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Abstract
Visceral leishmaniasis (VL) is a neglected tropical disease caused by various Leishmania spp. It poses a threat throughout the world with 200,000-400,000 new cases annually. During VL, large scale localised immune responses are mounted which fail to contain the parasite and morbidity ensues, leading to death if untreated. A hallmark of this immune response to visceral infection in experimental models of VL is the development of hepatic granulomas, comprised of inflammatory leukocyte aggregates surrounding a central parasitized core of macrophages. Liposomal Amphotericin B (LAmB) is a frontline treatment for VL but the interaction of LAmB with different leukocyte subsets is poorly characterised and the dependency of therapeutic outcome on processes such as leukocyte migration is largely unknown.

In this thesis, an interdisciplinary approach, combining immunological investigations, mass spectroscopy analysis and mathematical modelling, was employed to investigate the sub-tissue distribution of Amphotericin B in the liver of L. donovani-infected mice treated with LAmB. Utilising fluorescence activated cell sorting coupled with liquid chromatography tandem mass spectroscopy, we defined the sub-tissue description of Amphotericin B for the first time. Following from this, a mathematical model was developed that described the hepatic immune response to infection with L. donovani, accounting for both intracellular and extracellular populations of parasite, with the aim of extending this model using pharmacological data. The mathematical model describing both the immune response to infection and the pharmacokinetic and pharmacodynamic activities of LAmB within the liver allows for investigation into the influence of immunological processes on drug accumulation.
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[bookmark: _Toc3716040]General Research Overview
Leishmaniasis is a neglected tropical disease caused by over 20 members of the Leishmania genus (Ready 2014) with a global burden predicted at more than 12 million infected individuals in 2006 and with approximately 2 million new cases annually (The Sixtieth World Health Assembly 2007). Visceral leishmaniasis (VL; also known as kala-azar) is one of three predominant clinical manifestations for leishmaniasis with an estimated annual incidence of between 202,200 - 389,100 and 20,000 - 30,000 deaths annually (Alvar et al. 2012). The causative agents of VL are members of the Leishmania donovani complex, namely L. donovani and L. infantum (Zemanová et al. 2007). The tegumentary leishmaniases, including simple cutaneous leishmaniasis (CL), diffuse cutaneous leishmaniasis and post kala azar dermal leishmaniasis are non-fatal forms of leishmaniasis that often result in disfiguring lesions, leading to social stigma and potential ostracism. Mucocutaneous leishmaniasis (MCL) is a metastatic disease affecting the mucosal membranes of the host and often resulting in facial disfigurement. The tegumentary and mucosal forms of leishmaniasis are caused by a variety of Leishmania species, although typically not L. donovani. 

Universally accepted therapeutic agents for the treatment of leishmaniasis are pentavalent antimonials, liposomal Amphotericin B (LAmB), Amphotericin B deoxycholate (DAmB), Paromomycin and Miltefosine (WHO Expert Committee on the Control of Leishmaniases 2010). However, drawbacks of these therapies include variable geographic efficacy (Berman et al. 1998), cost (Olliaro and Sundar 2009) and/or an emergence of resistance (Ponte-Sucre et al. 2017). LAmB, of which Amphotericin B (AmB) is the anti-leishmanial component, is considered a gold-standard treatment for VL and there is a plethora of work investigating its pharmacokinetics (PK), in both humans, healthy subjects and those infected with invasive fungal infections, (Bekersky et al. 2002; Vogelsinger et al. 2006; Hamill 2013) and rodent models (Fielding et al. 1991; Proffitt et al. 1991; Wang et al. 1995; van Etten et al. 1995; Smith et al. 2007; Gershkovich et al. 2009; Angra et al. 2009; Kagan et al. 2011, 2014), and its pharmacodynamic (PD) activity against Leishmania spp. (Saha, Mukherjee, and Bhaduri 1986; Paila, Saha, and Chattopadhyay 2010; Purkait et al. 2012; Balasegaram et al. 2012; Corral et al. 2014; Voak et al. 2018). This includes characterising whole liver drug accumulation and AmB-mediated hepatic parasite clearance. However there has not been extensive research into the PK/PD of LAmB (or the subsequent released AmB) for VL-infected patients or animals, especially at the sub-tissue level.  

Within the liver, infection with visceralising species of Leishmania induces the formation of granulomas, whereby leukocytes aggregate around tissue resident macrophages that have taken up parasites (Murray 2001; Kaye and Beattie 2016). The role and/or impact of granulomas in LAmB action against Leishmania parasites has to date not been investigated. In contrast, recent research on the treatment of tuberculosis has highlighted differential drug accumulation evident in pulmonary granulomas compared to surrounding parenchymal tissue (Rifat et al. 2018). This research suggests that there are sub-tissue level processes that affect localised drug accumulation. 

In this thesis, the accumulation of AmB at both a whole and sub-tissue level is investigated following administration of LAmB to C57BL/6 mice infected with L. donovani. I describe the development of a mathematical model representing a simplified hepatic immune response to L. donovani. Finally, the aforementioned mathematical model is extended to include the derived pharmacological data, with the aim of providing a tool for the investigation of sub-tissue level processes that may affect the therapeutic outcome of LAmB.

In the following sections, an overview of visceral leishmaniasis epidemiology and transmission, the immune response to infection and current therapies is presented. Approaches to simulating biological processes are then introduced including the development and calibration of in silico models.

[bookmark: _Toc3716041]Visceral Leishmaniasis
[bookmark: _Toc3716042]Epidemiology
Leishmaniasis has a global distribution with a presence on 5 continents and is endemic in over 98 countries (Alvar et al. 2012), a distribution which has increased over time. The geographic spread of VL as of 2015 is shown in Figure 1.1. VL endemicity is prevalent in countries in both the New (Central and South America) and Old World (Europe, Asia and Africa). L. infantum and L. donovani are both associated with the Old World disease with L. infantum also found in the New World (Ready 2014). Previously, it has been estimated that ~90% of the new VL cases arising each year occur in Bangladesh, Brazil, Ethiopia, India, South Sudan, and Sudan (Bhattacharya and Dash 2017). VL is strongly linked to poverty (Alvar, Yactayo, and Bern 2006) which impacts on those afflicted through lack of access to healthcare and inability to afford treatment (among other factors). The symptoms of VL are fever, hepatosplenomegaly, weight loss, haematological disorders and cachexia (Pearson et al. 1992; McCall, Zhang, and Matlashewski 2013). It should be noted that both L. donovani and L. infantum infection often results in asymptomatic infections (Biglino et al. 2010; Sakkas, Gartzonika, and Levidiotou 2016), with rates predicted to be 30-100 sub-clinical cases for every 1 active case (Pavli and Maltezou 2010).
[image: ][bookmark: _Ref523920751][bookmark: _Toc525227181][bookmark: _Toc536814120]Figure 1.1 - Visceral Leishmaniasis Cases Worldwide. World map denoting the geographic spread of visceral leishmaniasis and burden of new cases, as of 2015. Available at: http://www.who.int/leishmaniasis/burden/en/. Accessed: 05/09/2018.


Human immunodeficiency virus (HIV) is an important co-infection in VL patients,  having been reported in nearly 35 countries (Lindoso et al. 2016). Overlapping transmission areas of both HIV and VL (Griensven, Zijlstra, and Hailu 2014) in countries where there are ongoing HIV and VL epi- or endemics has allowed for an increase in the development of HIV-VL cases. For example, an 11x increase in the presentation of HIV-VL co-infection was reported in Brazil between 2001-2012 (Lindoso et al. 2016). Clinically, co-infected patients present poor responses to anti-leishmanial therapy and are more likely to suffer a relapse of their initial VL (Coutinho et al. 2017), ultimately leading to a higher rate of mortality in coinfected compared to single infected VL patients.

An interesting sequela of VL is the development of post kala-azar dermal leishmaniasis (PKDL). This presentation predominantly occurs in patients who have, or who are thought to have, cleared their initial VL infection (Mukhopadhyay et al. 2014). The disease is limited to those cases where L. donovani was the causative agent of the initial VL infection (Zijlstra 2016) and patients present with macular, papular, or nodular lesions in the skin (Mukhopadhyay et al. 2014). The onset of PKDL is thought to be linked to the activation of latent L. donovani residing within the skin with inadequate or incomplete therapy being cited as a possible risk factor for the emergence of PKDL. Lesions in PKDL can contain high numbers of parasites and are thus thought to play a role in leishmaniasis transmission (Ganguly et al. 2010).

[bookmark: _Toc3716043]Transmission
Leishmania are vector-borne parasites transmitted between hosts by female sand flies. Of the 800-1000 recorded sand fly species, there are 98 that are suspected of or have been proven to be vectors of Leishmania species that cause human disease (Maroli et al. 2013). In the Old and New World, Phlebotomus spp. and Lutzomyia spp. are, respectively,  the principle vectors recorded (Bates 2008). The transmission of VL-causing parasites in India is thought to be anthroponotic (i.e. human to human) with no non-human reservoirs for the parasite identified to date. In contrast, in other regions the transmission can be either anthroponotic or zoonotic (where non-human mammals serve as reservoirs of infection; (Quinnell and Courtenay 2009). An understanding of transmission dynamics is a significant factor underpinning elimination strategies for VL. Another facet of the vector-borne nature of Leishmania parasites is that they have a digenetic life-cycle (Sunter and Gull 2017).

[bookmark: _Toc3716044]Parasite Life Cycle
The two main life cycle stages associated with the Leishmania digenetic life-cycle and leishmaniasis infection are the promastigote and amastigote forms. It should be noted that at least five developmental forms of promastigote have been defined in the sand fly vector (procyclic, nectomonad, leptomonad, metacyclic and retoleptomonad) (Bates 2018; Serafim et al. 2018). Sand flies bite to obtain a blood meal and in doing so deposit ‘infective’ metacyclic promastigotes into the blood pool formed by capillary rupture (Sunter and Gull 2017). These metacyclics are morphologically characterised as having an elongated ovoid cell body with an anterior flagellum that enables motility (Wheeler, Gluenz, and Gull 2013). Infection of host phagocytes results in metacyclics being initially found within the phagolysosomal compartments of host phagocytes. 

Environmental cues, such as temperature and pH, induce metacyclics to differentiate into amastigotes (Chow et al. 2011).  This intracellular form has a characteristic rounded ovoid shape and whilst it retains its anterior flagellar pocket, no exterior flagellum is seen (Wheeler, Gluenz, and Gull 2013). The amastigote form is also considered to be the only replicative form in the mammalian host and once localised to the intracellular environment amastigote proliferation occurs. It is thought that once amastigotes reach a certain threshold number, the host cell bursts releasing the amastigotes to infect neighbouring cells (Steverding 2017). However an alternative theory is that amastigotes egress out of their host cells instead of bursting through them (Forestier et al. 2011). Either would result in the expansion of the number of Leishmania infected cells and the potential for dissemination through the host. Sand flies feeding upon infected hosts can consume cells containing amastigotes. Once in the digestive system of the sand fly, amastigote to promastigote differentiation occurs, though the details of this process are unclear. A simplified [image: ]representation of Leishmania transmission and its life cycle is shown in Figure 1.2.[bookmark: _Ref523921060][bookmark: _Toc525227182][bookmark: _Toc536814121]Figure 1.2 - Transmission and Life Cycle of Leishmania spp. A simplified representation of the transmission and life cycle of Leishmania parasites. Sandfly specific stages are shown within the blue area, host specific activities are within the red area.


[bookmark: _Toc3716045]Initial Infection with Visceral Leishmaniasis 
The bite of the sand fly induces a localised cutaneous pro-inflammatory response. Components of sand fly saliva (Teixeira et al. 2005; McCall, Zhang, and Matlashewski 2013; Lestinova et al. 2017) and secreted molecules from the promastigotes residing in these sand flies (Rogers 2012) have been shown to modulate the immune response upon sand fly feeding. A key modulatory effect is the induction of leukocyte migration to the bite site, predominantly monocytes and neutrophils (Ribeiro-Gomes et al. 2012). The arrival of these cells allows for their infection by the deposited Leishmania promastigotes. Resident dermal macrophages may also be targets of infection (Lee et al. 2017). This initial infection step is crucial for the development of infection. Indeed, previous research has shown that after intradermal inoculation of L. donovani promastigotes into hamsters no extracellular promastigotes could be seen after 12 hours (Wilson et al. 1987). This infection of host cells has been shown to be a receptor dependent process which induces phagocytosis of the parasite (Ueno and Wilson 2012), either promastigotes for initial infection or amastigotes for the maintenance of infection.

The dissemination of Leishmania to the viscera has been postulated to occur by two main mechanisms. Parasitaemia, the presence of parasites within the blood, has been previously shown after inoculation with Leishmania parasites (Paraguai de Souza et al. 2001). It is possible that parasites enter the blood supply at the dermal site of infection allowing for their capture by tissue resident macrophages at distal sites and thus beginning a visceral infection. An alternative theory is that Leishmania infected motile leukocytes act as transporters (Ribeiro-Gomes et al. 2012). Subsequent transport away from the site of infection would then lead to a visceralised infection. However, the mechanism of dissemination has yet to be fully elucidated. By whichever method, the dermal inoculation of Leishmania in human hosts eventually manifests as an ongoing infection within the viscera, with the liver as one of the key sites of infection.

[bookmark: _Ref523316826][bookmark: _Toc3716046]Hepatic Immune Response to Infection
[bookmark: _Ref523921599][bookmark: _Toc3716047] Early Infection Events
The liver is highly perfused with low pressure vascular channels called sinusoids. Within these blood vessels one of the major cell types found is the hepatic tissue resident macrophage, also known as Kupffer cells (KCs) (De Leeuw, Brouwer, and Knook 1990; Du et al. 2017). For humans, mice, and hamsters (among other species) the liver is a multilobular organ (Baratta et al., 2009; Abdel-Misih & Bloomston, 2014; Murray, 2012) which plays a key role in filtering blood from the digestive tract, metabolising xenobiotics and removing toxins and/or waste products. Additionally, metabolic processes, such as protein synthesis and degradation (Tavill, 1972) and glycogenolysis and gluconeogenesis (Rui, 2014), occur within the liver.

The four major cell types found within the liver are hepatocytes, endothelial cells, Kupffer cells and stellate cells (Baratta et al., 2009), however there are still populations of leukocytes present (Markose et al., 2018). In humans, approximately 70-85% of the liver volume is made up of hepatocytes (Zhou, Xu & Gao, 2015), with an estimated 52% of murine hepatic cells being hepatocytes (Baratta et al., 2009). Hepatocytes are well known to play a key role in the metabolic activities of the liver where they participate in protein synthesis, carbohydrate & lipid metabolism and can also metabolise drugs and other exogenous compounds. 

Liver sinusoidal endothelial cells form a barrier between the blood components in the sinusoid lumen and the liver tissue outside (Poisson et al., 2017), in steady state conditions these cells help regulate sinusoidal pressure (Poisson et al., 2017) but also have some immune capabilities such as the expression of adhesion molecules and the presentation of antigen (McNamara & Cockburn, 2016). Hepatic stellate cells under homeostatic conditions play a major role in retinoid regulation, with specific receptors for the uptake of retinoid and the retinoid-binding protein (Senoo, 2004), however activation of hepatic stellate cells causes their differentiation to proliferative myofibroblasts which significantly contribute to the production of extracellular matrix proteins which can lead to liver fibrosis (Tsuchida & Friedman, 2017). In a physiological state, leukocytes can also be found within the liver, especially non-typical T cells (McNamara & Cockburn, 2016). CD8 and CD4 T cells can also be found within the steady state liver where they can have tolerance induced through interactions with liver sinusoidal endothelial cells or with immunosuppressive mediators, such as IL-10, produced by resident antigen presenting cells, such as KCs (Markose et al., 2018).  

Due to their residence in the lumen of the sinusoid, KCs are able to interact with pathogens, xenobiotics, liposomes and various nanoparticles (Kolios, Valatas, and Kouroumalis 2006; Tan and Webster 2018) in the blood supply. Predominantly the uptake of these entities by KCs is dependent on either phagocytosis or pinocytosis (Bilzer, Roggel, and Gerbes 2006; Tan and Webster 2018). Processing of this absorbed material allows for the surface presentation of peptides and lipids (You et al. 2008), among other compounds, on major histocompatibility complex (MHC)-encoded antigens allowing for activation of adaptive immunity (Amprey et al. 2004; You et al. 2008). In homeostatic conditions however, the liver favours immunotolerance to prevent the development of an inflammatory response to absorbed material from sources such as food. KCs are thought to play a key role in this via multiple mechanisms including the induction of IL-10 production (Breous et al. 2009)  and suppression of CD4+ T cells (Heymann et al. 2015). Thus, KCs function as antigen presenting cells (APC) but can also be tolerogenic.

Generally, KCs can be segregated into two subsets, one which is comparatively long-lived and radio-resistant, termed sessile, and another which have a rapid turnover and are radio-sensitive (Klein et al. 2007). Sessile KCs are resident macrophages that arise from the foetal liver, although some may be seeded into the liver by the embryonic yolk sac (Ginhoux and Guilliams 2016; Beattie et al. 2016), and retain their proliferative ability to maintain a steady state population whereas non-sessile KCs are derived from blood monocyte precursors (Dixon et al. 2013). 

The early infection events of the liver are not easily studied in humans, but much has been learned from in vivo models of VL, termed experimental visceral leishmaniasis (EVL), and in vitro infection systems. During EVL, KCs act as the main host cell for parasites within the liver (Ridley 2013) and as they are unable to initially clear their intracellular parasites, they become foci for the hepatic granulomatous response. Injection of L. donovani amastigotes into the bloody supply of mice results in the rapid appearance of parasites in the liver. As early as 2 hours post-injection, L. donovani - Kupffer cell interactions can be seen (Kaye and Beattie 2016). In vitro, the incubation of L. donovani promastigotes with isolated murine KCs results in the parasitization of the KCs with a decrease in intracellular L. donovani numbers over 72h. Interestingly, incubation with L. donovani amastigotes resulted in heavier levels of infection and an increase of intracellular amastigote numbers at 72hrs (Lepay et al. 1985), suggesting that amastigotes have a higher infective capability.

KCs, like other macrophages, are capable of different anti-microbial responses including the oxidative response whereby reactive oxygen and nitrogen species are created (Marangoni et al. 2006) that kill intracellular pathogens. In vitro, KCs that ingest either L. donovani promastigotes or amastigotes have been shown to produce the super oxide anion (O2-) and hydrogen peroxide (H2O2) (Lepay et al. 1985). In vivo, mice deficient in inducible nitric oxide synthase (iNOS null mutant mice) infected with L donovani fail to control infection as compared to their wild-type counter parts (Murray and Nathan 1999). Generally, the initial infection of KCs in vivo stimulates them to exercise some anti-leishmanial activity. Dead parasites are then processed for the presentation of antigen on the KC surface. Additionally, infected KCs are thought to transiently produce chemokine (C-C motif) ligand 1 (CCL1), CCL2 and C-X-C motif chemokine 10 (CXCL10) (Cotterell, Engwerda, and Kaye 1999). These chemokines act as attractants for various leukocyte populations, such as monocytes (Shi and Pamer 2011), T cells (Norose et al. 2011) and natural killer (NK) cells (Morrison et al. 2003). However, the levels of CCL1 and CCL2 drop after 24hrs, whilst remaining above the pre-infection levels, with the sustained production of CXCL10 dependent on T cells (Cotterell, Engwerda, and Kaye 1999). In addition to this, infected KCs may also attract local uninfected KCs to their location where cellular fusion can occur (McElrath, Murray, and Cohn 1988; Beattie et al. 2010).

For KCs and Leishmania, a well-described route of antigen presentation is via the surface protein CD1d, a non-classical major histocompatibility complex (MHC) protein. CD1d is used to present glycolipids of Leishmania (Zamora-Chimal, Hernández-Ruiz, and Becker 2017) which directly interacts with natural killer T (NKT) cells and activates them (Amprey et al. 2004; Beattie et al. 2010; Karmakar et al. 2012; Zamora-Chimal, Hernández-Ruiz, and Becker 2017). For indirect activation, dendritic cells that recognise leishmanial glycolipids will produce interleukin (IL)-12, a cytokine that stimulates the growth and function of T cells (Hsieh et al. 1993), allowing them to indirectly activate NKTs (Zamora-Chimal, Hernández-Ruiz, and Becker 2017).

NKT cells are a subset of T cells that rapidly respond to activation with the production of an array of cytokines (Zlotnik et al. 1992; Liao, Zimmer, and Wang 2013; Bernin et al. 2016). These NKT cells share some similarities with both NK cells and T cells, such as surface marker expression (Godfrey et al. 2004), and are characterised into two classes (Type I & II). Murine type I NKT cells (also known as invariant natural killer T cells [iNKT]) express an invariant Vα14/Jα18 T cell receptor (TCR) α chain paired with a limited set of TCRβ chains (Liao, Zimmer, and Wang 2013) whereas type II NKTs display higher levels of TCRβ chain variability (Godfrey et al. 2004). Once activated NKTs produce chemokines associated with both a Th1 and Th2 response (Coquet et al. 2008; Bernin et al. 2016) including the Th1-associated chemokine interferon  (IFN), a key player in host protection (Squires et al. 1989; Murray 1990).

IFN production by iNKT cells is required for the sustained production of CXCL10 described above. In this way, iNKTs act as potentiators of the immune response. However, iNKTs are not themselves critical for resolving Leishmania infections, as iNKT deficient mice infected with L. donovani still show similar hepatic parasite loads as wild-type counterparts at 8 weeks post-infection (Amprey et al. 2004). However, the production of the initial cytokines and chemokines following KC infection and iNKT activation helps orchestrate granuloma formation.

[bookmark: _Ref523921602][bookmark: _Toc3716048] Granuloma Formation & Maturation
The developing hepatic granulomatous response during VL can be classified into four “maturation” states, based largely on morphology in thin tissue sections: infected KCs with no surrounding inflammatory cells; an immature granuloma, with small numbers of leukocytes associated with an infected KC; a mature granuloma, containing a florid inflammatory response of multiple leukocyte subsets; and an apparently sterile granuloma free of visible parasites (Murray 2001; Moore et al. 2013; Salguero et al. 2018).  Granuloma development is asynchronous, as evidenced by co-existence of granulomas at varying stages of maturation throughout the time course of infection. At 1 week post-infection, infected foci with no granulomatous response represent ~92% of total infection foci (Murray 2001), but this figure drops to between 9-26% at 2 weeks post-infection (Murray 2000, 2001).

Infected foci with no granulomatous response progress to form immature granulomas. These are classed as either singular or fused infected KCs that are surrounded by loosely organised mononuclear cells and these loosely organised mononuclear cells are typically composed of T cells, B cells, monocytes and neutrophils (Smelt et al. 2000; Stanley and Engwerda 2006; Moore et al. 2012; Salguero et al. 2018). It is possible their appearance around infected foci may be due to local repositioning or as a result of migration into the liver. Regardless of the mechanism, the emergence of immature granulomas is cytokine and chemokine dependent. Null mutant mice have been used to show how the absence of a variety of cytokines and chemokines impacts the formation of granulomas in initial stages of infection. Loss of IL-2, IL-12, IFN, tumour necrosis factor (TNF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) resulted in a ‘no response’ (referring to the granulomatous response) phenotype in either BALB/c or C57BL/6 mice (Murray 2001). Additionally, CXCL10, C-X-C chemokine receptor (CXCR) 3, CCL2, and CCL5 null mutant mice all showed deficient initial granuloma assembly upon infection with L. donovani (Murray et al. 2017). 

Although granulomas are generally regarded as predominantly mononuclear in composition, neutrophils have been described in hepatic granulomas following L. donovani infection. Neutrophils are a fundamental cell type within the innate immune response, highly abundant in circulating blood (Rosales et al. 2016) they quickly migrate in response to inflammatory stimuli and can immediately kill pathogens without a need for previous exposure (Kobayashi and DeLeo 2009). There is scant evidence for the role of neutrophils in granuloma formation however their presence in immature, mature and sterilised granulomas has previously been described (Smelt et al. 2000; Salguero et al. 2018). In contrast, during the pulmonary immune response to infection with Mycobacterium tuberculosis, neutrophils readily accumulate within the lung of susceptible mice (Eruslanov et al. 2005). 

Monocytes are mononuclear cells that develop in the bone marrow from where they are released into the blood stream and subsequently enter tissue compartments (Geissmann, Jung, and Littman 2003; Patel et al. 2017). In humans, three subsets of monocyte have been characterised: classical (classified as CD14++, CD16−, CCR2hi and CX3CR1lo), intermediate (classified as CD14++, CD16+, CCR2hi and CX3CR1lo) and non-classical (classified as CD14+, CD16++, CCR2hi and CX3CR1lo) (Strauss-Ayali, Conrad, and Mosser 2007; Shi and Pamer 2011). In mice, there are two main monocyte subsets Ly6Chi and Ly6Clo, characterised as CD11b+, CD115+, Ly6Chi, CCR2hi & CX3CR1lo and CD11b+, CD115+, Ly6Clo, CCR2lo & CX3CR1hi respectively (Geissmann, Jung, and Littman 2003; Shi and Pamer 2011).  In the context of granuloma formation, monocytes respond to toll-like receptor (TLR) stimulation by parasite antigens as well as activation by IFN (Cervia, Rosen, and Murray 1993; Terrazas et al. 2017). Monocyte activation typically leads to the production of reactive nitrogen species as well as pro-inflammatory signals such as TNF (Terrazas et al. 2017). Depletion of monocytes during EVL was shown to delay granuloma development and resulted in a significantly increased hepatic parasite burden at 4 weeks post-infection (Cervia, Rosen, and Murray 1993). Optimal influx of monocytes is T cell dependent but additionally migratory factors such as C-C chemokine receptor (CCR) 2 and GM-CSF are crucial for granuloma formation and reduction in parasite load (Wynn et al. 2001; Bunn et al. 2014).

T cells are a critical component of the adaptive immune response and carry out cell-mediated immune responses. Beginning life as bone-marrow derived progenitors which migrate to the thymus, T cells mature in the thymus after undergoing selective processes that broadly determine if they will be CD4+ or CD8+ T cells (Alberts et al. 2002; Zúñiga-Pflücker 2004; Broek, Borghans, and Wijk 2018). CD4+ T cells, also denoted as T helper cells, are one of the two main T cell subsets. These CD4+ T cells can further be broadly divided into 4 subsets: T helper 1 (Th1), T helper 2 (Th2), T helper 17 (Th17) and T regulatory cells (Treg) (Luckheeram et al. 2012). Th1 and Th2 responses, typically characterised by the production of different ranges of cytokines, chemokine and/or transcription factors, are the main T helper cell groups associated with the outcome of VL (Kemp et al. 1993; Miralles et al. 1994; Murray, Hariprashad, and Coffman 1997; Kemp et al. 1999).

Th1 cells predominantly mediate immune responses against intracellular pathogens (Luckheeram et al. 2012). They are derived from naïve T cells by their expression of the master transcription factor T-box transcription factor (T-bet) (Luckheeram et al. 2012; Kanhere et al. 2012). T-bet expression is mediated by responsiveness to IL-12 and IFN (Lighvani et al. 2001; Ylikoski et al. 2005). Upon differentiation into Th1 there is a significantly enhanced production of IFN by the Th1 cells which induces anti-microbicidal activity by phagocytes (discussed in Parasite Clearance). In the livers of BALB/c mice infected with L. donovani, IFN mRNA was readily detected by both Northern blot and qPCR (Miralles et al. 1994), suggesting a Th1 response. A later study found approximately 70% of CD4+ T cells within infected murine livers showed an activated phenotype with roughly 30-40% of these have the capacity to production IFN further confirming a degree of Th1 response. However, in human blood IFN was detectable in only 53% of VL patients compared to 56% showing IL-10 detection, typically associated with a Th2 response. Th2 cells mediate the host response to extracellular pathogens, such as helminths (Luckheeram et al. 2012), but also plays a role in asthma (Barnes 2001). IL-4 and IL-2 are key cytokines in the development of a Th2 response leading to expression of IL-4 induced STAT6 which in turn upregulates expressions of the master regulator GATA-binding protein 3 (GATA3) (Luckheeram et al. 2012; Kanhere et al. 2012). A typical Th2 cytokine signature is the production of IL-4 and IL-10, with the later cytokine being able to suppress the development of a Th1 response (Couper, Blount, and Riley 2008). Whilst Th1 lymphocyte responses are often associated with a reduction in parasite load in VL, cardinal Th2 cytokines such as IL-4 and IL-13 are required for optimal granuloma assembly (Stäger et al. 2003; McFarlane et al. 2011, 13). 

CD8+ T cells, also known as cytotoxic T cells (Tc), are also associated with granuloma formation (Stern et al. 1988). Tc cells recognise antigens presented on MHC I molecules (Janeway et al. 2001). Once antigenically stimulated, naïve Tc cells differentiate into effector cells secreting IFN and TNF (Ratner and Clark 1993; Bhat et al. 2017). These activated Tc cells additionally can proliferate and kill infected cells and/or supplement the cytokine milieu required for macrophage activation.

Typically, in mouse models, by 4 weeks post-infection mature granulomas have been formed composed of infected KCs surrounded by mantle of the aforementioned neutrophils, monocytes and T cells (Murray 2001). This aggregation is key for parasite clearance which is described below.

[bookmark: _Ref523921603][bookmark: _Toc3716049]Parasite Clearance
As previously described, KCs form the main host target for L. donovani in the liver. Macrophages can typically exist in two different activation states: a classical activated pro-inflammatory M1 phenotype and either an alternatively activated or deactivated M2 phenotype (M2a and M2c respectively) (Martinez and Gordon 2014; Mukhopadhyay et al. 2015). M1 macrophages can be activated by IFN and proceed to produce pro-inflammatory cytokines, such as IL-6, and reactive oxygen and nitrogen species. Thus, M1 macrophages promote an anti-intracellular pathogen response (Mukhopadhyay et al. 2015). However, L. donovani can subvert the microbicidal mechanisms of macrophages (Shio et al. 2012; Arango Duque and Descoteaux 2015; Hammami et al. 2017) allowing for its survival. One of these methods is the subversion of macrophages to an M2 phenotype, which can also be achieved through detection of IL-10 or IL-4 + IL-13 (Martinez and Gordon 2014).

The mature granuloma is required for strong IFN production by the composite cell groups to ‘switch’ infected Kupffer cells from either a deactivated (M2c) or alternatively activated (M2a) state into a pro-inflammatory state (M1). In mice that lack the ability to produce reactive nitrogen species there is uncontrolled parasite growth, as compared to wild-type controls, highlighting the critical role of these species (Murray and Nathan 1999). Conversely to IFN, IL-10 promotes parasite survival within VL (Bhattacharyya et al. 2001; Murphy et al. 2001). Mice deficient for IL-10 (Il10 null mutant mice) are highly resistant to L. donovani infection with increased IFN and nitric oxide production associated with this deficiency (Murphy et al. 2001) and an enhanced Th1 response (Murray 2008). Albergante and colleagues suggested that the deactivation of KCs, promoted by L. donovani, induced the production of IL-10 which is one of the causations of L. donovani survival in VL (Albergante et al. 2013), however the induction of a Th2 response is also a source for IL-10 production (Couper, Blount, and Riley 2008). Figure 1.3 summarises the progression from the initiation of infection through to granuloma maturation and sterilisation. Whilst in some murine models, such as the C57BL/6, resolution of hepatic parasite burden occurs naturally, this process can be expedited by the administration of therapeutic agents discussed [image: ]in Section 1.2.6. 

[bookmark: _Toc3716050]Other Models of Hepatic Infection[bookmark: _Ref523921819][bookmark: _Toc525227183][bookmark: _Toc536814122]Figure 1.3 - Hepatic Granuloma Formation during Experimental Visceral Leishmaniasis. The progressive schematic denotes a generalised immune response in the liver of the murine EVL introduced in Sections 1.2.5.1, 1.2.5.2 and 1.2.5.3.


The description of the immune response introduced in this section has been derived through examination predominantly in murine models. However, these do not fully capture the pathological features of human disease. The Syrian golden hamster model is considered one of the best models of severe L. donovani and L. infantum infection as the disease manifestation and clinical features matches those of human disease (Loría-Cervera and Andrade-Narváez 2014). In the livers of these infected hamsters uncontrolled parasite replications occurs in the face of a strong Th1 response, characterised by a high mRNA expression of IL-2 and IFN (Melby et al. 1998). Whilst a Th1 response is instantiated and maintained, the proliferative response to antigenic stimulation in the liver is dysfunctional, attributed to the inability of APCs to stimulate T cell proliferation (Rodrigues Júnior, Da Silva, and Campos-Neto 1992) and TGF production (Banerjee et al. 2011). Additionally, to these features, the loss of macrophage effector functions is a key feature of the inability to control infection with iNOS mRNA expression undetectable throughout the course of infection (Perez et al. 2006). Whilst the hamster model recapitulates pertinent features of human infection, it can be intractable to study due to a lack of reagents needed for immunological investigations (such as antibodies) and difficulties in carrying out animal procedures (especially intravenous injections).

[bookmark: _Ref523316869][bookmark: _Toc3716051]Therapeutics for Visceral Leishmaniasis
[bookmark: _Toc3716052]Amphotericin B & Liposomal Amphotericin B
Amphotericin B (AmB) was discovered in 1955 (Walker 2012) and initially used as a highly efficacious anti-fungal therapeutic. Invasive fungal infections, such as those caused by Aspergillus, Fusarium and Zygomycetes, can be treated with AmB (Cornely 2008; Klepser 2011) however the apparent toxicity of AmB led to the development of liposomal formulations which aimed to retain efficacy whilst reducing adverse events associated with treatment (Montagna et al. 2014). AmB is a polyene macrolide which binds sterols found on cellular membranes, both eukaryotic (Czub and Baginski 2006; Mesa-Arango, Scorzoni, and Zaragoza 2012) and protozoan (Goldsmith and Perry 2004), which is proposed to induce the formation of intra-membrane pores through multimerization of AmB (Baginski, Czub, and Sternal 2006; Czub and Baginski 2006). These pores, shown in Figure 1.4, cause leakage of intracellular components ultimately leading to cell death.
[image: ][bookmark: _Ref523922491][bookmark: _Toc525227184][bookmark: _Toc536814123]Figure 1.4 - Two proposed Amphotericin B interactions with ergosterol containing membranes. Amphotericin B can bind ergosterol in membranes forming a single pore permeating the entire membrane, or two pores which align to permeate the membrane. Adapted from (Janout et al. 2015).


Due to its ability to bind ergosterol, a membrane component of Leishmania spp., AmB has anti-leishmanial properties and has since been adapted as a highly efficacious therapy for the treatment of VL. DAmB when used as monotherapy in humans with VL showed > 90% cure rate at 6 months post-infection but was associated with nephrotoxicity (Balasegaram et al. 2012). LAmB administered daily over 5 days using a total dosage of between 5-15 mg/kg produced definitive cure rates of between 79-100% (Goldsmith and Perry 2004). However, an emerging disadvantage of AmB (in any formulation) is varying geographic efficacy, with AmB showing high efficacy in India but lower cure rates in Brazil, Sudan and Kenya (Berman et al. 1998; Saravolatz et al. 2006; Mondal et al. 2014). The primary mechanism of action of AmB against Leishmania is thought to be the formation of membrane pores, whereby ergosterol, a membrane sterol not found in mammalian cells, is bound and AmB multimerises. AmB can bind cholesterol present in mammalian membranes but preferentially binds to ergosterol (Hsuchen and Feingold 1973). Once exposed to AmB L. donovani promastigotes show the continuous leakage of small molecules and additionally the inability to uptake extracellular components (Saha, Mukherjee, and Bhaduri 1986). Additional mechanisms have been proposed including activation of immune pathways (Mesa-Arango, Scorzoni, and Zaragoza 2012) and alterations in host cell membranes leading to reduced parasite - macrophage interactions (Chattopadhyay and Jafurulla 2011).  

A plethora of PK studies, which aim to characterise the absorption, distribution, metabolism and excretion of AmB, have been carried out for both DAmB and LAmB formulations. The appropriation of human tissues is not feasible for longitudinal analyses of drug concentrations post-treatments, due to the highly invasive manner of tissue sampling, and thus mice are commonly used as model systems. These mouse studies have shown the liver and spleen accumulate large amounts of AmB post-treatment with either DAmB or LAmB (Gondal, Swartz, and Rahman 1989; Proffitt et al. 1991; Saxena and Ghosh 2000; Shadkchan, Zaslavsky, and Segal 2003; Xu et al. 2011). Additionally, the kidney accumulates large amounts of AmB post-treatment (Berman 1997) which leads to the emergence of nephrotoxicity. The encapsulation of AmB in liposomes reduces nephrotoxicity (Montagna et al. 2014) whilst retaining high levels of renal accumulation. In these studies, the concentrations of AmB are typically characterised by the use of high-performance liquid chromatography (HPLC). 

For HPLC, tissues are processed so that the analyte, in this case AmB, is dissolved into a solvent, such as methanol or DMSO, and passed through a column at high pressure. This column contains the stationary phase, a material which interacts with the solvent solution components in different degrees thus differentially slowing the passage of components and causing their separation. The separated components exit the column at different times, called the retention time, and are recognised by a detector, such as through the detection of UV light absorption. This output is recorded as a series of peaks, with the peak area proportional to the amount of analyte passing through the detector, shown in Figure 1.5. In this way concentrations of AmB can be quantified. However, the disadvantages of HPLC are the prerequisite knowledge of the sample retention time, which can be difficult to discern for complex mixtures such as processed biological tissue. Additionally, HPLC is less specific and sensitive for analyte detection, resulting in higher detection limits for some compounds (Abdel-Hamid 2000). 

A more recent approach for AmB quantification is the hybridisation of HPLC with Mass Spectrometry (MS) called Liquid Chromatography tandem mass spectrometry (LC-MS/MS), with LC-MS/MS having a higher detection capability than traditional HPLC. A mass spectrometer measures the mass-charge ratio of charged particles (Grebe and Singh 2011) allowing it to identify analytes on the basis of fragmentation patterns without the need for a standard. One approach in LC-MS/MS is the use of a triple quadrupole mass spectrometer (TQMS). For TQMS, the HPLC proceeds as described however after analytes have passed through the column they are diverted for MS analysis, where firstly the analytes are ionised and pass through a mass filter (Q1), this separates the analyte ions on the basis of their mass-charge ratio so that only components of interest may pass through. Once through Q1, the ions are subject to an inert gas leading to fragmentation of the analyte ions which takes place in a ‘collision cell’ (q2), lastly the fragments are then subjected to a second mass filter (Q3) so that only fragments of interest may pass through and the abundance of these fragments is captured, shown in Figure 1.5. TQMS provides enhanced sensitivity as compared to HPLC, reducing false positive detection and better accuracy with regards to quantification (Hail, Berberich, and Yost 1989). TQMS is not without disadvantages as it is a process with high operational costs, the process complexity necessitates an experienced operator for the machinery and the throughput of samples is relatively low.


[image: ][bookmark: _Ref523926031][bookmark: _Toc523930567][bookmark: _Toc525227185][bookmark: _Toc536814124]Figure 1.5 - Schematic representing steps for High Performance Liquid Chromatography and Triple Quadrupole Mass Spectrometry. Initially a solvent (mobile phase) is pumped at high pressure through a column (solid phase), the sample is injected into the solvent. When passing through the column, components of the sample are separated (for example on the basis of size) and exit the column at different times (the retention time). For HPLC these fractions pass through a detector and are recorded by a computer. The dotted yellow line represents the link into TQMS. For TQMS an analyte (orange) is extruded from the column, but may contain other compounds (dark green), a mass filter (Q1) selects for only compounds of the correct mass-charge ratio (black dotted circle) these then proceed to a collision chamber (q2) where the analyte is bombarded and fragments. Specific fragments are selected (black dotted circle) by a second mass filter (Q3) and pass through to a detector where they are recorded by a computer.

[bookmark: _Toc3716053]Other Treatments
Miltefosine (hexadecylphosphocholine), an alkyl phospholipid, was originally utilised as an anti-cancer therapeutic (Dummer et al. 1993), however daily dosing with between 100 mg - 200 mg resulted in low levels of tolerability (Verweij et al. 1992). Miltefosine was then tested as an antileishmanial compound showing high efficacy in vitro (Croft et al. 1987; Verma and Dey 2004) and high cure rates in single VL infections (Dorlo et al. 2012). However, whilst efficacious in human patients, a variety of side effects are apparent focused around gastrointestinal intolerance (nausea, vomiting, diarrhoea) (Dorlo et al. 2012). The mechanism of action of Miltefosine is not well characterised however it is thought to involve induction of parasite apoptosis (Paris et al. 2004; Verma and Dey 2004) and/or disturbance of parasite cell signalling pathways (Lux et al. 1996; Pinto-Martinez et al. 2017). Pentavalent antimonials, including meglumine antimoniate and sodium stibogluconate, have been shown to be effective against various Leishmania spp. in vitro and in vivo (Kuhlencord et al. 1992; Nabors and Farrell 1995; Carter et al. 2003). However, their mechanisms of action have yet to be fully elucidated, with a variety of mechanisms proposed (Haldar, Sen, and Roy 2011), including immunomodulation. The efficacy of pentavalent antimonials has decreased over time, in 1984 long-term treatment (20 days) had cure rates of 86% (Thakur et al. 1984) whereas into the 90’s it was described that approximately one out of three patients were cured (Sundar et al. 2000). Even though Miltefosine and pentavalent antimonials are used in the treatment of VL, due to its high efficacy and reduced toxicity LAmB is being utilised increasingly in the treatment of leishmaniasis (Sundar and Chakravarty 2010). Currently there are no vaccines available for visceralising species of Leishmania, however this remains an area of study with potential candidates being investigated (Riede et al. 2015; Osman et al. 2017).

