the hidden targets. When the targets are

static, they can not enter the cleared area to cause recontamination. If the sensor of

the agent is perfect, any target within its sensor footprint can be detected immediately.

Then the agents can find out all the targets by clearing the area for just once. The

goal of path planning should be to have a set of paths to sweep the environment in

the shortest period of time. This problem can be solved with geometrical methods.

In [17], the author designed the path planning policy for single or multiple robots to

visit each point in the area without overlap and revisiting any point. However, the

starting point for the path of each agent should be calculated by the planning, rather

than having an arbitrary initial set-up. This limits its flexibility. In [18], the author

proposed a computational feasible algorithm, which constructs a set of trajectories for

agents to cover the whole area, given an initial position of each agent. These paths do

not overlap and are of equal length, thus the author proved that it can make a critical

contribution in minimizing the total time for coverage. In [19], the author designed the
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exploring policy with contracting polygons, thus covering a polygon area with a single

UAV without overlapping of its path.

2.1.1.2 Searching Mobile Targets

When the targets are moving in the environment, a target may go back to a previously

searched area to cause recontamination. In such scenario, a dynamic search is needed,

in which the pursuit strategy should take into account possible target behaviours during

the search.

Probabilistic Search

In some cases, the targets may move independently from the pursuer, such as some

drifting sailors waiting to be rescued, or a migrating animal flock to be found. For

this kind of targets, the random motion model is usually applied to represent their

dynamics. In such model, at each time step, the target may move between neighbouring

cells with certain probability. Then the estimation of target presence can be constructed

as a probability distribution. Given an initial estimation of the distribution and a

sensing model, a Bayesian model can be constructed for the update of target probability

distribution, given the sensing history of the pursuer [20–22].

After constructing the target model, the evolution of the estimation can be predicted

w.r.t the planned motion of the pursuers, in an one-sided manner. The likelihood of

a detection at each time step can be predicted as well. Thus under this set-up, the

objective of target searching is to optimize the probability of finding the targets or

to minimize the time before detection. In some other works [23, 24], the probability

distribution is transformed to be the information entropy distribution, to describe the

uncertainty of target estimation. The goal of search is to reduce the overall uncertainty

level in the environment.

However, it has been proved in [25] that, in probabilistic search, maximizing the prob-

ability of target detection is NP-complete, and the problem to minimize the time for

detection is NP-hard. As a result of the intractability of probabilistic search problems,

a lot of researches focus on finding near-optimal solutions to the variations of the above

two optimization problem [7]. The myopic method, such as heuristic guidance law, is a

common approach circumventing the time-consuming path planning. It steers the robot

to a best immediate direction, to try to achieve a good overall performance over time

[20, 23, 24, 26]. In other works, the robots do a path planning over a time horizon, while

introducing some pruning or simplification to reduce computational complexity [27–29].
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In [24], the author built the information entropy map and the update rule to estimate

the target presence. Then a gradient based navigation law is designed to steer the agents

to the direction with largest gradient of information entropy, trying to reduce the total

uncertainty of the estimation of target presence. In [23], the same objective is applied,

which is to minimize the total entropy of the agents regarding target location estimates,

in an application of multi-target tracking and surveillance. In [20], the authors study the

case of target search for multiple heterogeneous agent and multiple randomly moving

evaders. The authors propose an heuristic pursuit policy, which drives the agents to

the position with largest probability of target presence. The authors prove that this

policy can guarantee at least non-zero probability of capturing the targets within certain

period of time, and equal to one probability of capturing within finite time. The authors

validate its result by simulation and experiment. However, this guarantee of performance

is trivial, because as long as the targets move randomly, any pursuit policy can guarantee

a non-zero likelihood of detection over a certain period of time, for the fact that a target

always have a probability to move into the sensor footprint of the pursuer. This is a

problem shared among almost all myopic search approaches, that it is very difficult to

provide a significant theoretical guarantee for its performance. However, the flexibility

and scalability to different situations make it still a practical and popular method.

The non-myopic method, such as path planning, can predict and optimize the expecta-

tion of detection in a more rigorous way. However, the computational difficulty is the

main limit of its application. The branch and Bound approach is commonly applied to

do path planning with reduced complexity. In [27–29], the path is generated by setting

the current position of agent as the root, then enumerating the search space to expand

the search tree. The branches would be pruned if have their upper bound of estimated

reward to be lower than the lower bound of current best branch. Iterating this step until

it reaches the end of the search horizon, a policy tree can be constructed. Although the

pruning can reduce the computational complexity, this method is still computationally

inefficient and its computation time may be subject to the size of search space.

Other works about probabilistic search are in [3, 30, 31].

Search Evasion Game

For some adversarial targets, such as some criminals to catch, they may pro-actively

evade from the pursuer to avoid detection. The evasive behaviour makes it a game

playing problem. In this case, the evolution of the game can not be predicted w.r.t the

actions of the pursuer, in a forward induction manner. It is because this is a two sided

planning problem, in which both the targets and the pursuer plan their own actions

according to their observation of each other, and both need to search through the whole

decision tree to the end of time horizon, to evaluate each action to take. Thus this
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coupling makes the pursuit policy much more difficult to plan compared with one sided

planning.

Considering the fact that an aerial agent can only sense part of the environment, and that

it is a two-sided game playing, the search and evasion game between aerial pursuers and

ground targets can be modelled as a Partially Observable Stochastic Game (POSG). The

exact solution of POSG is very difficult [32]. Thus, given that search evasion problem

normally has a big state space, there is few work to solve this problem in the precise

form of POSG. Therefore, some methods were applied to avoid the enumeration in

backward induction, such as sampling [33] or myopic approach [30]. In [33], a set of

samples of future states are taken from the search tree, and by evaluating the rewards

in these sampling states, the reward of a plan can be approximated. Nonetheless, the

accuracy of such estimation depends on the number of samples. In search evasion game

where the search tree expands exponentially with time horizon, such method is still

computationally difficult. In [30], the search evasion game was studied as a POSG, but

just for a single time step. The Nash Equilibrium was taken as the solution. The same

with other myopic methods, such approach can not guarantee a long term performance.

For the above reason, the most common simplification method for search evasion game

is to approximate the evader policy by a heuristic target model, thus disentangling the

evader planning from the planning of pursuit policy. Most works assume a pattern that

the targets will follows to hide away from the pursuer. In most cases, it is assumed

easier for the ground targets to sense the aerial pursuers, thus the targets can react and

elude, from outside of the sensor footprints of the pursuers. In some works [34–36], the

targets are driven by the synergy of potential forces from the pursuers and obstacles. In

[37, 38], the evaders move like a Reactive rabbit, which dodge from the pursuers only

when they are close enough. The agents can plan their strategies with the assumptions

on the target model, which is an one-sided planning.

Guaranteed Search

Both probabilistic search and search evasion game try to achieve an efficient performance,

and demand intense computation. Hence an alternative method is to obtain a worst case

performance. A worst case assumption about the behaviour of evaders can be made, and

thus generating an easier solution, which can guarantee a certain level of performance.

The idea of recontamination is normally applied, which assume the unknown targets can

move backed to the previously cleared area with a certain speed. Thus the agent should

either block the possible routes of recontamination, or clear the re-contaminated area,

thus guaranteeing that the targets will be found in any case.
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For the indoor search and pursuit evasion operation, the space usually consists of in-

dividual rooms and the connecting corridors, and the agents in each room can usually

sense the whole room if without obstacles. Then, the environment can be modelled as

a graph. For the search and pursuit evasion on a graph, the target is assumed to move

with unbounded speed [39, 40], or with a speed bound [41]. The goal of study is to

design the pursuit strategy to clear the graph, given a graph and multiple players [41],

or to determine the minimum number of pursuers and the associated strategies which

are required to guarantee detection [39, 40].

For UAVs, most of the operation environment will be an open outdoor area, which is

continuous and can not be modelled as a graph. In such case, the targets can be assumed

to move with a bounded speed. The worst case assumption is that the cleared area will

be re-contaminated with such speed bound. The agent can move in a pattern which will

clear new areas and stop the propagation of recontamination at the same time. Such

pattern of trajectory can be back-and-forth lines in parallel [42, 43], or a spiral line [44],

or taking advantage of the shape of the environment [45]. By having an overlap of the

covered area between each round of sweeping, the agent can keep moving further in the

environment, and the recontamination can be cleared before it reaches the clean zone.

In such a way, the whole environment will be searched without recontamination, and

the hidden targets can be detected with certainty.

It can be seen that such worst case assumption can largely reduce the computational

complexity, and assure performance to some extent. But it can be too conservative when

efficiency is preferred.

Awareness Coverage

Another alternative to circumvent complex computation is by focusing on improving and

maintaining the awareness level of the whole environment, instead of specific targets. In

the method of awareness coverage, an awareness model is built to estimation the uncer-

tainty of possible target existence at certain location. The awareness level accumulate

when certain region is under measurement, or decay otherwise. In work [46] and [47],

some exploring paths are designed for agents to sweep the whole region thus to maintain

the overall awareness within a satisfactory level. In this kind of works, the concept is

to make sure every piece of area will be measured after a certain time interval, thus

to reduce the uncertainty of its knowledge for the whole area. The awareness model is

deterministic w.r.t the search effort, so the path planing is relatively simple. But it is an

indirect approach in terms of its effort to detect targets, because reducing uncertainty

does not necessarily equal to increasing the chance of target detection.
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2.1.2 Target Monitoring

When the UAV pursuers have already known the location of some moving targets with

certain level of belief, they may try to update the location of these targets to keep the

information valid. Different scenarios of target surveillance depend on the sensing range

of the pursuer and the density of the targets. These scenarios can be: target tracking,

target covering, and target visiting.

2.1.2.1 Target Tracking

When there is only one target to measure, the UAVs should keep updating the target’s

position, by keeping the target within sensor vision. In work [48], a team of fixed wing

UAVs try to track a ground target with a fixed moving speed. The lower speed limit

of the UAVs is faster than the speed of the target. Thus to keep the target within

sensor footprint, the UAVs should circle around the target. The author proposed four

guidance law for a double UAV team to track a moving target, ensuring that the UAVs

keep a constant distance from the target and maintain constant angular separation.

However, its guidance law is based on the knowledge of the constant moving speed of

the target rather than real time measurement. The tracking of a manoeuvring target

based on measurement is studied in [49]. In the case when the agents are able to be

relatively static to the target, the circling pattern still has its advantage. In [50], one

single static or dynamic target is tracked and sensed by a team of agents, of which the

objective is to reduce the uncertainty of the target information. The objective function

is built as the inverse of the covariance of the sensing error. The authors found out that

the optimal placement for the agent team is a set of equally spaced angular positions

around the target. Then the author designed an cooperative formation control law to

steer the agents to the optimal placements with proven convergence. The author proved

its superiority to the static placement.

2.1.2.2 Target Covering

When there are more targets than pursuers, each agent should not just focus on a single

target. In the scenario of target covering, the target is crowded, and the UAV pursuers

try to keep as many targets within its sensor footprint as possible. In [51], the authors

addressed the CMOMMT problem (Cooperative Multi-robot Observation of Multiple

Moving Targets). The primary focus is on developing the distributed control strategy

for the agents, given the locations of nearby robots and targets. The strategy should

allow the team to minimize the total time in which targets escape observation. The robot
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is assumed to move faster than the target, and the targets are densely scattered. Each

robot can sense a relatively big area. Thus the robot should focus on currently covered

targets rather than exploring to find new targets. A heuristic method is proposed, which

is similar to the potential field method. It takes into account the attraction of targets

and repelling of the fellow robots, to form the weighted total force to drive the movement

of the robot. The simulation and experiment showed the superiority of this cooperative

algorithm to random move or local cooperation. In [52], the author extended the work

in [51], and a Behavioral CMOMMT algorithm were proposed, to overcome the possible

situation in A-CMOMMT which one robot follow two targets that move in opposite

direction, eventually losing both. Three modes for the robots were designed, which are:

follow, help, and explore modes. Different kinds of prediction algorithm were used to

predict the lost time for the target. Thus for the exploring robots, once the difference

between the time to capture the target and the time to loss exceeds a defined threshold,

the robot stops exploring and starts to move to put the targets into the area covered

by its sensor. The simulation and experimental result shows significant improvement

compared with A-CMOMMT. However, for the above two works, the local heuristic

force could not guarantee the global performance and may get trapped by local minima.

In [53], the agents can have unlimited view and imperfect sensing with gaussian noise.

The authors modelled the sensing and updating process based on Kalman Filter. The

objective function was expressed in the form of total uncertainty, and some paths are

designed to deploy the agents to certain positions to optimize objective function.

2.1.2.3 Target Visiting

In some scenarios, the targets are scattered sparsely in the field, thus the agents can not

cover enough targets at a time. Then it is necessary for each agents to leave the targets

it is currently covering, to try to re-detect other targets to update the information of

them. Some works choose to formulate the problem as a Dubins Travelling Salesperson

Problem (DTSP), which is to find a shortest path for the UAV to visit each selected

targets in a chain, to minimize the escape probability of each target. If the agent can

go back to each target within certain period of time, the target would not escape from

the sensor footprint, given the assumption that the targets move with limited speed. In

[54], the author assumed that there is an upper bound for the target speed, and designed

an optimization law for the DTSP, so that the UAV can traverse each target in every

minimal time period to ensure that each target always stays within the footprint when

the UAV comes back. In [55–58], the DTSP problem is discussed in different ways.
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If achieving an efficiency of measurement is preferred than guaranteed success in re-

visiting, the fact should be considered that a target may get lost if the agent fails to

re-detect, which may invalidate an old plan. Thus the reaction to such loss should be

considered in planning, to focus on measuring the rest of the targets. The [59] and [60]

studied the Partially Observable Markov Decision Process (POMDP) for such a prob-

lem. The target model is built based on belief state, and the sensing model is based on

Kalman Filter. The agent optimizes its trajectory using Nominal Belief-State Optimiza-

tion (NBO), to traverse each target, thus to stop the uncertainty to grow and achieve

best belief of the target location. However, this two works assumed that the targets

move with known average speed or average acceleration, which may not be practical.

In [61], a similar problem was studied, except that the motion of the targets and the

pursuer are constrained on a road map. The authors then designed some Marco-Actions,

which are possible series of actions taken by agent, to simplify the action space of the

pursuer. The best Marco-Action is planned by a tree search.

2.1.3 Multi-Robot Cooperation

In the above works introduced, there may be more than one pursuers in the mission.

With proper coordination, multiple agents may be able to have synergy over the same

task, which should outperform simply adding up their work. Plus, if there is an un-

necessary overlap among the effort of the pursuers, the redundant resources are wasted.

Hence, the cooperation among the agents should be designed to exploit the advantage

of a multiagent system and avoid redundancy.

2.1.3.1 Cooperation with Myopic Methods

In the works which apply myopic methods for the motion control of the agents, the

current information of neighbouring agents can be incorporated into the local control

law, thus considering the cooperation in a heuristic way. In some works, such as [11,

12, 50, 52], the cooperation laws are carefully designed, which can guarantee the global

performance. Nevertheless, in most cases, such theoretical guarantees are based on

specific problem formulations, which are not easy to be applied in general missions.

Thus in other works, the global performance is not considered. In [51], a cooperative

law based on potential force is designed, which is intuitive, but the author did not justify

it with theoretical proof. In some works such as [24] and [20], the local control laws are

designed based on greedy search, but the cooperation is not considered. The cooperation

is achieved implicitly by having agents scattered initially in different locations, thus

resulting in non-overlapping trajectories.
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The myopic methods for cooperation normally do not require large amount of computa-

tion, thus is easy to implement. Plus it is normally a local control law, thus is inherently

distributed, which makes it scalable and robust. But the difficulty of having theoretical

proof of performance limits its application.

2.1.3.2 Cooperation with Task Allocations

Another approach for the coordination of the pursuers is task allocation. In this method,

a hierarchical task formulation is built. Different targets, or different parts of the envi-

ronment, are divided. The cost and reward of possible actions, which may be taken on

these targets, are calculated in a heuristic way. Thus each possible plan on each target

is built as a task. The pursuers then find the most efficient way of allocating tasks to

available agents, based on the estimated cost and gain of tasks. The agents then design

the detailed local control laws to accomplish the assigned task.

In [3, 29, 62], the task allocation is achieved in a centralized way. A central agent

in the team sets up the plans based on global information, and then distributes the

local task to other following agent. This requires high communication bandwidth and

reliability. In [23] and [54], the task allocation is decentralized, in which neighbouring

agents coordinate tasks based on local planing and communication. In some search

problems, the task allocation can be simplified to be the partitioning of the area, and

letting each agent to search in one partition [63, 64].

Task allocation method is intuitive and not complicated, but it relies on abstraction of

different tasks, thus is difficult to accurately model and evaluate each plan.

2.1.3.3 Cooperation with Non-Myopic Planning

To avoid the local minima problem of myopic methods, and to do planning more precisely

with mathematical rigour, approaches with look ahead ability are widely studied for the

multi-agent cooperation. A Non-myopic Strategy is much more complicated than an

abstract task, thus it would be a heavy burden for the communication, if there is a

central agent to plan all strategies online and do the assignment in real time. Therefore

in most works, they either have an offline planner to do the centralized planning of

distributed plans, or do a distributed online planning with limited or no communication.

In [65, 66], a centralized Multiagent POMDP (MPOMDP) was studied for a multi-robot

information gathering problem. The full and perfect communication between the agents

is assumed. The control of the team can be viewed as centralized. A joint strategy

was planned offline, and the robots execute such policy, with their information always
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shared in real time. In [67], a multiagent target search problem is studied. The perfect

communication is also assumed. Except for a centralized planner similar to [65, 66], the

authors also designed an implicit coordination, in which each agent shares its current

plan during execution and re-plan its own strategy considering the received plans from

the other. This implicit coordination works better than the case without cooperation,

and are more scalable than the centralized planner.

The full and perfect communication may not be realistic in some scenarios, such as

indoor environment where the walls may block signals, or in a large outdoor environment

where there is a range limit of communication. The multiagent cooperation without

or with limited communication can be modelled as a Partially Observable Stochastic

Game (POSG) or a Decentralized Partially Observable Markov Decision Process (Dec-

POMDP). In [68], a Dec-POMDP is studied for the multi-robot search and pursuit

evasion. With no information sharing, each agent has to estimate the observations and

policies of the other agents, and incorporate such estimation into its own policy. The

authors took advantage of the fact that the mission is symmetric to each agent, thus

the strategy should be the same for every robot. Such common strategy was planned

offline using a heuristic policy improvement. In [69], a POSG is also studied for a

cooperative search problem. The policies are designed online, which are simplified to be

a set of Bayesian games. Solving POSG or Dec-POMDP can be difficult [32], thus for

the multiagent cooperation with non-myopic planning, simplifying the problem to allow

practical application is an important part of the study.

2.2 Methodologies

The above section reviews some relate works in the broad background of robot search and

pursuit evasion. Although the set-ups of these works are different, we can see that there

are some common difficulties to be addressed. For the pursuer to search or monitor the

targets efficiently or assuredly, because of the unknown and uncertain locations and ac-

tions of the targets, the pursuit strategy should include the reactions to the stochastic or

adversarial behaviours of the targets. Also, when there are multiple pursuers available,

the coordination between them should be designed, to have synergistic efforts with-

out redundancy. Therefore, in this section, the Partially Observable Markov Decision

Process (POMDP) is introduced as the framework to study the search and monitoring

of randomly moving targets. The Partially Observable Stochastic Game (POSG) and

the Decentralized Partially Observable Markov Decision Process (DEC-POMDP) will

then be discussed, for the search and monitoring of evasively moving targets, and the

cooperative search and monitoring.
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2.2.1 Partially Observable Markov Decision Process

A scenario is considered, where a pursuer with limited sensing capability tries to search

for a single or multiple randomly moving targets. The stochastic target movement make

the system state a Markov Chain. The partial observability of the pursuer means that

it has to hold an estimation of the system state, which is called the belief state. It

is suitable to model this problem as a Partially Observable Markov Decision Process

(POMDP) [70]. The POMDP is a tuple 〈S,A,T,R, Ω,O〉 [71], where

1. S is a finite set of states of the world;

2. A is a finite set of actions;

3. T : S×A −→ p(S) is the state-transition function, mapping from a previous world

state and an agent action, to a probability distribution of next world states;

4. R : S × A −→ R is the reward function, mapping from a current world state and

an agent action to an immediate reward;

5. Ω is a finite set of observation of the pursuer;

6. O : S × A −→ p(Ω) is the observation function, mapping from a current world

state and an agent action, to a probability distribution of agent observations.

For a POMDP with finite horizon from t0 till tf , the objective value function can be

formulated as:

V = E{
tf∑
t=t0

R(st, at)} (2.1)

which is the expected sum of the rewards within the time horizon, given the possible

states st and the actions at at each time instant.

Let Yt to be the observation history. Then the solution of a POMDP is a policy at =

π(Yt), which is a mapping from the history of sensing to an action, so that to maximize

the value V . The POMDP can be solved either offline or online, and each is suitable

for different scenarios. However, it is proven in [72] that, solving POMDP precisely is

PSPACE-hard. Thus most of practical solutions should include simplifications to some

extent.
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2.2.1.1 Offline Solutions of POMDP

Majority of the works on the POMDP focus on the offline solution, which enumerates the

whole state space, and calculate a global strategy which is optimal for all possible belief

state. Such a policy can be executed in real time with no re-planning, and can always

take the best action at all conditions. Comparing with the fully observable Markov

Decision Process, the POMDP has continuous belief state which induce a continuous

belief state space. Fortunately, [70] has proved that the optimal reward function of

POMDP is a piecewise-linear, convex function of the current state probabilities of the

internal Markov Process. This property significantly simplifies the offline solution.

Two common methods of offline solution are value iteration and policy iteration. The

value iteration is a backward induction method, which builds up the search tree from

the leaf nodes [70]. It enumerates the value of every leaf node, and then propagate the

value backwards to upper nodes with Bellman backup operation. A globally optimal

policy is build iteratively in such a way. Such process includes considering the whole

belief space, thus can be computationally infeasible. Some methods try to simplify the

belief space in different ways, such as point-based value iteration [73–75], point-based

heuristic search value iteration [76], and belief compression [77].

The policy iteration is another approach, which does not build the search tree step-

by-step [78, 79]. Starting with an initial candidate policy, in each round, it adds an

incremental modification to the candidate policy, and evaluate its value by doing a

Monte-Carlo simulation. The modification is accepted if there is an improvement in the

value. In such a way, the candidate policy converges to be optimal gradually.

Some modifications for value iteration and policy iteration are in [80].

2.2.1.2 Online Solutions of POMDP

The offline solutions of POMDP can guarantee the global optimality, and can be fast

to execute. However, the comprehensive enumeration of the whole belief space means

that the policy planning stage can take very long, which may be hours or days [81]. In

a robot search problem studied in [82], even after simplifying the state space to be with

around 7000 states, the offline planning still takes 20 mins. If during the execution,

there is any environmental changes which necessitate the policy to be re-planned, it will

be very computationally expensive. The online solution of POMDP is an alternative

which can circumvent such problem.

The online planning only focuses on the search tree rooted at the current belief state,

which contains the state space reachable within the time horizon. This largely reduces
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the size of the search tree, and makes it possible to re-plan the policy during execution.

Since only local and current information is considered, the planned policy is only valid

from the current state till the end of time horizon, thus the planning stage and the

execution state should interleave with each other. In such a way, if any environmental

change is detected, it can soon be included into the new policy. We can see that the

online Solution is a trade-off between the global optimality and the adaptability.

There are tree main categories of online Solutions of POMDP: branch-and-bound, Monte-

Carlo Sampling, and heuristic search [81].

Branch-and-bound [83, 84] is the method of estimating the upper and lower bound of

the value of a branch in search tree, and pruning the branches which do not worth

exploring. The lower and upper bound of the value of a leaf node in the search tree can

be approximated by offline planning. The bounds can then be propagated backwards to

higher nodes, and the bounds of the higher branches can be obtained eventually in such

a way. Monte-Carlo method [85] samples the nodes in the search tree to expand, and

uses the sampled nodes to approximate the search tree. It also uses a Particle Filter to

update the belief state in each simulation. It treats the system model as a black box

with input and output, and a policy can be evaluated by doing Monte-Carlo simulations

of it interacting with such black box. In such way, the value of a sampled node can be

estimated. heuristic search evaluates the value of a leaf node with a heuristic function,

and expands the search tree from the nodes of the most relevant reachable beliefs. Such

beliefs are chosen by the criteria that they allow the search algorithm to make good

decisions as quickly as possible [81].

Some other methods of approximating the search tree are introduced in [86].

