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Abstract 

Under the circumstance of fast growing demands for mobile data, Heterogeneous Networks 

(HetNets) has been considered as one of the key technologies to solve 1000 times mobile 

data challenge in the coming decade. Although the unique multi-tier topology of HetNets has 

achieved high spectrum efficiency and enhanced Quality of Service (QoS), it also brings a 

series of critical issues. In this thesis, we present an investigation on understanding the cause 

of HetNets challenges and provide a research on state of arts techniques to solve three major 

issues: interference, offloading and handover.  

The first issue addressed in the thesis is the cross-tier interference of HetNets. We introduce 

Almost Blank Subframes (ABS) to free small cell UEs from cross-tier interference, which is 

the key technique of enhanced Inter-Cell Interference Coordination (eICIC). Nash Bargain 

Solution (NBS) is applied to optimize ABS ratio and UE partition. Furthermore, we propose 

a power based multi-layer NBS Algorithm to obtain optimal parameters of Further enhanced 

Inter-cell Interference Coordination (FeICIC), which significantly improve macrocell 

efficiency compared to eICIC. This algorithm not only introduces dynamic power ratio but 

also defined opportunity cost for each layer instead of conventional zero-cost partial fairness. 

Simulation results show the performance of proposed algorithm may achieve up to 31.4% 

user throughput gain compared to eICIC and fixed power ratio FeICIC. 

This thesis’ second focusing issue is offloading problem of HetNets. This includes (1) UE 

offloading from macro cell and (2) small cell backhaul offloading. For first aspect, we have 

discussed the capability of machine learning algorithms tackling this challenge and propose 

the User-Based K-means Algorithm (UBKCA). The proposed algorithm establishes a closed 
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loop Self-Organization system on our HetNets scenario to maintain desired offloading factor 

of 50%, with cell edge user factor 17.5% and CRE bias of 8dB. For second part, we further 

apply machine learning clustering method to establish cache system, which may achieve up 

to 70.27% hit-ratio and reduce request latency by 60.21% for Youtube scenario. K-Nearest 

Neighbouring (KNN) is then applied to predict new users’ content preference and prove our 

cache system’s suitability. Besides that, we have also proposed a system to predict users’ 

content preference even if the collected data is not complete.    

The third part focuses on offloading phase within HetNets. This part detailed discusses 

CRE’s positive effect on mitigating ping-pong handover during UE offloading, and CRE’s 

negative effect on increasing cross-tier interference. And then a modified Markov Chain 

Process is established to map the handover phases for UE to offload from macro cell to small 

cell and vice versa. The transition probability of MCP has considered both effects of CRE so 

that the optimal CRE value for HetNets can be achieved, and result for our scenario is 7dB. 

The combination of CRE and Handover Margin is also discussed.  
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Chapter 1. Introduction 

 

1.1  Background and Motivation 

The modern consumer’s constant demand for mobile broadband is experiencing a rapid 

increase due to innovations in technologies such as smart phones and mobile devices. Analyst 

Mason predicted that if operators in Western Europe continue to use traditional macrocell 

networks to meet the increasing broadband demand, the cost to establish new macrocell BSs 

will increase to ‘40 billion USD per year by 2016, compared to 5 billion USD per year in 

2011’. 

As a result, given the exponential increase in the number and types of user equipment (UE), 

simply adding Base Stations (BS) to existing networks will not be sufficient to fulfil the 

modern world’s increasing capacity requirements. Therefore, new-generation technology to 

realise 4G LTE standards is greatly needed. Many advanced technologies, such as carrier 

aggregation and multi-input multi-output, have been developed and utilised for LTE network 

implementation in 3GPP Releases 7 and 8, which are still under extensive study [1][2]. 

Against this backdrop, heterogeneous networks (HetNets) were first developed and applied 

as an LTE standard in 3GPP Release 10 [3]. Unlike normal networks, which contain only 

macrocells and remote radio heads (RRHs), HetNets also introduce nodes with lower power 

(LPN), such as picocell and femtocell networks. These allow HetNets to contain more than 

two tiers cells. The advantage of HetNets is obvious—these networks enable network 

mobility and make UE easier to access. The shorter distance between the network and UE 

reduces signal path loss and increases transmission quality. The larger network scale also 



17 
 

increases the spectrum reuse efficiency, thus increasing the rate of data transfer [4]. However, 

like most new concepts, HetNets also face certain challenges, with interference being one of 

the most severe ones.  

Normally, adjacent cells use different frequencies to guarantee quality of service (QoS) to 

users. However, in LTE standards, the concept of frequency reuse is introduced and required. 

Higher frequency reuse means adjacent cells may share more frequencies, thereby increasing 

capacity. An ideal situation is a frequency reuse ratio of 1, where adjacent cells can share all 

available frequencies [5]. However, frequency reuse may also result in one resource block 

(RB) being scheduled to two users in two adjacent cells. The probability of this undesirable 

scenario increases with the frequency reuse ratio. The consequence is not just a low QoS; 

instead, like a delay or a lost packet, the unwanted interference caused by the overscheduling 

of RBs may directly result in radio link failures or call drops.  

Thus, though the high frequency reuse strategy of HetNets increases capacity, it also 

inevitably results in interference; this has become the major issue of HetNets and also cause 

other special issues related to HetNets [6]. In general, due to HetNets’ unique structure, there 

are mainly three severe challenges need to be solved. Firstly, HetNets inherently involve 

cross-tier interference, which mainly refers to interference signals generated by other-tier 

networks. In cases of two-tier networks with both macro cells and small cells, small cell UEs 

may also receive signals from macrocells due to frequency reuse (Figure 1.1). This 

interference may be severe because macrocells normally have much higher transmission 

power than small cells [7]. Secondly, HetNets suffer from offloading problem due to power 

differences among different tier of network, which are designed to contain various standard 

devices. Therefore, UE devices are usually attached to macrocells rather than small cells, due 

https://scholar.google.com/scholar?hl=zh-CN&as_sdt=0,5&q=available
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to the macrocells’ larger transmission power. This may render HetNets’ design or create load 

unbalance of macro cell and backhaul problem of small cell network [9]. Thirdly, Ping-pong 

Handover problem during offloading phase. When UEs are offloaded from macro cell to 

small cell, handover will occur. However, the power difference between two cells will 

generate signal fluctuation at cell edge (normally refers to small cell edge in HetNets), which 

may lead to frequent Handover happening. Since only control and acknowledge signals are 

transferred during this process, frequent handover will thus reduce UE’s average capacity 

[10].  

In order to realise HetNets’ potential, these three major issues should be mitigated. This 

mitigation requires a new technique of interference management, offloading rebalance and 

backhaul system.  

 

Figure 1-1 Interference Example 

 

For edge users, it may also receive the signal from neighbour cell at the same frequency which may lead high interference. 

Under HetNets, it may be either neighbour small cell signals (intro-tier cell interference) or local Macro cell signal (cross-

tier interference). (Cited from http://4g-lte-world.blogspot.co.uk/2012/06/icic-and-eicic.html) 

In the following parts of this chapter, we will introduce candidate techniques that we have 

adopted in the thesis to solve challenges for HetNets, which include Inter-Cell Interference 

http://4g-lte-world.blogspot.co.uk/2012/06/icic-and-eicic.html
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Coordination (ICIC), enhanced Inter-Cell Interference coordination (eICIC) and Further 

enhanced Inter-cell Interference coordination (FeICIC). Meanwhile, we also introduce the 

concept of  self-organization (SON) and potential machine learning (ML) algorithms may 

help to realise SON in HetNets. Finally, Handover along with Markov Chain Process is 

illustrated.  We will introduce these techniques in chronical order - ICIC was first raised in 

release 8, eICIC in release 10 and FeICIC in release 11. 

 

1.2 Inter-Cell Interference Coordination (ICIC) 

As discussed in last part, if we manage to achieve a frequency reuse ratio of 1, we will suffer 

great interference, which will significantly reduce the QoS and may even directly hinder the 

service. In other words, there is always a trade-off between frequency reuse and interference. 

One method of realising a better balance that has attracted significant interest is ICIC, which 

is introduced in 3GPP Release 8/9 and is defined as a new air interface in the LTE standard 

[11]. In contrast to a Reuse 1 system, in which all cells use all frequency resources without 

any restriction, ICIC uses frequency resources in a cooperative way. In order to establish 

‘coordination’ among small cells and macrocells, specific control information is transmitted 

within the LPN network. And ICIC’s control topology is normally Centralized, where central 

controller will be responsible to all UEs’ resource allocation. Based on the coordination of 

central controller, various schemes for ICIC have been proposed and developed, three of the 

major schemes are as follows:  

In the first ICIC scheme, neighbouring eNBs use different sets of RBs and frequency reuse 

is controlled by a static ratio; thus, only a fixed portion of resources can be shared [13]. This 
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scheme may improve cell-edge SINR and is easy to implement; however, the total throughput 

of small cells may drop because not all RBs are fully utilised. 

In the second scheme, the centre users of all eNBs (regardless of whether they are small or 

macro) are allowed to fully reuse RBs. No two neighbouring edge users, however, can use 

the same set of RBs at a given time [14].  

In the third scheme, all neighbouring eNBs use different power schemes across the spectrum, 

with RB assignment following the process outlined by the second scheme explained above. 

For example, an eNB can employ a power boost for cell edge users with specific sets of 

resources (not used by neighbours) while maintaining low signal power for centre users. This 

scheme maintains the availability of all RBs [15]. 

These schemes show that although the methods to restrict frequency distribution may vary, 

they are all based on fractional frequency reuse (FFR), rather than full reuse. However, some 

previous studies have indicated that FFR exhibits relatively poor spectral efficiency [16]. 

Scheme 1 is the simplest method, requiring no further equipment or algorithm for supporting 

the pre-set threshold. However, it also has the lowest spectral efficiency and may not be able 

to adapt to mobile LPN networks. Scheme 2 attempts to improve spectral efficiency, 

segmenting UEs into two parts according to their QoS and allowing centre users to share 

frequencies instead of simply setting up one threshold. Therefore, in this scheme, centre users 

obtain the maximum spectral efficiency; however, edge users still face the same issue. 

Scheme 3 manages to improve edge users’ spectral efficiency by boosting their power, 

thereby allowing their QoS to reach the threshold for frequency reuse. Although spectral 

efficiency can be improved by scheme 3, this approach raises another problem: the power 

surge reduces the working time of the UE. 
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The other problem is organisation [17]. Resource usage must be planned and distributed 

across a multi-cell network, and this configuration must be performed automatically due to 

the large scale and high maintenance cost of the network. Furthermore, given increases in 

capacity requirements, an increasing number of cells may be added to the network. Each time 

the network expands, it must re-calculate the frequency distribution plan for edge users. If 

all these calculations and configurations are processed by humans, the process will be both 

inefficient and costly.  

In conclusion, ICIC achieves a balance between frequency reuse and interference, although 

issues of low spectral efficiency and complicated organisation remain. Moreover, the ICIC 

methods specified in Releases 8 and 9 of 3GPP do not specifically consider HetNets settings 

and may not be perfectly effective for HetNets [18]. Thus, to realise the full potential of 

HetNets, an evolved technique—enhanced intercell interference coordination (eICIC)—was 

developed for Release 10. 
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Figure 1-2 ICIC schemes. 

No two neighbouring NBs use the same set of RBs at a given time. Meanwhile, RBs assigned to cell edge users will be 

power-boosted. (cited from: http://4g-lte-world.blogspot.co.uk/2012/06/icic-and-eicic.html) 

 

1.3 Enhance Inter-Cell Interference Coordination (eICIC) 

eICIC was first introduced in 3GPP Release 10. Unlike ICIC, eICIC was specially designed 

to mitigate the inherent inference in HetNets [19]. eICIC can be grouped into three main 

categories. The first category comprises frequency-domain techniques, where control 

channels and physical signals (i.e. synchronisation and reference signals) of different cells 

are scheduled using reduced bandwidths in order to achieve a totally orthogonal transmission 

of these signals at different cells [20]. The second category comprises time-domain 

techniques. For the edge users suffering from high interferences, a time delay is introduced 

to avoid interferences from other-tier nodes. One possible way to achieve this is to use 

almost-blank subframes (ABSs) at femtocells. ABSs contain no control or data signals. When 
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macrocell and small-cell subframes that contain control or data signals overlap, ABSs can be 

introduced to break the overlap and mitigate interference [21]. The third category comprises 

power-control techniques. The desired QoS for macrocell or femtocell UEs can be achieved 

through the application of different power controls to femtocells (e.g. when the transmission 

power of a picocell is increased, edge users’ total throughput will also be increased) [22]. 

Technique 1 is more like a modified ICIC; therefore, this part will focus on the other two 

techniques: power control and ABSs. 

1.3.1 Almost Blank Subframe 

Although the simple application of power-control techniques such as CRE can partially 

reduce intra-cell interference by balancing the loads of all small cells, the cross-tier 

interference originating from the macrocells remains unaddressed. One method to solve this 

problem is the application of ABSs [10]. To realise this method, we first need to determine 

the ‘victims’—that is, the UEs that suffer from cross-tier interference most severely. Then, 

macrocells will be muted at specific subframes, allowing the offloaded small-cell users to be 

scheduled into these blanked time slots. As a result, the interference originating from the 

macrocells can be eliminated. For example, in [23], the ABS ratio was set to be 0.5, which 

means that the macrocell must be muted for half of its operating time. Though it seems 

useless to allow a macrocell to remain idle, during this time, small-cell offloaded users may 

have greater capacity and better QoS. However, in practice, a muting ratio of 0.5 means that 

half of the macrocell subframes will be cleared to suit small-cell users. Therefore, there may 

not be enough non-ABS subframes for all original centre UEs. To address this issue, some 

previous studies have suggested the use of CRE tools to control the offloading of more UEs 
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to small cells and their allocation to ABSs [24]. This may increase both the load of small 

cells and the interference of UEs.  

 

Figure 1-3 Macrocell subframes: ABS and nABS 

Macrocell subframes are separated into two types: ABS and normal ones. Central users which suffer from less cross-tier interference will 

be allocated to normal ones, while the cell edge users offloaded to small cells will be allocated to ABS, when the macrocell is muted. (cited 

from: http://4g-lte-world.blogspot.co.uk/2012/06/icic-and-eicic.html) 

 

1.3.2 Reduced-Power ABSs (RP-ABSs) 

Through the use of ABSs, small cells can use both ABS and nABS subframes. Macrocells, 

however, are restricted to non-eICIC subframes only, meaning that they are not efficiently 

utilised, resulting in resource wastage. Therefore, LTE Release 11 implements a new concept, 

FeICIC, which suggests a modified method: RP-ABSs [25]. With RP-ABSs, macrocells do 

not completely blank the power on eICIC subframes, and instead use these subframes with 

reduced power to serve their centre users. This, of course, requires proper self-organisation 

between the macrocells and the coordinated small cells. The amount of power reduction can 
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be static or dynamic. The capacity gain from using reduced-power subframes over ABSs 

depends on the ratio of eICIC subframes to non-eICIC subframes within a radio frame, as 

well as on the intelligence behind the scheduling and coordination. With static RP-ABSs, the 

ratio of eICIC subframes to non-eICIC subframes is usually fixed, as is the amount of power 

reduction for all eICIC subframes. However, to obtain a better efficiency when ABS is 

applied, we can quantise the RP-ABS into several classes (different classes have different 

reduced powers) so that macro UEs can choose suitable RP-ABS according to their QoS. 

Obviously, this requires an intelligent coordination algorithm, which may achieve the best 

utility for the whole HetNets system including not only macro UEs but also small UEs.  

 

 

Figure 1-4 Normal ABS (eICIC) and RP-ABS (FeICIC) 

(cited from: http://frankrayal.com/2014/05/07/further-enhanced-icic-feicic/) 

 

1.3.3 Cell Range Expansion 

In wireless HetNets, due to the differences in transmission power, cell size, and coverage 

range, even a uniform distribution of user allocation results in an imbalanced load for each 

single small cell due to ‘natural user association metrics’ such as SINR, thereby causing intra-

tier interferences. Andrews believed that a suitable load balancing scheme would 
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dramatically decrease the interference of HetNets, and suggested the use of the following 

several algorithms [26]: 

Markov Chain processes (MCPs): MCPs, named after Andrey Markov, provide a 

mathematical framework for studying sequential optimisation in the context of discrete-time 

stochastic systems, even with uncertainty [27]. MCPs are designed to predict and optimise 

future work by taking action under the current conditions. Therefore, they may provide a 

potential approach for implementing self-organising HetNets in centralised network design 

Moreover, HetNets normally contains large and random traffic map (caused by random 

mobility model and shadow fading). Therefore, MCP can be applied to establish the 

framework modelling HetNets Handover process, which inspires us for further analysis later 

[26]. 

Game theory: Game theory is a type of mathematical model used to establish cooperation 

among all possible players or decision-makers (e.g. small cells). It provides ‘tractable 

methods’ for organising, even within very large and complicated decentralised networks 

[27][28]. A game theory algorithm may be suitable for HetNets’ decentralised feature. 

However, the main focus of game theory is strategic decision-making, but there is no closed-

form expression to characterise the relation between a performance metric and network 

parameters. As a result, self-organisation is difficult to be realised in a game theory algorithm, 

making the network design even more complicated (though it can still be used to develop a 

general overview and estimation of a network). 

Cell range expansion (CRE): CRE, which adds or reduces the bias on the actual received 

power used to decide user associations, is a well-known power-control technique in 3GPP 

http://en.wikipedia.org/wiki/Andrey_Markov
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standardisation [29]. In HetNets, macrocells usually have dominant user control because of 

their high transmission power compared to small cells (40 W for a typical macrocell and 1 

W for a typical picocell) [30]. As a result, most UEs will still attach to a macrocell if 

traditional user associations are applied, leading to macrocell overload and a uselessness of 

small cells. In this technique, we define UEs to be allocated to the cells with the highest 

receiving power. However, we modify UEs’ received power from small cells by adding bias, 

making users more likely to be offloaded to smaller cells. As long as the threshold bias is not 

reached, UEs will not connect to upper-tier networks. This algorithm significantly restricts 

the load distribution through a specific expression and is suitable for random decentralised 

networks. Therefore, it has been very popular in network designs [26]. 

Given this comparison of existing algorithms, CRE may be the most suitable for network 

design. However, for real-world applications, several points still require discussion.  

Bias values and interference: There are two major ways to consider value biasing: cross-

tier deployment and out-of-band biasing [31]. The first method is the original method of 

using small cellular cells to construct HetNets. The second method is more ambitious: it 

involves offloading from cellular macrocells to Wi-Fi devices. Of the two, the second 

approach has a much larger bias—20 dB or more—because it efficiently avoids cross-tier 

interference. However, due to the high-frequency channel, Wi-Fi coverage is relatively small, 

such that a normal Wi-Fi access point can only cover 20 m indoors [32]. Therefore, the 

mainstream study will still focus on finding an optimal cross-tier bias value. The interference 

arising from CRE is another issue that must be addressed. Cross-tier interference was 

discussed in an earlier section. Since CRE ‘forces’ UEs to offload from macrocells to small 

cells, even if the signals received from the macrocells are higher, the interference signals 
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from other tiers will also be stronger [33]. As a result, although CRE will help organise 

HetNets, it will also increase cross-tier interference and dramatically drop UEs’ QoS.   

In conclusion, the comparison shows that CRE is a better algorithm for eICIC 

implementation, and will be applied in future simulations. Of the two issues remaining, the 

issue regarding optimal bias value can be addressed through simulation. Interference, 

however, is more difficult to address because it is generated by the basic concept of CRE—

and therefore, cannot be eliminated. In fact, this issue may be even more severe if the CRE 

value is too high, thus restricting the application of CRE. Therefore, combining CRE and 

ABSs to provide complementary to each other is one solution to this situation that involves 

the coordination of macrocells and small cells, and it is discussed in a later simulation section.  

In conclusion, the ABS technique is not only capable of mitigating cross-tier interference, 

but can also be combined with CRE to control the offloading of UEs to small cells to mitigate 

intra-tier interference. FeICIC further modifies ABS with reduced-power subframes to avoid 

resource waste. 

 

1.4  Self-Organisation Network (SON) 

The previous sections mentioned SON and its importance in realising eICIC. The ABS ratio 

and reduced power ratio are values we can obtain through simulation and experimentation. 

SON, however, is more like an abstract concept; thus, it does not have a specific definition. 

This chapter will briefly discuss SON. 

Generally, a self-organising network reduces human work to a minimum in every aspect of 

the process, from set-up to operation and maintenance [34]. Some previous papers suggest 
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that this minimisation of human work should be performed mostly in the set-up phase [35]. 

SON provides a promising control system, suggesting that if an algorithm is well planned 

and considers all possible situations during the set-up phase, then, when the system enters 

the operation and maintenance phase, set-up is no longer needed and autonomy can be 

realised. Such a situation requires no human work, even if new devices are added. 

Obviously, this is only an ideal and abstract concept. To specifically define SON in HetNets, 

the following pre-requests should be achieved first [36]: 

• Operators’ capital expenditure and operating expenditure should be reduced through the 

minimisation of human involvement. 

• No matter how self-organising a network is, capacity, coverage, and QoS should be met 

first. 

• The network should not be fixed, meaning that the network should be capable of 

foreseeing a high number of new small cells and of handling significant expansion.  

And then, SON needs to achieve the following three characteristics. (1) Self-configuration: 

Given the current operating network, any newly allocated node should be able to set the 

configuration automatically so that it can adapt to the network without further manual 

involvement. (2) Self-healing: This feature requires the network to detect system failure and 

apply the compensation method to fix the issue according to the current network situation. 

(3) Self-optimisation: The network will automatically find the optimal nodes’ deployment 

and coordination in order to secure the system performance. For a wireless network, the 

coordination among all cells will be optimised to achieve better QoS, coverage, interference 

mitigation, etc. The optimisation algorithm may be changing if the optimisation objective is 

different [4]. 
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Therefore, a closed-loop feedback system is necessary for SON so that the optimisation 

objective can be maintained in valid range [37]. For example, in simulation, we normally 

suppose that each end user has the same capacity requirements and an equal resource 

distribution. In reality, this approach to resource allocation may seriously reduce network 

efficiency. Different user terminals may have different capacity requirements at different 

times (e.g. video, audio, and image) [38]. In such a situation, a closed-loop feedback system 

that can monitor UE requirements in real time and manage capacity accordingly may 

significantly increase network efficiency. This can also improve the UE’s QoS through other 

means, even when the network and equipment remain the same. Once the closed-loop 

information is obtained, methods of capacity control, such as the management of 

transmission power and modulation codes, can be realised.  

In the context of HetNets, SON can also contribute to high utility of networks. As mentioned 

in the last section, CRE is a powerful tool for mitigating the interference caused by HetNets’ 

multiple tiers and the bias value is a crucial issue in the application of CRE. Some papers 

have applied fixed CRE bias values (e.g. 9 or 12 dB) to all small cells in their simulations 

[39][40]. This method may reduce simulation complexity, but ignores the particularity of 

each small cell, including the cell’s location, number of surrounding UEs, distance from the 

macrocell, and transmission power. All these conditions may affect the CRE value. Therefore, 

applying the same CRE value to all small cells may result in an offloading imbalance, which 

may cause some small cells to be overloaded, while others to face insufficient UE. SON can 

help to solve this issue by adding a closed-loop feedback system to monitor the loading 

situation, reducing bias if a small cell is overloading and increasing bias if a small cell is 
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under-loading. In the end, each small cell will have its own, exclusive CRE bias value, and 

the system will be balanced.  

In addition to helping to balance of CRE values, SON can also benefit HetNets via its third 

standard. At present, traditional cellular networks are highly complex, with many parameters 

requiring tuning. These networks are designed primarily for the single technologies involved, 

and are difficult to reconfigure or design. Therefore, two issues are raised. First, given the 

dramatic increases in capacity requirements, an increasing number of BSs is required. Due 

to the high complexity of traditional networks, every time a new BS is added, significant 

human work is needed, resulting in high costs and lengthy set-up times. Second, with new 

technological developments, such as LTE, more than one technology is involved in each 

network; thus, the traditional network approach is no longer valid [41]. SON, however, may 

avoid such issues. By transitioning parameters from neighbouring nodes, newly added nodes 

can rapidly self-configure their own parameters, thereby minimising the human work and 

set-up times. Given the low complexity of such networks, when new technologies are 

introduced, old-technology nodes can be easily replaced with new-technology nodes. 

Furthermore, protocols and parameters can be easily reconfigured throughout the network. 

Thus, such a network is more suitable for the new generation of technology. 

One of the most promising and attractive aspects of SON networks is that end users can set 

up their own BSs at the network terminal, also known as the home BS or femtocell access 

point [36]. As a result, a new network tier below the macrocell and small cell tiers becomes 

possible. Owing to SON, these devices can integrate themselves into the existing networks 

(parameters from neighbouring nodes) without the help of operators. At this time, of course, 

such UE may no longer be restricted to phones or PCs; other systems, including fire alarms, 
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security systems, real-time traffic monitors, weather reports, and an unlimited number of 

other options, are possible usage contexts. Therefore, SON may help to realise HetNets in 

many ways: the balancing of CRE bias values and self-configuration for new cells added to 

the network. And what we need next is an intelligent technique to enable SON in HetNets.  

 

1.5 Machine Learning Algorithms 

ML enables a system to SON and self-building by analysing data. It applies algorithms that 

allow the system to modify itself without being ‘explicitly programmed’ [42]. In general, ML 

can be classified into two categories: unsupervised learning and supervised learning.  