[bookmark: _Ref525116231][bookmark: _Ref525220674][bookmark: _Toc3716054]In silico models of Leishmaniasis
The preceding sections have introduced the investigations and understanding gained through traditional ‘wet lab’ approaches. Recently, the implementation of in silico (computational or mathematical) models to aid in the understanding of leishmaniasis have been implemented either as an alternative or in conjunction with immunological/pharmacological experimentation, some of these are introduced below.

Siewe and colleagues presented two mathematical models describing the immune response (Siewe et al. 2016) and granuloma formation (Siewe et al. 2017) following from Leishmania infection. Modelling the immune response, they captured various entities including T cells, dendritic cell and macrophages with a generalised representation of Leishmania parasites, without a specific species referenced. This model was extended to further describe granuloma formation dependent on various cell flux. Länger and colleagues described the parasite load during infection in respect to lymphocyte proliferation and the levels of generated IgG1 and IgG2a antibodies using a mathematical model of BALB/c mice infected with L. amazonensis (Länger et al. 2012), identifying increasing the lymphocyte proliferative levels as an area for therapeutic investigation. Taking a different approach, a cellular automata/lattice gas model modelling the effect of adenosine on T helper cell activation was utilised to described L. major infection in C57BL/6 mice; Use of this cellular automata showed T helper cell inhibition by adenosine reduced lesion sizes whilst negatively affecting infection resolution (Ribeiro et al. 2017). Additional models have further been introduced with a focus on granulomatous formation and inflammation (Flugge et al. 2009; Albergante et al. 2013; Moyo et al. 2018) for VL. These models have been utilised to investigate multiple competing hypotheses of biological processes, the impact of immunodeficiency during infection and the effect of cytokine signalling on local immune activation. All of the above models have taken differing computational or mathematical formats in their investigations of leishmaniasis, important concepts in the construction of in silico models are introduced below.

[bookmark: _Toc3716055]In silico Modelling of Biological Systems
[bookmark: _Toc3716056]In silico Modelling Approaches
Mathematical models are a common approach to in silico modelling of biological systems. Broadly speaking they can be divided into Ordinary Differential Equations (ODEs) and Partial Differential Equations (PDEs). Recently, computational approaches, such as agent-based modelling, have been more prevalent coinciding with an increase in achievable computational power and development of novel computational techniques, such as machine learning.

[bookmark: _Toc3716057]Ordinary (ODE) and Partial (PDE) differential equations
ODEs are collections of equations that capture the rate of change of entities (usually with respect to time) and are used to simulate population level behaviours. These equations contain mathematical terms which are translations of biological processes, which are either abstractions or simplifications. ODEs model each population as homogenous entities, whereby every member of the population can carry out the same activities at the same rate, and the captured results are reflective of total population level behaviours. These models have been widely implemented in both immunological investigations, such as predicting the viral load of HIV after exposure (Perelson, Kirschner, and De Boer 1993; Ho et al. 1995; De Boer and Perelson 1998; Martcheva and Li 2013; Shen, Xiao, and Rong 2015), and pharmacological investigations, such as descriptive models for the absorption, distribution, metabolism and excretion of drugs (Kagan et al. 2014; Zhao et al. 2011; Campbell et al. 2016), investigations.

ODE modelling has been utilised heavily in HIV research and this area provides a good example for the application of this modelling approach. The classical model of HIV viral load dynamics (Perelson and Nelson 1999) tracks the changes in uninfected and infected T cells and virion particles and has been adapted in various studies (Shen, Rabi, and Siliciano 2009; Yeghiazarian, Cumberland, and Yang 2013; Shen, Xiao, and Rong 2015). A set of equations adapted from the original work by Perelson and Nelson from a recent review (Dorratoltaj et al. 2017) is described below: 
Eq. 1.1
Eq. 1.2




Eq. 1.3

For these equations the rate of change of three entities (dT, dT* and dV) is recorded with respect to a change in time (dt). Uninfected T cells (T) enter the system at a set rate () and have a natural death rate (). The entry of uninfected T cells is a constant and thus independent of other entities or processes, occurring at the same level for every time step (the incremental change from the time for which the system is being solved). Conversely the exit of uninfected T cells is dependent not only on the set rate of exit but also on the number of uninfected T cells, the relationship here is proportional ergo the more uninfected T cells there are the more exit the system and vice versa. Uninfected T cells become infected (T*) at a set rate (k) upon contact with HIV virion particles (V) and this also reduces the number of free virion particles able to infect T cells. Infected T cells exit the system based upon the two processes natural () and HIV-induced death (). HIV virion particles are created from the death of infected T cells at a set production rate (N). They are removed from the system proportional to their shedding (c) and clearance (s) rates. These equations together describe a simplified infection with HIV that can allow for both predictive and descriptive investigations. For example, this model can be extended to predict the response to anti-viral therapy (Saenz and Bonhoeffer 2013) or the dynamics of infection with multiple strains of HIV (Martcheva and Li 2013). Additionally, these models can be used to for the description of infection processes such as the number of new infection events per time step which can be used to inform therapeutic regimes (Shen, Rabi, and Siliciano 2009).

It can be seen from the above equations that there is no explicit representation of any spatial characteristics. ODEs inherently represent all events as transpiring within a well-stirred compartment. This leads to inherent assumptions such as that all entities have equal access to one another. As such spatial environmental considerations cannot be explicitly represented in ODEs and instead some basic approaches can be implemented. For instance,  physiological-based pharmacokinetic models (PBPK) infer some spatial consideration by segregating organs into distinct compartments (Lahoz-Beneytez et al. 2017) or implementing sub-compartments to distinguish being vascular and non-vascular tissue (Jones and Rowland-Yeo 2013; Kagan et al. 2014). 

ODEs benefit from being, generally, computationally inexpensive as they do not require the computational power that are needed for the running of PDEs and Agent-based models (ABMs). ODEs can be implemented in a wide variety of development environments such as RStudio and MATLAB. These programmes additionally provide tools for the calibration of these models (see Section 1.3.3). Typically for ODE modelling, once the equations describing the system have been constructed the values (or distributions) for the parameter values are derived. Parameters may either be derived from the literature (Lahoz-Beneytez et al. 2016; Siewe et al. 2016), through comparing the model output to biological data (Hogan et al. 2014; Lahoz-Beneytez et al. 2016) or in theoretical scenarios arbitrary values are supplied to determine the effect on simulation output (De Boer and Perelson 1995). 

In a development environment, such as RStudio, ODE models can be run using either deterministic or stochastic solvers. A deterministic solver ran with the same parameters and initial conditions (the starting value for the populations the model describes) will give the same output every time it is ran. A stochastic solver will give different outputs for the same set of parameters and initial conditions. The direct method proposed by Gillespie (Gillespie 1977) is a good example of a stochastic solver. When this solver is ran, the supplied ODE model is initialised followed by the generation of random numbers which determine what functions in the ODE model will next occur and a time interval. The time step is increased by the generated interval and the randomly selected function is executed and quantities updated for the interval. This process is iterated until population sizes are zero or the time frame for the simulation has elapsed. Deterministic solvers can be used to make determinations based on a variety of discrete options, such as in the case of therapeutic investigations into HIV where an in silico model can be used to choose between different therapies of different efficacies by quantifying the effect of each one. Stochastic solvers can be used for the investigation of the likelihood of an outcome occurring for a given set of functions. For instance, for a mathematical model of granulomatous inflammation in response to parasitic infection (Albergante et al. 2013) solving the mathematical model using a stochastic solver found that there was some likelihood of either no relapse in parasite number post-peak burden, a singular relapse or multiple relapses occurring, which would not have been found using a deterministic solver. 

In addition to ODEs, PDEs have sometimes been implemented in immunological research. PDEs are structured so that equation(s) contain partial derivatives for two or more independent variables. An example of this within HIV research is the modelling of inter- and intra-host behaviours which are linked by a PDE (Dorratoltaj et al. 2017), in this model the change in the number of susceptible and infected individuals is captured with infected individuals structured by the time since they were infected. Additionally, PDE models have also been implemented to model both time and space, an advantage over ODEs if spatial consideration is relevant to the model, however they still assume homogeneity in the populations they model. PDEs are also inherently more complex requiring both expert knowledge for their design and implementation as well as an increase in the computational burden for running these models.

[bookmark: _Toc3716058]Agent-Based Models
In addition to mathematical models, a more recent development is in computational approaches to modelling biological systems. ABMs are one of the best examples of a computational approach which have seen high utilisation within biological but also ecological and sociological studies (Gilbert 2008; McLane et al. 2011). These computational models implement each individual member of a population explicitly, in contrast to aforementioned mathematical approaches, and these individuals are referred to as ‘agents’. This implementation allows for system wide behaviours to emerge from the interactions of individual agents. Each agent can possess its own set of behaviours and attributes allowing for more complex population structures to be simulated. The computational model will also specify the rules and logical statements for each agent, for instance in ODEs the death of uninfected T cells is represented as a rate but in an ABM a logical statement that evaluates whether the T cell has reached its full lifespan could be used. In addition to allowing for more complexity in the representation of agents themselves, ABMs also can explicitly represent spatial considerations including environmental factors, such as the amount of chemokines at an agent’s location (Flugge et al. 2009; Moyo et al. 2018), or population factors, such as physical contact between two agents (Alden et al. 2012).

By way of an example, Rutherford and colleagues presented an ABM which simulated the spread of an unspecified sexually transmitted infection (STI) (Rutherford, Friesen, and McLeod 2012). In this model each agent had a set of characteristics including their gender, the probability they would wear a condom for sexual encounters and the probability of the agent ending an existing monogamous relationship. When the model is initialised, parameter values for these fields are generated from existing biological population data. During the running of the model agents can either enter, maintain or exit a monogamous relationship, have sexual encounters, spread infection or be checked for infection. For this ABM there was no explicit spatial considerations and all interactions were based on the values for characteristics each agent possessed. This ABM allowed investigations into both individual and population level behaviours and showed that an increase in condom use most significantly changed the individual’s likelihood of acquiring a STI and that the level of promiscuity heavily impacted the population prevalence of disease. Deriving these factors is not possible in traditional ODE systems of disease spread as they can only represent the average population response. This also means ODEs can be prone to either over- or under-estimate population responses if the underlying mechanisms are highly sensitive to small perturbations. An ABM approach however also has certain disadvantages. ABMs typically contain some inherently stochastic mechanisms such that there is a need to quantify the uncertainty in results. ABMs can be computationally expensive to simulate, and multiple runs can exacerbate the running time needed. Further to this, whilst the emergence of system wide behaviours is a strength for an ABM it can also be a weakness if there is ambiguity for which low-level processes contributed to the appearance of these system wide results. Whilst the ABMs underlying theoretical mechanisms may have been well documented and evidenced their operation during the simulation may not be easy to understand, which can reduce confidence in simulation outputs (Manzo 2014). 

Lastly, ODEs and PDEs can be integrated into ABMs to form hybridised models. Considering the above example of STI spread, if we imagine this was HIV, an ‘infectiousness’ attribute could be derived from the ODEs described in equations 1.1-1.3 for each agent. For example, we could state that when the virion particles grow to be greater than a certain threshold the individual becomes infectious, this would update the attribute for the agent in the model thus altering the processes the agent takes part in. Whilst this method can be complex it can allow for more biologically realistic multi-scale (simultaneously simulating events on different scales) computational models. 

When selecting the modelling approach to use the scope of the issue at hand and the questions that the in silico model is asking need to be considered. Generally, if the in silico model seeks to predict or describe population level behaviours with no spatial considerations then ODEs are more suited, PDEs if the investigation requires measuring two or more independent variables (such as space and time) without population heterogeneity. If the area of study focuses on individual level behaviours, then an ABM may be more suited. This summary has been previously described by Cosgrove and colleagues (J. Cosgrove et al. 2015) as shown in Figure 1.5. However, the best modelling approach, whether it be ODE, PDE or ABM, is unlikely to be immediately apparent or justifiable from examination of the biological domain alone. In the development of an in silico model the scope and investigative questions/hypotheses we seek to examine can be captured leading us to the best candidate. A well-established process for model development, which incorporates the selection of a modelling approach is described below.
[image: ][bookmark: _Ref523926619][bookmark: _Toc525227186][bookmark: _Toc536814125]Figure 1.6 - Capturing Spatial features & Population Heterogeneity in Different Models. Different types of models are able to capture differing aspects of the scenarios they model, the above diagram represents the types of models that can be used to capture combinations of Spatial features and heterogeneity in populations. Adapted from (Cosgrove et al., 2015).



[bookmark: _Ref522488036][bookmark: _Toc3716059] CoSMoS: A Framework for Model Development 
[bookmark: _Toc3716060]Overview
The Complex Systems Modelling and Simulation (CoSMoS) process (Andrews et al. 2010)  is a generic framework that supports to development of simulation and analysis techniques for scientific research. Although not designed solely for biological systems, the CoSMoS process has previously been employed to develop and interrogate a wide variety of biologically based simulations such as chemokine distribution and dynamics (Cosgrove 2017), hepatic inflammation (Moyo 2014), lymphoid tissue organogenesis (Alden et al. 2012) and Helicobacter hepaticus-induced intestinal inflammation (Evans 2016), showing a strong grounding in immunological in silico modelling whilst not being limited to this area of study. Application of the CoSMoS process allows for transparent and principled in silico model development through the utilisation of a step wise process whereby the final in silico model is achieved through the development of theoretical domain, platform, simulation and results models, shown in Figure 1.7. Whilst the ordering of these processes is set, the CoSMoS process is not a strictly linear process, models may be further developed through the discovery of new evidence, expert opinions or re-evaluation of information/model implementations to identify errors in outputs and as such the CoSMoS process at heart is an iterative process.
[image: ][bookmark: _Ref523926707][bookmark: _Toc525227187][bookmark: _Toc536814126]Figure 1.7 - Schematic Representation of the CoSMoS Process. The domain refers to the biological system of interest, following from this a domain model which encapsulates our current understanding of the system is described. The platform model describes the ‘model specifications’ that describe how the domain model can be described in a mathematical/computational model. Using the platform model an executable software model, the simulation model, is generated. The understanding that is generated through utilisation of the simulation model is referred to as the Results Model. 


The research context is a product of the CoSMoS process and captures the scope and the motivation/purpose behind implementation and utilisation of the models generated. There are no strict guidelines as to what components form the research context, but they may include high-level goals, scientific evidence (either through published work or expert opinions) and hypotheses. Additionally, it may also include the requirements for the project such as validation criteria or allocation of resources. The research context defines and identifies the domain relating it to the phenomena under investigation in the real-world without any augmentation or extrapolation. Once the research context is generated and the domain defined the domain model can be described.

Models in the context of the CoSMoS process are abstract entities representing aspects of system behaviours, scientific observations, simplifications and/or deductions. Thus, the domain model, as the first model instantiation in the CoSMoS process, represents aspects of system behaviours, scientific observations and abstractions of the real-world phenomena within the domain. The components of this model are abstract descriptions such as diagrams, sketches, scientific data or any chosen media. Importantly the domain model focuses on scientific understanding and it does not account for considerations of model implementation, this occurs in the platform model. The platform model details the implementation of the domain model into a simulation and broadly is an abstraction of the simulation model and its code. It details ‘how’ the behaviours will be implemented and executed, this to some extent addresses the hardware and software technologies that can be applied. The platform model may for instance be a collection of diagrams that map domain model behaviours to their implementation in a simulation. The platform model should not contain features that result in emergent properties described in the domain, thus aiming to negate the possibility of ‘hard coding’ expected behaviours rather than allowing their emergence through the collective action of low-level behaviours. The platform model leads to the development of the simulation model, a composition of hardware and/or software and code/equations that form the computation/mathematical representation of the domain from which simulations can be run. This should incorporate the default settings of the model such as parameters, mechanisms for the entry/retrieval of data. Following the simulation model is the results model, a product that represents the outputs from exploring our model and is used to understand the outcomes that are obtained, it also encompasses the verification and validation of hypotheses that were generated in the research context, using methods such as model calibration.

[bookmark: _Ref524272637][bookmark: _Ref524272777][bookmark: _Toc3716061]Products
Whilst there are no explicit requirements for products generated throughout the CoSMoS process an approach that produces diagrammatic representations as components of both the domain and platform has previously been implemented (Read et al. 2014). In this approach the products generated are an expected behaviours diagram, activity diagrams and state diagrams. Expected behaviour diagrams are beneficial as they link the research context, such as results from published data, to behaviours within the system being studied, helping to scope what entities to include/exclude. These expected behaviour diagrams contain links between observable phenomena, the time scales for their appearance and the hypotheses of how low-level behaviours contribute to the emergence of the observable phenomena. They can also include a diagrammatic abstraction of the system with phenomena linked to the relevant diagram components.

[image: ]An adaptation of the Unified Modelling Language (UML) (Rumbaugh, Jacobson, and Booch 2004), originally intended to standardise the notation of a software systems design, was used to create activity and state diagrams which provide general representations of the activities and states of biological entities (Read et al. 2014). Activity diagrams further break down the expected behaviours diagram by representing the stages (or low-level activities) that result in the emergence of the observable phenomena. A variety of interactions for individual or multiple entities can be represented through UML such as an activity resulting in concurrent outputs or the convergence of activities towards a singular outcome. Typically, activity diagrams represent the workflow for entities describing its transition from an initial point to a final point, shown in Figure 1.8. These activities may require an entity to be in a certain state for their occurrence or result in a change of state proceeding the activity occurring. State diagrams represent the attributes and/or features of each individual entity at any given point during the simulation. They can capture the criteria needed for entities to transition between states. State and activity diagrams are inherently linked as they describe different facets of the same entity but can be further connected through the description of state specific activities or activities resulting in state changes. Figure 1.9 shows a generic example of a [image: ]state diagram. [bookmark: _Ref518734850][bookmark: _Toc525227188][bookmark: _Toc536814127]Figure 1.8 - Example of a UML-like Activity Diagram. Activity diagrams represent processes described in the domain and platform models. A cell can be considered a token in the system, it is initialised and transfers to a behaviour or activity, grey rectangles, if it meets the requirements, denoted by square brackets, it may proceed to the next activity. A fork will split the token allowing multiple activities. A decision node will divert the token down a path depending on whether certain criteria are met. A join will synchronise multiple tokens but does not condense them into one whilst a merge node will collapse multiple tokens into a single token.
[bookmark: _Ref518563505][bookmark: _Toc525227189][bookmark: _Toc536814128]Figure 1.9 - Example of a UML-like State Diagram. State diagrams represent the states that entities described within the domain and platform models may exist in. Rectangles represent distinct states. Sub-states may exist and are denoted by nesting of rectangles within rectangles, for instance an entity may exist as “White AND Grey AND Red” or “White AND Green” but cannot be “White AND Grey AND Green”. Entities initially enter the system via the black circle and exit at a separate black circle.


[bookmark: _Ref522268512][bookmark: _Toc3716062] Calibration of in silico Models
Through the CoSMoS process an in silico model is implemented that captures the specifications developed through the domain and platform models. Mechanisms describing abstracted biological processes specified in the platform model are translated into a computational/mathematical language to develop the simulation model. These abstracted processes may have associated parameters that describe an abstract of their behaviour, the parameter value may be known through derivation of the research context, domain or different models. In some instances, the values for these parameters are not known either due to a lack of data or the parameter itself cannot be directly translated to a biologically derived value. Calibration of the in silico model, a process whereby parameter values are adjusted to obtain a modular output that sufficiently matches supplied data, can be used to derive the unknown values. The sufficiency of calibration can be user-defined or based on a statistical measure. Some of the main approaches to calibration are introduced below.

[bookmark: _Toc3716063]Frequentist Approach
Frequentist calibration tests whether an event occurs or not based on experimental data. The probability of the event occurring is based upon long run experimental data, meaning the experiment is repeated under same conditions to obtain results. As the number of experiments tends to infinity the probability, or frequency, we obtain will tend towards its exact value. A very basic example would be if the fairness of a coin was to be determined. For this we could flip a coin multiple times and measure the number of heads. The degree of fairness could be constructed as: Number of Heads  Total Coin Tosses. Each coin toss is an experiment, but we cannot repeat these experiments infinitely, so we must choose a stopping point and as we repeat the experiment (i.e. flip the coin more) we tend towards the exact value. One of the main disadvantages of a frequentist approach is that the result depends on the number of times the experiment is repeated and so can make cross-studies difficult if their sample numbers differ.
One of the major calibration techniques utilised in a frequentist approach is the maximum likelihood estimation (MLE), shown in Figure 1.10. The basis for this technique is to determine the likelihood of the specified model generating given observed data with the aim to maximise this likelihood. MLE seeks to find the parameter(s) which have the highest likelihood of explaining the data (Cole, Chu, and Greenland 2014). For this method the likelihood must be calculated, typically using a log-likelihood function, with the likelihood thought of as the probability of observing the data given the parameters. It is important to note a key difference in frequentist to Bayesian approaches, introduced in the following sections, is that no prior information is used in the inference of the parameters using MLE and that initially whilst the parameters may be unknown they are derived as fixed deterministic values.
[bookmark: _Toc3716064]Bayesian Approach
Differing from the frequentist approach, a Bayesian approach is based on the ability to revise our understanding of a system given new evidence or data. As with Frequentist approaches we seek to discover the parameters which are the likeliest to describe that data however we evaluate these parameters as having densities/distributions, in contrast to being fixed values. Bayesian approaches are based upon Bayes theory (Bayes 1763) which for calibration purposes can be shown as:
P(|X) = (P(X|)P())/P(X)
Where the likelihood of the parameters () given the data (X) (their posterior distributions) [P(|X)] is equal to the probability of the data given the parameters (the likelihood) [P(B|A)] multiplied by the likelihood of the parameters (their prior distributions) [P()] normalised to the data [P(B)]. Thus, from this we can see that Bayesian parameterisation relies on conditional probability, something not accounted for in Frequentist approaches. 

The prior distributions encapsulate our initial understanding about the unknown parameters, for instance for our previous coin flip example we could assume our initial understanding (our prior knowledge) for the fairness of our coin would be that is sits between 0 – 1. We could assume an equal likelihood of the fairness being the boundary values (and any value in between) meaning we would provide a uniform distribution. We then need to calculate the likelihood, in Bayesian approaches a common technique is to use the method of least squares. This method will evaluate the data generated using the parameters against the original observed data. This evaluation is the summation of the squared differences between the matched observed (parameter-derived) and expected (original data) outputs, as the name implies least squares seeks to reduce the value of the summed squared differences to as minimal a value as possible. Once the likelihood of the parameters has been evaluated a posterior distribution can be formed for each parameter, these describe the probability that a given parameter value can be used to generate the data.

Bayesian parameter estimation is a well-established and highly utilised approach to in silico model calibration, examples include (Hogan et al. 2014; Elemans et al. 2014; Gajewska et al. 2014), and is summarised in Figure 1.10. As mentioned above, one of its primary advantages is the ability to incorporate previous knowledge into the estimation of parameters. This increases the chances of finding accurate parameter values, so long as the prior information is accurate, and increases confidence in the predicted values. This is especially useful in biological models if directly related parameters, parameters which are implemented such that they are a good reflection of the real-world parameter they represent, are utilised. However, the stipulation of prior distributions for parameter values can be a disadvantage. True prior distributions may be extremely difficult to fully define and reason and can lead to an inaccurate prior supplied, which then biases the calibration. As well as this, as there are no pre-defined stopping criteria for the evaluation of the investigated parameters the model could be overfitted, an especially important consideration for datasets with high levels of variation. A related approach to Bayesian parameter estimation is the use of approximate Bayesian computation which is based upon the Bayesian approach but forgoes the use of likelihood functions, this is introduced below.

[bookmark: _Toc3716065]Approximate Bayesian Computation
Approximate Bayesian Computation (ABC) was first related as a sampling mechanism that yields a posterior distribution for parameter values which approximates the true posterior. Similarly, to Bayesian parameterisation it relates the probability of the parameters given observed data to the probability of the parameters given a summary statistic of the data (Turner and Van Zandt 2012). ABC is typically implemented when the in silico model under investigation is too complex to put into analytical form or if there is insufficient data to generate a sufficient likelihood (Kypraios, Neal, and Prangle 2017). The key difference between Bayesian and ABC methods is in ABC the calculation of a likelihood is replaced by the computation of some residual ‘distance’ between the simulated data and original data. This distance is evaluated against a defined criterion, such as a threshold that the residual distance must be below. If below the criteria the supplied parameters would be accepted and likely to give rise to the observed data. 

One of the simplest ways to implement ABC calibration is by use of the ABC rejection sampling technique. For this technique we provide a set of observed summary statistics, a model that is judged to be sufficient to recapitulate the data and prior distributions for parameters captured by the model. Additionally, we provide an acceptance criterion, a value denoting the acceptable residual distance between the original observed data and simulated data. The rejection sampler uses the prior distributions to generate parameter values, if they produce data that results in a residual distance greater than the acceptance criterion the parameter value is rejected. If the residual distance is less than the acceptance criterion the parameter value is accepted. This approach is very simplistic and very easy to implement however if the criterion values are extremely small it leads to high rejection rates of parameters. This is due to the fact that this approach does not account for any previously generated results and thus does not evolve/learn how to produce better results.

An example of an ABC iterative approach, shown in Figure 1.10, which does benefit from the accounting of previously generated results is a sequential sampling technique (Jabot, Faure, and Dumoulin 2013). This approach works similarly to the above rejection sampling but is extended iteratively. For this, as before, we provide a set of observed summary statistics, a model that is judged to be sufficient to recapitulate the data and prior distributions for parameters captured by the model. However, we supply a set of acceptance criteria of decreasing tolerance (as opposed to a single criterion). Parameter values are generated from prior distributions and are rejected if they provide a ‘distance’ between the original and simulation summary statistics greater than the first criterion, accepted if they supply a ‘distance’ less than the criterion. The accepted parameter values generated that satisfy the first criteria value are then used as the prior for achieving parameters under the next criterion, thereby incorporating an accountancy for previously generated results. This process is achieved until every criterion specified has been met. 
[image: ][bookmark: _Ref523928099][bookmark: _Toc525227190][bookmark: _Toc536814129]Figure 1.10 - Summary of the Frequentist, Bayesian and Approximate Bayesian approaches to model calibration. Typically for the introduced processes, a model is created describing a process alongside biological data. In the above example the value for Rate A is unknown, to calibrate a prior distribution may be supplied (or not) and the model runs, comparing the output it generates to the expected biological data. This analysis will generate a posterior distribution for the Rate A value, either a density or likelihood plot. Approximate Bayesian techniques generate approximate posteriors which are used as prior distributions for the next iteration of calibration.


Problematically for ABC we may sometimes wish to calibrate the in silico model using multiple populations (also called objectives) within our model. This can be problematic if employing a multi-scale model with objectives on different scales, for instance objective 1 may have units of x103 whilst objective 2 may have units of x106. In these instances, it is possible that the calibration favours the objective on the higher scale as the decreases in the residual distances between observed and expected data have a greater magnitude, overshadowing the comparatively smaller decreases for the smaller objectives.

[bookmark: _Ref522642114][bookmark: _Toc3716066]Multi-Objective Approach
In some circumstances an in silico model may be presented with multiple objectives for which we wish to simultaneously calibrate our parameters with a single set of parameters that simultaneously produces the best solution for all of the objectives. However, in coupled systems, where entities exert influence over one another, it is possible that the optimisation of one solution leads to a degradation in optimisation of a second solution (Deb 2003) or, as described above, scaling issues lead to biasing in the calibration. In these instances, we can use a multi-objective (MOO) approach to provide a solution that is the best trade-off between our objectives.

Genetic algorithms (GAs) are based on the mechanics of genetic systems, using previously generated data as a basis for performance improvement in generated ‘offspring’. As summarised by Bandyopadhyay and Saha (Bandyopadhyay and Saha 2013), GAs begin with a population of chromosomes, these are the encoded parameters, this population is initialised and generates a model output. This output is evaluated using a fitness function to ascertain whether termination criteria have been attained, this fitness function provides payoff information which is the only information the parameter sampling is based upon. If termination criteria are not attained the chromosomes reproduce, whereby individual chromosomes are copied proportional to their fitness (higher fitness value means higher number of chromosome copies). Following this reproduction, crossover and mutation can occur. Crossover refers to the exchange of information which encodes parameter values on randomly selected pairs of chromosomes. To bolster the diversity of the population, and recapture any information lost in earlier generations, mutations are introduced. Typically, this occurs by the random substitution of a random bit position in the encoded parameter information with another bit. This process of reproduction, crossover and mutation generates a new population which accounts for the highest fitness parameter sets of the current generation and partially captures previously generated information. This new population can then be evaluated by the fitness function. This process carries on iteratively until the termination criterion are met.

The nondominated sorting genetic algorithm II (NSGA-II) (K. Deb et al. 2002) is an example of a genetic algorithm for the optimisation of multiple objectives. NSGA-II is based upon the above principles and additionally accounts for dominance in the generated solutions. Dominance reflects the superiority, as measured by the fitness value, of a solution over other derived solutions, for example solution 1 dominates solution 2 if solution 1 is no worse than solution 2 in all objectives optimised for or is better in at least one objective (Smith, Everson, and Fieldsend 2004), shown in Figure 1.11. Dominated solutions may cluster in specific sample spaces detracting from the ability to infer the best trade-off between objectives. NSGA-II provides nondominated solutions by deriving solutions superior to the rest of the solutions within the sampled parameter space but inferior to other solutions in at least one objective. Collectively these solutions are known as Pareto-optimal solutions (also called nondominated solutions). 
[image: ][bookmark: _Ref523928536][bookmark: _Toc525227191][bookmark: _Toc536814130]Figure 1.11 - Non-dominated Solutions from Multi-Objective Calibration. Multi-objective calibration seeks to minimise the trade-off from fitting two populations/entities. Non-dominated solutions are those were the given solution is no worse than other solutions for all objectives or is better for at least one. Collectively these non-dominated solutions are called a pareto-front.


The choice of calibration technique depends on the in silico model being parameterised, including its complexity, the data it can generate and the data it is compared against. Computational power available may be an issue for complex models and thus impact the method selected. Once a method has been utilised and successful calibration achieved the model should undergo some form of validation, described below.

[bookmark: _Toc3716067] Validation of Mathematical/Computational Models
The previous section introduced different methods available for the calibration of in silico models, deriving the optimal or most likely parameters to describe pre-existing data. However, successful calibration of an in silico model does not guarantee the validity of that model in answering scientific questions posed. Indeed, it has previously been described that when parameter values are specifically adjusted to fit an initial set of data the resulting model gave poorer fits to additional experimental data compared when compared against new model outputs (Hopkins and Leipold 1996). If an in silico model lacks validation it may lead to a lack of trust in investigations utilising the defined model (Polack 2010). In silico models have previously been criticised for reasons such as their perceived ambiguity in how outputs are achieved (Paolo, Noble, and Bullock 2000), in some cases the use of radical simplifications or, conversely, model complexity used as an obstruction to validation (Avula, Kalman, and Liapis 2014) and apparent unnecessary or unrealistic assumptions used to formulate simulations of biological processes (Boutayeb and Chetouani 2006). To this end demonstrating the validity of the model derived results is a key consideration in model development.

The CoSMoS process (see Section 1.3.2) introduced a conceptual approach to validation, covering engineering validation, calibration and scientific validation (Polack 2010). It has also been previously discussed that the credibility of a mathematical model should not be validated exclusively through empirical methods but that the extra-mathematical scientific status of the model, a reflection of how well the model represents the theories it is based upon, should be considered (Avula, Kalman, and Liapis 2014). Read and colleagues (Read et al. 2012) introduced techniques for qualify the simulation results in the context of domain-specific knowledge, one of the methods presented in this work that is utilised within this thesis is the use of a global sensitivity analysis of model parameters.

Calibration, as introduced in Section 1.3.3, is the process of tuning the parameter values to reproduce the given domain data however it is also rooted in modular validation. Throughout the calibration aspects of the simulation outputs or selected parameter values may deviate from studied domain system (Read et al. 2012) and the identification and rectification of these deviations is a form of model validation. Global sensitivity analysis can be used to aid in the identification and rectification of deviations in model outputs by quantifying the influence parameters exert on said outputs, however its application can extend further than error correction.

Sensitivity analysis (SA) broadly focuses on quantifying the relationship between system inputs and outputs. Traditionally, varied input parameter values are supplied to a model and coupled with their corresponding model output to analyse the resulting influence of the changing parameter values. Specifically, global sensitivity analyses (GSAs) are used to perturb multiple parameter values simultaneously and measure whether there is any correlation between the generated simulations results and the parameter perturbation (Saltelli et al. 2004; Hart, Bessac, and Constantinescu 2017). A benefit of adjusting multiple parameters, as opposed to singular parameters, is that this approach accounts for inter-parameter dependencies that are not revealed during a parameter-by-parameter analysis. 

There have been different scenarios where SAs have been employed but broadly speaking two main instances of their application occur pre- and/or post-calibration. Pre-calibration SAs have been employed in the modelling of activated sludge, the process of aerated sewage degradation by microorganisms, to identify which parameters hold the most influence over simulation outputs (Vanrolleghem et al. 2003; Lee, Kim, and Yoo 2008; Zhu et al. 2015). By quantifying this influence the modellers rank the importance/identifiability of each parameter for the coming calibration, with the derivation of influential parameters given higher priority. This higher priority may be in the form of a greater investigation into the influential parameter’s likely values (Zhu et al. 2015) or may be the non-inclusion of lower priority parameters in the calibration (Soetaert and Petzoldt 2010). As this occurs pre-calibration the model may be subjected to further development, for instance redundant processes may be removed, and so does not necessarily offer further exploration of the model’s relationship to the domain it simulates.

Post-calibration application of SAs has been previously employed to propose influential biological factors that have been derived from simulation outputs. Once an in silico model has been calibrated parameters can be perturbed over biologically realistic or theoretical ranges. For example, in their mathematical model of the immune response to infection by Leishmania, Siewe and colleagues (Siewe et al. 2016) used Latin hypercube sampling (LHC) to derive near-random even sampling of multi-dimensional parameter spaces. Using these generated parameters to derive simulation outputs they evaluated the influence of different parameters using the partial rank correlation coefficient (PRCC), a measure of the strength of a linear association between the parameters and the simulation outputs (Marino et al. 2008). The PRCC informed that at 150 days post-infection the basal production rate of macrophages most heavily influenced parasite numbers with a positive PRCC value, thus the higher the macrophage production the higher the parasite numbers. Additionally, they showed that the production rate of IFN by T cells was negatively correlated with parasite numbers, the lower the production the higher the parasite number. Together these findings show both the ability to further explore the domain at hand but also allow comparisons to the domain as a form of qualitative validation. IFN has previously been highlighted as a key factor for the control of parasite numbers during a Leishmania infection (Kemp et al. 1999) and thus qualitatively validates the findings of the model. Scientific validation tests that model reflects the domain it is based upon, typically by comparison of simulation outputs to real experimental data (Polack 2010), which should be data that formed no part of model calibration. The model should first be initialised such that it can generate output in the same format as the comparable dataset. For instance, in their work on modelling T cell activation during Leishmania infection, Ribeiro and colleagues derived parameters describing this activation response to different strains of Leishmania and compared their simulation outputs to published data for each different strain (Ribeiro et al. 2017). It should be noted however that their simulation outputs were compared in a qualitative manner without accompanying statistical validation. 

[bookmark: _Toc3716068]Thesis Aims
Leishmaniasis still poses a global threat and a major factor for this is a general lack of therapeutics. Whilst the therapeutics introduced previously have all been shown to be effective to varying degrees against different species of Leishmania, a great deal of questions still remain unanswered regarding their pharmacokinetic and pharmacodynamic properties in situ. With regards to visceral leishmaniasis, a hallmark of hepatic inflammation in experimental models is the formation of granulomas around infected foci yet there is scant evidence to suggest how these may affect the distribution and action of antileishmanial therapies. For this thesis our focus was to investigate drug distribution beyond the typically investigated whole tissue level. Using L. donovani infected C57BL/6 mice as a well described model of EVL and AmBisome, as a standard formulation of LAmB which is a ‘gold standard’ antileishmanial and well described therapeutic in other disease settings, we aimed to answer:
1. What is the sub-tissue level distribution of AmB in the liver post-treatment during EVL?
2. Which processes involving immune system entities, such as migration, influence drug accumulation during EVL?
 
[bookmark: _Toc3716069]| Materials and Methods



[bookmark: _Toc518564585][bookmark: _Toc3716070]Ethical Statement
All experiments were carried out with the approval of the United Kingdom Home Office under Project Licence “Immunology and Immunopathology of leishmaniasis” (PPL 60/4377 and P49487014). All experimental work was approved by the University of York Animal Welfare and Ethical Review Body and conducted and reported in accordance with ARRIVE guidelines.

[bookmark: _Toc495847341][bookmark: _Toc518564586][bookmark: _Toc3716071]Mice 
C57BL/6 (B6) and B6.Rag2-/- were originally obtained from The Jackson Laboratory (Bar Harbour, USA).  B6.CD45.1 and B6.CD45.1.Rag2-/- were originally obtained from the National Institute for Medical Research (Mill Hill London, U.K.). B6.EYFP.Rag1-/- and B6.IL10-/- colonies were derived from breeding pairs originally supplied by Anne O'Garra, (National Institute of Medical Research, Mill Hill, UK and The Francis Crick Institute, London, UK). and were bred and maintained under specific-pathogen free (SPF) conditions at the Biological Services Facility (BSF) at the Department of Biology, University of York. 

All experimental infections were conducted using female mice aged between 3 - 13 weeks at point of infection. Naïve experimental mice were used between 7 - 18 weeks of age. B6.Rag2-/- and B6.CD45.1.Rag2-/- mice infected with Leishmania donovani for between 6 - 35 weeks were used as sources of parasites for experimental infections.

[bookmark: _Toc495847342][bookmark: _Toc518564587][bookmark: _Toc3716072]Parasites and Infections
L. donovani parasites (Ethiopian strain: LV9) were maintained in B6.Rag2-/-, B6.CD45.1.Rag2-/-and B6.EYFP.Rag1-/- mice by serial passage. Infection in these mice was via a lateral tail vein injection of a bolus dose of 3x107 amastigotes.

To recover amastigotes, mice were euthanised by exposure to carbon dioxide gas in a rising concentration followed by cervical dislocation. The spleen was then removed into RPMI 1640 Medium (RPMI) (Gibco, ThermoFisher, Paisley, United Kingdom) and subsequently homogenised in a glass homogeniser. RPMI was added to the homogenate to the volume of 50 millilitres (ml) in a 50 ml conical tube and centrifuged for 5 minutes at 137 G at room temperature (RT) in a Heareus Multifuge 3S-R (DJB labcare, UK). The resulting supernatant was transferred to a 50 ml Falcon containing 25 milligram (mg) Saponin (BDH, Leicestershire, United Kingdom), to lyse cells and release parasite, per 20 ml of supernatant and left to stand at room temperature (RT) for 5 minutes. The solution was then centrifuged for 10 minutes at 2063 G at 37ºC and the supernatant discarded into 10% Distell. The amastigote pellet was resuspended in 25 ml RPMI and centrifuged for 10 minutes at 2063 G at 37ºC and the supernatant discarded into 10% Distell, this spin and discard process was repeated twice more. The final pellet was resuspended in 20 ml RPMI and disaggregated by passing through a 26-gauge needle tip (Becton Dickinson, Drogheda, Ireland) from a 10 ml syringe (Becton Dickinson, Drogheda, Ireland) several times. 
 
To ascertain parasite concentration, 4 microlitres (μl) of parasite suspension was applied to a sterile Thomas bacteriological counting chamber (Weber Scientific International, Middlesex, United Kingdom) and four corner squares were counted. The parasite solution was then diluted/concentrated to give a final concentration of 1.5x108 amastigotes/ml for infections using a 200 μl injection volume or the solution was diluted/concentrated to give a final concentration of 3x108 amastigotes/ml for infections using a 100 μl injection volume. Experimental infections were achieved via a lateral tail vein injection of a bolus dose of 2.5-3x107 amastigotes, as either a 100 μl or 200 μl injection as described above.

[bookmark: _Ref519020820][bookmark: _Ref519021102][bookmark: _Ref519021494][bookmark: _Toc3716073]AmBisome Preparation and Administration
AmBisome (Gilead Sciences International, Ltd, Cambridge, United Kingdom) was used at 10 milligrams of the active ingredient, Amphotericin B, per kilogram (mg/kg) in all experiments. To prepare AmBisome for these experiments, cohorts of mice were weighed, and the average weight recorded. This average weight was multiplied by 10 (as the dosing was 10mg/kg, which is also 10ug/g) to determine the ug of Amphotericin B needed per average mouse bodyweight. The amount derived was multiplied by 26.53 (the scaling factor for the amount of Amphotericin B per mg of AmBisome). The resulting amount represented the mg of AmBisome needed per mouse that contained 10mg/kg of Amphotericin B and was converted to μg by dividing by 1000. The amount required to dose the full cohort was weighed aseptically and resuspended in 100ul of sterile 5% dextrose, to maintain liposome stability, in distilled water per mouse.