2.2.2 Partially Observable Stochastic Game and Decentralized Par-

tially Observable Markov Decision Process

The POMDP can be a framework of solving the planning and acting of a single agent in a

partially observable stochastic environment. In some scenarios, there may be more than

one intelligent agent involved in the operation. Such as when the targets can actively plan

its action and evade from the pursuer, or when multiple pursuers are cooperating for the

same mission, so that every player (a pursuer or an evader) in the game can do planning

for its own interest. In such case, each planning should take into account of the possible

knowledge and actions of the other players. The search and evasion game between the

pursuer and the evaders can be constructed as a Partially Observable Stochastic Game

(POSG), where at least one side in the game has incomplete and/or imperfect sensing of

the world, and both side plan with conflicting goal. The cooperation between multiple
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pursuers can be built as a Decentralized Partially Observable Markov Decision Process

(Dec-POMDP), where every agent has only partial observation of the environment, but

cooperate with a common goal. Although these are two different scenarios, but the

underlying problems, the POSG and the Dec-POMDP, are very similar and only differ

in whether the goal is shared. So both problems are introduced together in this Section.

The POSG can be described in a tuple 〈I,S, {Ai : i ∈ I}, {Ωi : i ∈ I},T, {Oi : i ∈
I}, {Ri : i ∈ I}〉 [87], where

1. I is a finite set of players. i is the label of a certain player, and i ∈ I ;

2. S is a finite set of states of the world;

3. Ai is a finite set of actions of the player i;

4. T : S × {Ai : i ∈ I} −→ p(S) is the state-transition function, mapping from

a previous world state and the joint actions of all the players, to a probability

distribution of next world states;

5. Ri : S × Ai −→ Ri is the reward function, mapping from a current world state

and a player action to a immediate reward to that player;

6. Ωi is a finite set of observation of the player i;

7. Oi : S × Ai −→ p(Ωi) is the observation function, mapping from a current world

state and an action of the player i, to a probability distribution of the observations

of the player i.

The model of Dec-POMDP is the same as the POSG, except for that the reward function

R is shared among all the players.

The same as POMDP, the objective value function of a player i can also be formulated

as the expected reward within the time horizon.

Vi = E{
tf∑
t=t0

Ri(st, a
i
t)} (2.2)

Let Y i
t to be the history of observation of player i, then ait = πi(Y i

t ) is the policy of

player i. δ = {πi : i ∈ I} is the joint policy of all players, and δ−i is the joint policy of

all players except for i.

For the POSG with individual reward for each player, the solution should be a Nash

Equilibrium δ∗ [88], where
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Vi|{δ∗−i, πi∗} ≥ Vi|{δ∗−i, πi}, ∀πi, i ∈ I (2.3)

For the Dec-POMDP with shared reward, the solution is the joint policy which maximize

the common value [89]:

δ∗ = argmaxδV |δ (2.4)

The same as POMDP, the POSG and Dec-POMDP can be solved offline or online. On

top of POMDP, the POSG and Dec-POMDP contains multiple agent which have their

plannings coupled, thus is much more complicated to solve. According to [32], solving

Dec-POMDP is NEXP-Complete, which needs double exponential time in the worst case

[89]. Thus simplification is also necessary in practically solving both problems.

2.2.2.1 Offline Solutions of POSG and Dec-POMDP

[89] has made a comprehensive survey of the offline solutions of POSG and Dec-POMDP.

The optimal solution of POSG and Dec-POMDP is firstly developed in [87]. In [87],

a dynamic programming method was designed, which consists of two steps: exhaustive

backup and pruning dominated policy trees. In every iteration, the policy trees are

built bottom up with exhaustive backup for one step, and the dominated policy trees

are pruned to facilitate the further dynamic programming. However, in the example of

[87], this algorithm runs out of memory after 4th iterations, because of the policy trees

stored in the exhaustive backup.

A simplified method of dynamic programming is heuristic search method [90]. Similar

to the heuristic search in the POMDP, the policy tree is built from top-down. The value

of the nodes beyond immediate time step is estimated by a heuristic function, which

completes the approximate value of the current branch. The nodes in the search tree

are expanded in a best first manner.

Except for dynamic programming, the policy iteration method can also be applied on

the POSG and Dec-POMDP [89]. Other approximate solutions are introduced in [89]

as well.
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2.2.2.2 Online Solutions of POSG and Dec-POMDP

The offline solution of POSG or Dec-POMDP can be fast and comprehensive during

execution. Nevertheless, it still has the limitations shared among offline planning ap-

proaches: not being flexible or adaptive in a changing environment, because of the long

planning time. So the online solution can be applied in the scenario which requires

frequent re-planning.

However, there is not many works on the online solutions of POSG or Dec-POMDP

[69, 91, 92]. This is because of the difficulty of having a compact representation of

the multi-agent belief states without call back of the whole sensing history [89]. In the

POMDP, the agent can maintain a belief state, which is a probability distribution of the

state space and can fully represent the sensing history. In the POSG and Dec-POMDP,

the belief of a player should also include the estimation of the policies of other players

[87, 89]. So far, however, no state estimator function without perfect recall has been

proposed, and no compact explicit representation of belief states for multi-agent settings

has been introduced [89]. In the offline solutions such as [87], although the belief states

are not described explicitly, it has been implicitly included in the sensing history, which

is equivalent to all the information available to the agent. In I-POMDP [93], which is an

other representation of multi-agent planning, the belief states are explicitly formulated.

But this will induce an intractable infinite nesting: agent 1 may know the information

held by agent 2, and agent 2 knows what does agent 1 knows, and agent 1 knows that

agent 2 knows what agent 1 knows and so on.

During online planning and execution, it is impossible for an agent to store its whole

history of observation. Having a compact belief state to fully represent all the useful

information is crucial to the game playing. In [94], the author proved that under some

conditions, such infinite nesting of belief can be replaced by a commonly held prior.

However, this requires all the agents use the common knowledge to update such prior,

and the agents should always plan the same set of joint policies. These requirements

may be possible in a cooperative robot team, but are difficult to be satisfied in a non-

cooperative game playing. Thus in other works, the agent either communicate to share

the sensing history rather than holding belief state [92], or use heuristics to approximate

the belief about other agents [91].

To the author’s knowledge, there has not been works on the online solution of POSG

for non-cooperative game playing, which also implies the difficulty of online solutions of

POSG and Dec-POMDP.
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2.3 Conclusion

In this chapter, the researches on different scenarios of robot search and pursuit evasion

are introduced from different aspects. In a task-oriented perspective, the scenarios are

categorized into search, monitoring, and multi-robot cooperation. The problem set-up,

such as the characteristics of the environment, the numbers of the pursuers and the

targets, and the sensing ability and dynamics of the players, defines each scenario and

determines the suitable solutions. After reviewing these related works, a broad overview

of the problem of robot search and pursuit evasion is provided. The separation of search

and monitoring is suggested from this background, from the aspects of different prior

knowledge about the targets, different goals to achieve on the targets, and different

solutions. This thesis was inspired by such separation. The problem formulation will be

done in Chapter 3, which is developed based on the background from this chapter.

From the reviewed works, some underlying technical details are then picked up, whch are

the POMDP and POSG/Dec-POMDP. These are the main mathematical problems to

solve, and are the potential methodologies for us. The scope is not limited on only robot

search and pursuit evasion, but also on the theoretical solutions on these problems. This

Section gives a basic concept of the solutions, together with the difficulties to face such

as the computation efficiency and scalability. With such concept in mind, throughout

the whole of this work, balancing performance and practicability is the main focus on

developing solutions. In Chapter 4, 5 and 6, different solutions will be proposed, which

are innovatively developed to be practical to implement and have advantage over baseline

methods.



Chapter 3

Problem Formulation of

Simultaneous Search and

Monitoring

Based on different kinds of problem formulation introduced in Chapter 2, this chapter

first does the basic modelling of the environment, the pursuers, and the targets. Such

modelling tries to be non-specific and flexible, to allow different problems to be studied

on it. Section 3.1 define the arena of the search and pursuit evasion between the pursuers

and the targets. Section 3.2 and 3.3 defines the model of motion, communication, and

sensing of the pursuers and the targets. The models will be applied throughout the rest

of this thesis.

From the ideas of search and monitoring, which appears to be independent tasks, the

concept of simultaneous search and monitoring (SSM) is developed and defined infor-

mally in Section 3.4. The SSM in different scenarios be defined in detail and solved in

Chapter 4, 5 and 6.

3.1 Modelling of the Environment

As mentioned in the Introduction, this thesis focus on research in a big outdoor open

space. It is assumed that the search and pursuit evasion happens in a confined environ-

ment, which is a L×W rectangle area. The terrain or occlusion is not considered in this

thesis, which makes it a fully connected and homogeneous space. To facilitate numeric

computations over such environment, a grid network is used to represent the space. For a

L×W rectangle area ς, it is discretized into a grid ς = {ci,j : i = 1, 2, ..., nx, j = 1, ..., ny},

28
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where ci,j denotes grid cells and i, j denote the coordinates on the x and y axis. Let

N(ci,j) = {ci′,j′ : i′ ∈ [i− 1, i+ 1], j′ ∈ [j − 1, j + 1], ci′,j′ ∈ ς} be the set of neighbouring

cells of ci,j . Two cells are connected on the grid when they are the neighbouring cells

of each other. The grid and the connection between cells are illustrated in Figure 3.1,

where each black points denote the centre of a cell and the lines are the connection

between neighbouring cells.

Figure 3.1: grid map of the environment

There can be n ground targets and m aerial pursuers sparsely scattered in ς. Each target

is distinguishable and is assigned with an ID λ ∈ Λ. Λ is the set of all the targets. The

ID ρ and set Γ is defined for the pursuers, respectively. Each pursuer or target can be

located in a certain cell, and can move between connected cells. In the remaining part

of the thesis, the term agent is used interchangeably with pursuer, and the term evader

is used interchangeably with target.

3.2 Modelling of the Pursuers

3.2.1 Motion Model of the Pursuers

For search and pursuit evasion about a aerial pursuer in a outdoor environment, the

Dubins Vehicle model is usually applied for the aerial vehicle [54, 57, 59, 60]. In such a
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model, the control inputs of the agent are the accelerations of its forward velocity and

heading, which are bounded. This model can take into account the inertia of the vehicle,

thus including the limitations on the ability of the agent to change its motion, such as

minimum turning radius. Nonetheless, in this thesis, it is assumed that the environment

is big and the distribution of targets are sparse. Thus the influence of minimum turning

radius on the effort of search and monitoring should be negligible. The inertia of the

agent is ignored, and it is assumed that the agent can follow an arbitrary trajectory

within a speed bound Vp. Let xρ(t) denote the location of agent ρ at time t.

Although in the main part of this work, the manoeuvrability of the agent is not consid-

ered. However, in the end of Chapter 4, 5 and 6, the scenarios where the agent model is

a dubin vehicle will be studied. This is to validate the feasibility of this work in a more

realistic system.

3.2.2 Sensing Model of the Pursuers

For the sensing of the agent, it is assumed that each aerial pursuer carries a target

sensor, which is mounted a gimbal and keeps looking downwards to the ground. It is

assumed that the sensor footprint is a rectangle and does not rotate on the ground.

For a pursuer ρ in grid cell ci,j , its sensor footprint is the area ∆ρ = {ci+a,j+b : a, b ∈
{−k,−k+ 1, ..., 0, ..., k}}, which is a (2k+ 1) by (2k+ 1) square centred at ci,j . Let ∆ =

{∆ρ : ρ ∈ Γ}, which is the total sensor footprint. Without losing generality, it is assumed

that (2k + 1) = nx/L, (2k + 1) = ny/M , where N and M can be any positive integers.

Thus if agent visits cells Cs = {c(2k+1)l−k,(2k+1)m−k : l = 1, 2, ..., L,m = 1, 2, ...,M},
the whole environment can be swept by sensor footprint. Such assumption reduces the

number of cells to consider, when planning about searching in the whole environment.

Let yρt be the measurement of pursuer ρ at time t. p(yρt |c) denotes the probability

function of sensing, indicating the probability of possible individual measurement yρt ,

given that the target is at c at time t. Thus

p(yρt |c) =



p(1|0) false positive

p(0|0) true negative

p(0|1) false negative

p(1|1) true positive

(3.1)



Problem Formulation of Simultaneous Search and Monitoring 31

3.2.3 Communication Model of the Pursuers

This work does not consider the aspect of distributed sensor fusion, or how to maintain

a tree structure for communication. It is assumed that the agents can not only sense the

location of each other perfectly, but also have a communication scheme which can share

all their sensing in real time. Then, the set of agent locations {xρ(t) : ρ ∈ Γ} are perfectly

shared within agents. This is not a strict assumption, for several reasons. Firstly, it

should be much easier to detect aerial teammates than to spot camouflaged ground

targets. because a agent can broadcast its own location, or carry some signal trackers

for the teammates to measure; Secondly, the agents only need to communicate about

measurements when a detection happens. Thus when the targets are sparse, it does

not require high communication bandwidth. With such assumption, it is assumed that

all the agents share the same knowledge of the environment, then the measurement and

estimation of different agents are not differentiated. Let yt denote the joint measurement

of all the agents at time t, which is known by all the pursuers.

However, in the last part of the thesis, which is Section 6.5, the range limit on the

communication will be considered. This is to test the practicability of this research in a

non-ideal circumstance, and also to improve the scalability of the cooperation between

agents.

3.3 Modelling of the Targets

As defined in Section 3.2.2, the sensor footprint of the agent cannot cover the whole

environment, and may produce false measurements. Therefore the information of the

targets can not be perfectly sensed at all times. A mathematical model needs to be

built for the target, in order to estimate and predict target locations, given partial and

imperfect observations. In related works, there are mainly three kinds of target models:

Gaussian uncertainty model, awareness model, and probability distribution model.

Gaussian Uncertainty Model

In this model, the target is a known base model perturbed by a zero mean Gaussian noise.

The observation is perturbed by a zero mean Gaussian noise as well. The estimation of

target state and the posterior covariance matrix are updated by Kalman Filter.

In [53], the target model is ignored. The sensing noise are all Gaussian, and the sensing

range is infinite. In [59, 60], the target model is known, but the model input is a Gaussian

noise. In [61], the target model is known and with a known input, but is perturbed by a

Gaussian noise. These models assume that the target follows a pattern of motion which
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is known a priori, but with a Gaussian perturbation. However, in this thesis, the target

motion can be very unpredictable, or even adversarial against the effort of pursuer, thus

an assumed pattern of target dynamics can not accurately describe and estimate target

information.

Awareness Model

An alternative of modelling the target is not to consider the specific target information,

but to model the certainty of the information in general. A empirical model is built to

describe what is called the awareness level of the environment at every location [46, 47].

The awareness level of certain area grows with search efforts on it, and declines when left

alone. This model does not deal with detailed information of target location, therefore

can not be applied in cases which require accuracy.

Probabilistic Distribution Model

The probability distribution model is a very commonly adopted framework, which can

combine the benefit of the accuracy of estimating a specific target location, and the

generality of dealing with uncertainties. In this kind of model, the target position is

modelled as a probabilistic distribution. The distribution evolve according to a target

dynamic model, and can be updated by measurement, using Bayesian formulation. This

model can precisely estimate and predict the probability of target presence. Besides,

it is of a more general form, which can incorporate different kind of target dynamics,

road map, and sensor model, thus can be more flexible to address different problems.

Examples of the works which applied probability distribution map are [20, 22, 23].

In this thesis, two kinds of targets are studied separately: the randomly moving targets

and the evasive targets. According to the the above discussion, the probability distribu-

tion model is chosen to model the randomly moving targets, which is the most suitable

in this case. Some modification of such model will be made, to represent the evasive

targets.

3.3.1 Modelling of Randomly Moving Targets

3.3.1.1 Motion Model of the Targets

Let xλ(t) denote the location of target λ at time t. In the discretized environment, at

each time step, each target may move from its current cell to a neighbouring cell, or

stay unmoved. Assume that the target motion is a Markov Chain, which is a commonly

applied model [20–22]. Then the target movement only depends on its current location,
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and is not related to its history. Let p(c|c′) be the transition function, representing the

probability of target moving from c′ to c in a time step, where

p(c|c′) =


ps if c = c′

pc|c′ if c ∈ N(c′)

0 else

(3.2)

pc|c′ is the probability that the target moves from c′ to a neighbouring cell c ∈ N(c′). ps

is the probability that target stays unmoved. ps +
∑

c∈N(c′) pc|c′ = 1. Let N1(c′) denote

the neighbouring cells which are in the lateral or longitudinal directions with c′, and let

N2(c′) denote the neighbouring cells in the diagonal directions with c′. Assume pc|c′ is

proportional to the inversion of the distance between c and c′. Then it can be obtained

that

pc|c′ =


(1−ps)

|N1(c′)|+
√

2|N2(c′)| if c ∈ N1(c′)
√

2
2

(1−ps)
|N1(c′)|+

√
2|N2(c′)| if c ∈ N2(c′)

(3.3)

where |.| is a operator to get the size of a set.

3.3.1.2 Estimation Model of the Targets

Assume that the environment is so large that the union of the agent sensor footprints can

not cover the whole environment, and there are possibly false measurements. Therefore,

the target information is partially observable to the agents, and every agent keeps hold of

a probability distribution map of each target. Let P̂λ(c, t|Yt) be the estimated probability

of target λ being in cell c at time t, given Yt which is the set of measurement up to time

t. Because the agents share the sensing information, P̂λ(c, t|Yt) is known by all agent

with no difference.

After holding a initial probability distribution of the targets, the agents can update or

predict the probability distribution, by utilizing the motion model of the targets and the

sensing model of the agents. Bayesian formulation is applied for the update of P̂λ(c, t|Yt),
which is based on the work of [20–22]:

1. Prediction. Compute prediction using the prior probability distribution P̂λ(c′, t−
1|Yt−1), the transition function (3.2), and the Chapman-Kolmogorov equation

P̂λ(c, t|Yt−1) =
∑
c′∈ς

p(c|c′)P̂λ(c′, t− 1|Yt−1) (3.4)
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2. Correction by observation. Update the prediction for cells which are being ob-

served, using Bayes’ theorem

P̂λ(c, t|Yt) =
P̂λ(c, t|Yt−1)p(yt|c)∑

c′∈∆ P̂λ(c′, t|Yt−1)p(yt|c′)
(3.5)

3. Correction by inference. For cells outside of sensor footprint, the prediction can

be corrected using the fact that
∑

c∈ς P̂λ(c, t|Yt)dc = 1

P̂λ(c, t|Yt) = P̂λ(c, t|Yt−1)
1−

∑
c′∈∆ P̂λ(c′, t|Yt)∑

c′∈ς/∆ P̂λ(c′, t|Yt−1)
(3.6)

The Probability map P̂λ(c, t|Yt) can provide a general description of the target location.

For the targets whose information is highly uncertain to the agents, such distribution

can conveniently provide the probability of detection for each search plan of the agents.

However, for the targets whose locations are relatively certain, more specific represen-

tation of information is needed to facilitate more precise actions. To separate generic or

precise operations on different targets, the targets are categorized as known or unknown.

Target λ is viewed as known, if the aggregation level of P̂λ(c, t|Yt) becomes higher than

a upper threshold, which is normally when it is detected. x̂λ(t) is the estimation of

target location xλ(t), which is calculated from P̂λ(c, t|Yt), or it can be simplified to be

the location where it was detected for the last time. Let Λt ∈ Λ denote the set of known

targets at time t. If the aggregation of P̂λ(c, t|Yt) is lower than a bottom threshold, or if

a agent fails to detect λ when it traverses x̂λ(t), λ is lost and becomes unknown. Each

known target is said to be under monitoring until lost.

For all the unknown targets λ ∈ Λ/Λt, let P̂u(c, t|Yt) be their total probability distribu-

tion, thus

P̂u(c, t|Yt) =
∑

λ∈Λ/Λt

P̂λ(c, t|Yt) (3.7)

With the total probability distribution of unknown target, the likelihood of detecting a

hidden target can be determined for a certain path plan of the agent, thus making it

easy for the planning of search mission. The location estimation x̂λ(t) of a known target

can allow the agent to plan a more specific trajectory to monitor that target.

The whole environment with the randomly moving targets is shown in Figure 3.2. The

space is partitioned by grid cells. Circles denote the targets, among which the filled

ones are known targets. The rectangles are the agent sensor footprints. The crosses are

the estimated locations of known targets. The numbers label the target IDs and the
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numbers with underline label the agent IDs. The plus signs denote cells in Cs. The

contour denotes the total probability distribution of unknown targets

Figure 3.2: example of the environment with randomly moving targets

3.3.2 Modelling of Evasive Targets

3.3.2.1 Motion Model of the Targets

Let xλ(t) denote the location of the evasive target λ at time t. The targets can move

between neighbouring cells or stay unmoved. Compared with the randomly moving

targets, the difference is that the evasive targets can proactively plan its own strategy

and choose its actions, which should be adversarial to the effort of the pursuers. These

plans and motions are normally not know a priori to the agents. Thus there should not

be a specific pattern of target motions to define. Instead, a worst case model is used to

describe the possible motions of the target.

Let Vt be the speed limit for the evaders, then it can be said that if a target moves in

speed Vt, it can reach a neighbouring cell in Tx time steps. θ(c|c′, t) is the transition

function representing whether a target can move from c′ to c at time t, and

θ(c|c′, t) =


1 if c = c′

1 if c ∈ N(c′), and t = i ∗ Tx

0 else

(3.8)
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where i is any integer.

This model contains all possible motions of the evader at certain time step. The grid map

defined in Section 3.1 contains the directions on the lateral, longitudinal, and diagonal

directions. The motion of the target should be omnidirectional, but the distance between

neighbouring cells are different on each direction. Hence, it is very difficult to represent

the realistic worst case assumption of the target motion using the Markov-Chain-like

model defined in Equation (3.8), because it takes different time steps to arrive in a

different neighbour. To simplify the estimation and planning in the scenario of the

evasive targets, it is assumed that the target only moves on the lateral and horizontal

directions. By having a smaller value of Tx, the chance of diagonal motion can be

included in the worst case model.

3.3.2.2 Estimation Model of the Targets

Similar to the case of randomly moving targets, a distribution map is used to estimate

the possible locations of the evasive targets. Nevertheless, rather than using probabilistic

model, a occupancy grid map M̂λ(c, t|Yt) is used to represent all the possible locations

of a target, thus to estimate the worst case evader behaviours. M̂λ(c, t|Yt) = 1 if and

only if target λ is possibly in cell c at time t, given Yt = {yt, yt−1, ..., y0} which is the set

of pursuer measurements of up to time t.

To make it compatible with the worst case model, the sensing model defined in Equation

3.1 is transformed to be Equation 3.9. φ(c|yt) denotes result of measurement, indicating

whether a target may be at c, given the current measurement yt.

φ(c|yt) =

0 negative

1 positive
(3.9)

This sensing model includes the false positive into the worst case target presence, but

ignores the false negative for the ease of analysing. The evolution of the occupancy grid

map can then be defined, similar to that of the randomly moving targets.

1. Prediction. Compute the prediction using the prior map M̂λ(c, t− 1|Yt−1) and the

transition function (3.8)

M̂λ(c, t|Yt−1) = sign(
∑
c′∈ς

θ(c|c′, t)M̂λ(c′, t− 1|Yt−1)) (3.10)
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2. Correction by observation. Update the prediction for cells which are being ob-

served, with the sensory model

∀c ∈ ∆, M̂λ(c, t|Yt) = φ(c|yt) (3.11)

3. Correction by inference. If a target is detected, set the map outside the sensor

footprint to be zero. It utilizes the fact that
∑

c∈∆ M̂λ(c, t|Yt) = 1 if λ is detected,

or
∑

c∈∆ M̂λ(c, t|Yt) = 0 if λ is outside sensor footprint.

∀c /∈ ∆, M̂λ(c, t|Yt) = M̂λ(c, t|Yt−1)(1−
∑
c′∈∆

M̂λ(c′, t|Yt)) (3.12)

The operations on the worst case occupancy grid map will focus more on clearing areas

possibly occupied by the target, and prevent the recontamination of the cleared area.

Therefore, for the evasive targets, the estimation of the specific target location is not

needed. The whole environment with the evasive targets is shown in Figure 3.3. The

space is partitioned by grid cells. The circles denote the targets. The numbers label

the target IDs and the numbers with underline label the agent IDs. The rectangle is

the pursuer sensor footprint. Each blue polygon denotes the occupancy grid map of a

target.

Figure 3.3: example of the environment with evasive targets
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3.4 Concept of Simultaneous Search and Monitoring

Given the models of the environment and the players, this section now informally formu-

late the concept for simultaneous search and monitoring. In Section 3.4.1, Such concept

is defined based on a description of uncertainty. Such representation of uncertainty will

be defined in detail in Section 3.4.2 and 3.4.3, each for either randomly moving targets

or evasive targets.