1.5.1 Unsupervised Learning 

Generally, the main objective of supervised learning is to establish a model from the training 

data with labels. Unlike supervised learning, there is no implication of the pattern or ‘correct 

answer’ for the input and the output is not provided. The objective of this learning is to find 

an input dataset pattern in which certain datasets follow more often than the others [43]. 

One of the highly common-used algorithms for unsupervised learning is clustering, which 

aims to cluster the input datasets into several subsets, in which the elements may generally 

follow the same pattern [44]. According to the parameters given by the dataset, the algorithm 

will automatically distribute data elements into groups and each group has similar elements 

(this similarity is basically defined by their parameters). Once clustering is finished, we can 

study the pattern of each group and make decisions according to the result, such as taking 

measures to mitigate negative parameters or finding outliers that are not suitable for this group 

[45]. 
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The application of clustering is distributed among various fields. Short-range weather 

prediction can be realised through collecting and clustering daily weather conditions as the 

database [46]. In the financial field, clustering can be applied to analyse stock prices and find 

a potential manipulation factor [47]. Image compression uses clustering to group image pixels 

according to their RGB value (the parameters) so that the pixels with similar colours or 

patterns are assembled for a better compression [48]. The clustering algorithm is also widely 

applied in Geography. Through clustering referent vectors of the self-organising map, the 

model can be used to analyse and measure the colour of the ocean [49].  

1.5.2 Supervised Learning  

To implement a supervised learning algorithm, the following two requirements should be 

satisfied: 1) the target and predictor variables should be clarified and listed and 2) sufficient 

samples implying the ‘correct’ values for the target variables should be given. The algorithm 

will learn from these given data to analyse the pattern between the input variables and output 

results. Therefore, a common supervised learning model will follow a similar methodology to 

implement and analyse the algorithm [50]: 

The first step is to collect the training dataset. This set should contain pre-defined values of 

the parameters and output result variables, for example, a list of patients with the name of their 

illness as the result variables. Meanwhile, each patient is attached with their gender, age, and 

occupation as pre-defined values of the parameters. Normally, this training set is incomplete 

because we cannot collect all patient data in the world, and most importantly, we cannot 

collect the data for new patients because in the incidents have not occurred at this time point. 

The algorithm can only generate the model to find the pattern between the input and output 

for the given data.  
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As a result, the following procedure will be the evaluation phase of the generated model. For 

this phase, we need a test dataset, whose characteristic is the same as that of the training 

dataset. The result variables, however, should be held first for later evaluation. The model 

generated from the training dataset according to the ML algorithm is then applied to the test 

data and the predicted result variables are achieved. Next, the predicted result variables are 

compared with provided ones of the test dataset and the performance of this model can be 

evaluated. Finally, the model is modified to mitigate the error rate for the given test dataset.  

Nevertheless, this modified model may not be satisfactory to predict the unseen data yet, and 

thus, we need another validation dataset to apply the modified model to it, as done for the test 

dataset. Further modification will be added to this model till the error rate for the validation 

dataset is also mitigated to a minimum, and the final version of this model can be applied to 

predict the unseen data. The whole process is illustrated in Figure 1 

 

 

 

 

 

 

 

 

 

Figure 1-5 Supervised machine learning process 

                                                



35 
 

1.5.3 Overfitting vs Underfitting 

When we try to evaluate the performance of a supervised ML model, we may introduce a 

terminology, called ‘fitting’. It is normally used to test the adaptation of a newly built model 

in statistics [51]. Both overfitting and underfitting will lead to a poor performance of the 

proposed model.  

From the beginning of learning, the error rate of the model will gradually drop as the model 

continues learning and modifying itself. The model is still in the underfitting phase, which 

requires more relevant feature and more accurate approach to improve. However, if the model 

includes more features or more complicated approaches than necessary, the noise and random 

fluctuations of training data will be picked up and caused overfitting problem. This will 

negatively impact model’s performance to new data and therefore reducing model’s ability to 

generalize [52]. At this time, the error rate will start to increase as the model’s complexity 

increases. The model has accounted for so much irrelevant information from the training 

dataset that the importance of useful information is supressed during the computation. 

Furthermore, the computation time will increase because of the high complexity caused by 

unnecessary information. Thus, the model becomes a ‘personalised’ version of the training 

dataset and is not reliable for predicting the result for the test and validation set [52]. As a 

result, it is very important to understand the background of the data we aim to train so that 

only relevant features can be included. Our simulations also suggest that direct applying 

machine learning algorithm without introducing background knowledge will bring poor 

performance to models.  
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1.6 Handover 

Since we are considering offloading macrocell UEs when small cell network is established, 

we assume all UEs' initial status is bound to macro cell and handover from currently serving 

cell to deployed small cell. Handover process usually contains the following two phases: 

Initiation and Process [53]. During first step, Received Signal Strength (RSS) from serving 

BS and around candidate ones will be measured and make comparison with pre-defined 

algorithm. Once the candidate BS is decided and fulfil the requirement of Handover for 

several TTIs, the process phase will be triggered. During this step, controlling and 

acknowledge information will be received by UE so that Handover process can be finished 

according to protocol of new BS. In other words, almost no information signal is transferred 

during process phase and therefore frequent Handover will lead to significant drop of UE 

capacity [54]. As a result, the algorithm during initiation phase may be the most important 

part of Handover. With intelligent designed algorithm, the unnecessary Handover numbers 

should be mitigated and the computing complex will be reduced to avoid long-time Handover 

phase. The conventional method only depends on original RSS from serving BS and 

candidate BS. It defines the process phase is triggered if candidate RSS is larger than serving 

RSS. Although the computing complexity is minimized, the number of unnecessary 

Handover will be high because of the fluctuation caused by shadow fading and mobility 

model [55]. Although the delay of Handover is mitigated, the situation of QoS drop may still 

be severe.  

Alternatively, [56] suggests adding a virtual bias on RSS during the UE association process 

which represents the threshold of the difference in received signal strength between the 

serving and the target cells. Besides, Time-to-Trigger (TTT) is introduced, which is the time 
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interval that is required for satisfying HM condition. A handover is initiated if these two 

conditions are fulfilled: the Receive Signal Strength (RSS) of the candidate cell is greater 

than the RSS of the serving cell plus the virtual bias and this condition holds at least for the 

time specified in the TTT parameter. By controlling TTT value, the unnecessary Handover 

rate can be reduced at the cost of longer Handover delay. In general, if the value of bias and 

TTT is too high, UE will suffer long Handover delay or even call failure before necessary 

Handover occurs. Meanwhile, if the value is set too small and may not take effects, the 

unnecessary Handover will occur frequently causing severe capacity drop. 

In order to design an intelligent algorithm to balance the unnecessary Handover rate and 

Handover delay, we need to understand the cause of unnecessary Handover and the 

composition of the virtual bias. Ping-Pong handover can be interpreted as a UE handover to 

a new cell and handed back to the original cell in less than the critical time (Tc), which can 

result in communication delay, call dropping, capacity reduction [57]. The cause of Ping-

Pong Handover may be various but can be generally categories into two source: the situation 

of UE's location and mobility model of UE [58]. The first source includes weather (rain, 

snow) and large obstructs like hill or buildings, which may cause significant signal 

fluctuation. This signal fluctuation at cell edge (normally refers to small cell edge in HetNets) 

may lead to frequent Handover happens. The second source includes the frequent random 

movement and UE's high moving speed within the cell edge range, which may cause the 

decision condition triggered frequently and result in ping-pong Handover. Therefore, these 

two sources should be considered when we try to solve ping-pong Handover issue.  

 



38 
 

1.7 Markov Chain Process 

So far, we have discussed how eICIC/FeICIC benefit HetNets in solving challenges before 

and after UE offloading by CRE. However, the effect of CRE during process of handover is 

hard to define due to complex and frequent ping-pong handover. In order to solve this issue, 

we need an intelligent model to map this offloading process.  

A discrete time Markov Chain {M1,M2,...Mn} is a Markov stochastic process with countable 

states space, which changes with process steps T=(1, 2,... ) [59]. In other word, we can 

consider the value of Mn as the result of the nth step process, where the process starts from 

M1 (Some paper supposes the state starts from M0, it is only the difference in later Matrix 

identifying). Since the state number is a countable and set to be s, we may label the states by 

{S1, S2, .... Ss}, and we define Mn happens in Si as Mn = i. As a result, suppose Mn is currently 

in Si, we can define the probability Mn+1 happens in Sj+1 in next step is as follows: 

 

𝑃𝑖𝑗 = 𝑃{ 𝑀𝑛+1 = 𝑗|𝑀𝑛 = 𝑖}                                  (1.1)
 

 

In MCP, this is called one- step transition probability, which means the probability for next 

step only. This formula implies that both the original and final states are involved to affect 

the probability. If this formula is not involved of the time variable, this MCP has stationary 

transition probability. However, if the formula value changes as steps changes, in other word, 

the transit probability will change with time passing by, the MCP will have non-stationary 

transition probability, which is also the case of our study. 
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With the definition of transit probability, we can achieve the transit probability between any 

two states after one step. Suppose i is the row, j is the column, we will be able to establish 

the matrix of Pij, which is called Markov matrix or transition probability matrix.  

𝑃 =
|

|

𝑃11 𝑃12 𝑃13 … 𝑃1𝑗 …

𝑃21 𝑃22 𝑃23 … 𝑃2𝑗 …

𝑃31 𝑃32 𝑃33 … 𝑃3𝑗 …

⋮ ⋮ ⋮ ⋱ ⋮ …
𝑃𝑖1 𝑃𝑖2 𝑃𝑖3 𝑃𝑖4 𝑃𝑖𝑗 …

⋮ ⋮ ⋮ ⋮ ⋮ ⋱

|

|
 

In order to understand the meaning of this matrix, we can consider row i as the probability 

of all the possible results for next step of Mn = i. Since we have assumed that the states 

number is countable, the transition probability matrix should be a square matrix with the 

order as the number of states, which equals s [59]. According to the property of MCP and 

probability matrix, Pij should have the following constraints: 

(1) Each element within the matrix should not less than 0, because it represents probability. 

𝑃𝑖𝑗 ≥ 0,              ∀ 𝑖, 𝑗 = 1,2, …  𝑠                                                   (1.2) 

(2) Suppose state number is countable and set to be s, the sum of each row of the matrix 

should equals to 1. It is because that, the row represents the probability of all possible results 

(including no state transition, where j = i ) given Mn = i. 

∑ 𝑃𝑖𝑗

𝑠

𝑗=1

= 1               ∀ 𝑖 = 1,2, …  𝑠                                                (1.3)  

By applying MCP, once the transit probability formula and initial probability distribution of 

all states M1 is decided, we can achieve the probability distribution for any step during the 

process.  

According to the formula of conditional probability, we can have following equation: 
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P{𝑋1 = 𝑖1, 𝑋2 = 𝑖2, … , 𝑋𝑛 = 𝑖𝑛,} = P{𝑋𝑛 = 𝑖𝑛 | 𝑋1 = 𝑖1, 𝑋2 = 𝑖2, … , 𝑋𝑛−1 = 𝑖𝑛−1,}﹒ 

                                 P{𝑋1 = 𝑖1, 𝑋2 = 𝑖2, … , 𝑋𝑛−1 = 𝑖𝑛−1,}                         (1.4) 

According to property of MCP, we can have following equation: 

P{𝑋𝑛 = 𝑖𝑛 |𝑋1 = 𝑖1, 𝑋2 = 𝑖2, … , 𝑋𝑛−1 = 𝑖𝑛−1 } = P{𝑋𝑛 = 𝑖𝑛 | 𝑋𝑛−1 = 𝑖𝑛−1,} = 𝑃𝑖𝑛−1𝑖𝑛
 

Then, we can get 

 
P{𝑋1 = 𝑖1, 𝑋2 = 𝑖2, … , 𝑋𝑛 = 𝑖𝑛,} = P{ 𝑋1 = 𝑖1, 𝑋2 = 𝑖2, … , 𝑋𝑛−1 = 𝑖𝑛−1,}﹒𝑃𝑖𝑛−1𝑖𝑛

 

                           =  𝑃𝑖𝑛−1𝑖𝑛
𝑃𝑖𝑛−2𝑖𝑛−1

. . . 𝑃𝑖1𝑖2
𝑝𝑖1

                                           (1.5) 

where 𝑝𝑖1
 means the probability of M1 happens in i1 

As a result, with the model of MCP, the probability distribution for any step during the 

process can be obtained.  

 

1.8 Overview and Contributions 

In summary, the innovative topology of HetNets is like two sides of one coin - it can achieve 

high user capacity and wider coverage range; it will also bring a series of challenging 

technical issues. The aim of this thesis is to analyse the cause of HetNets challenges, and 

bring state-of-arts solutions to manage corresponding issues.  

The first issue is interference, which is also the major issue of HetNets. The reason is that 

the unique design of HetNets has caused two new types of interferences where traditional 

single-tier cellular network will not encounter - cross-tire interference and intra-tier 

interference. The second issue is offloading, which is mainly caused by multi-tier cells 
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topology of the network. The difficulty lies not only on technology chosen but also on 

technology combination, and most importantly, the fairness for whole system UEs. The third 

issue is Handover, the unbalance power at cell edge may result in frequent Handover. The 

complex network design also requires Self-Organization. For HetNets, large scale of small 

cells and high mobility traffic map will keep changing the optimal network setting, which 

requires the network to have the ability of self-organizing. The main purpose of this thesis is 

to investigate and propose solutions to be HetNets issues mentioned above. The research 

work has been overviewed as follows: 

Chapter 2  

In literature review chapter, we mainly focus on reviewing accomplished work that have been 

proposed to mitigate HetNets issues. Through critically comparing and analysing existing 

works, we aim to find out most suitable techniques for our scenario. Three major categories 

of interference mitigation schemes have been discussed, and we mainly focus on the third 

one – interference avoidance, which has higher adaption for HetNets scenario. Under this 

category, dynamic schemes have been suggested to be more suitable than static ones. And 

then ICIC with centralized control topology, eICIC/FeICIC with semi-distributed control 

topology, machine learning based SON with autonomous-distributed control topology have 

been detailed discussed and compared with other related works. As a result, these candidate 

techniques have shown their advantages among existing works and will be applied to solve 

HetNets issues in the following chapters. 
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Chapter 3  

In Chapter 3, we have managed to mitigate cross-tier interference of HetNets by combining 

Almost Blank Subframes and Cell Range Expansion. Through muting macro cell in specific 

ABS, small cell UEs will benefit from it without cross-tier interference. This chapter firstly 

apply Nash Bargain Solution with proportional fairness to determine the optimal ABS ratio 

and UE allocation. Which UE are more vulnerable and how ABS affect small cell UEs are 

also discussed. With the information from ABS, we propose the Power-Layer Based NBS 

algorithm to realize reducing power ABS. During Rp-ABS, macro cell power is no longer 

fully muted, we implement the cost of NBS according to power layer and introduce stepped 

power reduction, so that both the small cell and macro cell UEs may enjoy a system balance. 

The optimal Rp-ABS ratio and UE allocation for different layer subframe is obtained and 

evaluated in the end, which achieves up to 31.4% user throughput gain compared to eICIC 

and fixed power ratio FeICIC.  

Chapter 4  

In Chapter 4, we have proposed schemes to solve both offloading problem of HetNets, which 

includes (1) UE offloading from higher tier to lower tier, and (2) small cell backhaul traffic 

offloading. This chapter applies a widely used unsupervised Machine Learning (ML) 

algorithm, K-means Clustering Algorithm (KCA) to address these two offloading issues. For 

first issue, we propose a User-Based K-means Algorithm (UBKCA) by involving HetNets 

background and Enhanced Inter Cell Interference Coordination (eICIC) to decide the optimal 

Cell Range Expansion (CRE) bias given specific offloading objective. The center user group 

set is established to reduce computing complexity. Meanwhile, CRE bias and Edge User 

Factor are introduced to enhance user offloading so that loading balance objective can be 
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achieved. Simulations are then performed to show UBKCA’s better performance than KCA; 

the optimal combination of CRE bias and Edge User Factor are taken based on both accuracy 

and offloading factor; furthermore, we have implemented a close-loop SON system with 

KNN and linear classification so that new UE will be automatically assigned to suitable 

network tier and offloading factor is maintained within a moderate range, and cell edge user 

factor 17.5% and CRE bias of 8dB is optimal combination for our scenario. In order to solve 

the backhaul traffic offloading, we have managed to establish a cache system within small 

cell by applying modified KCA. With the help of our proposed cache system, the hit-ratio 

for our Youtube scenario has been improved to 70.27% and request latency time has been 

reduced by 60.21%, so that both small cell users’ download speed and request time will be 

enhanced. KNN is then applied to predict new users’ content preference and prove our cache 

system’s suitability. Besides that, we have also proposed a system to predict users’ content 

preference even if the collected data is not complete. 

    

Chapter 5  

Chapter 3 and chapter 4 manage to solve issue when UEs are in static state. Conversely, 

chapter 5 has focused on solving ping-pong handover issue during offloading phase within 

HetNets. Ping-pong Handover can result in communication delay, call dropping, capacity 

reduction, and this issue may be even more severe in HetNets because of transmission power 

unbalance. Cell range expansion (CRE), as an important technique of enhanced inter-cell 

interference coordination (eICIC), can mitigate this issue by adding or reducing the bias on 

actual received power to enforce user associations; besides, CRE will stabilise UE within 

specific tier of HetNets and therefore reduce ping-pong handover. However, introducing 
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CRE will also enhance cross-tier interference and decrease QoS, which makes it quite 

complicated to determine CRE value. This chapter has applied amodified Markov Chain 

Process to simulate UE’s mobility model and fast fading randomness when UE is trying to 

Handover. And then use this MCP system to find the optimal CRE value for different kind 

of scenarios with Markov Chain Process, which is 7dB for our scenario. Furthermore, the 

difference between CRE and Handover Margin (HM) has been detailed discuss. The 

combination of CRE and HM is also presented with result.  Finally, simulation results will 

show this proposed method’s advantage with other fix CRE value method. 
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Chapter 2. Literature Review 

 

In last chapter, we have introduced the background of HetNets issues and possible solutions. 

This chapter will critically discuss the accomplished works on HetNets issue management 

and find out which techniques may be suitable for our scenario. We will firstly compare 

existing three major categories of interference mitigation techniques and discuss their 

capability on solving HetNets issues. Secondly, we will focus on reviewing related works of 

the third category - interference avoidance. In which, the schemes have not only been 

limited to ‘interference’ mitigation but also been applied to reallocate resources to solve 

various network issues, such as UE offloading, handover, SON parameters and so on. The 

schemes are then analysed in terms of resource allocation methods – statistic or dynamic. 

Various network control topologies to realise dynamic resources coordination is then 

discussed, which includes centralized, semi-distributed and autonomous-distributed. 

The SON applications with Machine Learning to solve HetNets offloading issue are also 

reviewed and discussed. Finally, we will summarize potential applicable schemes to solve 

HetNets challenges after critically reviewing related works.  

 

2.1  Category of Interference Mitigation Techniques 

Even before the concept of HetNets is brought up, the contradict of frequency reuse and 

interference has become a major issue for wireless communication [60]. Although High 

frequency reuse is one of the key to dramatical increase system capacity, its requirement of 

sharing same channels among users will also inevitably bring interference and cause serious 



46 
 

QoS problem. Therefore, interference has become the most important issue and is widely 

studied.  

In general, interference mitigation techniques can be categorized as follows [61]: Firstly, 

Interference randomization. The interference is randomized over the whole frequency 

channels through distributing data transmission on a set of distinct subcarriers so that high 

frequency reuse can be achieved [62]. Secondly, Interference cancellation. This technique is 

based on spatial filtering so that the interference can be distinguished from normal signal or 

the signal with best quality will be chosen as serving signal [63]. Thirdly, Interference 

avoidance schemes. This technique manage to modify the parameter of network to reallocate 

or coordinate resources, this may include both frequency and time domains. Meanwhile, it 

can also control the transmission power of network cells so that the received signal for users 

can also be reallocated.  

For interference randomization, [64] has proposed a method to be able to realize the 

interference randomization even if UEs have multiplexed in the same Physical Uplink 

Control Channel (PUCCH). When more than one UE try to multiplex PUCCH to uplink 

control signal,  the difference of index of control channel resource used by any two terminals 

in the first timeslot of PUCCH is different from the index of control channel resource used 

by the two terminals in the second timeslot of PUCCH. [65] also introduces a method 

mapping the control channel elements CCE1-CCEn into a first order of control channel 

symbol group. After that he produce another groups of symbols with control signal 

information and then adding these symbol groups with zero values to previous first order 

control channel symbol group. This combination transfers the first order of the control 

channel symbol groups into second order, so that cyclic random shifting mechanism can be 
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established and UEs can sharing the same control signal channels. These applications of 

interference randomization imply that interference randomization mainly focus on solving 

interference issue on control channel, and  is normally applied for UEs’ acknowledge 

message and control signal. It is because that it highly depends on the CQI of control signals 

to distinguish among signals. Interference aims to realize multiplexing multiple UEs’ control 

signals in same control channel instead of identifying the interference signal and serving 

signal, so that the system frequency reuse factor may reach a high level; but its limitation of 

applying in data signal has made interference randomization a poor choice for our HetNets 

scenario.  

For interference cancellation, it is normally separated into two categories: Parallel 

Interference Cancellation (PIC) and Successive Interference Cancellation (SIC), although the 

difference is getting less with the development of new techniques [66]. [67] applies the 

concept of PIC to detect all UEs at the same time so that the first initial report can be 

generated in short time. With this report, severe interference can be detected and cancelled, 

and the detections on multiple UEs are executed in parallel to further investigate interference. 

Since this process is repeated in parallel with multiple UEs, PIC can also be considered as 

multi-stage interference cancellation. Since the initial detection only provide large scale 

interference cancellation, soft interference cancellation in later parallel detections is 

necessary. [68] applies the concept of SIC to detect only one UE for every stage. The first 

stage is to investigate the signal with strongest receiving power, the second stage is to 

investigate the second strongest received signal. The stages continue till all received signal 

are processed. And then each signal from whole received signal will be reorganized and 

constructed, so that this signal can be separated from the composite received signal. In the 
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end, all UEs will benefit from this cancellation process, UEs in early stage suffers little 

interference because of the high received power, UEs in later stage will suffer less 

interference because high power signals have been cancelled in early stage. The interference 

cancellation is no longer limited to control signal only because it does not work on physical 

layer but on composite signal itself. However, there is still a major issue limiting this 

technique applying on HetNets – high latency. For SIC, the computing complexity and 

latency is proportional to number of users, furthermore, this latency is severe for users who 

request real time data transmission. For PIC, although users are detected in parallel, which 

may reduce the latency, there are still P cancellation stages after detecting phase. 

As a result, [69] has proposed a multi-stage SIC model to establish a relax trade-off between 

two concepts. UEs are separated into several groups, each group is investigated together and 

then their signals are also cancelled as a group from the composite received signal, other 

groups are then detected in parallel. The result shows that this algorithm works well for small 

number of UEs because detecting UEs in groups will directly reduce time of detecting stages. 

However, the latency is still a serious issue for large scale network because the complexity 

of parallel cancellation is still proportional to number of UEs, especially each stage is now a 

group instead of single UE. As a result, modified interference cancellation still has limitation 

when applying to large scale network, such as HetNets. 

For interference avoidance, the major objective of this interference mitigation concept is to 

increase the SINR, which enable all system UEs to share same frequency channels no matter 

how serious the interference is. Interference avoidance is an algorithm to coordinate network 

resources and reallocate the resources to UEs in frequency, time and power control [70]. 
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Compared to former two techniques, this technique may have following advantages when 

dealing with HetNets interference management: 

1) Compared to interference cancellation, this kind of techniques will not be limited by 

number of UEs in system. On the contrary, the core concept of interference avoidance is to 

consider all UEs’ interference situation and enhance each single users’ QoS; e.g., [71] applies 

avoidance schemes to partition all system UEs to suitable cells according to their average 

SINR on different cell clusters, and then candidate frequency reuse factors are applied on 

these clusters to find optimal system throughput. For any new UE entering this system, the 

scheme will calibrate its interference situation and assign it to the cluster which benefit the 

whole system most instead of single UE.  

2) Compared to interference randomization, interreference avoidance is applicable for both 

control channel and data channel, which is important for large scale network coordination 

(the performance on control channel may be better through smart coordination); e.g. [72] 

applies interference avoidance technique on typical a 3GPP-compliment heterogenous 

network and compare the performance with applying interference averaging based on 

pseudo-random subcarrier allocation, which is the technique of interference randomization. 

He states that the randomization schemes are simply generating seeds according to physical 

cell identifiers (PCIs) and cell radio network temporary identifier (C-RNTIs). Instead, he 

considers the reallocation of PCIs, C-RNTIs and PDCCH resources and proposes an efficient 

interference-aware scheduling to control transmission power. The simulation results show 

that the small cell data channel capacity size will be doubled because of lower interference 

and trade off the number of PDCCHs given a higher small-cell expansion bias. Meanwhile, 

the small cell control channel capacity will also be enhanced by at least three times for heavy 
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loaded and frequently used services such as Voice Call by reallocating macro-cell PDCCH 

resources.  

As a result, although three categories of interference mitigation techniques all have their own 

advantages and special applications, interference avoidance may be more suitable for our 

large scale network scenario – HetNets. In next part, we will detailed introduce various 

techniques applying interference concept and discuss their capability. 