[bookmark: _Ref518492280][bookmark: _Toc3716074]Liver Isolation and Preparation
For experiments described in Chapter 3, mice were killed via exposure to rising concentrations of CO2 followed by cervical dislocation at experimental end-points. For experiments described in Chapter 4, mice were killed via exsanguination under terminal anaesthesia followed by cervical dislocation at experimental end-points. 

As required livers were removed, and small sections (~150 mg) were taken for mass spectroscopy analysis (Section 2.11), parasite burden determination (Section 2.7) and histology. The remaining liver was weighed and transferred into a 50 ml Falcon containing 4ml of 350 ug/ml Liberase (Sigma-Aldrich, Dorset, United Kingdom) in 1x Phosphate Buffered Saline (PBS) and roughly cut into approximately 1 millimetre cubed (mm3) sections using a scalpel. This solution was then incubated for 45 minutes at 37ºC in an orbital shaker (New Brunswick Scientific, Cambridge, United Kingdom) at 200 RPM to allow for tissue breakdown and cell liberation.

After digestion, the tissue was passed through a 100 micrometre (μm) sieve (Scientific Laboratory Supplies, East Riding of Yorkshire, UK) using a 5 ml syringe plunger and Dulbecco’s modified eagle medium (DMEM) (Gibco, ThermoFisher, Paisley, United Kingdom) containing 5% HyClone foetal calf serum (FCS) ((Thermo Fisher Scientific, Loughborough, UK) which had been heat inactivated by incubating in a 56°C water bath for 30 minutes prior to use) to remove tissue debris. The sieve was then washed with 20 ml of cold DMEM containing 5% FCS. After removing and disposing of the sieve the cell suspension was topped up to 40 ml with cold DMEM containing 5% FCS. This solution was then centrifuged at 50 G for 3 minutes at 4ºC and the supernatant, containing leukocytes, was transferred into a new 50 ml Falcon and topped up to 20 ml with DMEM containing 5% FCS. The remaining pellet of parenchymal cells was topped up with 20 ml with DMEM containing 5% FCS. The purity of these ‘Leukocyte’ and ‘Parenchymal’ fractions was previously determined using Flow Cytometry whereby livers isolated from mice 7 days post-infection with L. donovani were digested, as above, to form the aforementioned fractions whereby cells from both fractions were then stained as described in Section 2.8. This showed that on average the leukocyte fraction contained 95.5% CD45+ cells whilst the parenchymal cells contained 13.9% CD45+ cells, data are shown in Figure 7.1A.

The leukocyte solution was centrifuged at 311 G for 10 minutes at 4ºC and the supernatant discarded. The remaining leukocyte pellet was resuspended in 33% Percoll and centrifuged at 693 G for 12 minutes at RT with no brake, as previously described by Beattie and colleagues (Beattie et al. 2010), to create a separation gradient whereby leukocytes pellet. The resulting waste layer and supernatant was discarded, and the remaining pellet of leukocytes and platelets was resuspended in ammonium-chloride-potassium (ACK) lysing buffer (Gibco, ThermoFisher, Paisley, United Kingdom) for 5 minutes at RT to remove the aforementioned platelets. Following this incubation, the suspension was topped up to 20 ml with DMEM containing 5% FCS and then centrifuged at 311 G for 10 minutes at 4ºC and the supernatant discard, this wash was repeated. The final purified leukocyte pellet was resuspended in approximately 1 ml of PBS containing 2% FCS. 

The resuspended parenchymal cells were centrifuged at 50 G for 3 minutes at 4ºC and the supernatant discarded, this was followed by addition of 20 ml of DMEM containing 5% FCS. The parenchymal cell solution was then centrifuged at 50 G for 3 minutes at 4ºC, topped up with 20 ml of DMEM containing 5% and stored on ice until use. These results are referred to within figure legends as having been collected using digestion protocol 1.

To prevent possible cellular leakage of drug due to excessive processing time the digestion protocol for the liver was updated. Livers were digested in 5ml of Liver Digestion Media (Gibco, ThermoFisher, Paisley, United Kingdom), a collagenase-dispase media for the dissociation of viable liver cells, for 10 minutes at 37ºC in an orbital shaker at 200 RPM. After digestion, the tissue was passed through a 100 μm sieve using a 5 ml syringe plunger and DMEM containing 5% FCS. The sieve was then washed with 20 ml of cold DMEM containing 5% FCS. After removing and disposing of the sieve the cell suspension was topped up to 40 ml with cold DMEM containing 5% FCS. This solution was then centrifuged at 50 G for 3 minutes at 4ºC and the supernatant, containing leukocytes, was transferred into a new 50 ml Falcon and topped up to 20 ml with DMEM containing 5% FCS. Subsequent leukocyte solution centrifugations, following the procedure described above, were carried out at 485 G for 5 minutes at 4ºC. The resuspended parenchymal cells were centrifuged at 50 G for 3 minutes at 4ºC and the supernatant discarded, this was followed by addition of 20 ml of DMEM containing 5% FCS. The parenchymal cell solution was then centrifuged at 50 G for 3 minutes at 4ºC, topped up with 20 ml of DMEM containing 5% and stored on ice until use. These results are referred to within figure legends as having been collected using digestion protocol 2.

Leukocyte numbers were determined by diluting 5 μl of cell suspension in 195 μl of Trypan Blue (Gibco, ThermoFisher, Paisley, United Kingdom) (Dilution Factor = 40) with all cells, live and dead, counted. On a Neubauer haemocytometer (Weber Scientific International, Middlesex, UK) the four corner squares were counted, and WBC number determined as Average Corner Square Count x Dilution Factor x 104 equalling the concentration of cells per ml. Differences in leukocyte viability post-digestion were further quantified using a viability dye as part of a larger staining panel for flow cytometry, as described in Section 2.8. Comparing the proportion of live single cells (viability dye-) between the two digestion protocols showed no significant difference using a Mann-Whitney test, as shown in Figure 7.1B.

[bookmark: _Toc518564590][bookmark: _Toc3716075]Blood Isolation and Preparation
Whole blood was collected from experimental mice undergoing terminal exsanguination, whilst under terminal anaesthesia, for experiments. Mice were anesthetised via inhalation with isoflurane in a secure chamber (Apollo TEC3 Isoflurane Vaporise, Sound Veterinary Equipment) until a pedal reflex could not be seen. Blood was collected via cardiac puncture and transferred into Lithium Heparin Coated Microtainers (BD Biosciences, Berkshire, United Kingdom) to prevent blood clotting. In a Category 3 laboratory the blood samples were transferred to 15 ml Falcon tubes and Gey’s Solution was added at 10x the blood sample volume to lyse platelets. This was left to incubate for 10 minutes at room temperature.

Once the incubation had been completed the samples were transferred to a 50 ml Falcon tube and topped up to a volume of 30 ml with PBS containing 2% FCS. Samples were then centrifuged at 311 G for 10 minutes. The supernatant was discarded, and the resulting cell pellet resuspended in 30 ml of PBS containing 2% FCS. This was centrifuged at 311 G for 10 minutes. The supernatant was then discarded, and the cell pellet, containing leukocytes, resuspended in 500 μl of PBS containing 2% FCS for a final cell suspension.

Leukocyte numbers were determined by diluting 5μl of the final cell suspension in 95μl of Trypan Blue (Supplier) (Dilution Factor = 20) with all cells counted. On a haemocytometer (Weber Scientific International, Middlesex, UK) the four corner squares were counted, and leukocyte number determined as before (Section 2.5)

[bookmark: _Toc517175479][bookmark: _Ref519017151][bookmark: _Ref519095065][bookmark: _Ref521758313][bookmark: _Ref521771744][bookmark: _Toc3716076]Determining Hepatic Parasite Burden
The cut surface of liver tissues were briefly pressed onto Super Frost glass microscopy slides (ThermoFisher, Paisley, United Kingdom) to create an impression smear. These were then fixed in 100% Methanol and allowed to air-dry. Following fixation, slides were stained in Giemsa Staining Solution for between 20-30 minutes at which point they were briefly washed in tap water and air-dried overnight.

After drying, slides were magnified at x100 using oil-immersion and at least 500 host nuclei were counted with the number of parasite nuclei observed during this counting recorded. Parasite burden was expressed as Leishman-Donovan Units (LDU) and adapted from the calculation as stated by Moreira and colleagues (Moreira et al. 2012) in which the LDU equals the number of parasites per 1000 host nuclei multiplied by the liver weight in grams.

[bookmark: _Ref519011805][bookmark: _Toc3716077]Converting Hepatic Parasite Burden to Absolute Parasite Numbers
To be able to fully relate parasite numbers from experimental data (LDU) to in silico investigations it was decided to translate LDU values to absolute parasite numbers for each time point. To begin, the absolute hepatocellularity of a naïve murine liver was derived from published data (Sohlenius-Sternbeck 2006). The derived value was assumed to include parenchymal cells and leukocytes, which when compared to the naïve hepatic leukocyte numbers obtained in this thesis would result in 1348 x 105 parenchymal cells per liver. The parenchymal cell number has not previously been described as changing during EVL and was assumed to be unaltered across all time points analysed. To calculate total hepatocellularity at each time step post-infection the parenchymal cells per liver (1348 x 105) were added to the leukocyte cells per liver. The absolute number of L. donovani was then calculated as:
L. donovani = ((LDU / Liver Weight (g)) / 1000) x Hepatocellularity 
[bookmark: _Toc517175481]
[bookmark: _Ref519018511][bookmark: _Ref519021213][bookmark: _Ref519021276][bookmark: _Ref519021529][bookmark: _Ref519021688][bookmark: _Ref519086645][bookmark: _Toc3716078]Cell Staining, Flow Cytometry and Fluorescence activated Cell Sorting
To ascertain the relative proportions of leukocyte subsets within the total recovered leukocyte populations from liver samples, surface staining was carried out. Additionally, this surface staining was applied to pooled leukocyte samples for cell sorting (Chapter 3).

After cell concentrations were calculated (Section 2.5), a further calculation for the suspension volume required for 1x106 cells was carried out. These calculated volumes were transferred into separate wells of a round bottomed 96 well plate(s) (Sarstedt AG & Co, Germany) to form control and experimental wells. All wells were then topped up to a volume of 200μl. The remaining leukocyte cell solutions were pooled into a 50 ml Falcon. The plate and pooled Falcon tube were spun at 311 G for 10 minutes at 4ºC, the plate supernatant was discarded by firmly ‘flicking’ and the Falcon supernatant decanted.

The experimental sample cell pellets, isotype cell pellets, the pooled leukocyte pellet and the viability dye single stain control were resuspended in PBS containing 1:1000 anti-CD16/anti-CD32, to help stop non-specific antibody binding, and 1:100 Viability Dye (100 μl per well for the plate, 2 ml for the Falcon tube) for 30 minutes at 4ºC. Unstained and the remaining single stain control cell pellets were resuspended in 100μl of PBS containing 1:1000 anti-CD16/anti-CD32 only. After this incubation, staining solution containing antibodies raised against either CD3ε, B220, CD19, NK1.1, TCR, CD45, F4/80, CD11c, Ly6G, Ly6C or CD11b, as described in Section 7.1, suspended in PBS containing 2% FCS was added to all experimental wells and to the pooled leukocyte tube (100 μl per well for the plate, 2 ml for the Falcon tube) and incubated for 30 minutes at 4ºC. For the 96 well plate, the unstained and viability dye single stain control received PBS containing 2% FCS only. Single stain wells for the aforementioned antibodies had 100μl of staining solution containing only their antibody added. Isotype controls contained the full cocktail of antibodies utilised in their staining except for the antibody under scrutiny in which case the isotype control was used at the same concentration, as described in Section 7.1.

After the staining incubation, the Falcon tube and the 96 well plate were centrifuged at 311 G for 10 minutes at 4ºC, following this the supernatant was discarded as previously described and the resulting 96 well plate cell pellets resuspended in 200μl of PBS containing 2% FCS, the Falcon tube pellet was resuspended with 10 ml PBS containing 2% FCS. This wash was repeated once more. Finally, cell pellets were resuspended in 200μl of PBS containing 10 millimolar (mM) Ethylenediaminetetraacetic acid (EDTA) and 10% FCS and the Falcon tube pellet was resuspended in 10 ml of the same solution. Both were stored protected from light at 4ºC until acquisition. At the time of acquisition lymphoid cells (CD3+, B220+, NK1.1+ & TCR+), myeloid cells (CD3-, B220-, NK1.1- & TCR-), neutrophils (CD3-, B220-, NK1.1-, TCR-, CD11b+ & Ly6G+), dendritic cells (CD3-, B220-, NK1.1-, TCR-, CD11blo-hi, Ly6G-, CD11cint-hi & F480lo), Kupffer cells (CD3-, B220-, NK1.1-, TCR-, CD11blo-hi, Ly6G-, CD11clo-hi & F480int-hi) and mononcytes (CD3-, B220-, NK1.1-, TCR-, CD11blo-hi, Ly6G-, CD11clo & F480lo) were sorted and collected. These experiments are denoted in their figure legends as Staining Protocol 1.

As mentioned a concern in AmBisome treated systems was the possible cellular leakage of drug due to excessive processing time. To avoid this the centrifugation times for these experiments, as detailed in figure legends, was reduced to 5 minutes instead of 10 minutes. Additionally, to aid with cell sorting the final cell pellets in these experiments were resuspended in 200μl of PBS containing 10 millimolar (mM) Ethylenediaminetetraacetic acid (EDTA) and 10% FCS and the Falcon tube pellet was resuspended in 10 ml of the same solution. Both were stored protected from light at 4ºC until acquisition. At the time of acquisition lymphoid cells (CD3+, B220+, NK1.1+ & TCR+), neutrophils (CD3-, B220-, NK1.1-, TCR-, CD11b+ & Ly6G+), mononcytes (CD3-, B220-, NK1.1-, TCR-, Ly6G-, CD11bhi & Ly6Chi) and Kupffer cells & dendritic cells (CD3-, B220-, NK1.1-, TCR-, Ly6G-, CD11blo-int, Ly6Clo-int, CD11cint-hi & F480int-hi) were sorted and collected. Post-sort an aliquot of the sorted cells was re-run through the MoFlow for post-sort purity analysis. The collected leukocyte populations were then transferred into 1.5ml Eppendorfs, the aliquot cell sizes collected is described in each experiment results section, aliquots were kept for morphological analysis (Section 2.9) and the remaining aliquots were stored at -80ºC until processing.  These experiments are denoted in their figure legends as Staining Protocol 2.

Stained samples for flow cytometry were acquired on a BD LSR Fortessa X-20 (BD Biosciences, Oxford, UK). Stained samples for fluorescence activated cell sorting were acquired on a MoFlo Astrios (Beckman Coulter, High Wycombe, UK). Either single stains (Chapter 4) or isotype controls (Chapter 3), were utilised to determine positive staining of cell subsets. Single stains were always used to carry out manual compensation.

All Flow Cytometry data were obtained was analysed using FlowJo software (FlowJo 10.4.2, FlowJo LLC, Oregon, USA). Debris, cellular aggregates and dead cells were excluded during analysis. Flow cytometry analysis provided relative population percentages for cell groups of interest. Absolute quantification was achieved by combining relative population percentages with cell numbers determined in Section 2.5. 

[bookmark: _Ref519018497][bookmark: _Toc3716079]CytoSpin
To confirm the identity the sorted cell populations (Section 2.8) cellular morphology was analysed. 200 ul of a 5x104 cells/ml suspension was added to the funnel chamber of a Cytospin™ 4 Cytocentrifuge (ThermoFisher, Paisley, United Kingdom) fixed to a Super Frost glass microscopy slide. These samples were spun at 800 RPM (~70 G) for 5 minutes at room temperature. After spinning the slide was removed and allowed to air dry, 100% methanol was then added to each slide to fix cell samples and allowed to air dry. Post-fixation slides were then stained with Giemsa for 15minutes, briefly washed in tap water and allowed to air dry overnight. Once dried slides were imaged using a Zeiss AxioScan.Z1 slide scanner (Carl Zeiss Vision UK LTD., Birmingham, United Kingdom).

[bookmark: _Toc3716080]Mass Spectroscopy Sample Preparation – Comparing Freeze-Thaw & Sonication
To determine the most effective method for sample lysis pre-AmB extraction a freeze-thaw and a sonication method were compared. After digestion of liver tissue using digestion protocol 1 (Section 2.5) cells the parenchymal and leukocyte fractions from 3 naïve mice were pooled. After pooling, these fractions were aliquoted (on average 497.47  1.95 x 106 parenchymal cells and 31.95  0.18 x 106 leukocytes for 3 control replicates from 2 pooled naïve mice). 

3 parenchymal cell and 3 leukocyte aliquots were subjected to snap freezing by immersing in a dry ice 100% ethanol bath for 30 seconds and defrosted at room temperature. This process was repeated twice, for a total of 3 freeze-thaw cycles.

3 parenchymal cell and 3 leukocyte aliquots were subjected to sonication, whereby a probe was inserted in to the Eppendorf containing the aliquot and pulsed for 30 seconds using a Vibra-Cell™ Ultrasonic Liquid Processor (Sonics, Newton, USA). The Eppendorf was then rested in ice for 30 seconds. This pulse and rest process was repeated 4 times, for a total of 5 pulse and rest cycles.

The control, freeze-thaw and sonicated replicates were then read on a Vi-CELL XR cell counter (Beckman Coulter, High Wycombe, United Kingdom) where total and viable cell counts were recorded.

[bookmark: _Ref519017137][bookmark: _Ref519021124][bookmark: _Ref519021359][bookmark: _Ref519021419][bookmark: _Ref521680359][bookmark: _Toc3716081]Mass Spectroscopy Sample Preparation - Column Extraction
Liver sections (Section 2.5) for mass spectroscopy analysis were transferred into 2 ml round bottomed Eppendorf tubes and together with aliquots of leukocyte subsets, such as myeloid and lymphoid cells, collected previously (Section 2.8), were stored at -80ºC until processing.

At the time of processing, samples were removed from -80ºC storage and defrosted at room temperature. For liver section samples, a sterile ball bearing was added to each sample and the tissue was disrupted using a Qiagen Tissue Lyser LT (Qiagen, Manchester, United Kingdom) on 50 oscillations per second for 1 minute to allow for greater extraction of AmB from the resulting homogenate. These samples were then snap frozen by immersing in a dry ice 100% ethanol bath for 30 seconds and defrosted at room temperature. Samples were immediately refrozen by snap freezing and defrosted at room temperature, for a total of 3 snap-freeze thaw cycles. After the final defrosting, 250 ul of 100% methanol with 1 ug/ml of Clopidogrel (Bristol-Myers Squibb Pharmaceuticals LTD, Uxbridge, United Kingdom), a stable compound that does not naturally occur within mammalian cells which was used an internal standard to correct for any analytical variability, was added to all samples and the samples thoroughly mixed using a Qiagen TissueLyser LT (Qiagen, Manchester, United Kingdom) at 30 oscillations per second for 1 minute. Samples were then centrifuged for 15 mins at 2000 G at 10ºC and the supernatant collected (termed the 1st extraction) and stored on ice for further processing. 

The pellets remaining after the removal of the supernatant were subjected to three additional freeze-thaw cycles, as described above. Again, after the final defrosting, 250 ul of methanol with 1 ug/ml of Clopidogrel was added to all samples and these were thoroughly mixed using a Qiagen TissueLyser LT at 30 oscillations per second for 1 minute. These samples were then centrifuged for 15 mins at 2000 G at 10ºC and the supernatant collected (termed the 2nd extraction) and collated with the supernatant from the matching first extraction sample. The collated extraction sample was stored on ice until further processing.

Strata C18-E (55um, 70 angstrom) solid phase extraction (SPE) columns (Phenomenex, California, USA), used for the purification of Amphotericin B from processed samples, were prepared by rinsing with 1 ml of 100% methanol, followed by rinsing with 45% methanol (55% sterile water). When AmB-containing solutions were passed through these prepared columns the AmB is bound within the solid-phase of the column, a solid support material in this case a silica-based hybrid, which can then be treated to elute AmB, thus purifying the sample. The collated extraction was then passed through the column and washed with 500 ul of 45% methanol and this wash sample was collected. Both the first wash through and the rinse were collected and combined to form a wash sample. The column was then eluted with 300 ul of 60% acetonitrile into a 500 ul Eppendorf and labelled as the elution sample. The figures for which data were generated using this method are labelled as using the column extraction method.

[bookmark: _Ref521692121][bookmark: _Toc3716082]Mass Spectroscopy Sample Preparation - Column Free Extraction
When samples were run using the column extraction method it was noted that the analyte (AmB) was running through into the wash sample, leading to the possibility that the column was not fully retaining AmB. To avoid this a new extraction method that did not employ a column was optimised so that AmB was fully retained when processing experimental samples and applied to later samples (see figure legends). 

For these column free extraction samples, at the time of processing these tissue sections and cell pellets were defrosted at room temperature. As above, a sterile ball bearing was added to each tissue sample and the tissue was disrupted using a Qiagen Tissue Lyser LT (Qiagen, Manchester, United Kingdom) on 50 oscillations per second for 1 minute. The ball bearing was removed using sterile tweezers and the samples spun at 485 G for 5 minutes at 4ºC to pellet all tissue. 

5 ul of 1% sodium dodecyl sulfate (SDS) was then added to the all samples to aid in solubilisation of AmB, homogenised tissue sections and cell pellets, with 45 ul of pure water. The samples were snap frozen by immersing in a dry ice 100% ethanol bath for 30 seconds. The samples were then defrosted at room temperature and vigorously vortexed for 20 seconds. A second snap freeze defrost and vortexing was then carried out. 250 ul of Dimethyl sulfoxide (DMSO) and 100% Methanol (16:84) containing 5 ug/ml of Clopidogrel was added and the samples were shaken on a bench top rotator for 10 minutes. After shaking, samples were spun at 4000 G for 18 minutes at 4ºC and the supernatant collected (termed the 1st extraction) and stored at -80ºC until mass spectroscopy analysis. To the pellets remaining after the removal of the supernatant, the aforementioned processing was repeated and the supernatant was removed at the end of the process (termed the 2nd extraction) and stored at -80ºC until mass spectroscopy analysis. The figures for which data were generated using this method are labelled as using the column free extraction method.

[bookmark: _Ref519019755][bookmark: _Ref519021365][bookmark: _Ref519021414][bookmark: _Toc3716083]Liquid-Chromatography Mass Spectroscopy Sample Analysis
For LC-MS analysis, column extracted samples were dehydrated and resuspended in 100ul of 100% methanol which was transferred into 96 well-plates. Column free extraction samples were directly transferred (200ul per sample) into 96 well-plates. 

On the day of analysis, samples were thawed and 200 µl of each sample was transferred into 96-well plates (Waters, Elstree, UK) for liquid chromatography mass spectroscopy analysis (LC-MS). LCMS analyses were carried out on a Waters Acquity I Class UPLC system (Waters, Elstree, UK) outfitted with a quaternary pump, an on-line solvent degasser, autosampler and column oven. 

The column used was a Waters BEH C18(2), 50x21.mm, 1.7µ UPLC column set at 45 ºC, flow rate 0.3 - 0.4mL min-1. Injection volume was 4 μL. The LC mobile phase consisted of (A) 10 mM ammonium formate (pH 3.0), 0.2% formic acid and 1% acetonitrile, and (B) methanol:acetonitrile (50:50%, vol/vol) with 0.1% formic acid. All reagents and solvents were of LCMS grade. The gradient started at 35% B and increased in linear fashion for 2 min at flow rate of 0.3 mL min-1, then increased to 100% B over 0.1 min at a flow of 0.4 mL min-1, stayed there for 0.5 min (same flow rate), and decreased to 35% B (flow 0.3 mL min-1), where it was left to re-equilibrate for 0.5 min (total duration 3.2 min). Solvent (A) also served as weak needle wash, solvent (B) as strong. The autosampler was kept at 10ºC.

MS/MS experiments were performed on a TSQ Endura™ triple quadrupole (QqQ) mass spectrometer (Thermo Fisher Scientific, Hemel Heampsted, UK), equipped with a heated electrospray ionization source (H-ESI), operating in the positive ion mode. Measurements were carried out using the following ionization parameters: source voltage: 3500 V; sheath gas: 40 (arbitrary units); auxiliary gas: 12 (arbitrary units); sweep gas 1 (arbitrary units); ion transfer tube temperature: 333 ºC; Vaporizer temperature: 317 ºC, cycle time: 0.4 s; CID gas: 1.5 mTorr, Q1 and Q2 resolution 0.7 Da (FWHM).  Selected reaction monitoring (SRM) experiments were used to monitor specific precursor-to-product ion transitions of the analyte AmB and the IS clopidrogel. SRM parameters, such as precursor m/z value (Q1), fragment m/z values (Q3s), collision energy, analyte retention time and relative intensities for all fragments, for each analyte were optimized by directly teeing in (into a flow of 50% mobile phase B at 300 µL/min) individual standard solutions of each compound (200 μg/mL for AmB, 500 µg/mL for clopidogel, both in methanol) at a flow rate of 10 µL/min.  Full-scan data acquisition was performed using the first mass analyser (Q1) by scanning from m/z 50 to 1000. Collision energy settings were optimized and the most intense SRM transition obtained for each analyte was chosen as the quantification transition. The divert vale was directing to source between 0.2 and 2.2 min of the gradient run.

[bookmark: _Toc518564593][bookmark: _Ref519022031][bookmark: _Ref522734803][bookmark: _Ref522785591][bookmark: _Ref524121019][bookmark: _Ref525072615][bookmark: _Toc3716084]Biological Data Statistical Analysis
Leukocyte (and leukocyte subset) population abundances between groups of either different infection status or different stages of infection were compared. Non-parametric statistical analyses were carried out. Sample numbers for some time points were not sufficient to determine the likeliness they originated from Gaussian distributions as determined using a D’Agostino & Pearson Omnibus Test (D’Agostino & Pearson, 1973) and thus non-parametric tests were utilised. 

To compare between infected and naive populations at selected time points, a two-tailed Mann-Whitney test (Mann and Whitney 1947) was used. To compare against different time points over the course of the same infection, Dunn’s multiple comparison tests were used. All analyses were carried out GraphPad Prism (Prism 5 for Mac OS X, GraphPad Software, California, USA). 

All biological replicates when discussed in text are described using the mean and standard deviation (SD), technical replicates are described using the mean and standard error of the mean (SEM).

Biological and technical replicate data for mass spectroscopy experiments, where the cellular accumulation of AmB was analysed for a total population, were combined. The average population value was derived by simple multiplication of the value for the biological and technical replicates, leading to an n of one for these experiments. To derive the error for these data points we utilised the error propagation equation for multiplication of two quantities (Goodman, 1960). The propagated error for the two quantities (cell population abundance and cellular AmB accumulation) was calculated as the square root of the error (in this case the SEM) of population abundance divided by the mean population abundance squared added to square root of the error (in this case the SEM) of cellular AmB accumulation divided by the mean cellular AmB accumulation all of which was multiplied by the average timepoint value (above). Resulting in an error propagated SEM for the combined average.

[bookmark: _Toc495847345][bookmark: _Ref516960885][bookmark: _Toc518564594][bookmark: _Ref522725418][bookmark: _Ref523509055][bookmark: _Toc3716085]Model Development & Parameterisation
[bookmark: _Toc517175485][bookmark: _Toc518488928][bookmark: _Toc3716086]Modelling Development Approach
To develop an in silico model of the cellular population kinetics and resultant parasitic behaviours within the liver an ODE system was developed following the CoSMoS process (see Section 1.3.2 and Figure 1.7), a generic framework for the modelling and simulation of complex systems (Andrews et al. 2010) previously employed for various immunological models (Alden et al. 2012; Evans 2016; Cosgrove 2017), as detailed below.

[bookmark: _Toc517175486][bookmark: _Toc518488929][bookmark: _Ref525116850][bookmark: _Toc3716087]Research Context
The research context was first developed, preceding any model development and captured the aims to be achieved by the model and the scope within which they are to be explored as well as the research sources utilised. For example, in this thesis the scope of the model was limited to the hepatic site of infection after introduction of L. donovani. 

[bookmark: _Toc517175487][bookmark: _Toc518488930][bookmark: _Ref519095166][bookmark: _Ref525116858][bookmark: _Toc3716088]Domain Model
A domain model is a representation of the biological system of interest, this representation is not explicitly confined to any specific type of representation and may be a formal or informal diagrammatic representation or a table of information. The domain model encapsulates what is known to occur from sources such as experimental data and expert opinion. To ensure that implementation issues do not influence the representation of the system the domain model deals only with the biological system. The domain model was generated using three main component diagrams: an expected behaviours diagram, UML-like activity diagrams of biological entities and state diagrams of the same entities (see Section 1.3.2.2), based upon knowledge derived from the research context.

[bookmark: _Toc517175488][bookmark: _Toc518488931][bookmark: _Ref519095228][bookmark: _Ref525116893][bookmark: _Toc3716089]Platform Model
Following the domain model development, the platform model was established. The platform model compromises both UML-like activity and state diagrams which detail the specifications of the biological processes from the domain model as implementable modular processes, any abstractions/simplifications are noted and justified. The expected behaviour diagram is, and was, not implemented as a platform model component as implementation of these behaviours guarantees model outputs and thus reduces confidence in the predictive, and thus exploratory, ability of the model. The platform model also details the modelling methodology that will be applied for the simulations, based upon the most suitable methodology to achieve the model aims.

[bookmark: _Toc517175489][bookmark: _Toc518488932][bookmark: _Ref519008490][bookmark: _Ref519095327][bookmark: _Ref525116898][bookmark: _Toc3716090]Simulation Model
The simulation model is the realisation of the specifications from the platform model into an executable code base from which simulations can be performed. For this thesis, simulation models were implemented as ODEs using the R programming language. The states described in the platform model correspond to the populations for which the ODEs tracked the rate of change and the low-level functions within the ODEs are each representative of one or more platform activities. ODEs do not require the specification of an environment within the simulation as they inherently represent a well-mixed single compartment, in this case representative of the liver, pseudo-spatial considerations may be achieved through compartmentalisation of processes, such as in physiologically-based pharmacokinetic models where each compartment approximately translates to a physiological organ. RStudio (RStudio Inc., Boston, USA) was utilised as an integrated development environment and simulations were run using the lsoda function of the deSolve package (Soetaert, Petzoldt, and Setzer 2010), whereby a function, referring to a defined executable piece of code which optionally requires input and/or supplies output, was created encapsulating all equations. Parameter values were supplied to the model as a vector, where the order of the parameters correlated to a referenced index for each parameter inside the function, alongside a vector of times to simulate, in this case 0 - 42 days in 1 day increments, and the initial conditions of the model. The output was returned as either a table containing quantities for all population at each simulated timepoint or as a vector returning the value for specific populations at specific times, as defined by the user. 

[bookmark: _Toc517175490][bookmark: _Toc518488933][bookmark: _Ref519095478][bookmark: _Ref522636794][bookmark: _Ref523067372][bookmark: _Toc3716091] Model Calibration
During the CoSMoS process, specifically in the domain and platform models, biological processes with associated numerical properties (such as rates/probabilities) were identified, these numerical properties translated to parameters implemented in the simulation model. For the proposed simulation model to make reliable and robust predictions unknown parameter values, those that are not readily available from published experimental data or similar sources, must be calibrated to ensure similarity between results derived from the simulation model and those observed from the domain. 

To calibrate the unknown parameter values for the proposed simulation model (see Section 1.3.3), two approaches were taken. For calibration of parameters against simulation output for a single population, such as T cell time course data, a sequential ABC approach was employed using the ABC_sequential function of the easyABC package (Jabot, Faure, and Dumoulin 2013). This method was employed due to its simplicity to implement and easily understandable output, no need for specification of likely parameter values and use of user-defined tolerance values, which help mitigate the overfitting of the model and allow additional insight into model mechanisms, as the user can visually examine outputs from low tolerance values thus possibly identifying which parts of the data the function fails to calibrate against. 

An approximate Bayesian approach was engaged in instances where elements from the models, such as cell populations, could be isolated due to their lack of dependence on other model population(s). This allowed for the calibration of parameters for those isolated entities in a smaller parameter search space thereby reducing the complexity of the calibration itself. In instances where parameters for multiple population were calibrated, the previously defined parameters from the approximate Bayesian approach were supplied as deterministic parameter values and the remaining parameters were calibrated using multiobjective fitting. Whilst this is an unorthodox approach it allowed for a more simplified calibration of the models. For instance, if a population that was not dependent on other model population(s) was included in multiobjective fitting the resulting calibration would be more complex due to the calibration trying to account for both the influence of the additional population and the derivation of that population’s parameters. Instead, we first define that populations parameters separately. However, in instances where no isolation of cell populations occurred only multiobjective fitting was employed.
  
When employing the ABC_sequential function, the function in R containing the simulation model was configured to return output for the single population being calibrated against at specified timepoints, namely 6, 13, 21, 35 and 42 days post-infection corresponding to the time points analysed in vivo. The ABC_sequential function was supplied with the name of an algorithm (which informs the function which sampling strategy to employ, here we use the default algorithm “Beaumont”), the function containing the simulation model that is being calibrated, prior distributions for the unknown parameters, the number of parameter sets to obtain, a vector containing the expected data and a vector of descending integers representing the tolerance threshold. Table 7.2 shows the information supplied to the ABC_sequential function for all calibrations where it was employed. The ABC_sequential function first carried out a simple rejection-based sampling whereby the prior distribution is randomly sampled to generate a candidate parameter set, this was supplied to the simulation model and the resulting output was evaluated against the expected data such that if the absolute value for the difference between the model output and expected data was equal to or less than the first tolerance value for all expected data points, those candidate parameter values were accepted for the next stage of the function. Once the specified number of candidate parameter sets had been generated, approximate posterior distributions were derived from their values. Candidate parameter values were sampled from the newly created approximate posterior distributions and supplied to the model and the output was evaluated as described above. This continues until all tolerance thresholds have been achieved, however no new approximate posterior distributions are calculated at each step instead the initial posterior is sampled throughout. Once all tolerance levels were achieved the ABC_sequential function returned the obtained parameter values, the simulation output those parameters generated and the weights of the different simulations. 

For calibration against multiple population simulation outputs, such as T cell time course data and myeloid cell time course data, a multi-objective evolutionary algorithm was employed, namely the nondominated sorting genetic algorithm II (NSGA2) (Deb et al. 2002) using the nsga2 function from the mco R package. This multi-objective approach was utilised as it allowed us to investigate the trade-offs when calibrating for multiple populations which we are not able to do with the single objective ABC_sequential function. This gives valuable additional insight into the mechanisms of the model as we can visualise which populations provide poor calibration results. Additionally, it reduces bias in calibration by segregating our objectives. As discussed, a possible concern of calibrating multiple populations of differing scales is the potential for calibration to focus on the population of higher magnitude. The NSGA2 algorithm was employed due to its successful implementation in previous calibrations of in silico immunological models (Cosgrove 2017). 

To utilise this nsga2 function we first created an evaluation function. This evaluation function contains the model to be calibrated and receives candidate parameter values from the nsga2 function, in turn the evaluation function supplies these candidate parameter values to the model being calibrated, captures the output and evaluates it against the expected data. In our evaluation function, the evaluation itself was to derive the root mean square error (RMSE) for the observed and expected time course of individual entities. The nsga2 function was also supplied with the number of parameters, the number of model outputs, the upper and lower bounds of the parameters along with the population size to generate, the number of generations and the mutation and crossover probabilities (see Section 1.3.3.4). In this work, the number of parameters and model outputs was dependent on the model being calibrated and the upper and lower limits for each parameter are described in each section where the nsga2 function was employed. The population size was set to 100 with a generation size of 200 for each population member. The mutation and crossover probabilities were set as 0.7 and 0.3 respectively for all instances of nsga2 utilisation. The nsga2 function sought to minimise the RMSEs for the multiple objectives supplied (see Section 1.3.3.4) and ran until the stated number of generations has been created for the total population size. Once completed it supplied the parameter values generated for each member of the population, the RMSE values for the model output of each population member parameter set against the expected data and a TRUE/FALSE value for each population member denoting whether it was pareto-optimal (or non-dominated).

The parameter set deriving the best fitting model output for single objective approach was determined by calculating the RMSE from the model output against the expected data and selected the lowest value. For the multi-objective approach, the parameter set for the best fitting model was calculated through summation of each objectives RMSE and selecting the minimum value.

1.1.1 [bookmark: _Toc517175495][bookmark: _Toc518488938][bookmark: _Ref519095669][bookmark: _Toc3716092]Scientific Validation of the Model
To validate the calibrated parameters, model output was compared against an in vitro dataset of the number of L. donovani amastigotes per infected J774 macrophages at select intervals over 10 days (Martín-Montes et al. 2017). Initially, the simulation model was configured to represent the in vitro environment by setting the initial T cell number to zero and removing any extrinsic sources of cells (such as extrahepatic influx). The parameter set deriving the best fitting simulation output (compared to the expected data) from the previously described calibration was supplied to this restructured model and the output captured. A new dataset was derived from this output by calculating the number of amastigotes per infected myeloid cell, rounded to the nearest integer, and compared against an in vitro time course using a Chi-Square goodness-of-fit test. All analyses were carried out GraphPad Prism (Prism 7 for Mac OS X, GraphPad Software, California, USA).

1.1.2 [bookmark: _Toc517175491][bookmark: _Toc518488934][bookmark: _Ref525145100][bookmark: _Toc3716093]Global Sensitivity Analysis
Within the simulation model, the system of ODEs tracked the rate of change for several populations, the processes for each population included multiple parameters that each could potentially impact the output of itself and other populations. To quantify the influence of each parameter with regard to each population represented within the model a global sensitivity analysis was performed. 

To analyse this effect, 500 parameter sets were randomly generated using the R package spartan (Alden et al. 2013), which implemented a Latin-hypercube (LHC) sampling approach to ensure randomly drawn parameter values were sampled that covered the defined parameter space fairly; within the LHC sampling the previously drawn parameter values influence the selection of the following values for sampled parameters, ensuring there is no bias from selecting similar parameter values for each draw.

Once the 500 parameter sets had been generated they were supplied to the ODE simulation model created using the CoSMoS process and output was generated, utilising the parallel package (Rossini, Tierney, and Li 2007) to accelerate data generation. The simulation output was divided into daily output, in this case a vector of 500 output values for each population for each daily time step from 0 - 42 days, and merged with a table of the generated 500 parameter values, with each simulation output row joined to the row of parameters that generated it. This table was then analysed using the spartan package through calculation of a partial rank correlation coefficient (PRCC), a measure of the strength of monotonicity, the preservation or reversing of the given order of data (for instance y = x and y = -x are monotonic whilst y = x3 - x4 is not), between the parameters and the simulation outputs. To calculate the PRCC the data were sorted by input and output magnitude, and for every parameter investigated by the GSA a first linear regression describing the relationship of the input parameter to other parameters and a second linear regression describing the population output with regards to the other parameters were created. The residuals from the two regressions were analysed to give a Pearson correlation coefficient which fives the PRCC for the parameter. Thus, a PRCC for every parameter at every time point analysed was derived and plotted. The PRCC values fall between 1 and -1, with a positive value corresponding to a linear relationship between the parameter and output value (the higher the parameter value the higher the output value) and a negative value corresponding to an inverse linear relationship (the lower the parameter value the higher the output value). 





[bookmark: _Ref518738258][bookmark: _Toc3716094]| Cellular Distribution of Amphotericin B in the Liver of Mice with Experimental Visceral Leishmaniasis


1. [bookmark: _Toc3716095]Introduction
In Chapter 1, the various leukocyte populations that participate in the hepatic granulomatous response during VL infection were introduced. To recap, in the L. donovani murine model of VL, KCs, the resident macrophages of the liver, become infected with L. donovani which activates patrolling NKT cells. This KC infection and NKT activation generates recruitment signals which induce the migration of neutrophils, monocytes and lymphoid cells (predominantly T and B cells) to aggregate around infected KCs. These cells together promote a strong inflammatory environment inducing KCs to adopt an activated phenotype, also called M1, characterised by production of reactive oxygen and nitrogen species, which are leishmanicidal, leading to a reduction in parasite load within the liver.

LAmB is a frontline antileishmanial therapy. Previous studies of AmB biodistribution have shown high levels of hepatic accumulation in vivo (Gershkovich et al. 2010; Sundar and Chakravarty 2010; Voak et al. 2017) and significant reductions in parasite numbers are observed in in vitro and in vivo infection models as well as in the clinic (Mullen, Baillie, and Carter 1998; Yardley and Croft 2000; Manandhar et al. 2008; Van de Ven et al. 2012). However recent work in tuberculosis has shown heterogenous sub-tissue distributions of drug (Prideaux et al. 2011; Rifat et al. 2018) that likely impact therapeutic outcome (Pienaar et al. 2015; Pienaar et al. 2017). For VL, it is not currently known how AmB is distributed at a sub-tissue level in the liver, or how immunological responses shaping granuloma formation and maintenance could affect this distribution. Novel insights into the mechanisms of drug action could be key to developing more effective therapeutic regimes at a time when there are few available therapeutic agents and drug-resistance is emerging.