3.4.1 Simultaneous Search and Monitoring to Reduce Uncertainty

As reviewed in Chapter 2, the search and monitoring problems are normally studied

in isolation. The robot search is to detect hidden targets to obtain specific locational

information about them, the mission finishes when the targets are found; the robot

monitoring is to surveil the known targets to update their location, it is normally a

dynamic process. The prior knowledge of the targets are different in both missions, and

the goals are different too. Thus the solutions proposed for the two problems can be very

different. That is why these two problems are normally seen as unrelated. However, as

introduced in Section 1.1, the search and monitoring are both needed at the same time.

If the agents only focus on one mission, either the detected targets will run away, or the

hidden targets may not be found.

It appears that search and monitoring are two independent missions, which compete for

the effort of the pursuer. A straightforward way of reconciling search and monitoring

is to quantify the goal of the two missions, and add them up to a overall goal. A task

assignment method can be implemented by scheduling the plan of the agent to do the

search and monitoring in turn, thus to achieve a higher overall goal by having a trade-

off [3]. However, a target can change between known and unknown, making search and

monitoring inherently connected. A hidden target becomes known with certainty after

being detected in a search mission, it should be sensible to add it under monitoring. A

known target may get lost during monitoring, and should then be considered in a search

mission. If treating the two missions independently, in a plan, a target which changes

its status will not subsequently be attended. Thus this isolation can not accurately

represent the practical need of SSM, and does not enable the synergy between search

and monitoring.

Therefore, the combination of search and monitoring should be treated as a cooperation,

to better react to the possible contingencies happening on a target. We do this by defin-

ing a united representation of uncertainty for each target, and letting the simultaneous

search and monitoring (SSM) to obtain and update the information of mobile targets
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in a dynamic way, to maintain a low overall uncertainty. In such way, the agents can

reduce the overall uncertainty by searching for unknown targets and monitoring known

targets at the same time, and also make proper plan about the contingencies of a target

being detected or lost.

For a target λ, let Unλ denote the uncertainty about its location, which is hold by the

pursuers. Let
∑

λ∈Λ Unλ be the total uncertainty about all targets. The goal of the

SSM is minimizing the total uncertainty
∑

λ∈Λ Unλ. Unλ will then defined in detail for

randomly moving or evasive targets.

3.4.2 Uncertainty Representation of Randomly Moving Targets

3.4.2.1 Combining Search and Monitoring with a United Uncertainty Rep-

resentation

In the review of related works in Chapter 2, the works on robot search and pursuit

evasion have been classified into two main categories: search and monitoring. In the

work about search, the targets are normally modelled as a probability distribution. In

the works about monitoring, the targets are modelled as a known location with possible

uncertainties around it. In the modelling of randomly moving targets in Section 3.3.1,

both methods are taken. A probability distribution is used to describe each target, but

some targets with higher certainty are classified as known and their specific locations

are recorded.

In the first glance, having only the probability distribution of every target is enough to

represent the uncertainty. The higher aggregation of probability distribution, which is

like a spike, should mean that the knowledge of this target is certain. A lower aggre-

gation, which is a relatively flat distribution, means higher uncertainty. However, the

disadvantage of having probability distribution is a low computational efficiency. When

planning with such model, all locations in the environment may possibly be considered,

because they are treated in a general way. In the works about monitoring multiple

mobile targets, the target model normally consists of a known location plus its uncer-

tainty. With such model, there is only one location to consider for each target, thus can

significantly reduce the difficulty of the planning for monitoring. In [54], the authors

take advantage of the upper bound of the target speed, and obtain a time limit, so that

if a pursuer intermittently visits the last detected location of a target within this time

limit, the target will be guaranteed to be re-detected. In [59–61], such model for known

targets is also applied, to simplify the path planning. This is the reason why in this

thesis, the targets are differentiated as known and unknown, and different models are

used for them.
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To formulate a combined search and monitoring mission, this work takes advantage of the

connection between both missions. The total certainties of the known targets are taken

as the total uncertainty of all the targets. And the uncertainties of the unknown targets

are ignored. This is for two reasons. Firstly, for most of applications, compared with

general information of unknown targets, the knowledge of known targets is more specific

and can provide more practical utility. Examples of these applications can be sea rescue

of a ship crew, search and capture of criminals, etc.. Secondly, as mentioned above, the

targets can change status during a mission, thus the unknown targets are considered

implicitly. The total certainty can be contributed by updating the information a known

target, or detecting a new target and put it under monitoring. In such a way, the search

and monitoring are combined in a united goal.

3.4.2.2 Uncertainty Representation of Known Targets

In the Section 3.3.2.2, it has defined x̂λ(t) as the estimated location of a known target.

Then, the uncertainty of such estimated location is defined as follows:

Definition 3.1. For the estimated location x̂λ(t) of a known target λ ∈ Λt, the belief

probability is the probability that its actual location xλ(t) is within F (x̂λ(t)) = {ci+a,j+b :

a, b ∈ {−k,−k + 1, ..., 0, ..., k}, ci,j = x̂λ(t)}. The belief probability is denoted by B̃λ.

F (x̂λ(t)) is area of the same shape with the sensor footprint of the pursuer, and is

centred at x̂λ(t).

The rationale of B̃λ is that, it provides a lower bound of the probability of target λ to

be re-detected, if a agent visits x̂λ(t) at time t.

If a known target is not currently measured, its belief probability will degrade because

of its random motion. A model will be defined, to estimate the evolution of belief

probability when not being measured. Assume a target is initially placed at the centre

of the environment, which is denoted as c∗, and x̂λ(0) = c∗. Assume that this initial

location is known for certain, then

P̂λ(c, 0|Y0) =

1 if c = c∗

0 else
(3.13)

Let its probability distribution P̂λ(c, t|Yt) evolve on its own without measurement, based

on the model in Section 3.3.1.2. The belief probability B̃λ at each time step is calculated,

such that
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B̃λ =
∑

c∈F (x̂λ(t))

P̂λ(c, t|Yt) (3.14)

The evolution of P̂λ(c, t|Yt) and the calculation of B̃λ is illustrated in Figure 3.4, where

at every 0.2 second time step, the probability of target to stay unmoved is ps = 80%.

Figure 3.4: calculation of belief probability

Let B̃∗λ(t) denote the degrade function of the belief probability without measurement,

which is shown in Figure 3.5 (a). In [54], by remembering the last detection location of a

target and knowing its speed limit, the agent can guarantee the re-detection of a target by

having a simple planning. It will also be shown here, that if classifying a recently detected

targets as known and modelling it as a known location plus belief uncertainty, it can

implicitly contain a benefit for re-detecting, thus facilitate the planning of monitoring.

It has been shown that the belief probability is a lower bound of the probability of target

λ to be re-detected. Thus we can see that, if a agent is to re-detect a target λ at time t′

after the last detection, it will have a detection probability of at least P = B̃∗λ(t′). If the

agent leave the target after time t′ and never comes back, the expected belief probability

of target λ at each time instant is calculated as follows:
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B̃λ(t) =

B̃∗λ(t) if t ≤ t′

B̃∗λ(t′)× B̃∗λ(t− t′) if t > t′
(3.15)

The functions of expected belief probability w.r.t future time, where there may be one

or more attempts of re-detection, is shown in solid lines in Figure 3.5 and 3.6. They are

compared with the expected belief probability without attempt of re-detection, which is

B̃∗λ(t) and is shown in dash lines.

Figure 3.5: evolution of belief probability (1)

From Figure 3.5 (a) we can see that, when there is no measurement, the belief probability

drops much slower in the first few seconds than later. This is because in the beginning

of the time, although the target may move, its distribution is still concentrated around

its original location and is mostly within the area of F (x̂λ(t)).

It can also be seen that, if the agent tries to re-detect a known target, the more attempts

it makes, the higher expectation of belief probability can be maintained. Although at
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Figure 3.6: evolution of belief probability (2)

each attempt of re-detection, the expected belief probability B̃λ(t) will not be improved,

cause the likelihood of successful detection is always around B̃λ(t). However, a successful

detection can update the location of the target, which can make the future belief prob-

ability to drop slower compared with no-redetection, and make it easier for the future

re-detection. This property of belief probability implicitly encourage the monitoring of

known targets, and is very simple which does not require complicated calculation.

At last, the representation of the uncertainty for each target is defined as follows:

Unλ =

1− B̃λ if λ ∈ Λt

1 else
(3.16)

With this definition, the agents can reduce total uncertainty by synergies of search and

monitoring. The agents can search new targets to enlarge Λt, or to monitor known ones

to increase B̃λ.

3.4.3 Uncertainty Representation of Evasive Targets

The evasive targets do not follow a known stochastic motion pattern. Instead, they can

take advantage of their perfect sensing, and plan the evasion to maximize its interest.

Therefore, the idea of efficient search does not apply anymore. For a target which is

found, it will try to run away from the previous location after being detected. So it

does not improve the efficiency of monitoring, by categorizing recently found targets as

known and try to re-detect it in its previous location. Hence, the evasive targets are not
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differentiated as known and unknown. The model defined in Section 3.3.2.2 can be used

to estimate the worst case distribution of the possible target locations.

Definition 3.2. For the agents, Ẽλ denotes the uncertainty about target λ, which is

the size of the occupancy grid map of λ. Ẽλ(t) =
∑

c∈ς M̂λ(c, t|Yt).

Let Unλ = Ẽλ to represent the uncertainty about a target in the scenario with evasive

targets. Without the sensing of the agent, the occupancy grid map always grows as a

result of the adversarial target behaviour. To reduce and limit the total uncertainty, the

agents need to predict the growth of the occupancy grid maps, and plan a strategy to

detect the targets or at least clear parts of their occupancy grid maps. This also achieves

the simultaneous search and monitoring, by dynamically reducing the uncertainty of all

targets at all times.

The definition of uncertainty for randomly moving and evasive targets will be utilized

in Chapter 4, 5 and 6 in more detail, and the objective functions of the agents will also

be defined formally to guide the strategy planning.

3.5 Conclusion

In this Chapter, the problem formulation is achieved by firstly setting up the environ-

ment and the players, and then proposing a abstract notion of simultaneous search and

monitoring. The environment is discretized to allow a real-time planning. The mo-

tion, sensing and communication models of the pursuers and the targets are defined

according to realistic applications. Given the partial observation of the pursuer, two

estimation models are defined for the agents to conjecture and predict the location of

either randomly moving or evasive target.

By analysing the connection between the unknown targets to be searched, and the known

targets to be monitored, the gap between search and monitoring is found to be unneces-

sary. The concept of SSM is then developed, which is to reduce the total uncertainty of

the dynamic targets. For the randomly moving targets, the targets with different uncer-

tainties are classified and treated differently, to make the planning more efficient. The

evasive targets are not divided, and are evaluated in a worst case estimation. The SSM

of randomly moving targets with a single pursuer will be solved in Chapter 4. The SSM

of evasive targets with a single pursuer will be solved in Chapter 5. The cooperative

SSM of randomly moving or evasive targets will be solved in Chapter 6.

Although the perfect motion and communication models are assumed for the pursuers,

they will be relaxed in later chapters. The Dubin Vehicle model for the aerial pursuer
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will be considered and tested in Section 4.5.3, 5.6.3, and 6.6, for every scenario. The

communication range limit will be considered in Section 6.5 and 6.6, for the cooperative

SSM.



Chapter 4

Simultaneous Search and

Monitoring of Randomly Moving

Targets

The problem of simultaneous search and monitoring (SSM) is formulated in Chapter 3. It

has been introduced in Chapter 1 that, the problem of SSM contains two main technical

problems, the first is the sensor scheduling and strategy planning, and the second is

multi-agent cooperation of the agents. To solve these problems, this thesis take an

approach of splitting them into two steps: solving the SSM with a single pursuer, and

build the cooperative SSM strategy on top of the solution for a single agent. Chapter 4

and 5 will be about the SSM between a single pursuer and multiple randomly moving

targets or evasive targets. Chapter 6 will develop the cooperation of multiple agents for

the same tasks.

This chapter first formulates the state space and objective value function of the problem

of single pursuer SSM of randomly moving targets. A Partially Observable Markov De-

cision Process (POMDP) is built for this SSM. A novel concept of policy reconstruction

is developed, to make it easy to incorporate heuristics into the policy planning. Online

solutions are chosen instead of offline, to have a scalable and adaptive solution. Three

online solutions are designed and compared. The conventional fixed sequence of action

method is first devised, as the simplest and fastest solution. The hybrid of branch-

ing and fixed sequence of action method are developed secondly, which is the trade-off

between the computational efficiency and optimality. A novel heuristic reactive policy

reconstruction method is proposed in the last. The superiority of the heuristic reactive

policy is proved theoretically and validated through simulation. The heuristic reactive

46
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policy is chosen to be the solution of the single pursuer SSM of randomly moving targets,

for its good performance and fast computation.

The Dubin Vehicle model of the UAV is considered in the last of the simulation. Which

shows the practicability of this work.

4.1 Formulating the Partially Observable Markov Decision

Process

For the single pursuer SSM of randomly moving targets, a formal problem statement

can be done, based on the modelling in Chapter 3. Considering the fact that the motion

of the random targets is a Markov Chain, and that the environment is partially observ-

able to the agents, a POMDP framework is used to build this problem. The general

structure of POMDP is introduced in Section 2.2.1. This model consists of an internal

Markov Decision Process (MDP) and an observation model of the agent. Such model is

commonly applied in works which calculate finite-horizon offline solutions for POMDP

[70, 71]. The piecewise-linear, convex property of the optimal reward function has been

shown in [70]. This model can allow this advantageous property to be exploited, to

simplify the offline solution.

However, this thesis strives to solve the POMDP online, for which the reason will be

explained in Section 4.3.1. The belief states of the agent will be applied to be the state

of the problem, rather than the world state. Compared with the world state, which

the agent can not access directly, belief states can more straightforwardly represent the

knowledge of the agents about the environment, thus can facilitate the design of more

intuitive strategy. The new POMDP formulation is as follows:

1. S is a finite set of belief states of the agent about the world. At time t, a belief

state st = {{P̂λ(c, t|Yt) : λ ∈ Λ}, {x̂λ(t) : λ ∈ Λt}, xρ(t), Λt, t}. st ∈ S;

2. As is an finite set of possible actions of the agent at state s. Let a denote the

action of the agent, which is its movement between neighbouring cells. a ∈ As;

3. p(st+1|st, a): S × As −→ p(S) is the state-transition function, mapping from a

previous belief state and an agent action, to a probability distribution of next

belief states;

4. R : S × A −→ R is the reward function, mapping from a current belief state and

an agent action to an immediate reward;

5. Ω is a finite set of observation of the pursuer;
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6. O : S × As −→ p(Ω) is the observation function, mapping from a current belief

state and an agent action, to a probability distribution of agent observations.

where ρ is the ID of the only pursuer. The state transition function p(st+1|st, a) is based

on the update rules of P̂λ(c, t|Yt), x̂λ(t), and Λt, which are defined in Chapter 3.

4.2 Construction of the Objective Function

In Section 3.4.2.2, the belief probability is defined to represent the certainty about a

target, which the pursuer should increase. Let B̃λ(st) be the belief probability of target

λ, at state st. Let R(st) =
∑

λ∈Λt B̃λ(st) be the reward for SSM mission. It provides

the lower bound for the expected number of targets which can be detected, if at time t,

m = |Λt| agents are deployed to reach the estimated location of each known target.

π denotes the policy of the agent, to decide which action to take at each time step. stf

denotes one of the possible terminal states, and p(st|π, sti) is its probability distribution

on S, given pursuit policy π and initial state sti . According to [95], the objective

function for SSM, for time horizon T = tf − ti, is formulated as the expected average of

the rewards for all time steps within time horizon:

V (π, sti , tf ) = E{∆T

T

tf∑
t=ti

R(st)} =
∆T

T

tf∑
t=ti

E{R(st)}

=
∆T

T

tf∑
t=ti

∑
st∈S

p(st|π, sti)R(st)

=
∆T

T

tf∑
t=ti

∑
st∈S

p(st|π, sti)
∑
λ∈Λt

B̃λ(st)

where ∆T is the time step of system.

In Section 3.4.2.2, it has been introduced that, the expected belief probability of a known

target can be increased by having an agent to traverse its estimated location, and the

total belief probability can be increased by searching unknown targets and monitoring

known ones at the same time. Then, the agent needs to plan a strategy to do search

and monitoring simultaneously and cooperatively, in order to achieve a higher objective

value.
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4.3 Policy Planning for SSM

Through Section 4.1 and 4.2, a tuple 〈S,As, p(st+1|st, a), V (π, sti , tf )〉 has been defined

for the single pursuer SSM mission, which is a full model of POMDP. The belief state

st represents the real time knowledge of the pursuer about the environment, and the

transition function p(st+1|st, a) determines the evolution of the environment. The objec-

tive function V (π, sti , tf ) builds up the goals for the SSM mission. The solution to this

POMDP is the policy π of the agent, which is a strategy that determines the actions of

the pursuer, choosing from the action pool As.

4.3.1 Concept for Solving POMDP

Although the problem in this chapter is built as a POMDP, the belief state rather than

the world state is taken as the state of the system, which can be accessed directly by the

agent. Hence this POMDP can be viewed a subjective MDP [68]. Lemma 4.1 proves

the existence of a solution to this subjective MDP.

Lemma 4.1. For the Finite-Horizon subjective MDP defined by tuple 〈S,As, p(st+1|st, a)..

, V (π, sti , tf )〉, there exists a deterministic history dependent policy at = π∗(st, ht), which

can achieve the optimal objective value. Where ht = (ht−1, at−1, st) denotes system his-

tory. [95]

The definition of the optimal policy is explained in Figure 4.1. The decision tree roots

from the initial state and ends at a certain horizon. Each action on the initial state may

result in several possible states, so do the subsequent actions. Each policy is a subtree

of the decision tree, which decides what actions to take at each state and each step. The

optimal policy π∗(st, ht) = argmaxπV (π, sti , tf ) is the subtree (Green) that can achieve

the highest objective value.

Figure 4.1: optimal policy

The solution methods for POMDP has been reviewed in Section 2.2.1, which in general

can be categorized as offline solutions and online solutions. The offline solutions plan

a comprehensive strategy before the mission, and implement it without replanning.
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Although being fast to execute, the offline strategy can be very slow to plan because

of the exhaustive backup. The computational cost of offline solution grows significantly

with the size of the problem. Thus it normally does not allow real-time replanning of

the strategy.

However, from Chapter 3, it can be seen that the SSM problem contains m+ n players

and an area with nx×ny grid cells. The internal MDP, which does not include the partial

observability of the agents, already has a state space with a size of (nx × ny)m+n. The

complexity of a comprehensive offline solution should grow at least exponentially with the

number of the players, and also polynomially with the size of the area. Hence the offline

methods are not scalable with the size of this problem. Besides, the SSM is a information

gathering problem, which may deal with uncertainties on the model of environment, the

model of players, and the number of targets. These uncertainties require the agent to be

capable of replanning its policy, to adapt to the changes. Apparently, the offline solution

does not satisfy this requirement.

An alternative is online planning method. Based on current state, it only explores the

part of state space which are reachable within a time horizon from the initial state, then

plans a local policy which considers the explored subset of state space. The local policy

will be implemented until reaching the time horizon or the occurrence of certain events,

and will then be replanned. This approach focuses on local information and the close

future within time horizon, thus it has a deterministic upper bound for the size of the

decision tree, and can be computed in real time with moderate cost. It can easily take

into account the environmental changes in each real-time planning, to make it adaptive

[81]. Therefore, the online planning is chosen in this thesis to solve the POMDP, to have

a more feasible, scalable, and flexible solution.

The online solution of POMDP can mainly be either dynamic programming or policy

iteration. The dynamic programming method is based on solving the Bellman Equation,

where

V (π, sti , tf ) =

∆T

T
R(sti) +

T −∆T

T

∑
sti+1∈S

p(sti+1|sti , a)V (π, sti+1, tf )
(4.1)

It can be seen that, Dynamic Programming method searches in the state space, and

works out the optimal policy. Instead, policy iteration searches in the policy space

directly [78, 96, 97]. The concept of policy iteration is chosen in this thesis, to be

the solution for the online policy planning. Although policy iteration is not simpler
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than Dynamic Programming in terms of getting an optimal solution, but it allows the

heuristics formulation of the policy space, which enables utilizing the physical properties

of the SSM to simplify the planning. This advantage will be exploited from Section 4.3.2

to 4.3.3.4

In any method, solving POMDP precisely can be difficult [72]. To have a feasible online

planning, a sub-optimal solution is chosen, which strives to find a close approximation

of the optimal policy π∗. The basic framework for solving POMDP in this thesis is as

follows:

1. Build a structure of policy π̂, which has the potential to approximate the optimal

policy π∗.

2. Find the π̂∗ = argmaxπ̂V (π̂, sti , tf ), which is the best policy to be obtained within

the structure of π̂.

Subsection 4.3.2 to 4.3.3.4 detail how to build the structure of π̂. Subsection 4.3.4 and

Section 4.4 describe how to calculate π̂∗.

4.3.2 Simplifications for State Prediction

When building the search tree illustrated in Figure 4.1, the agent needs to predict the

future states, which are the nodes in the search tree. It is a main part of computation.

Therefore, to reduce computational complexity, the following assumptions/simplifica-

tions are made for the state prediction in planning.

1. Perfect Sensor Assumption. Assume that for the sensor model in equation

(3.1), p(1|0) = 0, p(0|1) = 0.

2. Contingency Density Assumption. Assume that at each time step, only one

contingency may happen. The contingencies can be four kinds of events: 1. de-

tecting a new target, 2. re-detecting a known target, 3. losing a known target, 4.

other events, where there is no detection or loss of a target.

3. Probability Distribution Update Simplification. P̂u(c, t|Yt) is estimated by

both target dynamics and sensing. In policy planning, for a future time instant,

the influence of both target behaviour and sensing on P̂u(c, t|Yt) is ignored.

4. Location Update Assumption. Once a known target λ is redetected, x̂λ(t) will

be updated. Assume that this update does not dramatically change st.
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Assumption 1 is valid if it is confident enough about the accuracy of target detection

sensor. The sensing errors during planning will not be considered. Although it will be

tested during simulation.

Assumption 2) is based on the fact that the environment is large and the targets are

assumed to be sparsely scattered. The case when different events happen at the same

time is ignored. Based on assumption 2), the states in which the agent has no detection

or loss of a target are classified as s′ (with event 4). The other states are classified as s◦,

in which the agent detects an unknown target, re-detect or lose a known target (with

event 1,2, or 3). States s◦ are called branching states.

Based on assumptions 3), a simplification is made that, when predicting the future

probability distribution of targets, P̂u(c, t|Yt) is viewed as a fixed, which is P̂u(c, t|Yt) =

P̂u(c, ti|Yti). The induced error is compensated by not planing an agent to search for a

location twice within time horizon, to avoid including the chance of detection repetitively

for an area. According to 4), when predicting the future estimated location of targets,

the update of x̂λ(t) is ignored, which means x̂λ(t) = x̂λ(ti).

It should be noted that all these simplifications only apply to the phrase of planning,

when the agent needs to predict future state. It does not apply to the estimation of

current information during the execution of a policy.

4.3.3 Policy Reconstruction

As shown in Section 4.3.1, it is not practical to solve the POMDP by doing an exhaus-

tive enumeration. Thus an approximation method is needed to obtain an estimation

of the optimal policy and the future objective value. The conventional decision tree

shown in Figure 4.1 treats all the branching with no preference of importance, thus is

not efficient and is not convenient to incorporate heuristics. Therefore, a novel policy

reconstruction concept is proposed, to make room for decomposing a policy and having

intuitive approximation.

At initial state sti , a deterministic trajectory is proposed for the agent: χ = {x′(t) :

t = ti, ti + 1, ..., tf , x
′(ti) = xρ(ti)}, which is called base trajectory. The base trajectory

always starts from the location of the pursuer. x′(t) denotes the location that the agent

is planning to visit at time t. The base trajectory includes a set of target locations

X(ti) = {x̂λ(ti) : λ ∈ H(ti)}, where H(ti) ∈ Λ(ti) is the set of known targets to be

monitored along χ.

Assume that there is a branching function χ◦ = f(s◦, χ, ht) which maps a branching

state s◦, current base trajectory χ and system history ht, to a new base trajectory χ◦.
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The beginning of the new base trajectory is the location of pursuer when the branching

happens. Also let {at : at = xρ(t + 1), t ∈ {ti, ti + 1, ..., tf − 1}} be the action taken

by the agent to decide the next immediate location. A policy structure π̂ is defined in

Algorithm 1:

Algorithm 1: at = π̂(st, χ, ht)

if st ∈ s◦ then
χ◦ = f(s◦, χ, ht)
χ = χ◦

end
at = xρ(t+ 1) ∈ χ

where ht = (ht−1, at−1, st) denotes system history.

The base trajectory can be viewed as a provisional plan of the agent trying to explore

certain unknown area and visit some known targets. The branching function is a reaction

scheme to amend the previous plan. Then it will be proved that the combination of a base

trajectory and a branching function can be equivalent to the decision tree description

of a policy.