 

2.2  Review of Interference Avoidance Techniques 

2.2.1 Static versus Dynamic 

Interference avoidance techniques have been widely researched based on different network 

resources, which includes the radio frequency, user association, power distribution and so on. 

Although these schemes are called ‘interference’ avoidance, they have also been applied to 

reallocate resources to solve various network issues, such as UE offloading, handover, SON 

parameters and so on. Therefore, techniques under this category should be classified 

according to whether the network resources allocation is static or dynamic. Furthermore, 

whether the resource (cell, time, frequency, power and so on) is reallocated or coordinated is 

also detailed discussed by various papers.  In order to clearly define how interference 

avoidance work on network, we adopt the idea of [73] and classify the techniques into two 

groups according to their methods interacting with network resources:  

Fixed Resource Allocation (FRA), which is also called static channel allocation in some 

papers. The major concept of these techniques is to pre-allocate part of network resources 

(frequency, time, power and so on) to each single cell permanently for their exclusive use. 

These resources can be evenly distributed among all cells or specifically distributed to 
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necessary cells according to their traffic loads or positions, so that some pre-allocated cells 

are able to share network resources from neighbour cells.  

Dynamic Resource Allocation (DRA): Unlike FRA, there is no pre-allocated resources for 

cells. All network resources are reserved in the central pool and are distributed dynamically 

to system cells according to real time network requirement, and then the resources are taken 

back to the central pool waiting for new coordination. The major concept of DRA is to 

coordinate the network resources distribution so that the optimal system balance can be 

reached given certain level of interference constraints.  

 

2.2.2 Fixed Resource Allocation (FRA) Techniques 

For FRA techniques, the most important resources that need to be pre-allocated is frequency 

because the control of frequency reuse is the fundamental concept of FRA [74]. As mentioned 

in last part, FRA proposes that each cell has its own exclusive part of frequency resource and 

will not share with its neighbour cell. As a result, due to different methods of combining 

frequency resource distribution and interference avoidance, frequency reuse schemes 

contains conventional frequency planning schemes (Reuse-1 and Reuse-3), partial frequency 

reuse (PFR), and soft frequency reuse (SFR). We will then introduce existing application 

with these frequency reuse schemes in FRA and discuss their capability for our scenario [61].  

Conventional Frequency Schemes 

The optimal situation is applying frequency reuse factor of 1 (Reuse-1), which means all 

available frequency resources are shared and reused among network cells. However, this 

scheme will inevitably generate severe interference, especially for cell edge users with low 

received power. For applying FRA, trade-off must be made to reach Reuse-1. In order to 
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directly reduce the interference arisen from reuse-1, [73] and [75] have discussed an replace 

scheme (Reuse-3) to separate whole frequency resources into three equal but orthogonal sub-

bands, so that adjacent sectors can e allocated with different sub-bands and will not interfere 

neighbouring sectors. The results show that the interference situation can be dramatically 

mitigated, but the disadvantage is also obvious: the spectrum efficiency is traded off for this 

strict interference avoidance scheme. As a result, two thirds of frequency resources are not 

fully utilized compared to Reuse-1.  

 

Partial Frequency Reuse (PFR) 

The method of Reuse-3 is quite straightforward by trading off spectrum efficiency and is a 

basic static resource allocation technique. In order to mitigate the disadvantage of traditional 

planning, PFR schemes have been applied to increase the frequency factor from Reuse-3. As 

discussed in last chapter, the common idea of this scheme is to reserve same band and same 

power level among all sectors. In order to create a low level inter-cell interference for all UEs 

within the cell, [76] suggests applying two different frequency reuse factors. Full frequency 

reuse is applied for cell centre users and low frequency reuse is applied for cell edge users 

for lower interference.  [77] modifies the idea by restricting part of the frequency resources 

from using in some sectors at all. Besides, the reuse factors for cell edge users should be 

different for each single cell, which is defined according to actual interference situation. [78] 

modifies the idea of PFR through defining adaptive spectral sharing per cell load conditions.  

This configuration considers the practical fact that the traffic load in different cells will vary 

in both contents and request timing. This situation is similar to graph colouring problem and 

therefore authors applies graph colouring algorithm to solve the resource allocation problem. 
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[79] proposes a numerical method based on static ICIC to calculate inter-cell interference for 

cells sharing same frequency channels, and apply coordination according to numerical results. 

This ICIC technique focuses on mitigating cell-edge UEs interference. It analyse the 

interference level of these UEs before deciding the portion of reserved frequency reuse, 

instead of simply setting a universal reuse factor. And then, author compares the inter-cell 

interference in three schemes, which is uniform frequency reuse factor, Reuse-3 and static 

ICIC. Simulation results suggest that interference level for cell-edge users applying partial 

frequency reuse ICIC is nearly two times lower than those applying Reuse-3 schemes, and 

almost three times lower than those applying universal frequency reuse case.  

However, the disadvantage of PFR is also obvious. PFR proposes the policy of strict no-

sharing rule for reserved part of frequency resources and therefore is also called Fractional 

Frequency Reuse with full isolation. As a result, the spectrum efficiency is still 

underutilization for large scale network although ICIC with PFR has shown superiority over 

conventional Reuse-3 schemes.  

 

Soft Frequency Reuse (SFR) 

In order to raise the spectrum efficiency, some papers propose introducing flexibility to the 

strict no-sharing rule of PFR, which is also called Soft Frequency Reuse (SFR). Therefore, 

the word ‘soft’ means that the frequency reuse can be realized by adjusting power control 

schemes between center and edge bands. [80] and [81] raised the frequency reuse factor for 

center UEs to 1 so that these users may enjoy the full frequency resources. Authors then use 

power control to maintain low level interference for cell UEs. The required reuse factor is 

applied to distribute transmission power to UEs: the center UEs group is assigned with high 
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power because their high interference level of applying Reuse-1, while edge UEs will be 

assigned with low power so that the total transmission power keeps stable. [82] adopts the 

idea of interference awareness and calculate the SINR for active UEs. Author divides the 

groups according to UEs actual SINR instead of central or edge UEs, and assign high power 

to high SINR group. However, ICIC’s idea of SFR may be different to conventional schemes. 

[83] proposes higher power should be assigned to cell edge UEs because these UEs will 

suffer more severe inter cell interference. Center UEs still have higher frequency reuse factor 

and have access to cell edge UEs frequency band but the assigned power will be lower to 

maintain stable total transmission power. Compared to traditional schemes, ICIC focuses on 

achieving total UE interference balance within the cell and neighbouring ones while 

traditional ones only focus on center UEs of current cell with high frequency reuse factors.  

 

In conclusion, FRA techniques does not aim to achieve Reuse-1 for all system UEs. By 

reserving part of frequency resource, FRA is able to significantly improve certain UEs reuse 

factor up to 1. Among existing techniques, ICIC may achieve better results by considering 

actual cell-edge interference situation and neighbouring cell interference level balance. 

However, this concept also requires ICIC’s parameters to be intelligently recalibrated and 

optimized whenever the situation of cell edge UEs is changed. Furthermore, the study of [84] 

implies the performance of cell edge UEs may be more sensitive to the frequency resources 

due to their low received power. The situation will be more severe for small cell UEs in 

HetNets. Therefore, the reserving frequency resource schemes of FRA may not be applicable 

for our scenario.  
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2.2.3 Dynamic Resource Allocation (DRA) Techniques 

After discussing FRA techniques, we can find out that the term ‘fixed’ or ‘static’ implies two 

aspects: 1) the resources are pre-allocated and will not reflect to real-time interference 

situation. 2) the resources allocation are mostly decided according to current cell situation 

only. Even if for techniques such as ICIC which analyse cell-edge UEs interference situation 

from neighbouring cell, they will merely adjust the resource allocation schemes passively 

within current cell (power control). FRA also assumes the homogeneous cell transmission 

power and traffic map so that the whole system cell planning is simply ignored. However, 

HetNets has required the ‘static’ evolving to ‘dynamic’ as well as higher frequency reuse 

factor, because of its various applications, wide coverage range, complicated connections 

among tiers and so on. Under this situation, cell coordination has become the major technique 

to achieve DRA techniques. Coordination schemes will allocate resources based on whole 

network planning. Depending on the topology of controlling, the schemes can be categorized 

as: centralized, semi-distributed, coordinated-distributed, or autonomous-distributed 

[61]. 

 

2.2.3.1 Centralized Topology 

The term ‘centralized’ means the network is coordinated by a central controller. This 

controller will analyse the interference situation of all network UEs and then distribute 

available Resource Block to these UEs. In order to achieve requested network parameters, 

such as total throughput, UE fairness and interference level, central controller must receive 

all Channel Quality Indicator (CQI) from network cells (or eNBs) and send back coordination 

signals. [85] proposes that the coordination on interference avoidance and dynamic load 
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balancing should be managed through centralized topology, meanwhile coordinated cells are 

clustered according to location. Author supposes that complete CQI information from all 

cells and coordination signal back to cells will not be interfered and high total throughput 

gain will be achieved through prompt real-time traffic offloading. [86] establishes a dynamic 

scenario where UEs are assigned with mobility models and random data transfers, and then 

analyse the capacity gains from load balancing with centralized ICIC schemes. [87] proposes 

a modified algorithm to mitigate the  delay issue generated from centralized topology. Author 

first applies centralized coordination topology to allocate RBs to each cell to achieve 

maximum total throughput. And then author proposes distributed algorithm to realize ICIC 

power control among neighbouring cells so that local fine tuning can reduce central controller 

coordination signalling. However, most of these papers only focus on the advantage by 

installing a high speed operation central controller in the network, but ignores the huge extra 

backhaul signalling due to coordination information among central controllers and all eNBs. 

Even if [87] has suggested a modified topology to reduce signalling, it still does not provide 

a fundamental method to solve this backhaul issue. This issue may be even severe for HetNets 

because of the large scale of small cell network.  

 

2.2.3.2 Semi-Distributed Topology 

Centralized cell coordination schemes will inevitably generate huge backhaul signalling, this 

is also the issue for HetNets as discussed in last chapter. As a result, semi-distributed schemes 

have been introduced to mitigate this problem. Unlike centralized topology, semi-distributed 

one normally separates algorithm into two parts: the first part is central based, which is 

similar to centralized schemes and install the central controller to coordinate network eNBs. 
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The second part is eNB based and central controller only assign resources to eNBs instead of 

directly assign RBs to UEs. As a result, eNBs will now be responsible to control their own 

UEs on frame level [88]. 

 

Conventional Schemes  

Therefore, the coordination of RB allocation among eNBs is the major objective of semi-

distributed schemes, especially for high frequency reuse factor network. [89] states each eNB 

should be able to detect which surrounding cell is the dominant source of interference. All 

UEs will report top two interference signals from neighbouring eNB back to the serving eNB, 

so that each eNB can establish an interference group according to collected information. In 

the second step, each eNB will generate a list of preferred RBs which hopes to be banned in 

neighbouring eNBs. This list will be backhauled to central controllers. And then controller 

will collect the preferred lists from the whole network and remake a universal list to 

coordinate all eNBs. This is also the fundamental model of semi-distributed schemes. In order 

to further reduce overhead signalling, [90] proposes giving eNBs more power to decide RB 

allocation. With conventional two-level control system, central controller now only give 

‘suggestion’ to local eNBs, while the eNBs have the right to modify the decision according 

to real time traffic load. [91] transferred RB allocation problem into a fractional graph 

colouring problem. Author use two-level system to collect the information from all eNBs 

according to CQI and maps a global interference graph. In this graph, the vertices represent 

the UEs, and the edges represent critical interference relations between them. The goal is to 

find a set of colours (set of RBs) for such that there is no conflict between any combinations 

of colours in the sets.  
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This two-level cell coordination model has been widely applied and effectively allocated RBs 

with lower overhead signalling. However, these conventional schemes have assumed that all 

RBs are allocated with an equal power to simplify the interference analysing in central 

controller level. Furthermore, these schemes only passively allocate RBs based on the given 

traffic load map and ignore the situation of overloading or underloading. These two 

assumptions clearly cannot adapt the fast evolving wireless network in various applications, 

complicated connections among tiers, wide coverage range and so on. Under such situation, 

an innovate scheme eICIC have been discussed and applied by papers.  

 

eICIC/FeICIC schemes 

The high reuse factor (up to 1) spectrum sharing between high power macrocells and low 

power small cells is the fundamental of HetNets (this is also the reason uniform RB power 

distribution is no longer valid). In order to realize coordination among different tier of 

networks, [92] introduces basic idea of eICIC by adopting two-level semi-distributed 

topology on small cell network. Each macrocell is a central controller and a number of small 

cells are attached to this macrocell. The macrocell provides coordination and coverage for 

small cell, while small cells provide cell edge UEs enhanced QoS or cover network black 

spots. The author also raises two challenges for eICIC: 1) how much radio resources should 

be traded off to mitigate interference in small cell and 2) new association rules should be 

defined instead of passively accept the overload situation for macrocell.  

As discussed in introduction chapter, eICIC applies Almost Blank Subframes (ABS) to solve 

the first challenge, which creates protected subframes specially allocate small cell UEs with 

high cross-tier interference. Meanwhile, CRE is applied to offload UEs from macro cell to 
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small cell to maintain balanced load distribution, which may solve the second challenge. 

However, the methods to find optimal ratio of ABS and CRE are numerous and sometimes 

even contradictable. In general, the major conflicts are summarized as below: 

1) Total throughput gain versus Cell edge UE throughput gain.  

To find a suitable optimization objective is the basic to solve this kind of problems. Some 

schemes attempt to dynamically find the ABS parameters so that the maximum total 

throughput is achieved. [93] transfers the ABS resource allocation into a global NP hard non 

convex optimization problem and his objective is to maximize the total throughput. [94] 

proposes a joint optimization of power allocation of ABS and resource allocation to 

maximize the total throughput,  so that the optimal ratio of dynamic ABS can be achieved.  

To maximize total throughput is a straightforward and effective method for normal 

optimization problem, but may not be sole dominant factor to decide ABS ratio. ABS is 

designed to mitigate small cell edge UEs’ interference, its effects will vary according to UEs’ 

actual interference situation and even be ignored by center UEs. Simply use total throughput 

as optimization objective will bring bias for ABS ratio. Therefore, [95] compares the ABS 

effects on 5 percentile UEs and 50 percentile UEs. Author finds out the effect of ABS has 

most significant effects on 5 percentile, which is up to 72% throughput gain. The effects 

fades and reach only 53% throughput gain for 50 percentile small cell UEs. [96] and [97] 

defines cell edge UEs to be 5 percentile and only considers the gain of this part of UEs to 

determine ABS parameters.  

2) Fixed ratio versus dynamic ratio.  

Although eICIC is dynamic resource allocation technique, some papers still argues that the 

ABS ratio should be fixed to obtain stable small cell interference mitigation. Meanwhile, 
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CRE will be used to dynamically control the number of small cell UEs and maintain the 

efficiency of ABS. [98] applies fixed 1/10 ABS ratio which means one of ten subframes 

Macrocell will be muted and small cell will transmit under uniform power over all subframes. 

And then author applies different CRE bias under 0, 6 and 12 dB to control the UEs allocated 

to small cell. The result shows under CRE =12 dB, system will achieve best average UE 

throughput gain with 23% compared to system without ABS. [99] modifies the fixed ABS 

ratio by pre-defining 4 muting levels – 1/8, 2/8, 3/8 and 4/8, so that the system has certain 

capability to adapt to the traffic map instead of sticking to one value. The authors suggests 

that the choice of muting ratio is controlled by CRE value. Higher CRE value will offload 

more UEs to small cell and therefore rise more interference issues for cell edge UEs, and 

higher ABS ratio will be introduced to mitigate the situation. Results show that for CRE up 

to 30 dB, 4/8 will be applied and muting ratio more than 50% is not suggested.  

Dynamically controlling CRE value to adapt the system to real-time traffic map may be an 

option if we assume the interference situation for each UE is the same. However, due to 

complex topology of HetNets and low power situation of small cell, the actual interference 

levels of small cell UEs are various and highly sensitive to traffic map changing. Moreover, 

if CRE value is higher than reasonable value (like 30 dB), it will affect central UE of macro 

cell and bring negative effects for system. [100] applies a distributed dynamic ABS ratio 

scheme which assign each macro cell with a changing ABS ratio. The algorithm focuses on 

optimizing cell edge UEs instead of total UE throughput, and part of macro cell UE 

throughput are allowed to be sacrificed to benefit small cell edge UEs. Meanwhile, CRE 

value is fixed to assess the capability of dynamic ABS ratio in coordinating changing 

interference situation. The results show the algorithm by dynamic ABS ratio has achieved 
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55.84% gain for 5th tier UEs, where the optimal gain with static ABS ratio is only 46.03%. 

Unlike CRE controlling, author has considered all real-time cell edge UEs’ interference value 

and used them for calculating optimal ABS ratio for current traffic map. [101] - [103] has 

further modifies the schemes by introducing game theory to calculating fairness index for 

each single UE instead of simply calculating throughput. During these papers, Nash 

bargaining solutions have been applied and become popular for its capability to solving 

multi-players fairness problems. As a result, dynamically controlling ABS ratio to adapt to 

interference situation changing and applying CRE to offload UEs only may be optimal 

schemes for our scenario.  

3) Partial fairness versus fairness with cost 

We have mentioned in last section that game theory with fairness has been introduced to 

coordinate ABS subframes resources. In order to transfer our scenario into multi-player game 

model, the performance and cost for each player (which is UE) should be predefined. [104] 

adopts the idea of partial fairness (or proportional fairness) in game theory, and ignores the 

cost of players and only consider their performance. The performance of each UE is defined 

as its downlink throughput with current ABS schemes. The optimal ABS ratio is then 

calculated to achieve highest system utility. [105] and [106] modifies the definition of 

performance from single UE throughput to aggregate cell throughput to simplify the 

multiplayer scenario. Meanwhile, they also adopt the idea of partial fairness and define the 

cost of aggregate cell to play this ‘game’ as zero. Partial fairness is normally applied to 

simplify multi-player model, however, 0 cost means that UE can switch among players 

without penalty (or capacity lost for system). Furthermore. This scheme may not suit for 

FeICIC, where macrocell UEs will also compete to get better resource and 0 cost condition 
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is not adaptable for complex NBS. Therefore, partial fairness may not be suitable for our 

scenario and reasonable cost for NBS multi-player model is necessary, especially for FeICIC.  

4) CRE’s effect on handover  

To decide the value of CRE is always a dilemma because of its multi effects on HetNets. 

[107] states that CRE may help to expand small cell range virtually, so that coverage, cell-

edge throughput, and overall network throughput are improved. [108] also suggests that CRE 

has changed conventional user association rule by adding virtual bias on received small cell 

power, so that UEs may be ‘forced’ to offload to small cells. And then total throughput will 

be enhanced due to high spectrum efficiency of HetNets. However, [109] argues that CRE’s 

major objective is to offload UEs and solve load unbalance issue of HetNets. It is not 

designed to increase UE throughput, on the contrary, too much CRE bias may even bring 

serious cross-tier interference for cell edge UEs. As a result, CRE will bring negative effects 

on total throughput.  

[110]’s result shows that although positive CRE bias will help to offload UEs to small cell 

and therefore increase UE’s throughput fairness, negative CRE bias will increase total 

throughput because cell edge UEs staying in macro cell will suffer less interference compared 

to them staying in small cell. As a result, CRE bias will impact cell edge UE’s QoS in terms 

of throughput.  

On the other hand, CRE may also bring positive effect on UEs’ throughput in terms of 

handover phase as discussed in introduction chapter. [111] and [112] indicate that adding 

bias during user association phase may mitigate unnecessary handover between neighbouring 

cells, and this ping-pong handover issue may be more severe in HetNets due to power 

unbalance. [113] further investigates the effect of CRE on mitigating ping-pong handover 
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from system level simulations, which confirms the positive application of CRE on UE 

throughput. The results show that introducing CRE bias will restrain handover failure rate 

under 1% while ping-pong handover rate is also maintained under 1%. However, the results 

also show that CRE’s effect is not linear, and the optimal value should be 6dB. [114] also 

believes that CRE’s effect on handover is not fully investigated. Author simulates UEs’ 

mobility performance by analysing ping-pong handover rate with the effects of CRE. Results 

show that although CRE has limited effects on intra-tier interference in terms of offloading, 

its positive effect on mitigating ping-pong handover may still benefit UEs in HetNets.  

As a result, the decision of CRE is a mixture of offloading, cross-tier interference and 

handover aspects. Simply considering its positive or negative aspect may not achieve optimal 

CRE value and requires an intelligent model to solve this issue. 

 

2.2.3.3 Autonomous-Distributed Schemes with Machine Learning Algorithms 

As discussed above, the major difference between central and semi-distributed topology is 

that the resource allocation may happen within eNB instead of backhaul to central controller. 

Autonomous-distributed schemes, however, further ‘decentralized’ the network by reducing 

not only the central coordination but also coordination among eNBs. Each eNB is highly 

autonomous and assign channels only based on its own UE information, which further 

eliminating the overhead signalling among eNBs [115]. The most straightforward way is to 

complete forbidding coordination among eNBs so that communication among eNBs is no 

longer required. [116] proposes a FFR scheme for constant bit-rate traffic, which requires no 

signalling among eNBs. The proposed scheme systematically achieves a frequency reuse 

efficient for a given user spatial distribution. The scheme divides the bandwidth into a number 
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of sub-bands, each consists of a number of sub-carriers. Each eNB constantly performs a 

“selfish” optimization of the assignment of its power and UEs to sub-bands with the objective 

of optimizing its own performance by minimizing its power usage. The disadvantage of this 

‘zero’ communication scheme is obvious – it assumes uniform power distribution for all 

subframes because there is no interference information from neighbouring eNBs, and 

therefore no protection measures for cell edge UEs. The situation may be even more serious 

because small cell edge UEs will suffer higher interference due to low received power. 

Without specific interference mitigation measures, QoS for these UEs is not acceptable. [117] 

argues that complete coordination isolation among eNBs may bring negative effects for 

system load balancing, which is highly important for HetNets due to power difference. The 

scheme provides an inter-cell interference partial coordination and uses power control to 

apply load balancing. [105] also argues that interference situation from neighbouring small 

cell is the dominant factor to decide macro cell ABS ratio. As a result, the key of realizing 

‘autonomous’ HetNets does not rely on cutting the communication among eNBs but on how 

to enable eNBs ‘self-organizing’ (SON) with minimum information transmission. 

 

We have discussed the definition of SON in introduction chapter, and indicate that finding 

pattern and intelligent algorithm is the fundamental for SON. HetNets has complex tiers of 

network and various standards of equipment, therefore it is hard to summarize pattern from 

these huge amount of variables. Considering such situation, unsupervised machine learning 

may be the capable methods to achieve SON in HetNets. [118] aims to solve the problem of 

traffic congestion of network. The optimal algorithm to distribute RB among UEs with the 

merit of self-organizing networks is derived through reinforcement learning by observation 
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and interaction with the network. [119] discuss how machine learning methods help to solve 

handover problem for high-speed UE bounded to small cell. Author proposes a context-aware 

mobility management procedure for small cell network. The algorithm combines 

reinforcement learning and eICIC to increase small cell cover range. Furthermore, author 

also suggests that machine learning should be applied to predict future traffic map so that 

SON on small cell cover range can be achieved. Results show that high-speed UEs 

throughput can be improved by 80% and handover failure probability can be reduced by 1/3 

on average. [120] introduces fog networking topology into HetNets. The locations of the fog 

nodes that are auto-upgraded from small cells are specified by unsupervised soft-clustering 

machine learning algorithm. And then the proposed approach apply simple, but practical, 

Voronoi tessellation model to efficiently reduce average system latency. In the end, closed-

loop error control system is established to monitor average latency within required range. 

Compared to complete isolated autonomous system, machine learning based SON system 

still requires minimum necessary information exchange among neighbouring eNBs, which 

includes interference situation, cell edge UE locations and ABS arrangement and so on. 

Although these data transfer may increase overhead signals, they are also vital information 

for SON system establishment. Review papers show that not only average latency drops, total 

throughput may also increase especially for cell edge UEs. Moreover, the effects of machine 

learning based SON may continue to improve as more data is collected and algorithm will 

keep modifying itself to adapt changing traffic map.   
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2.2.3.4 Machine Learning Algorithms Comparison on Solving Offloading Issue 

We have discussed and reviewed the capability of ML on establishing SON system in last 

part. In this part, we will review popular machine learning algorithms’ applications in 

wireless communication and find suitable algorithm for one of the possible SON system in 

HetNets – offloading. Conventional algorithms used in solving offloading issues contains: 

reinforcement learning, Q-learning and K-means clustering. For reinforcement learning, [121] 

applies this algorithm to solve power control problems so that optimal energy efficiency can 

be achieved. Author used Markov Chain Process and define the states as the battery state, the 

channel state and the packet transmission/reception states. The transit probability is trained 

by channel state information feedback on UEs’ energy efficiency situation. In order to obtain 

the transit probability formula, flexibility has been introduced by applying the maximum-

likelihood heuristic policy and the voting heuristic policy. [122] proposes a coordination-

based and context-aware mobility management procedure for small cell networks by 

applying reinforcement learning. Macro cell and small cell will share long-term traffic map 

and therefore learn how to obtain optimal cell range expansion based on not only higher UE 

throughput but also better fairness. The algorithm will keep reinforcing modifying itself with 

the change of traffic map. Meanwhile, Q-learning is similar to reinforcement learning and 

also based on MCP. In specific, Q-learning modify the algorithm by introducing an agent, 

this agent will receive reward if it take actions on a specific state and the goal is to maximize 

the accumulated reward. And the reward is illustrated by a Q-function, in which “Q” is 

defined to be an fixed random number [123]. Author of [124] applies Q-leaning to solve both 

the resource allocation and interference coordination problems in HetNets. Firstly, the 

algorithm will predict possible available spectrum resources through continue learning from 
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existing RB allocation situation. Secondly, these available resource will be specifically 

assigned to small cell network so that small cells may attract more UEs (higher reward) to 

allocate in these RBs. [125] proposes a modified Q-learning model by introduce Hidden 

Markov Chain design so that Markov chain process will converge to a bounded near optimal 

distribution even if only part of system information is provided. Moreover, game theory with 

payoff-based log-linear learning is also combined with Q-leaning so that system fairness is 

also obtained.  