In this chapter, a characterisation of the sub-tissue level distribution of AmB, focusing on granuloma leukocytes, is presented. We begin by developing an LC-MS/MS analysis for the optimal detection of AmB in liver derived cell samples. This analysis is then applied to leukocyte samples obtained from AmBisome, a frontline LAmB formulation, treated L. donovani infected mice over a variety of time points and compared to the corresponding change in parasite load. Our findings indicate the majority of AmB accumulates outside of leukocytes and that KCs show a surprisingly poor accumulation of AmB, in spite of evident control of infection.

[bookmark: _Toc3716096]Aims
The aims of this chapter were to develop a protocol for the analysis of AmB accumulation in both whole liver tissue and individual liver cell populations and then to apply this protocol to determine the accumulation of AmB over time in these tissue and cell samples. This is the first study, to the best of our knowledge, which has sought to characterise the accumulation of AmB in distinct cell populations during EVL. 


[bookmark: _Ref518489437][bookmark: _Toc3716097]Results
[bookmark: _Ref521953713][bookmark: _Toc3716098]Optimisation of Amphotericin B detection by LC-MS/MS
To begin the optimisation of AmB detection, we first determined if AmB was detectable using an LC-MS/MS approach. A solution of AmB (0.2 mg/ml) and Clopidogrel (0.5 mg/ml) in 100% methanol, containing no biological components, was analysed, as described in Section 2.13. Clopidogrel was used as an internal standard. AmB and Clopidogrel were eluted from the liquid chromatography component at 1.73 mins and 1.95 min, this was determined by comparing the mass-charge ratio detected with the known values for AmB and Clopidogrel and relating them to their corresponding elution time, shown in Figure 3.1, confirming the ability of the utilised equipment to detect both AmB and the proposed internal standard.  A

[image: ]B
[bookmark: _Ref518931765][bookmark: _Toc525227192][bookmark: _Toc536814131]Figure 3.1 - Chromatogram of Amphotericin B and Clopidogrel. Liquid chromatography-mass spectroscopy chromatogram of a 5ul sample injection without column purifcation containing 1 g of Amphotericin B (A) and 2.5 g of Clopidogrel (B) dissolved in 100% methanol. Detection was performed using a TSQ Endura™ Triple Quadrupole Mass Spectrometer.



Once the detection capability had been ascertained, a standard curve of AmB concentrations was derived exploring the quantitative limits of the equipment. Lyophilised AmB was resuspended at concentrations ranging from 3 g/l to 30 femtograms (fg) /l, with the proposed internal standard, and 2 l of each sample was injected for analysis. Only samples between 3 – 0.0003 g/l provided a satisfactory linear relationaship between the amount of AmB injected and the peak area, normalised to the area of the samples corresponding internal standard peak, shown in Figure 3.2. Thus the absolute detection limits for this specific curve are 6 g - 0.0006 g (factoring for the 2 l injection volume). Of note, standard curves were generated in every instance of sample analysis to account for ‘on the day’ variability in machine running and sample preperation, thus Figure 3.2 is referred to as an examplar standard curve, meaning this curve highlights approximate AmB detection [image: ]limits.[bookmark: _Ref518931793][bookmark: _Toc525227193][bookmark: _Toc536814132]Figure 3.2 - Standard Curve for Amphotericin B LC-MS. 2 ul of Amphotericin B solutions ranging from 3 g/l - 30 fg/l were injected for LC-MS analysis and their resulting peak areas normalised against the area of the internal standard peak for each sample. The log amount of Amphotericin B injected is then plotted against the log area of the corresponding normalised Amphotericin B peak area. 



Following the identification of approximate AmB detection limits, the detection of AmB accumulated in biological tissue fractions was attempted, due to the scarcity of information on cellular accumulation levels achieved in vivo. Liver tissue was isolated from mice 12 hours post-treatment with 10 mg/kg AmB, a dose and time-point that are likely to show high levels of AmB accumulation in total liver (Voak et al. 2017) thus increasing the likelihood of the positive dection of AmB in cellular fractions. Leukocytes were recovered from both naïve and infected livers alongside digested liver tissue post-leukocyte recovery (containing the parenchyma) . At least 2x106 leukocytes and 1 ml of parenchymal lysate (this lysate being the pelleted cells removed in the parenchymal fractionation using a 50 G centrifugation, which we were not able to quantify in terms of cell number) per mouse were processed using column extraction to isolate AmB (Section 2.11). AmB was detected in both leukocytes and parenchymal lysate, shown in Figure 3.3, confirming the ability to detect sub-tissue distributed AmB. To note, the standard, Clopidogrel, was added to these samples during the extraction of AmB from the biological samples and corrects for analytical variability as it is applied to uniformly to all samples. In this way the area of the detected peaks for AmB and Clopidogrel can be used to derive a ratio that allows for like-for-like comparisons of all samples. Whilst an AmB signal was detected in untreated samples this was between 178-318 fold less than in treated leukocytes and between 1618-5803 fold less than treated parenchyma, likely representing background noise.
[image: ][image: ][bookmark: _Ref518931821][bookmark: _Toc525227194][bookmark: _Toc536814133]Figure 3.3 - LC-MS Analysis of Leukocytes and Parenchyma for Amphotericin B Detection. Amphotericin B and Clopidogrel levels were determined for leukocytes and parenchymal cells isolated from 2 naïve mice treated with 10 mg/kg Amphotericin B as AmBisome (Red & Blue) and 1 untreated naïve mouse (Green). The ratio of the peak areas for Amphotericin B and Clopidogrel was determined for each sample. Data represents 1 biological replicate per treatment group. Samples were processed using digestion protocol 1 (Section 2.5) and the column extraction method (Section 2.11).

Next, to validate whether maximal cell disruption, and thus AmB release and extraction, was achieved the efficacy of two cellular disruption methods was compared. Leukocytes and parenchymal cells, where the purity of these fractions had been previously ascertained (Figure 7.1), were recovered from mouse liver tissue, described in Section 2.5, and subjected to either sonication or repeated freeze-thaw cycles. Comparatively, freeze-thaw cycles achieved higher levels of cell concentration reduction (Figure 3.4). Repeated freeze-thaw reduced the cell viability of leukocytes by 92.37%, compared to 48.33% for sonication, and for parenchymal cells by 91.97%, compared to 69.89% for sonication. Freeze-thaw cycles were therefore utilised for cell disruption prior to LC-MS/MS analysis.

[image: ][image: ][image: ] Whilst Figure 3.2 provided an indication of AmB detection limits in pure solution, cellular accumulation of AmB post-treatment has not been previously quantified. To this end, the number of cells that would be needed to generate a signal within the detection range for AmB were investigated. Leukocyte and parenchymal cell aliquots, ranging from 102 – 107 cells, were collected from naïve mouse liver 12h post-treatment. These samples were then processed using freeze-thaw cycles and AmB extracted using a column (Section 2.11). Figure 3.5 shows the area of the AmB peak normalised to the samples corresponding area for the Clopidogrel peak for these aliquots. AmB was detected in samples containing 106 and 107 cells (Ratio: 0.0001 and 0.002, respectively), was negligible in 105 parenchymal cells (Ratio: 2.3x10-6) and was not detected in samples below 105 cells. Similarly, for leukocytes, detection was possible at 106 and 107 cells (Ratio: 0.0006 and 0.01, respectively), but not with 102, 104 or 105 cells. A signal was detected for 103 cells (Ratio: 0.000046) but was assumed to be noise due to a lack of signal in the other larger samples. Therefore, in all following experiments, we attempted to obtain 106 cells per sample to analyse cellular AmB accumulation.[bookmark: _Ref518931841][bookmark: _Toc525227195][bookmark: _Toc536814134]Figure 3.4 - Quantification of Lysis Efficiency for Liver-derived Cells. Viable cell counts for total liver-derived leukocytes and parenchymal cells were calculated using a Vi-CELL Cell Viability Analyzer before and after sonication (  ) or freeze-thaw (  ). The reduction in cell concentration was calculated. Data represents technical replicates (n = 3 technical replicates created using cells pooled from 3 naïve mice) and is plotted as individual replicates + mean. Samples were processed using digestion protocol 1.


[image: ][bookmark: _Ref518931924][bookmark: _Toc525227196][bookmark: _Toc536814135]Figure 3.5 - Quantification of Cell Number Detection Limit. Different numbers of leukocytes (Blue) and parenchymal cells (Red) from AmBisome treated mice were processed and analysed using LC-MS. The ratio of the peak areas for Amphotericin B and Clopidogrel detected for each aliquot was determined for each sample. Data represents value of 1 aliquot. Samples were processed using digestion protocol 1 and the column extraction method. 
.


Further to deriving the most efficient cell lysis method and the number of cells needed for positive detection, it was also investigated if singular or multiple extractions would be needed to maximally extract drug from cell and tissue samples. For this analysis, we first digested liver tissue 12 hours post-treatment and isolated a mixed liver cell population. This population underwent 3 consecutive extractions (Section 2.11) and each extraction was analysed for AmB content compared to the internal standard. Figure 3.6 shows the ratio of the peak areas of AmB and Clopidogrel for the extractions from this analysis. No signal for AmB was detected for the 3rd extraction whilst the 1st and 2nd extractions show the presence of AmB. These data indicate that AmB had been fully extracted during the 2nd extraction. Hence, future samples were processed using two extractions.







[image: ][bookmark: _Ref518931950][bookmark: _Toc525227197][bookmark: _Toc536814136]Figure 3.6 - Determination of Cellular Amphotericin B Extraction Efficiency. 1 x 107 liver cells (leukocytes + parenchymal cells from liver homogenate) were extracted for the stated number of times and the normalised peak area of Amphotericin B was determined for each extraction. Data represents 1 sample per extraction (derived from a single initial sample). Samples were processed using digestion protocol 1 and the column extraction method. 
.

Hepatocytes, the main parenchymal cell type in the liver, have been previously described as sensitive cells, prone to death during cellular isolation techniques (Cabral et al. 2018). In this instance, apoptotic hepatocytes are likely to have compromised membranes, impacting their detectable drug accumulation; this is discussed further in Section 3.4. To verify the ability of hepatocytes to survive the extraction process, parenchymal cells were isolated from naïve livers and processed using a protocol optimised for viable hepatocyte recovery (Klaunig et al. 1981; Gonçalves, Vigário, and Penha-Gonçalves 2007)  . Their viability was assessed using trypan blue. The viability levels, as well as the numbers of recovered hepatocytes, are shown in Figure 3.7. For the sample cohort, the average level of parenchymal viability was 14.98%, an unacceptably low level of cell survival compared to published levels. Thus, going forward parenchymal cells were not included in future analyses.


Concluding, we have developed an optimised AmB detection method for both tissue and cell samples by LC-MS/MS. It was determined that for the analysis of [image: ]AmB in cellular populations that 1x106 - 1x107 cells should be used. These populations should be disrupted using repeated freeze-thaw cycles and the cell lysate samples should then undergo two extractions. Low parenchymal viability upon extraction reduces confidence in using these cells for investigative purposes and so instead their accumulation will be estimated by deduction of the total hepatic leukocyte accumulation from the total liver accumulation.[bookmark: _Ref518931998][bookmark: _Toc525227198][bookmark: _Toc536814137]Figure 3.7 - Parenchymal Cell Abundance and Viability Post-Purification. Cell number and viability of parenchymal cells purified from livers using the updated digestion protocol (Digestion protocol 2 (Section 2.5)). Data represents median banded by the upper and lower quartile, top whisker is maximum value, bottom whisker is minimum value (n = 8 biological replicates from 1 experiment).


[bookmark: _Ref518135898][bookmark: _Toc3716099]Initial characterisation of hepatic Amphotericin B accumulation
To characterise hepatic AmB accumulation and distribution we initially focused on a 12h post-treatment of C57BL/6 mice with 10 mg/kg AmBisome, a time point showing high total hepatic AmB accumulation in previous studies (Voak et al., 2017). Liver sections were collected for whole tissue analysis (see Section 2.11) and the remaining liver was processed for cell isolation (see Section 2.5). Figure 3.8 shows the fluorescence activated flow cytometry (FACS) staining and gating strategy that allowed for the identification of lymphoid and myeloid cells (including neutrophils, Kupffer cells, dendritic cells and monocytes), as described in Sections 2.8 and 2.10
[image: ][bookmark: _Ref518932073][bookmark: _Toc525227199][bookmark: _Toc536814138]Figure 3.8 - Initial Gating Strategy to identify subsets of hepatic leukocytes. Gating strategy used to quantify leukocyte subsets (Lymphoid cells, neutrophils, dendritic cells, Kupffer cells and monocytes) from the liver of L. donovani infected mice. Subsets were all characterised on the basis of being CD45+ live single cells. Data are representative of a Day 28 post-infection purified liver leukocyte population. This gating strategy utilised staining protocol 1 (Section 2.8). Addendum 3/1/19: The singlet gate shown does not discriminate singlets, however comparison of the downstream proportions against a traditional singlet gate (FSC-A vs FSC-H) shows there is little (<2.5%) change in any subsequent populations.


To begin characterising the cellular distribution of AmB, mice were infected with L. donovani and treated with AmBisome at 28 days post-infection. After 12h, liver samples were taken (150  30 mg) and the remaining liver was then digested, using digestion protocol 1, to recover leukocytes (see Section 2.5). These liver samples and aliquots of leukocytes were then processed for AmB extraction as detailed in Section 2.12.

AmB was detectable in all of the liver samples  analysed (Figure 3.9A) and these values were transformed to estimate drug accumulation in the whole liver (Figure 3.9A) by scaling the sample weight to the whole liver weight. For example, for a liver weight of 1.938 g and liver sample of 0.157 g, a scaling factor of 12.34 is generated. This approach has previously been employed in pharmacokinetic studies (Proffitt et al., 1991; Voak et al., 2017). On average the accumulation of AmB within the total liver was found to be 54.57  17.43 g, representing an average liver retention of 28% of the injected dose. These data demonstrate that the liver accumulates significant AmB in an L. donovani infected mouse, recapitulating previous observations (Voak et al. 2017).

The analysis of leukocytes yielded detection of AmB in all samples (Figure 3.9B) and these values were also scaled to determine drug uptake by the total hepatic leukocyte population (Figure 3.9B). Five leukocyte samples were extracted per experiment, over 3 independent infection experiments, and the absolute population numbers captured. On average there were 99.18  43.20 x 106 hepatic leukocytes recovered and per 1x106 leukocytes an average of 0.07  0.03 g of AmB was detected, resulting in an average total population accumulation of 7.26  4.93 g. Hence, the majority of the hepatic AmB is not located within leukocytes at 12h post-treatment. Given that Leishmania predominantly reside within leukocytes, this substantial off target accumulation represents a novel finding.

[image: ]To further assess AmB distribution within leukocytes, the population was divided into its two main component families: myeloid and lymphoid cells. Leukocytes were isolated from the livers of day 28-infected mice treated 12 hrs previously with AmBisome. They were then processed for FACS and sorted using the strategy described in Figure 3.8 (see Sections 2.8 and 2.10). For the cell sorting, 8 mice were pooled resulting in a total pooled hepatic leukocyte count of 3x108 which was sorted to collect lymphoid and myeloid cells and then neutrophils, monocytes, dendritic cells (DCs) and KCs. Due to limitations in cell recovery, bulk lymphoid and myeloid cell fractions could be analysed by LC-MS/MS using 106 cells per sample, whereas for sub-populations 105 cells were analysed.[bookmark: _Ref534367991][bookmark: _Ref518932093][bookmark: _Toc525227200][bookmark: _Toc536814139]Figure 3.9 - Initial LC-MS Analysis of Liver and Hepatic Leukocytes. Samples of liver (A - left) and leucocytes (B - left) from mice infected with L. donovani for 28 days and treated 12h previously with 10mg/kg AmBisome were analysed for Amphotericin B content using LC-MS. Data are shown per sample and after normalisation for total live weight or leucocyte population size. Data represents mean  SD (Liver: n = 5 from one infection experiment; Leukocytes: n = 15 from three independent infection experiments). Samples were processed using digestion protocol 1 and the column extraction method. 
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1x106 myeloid cells contained 0.176  0.06 g of AmB as compared to 0.014  0.003 g in 1x106 lymphoid cells (p = 0.0357). Thus, myeloid cells accumulated ~13-fold more AmB than lymphoid cells on a cell-per -cell basis (Figure 3.10A).
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[bookmark: _Ref518932222][bookmark: _Toc525227201][bookmark: _Toc536814140]Figure 3.10 - Uptake of Amphotericin B by myeloid and lymphoid cells in AmBisome-treated L. donovani-infected mice.  1x106 myeloid and lymphoid cells (A) and 1x105 dendritic cells, Kupffer cells and monocytes (B) from AmBisome-treated [10mg/kg, 12hrs post-treatment] day 28 infected mice were analysed for Amphotericin B using LC-MS. Data represents mean  SEM (n = 3-5 technical replicates pooled from 8 mice in 1 infection experiment). Data from (A) was analysed using a Mann-Whitney test and data from (B) was analysed using Dunn’s Multiple Comparison Test. These samples were processed using digestion and staining protocol 1 and the column extraction method.


Myeloid cells were further flow sorted to isolate neutrophils, DC, KCs and monocytes (Figure 3.8), however post-sort purity analysis was not performed for these samples. Neutrophils were excluded from LC-MS/MS analysis due to insufficient cell numbers. DCs, monocytes and KCs contained 0.012  0.004 g, 0.013ug  0.004 g and 0.013  0.004 g of AmB, respectively. There was no statistically significant difference between the accumulation in these subsets suggesting that on a cell-for-cell basis the accumulation of AmB by these myeloid subsets is relatively homogenous.  


[bookmark: _Ref521953533][bookmark: _Toc3716100]Kinetics of hepatic Amphotericin B accumulation and distribution
The accumulation and distribution of AmB within the whole liver, and within isolated hepatic leukocytes and leukocyte subsets was then determined over time after AmBisome treatment in mice infected with L. donovani for 28 days.  

To mitigate the low yields initially encountered, an additional antibody (anti-Ly6C) was added to the FACS panel (Figure 3.11; Section 2.8) to allow for a better identification of monocytes. KCs and DCs were also pooled (referred to as KCs & DCs). In addition, lymphoid cells, neutrophils, monocytes and KCs & DCs were sorted simultaneously. To ensure accurate sorting, isotype controls were used (Figure 3.11B) to set sort gates.

Following sorting, an aliquot from each sorted population was re-analysed to ascertain sample purity. Our results showed purity levels in the sorted populations, from Figure 3.11C, were 99.4%, 75.6%, 88% and 91% at 1 hour post-treatment for lymphoid cells, neutrophils, monocytes and KCs & DCs respectively. Some cells did appear outside the specified gate, most likely due lower emissions due to repeated fluorophore stimulation (Shapiro 2005). Additionally, analysis of cytospin preparations confirmed the identity of the sorted cell samples by morphology (Figure 3.11D). Purity levels for subsequent time points were not recorded, instead it was assumed that similar levels of purity would be achieved in all subsequent sorts.



[image: ]
[bookmark: _Ref518932440][bookmark: _Toc525227202][bookmark: _Toc536814141]Figure 3.11 – Updated Gating Strategy to identify subsets of hepatic leukocytes and validation of Fluorescence Activated Cell Sorting. New gating strategy (A) used to quantify leukocyte subsets (Lymphoid cells, neutrophils, monocytes and dendritic & Kupffer cells) from the liver of L. donovani infected mice with addition of Ly6C for better distinction of monocytes. Subsets were all characterised on the basis of being CD45+ live single cells. Isotype controls (B) for antibodies used as subset classifiers (TCR, B220, NK1.1, CD11b, Ly6C, CD11c and F4/80) were run against experimental samples. After sorting aliquots from each sorted sample were taken and either re-run through the cell sorter (C), for post-sort purity checking, or spun onto a slide and stained (D), for morphological identification. Data are representative of an AmBisome treated Day 28 post-infection purified hepatic leukocyte population. This data were generated using digestion and staining protocol 2. Addendum 3/1/19: The singlet gate shown does not discriminate singlets, however comparison of the downstream proportions against a traditional singlet gate (FSC-A vs FSC-H) shows there is little (<0.6%) change in any subsequent populations.
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Total liver tissue was obtained at 1, 12, 24 or 72h post-AmBisome treatment (see Section 2.4) and parasite load was determined (see Section 2.7). Liver samples (~100mg) were processed for AmB extraction (see Section 2.5). As in Section 3.3.2, the total liver AmB content was derived by scaling the sample weight to the total liver weight.

AmB was found at level of 48.67  24.28 g, 52.46  11.4 g, 37.67  10.78 g, and 35.61  18.99 g at 1, 12, 24 and 72h respectively (Figure 3.12A). This represents greater than 17.5% of the injected dose at all time points, again reinforcing the liver as a major accumulator of AmB. Whilst no significant difference was found between time points a trend towards decreasing accumulation over time can be seen, with an on average 32% decrease from 12h (the peak concentration) to 72h post-treatment. The high level of variability at 1h post-treatment likely accounts for the lack of statistical significance (see Section 3.4). Parasite load in control untreated mice (334.3  139.9 LDU) consecutively decreased at each time point analysed (220.1  116.3 LDU, 101  56.67 LDU, 77.1  32.65 LDU and 23.21  12.87 LDU for 1, 12, 24 and 72 hours respectively), equating to ~93% reduction in the parasite load at 72h  (p < 0.001 for 1hr vs. 72hrs; Figure 3.12B).

After characterising the total liver accumulation of AmB, the hepatic leukocyte population was then evaluated. Leukocytes were isolated from livers of day 28 post-infection mice treated for 1, 12, 24 or 72h using density gradient centrifugation followed by fluorescence activated cell sorting (see Section 2.10). Hepatic leukocytes were identified as live single CD45+ cells, as shown in Figure 3.11. At 1, 12, 24 or 72h post-treatment, the total leukocyte accumulation was 0.0601  0.0304 ng, 0.1184  0.0285 ng, 0.0885  0.0512 ng, and 0.1066  0.0554 respectively (Figure 3.13A). No significant differences were seen when comparing time points suggesting that leukocyte drug accumulation is maintained at low levels, despite significant reduction in parasite load (Figure 3.12B).








[image: ][bookmark: _Ref518932550][bookmark: _Toc525227203][bookmark: _Toc536814142]Figure 3.12 – Liver accumulation of Amphotericin B and its effect on hepatic parasite post-treatment. Livers from Day 28 post-infection mice were collected at either 0, 1, 12, 24 or 72 hours post-AmBisome treatment and small sections (~100mg) were taken for LC-MS/MS analysis (A). Additional sections were taken for smear impressions allowing for hepatic parasite burden to be established at each time point (B). Data are mean  SD (n = 6-8 biological replicates from 1 infection experiment, 1 mouse = 1 filled circle), data was analysed using Dunn’s Multiple Comparison Test, p < 0.05: *, p < 0.01: **, p < 0.001: ***. This data were generated using the column free extraction method.
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[image: ]Next, the total leukocyte drug accumulation was compared back to its corresponding whole liver sample to derive the percentage of AmB in the leukocyte population at each time (Figure 3.13B). For all time points analysed the majority of AmB was found to accumulate outside of leukocytes, the same trend as described previously in Figure 3.9. Together these data suggest that the majority of drug found in the liver post-treatment will be accumulated in the parenchyma. A
B
[bookmark: _Ref518932772][bookmark: _Toc525227204][bookmark: _Toc536814143]Figure 3.13 – Leukocyte accumulation of Amphotericin B post-treatment. Livers from day 28 post-infection mice were collected at either 0, 1, 12, 24 or 72 hours post-AmBisome treatment and hepatic leukocytes were purified and analysed using flow cytometry to determine population abundance and processed for LC-MS /MS analysis to determine Amphotericin B concentration. Combining leukocyte population abundance with AmB accumulation per 1 x 106 leukocytes generated total population accumulation (A). This total population accumulation was then expressed as a percentage of the amount of Amphotericin B found in the total liver at the corresponding time points (B). Data are mean  SD (n = 6-8 biological replicates from 1 infection experiment, 1 mouse = 1 filled circle), data was analysed using Dunn’s Multiple Comparison Test, p < 0.05: *, p < 0.01: **, p < 0.001: ***. Samples were generated using liver digestion and staining protocol 2 and processed using the column free extraction method.


In summary, the data so far indicates that the liver is a major site of accumulation of AmB after treatment of L. donovani-infected mice. Additionally, AmB accumulates in a variety of leukocytes however the majority of AmB accumulation at the sub-tissue level does not appear to be found within these leukocytes. Nevertheless, this drug distribution leads to significant decreases in parasite load. To further our analysis, we next sought to describe the accumulation of AmB within leukocyte subsets over time, namely monocytes, neutrophils, lymphoid cells and KCs & DCs. As above, leukocytes were sorted from 28 day infected mice at 1, 12, 24 or 72h after Ambisome treatment (Section 2.10 and Figure 3.11).  At least 3 technical replicates of 1 x 105 cells per subset per timepoint were collected for LC-MS/MS analysis. To ascertain total subset population abundances the proportional population abundances were captured and related back to the original leukocyte count. 

Analysis of population abundances pre-treatment (0h post-treatment) and at 1, 12, 24 and 72h post-treatment for monocytes (Figure 3.14Ai), neutrophils (Figure 3.14Bi), Kupffer & dendritic cells (Figure 3.14Ci) and lymphoid cells (Figure 3.14Di) suggest that AmB may have additionally affected population abundances with a transient increase in neutrophils seen and a sharp decrease in lymphoid cells at the end of the treatment window. However, it should be considered that alterations in population abundances between time-points could be due to technical variation in sample processing, for which repeat experiments should be conducted to rule this out. AmB accumulation in monocytes (Figure 3.14Aii), neutrophils (Figure 3.14Bii), Kupffer & dendritic cells (Figure 3.14Cii) and lymphoid cells (Figure 3.14Dii) suggest  different accumulation at 12h between myeloid subsets. These data once again illustrate that myeloid cells accumulate more AmB than lymphoid cells on a cell-for-cell basis.

Combining leukocyte subset abundance data (biological replicates) and drug accumulation data (technical replicates), we derived a total population accumulation time course for each subset by multiplying the average results.  The standard error of the mean for each point was derived using multiplicative error propagation (see Section 2.14).  Analysis of the time course data for monocytes (Figure 3.14Aiii), neutrophils (Figure 3.14Biii), KCs & DCs (Figure 3.14Ciii) and lymphoid cells (Figure 3.14Diii) indicated a distinct temporal accumulation for each population.  Monocytes accumulated the most drug (7.29  1.40 ng at 12h post-treatment). Interestingly, KCs & DCs (Figure 3.14Bii), accrued low amounts of AmB peaking at 3.83  1.08 ng at 72h post-treatment. Additionally, lymphoid cells, which do not serve as a significant parasite host, rapidly accumulate drug, to a similar extent as monocytes at the total population level. 



[image: ][image: ][bookmark: _Ref518932911][bookmark: _Toc525227205][bookmark: _Toc536814144]Figure 3.14 – Quantification of Temporal Population Kinetics and Population Pharmacokinetics post-treatment of Hepatic Leukocyte Subsets. Livers from Day 28 post-infection mice were collected at either 0, 1, 12, 24 or 72h post-AmBisome treatment. Leukocytes were purified from these livers and were either analysed using flow cytometry (Ai – Di) or sorted using an MoFlo Astrios with at least 1 x 105 cells per sample processed for Amphotericin B measurement (Aii – Dii). The population accumulation, derived from combining the population kinetics and derived Amphotericin B levels, were then calculated (Aiii – Diii). Data for Ai-Di is mean  SEM (n = 5-8 biological replicates from 1 infection experiment, data are analysed using a Bonferroni Multiple Comparisons test, p < 0.05: *, p < 0.01: **), data for Aii-Dii is mean  SEM (n = 3-5 technical replicates from 6-8 pooled mice from 1 infection experiment) and data for Aiii-Diii is mean  SEM (n = 1 data point, see Section 2.14 on combining biological and technical replicates). Samples were generated using liver digestion and staining protocol 2 and processed using the column free extraction method.
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[bookmark: _Ref521690651][bookmark: _Ref521758395][bookmark: _Toc3716101]Discussion
Mice infected with L. donovani show a strong hepatic immune response and form granulomas in order to contain parasite levels, a complex response requiring a multitude of different leukocyte subsets as introduced in Chapter 1. Treatment of these mice with LAmB (as AmBisome) has shown high levels of accumulation with the liver and significant decreases in the hepatic parasite load (Voak et al. 2017). In humans this LAmB is a frontline therapy and a gold standard for the clearance of infection. However, the influence of these granulomas has not yet been discerned and it cannot be stated whether they help or hinder therapeutic outcomes.

In this chapter we aimed to develop a protocol for the analysis of AmB accumulation in both whole liver tissue and cellular liver components and apply this to determine the accumulation of AmB over time in tissue and cells samples. We have confirmed that LC-MS/MS analysis can be used for the detection of AmB, as previously described (Voak et al. 2017; Su et al. 2018), and extended this to the analysis of cellular samples (Sections 3.3.2 and 3.3.3), after optimisation of our protocol (Section 3.3.1). In line with the findings of Voak and colleagues (Voak et al. 2017) we have found the liver to be a high accumulator of AmB post-treatment (Figure 3.9A).

We have also found that the majority of AmB in the liver is found outside of the leukocyte population (Figure 3.9B and Figure 3.12A). However, a significant reduction in the hepatic parasite load post-treatment was still observed (Figure 3.12B). This novel perspective should stimulate discussion on the pharmacodynamics of AmB.  The previously demonstrated high liver accumulation of this drug may have been assumed to have meant high levels of exposure for the parasite, yet our data indicates an apparent maintenance of low levels of leukocyte associated AmB over time. Of note, AmB is unable to induce sterility in the liver. Contrary to the immune response, AmB is not directly subject to immunomodulation and kills L. donovani indiscriminately and so we would postulate the persistence of parasite may reflect foci of particularly poor AmB accumulation which may be associated with denser granulomas. Alternatively, quiescence has been proposed to emerge under drug pressure (Jara et al. 2017) which may confer resistance to AmB action.  

For this work we combined immunological methodologies for the isolation of leukocytes with traditional LC-MS/MS analysis. Leukocytes were isolated by the digestion of the liver with enzymatic solutions and density centrifugation as previously described by Beattie and colleagues (Beattie et al. 2010). In this study hepatic mononuclear cell suspensions from L. donovani infected C57Bl/6 mice were analysed used FACS, identifying four populations based upon CD11c and F4/80 expression. We have extended this by applying additional surface markers allowing for the identification of lymphoid cells, neutrophils, monocytes and KCs & DCs. A deviation in this approach compared to other work (Meyer et al. 2016) is to digest the liver ex vivo as compared to performing a perfusate digestion on anaesthetised mice. This perfusate digestion likely provides a more comprehensive digestion of tissue allowing for greater liberation of cellular populations however is not suitable in this instance due to the time constraints it places upon investigations and the inherent variability in the ability to successfully perfuse the liver. Our method allows for the processing of multiple samples simultaneously, a key consideration when each cohort is grouped on time post-treatment, and flow cytometry analysis has confirmed all of the leukocyte subsets of interest are present in our hepatic leukocyte solutions post-digestion (Figure 3.8 and Figure 3.11A).

Further to digestion, leukocytes were isolated using fluorescence activated cell sorting resulting in high purity populations (Figure 3.11C). A disadvantage of this approach is the lengthy processing times required to sort populations. One possible scenario is that long processing times results in drug release from cells which could either result in lower drug levels or artificially high levels of drug if they reabsorb released drug in solution. Whilst previous studies have employed magnetic sorting as a less time consuming method for isolating cellular populations (Meyer et al. 2016) this method works on the basis of a single parameter for separation (the presence of magnetic beads on cells or not (Adams, Kim, and Soh 2008)) which for our approach results in a need for multiple sequential magnetic sorts, which does not counteract the issue at heart here. 

To quantify the apparent release/reabsorption of drug, if any, during processing there are different approaches we could adopt in future work. Once leukocytes have been isolated using the aforementioned enzymatic digestion and density centrifugation the cells are suspended in clean media whereby any AmB present is either intracellular or membrane bound. Supernatants from successive cell washes can be captured and analysed for the presence of AmB. Additionally, a simplistic ‘cross-over’ experiment is possible whereby livers from untreated and treated isogenic mice are processed together (one liver from each per group) and sorted on the basis of isogenicity (for instance in C57BL/6 mice we used this can be isoforms of the pan-leukocyte marker CD45). Analysis of the untreated cells would yield any background absorption of released drug. Together these two experiments would partially explain any loss and/or gain of drug in cell samples during processing.

After cell sorting, the AmB accumulation of different leukocyte subsets at a series of times post-treatment (1, 12, 24 & 72hr) were quantified (Figure 3.14), where we have shown that the populations present in the liver, all of which are significant granuloma components, shown distinct accumulations of AmB across different time points. The differences in accumulation between leukocyte subsets suggests that some cells are inherently better at drug uptake than others, indeed previous research has shown myeloid cells, such as monocytes and DCs, are able to absorb liposomes intracellularly (Maji et al. 2016) whilst T cells maintained liposomes bound to their surface with no internalisation (active or passive) shown (Wayteck et al. 2016). We found that the lymphoid population were one of the best accumulators of drug. Analysis on a cell-for-cell basis initially indicated these lymphoid cells accrue fractional amounts of drug (Figure 3.14Di) however when the overwhelming abundance of this population is accounted for (Figure 3.14Dii) we see a large amount of AmB accumulation (Figure 3.14Diii). Lymphoid cells themselves are not a significant target for parasitization by L. donovani and so likely represent a secondary off-target accumulation of drug. An alternative consideration is that as T cells have been shown to freely traffic in and out of granulomas (Beattie et al. 2010) they may also represent a granuloma penetrating ‘delivery system’, a theory worth further investigation.

The AmB accumulation for the total KC & DC population (Figure 3.14Ciii) was poor compared to total monocyte and lymphoid cell populations and yet KCs are the dogmatic host of L. donovani in the liver. Again, this contrasts with the significant decrease in parasite burden that was observed for the liver and once again indicates that the traditional concept of specific L. donovani burden in KCs coupled with high AmB availability is not fully valid. The low accumulation levels of AmB in this KC & DC population contrasts with published values for the in vitro IC50 values of AmB (Manandhar et al. 2008; Prajapati et al. 2011), which indicate higher levels of AmB are needed for clearance of parasite in infected cells, and so our work would further suggest that in vitro dose response assays are not strongly representative of in vivo outcomes.

Our findings of high total liver accumulation broadly agree with existing data as well as the ability of AmB to reduce the Leishmania population (Voak et al. 2017). Whilst no sub-tissue level analyses have been previously carried out to our knowledge, our work concurs with findings in the tuberculosis field (Prideaux et al. 2011; Rifat et al. 2018) that granulomas have differing drug accumulation to the surrounding tissue. Our work expands upon this concept by exploring the components of the hepatic granuloma and is a valuable insight into differential accumulation between cell subsets which cumulatively form granulomas. This work is especially relevant for diseases such as leishmaniasis and tuberculosis where therapeutic agents generally tend to target pathogens which are ‘hidden’ at the centre of granulomas. In the following chapter we develop a mathematical model representing a hepatic immune response to infection with L. donovani which will then be combined with the data presented in this chapter to allow for further investigation into how immune mechanisms, such as cellular migration, impact therapeutic outcome.
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[bookmark: _Ref519020713][bookmark: _Toc3716103]Introduction
In the previous chapter it was shown that hepatic leukocyte subsets during EVL could accumulate AmB post-treatment with AmBisome. A key finding was that a majority of hepatic AmB was found outside of hepatic leukocytes, the host cell family for L. donovani. It was also found that leukocytes showed different levels of AmB accumulation over time. To further explore these novel findings, we wanted to establish how differential drug accumulation could affect therapeutic outcome in the liver. 

A traditional immunological approach to investigate the influence of different subset populations would be to use cell population depletion/deletion techniques, such as administration of antibodies that mediate the removal of cell populations or genetic knockouts which result in loss of key cell populations  (Cotterell, Engwerda, and Kaye 1999; Murray 2001; Murray et al. 2017). This could allow us to investigate how cell populations influence drug distribution but problematically, this well-founded approach may alter fundamental aspects of the disease process, such as the ability to form granulomas (Murray 2001).  An alternative approach is to develop or adapt an in silico model. In silico models of leishmaniasis have been previously discussed (see Section 1.2.7). These in silico models can allow for system behaviours to be simulated and quantified, additionally allowing for ad-hoc modifications to the system, such as retaining the immunological properties of a cell but disabling the capacity for drug accumulation. This has great investigative appeal in this scenario where our focus is on a select set of behaviours at an established phase of disease. A disadvantage of the utilisation of an in silico model is the possibility of ambiguity between how theoretical mechanisms result in model outputs coupled with the fact that in silico models are based upon simplifications and/or abstractions. To combat these drawbacks we employ the CoSMoS process (Andrews et al. 2010) as a principled design process allowing for transparent in silico model development. 

This chapter details how an initial in silico model of the immune response to hepatic L. donovani infection was developed to aid in the investigation of the accumulation of AmB by hepatic leukocyte subsets.  

To begin developing the in silico model, biological data were generated that would allow for the parameterisation of a derived model. This was necessary as the previously presented data (Chapter 3) reflects a perturbed system, the system being the hepatic immune response to L. donovani infection, the perturbation being the therapeutic intervention with AmB, additionally there is a scarcity of published quantitative data relating to the hepatic immune response to L. donovani infection. Next, the CoSMoS process (Andrews et al. 2010), a generic structured framework for the development of in silico models based upon complex systems, was implemented. Within the CoSMoS process, diagrams representing the activity and state of agents (see Section 1.3.2.2) are generated by the modeller. These diagrams employ an adaptation of the Unified Modelling Language (UML) have been employed in various models of biological systems (Alden et al. 2012; Williams, Timmis, and Qwarnstrom 2014; Read et al. 2014).
[image: ][bookmark: _Ref518563482][bookmark: _Toc525227206][bookmark: _Toc536814145]Figure 4.1 - Diagrammatic representation of in silico model development using the CoSMoS process. Within the CoSMoS process a domain model is defined leading to the development of a platform model, this platform model is then progressed into a Simulation model, here represented as 3 sequential iterations (with additional or updated representations biological processes incorporated at each iteration), whereby the derived information (shown in italics) is progressed into the next model. Biological data feeds into the parameterisation of these models and the final model is statistically validated before experimental exploration using the model is carried, which would lead to the results model, a representation of our novel insight into the system from utilisation of the model.


Our utilisation of the CoSMoS process, shown in Figure 4.1, began with establishing the domain, the area of study. The domain was defined by the research context (see Section 2.15.2). We first created a domain model (see Section 2.15.3) encapsulating the different processes and activities occurring within the hepatic immune response to L. donovani infection. The domain model was then used as a basis for the development of a platform model (see Section 2.15.4) which was then encoded into a mathematical model to form the simulation model (see Section 2.15.5). This simulation model was calibrated in an iterative fashion, for this we identified areas of the mathematical model which could be isolated and independently calibrated, for instance in our final simulation model T cells are independent of other populations/population processes and as such could be calibrated separately thereby reducing the parameter search space for the final model. This iterative process concluded when all parameter values and initial conditions had been derived. Selected outputs from the calibrated model were then compared to biological data which had not taken part in any of the model calibration and analysed to determine if they differed significantly. Once this was complete, the investigation of scientific scenarios of interest and the resulting analysis of the data could be carried out.

This chapter develops our investigative in silico model using the CoSMoS process. As discussed, the data described in Chapter 3 describes a perturbed system and so this model will describe the unperturbed system which will be extended in Chapter 5 to include the perturbation to fully investigate the system.

[bookmark: _Ref518735771][bookmark: _Ref518744049][bookmark: _Toc3716104]Aims
The aim of this chapter was to derive an in silico model of the immune response to hepatic L. donovani infection that could be utilised for investigating the likely immune mechanisms that influence AmB pharmacokinetics/pharmacodynamics in the liver. To aid in the development of the in silico model, the objectives were to derive biological datasets pertaining to the hepatic immune response to L. donovani infection, synthesise an in silico model describing this response using the CoSMoS process, parameterise this model using the derived biological datasets and finally to ensure the model is fit for investigative use, to statistically validate the model against unseen datasets. The process for achieving these aims is defined in Figure 4.1. The scope of the in silico model was limited to the hepatic site of infection.


[bookmark: _Ref518738284][bookmark: _Ref518744062][bookmark: _Toc3716105]Results
[bookmark: _Ref523511938][bookmark: _Toc3716106]Biological Data Generation
[image: ]Strong localised immune responses are generated in mice infected with L. donovani. However, there is limited quantitative data reflecting the changes in leucocyte numbers in the liver, data which is needed for model calibration (Figure 4.1). To determine population abundance over time for both leukocytes and L. donovani, livers from infected B6 mice were analysed for parasite burden (see Section 2.7) and leukocyte relative proportions analysed by flow cytometry (see Section 2.10) to generate data on the changes in cellularity (Figure 4.2).[bookmark: _Ref518563553][bookmark: _Toc525227207][bookmark: _Toc536814146]Figure 4.2 - Gating strategy for flow cytometry to characterise leukocyte subsets. Pseudo-colour plots of purified hepatic cells from a day 21 post-infection (L. donovani) B6 mouse. All subsets are initially characterised as Single Live CD45+ Cells, further characterisation is based upon expression of additional markers. TCR & Ly6G both were conjugated with the fluorochrome PerCP-Cy5.5 (shown as ‘TCRb, Ly6G – PerCP-Cy5.5’ on plot axes) which when leukocytes were separated as lymphoid vs. myeloid cells allowed for the discrimination of T Cells (Lymphoid cells which are PerCP-Cy5.5+) and Neutrophils (Myeloid cells which are PerCP-Cy5.5+). Subsets were analysed as: neutrophils (CD3-, B220-, NK1.1- & Ly6G+), dendritic cells (CD3-, B220-, NK1.1-, Ly6G-, CD11c+ & F4/80-), macrophages & monocytes (CD3-, B220-, NK1.1-, Ly6G-, CD11cint-hi & F4/80+), T cells (CD3+, B220-, NK1.1- & TCR+), NK cells (CD3+, B220-, NK1.1+, TCR- & CD11b+) or B cells (CD3-, B220+, NK1.1-, TCR-, CD11b-). Gating was carried out using staining protocol 1.