Theorem 4.2. For the POMDP defined by tuple (S,As, p(st+1|st, a), V (π, sti , tf )), there

exists a deterministic history dependent policy π̂∗(st, χ, ht) defined in Algorithm 1, to be

optimal.

Proof. Assume that there is an arbitrary deterministic history dependent policy π(st, ht),

applied on an arbitrary initial state sti , with the terminal time at tf . Let ati = π(sti , hti)

be the first action. For all the later states, if {st : t = ti + 1, ...tf} ∈ s′, let {a′t : t =

ti + 1, ...tf , a
′
t = π(st, ht)} denotes the corresponding sequence of actions taken by the

policy.

Because the category of states s′ corresponds to a deterministic kind of observation, and

plus the policy π(st, ht) is know, then the sequences of the states {st : t = ti+1, ...tf} ∈ s′

and the actions {a′t : t = ti+1, ...tf , a
′
t = π(st, ht)} are deterministic. Then, there should

be a deterministic trajectory χ = {ati , a′ti+1, ..., a
′
tf
}.

If at time t1, st1 ∈ s◦, then the immediate action taken is a◦t1 = π(st1 , ht1), and let

{a′′t : t = t1+, ...tf , a
′′
t = π(st, ht)} denote all the corresponding actions for later non-

branching states st ∈ s′. Let χ◦ = {a◦t1 , a
′′
t1+ , ..., a

′′
tf
}.

It can be seen that after iteratively applying this process, all possible states and the

corresponding actions in the policy tree can be reconstructed by the combination of χ

and all branching χ◦, which means that π(st, ht) can be fully reconstructed by π̂(st, χ, ht)
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defined in Algorithm 1. According to Lemma 4.1, there exist an optimal π∗(st, ht). Thus

it can be reconstructed by a π̂∗(st, χ, ht), which is also optimal.

Theorem 4.2 and its proof show that the optimal policy π∗ can be exactly reconstructed

by π̂∗(st, χ, ht). It can be also illustrated in Figure 4.2 that any policy, such as the

optimal policy in Figure 4.1, can be reconstructed by such set-up, where a different

colour of branching denote a base trajectory.

Figure 4.2: policy reconstruction

Such decomposing and reconstruction do not simplify the policy planning, but both

the base trajectory and the branching function can be interpreted in an intuitive way,

which makes it easy to do approximation with heuristics and domain knowledge. Then,

with such formulation, a reconstructed structure of the agent policy can be built, which

incorporates heuristics to imitate the sensible actions taken by the optimal policy, and

have the potential to approximate the optimal policy and be sub-optimal.

4.3.3.1 Fixed Sequence of Actions vs. Reactive Policy

In [77, 80, 98, 99], and [81], different approaches for approximating the optimal policy

are introduced. Amongst those approaches, the strategy of fixed sequence of actions

is commonly used in relevant problems [59], for its ease of implementation. It plans

a policy at = π(t, ht), which is a fixed sequence of actions within the time horizon,

regardless of the possible future states. In the problem of this work, such fixed sequence

of actions is a deterministic path for the agent. It has been stated in [86] that such

solution can guarantee a lower bound of optimal reward. In [98], it is proven that such

optimization can be at least as well as an optimal open-loop policy, which means the

current information is advantageously utilized in the planning. The fixed sequence of

action method is illustrated in Figure 4.3.

It can be seen from Figure 4.3 that, in such policy, the action at each time step is fixed,

regardless any branchings. Comparing Figure 4.3 and 4.1, we can see that it is almost

impossible for a fixed sequence of actions to precisely approximate the optimal policy

at = π∗(st, ht). In this work, as mentioned in Chapter 1, the state and objective value
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Figure 4.3: fixed sequence of actions

may be largely changed by contingencies such as a new detection or a failed monitoring,

thus the branchings triggered by these events should be considered in the planning of a

strategy. The obtained strategy should be reactive to future contingencies.

In Section 4.3.3.2, 4.3.3.3, and 4.3.3.4, three different structures of policies will be pro-

posed, which include a policy with fixed sequence of actions, a hybrid policy of fixed

sequence of actions and branching, and a heuristic reactive policy. These policies will

be compared theoretically and through simulation.

4.3.3.2 Policy of Fixed Sequence of Actions

For the decomposing of agent policy defined in Section 4.3.3, one most simple way to

do approximation is to ignore the branching function. Then the base trajectory will not

change regardless of any events happening.

Let χ to be a base trajectory for the agent to follow. For any branching state s◦ to

happen, no change to χ will be applied, thus the Algorithm 1 becomes as follows:

Algorithm 2: at = π̂f (st, χ, ht)

if st ∈ s◦ then
χ◦ = χ
χ = χ◦

end
at = xρ(t+ 1) ∈ χ

This is called a policy of fixed sequence of actions (FSOA). For such policy, the ac-

tion taken by the agent at each time step is deterministic. Based on the belief state

transition function p(st+1|st, a), which is known, the evolution of the probability dis-

tribution of the belief state, p(st|π̂f , sti), is deterministic as well. Then the objec-

tive value V (π̂f , sti , tf ) = ∆T
T

∑tf
t=ti

∑
st∈S

p(st|π̂f , sti)R(st) can be calculated straight-

forwardly. This property will be utilized in Section 4.3.4, to calculate the objective

value of other policies which will be proposed.
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Let π̂∗f = argmaxπ̂fV (π̂f (st, χ, ht), sti , tf ) to be the optimal policy with fixed sequence of

actions. Let π̂∗o = argmaxπ̂f
∑

sti∈S
p(sti |sti−1, a(ti−1))V (π̂f (st, χ, ht), sti , tf ) to be the

optimal open-loop policy, which is still a fixed sequence of actions but do not consider

the current observation.

Lemma 4.3. For a optimal policy of FSOA, which is π̂∗f = argmaxπ̂fV (π̂f (st, χ, ht), sti , tf ),

its estimated objective value is a lower bound of the objective value achieved by optimal

policy π∗ [86].

Lemma 4.4. For an optimal policy of FSOA, which is π̂∗f = argmaxπ̂fV (π̂f (st, χ, ht), sti , tf ),

its estimated objective value is at least higher than that of the optimal open-loop policy

π̂∗o [98].

Both Lemmas provide guarantee for the performance of policy of fixed sequence of

actions.

4.3.3.3 Hybrid Policy of Fixed Sequence of Actions and Branching

To address the drawback of the policy of FSOA, as mentioned in Section 4.3.3.1, it is

mixed with a fully reactive policy. The mixed policy, π̂m(st, χ, ht), is called hybrid policy

of fixed sequence of actions and branching, which will be mentioned as hybrid policy in

the rest of this thesis. Assume that in policy π̂m(st, χ, ht), the agent can do K levels of

branchings to change the base trajectory. The base trajectory remain unchanged after

the Kth branching. Such policy maintains a certain depth of branching, but still uses

fixed sequence of actions to approximate the decisions further than that depth, thus is

a trade-off between optimality and computational efficiency. This policy is defined in

Algorithm 3.

Algorithm 3: at = π̂m(st, χ, ht)

initialize i=0
if st ∈ s◦ then

i = i+ 1
χ◦ = fm(s◦, χ, ht)
χ = χ◦

end
at = xρ(t+ 1) ∈ χ

where fm(st, χ, ht) =

{
argmaxχV (π̂m(st, χ, ht), st, tf ) if i ≤ K
χ if i > K

It can be seen that by limiting the maximum levels of branchings to happen, the hybrid

policy does trade-off between computational efficiency and the look-ahead ability of

future contingencies. The definition of the branching function fm(s◦, χ, ht) contains
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finding the best branching with the highest objective value, which is similar to solving

the Bellman Equation, and is as difficult. But the policy after the Kth branching will

be a FSOA. As mentioned in Section 4.3.3.2, the objective value of such non-reactive

policy can be computed conveniently. Then the objective value of ith branching can

be calculated recursively, inducing backwards from the Kth branching. The branching

function fm(s◦, χ, ht) can be determined in such a way, and so is the hybrid policy π̂m.

π̂∗m = argmaxπ̂mV (π̂m(st, χ, ht), sti , tf ) is the optimal hybrid policy of fixed sequence of

actions and branching. It has the following property:

Theorem 4.5. The optimal hybrid policy π̂∗m has at least higher estimated objective

value than that of optimal policy of FSOA π̂∗f .

Proof. Assume that there is an optimal policy of FSOA at = π̂∗f (st, χf , ht). A hybrid

policy at = π̂m(st, χf , ht) is built based on Algorithm 3, which takes χf as the initial

trajectory and has at most K level of branchings.

Figure 4.4: branching tree

For an agent applying policy π̂m, all the branchings are triggered by branching state

s ∈ s◦. Assume that, for the agent to follow a base trajectory χ, there may be several

possible branching events to happen through χ. x denotes the number in a sequence,

of a branching event along χ. xhk−1
denotes the xth branching event, given hk−1 =

{χk−1, x
′
hk−2

, hk−2} which is the history of prior branchings and base trajectories. For

the history hk−1, x′hk−2
is the previous branching event happened before xhk−1

, and

χk−1 = χ◦x′hk−2

is the base trajectory adjusted after the occurrence of x′hk−2
, which is

also the base trajectory where xhk−1
happens along. sxhk−1

denotes the state that the

xhk−1
happens. h0 = φ denotes that there is no priori branching at the root of the

decision tree. Let Nhk−1
denote the maximum number of possible branchings along

χk−1 ∈ hk−1 given history hk−1. There can only be at most K ≤ T/∆T levels of

branchings within time horizon, which is defined in policy π̂m. The branching tree is
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illustrated in Figure 4.4, where Mh ≤ K is the maximum levels of branchings in current

branch, given the history h.

Let txhk−1
and p(xhk−1

) denote the time instant and probability of xhk−1
to occur,

given the current base trajectory χk−1 ∈ hk−1 and the history hk−1. p0hk−1
denotes

the probability that no branching event happens along χk−1 ∈ hk−1, given hk−1. Let

Vh(t1, t2|hk−1) denote the hindsight objective value according to hindsight history from

time t1 to t2, where no branching is made, given the current base trajectory χk−1 ∈ hk−1

and the history hk−1. Let Vf (χf , sti , tf ) = V (π̂∗f , sti , tf ) to be the expected objective

value of applying policy π̂∗f , and let Vm(χf , sti , tf ) = V (π̂m, sti , tf ) to be the objective

value of applying hybrid policy π̂m. Thus Vm(χf , sti , tf ) can be constructed as follows,

considering all the possible branchings

Vm(χf , sti , tf ) = p(0φ)Vh(ti, tf |φ) + p(1φ)(δ1φVh(ti, t1φ |φ)

+ (1− δ1φ)Vm(χ◦1φ , s1φ , tf )) + ...+ p(Nφ)(δNφVh(ti, tNφ |φ)

+ (1− δNφ)Vm(χ◦Nφ , sNφ , tf ));

(4.2)

where δxhk = (txhk − tx′hk−1
)/(tf − tx′hk−1

), χ◦xhk
= fm(s◦xhk

, χ◦x′hk−1

, hk).

According to the definition of fm(s◦, χ, ht), Vm(χ◦xφ , sxφ , tf ) = argmaxχVm(χ, sxφ , tf ) ≥
Vm(χf , sxφ , tf ). Applying this property into Equation (4.2), it can be obtained that

Vm(χf , sti , tf ) ≥ p(0φ)Vh(ti, tf |φ) + p(1φ)(δ1φVh(ti, t1φ |φ)

+ (1− δ1φ)Vm(χf , s1φ , tf )) + ...+ p(Nφ)(δNφVh(ti, tNφ |φ)

+ (1− δNφ)Vm(χf , sNφ , tf ));

(4.3)

Applying the same property iteratively, we get
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Vm(χf , sxφ , tf ) = p(0h1)Vh(txφ , tf |h1) + p(1h1)(δ1h1
Vh(ti, t1xφ |h1)

+ (1− δ1h1
)Vm(χ◦1h1

, s1h1
, tf )) + ...+ p(Nh1)(δNh1Vh(txφ , tNh1 |h1)

+ (1− δNh1 )Vm(χ◦Nh1
, sNh1 , tf ))

≥ p(0h1)Vh(txφ , tf |h1) + p(1h1)(δ1h1
Vh(ti, t1xφ |h1)

+ (1− δ1h1
)Vm(χf , s1h1

, tf )) + ...+ p(Nh1)(δNh1Vh(txφ , tNh1 |h1)

+ (1− δNh1 )Vm(χf , sNh1 , tf ));

...

Vm(χf , sxhk−1
, tf ) = p(0hk)Vh(txhk−1

, tf |hk) + p(1hk)(δ1hk

Vh(txhk−1
, t1hk |hk) + (1− δ1hk

)Vm(χ◦1hk
, s1hk

, tf )) + ...+ p(Nhk)

(δNhkVh(txhk−1
, tNhk |hk) + (1− δNhk )Vm(χ◦Nhk

, sNhk , tf ))

≥ p(0hk)Vh(txhk−1
, tf |hk) + p(1hk)(δ1hk

Vh(txhk−1
, t1hk |hk) + (1− δ1hk

)Vm(χf , s1hk
, tf )) + ...+ p(Nhk)

(δNhkVh(txhk−1
, tNhk |hk) + (1− δNhk )Vm(χf , sNhk , tf ));

...k ∈ [1,Mh − 1]

(4.4)

where Mh ≤ K is the maximum levels of branchings in current branch, given the history

h.

Because there will be no more branchings after xhMh−1
, and based on the definition of

fm(s◦, χ, ht), Vm(χf , sxhMh−1
, tf ) = Vf (χf , sxhMh−1

, tf ). Apply this result to Equation

(4.4), and it can be obtained that
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Vm(χf , sxhMh−2
, tf ) = p(0hMh−1

)Vh(txhMh−2
, tf |hMh−1) + p(1hMh−1

)

(δ1hMh−1
Vh(txhMh−2

, t1hMh−1
|hMh−1) + (1− δ1hMh−1

)Vm(χ◦1hMh−1
, s1hMh−1

, tf ))

+ ...+ p(NhMh−1
)(δNhMh−1

Vh(txhMh−2
, tNhMh−1

|hMh−1) + (1− δNhMh−1
)

Vm(χ◦NhMh−1
, sNhMh−1

, tf ))

≥ p(0hMh−1
)Vh(txhMh−2

, tf |hMh−1) + p(1hMh−1
)

(δ1hMh−1
Vh(txhMh−2

, t1hMh−1
|hMh−1) + (1− δ1hMh−1

)Vm(χf , s1hMh−1
, tf ))

+ ...+ p(NhMh−1
)(δNhMh−1

Vh(txhMh−2
, tNhMh−1

|hMh−1) + (1− δNhMh−1
)

Vm(χf , sNhMh−1
, tf ))

= p(0hMh−1
)Vh(txhMh−2

, tf |hMh−1) + p(1hMh−1
)

(δ1hMh−1
Vh(txhMh−2

, t1hMh−1
|hMh−1) + (1− δ1hMh−1

)Vf (χf , s1hMh−1
, tf ))

+ ...+ p(NhMh−1
)(δNhMh−1

Vh(txhMh−2
, tNhMh−1

|hMh−1)

+ (1− δNhMh−1
)Vf (χf , sNhMh−1

, tf ))

= Vf (χf , sxhMh−2
, tf )

(4.5)

Thus we get that Vm(χf , sxhMh−2
, tf ) ≥ Vf (χf , sxhMh−2

, tf ). Applying this property and

the same process in Equation (4.4) iteratively, it can be seen that

Vm(χf , sxhk−1
, tf ) ≥ Vf (χf , sxhk−1

, tf )

...

Vm(χf , sti , tf ) ≥ Vf (χf , sti , tf )

Thus it proves that given an optimal policy of FSOA π̂∗f (st, χf , ht), there will always be

a hybrid policy π̂m(st, χf , ht) to achieve at least better estimated objective value, which

proves the theorem.

Theorem 4.5 proves that, combining branching and FSOA can improve the performance

of the policy of FSOA.

Theorem 4.6. When the maximum level of branching for the optimal hybrid policy π̂∗m

is equal to or bigger than the depth of the search tree, which is when K ≥ T/∆T , the

optimal hybrid policy π̂∗m is equivalent to the optimal policy π∗.

Proof. According to Theorem 4.2, there is a policy π̂∗(st, χ
∗, ht) defined in Algorithm 1,

to be equivalent to the optimal policy π∗. Let K ≥ T/∆T , which is the number of time



Simultaneous Search and Monitoring of Randomly Moving targets 61

steps within the time horizon, and is also the maximum number of levels of branching.

Let at = π̂∗m(st, χ
∗, ht) be the hybrid policy which take χ∗ as the base trajectory. Using

the same notation in the proof of Theorem 4.5, let V (π̂∗, sti , tf ) be the optimal expected

objective value of applying optimal policy π̂∗, and let Vm(χ∗, sti , tf ) = V (π̂∗m, sti , tf ) be

the objective value of applying optimal hybrid policy π̂∗m. Then Vm(χ∗, sti , tf ) can be

constructed as follows, considering all the possible branchings

Vm(χ∗, sti , tf ) = p(0φ)Vh(ti, tf |φ) + p(1φ)(δ1φVh(ti, t1φ |φ)

+ (1− δ1φ)Vm(χ◦1φ , s1φ , tf )) + ...+ p(Nφ)(δNφVh(ti, tNφ |φ)

+ (1− δNφ)Vm(χ◦Nφ , sNφ , tf ));

...

Vm(χ◦xhk−1
, sxhk−1

, tf ) = p(0hk)Vh(txhk−1
, tf |hk) + p(1hk)(δ1hk

Vh(txhk−1
, t1hk |hk) + (1− δ1hk

)Vm(χ◦1hk
, s1hk

, tf )) + ...+ p(Nhk)

(δNhkVh(txhk−1
, tNhk |hk) + (1− δNhk )Vm(χ◦Nhk

, sNhk , tf ));

...k ∈ [1,Mh − 1]

(4.6)

where Mh ≤ T/∆T ≤ K is the maximum levels of branchings in current branch, given

the history h. δxhk = (txhk − tx′hk−1
)/(tf − tx′hk−1

), χ◦xhk
= fm(s◦xhk

, χ◦x′hk−1

, hk).

Because there is no possible branching after xhMh−1
. Then V m(χ◦xhM−1

, sxhM−1
, tf )...

= V (π̂∗, sxhM−1
, tf ). Therefore, we obtain that

Vm(χ◦xhM−2
, sxhMh−2

, tf ) = p(0hMh−1
)Vh(txhMh−2

, tf |hMh−1) + p(1hMh−1
)

(δ1hMh−1
Vh(txhMh−2

, t1hMh−1
|hMh−1) + (1− δ1hMh−1

)Vm(χ◦1hMh−1
, s1hMh−1

, tf ))

+ ...+ p(NhMh−1
)(δNhMh−1

Vh(txhMh−2
, tNhMh−1

|hMh−1) + (1− δNhMh−1
)

Vm(χ◦NhMh−1
, sNhMh−1

, tf ))

= p(0hMh−1
)Vh(txhMh−2

, tf |hMh−1) + p(1hMh−1
)

(δ1hMh−1
Vh(txhMh−2

, t1hMh−1
|hMh−1) + (1− δ1hMh−1

)V (π̂∗, s1hMh−1
, tf ))

+ ...+ p(NhMh−1
)(δNhMh−1

Vh(txhMh−2
, tNhMh−1

|hMh−1) + (1− δNhMh−1
)

V (π̂∗, sNhMh−1
, tf ))

(4.7)

Based on the definition of fm(s◦, χ, ht), Vm(χ◦xhM−2
, sxhMh−2

, tf ) = maxχ Vm(χ, sxhMh−2
, tf ).

Thus,
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Vm(χ◦xhM−2
, sxhMh−2

, tf ) = max
χ

(p(0hMh−1
)Vh(txhMh−2

, tf |hMh−1) + p(1hMh−1
)

(δ1hMh−1
Vh(txhMh−2

, t1hMh−1
|hMh−1) + (1− δ1hMh−1

)Vm(χ◦1hMh−1
, s1hMh−1

, tf ))

+ ...+ p(NhMh−1
)(δNhMh−1

Vh(txhMh−2
, tNhMh−1

|hMh−1) + (1− δNhMh−1
)

Vm(χ◦NhMh−1
, sNhMh−1

, tf )))

= max
χ

(p(0hMh−1
)Vh(txhMh−2

, tf |hMh−1) + p(1hMh−1
)

(δ1hMh−1
Vh(txhMh−2

, t1hMh−1
|hMh−1) + (1− δ1hMh−1

)V (π̂∗, s1hMh−1
, tf ))

+ ...+ p(NhMh−1
)(δNhMh−1

Vh(txhMh−2
, tNhMh−1

|hMh−1) + (1− δNhMh−1
)

V (π̂∗, sNhMh−1
, tf )))

= V (π̂∗, sNhMh−2
, tf ))

(4.8)

Applying the same process iteratively, it can be seen that

Vm(χ◦xhk−1
, sxhk−1

, tf ) = V (π̂∗, sxhk−1
, tf )

...

V m(χ∗, sti , tf ) = V (π̂∗, sti , tf )

Thus we see that the hybrid policy which takes χ∗ as the base trajectory, can have

the same objective value with the optimal policy. Thus it is proven that the policy

π̂∗m(st, χ
∗, ht) is equivalent to the optimal policy π∗.

Theorem 4.6 shows that, with enough depth of branching, the hybrid policy has the

potential to precisely reconstruct the optimal policy. Combined with the sub-optimality

of hybrid policy shown in Theorem 4.5, we can see that, the hybrid policy is a trade-off

between the optimality of the optimal policy π∗ and the computational efficiency of the

policy of FSOA. A bigger depth of branching K prefers optimality, and the lower K

prefers efficiency.
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4.3.3.4 Heuristic Reactive Policy

The hybrid policy is a rigorous method, with proven sub-optimality and approxima-

tion to the optimal policy. However, with the increase of the depth of branching, the

computational complexity still grows exponentially. Thus to have a practical real time

computation, the depth of branching should be limited to be much lower than the num-

ber of time steps within time horizon. Then, without considering the branching in

further steps, the look-ahead ability of future contingencies and reactions, which should

be a vital ability for the performance in a highly unpredictable and varying mission

environment, is still constrained.

An alternative way is to include heuristics into the branching function. If there is a

heuristic branching function to approximate the sensible reaction to contingencies, a

forward induction in the policy planning can be done, which is straightforward and

efficient in calculation. It is less rigorous than the hybrid policy, but it has a better

look-ahead ability in planning, by being able to consider all the possible branchings. Its

sub-optimality compared with fixed sequence of actions will be proven.

For the design of branching function, it takes advantage of the decomposition of policy

introduced in Section 4.3.3. Some heuristics are incorporated into the branching function

f(s◦, χ, ht) by applying specific knowledge about the SSM problem in this work. In a

base trajectory χ which traverses target locations X(ti), the nodes to traverse known

targets are called monitoring nodes. At states s′, the agent will keep following χ. Thus

only the reaction of χ◦ = fa(s
◦, χ, ht) to the branching states s◦ is defined:

1. Detecting a New Target, or Re-detecting a Known Target. If there is a

detection of a new target λ at time td, then H(td) = H(td)
⋃
λ. The remaining

part of χ is χr. Let fa(s
◦, χ, ht) = χr, which does not change the original path. If

a known target is re-detected on the path of χ, let fa(s
◦, χ, ht) = χr.

2. Losing a Known Target. If a known target λ is lost at time td, then H(td) =

H(td)/λ, and the remaining part of χ is χr. Then χr is refined in three steps:

(a) Prune. Remove all the monitoring nodes from χr which traverse target λ;

(b) Straighten. For each pruned node, use a straight line to connect the possible

monitoring nodes before and after the pruned one, to replace the original

segments of path connecting between them. Thus χr is straightened to be

χrs;

(c) Complement. The straightening may make χrs shorter than χr for a length

of lc. For the remaining monitoring nodes which are not pruned in all previ-

ous branchings, assume that there is a polyline Pl connecting them in their
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original sequence. Truncate Pl to a length of lc, and add it to the end of χrs,

to obtain χrsc. When the initial χ is proposed at the start of planning, if its

length is not enough to cover the whole planning horizon, Complement will

also be applied to add it up for a full planning horizon.

π̂f (st, χ
rsc, ht) = xρ(t+1) ∈ χrsc and π̂f (st, χ

r, ht) = xρ(t+1) ∈ χr are two policies

with FSOA with respect to χrsc and χr. The objective value, V (π̂f (st, χ
rsc, ht), std , tf )

and V (π̂f (st, χ
r, ht), std , tf ), can be calculated deterministically and straightfor-

wardly as mentioned in Section 4.3.3.2. The rationale of π̂s is to prune monitoring

nodes of lost target, to focus on later search and monitoring; π̂r maintain the old

route on the contrary. Then two routes are chosen by doing a comparison:

χc =

χr if V (π̂r, std , tf ) > V (π̂s, std , tf )

χrsc if V (π̂s, std , tf ) > V (π̂r, std , tf )
(4.9)

which is to compare and choose between two routes. Let fa(s
◦, χ, ht) = χc.