Unlike last two algorithms, K-means partition elements according to clustering instead of 

making decision based on probability. Clustering problem has been widely applied to solve 

issues in wireless communications, which includes interference mitigating on Coordinated 

multi-point transmission (CoMP) [126], devices clustering in D2D networks to achieve high 

energy efficiency [127] and WiFi users clustering to maintain optimal access point 

association [128]. Therefore, we may also apply K-means to clustering UEs in HetNets to 

obtain optimal user association between macro cell and small cell. After reviewing 

applications of these algorithms on offloading issues, we can find out that conventional 

reinforcement algorithm focuses on establishing a strict mathematical model based on 

probability. With exact transit probability formula and complete Markov Chain model, 

algorithm can accurately map detailed system information which helps to make offloading 

decision. However, this ‘detail’ will also limit the algorithm in terms of complexity and 

calculating time. Therefore, Q-learning has modified the algorithm by introducing Q-

function on specific state so that we can train the algorithm even if we don’t know the whole 

model. The problem of Q-learning is also obvious – the performance of the algorithm is 

highly dependent on how well we define Q-function, this also reduce the adaption of the 
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algorithm to fast changing traffic map. K-means also requires no model establishment, 

besides, elements will form groups based on similarity instead of function or formula. 

Although this may reduce the accuracy of decision, it dramatically increase algorithm’s 

calculating speed and adaption to large scale of network, which may be more suitable for our 

HetNets offloading scenario. Additional techniques should be combined to maintain high 

accuracy (such as CRE).  

 

2.3  Summary 

Within this chapter, we firstly discuss three major categories of network issue mitigation and 

find out interference avoidance may be optimal category for our HetNets scenario. It is 

because schemes in this category will not be limited by huge size of network and also 

applicable for both control and information signals. After that, fixed schemes of this category 

are critically discussed, and three types of ICIC schemes are specifically analysed. Although 

Soft Frequency Reuse has shown advantage over conventional fixed interference avoidance 

schemes by considering cell edge UEs as well, it still cannot reach the requirement of HetNets 

Reuse-1 standard. As a result, dynamic schemes of interference avoidance category may be 

more suitable for our scenario because three major issues of HetNets can be mitigated 

through intelligent dynamic resources allocations and self-organisation topology, which 

includes semi-distributed (eICIC/FeICIC), autonomous-distributed with machine 

learning based SON (K-means algorithm and Markov Chain Process). In the following 

chapters, we will detailed analyse candidate techniques and propose solutions to HetNets 

issues.  
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Chapter 3. Cross-tier Interference 

Management with eICIC and FeICIC 

 

3.1  Introduction 

As discussed in literature review chapter, enhanced Inter-cell Interference coordination 

(eICIC) and Further Enhanced Inter-cell Interference coordination (FeICIC) may help to 

solve the first challenge of HetNets, which is the cross-tier interference. In this chapter, we 

will firstly introduce Nash Bargain Solution (NBS) and transfer the eICIC problem into an 

N-player NBS problem. The first simulation is to apply partial fairness NBS and implement 

eICIC. Based on the analysis from case 1, we propose a multi-layer NBS algorithm in case 2 

to implement FeICIC. The performance for both simulations are evaluated by comparing 

with existing eICIC parameters and fixed power ratio FeICIC. In conclusion section, 

contribution and further work is presented.  

 

3.2  Methodology 

3.2.1 Apply Nash Bargain Solution for eICIC 

In introduction chapter, we have introduced the idea of eICIC and its application in solving 

cross-tier interference. In this part, we will detailed discuss our proposed method of ABS 

implementation. Nash Bargain Solution is a concept of game theory that helps to distribute 

limited resources among candidate competitors. One simple description of NBS is shown as 

below: N= {1, 2, …N} competitors require the usage of resources, but resources are not 
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enough to satisfy all of them (obviously, each player’s best expectation is to obtain all the 

resources). In order to obtain reward, everyone will have to demonstrate their performances 

once they receive the resources, and summarized as set P = {P1, P2, …, Pn}. Meanwhile, all 

the competitors will also have to pay a cost to earn the right to enter this competition, and 

summarized as set C = {C1, C2, … Cn}. After considering both their performance and cost, 

each user will gain his proportion of the resources (some user may even gain nothing on 

extreme situation if their performance is less than cost). This situation is called N-person 

bargaining problem, and the formula is shown as below: 

𝑈 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑥

∏ (𝑃𝑖(𝑥) − 𝐶𝑖(𝑥))𝑁
𝑖=1                                                       (3.1) 

For (3.1), the performance Pi(x) and cost Ci(x) of all players (from i=1 to N) are functions of 

variable x. Our objective is to find this optimal value of x and the corresponding maximal 

utility (U). Therefore, we can formulate our scenario into a NBS problem and solve it, which 

means we need to define the players, resources and cost in this formula. For eICIC, ABS can 

provide better QoS but has limited numbers, small cell UEs will compete to gain ABS instead 

of normal subframes. Macrocell UEs, meanwhile, can only be allocated in nABS. This 

situation can be considered as N-person bargaining problem. However, in real simulation 

part, this computation is quite complex to realize. Firstly, small cell may be bounded by 

dozens of UEs, and computation complexity may be severe due to large number of N. 

Secondly, N is not same for different small cells. It may be difficult to formulate a simple 

common equation to cover all the small cells during simulation part.  

Nevertheless, for each small cell under eICIC situation, the type of subframes are certain – 

either ABS or nABS. Therefore, we can consider nABS and ABS as two players competing 
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to get more subframes. Since small cell UEs will be allocated in these two type subframes, 

the original N-player problem is transferred into 2-player problem once UE are partitioned 

(for small cell). In mathematical way, we set nABS to be player 1, and ABS to be player 2. 

In such case, P = {P1, P2} and C = {C1, C2}, where P1 is the total performance of nABS 

when his proportion of UEs are allocated. In our scenario, P1 can be considered as the total 

capacity of nABS UEs of current small cell. Similarly, P2 can be considered as the total 

capacity of ABS UEs of current small cell. The respect formula is shown as below: 

 

𝑃1 =   
𝐵𝑇(1 − 𝑟)

𝑎𝑛
 ∑ 𝑎𝑗𝑙𝑜𝑔2 (1 + 𝑆𝐼𝑁𝑅𝑎𝑗

)

𝑁

𝑗=1

                                               (3.2) 

𝑃2 =   
𝐵𝑇𝑟

𝑏𝑛
∑ 𝑏𝑗𝑙𝑜𝑔2 (1 + 𝑆𝐼𝑁𝑅𝑏𝑗

)

𝑁

𝑗=1

                                                             (3.3) 

𝑎𝑗 + 𝑏𝑗 = 1                                                                                                             (3.4) 

In (3.2) and (3.3), the objective of formula is to calculate total throughput of nABS UEs and 

ABS UEs by applying Shannon Capacity Theorem. In which, j represents which UE is under 

calculation; B is the bandwidth; 𝑎𝑗 is the probability of UE allocating on normal subframes. 

𝑏𝑗 is the probability of UE allocating on ABSs. Combining these two conditions, each small 

cell UE must be allocated in either normal ones or ABSs, and secures the condition of 2-

player problem (3.4). r represents the ratio of ABS, and it equals to number of ABS over total 

subframes. T is total number of subframes, 𝑇(1 − 𝑟) and 𝑇𝑟  can be considered as total 

transmitting time of normal ones and ABS respectively. 𝑎𝑛 and 𝑏𝑛 represents total number 

of UEs allocating in non-ABS and ABS respectively. Left part of formula before ∑  means 
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the bandwidth are shared by corresponding UEs, and right part of formula after ∑   

log2(1 + SINR ) is part of Shannon Capacity Formula which used to calculate downlink 

capacity of UE; ∑  is used to calculate total capacity of all involved UEs. N is the number of 

small cell UEs. As a result, P1 and P2 are defined.  

So far, we have defined performance for small cells. Since we aim to reach a maximum utility 

for whole HetNets system, we should also take macro cell UEs into consideration. Unlike 

small cell, there are no ABS users for macro cell because it is muted during this period, and 

𝑐𝑗 = 1. Therefore, total capacity for macro cell UEs can be calculated as follows, where the 

parameters are similar to (3.2): 

 

𝑃3 =  
𝐵𝑇(1 − 𝑟)

𝑐𝑛
∑ 𝑐𝑗

𝑁′

𝑗=1

𝑙𝑜𝑔2 (1 + 𝑆𝐼𝑁𝑅𝑐𝑗
)                                              (3.5) 

For cost part, [98] supposes the cost of players can be assumed as 0 in eICIC to obtain the 

proportional fairness. Since the ‘player’ ABS or nABS is integrated by UEs, 0 cost means 

that UE can switch between two players without penalty (or capacity lost for system). For 

sim1, we have adopted this assumption for simplicity. However, this may not suit for FeICIC, 

where macrocell UEs will also compete to get better resource and 0 cost condition is not 

adaptable for complex NBS. We will further discuss the cost in case 2 part.  

 

𝑈 = 𝑎𝑟𝑔 max
𝑟,𝑎𝑗,𝑏𝑗

𝑃3 ∏(𝑃1(𝑖, 𝑟, 𝑎𝑗, 𝑏𝑗) − 𝐶1(𝑖, 𝑟, 𝑎𝑗 , 𝑏𝑗))(𝑃2(𝑖, 𝑟, 𝑎𝑗, 𝑏𝑗) − 𝐶2(𝑖, 𝑟, 𝑎𝑗, 𝑏𝑗))

𝑁𝑠

𝑖=1

 (3.6)  
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As a result, we can transfer the NBS problem according to HetNets scenario, and our final 

objective equation can be summarized in (3.6). Firstly, if we consider 2-BS HetNets model, 

this formula will change 2-player NBS to 3-player NBS by introducing macro cell as well to 

maintain whole HetNets utility fairness (Ns =1 at this time). Secondly, we have stated that 

the ABS ratio and UE partition will control the parameters of eICIC and hence affect the 

capacity of UEs. Therefore, the performance P is a function of r and aj, bj separately. And  

our objective is to find this balanced point of r and aj, bj to maximize the total utility. Thirdly, 

Since P1 and P2 is proportional to the number of bounded UEs, if either one bounded too 

much UEs, the other one will suffer loss accordingly (total number of UEs is fixed). As a 

result, total utility U will drop because these two parts are related by multiplication. To obtain 

optimal system utility, they should cooperate instead of conflict.  

After establishing the objective formula, we need to understand how UE reacts to ABS and 

intelligently partition UEs. (3.2) and (3.3) require the summation of capacity for all UEs 

within ABS and nABS, which makes the chosen of UE is essential for algorithm. According 

to Shannon theorem, UE’s capacity is proportional to its SINR. Therefore, we align all UEs 

bounded in one small cell in descending order according to their distance from the cell. The 

reason of this arrangement is that the distance from cell is one dominant factor affecting UE 

performance. According to Path loss model, signal strength drops exponential to distance. 

Cell edge small UEs may be more vulnerable to cross-tier interference. In other words, cell 

edge UEs (long distance to small cell) may have higher priority to enjoy the benefit of ABS. 

Meanwhile, according to the definition of [20], the SINR equation for ABS UEs is different 
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from normal small cell one (3.9) by eliminating interference from macro cell (cross tier 

interference),  : 

 

𝑆𝐼𝑁𝑅 =  
𝑃𝑠𝑙𝑠𝑔𝑠

∑ 𝑃𝑖𝑙𝑖𝑔𝑖
𝑁𝑠

𝑖=1 + σ2
 

                                                          (3.7) 

 

              𝑃𝑎𝑡ℎ 𝐿𝑜𝑠𝑠 =  20 𝑙𝑜𝑔10( 𝑑) + 20 𝑙𝑜𝑔10( 𝑓) − 147.55                           (3.8) 

                                                     

Ps and Pi represent the transmission power of small cell, where Ps is the power of serving 

small cell. ls and li represent free path loss, and the expression in dB is (3.8). In which, d is 

distance from serving cell to UE, and f is carrier frequency. The constant number of 147.55 

is calculated when the unit of d is meter and f is Hz, and the variation of this number is due 

to process of dB conversion. The actual number may vary if the unit of d and f is different 

(such as Km and GHz). 𝑔𝑠  and 𝑔𝑖  is the fast-fading gain which is assumed as Rayleigh 

Distribution. As a result, the expression of g should be the exponential random variable. And 

𝑃𝑠𝑙𝑠𝑔𝑠  represents received signal from serving small cell with free path loss propagation 

model. Therefore, the interference from macrocell is eliminated in (3.7).  

As described all above, we have formulated the following algorithm to find optimal ABS 

ratio r and UE partition: 

 

Algorithm 3.1: eICIC design with partial fairness NBS                                                                                                

Input:  
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• Set constant value B, T to feasible values 

• Set C1 = 0, C2 = 0 for partial fairness NBS 

• Initialize r = 0.05 (the iteration step is also set to 0.05) 

• Small cell number Ns, number of UEs in current small cell N  

• Set optimal small cell utility Si = 0, and corresponding temporary variable Si’ = 0 

• Set optimal number of UEs allocating in nABS k =1, and corresponding temporary 

variable k’ =1 

• Set optimal total utility U = 0, and corresponding temporary variable U’ = 0 

• Set iteration step variable i =1 

Initialization and Iterations            

1.  Initial U = 0 

2.  for r = 0.05 to 1 (iteration step = 0.05) do (loop for possible ABS ratio) 

3.   for i = 1 to Ns do (loop for all small cells within HetNets) 

4.    Initialize k’ = 1  

5.    Initialize Si’ = 0 

6.    Sort UEs in ith small cell in descending order according to their distance to    

 small cell 

7.    for k = 1 to N do (loop for all UEs in ith small cell) 

8.      Allocate UE 1 to k into nABS 

9.      Allocate UE k+1 to N into ABS 

10.      P1 = total capacity for nABS users  

11.      P2 = total capacity for ABS users 

12.      𝑆𝑖′ = (𝑃1 − 𝐶1) ∗ (𝑃2 − 𝐶2) 

13.      If Si’ >Si then 

14.        ki = ki’ to replace optimal user partition  

15.        Si = Si’ to replace optimal utility for current small cell   

16.      end if  

17.    end for 

18.   P3 = total capacity for macro cell users under current r 

19.   𝑈′ = 𝑃3 ∏ 𝑆𝑖
𝑁𝑠
𝑖=1   

20.    if U’ >U then 

21.        U = U’ to replace optimal total utility for whole system 

22.   end if 

23.  end for 

24.  Return U, k, r 
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3.2.2 Power-Layer Based NBS for FeICIC 

FeICIC is a combination of time-domain and power-control techniques. In FeICIC, 

macrocells’ transmission power is reduced during ABS instead of being simply muted. 

Macrocell UEs prefer to be allocated in nABS for better QoS, which is opposite to the small-

cell situation. As a result, competition occurs not only in small cells but also in macrocells 

for an FeICIC scenario. To implement the FeICIC design, we need to make three essential 

decisions: distribution of UEs, ratio of ABS, and ratio of reduced power. 

To analyse the difference between eICIC and FeICIC, we need to understand how macrocell 

UE behaves in rp-ABS. We have stated that (3.8) shows the free-space path loss model in 

dB, where d is the distance between the cell and UE and f is the carrier frequency. SINR of 

macro UE can directly affect UEs’ capacity, and can be derived in (3.9), where the numerator 

shows the UE’s receive signal strength (RSS) affected by the free-space path loss and shadow 

fading. The denominator contains two parts: interference part, which is the total signal 

strength power obtained from other surrounding cells (contain both cross-tier and intra-tier 

interferences, which is different from 3.8) and thermal noise part (σ2). Therefore, a UE’s 

SINR is proportional to its RSS from the serving cell. For a macrocell UE, a higher RSS 

means that the UE is close to the macrocell and low-layer ABS is enough to meet the UE’s 

QoS requirement; lower-RSS UEs, however, require high-level power subframes to maintain 

moderate SINR while suffering from a large cross-tier interference, and should be allocated 

to nABS. As a result, we align both macrocell UEs and small-cell UEs in descending order 

according to their distance from serving cell, to meet various power-layer subframes with 

decreasing SINR.  
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A conventional eICIC design sets a universal ABS ratio and fixed power ratio. However, the 

fixed power ratio may not satisfy all UEs’ QoS requirements because of their various 

locations and SINR situations; besides, the efficiency of FeICIC is not fully exploited by 

simply setting up one type of ABS. Therefore, we propose a multi-layer ABS according to 

their power ratio, so that UEs may have options to choose which layer suits their QoS 

requirement best. In this paper, we design two types of rp-ABSs with power ratios of 0.67 

and 0.33. Considering nABS and small-cell subframes, the system comprises six layers and 

we can formulate this situation as a six-player NBS problem. 

 

𝑆𝐼𝑁𝑅 =  
𝑃𝑠𝑙𝑠𝑔𝑠

𝑃𝑚𝑙𝑚𝑔𝑚 + ∑ 𝑃𝑖𝑙𝑖𝑔𝑖
𝑁𝑠

𝑖=1 + σ2
 

                                                          (3.9) 

 

Let us assume that this UE location is fixed. The first layer is nABS for the macrocell, during 

which the macro UE may enjoy the best QoS because of unmodified transmission power in 

the numerator of (3.9). Compared to (3.8), this part represents received power from 

neighbouring macro cell as interference. 𝑃𝑚 is transmission power of neighbouring macro 

cell, 𝑙𝑚 represents path loss from neighbouring macro cell, 𝑔𝑚 represents fast fading gain. 

The rest symbols are the same to (3.8). The second and third layers are rp-ABS with power 

ratios b1 = 0.67 and b2 = 0.33. If UEs are assigned to rp-ABS instead of nABS, their SINR 

may drop according to (3.9), because their RSS is forced to drop by 33.3% and 66.7%. As 

the UE is further away from the macrocell and closer to the small cell, it will be offloaded to 

a small cell through CRE bias. As a result, the UE may suffer from severe cross-tier 

interference and SINR will drop dramatically. These vulnerable small-cell UEs will be 
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allocated to the fourth layer rp-ABS with b2 = 0.33—so that they can enjoy the best benefit 

of FeICIC as well as QoS. As the UE gets closer to the small cell, the severity of cross-tier 

interference reduces because RSS in the numerator gets stronger. Finally, the core small-cell 

UEs are allocated to the six-layer subframes, nABS, where they receive no benefit from 

FeICIC. (3.10) – (3.20) show the performance and cost of the six layers (C6 is 0 because UE 

in this layer receives no benefit from FeICIC and no worse situation is available).  
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𝑈 =  (𝑃1 −  𝐶1)(𝑃2 −  𝐶2)(𝑃3 −  𝐶3) ∏ (𝑃4 −  𝐶4)(𝑃5 −  𝐶5)𝑃6
𝑁𝑠
𝑖=1                          (3.21) 

 

where B indicates the bandwidth, a1 and a2 indicate the percentages of total subframes for 

two types of rp-ABSs, N and N’ indicate the total UE number in the respective macrocell or 

small cell, b1j – b6j indicates whether the current UE is in this layer (can only be 0 or 1), and 

n1 – n6 represents the number of UEs in this layer.  

Now, we need to detailed define the cost for each layer (or player in game theory) to 

formulate this multi-player NBS system. As discussed in last section, partial fairness which 

sets cost of each player as 0 is not practical for FeICIC design because of the increasing type 

of ABS in both cells. If we still set cost of entering a layer to be 0, UE will be much easier to 

shift layer and the top layer of macrocell will have huge advantage to attract UEs because of 

the high transmission power, which may break the balance of NBS. As a result, we decide to 

set the cost of each layer with opportunity cost. The first 3 layers in macro cell represents 

three different situations of SINR. The first layer UE may enjoy best SINR boost because 

they are allocated in ABS and enjoy full transmission power. However, if this UE want to 

enter this layer, he must give up his SINR boost when he is in second layer, and enjoy 67% 

of full transmission power, which become the opportunity cost of it. The difference between 

(3.10) and (3.11), will be the gain when UE is in layer 1. In general, the six layers are aligned 

according to their ability to maintain UE’s QoS. If UE wants to shift to a higher layer and 

enjoy better SINR, it will have to give up his performance in current layer. In other words, 
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the performance of a UE in lower layer is this UE’s opportunity cost, the gain of shifting 

layer is just his contribution to enter NBS. The benefit of this dynamic step layer structure is 

in 2 fold. Firstly, this layer structure may exploit the potential of every single UE according 

to its SINR situation instead of evenly considered in fix power ratio structure. Secondly, if 

one player in NBS has a negative gain, this player will be refused to enter the system. In our 

scenario, it means that this UE will not contribute to total capacity and cause the waste of 

resource. The layer structure ensures UE will eventually find its position that bring best gain 

no matter in macro cell or small cell, so that no negative gain may happen. After defining the 

performance and cost of 6 players, we can calculate the total utility according to (3.16). By 

iterating the combination of a1 and a2 and optimal UE partition from algorithm 1, we will be 

able to find optimal ABS ratio for both type of rp-ABS, which maximize  (3.16). The 

algorithm shows the whole process is shown below: 

Algorithm 3.2: FeICIC with Power-Layer Based NBS  

Input:  

• Set constant value B, T to feasible values 

• Set iteration step variable i =1 

• Set maximum ratio allowed for ABS, L to feasible values 

• Set L as maximum rp-ABS rate 

• Initialize two rp-ABS ratios a1 = 0.01, a2 = 0.01 for six-layer model  

• Small cell number Ns  

• Set optimal total utility U = 0, and corresponding temporary variable U’ = 0 

Initialization and Iterations            

1.  Initial U = 0 

2.  Sort macro UE in descending order according to their distance to small cell  

3.  for a1 = 0.01 to L - 1 (iteration step = 0.01) do  

4.    for a2 = 0.01 to L – a1 do 

5.      Initialize U’ = 0 
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6.      P1 = gain of macro cell when the first part of UE is calculated according                        

to (3.10)  

7.       C1 = cost for macro cell when the first part of UE is calculated according      

to (3.11) 

8.       P2, C2, P3, C3 follow (3.12) – (3.15) for second and third part of macro UE 

9.       for i = 1 to Ns do (loop for all small cells) 

10.         Sort small UEs in descending order according to the distance to ith small cell 

11.         Partition UEs in each cell according to Algorithm 1   

12.         P4 = gain for current small cell when the first part of UE is calculated  

  according to (3.16) 

13.         C4 = cost for current small cell when the first part of UE is calculated    

 according to (3.17) 

14.         P5, C5, P6, follow the (3.18) – (3.20) for second and third part of small UE 

15.       end for 

16.     𝑈′ =  (𝑃1 − 𝐶1)(𝑃1 − 𝐶1)(𝑃3 −  𝐶3) ∏ (𝑃4 − 𝐶4)(𝑃5 − 𝐶5)𝑃6
𝑁𝑠
𝑖=1  

25.     if U’ >U then 

26.        U = U’ to replace optimal total utility for whole system 

27.        Record current a1 and a2 

17.     end if 

18.   end for 

19. end for 

20. Return U and corresponding a1, a2 

 

 

3.3  Performance Evaluation  

3.3.1 Simulation of eICIC: Case 1 

Theories and algorithms of the proposed eICIC schemes have been introduced; we will then 

show our simulation results and take discussions. This part will analyse the results in three 

aspects:  

• First one is to find optimal ABS ratio with proposed algorithms, and then evaluate the 

outcome;  

• Second one is to test the benefit of eICIC compared to normal HetNets and find out how 

eICIC affects small cell UEs;  

• Third one is to compare our proposed schemes with existing schemes. 
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3.3.2 System Model  

 

For this simulation, a two-tier HetNets system is built up with one central macrocell of circle 

coverage for simplicity, and the radius is 500 meters. 4 small cells are allocated in four 

quarters of the circle with 300 meters away from macrocell. 500 UEs are randomly 

distributed within the macrocell coverage circle.  CRE = 9dB is set to offload UEs. HetNets 

frequency reuse scheme is set to Reuse-1. Therefore, subframes share the same frequency 

resources but separated by time and each subframe is 1ms in time. Actual simulation 

parameters are shown in table 3.1. 

  

Table 3-1 Important simulation parameters for Simulation 1 

Parameters Value 

Bandwidth 10 MHz 

Cell layout Two-Tier HetNets 

User Equipment Number 500 

Transmit power of macro cell 40W/46dBm 

Transmit power of small cell 0.25 W/24 dBm 

Noise power -174dBm 

CRE 9 dB 

Subframe number 1000 

ABS ratio ( summary of both types) 1%-100% 

 

3.3.3 Simulation result and analysis 

Figure 3.3 shows total utility changes with ABS ratio . It indicates that U starts to increase 

from  (which means no eICIC is applied) and reaches maximum when  r = 0.42; after 

that, U gradually declines and reaches minimum when  (which means macro cell is 
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totally muted). The maximum utility is 2.27*1026. As a result, we may conclude that optimal 

ABS ratio for this system is 0.42 (42%), which solves the first issue of applying eICIC.  