[image: ]Initially data were generated for lymphoid and myeloid cells, using the gating strategy shown in Figure 4.2. The additional gating for myeloid cells was necessary to ensure that unclassified cells, i.e. live single CD45+ cells negative for all other markers, were not mislabelled as myeloid cells. As seen in Figure 4.3, the lymphoid cells (Figure 4.3A) were present in greater numbers as compared to myeloid cells (Figure 4.3B), being significantly increased from pre-infection lymphoid levels at the earlier time of 21 days post-infection, compared to day 35 in myeloid cells.[bookmark: _Ref518563598][bookmark: _Toc525227208][bookmark: _Toc536814147][bookmark: _Ref518550627]Figure 4.3 - Abundance of Lymphoid and Myeloid Cells during Hepatic infection with L. donovani. Absolute number of hepatic lymphoid (A) and myeloid (B) cells per liver determined by flow cytometry. Data are shown as mean  SD (n = 4-5 biological replicates per time point). Data are representative of 1 infection experiment and was analysed using a Dunn’s Multiple Comparisons test (# denotes a p value of less than 0.05). Samples were generated using digestion and staining protocol 1.
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Further to these sub-populations it is well documented that the control of hepatic L. donovani infection is dependent on the activity of multiple leukocyte subsets (Murray 2001). To characterise the individual abundances of subset populations, the purified leukocytes from the previous step were stained with antibodies against various surface markers and analysed using flow cytometry, with gating shown in Figure 4.2. 

As before, all subsets were characterised as live single cells expressing CD45 with initial characterisation lymphoid cells as (CD3+, B220+, NK1.1+) and myeloid cells as (CD3-, B220-, NK1.1-, CD11blo-hi, Ly6Glo-hi, CD11cint-hi & F4/80int-hi). These cells were then additionally characterised as either neutrophils (CD3-, B220-, NK1.1- & Ly6G+), dendritic cells (CD3-, B220-, NK1.1-, Ly6G-, CD11c+ & F4/80-), macrophages & monocytes (CD3-, B220-, NK1.1-, Ly6G-, CD11cint-hi & F4/80int-hi), T cells (CD3+, B220-, NK1.1- & TCR+), NK cells (CD3+, B220-, NK1.1+, TCR- & CD11b+) or B cells (CD3-, B220+, NK1.1-, TCR- & CD11b-). 

[image: ]The subsets of both the lymphoid and myeloid lineages displayed different kinetics in response to infection (Figure 4.4). All subsets show significant increases post-infection with T cells, neutrophils, macrophages & monocytes and dendritic cells (Figure 4.4A, Figure 4.4B, Figure 4.4D, and Figure 4.4F) all displaying logistic growth-like population kinetics, but on different magnitudes of scale. B and NK cells (Figure 4.4C and Figure 4.4E) appear to be decreasing by day 35 post-infection, indicating differential requirements for their sustainment within the liver.F
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[bookmark: _Ref518563634][bookmark: _Toc525227209][bookmark: _Toc536814148]Figure 4.4 - Abundance of Leukocyte Subsets during Hepatic infection with L. donovani. Absolute number of hepatic T cells (A), neutrophils (B), B cells (C), macrophages & monocytes (D), NK Cells (E) and dendritic cells (F) per liver determined by flow cytometry. Data are shown as mean  SD (n = 4-5 biological replicates per time point). Data are representative of 1 infection experiment and was analysed using a Dunn’s Multiple Comparisons test (# denotes a p value of less than 0.05). Samples were generated using digestion and staining protocol 1.


[image: ]The hepatic L. donovani load increased post infection, peaking at 21 days post-infection and returning to a low but detectable level by day 42 (Figure 4.5). The reduction in parasite numbers was not mirrored in leukocyte numbers suggesting that inflammation continues during and after parasite clearance.[bookmark: _Ref518564273][bookmark: _Toc525227210][bookmark: _Toc536814149]Figure 4.5 - Abundance of Leishmania donovani during Hepatic infection with L. donovani. Hepatic parasite burden determined from impression smears and stated as Leishman-Donovan units (LDU). Data are shown as mean  SD (n = 4-5 biological replicates per time point). Data are representative of 1 infection experiment and was analysed using a Dunn’s Multiple Comparisons test (# denotes a p value of less than 0.05)


[bookmark: _Ref518744269][bookmark: _Ref525222143][bookmark: _Toc3716107]Deriving a Domain Model of the hepatic immune response L. donovani infection
Following from the generation of biological data, we next developed a domain model of the hepatic immune response to infection with L. donovani as shown in Figure 4.1. An expected behaviours diagram was created (see Section 1.3.2.2), shown in Figure 4.6, capturing how multiple mechanisms combine to create observable phenomena within the biological system, the time scale of these events and the underlying hypothesis as to the mechanisms involved. The key phenomena within the system, labelled with bold labelling as EBx, are the initial infection of resident liver macrophages (Kupffer cells) with L. donovani (Figure 4.6 - EB1), infected KCs with some immune cellular infiltrate (Figure 4.6 - EB2), well organised myeloid and T cell infiltrate (Figure 4.6 - EB3) and the sterilisation of infected KCs (Figure 4.6 - EB4). As stated in Section 4.2, the aim of this project is to derive a in silico model of the immune response to hepatic L. donovani infection with the scope set to the hepatic site of L. donovani infection thus only the kinetics derived for leukocyte populations within the liver were considered for components of the model, leading to all other biological sites being grouped into a singular entity, referred to as Other Sites.

For studies utilising in vivo models, L. donovani is commonly first introduced as an artificial infection to induce the onset of pathology. In mice, L. donovani is introduced using various injection routes, none of which deposit parasite directly into the liver,  and parasite life-cycle stages (Loeuillet, Bañuls, and Hide 2016). Infected KCs can be seen as early as 5 hours post-infection (Beattie et al. 2011) and are observed at all time points until cure (Murray 2001). Phagocytosis of Leishmania spp., both promastigotes and amastigotes, is a receptor dependent process (Ueno and Wilson 2012) requiring contact between the susceptible host cell and the parasite and thus it is hypothesised that a successful contact between a susceptible KC and L. donovani, a contact where there is sufficient receptor binding to trigger phagocytosis, would lead to infection (EB1). Approximately 1-2 weeks after infection, infected KCs are seen as foci for some immune cell infiltrate (H. Murray 2001). As seen in Figure 7.5 there are significant increases in lymphoid and myeloid cell numbers in the liver of a naïve mouse and those of a mouse at 13 days post-infection, which quantitatively supports the histological picture. Previous studies (Amprey et al. 2004; Stanley et al. 2008) have shown that a key-process for initial recruitment of cells is the interaction of infected KCs and iNKTs, dependent on CD1d binding. This activates the iNKT cell to produce recruitment signals (Moore et al. 2013) and pro-inflammatory signals (Amprey et al. 2004) (EB2). 

After the recruitment of initial immune cell infiltrate at around 2-4 weeks post-infection well organised T cells and myeloid cells are seen around infected foci. It has been shown that whilst iNKTs transiently produce recruitment signals the continued production is reliant on T cells (Cotterell, Engwerda, and Kaye 1999) to sustain cellular recruitment. Thus, it is expected that the observation of well organised myeloid and T cells is due to the continued production of factors, such as chemokines, that allow for continued migration to infected foci (EB3). At around 4-8 weeks a well organised infiltrate of myeloid and T cells is seen, as in EB3, but around a sterilised KC. It is widely accepted that this is primarily due to a two-step process. In the first step, recruited T cells produce Interferon gamma (IFN) as a result of antigenic stimulation, most likely occurring in the spleen (Bunn et al. 2014b). This IFN activates both influxing inflammatory monocytes (Murray 2001; Zhang et al. 2013) and KCs (Stanley and Engwerda 2006) to produce reactive oxygen (ROS) and nitrogen (RNS) species which are anti-leishmanial in nature and sterilise the infected cells (EB4).

[image: ][bookmark: _Ref518566917][bookmark: _Toc525227211][bookmark: _Toc536814150]Figure 4.6 - Expected behaviours diagram for the murine liver during infection with L. donovani. Illustration of the time scale of various observable phenomena that give rise to hypothesised expected behaviours in the system. These are linked to underlying generalised processes derived. The pro-inflammatory cytokines and the recruitment factors shown are the same entities and carry out the same activities and are affected by the same entities. 

Whilst it is known there are tissue specific differences within infected mice (Engwerda and Kaye 2000), it is assumed here that the rates of processes and not the processes themselves are different between tissues, and so in this domain model processes are mirrored between the liver and other sites, unless otherwise stated.

Figure 4.7 describes that underlying biological activities of T cells during infection that give rise to the overarching expected behaviours. T cells require three signals to activate: T cell receptor (TCR) binding of either MHC-I or MHC-II, co-stimulatory receptor binding, such as CD28 and a cytokine signal (Pennock et al. 2013). The molecular mechanisms of receptor complex formation (such as CD3 + CD28) were not considered for this model as molecular scale interactions would overtly increase the complexity of the implemented model whilst being unlikely to greatly contribute to investigations using the final model. Thus, the binding of MHC-I or -II and a co-stimulatory receptor are considered a singular event. Therefore, within the domain model T cell activation is represented as occurring after antigen presentation (Figure 4.7 - MC12, KC8, MC24) and detection of a cytokine signal within the environment (TC2, TC4, TC11, TC12, TC,17 TC18).

Activation of T cells, with either modulatory or pro-inflammatory cytokines (i.e. the secondary signal) and antigen presentation, will result in T cell proliferation (TC5, TC14). T cell proliferation has been described to have an initial antigen-dependent stage, which activates T cells, followed by an antigen independent stage (Jelley-Gibbs et al. 2000), whereby IL-2 is a key driver of activated T cell proliferation (Crawley et al. 1997), and factors such as IL-4 or IFN drive the differentiation of activated T cells into different subsets. The domain model captures this antigen dependency and cytokine driven expansion as two separate activities with differentiation captured as state changes (Figure 4.8).

For T cell differentiation, where the secondary signal is a pro-inflammatory cytokine (PIC), here a simplification of entities such as TNF, lymphotoxin (LT), IFN and IL-12, will result in T cell proliferation (TC5, TC14) (Jelley-Gibbs et al. 2000; Albergante et al. 2013). In the liver, a myeloid cell presenting antigen (MC12) accompanied by PIC (TC4) will induce the T cell to produce PIC and recruitment factors (RF) (TC6) (Pennock et al. 2013; Albergante et al. 2013; Romagnani 1999; Kumar and Nylén 2012; Moore et al. 2013), representing in the liver that non-KC myeloid cells are likely to be antigen presenting DCs (Donaghy et al. 2010) and monocytes (Terrazas et al. 2017) activating Th1 CD4+ T cells via MHC-II.  If the presenting cell is a KC it will be lysed by the T cell (TC7), representing MHC-I activation of CD8+ T cells (Beattie et al. 2010).

Myeloid cell antigen-presentation and detection of modulatory signals, here referring to IL-4, will result in T cells producing anti-inflammatory cytokines (AIC), such as IL-10 and modulatory signals (TC3, TC13) (Moore et al. 2013; Le Gros et al. 1990; Yi, Cox, and Zajac 2010; Bushell and Wood 1999), a simplification of the generation of Th2 CD4+ T cells. AICs are generally suppressive to T cells (Goto and Lindoso 2004; Yi, Cox, and Zajac 2010; Murray 2001) and within the system act as a negative feedback to curtail T cell activities, exposure to AIC results in T cell anergy which here is shown as removal from the system. 
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[bookmark: _Ref518570184][bookmark: _Toc525227212][bookmark: _Toc536814151]Figure 4.7 - Domain model activity diagram describing the behaviours of a T cell during hepatic infection with L. donovani. UML-like notation of the behaviours and interactions of a T cell in the liver and other sites, here used as a theoretical location alluding to the additional primary infection sites in the murine system such as the spleen.

These processes are mirrored within the spleen with the exception that myeloid cells may be lysed upon antigen presentation to T cells activated by PIC (TC16). Kupffer cells are liver specific tissue-resident macrophages and thus do not function as hosts in other sites, in other major infection foci such as the bone marrow and spleen non-Kupffer cell myeloid cells are the host of parasite and can activate CD8+ T cells (Joshi et al. 2009), resulting in lysis.

Figure 4.8 represents the classes of T cell that exist within the system. At the onset of infection, the initial state of T cells is to be patrolling and they switch state via the simplified two-signal system discussed above. All inter-state changes require antigenic stimulation (or the lack thereof). Th1 cells are those which have been presented antigen by myeloid cells and detected PIC, Th2 cells also have antigen presented by myeloid cells but detect modulatory signals and Tc cells represent T cells which detect PIC but receive antigen presentation from Kupffer cells. Any T cell entity is removed from the system by either detection of AIC or apoptosis.


[image: ][bookmark: _Ref518570392][bookmark: _Toc525227213][bookmark: _Toc536814152]Figure 4.8 - Domain model state diagram of a T cell during hepatic infection with L. donovani. UML-like notation of the 4 states that a T cell may be found in during EVL regardless of location, inter-state changes are dependent on antigen and a secondary signal.




Figure 4.9 represents the activities of myeloid cells within the system. Within the domain myeloid cells is used as an umbrella term to aggregate non-KC myeloid cells, predominantly monocytes, DCs and neutrophils, into a singular entity. This aggregation is based upon the shared ability of these cell types to be infected with Leishmania, present antigen and mount a pro-inflammatory immune response in response to infection (Gueirard et al. 2008; Donaghy et al. 2010; Mantovani et al. 2011; Kolaczkowska and Kubes 2013; Terrazas et al. 2017).

Myeloid cells are initialised as patrolling entities (Figure 4.9 - MC1, MC13). If they encounter extracellular L. donovani phagocytosis can occur (MC2, MC16) leading to myeloid cell infection (MC8, MC20). Resultantly, the myeloid cell may be lysed by T cells (MC9, MC21) (Smith, Rodrigues, and Russell 1991) or produce enough anti-leishmanial compounds to kill the intracellular parasite (MC10, MC22). If parasite killing occurs, then the myeloid cell can process and present antigen (MC12, MC24) (Smith, Rodrigues, and Russell 1991). However, if the amastigote has replicated beyond the carrying capacity of the myeloid cell then it may burst before it can mount a response against the parasite (MC11, MC23).

Myeloid cells may proliferate within other sites (MC25) but are not assumed to proliferate within the liver, representing the replenishment of circulating myeloid cells from the bone marrow (Perry 1971; Patel et al. 2017). Upon detection of pro-inflammatory signals (MC3, MC15) myeloid cells will produce recruitment factors (MC5, MC17), pro-inflammatory signals (MC6, MC18) and anti-leishmanial compounds (MC7, MC19) (Engwerda and Kaye 2000; Murray 2001; Shi and Pamer 2011; Mantovani et al. 2011; Kolaczkowska and Kubes 2013; Terrazas et al. 2017) representing their activation and response to a pro-inflammatory stimulus. If sufficient pro-inflammatory signals and recruitment factors are detected then the myeloid cell may migrate to their source (MC4, MC14) as a chemotactic response (Shi and Pamer 2011).
[image: ]		Continued on next page.

[image: ][bookmark: _Ref518570665][bookmark: _Toc525227214][bookmark: _Toc536814153]Figure 4.9 - Domain model activity diagram describing the behaviours of a myeloid cell during hepatic infection with L. donovani. UML-like notation of the behaviours and interactions of a myeloid cell in the liver and other sites. In the diagram shown, a myeloid cell refers primarily to monocytes, dendritic cells and neutrophils that can exist either in the liver or other sites, such as bone marrow or spleen that are outside the scope of the model.



[image: ][bookmark: _Ref518570899][bookmark: _Toc525227215][bookmark: _Toc536814154]Figure 4.10 - Domain model state diagram of a myeloid cell during hepatic infection with L. donovani. UML-like state diagram describing the different states a myeloid cell may exist in during EVL. The white rectangles represent the sub-states of the overarching states denoted by the grey rectangles, ergo the state of a myeloid cell may be either naïve or infected and either patrolling or activated.

Figure 4.10 represents the states that these myeloid cells may exist in at any given time. Myeloid cells are patrolling entities and are initially susceptible (or naïve) to L. donovani. If successful phagocytosis occurs, then the myeloid cells becomes infected. Naïve and infected myeloid cells are both still receptive to extrinsic stimulus and become activated through the detection of pro-inflammatory signals. Infected myeloid cells may exit the system if they burst due to intracellular L. donovani replication or through the lytic action of T cells and all myeloid cells may exit through the system via natural apoptosis.

A well-defined role of iNKT cells during hepatic L. donovani infection is to act as the initial ‘alarm’ for the detection this infection and this response is documented in Figure 4.11. Infected Kupffer cells present antigen via their CD1d receptor which activates the iNKTs, thus inducing a change of state, as seen in Figure 4.12, to produce pro-inflammatory signals (IN2) (Amprey et al. 2004), recruitment factors (IN3) (Kima and Soong 2013) and modulatory signals (IN4) (Tupin, Kinjo, and Kronenberg 2007). This is a transient process and iNKTs are assumed to return to their patrolling state, shown in Figure 4.12 as a return to patrolling state, allowing for subsequent activation, where they may proliferate (IN5) (Moyo et al. 2018). 
[image: ] [bookmark: _Ref518571036][bookmark: _Toc525227216][bookmark: _Toc536814155]Figure 4.11- Domain model activity diagram describing the behaviours of an invariant natural killer T (iNKT) cell during hepatic infection with L. donovani. UML-like notation of the behaviours and interactions of an invariant natural killer T cell in the liver only. Through knowledge aggregated in the research context it is assumed that the main role of iNKTs is to act as an alarm system to infection in the initial stages which is not dependent on migration from other sites.

[image: ] [bookmark: _Ref518571185][bookmark: _Toc525227217][bookmark: _Toc536814156]Figure 4.12 - Domain model state diagram of an iNKT cell during hepatic infection with L. donovani. UML-like state diagram describing the different states an iNKT cell may exist in during EVL. iNKTs exist as either activated or patrolling in an antigen-dependent manner, the cycle is broken if the iNKT apoptoses.





In in vivo experimental models of Leishmaniasis (such as in the infection of C57BL/6 mice with L. donovani), the parasite is typically introduced artificially into the system to an extra-hepatic locale. Figure 4.13 shows this initialisation of parasite within the Other Sites (LD1) when the parasite is considered to be in an extracellular state, shown in Figure 4.16. Successful contacts with myeloid cells in the other sites, such as the spleen, will lead to uptake of parasite (LD8) (Phillips et al. 2010), inducing the state of L. donovani to become intracellular.  Intracellular L. donovani may replicate if there are insufficient anti-leishmanial compounds to kill it (Murray 2001). If the host cell reaches its maximum capacity, then it bursts releasing L. donovani where it transitions back to an extracellular state. Extracellular L. donovani may interact directly with anti-leishmanial compounds in the environment leading to its removal from the system (LD7).

In its extracellular state, L. donovani may translocate to the liver (LD2), evidenced by the presence of hepatic parasite after intravenous, intradermal or intraperitoneal injection (Honoré et al. 1998), where it may be phagocytosed by KCs (KC3) (Beattie et al. 2011), transitioning to an intracellular state, where the same survival cycle of replication (LD5) if the anti-leishmanial compounds amounts are insufficient to remove it from the system occurs.
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[image: ][bookmark: _Ref525129566][bookmark: _Toc525227218][bookmark: _Toc536814157]Figure 4.13 - Domain activity diagram describing the behaviours of Leishmania donovani during hepatic infection with L. donovani. UML-like notation of the behaviours and interactions of Leishmania donovani in the liver and other sites, such as blood, bone marrow or spleen that are outside the scope of the model.



[image: ][bookmark: _Ref518571622][bookmark: _Toc525227219][bookmark: _Toc536814158]Figure 4.14 - Domain model state diagram of Leishmania donovani during hepatic infection with L. donovani. UML-like state diagram describing the different states Leishmania donovani may exist in during EVL. L. donovani enters the system through injection and thus initially exists extracellularly transitioning to intracellular if it is uptaken by a host Kupffer or myeloid cell. Removal from the system occurs if L. donovani interacts with sufficient amounts of Anti-leishmanial compounds, such as reactive nitrogen species, to kill it.

Figure 4.15 shows the domain activity diagram of KCs during EVL, KCs are liver-specific tissue macrophages that reside within hepatic sinusoids (KC1) in a patrolling state (Figure 4.16), introduction of L. donovani into the system results in parasite phagocytosis by these KCs (KC3) (Beattie et al., 2011) and the KCs becomes infected (Stanley and Engwerda 2006). 

Naïve KCs may detect either pro-inflammatory cytokines (KC10), switching the KCs to a pro-inflammatory phenotype (Figure 4.16) whereby they respond by producing anti-leishmanial compounds and recruitment factors (KC11). Alternatively, the KCs may detect anti-inflammatory cytokines (KC13), shifting it to an anti-inflammatory phenotype (Figure 4.16), which induces anti-inflammatory cytokine production (KC13) (Kumar and Nylén 2012; Zhang et al. 2013). Insufficiency of cytokines, either pro- or anti-inflammatory, returns the KCs to basal state, where the KCs may proliferate (KC2) (Wynn et al. 2001; Scott et al. 2016).

Infected KCs share these behaviours (KC4, KC5, KC9, KC7) and state changes (Figure 4.16), they also have additional interactions within the system. Infected KCs are still vulnerable to T cell mediated lysis (TC7) (Stäger and Rafati 2012) however if this does not occur and their parasitic burden persists to capacity they may burst (KC6) (Siewe et al. 2016), both of which facilitate the removal of infected KCs from the system. The infected KC may produce enough anti-leishmanial compounds to clear the infection allowing it to present parasite antigen (KC8), but if this is insufficient the intracellular L. donovani may induce the host KC to become anti-inflammatory (Albergante et al. 2013) and produce anti-leishmanial compounds (KC7), promoting its own survival.


[bookmark: _Ref518571892][bookmark: _Toc525227220][bookmark: _Toc536814159]Figure 4.15 - Domain activity diagram describing the behaviours of a Kupffer cell (KC) during hepatic infection with L. donovani. UML-like notation of the behaviours and interactions of Kupffer cells during hepatic infection with L. donovani in the liver. KCs are resident macrophages exclusively residing in the liver and thus their activity is restricted to this site only.

[image: ][bookmark: _Ref518571967][bookmark: _Toc525227221][bookmark: _Toc536814160]Figure 4.16 - Domain model state diagram of a Kupffer cell during hepatic infection with L. donovani. UML-like state diagram describing the different states a Kupffer cell may exist in during hepatic infection with L. donovani. All Kupffer cells initially exist in naïve state where they can either be patrolling, anti-inflammatory (M2 phenotype) or pro-inflammatory (M1 phenotype) denoted as sub-states, it is assumed that patrolling Kupffer cells become infected where they can still exist in different sub-states providing the correct stimulus is supplied.

[bookmark: _Ref518741465][bookmark: _Ref518743315][bookmark: _Ref518744282][bookmark: _Ref525222144][bookmark: _Toc3716108]Developing a platform model of the hepatic immune response to L. donovani infection
The previous section resulted in the generation of a domain model for the hepatic immune response to L. donovani infection which can now can be used for the development of a platform model. When considering the key emergent behaviours in the liver after infection with L. donovani, as shown in Figure 4.6, in terms of developing a platform model these behaviours could emerge through a computational/mathematical model describing the outcome of multiple interactions occurring between a multitude of individual cells or could be the result of distinct total populations interacting. This interpretation of the domain model would allow for either the implementation of an agent-based model, partial differential equations or ordinary differential equations. However, the data generated, in both Chapter 3 and Section 4.3, reflects homogenous population level behaviours of the immune response to L. donovani infection, this is reflective in part that most of our understanding of the domain model is generated from a research context based on non-spatial population level data. Additionally, a lack of quantitative data for spatial features of the system would mean that optimal calibration of parameters for processes accounting for spatial characteristics would not occur. Thus, considering we sought to simulate homogenous populations with no spatial characteristics being described the best approach was to implement a system of ordinary differential equations (ODE), as shown in Figure 1.6.

When translating the domain model into the platform model an environmental abstraction was made. Throughout the research context there were extra-hepatic processes defined however, in keeping with the scope of the model (to simulate the hepatic immune response to infection), these were not carried into the platform. Implementation of an ODE system leads to a platform representation of the liver as self-contained compartment that is well-mixed, an assumption that upon entry into the compartment there is instantaneous equal mixing of all population members.  

An all-encompassing assumption for all the entities within the platform model is the detraction of an explicit representation of cytokines, extracellular compounds and signals. Abstraction or accumulation of multiple entities into a single descriptor is an established feature of modelling (Brochot, Tóth, and Bois 2005; Mallavarapu et al. 2009). Whilst the individual activities of these entities are undeniably important immunologically, it is unfeasible to represent each entity explicitly without sufficient quantitative prior data due to a reduced confidence in the modular output for these entities. Additionally, when aiming to simulate immune cell population kinetics occurring due to L. donovani infection it is known, at least for C57BL/6 mice, that the overall hepatic outcome is parasite burden reduction via the production of IFN by T cells which activates myeloid cells to produce anti-leishmanial compounds (Murray 2001). Initially this was abstracted such that a single entity, called anti-leishmanial compounds, was introduced and produced in proportional to the abundance of T cells and myeloid cells (both susceptible and infected) and degraded exponentially, however it was identified that this could be further simplified so that the amount of anti-leishmanial compound was represented as not as an explicit entity but as a function of the number of T cells and myeloid cells (both susceptible and infected). This new representation presented a similar kinetic to the explicit representation but negated the need for an additional free parameter, thus reducing the parameter searching space.      

Moving for the specification of the environment within the platform model, we next considered the populations undergoing simulation. Within the platform model, the major activity that T cells carry out, shown in Figure 4.17, is proliferation. Whilst proliferation rates vary for T cell subsets and can be altered by infection and inflammation (Schlub et al. 2011; Vibert and Thomas-Vaslin 2017), in the platform model proliferation is represented as the growth of a single population via a singular density dependent process. This process is density dependent as it is considered that there are tissue niches for cells that limit the number of cells that can accumulate (Kaye et al. 2004). As we have previously described an abstraction whereby the non-cellular entities have been abstracted, such as the cytokines produced by different subsets of T cells, there is no explicit need to represent T cell subsets individually. Instead the platform model specifies a single T cell population, which is an amalgamation of the T cell states described in the domain model (Figure 4.8), specified as having a singular state (Figure 4.18) which will map directly to a single equation representing the total population in the simulation model.

[image: ][bookmark: _Ref518634034][bookmark: _Toc525227222][bookmark: _Toc536814161]Figure 4.17 – Platform model activity diagram of a T cell during hepatic infection with L. donovani. UML-like notation of the behaviours of a T cell during hepatic infection with L. donovani in the liver. Predominantly T cells either proliferate, providing their total population size is below a specified capacity, or they exit the system. Within the platform model, reduction of hepatic parasite is dependent on the numbers of T cells and not any intrinsic activity.


[image: ][bookmark: _Ref518634254][bookmark: _Toc525227223][bookmark: _Toc536814162]Figure 4.18 - Platform model state diagram of a T cell during hepatic infection with L. donovani. UML-like notation of the state(s) a T cell may exist in during hepatic infection with L. donovani. Within the ODE implementation each state is approximately indicative of a separate equation representing individual entity. For T cells it is assumed they only exist in a singular state until their death.




Within the platform model the myeloid cell population was grouped to also represent KCs. KCs can be infected with L. donovani, present antigen and mount a pro-inflammatory immune response (Beattie et al. 2010; Martinez and Gordon 2014) and whilst it has been shown there are comparatively different infection levels among myeloid cell subsets (Terrazas et al. 2017) and their population abundances are diverse (Section 4.3), there is no pre-existing data on different levels of infection between different myeloid cell subsets. The addition of multiple free parameters accounting for these unknown rates would generate an unacceptably high level of uncertainty within the emulation of these behaviours. It is assumed these activities are conceptually the same between KCs and non- KC myeloid cells although likely occur at differing rates and these can be amalgamated into singular parameters that account for all sub-populations. Additionally, this amalgamation of myeloid cells and KCs leads the new group to have the ability to proliferate, as KCs can proliferate within the liver.

[image: ]Figure 4.19 shows the activities for these myeloid cells within the platform model. Biologically, the successful phagocytosis of a parasite is dependent on receptor binding on the surface of the host cell, this is a key feature of the initialisation of hepatic infection which is retained within the platform, represented as a contact-dependent process: Myeloid cell infection = Probability of Successful Contact x Susceptible Myeloid Cells x Extracellular L. donovani. As stated in the domain model an infected myeloid or KC may burst or be lysed as a consequence of infection. T cell lysis of infected cells is a well described process (Stäger and Rafati 2012), but the magnitude of this effect is still uncertain for cells infected with Leishmania (Kaushal et al. 2014; Beattie et al. 2010), additionally the process of cell bursting lacks strong enough evidence to be able to implement with high confidence, thus these processes are not incorporated. Myeloid cell proliferation is also specified within the platform model implemented as a function of dependent-density growth. This is represented as Myeloid cell growth = (Myeloid Cells x Myeloid Cell Growth Rate) x (1- (Myeloid Cells)/(Myeloid  Cell Population Max.))[bookmark: _Ref518634477][bookmark: _Toc525227224][bookmark: _Toc536814163]Figure 4.19 - Platform model activity diagram of a myeloid cell during hepatic infection with L. donovani. UML-like notation of the behaviours of a myeloid cell during hepatic infection with L. donovani in the liver. Within the myeloid population, cells may either be susceptible to infection or infected, their infection status impacts on their activities within the system and is denoted by the diamond, representing a decision node.


[image: ]The states that these myeloid cells can exist in that are represented within the platform model are shown in Figure 4.20, whereby infection with L. donovani permanently changes the state of a myeloid cell from susceptible to infected until such time that the myeloid cell dies. Sterilisation of infected cells is possible biologically (Murray 2001) but an appropriate mathematical function describing this could not be derived and so this process was not included within the platform model.  [bookmark: _Ref518635112][bookmark: _Toc525227225][bookmark: _Toc536814164]Figure 4.20- Platform model state diagram of a myeloid cell during hepatic infection with L. donovani. UML-like notation of the state(s) a myeloid cell may exist in during hepatic infection with L. donovani. Myeloid cells, within the platform model, only exist as naïve or susceptible entities, dependent on contact with Leishmania donovani, and exit the system upon death.


An abstraction that was made for the model was to subsume the iNKTs into the T cell population. Whilst the initial detection of infection by these cells is important it has been shown that in the absence of iNKTs there is still a progression of infection, albeit with differing kinetics (Robert-Gangneux et al. 2012). In view of simplification of the model it is reasonable to assume iNKTs are a population within T cells that will contribute to the development of anti-leishmanial compound production and thus iNKTs and T cells are implemented as a singular entity.

[image: ]Figure 4.21 shows, for the platform model, that L. donovani initialises in the liver, with the assumption that there is absorption of parasite at other sites and so a fraction of the injected parasite reaches the liver, which is shown as Extracellular L. donovani initial value = Liver Fraction x Total Injected L. donovani and Intracellular L. donovani initial value = 0. Extracellular L. donovani can be phagocytosed dependent on the probability of a successful contact with a susceptible myeloid cell, and it assumed that multiple L. donovani are up taken in a single infection event, whereby it transitions to an intracellular state (Figure 4.22), represented as Intracellular L. donovani = Multiplicity of Infection x (Probability of Successful Contact x Extracellular L. donovani x Susceptible Myeloid cell) and Extracellular L. donovani = - Multiplicity of Infection x (Probability of Successful Contact x Extracellular L. donovani x Susceptible Myeloid cell).[bookmark: _Ref518635726][bookmark: _Toc525227226][bookmark: _Toc536814165]Figure 4.21 - Platform model activity diagram of Leishmania donovani during hepatic infection. UML notation of the behaviours of a Leishmania donovani during infection in the liver. In the system, L. donovani exists extracellularly until it parasitizes a host cell where it either proliferates, egresses out of the host or is killed by anti-leishmanial compounds, which within the system is represented by the number of T cells and susceptible and infected myeloid cells with a temporal delay, annotating the complexity in production which would not allow for instantaneous production.


T cells within this system exert an anti-leishmanial effect by producing pro-inflammatory signals which activate KCs and myeloid cells to produce anti-leishmanial compounds, however it is reasonable to reduce these production abilities down to a representation whereby cellular numbers of T cells and myeloid cells are a proxy for the amount of pro-inflammatory cytokines and thus anti-leishmanial compounds. We would expect to see a temporal delay in production reflecting the complexity of the process. This is implemented as Anti-leishmanial compounds = (T cells + Myeloid cells)/(temporal delay), as shown in Figure 4.21.

[image: ]Once in an intracellular state the parasite can proliferate (Chang and Dwyer 1978), implemented as Intracellular L. donovani Growth = L. donovani Growth Rate x Intracellular L. donovani, or be killed by the actions of anti-leishmanial compounds in a concentration dependent manner, resulting in removal from the system, shown as Intracellular L. donovani Decline = ((anti-leishmanial compounds)/(IC50 + anti-leishmanial compounds)) x Intracellular L. donovani. However, as host myeloid cells will also succumb to bursting, which is a factor of that populations death rate, L. donovani can return to the extracellular space, and thus become extracellular, by egressing out of the bursting cells. These processes are implemented as Intracellular L. donovani Egress = Probability of egress x Myeloid cell decay rate x Intracellular L. donovani. Extracellular L. donovani are also susceptible to the actions of anti-leishmanial compounds and share the same population decline upon exposure, here shown as Extracellular L. donovani Decline = ((anti-leishmanial compounds)/(IC50 + anti-leishmanial compounds)) x Extracellular L. donovani[bookmark: _Ref518635753][bookmark: _Toc525227227][bookmark: _Toc536814166]Figure 4.22 - Platform model state diagram of a Leishmania donovani during infection in the liver. UML notation of the state(s) L. donovani may exist in during infection. L. donovani enters the system as an intracellular entity and is phagocytosed by susceptible myeloid cells upon successful contact transitioning to an extracellular state.


[bookmark: _Ref518744288][bookmark: _Ref518744611][bookmark: _Ref525222145][bookmark: _Toc3716109]Implementing a Simulation Model of the hepatic immune response to infection with L. donovani
Initially the full simulation model (see Section 2.15.5) was designed based upon the specifications laid out in the platform model (see Section 4.3.3). The abstractions made within the platform model meant that parameterisation of the model using values derived from published data was not feasible, as many parameters did not directly link to biological rates/fluxes thus all parameter values were calibrated against the generated biological data. Initially a simulation model that encapsulated all of the specifications from the platform model was derived (Figure 4.23).

[image: ][bookmark: _Ref536814004][bookmark: _Ref518721637][bookmark: _Toc525227228][bookmark: _Toc536814167]Figure 4.23 - Full Simulation Model of the hepatic immune response to infection with L. donovani. The ODE system describing T cells, myeloid cells and L. donovani was implemented to fully realise the platform implementation. The T Cells parameters and the L. donovani initial value were derived separately which allowed for parameterisation of the remaining free parameters in the full model. Model terms are as such: T Cells (T), susceptible myeloid cells (Ms), infected myeloid cells (Mi), extracellular L. donovani (Pe), intracellular L. donovani (Pi). T cell growth rate (aT), T cell population maximum (Tmax), T cells exit rate (Ut), myeloid cell growth rate (aM) myeloid cell population maximum (Mmax), myeloid cell (infected or susceptible) exit rate (Um), force/probability of infection (B), number of amastigotes per infection event (c), anti-leishmanial compounds (A), the concentration of A required to kill half the population (A50) and the L. donovani egress rate (Eg).   



In this model we simulate the behaviours of T cells (T), susceptible myeloid cells (Ms), infected myeloid cells (Mi), extracellular L. donovani (Pe) and intracellular L. donovani (Pi). T cells proliferation is described using logistic growth, whereby a growth rate (aT) and a population maximum (Tmax) control the growth of the population. T cells exit the system at a set rate (Ut). Susceptible myeloid cells proliferation is also described using logistic growth, with a growth rate (aM) and a population maximum (Mmax), and a set exit rate (Um). Additionally, susceptible myeloid cells may be infected by contact with extracellular L. donovani with the force of infection (B) denoting how many of these contacts lead to infection, thus generating infected myeloid cells. These infected myeloid cells exit the system at the same rate (Um) as susceptible myeloid cells. Extracellular L. donovani becomes intracellular upon successful infection of susceptible myeloid cell which also includes the consideration that multiple extracellular L. donovani can infect a myeloid cell, denoted as (c). Both intracellular and extracellular L. donovani are killed by anti-leishmanial compounds (A). This killing is described using Michaelis-Menten-like kinetics where death is proportional to the amount of (A) but also the concentration of (A) required to kill half the population (A50). Intracellular L. donovani may be removed upon death of host infected myeloid cells (Um) whereby a portion of these intracellular L. donovani may egress (Eg) out to become extracellular.   

However, the calibration of all unknown parameter values and the unknown initial value of extracellular L. donovani was likely to prove challenging due to the large parameter space needing to be sampled. To overcome this complication, an incremental calibration approach was employed. Aspects of the final simulation model that could be isolated/simplified, analysed and then reincorporated back into the full model were identified. This resulted in an initial calibration of the parameters for T cell processes, as this population was not involved in interaction with other populations, followed by the derivation of the extracellular L. donovani initial condition using a simplified simulation model. Finally, the remaining free parameters for the full model were calibrated.

Initially the processes describing T cell population behaviours were seen to be independent of other simulation model populations, thus the T cell processes could be isolated and calibrated separately. Concurrently, a simplified simulation model of the myeloid cell population was derived which could be further extended in combination with T cells to derive the initial condition for the extracellular L. donovani population in iteration 2. Thus, a simplistic model of population growth for T cells and myeloid cells (Figure 4.24) was developed and parameterised using the ABC_sequential function of the easyABC package in R as described in Section 2.15.6. Using a range of descending tolerance values, shown in Table 7.2, reflecting the value that the residuals between observed and expected data points must be equal or less than, 50 parameter sets were derived for both T cells (Figure 4.25A) and myeloid cells (Figure 4.25C) and the best fit for each one was calculated using the minimum root mean square error (RMSE) from an observed vs. expected calculation and plotted (Figure 4.25B and [image: ]Figure 4.25D).[bookmark: _Ref518651810][bookmark: _Toc525227229][bookmark: _Toc536814168]Figure 4.24 - Simplified simulation model of T cell and myeloid cell populations. A simplified simulation model of the T cell and myeloid cell population kinetics was implemented to allow for the calibration of T Cell parameter values. Myeloid parameters derived here were implemented into a further developed model to allow for determination of the initial extracellular L. donovani value. 



Myeloid cell parameters from this iteration were transient as they were based upon a simplified representation which would be further developed. The T cell kinetics were not further developed, as T cells are not influenced by other entities in the final simulation models, and so the best T cells parameters derived from this analysis were recorded (Table 4.1) for use in future iterations.


[image: ][image: ] 
[bookmark: _Ref518739917][bookmark: _Toc525227230][bookmark: _Toc536814169]Figure 4.25 – Calibrating parameters describing T cell and myeloid cell population kinetics. T cell (A, B) and myeloid cell (C, D) kinetics were fitted using the abc_sequential function of the easyABC package and the best fits selected (B, D) by selecting the lowest root mean square error when comparing observed vs. expected outputs. Blue dots represent the mean of the biological replicates which the model was trained against, grey lines represent in silico parameterisation outputs (n = 50), red lines represent the 95% Confidence Interval for the in silico outputs and black lines represent the best fitting in silico output.
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[bookmark: _Ref518722346][bookmark: _Toc536814202]Table 4.1 – T cell parameter values derived from kinetics. 50 simulation runs were generated to fit the T cell kinetic data using parameters sampled from supplied prior distributions. The parameters from the best fitting kinetic were selected and implemented in future iterations.

A further model was then developed to allow for the identification of the extracellular L. donovani initial condition. This model included a simplified representation of the L. donovani population and the parameter values derived previously for T cell and myeloid cell kinetics were implemented (Figure 4.26). The model here retains the same population mechanics for T cells and myeloid cells as the previous model but now includes a population representing L. donovani (P) and an additional population for anti-leishmanial compounds (A), whereby L. donovani can grow at a set rate (aP) and be killed by anti-leishmanial compounds described using Michaelis-Menten-like kinetics where death is proportional to the amount of (A) but also the concentration of (A) required to kill half the population (A50). The production of anti-leishmanial compounds is proportional to the number of T cells and myeloid cells, accounting for a temporal delay in production (tau), a simplification based upon a previously published model (Ribeiro et al. 2017). This temporal delay denotes of the complexity of the immune response upon detection of L. donovani infection whereby anti-leishmanial compound production is not instantaneous. Anti-leishmanial compounds degrade at a set rate (UA)
 
[image: ][bookmark: _Ref518720551][bookmark: _Toc525227231][bookmark: _Toc536814170]Figure 4.26 - Simplified simulation model of T cell, myeloid cell and L. donovani populations. The simplified system of T cell and myeloid cell population kinetics (Figure 4.26) was expanded to include the L. donovani population. The T cell and (transient) myeloid parameters derived in the previous simplified simulation model were implemented to allow for determination of the initial extracellular L. donovani value. 