The full fa(s
◦, χ, ht) is presented in Algorithm 4.

Algorithm 4: χ◦ = fa(s
◦, χ, ht)

χ◦ = χr

if losing a known target then
calculate χc based on χ◦

χ◦ = χc

end
output χ◦

Let at = π̂a(st, χ, ht) be a reactive policy which is of the structure defined in Algorithm

1, and contains branching function fa(s
◦, χ, ht) defined in Algorithm 4. The rationale of

this formulation of branching function is to react to the loss of a known target. The agent

will compare the benefit of following the same base trajectory or pruning the location

of the lost target to concentrate the resources on later exploration of unknown area

and the monitoring of other known targets. For the branching function fa(s
◦, χ, ht),

the candidate new base trajectory χrsc and χr can be calculated conveniently, and

V (π̂r, std , tf ) and V (π̂s, std , tf ) can be computed directly as well. Thus it can be said

that the proposed heuristic reactive policy should be of higher computational efficiency

compared with the hybrid policy. Only the reaction to the loss of a known target is

considered, but it will later be proved that this policy will have better performance than

the policy of FSOA.

Theorem 4.7. The optimal heuristic reactive policy π̂∗a = argmaxπ̂aV (π̂a(st, χ, ht), sti , tf )

has an better estimated objective value than that of optimal policy of FSOA π̂∗f .
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Proof. Assume that there is an optimal policy of fixed sequence of actions at

= π̂∗f (st, χf , ht) = xρ(t+ 1) ∈ χf . A heuristic reactive policy at = π̂a(st, χf , ht) is built

based on Algorithm 3, which takes χf as the initial trajectory. Using the same notation

in the proof of Theorem 4.5, let Vf (χf , sti , tf ) = V (π̂∗f , sti , tf ) be the expected objective

value of applying policy π̂∗f , and let Va(χf , sti , tf ) = V (π̂a, sti , tf ) be the objective value of

applying heuristic reactive policy π̂a. Thus Va(χf , sti , tf ) can be constructed as follows,

including all the possible branchings

Va(χf , sti , tf ) = p(0φ)Vh(ti, tf |φ) + p(1φ)(δ1φVh(ti, t1φ |φ)

+ (1− δ1φ)Va(χ
◦
1φ
, s1φ , tf )) + ...+ p(Nφ)(δNφVh(ti, tNφ |φ)

+ (1− δNφ)Va(χ
◦
Nφ
, sNφ , tf ));

...

Va(χf , sxφ , tf ) = p(0h1)Vh(txφ , tf |h1) + p(1h1)(δ1h1
Vh(ti, t1xφ |h1)

+ (1− δ1h1
)Va(χ

◦
1h1
, s1h1

, tf )) + ...+ p(Nh1)(δNh1Vh(txφ , tNh1 |h1)

+ (1− δNh1 )Va(χ
◦
Nh1

, sNh1 , tf ));

...

Va(χf , sxhk−1
, tf ) = p(0hk)Vh(txhk−1

, tf |hk) + p(1hk)(δ1hk

Vh(txhk−1
, t1hk |hk) + (1− δ1hk

)Va(χ
◦
1hk
, s1hk

, tf )) + ...+ p(Nhk)

(δNhkVh(txhk−1
, tNhk |hk) + (1− δNhk )Va(χ

◦
Nhk

, sNhk , tf ));

...k ∈ [1,Mh − 1]

(4.10)

whereMh ≤ T/∆T is the maximum levels of branchings in current branch, given the

history h. δxhk = (txhk − tx′hk−1
)/(tf − tx′hk−1

), χ◦xhk
= fa(s

◦
xhk

, χ◦x′hk−1

, hk).

As there will be no more branching after xhMh−1
, then Va(χ

◦
xhMh−1

, sxhMh−1
, tf ) =

Vf (χ◦xhMh−1
, sxhMh−1

, tf ). Based on the definition of fa(s
◦, χ, ht), Va(χ

◦
xhMh−1

, sxhMh−1
, tf ) =

Vf (χ◦xhMh−1
, sxhMh−1

, tf ) =≥ Vf (χ◦x′hMh−2

, sxhMh−1
, tf ), where x′hMh−2

∈ hMh−1, thus
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Va(χ
◦
xhMh−2

, sxhMh−2
, tf ) = p(0hMh−1

)Vh(txhMh−2
, tf |hMh−1) + p(1hMh−1

)

(δ1hMh−1
Vh(txhMh−2

, t1hMh−1
|hMh−1) + (1− δ1hMh−1

)Va(χ
◦
1hMh−1

, s1hMh−1
, tf ))

+ ...+ p(NhMh−1
)(δNhMh−1

Vh(txhMh−2
, tNhMh−1

|hMh−1) + (1− δNhMh−1
)

Va(χ
◦
NhMh−1

, sNhMh−1
, tf )) ≥ p(0hMh−1

)Vh(txhMh−2
, tf |hMh−1) + p(1hMh−1

)

(δ1hMh−1
Vh(txhMh−2

, t1hMh−1
|hMh−1) + (1− δ1hMh−1

)Vf (χ◦xhMh−2
, s1hMh−1

, tf ))

+ ...+ p(NhMh−1
)(δNhMh−1

Vh(txhMh−2
, tNhMh−1

|hMh−1)

+ (1− δNhMh−1
)Vf (χ◦xhMh−2

, sNhMh−1
, tf ))

= Vf (χ◦xhMh−2
, sxhMh−2

, tf ) ≥ Vf (χ◦x′hMh−3

, sxhMh−2
, tf )

(4.11)

Applying the same process iteratively, it can be seen that

Va(χ
◦
xhk−1

, sxhk−1
, tf ) ≥ Vf (χ◦xhk−1

, sxhk−1
, tf )

≥ Vf (χ◦x′hk−2

, sxhk−1
, tf )

...

Va(χf , sti , tf ) ≥ Vf (χf , sti , tf )

Thus it proves that given an optimal policy of FSOA π̂∗f (st, χf , ht), there will always

be a heuristic reactive policy π̂a(st, χf , ht) to achieve at least better estimated objective

value, which proves the theorem.

Theorem 4.7 shows that the heuristic reactive policy π̂a is also sum-optimal, by com-

paring with the policy of FSOA. The hybrid policy and the heuristic reactive policy

both try to improve the performance compared with the policy of FSOA, by introducing

branchings in different ways. Their performances will be compared through simulation.

4.3.4 Monte-Carlo Estimation of Objective Value

For all the above strategies: the policy of FSOA π̂f , the hybrid policy π̂m, and the

heuristic reactive policy π̂a, given a base trajectory, the branching function can uniquely

and deterministically define all possible branchings. Thus for all there policies, they are

clearly defined by their base trajectory. Then, there is a mapping from a base trajectory,

initial condition, and time horizon, to the objective value of the respective policy:
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V (π̂(st, χ, ht), sti , tf ) =


Vf (χ, sti , tf ) Policy of Fixed Sequence of Actions;

Vm(χ, sti , tf ) Hybrid Policy;

Va(χ, sti , tf ) Heuristic Reactive Policy;

(4.12)

We can see that, one unresolved problem of the policy planning is to calculate the

objective value of each policy, given the base trajectory. For the policy of FSOA, as

mentioned in Section 4.3.3.2, the objective value Vf (χ, sti , tf ) can be calculated directly.

For the heuristic reactive policy, the action taken at each time step is dependent on

the current state. To predict the action at certain state and time step, the branching

function needs to be applied, which is a forward induction process. The evolution

of the probability distribution of the belief state p(st|π̂f , sti), and the objective value

V (π̂f , sti , tf ) can be then calculated. For the hybrid policy, it follows the same process

but differs in that, the branching function is a backward induction, which should be

much more complicated.

Although the branching has been simplified in both hybrid policy and heuristic reactive

policy, it still causes huge amount of computation, because the number of calculation

for branching function grows geometrically with the depth of branching. Hence for

the planning of there two policies, two Monte-Carlo sampling methods are proposed to

estimate the objective value.

Monte-Carlo Sampling for Hybrid Policy

For the hybrid policy, certain number of samples in each level of branching are taken.

Assume that the maximum number of branchings for the hybrid policy is K. Let m(k)

be the function specifying the number of samples at each branch at each level, where

k ∈ [0,K]. Using the same notation in the proof of Theorem 4.5, let Vm(χ, sti , tf ) =

V (π̂m, sti , tf ) be the objective value of applying hybrid policy π̂m(χ, sti , tf ), given initial

state sti and end of time horizon tf . Then Vm(χ, sti , tf ) can be constructed as follows,

including all the possible branchings



Simultaneous Search and Monitoring of Randomly Moving targets 68

Vm(χ, sti , tf ) = p(0φ)Vh(ti, tf |φ) + p(1φ)(δ1φVh(ti, t1φ |φ)

+ (1− δ1φ)Vm(χ◦1φ , s1φ , tf )) + ...+ p(Nφ)(δNφVh(ti, tNφ |φ)

+ (1− δNφ)Vm(χ◦Nφ , sNφ , tf ));

...

Vm(χ◦xhk−1
, sxhk−1

, tf ) = p(0hk)Vh(txhk−1
, tf |hk) + p(1hk)(δ1hk

Vh(txhk−1
, t1hk |hk) + (1− δ1hk

)Vm(χ◦1hk
, s1hk

, tf )) + ...+ p(Nhk)

(δNhkVh(txhk−1
, tNhk |hk) + (1− δNhk )Vm(χ◦Nhk

, sNhk , tf ));

...k ∈ [1,Mh − 1]

(4.13)

where Mh ≤ T/∆T ≤ K is the maximum levels of branchings in current branch, given

the history h. δxhk = (txhk − tx′hk−1
)/(tf − tx′hk−1

), χ◦xhk
= fm(s◦xhk

, χ◦x′hk−1

, hk).

At level k ∈ [1,Mh − 1], for a branch with history hk, m(k) cases of samples of the

possible branchings Sp(hk) = {xhk : x ∈ [0, Nhk ]} are taken along the base trajectory

χ◦xhk−1
, which is chosen with a probability of this branching p(xhk). Let Vi(χ

◦
xhk

, sxhk , tf )

substitute the objective value of the sampled branch triggered by xhk .

Thus Equation 4.13 can be written as:

Vi(χ, sti , tf ) =
∑

x∈Sp(φ)

(δxφVh(ti, txφ |φ) + (1− δxφ)Vi(χ
◦
xφ
, sxφ , tf ))/m(0);

...

Vi(χ
◦
xhk−1

, sxhk−1
, tf ) =

∑
x∈Sp(hk)

(δxhkVh(txhk−1
, txhk |hk)+

(1− δxhk )Vi(χ
◦
xhk

, sxhk , tf ))/m(k);

...k ∈ [1,Mh − 1]

(4.14)

Thus the objective value of each branching, Vm(χ◦xhk
, sxhk , tf ), is approximated by

the sampling value Vi(χ
◦
xhk

, sxhk , tf ). When k = Mh − 1, Vi(χ
◦
xhMh−1

, sxhMh−1
, tf ) =

maxχ Vf (χ, sxhMh−1
, tf ). Then Vi(χ, sti , tf ) can be calculated with backward induction.

The value of the hybrid policy is then approximated as:

Vm(χ, sti , tf ) = Vi(χ, sti , tf ) (4.15)
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The sampling reduces the quantity of branchings, thus making the computation in plan-

ning feasible. Also, by letting m(k) to have different numbers of samples in each level,

more importance can be given to future steps which are more immediate and with fewer

branches to consider, than the further steps with more branches. Thus it can concen-

trate the samples and the computational power on more important part of the decision

tree.

Monte-Carlo Sampling for Heuristic Reactive Policy

For the heuristic reactive policy, the calculation of branching is a forward induction

method, which is much faster, thus the sampling can be simpler. Sampling is not done

hierarchically in each level. Instead, m cases of simulations are conducted. In each

simulation, starting from the given initial state sti , the agent implements the policy

π̂a(st, χ, ht) until the end of time horizon tf . Let each event happen stochastically

based on its probability, and the agent reacts according to the policy. In each sample

i = 1, ...,m, the achieved hindsight objective value Vi(π̂a, sti , tf ) can be computed based

on the events occurred and the actions taken. Then the objective value V (π̂a, sti , tf )

can be approximated by:

V (π̂a, sti , tf ) =
∑

i∈[1,m]

Vi/m (4.16)

From the above steps, it has built the sampling methods of estimating the objective value

of the hybrid policy and the heuristic reactive policy. Then, the mapping described in

Equation (4.12) can be obtained. Given such mapping, the policy planning equation

π̂∗ = argmaxπ̂V (π̂, sti , tf ) (4.17)

has become

χ∗ = argmaxχVf/m/a(χ, sti , tf ) (4.18)

Then the policy planning problem has been simplified to be a path planning problem.

It needs to search the best base trajectory χ∗, with a highest objective value of corre-

sponding strategy.
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4.4 Path Planning based on Simulated Annealing

For the path planning problem defined in Equation (4.18), a conventional method is to

do a tree search [100], in which the trajectory is treated as a sequence of actions, rooted

at the initial location. Then the possible solution paths are inducted as a tree, branching

at each step according to different actions to take. Such tree search can be rigorous and

can precisely find the best path. However, this method is unintuitive, making it difficult

to be simplified with domain knowledge. The branching make it unscalable w.r.t the

time horizon.

Therefore, the sampling method is taken as solution. A candidate path is proposed

initially, and random modifications on such path are imposed iteratively, until the path

being satisfactory. Doing improvement on an existing path can be more intuitive, thus

is easier to incorporate heuristics. By limiting the number of improvements to make,

the computational time can be constrained.

4.4.1 Further Simplification

Before designing the path planning algorithm, a further assumption is made to facilitate

the planning.

5. Trajectory Planning Constraint. Assume that the vertices of a planned path

can only be Cs
⋃
{x̂λ(t) : λ ∈ Λt}, which are enough to cover the whole environment

without undermining performance. The former set of cells are called search cells,

and the later are called monitoring cells.

This simplification is to limit the locations on the map to consider, thus making the

path planning more efficient.

4.4.2 Candidate Trajectory Mutation

The concept of path planning based on sampling is a path improvement process, which

does mutations on a candidate path, trying to improve the reward. Let χ̂ = M(χ) be

the mutation function for a trajectory. Four kinds of mutations are designed, as inspired

by [101]:

1. Add: at one position of χ, add a new node;

2. Prune: prune one node from χ;
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3. Swap: swap the position of two nodes in χ or swap one node in χ with a new

location;

4. Null: keep χ unchanged.

mutation 1-3 are shown in Figure 4.5.

Figure 4.5: mutations on trajectory

The red triangle is the current agent location. Green vertices and lines denote the

planned trajectory. The numbers show the sequence of nodes. The cells with a plus

signs are search cells. The cells with blue solid circles are monitoring cells.

4.4.3 Simulated Annealing Algorithm for Path Planning

With the mutation function, the path χ can be planned by a Path Planning algorithm

based on Simulated Annealing (Algorithm 5) [102, 103]. Simulated Annealing is widely

used in path planning and can effectively avoid local minima [103–106].

Then, the reactive policy can be planned by above steps, which can be executed by the

agent for SSM mission.
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Algorithm 5: Path Planning Algorithm based on Simulated Annealing

initialization;
χ = {x′ρ(t) : t = ti, ti + 1, ..., tf},Te = Te0,kB = const,Vc = 0

while Te ≥ Tdefault do
χ̂ = M(χ). Vρ = −V (πa, sti , tf ), E = |Vρ − Vc|
if Vρ > Vc then

p = exp(−E/kBTe)
if random(0, 1) ≤ p then

accept = true
else

accept = false
end

else
accept = true

end
if accept = true then

Vc = Vρ, χ = χ̂
end
Lower the temperature Te

end
Output χ

4.5 Simulation Evaluation and Validation

4.5.1 Case Study

Consider a 100m × 100m square environment ς, which is discretized into 25 × 25 cells.

The agent sensor can cover 5 × 5 cells. There are 5 unknown targets and 1 pursuer

scattered in the environment. For each time step ∆T = 0.2s, there will be ps = 80%

probability that a target will stay within the current location. The pursuer can move

at speed Vρ = 20m/s. The agent will plan and execute a policy for the SSM task with

a time horizon T = 10s, which can be the policy of FSOA, the hybrid policy with

K = 1 or the heuristic reactive policy. The number of steps in the planning Horizon

is T/∆T = 50. When a contingency state s◦ is reached, or when it has been after Tp

long time since last planning, a replanning will be triggered. Set Tp = 5s < T to make

the planning more adaptive to environmental changes. The initial target probability

distribution P̂λ(c, t|Yt) is uniform within the environment, and targets are randomly

scattered initially. The actions of the three policies are studied in this Section.

Figure 4.6 to 4.14 are the snapshots of simulation with the three policies.

The polylines with arrows are the plans of base trajectory. It can be seen from Figure

4.6 to Figure 4.8 that, when there is an area with high distribution of unknown targets,

the agent will sweep that area to search. Figure 4.9 to Figure 4.11 show that when
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Figure 4.6: search (FSOA) Figure 4.7: search (hybrid)

Figure 4.8: search (heuristic re-
active) Figure 4.9: SSM (FSOA)

some targets are known to be nearby and there is likely to be an unknown target in the

neighbouring area, the agent may try to explore the neighbouring unknown area and

traverse the known targets, thus combining search and monitoring in the same path.

Figure 4.12 to Figure 4.14 shows that when the monitoring is saturated, which is when

there are some known targets nearby but there is unlikely to be unknown targets in

vicinity, the agent will focus on traversing nearby known targets back and forth.

Figure 4.15 to Figure 4.17 illustrate the belief probability of each target and the overall

reward of the SSM mission at each time step of a case study, which are B̃λ and R =∑
λ∈Λ B̃λ. The belief probability of a target increases to 1 when it is detected, and drops

to 0 when it is lost. The belief probability degrades gradually when the target is not being

measured. It can be seen that, with all three policies, every target can be detected during

the simulation. Most of them can be maintained a high belief probability for several non-

continuous periods, and can be re-detected intermittently after being unattended. The

negative spikes show that the targets may get lost when the agent tries to re-detect
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Figure 4.10: SSM (hybrid)
Figure 4.11: SSM (heuristic re-

active)

Figure 4.12: monitoring (FSOA) Figure 4.13: monitoring (hybrid)

them, but they will soon be retrieved. The overall reward is increased shortly after the

simulation starts, and is kept above a certain level with small fluctuations.

The case study qualitatively shows that, all three polices appear to show the similar

pattern of behaviour. By dynamically combine search and monitoring, the agent can

efficiently search for hidden targets, and preserve the belief probability of as many targets

as possible, thus to maintain a high objective value.

4.5.2 Comparative Study

The patterns of behaviours appear to be analogous for different policies, so this section

does the quantitative study of the performance of proposed policies. The strategy are

compared by the average reward that they can achieve, and the average computation

time of each planning.
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Figure 4.14: monitoring (heuris-
tic reactive)

With the same set-up of environment in the case study, for each strategy, the scenarios

are studied, with n = 2, 3, 5 and 7 targets and with ps = 60, 70, 80%. For each scenario,

100 cases of simulations are done for 200 seconds long each. In each case, the average

reward at every time step is taken as the reward achieved in that case. The reward of a

scenario is the average reward of every case. The computation time of each planning is

recorded and averaged for each scenario as well.

The cases with imperfect sensor are also considered, where at each time step, for the

sensing of each target, there would be 0.2% chance of false positive or 5% chance of false

negative. Figure 4.18 shows the performances in each scenarios by each policy. Each

simulation is done by one core of E5 2650V2 processor (2.6 GHz).

It can be seen from Figure 4.18 that, in most scenarios, the rewards of both the heuristic

reactive policy and the hybrid policy are significantly better than that of the FSOA. It

proves that, if the future contingencies and corresponding reactions are considered during

planning, the agent can make better decision about future actions, which is consistent

with Theorem 4.7 and 4.5.

But also, Figure 4.18 shows that the reward of the heuristic reactive policy is better

than the hybrid policy in almost every scenario. It proves that the approach taken by

the heuristic reactive policy, which considers all the possible branchings by having a

heuristic branching function to do forward induction, can achieve better performance

than the more rigorous method of hybrid policy, when it does not have enough levels of

branching.

The average computation time in different scenarios with different planning methods is

in Table 4.1.
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Figure 4.15: belief probability maintenance (FSOA)
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Figure 4.16: belief probability maintenance (hybrid)
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Figure 4.17: belief probability maintenance (heuristic reactive)
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Figure 4.18: reactive policy vs. hybrid policy vs. fixed sequence of actions

number of targets 2 3 5 7

FSOA 0.01s 0.01s 0.01s 0.01s

hybrid Policy 2.72s 3.65s 5.71s 6.95s

heuristic reactive Policy 0.14s 0.19s 0.22s 0.25s

Table 4.1: computation time for different policy planning

We can see from Table 4.1 that, for all scenarios, the planning of heuristic reactive

policy takes 0.2 seconds in average. The hybrid policy takes 4.76 seconds, even when

the branching level K is only 1. Considering that the planning horizon T = 10s, this

further shows the advantage of the heuristic reactive policy over the hybrid policy, in

terms of the practicability. Both policies are both much slower than the policy of FSOA,

which takes 0.01 seconds in average. Nevertheless, the speed of heuristic reactive policy

is still practical for real time implementation.

It is also shown from Figure 4.18 that, in the case of imperfect sensor, there will be

a decrease in the performance of all approaches. However, this can be improved by

introducing sensor filtering to reduce the influence of false measurement.
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To explain the advantage of the heuristic reactive policy and hybrid policy over the policy

of FSOA, the following case is studied. It is a snapshot of a situation in the simulation,

where there are only two known targets and ps = 80%. For the same situation, policies

are planned using all three proposed planning methods. The base trajectories planned

by these methods are shown in Figure 4.19

Figure 4.19: base trajectory planned by the heuristic reactive policy (left up), the
policy of FSOA (right up), and the hybrid policy (left down).

In this case, the policy of FSOA keeps the robot to follow only one target, with an

estimated objective value of 1.70. The hybrid policy lets the agent visit target 1 and

2, then keep following target 2, with an estimated objective value of 1.76. However,

the heuristic reactive policy planning drives the robot to go back and forth between two

known targets, with a better objective value of 1.92. The policy of FSOA does not choose

the back-and-forth route, because if it follows such a fixed route, the agent will not react

if one target is lost, and will still go back and forth. Then the remaining target will

always have a chance to escape between each visit. However, with the heuristic reactive

policy, if a target is lost, the agent will go back and focus on monitoring the remaining

one, which is more rational and is with higher estimated objective value. For the hybrid

policy with a branching factor K = 1, it allows only one level of branching, which is not

capable of reasoning about the future that far ahead, thus it does not allow the agent

to go back to target 1 after visiting target 2. We can see that, while the policy of FSOA
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tends to be conservative when there is a risk, the heuristic reactive policy allow the agent

to make more sensible decisions. The hybrid policy is an intermediate between them.

4.5.3 Considering the Manoeuvrability of the Pursuer

All the previous research is based on the assumption that the turning radius of the

agent is ignored. To validate the results with a more realistic agent model, the Dubin

Vehicle model is considered for the agents, where there is a maximum lateral acceleration.

Assume a constant speed of the agent, the limit on the lateral acceleration can be

equivalent to a minimum turning radius. Assume that during the strategy planning, the

agent still assumes its perfect agility. But in the simulation, the motion of the agent is

limited by a minimum turning radius rc = 5m. This realistic limitation is illustrated by

Figure 4.20

Figure 4.20: the planned base trajectory of the agent (solid line) and the actual
achievable trajectory (dash line)

With such modification in the simulation, the comparative study for all scenarios in

Section 4.5.2 is done again, and the result is shown in Figure 4.21.

We can see that, in a more realistic situation, the rewards of both the heuristic reactive

policy and the hybrid policy are still dramatically better than that of the FSOA. In this

realistic simulation, the advantage of the performance of the heuristic reactive policy

is not as obvious compared with the hybrid policy. However, for the heuristic reactive
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Figure 4.21: reactive policy vs. hybrid policy vs. fixed sequence of actions, with
rc = 5m

policy, the much faster computation speed makes it a more practical choice for strategy

planning, given that the planning horizon is 10 seconds. Therefore, the heuristic reactive

policy planning is chosen to be the solution of the single-pursuer SSM of the randomly

moving targets.