 

 

 

Figure 3-1 Total Utility changes with ABS ratio 

 

The most important parameters, ABS ratio for eICIC, have been decided by now. 

Nevertheless, we also need to evaluate the effects of eICIC for this HetNets system and apply 

it in current system. Instead of concerning total capacity gain for all small cell UEs, we are 

more interested in the effects of eICIC in different tier of UEs. It is because that each UE is 

unique due to its location and receiving interference, thus eICIC may not affect all UEs 

evenly. In order to have a detailed understanding, average UE capacity for different tiers may 

be more useful, and figure 3.4 shows it for first 5%, 10%, 25% and 50% small cell UEs 
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allocated in ABS. This figure implies (1) gain is dramatically large for first 5% UEs, which 

is 64.3% (2) gain starts to decline as more UEs are calculated, 10% 25% and so on.  

 

 

Figure 3-2 Average User Capacity Gain for different Tier of Users 

 

This discrete figure helps to obtain exact capacity gain for each tier. In order to have a clearer 

observation of eICIC effect tendency figure, we draw another continuous plot of average 

throughput gain changes with percent of ABS UEs are calculated in Figure 3.5. Fig indicates 

that capacity gain gradually drops as more ABS UEs are taken into consideration. This 

decline rate also increases accordingly and sharply increases when last 20% ABS UEs are 

calculated. 

Since UEs are aligned in descending order of its distance from small cell, it can be concluded 

from these two figures that: Cell edge users has a better benefit gain when applying eICIC, 

and the effect of eICIC will gradually fades as UEs are nearer to small cell (As a matter of 

fact, it can even be ignored by center users). This also follows our prediction in theory part. 
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Furthermore, this phenomenon also explains why total utility drops after r reaching the 

balance point. 

We have discussed in theory part that, 2-player NBS equation requires both players to reach 

a balance point instead of inclined to any of them. If either part is over-extended, the other 

part will be forced to drop due to limited resources, and total utility will suffer a heavy loss. 

Considering the equation of P2 (3.3), r and total protected UEs is in numerator and 

denominator separately. If ABS ratio increases, total number of UEs allocating in protected 

subframes must increase accordingly to maintain balance. Similar situation also happens in 

P1 (3.2). By considering these conclusions, relationship between ABS ratio and utility shown 

in Figure3.3 may be explained. As ABS ratio increases, cell edge users will be allocated in 

protected subframes first, and utility will keep increasing because these UEs have a large 

eICIC benefit gain; the effect of eICIC will keep fading as UEs with lower gain are forced to 

enter protected subframes; when ABS ratio reaches 0.42, the benefit of eICIC in new UE is 

so small that it will start to hinder total utility. As ABS ratio moves from 0.42 to 1, total 

utility keeps decreasing as more ‘innocent’ UEs are forced to enter protected subframes. As 

a result, 0.42 is the balance point which maxes total utility. 

 

3.3.4 eICIC Summary 

For simulation 1, we have managed to formulate our schemes to obtain the important eICIC 

parameters - ABS ratio and the corresponding UE partitioning ratio can be decided by 

algorithm 1, so that eICIC can be applied to current HetNets system. Furthermore, simulation 

result shows a promising user capacity gain by mitigating cross-tier interference, especially 
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in edge users. Meanwhile, several interesting phenomena and theories are also discussed, 

which may help us to set up the next simulation. 

 

 

 

Figure 3-3 Continuous Average User Capacity gain changes 

 

3.3.5 Simulation of FeICIC: Case 2 

For this simulation, a two-tier HetNets system is built up with one central macrocell of circle 

coverage for simplicity, and the radius is 500 meters. 4 small cells are allocated in four 

quarters of the circle with 300 meters away from macrocell. 500 UEs are randomly 

distributed within the macrocell coverage circle. Initial CRE =11 dB is set to offload UEs. 
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Since basic parameters configuration is the same to case 1 simulation, only changing 

parameters are shown in table 3.2. 

 

Table 3-2 Important simulation parameters for Simulation 2 

Parameters Value 

CRE 11 dB 

rp-ABS types 2 

Total ABS ratio ( sum of both types) 2%-80% 

 

3.3.6 Simulation result and analysis 

After simulation setup, we apply proposed 6-layer NBS Algorithm to find optimal 

combination of 0.67-ABS ratio, a1 and 0.33-ABS ratio, a2, which maximize the total utility. 

Figure. 6 shows how total utility changes with a1and a2. According to the figure, total utility 

will reach maximum 17.89 × 1010 when a1= 0.41 and a2 = 0.36.  
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Figure 3-4 NBS Total Utility changes against a1 and a2 

 

3.3.6.1 Macrocell UE analysis 

As mentioned in introduction section, the benefit of our proposed layer-FeICIC over eICIC 

is to increase the efficiency of macrocell by power control instead of muting it during ABS. 

Unlike eICIC, UEs in macro cell will also compete to get better subframes, and therefore 

take part in the NBS calculation. As a result, the benefit of our proposed FeICIC algorithm 

should reflect in two aspects: the system capacity for group and QoS for each single macro 

UE.  

Figure. 3.7 shows macro UE data rate after applying our proposed FeICIC algorithm. Figure. 

3.8 shows macro UE data rate after applying eICIC algorithm. We align macro UEs in 

descending order according to their distance from macrocell for these two figures. Therefore, 



89 
 

the first part of the figure are center UEs which are nearest to cell and are allocated in 0.33 

rp-ABS. Although the transmission power during these subframes are reduced up to 66.7%, 

UE in this layer still has a data rate gain. This is because that these UEs are near to macro 

cell and far away from small cell, so that they are not vulnerable to cross-tier interference. 

By travelling a small amount of distance, their SINR will not suffer a dramatic drop yet, and 

the additional subframes (although power is low) will boost the data rates. The UEs in second 

part and third part will enjoy a moderate power and a better data rates gain. It can be observed 

that, after applying FeICIC, almost no UE’s capacity is below 100 kb/s instead 65.5% UEs 

in third part are below 100 kb/s when applying eICIC, and the third part of the macro UEs 

benefit from FeICIC most. Furthermore, the UE data rate for part 2 and 3 are maintained in 

a moderate level, there is no sudden capacity drop for each single UE. This is because of the 

structure of step layer. Through gradually reducing power ratio as stepped structure, SINR 

can be efficiently controlled so that no single UE will suffer severe QoS drop compared to 

eICIC which is the second benefit of layer-FeICIC shown in macro cell. 

 

Figure 3-5 Macrocell UEs’ capacity with proposed FeICIC 
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Figure 3-6 Macrocell UEs’ capacity with eICIC 

 

3.3.6.2 Small cell UE analysis 

 

After considering the benefit of layer-FeICIC on macrocell UEs, we should evaluate how our 

proposed algorithm affects small cell UEs. Similar to ABS, the effect of rp-ABS on small 

cell UEs is to mitigate cross-tier interference. The effect is more obvious on cell edge users 

because their RSS from small cell is small and are more vulnerable to cross-tier and intra-

tier interference. Therefore, we will focus on how FeICIC works on 10% tier UEs. Besides 

that, we have stated that CRE bias may greatly affect the performance of FeICIC because it 

controls the number of offloaded UEs. We have set CRE to be fixed in Simulation 1 for 

simplicity. For now, we will analyze the effect of CRE and find the optimal value for the 

system.  
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Figure 3-7 Average capacity gain for 10% tier cell edge users 

                                                   

 

Figure 3-8 Total Utility changes with CRE bias 
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Figure 3.9 shows the average capacity gain for 10% tier cell edge users after applying our 

proposed eICIC (a=0.42) and FeICIC under different value of CRE. Firstly, we can observe 

that the capacity gain for eICIC is larger than FeICIC, this is because that the macro cell is 

not ‘mute’ during rp-ABS, and there is still partial of cross-tier interference. However, the 

effect of eICIC is also limited because intra-tier interference still exists and the advantage of 

FeICIC is compensated from macro cell UEs. Secondly, figure 3.9 implies that the increase 

of CRE bias will bring capacity gain for edge UEs. We have known that CRE is normally 

used to offload UEs. With the increase of CRE, more and more macro UEs will be forced to 

bound to small cell. These UEs will suffer severe cross-tier interference because CRE has 

changed the user association condition. Therefore, the capacity gain will also increase with 

CRE bias which explains the Figure3.9. However, this does not mean that CRE should be set 

the higher the better. If CRE is too high, not only the cell edge user of macro cell will be 

offloaded, the middle range UEs with low RSS from small cell will also be affected. Even if 

the cross-tier interference can be mitigated by rp-ABS, these UEs will still suffer from high 

intra-tier interference because their small cell RSS is too low. Considering from utility 

aspects, macro cell edge UEs will serve better for total utility if they are offloaded before 

CRE reaches balance point. When CRE increases and crosses the balance point, more and 

more innocent UEs will be offloaded to small cell and total utility will start to drop. 

Figure3.10 shows how total utility changes with CRE, which follows our analysis. Therefore, 

CRE=10dB may be the optimal value for our simulated scenario.  

Moreover, we have known that UEs in edge user groups still has different degree of 

vulnerability to cross-tier interference due to increase of CRE. Therefore, if we can quantilize 

the users into more groups and introduce more layers, the total utility of the system can be 
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further enhanced. The actual layer number can be decided according to operators and device 

situation as more layers will inevitably increase the computing and coordination complexity 

and hence the operating expenditure. 

 

3.3.7     Comparison of FeICIC and eICIC 

After separately discussing how FeICIC affects macro UEs and small UEs. We can conclude 

that the gain of FeICIC system capacity compared to eICIC is the gain from Macro cell minus 

lost from Small cell. If the optimal total utility is reached, there should be a system capacity 

gain, because FeICIC requires not only small cell UEs but also macro cell ones to take part 

in NBS calculation (a cooperation among whole system unlike eICIC).  

In order to evaluate our proposed algorithm, we draw four CDFs for user data rate with 

different parameters on Figure 3.11. Compared to conventional eICIC configure, which ABS 

ratio= 0.5, reduced power ratio = 0, proposed FeICIC has a dramatic advantage after 0.1 

Mb/s. This leading situation continues even in high data rate, which is over 0.2 Mb/s. 

Meanwhile, eICIC only shows better performance before 0.1 Mb/s. We thus calculate the 

total throughput for both scheme to make comparison, and result shows that FeICIC has a 

total user capacity gain as 31.4% compared to eICIC. The advantage of eICIC in lower and 

middle range is because of the benefit of total ‘muting’ of macro cell. However, the advantage 

may not be dramatic because intra-tier interference still exists. The advantage of FeICIC in 

higher range is because of the improved macro cell UE throughput. Due to high transmission 

power of macro cell, the extra subframes will lead to higher user capacity compared to small 

one. And our proposed layer structure provides further coordination of these extra subframes 

besides ABS in terms of power layer. Therefore, our scheme will mitigate the contradict 
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between cross-tier interference and reduced power subframes, and hence achieve higher total 

throughput compared to eICIC. However, the achieved utility of our proposed FeICIC may 

be much lower compared to eICIC. The product of our total User utility is 17.89 × 1010, while 

eICIC can reach up to 2.78 × 1026 . The reason is mainly because our FeICIC scheme has 

introduced opportunity cost system so that the actual utility gain for each user will drop 

dramatically compared to no-cost partial fairness system of eICIC. And then we compared 

the fixed power ratio FeICIC with our proposed dynamic step layer FeICIC. By even two 

types of rp-ABS, the parameter of total ABS ratio and average reduce power can be 

calculated as 0.77 and 0.52. We plot the CDF with new parameters and shows it on Figure 

3.11. It is obvious that overall performance of proposed algorithm is better, although there is 

some fluctuation in lower and higher range. Besides that, we have observed that there are 

still three local maximums for total utility in Figure 3.6, which are caused by the local max 

utility of different small cells. In order to test whether our proposed parameter is the optimal, 

we have also plotted the CDF for these three local maximums in Figure 3.12. Our proposed 

parameter shows an obvious advantage although the high level capacity may have some 

fluctuation, which is caused by macro cell UEs.  

As a result, FeICIC has a total user capacity gain as 31.4% compared to eICIC. 
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Figure 3-9 CDF for different parameters of eICIC and FeICIC 

 

 

Figure 3-10 CDF for different local maximum 
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3.4  Conclusion 

In Chapter 3, we have managed to solve cross-tier interference issue of HetNets with Almost 

Blank Subframes. Through muting macro cell in specific ABS, small cell UEs will benefit 

from it without cross-tier interference. This chapter firstly apply Nash Bargain Solution with 

proportional fairness to determine the optimal ABS ratio and UE allocation. Which UE are 

more vulnerable and how ABS affect small cell UEs are also discussed. With the information 

from ABS, we propose the Power-Layer Based NBS algorithm to realize reducing power 

ABS. During Re-ABS, macro cell power is no longer fully muted, we implement the cost of 

NBS according to power layer and introduce stepped power reduction, so that both the small 

cell and macro cell UEs may enjoy a system balance. The optimal Re-ABS ratio and UE 

allocation for different layer subframe is obtained and evaluated in the end.  
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Chapter 4. HetNets Offloading Issues 

Management with Machine Learning 

Algorithms  

 

4.1  Introduction 

So far, we have managed to solve the interference issue of HetNets by applying ABS and rp-

ABS. In this chapter, we will focus on solving the second issue – offloading. This includes 

two aspects: 1) offloading macro cell UEs to mitigate load unbalancing due to topology of 

HetNets and 2) offloading large amount of small cell backhaul data from backbone network. 

As discussed in literature review chapter, machine learning algorithms may help to train a 

solution to solve both offloading problems. Therefore, we have discussed both scenarios in 

this chapter and propose corresponding machine learning solutions.  

In first part, we proposal a modified K-means Clustering Algorithm (KCA) to offload UEs 

from macro cell, which we call user-based K-means clustering algorithm (UBKCA). This 

proposed algorithm uses the HetNets’ background information and applies the eICIC 

technique to find the optimal CRE bias for given scenario and offloading objective. In 

particular, the central user group set is established to reduce computation complexity and 

CRE bias is introduced to enhance the performance of the algorithm in the offloading factor. 

Next, to realise classification and prediction for new elements entering HetNets, two methods 

have been applied for comparison. The first method obtains the decision boundary for current 

clusters through linear classification, while the second method applies the K-NN 

classification algorithm to the obtained clusters. The protocol for future self-optimisation is 
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also established so that the system can realise self-organisation in UE partition and adapt to 

the change in traffic map automatically. 

For second part, we have continue to assess KCA’s capability in partitioning elements with 

similar parameter patterns into clusters. Since users may have different content preference 

patterns, we propose a proactive caching algorithm based on KCA to offload backhaul traffic 

into small cell network with local cache server. Through clustering users with same data 

preference and installing respective small cells with cache, the second offloading issue will 

be mitigated. Then, the K-NN algorithm is applied to predict the new UEs’ group and test 

their backhaul offloading situation. Finally, a recommendation system capable to predict 

missing popularity score is established.  

 

4.2  Methodology 

4.2.1 K-Means Clustering Algorithm (KCA) 

As discussed in literature review chapter, K-means Clustering Algorithm has already been 

widely used to solve the partition problem in various fields [129]. It is considered capable of 

clustering Big Data because of its fast speed, automation, and high adaption. Therefore, this 

paper will first apply K-means clustering to decide user association in HetNets, which will 

solve the first issue. In general, KCA can be formulated as a mathematical computation 

problem P: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑃(𝑀, 𝐶) = ∑ ∑ 𝑀𝑖,𝑗

𝑛

𝑗=1

𝑘

𝑖=1

𝑑(𝑅𝑗, 𝐶𝑖) 

 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  ∑ 𝑀𝑖,𝑗

𝑘

𝑗=1

= 1,  1 ≤ 𝑗 ≤ 𝑛 



99 
 

                   𝑀𝑖,𝑗 ∈ {0,1},  1 ≤ 𝑖 ≤ 𝑘                                               (4.1) 

 

We need to divide a dataset R = {R1, R2, … Rn} into k clusters, and C = {C1, C2, … Ck} is the 

set of all cluster centres. i means iteration of all elements within data set, j means iteration of 

all clusters. M is an n × k matrix that presents all elements’ decision, and Mi,j is either 0 or 1. 

KCA will then be applied so that the partition will minimise (3.1). For our scenario 

specifically, all system UEs can be mapped as dataset R, and number of network tiers can be 

mapped as number of clusters K. Therefore, offloading problems can be transferred to 

clustering problems so that each UE can find its optimal network tier – macro, pico, femto 

and so on. For implementing KCA, we need to analyse the data in the following steps:  

• Find a suitable partition number by analysing data, which means the data will be divided 

into k groups. 

• Randomly select k elements and assume them to be the centre of each group. 

• Allocate all remaining n-k elements to their nearest centre to form clusters, and then 

calculate the new centre for each cluster. 

• Repeat the steps till the system converges. 

To reduce the computation complexity of the algorithm, we use the Euclidean distance 

method to calculate the total distance between the elements and centres in Equation (1). The 

equation is as follows, where p1, p2 … pn represent all elements within the data set and q1, 

q2, … qn represents the corresponding clustering centres [124]. 

 

     𝑑(𝑝, 𝑞) = √(𝑝1 − 𝑞1)2 + (𝑝2 − 𝑞2)2 + ⋯ + (𝑝𝑛 − 𝑞𝑛)2                        (4.2)  
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4.2.2 K-Nearest Neighbouring (KNN) 

K-NN was first developed in 1968 by Cover and Hart [131]. The basic concept of the model 

is as follows: Transfer the collected data into a multi-parameter vector, with parameters for 

each element recorded with the score according to their weight. The vector can be shown as 

D = (V1, V2,V3, …,VN). Each V is the vector of parameters for the respective element. We store 

this dataset as a training dataset, and then, compare the test data with it to find the K-nearest 

(according to distance) or most similar (according to similarity) elements from the training 

dataset. The similarity calculation formula is shown below [132]: 

 

𝑆𝑖𝑚(𝑒𝑖, 𝑒𝑗) =
∑ 𝑉𝑖𝑛 × 𝑉𝑗𝑛

𝑀
𝑛=1

√∑ 𝑉𝑖𝑛
2𝑀

𝑛=1 √∑ 𝑉𝑗𝑛
2𝑀

𝑛=1

                                                                  (4.3) 

 

Where ei is the test data, ej is the comparison data obtained from the stored training dataset, 

M is the total number of parameter types, and n represents the current parameter type. K in 

K-NN indicates the number of similar elements we want for voting. After obtaining K 

elements, we will test their weight in voting. A typical method is as follows: 

 

 

𝑊(𝑒𝑗, 𝐶𝑖) = {
1, ∑ 𝑆𝑖𝑚(𝑒𝑖, 𝑒𝑗) 𝑎𝑡 − 𝑇ℎ𝑟𝑒ℎ𝑜𝑙𝑑 > 0

0, 𝑒𝑙𝑠𝑒
                           (4.4) 
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Where Ci represents the ith cluster, which is being tested. at  is 1 if ej belongs to Ci; otherwise, 

it is 0. T is the threshold to filter out irrelevant elements if the total similarity is not high 

enough so that both accuracy and computing complexity can be moderately maintained. By 

calculating the votes of all K nearest elements, we can classify the test data into the 

corresponding cluster. 

The method above is one way how to decide the ‘distance’ among elements, which is to 

calculate the similarity. This method is useful for elements with many parameters or in 

specific score system, which will be discussed in later section. For elements with few 

parameters (2 is a typical situation), Euclidean Distance Method is also a straight and efficient 

way. It is because the similarity is not reliable without enough parameter comparisons.  

 

4.2.3 Combination of KCA and KNN 

KCA is an unsupervised learning algorithm specifically used to solve the clustering problem. 

By analysing the characteristics and comparing the dissimilarity of a group of data, K-means 

can divide them into k groups and iteratively make new decisions as the group grows without 

further ‘supervision’ [133]. In other words, this unsupervised algorithm will efficiently reduce 

the computation complexity because it can adapt to the rapidly-changing user traffic map 

through self-organising, and thus, is suitable for solving the first issue.  

However, the K-means algorithm will only perform clustering according to the data’s 

characteristic but also faithfully reflect the real-time situation. Most UEs will still be allocated 

to the macrocell group due to its high transmission power advantage. As a result, we need to 

further modify the algorithm to fit our HetNet scenario, and CRE may be the key to solve this 

issue. CRE is a technique of eICIC, and was first introduced in 3GPP Release 10. It affects 
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UEs’ association decision by adding a virtual bias to the power received from the small cell. 

Therefore, the situation of load unbalancing can be mitigated by applying CRE.  

After clustering the existing UEs through K-means algorithm and realising UE offloading in 

HetNets, the next step is the prediction of the new UEs’ association when they enter the 

system. Classification is a category of supervised ML algorithm, which is a popular research 

field and has been widely applied in pattern recognition, statistics, medical science, etc. [134]. 

Similar to traditional supervised learning algorithms, classification requires a list of target 

result variables combined with the predefined parameters. The ML model analyses this 

training dataset along with their parameters or predictor variables and finds the optimal pattern. 

If the training dataset is provided in clustering type, such as categorised files, this model can 

classify new elements into this clustering according to its parameters, so the prediction can be 

realised. K-NN is a popular classification algorithm, which can also be considered as instance-

based learning [135]. Before classification, the model should have a set of training data as 

reference. During the classification phase, the newly entered element is compared with the 

stored reference training data and classified into the cluster with the most similar parameter 

pattern.  

After understanding the functions of KCA and K-NN, we can combine these two ML 

algorithms to implement a SON system for HetNets UE partition. First, we can apply KCA to 

the existing UEs and obtain the UE clustering pattern and store it. Second, we can apply K-

NN and use this stored UE clustering pattern as a reference training set. As a result, any 

unclassified UE entering this HetNets system will be rapidly assigned to its suitable tier 

network without further human intervention, thus reducing the computation complexity.  
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However, K-NN still has some issues before application to the HetNets system. First, K-NN 

normally considers all neighbouring elements to have the same importance when countering 

the number of votes from the stored training dataset [136]. Therefore, neighbouring elements 

from different clusters may contribute the same vote weight. This is clearly not the case for 

HetNets, especially for classification between macrocell tier and small-cell tier, due to the 

unbalanced transmission power. Second, once the new element is assigned to the cluster 

according to its parameter pattern, there is no further definition of this element. As a result, 

the effect of this new element on the respective cluster pattern can be neglected. Nevertheless, 

if the number of new elements is sufficient, the effects may be accumulated to change the 

stored cluster pattern [134]. This issue is even more severe for our scenario because we have 

discussed that the network is designed to adapt to the rapidly changing traffic map. As a result, 

these two issues should be addressed if we want to apply it for UE classification in HetNets. 

 

4.2.3 Distance Normalisation 

In KCA, we map the similarity between two elements into the distance between them. The 

less the distance, the more similar are the two elements. Therefore, the centroid of the cluster 

is more like an example for elements within. As mentioned above, we can use the Euclidean 

distance method to calculate the distance between two elements when making decisions. 

However, we cannot make sure that all parameters are comparable with each other. Certain 

parameters may be much larger than others and play a dominant role when calculating the 

distance, such as yearly revenue compared to age, while some parameters’ value is more like 

a symbol and is difficult to link to other statistical values, such as years (e.g. 2017). As a 
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result, we have summarised several methods to normalise the parameter values and the 

formula is shown as below [137]. 

 

Min-Max Normalisation: 

𝑒′ =
𝑒 − min (𝐸)

max(𝐸) − min (𝐸)
                                     (4.5) 

 

 

Z-score Standardisation: 

𝑒′ =
𝑒 − 𝑚𝑒𝑎𝑛(𝐸)

𝑆𝐷(𝐸)
                                             (4.6) 

 

Quantisation Normalisation:  

 

𝑒′ = {
1, 𝑖𝑓 𝑒 > 𝑇ℎ𝑟𝑒ℎ𝑜𝑙𝑑
0, 𝑒𝑙𝑠𝑒

                       (4.7) 

Log Normalisation (dBm):  

 

𝑒′(𝑑𝐵𝑚) = 10 log10(1000 ⋅ 𝑒(𝑊𝑎𝑡𝑡))                     (4.8) 

 

From (4.5) to (4.8), e means original element, e’ means normalised element, E means the 

data set of all elements. Each normalisation method has its advantage. Min-max 

normalisation will normally transfer the original value into a value between 0 and 1 only, 

where min (𝐸)  means minimal element within data set and max(𝐸)  means maximal 

elements within data set. The normalised value of Z-score normally lies between -3 < z < 3, 
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which has a wider distribution. And 𝑆𝐷(𝐸)  means Standard Deviation of data set. 

Quantisation normalisation will map all values into either 0 or 1, which is more suitable for 

a logical problem. Log normalisation (dBm) will transfer data from Watt into dBm, which is 

often used in plotting the figure in wireless communication. 𝑒(𝑊𝑎𝑡𝑡) means element with 

unit of Watt and 𝑒′(𝑑𝐵𝑚) means unit of dBm. Although the unit is mapped for benefit of 

plotting, we will still use e(Watt) to calculate Euclidean distance. 

 

4.2.4 User-Based K-Means Clustering Algorithm (UBKCA) 

For our scenario, we define elements in the system to be UEs in HetNets. Each UE is assigned 

with two parameters so that they can be analysed by KCA. Since UE prefers to choose a cell 

with better signal reception, we define these two parameters to be receiving power from a 

macro cell (Rm) and small cell (Rs), respectively. In order to have clearer simulation result, 

we have recorded the parameters in dBm formation.  