In this second simulation model the initial value of (hepatic) L. donovani is unknown, sensibly we assume in a biological system that there is no parasite at time zero and they are subsequently delivered by the blood supply post-infection; however, this assumption does not logically extend to a simulation of a single liver compartment. We must assume the parasite in the liver is instantaneously initiated at time zero. To determine the likely initial value an expected prior range of parasite was selected, a uniform distribution between 6 x 105 and 10 x 105 (Table 4.2). This distribution was supplied to the ABC_sequential function with prior ranges for the parasite parameters (parasite replication rate (ap), 50% inhibitory concentration of anti-leishmanial compounds (a), the temporal delay in anti-leishmanial compound production (tau) and the anti-leishmanial compound decay rate (da)). Once again these are transient parameters as the representation of L. donovani is further developed in the next, and final, iteration to more adequately represent the platform model. The simplified representation here is sufficient to allow the determination of an initial value without the additional complexity of attempting a full model parameterisation. The resulting 50 simulations (Figure 4.27A) were then analysed, as before, using the RMSE to determine the best fit (Figure 4.27B) from which the initial L. donovani value was recorded (Table 4.2). 
[image: ]
[bookmark: _Ref518740841][bookmark: _Toc536814171][bookmark: _Toc525227232]Figure 4.27 - Fitting Leishmania donovani kinetics. L. donovani kinetics (A) were fitted using the Sequential_ABC function of the easyABC package and the best fit selected (B) by selecting the lowest root mean square error when comparing observed vs. expected outputs. Blue dots represent the mean of the biological replicates which the model was trained against, grey lines represent in silico parameterisation outputs (n = 50), red lines represent the 95% Confidence Interval for the in silico outputs and black lines represent the best fitting in silico output.
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[image: ][bookmark: _Ref518722353][bookmark: _Toc536814203]Table 4.2 - Initial Leishmania donovani value derived from kinetics. 50 simulation runs were generated to fit the L. donovani kinetic data using initial values sampled from a supplied prior distribution. The initial value from the best fitting kinetic were selected and implemented in the future iteration.


[image: ]Derivation of the T cell parameters and initial condition of extracellular L. donovani concluded calibration of isolated/simplified processes from the final simulation model. The values derived in these investigations were included within the final simulation model leaving a reduced number of free parameters to be calibrated.  When considering the differences in scale between the myeloid cells and L. donovani numbers within the expected data it was deemed that calibration of these as a single objection may result in a biased approach to fitting and so the nsga2 function of the mco package was implemented for its multi-objective approach, as described in Section 2.15.6. For each parameter a minimum and maximum value was supplied and 100 parameter sets returned which were used to generate full time courses for all entities (Figure 4.28).
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[bookmark: _Ref518721117][bookmark: _Toc536814172][bookmark: _Toc525227233]Figure 4.28 - Fitting of myeloid cells and Leishmania donovani kinetics with parasitic behaviours. Parameters derived in Iteration 1 were used to model T Cells (A). Myeloid cell (B) and Leishmania donovani kinetics (C) were fitted, as the sum of susceptible (D) & infected (F) myeloid cells and extracellular (E) & intracellular (G) Leishmania donovani, respectively, using the nsga2 function of the mco package. Blue dots represent the mean of the biological replicates which the model was trained against, grey lines represent in silico parameterisation outputs (n = 100) and the red lines are the 95% confidence interval for the in silico outputs.


The best fitting parameters for the total myeloid cell population (Figure 4.29B), calculated from the sum of susceptible myeloid cells (Figure 4.29D) and infected myeloid cells (Figure 4.29F) and the total L. donovani (Figure 4.29C), the sum of extracellular L. donovani (Figure 4.29E) and intracellular L. donovani (Figure 4.29F) were derived from using RMSE, as above.
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[bookmark: _Ref518741638][bookmark: _Toc525227234][bookmark: _Toc536814173]Figure 4.29 – Best fits of myeloid cells and Leishmania donovani kinetics with parasitic behaviours. The best fit from the 100 runs derived using the nsga2 function from the mco package, Figure 4.30, were analysed, were the intracellular per infected myeloid was lower than 150 throughout the time course, to derive the lowest root mean square error from observed vs. expected. The best fit was plotted (Black lines) with blue dots representing the mean of biological replicates (n = 4-5).


This initially produced a result that, whilst the best fit mathematically, was revealed to be a biologically unrealistic result, with a maximal intracellular parasite per infected myeloid count of approximately 68,000, calculated by dividing the number of intracellular parasite by the number of infected myeloid cells at each time point for the best fitting value and selecting the maximum value from this new set of values. To avoid this scenario only parameter sets that generated a result where the maximal intracellular parasite per infected myeloid count was less than 150 were considered, a value higher than seen in published literature for in vitro studies  (Nacy and Diggs 1981; Chakraborty et al. 2005; Mookerjee Basu et al. 2006; Phillips et al. 2010; Roy et al. 2011; Kumari et al. 2017; Verma et al. 2018) to allow for the probability that in vivo values may not directly match attained in vitro levels.  The best fit was recalculated and plotted (Figure 4.29) and the parameter values derived [image: ](Table 4.3).[bookmark: _Ref518742073][bookmark: _Toc536814204]Table 4.3 - Final Parameter Values derived for the final model. The final iteration of the model used the NSGA2 function of the mco package to derive the remaining unknown parameter values (iteration derived: 3), in combination with parameters and initial conditions already derived (Table 4.1 and Table 4.2).

[bookmark: _Toc536814088][bookmark: _Toc536814089][bookmark: _Ref518744298][bookmark: _Toc3716110]Statistical Validation of the Simulation Model
To check that the model calibration resulted in a robust simulation model that is not biased for only the data upon which it had been parameterised, validation was needed, as described in Section 2.15.7. To check this, the simulation model was adjusted to represent an in vitro system and so the initial T cell value was set to zero. The parameter values from the best fitting model calibration were supplied to the model and output collected. From this output the number of intracellular L. donovani per infected myeloid cell was collected and rounded to the nearest whole number. This was then compared against in vitro data of intracellular L. donovani growth for 10 days in J774.2 macrophages (Figure 4.30), rounded to the nearest whole number (Martín-Montes et al. 2017) using a Chi-square test  which returned a statistically significant difference between the two datasets (p = 0.012). The Chi-square test offers no further explanation as to why these two datasets differ however it is likely that inherent differences between the in vivo system being modelled and the in vitro dataset being compared against are the main reason for this difference. Going forward if an in vivo dataset can be sourced this would likely prove a better comparator. At this time the model has not been fully validated and so whilst it can still be implemented for further investigations, a further statistical validation should be completed for full confidence in model output.
[image: ][bookmark: _Ref518742176][bookmark: _Toc525227235][bookmark: _Toc536814174]Figure 4.30 - Statistical validation of model output. The number of intracellular Leishmania donovani per infected myeloid cell was calculated from the output from Figure 4.31 and was compared to an in vitro amastigote per infected host cell growth curve derived from (Martín-Montes et al. 2017), using a Chi-square test. A statistically significant difference between the two datasets was found (p = 0.012).




[bookmark: _Toc3716111]Discussion
The model presented in this chapter aimed to derive an in silico model of the immune response to hepatic L. donovani infection that could be utilised for investigating the likely immune mechanisms that influence AmB pharmacokinetics/pharmacodynamics in the liver (Section 4.2) with the objectives of deriving biological datasets pertaining to the hepatic immune response to L. donovani infection, synthesising a model describing this response using the CoSMoS process, parameterising this model using the derived biological datasets and to statistically validate the model against unseen data. Figure 4.1 summarised the process by which these aims and objectives would be achieved. 

For this project population level data were generated via flow cytometry to describe the kinetics of immune cell subsets in the liver during EVL (Section 4.3). Subsequently, a mathematical model was developed using the CoSMoS process whereby a domain model (Section 4.3.2), platform model (Section 4.3.3) and finally a simulation model (Section 4.3.4) were sequentially developed. The derived biological data were used to parameterise the simulation model and the model was then statistically validated using published data to ensure its fitness for purpose (Section 4.3.5).

The reasoning for generating in-house biological data was the lack of temporal absolute population data relating to the liver during L. donovani infection, predominantly published data focuses on either specific discrete time points that are aimed at qualitative exploration of the system. An alternative approach would be to use pre-existing published data to derive parameter values or prior ranges for calibration, this approach would have also benefitted model validation, discussed later, however pre-existing parameter data for this simplified system was lacking and this approach could not be taken.

The flow cytometry populations data generated here represents a cohesive temporal dataset for both hepatic leukocyte subsets (Figure 4.3 and Figure 4.4) and L. donovani (Figure 4.5)  which broadly agrees with the expected immune cell kinetics from the limited pre-existing published data (Bunn et al. 2014; Terrazas et al. 2017) as well as a what might be expected in other systems of liver chronic inflammation, such as hepatitis (Sung, Racanelli, and Shin 2014), additionally the hepatic parasite burden for L. donovani recapitulates the expected population time course of peak and decline (Murray and Nathan 1999; Smelt et al. 2000; Murray et al. 2013). 


The derived flow cytometry data were then used to aid in the parameterisation of the developed mathematical model (Section 4.3.4). In the final simulation model, there exist five distinct populations that robustly describe the accumulation of T cells, myeloid cells (susceptible and infected) and L. donovani (extracellular and intracellular) (Figure 4.29). These populations were decided via the CoSMoS process whereby the original biological system of hepatic L. donovani infection was simplified and abstracted into a suitable mathematical model. Modular simplification has been seen in numerous publications, a good example of this being HIV viremia dynamics being summarised by condensed entities in a variety of models (Dorratoltaj et al. 2017).

The parameterisation approaches for this model combined single and multi-objective based algorithmic approaches, both approaches having been previously employed in biological simulations (Read et al. 2016; MacLean, Lo Celso, and Stumpf 2013), and lead to the derivation of parameters for the final simulation model that generated output which sufficiently matched biological data (Table 4.3). This final model allowed us a quantitative insight into the ongoing behaviours during the hepatic immune response to L. donovani infection, some of which would not be easily derived from biological experimentation such as the changing numbers of intracellular L. donovani per infected myeloid cell.

These novel insights are key, not only because it allows the simulation model to contribute back into the research context and expand our knowledge of the system under study, but because it allows for model validation. The final model produced was deterministic, thus its output is fully dependent on the parameter values and initial values for each entity, in contrast to stochastic models where some inherent randomness means that the same parameter values and initial conditions produce a varied set of results. As discussed there is limited pre-existing data on hepatic L. donovani which not only affected calibration but modular validation. Traditionally the model can be validated by its utilisation of parameters derived from published data (Siewe et al. 2016; Ribeiro et al. 2017), or from comparison to data that is independent of the models parameterisation, data that is has never seen before (Albergante et al. 2013). Due to the high levels of abstraction in the model presented here, rather than select parameter values from literature, the model was compared against novel derived data. As stated the model is deterministic, as such comparing against additional T cell, myeloid cell or L. donovani would be only be a test of the experimental data and not the model itself, however there is a scarcity of alternative data. Thus, an in vitro dataset charting the changes in numbers of intracellular L. donovani per infected macrophages (Martín-Montes et al. 2017) was compared however the model output did not match the in vitro datasets (Figure 4.30). This most likely represents an inherent difference in process rates between in vivo and in vitro datasets. Thus, whilst the final simulation model and calibrated parameter values can be used further it should be noted that full confidence cannot be achieved until further validation has been completed.

As mentioned previously the validation of this model would most likely benefit from comparison against unseen in vivo data. This could be employed using the data already at hand, such as by using n-1 validation whereby randomly selected data points are not included in the parameterisation but compared against the later generated output, or alternatively novel data could be generated entirely such as calculating the number of parasites from infected myeloid cells from histological samples. Neither approaches were implemented for this model initially due to high variability in the existing data and the complexity involved in generating the novel datasets as they would involve variation from both biological and technical sources compared to the original data used.

On reflection for the model, areas for improvement can be identified. When considering the biological input data, it would have been beneficial for more focus initially to be on the collection of pre-existing data, as this works hand-in-hand with the CoSMoS process of gathering information for the development of a research context. A more confident parameterisation could be defined due to the inclusion of more likely prior distributions being a main benefit of this approach. There is also a basis for considering the modular implementations complexity; if a model is too complicated or too simplistic for the aims of the project it will reduce the predicative/investigative ability of the model. Unfortunately there is no straightforward metric for assessing the individual complexity of a standalone model in terms of its aims (Brooks and Tobias 1996). An improvement for this model would be to consider if the immune cell growth kinetics are too constrictive as they inherently proscribe population growth even when L. donovani is not present in the system and in the spirit of iterative improvement, these kinetics may necessitate the adaption of the modular aim to be to “simplistically and robustly describe the population kinetics of both the immune system and L. donovani within the liver in response to experimental visceral leishmaniasis infection.”

Considering all discussed elements, the model presented here is an initial platform for further investigation into how the cellular distribution of AmB post-treatment will impact parasite resolution during infection in the liver. The utilisation of this model to further these investigations is described in the next chapter. 

[bookmark: _Ref518937182][bookmark: _Toc3716112]| Investigating the influence of immunological processes on the pharmacokinetics/pharmacodynamics of Amphotericin B

[bookmark: _Toc3716113]Introduction
In the previous chapters the accumulation of AmB within the liver and leukocyte subsets that play a central role in granuloma formation was defined (Chapter 3). Following from this a simplistic mathematical model describing the hepatic immune response was characterised (Chapter 4). However, the mechanisms controlling granuloma drug accumulation have yet to be characterised. Investigations in published literature either focus solely on immunological mechanisms or whole tissue drug distribution, a marrying of the two has yet to be investigated. To this end the mathematical model from Chapter 4 served as the foundation for the inclusion of pharmacological processes which could describe the accumulation of AmB in leukocytes and the subsequent effect on parasite load.

Within this chapter the previously described mathematical model was re-examined to ensure its suitability for extension to include pharmacological processes. A reiteration of the CoSMoS process carried out in this chapter identified a new platform model specification that is more representative of the domain model with regards to T cell and myeloid cell population. The platform model was re-implemented with these new processes describing T cell and myeloid cell influx, proliferation and death/exit from the system. This was then calibrated through the use of a multi-objective algorithm. Following on from this pharmacokinetic data were adapted to align with the simplified entities described in the model. A further iteration of the CoSMoS process was undertaken with the aim of describing the domain behaviours of AmB in the liver, which was developed into a platform model and finally implemented as a simulation model. Calibration was attempted to describe the accumulation of AmB for the liver, myeloid cells and T cells.

[bookmark: _Toc3716114]Aims
The aims of this chapter were to design and implement a hybridisation of AmB’s pharmacological characteristics into the previously described mathematical model of the immune response to hepatic L. donovani infection. Proceeding from this hybridisation, the next aim was to utilise this new model to identify and investigate the processes influencing drug accumulation within leukocytes and the subsequent effects of parasite burden.
 

[bookmark: _Toc3716115]Results
[bookmark: _Ref523784587][bookmark: _Toc3716116]Updating the proposed model
When contrasting the parasite burdens and lymphoid cell kinetics shown in a AmB cleared infection (Figure 3.12 and Figure 3.14 respectively) and a naturally resolving infection (Figure 4.5 and Figure 4.3 respectively) a differing relationship between the two populations is seen.  Naturally occurring infections maintain higher levels of lymphoid cells when parasite is cleared. In contrast, drug cleared infections appear to show a decline in lymphoid cells 72hrs after drug treatment, when parasites levels are low. Our domain model of T cells (Figure 4.7) states that antigenic stimulation plays a role in T cell population maintenance and this may partially explain the differing relationships, if we hypothesis that drug clearance leads to a higher level of sterilisation (Voak et al. 2018) and thus less presentation of Leishmania antigens. Additionally, when considering the mechanisms of population maintenance for both myeloid cells and KCs in the domain model (Figure 4.11 and Figure 4.15 respectively)  we see that  population growth is not explicitly a basal behaviour and can require additional inputs to occur. On this basis the original platform model specification describing T cell and myeloid cell behaviours pertaining to population growth (Figure 4.18 and Figure 4.19) is inadequate to describe the observed phenomena of population growth. 

Figure 5.1 shows the updated domain model for all entities originally described in Chapter 4. The initial assumption that T cells and myeloid cells grow in a density-dependent manner is removed and replaced with proportional growth dependent on the number of infected myeloid cells present, additional population growth occurs through the influx of both these cell groups into the liver. T cell proliferation in response to antigen recognition has been highly investigated and for an infection system, where the system has had no previous exposure to the pathogen, can be broadly explained as the proliferation and differentiation of T cells upon contact with foreign antigen (Sprent et al. 2000). Previous studies have shown antigenic presentation to T cells does occur during infection with cutaneous and visceral species of Leishmania (Kaye et al. 1992; Kima, Ruddle, and McMahon-Pratt 1997; Bertholet et al. 2006; Bunn et al. 2014) and thus here represent that T cells proliferate proportionally to the number of infected myeloid cells, as a representation of available antigen. Additionally, treatment of mice infected with L. donovani using FTY720, an immunomodulator that prevents recirculation of T cells in the lymphatics and blood, showed a decrease in the abundance of mononuclear cells in the liver, suggesting a role for external migration into the liver (Bunn et al. 2014). To his end T cell influx was also [image: ]incorporated as a mechanism of T cell population growth.[bookmark: _Ref522617715][bookmark: _Toc525227236][bookmark: _Toc536814175]Figure 5.1 - Updated platform model of all modelled entities. Initial platform diagrams generated in Chapter 4 were collated and updated to reflect more accurate representations of myeloid cell and T cell population growth. Updated and new processes are highlighted in blue.

Myeloid cells were also updated to include proliferation of susceptible myeloid cells proportional to the number of infected myeloid cells and a process of growth via influx. The bone marrow is a major source of monocytes and neutrophils that then transition into tissues and/or sites of inflammation (Hettinger et al. 2013) and thus the influx term is a representation of externally derived myeloid cells bolstering the hepatic population. Additionally, different myeloid cell subsets have varying proliferative capacity (Klein et al. 2007) and this means to some extent proliferation will occur in the amalgamated group of myeloid cells. In a biological setting proliferation is prompted by various factors, such as IL-4 (Jenkins et al. 2011). However, as before, the model has no explicit representation of cytokines or chemokines that may promote this proliferation. Instead, it is assumed the presence of infected cells is the driver for these processes and is used as a proxy for the abundance of cytokines and chemokines that would induce proliferation. To this end we represent the proliferation of the myeloid cells as proportional to the number of infected myeloid cells, with the probability of proliferation being a combination of the proliferation rates of the subsets that have been amalgamated. 

[image: ]The updated platform model, presented in Figure 5.1, necessitated an update in the implemented simulation model shown in Figure 4.23. To this end cell influxes and population growth were transformed into mathematical functions, loosely based on De Boer and Perelson’s function describing T cell proliferation in response to antigenic stimulation (De Boer and Perelson 1995). This function proposed by De Boer and Perelson adequately represented the external influx of cells and population proliferation but was not directly implemented due to its reliance on a representation of antigen and antigen binding sites. It is not feasible to include these factors due to a paucity of data and the unnecessary complexity for the scope of this project. Thus, this portion of the function was substituted with a dependence on the infected myeloid cell population for growth as described in the domain model. The updated model, Figure 5.2, shows that for Eq. 5.1 and Eq. 5.2 the maximal growth rate of the population, denoted as aX, is modulated depending on the density of the infected myeloid cells and the cell population being modelled. The death rate of the population, denoted as X, is then subtracted from this. Together this function allows for population growth in response to infection and decline in its absence whilst not forcing the emergence of either, a weakness of the previously employed logistic growth functions whereby the population was constrained to a maximum level and guaranteed to grow if below this threshold. The remaining functions remain the same from the previous implementation.  [bookmark: _Ref536814009][bookmark: _Ref522633684][bookmark: _Toc525227237][bookmark: _Toc536814176]Figure 5.2 – Diagrammatic representation and equations denoting processes for updated immune response model. The model described in Figure 4.25 was updated to include the new representations of T cell and myeloid cell population growth (Eq. 5.1 and Eq. 5.2 respectively). Green arrows (emanating from infected myeloid cells) represent promotion of the indicated process, red lines (emanating from susceptible and infected myeloid cells and T cells) represent inhibition of the indicated entity.


When considering the proposed model in Figure 5.2, a valid biological (and mathematical) assumption would be that in the absence of L. donovani infection there is no proliferation driven by infected myeloid cells. In this new model there is also an implementation of two additional parameters representing the influx of T cells (LT) and myeloid cells (LM) as well as the modulation of the maximal population growth rate by the death/exit rate of either T cells (DT) and myeloid cells (DM). Based on the assumption that in the absence of L. donovani infection there is no proliferation driven by infected myeloid cells this would infer that in a naïve population the population maintenance is controlled by the influx of cells and their resulting death/exit from the system. For experimental visceral leishmaniasis there is a paucity of quantitative data for cellular influx rates into the liver and/or the death/exit rate of cellular populations. To attempt to negate the uncertainty in these values, the model was initially calibrated for a naïve system to derive the influx and exit rates of T cells and myeloid cells, these values could then be integrated into the system when infection was present. 

The initial values of the model were set to represent a naïve system (9.72 x 105 T cells, 2.4 x 105 susceptible myeloid cells and 0 infected myeloid cells, extracellular and intracellular L. donovani). Data representing the abundance of T cells and myeloid cells from previously processed naïve mice age-matched to infection time points from Figure 4.3 and Figure 4.4 was generated (see Sections 2.5, 2.8 and Figure 4.2). 
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[bookmark: _Ref522636893][bookmark: _Toc536814177][bookmark: _Toc525227238]Figure 5.3 - Fitting of T cell and myeloid cells in a naïve system. Population data generated from naïve age-matched controls, post infection refers to the infection of matched infected cohorts. Parameters were derived to simulate T Cells (A) and myeloid cells (B) using the abc_sequential function of the easyABC package. Blue dots represent the mean of the biological replicates which the model was trained against, grey lines represent in silico parameterisation outputs (n = 5) and the red lines represent the 95% confidence interval for the in silico outputs.


[image: ]This model representing the naïve liver was then parameterised using the ABC_sequential function of the easyABC package in R as described in Section 2.15.6. Using a range of descending tolerance values, shown in Table 7.2, reflecting the distance between observed and expected data points, five parameter sets were derived for both T cells (Figure 5.3A) and myeloid cells (Figure 5.3B). The parameter values resulting in the best fit, as calculated using the minimum root mean square error (RMSE) from an observed vs. expected calculation, were selected for further utilisation, shown in Table 5.1. [bookmark: _Ref522637474][bookmark: _Toc536814205]Table 5.1 – Selected Parameter Values for the Naïve System. The simulation outputs in Figure 5.3 were analysed to derive the output best fitting the biological data. The parameter values for this simulation are recorded alongside the range and distribution of the values supplied in the parameterisation.



The defined values for the T Cell and myeloid cell influx and exit rates for the naïve system were then utilised within the infection model thereby reducing the parameter dimensions. This again was based on the concept that antigenic stimulation is the driver of cellular proliferation, using these derived parameters the system will describe naïve kinetics when L. donovani is absent and infected kinetics when it is present, a logical reflection of the biological system. For this the model was initialised with initial conditions reflecting an L. donovani infection system (9.72 x 105 T cells, 2.4 x 105 susceptible myeloid cells, 0 infected myeloid cells, 9.4 x 105 extracellular, as shown in Table 4.2, and 0 intracellular L. donovani). The model was supplied to the NSGA-II algorithm for multi-objective optimisation (see Section 1.3.3.4) alongside distribution-free parameter ranges, an evaluation function which compared the output of T cells, total myeloid cells and total L. donovani from the model against biological data using the RMSE, with the aim of minimising the RMSE. The population and generation number as well as the mutation and crossover rate were the same as those used in Figure 4.28. Figure 5.4 shows the RMSE for the three entities evaluated (T cells, total myeloid cells and total L. donovani) using the 100 parameter sets generated, with [image: ]those results closest to the lower left corner representing the optimal parameter sets.[bookmark: _Ref522642155][bookmark: _Toc525227239][bookmark: _Toc536814178]Figure 5.4 – RMSE Scores from the calibration of the newly developed model. Ranges for the 8 unidentified parameter values in the newly developed model were supplied to the NSGA-II algorithm alongside the proposed model and an evaluation function deriving the RMSE of the observed vs. expected data. 100 parameter sets were evolved over 200 generations using this evaluation. Each red circle represents a member of the last generation with their RMSE for the three entities.

The final 100 parameter sets generated were then used to generate full time courses for all model entities which were compared against the biological data used in their derivation, shown in  Figure 5.5.  In contrast to the previously derived model, whereby unrealistic intracellular L. donovani per infected myeloid cell numbers were generated, this instantiation of the model required no data retraction on the basis of the intracellular L. donovani per infected myeloid cell numbers as all values were biologically realistic for all 100 parameter sets. Additionally, the parameter sets employed led to the emergence of controlled population growth without the need for constraint, as in the previously employed logistic growth function.  The best fitting parameter set was derived by calculating the lowest combined RMSE for the 100 parameter sets generated. The full time course for each model entity using the best fitting parameters was generated and shown in Figure 5.6.
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[bookmark: _Ref522644196][bookmark: _Toc536814179][bookmark: _Toc525227240]Figure 5.5 - Fitting of T cell, myeloid cells and Leishmania donovani kinetics to new model. T Cells (A), Total Myeloid cells (B) and Total Leishmania donovani kinetics (C) were fitted, as the sum of susceptible (D) & infected (F) myeloid cells and extracellular (E) & intracellular (G) Leishmania donovani, respectively, using the nsga2 function of the mco package. Blue dots represent the mean of the biological replicates which the model was trained against, grey lines represent in silico parameterisation outputs (n = 100) and red lines represent the 95% confidence interval of the in silico outputs.
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[image: ][bookmark: _Ref522644981][bookmark: _Toc525227241][bookmark: _Toc536814180]Figure 5.6 - Best fits of T cells, myeloid cells and Leishmania donovani kinetics for new model. The best fit from the 100 runs derived using the NSGA2 function from the mco package, Figure 5.5, were analysed, to derive the lowest root mean square error from observed vs. expected. The model output from the best parameter set was plotted for T Cells (A), Total Myeloid cells (B), Total Leishmania donovani (C), susceptible myeloid cells (D), infected myeloid cells (F), extracellular Leishmania donovani (E) & intracellular Leishmania donovani (G) (Black lines) with blue dots representing the mean of biological replicates (n = 4-5).
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[image: ][bookmark: _Ref522646935][bookmark: _Toc536814206]Table 5.2 - Final Parameter Values derived for the new model. Using the nsga2 function of the mco package the remaining unknown parameter values show in in the table were derived, in combination with parameters previously derived (Table 5.1). Supplied parameter ranges for sampling were recorded alongside the value from the best fitting parameter set.


Table 5.2 shows the parameters that were identified using the multi-objective optimisation approach alongside the ranges that were sampled and the best fit value for each. Once the model had been calibrated a global sensitivity analysis (see Section 2.15.8) of all parameters shown in Table 5.1 and Table 5.2 was carried out with parameter perturbed over the prior ranges that were used in the calibration.  One of the novel features within the presented model is the simulation of both susceptible and infected myeloid cells coupled to intracellular and extracellular L. donovani. Figure 5.7 shows the quantification of parameter influence on the level of intracellular L. donovani, the key population in the establishment of a hepatic VL infection, over the infection time course. Partial rank correlation coefficients (PRCC), a measure of parameter influence, were derived for all model parameters at daily time points from 1 day post-infection to 42 days post-infection from 500 parameter sets generated using latin hypercube (LHC) sampling. This analysis indicated that different groups of parameters were influential in early stages of infection (1 - 14 days post-infection) and late stages (15 - 42 days post-infection), for example the average PRCC indicated the rate of infection (bm) was ~7-fold more influential at the earlier stage of infection compared to the late stage.
[image: ][bookmark: _Ref522716221][bookmark: _Toc525227242][bookmark: _Toc536814181]Figure 5.7 - Global sensitivity analysis of parameter influence on Intracellular L. donovani levels. 500 parameter sets were generated using latin hyper cube (LHC) sampling over parameter prior ranges (see Table 5.1 and Table 5.2) and simulated. The influence of the parameters, shown in the legend, were quantified using a Partial Rank Correlation Coefficient (PRCC), whereby a positive value reflects a proportional relationship ( Parameter value =  L. donovani number) and a negative value reflects an inverse proportional relationship ( Parameter value =  L. donovani). The higher the value the stronger the relationship. Parameters analysed are: (dt) T cell exit rate, (lt) T cell supply rate, (dm) myeloid cell exit rate, (lm) myeoid cell supply rate, (at) maximal T cell growth rate, (am) maximal myeloid cell growth rate, (ap), L. donovani growth rate, (eg) L. donovani egress rate, (a) IC50 of anti-leishmanial compounds, (tau) time delay in anti-leishmanial compound production, (bm) rate of infection and (c) number of internalised parasites per infection.

Further to calibrating the simulation model and analysing parameter influence, we next sought to validate the current simulation model by comparison against an external data set, as performed for the previous model in Figure 4.30. Published data were derived for the growth of L. donovani amastigotes within  infected macrophages (Martín-Montes et al. 2017) and the model initialised to reflect the in vitro system. For this the initial values for T cells, infected myeloid cells and intracellular L. donovani were set to zero and the parameter for external supply of susceptible myeloid cells was also set to zero. Initial values for susceptible myeloid cells and extracellular L. donovani were taken from the aforementioned in vitro study, implemented and the model ran using the parameter values giving the best fitting output as determined through the previous calibrations (Table 5.1 and Table 5.2). Figure 5.8 shows the comparison between the model output and the in vitro dataset. Comparison of these data using a Chi Square test showed a statistically significant difference between the two, showing the proposed model was unable to recapitulate the results of the in vitro system. However, the inherent differences between the in vitro system and the in vivo basis of the mathematical model likely explain this deviation and so further investigation of these differences should be carried out, to this end the model was further developed on the understanding further validation would be required for full confidence in model output.  

[image: ][bookmark: _Ref522722269][bookmark: _Toc525227243][bookmark: _Toc536814182]Figure 5.8 - Statistical validation of new model output. The number of amastigotes per infected myeloid cell was derived from the output of the best fitting parameters was compared to an in vitro amastigote per infected host cell growth derived from (Martín-Montes et al. 2017). The two datasets were compared using a Chi Square test which showed a significant difference between the two data sets (p = 0.01).


[bookmark: _Ref525222153][bookmark: _Toc3716117]Developing a mathematical model describing both the immune response to L. donovani infection and the pharmacokinetics/dynamics of Amphotericin B
The finalised model shown in Figure 5.2 simulates two leukocyte populations, T cells and total myeloid cells, whilst the pharmacokinetic data shown in Figure 3.13 analysed lymphoid cells, neutrophils, monocytes and KCs & DCs. To align the datasets the accumulation of AmB across post-treatment time points was derived for T cells and myeloid cells. Neutrophil, monocyte and Kupffer & dendritic cell AmB accumulation at each time point were summed with the SEM calculated as described in Section 2.14. T cells numbers were derived by further gating of the lymphoid population and the population average multiplied with the average AmB accumulation for the lymphoid cells at each time point. Figure 5.9 shows the newly derived AmB accumulation plots for T cells and myeloid cells. These data along with total liver accumulation (Figure 3.12A) and the changes in parasite burden post-treatment (Figure 3.12B) serve as the observable phenomena needed for the [image: ]creation of an expected behaviours diagram, a first step into modelling this system.[bookmark: _Ref522784400][bookmark: _Toc525227244][bookmark: _Toc536814183]Figure 5.9 - Pharmacokinetic time course for Amphotericin B accumulation in total myeloid population and T Cells. Amphotericin B accumulation for myeloid cells was derived through the summation of neutrophil, monocyte and Kupffer & dendritic cell accumulation (Figure 3.14Aiii - Ciii). T Cell numbers were derived via further gating of Figure 3.11 (n = 6-8 biological replicates). T Cell population averages were combined with lymphoid cell Amphotericin B (Figure 3.14Dii) at corresponding time points and the SEM calculated as described in Section 2.14.

To begin the extension of the newly defined model of the immune response, Figure 5.2, to include the pharmacokinetic/pharmacodynamic data derived in Chapter 3 a further iteration of the CoSMoS process (see Section 2.15) was implemented. This iteration of the CoSMoS process began with an expected behaviours diagram describing the hypotheses that account for the observable phenomena of Amphotericin B primarily within the liver, as seen in Figure 5.10. The phenomena we described for this system, denoted as EB2.x, were the initial accumulation of AmB within the liver (Figure 5.10 - EB2.1), the continued accumulation of AmB within myeloid cells and a decrease in parasite load (EB2.2), peaking myeloid cell associated AmB levels coupled with an unchanging T cell drug level (EB2.3) and the significant decrease in parasite load at 72hrs as compared to 1hr post-treatment with a decrease in T cell and myeloid cell numbers (EB2.4).

LAmB, in the form of AmBisome, was introduced into the mouse cohorts via a bolus intravenous injection and at 1h post-treatment the accumulation of AmB within the liver was seen (EB2.1). The presence of AmB within the liver at this initial time point may reflect blood borne liposomes in liver vasculature, however the noted short half-life of AmBisome within the blood shortly after administration (Bekersky et al. 2002; Bingöl and Bakirel 2018), suggests rapid entry into the extravascular areas of the liver. Liposomes have been shown to extravasate into tissues (Rosenecker et al. 1996; Wu et al. 1997) whereby they can be absorbed by resident cells either through endocytosis and/or phagocytosis or membrane fusion (Azanza, Sádada, and Reis 2015).

At 12 hours post-treatment (EB2.2) the hepatic AmB level is not significantly altered from 1 hour post-treatment. Comparing to the reduced blood levels shown at 4 - 24 hours post-treatment by Voak and colleagues (Voak et al. 2017) suggests that this is not solely due to influx/efflux from blood but also due to tissue retention.  Myeloid cell accumulation of AmB increases alongside a decrease in hepatic parasite burden. It was hypothesised that myeloid cells actively uptake liposomes via active processes (Azanza, Sádada, and Reis 2015). Once localised to the intracellular compartment AmB selectively binds ergosterol (Purkait et al. 2012; Janout et al. 2015), a leishmanial surface steroid alcohol. This kills L. donovani by forming membrane pores which lead to release of cytosolic components (Saha, Mukherjee, and Bhaduri 1986; Janout et al. 2015).  

24 hours post-treatment (EB2.3) the hepatic AmB levels not significantly altered compared to 1- or 12hrs post treatment (Figure 3.12A). Again, comparing to the low blood levels seen by Voak and colleagues (Voak et al. 2017) we hypothesis that these sustained levels are due to tissue retention. Additionally, the liver has not been shown to metabolise AmB (Bekersky et al. 2002). The peak in myeloid cell AmB accumulation may reflect the active uptake of any free drug effluxed by surrounding cells.

At 72 hours post-treatment (EB2.4) the L. donovani burden has significantly dropped compared to untreated controls (Figure 3.12B). The hepatic AmB levels remain unchanged (Figure 3.12A), but the myeloid levels begin to decrease (Figure 5.9). Additionally, T cells levels begin to drop. Thus, it was hypothesised that the reduction in the parasite burden leads to a reduction in available antigen. The absence of antigen terminates the immune response (Marrack, Scott-Browne, and MacLeod 2010), such as reduction of antigen induced proliferation, accounting for the T cell population decrease. 
[image: ][bookmark: _Ref522725649][bookmark: _Toc525227245][bookmark: _Toc536814184]Figure 5.10 - Expected behaviours diagram for the activities of Amphotericin B in the liver during EVL. Observable phenomena within the liver and other sites are noted and linked to the time scale of their appearance. Additionally, these phenomena are linked to hypothesis that explain the expected behaviours that give rise to their emergence. A simplified diagrammatic representation of the system is used to link hypotheses to specific populations and processes within the system. Evidence for these hypotheses is also provided.  

[image: ]Following the creation of the expected behaviours diagram, a domain model describing the activities AmB is involved in and the states that AmB may exist in was created. Figure 5.11 shows the domain activities of AmB with state changes shown in Figure 5.12. To initialise the system an injection enters LAmB into the blood supply (Figure 5.11 - AMB1) where it exists in a liposomal state. These liposomes may enter the liver (AMB4) (Rosenecker et al. 1996) where they can be endocytosed or phagocytosed by local cells (AMB7) (Azanza, Sádada, and Reis 2015), switching to an intracellular state. Liposomes can be disrupted or broken down releasing their AmB (AMB2, AMB5) becoming monomers, free monomers may bind one another to form AmB aggregates (AM3, AMB6) (Janout et al. 2015), which induces a state change to multimeric. AmB monomers within the liver may bind cellular members (AMB8) (Janout et al. 2015; Baginski, Czub, and Sternal 2006; Czub and Baginski 2006) alongside intracellular AmB released by disruption of intracellular liposomes. If this AmB has bound an infected myeloid (LD8) or KC (LD4) the AmB will preferentially bind the membrane of L. donovani (AMB8) (Saha, Mukherjee, and Bhaduri 1986; Paila, Saha, and Chattopadhyay 2010) causing the death of parasite. Processing of these dead parasite’s releases AmB back to the cellular membrane.[bookmark: _Ref522793179][bookmark: _Toc525227246][bookmark: _Toc536814185]Figure 5.11 – Domain model activity diagram for Amphotericin B. UML-like diagram describing the activities of Amphotericin B after administration into a system in a liposomal formulation.

[image: ][bookmark: _Ref522801233][bookmark: _Toc525227247][bookmark: _Toc536814186]Figure 5.12 – Domain state diagram of Amphotericin B. UML-like diagram reflecting the state changes Amphotericin B undergoes when entered into a system. Bold text reflects processes leading to state changes. 

The introduction of AmB alters the possible behaviours of L. donovani by mediating its removal from the system. To this end the original domain activities of L. donovani described in Figure 4.7 were updated to include the leishmanicidal activities of AmB, shown in Figure 5.14. AmB can be associated with infected myeloid (LD8) or Kupffer cells (LD4) and if the levels are sufficient, denoted by a decision node, the parasite can be killed. The completion of the domain model allows for the subsequent development of the platform model of this system. Figure 5.15 shows the platform model for the system, an amalgamation of Figure 4.17, Figure 4.19 and Figure 4.21, with the inclusion of AmB. Little evidence is available on the abundance of liposomal, monomeric or multimeric AmB after injection into a biological system, typically pharmacokinetic data tracks the absolute amount which reflects a summation of the different states. The inclusion of the three different states would present a highly multi-dimensional parameter search space. The data used for calibration would not provide enough confidence in the resulting parameters generated to allow for implementation of all three states. To this end liposomal, monomeric and multimeric AmB is represented as existing in a singular state which can be cell-associated or non-cellular, shown in Figure 5.13.

[image: ]Within the platform model AmB associates to cells through internalisation, such as phagocytosis, or via membrane fusion. These cells can release intracellular drug through membrane transporters (Glavinas et al. 2004). One of the simplest representations of the influx and efflux processes is the representation of an in rate and out rate for drug, shown in Figure 5.15 as p(X in) and p(X out) respectively. These processes integrate the hepatic [image: ][image: ]concentrations of AmB with cellular entities thus forming the platform representation. [bookmark: _Ref522803171][bookmark: _Toc525227249][bookmark: _Toc536814187]Figure 5.13 - Updated domain model of L. donovani activities. Introduction of Amphotericin B into the system alters the possible behaviours of L. donovani by removing it from the system. The original L. donovani domain activity diagram (Figure 4.9) was adapted to include the new Amphotericin B induced activities (shown in red).
[bookmark: _Ref522814474][bookmark: _Toc525227250][bookmark: _Toc536814188]Figure 5.14 - Platform model activity diagram for all model entities including Amphotericin B. UML diagram representing the platform activities of all model entities (T cells, myeloid cells and L. donovani) with the addition of Amphotericin B. New activities are denoted in red. New or updated parameters associated with these processes are shown in blue.


[image: ][bookmark: _Toc536814189]Figure 5.15 - Platform state diagram of Amphotericin B. UML-like diagram reflecting the platform model state changes that Amphotericin B may undergo when entered into a system. Bold text reflects processes leading to state changes.

[image: ][bookmark: _Ref536814010][bookmark: _Ref522891090][bookmark: _Toc525227251][bookmark: _Toc536814190]Figure 5.16 - Diagrammatic representation and equations describing the activities and states of Amphotericin B in the simulation model. The platform behaviours described in Figure 5.14 were translated into a simulation model. In addition to the pre-existing model (Figure 5.2) entities describing Amphotericin B were added to the model with their subsequent behaviours (Eq. 5.7 - 5.10).