4.5.4 Exploring the limitations of SSM

The previous sections have validated the efficiency of SSM in moderate scenarios. In

this section, the simulations are expanded to some more extreme situations, to find out

the practical limitations on SSM. We expand the scope of simulation in two dimensions

separately: the activity level of targets and the size of environment. Compared with the

simulation in Section 4.5.2, we either expand the ps to 20, 30, 40, 50%, or expand the

arena to 140m × 140m and 180m × 180m. The results are shown in Figure 4.22 and

4.23:
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Figure 4.22: reactive policy vs. hybrid policy vs. fixed sequence of actions, with
environment size equals 100m× 100m, and with expanded range of ps

From Figure 4.22 to 4.23, we can see that, with targets being more active or with the

environment being bigger, it is more difficult for the agent to do SSM. In Figure 4.22,

when ps ≤ 40%, the heuristic reactive policy has only marginal advantage against FSOA

and hybrid policy. Besides, in these scenarios, the reward of SSM decreases to be only

slightly higher than 1, which is the reward of monitoring one single target. In 4.23, when

the environment is 180m× 180m, we can also see that the heuristic reactive policy only

has trivial advantage, and the performance of SSM degrades to be only slightly better

than having one target under monitoring.

Thus we can see that, with current capabilities of the agent (size of sensor footprint and

maximum velocity), when ps ≤ 40% or when the size of environment is 180m × 180m,

the performance of SSM reaches its limit. In these cases, it is more favourable for the

agent to keep monitoring the first target it finds, in which each policy it takes does not

make a difference.
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Figure 4.23: reactive policy vs. hybrid policy vs. fixed sequence of actions, with
environment size equals 140m× 140m and 180m× 180m

4.6 Conclusion

For the SSM between a single pursuer and multiple targets, the problem is formulated as

a POMDP. By building an appropriate objective function, the search and monitoring are

combined under a united reward. The online solution is chosen, in order to let the plan-

ning be scalable to the size of the problem, and be adaptive to environmental changes.

To tackle the computational intractability, a novel policy reconstruction method is pro-

posed, to allow building a heuristic structure of policy. Then three sub-optimal policies

are designed, considering the trade-off between the performance and the computational

efficiency.

The case study simulation result shows that, all three proposed policies can effectively

search for hidden targets in an initially unknown environment, and can maintain the

surveillance of them, with a moderate computational cost. Whenever the monitoring

capability is not saturated, the agent will try to find more targets without losing current
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known ones. In the comparative study, it is validated that both the hybrid policy and

the heuristic reactive policy works better than the conventional policy of FSOA. It also

shows that the heuristic reactive policy is better than the hybrid policy in terms of the

performance and the computational efficiency. In the more realistic situation when the

turning radius of the pursuer is considered, the above advantage of the heuristic reactive

policy still uphold. Thus the heuristic reactive policy is chosen to be the solution of

the single pursuer SSM of the randomly moving targets, for its better performance and

practical computation speed. In the later multi-pursuer SSM in Chapter 6, the concept

of heuristic reactive policy will be taken as the foundation.

The limitations of SSM of randomly moving targets are studied in Section 4.5.4. The

activity level of targets and the size of environment are expanded to bigger ranges, which

indicate the scenarios when SSM is not practical any more. However, as shown in Section

4.5.1 and 4.5.2, under moderate conditions, SSM is still efficient and the advantages of

heuristic reactive policy still holds.



Chapter 5

Simultaneous Search and

Monitoring of Evasive Targets

The single pursuer SSM of randomly moving targets has been studied in Chapter 4.

This chapter studies the single pursuer SSM of evasive targets. A rigorous problem

formulation is done first, by building a Partially Observable Game Playing. Some pre-

cise solutions are introduced, and some other heuristic approaches are discussed as well.

The precise solutions are intractable, but the conventional heuristic approaches are not

suitable for intelligent evaders. To address this difficulty, an assumption about the in-

formation available to the targets is introduced and justified. Based on this assumption,

the game playing can be simplified to a dynamic guaranteed search, which is much easier

to solve. A policy planning approach is then proposed for the pursuer to achieve the

SSM. The SSM is demonstrated in simulation. The performance of the dynamic guar-

anteed search is compared with a conventional guaranteed search method, and showed

superior performance. The UAV model is also considered in the final section.

5.1 Formulating Partially Observable Game Playing

For the SSM of randomly moving targets studied in Chapter 4, the target behaviour

is independent from the actions of the pursuers. Thus with a known stochastic motion

model, the target location can be estimated by a probability distribution. The evolution

of the game can be predicted w.r.t the actions of the pursuer, by a forward induction.

However, when the targets can sense the location and action of the pursuer and evade

detection proactively, it becomes a two-sided search and pursuit evasion game. The

decision trees of both sides become a combined decision tree, making the planning of

both sides coupled. Each side of the game needs to search through the whole combined

86
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decision tree to predict the behaviour of the opponent, and evaluate its own strategy.

This coupling make it much more difficult to solve two-sided search and pursuit evasion

problem compared with the one-sided problem.

For the SSM in this work, considering the fact that the agents can have only partial

observability of the environment, and that the pursuer and evaders have opposing goals,

the Partially Observable Stochastic Game (POSG) is the most suitable framework to

formulate the problem. As introduced in Section 2.2.2, the POSG can be described in a

tuple 〈I,S, {Ai : i ∈ I}, {Ωi : i ∈ I},T, {Oi : i ∈ I}, {Ri : i ∈ I}〉 [87], where

1. I is a finite set of players, which are the pursuer and the evaders. i is the label of

a certain player, and i ∈ I ;

2. S is a finite set of states of the world. The state st = {xρ(t), {xλ(t) : λ ∈ Λ}};

3. Ai is a finite set of actions of the player i;

4. T : S × {Ai : i ∈ I} −→ p(S) is the state-transition function, mapping from

a previous world state and the joint actions of all the players, to a probability

distribution of next world states;

5. Ri : S × Ai −→ Ri is the reward function, mapping from a current world state

and a player action to a immediate reward to that player;

6. Ωi is a finite set of observation of the player i;

7. Oi : S × Ai −→ p(Ωi) is the observation function, mapping from a current world

state and an action of the player i, to a probability distribution of the observations

of the player i.

For the evasive targets, because of the full observability that has been assumed, they

can have access to the system state st ∈ S. For the pursuer, which can only measure

within its sensor footprint, let ŝt = {{M̂λ(c, t|Yt) : λ ∈ Λ}, xρ(t)} be its subjective state,

which describes the understanding of the world from the perspective of the agent.

For the problem studied in this work, when both the pursuer and the targets can

accurately control their motions, the state-transition function is deterministic rather

stochastic. But because of the fact that the formulation of POSG includes the partial

observability of the agent, it is still a suitable framework for studying this problem.

According to [32], Decentralized Partially Observable Markov Decision Process, which

is a special type of POSG, is NEXP-complete. This indicates the difficulty of solving

POSG. The solutions of POSG are review in Section 2.2.2. The solutions of POSG can
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be offline or online, similar to POMDP. However, compared with POMDP, the solution

of POSG needs double exponential time in the worst case [89]. For the same reason

as discussed in Section 4.3.1, an offline solution is not favoured, because of its poor

scalability and adaptability. To the author’s knowledge, there has not been works on

the online solution of POSG for non-cooperative game playing, and no work on robot

pursuit evasion game is solved in the precise form of POSG.

In [30], the search evasion game is solved for a single time step, and the Nash Equilibrium

is taken as the solution. Sharing the same problem with other myopic methods, such

approach can not guarantee a long term global performance. In most of the robot pursuit

evasion games, a common method is having a heuristic model to estimate the possible

target behaviours.

5.2 Heuristic Models for Search and Pursuit Evasion Games

Search and pursuit evasion games normally have a long time horizon to consider, and a

big area to play in. Because of the intractability of exact solution for POSG, very few

work of search and pursuit evasion games apply such framework as solution. The most

common method for solving search and pursuit evasion games is to propose a heuristic

target model to approximate the evader strategy. By such means, the decision tree of the

target can be replaced by an explicit policy. Then the agent does not need to calculate

the possible rational plans of the target in order to evaluate the pursuit strategy, thereby

disentangling the evader actions from the planning of pursuit policy.

Among these heuristic approaches, most works assume a pattern about how the targets

will move away from the pursuer. In some works [34–36], a potential force is assumed

to be imposed from each pursuer and obstacle. By applying the total potential force

on each target, the targets move away from the pursuer, thus achieving the evasion. In

[37, 38], a reactive rabbit is applied, in which the targets are driven away by the pursuer

when they are within a certain distance.

For the evasive targets studied in this work, they are assumed to evade intelligently. Thus

this work does not assume a specific heuristic pattern of the evader motions. Because

when the evaders are intelligent, any pursuit strategy, which are based on a presumed

target behaviour pattern, can be learned and taken advantage by the targets. Instead,

the worst case assumptions are taken in this work, where all the possible reachable area

of a target at each time step is calculated and a policy is planned which can guarantee the

detection of the target. For pursuit evasion in a graph based environment, a worst case

assumption is normally that the target can move along the edges with a arbitrary speed
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[39]. In a continuous environment, the worst case target model can be a fixed speed

recontamination model [43, 45]. The worst case assumption maybe be conservative, but

it can be very efficient to approximate evasion effort of the targets.

The detailed assumptions and simplifications for the worst case model will be made in

Section 5.4.

5.3 Construction of the Objective Functions

In the search and pursuit evasion game, not only the Objective function for the pursuer

needs to be built, a sensible Objective function for the targets should also be formulated,

for the pursuer to consider the possible rational behaviour of the targets. Assume that

all the players have the same time horizon T for planning. Let aλt be the action taken

by target λ at time t. aλt = πλ(st) denotes the policy of λ, deciding which action it takes

given the system state. δ = {πλ(st) : λ ∈ Λ} is the set of policies of all the targets. The

pursuer action and policy, apt = πp(ŝt), are defined respectively.

5.3.1 Objective Function of the Pursuer

In Chapter 3, it has introduced the idea of combining search and monitoring by building

a united Objective function for the agent. The uncertainty is defined for the evasive

targets. Let Ẽλ(ŝt) be the uncertainty about target λ at subject state ŝt. Such uncer-

tainty directly describes all the reachable locations of a target, thus providing a practical

information for the estimation and prediction. For state ŝt, let R(ŝt) = −
∑

λ∈Λ Ẽλ(ŝt)

be the reward of the pursuer. The rationale of this reward formulation is to represent

the total uncertainty level of the target locations. The Objective function of the pursuer

for time horizon T = tf − ti is the average expected reward at each time step.

Vρ(δ, π
p, ŝti , tf ) = E{∆T

T

tf∑
t=ti

R(ŝt)} =
∆T

T

tf∑
t=ti

E{R(ŝt)}

=
∆T

T

tf∑
t=ti

∑
ŝt∈Ŝ

p(ŝt|δ, πp, ŝti)R(ŝt)

= −∆T

T

tf∑
t=ti

∑
ŝt∈Ŝ

p(ŝt|δ, πp, ŝti)
∑
λ∈Λt

Ẽλ(ŝt)

where ∆T is the time step of system, and Ŝ is the subjective state space of the agent.
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As defined in previous section, the uncertainty of the targets develops with time, because

of the target evasion. Thus the objective value can be increased by searching for uncer-

tain targets, as well as revisiting and monitoring targets with low uncertainty. In such

way, the search and monitoring is combined dynamically. A policy should be planned

to allow the agent to do both missions simultaneously for the same goal.

5.3.2 Objective Function of the Targets

For the evasion, targets are assumed to have a short term interest of evading the upcom-

ing detection. Assume the targets are selfish, that an evader only consider the detection

time of itself. For target λ, at the initial time ti, tp
λ
ti denotes the previous time instant

when it was detected, where tpλti < ti. tn
λ
ti denotes the next time instant to be detected,

where tnλti ≥ ti. p(tn
λ
ti |δ, π

p, sti) denotes the probability distribution of tnλti , given the

agent policy πp, the set of target policies δ, and the initial state sti .

Then the Objective function for target λ is formulated as its expected time of being

detected.

Vλ(δ, πp, sti , tf ) = E{(tnλti − tp
λ
ti)} =

tf∑
t=ti

p(t|δ, πp, sti)(t− tpλti)
(5.1)

where tf denotes the end of the time horizon.

Note that this Objective function only considers the next immediate detection. Thus in

application, each target should replan its policy after being detected or after escaping

detection. If target λ is under measurement at time t, let tnλti = t. Then any policy of

λ has equal Objective value. Then while being sensed by the pursuer, assume that the

target take policy πλs , which makes the target stay unmoved. The rationale behind πλs

is that, when a target is under measurement, its effort to get out of the sensor footprint

is trivial, because it can be easily outrun. The evader runs away only when the pursuer

leaves it to find another target.

5.4 Simplification of Strategy Planning

It has been mentioned in Section 5.2 that the worst case assumption should be made

on the targets. However, this work does not apply a certain assumption of the target
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motion directly. Instead, an assumption is made on the information available to both

sides of players. In Chapter 3, it has defined the sensing range of the pursuer and

the targets, and we can see that this is a game with asymmetric information for both

sides. In such games, the available information for a player is vital to its decision making.

Therefore, by making an intermediate assumption on the information, then deducing how

it simplifies the target motion models, the internal mechanics of the target behaviour

can be analysed more explicitly, and design more sensible pursuit policy. Also it can

make it easier to evaluate the conditions for such assumption to be valid, thus deciding

the specific scenarios for the assumption to be applicable.

The following assumption is made to facilitate the simplification.

1. assume the time horizon T for planning is long enough, so that it is considered to

be infinite in the later induction

In [30], an assumption was made that all the information available to the pursuer can

be accessed by the targets. In this work, a further simplification is made that a target

can not only access the locational information of the pursuer and other targets, but also

have knowledge and foresight of the policy of the pursuer.

Definition 5.1. A target has knowledge and foresight of the pursuer policy πp(ŝt), if it

can predict the output of the policy apt = πp(ŝt) exactly, given the subjective state ŝt of

the pursuer, no matter whether πp is a pure or mixed strategy.

The assumption of knowledge and foresight resembles the scenario that the pursuit policy

is hacked or conjectured by the evaders. it will then be proved that this transforms the

pursuit-evasion game into a recontamination problem.

Lemma 5.2. Assume that every target knows the location of all other players, and has

knowledge and foresight of the pursuer policy. Given the target Objective function defined

in Section 5.3.2, and given a pursuer policy, the targets will plan a set of pure policies

to reaches a Nash Equilibrium.

Proof. At time t, each target knows the system state st exactly, because of their full

observation. The measurement of the pursuer is dependent on the system state st, thus

the targets can also precisely access the current subjective state ŝt. Let Λot be the set of

targets which are being measured at time t, and Λet = Λ− Λot is the set of unmeasured

targets. When an evader is detected by the pursuer, or when an evader escapes from

the sensor footprint, it is called an incident.
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At initial time ti, the measured targets λ ∈ Λoti take a known policy πs(sti), as mentioned

in Section 5.3.2. With the knowledge and foresight of policy πp(ŝti), the next location of

the pursuer and the measured targets, which are xρ(ti + 1) and {xλ(ti + 1) : λ ∈ Λoti+1},
can be predicted by the targets. If no incident happens at ti + 1, the observation of the

pursuer yti+1 can also be predicted, and so is ŝti+1. Thus, if ignoring the occurrence of

the next incident, a trajectory of the pursuer with indefinite length, χρ(ti,∞) = {xρ(t) :

t = ti, ti + 1, ...}, can be fully predicted deterministically by the targets iteratively.

At ti, for each unmeasured target λ ∈ Λeti , given χρ(ti,∞), there is a fixed evasion path

χλ(ti), which can guarantee the target to be detected as late as possible. χλ(ti) can

be known by all other targets, because of the shared knowledge of χρ(ti,∞). Given

χρ(ti,∞), πs, and {χλ(ti) : λ ∈ Λeti}, the first incident to happen and the happening

time t1 can be predicted. For the same reason as above, if not considering the next

incident, the segment of pursuit trajectory, χρ(t1,∞) = {xρ(t) : t = t1, t1 + 1, ...}, can

be predicted by all targets.

For an unmeasured target at t1, λ ∈ Λet1 , if it has not been detected before t1, it can

re-plan its evasive path according to {χρ(ti, t1), χρ(t1,∞)}. For those which escape

measurement at t1, they plan the evasive path according to χρ(t1,∞). Then the next

incident can be predicted again.

Repeat this process iteratively for each target λ, until λ is supposed to be detected in the

kth incident. We can see that, every target plans its evasive strategy with perfect fore-

sight of the future trajectory of the pursuer, which is {χρ(ti, t1), χρ(t1, t2), ..., χρ(tk−1,∞)}.
Thus the evasive strategy is a fixed path, and it should be optimal so that it guarantees

no other policy can make the target detected at later time. So it has been proven that,

a Nash Equilibrium between all targets has been achieved by a set of pure policies that

no player can improve its reward by unilaterally changing its policy.

Definition 5.3. The occupancy grid map of a target λ is pushed to clear, if the pursuer

clears the map incrementally, until the last positive piece of map is covered. It is

equivalent to that the target is detected only when there is no other possible locations

for it to be at.

Theorem 5.4. Assume that every target knows the location of all other players, and

has knowledge and foresight of the pursuer policy. Given the Objective function defined

in Section 5.3.2, the targets will plan a set of policies δ, so that the pursuer will detect

a target λ only after it pushes to clear the occupancy grid map of λ.
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Proof. It is shown in the proof of Lemma 5.2, that each target plans its policy indepen-

dently, with the perfect foresight of the future trajectory χρ of the pursuer. For a target

λ, at the moment it escapes measurement from the pursuer, before it being detected

again, the occupancy grid map M̂λ(c, t|Yt) can be predicted iteratively based on χρ, as

follows:

M̂λ(c, t+ 1|Yt) = sign(
∑
c′∈ς

θ(c|c′, t+ 1)M̂λ(c′, t|Yt))

∀c ∈ ∆, M̂λ(c, t+ 1|Yt+1) = 0

where ∆ is the sensor footprint, centred at the agent location at each time step.

Thus it can be deterministically predicted, about the evolution of the map before the

target being detected. Then, there exist a fixed path χλ for target λ, to let it stay within

the area where {c : M̂λ(c, t|Yt) = 1, c /∈ ∆}. Thus it can guarantee that the target λ will

be detected only after the occupancy grid map being pushed to clear. This induction

applies to every targets independently, thus the theorem is proved.

Lemma 5.2 and Theorem 5.4 shows that although each target has a selfish goal and has

no cooperation, but with the assumption of knowledge and foresight, it can be guaranteed

that the behaviour of every target is always the worst case for the pursuer.

5.5 Policy Planning with Simplified Target Model

Theorem 5.4 and its proof show that, with the information available to the targets,

a target λ will not be detected before the pursuer pushes to clear its occupancy grid

map. They also show that, the evolution of an occupancy grid map is deterministic with

respect to the future trajectory of the pursuer. Then we can see that, for the pursuer,

given a trajectory χρ, the reward at each time step, which is based on the occupancy

grid maps, is predictable. Hence, there is a direct mapping from a fixed trajectory χρ

of the pursuer, the initial state, and the terminal time instant, to its Objective value:

Vρ(δ, πρ, ŝti , tf ) = f(χρ, ŝti , tf ) (5.2)
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Thus we can see that, the policy planning is simplified to be a path planning. It is a

dynamic guarantee search problem, where a fixed path is designed for the SSM, con-

sidering the worst case scenarios of the target behaviour. The path planning algorithm

designed in Section 4.4 can be applied, to conduct such path planning problem. Once

the pursuer designed its fixed trajectory, it will be known by all the targets, and they

design their own paths to evade detection.

5.6 Simulation Evaluation and Validation

5.6.1 Case Study

There is a 80m× 80m square environment ς, which is discretized into 20× 20 cells. The

agent sensor can cover 5× 5 cells. There are 5 targets and 1 pursuer. The pursuer flies

with speed Vρ = 20m/s, and the maximum target speed is Vt = 2.5m/s. The agent

will plan and execute a path χρ with a planning horizon T = 10s. The targets always

have access to χρ, and design their evasive path accordingly. Different to Section 5.3.2,

in simulation, the target will try to get out of sensor footprint of the agent as soon

as possible when being measured. This is to make the simulation more realistic. The

pursuer re-plan its policy when an unpredicted detection or evasion happens, or when

the planning horizon is reached. The targets are randomly scattered initially, but initial

locations are known to the pursuer. Figure 5.1 to 5.5 are the snapshots of the simulation,

where the solid lines are the plan or actual trajectory of the pursuer, the dash lines are

the trajectories of the targets.

Figure 5.1 shows the plan of the pursuer at the initial time instant. When the agent

has perfect belief of all targets, the agent tries to cover each target in an efficient way

to prevent the uncertainty to grow, which is similar to a Travelling Salesman Problem.

Figure 5.2 shows the evolution of this pursuit evasion game from the initial time step,

with the pursuit plan shown in Figure 5.1. The player location and occupancy grid map

at different time instants are depicted, by adding a vertical axis of relative time instant.

It shows that the agent can detect target 2, 5, and 1 along the route. The target 3 and 4

are not detected, but parts of their occupancy grid maps are cleared during this period.

Thus the development of the total uncertainty is controlled in such a way.

Figure 5.3 shows the pursuer planning in the middle of the game. With more uncertainty

on the far-away target 3, and with target 2 being sensed, the agent spends more effort

to cover target 1,4 and 5, and tries to reach target 3 in the end. Figure 5.4 shows that

target 1 was encircled and finally caught. Figure 5.5 shows that the agent cleared a big
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Figure 5.1: initial planning of the pursuer

Figure 5.2: initial game playing
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Figure 5.3: planning of the pursuer during the middle of the game

Figure 5.4: pursuit-evasion of target 1
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Figure 5.5: pursuit-evasion of target 3

part of the occupancy grid map of target 3, but target 3 still evaded to its reachable

area and avoided detection.

The snap shots show that, with perfect foresight of the pursuer actions, the targets can

always find a track to hind within its reachable area to evade detection. For the pursuer

to find a target, it should push to clear the occupancy grid map of an evader, thus

pushing it to its last reachable point.

Figure 5.6 shows the development of the uncertainty in a case study. We can see that,

the pursuer can detect every target and clear the uncertainty to zero, for multiple times

during the game. All of the targets can have their uncertainties maintained in a relatively

low level for most of the times. The total uncertainty is thus maintained bellow a

reasonable level. This shows that, even with the worst case assumption on the evaders,

the agent is still capable of reducing and limiting the total uncertainties on the targets.

5.6.2 Comparative Study

To study the efficiency of the proposed policy planning, this approach is compared with

the method in [42]. [42] studied a similar guaranteed search problem, and the pursuer

takes a fixed pattern to sweep the whole rectangle area back and forth in parallel. There
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Figure 5.6: uncertainty reduction
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is overlapping between each line of sweep to avoid recontamination. It is is a fixed-

pattern guaranteed search approach. Such method is illustrated in Figure 5.7.

Figure 5.7: fixed pattern guaranteed search

Scenarios have been studied with n=2, 3, 5 and 7 targets, and with Vt = 1m/s, 1.5m/s,

2m/s, 2.5m/s, 3m/s, and 3.5m/s. For each scenario, 100 cases of simulation are con-

ducted, for 200 seconds long each. The total uncertainty in a scenario is the average

total uncertainty at each time step of each cases, and the average computation time

of each planning is recorded. Figure 5.8 illustrates the performances in each scenarios.

Each case is done by one core of E5 2650V2 processor (2.6 GHz).

When Vt ≥ 3m/s, there is no data for the fixed-pattern guaranteed search, because it

is not feasible in these scenarios. But Figure 5.8 can still show that, in every scenario,

the performance of the proposed policy planning can have significant advantage over the

fixed pattern sweeping. It validates that, when the targets are evasive, by estimating

possible evader actions according to current information, and planning the policy dy-

namically, the agent can achieve a better performance than a fixed pattern guaranteed

search.

The computation time for the proposed dynamic policy planning is in Table 5.1. The

computation time of the fixed pattern guaranteed search is not presented, because it is

assumed that the pattern generation is instantaneous.
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Figure 5.8: comparison of performances. solid lines are the performances of the
proposed policy planning, and the dash lines are these of the fixed-pattern search

number of targets 2 3 5 7

planning time 0.20s 0.30s 0.47s 0.65s

Table 5.1: computation time for dynamic policy planning

The policy planning takes 0.41 second in average for each planning, which is promising

to be applied in practice. Thus the proposed policy planning is chosen to be the solution

of the single pursuer SSM of the evasive targets.

5.6.3 Considering the Manoeuvrability of the Pursuer

The same as in the SSM of randomly moving targets, the comparative study is done

again while considering a minimum turning radius rc = 5m for the agent. The result is

shown in Figure 5.9.