One issue of KCA is that it starts with random centres, and thus, may require several iterations 

before the system converges, which obviously increases the computation time. Besides, if the 

initial centres are chosen to be too close, the final result can only be a local solution instead 

of a global one. Therefore, we decide to modify the KCA with essential background 

knowledge to avoid redundant computing. For central users of a macrocell, its Rm is much 

larger than Rs because of their short distance to the BS. Therefore, macrocell central users will 

not be offloaded to small cells when HetNets are established, and vice versa. By introducing 

this property in our KCA algorithm, we can significantly reduce the computation time. We 

define a special group data element with similar parameters as ‘central’ users. Whenever an 

element in the group is distributed to a cluster, the remaining group elements are automatically 
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assigned to the same one. All group members have proven to be ‘loyal’ because of their central 

position, and no more computation is needed even for the next several time intervals. For 

example, since the receiving power is distance-based, we have defined top 20% users with 

highest receiving power from a macrocell to be its central user group. This method has a clear 

advantage: not only can the computation time be reduced but the local maximum can also be 

avoided.  

After analysing the property of HetNets, we modify KCA by introducing the central user 

group to reduce the computation complexity, which can solve the first issue we mentioned in 

the Introduction part. However, the result of KCA might not be practical due to the unbalanced 

transmission power for different tiers. To solve this second issue, we add another modification 

to our proposed KCA, which is to apply CRE during the KCA process.    

As described in first part, CRE bias can be added to UEs’ small-cell receiving power to help 

UEs offload from a macrocell tier to a small-cell tier. However, not all UEs will benefit from 

CRE affection, especially for the central users. Their Rm is so large compared to Rs that they 

will still choose to stay in the macrocell even if the CRE bias is added. As a result, adding 

CRE bias to all UEs is not realistic because it increases computation time and degrades 

efficiency. Therefore, we choose to apply CRE to edge users only instead of central users to 

increase computing efficiency. We set up an edge user factor alpha (α) to decide which UE 

should be considered as edge users.  

So far, we have established the model and applied KCA to classify UEs into two tier groups. 

Furthermore, we have made two modifications to enhance KCA performance: central user 

concept and CRE bias. Since both modifications are applied to user data, we call our proposed 

algorithm as UBKCA, which can be formulated as follows: 
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Algorithm 4.1: UBKCA                                                                                                   

 

Input:  

• Training Data set R with total element number N1, each element within has various 

parameters Rs, Rm …. 

• Different cell tier center user subsets (Cm, Cs, … ⊆ R)  

• Initial Edge user factor α  

• Initial CRE bias β 

• Number of clusters, K 

• Set system error E = 0, and corresponding temporary variable E’ = 0 

• Set iteration step variable i =1, j=1 

Initialization and Iterations            

1. for α = 0.05 to 0.25 do 

2.     for β = 1 to 10 do 

3.        while E > 0 do 

4.            Randomly select K elements as initial cluster centroids (c1, c2, … ck)   

5.           for i = 1 to N1 do (loop for all elements within training set) 

6.              Ii = index of cluster whose centroid has the minimum Euclidean distance to   

  current element, Ri   

7.               if Ri ∈ Cm then 

8.                  Index of elements in Cm = Ii 

9.                     end if  

10.               if Ri ∈ Cs then 

11.                  Index of elements in Cs = Ii 

12.                     end if 

13.           end for 

14.           for j = 1 to K do (loop for all clusters) 

15.                µj := mean of  all elements assigned to current cluster, Gj = { Ri | Ii = j} 

16.           end for 

17.        Calculate error for current partition  𝐸′ = ∑ ∑ ||𝑅𝑖,𝑗 − µ𝑗||2
𝑖∈𝐺𝑗 

𝐾
𝑗=1  

18.        if |E’-E|>0  then 

19.            E=E’ 

20.           Return to step 5 with new cluster centroids as (µ1, µ2, …µk) 

21.        end if 

22.        Record offloading situation and agreement for current combination of α and β            

23.    end for  
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24. end for   

 

 

As mentioned previously, the randomness in choosing initial cluster centres may lead to a 

local solution instead of a global solution after applying KCA. Therefore, we need to find a 

method to evaluate the capability of UBKCA in classifying UEs. We apply the Rand index 

to measure the difference between our calculated partition and predicted optimal partition. 

For a dataset with n elements, if we want to choose two elements from it, there should be (𝑛
2

) 

possible selections. After the classification, these two elements are either assigned to the 

same cluster or separated into two clusters (the situation may differ for various clustering 

methods). Suppose two partitions have been achieved with traditional user association and 

UBKCA; let N1 be the number of pairs that have been allocated in the same cluster for both 

partitions and N2 be that allocated in different clusters for both partitions. Then, N1 + N2 

indicates all selections in which both partitions agree with each other, and (3.9) can be used 

to represent the degree of agreement between two partitions [8]. The agreement degree 

between UBKCA partition and traditional user association partition can be considered as the 

evaluation of the algorithm. 

 

 𝑅𝑎𝑛𝑑(𝑅1, 𝑅2) =
𝑁1+𝑁2

(
𝑛
2

)
=

𝑁1+𝑁2

𝑛(𝑛−1)/2
                                      (4.9)      

 

4.2.5 Self-Organization System with Supervised Algorithm 

After the first step, which is to decide suitable CRE bias value offloading UEs in HetNets 

with UBKCA, we will establish the SON system to automatically assign new UEs entering 
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the system with supervised ML algorithm. Besides predicting the position of new UEs, this 

SON system has another important objective, which is to monitor and maintain the offloading 

factor within a required range (40% - 60%).  

According to the situation of our HetNets scenario, two potential supervised ML algorithms 

may be eligible for our task, linear classification and KNN. In order to find out which one is 

more suitable in this scenario, we have designed modified algorithms as below, and further 

evaluation will be applied in simulation and an analysis section. 

KNN algorithm is a lazy supervised machine algorithm, therefore the pre-stored training set 

is essential for it. We combine UBKCA with KNN, and store original data set with 

corresponding label set (generated by UBKCA) as the training set for KNN.   

 

Algorithm 4.2: UBKCA-KNN                                                                                                   

 

Input:  

• Training Data set R with number of N1, each element within has 2 parameters Rs, 

Rm 

• Test data set R’ with number of N2 

• User factor α obtained from algorithm 1 

• CRE bias β obtained from algorithm 1 

• Number of considered neighbour, K’=5 

• Set iteration step variable i =1, j=1 

Initialization and Iterations            

1. Predefine the value of K’ according to the scenario 

2. Apply algorithm 1 to obtain Cluster index set I = {I1, I2, …, Ii} as classify label set 

3. Combine data set R with index set I as stored training set for KNN algorithm  

4. for i = 1 to N1 do (loop for all elements of training set) 

5.    for j = 1 to N2 do (loop for all elements of test set) 

6.       Di,j = Euclidean distance between the ith test data R’i and the jth training data Rj 

7.    end for 



110 
 

8.    Sort Di = {Di1, Di2, … } and obtain the top K’ elements that have shortest value 

9.    V1 = number of small cell cluster elements within the top K’  

10.    V2 = number of macro cell cluster elements within the top K’  

11.    if V1 > V2 

12.       R’i is classified to small cell  

13.    end if  

14.    if V1 < V2 

15.       R’i is classified to macro cell  

16.    end if  

17.  end for 

18.  Calculate Precision of the results  

19.  Calculate Recall of the results 

20.  F1 = F1 Score of the results 

21.  if F1 < 0.8 

22.     Return to Algorithm 1  

23.  end if  

24.  if offloading < 0.4 or offloading > 0.6 

25.     Return to Algorithm 1 

26.  end if  

 

 

For linear classifier, we apply Perceptron Algorithm to calculate the linear decision boundary 

equation by combining UBKCA.  

 

Algorithm 4.3: UBKCA - Perceptron Algorithm                                                                                                    

 

Input:  

• Training Data set R with number of N1, each element within has 2 parameters Rs, 

Rm 

• Test data set R’ with number of N2 

• User factor α obtained from algorithm 1 

• CRE bias β obtained from algorithm 1 

• Set iteration step variable i =1 

Initialization and Iterations            
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1. Apply algorithm 1 to obtain Cluster index set I = {I1, I2, …, Ii} as classify label set 

2. Suppose linear hypnosis function 𝐻 = 𝑤1 ∗ 𝑥1 + 𝑤2 ∗ 𝑥2 + 𝑏 

3. w0 := 0, w1 := 0, b :=0, y1:=1, y2 := -1, s := 0.01 

4. for i = 1 to N1 do (loop for all elements within training data) 

5.    if H(w0, w1, b) and Ii has same sign 

6.       return to step 4 

7.    else if Ii =1 then 

8.       w1 := w1 + sx1 

9.       w2 := w2 + sx2 

10.       b := b + s 

11.    else if Ii =-1 then 

12.       w1 := w1 - sx1 

13.       w2 := w2 - sx2 

14.       b := b - s 

15.    end if  

16.  return w0, w1, b 

17.  Pr = Precision of the results  

18.  Re = Recall of the results 

19.  F1 = F1 Score of the results 

20.  if F1 < 0.8 

21.     Return to Algorithm 1  

22.  end if  

23.  if offloading < 0.4 or offloading > 0.6 

24.     Return to Algorithm 1 

25.  end if  

 

 

4.3  Simulation and Analysis 

4.3.1 Simulation Setup 

In this part, we will first manage to design and apply KCA to classify UEs into macro cell 

group and small cell group. And then we will apply UBKCA to the same UE data, and 

evaluate its capability with Rand Index Method. After that, we will discuss how CRE bias 

βeta and edge user factor alpha affect the performance of UBKCA and try to optimize the 

parameters of UBKCA. 
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For this simulation, a two-tier HetNets system is built up with one central macrocell of circle 

coverage for simplicity, and the radius is 500 meters. 6 small cells are allocated around the 

coverage circle with 300 meters away from macrocell. 200 UEs are randomly distributed 

within the macrocell coverage circle. The essential simulation parameters are listed as below: 

Table 4-1 Simulation Parameters 

Parameters Value 

Bandwidth 1 MHz 

Cell layout Two-Tier HetNets 

User Equipment Number 200 

Transmit power of macro cell 40 W/46 dBm 

Transmit power of small cell 0.25 W/24 dBm 

Noise power -174 dBm 

CRE 1-10 dB 

Edge User Factor 2.5% - 25% 

Center User Factor  20% 

Offloading Objective  50% 

Number of K for K-means 2 

Number of K for KNN 5 

 

 

 

4.3.2 Applying KCA to cluster UE  

 

After the Data Set is collected from the simulation result, we apply KCA to it to partition 

UEs into either macro cell or small cell group. Figure 4.2 shows the result of applying KCA. 
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Region 1 (black dots) is the small cell region and Region 2 (Blue dots) is the macro cell 

region. However, it is obvious that the load is severe unbalanced in Figure 4.2, only 15% of 

the UEs are offloaded to small cell network, which is far below the 50% objective. It suggests 

that KCA can be used to realize SON of user association decision and help to reduce 

computing time with proper data parameters selection, but the effects are highly limited if it 

is directly applied to data without further background modification.  

 

 

Figure 4-1 UE partition with KCA 

 

4.3.3 Applying UBKCA to cluster UE 

 

In order to enhance the performance of the algorithm, UBKCA is applied to the same scenario 

with the background knowledge of HetNets and the simulation result is shown in Figure 4.3. 

The first modification is to introduce two essential parameters of UBKCA – CRE Bias (β) 
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and Edge User Factor (α) as discussed in methodology part. Figure4.3 shows the result of 

applying UBKCA with alpha = 15% and βeta = 6dB. Compared to Figure 1 with KCA, the 

separation of two clusters are more distinct, which will lead to a better prediction of SON 

and faster convergence time. Besides, the percentage of offloaded UEs increases from 15% 

to 28%. This may be the effect of combination of alpha and βeta. Higher edge user factor 

means more UEs will involve in adding CRE bias, which increases the weight of small cell 

user cluster and will attract more UEs when computing in algorithm. Meanwhile, Higher 

CRE will add bias to these involving UEs so that they have more preference to be offloaded 

to small cell. Therefore, Figure 4.3 shows that 6dB is not enough to offload all the involving 

UEs to small cell cluster (part of the UEs are still assigned to macro cell group). In order to 

check how CRE affects offloading factor, we plot Figure 4.4 when alpha is maintained as 

17.5%. It shows that given alpha is fixed, the increasing of CRE will result in the effect of 

alpha gradually consumed by the system, which makes the partition more balanced. However, 

we cannot conclude that we have obtained the optimal UBKCA parameters even if the 

offloading objective is satisfied. We also require the partition has high accuracy compared to 

traditional user association when CRE is applied.   
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Figure 4-2 UE partition with UBKCA under α = 15% and β = 6dB 

 

 

Figure 4-3 Offloading Factor changes with CRE bias under α = 17.5% 
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In HetNets system, higher alpha and βeta will also lead side-effect for the accuracy of 

UBKCA. As alpha increases, more UEs are forced to receive CRE bias. Eventually, the 

center users of macro cell will have to accept CRE bias, which not only causes the system 

overbalanced but also increases redundant compute time. Besides, CRE bias will amplify 

cross-tier interference of HetNets, which severely affects QoS of users. Therefore, we use 

Rand Index Method to evaluate UBKCA under specific value of alpha and βeta, so that 

optimal combination of parameters can be chosen. Figure 4.5 shows how agreement degree 

changes with αlpha and βeta, and we can observe two meaningful phenomena from it. Firstly, 

the average accuracy drops gradually as alpha increases, and the top accuracy also descended 

from 97.8% to 91.3% when α reaches 25%. This means that higher alpha will bring negative 

result to system partition accuracy although it will help to offload UEs to small cell network. 

Therefore, α should maintain low value as long as system offloading factor is satisfied. 

Secondly, the system requires higher βeta to reach top accuracy as alpha increases. The 

optimal β ascended from 1dB to 9dB when α reaches 25%. It is because that the system 

demands higher CRE bias to make sure the additional edge UEs can be offloaded. Once the 

balance is obtained, more CRE bias will not benefit the accuracy and even hinder it. As a 

result, within the range of αlpha and βeta which can achieve 50% offloading factor, we 

choose the lowest αlpha value 17.5%, and the corresponding βeta value is 8dB. The optimal 

clustering situation is represented in Figure 4.6.  
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Figure 4-4 Agreement changes with a and β 
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Figure 4-5  UE partition with UBKCA under optimal α = 17.5% and β = 8dB 

 

 

The second modification is to establish center user group which is the ‘royal’ subset for 

macro cell mentioned in last part, so that the redundant compute can be avoided. Figure 4.7 

shows the average iteration numbers changes with percentage of center users. When 

percentage is 0, which means the normal KCA is applied, the iteration number is around 12.8. 

As more users are distributed into center group subsets, the iteration number before system 

converges drops obviously and reaches 7.4. The total computing time will drop accordingly, 

which solves the second issue of applying KCA in HetNets scenario. As the complexity of 

network increases, collected data set will reach the scale of tens of thousands instead of just 

200 UEs, UBKCA will be more capable compared to simply applying KCA.  
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Figure 4-6 Iteration numbers changes with Centre User Factor 

 

4.3.4 Prediction Evaluation  

As mentioned in methodology part, after establishing the macro cell and small cell clustering 

with initial 200 UEs, we could apply supervised algorithm to predict any new UE’s partition 

when entering current HetNets system and implement the SON system. We have introduced 

the linear classification and KNN method in introduction session, and stated that KNN may 

be more suitable in HetNets. Since we need to establish the SON system and monitor the 

performance to readjust the parameters if the performance is low, we may require a more 

stable classification method with time passing by.  

In order to evaluate the performance of two classification methods, we generate the first test 

data with 800 UEs and made the Confusion Matrix for both methods as follows: 
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Table 4-2 Confusion Matrix for KNN in first test data 

  True Condition  

 Total 

Population 

Condition 

Positive 

Condition 

Negative 

 

 

Predicted 

Condition 

Predicted 

condition 

positive 

True Positive = 

321 

False Positive = 

32 

Precision=0.910 

Predicted 

condition 

negative 

False Negative = 

63 

True Negative = 

384 

Accuracy=0.881 

  Recall =0.837  F1 Score=0.872 

 

Table 4-3 Confusion Matrix for linear classification in first test data 

  True Condition  

 Total 

Population 

Condition 

Positive 

Condition 

Negative 

 

 

Predicted 

Condition 

Predicted 

condition 

positive 

True Positive = 

313 

False Positive = 

42 

Precision=0.879 

Predicted 

condition 

negative 

False Negative = 

71 

True Negative = 

374 

Accuracy=0.859 

  Recall =0.817  F1 Score=0.847 

 

We can analyse the performance of algorithm in two aspects. Accuracy is one contribution, 

but it is not reliable alone in evaluating machine learning algorithm. The main reason is that 

it cannot reflect the advantage if the data set is unbalanced collected. For example, if there 
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are 90 macro cell UEs and 10 small cell UEs in the data set, the algorithm may identify all 

elements as macro cell. In such cases, the accuracy may reach high degree as 90%, however, 

this algorithm’s recognition rate of small cell may be extremely low. As a result, besides 

accuracy, we should also calculate algorithm’s ability to identify not only small UE but also 

macro UE, which are precision and recall. F1 score is the degree which considering both 

precision and recall of the algorithm, which is the more reliable metric to evaluate 

classification method.  

The first test data set are the first 800 UEs that entering the system after K-means partition. 

After comparing the precision (0.910 and 0.879), recall (0.837 and 0.817) and finally F1 

score (0.872 and 0.847), we cannot conclude that which one is better because there is no huge 

difference in the performance. However, there is another important factor we should consider 

when we need to establish the SON system, which is the stability.  

Therefore, we should also check the adaption of these two methods with time passing by. 

And we generate 2 new data sets with 800 UEs each and feed into the system. The confusion 

matrix is as follows: 

 

Table 4-4 Confusion Matrix for KNN in Second test data 

  True Condition  

 Total 

Population 

Condition 

Positive 

Condition 

Negative 

 

 Predicted 

condition 

positive 

True Positive = 

321 

False Positive = 

34 

Precision=0.904 
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Predicted 

Condition 

Predicted 

condition 

negative 

False Negative = 

77 

True Negative = 

368 

Accuracy=0.861 

  Recall =0.807  F1 Score=0.853 

 

Table 4-5 Confusion Matrix for Linear classification in Second test data 

  True Condition  

 Total 

Population 

Condition 

Positive 

Condition 

Negative 

 

 

Predicted 

Condition 

Predicted 

condition 

positive 

True Positive = 

293 

False Positive = 

41 

Precision=0.868 

Predicted 

condition 

negative 

False Negative = 

105 

True Negative = 

361 

Accuracy=0.820 

  Recall =0.743  F1 Score=0.801 

 

 

Table 4-6 Confusion Matrix for KNN in Third test data 

  True Condition  

 Total 

Population 

Condition 

Positive 

Condition 

Negative 

 

 Predicted 

condition 

positive 

True Positive = 

315 

False Positive = 

41 

Precision=0.885 
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Predicted 

Condition 

Predicted 

condition 

negative 

False Negative = 

84 

True Negative = 

360 

Accuracy=0.844 

  Recall =0.789  F1 Score=0.834 

 

Table 4-7 Confusion Matrix for Linear classification in third test data 

  True Condition  

 Total 

Population 

Condition 

Positive 

Condition 

Negative 

 

 

Predicted 

Condition 

Predicted 

condition 

positive 

True Positive = 

275 

False Positive = 

50 

Precision=0.846 

Predicted 

condition 

negative 

False Negative = 

124 

True Negative = 

351 

Accuracy=0.7875 

  Recall =0.696  F1 Score=0.801 

 

According to confusion matrix, we will be able to plot the following three figures to show 

how precision, recall and F1 score changes for two methods. 
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Figure 4-7 Precision changes for three successive data set 

 

 

Figure 4-8 Recall changes for three successive data set 

0.8

0.82

0.84

0.86

0.88

0.9

0.92

1 2 3

Precision 

KNN Linear Regression

0.6

0.65

0.7

0.75

0.8

0.85

1 2 3

Recall

KNN Linear Regression



125 
 

 

Figure 4-9 F1 score changes for three successive data set 

 

From the results of figures, we can conclude that both algorithms may suffer performance 

degradation as more data are collected, but KNN is more stable than linear classification as 

time passing by. The main reason is the unbalance in collected data have introduced bias into 

the algorithm (unbalanced fitting which is discussed in introduction part), and the model may 

learn from these bias as the new data is stored as data base. The figure shows that recall has 

dropped fast for regression and lead to a drop of F1 score. This means the algorithm’s ability 

to predict small cell has dropped. Since linear classification will generate the decision 

boundary line according to the whole data base. The initial unbalance may lead to a biased 

line (like UEs are collected nearer to small cell). As the collected data is increasing, the bias 

may be more severe if the collecting method stay the same. KNN, however, will not take the 

whole data base as the reference. Therefore, the unbalance of collecting data may not affect 

KNN severely. As a result, we decide to apply KNN to establish the SON system to monitor 
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the new data set, whenever F1 score is below 0.8, rebalance the data and get new CRE and 

alpha.  

So far, we have managed to use machine learning algorithms to find optimal CRE bias to 

obtain certain offloading objective, and establish SON system to maintain the offloading rate 

by modifying CRE and edge user factor. The objective for the second part of this chapter is 

to establish a cache system with machine learning algorithms, so that the small cell backhaul 

traffic issue can be addressed.  

 

4.4  Application to a Cache System  

HetNets have been considered as a solution to meet 1000 times data requirement of 5G 

generation in the next decade [138]. This promising topology has been proposed to deploy 

large-scale small-cell networks based on an existing macrocell network. Since small cells 

will be allocated to a lamp pole or a bus station to get closer to UEs, the advantage is obvious 

[139]. Small cells can provide better SINR because of low signal path loss, and HetNets 

propose high spectral efficiency to increase data capacity [4]. However, both features require 

the operators to provide high-speed and reliable backhaul for small-cell networks. On one 

hand, a traditional optical fibre may not be the option because the CAPEX cost for large-

scale small cells is rather high; besides, the location of small cells indicates that it is difficult 

to install fibres for each cell. On the other hand, the limited bandwidth for operators is a 

bottleneck in providing high-speed wireless backhaul for small-cell networks [140]. 

Under such circumstances, a method to offload backhaul traffic is urgently required. 

Research shows that frequent downloads of some popular content comprise significant part 

of mobile data traffic [141]. As a result, if these popular contents can be pre-stored in a local 
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area instead of downloading through the network every time, a significant backhaul traffic 

can be saved, which is the concept of cache. A cache is a ‘hardware or software component’ 

used to store data so that the request of these contents can be made quicker and easier; what 

contents should be stored can be suggested from algorithm computation or frequent duplicate 

requests [142]. In HetNets, this concept can be realised to install high-capacity cache storage 

devices in small cells, where backhaul traffic can be offloaded [143]. The choice of contents 

may depend on their popularity and certain users may have relatively fixed preference pattern 

[144]. By controlling the downloading contents and times of small-cell users, the QoS offered 

to users can be significantly increased.  

Cache has been thoroughly studied from traditional optimization method and stochastic 

geometry. By now, the concept of big data has getting more and more popular, with the help 

of established data base and data mining method, we can generate practical model according 

to various scenario. Mobile traffic data is just one of the potential data mining subject, it can 

reflect human behaviours including routine, preference and so on [145].  

 

4.4.1 System Model 

A two-tier HetNets system is considered in this scenario. As mentioned in last section, 

macrocell are connected to optical fiber for backhaul. Meanwhile, small cell will apply 

wireless backhaul and cache storage device is installed in particular small cells. V = {V1, V2, 

V3, …} is the set of all possible contents. R={R1,R2,...RN} is set of small cell users with total 

user number as N. Suppose they have the same request times R during the time T, then each 

of them has a content set, Ci={Ci1, Ci2, …CiR}, which value is selected from set V. We suppose 

cache can only be installed in small cell because of limited bandwidth for wireless backhaul. 
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When users request to download contents which pre-stored in local cache, this part of 

backhaul traffic will be considered to be offloaded because core network router is not 

involved in this local transaction.  

 

4.4.2 User Preference Pattern (UPP) 

 

Each user may have specific preference when requesting contents. Some people likes to 

watch action movie, while others prefer romantic movie. If we quantilize the preference as 

score and listed in vector, we may obtain the pattern for each user and the basic conditions 

of applying k-means are reached. In order to test the performance of proposed model, we 

have selected two typical content categories to apply the model separately: YouTube videos 

and movie. Each category has his own specific UPP. 