Once the domain and platform models had been further developed to include AmB the simulation model could be then be updated. Figure 5.16 shows the equations derived to translate the platform model specifications of AmB into the simulation model including a diagrammatic representation of the processes. These equations and the diagram only show the pharmacokinetic/pharmacodynamic behaviours of the simulation, the underlying immunological mechanisms are those shown in Figure 5.2, and still utilise the calibrated parameters, shown in Table 5.1 and Table 5.2. Thus, the combination of Figure 5.2 and Figure 5.16 represents the immunological and pharmacological phenomena of the entire system.

For the simulation model describing the pharmacological behaviours, Figure 5.1, AmB is initialised outside of the liver (O) where it may flux into or out of the liver. This extra-hepatic initialisation is necessary for two main reasons. Firstly, there is a lack of AmB metabolism/clearance within the liver, as previously described, and this process is thought to occur via urinary and faecal clearance (Bekersky et al. 2002). AmB clearance should be represented as it likely influences hepatic AmB accumulation levels however to abstract these clearance processes so that they occur in the liver would skew the values parameters describing other hepatic processes to compensate. To avoid this, clearance occurs for extra-hepatic AmB represented by a clearance rate (CO). The second reason for inclusion of a secondary compartment is the known retention of AmB in other organs, such as the spleen (Proffitt et al. 1991b). Whilst the retention mechanisms of AmB within individual tissues has not been fully characterised biologically previous pharmacokinetic models (Kagan et al. 2011, 2014c) have described the release of drug from tissues freeing AmB for absorption at other sites. Thus, whilst circulating blood levels may not sustain high quantities of blood a recirculation of drug is described which may play a role in hepatic accumulation.

AmB may flux in (KOL) and out of the liver (KLO). Our previous data has shown that whilst the liver retains high levels of AmB post-treatment (Figure 3.12) that the majority of this does not seem to be located in the leukocytes (Figure 3.13). Thus, we assume non-leukocytic retention of drug, with parenchymal cells as likely candidates (Figure 3.3). Rather than add another AmB population to the model, thus again increasing complexity and parameter searching space, a more simplistic representation is the addition of a retention parameter (RL). This parameter represents the concept that not all hepatic AmB is freely available to partake in absorption and excretion processes whilst not necessitating the need for explicit representation of these entities.

Once AmB is localised within the liver, myeloid cells (both susceptible and infected) and T cells may absorb it represented by simple mass-balance kinetics. This absorption is density-dependent and occurs at set rates per T cell (KLT) and myeloid cells (KLM). The excretion, or out flux, of AmB from these entities occurs at set rates (KML and KTL, respectively) with AmB released to the liver. Free AmB within the liver can kill extracellular L. donovani and this is represented using Michaelis–Menten kinetics, incorporating the IC50 of AmB, the concentration needed to kill 50% of the target population, for these extracellular L. donovani (b). Intracellular L. donovani is killed by AmB located within Myeloid cells incorporating the IC50 of AmB for intracellular L. donovani (d).

At this stage a simulation model had been derived (an amalgamation of Figure 5.2 and Figure 5.16), based upon the preceding domain and platform models, but prior to implementation in investigative scenarios the model required calibration. Initially calibration was attempted for the AmB accumulation in the liver (Eq. 5.8), myeloid cells (Eq. 5.10) and T cells (Eq. 5.9) but did not include calibration for the population changes of T cells, myeloid cells, intracellular L. donovani or extracellular L. donovani. This approach was taken to reduce the complexity of the calibration, by reducing the parameter sampling space, and to examine whether the calibration was able to derive parameters which naturally induced the population changes. To this end the multi-objective NSGA-II algorithm was employed (see Section 2.15.6). The simulation model was supplied alongside an evaluation function which calculated the RMSE between the biological and simulation data, using the data for AmB accumulation in the liver (Figure 3.12), myeloid and T cells (Figure 5.9). The algorithm attempted to minimise the RMSE, generating 100 parameter sets which evolved over 200 generations. Figure 5.17 shows the RMSE for AmB accumulation in the liver, myeloid and T cells for the final generation of the 100 parameter sets. 








[bookmark: _Ref523067540][bookmark: _Toc525227252][bookmark: _Toc536814191]Figure 5.17 - Calibration of RMSE Scores for Amphotericin B accumulation in the Liver, Myeloid cells and T Cells. In the first instance, the nsga2 function was employed to calibrate parameters by minimising the RMSE between the biological and simulation data derived from Amphotericin B accumulation in the liver (Eq. 5.8), myeloid cells (Eq. 5.10) and T Cells (Eq. 5.9). 100 parameter sets were evolved over 200 generations using this evaluation. Each red circle represents a member of the last generation with their RMSE for the three entities.

[image: ]
The parameter sets derived from the multi-objective calibration were supplied to the model and full time courses for Amphotericin B accumulation within the Liver, T Cells and myeloid cells were generated, shown in  Figure 5.18,  showing accumulation within the liver (Figure 5.18A), T cells (Figure 5.18B) and myeloid cells (Figure 5.18C). These data showed the calibration was unsuccessful with the observed pharmacokinetics, shown in blue, not recapitulated by the derived parameters. These results indicate an improvement is needed in the domain, platform or simulation model and further iterations of the CoSMoS process should be carried out to rectify any issues identified.
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[bookmark: _Ref523071071][bookmark: _Toc536814192][bookmark: _Toc525227253]Figure 5.18 - Fitting of Liver, T cell and Myeloid Cell Amphotericin B accumulation using calibrated parameter sets. Liver (A), T cell (B) and Myeloid cell (C) pharmacokinetics were fitted using parameters deriving using the nsga2 function of the mco package. Blue dots represent biological replicates for each time point (n = 1) against which the model was trained, grey lines represent in silico parameterisation outputs (n = 100) and red lines represent the 95% confidence intervals of the in silico outputs.


[bookmark: _Toc3716118]      Discussion
In this chapter a mathematical model describing a simplified hepatic immune response to L. donovani infection and the pharmacokinetics/pharmacodynamics of AmB in the liver during this infection was proposed. 

The first aim set was to create a model combining both AmB (and its pharmacokinetic and pharmacodynamic processes) and the hepatic immune response to L. donovani infection. Initially to achieve this aim the originally proposed model (see Chapter 4) was re-evaluated to ensure its suitability for this hybridisation. Examining the previously described domain and platform models created during our implementation of the CoSMoS process (see Section 2.15) the original platform specification for the proliferative responses of T cells and myeloid cells was thought to be insufficient. The platform specifications were updated to a better representation of T cell and myeloid cell proliferation (Figure 5.1) which led to a new simulation model (Figure 5.2). The new simulation model included both non-antigen and antigen stimulated increases in T cell and myeloid cell populations, processes which have both been previously used to describe leukocyte population changes in models of leishmaniasis (Albergante et al. 2013; Siewe et al. 2017; Moyo et al. 2018) and for T cells in various scenarios (De Boer and Perelson 1995; Dorratoltaj et al. 2017). The proposed simulation model was then calibrated against generated biological data (see Section 4.3.1) combining single (Figure 5.3) and multi-objective (Figure 5.4 and Figure 5.5) approaches. These calibrations yielded a set of parameters (Table 5.1 and Table 5.2) which provided a good fit of experimental data (Figure 5.6). 

A global sensitivity analysis of the newly created simulation model, scanning over parameter ranges that had previously been supplied as prior distributions during calibration, yielded insight into the parameters which influenced the levels of intracellular L. donovani (Figure 5.7). This analysis showed that infection parameters bm, the rate of infection, and c, the number of parasites internalised per infection event, were most influential at the initiation of infection (0 - 7 days post-infection) and following from this the influence gradually degraded over time, showing that these parameters and/or associated processes do not govern the levels of intracellular L. donovani at later stages of infection. Lee and colleagues showed that mannose receptor c (mrc) null mutant mice infected with a non-healing strain of L. major displayed smaller lesion sizes and reduced parasite burden as compared to wild-type controls (Lee et al. 2017). mrc ablation decreases the infection of host macrophages, a generalised representation of a reduction in the bm parameter value, which generally agreed with our findings, however a more rigorous investigation within an L. donovani system would be needed for full confidence. Compared to the mathematical model proposed by Siewe and colleagues (Siewe et al. 2016), our proposed model did not indicate that basal addition of myeloid cells influences any population of L. donovani (total, extracellular or intracellular (Figure 7.8)). Conversely, our analysis showed that the myeloid cell exit rate, Dm, was the myeloid cell associated parameter most affecting the intracellular L. donovani population. Differences in the simulation outputs, such as Siewe and colleague’s analysis took place at 150 days post-infection, may explain why the model presented here and the published mathematical model yield contrasting conclusions.

Following from model implementation and calibration validation of the model was attempted using previously unseen data (Figure 5.8). The parameter set generated against in vivo data were not able to recapitulate the in vitro growth of intracellular L. donovani in infected macrophages. The model was modified so that it represented the in vitro system as closely as possible in that no T cells were present, initial values for susceptible myeloid cells and extracellular L. donovani were derived from source publication of the validation data (Martín-Montes et al. 2017) and basal addition of myeloid cells was removed. Even with these modifications the model did not match the published data, most likely highlighting that the rates/probabilities of processes inherently differ between in vivo and in vitro systems. We did not employ further iterations of the CoSMoS process to try and match the in vitro data to simulated data as at this stage several iterations had already been carried out and it is more likely the in vitro data are unsuitable for validation. Alternative options that could be re-examined which use the existing in vivo data include n-1 or split-sample validation, which were initially discounted due to high levels of variability in biological replicates. The final simulation model was still implemented for further use in this project, but some form of further validation must be implemented for full confidence in the predictions generated.

The finalised model formed the foundation for extension with pharmacological data previously generated (see Chapter 3). The leukocyte entities analysed during our pharmacological investigations (namely monocytes, neutrophils, Kupffer & dendritic cells and lymphoid cells) did not directly match with those that were modelled (T cells and myeloid cells) and as such initially we re-analysed our data to generate pharmacokinetic time courses for T cells and myeloid cells (Figure 5.9). Following from this a further instantiation of the CoSMoS process was ran generating an expected behaviours diagram (Figure 5.10) and a domain model (Figure 5.11 and Figure 5.12) for AmB. The inclusion of AmB into our model necessitated an updating of the domain model for L. donovani (Figure 5.14). A platform model for all entities was generated (Figure 5.15) which was developed into a simulation model (Figure 5.16).

Calibration of this simulation model was ultimately unsuccessful when using a multi-objective approach against biological data for total liver, myeloid and T cell AmB accumulation (Figure 5.17 and Figure 5.18). Accordingly, our secondary aim to utilise this new simulation model to identify and investigate the processes influencing drug accumulation within leukocytes and the subsequent effects on parasite burden was not achieved. The pharmacokinetic aspects of the proposed model were implemented as a traditional two-compartment pharmacokinetic model (Upton 2004) with distinct representations of a ‘well-stirred’ liver compartment and an ‘other’ compartment, a theoretical representation of the rest of the body. The model representing the immune processes occurring due to L. donovani infection was situated within this liver compartment. This hybridisation of pharmacokinetic and cellular modelling has been previously described for intestinal inflammation (Evans 2016) and cancer therapeutics (Kim, Gillies, and Rejniak 2013; Ciccolini et al. 2017). For our system Figure 5.17 initially indicates a scaling issue may be present, the RMSEs achieved for modelling liver concentrations against those for T and myeloid cells would appear to indicate that comparatively we have achieved better fits for these cellular entities, when in reality we did not. Normalisation of model output to biological data should be implemented to remedy this representation issue. However, this does not account for the inability to derive parameter sets which recapitulate our biological data, to address this we can compartmentalise the stages of our calibration. For example, developing a pharmacokinetic model which simulates total liver concentrations and using information gleaned from this as prior information for calibration at a cellular level. 

Additionally, when considering the expression used to define the amount of anti-leishmanial compound (A = (Ms + Mi + T)/) we can identify a discourse between the biological system and the mathematical implementation. Tau () in this instance represents the temporal delay inherent in the complex signalling events involved in the pro-inflammatory response. However, when implemented in the mathematical model its implicit effect is to modulate the amount of anti-leishmanial compound. This modulation may not be essential for the functioning of this model whereby in the absence of tau the parameter for the amount of anti-leishmanial compound required to kill 50% of the population, A50, would instead be likely increased to compensate for the removal of this parameter. In this case the relevant biological function would still be represented, with the presence of T cells and susceptible and infected Myeloid cells used as proxy for the amount of anti-leishmanial compounds, and an additional benefit of reducing unnecessary parameters and thus the parameter search space would be achieved. The removal of tau should be undertaken in further iterations of the CoSMoS process to assess any benefit to parameter calibration and model output.

We are confident in our utilisation of the CoSMoS process and as an iterative process we can run further iterations to identify areas in either our domain, platform or simulation models of low confidence which can be further investigated. 

Through this model development we have however developed a simulation model based on available published data, through the development and calibration of this model we have been able to question the domain and noted a knowledge gap. For example, we have noted there is little data regarding the immunomodulatory effects of AmB, a crucial area for our biological understanding of the effects of AmB but also for our ability to build a model capable of simulating the system at hand. The proposed simulation model is a useful starting point for the integration of pharmacological and immunological processes and through its development we have generated questions that need to be answered within the scientific community. 






      

[bookmark: _Toc3716119]| Concluding Discussion
In this thesis we aimed to use L. donovani infected C57BL/6 mice treated with Liposomal Amphotericin B (as AmBisome) to answer the questions:

1. What is the sub-tissue level distribution of AmB in the liver post-treatment during EVL?
2. Which processes involving immune system entities, i.e. migration, influence drug accumulation during EVL?

In this discussion we reflect upon how to work carried out addressed these questions alongside the contributes to the field of antileishmanial therapeutics and further work that could be carried out. This is finalised with an update to the current understanding of how granulomatous inflammation affects drug distribution during experimental visceral leishmaniasis. 

[bookmark: _Toc3716120]The Sub-Tissue Level Distribution of Amphotericin B in the Liver Post-Treatment During EVL
To investigate the sub-tissue level distribution of AmB in the liver we developed and optimised, in collaboration with the University of York Proteomics lab, a liquid chromatography tandem mass spectroscopy (LC-MS/MS) protocol for the detection of AmB in tissue and cell samples (Chapter 3). This allowed us to quantify drug accumulation post-treatment in distinct leukocyte subsets involved in the formation and development of granulomas (Figure 3.10, Figure 3.12 and Figure 3.14), a benefit of this process was the ability to simultaneously analyse multiscale samples of the same biological origin (i.e. total liver accumulation, total leukocyte accumulation and leukocyte subset accumulation) allowing for more robust intra-sample comparisons. 

Typically, pharmacokinetic studies utilising anti-leishmanials effective against visceral leishmaniasis infections have focused on whole tissue level distribution of drugs post-administration employing naïve mouse models for analysis (Proffitt et al. 1991; Shadkchan, Zaslavsky, and Segal 2003). Recent papers have begun to move to utilisation of Leishmania infected model systems to further investigate drug distribution (Gershkovich et al. 2010; Voak et al. 2017) where they have highlighted that, at whole tissue levels, there are stark differences in organ drug accumulation between naïve and infected cohorts. Conversely, in studies evaluating treatment of systemic mycosis, the original use for AmB, it is common to use infected systems to derive information pertaining to the administration, distribution, metabolism and excretion of AmB (Gondal, Swartz, and Rahman 1989; van Etten et al. 1995; Smith et al. 2007). Within this thesis the L. donovani infected C57BL/6 mouse model was our baseline model as granulomatous inflammation in the liver is a hallmark of EVL and is not present in naïve mice. A recent development employed in other pharmacokinetic studies is the use of imaging mass spectroscopy allowing for label-free tracking of compounds post-administration (Rohner, Staab, and Stoeckli 2005; van Kampen et al. 2006; Ding and Wu 2012) however this has not yet been highly utilised for anti-leishmanial research.

Pharmacokinetic evaluations tend to be preceded by pharmacodynamic investigations. Compounds of interest are typically administered at a range of dilutions to Leishmania infected macrophages (either primary cells or cell lines) and pharmacodynamic parameters are derived such as the IC50 (Manandhar et al. 2008; Prajapati et al. 2011). The compounds may be progressed into in vivo pharmacodynamic investigations where parasite burdens are monitored at different times post-treatment (Mohamed-Ahmed et al. 2013; Van den Kerkhof et al. 2018). Dosing studies may form the basis for treatment regimes in these in vivo investigations.

Our work has provided, to the best of our knowledge, the first sub-tissue level description of AmB post-treatment with AmBisome in hepatic leukocytes and leukocyte subsets (Figure 3.14). In agreement with previous literature (Gershkovich et al. 2010; Voak et al. 2017) we found the liver to be an effective accumulator of AmB with rapid decreases in parasite burden observed post-treatment (Figure 3.12). We opted to further analyse cell populations using traditional immunological techniques including FACS (Figure 3.8 and Figure 3.11), as opposed to imaging approaches, as it allowed us to directly attribute drug accumulation to cellular populations involved in granulomatous inflammation (a feat not possible with imaging mass spectroscopy due to the low resolution of analysis and its incompatibility with immunofluorescent and immunohistochemical techniques for cell identification). One of our first findings was that the majority of AmB tended to accumulate outside of the hepatic leukocyte population (Figure 3.9 and Figure 3.13). This finding highlighted two key features of hepatic drug distribution, that there were high levels of off-target accumulation, as L. donovani resides within a subset of hepatic leukocytes, and that the low levels of accumulation achieved by leukocytes were still sufficient to induce significant reductions in parasite burden over time. Further investigation into leukocyte subsets showed that of the subsets analysed lymphoid cells (mainly compromising T cells, B cells and NK cells), which are key components of the immune response to infection but not significant reservoirs of intracellular parasites themselves, whilst displaying low cell-for-cell AmB accumulation at a total population level displayed high levels of accumulation, thus serving as an additional source of off-target accumulation (Figure 3.14Dii).

These findings can be applied to our understanding of therapeutics for anti-leishmanials in two main ways. Firstly, the data presented here would suggest that a whole tissue level of accumulation is insufficient to fully understand the availability of therapeutic agents to Leishmania amastigotes, especially those within granulomas. Our work has demonstrated a simple approach, using density-centrifugation, for the separation and LC-MS/MS analysis of leukocytes of the liver is able to highlight substantial differences in drug accumulation between the leukocyte fraction and the total liver. An approach which could easily be incorporated into in vivo investigations. Additionally, drug targeting has been discussed, (Mukherjee et al. 2004; Longmuir et al. 2009; Kelly, Jefferies, and Cryan 2011; Pawar et al. 2014), such as using liposomes incorporating components which target specific cells for their uptake to maximise target uptake of drug and our work suggests that due to off-target accumulation targeting would be a valid consideration for bolstering the efficacy of LAmB. 

It is worth considering, however, that the implementation of fluorescence activated cell sorting used to discern these results focuses on total leukocyte populations and/or sub-populations. This is due to the nature of FACS requiring disassembly of tissue which results in the loss of spatial data for samples. Here an almost inherent assumption is that the leukocyte populations we isolated have some involvement in the immune response raised against L. donovani in the liver, namely in the formation and maintenance of granulomas. Various studies employing histopathological, immunohistochemical and/or immunofluorescent characterisations of leukocytes within the livers of L. donovani infected mice have shown some leukocyte populations, including neutrophils (Sacramento et al., 2015; Salguero et al., 2018), CD4+Foxp3+Regulatory T Cells (Tiwananthagorn et al., 2012), macrophages and B cells (Salguero et al., 2018), that are not forming part of the granuloma. Thus, whilst our results focus on AmB accumulation within leukocytes it should be considered that these leukocytes may not themselves be associated with the granulomatous response. There is potential to employ imaging techniques to further investigate granuloma-associated and non-associated leukocytes however the lack of resolution in mass spectrometry imaging and lack of an Amphotericin B antibody has hampered their implementation.

Secondly, our work would indirectly point to a need for better understanding of the mechanisms of action for anti-leishmanial therapeutics. Some of the frontline therapeutics utilised in the treatment of Leishmaniasis were introduced at the beginning of this thesis (see Section 1.2.6) and a common feature is that the way(s) in which this drugs control parasite burden are not fully understood. AmB studies have described the formation of membrane pores (Baginski, Czub, and Sternal 2006; Czub and Baginski 2006) which kill the parasite through leakage of intracellular contents however there are a few studies that have suggested additional mechanisms including immunomodulation (Mesa-Arango, Scorzoni, and Zaragoza 2012) and alteration of membranes inhibiting parasite phagocytosis (Chattopadhyay and Jafurulla 2011). In this instance these mechanisms would all indicate parasite hosts (including Kupffer cells, dendritic cells and monocytes) and not non-host cell groups, such as T cells, as they key targets for AmB. However, for sodium stibogluconate one of the mechanisms of action proposed is to induce proliferation of T cells (Haldar, Sen, and Roy 2011) which conversely would necessitate accumulation in T cells but not necessarily parasite host cell groups. Thus, here our understanding of whether AmB accumulates within the ‘right’ cell groups could be furthered by a more comprehensive knowledge of which leukocyte subsets should be the focus for drug accumulation. 

[bookmark: _Toc3716121]Immune system processes that influence drug accumulation during EVL
To determine the immune system processes that influence drug accumulation during infection with L. donovani a two-step approach was needed. As the addition of LAmB into a system during infection represents a perturbation the system can be divided into segments: the basal infection and the consequential effects of treatment. To address the overarching research question, we thus devised an approach to derive a mathematical model of a simplified hepatic immune response to L. donovani infection (Chapter 4); the derived model could then be expanded to include pharmacological processes, including cellular drug distribution, for investigation of processes affecting drug accumulation (Chapter 5).

A selection of mathematical and computational models were introduced in Section 1.2.7 as tools for investigations into immunological features of leishmaniasis infections. In this thesis we opted to create a novel implementation for multiple reasons. Whilst there are a variety of mathematical and computational models available our choice was limited by a small number of these describing a VL infection. Of the models describing VL none fully matched the scope we had planned by either being tailored for specific investigative scenarios or capturing high levels of complexity which hampered redeployment. A strength of these published models for VL was their tractability to qualitative validation and confidence in the concepts they simulated due to employment of structured frameworks for development, namely the CoSMoS process (see Section 1.3.2). From this we decided to utilise the CoSMoS process for in silico model development. 

Utilisation of CoSMoS process in the creation of our ODE model (see Sections 4.3.2 - 4.3.4 and Sections 5.3.1 - 5.3.2) has resulted in a simulation model for which processes are easily traced through to their biological origin, the diagrams produced at each stage provide easily interpretable representations of our understanding of biological phenomena and how these were translated into a mathematical model allowing for an end user to be confident in the model’s foundations. However, if new knowledge, data and perspectives arise, the iterative nature of the CoSMoS process means that the model can be updated. This provides a great deal of flexibility for our model which is beneficial as it allows for continued improvement of the in silico model and call allow for redeployment in other scenarios, such as in HIV whereby an initial model was adapted for multiple investigative scenarios (Dorratoltaj et al. 2017). Alternatively, mathematical investigations can utilise our foundation simulation model, capturing the kinetics of immune entities during inflammation, to derive novel information for the system at hand allowing insights that may not be obtainable from traditional wet-lab investigations, examples for previous models include the simple epidemiological models allowing for the R0, the value denoting whether an epidemic will occur, to be derived (Kermack and McKendrick 1927) or in HIV modelling, the new infection events per generation (Shen, Rabi, and Siliciano 2009) can be determined.

The conceived final model took the form of a non-spatial set of ODEs representing T cells, susceptible myeloid cells, infected myeloid cells, extracellular L. donovani and intracellular L. donovani (see Sections 4.3.4 & 5.3.1). A key distinction from published models was the simulation of distinct intracellular and extracellular parasite populations and their infective processes which has not currently been covered by published models. This is a key feature for pharmacological modelling as it allows investigations into how cellular accumulation of drug effects the parasites those cells harbour with more confidence than a single abstracted population of liver localised parasite. An alternative way that this could have been implemented was as an agent based model which would have additionally captured spatial features of the granuloma and as stochasticity is easily implemented could have furthered provided some attempt to recapitulate biological variability. GranSim (Segovia-Juarez, Ganguli, and Kirschner 2004) is a good example of the implementation of an agent base model whereby a tuberculosis granuloma is simulated which was extended to include pharmacokinetic and pharmacodynamic considerations (Pienaar et al. 2015). However, unlike tuberculosis, leishmaniasis hepatic granulomas do not show a strict ‘layered’ organisation of cells around infection foci and so this spatial organisation is not as critical, and we do not regard spatial considerations as a strictly necessary requirement. The system we propose is loosely based upon HIV mathematical modelling whereby a simplified version of infection is modelling by naïve T cells, infected T cells and infectious virion particles, a good example of this being the model proposed by Perelson and colleagues (Perelson, Kirschner, and De Boer 1993). Whilst we utilised the finalised model of the hepatic immune response to L. donovani infection (see Section 5.3.1) as a foundation for further investigation into pharmacological processes, the finalised model itself can be a useful tool for expanding our understanding of EVL. 

Additionally, to aid in our calibration of this model we derived time series data describing hepatic leukocyte population abundances post-infection (see Section 4.3.1). Quantitative data for the populations analysed on the time scale we employed is scarce within published literature. This data can form the foundation or be used in combination with further data for modelling projects as it was utilised here and thus as a standalone dataset can be employed independently of our modelling approach.    

Once we had established our final mathematical model of the hepatic immune response (Section 5.3.1) we further sought to include pharmacokinetic/pharmacodynamic processes. Again, through implementation of the CoSMoS process we generated diagrammatic evidence as to the biological concepts that were modelled and their transition into a simulation model. Our research into AmB and its pharmacokinetics/pharmacodynamics during the CoSMoS process highlighted a deficiency in data regarding the pharmacokinetics observed during infection with VL. As discussed above, whilst there is a plethora of pharmacokinetic studies that utilise naïve mice and/or mice infected with fungal pathogens only a few studies employed models of VL when observing AmB absorption, distribution, metabolism and excretion. The pharmacokinetic data we generated adds to the currently available data of liver distribution and further develops this with sub-tissue distribution however we did not account for investigations into mechanistic processes. The interaction of AmB with Leishmania species has been studied in traditional ‘top down’ studies of dose and response and there are further studies which broadly describe the biophysical interactions of AmB with cell membranes however immunomodulation and modulation of cellular processes have been only fleetingly described. 

The limited amount of studies available on immunomodulation and modulation of cellular processes by AmB do suggest that there are additional roles for AmB besides direct leishmanicidal action however as there has not been a high level of recapitulations or corroboration of these published results there is insufficient confidence in the findings to implement these into the model. Unfortunately, if these do prove to be true then the model is missing a valuable mechanism and that would further add to our understanding of how cellular distribution of AmB affects the parasite load. A potential way the model could address this is the introduction of hypothetical systems where AmB has leishmanicidal action, i.e. the model we proposed, and models that incorporate additional activities of AmB to either compare results analytically, such as through the use of the Akaike Information Criterion as Hogan and colleagues did for investigating CTL-mediated death (Hogan et al. 2014), or qualitatively, such as Flugge and colleagues (Flugge et al. 2009) for granuloma formation. 

Ultimately the final simulation model we proposed (Figure 5.2) was not successfully calibrated (Figure 5.18) and we were unable to fully investigate which processes involving immune system entities, i.e. migration, influence drug accumulation during EVL. 

When considering the inability to validate the baseline immune response model to in vitro data (Figure 4.30 and Figure 5.8) and to calibrate the final model containing pharmacological processes to biological data (Figure 5.18) it is worth assessing the areas that may have contributed to this outcome. Evaluating the development of the immunological processes that were defined for the domain model of the CoSMoS process through to their final simulation model implementation (Table 7.2) it is possible to see that a large range of abstractions and simplifications were used to refine these domain processes. Whilst these abstractions and simplifications were justified it can be considered that each has an effect, of varying magnitude, on the ability of the model to simulate the biological data. It is possible that the accumulation of these abstractions into a single model has led to an oversimplified simulation model that is not robust enough to capture both the calibration and validation data.

Further to the development of simulated processes, we should also consider the prior ranges for the parameters that were derived through the development of the platform and simulation models. Retrospectively it can be seen that these priors were not as strongly evidenced as they could have been, which has resulted in the implementation of prior distributions or upper/lower bounds that resemble ‘non-informative prior distributions’ for all parameters calibrated and thus introduces significant uncertainty around likely values for our parameters. The combination of a potentially oversimplified model combined with uncertain parameter ranges may have impacted the ability of the model to replicate biological data. For example, if we examine Figure 5.5C and Figure 5.18B we can see that the 95% confidence interval ranges for the model outputs for the calibrated parameters does not align with the average biological data points, which could suggest that either there is an insufficiency in the parameter ranges or modelled processes or both.

Combining the evaluation of the implementation of the biological processes into a simulation model and the selection of prior ranges or upper/lower bounds for parameter values, another consideration is the implemented parameters themselves. Whilst the parameters have biological justification for their implementation this should be followed by a mathematical justification. For instance, in Figure 4.23 and Figure 5.2 the parameter represents the temporal delay in production of anti-leishmanial compounds however its mathematical implementation does not fully match this description, instead reducing the amount of anti-leishmanial compounds. Erroneous implementation of parameters could also partially explain the inability of the model to be validated if these processes allow for the optimal calibration of the model against calibration data but impede its ability to match validation data.

Considering the above points, we are confident in our approach in developing the mathematical model and this has yielded an initial platform upon which further investigation should be performed to determine why calibration was unsuccessful. For this investigation some pertinent first steps would be to re-examine the aforementioned domain model representations and attempt to attach a significance to their implementation, some measure of how important these processes are thought to be within the system considering the scope of the investigation. This would then give a more rigid outline for how ‘much’ processes can be simplified, ideally this could be combined with previously published literature to see how these processes have been previously implemented. If a strong biological link can be maintained this would allow a greater confidence in the transition from biological processes to simulation model implementation. An additional benefit of this is that the parameters involved in these processes could undergo investigation to determine if there are known biological values derived through experimentation or what likely values are, thus generating a more informed prior distribution. In combination these first steps would allow for a stronger calibration of the model against the biological data generated in this thesis.

To conclude we have provided the first sub-tissue level of AmB distribution in the liver during EVL, showing that the majority of drug is located outside of hepatic leukocytes at all time points analysed. We have additionally developed a novel model describing a simplified immune response to L. donovani in the liver, which is utilisable for different research scenarios. We have provided the foundation for a mechanistic model describing AmB accumulation at a whole tissue and cellular level which will be exploitable upon re-calibration.

[bookmark: _Toc3716122]Future Work
During our investigation of sub-tissue distribution of AmB we acknowledged that we were as yet unable to exclude the possibility that drug released by dead cells during processing became associated with other cells in situ. This could lead to the possibility of false positive detection. To discount this, we have devised a cross-over experiment using livers from treated CD45.1 and untreated CD45.2 mice, processing of both livers in the same vessels followed by sorting on the CD45 alleles,  and LC-MS/MS analysis will allow us to quantify any false positivity, if any. This will further add confidence that the detected AmB is a result of in vivo accumulation. Further to this we have as of yet not reproduced the drug accumulation data for our leukocyte and leukocyte subset populations due to sample degradation issues. To remedy this a simple repetition of the experiment is needed to show recapitulation of the observed accumulation in total leukocytes and leukocyte subsets. We do however have population abundance data for leukocyte subsets 72 hours post-treatment which do not significantly differ from the original population abundances obtained. 

When examining derived mathematical model it was stated that further validation of our model would be needed as we could not repeat in vitro data. To this end novel biological data or qualitative statements regarding immunological processes are needed for validation to attain full confidence in model predictions. Currently, we are optimising an immunofluorescence protocol for the detection of L. donovani and myeloid cells in the liver of L. donovani infected C57BL/6 mice to generate quantitative data at different time points on the numbers/percentages of infected cells for the purpose of model validation.  Once this validation has been completed a further task, although one which is not strictly needed, is the incorporation of variability within our mathematical model. This would allow us to utilise all data from our population abundances, as opposed to summary statistics, strengthening the calibration process. This incorporation of variability could be potentially achieved by inclusion of fixed and/or random effects within the model that account for biovariability and random factors we cannot control.

This model accounting for variability could then be deployed for the re-calibration of our immunological and pharmacological model of AmB distribution during L. donovani infection. A first step to remedying this calibration issue is a further iteration of the CoSMoS process, including a re-evaluation of our confidence in our domain, platform and simulation models and evidence associated with them. It would most likely be prudent to begin by the deconstruction of this combined immunological and pharmacological model into simpler components, such as a whole liver pharmacokinetic model, and then extend this with simulation models of increasing functionality.
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[bookmark: _Ref519018114][bookmark: _Toc3716124][image: ]Antibodies utilised for flow cytometry and fluorescence activated cell sorting
[bookmark: _Toc536814207]Table 7.1 - Antibodies used to evaluate surface marker expression by either flow cytometry analysis or fluorescence activated cell sorting. *IgG2a  was used in lieu of IgG2c  due to lack of availability of an eFluor 450 conjugated isotype.

[bookmark: _Toc3716125]Assessing the purity of leukocyte and parenchymal fractions post-digestion
[bookmark: _Ref534201026][bookmark: _Toc536814193][image: ]Figure 7.1 - Purity of cellular fractions post-liver digestion & comparison of leukocyte viability using different digestion protocols.  (A) L. donovani infected B6 mice were analysed at 7 days post-infection. The proportion of cells expressing CD45 in each fraction were derived and expressed as a percentage of total events. Data are expressed as mean  SD (n = 5 biological replicates). (B) Leukocyte viability, as determined using flow cytometry, was determined for all experiments were Digestion Protocols 1 & 2 were employed (n = 45 and 36 biological replicates respectively) and compared using a Mann-Whitney test, showing no significant difference between viability (p = 0.1638).B
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[bookmark: _Toc525227254][bookmark: _Toc536814194][bookmark: _Ref514760758]Figure 7.2 - Significant changes in liver weight, but not bodyweight, are seen in L. donovani infected mice. L. donovani infected B6 mice were analysed at time points shown for their body (A) and liver (B) weight. The proportional weight of the liver respective to the bodyweight was also derived for each time point (C). Data are expressed as mean  SD (n = 4-5 biological replicates per time point). Data are representative of 1 infection experiment and was analysed using a Dunn’s Multiple Comparisons test (# denotes a p value of less than 0.05)
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[bookmark: _Toc525227255][bookmark: _Toc536814195]Figure 7.3 - L. donovani induces changes in liver weight in late but not early infection. Comparison of L. donovani infected and age-matched naïve mouse gross morphology. Total bodyweight (A, B), liver weight (C, D) and proportional liver weight (E, F) was compared at 13 days post-infection (A, C, E) and at 42 days post-infection (B, D, F).  ● represent individual biological data points (n = 4-5) and error ranges are represented as the mean  SD. Data are representative of 1 infection experiment and was analysed using a Mann Whitney test (* denotes a p value of less than 0.05).

[image: ][image: ][bookmark: _Ref519016742][bookmark: _Toc525227257][bookmark: _Toc536814196]Figure 7.4 - Sustained increases in hepatic leukocyte abundance are seen over the course of L. donovani infection. (A) Absolute number of hepatic live CD45+ cells per liver determined by flow cytometry. (B) Absolute number of hepatic live CD45+ cells per gram of liver determined by flow cytometry. Data are shown as mean  SD (n = 4-5 biological replicates per time point). Data are representative of 1 infection experiment and was analysed using a Dunn’s Multiple Comparisons test (# denotes a p value of less than 0.05)
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[bookmark: _Ref519016743][bookmark: _Toc525227256][bookmark: _Toc536814197]Figure 7.5 - Hepatic leukocyte expansion is most prominent in late stage L. donovani infection. Comparison of L. donovani infected and age-matched naïve hepatocellularity, with regards to leukocytes. Absolute hepatic leukocyte abundance (A, B) and normalised hepatic leukocyte abundance (C, D) was compared at 13 days post-infection (A, C) and at 42 days post-infection (B, D). ● represent individual biological data points (n = 4-5) and error ranges are represented as the mean  SD. Data are representative of 1 infection experiment and was analysed using a Mann Whitney test. (* denotes a p value of less than 0.05)
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[bookmark: _Ref519016744][bookmark: _Toc525227258][bookmark: _Toc536814198]Figure 7.6 - Significant increases in hepatic myeloid and lymphoid lineage cell abundance are seen after infection with L. donovani. Comparison of L. donovani infected and age-matched naïve mice absolute hepatic myeloid and lymphoid cell numbers. Absolute hepatic lymphoid abundance (A, B) and absolute hepatic myeloid abundance (C, D) was compared at 13 days post-infection (A, C) and at 42 days post-infection (B, D). ● represent individual biological data points (n = 4-5) and error ranges are represented as the mean  SD. Data are representative of 1 infection experiment and was analysed using a Mann Whitney test. (* denotes a p value of less than 0.05)
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[bookmark: _Ref519016745][bookmark: _Toc525227259][bookmark: _Toc536814199]Figure 7.7 – Distinct leukocyte subset abundance profiles are seen at acute and chronic points of hepatic infection. Comparison of L. donovani infected and age-matched naïve mice absolute hepatic T cells, B cells, NK cells, dendritic cells, macrophages & monocytes and neutrophils. Absolute hepatic T cells (A, B), B cells (C, D), NK cells (E, F), dendritic cells (G, H), macrophages & monocytes (I, J) and neutrophils (K, L) was compared at 13 days post-infection (A, C, E, G, I, K) and at 42 days post-infection (B, D, F, H, J, L). ● represent individual biological data points (n = 4-5) and error ranges are represented as the mean  SD. Data are representative of 1 infection experiment and was analysed using a Mann Whitney test. (* denotes a p value of less than 0.05)
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[bookmark: _Ref519016746][bookmark: _Toc525227260][bookmark: _Toc536814200]Figure 7.8 – The relative abundance of lymphoid subsets, but not myeloid subsets, is consistent between the blood and liver. Comparison of the relative abundances of T cells, B cells, NK cells, dendritic cells, macrophages & monocytes and neutrophils in the liver and blood of L. donovani infected mice. ● and ● represent individual biological data points (n = 4-5) and error ranges are represented as the mean  SD. Data are representative of 1 infection experiment.
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[bookmark: _Toc3716127]Supplementary Information for the development of a mathematical model describing the hepatic immune response 

	Statement
	Statement Evidence
	Domain Model Representation
	Domain Assumption
	Platform Model Representation
	Simulation Model Representation (Figure 4.23)
	Simulation Model Representation (Figure 5.2)

	Activated iNKTs can produce Modulatory Signals (IL-4)
	(Tupin, Kinjo and Kronenberg, 2007)
	iNKTs presented with antigen by Infected KCs produce Modulatory Signals (Figure 4.11)
	iNKTs have no antigen specificty
	iNKT cells are subsumed into the T cell population to form a single population referred to as 'T cells' and there is no separate entity for modulatory signals. Instead a single population of T cells that exists in a patrolling state (Figure 4.18) is implemented.
	