We can see that the advantage of the proposed policy planning is still very clear against

the fixed pattern search. This proves that even in a realistic situation, the proposed

dynamic guaranteed search can still efficiently search and Monitor multiple evasive tar-

gets.
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Figure 5.9: comparison of performances, with rc = 5m. Solid lines are the perfor-
mances of the proposed policy planning, and the dash lines are these of the fixed-pattern

search

5.6.4 Exploring the limitations of SSM

The same as in section 4.5.4, in this section, the simulations in section 5.6.2 are expanded

to some more extreme situations, to find out the practical limitations on SSM. We also

expand the scope of simulation in two dimensions separately: the maximum velocity of

targets and the size of environment. Compared with the simulation in Section 5.6.2, we

either expand the Vt to 6m/s and 10m/s, or expand the arena to 140m × 140m and

180m× 180m. The results are shown in Figure 5.10 and 5.11:

For the guaranteed search with fixed pattern, it is not feasible when the width of en-

vironment L = 180m, and it is only feasible when L = 140m and Vt = 1m/s. It can

be seen from Figure 5.10 and 5.11 that the proposed dynamic guaranteed search still

has significant advantage compared with fixed-patter guaranteed search. However, it

shows the same tendency as in section 4.5.4 that, the faster speed of target evasion

and bigger environment make SSM much more difficult for the agent. In Figure 5.10,

when Vt > 5m/s, the uncertainty starts to grow out of control. When the target speed

is considerably fast, because of their advantage in detecting the location of the agent,

they can easily evade detection. In figure 5.11, we can also see that, when the width of
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Figure 5.10: comparison of performances with environment size equals 100m×100m,
and with expanded range of Vt

environment L ≥ 180m, the total uncertainty soon grows to more than 2000 even with

Vt = 3.5m/s. In a big environment, the agent can not reach every possible region within

suitable time interval, thus the uncertainty level can not be maintained. Therefore,

when Vt > 5m/s or when the environment is 180m × 180m, the agent is not capable

of updating the locations of targets and keeping a low uncertainty level, which are the

limitations of SSM with proposed dynamic guaranteed search.

5.7 Conclusion

For the single pursuer SSM of evasive targets, using POSG framework can be intractable,

and the conventional heuristic methods are deemed not suitable by this work. In this

Chapter, by making certain assumption on the information available to the targets, the

difficult pursuit evasion game has been simplified to be a dynamic guaranteed search

problem. The policy planning is transformed to be a path planning, which is more

computationally feasible. The simulation shows that, with limited sensing range and

limited speed, the agent can still efficiently search and monitor all the evasive targets

simultaneously, to reduce the total uncertainty level. The comparative study proves
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Figure 5.11: performance of SSM with environment size equals 140m × 140m and
180m× 180m

that it has better performance over a guaranteed search method with a fixed sweeping

pattern. In the realistic simulation when there is a minimum turning radius of the agents,

the above conclusion still stands, and then the proposed policy planning is chosen to be

the solution for this Chapter.

Although a worst case assumption is applied on targets, it is not directly on the motion

model of the targets, but on the information available to the targets. This can be a

theoretical analysis framework, to analyse the simplifications in other works.

The limitations of SSM of evasive targets are studied in Section 5.6.4. The agent will not

be capable of performing SSM, when the target evasion speed or the size of environment

is beyond a certain limit. However, as shown in Section 5.6.1 and 5.6.2, under moderate

conditions, the SSM between a single agent and multiple evasive targets is still practical,

and the above mentioned advantages of dynamic guaranteed search still hold.



Chapter 6

Cooperative Simultaneous Search

and Monitoring

The single pursuer SSM of randomly moving targets and evasive targets has been studied

in Chapter 4 and 5. In this chapter, the single pursuer SSM is extended to multiagent

SSM. Both case with randomly moving targets and evasive targets are considered. By

applying game theoretical methods, the agents can plan a joint set of policies in a

distributed way, which can achieve cooperative SSM. Some background of cooperative

strategy planning is given in Section 6.1. The cooperative policy plannings are designed

for randomly moving targets and evasive targets separately, in Section 6.2 and 6.3.

For the case with randomly moving targets, it is very difficult to analyse and design

the reactions of an agent to the observations and actions of other agents. Therefore,

the concept of Partial Open-Loop Feedback Control is applied, to allow the local policy

to react to only local information. This is combined with the heuristic reactive policy

developed in Chapter 4, to have an intuitive design of cooperative strategy. For the

case with evasive targets, the assumptions made in Chapter 5 are utilized to develop the

cooperative strategy planning. Both the simulation and theoretical proof shows that,

even though the local policy is planned in a distributed way and is reactive to only

local observations, the cooperative SSM is still achieved, which has clear advantage over

non-cooperative SSM.

To test the practicability of the cooperative SSM in realistic applications, the communi-

cation range and the minimum turning radius are considered in Section 6.5 and 6.6. The

simulation results support all the major conclusions that has been drawn by studying

with the ideal models. The inclusion of communication range also improve the scalability

of the cooperative SSM.

104
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Please note that collision avoidance is not considered in this work.

6.1 Distributed Online Strategy Planning

The SSM is an information gathering problem, thus the benefit of measurement on a

certain region or a target will saturate, with excessive effort being spent on it. It is not

advisable to let each agent implement the single pursuer SSM on its own regardless of

each other, which may cause undesired overlap of efforts. One way of exploiting the

advantage of multiple agents is to partition the environment and the targets, and let

each agent focus on a certain part. Some works use heuristic method to divide the en-

vironment. They utilize the target and agent information, to approximate the possible

reward of a certain partition [11, 12]. The task allocation method takes similar idea,

by abstracting the goal into separate tasks, and assign them to each agent according to

the best task scheduling [3, 23, 29]. In this work, when the targets presence and motion

are uncertain, the heuristic partitioning or abstraction can not guarantee a precise ap-

proximation of the actual performance. A coordination scheme with look-ahead ability

is needed.

For the Multiagent search and pursuit evasion problem with no communication or lim-

ited communication, the non-myopic solution can be formulated as a Decentralized Par-

tially Observable Markov Decision Process (Dec-POMDP) [68], or a Partially Observable

Stochastic Game (POSG) [69]. These problems can be solved online [69] or offline [68].

These methods can be rigorous, but are computationally difficult [32]. For the same rea-

son as discussed in Section 4.3.1, the offline methods can be intractable and non-adaptive

to the environmental changes. Therefore this work chooses online solution methods for

the cooperative strategy planning, to have a feasible and adaptive application.

The real-time information sharing between the pursuers has been assumed in Section

3.2.3, thus the agents do not need to estimate the observations of each other, which

largely simplifies the problem. For some works [65, 66], the perfect communication is

also assumed, and the strategy planning is centralized, which is a Multiagent Partial

Observable Markov Decision Process (MPOMDP). The joint policies are planned for all

agents offline, under the assumption that the agents have full online communication for

their measurement. However, a joint policy contains more information compare with the

information of detection, thus a centralized online policy planning will demand a high

bandwidth communication, and is less feasible and reliable in non-ideal environment.

Thus in this work, a distributed policy planning approach will be developed. Each

agent plans a strategy in a distributed way for a common time horizon, and joint policy

should achieve the cooperation between agents.
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6.2 Multiagent Simultaneous Search and Monitoring of

Randomly Moving Targets

6.2.1 Formulating the Decentralized Partially Observable Markov De-

cision Process

A POMDP has been built for the single pursuer SSM of randomly moving targets.

With multiple pursuer, the POMDP built for single pursuer SSM is extended into a

Dec-POMDP, which can be described in a tuple 〈I,S, {Ai : i ∈ I}, {Ωi : i ∈ I},T, {Oi :

i ∈ I}, {Ri : i ∈ I}〉 [87], where

1. Γ is a finite set of pursuers. ρ ∈ Γ is the label of a certain pursuer.

2. S is a finite set of states of the world. At time t, a belief state st = {{P̂λ(c, t|Yt) :

λ ∈ Λ}, {x̂λ(t) : λ ∈ Λt}, {xρ(t) : ρ ∈ Γ}, Λt, t}. st ∈ S;

3. Aρs is a finite set of possible actions of the agent ρ at state s. As = {Aρs : ρ ∈ Γ}
is a joint set of possible actions at state s. Let aρ ∈ Aρs denote the action of agent

ρ. Let θ = {aρ : ρ ∈ Γ} ∈ As denote the joint actions of the agents;

4. p(st+ |st, θ) : S × As −→ p(S) is the state-transition function, mapping from a

previous belief state and the joint agent actions, to a probability distribution of

next belief states;

5. R : S×As −→ R is the joint reward function, mapping from a current world state

and the joint agent actions, to a immediate common reward;

6. Ωρ is a finite set of the observation of the agent ρ, where yρt ∈ Ωρ is the individual

observation at time t;

7. Oρ : S ×Aρs −→ p(Ωρ) is the observation function, mapping from a current world

state and an action of the agent ρ, to a probability distribution of the observations

of the agent ρ.

The multi-agent SSM in this work is simpler than the general form Dec-POMDP, in

that the individual observation yρt is shared among all the pursuers. Thus the joint

observation yt = {yρt : ρ ∈ Γ} can be accessed by all the agents, and so does the

common belief state st. This Dec-POMDP differs from the POSG built in Chapter 5, in

that the Reward is also commonly shared among the agents, rather than self-interested

or contradicting.
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The state-transition function p(st+ |st, θ) takes the same definition as in the single pursuer

scenario. It is based on the update rules of P̂λ(c, t|Yt), x̂λ(t), and Λt, which are defined

in Chapter 3.

The reward functionR(st) =
∑

λ∈Λt B̃λ(st) is also defined the same with in single pursuer

SSM. Let πρ denote the policy of agent ρ and Π = {πρ : ρ ∈ Γ} to be the set of joint

policies, then the objective function in Section 4.2 becomes:

V (Π, sti , tf ) = E{∆T

T

tf∑
t=ti

R(st)} =
∆T

T

tf∑
t=ti

E{R(st)}

=
∆T

T

tf∑
t=ti

∑
st∈S

p(st|Π, sti)R(st)

=
∆T

T

tf∑
t=ti

∑
st∈S

p(st|Π, sti)
∑
λ∈Λt

B̃λ(st)

Thus, the goal of each agent is to plan a policy πρ independently, given the current

common belief state and future joint observations. The local policies constitute a set of

joint policies Π, to achieve the optimal overall objective value V ∗(Π, sti , tf ), where

V ∗(Π, sti , tf ) = max
Π
V (Π, sti , tf ) (6.1)

6.2.2 Cooperation based on Partial Open-Loop Feedback Control and

Cooperative Equilibrium

It has been stated in Chapter 2 that, solving POMDP precisely is PSPACE-hard [72], and

solving Dec-POMDP is NEXP-complete [32]. Thus, just like what has been done in the

single pursuer SSM, an exact solution is not favoured, and approximations are applied

to yield practical solution instead. In Chapter 4 and Section 4.3.3.4, the policy planning

is simplified by defining some heuristic reaction to the measurements. In the multi-agent

case, besides its own observation, each agent also needs to consider the measurements

and actions of other agents, in order to achieve the cooperation. However, it is not easy

to conceive an intuitive way of how an agent should react to the information from other

agents. Therefore, the concept of Partial Open-Loop Feedback Control is innovatively

applied [98]. Under such assumption, when doing policy planning, each agent takes the

current joint belief state, and possible strategies of other agents into account. But the

local policy will only react to its local observation, and will ignore the future actions
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and measurements of other agents. By taking such assumption, in the policy planning,

the coupling between the actions of each agent can be disentangled. The cooperation

between pursuers is achieved by coordinating the future local strategy of each agents,

given current common information. Let π̂ρ(y
ρ
t ) be the local policy of agent ρ, in which

yρt denotes the local measurement of ρ. Π̂ = {π̂ρ(yρt ) : ρ ∈ Γ} is the set of joint policies

of Partial Open-Loop Feedback Control.

For the solution of cooperative search and pursuit evasion, the key concept is to find a

Cooperative Equilibrium among the strategies of all agents [68, 69], in which no agent

can improve its reward by unilaterally change its strategy. In this case where the reward

is commonly shared, the optimal solution should also be a Cooperative Equilibrium. In

this work, each agent finds a best set of joint policies Π̂∗ which can ensure the highest

overall objective value, and implement its corresponding local policy. Then, for pursuer

ρ, its policy planning becomes,

plan Π̂∗ = argmax
Π̂

V (Π̂, sti , tf )

execute π̂∗ρ(y
ρ
t ) ∈ Π̂∗

(6.2)

Because the information is shared among agents, the calculation of the joint policies

should work symmetrically for every agent. It is ignored that multiple equilibrium

solutions exist with the same objective value. Thus it is assumed that by having this

distributed planning, an identical sub-optimal set of joint policies will be generated by

each agent, and each agent will implement its corresponding local policy to achieve the

cooperative SSM. The key concept is that, the agents do not communicate about the

strategies to take, but by anticipating the most rational mutual behaviours, they will

reach a consensus on the joint policies.

6.2.3 Heuristic Reactive Local Policy

By taking the assumption of Partial Open-Loop Feedback Control, it has been assumed

that, when planning the policy, each agent does not consider the future observations

or actions of other agents. Thus this work focus on achieving the cooperation by par-

titioning the environment and targets, and letting each agent attend different parts,

rather than by the synergistic efforts on the same area or targets. Then the following

assumption/simplification is made:
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6. No Overlapping in Reward. The trajectories of the pursuers may cross, but

the overlap of any effort and reward between agents is not considered.

The Assumption 6 shows that each agent handle different area and targets independently,

which further simplifies the policy planning. So when doing the calculation in Equation

(6.2), the local policies are not allowed to have overlapping attempts with each other.

In Section 4.3.3, it has been proven that, for a single agent policy which only react to the

local information, it can be precisely reconstructed by a base trajectory and a branching

rule. Then for the local policy π̂ρ(y
ρ
t ) which is of the same structure, it can also be

fully reconstructed with a base trajectory χρ and a rule of branching. In the single

pursuer SSM, a heuristic reactive branching rule is defined in Section 4.3.3.4. It has

been proven that, the objective value achieved by the heuristic reactive policy is better

than the conventional policy of FSOA, and can be of practical computational efficiency.

Therefore, in the multi-agent SSM, this work let the local policy π̂ρ(y
ρ
t ) apply the same

structure as the heuristic reactive policy defined in Section 4.3.3.4, which is written as

π̂ρa(yρt , χρ, ht). Π̂a is the corresponding set of joint policies. It will then be proven that,

in the multi-agent SSM scenario, having the heuristic reactive policy as the local policy

is still better than implementing the policy of FSOA.

Theorem 6.1. The optimal set of joint heuristic reactive policies Π̂∗a = argmaxΠ̂aV (Π̂a, sti , tf )

has an better estimated objective value than that of optimal joint policies of FSOA Π̂∗f .

Proof. According to Assumption 6, there is no overlap of the reward achieved by each

pursuer. Let Vρ(π̂
ρ, sti , tf ) be the local objective value of the information gathering by

agent ρ, regardless of the other pursuers. Then we can see that

V (Π̂, sti , tf ) =
∑
ρ∈Γ

Vρ(π̂
ρ, sti , tf ) (6.3)

Let Π̂∗f = argmaxΠ̂fV (Π̂f , sti , tf ) be the optimal set of joint policies of FSOA. Then,

V (Π̂∗f , sti , tf ) =
∑
ρ∈Γ

Vρ(π̂
ρ∗
f , sti , tf ) (6.4)

where π̂ρ∗f ∈ Π̂
∗
f .

From Theorem 4.7, we can see that, for each agent ρ and the policy of FSOA π̂ρ∗f , there

should always exist a heuristic reactive policy π̂ρ∗a , so that



Cooperative Simultaneous Search and Monitoring 110

Vρ(π̂
ρ∗
a , sti , tf ) ≥ Vρ(π̂ρ∗f , sti , tf ) (6.5)

Let Π̂∗a = {π̂ρ∗a : ρ ∈ Γ} be the corresponding set of joint policies, then we get

V (Π̂∗a , sti , tf ) =
∑
ρ∈Γ

Vρ(π̂
ρ∗
a , sti , tf ) ≥

∑
ρ∈Γ

Vρ(π̂
ρ∗
f , sti , tf ) = V (Π̂∗f , sti , tf ) (6.6)

it thus proves that the optimal set of joint heuristic reactive policies should have at least

better gain than that of the optimal set of joint policies of FSOA.

Theorem 6.1 justifies the choice of heuristic reactive policy to be the local policy. Before

designing the detailed planning of Π̂a, it first needs to be proven that, although the local

policy does not react to the other agents, the cooperation is achieved advantageously

compared with having no cooperation. Let Π̂as be the set of joint non-cooperative

heuristic reactive policy, if each agent plans its self-interested local heuristic reactive

policy π̂ρas = argmaxπ̂ρaVρ(π̂
ρ
a, sti , tf ), in the same way as in the single pursuer SSM

which does not consider any cooperation. The performance of cooperative and non-

cooperative SSM is them compared.

Theorem 6.2. For the optimal joint policies Π̂∗a obtained through Equation (6.2), it

can achieve at least higher overall objective value than the non-cooperative joint policies

Π̂as.

Proof. For the local policies in Π̂as, there may be overlap between individual efforts.

According to Assumption 6, the redundant part of the local objective values will not be

counted repetitively, then

V (Π̂as, sti , tf ) =
∑
ρ∈Γ

V
′
ρ(π̂ρas, sti , tf ) (6.7)

where V
′
ρ(π̂ρas, sti , tf ) is the independent part of the local objective value of agent ρ,

except for its redundant reward.

Considering the fact that the SSM is a sensor scheduling problem of information gath-

ering, and that the effort of each agent may be partly overlapped with the others when

applying π̂ρas, for each agent, there should exist a policy π̂ρ
′
as, which only focuses on the
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independent part of the attempts made by the original policy π̂ρas. Because of such

concentration of effort, we can see that

Vρ(π̂
ρ′
as, sti , tf ) ≥ V ′ρ(π̂ρas, sti , tf ) (6.8)

Let Π̂
′
as = {π̂ρ

′
as : ρ ∈ Γ} be the set of such non-overlapping policies. Equation 6.2,

together with Assumption 6, imply that Π̂∗a can achieve the highest overall objective

value, among all sets of non-overlapping joint policies. Then

V (Π̂∗a , sti , tf ) = maxΠ̂aV (Π̂a, sti , tf ) ≥ V (Π̂
′
as, sti , tf )

≥
∑
ρ∈Γ

V
′
ρ(π̂ρas, sti , tf ) = V (Π̂as, sti , tf )

(6.9)

Thus the Theorem has been proven.

Theorem 6.2 demonstrates that, notwithstanding the fact that the cooperation is not

considered in the local policies themselves, the cooperation can still be achieved with

benefit, by avoiding redundancy in the search and monitoring efforts, and by coordinat-

ing these self-interested local strategies in the planning.

By letting the local policy have the structure of a base trajectory plus a heuristic reactive

branching rule, the local policy πρ(y
ρ
t ) can be represented by a local base trajectory χρ.

The Equation 6.2 can be rewritten as

Ψ∗ = argmax
Ψ

V (Ψ, sti , tf )

Ψ = {χρ : ρ ∈ Γ}
(6.10)

where Ψ is the joint base trajectory of all agents.

V (Ψ, sti , tf ) can be estimated by Monte-Carlo Sampling in the same way as in single

pursuer scenario in Section 4.3.4. Thus a mapping from a joint base trajectory Ψ to the

overall objective value V (Ψ, sti , tf ) is obtained. Then the computation of the optimal

joint polices has become planning an optimal joint base trajectory Ψ∗.
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6.2.4 Joint Path Planning

In the single pursuer SSM scenario, a path planning algorithm based on Simulated

Annealing is proposed in Section 4.4. It is composed of a candidate trajectory mutation

function and a simulated annealing algorithm. Too apply this method on the planning

of multiple paths, some adjustment on the candidate trajectory mutation function needs

to be done, to let it generate joint trajectories as solutions.

The candidate trajectory mutation function χ̂ = M(χ) is extended to be a joint trajec-

tory mutation function Ψ̂ = M(Ψ). M(Ψ) includes the four independent mutations on

an individual χρ ∈ Ψ , which are defined in Section 4.4.2. In each round, the function

may choose one local base trajectory randomly, and apply one of the four indepen-

dent mutations; or it may choose two local trajectories by chance, and apply the fifth

mutation:

5. Segment Swap:. two base trajectories χρ1 , χρ2 ∈ Ψ swap parts of their paths,

which is shown in Figure 6.1.

Figure 6.1: joint mutation on trajectories

The new joint trajectory mutation function can be used to generate different sets of

joint policies, which can be incorporate into the Simulate Annealing algorithm defined

in Section 4.4.3. an optimal joint base trajectory Ψ∗ can be calculated iteratively.

Now the planning of local policy πρ(y
ρ
t ) is designed for each agent, which can be calcu-

lated and implemented in a distributed way.
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6.3 Multiagent Simultaneous Search and Monitoring of

Evasive Targets

6.3.1 Building the Partially Observable Game Playing

For the SSM between multiple pursuers and multiple evaders, it can be formulated

as a Partially Observable Game Playing formulation, which is represented by a tuple

〈I,S, {Ai : i ∈ I}, {Ωi : i ∈ I},T, {Oi : i ∈ I}, {Ri : i ∈ I}〉 [87], where

1. I is a finite set of players, which are the pursuers and the evaders. i ∈ I is the

label of a certain player.

2. S is a finite set of states of the world. The state st = {{xρ(t) : ρ ∈ Γ}}, {xλ(t) :

λ ∈ Λ}. ŝt = {{M̂λ(c, t|Yt) : λ ∈ Λ}, {xρ(t) : ρ ∈ Γ}} is the subjective state of the

pursuers;

3. Ai is a finite set of actions of the player i;

4. T : S × {Ai : i ∈ I} −→ p(S) is the state-transition function, mapping from

a previous world state and the joint actions of all the players, to a probability

distribution of next world states;

5. Ri : S×Ai −→ Ri is the reward function, mapping from a current world state and

a player action to an immediate reward to that player;

6. Ωi is a finite set of observation of the player i;

7. Oi : S × Ai −→ p(Ωi) is the observation function, mapping from a current world

state and an action of the player i, to a probability distribution of the observations

of the player i.

This differs to the single pursuer scenario in that the multiple pursuers are included in

the set of players. With the same assumptions as in the single pursuer case, the state

transition function T , the observation function Oi, and the Reward functions for the

evaders {Ri : i ∈ Λ} take the same definition as in Chapter 5. The agents have a shared

objective function Vp(δ, πp, sti , tf ), where



Cooperative Simultaneous Search and Monitoring 114

Vp(δ,Π, sti , tf ) = E{∆T

T

tf∑
t=ti

R(st)} =
∆T

T

tf∑
t=ti

E{R(st)}

=
∆T

T

tf∑
t=ti

∑
st∈S

p(st|δ,Π, sti)R(st)

= −∆T

T

tf∑
t=ti

∑
st∈S

p(st|δ,Π, sti)
∑
λ∈Λt

Ẽλ(st)

πρ and Π = {πρ : ρ ∈ Γ} denote the local and joint policies of the pursuers. Then, the

goal of each agent is to plan a policy πρ independently, given the current common belief

state and joint observations. The local policies constitute a set of joint policies Π, to

achieve the optimal overall objective value V ∗p (δ,Π, sti , tf ), where

V ∗p (δ,Π, ŝti , tf ) = max
Π
Vp(δ,Π, ŝti , tf ) (6.11)

6.3.2 Cooperative Policy Planning based on Simplified Target Model

In Chapter 5 Section 5.4, with the assumption of knowledge and foresight, it has already

been deduced in Theorem 5.4 that, the Reward for the single pursuer develops deter-

ministically, with respect to the sequence of actions of the pursuer. The same induction

can be applied for the multiple pursuer scenarios, thus It can be said that, the joint Re-

ward of the agents is directly mapped from the sequence of joint actions of the pursuers.

Then, the joint set of policies of the pursuers, Π, can be simplified to be a joint set of

fixed paths, Ψ . There exist a mapping, where

Vp(δ,Π, ŝti , tf ) = f(Ψ, ŝti , tf ) (6.12)

Because the pursuit policy is not reactive, the cooperative policy planning is simple. Let

each agent find a best set of joint trajectories Ψ∗ which can ensure the highest overall

objective value, and implement the corresponding local path. Thus for pursuer ρ, its

policy planning becomes,

Ψ∗ = argmax
Ψ̂

V (Ψ, ŝti , tf )

χ∗ρ ∈ Ψ∗
(6.13)
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The same as in the SSM of randomly moving targets, the cases where multiple solutions

exists with the same objective value are ignored. Thus such decentralized policy planning

can guarantee the optimal global performance of SSM. Given the mapping from the joint

trajectories to the objective value, the Algorithm of joint path planning in Section 6.2.4

can be applied to conduct the planning of optimal joint trajectories Ψ∗

6.4 Simulation Evaluation and Validation

6.4.1 Simulation of the Multiagent Simultaneous Search and Monitor-

ing of Randomly Moving Targets

6.4.1.1 Case Study

The case study is done, with the same set-up of the environment in Section 4.5.1, and

the same properties of the pursuers and the targets. But instead of having only one

pursuer, there are 3 agents doing the SSM cooperatively. Each agent plans the optimal

set of joint heuristic reactive policies Π̂∗a , and executes its local policy π̂ρ∗a ∈ Π̂∗a . The

replanning is triggered at the same condition as in the single pursuer scenario, and it

happens for all pursuers simultaneously.