YouTube was first launched in 2005 and has become a platform for people uploading videos 

including online lecture, music, game video and so on. This platform has brought up a 

popular new idea so that the users keep growing. Even in 2006, the daily viewed video 

reached 100 million and daily uploaded video exceeded 65 thousand. By the year of 2015, 

81% internet users worldwide have already visited YouTube and 31% of the website user are 

frequent users, which request to visit at least once a day [146]. In YouTube, videos made by 

same person are normally categorized in the same channel. Figure 4.11 shows the most 

popular YouTube channels for December of 2017 [146]. For example, Justin Bieber was third 

popular channel in YouTube with 32.91 million subscribers. Therefore, we can consider the 

subscribers number as a popularity degree and map the universal UPP for top 20 channels in 

Figure4.12. After that, we can generate the UPP for each single user based on the universal 
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one, but add random bias according to zero-mean standard Gaussian random variable model 

on each channel score and has a 95% confidence interval that the bias is between -30% to 

30%, so that the diversity of users can be maintained. (we cannot obtain the exact subscription 

for real YouTube users, because it is the privacy protected by law. Therefore, we can only 

simulate each user’s UPP according to the accessible big data investigation)  

 

Figure 4-10 Most popular YouTube Channels of Dec 2017 
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Figure 4-11 UPP for top 20 YouTube Channels 

 

The second typical cache content we concern is movie. Unlike what we do for YouTube that 

we category contents by channels, we choose to category movie videos according to their 

'genre'. Genre is the term meaning the collection of movie types according to their topic, 

target audience, historical background and so on.  In order to map the preference of movie to 

UPP, we have adopted the survey result of [147], which investigates surveyor’s score on 

different type of movie. During the survey, the author has chosen 17 common movie genres 

as follows: (1) action movie, (2) adventure movie, (3) animation movie, (4) comedy movie, 

(5) crime movie, (6) drama, (7) erotic movie, (8) fantasy movie, (9) ‘hermit’ film, (10) 

historic movie, (11) horror movie, (12) mystery movie, (13) romance, (14) science fiction 

movie, (15) thriller movie, (16) war movie, (17) Western movie. The detail of the 

investigation tries to find out young adults' preference and let interviewers to mark every 
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genre from 0-10 according to their experience. According to the result, we have plotted the 

universal UPP for movie preference (men) in Figure 4.13.  

 

Figure 4-12 UPP for 17 Movie Types 

 

4.4.3 Cache Hit-ratio 

In order to evaluate the established cache memory system, we can calculate the hit-ratio of 

the system when a set of users are applied. If the hit-ratio is high, it means that more users’ 

requests are stratified by cache and no need to access backbone network. In other words, 

more data traffic is offloaded from the main stream if hit-ratio is high, which is what we want. 

The formula of hit-ratio is shown below: 

 

𝐻 =  
∑ ∑ 𝑎𝑖,𝑗𝐶𝑖,𝑗

𝑅
𝑗=1

𝑁′
𝑖=1

∑ ∑ 𝑎𝑖,𝑗𝐶𝑖,𝑗
𝑅
𝑗=1

𝑁′
𝑖=1 + ∑ ∑ 𝑏𝑖,𝑗𝐶𝑖,𝑗

𝑅
𝑗=1

𝑁′
𝑖=1

                                     (4.10) 
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Where H is hit ratio, N’ is total user number who access cache, R is number of request, 

𝐶𝑖,𝑗represent the content, 𝑎𝑖,𝑗 is hit indicator and 𝑏𝑖,𝑗 is miss indicator, which are either 0 or 

1. If 𝐶𝑖,𝑗 is stored in cache, it is 1, which means cache memory hits this content; otherwise it 

is 0, which means cache memory misses this content. And then average UE’s request time 

from cache is calculated as follows: 

𝑇′ = 𝑐𝐻 + 𝑚(1 − 𝐻)                                                             (4.11) 

Where c = time to obtain content from cache, and m means the time penalty for miss content 

from cache.  

Since we aim to increase offloading factor to reduce UE’s accessing time and small cell 

network backhaul traffic with limited cache size, S (in this paper we set maximum cache size 

over total content is lower than 50%), the problem can be formulated as follows: 

                                          max  
𝑎𝑖,𝑗

𝐻(𝑎𝑖,𝑗)                                                  (4.12) 

                                          𝑠. 𝑡.    𝑎𝑖,𝑗 ∈ {0,1}, 𝑖 ∈ 𝑁′, 𝑗 ∈ 𝑅 

                                                   𝐶𝑖,𝑗 ∈ 𝑉 

                                                   
𝑆

𝑉
≤ 50% 

 

4.4.4 K-means Algorithm and KNN Algorithm application   

 

The last part shows that, if we manage to increase Hit-ratio of the cache system, we will be 

able to offload more data traffic from small cell network, so that the backhaul issue of 

HetNets can be mitigated. In previous sections, we have quantified each user’s preference 

into a UPP (either according to their actual watching behaviour or their score on various types 
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of content through investigation). With the collection of all users’ UPP in data set, we may 

analyse and summarize the property of each user and partition users with similar behaviours 

into several groups. According to the centroid of each cluster, we will be able to proactively 

store contents in respect small cell which satisfies this group of users. After transferred the 

necessary information of the scenario into quantized data, we have managed to apply K-

means Clustering Algorithm in this work and hence establish the cache system.  

In order to maintain a high QoS for small cell users, we aim to reach two quality standards. 

First one is the overall satisfaction rate. If the user’s request is satisfied by the cache system, 

it means this user will enjoy low latency because this request will not go through the whole 

HetNets to backbone network; it also means this user will enjoy high downloading data rate 

because it is served by small cell cache storage, which is supposed to be near to him and 

specially designed to provide the requested contents.  As a result, we use the average hit-ratio 

of all users to present the overall satisfaction rate. Secondly, the QoS of each single user 

should also be maintained. If the user has low hit-ratio, it will not only suffer long latency 

because of the void request time to cache system but average low data rate compared to other 

better cache-served users. Suppose the cache system store the contents randomly and has the 

cache limit of 50% of all contents. The probability of one random user’s request of content 

being satisfied by cache system should be 50%. Under such condition, if one user has hit-

ratio lower than 50%, it means the cache system performs bad for this user, which cause 

unsatisfactory. In conclusion, we should build the cache system with both high overall 

satisfaction rate and low unsatisfied users, and the modified K-means Clustering Algorithm 

is shown below: 
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Algorithm 4.4: Cache System Design with KCA                                                                                                

Input:  

• Training Data set R with total element number N1, each element within has v 

parameters V1, V2. … Vv  

• User content Matrix C, where row means index number of user and column means 

index number of requests, the value of C is the type of contents.  

• Initial number of cluster, K=1 

• Limitation of cache storage L’ 

• Set iteration step variable i =1, j=1 

Initialization and Iterations            

1. Normalize data set R into UPP data set, new parameter 𝑉𝑖’ =  𝑉𝑖/ ∑ 𝑉𝑗𝑣
𝑗=1  

2. for i = 1 to N1 do (loop for all elements within training data) 

3.     for j = 1 to v do (loop for all parameters, such as Youtube channels or movie genre) 

4.     Generate user content matrix C 

5.     Ci,,j  = generated number of requests according to current user UPP. 

6.     end for 

7. end for 

8. while K ≤ limitation of clusters number do 

9.      Randomly select k elements as initial cluster centroids (c1, c2, … ck) 

10.      for i = 1 to N1 do 

11.         Ii = index of cluster whose centroid has the minimum Euclidean distance to 

 current element, Ri 

12.      end for 

13.      for j = 1 to K do 

14.          µj = mean of  all elements assigned to current cluster, Gj = { R | Ii = j} 

15.      end for 

16.  Calculate error for current partition  𝐸′ = ∑ ∑ ||𝑅𝑖,𝑗 − µ𝑗||2
𝑖∈𝐺𝑗 

𝐾
𝑗=1  

17.   if |E’-E|>0  then         

18.      E:=E’ 

19.      Return to step 9 with new cluster centroids as (µ1, µ2, …µk) 

20.   end if 

21.   for L = 1 to L’ do 

22.   Set up cache on each cluster with top L parameters as cache contents 

23.   H = average Hit-Ratio for whole user content matrix C with current clusters partition  

24.   F = rate of users with Hit-Ratio lower than 50% 

25.   if H ≥ 70% and F ≤ 5% then 

26.      break while and return K, Ii, L 

27.   end if  

28. return to step 7 with K=K+1 
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29. end while 

30. return K, Ii,, L 

 

 

Once the cache system is established, the next step is to implement the SON system so that 

any new user entering into the cache system can be automatically assigned to its suitable 

group and receive cache service from the suitable small cell cache server. With the cluster 

cache system constructed by KCA, we can continue to use KNN classification method to 

auto-assign users from new data set, where the cache system can be considered as the pre-

stored training set for this supervised algorithm. The detailed algorithm is shown below: 

 

Algorithm 4.5: Partition and SON Design for existing Cache System                                                                                                   

 

Input:  

• Data set R with total element number N1, each element within has v parameter types 

V1, V2. … Vv  

• Test data set R’ with total element number N2, each element within has v parameters 

V1, V2. … Vv 

• Initial user content Matrix C1, where row means index number of user and column 

means index number of requests, the value of C is the type of contents.  

• Limitation of cache storage L’ 

• Number of considered neighbour, K’=5 

• Set iteration step variable i =1, j=1 

 

Initialization and Iterations            

1. Predefine the value of K’ according to the scenario 

2. Apply algorithm 4 to obtain Cluster index set I = {I1, I2, …, Ii} as classify label set 

3. Combine training data set R with index set I as stored training set for KNN 

algorithm 

4. Normalize test data set R’ into UPP data set R’, 𝑉𝑖’ =  𝑉𝑖/ ∑ 𝑉𝑗𝑣
𝑗=1  
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5. for i = 1 to N1 do (loop for all elements within training data) 

6.     for j = 1 to v do (loop for all parameters of each element) 

7.     Ci,j  = generated number of requests according to current user UPP. 

8.     end for 

9. end for 

10. for i = 1 to N2 do (loop for all elements within test data) 

11.    for j = 1 to N1 do (loop for all elements within training data to find nearest ones) 

12.       Di,j = Euclidean distance between the ith test data Ri’ and the jth training data Rj 

13.    end for 

14.    Sort current set of R and obtain the top K’ elements having shortest value 

15.    VOTE = set of number of votes on cluster within the top K’  

16.    find highest vote number within VOTE set 

17.       R’i is classified to the cluster with highest vote number 

18.    end find  

19. end for 

20.  H = average Hit-Ratio for whole user content matrix C with current clusters partition  

21.  F = rate of users with Hit-Ratio lower than 50% 

22.  if H ≤ 60% or F ≥ 10% then 

23.    Return to Algorithm 4 

24.  else if 

31.    return H, F, move to next test data set 

25. end if 

 

 

4.4.5 Recommendation system 

So far, we have supposed that our collected data are sufficient, which means that the UPP for 

each user is complete. However, during the phase of collecting data to establish UPP, either 

the data for specific content type is not counted or user does not provide the score for specific 

content type (Si-fi movie or Justin YouTube channel). As a result, UPP for new users may 

not be complete and we cannot distribute the new users to his suitable cache server. In such 

situation, we can use our proposed cache system to predict the missing score in UPP 

according to existing score and established clusters, even if we are still not sure which group 

this user belongs to. This is the second application of our proposed cache system. Equation 
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(13) will calculate the similarity between missing score (u) and given scores (m). With the 

similarity of all given scores, we can use Equation (14) to predict the missing score.  

 

𝑠𝑖𝑚(𝑢, 𝑚) =
∑ (𝑃𝑢𝑖 − 𝑃̅𝑢)(𝑃𝑚𝑖 − 𝑃̅𝑚

𝑉
𝑖=1 )

√∑ (𝑃𝑢𝑖 − 𝑃̅𝑢)2𝑉
𝑖=1 √∑ (𝑃𝑚𝑖 − 𝑃̅𝑚)2𝑉

𝑖=1

                       (4.13) 

𝑃𝑢𝑖 =
∑ 𝑠𝑖𝑚(𝑢, 𝑚) × (𝑃𝑣𝑖 − 𝑃̅𝑣

𝑘
𝑚=1 )

∑ |𝑠𝑖𝑚(𝑢, 𝑚)|𝑘
𝑚=1

                                                 (4.14) 

 

4.4.6 Simulation and Analysis for Cache System 

In order to evaluate our proposed cache algorithm, the first part of simulation is to find out 

optimal K and respect central pattern and then evaluate the performance. During the 

simulation, we suppose the number of UEs for both scenarios (YouTube and Movie) is 1000 

(N=1000), and suppose each UE has 1000 times of request of contents (R=1000), so that the 

total request number during this period is 1,000,000 times. As mentioned in last section, our 

objective is to realize at least 70% traffic is offloaded by our cache system with only 50% 

cache size. Meanwhile, user’s unsatisfactory rate (UE with hit-ratio lower than 50%) should 

be maintained under 5%. And then we apply Algorithm 4 on two scenarios. 
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Figure 4-13 Hit-Ratio for different K number on YouTube 
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Figure 4-14 Percentage of Unsatisfied User changes with K number for YouTube 

 

Figure 4.14 shows the offloaded traffic from small cell network (can be also considered as 

Hit-ratio) changes with cache size under different K values for YouTube scenario. We can 

observe that when cache size reaches 50%, models with K larger than 6 will satisfy the 

predefined 70% offloading requirement, and higher K value will help to enhance the 

performance of the cache system. Nevertheless, the effects may gradually diminish as K 

increases. As K increases, more small cells will be introduced to behave as cache servers, 

and each of them will have its own unique pattern so that UEs with similar UPP will choose 

it as cache server. Higher K value means more options for UEs, so that they can choose better 

centroid and hit-ratio will rise accordingly. ‘Outlier’ users, however, may have UPP highly 

unlike traditional one, and the effect of more centroids is limited for these outliers. Figure 

4.15 shows percentage of UEs, which have hit-ratio lower than 50%, changes with K value. 

From K= 2 to 7, the percentage drops fast but the effect is gradually decreased and the 

percentage almost remains the same after K=9. This will also explains one phenomena of 

Figure 4.14. We can observe that form K=2 to K=6, the Hit-ratio has a dramatic increase, 

thanks to the diminishment of ‘outliers’. However, from K =6 to K =8, the margin benefit 

drops, so that plot K=6 and K=8 are much closer. This is because the remaining ‘outlier’ is 

harder to be eliminated, which is shown on Figure 4.15.  

With the increase of K, the outlier may eventually disappear. However, this does not mean 

that K should be as large as possible. On one hand, larger K means we need to set up more 

small cell cache devices, and the CAPEX will increase significantly. On the other hand, the 
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margin effect of K will also get lower with the increase of K. Therefore, we need to set up an 

upper bound of number K to maintain a balance. For this scenario, we suppose each small 

cell should serve at least 100 UE to maintain a sufficient load, which means the maximum K 

number = 10.  

 

Figure 4-15 Hit-ratio under 50% cache size changes with K for Movie type 
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Figure 4-16 Hit-ratio under 50% cache size changes with K for YouTube 

 

Figure 4.16 shows the Hit-ratio of system under 50% cache size (actually, it is over 50% 

because we choose 9 over 17) changes with K for Movie scenario. It is obvious that even if 

K reaches the upper bound, Hit-ratio still fails to reach minimum requirement. Figure 4.17, 

however, clearly shows that the Hit-ratio has already reached 70.27% for YouTube when 

K=6. The Hit-ratio for YouTube continues to increase to 73.05% when K =10. Moreover, 

both graphs has shown that the effects of increasing K is gradually decreasing, which 

indicating that the number of K should also be restricted to maintain efficiency. The reason 

for these phenomena may be the difference between two scenarios’ universal UPP. We will 

detailed discuss how UPP and number of K affect cache system in the following part. 

As a result, by considering predefined constraint and the result from two figures, K=6 is the 

optimal value for the YouTube scenario with traffic offloading rate reaching 70.27%, and 
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K=10 is the optimal value for the movie scenario with traffic offloading rate reaching 65.55%. 

Figure 4.17 shows the UPP for 6 cluster centroids in YouTube scenario, which is the 

‘example’ for UEs bound to it. Figure 4.18 shows 10 cluster centroids in Movie scenario. For 

the small cell cache device representing the respect centroids, it will store the top 50% cache 

contents according the popularity degree score, so that the small cell cache system is 

implemented.  

Now, we will compare these two optimal centroid graphs to find out what leads to different 

performance in two scenarios. It can be observed that the centroids in movie scenario is more 

similar to each other than that in YouTube. In YouTube universal UPP, the score for all 

channel types generally have no huge difference except for the first channel (PewdiePie). In 

movie one, however, there are 4 very popular movie type, and 3 very unpopular movie type. 

As a result, most of users will follow this pattern and the top 4 movie type will be chosen for 

every cluster and 3 ‘poor’ movie type will be discarded by every cluster. Under such 

situations, the outlier that have high request for these movie contents may hardly to be 

satisfied unless K is very high, so that they may have spare device to cache these contents. 

This is why the cache system performs poorer in movie scenario. As a result, the choice of 

candidate contents is also very important during implementing small cell cache system. We 

should try to make more contents but less difference in the candidate pool; more content 

types will increase the diversity of centroids (this requires large data collection, highly 

depends on our accessible resources) so that outlier may be also taken care of; less difference 

means that contents with low popularity degree should not be added into the candidate poor, 

so that the system will not waste time considering outliers. The second objective requires the 

system has a SON to keep monitoring the change of popularity as more data are analysed. 
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Once the performance drops, the system may check the new candidate pool, and redesign the 

cache system. This can be done by our proposed algorithm 5.  

 

Figure 4-17 UPP for 6 cluster centroids in YouTube scenario 
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Figure 4-18 UPP for10 cluster centroids in Movie scenario 

After establishing the cache system with proposed algorithm, our second step is to apply 

KNN method with existing clusters and evaluate this cache system in new data set. We 

generate 5 test data sets on YouTube, which contains 500 UEs with UPP in each data set 

because we are now trying to classify them to different small cell cache servers. In order to 

evaluate the cache system for new UEs, we suppose each UE request 1000 times during the 

period and calculate the hit-ratio. Figure4.19 shows the hit-ratio for all new UEs and 

Figure4.20 shows the average hit-ratio and percentage of unsatisfied UEs for 5 data sets. We 

can observe that the hit-ratio is still maintained at high level varied from 67.94% to 69.21%, 

and 4 of 5 data sets’ unsatisfied rate are below 5%. Therefore, we can conclude that the cache 

system established with our proposed algorithm performs well not only in clustering existing 

UEs without UPP but also in classifying new UEs entering the system.  
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Figure 4-19 Hit-ratio under 50% cache size for 5 new data sets one YouTube 

 

 

Figure 4-20 Unsatisfied rate under 50% cache size for 5 new data sets one YouTube 

 

Unlike our first design in offloading UEs in HetNets, the ‘traffic map’ now is not updated in 

real-time. When we want to establish the cache system, what we want to serve is the stable 
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UEs in the system with constant and frequent requests. Therefore, new UEs who entering the 

system will not be counted in the ‘traffic map’ which is used to design cache clustering. Until 

this UE is proved to be another stable UE which may stay in the system for several successive 

days and has frequent requests, it will be added in the ‘traffic map’ to affect the design of 

cache. Besides that, user’s preference may change with time passing by, and will reflect on 

his requested contents. As a result, the hit-ratio and unsatisfied percentage will be monitored 

maintain a qualified cache service. Once the value of these two parameters reach the 

threshold (hit-ratio lower than 60% or unsatisfied UE over 10%), a new cache design will be 

established based on current ‘traffic map’ and proposed algorithm, until the system is stable 

again.  

We have discussed the benefit of high Hit-ratio for cache system in last part. Another major 

advantage of cache system is to reduce latency of content request. Even if we ignore the high 

DL data rate from small cell, cache system with higher hit-ratio still can reduce latency in 

terms of less penalty time of missing request. If the average request-respond time between 

UE and a cellular cell is 20 ms [151] and we assume that the penalty request time from small 

cell UE to backbone network will contain relaying at least two times (UE – small cell – macro 

cell) and plus at least 100ms waiting time due to backhaul congestion. By applying (4.11), 

we can find out the latency difference among no cache system, 10%-50% cache size with 

proposed optimization and 50% cache size system (without optimisation). The result for 

Youtube scenario is shown in Figure 4.21. The first one is the latency time without cache 

system, which is 140 ms. Our objective is to apply cache system to reduce latency. The last 

one is the conventional cache system with 50% cache size, but there is no optimization 

applied. The latency has been reduced to 80 ms. From 2 – 6 is the latency when our proposed 
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cache system with different cache size is applied. The results show that the proposed cache 

system can reach the same effect of conventional cache system with only 30% cache size. If 

we use the same cache size of conventional cache system, our proposed scheme can reduce 

the latency by up to 60.21% and reach 55.68 ms.    

 

 

Figure 4-21 Latency for Various Cache System 

 

Besides improving Hit-Ratio and latency situation, our proposed cache system may also 

provide another useful application, which is the prediction of user’s popularity score on 

specific channel if provided UPP is not completed. For example, a new user entering the 

system and he only scores on several channels so that we cannot obtain complete UPP. We 

also cannot accumulate enough content request to plot UPP because he is new to the system. 

As a result, we cannot classify this UE into his suitable cluster without UPP. Under such 

situation, we can use our proposed algorithm in 4.4.5 and established cache system to predict 
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his missing score on UPP. In order to test the algorithm, we generate a new data set with 100 

UEs but their score on TaylorSwift are hidden to the system. And then we predict the score 

of this channel with our proposed algorithm, through finding 5 most similar UEs in the 

system according to remaining 19 scores. Figure 4.21 shows the comparison of hidden score 

with predicted score with algorithm. The original average popularity degree score on Tayler 

channel for this data set is 0.0497, and the predicted average popularity degree score on 

Tayler channel is 0.0482. Both the graph and calculation implies that the two plots generally 

follow the same pattern, the main reason causing disagreement is the correlation between 

calculated channels and predicted channel. If the correlation is high and more related 

channels are calculated, the predicted result will be more accurate. The correlation among 

YouTube channels or movie types is not the scope of this paper, our objective is to propose 

a method to implement UPP with limited information.  

However, the real user data may not perform as good as our simulated user data. Because of 

lack of actual data on real users’ UPP (protected privacy), we have randomly simulated each 

user’s UPP according to the statistics investigation. The correlation among different channels 

have been shown according to large data statistics, which ensures the high accuracy of our 

prediction system. For real data set, the correlation may be affected by many factors, such as 

region, language, gender and so on. If we collect enough data, we may add new factor into 

Equation (13) to modify our prediction system. 
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Figure 4-22 Comparison of predicted missing score with original score 

 

4.5  Conclusion 

Chapter 4 have managed to solve offloading problem of HetNets, which includes (1) UE 

offloading from higher tier to lower tier, and (2) small cell backhaul traffic offloading. This 

chapter applies a widely used unsupervised Machine Learning (ML) algorithm, K-means 

Clustering Algorithm (KCA) to address these two offloading issues. For first issue, we 

propose a User-Based K-means Algorithm (UBKCA) by involving HetNets background and 

Enhanced Inter Cell Interference Coordination (eICIC) to decide the optimal Cell Range 

Expansion (CRE) bias given specific offloading objective. The center user group set is 

established to reduce computing complexity. Meanwhile, CRE bias and Edge User Factor 

are optimized to enhance user offloading so that loading balance objective can be achieved. 

Simulations are then performed to show UBKCA’s better performance than KCA; the 
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optimal combination of CRE bias and Edge User Factor are taken based on both accuracy 

and offloading factor; furthermore, we have implemented a close-loop SON system with 

KNN and linear classification so that new UE will be automatically assigned to suitable 

network tier and offloading factor is maintained within a moderate range. In order to solve 

the backhaul traffic offloading, we have managed to establish a cache system within small 

cell by applying modified KCA. With the help of the cache system, both small cell users’ 

download speed and request time will be enhanced. KNN is then applied to predict new users’ 

content preference and prove our cache system’s suitability. Besides that, we have also 

proposed a system to predict users’ content preference even if the collected data is not 

complete.    

 

 

 

 

 

 

 

 

 

 

 



151 
 

Chapter 5. Analysing CRE effect on 

Ping-Pong Handover mitigation during 

Offloading Process  

 

5. 1 Introduction 

During last Chapter, we have introduced one of the eICIC technique - CRE, which is a virtual 

bias added to RSS from small cell to help offload UEs from macrocell. Although the 

introducing of CRE in HetNets is not originally designed to mitigate ping-pong Handover 

rate, its existence does follow the second method mentioned in introduction part. So far, the 

study of CRE' negative effect has focused on increasing cross-tier interference for small cell 

edge UEs after offloading them from macrocell. However, how CRE affects UE capacity 

during offloading phase or Handover phase is not focused yet. Therefore, the objective of 

this paper is to analyse and evaluate CRE's capability of addressing ping-pong Handover 

issue, and try to find optimal CRE by considering both negative and positive effects on 

capacity from Handover aspect.  

Besides CRE, there is another value which may affect the bias added to RRS, which is called 

Handover Hysteresis Margin (HM). HM is specifically applied for the purpose of redundant 

Handover reduction, which is normally a constant variable that added on serving cell. As a 

result, both HM and CRE will contribute to the virtual bias. We have mentioned that we need 

to take UE mobility model into consideration when analysing ping-pong Handover. During 

simulation, it is hard to record each single UE's exact moving projection and fading situation 

without actual collected data. In simulation, we will normally introduce mobility model and 
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shadow fading to simulate UE's situation, which may involve random factor and time factor. 

As a result, a proper model which can predict the status of UE changes with time in statistics 

should be established, which is the Markov Chain Process (MCP). With the help of MCP 

model, we have managed to analyse how TTT and CRE help to mitigate ping-pong handover 

(which are the two methods of mitigating unnecessary handover mentioned in introduction 

chapter), and optimal CRE value can be obtained given fixed TTT. Furthermore, we have 

been able to discuss the different effect of CRE and HM under the MCP model. The optimal 

combination of both parameters has been provided in the end.  