	

	iNKTs can proliferate
	(Moyo et al., 2018)
	iNKTS in patrolling state may proliferate (Figure 4.11)
	iNKTs replicate when in resting state
	iNKT cells are subsumed into the T cell population to form a single population referred to as 'T cells' which can proliferate dependent upon the existing T cell population size and a parameter representing the rate of proliferation (Figure 4.17)
	T cell population growth = aT x T x (1 - T/Tmax)
aT = T cell proliferation rate
Tmax = Maximal size of the T cell population
T = T cell population
	T cell population change = lT + T x (((aT x Mi)/(T + Mi)) - uT)
lT = T cell supply rate
T = T cell population
aT = T cell proliferation rate
Mi = Infected myeloid cell population
uT = T cell exit rate

	T cells can travel to the Liver from other sites
	(Engwerda and Kaye, 2000)
	T cells detecting increases in Recruitment Factors and Pro-Inflammatory Cytokines leave Other Sites to enter the Liver (Figure 4.7)
	A simplification here is T cells have knowledge of Recruitment Factor and Pro-Inflammatory Signal levels at other sites which simplifies the detection of any gradient and subsequent trafficking
	There is no representation of an 'Other Site' within the Platform model. The liver is represented as a self-contained compartment, migratory processes which increase the T cell population are abstracted so that population growth arises through proliferation. (Figure 4.17)
	
	

	Anti-Inflammatory Signals inactivate Kuppfer cells
	(Kumar and Nylén, 2012; Zhang et al., 2013)
	Infected KCs detecting Anti-Inflammatory Signals transition to an anti-inflammatory state (Figure 4.16) whereby they can produce anti-inflammatory cytokines (Figure 4.15)
	The M2 phenotype is represented by an anti-inflammatory state
	Kupffer cells and myeloid cells are grouped together to form a single population referred to as 'Myeloid cells' due to shared abilities between both Kupffer and myeloid cells in the domain model (albeit likely occuring at different rates) and there is no explict representation of anti-inflammatory signals (Figure 4.19)
	
	

	Anti-Inflammatory Signals inhibit Pro-Inflammatory Signals
	(Murray 2001; Yi, Cox and Zajac, 2010; Cope et al., 2011; Kumar and Nylén, 2012)
	Not Explicitly represented in Domain Model Diagrams
	Anti-Inflammatory Signals may be suppresive in many ways such as inhibition of a Th1 T cell phenotype, induction of anti-inflammatory phenotypes in macrophages and reduction of pro-inflammatory signal production. Here this is simplified such that Anti-Inflammatory Signals make cells less sensitive to Pro-Inflammatory Signals
	There is no representation of Anti-Inflammatory or Pro-Inflammatory Signals instead the actions of the signals which modulate the anti-leishmanial response (Pro- and Anti-Inflammatory Signals) are abstracted such that the amount of anti-leishmanial compounds is proportional to the amount of myeloid cells and T cells within the system (Figure 4.21)
	
	

	Anti-Inflammatory Signals inhibit T cell proliferation and induces exhuastion
	(Goto and Lindoso, 2004; Yi, Cox and Zajac, 2010; Murray 2001)
	T cells detecting Anti-inflammatory Signals apoptose (Figure 4.7)
	T cells detecting anti-inflammatory signals may first tranisiton into an anergic state before removal from the biological system, here this two-step process is instead represented as a single transition from detection to removal
	There is no representation of Anti-Inflammatory Signals instead the suppresive activity of Anti-Inflammatory signals on T cells is abstracted such that the parameter representing T cell death is a fixed rate reflecting the removal of T cells from the system (Figure 4.21)
	T cell population decline = -uT x T
uT = T cell deat rate
T = T cell population
	T cell population change = lT + T x (((aT x Mi)/(T + Mi)) - uT)
lT = T cell supply rate
T = T cell population
aT = T cell proliferation rate
Mi = Infected myeloid cell population
uT = T cell exit rate

	Anti-Leishmanial Compounds kill L. donovani
	(Murray, 2001)
	Sufficient levels of anti-leishmanial compounds induces the death of L. donovani, either intracellular or extracellular (Figure 4.13)
	Anti-leishmanial compounds, here a simplification for entities such as Reactive Oxygen and Nitrogen Species, kill intracellular and extracellular L. donovani with a simple mechanism that detection of sufficient amounts of ALC results in death albeit with differing amounts needed for the different localisations
	Anti-Leishmanial compounds are abstracted such that they are represented indirectly. The amount of myeloid cells and T cells is a proxy for the amount of ALC and so L. donovani is killed dependent upon the abundance of these cells within the system (Figure 4.21)
	Death of L. donovani = - (((M + T)/tau) / (A50 + (M + T)/tau)) x Pi
M = Myeloid cell population (Sum of infected and susceptible myeloid cells)
T = T cell population
tau = Time delay in ALC production
A50 = Amount of ALC required to kill 50% of the L. donovani population
Pi = Intracellular L. donovani population
	Death of L. donovani = - (((M + T)/tau) / (A50 + (M + T)/tau)) x Pi
M = Myeloid cell population (Sum of infected and susceptible myeloid cells)
T = T cell population
tau = Time delay in ALC production
A50 = Amount of ALC required to kill 50% of the L. donovani population
Pi = Intracellular L. donovani population

	Infected Kupffer cells can present antigen to T cells in the Liver
	(Beattie et al., 2010; Stäger and Rafati, 2012)
	In infected KCs where anti-leishmanial compounds have killed L. donovani those KCs can present antigen to T cells (Figure 4.15)
	There is no antigen specificty represented regarding the presentation of antigen to T cells by Kupffer cells, it is assumed that presentation will be recognised by all naïve T cells
	Antigen presentation is not represented within the model, instead the assumption that myeloid cells and T cells acting as a proxy for the amount of ALC is used to also abstract the concept of T cell activation through antigen presentation, this is assumed through increasing numbers of T cells and myeloid cells would result in higher levels of successful T cell activation
	
	

	Infected Kupffer cells can produce Recruitment Signals
	(Stanley and Engwerda, 2007)
	Upon infection KCs produce Recruitment Factors (Figure 4.15)
	Internalisation of parasite leads to signalling pathways that mediate the release of recruitment factors, a simplification previously described. Here the process is represented such that infected KCs will all produce recruitment factors upon infection with no delay and no inherent heterogeneity in the amounts produced between infected KCs
	Recruitment signals are not represented within the platform model neither is an 'Other site' from they cells can migrate from, instead  population growth occurs through proliferation which is a simplification of population growth from both migration and proliferation
	
	

	iNKT cells can produce Pro-Inflammatory Signals
	(Amprey et al., 2004)
	iNKTs presented with antigen by Infected KCs produce Pro-Inflammatory Signals (Figure 4.11)
	iNKT cells when recognising antigen from infected KCs will produce Pro-Inflammatory Signals without delay and with no need for additional stimuli
	There is no representation of Anti-Inflammatory or Pro-Inflammatory Signals instead the actions of the signals which modulate the anti-leishmanial response (Pro- and Anti-Inflammatory Signals) are abstracted such that the amount of anti-leishmanial compounds is proportional to the amount of myeloid cells and T cells within the system (Figure 4.21)
	
	

	iNKT cells can produce Recruitment Factors
	(Kima and Soong, 2013)
	iNKTs presented with antigen by Infected KCs produce Recruitment Factors (Figure 4.11)
	iNKT cells when recognising antigen from infected KCs will produce Recruitment Factors without delay and with no need for additional stimuli
	Recruitment signals are not represented within the platform model neither is an 'Other site' from they cells can migrate from, instead  population growth occurs through proliferation which is a simplification of population growth from both migration and proliferation
	
	

	Infected Kupffer cells can present Antigen to iNKT cells in the Liver
	(Amprey et al., 2004)
	In infected KCs where anti-leishmanial compounds have killed L. donovani those KCs can present antigen to iNKT cells (Figure 4.15)
	Leishmanial antigens presented to iNKTs are typically recognised by the CD1d receptor on iNKTs however in this domain model there is no distinction between CD1d and other antigen presentation molecules and no inherent antigen specificity or differences in avidity for these presentation molecules, instead the distribution of CD1d is assumed to be specific to iNKTs
	Antigen presentation is not represented within the model, instead the assumption that myeloid cells and T cells acting as a proxy for the amount of ALC is used to also abstract the concept of T cell activation through antigen presentation, this is assumed through increasing numbers of T cells and myeloid cells would result in higher levels of successful T cell activation
	
	

	Kupffer cells can produce Anti-Inflammatory Signals
	(Kumar and Nylén, 2012; Zhang et al., 2013)
	KCs detecting Anti-Inflammatory Signals transition to an anti-inflammatory state (Figure 4.16) whereby they can produce anti-inflammatory cytokines (Figure 4.15)
	Here it is assumed that the production of Anti-Inflammatory Signals is restricted to the Anti-Inflammatory KC phenotype (a representation of the biological M2 phenotype)
	There is no representation of Anti-Inflammatory or Pro-Inflammatory Signals instead the actions of the signals which modulate the anti-leishmanial response (Pro- and Anti-Inflammatory Signals) are abstracted such that the amount of anti-leishmanial compounds is proportional to the amount of myeloid cells and T cells within the system (Figure 4.21)
	
	

	Kupffer cells can produce Anti-Leishmanial Compounds
	(Kumar and Nylén, 2012; Zhang et al., 2013)
	Kupffer cells in an Anti-Inflammatory phenotype (Figure 4.16) produce Anti-Inflammatory Signals (Figure 4.15)
	Here it is assumed that the production of Anti-Inflammatory Signals is restricted to the Anti-Inflammatory KC phenotype (a representation of the biological M2 phenotype) and that once in the Anti-Inflammatoy phenotype there is an immediate production of Anti-Inflammatory Signals
	Kupffer cells and myeloid cells are grouped together to form a single population referred to as 'Myeloid cells' and the abundance of this population and T cells serves as a proxy for the amount of ALC within the system (Figure 4.21)
	Death of L. donovani = - (((M + T)/tau) / (A50 + (M + T)/tau)) x Pi
M = Myeloid cell population (Sum of infected and susceptible myeloid cells)
T = T cell population
tau = Time delay in ALC production
A50 = Amount of ALC required to kill 50% of the L. donovani population
Pi = Intracellular L. donovani population
	Death of L. donovani = - (((M + T)/tau) / (A50 + (M + T)/tau)) x Pi
M = Myeloid cell population (Sum of infected and susceptible myeloid cells)
T = T cell population
tau = Time delay in ALC production
A50 = Amount of ALC required to kill 50% of the L. donovani population
Pi = Intracellular L. donovani population

	L. donovani can infect Kupffer cells & myeloid cells
	(Murray and Cohn, 1988; Beattie et al., 2010; McElrath, Terrazas et al., 2017)
	Phagocytosis of L. donovani by myeloid or Kupffer cells leads to their infection (Figure 4.9; Figure 4.15)
	The inherent assumption in the domain representation is that all contacts between L. donovani and either Kupffer or myeloid cells will lead to phagocytosis
	Kupffer cells and myeloid cells are grouped together to form a single population referred to as 'Myeloid cells'. This population can exist in either a susceptible or infected state (Figure 4.20) whereby contact with L. donovani may result in infection dependent upon a parameter reflecting the probability of a successful infection contact (Figure 4.19)
	Suscepible Myeloid Cells = - β x Ms x Pe
Infected Myeloid Cells =  β x Ms x Pe
Extracellular L. donovani = - c x β x Ms x Pe
Intracellular L. donovani = c x β x Ms x Pe 
c = Number of internalised L. donovani per infection event
β = Rate of infection
Ms = Susceptible myeloid cell population
Pe = Extracellular L. donovani population
	Suscepible Myeloid Cells = - β x Ms x Pe
Infected Myeloid Cells =  β x Ms x Pe
Extracellular L. donovani = - c x β x Ms x Pe
Intracellular L. donovani = c x β x Ms x Pe 
c = Number of internalised L. donovani per infection event
β = Rate of infection
Ms = Susceptible myeloid cell population
Pe = Extracellular L. donovani population

	L. donovani inhibits normal T cell function
	(Alexander, Kaye and Engwerda, 2001)
	Not Explicitly represented in Domain Model Diagrams
	L. donovani enacts it's inhibition of T cell function through pushing infected Kupffer cells into an anti-inflammatory phenotype thus producing anti-inflammatory signals
	There is no representation of Anti-Inflammatory Signals instead the suppresive activity of Anti-Inflammatory signals on T cells is abstracted such that the parameter representing T cell death is a fixed rate reflecting the removal of T cells from the system (Figure 4.21)
	
	

	L. donovani promotes Anti-Inflammatory Signal production by Kupffer cells
	(Albergante et al., 2013)
	L. donovani can induce Kupffer cells to develop an Anti-Inflammatory phenotype (Figure 4.16)
	Here this process is simplified so that L. donovani does not directly enact Anti-Inflammatory Signal production, instead it pushes KCs to develop an anti-inflammatory phenotype which makes them produce anti-inflammatory signals
	There is no representation of Anti-Inflammatory or Pro-Inflammatory Signals instead the actions of the signals which modulate the anti-leishmanial response (Pro- and Anti-Inflammatory Signals) are abstracted such that the amount of anti-leishmanial compounds is proportional to the amount of myeloid cells and T cells within the system (Figure 4.21)
	
	

	Modulatory Signals activate T cells to produce Anti-Inflammatory Signals
	(Bushell and Wood, 1999; Le Gros et al., 1990; Yi, Cox and Zajac, 2010; Moore et al., 2013)
	T cells detecting Modulatory Signals AND presented antigen by myeloid cells produce Anti-Inflammatory cytokines (Figure 4.7)
	Modulatory Signal detection by T cells and antigen presentation by myeloid cells is an approxmiation of CD4+ Th2 response generation (whereby biologically IL-4 and MHC-II antigen presentation would generate a Th2 response)
	There is no representation of Modulatory or Anti-Inflammatory Signals
	
	

	Myeloid cells present antigen to T cells in the Liver
	(Engwerda and Kaye, 2000)
	Infected myeloid cells within the liver having killed some amount of their intracellular L. donovani, through ALC production, present L. donovani antigen to other cells (Figure 4.9)
	Antigen presentation is dependent on the death of intracellular parasite, there is no inherent antigen specificty with all naïve T cells able to recognise antigen presented
	Antigen presentation is not represented within the model, instead the assumption that myeloid cells and T cells acting as a proxy for the amount of ALC is used to also abstract the concept of T cell activation through antigen presentation, this is assumed through increasing numbers of T cells and myeloid cells would result in higher levels of successful T cell activation
	
	

	Myeloid cells can produce Anti-Leishmanial Compounds
	(Shi and Pamer, 2014)
	Myeloid cells detect pro-inflammatory signals leading to their production of anti-leishmanial compounds (Figure 4.9) or myeloid cells are infected and inherently produce anti-leishmanial compounds (Figure 4.9)
	Pro-Inflammatory Signals are the only signal needed for myeloid cells to produce anti-leishmanial compounds which occurs immediately after detection
	Anti-Leishmanial compounds are abstracted such that they are represented indirectly. The amount of myeloid cells and T cells is a proxy for the amount of ALC and so L. donovani is killed dependent upon the abundance of these cells within the system (Figure 4.21)
	Death of L. donovani = - (((M + T)/tau) / (A50 + (M + T)/tau)) x Pi
M = Myeloid cell population (Sum of infected and susceptible myeloid cells)
T = T cell population
tau = Time delay in ALC production
A50 = Amount of ALC required to kill 50% of the L. donovani population
Pi = Intracellular L. donovani population
	Death of L. donovani = - (((M + T)/tau) / (A50 + (M + T)/tau)) x Pi
M = Myeloid cell population (Sum of infected and susceptible myeloid cells)
T = T cell population
tau = Time delay in ALC production
A50 = Amount of ALC required to kill 50% of the L. donovani population
Pi = Intracellular L. donovani population

	Myeloid cells can produce Pro-Inflammatory Signals
	(Cervia, Rosen and Murray 1993: Kolaczkowska and Kubes, 2013; Shi and Pamer, 2014)
	Myeloid cells detect pro-inflammatory signals leading to their production of pro-inflammatory signals (Figure 4.9)
	Myeloid cells can have direct and indirect roles in inflammatory processes which here is condensed such that myeloid cells when activated by pro-inflammatory signals in turn produce pro-inflammatory signals
	There is no representation of Pro-Inflammatory Signals instead the actions of the signals which modulate the anti-leishmanial response (Pro- and Anti-Inflammatory Signals) are abstracted such that the amount of anti-leishmanial compounds is proportional to the amount of myeloid cells and T cells within the system (Figure 4.21)
	
	

	Myeloid cells can produce Recruitment Factors
	(Murray, 2001; Zhang et al., 2013; Kolaczkowska and Kubes, 2013)
	Myeloid cells detect pro-inflammatory signals leading to their production of recruitment factors (Figure 4.9)
	Pro-Inflammatory Signals are the only signal needed for myeloid cells to produce recruitment factors which occurs immediately after detection
	There is no representation of an 'Other Site' within the Platform model. The liver is represented as a self-contained compartment, migratory processes which increase the myeloid cell population are abstracted so that population growth arises through proliferation (Figure 4.19)
	
	

	Pro-Inflammatory Signals can activate Kupffer cells
	(Murray, 2001; Albergante et al., 2013; Zhang et al., 2013)
	Kupffer cells (infected or naïve) detecting Pro-Inflammatory signals move to a Pro-Inflammatory phenotype (Figure 4.16) and in turn produce anti-leishmanial compounds and recruitment factors (Figure 4.15)
	The M1 inflammatory macrophage phenotype here is represented as a pro-inflammatory state in which anti-leishmanial compounds and recruitment factors are produced immediately transition to this state
	There is no representation of Anti-Inflammatory or Pro-Inflammatory Signals instead the actions of the signals which modulate the anti-leishmanial response (Pro- and Anti-Inflammatory Signals) are abstracted such that the amount of anti-leishmanial compounds is proportional to the amount of myeloid cells and T cells within the system (Figure 4.21)
	
	

	Pro-Inflammatory Signals can activate myeloid cells
	(Ivanova and Orekhov, 2016)
	Myeloid cells tranistion to an activated state upon detection of pro-inflammatory signals (Figure 4.10) whereby they produce recruitment factors, pro-inflammatory signals and anti-leishmanial compounds (Figure 4.9)
	Pro-Inflammatory Signals are the only signal needed for myeloid cells to transition to an activated state whereby they produce several other entities immediately
	
	
	

	Pro-Inflammatory Signals activate T cells to produce Pro-Inflammatory Signals
	(Romagnani 1999; Kumar and Nylén 2012; Pennock et al. 2013; Albergante et al. 2013)
	T cells detecting Pro-Inflammatory Signals AND presented antigen by either Kupffer or myeloid cells produce Pro-Inflammatory Signals (Figure 4.7)
	Pro-Inflammatory Signal detection by T cells and antigen presentation by myeloid cells is an approxmiation of CD4+ Th1 response generation
Pro-Inflammatory Signal detection by T cells and antigen presentation by Kupffer cells is an approxmiation of CD8+ Tc response generation
	
	
	

	Pro-Inflammatory Signals can recruit myeloid cells
	(Robert-Gangneux et al., 2012; Chi and Pamer, 2011; José et al., 2015, Kaye and Beattie, 2016)
	Detection of pro-inflammatory signals and recruitment factors at other sites induces the migration of myeloid cells to the site where these signals are found (Figure 4.9)
	A simplification here is myeloid cells have knowledge of Recruitment Factor and Pro-Inflammatory Signal levels at other sites which simplifies the detection of any gradient detection and subsequent trafficking along the gradient
	There is no representation of an 'Other Site' within the Platform model. The liver is represented as a self-contained compartment, migratory processes which increase the myeloid cell population are abstracted so that population growth arises through proliferation. (Figure 4.19)
	Myeloid cell population growth = aM x M x (1 - M/Mmax)
aM = Myeloid cell proliferation rate
Mmax = Maximal size of the myeloid cell population
M = Myeloid cell population
	Myeloid cell population change = lM + Ms x (((aM x Mi)/(Ms + Mi)) - uM)
lM = Myeloid cell supply rate
Ms = Susceptible Myeloid cell population
aM = Myeloid cell proliferation rate
Mi = Infected myeloid cell population
uM = Myeloid cell exit rate

	Recruitment Factors can recruit myeloid cells
	
	Detection of pro-inflammatory signals and recruitment factors at other sites induces the migration of myeloid cells to the site where these signals are found (Figure 4.9)
	
	
	
	

	T cells can be activated by antigen presentation
	Common Knowledge in the field
	Infected myeloid or Kupffer cells presenting antigen to T cells in the presence of either Modulatory or Pro-Inflammatory Signals leads to T cell activation (Figure 4.7)
	The general three signal process (TCR, Co-stimulatory molecules and Cytokine signals) is simplified so that antigen presentation in the presence of Modulatory signals or Pro-Inflammatory sinals generates T cell activation represented as T cell proliferation and subsequent production of different signals
	Antigen presentation is not represented within the model, instead the assumption that myeloid cells and T cells acting as a proxy for the amount of ALC is used to also abstract the concept of T cell activation through antigen presentation, this is assumed through increasing numbers of T cells and myeloid cells would result in higher levels of successful T cell activation
	
	

	T cells can lyse L. donovani infected cells
	(Smith, Rodrigues and Russel, 1991; Joshi et al., 2009; Beattie et al., 2010; Stäger and Rafati, 2012)
	T cells activated to become Tc cells (Figure 4.8) can lyse Kupffer (Figure 4.15) or myeloid cells (Figure 4.9) presenting antigen
	T cell antigen specificity is not required for Tc mediated cell lysis
	Lysis of L. donovani infected cells is not represented due to uncertainity in the rates at which this process occurs
	
	

	T cells can produce Anti-Inflammatory Signals
	(Le Gros et al., 1990; Bushell and Wood, 1999; Yi, Cox and Zajac, 2010; Moore et al., 2013)
	T cells activated by antigen presentation from a myeloid cell that also detect modulatory signals will produce Anti-Inflammatory Signals (Figure 4.7)
	Anti-Inflammatory Signals here is a summaation and simplification of anti-inflammatory compounds, such as IL-10 and TGFβ, which dampen or negate a pro-inflammatory response or induce an anti-inflammatory response
	There is no representation of Anti-Inflammatory, Pro-Inflammatory or Modulatory Signals instead the actions of the signals which modulate the anti-leishmanial response (Pro- and Anti-Inflammatory Signals) are abstracted such that the amount of anti-leishmanial compounds is proportional to the amount of myeloid cells and T cells within the system (Figure 4.21)
	
	

	T cells can produce Modulatory Signals
	(Le Gros et al., 1990; Bushell and Wood, 1999; Yi, Cox and Zajac, 2010; Moore et al., 2013)
	T cells activated by antigen presentation from a myeloid cell that also detect modulatory signals will produce Modulatory Signals (Figure 4.7)
	Modulatory Signals here is a representation of IL-4 which modulates T cells at the point of activation to develop a Th2 phenotype
	
	
	

	T cells can produce Pro-Inflammatory Signals
	(Romagnani 1999; Kumar and Nylén 2012; Pennock et al. 2013; Albergante et al. 2013)
	T cells activated by antigen presentation from Kupffer or myeloid cells that also detect Pro-Inflammatory signals will produce Pro-Infalammatory Signals (Figure 4.7)
	Pro-Inflammatory Signals here is a simplification of entities which induce a pro-inflammatory response upon their detection such as TNF, Lymphotoxin and IFN𝛾
	
	
	

	T cells can produce Recruitment Factors
	(Romagnani 1999; Kumar and Nylén 2012; Pennock et al. 2013; Albergante et al. 2013)
	T cells activated by antigen presentation from Kupffer or myeloid cells that also detect Pro-Inflammatory signals will produce Recruitment Factors (Figure 4.7)
	Recruitment Factors are here a simplification of entities which induce mobility to/from different physiological sites represented by movement when higher concentrations of Recruitment Factors are present in a different location
	There is no representation of an 'Other Site' within the Platform model. The liver is represented as a self-contained compartment, migratory processes which increase the T cell population are abstracted so that population growth arises through proliferation. (Figure 4.17)
	
	

	Myeloid cells can proliferate in Other Sites
	(Perry, 1971; Patel et al., 2017)
	Myeloid cells proliferate in Other Sites when in patrolling state (Figure 4.9)
	Here the generation of myeloid cells form bone marrow precursors and their subsequent development is abstracted such that myeloid cells can replicate outsite of the liver
	There is no representation of an 'Other Site' within the Platform model. The liver is represented as a self-contained compartment, migratory processes which increase the myeloid cell population are abstracted so that population growth arises through proliferation. (Figure 4.19)
	
	

	Uninfected KCs can replicate
	(Wynn et al., 2001; Scott et al., 2016)
	Uninfected KC cells may proliferate (Figure 4.15)
	Infection of KCs suppresses their proliferative ability where naïve KCs may proliferate in an unactivated state
	Kupffer cells and myeloid cells are grouped together to form a single population referred to as 'Myeloid cells' and the proliferative ability of Kupffer cells in the liver is abstracted such that the entire population can proliferate dependent on a parameter which would reflect the rate of proliferation for the total population (likely lower that that of KCs alone) (Figure 4.19)
	
	



[bookmark: _Ref536814011][bookmark: _Toc536814208]Table 7.2 – Domain, Platform and Simulation models implemented during the CoSMoS process for the baseline immune response mathematical model. The CoSMoS process was utilised to develop the mathematical models of the immune response to infection with L. donovani shown in Figure 4.23 and Figure 5.2. The statements describing biological phenomena alongside their evidence are shown, followed by the domain, platform and simulation implementations.




[bookmark: _Toc3716128]Supplementary Information for Calibration using the ABC_sequential function

	Model
	Population Calibrated For
	Method Employed
	Prior Distributions
	Tolerance Values

	
	
	
	Parameter
	Parameter Description
	Range
	Distribution
	

	Figure 4.24
	T cells
	Beaumont
	at
	T cell growth rate
	0 - 1
	Uniform
	10
	2
	1
	0.5
	1

	
	
	
	tmax
	T cell population maximum
	300 - 900
	Uniform
	
	
	
	
	

	
	
	
	dt
	T cell exit rate
	0 - 1
	Uniform
	
	
	
	
	

	Figure 4.24
	Myeloid cells
	Beaumont
	am
	Myeloid cell growth rate
	0 - 1
	Uniform
	10
	2
	1
	0.5
	1

	
	
	
	mmax
	Myeloid cell population maximum
	200 - 600
	Uniform
	
	
	
	
	

	
	
	
	dm
	Myeloid cell exit rate
	0 - 1
	Uniform
	
	
	
	
	

	Figure 4.26
	L. donovani
	Beaumont
	ap
	L. donovani growth rate
	0 - 1
	Uniform
	10-2
	 10-3
	10-4
	10-5
	10-6

	
	
	
	a
	IC50 of ALC
	1 - 100
	Uniform
	
	
	
	
	

	
	
	
	tau
	Time Delay in ALC production
	10 - 40
	Uniform
	
	
	
	
	

	
	
	
	da
	L. donovani exit rate
	0 - 1
	Uniform
	
	
	
	
	

	
	
	
	Pe0
	Initial extracellular L. donovani value
	6 - 10
	Uniform
	
	
	
	
	

	Figure 5.2
	T cells
	Beaumont
	Lt
	T cell supply rate
	0 - 21
	Uniform
	0.5
	0.1
	0.01
	0.005
	0.001

	
	
	
	Dt
	T cell exit rate
	0 - 1
	Uniform
	
	
	
	
	

	Figure 5.2
	Myeloid cells
	Beaumont
	Lm
	Myeloid cell supply rate
	 0 - 10
	Uniform
	0.5
	0.1
	0.05
	0.025
	0.01

	
	
	
	Dm
	Myeloid cell exit rate
	0 - 1
	Uniform
	
	
	
	
	



[bookmark: _Ref525235479][bookmark: _Toc536814209]Table 7.3 - Information supplied to the ABC_sequential function for calibration. Single objective optimisation was used when calibrating against a single population in a simulation model’s output. This table defines the model being calibrated, the population for which biological data and simulation output data were being compared, the algorithm employed by the ABC_sequential function for parameter value sampling, parameters being calibrated and the tolerance values used to evaluate the goodness of fit of model output.
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[bookmark: _Ref523573715][bookmark: _Toc525227261][bookmark: _Toc536814201]Figure 7.9 - Global Sensitivity Analysis of all populations in the finalised simulation model. 500 parameter sets were generated using latin hyper cube (LHC) sampling over parameter prior ranges (see Table 5.1 and Table 5.2) and all populations were simulated. The influence of the parameters, shown in the legend, were quantified using a Partial Rank Correlation Coefficient (PRCC), whereby a positive value reflects a proportional relationship ( Parameter value =  L. donovani number) and a negative value reflects an inverse proportional relationship ( Parameter value =  L. donovani). The higher the value the stronger the relationship.


[bookmark: _Toc536814116][bookmark: _Toc3716130]	Supplementary Information for the development of a mathematical model describing the sub-tissue distribution of Amphotericin B

	Statement
	Statement Evidence
	Domain Model Representation
	Domain Assumption
	Platform Model Representation
	Simulation Model Representation

	Liposomal Amphotericin B can release Amphotericin B to exist in a monomer
	(Cunningham et al., 2012)
	Disruption of Liposomal Amphotericin B leads to the existence of Amphotericin B monomers in the same location (Figure 5.11)
	Disruption of Liposomes to release Amphotericin B is an irreversible process
	In the platform model there is no representation of the different states of Amphotericin B as shown in the domain (Figure 5.12) instead a single entity referred to as 'AmB' represents the total amount of Amphotericin B (Figure 5.15), this is due to the lack of data surrounding the amounts of the different states in a biological system after administration where typically only total Amphotericin B concentration is tracked
	 

	Amphotericin B monomers can form aggregates
	(Janout et al., 2015)
	Amphotericin B monomers that come into contact bind to form monomers (Figure 5.11)
	Monomers contacting to form aggregates is an irreversible process, it is assumed that existing aggregates do not bind monomers nor do aggregates bind other aggregates
	In the platform model there is no representation of the different states of Amphotericin B as shown in the domain (Figure 5.12) instead a single entity referred to as 'AmB' represents the total amount of Amphotericin B (Figure 5.15), this is due to the lack of data surrounding the amounts of the different states in a biological system after administration where typically only total Amphotericin B concentration is tracked
	 

	Amphotericin B can enter/leave the liver (in either a Liposomal, Monomeric or Aggregrate form)
	(Rosenecker et al., 1996)
	Amphotericin B, in any state (Figure 5.12), may influx from other sites to the liver (or vice versa) (Figure 5.11)
	There is no metabolism/clearance of Amphotericin B within the liver, this occurs in other sites and thus any decreases in liver Amphotericin B accumulation occur through efflux of Amphotericin B to other sites. Biologically this efflux would be a multistage process of Amphotericin B entering the hepatic blood supply however here this is simplified such that Amphotericin B is either in the liver OR in other sites.
	For the representation an 'Other Site' is still included whereby 'AmB' can enter and exit the liver at set rates (Figure 5.15) this aims to reflect that Amphotericin B is metabolised and excreted in other sites and not the liver and thus to maintain this process an 'Other Site' is included.
	AmB in Other Sites: (kLO x (L/rL)) - (kOL x O) -  (cO x O)
AmB in the liver: (kOL x O) - (kLO x (L/rL)) -  (kLT x T x (L/rL)) - (kLM x (Ms + Mi) x (L/rL)) + (kTL x Ta) + (kML x Ma)
kLO = AmB transfer rate from Liver to Other Sites
L = Liver AmB Amount
rL = Retention Rate of AmB within the Liver
kOL = AmB transfer rate from Other Sites to Liver
O = Other Sites AmB Amount
cO = Clearance Rate of AmB
kLT = AmB transfer rate from Liver to T cells
kLM = AmB transfer rate from Liver to myeloid cells
T = T Cell Population
Ms = Susceptible Myeloid Cell Population
Mi = Infected Myeloid Cell Population
rL = Retention Rate of AmB within the Liver
kTL = AmB transfer rate from T cells to Liver
kML = AmB transfer rate from myeloid cells to Liver
Ta = T Cell AmB Amount
Ma = Myeloid Cell AmB Amount

	Liposomes can be internalised by cells
	(Azanza, Sádada and Reis, 2015)
	Liposomal Amphotericin B are phago- or endocytosed by cells within the liver leading to their internalisation (Figure 5.11)
	This representation assumes that all cells within the liver within the context of the pre-existing model (thus populations include T cells, iNKT cells, myeloid cells and Kupffer cells) can either phagocytose or endocytose Amphotericin B (albeit at different rates)
	Set entry rates for the uptake of 'AmB' for both T cells and myeloid cells is represented in the platform and this uptake is dependent upon the number of cells (either T cells or myeloid cells) and the amount of 'AmB' in the liver (Figure 5.15)
	AmB in T Cells: (kLT x T x (L/rL)) - (kTL x Ta)
AmB in Myeloid Cells: (kLM x (Ms + Mi) x (L/rL)) - (kML x Ma)
kLT = AmB transfer rate from Liver to T cells
kLM = AmB transfer rate from Liver to myeloid cells
T = T Cell Population
Ms = Susceptible Myeloid Cell Population
Mi = Infected Myeloid Cell Population
rL = Retention Rate of AmB within the Liver
kTL = AmB transfer rate from T cells to Liver
kML = AmB transfer rate from myeloid cells to Liver
Ta = T Cell AmB Amount
Ma = Myeloid Cell AmB Amount

	Amphotericin B monomers and aggregates can bind cellular membranes
	(Baginski, Czub and Sternal, 2006, Czub and Baginski, 2006; Janout et al., 2015)
	Amphotericin B monomers or aggregates bind the membranes of cells within the liver (Figure 5.11)
	An assumption here is that there is no cellular binding of Amphotericin B outside of the liver, this is represented this way due to the lack of accumulation of Amphotericin B in other organs (and the cells within those organs) such that the influx/efflux rates in the model are likely to be modified to account for lack of cellular retention
	In the platform model there is no representation of the different states of Amphotericin B as shown in the domain (Figure 5.12) instead a single entity referred to as 'AmB' represents the total amount of Amphotericin B (Figure 5.15). Additionally there is no representation specifically of 'membrane bound' AmB however when AmB is internalised by either a myeloid or T cell that amount is added to a population of either myeloid-associated AmB or T cell-associated AmB (Figure 5.15)
	

	Amphotericin B bound to the membrane of an L. donovani cell can preferentially bind the membrane of L. donovani
	(Saha, Mukherjee and Bhaduri, 1986; Paila, Saha and Chattopadhyay, 2010)
	Amphotericin B bound to a myeloid cell or Kupffer cell that is infected with L. donovani will preferentially bind the parasite membrane (Figure 5.11)
	An abstraction here is that this representation is relatively 'binary' either the cell is uninfected and Amphotericin B remains on the membrane or it is infected in which case the Amphotericin B switches to the parasite, however this does not fully account for other factors such as parasite density within infected cells
	There is no representation of 'membrane bound' AmB for either T cells, myeloid cells or L. donovani instead this is abstracted such that AmB that is associated with myeloid cells can contribute towards the killing of the intracellular L. donovani population (Figure 5.15)
	

	Amphotericin B can kill L. donovani 
	Common Knowledge in the field
	Amphotericin B binds parasite membranes and is released from the subsequent leishmanial fractions (Figure 5.11)
	Here the assumption is that the death of L. donovani is mediated directly through the action of Amphotricin B and there is no immunomodulation mediated by Amphotericin B
	AmB within the platform can kil both both intracellular and extracellular L. donovani in a dose-dependent manner (Figure 5.15)
	AmB induced death of intracellular L. donovani: -(L/(b + L)) x Pe
AmB induced death of extracellular L. donovani: -(Ma/(d + Ma)) x Pi
L = Liver AmB amount
b = Amount of AmB required to kill 50% of the extracellular L. donovani population
Pe = Extracellular L. donovani population
Ma = Myeloid Cell AmB Amount
d = Amount of AmB required to kill 50% of the intracellular L. donovani population
Pi = Intracellular L. donovani population



[bookmark: _Toc536814210]Table 7.4 - Domain, Platform and Simulation models implemented during the CoSMoS process for the pharmacological mathematical model. The CoSMoS process was utilised to develop the mathematical model of the sub-tissue distribution of Amphotericin B during infection with L. donovani shown in Figure 5.16. The statements describing biological phenomena alongside their evidence are shown, followed by the domain, platform and simulation implementations.
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	ABC
	Approximate Bayesian Computation

	ABM
	Agent Based Model

	AmB
	Amphotericin B

	APC
	Antigen Presenting Cell

	B6
	C57bl/6 Mice

	CCL
	Chemokine (C-C Motif) Ligand

	CCR
	C-C Motif Chemokine Receptor

	CD
	Cluster Of Differentiation

	CL
	Cutaneous Leishmaniasis

	CoSMoS
	Complex Systems Modelling And Simulation

	CXCL
	Chemokine (C-X-C Motif) Ligand

	CXCR
	C-X-C Motif Chemokine Receptor

	DAmB
	Amphotericin B Deoxycholate

	EVL
	Experimental Visceral Leishmaniasis

	GA
	Genetic Algorithm

	GM-CSF
	Granulocyte-Macrophage Colony-Stimulating Factor

	GSA
	Global Sensitivity Analysis

	HIV
	Human Immunodeficiency Virus

	HPLC
	High Performance Liquid Chromatography

	IFNg
	Interferon Gamma

	IL
	Interleukin

	iNKT
	Invariant Natural Killer T Cell

	KC
	Kupffer Cell

	LAmB
	Liposomal Amphotericin B

	LC-MS/MS
	Liquid Chromatography Tandem Mass Spectrometry

	LHC
	Latin-Hypercube

	LT
	Lymphotoxin

	MCL
	Muco-Cutaneous Leishmaniasis

	MHC
	Major Histocompatibility Complex

	MOO
	Multi-Objective

	NK
	Natural Killer Cell

	NKT
	Natural Killer T Cell

	NSGA2
	Non-Dominated Sorting Genetic Algorithm II

	ODE
	Ordinary Differential Equation

	PBPK
	Physiologically-Based Pharmacokinetic Model

	PD
	Pharmacodynamics

	PDE
	Partial Differential Equation

	PK
	Pharmacokinetics

	PKDL
	Post-Kala Azar Dermal Leishmaniasis

	PRCC
	Partial Rank Correlation Coefficient

	RMSE
	Root Mean Square Error

	Tc
	T Cytotoxic Cell

	TCR
	T Cell Receptor

	TGFb
	Transforming Growth Factor Beta

	Th
	T Helper Cell

	TLR
	Toll-Like Receptor

	TNF
	Tumour Necrosis Factor

	TQMS
	Triple Quadrupole Mass Spectrometer 

	UML
	Unified Modelling Language

	VL
	Visceral Leishmaniasis
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Parameter o . [Distribution] |Best Fit Valud¢ Parameter N Error of the Units
Description . Deviation
Supplied Value Mean

ur T cell exit ratd 0— 1 [Uniform] 0.06 0.604 +0.297 +0.133 % / day
T cell supply . 5

It rate 0—21 [Uniform] 1.18 0.054 +0.003 +0.001 x10°/ day
Myeloid cell

v yewold ce 0 —1 [none] 0.11 Not recorded | Not recorded | Not recorded % / day

exit rate

Myeloid cell

Im yerold ce 0—10 [none] 0.03 Not recorded | Not recorded | Not recorded | x103/ day

supply rate
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T

  T cell exit rate 0 – 1 [Uniform]  0.06  0.604  ± 0.297  ± 0.133  % / day 

l

T

 

T cell supply 

rate 

0 – 21 [Uniform]  1.18  0.054  ± 0.003  ± 0.001  x10

5

 / day 

µ

M

 

Myeloid cell 

exit rate 

0 – 1 [none]  0.11  Not recorded Not recorded Not recorded  % / day 

l

M

 

Myeloid cell 

supply rate 

0 – 10 [none]  0.03  Not recorded Not recorded Not recorded  x105 / day 
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Prior Range

Parameter & Best Fit Average Standard Standard .
Parameter .. c e . Parameter g Error of Units
Description |[Distribution] Value Deviation
. Value the Mean
Supplied
ar T Cellaféowm 0 —2 [none] 1.27 1.27 +0.24 +0.02 day!
Myeloid cell
_ + + -1
am growth rate 0 —2 [none] 1.08 1.45 0.30 0.03 day
ap L. donovani | | hel 0.56 0.72 +0.26 +0.03 % / da
growth rate ’ ’ ' ' o/ cay
L. donovani
eg 0 — 1 [none] 0.23 0.24 +0.06 +0.01 % / day
egress rate
A ICs0 of ALC | 1 —40 [none] 18.81 28.91 +11.07 +1.11 Unitless
Time delay in
T ALC 1 —20 [none] 9.76 7.01 +7.28 +0.73 Days
production
Rate of 0
B infection 0 — 1 [none] 0.47 0.67 +0.11 +0.01 % / day
Number of
c internalised | ) 5 el 4.81 4.19 +1.03 +0.10 x10°

parasites per
infection
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a

T

 

T cell growth 

rate 

0 – 2 [none]  1.27   1.27  ± 0.24  ± 0.02  day-1 

a

M

 

Myeloid cell 

growth rate 

0 – 2 [none]  1.08  1.45  ± 0.30  ± 0.03  day-1 

a

P

 

L. donovani 

growth rate 

0 – 1 [none]  0.56  0.72  ± 0.26  ± 0.03  % / day 

eg 

L. donovani 

egress rate 

0 – 1 [none]  0.23  0.24  ± 0.06  ± 0.01  % / day 

A  IC

50

 of ALC  1 – 40 [none]  18.81  28.91  ± 11.07  ± 1.11  Unitless 

 t

 

Time delay in 

ALC 

production 

1 – 20 [none]  9.76  7.01  ± 7.28  ± 0.73  Days 

b

 

Rate of 

infection 

0 – 1 [none]  0.47  0.67  ± 0.11  ± 0.01  % / day 

c 

Number of 

internalised 

parasites per 

infection 

2 – 5 [none]  4.81  4.19  ± 1.03  ± 0.10  x100 
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EB2.1

Time Scale

1 Hour

Observable
phenomena

Amphotericin B begins to accumulate in the
Liver and (at a sub-tissue level) in Myeloid
and T Cells

Hypothesis

<<expected>>
Amphotericin B (Liposomal and Free) is
absorbed into the liver from the blood
supply and associated with cells via
membrane fusion, endocytosis and/or
phagocytosis

EB2.2

EB2.3

12 Hour

24 Hour

Liver drug level does not change
significantly from previous time point.
Myeloid cell accumulation increases.
Parasite load continues to decrease

Liver drug level does not change
significantly from previous time point.
Myeloid cell drug level peaks whilst T Cell

drug level is unchanged.

<<expected>>
Amphotericin B selectively binds ergosterol
on L. donovani membrane causing parasite
death. Myeloid Cells actively uptake

<<expected>>

Amphotericin B is not metabolised in the

Inhibition

g

EB2.4

72 Hour

Liver drug level does not change
significantly from previous time point. L.
donovani load is significantly reduced.
Myeloid and T Cell population abundance
and drug levels decreases.

<<expected>>
Lack of Antigenic stimulation terminates the
immune response in the Liver

Amphotericin
B

Amphotericin Amphotericin

B B

extracellular drug via phagocytosis and Liver.
endocytosis
Liver :
Amphotericin ™4 [ Influx/Efflux__] :
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Interacts with
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(Azanza et al., 2015) (Bekersky et al., 2002)
Evidence (Bingol and Bakirel, 2018)

(Rosenecker et al., 1996) (Wu et al., 1997)

(Azanza et al., 2015) (Janout et al., 2015)
(Saha et al., 1986) (Purkait et al., 2012)
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Excretion

Other Sites

(Marrack et al., 2010)
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Injection into blood supply
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