Figure 6.2 and 6.3 are two snapshots of the case simulation.

Figure 6.2: cooperative search

In Figure 6.2, there is only one target known. The agent which is currently covering the

target chooses to focus on monitoring, but does some search in the nearby area in the
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Figure 6.3: cooperative monitoring

mean time. The other two agents divide the unknown areas and plan non-overlapping

trajectories for search. In Figure 6.3, when all the evaders has been detected, each

agent goes back and forth to monitor nearby targets, and there is no redundant effort

between the pursuers. Note that the cooperation of SSM is achieved in a distributed way,

without any communication about plans. The case study shows that, with exchanging

only sensing data, the agents can partition the tasks without overlap, and do the SSM

with synergy.

Figure 6.4 shows the development of the belief probability of each target and the overall

reward of the SSM mission, in a case study. We can see that, all targets can be detected

soon after the beginning, and can be maintained a high belief probability for most of the

times. Some sporadic negative spikes show that, although sometimes the targets may

get lost in monitoring, they will still be found right after. The overall award is increased

fast in the beginning, and is kept right under the highest level, for the majority of the

simulation. Comparing with Figure 4.17, it can be seen that, having multiple agents

brings significant improvement of the performance.

6.4.1.2 Comparative Study

The quantitative study is done to compare the performance of the proposed cooperative

SSM and the non-cooperative SSM. Scenarios with n=2, 3, 5 and 7 targets had been

studied, with ps = 60, 70, 80%, and with m=2, 3 and 5 pursuers. Each scenarios is
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Figure 6.4: belief probability maintenance
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simulated for the same number of cases and length of time as in the single pursuer

simulation. Figure 6.5 shows the performances in each scenarios.

Figure 6.5: cooperative vs. non-cooperative

It shows that in every scenario, there is a dramatic improvement of performances if the

cooperation is considered. It proves that, for the proposed distributed cooperative strat-

egy planning, with only communication of measurement, it can achieve a better overall

reward compared with not considering cooperation. This is consistent with Theorem

6.2.

Figure 6.6 illustrate the performances of the same scenarios, with imperfect sensors

defined in Section 4.5.2. The performances decrease with possible sensing failures, but

the cooperative SSM still has the advantage over the non-cooperative SSM. The same

as mentioned in the single pursuer case, the false measurement can be treated with a

filter, to reduce its negative influence.

The computational time of cooperative policy is in Table 6.1. The reader can refer to

Table 4.1 for the computation time of non-cooperative policy.

hhhhhhhhhhhhhhhhhhhhnumber of agents

number of targets
2 3 5 7

2 agents 0.41s 0.55s 0.70s 0.72s

3 agents - 0.86s 1.21s 1.30s

5 agents - - 2.22s 2.80s

Table 6.1: computation time for cooperative policy planing (randomly moving tar-
gets)
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Figure 6.6: cooperative vs. non-cooperative with sensing failure

According to Table 6.1, each planning of cooperative policy takes 0.60 seconds in av-

erage, when there are 2 agents. It takes 1.12 and 2.51 seconds when there are 3 or 5

agents. It can be seen that, even though the planning is distributed, the computation

time still grows with the number of the agents. This is because with more pursuers

in the cooperation, the more agents needs to be considered in the computation of the

equilibrium in Equation (6.10). Unfortunately, this shows that the proposed distributed

strategy planning is not scalable. This problem will be addressed in Section 6.5.

6.4.2 Simulation of the Multiagent Simultaneous Search and Monitor-

ing of Evasive Targets

6.4.2.1 Case Study

For the SSM of evasive targets, the same set-up of the environment and the properties of

the players is taken, as in Section 5.6.1. There are 3 pursuers. The SSM is implemented

cooperatively, as introduced in Section 6.3. The replanning is triggered at the same

condition as in the single pursuer scenario, and it happens for all pursuers simultaneously.

Figure 6.7 to 6.10 are the snapshots of the simulation, where the solid lines are the plans

or actual trajectories of the pursuers, the dash lines are the trajectories of the targets.

Figure 6.7 shows the plan of the pursuer at the initial time instant. For target 5 which is

too far away from all of the pursuers, only pursuer 3 will go to attend it, thus leaving the
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Figure 6.7: initial planning of the pursuer

Figure 6.8: initial game playing
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other pursuers to concentrate on the remaining targets. For the rest of the evaders, they

will be visited by more than one agent at different time, thus limiting the uncertainties

about them to grow. Figure 6.7 shows the evolution of the game for a few seconds from

the beginning, corresponding to the initial plan in Figure 6.7. We can see that, all the

targets can be detected at least once during this time period, to have the uncertainties

about them to be cleared. For target 1, 2 and 3, they are detected for twice by different

agents with a reasonable time interval, which successfully constrains the development of

the uncertainty throughout the period.

Figure 6.9: planning of the pursuer during the middle of the game

Figure 6.9 shows the pursuer planning in the middle of the game. When the target 5

is monitored by the pursuer 3, which are both far away from the other pursuers and

targets, the target 3 stays unmoved to focus on target 5. The agent 2 goes to join the

agent 1 to monitor target 1, 3 and 4. Figure 6.10 shows the development of the game

after the planing in Figure 6.9 is made. It also shows that the target 1, 3, and 4 are

detected by the pursuer 1 and 2 at different time, thus maintaining the corresponding

uncertainties to a low level.

The snapshots show that, even without communication of planning, the agents can still

coordinate their attempts of SSM. The cooperation is achieved through avoiding the

redundant effort by letting each agent focus on different sets of targets, and through

having the synergy in uncertainty reduction by letting different agents visit the same

target in a timely order.
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Figure 6.10: pursuit-evasion of targets

Figure 6.11 shows the development in a case study, of the uncertainty about each target

and the total uncertainty. Compared with the single pursuer scenario (Figure 5.6), we

can see that the individual uncertainties and the total uncertainty are controlled in a

much lower level, and are cleared to zero much more frequently. Thus it shows that, by

having multiple agents doing the SSM of evasive targets cooperatively, the performance

can be dramatically improved.

6.4.2.2 Comparative Study

The quantitative study is done to compare the performance of the proposed cooperative

SSM and the non-cooperative SSM. Scenarios with n=2, 3, 5 and 7 targets had been

studied, with Vt = 1m/s, 1.5m/s, 2m/s, 2.5m/s, 3m/s, 3.5m/s, 4m/s, and 4.5m/s,

and with m=2, 3 and 5 pursuers. Each scenario is simulated for the same number of

cases and length of time as in the single pursuer simulation. Figure 6.12 shows the

performances in each scenarios.

It shows that in every scenario, the performance of the cooperative SSM of the evasive

targets is much better than the non-cooperative SSM, which proves the advantage of

cooperative policy.
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Figure 6.11: uncertainty reduction
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Figure 6.12: cooperative vs. non-cooperative

The computational time of cooperative policy is in Table 6.2. The reader can refer to

Table 5.1 for the computation time of non-cooperative policy.

hhhhhhhhhhhhhhhhhhhhnumber of agents

number of targets
2 3 5 7

2 agents 0.46s 0.62s 1.03s 1.44s

3 agents - 0.97s 1.61s 2.01s

5 agents - - 2.87s 3.66s

Table 6.2: computation time for cooperative policy planing (evasive targets)

According to the simulation, each planning of cooperative policy takes 0.89 seconds in

average, when there are 2 agents. It takes 1.53 and 3.27 seconds when there are 3 or 5

agents. It indicates the unscalability of the distributed policy planning. This is because

of the same reason as in the cooperative SSM of randomly moving targets, that with the

more agents in the game playing, when doing the distributed cooperative policy playing,

each agent has to consider more fellow agents in the joint policy. This issue will be

solved in the next Section.
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6.5 Simultaneous Search and Monitoring with Limited Com-

munication Range

It has been learned in the previous Section that, when the pursuers are planning the

SSM cooperatively, the computation is not scalable with respect to the number of agents

involved. To solve this problem, some facts are considered, that 1. the flying speed of

an agent is constrained, which makes it of more interest for an agent to cooperate with

pursuers close by; 2. in realistic applications, there should be a range limit for the

communication and measurement between agents. Thus a communication range limit

is introduced into the cooperation, so that only within such range, a pursuer can be

aware of the presence and sense the location of a neighbouring agent, or receive the

measurement information from it. This set-up not only includes the practical limits on

sensing and communication, but also allows the agent to consider the fellow pursuers

which are close enough to be of interest, thus bounding the number of agents to consider

in the planning and reduce computation time.

Let Lc be the range limit of the communication. For agent ρ, let Γρ = {ρ′ : ρ′ ∈
Γ, ρ′ 6= ρ, |xρ(t)−xρ′(t)| ≤ Lc} be the set of agents which are within the communication

range from agent ρ. In Chapter 3, the full communication between agents at all times

is assumed. Under such assumption, the measurements are shared from the beginning,

and with the fact that the initial estimation of the targets are shared, thus every agent

can hold a common subjective state st or ŝt. Nevertheless, when the communication is

limited, the sensing can not always be transmitted, and there should be difference in the

perception of the environment by each agent.

Let sρt or ŝρt be the local subjective state hold by agent ρ, in the randomly moving or

the evasive target scenario. From the definition of the subjective states in Section 6.2.1,

Section 6.3, and the modelling in Chapter 3, we can see that, the subjective state is

dependent on the sensing history. However, as introduced in Section 3.2.3, this work

tries to reduce the load of communication between agents. Therefore, it does not require

the pursuers to exchange their whole sensing histories when they communicate, and

instead, they only send each other the current measurement information when within

communication range. For the part of sensing histories which are not exchanged, they

will cause each agent to hold different subjective state.

Then, each agent do the cooperative policy planning, considering only the local subjec-

tive state and the set of agent Γρ:
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Π∗ = argmax
Π

V (Π, sρti , tf )

Π = {πρ′ : ρ′ ∈ Γρ}
(6.14)

Assume that there is a pseudo agent which can access the measurement from other

agent at all time, and can thus hold a subjective state which considers all the sensing

information. The actual achieved reward is evaluated based on the subjective state of

this pseudo agent.

With the range limit on communication, the performance of cooperative SSM of ran-

domly moving targets is shown in Figure 6.13 and Figure 6.14, with the communication

range Lc = 50m or 30m. The performance of cooperative SSM of evasive targets is

shown in Figure 6.15 and Figure 6.16.

Figure 6.13: cooperative vs. non-cooperative when Lc = 50m (randomly moving
targets)

We can see from Figure 6.13 to Figure 6.16 that, compared with the multiagent SSM

with full communication, the there is a slight degrade of performance when there is a

limit on communication range. The smaller the range limit is, the lower the performance

decreases. However, we can still see that, in almost every scenario, the performance of

cooperative SSM is always higher than the non-cooperative SSM.

Table 6.3, 6.4, 6.5, and 6.6 shows the computation time of the cooperative policy planning

in different scenarios, with different kinds of targets.
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Figure 6.14: cooperative vs. non-cooperative when Lc = 30m (randomly moving
targets)

hhhhhhhhhhhhhhhhhhhhnumber of agents

number of targets
2 3 5 7

2 agents 0.27s 0.44s 0.43s 0.55s

3 agents - 0.48s 0.62s 0.77s

5 agents - - 1.11s 1.50s

Table 6.3: computation time for cooperative policy planing when Lc = 50m (ran-
domly moving targets)

hhhhhhhhhhhhhhhhhhhhnumber of agents

number of targets
2 3 5 7

2 agents 0.23s 0.30s 0.38s 0.38s

3 agents - 0.46s 0.55s 0.61s

5 agents - - 0.87s 1.00s

Table 6.4: computation time for cooperative policy planing when Lc = 30m (ran-
domly moving targets)

We can see from these tables that, with a limit on the communication range, there is a

significant reduction of computation time needed for each cooperative planning. With

a tighter limit, the reduction is higher. This proves the main benefit of introducing a

communication range, which bounds the number of fellow agents to consider in each

planning, and allow each agent to cooperative with only nearby agents which are of

more benefit than the faraway ones.

Thus it has been known that, in a more realistic scenario where there is a range limit on
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Figure 6.15: cooperative vs. non-cooperative when Lc = 50m (evasive targets)

hhhhhhhhhhhhhhhhhhhhnumber of agents

number of targets
2 3 5 7

2 agents 0.46s 0.63s 1.01s 1.29s

3 agents - 0.79s 1.29s 1.65s

5 agents - - 1.95s 3.14s

Table 6.5: computation time for cooperative policy planing when Lc = 50m (evasive
targets)

the communication and measurement between each pursuer, without doing any signifi-

cant modification to the planning method or increasing the workload of communication,

the cooperative strategy planning can still make the team of agents to achieve higher per-

formance than the non-cooperative planning, and the computation efficiency is largely

improved. Also, this range limit can be imposed to be tighter than the actual limit for

the purpose of improving the computational efficiency and making the planning more

scalable.
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Figure 6.16: cooperative vs. non-cooperative when Lc = 30m (evasive targets)

hhhhhhhhhhhhhhhhhhhhnumber of agents

number of targets
2 3 5 7

2 agents 0.41s 0.50s 0.72s 1.05s

3 agents - 0.53s 0.87s 1.32s

5 agents - - 1.41s 1.95s

Table 6.6: computation time for cooperative policy planing when Lc = 30m (evasive
targets)

6.6 Considering the Manoeuvrability of the Pursuer

To consider the influence of the UAV model on this work, the minimum turning radius

is considered for the quantitative study. Let rc = 5m. All the above quantitative

simulations are done again, to prove the validity of the above conclusions in a practical

application. The results are from Figure 6.17 to Figure 6.22.

Compared with Section 6.4 and 6.5, we can see that, with a more practical agent model,

the advantage of the cooperative SSM still stands, compared with the non-cooperative

SSM. Thus all the discussions and conclusions in the above sections still uphold.
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Figure 6.17: cooperative vs. non-cooperative with full communication and rc = 5m
(randomly moving targets)

Figure 6.18: cooperative vs. non-cooperative when Lc = 50m and rc = 5m (randomly
moving targets)

6.7 Exploring the limitation of SSM

After proving the efficiency of multi-agent SSM in previous sections. The same as in

section 4.5.4 and 5.6.4, in this section, the simulations are expanded to some more

extreme situations, to find out the practical limitations on SSM. For the simulation

in Section 6.4.1.2, 6.4.2.2, and 6.5, we expand the ps or Vt of targets and the size of
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Figure 6.19: cooperative vs. non-cooperative when Lc = 30m and rc = 5m (randomly
moving targets)

environment, as the same way in Section 4.5.4 and 5.6.4. The results are shown from

Figure 6.23 to 6.40:

It can be seen from Figure 6.23 to 6.40 that, with more active or faster targets, or in

a bigger environment, the performance of SSM degrades. Similar to the single pursuer

scenario, when ps ≤ 40% or Vt > 5m/s, or when the environment is 180m× 180m, the

multi-agent SSM has reached its limitations.

For the cooperative SSM of randomly moving targets, when the limitations are reached,

the average performance of each agent is close to that of monitoring one single target.

Similar to Section 4.5.4, this also shows that, in the adverse conditions, the strategy

with the highest reward is for each agent to keep monitoring the first target it finds. We

can also see from Figure 6.26 to 6.31 that, the cooperative SSM is less sensitive to the

extreme conditions, especially when there is full or longer range of communication. This

is because, with cooperation, the agents can be efficiently scattered to cover more area

and targets. This also shows the advantage of cooperative SSM against non-cooperative

version.

For the cooperative SSM of evasive targets, when close to or beyond the limitations, the

total uncertainty grows uncontrolled, which is of the same reason stated in Section 5.6.4.

We can also see from Figure 6.32 to 6.40 that, with full communication, the cooperative

SSM is less prone to be affected by the increase of the size of environment. This also

proves the effectiveness of cooperation in the SSM of evasive targets.
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Figure 6.20: cooperative vs. non-cooperative with full communication and rc = 5m
(evasive targets)

6.8 Conclusion

The cooperative SSM is solved in a distributed and online way. The cooperative equilib-

rium is applied as the main concept as solution. For the scenario with randomly moving

targets, solving the strategy planning of the SSM is a Dec-POMDP. The idea of Partial

Open-Loop Feeback Control and heuristic reactive policy reconstruction are combined

in a novel way. Thus a intuitive cooperative policy planning can be designed, which

allows some intuitive heuristic methods to be incorporated and can be fast to compute.

The cooperation can still be considered implicitly. For the scenario with evasive targets,

same simplification in the single pursuer case can still be applied, which also simplified

the problem to be a cooperative dynamic guaranteed search.

In the simulation of the SSM of randomly moving targets, the agents can divide the

unknown areas and known targets, and attend each part separately, thus avoiding over-

lapping efforts. In the simulation of the SSM of evasive targets, the agents not only

divide the targets to avoid redundancy, but also have synergy by visiting a certain

target at a suitable time interval. For both scenarios, in the quantitative study, the

cooperative SSM shows significant improvement of the performance, compared with the

non-cooperative SSM, which validates the advantage of cooperation.
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Figure 6.21: cooperative vs. non-cooperative when Lc = 50m and rc = 5m (evasive
targets)

To address the problem of scalability of the distributed strategy planning, but also to

include practical constraints, the limit on the range of communication is introduced.

The simulation results show that, even with a communication range, the performance

of the cooperative SSM is still better than the non-cooperative SSM. The computation

time is reduced in such way to achieve scalability. The simulation with a realistic agent

model also supports the above conclusions.

The practical limitation on multi-agent SSM is studied in Section 6.7. The limitations

in the single pursuer SSM cases still applies in multi-agent scenarios. However, in the

extreme conditions, the cooperative SSM shows its better robustness compared with non-

cooperative SSM, which validates the effectiveness of the designed cooperation strategy.

And as shown in Section 6.4.1.2 and 6.4.2.2, the cooperative SSM can be efficient under

reasonable conditions.
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Figure 6.22: cooperative vs. non-cooperative when Lc = 30m and rc = 5m (evasive
targets)

Figure 6.23: cooperative vs. non-cooperative with unlimited communication, and
with environment width L = 100m (randomly moving targets)
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Figure 6.24: cooperative vs. non-cooperative with Lc = 50m, and with environment
width L = 100m (randomly moving targets)

Figure 6.25: cooperative vs. non-cooperative with Lc = 30m, and with environment
width L = 100m (randomly moving targets)

Figure 6.26: cooperative vs. non-cooperative with unlimited communication, and
with environment width L = 140m (randomly moving targets)
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Figure 6.27: cooperative vs. non-cooperative with Lc = 50m, and with environment
width L = 140m (randomly moving targets)

Figure 6.28: cooperative vs. non-cooperative with Lc = 30m, and with environment
width L = 140m (randomly moving targets)

Figure 6.29: cooperative vs. non-cooperative with unlimited communication, and
with environment width L = 180m (randomly moving targets)
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Figure 6.30: cooperative vs. non-cooperative with Lc = 50m, and with environment
width L = 180m (randomly moving targets)

Figure 6.31: cooperative vs. non-cooperative with Lc = 30m, and with environment
width L = 180m (randomly moving targets)
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Figure 6.32: cooperative vs. non-cooperative when full communication, and with
environment width L = 80m (evasive targets)

Figure 6.33: cooperative vs. non-cooperative with Lc = 50m, and with environment
width L = 80m (evasive targets)



Cooperative Simultaneous Search and Monitoring 139

Figure 6.34: cooperative vs. non-cooperative with Lc = 30m, and with environment
width L = 80m (evasive targets)

Figure 6.35: cooperative vs. non-cooperative when full communication, and with
environment width L = 140m (evasive targets)
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Figure 6.36: cooperative vs. non-cooperative with Lc = 50m, and with environment
width L = 140m (evasive targets)

Figure 6.37: cooperative vs. non-cooperative with Lc = 30m, and with environment
width L = 140m (evasive targets)
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Figure 6.38: cooperative vs. non-cooperative when full communication, and with
environment width L = 180m (evasive targets)

Figure 6.39: cooperative vs. non-cooperative with Lc = 50m, and with environment
width L = 180m (evasive targets)
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Figure 6.40: cooperative vs. non-cooperative with Lc = 30m, and with environment
width L = 180m (evasive targets)



Chapter 7

Conclusion and Future Work

7.1 Conclusion

From a broad background of robot search and pursuit evasion, the isolation between

the problems of search and monitoring is discussed. For the initial information about

the targets, different uncertainty level of them leads to the differences between these

two problems. Nevertheless, an idea is conceived in this work, that in a situation when

the targets are dynamic and the pursuers only have partial observation, search and

monitoring are both needed at the same time, to obtain and maintain the updated

overall information. Instead of building the combination as a trade-off, a novel concept

of combining Search and Monitoring in a synergistic perspective is proposed. This

allows the agents to better consider the dynamics of the problem, such as the targets

changing between known and unknown. The combination of Search and Monitoring is

done by building a united goal for the mission, which implicitly encourages the search

and monitoring to be done simultaneously and cooperatively.

To solve this simultaneous search and monitoring problem, the main effort of this work

is on how to have a scalable and practical solution, to have an online and distributed

strategy planning. This work is split into two steps. The first step is to solve the single

pursuer SSM of randomly moving or evasive targets. The second step is to extend the

single pursuer SSM to the multiple pursuers scenario.

For the single pursuer SSM of randomly moving targets, which is built as a POMDP,

the innovative policy reconstruction makes it easy to incorporate heuristics into the

policy design, and generates a heuristic reactive policy. Compared with the policy of

fixed sequence of actions which is not reactive, or the hybrid policy which is more

rigorously designed, the heuristic reactive policy shows better performance and has
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practical computational efficiency. For the single pursuer SSM of evasive targets, because

of the intractability of precisely solving it as a POSG, an assumption are made about

the information available to the targets. This simplifies the problem to a dynamic

guaranteed search, which also showed advantage over a conventional method.

For the scenario with multiple pursuers, the coordination is achieved by solving a coop-

erative equilibrium in a distributed way. For the multiple pursuers SSM with randomly

moving targets, which is a Dec-POMDP, the concept of partial open-loop feedback

control and heuristic reactive policy are originally combined, which allows an intuitive

strategy design without ignoring the cooperation. For the multiple pursuers SSM with

evasive targets, which is a POSG, the same assumption in the single pursuer scenario

simplifies the cooperative strategy planning to cooperative path planning. In both cases,

the cooperative SSM performs better than the non-cooperative SSM. To improve the

scalability of the distributed planning, and also to include practical limitation, the max-

imum communication range is imposed. With a range limit on communication, the

cooperative SSM still has better performance than non-cooperative SSM, but the com-

putation time is significantly reduced.

For all the research above, it is also tested with a more realistic agent model, of which

the minimum turning radius is considered. And through the simulation, we can see

that even when the agents have limited manoeuvrability, all the conclusions above still

uphold.

Besides developing and evaluating efficient SSM strategies, for the single or multiple

pursuer SSM of randomly moving or evasive targets, the practical limitations on its

effectiveness are also studied. The detailed limitations are obtained by testing the SSM

with more active targets and wider size of environment, until the advantage of SSM

degrades to be trivial. These limitations are just reference for predicting and evaluating

the performance of SSM in realistic situations, which does not undermine the benefit of

SSM studied in this thesis.

In summary, the SSM problems in different scenarios have been tackled under moder-

ation conditions and with feasible computation costs. Different measures are taken in

each scenario, to solve the formerly intractable problem online and in real time. Un-

der moderate conditions, the solutions proposed in this work have better performance

compared with baseline methods.
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7.2 Future Work

For the SSM of randomly moving targets, the underlying POMDP or Dec-POMDP are

both intractable. For the practical application, further research on how to improve

the computational efficiency is vital to its success. This can be done by tailoring the

planning to each specific application, such as designing heuristic functions for value

estimation. For the SSM of evasive targets, more realistic target model can be studied to

accurately predict the target behaviours, thus to relax the current worst case assumption

without inducing excessive computation load. For the multi-agent SSM, a practical

communication model should be considered and included into the policy planning, for the

application of multi-agent SSM on realistic systems. The concept of sensor network can

be applied in multi-agent SSM, to allow information sharing without full communication.

The scenarios when the initial number and property of targets are unknown should also

also be studied, which can be combined with machine learning techniques.

The experimental validation of this work is on progress, which will be included in a

Journal paper. The author will always look for chances to apply the SSM algorithm in

real robot system to push the current boundaries.
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