 

5. 2 Methodology  

5.2.1 Handover model with MCP 

A Markov chain is a stochastic model describing a sequence of possible events in which the 

probability of each event depends only on the state attained in the previous event [148]. The 

basic property of this stochastic process is 'memorylessness', which means we can predict the 

situation of the system in the future according to current situation only, even without knowing 

the history of the whole process. MCP has been widely applied in establishing the 

mathematical model for real-world process, which contains random objects and time factors, 

such as predicting the customers arriving the specific item’s arrival sequence, the price of 

stock and growth rate of observing species [149] – [150].  

After analysing how MCP works, we will be able to model Handover process with MCP. In 

introduction section, we have stated that a complete Handover contains two phases: 

initialization and process. Take both Handover from macro to small and from small to macro, 

there are total four main states: M, S, I, I'. We define M states representing UE is bound to 
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macro cell and undergoes initialization phase. Similarly, S states representing UE is bound 

to small cell and undergoes initialization phase. Besides that, we define I states as handover 

process from macro to small cell, and I’ states as handover process from small to macro cell. 

During initialize phase, Time-to-Trigger (TTT) is the crucible parameter, which restricts UE 

from entering second phase unless the candidate’s cell's RSS plus virtual bias is larger than 

current cell's RSS for a period of pre-defined time. In order to map TTT into our MCP model, 

we divide the whole TTT into several Transmission Time Interval (TTI), and each TTI 

represents a state within S = {S1, S2, ...Sn} or M = {M1, M2, ...Mn}. The conventional TTT 

time may vary from 40ms to 100ms and conventional TTI time is 10ms [152]. As a result, 

we have adopted 40ms TTT and 10ms TTI for our initial model, so that there will be 4 sub-

states in S and M. We have discussed that longer TTT will further benefit in mitigating ping-

pong handover. In our model, this will be represented from two aspects: 1) number of states. 

Since TTI is defined to be 10ms, longer TTT means more sub-states. With same transition 

probability, more sub-states means it is harder to jump out of the states chain of S or M. UE 

will be less likely to behave ping-pong handover. 2) transition probability. Once the MCP 

structure of TTT is fixed, CRE will affect the transition probability to increase PM(x) and 

reduce PS(x) to help UE offloaded to Small cell states. As a result, with the combination of 

TTT and CRE, UE will prefer to be offloaded to small cell and remain stable. The detailed 

deduction and result will be shown in next part. Since ping-pong Handover represents the 

frequent serving cell switching between macro cell and small cell, we have modelled the 

Handover loop as into the Markov Chain with n=4 shown in Figure 5.1.  
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Figure 5-1 Handover model with Markov Chain 

 

After the relationship of all states are defined, we should define the transition probability so 

that the Markov transit matrix can be established. Suppose UE is bounded to a macro cell 

and in M1 state, according to UE’s location and RSS. It has probability PM(x) to reach M2 

and 1 − PM(x) return M1 to renew the Handover assessment and the TTT count time is set 

to 0. M2, M3, … Mn states follow the same protocol. Until Mn reaches I1, which means the 

decision condition is satisfied for the whole TTT, the process phase will be started. During 

this phase, Handover is guaranteed to happen and only control signal and acknowledge 

signals are transferred to finish Handover process. Therefore, it has probability of 1 moving 

from I1 to I2 and then to I3 till Handover finishes and reaches S1 states (handover failure is 

not considered in this paper, so the probability of handover execution phase is set to be 1). 
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UE will then renew handover process with probability PS(x) till next handover. During 

handover process states (I and I' states), mainly traffic signals are transferred and information 

signal will be blocked till handover finishes. Therefore, frequent ping-pong handover will 

significantly reduce UE capacity. The virtual bias CRE will take effect to reduce ping-pong 

handover and increase capacity accordingly, which may be represented in 𝑃𝑀(𝑥) and 𝑃𝑆(𝑥) 

combined with step number and mobility model. The detailed calculation will be discussed 

in next session. 

After defining MC process and its state transit probability, we will be able to establish the 

transfer Matrix (T) to model the handover process for UEs and analyse how CRE affects it. 

Table.1 illustrates the 4-state transfer matrix with our algorithm, which will be used in later 

simulation:  

Table 5-1 Markov Transfer Matrix (T) 

 M1 M2 M3 M4 I1 I2 I3 I4 S1 S2 S3 S4 I1' I2' I3' I4' 

M1 1-PM(x) PM(x) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

M2 1-PM(x) 0 
PM(x) 0 0 0 0 0 0 0 0 0 0 0 0 0 

M3 1-PM(x) 0 0 
PM(x) 0 0 0 0 0 0 0 0 0 0 0 0 

M4 1-PM(x) 0 0 0 
PM(x) 0 0 0 0 0 0 0 0 0 0 0 

I1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

I2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

I3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

I4 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

S1 0 0 0 0 0 0 0 0 1-PS(x) PS(x) 0 0 0 0 0 0 
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S2 0 0 0 0 0 0 0 0 1-PS(x) 0 
PS(x) 0 0 0 0 0 

S3 0 0 0 0 0 0 0 0 1-PS(x) 0 0 
PS(x) 0 0 0 0 

S4 0 0 0 0 0 0 0 0 1-PS(x) 0 0 0 
PS(x) 0 0 0 

I1' 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

 I2' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

I3' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

I4' 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

The row of Matrix represents ‘start’ state, which means the system is currently in this state. 

The column for each row means the next state if the ‘start’ state is the row name. Therefore, 

the value of matrix represents the transition probability from row name to column name. For 

row M1 to M4, it has probability of 1- PM(x) to reach the column M1, which means jumping 

back to the initial state. Meanwhile, it has the probability of PM(x) moving to next state. As 

a result, the sum of each row should equals to 1, which means all the possible next states 

have been taken into consideration. The situation is similar from row S1 to S4. I and I’ row 

represents the process phase, during which UE is inevitably transferred to the other cell. 

Therefore, the probability of moving to next state is set to be 1. Still, the total probability of 

each row is 1 during these two kind of states.  

Once transfer matrix is established, the state probability vector 𝑉 at any given step 𝑥 can be 

calculated according to the property of MC: 

𝑉(𝑥) = 𝑉(1) ∏ 𝑇(𝑖)

𝑥

𝑖=1

                                             (5.6) 
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𝑉(1) shows the probability of UE at initial point, which is given and can be decided with 

probability of 1. For example, UE is bound to macro cell from time 1, its probability vector 

will be [1, 0, 0 ... 0]. With time passing by, number of step will increase, its vector will keep 

changing according to Equation (6). Therefore, we can find out the vectors for all UEs in the 

system after x steps and analyse their handover rates through the probability of each state. 

 

5.2.2 Define Transition Probability  

Since we have discussed that ping-pong Handover may be affected by shadow fading and 

mobility model. We should analyse the system propagation model to find out how to define 

the transition probability. Equation (7) is the small cell SINR expression with free path loss 

and shadow fading. Since we have assumed that there is only one macro cell and one small 

cell in the HetNets system, the only interference is macrocell RSS.  

 

𝑆𝐼𝑁𝑅 =  
𝑃𝑠𝑙𝑠𝑔𝑠

𝑃𝑚𝑙𝑚𝑔𝑚 + σ2
 

                                            (5.7) 

 

Ps and Pm represent the transmission power of small cell and macro cell. ls and lm represent 

free path loss, and the expression in dB has followed (3.8) in chapter 3. 𝑔𝑠 and 𝑔𝑚 is the fast-

fading gain which is assumed as Rayleigh Distribution. As a result, the expression of g should 

be the exponential random variable. In conclusion, RSS from a cell will be consist of two 

parts, the distance-decided part 𝑃𝑠𝑙𝑠 and random part 𝑔𝑠. And RSS for macrocell and small 

cell is shown below: 

𝑅𝑚 = 𝑃𝑚𝑙𝑚𝑔𝑚                                                         (5.8) 
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𝑅𝑠 = 𝑃𝑠𝑙𝑠𝑔𝑠                                                  (5.9) 

According to the discussion in early part, we know that UE will start a check on the 

association condition every TTI. By considering CRE bias, β, the condition that UE pass and 

count one check will be: Rm < β Rs. By considering transition matrix, this is also the condition 

that M1 move to M2 state, which is the transition probability Pm(x). Sub in (5.8) and (5.9).  

𝑃𝑀(𝑥) = 𝑃(𝑅𝑚 < 𝛽𝑅𝑠) 

                                                                                                 =  𝑃(𝑃𝑚𝑙𝑚𝑔𝑚 < 𝛽𝑃𝑠𝑙𝑠𝑔𝑠) 

                                   = 𝑃 (
𝑔𝑚

𝑔𝑠
<

𝛽𝑃𝑠𝑙𝑠

𝑃𝑚𝑙𝑚
) 

                                 = 1 − 𝑃 (
𝑔𝑚

𝑔𝑠
>

𝛽𝑃𝑠𝑙𝑠

𝑃𝑚𝑙𝑚
) 

If we can solve 𝑃 (
𝑔𝑚

𝑔𝑠
>

𝛽𝑃𝑠𝑙𝑠

𝑃𝑚𝑙𝑚
), the transit probability 𝑃𝑀(𝑥) is also solved. We have known 

that 𝑔𝑠  and 𝑔𝑚  are two exponential random variables because they follow Raleigh 

Distribution. The right side is decided once the location of UE is decided, which can be 

considered as constant within the same Transition Matrix. Therefore, the question can be 

transferred to: calculate the probability that the ratio of two random exponential variables 

𝑋0 and 𝑋1 is larger than one specific constant, t. (Since 
𝛽𝑃𝑠𝑙𝑠

𝑃𝑚𝑙𝑚
 is not time dependent and none 

of the symbol will change during whole MCP, we will consider 
𝛽𝑃𝑠𝑙𝑠

𝑃𝑚𝑙𝑚
 as constant t during 

deduction,  while 𝑔𝑚 and 𝑔𝑠 are time dependent to be considered as the two variables  𝑋0 

and 𝑋1 during deduction) : 
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                     𝑆𝑢𝑝𝑝𝑜𝑠𝑒 𝑡 =
𝛽𝑃𝑠𝑙𝑠

𝑃𝑚𝑙𝑚
,  𝑋0 =  𝑔𝑚,  𝑋1 = 𝑔𝑠 

 

𝑃 (
𝑋0

𝑋1
> 𝑡) = 𝑃(𝑋0 > 𝑡𝑋1) 

  = ∬ 𝑓𝑋0,𝑋1
(𝑥0, 𝑥1)𝑑𝐴𝑥0,𝑥1

 

𝑋0>𝑡𝑋1

 

= ∫ ∫ 𝑓𝑋0
(𝑥0)𝑓𝑋1

(𝑥1)𝑑𝑥0𝑑𝑥1

∞

𝑥1𝑡

∞

0

 

= ∫ ( ∫ 𝑓𝑋0
(𝑥0)𝑑𝑥0

∞

𝑥1𝑡

)

∞

0

𝑓𝑋1
(𝑥1)𝑑𝑥1 

= ∫(𝑒−𝑡𝑥1𝑎)

∞

0

𝑎𝑒−𝑥1𝑎𝑑𝑥1 

=
1

1 + 𝑡
 

 

Hence, we can get from the equation above: 

 

                                        𝑃 (
𝑔𝑚

𝑔𝑠
< 𝑡) = 1 − 𝑃 (

𝑔𝑚

𝑔𝑠
> 𝑡) 

        = 1 −
1

1 + 𝑡
 

        =
𝑡

1 + 𝑡
 

𝑠𝑢𝑏 𝑖𝑛 𝑡 =
𝛽𝑃𝑠𝑙𝑠

𝑃𝑚𝑙𝑚
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        =

𝛽𝑃𝑠𝑙𝑠

𝑃𝑚𝑙𝑚

1 +
𝛽𝑃𝑠𝑙𝑠

𝑃𝑚𝑙𝑚

 

        =
𝛽𝑃𝑠𝑙𝑠

𝑃𝑚𝑙𝑚 + 𝛽𝑃𝑠𝑙𝑠
 

 

In conclusion,  

                                                   𝑃𝑀(𝑥) =
𝛽𝑃𝑠𝑙𝑠

𝑃𝑚𝑙𝑚 + 𝛽𝑃𝑠𝑙𝑠
                                     (5.10) 

 

                                                       𝑃𝑆(𝑥) =
𝑃𝑚𝑙𝑚

𝑃𝑚𝑙𝑚 + 𝛽𝑃𝑠𝑙𝑠
                                   (5.11) 

 

5.2.3 Markov-Based Mobility Model 

Conventional mobility model has supposed that UE are moving in strait line during the period 

of simulation time. However, one cause of unnecessary Handover is just the unpredictable 

mobility model of UE. As a result, strait line mobility model may not be suitable for this 

simulation. After understanding how Markov chain process works, we have established a 

new mobility model based on Markov structure.  

Markov Chain is a mathematical system that undergoes transitions from one state to another. 

It is a random process and generally memoryless – it only relies on the current state and not 

the whole system. Besides the transition probability P for each state, the parameter needs to 

be considered in Markov Chain is initial distribution matrix can be derived from users’ 

velocity, direction, or initial state. In our simulation, we need to set up the states first. We 

have defined two types of person here, one is trespasser and the other is stayer. Trespasser 
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means that they are only trespassing this area and won’t stay here. Stayers, however, means 

they come to this area and will stay here for a while – like people come to work. UE have 

been generated during last part of the job. After that, each UE will be distributed with a label 

– being trespasser or stayer, moving on foot or mobile (different moving velocity). Then we 

need to set up the initial state. For trespasser, we have defined four states to mark their 

moving direction: N (north), S(south), W(west), E(east). For stayer, we add another state: 

H(hold), meaning they have reached their office and won’t move any more. In other words, 

H is the final state for stayer.  

Therefore, the initial state for trespasser should be like [1, 0, 0, 0], and stayer is like [1,0,0,0,0], 

which means user is currently moving to north. After that, we should also establish 

probability matrix P. For stayer, it should be the form as below:  

 

 𝐻 𝑁 𝑆 𝑊 𝐸
𝐻 1 0 0 0 0
𝑁 0.1 0.3 0.2 0.3 0.1
𝑆 0.1 0.2 0.2 0.2 0.3
𝑊 0.1 0.4 0.2 0.1 0.1
𝐸 0.1 0.1 0.3 0.2 0.3

 

 

And trespasser should have the form as below: 

 𝑁 𝑆 𝐸 𝑊
𝑁 0.85 0.01 0.07 0.07
𝑆 0.01 0.85 0.07 0.07
𝐸 0.07 0.07 0.85 0.01
𝑊 0.07 0.07 0.01 0.85

 

 

This matrix suggests that when one person is walking along specific direction ([1 0 0 0] is 

the initial probability vector if he move towards north), he may have a high preference to 
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continue this direction, and very low probability to turn back. However, as times passing by, 

the probability of initial vector will keep shifting according to (5.6). The probability of 

turning for this user will getting higher till he chooses to turn to a new direction at some time 

point. The probability vector of this user will be reset to the form [0 0 1 0] if he decides to 

go east this time. Figure 5.2 shows several users mobility projection by applying this Markov 

mobility model. Stayer will hold once he entered his office. Trespassers either go out of this 

area or randomly move by keep changing his direction.  For this chapter, we have applied the 

trespassers model. 

 

Figure 5-2 Markov Based Mobility Model Simulation 

 

So far, we have defined the MCP model and the transition probability within. The Markov-

based mobility model has also been defined. As a result, for any UE within the system, we 
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can use mobility model to get his 𝑃𝑚𝑙𝑚  and 𝑃𝑠𝑙𝑠  first and then calculate the transition 

probability to construct the transition matrix at any give TTI. At time 0, all UEs are bound to 

macro cell, and then a small cell is added into the system to establish the HetNets system. 

With time passing by, UEs around small cell will start to offloading/Handover to small cell. 

By modelling with MCP, we can calculate the probability distribution of the UE and decide 

which state it is according to the probability at a specific TTI. UE will continue to move 

according to his mobility model until 500 TTI is calculated. By calculating the probability of 

I and I’ happens during all TTIs and controlling CRE bias, we can use this model to analyse 

how CRE bias affect the Handover rate before offloading finishes.   

 

5. 3 Simulation and Analysis 

 

5.3.1 System Model 

For this simulation, a two-tier HetNets system is built up with two-BS model, containing 

single macrocell and single small cell. Two BS are allocated 300 meters away. 500 macro 

UEs are distributed within the edge of small cell coverage circle to model UE offloading 

process. Each UE has the moving speed of 3km/h and assigned with MCP trespasser mobility 

model.  Actual simulation parameters are shown below: 
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Table 5-2 Important simulation parameters for Simulation  

Parameters Value 

Bandwidth 1 MHz 

Cell layout Two-Tier HetNets 

User Equipment Number 500 

Transmit power of macro cell 40W/46dBm 

Transmit power of small cell 0.25 W/24 dBm 

Noise power -174dBm 

TTT 40 ms 

 

After time 1, each UE will start moving as his assigned mobility model till TTI reaches 500. 

Due to the change of location, UE’s distance to macro cell and small cell will change 

accordingly. 

We have discussed in early part that CRE has two effects on UE’s capacity during Handover 

phase: (1) mitigating unnecessary Handover rate to boost UE’s average capacity and (2) 

offloading UEs from macro cell small cell, which may hinder UE’s capacity by increasing 

cross-tier interference. Therefore, the effects of these two factors are opposite and increasing 

CRE bias will inevitably bring the conflict of these two factors. In order to analyse and find 

the equilibrium point for these two effects, we should try to find out how CRE affects UE 

capacity when only considering one factor.  

 

𝑅𝑆𝑆𝑚 < 𝑅𝑆𝑆𝑠 + 𝐶𝑅𝐸                                      (5.12) 

 

Firstly, we use conventional user association combining with CRE to offload UE. Whenever 

macro UE satisfies the (5.13), it will be offloaded to small cell without considering Handover 

phases (there will be no 0 capacity during any TTI, but also no buffer time for UE, only result 
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is focused). Figure 5.3 shows how total capacity changes with CRE by considering cross-tier 

interference. It is obvious that CRE has negative effect on capacity because it only focus on 

solving load balancing issues, and may even increase cross-tier interference. This effect is 

mild in the beginning and will be more severe as CRE value grows, especially after 9 dB. 

This means that under low CRE value, less macro UEs will be affected, and those remain in 

macro cell may ignore cross-tier interference due to high transmission power. However, more 

UEs are ‘forced’ to bind with small cell as CRE increases, and even central users of macro 

cell will be affected. These UEs are more vulnerable to cross-tier interference and will suffer 

huge QoS loss. After obtaining the total capacity value for different CRE bias value, we have 

used curve fitting to generate a continuous plot to show the trend and the expression is as 

follows, where the expression for the curve is:     

        

F(x)=-0.004561x2+0.0002939x+4.739                   (5.13) 

 

Figure 5-3 Total Capacity vs. CRE for Model 1 
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Secondly, we use our proposed MCP to model the Handover process and analyse how CRE 

affects Handover rate for the system. Since CRE’s positive effect mainly reflects on the 

reduction of UE’s Handover rate (which means less I or I’ states during the process), we keep 

the UE partition with 1 dB CRE to ignore its effects on offloading even if CRE bias increases. 

And then combine the capacity of each UE with its Handover rates obtained through MCP 

under current CRE (we suppose there is no data rate during I and I’s states). Figure5.4 

displays the result changes with CRE by applying MCP. The effects of CRE is obviously 

opposite to first model, CRE will take positive effects on capacity due to its ability of 

controlling Ping-pong handover. However, Figure 5.4 also shows its effect will fade as CRE 

increases. The phenomena are caused by the property of Ping-pong handover. According to 

MCP, if CRE is large enough, the probability of unnecessary handovers will be minimized, 

therefore less Ping-pong handover will occur and the benefit of CRE is diminished. After 

obtaining the total capacity value for different CRE bias value, we have used curve fitting to 

generate a continuous plot to show the trend and the expression is as follows: 

 

F(x)=-0.006121x2+0.1452x+3.768                  (5.14) 
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Figure 5-4 Total Capacity vs. CRE for Model 2 

 

Therefore, we may obtain the optimal CRE bias with the help of the two effect-curves. We 

plot two curves according to their expression on the same graph, and the equilibrium point 

may be represented by the intersection of the Handover rate effect curve and the cross tier 

interference curve. Before the equilibrium point, the positive effect of CRE is not fully 

exploited. And after the point, the negative effects of CRE will getting severer because even 

core users may be affected. As a result, the point CRE = 7 is the nearest one to equilibrium 

point, and is presumed to be the optimal CRE bias.  
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Figure 5-5 Two effect Curves with CRE 

 

We have discussed that the length of TTT will also take the effects on controlling Handover 

rate. Therefore, we use the established MCP to analyse the effect of TTT. Figure 5.6 shows 

how handover rate changes with CRE Bias for different TTT values. It can be observed that 

in four curves, handover rate will decrease with CRE, which follows our prediction by (5.10) 

and (5.11). It is because that CRE virtually increases coverage of small cells and therefore 

restrains UEs' handover from small cell to macro cell. With the growth of TTT, the initial 

handover rate drops dramatically, it suggests that increasing TTT will also benefit controlling 

handover rate. The ending point for each curve, however, increases slightly as TTT increases. 

This phenomenon is triggered by the increasing weight of a in (5.7), CRE will help to offload 

UEs from macro cell to small cell. As TTT’s effect on handover drops, CRE may lead a small 

growth of handover rate for I states in Figure 5.6. 
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Figure 5-6 Handover Rate vs. CRE under different TTT 

 

 

We have also discussed that there is another virtual bias HM that is added to help mitigate 

unnecessary Handover rate. Generally speaking, it can be concluded that both CRE and HM 

will reduce handover rate as they grow. However, HM's main purpose is to delay the 

handover process and bound the UEs to their original serving cells, which including both 

macro cell and small cell. CRE, on the other hand, has another function to offload the UEs 

from macro cell to small cell so that decent HetNets network efficiency can be maintained. 

The effect of CRE will prefer to bound UEs into small cell. As a result, CRE and HM may 

take opposite effects on handover control when UEs try to handover from macro cell to small 

cell. As a result, the modified transition probability after considering both CRE and HM are 

shown on (5.15) and (5.16).  
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                   𝑃𝑚(𝑥) =
𝛽𝑃𝑠𝑙𝑠

𝑏𝑃𝑚𝑙𝑚 + 𝛽𝑃𝑠𝑙𝑠
                                      (5.15) 

 

                   𝑃𝑠(𝑥) =
𝑃𝑚𝑙𝑚

𝑃𝑚𝑙𝑚 + 𝛽𝑏𝑃𝑠𝑙𝑠
                                       (5.16) 

 

 

Figure 5-7 Handover Rate vs. HM under different TTT 

 

Figure 5.7 introduces how handover rate changes with HM Bias for different TTT values. It 

shows that TTT also has a significant effect when HM is applied to control transition 

probability, which follows the prediction of MCP as well. It can be reflected from two aspects: 

initial point and reaching-zero bias. When TTT = 40ms, handover rate initial point is up to 

18%, after which drops rapidly below 2% when TTT is set to 100ms. Besides that, if HM is 

set to be extremely high, it is possible that there will be no more handover, UE will not be 
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able to offload to small cell due to high HM and then leave small cell region without handover. 

As a result, although ping-pong handover is mitigated, it will also hinder our offloading 

objective for HetNets. The reason causing this side effect, can also be explained from MCP 

probability formula and physical meanings of two parameters. HM's main purpose is to delay 

the handover process and bound the UEs to their original serving cells, which including both 

macro cell and small cell. CRE, on the other hand, has another function to offload the UEs 

from macro cell to small cell so that decent HetNets network efficiency can be maintained. 

As a result, CRE and HM may take opposite effects on handover control when UEs try to 

handover from macro cell to small cell. It also explains why handover rate will not reach 0% 

no matter what CRE value the network takes. As a result, applying CRE instead of HM to 

mitigate ping-pong HO may be the suitable scheme for our UE offloading scenario. 

Furthermore, after discussing how the combination of CRE and HM affect transition 

probability and obtain (5.15) and (5.16),  we can also obtain the optimal combination of CRE 

and HM.  

For CRE only, we have obtained discrete sets result from model 1 and 2, the combined curve 

suggests that optimal CRE value for this scenario is 7 dB. In order to evaluate the proposed 

scheme, we calculate each UE’s capacity by considering the UE states in all 500 MCP TTIs, 

which considers both effects of CRE for this two-tier HetNets scenario. If in I and I’ states, 

the capacity is 0, if in M states or S states, capacity will be calculated according to respect 

SINR. 

The evaluation is made through CDF as shown Figure5.7. According to the figure, although 

5dB has less UEs in low-level tier (0 to 0.03 Mb/s), its distribution increases rapidly in 

middle-level tier (0.03 to 0.08 Mb/s), it has only a few high-level UEs (0.08 to 0.17 Mb/s). 
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11dB does have some high-level UEs, but almost 30% of UEs remain in low-level tier. As a 

result, these two values may not be optimal. 7dB and 9dB behave quite similar though 7dB 

shows the advantage in high level., it is because that the whole system is in the turning-point 

state during this period 7dB shows the advantage in high level after 0.06 Mb/s.  

 

 

 

Figure 5-8 CDF of UE capacity for different CRE value  

 

 

5. 4 Conclusion 

Chapter 5 aims to solve ping-pong handover issue during offloading phase within HetNets. 

Ping-pong Handover can result in communication delay, call dropping, capacity reduction, 

and this issue may be even more severe in HetNets because of transmission power unbalance. 

Cell range expansion (CRE), as an important technique of enhanced inter-cell interference 

coordination (eICIC), can mitigate this issue by adding or reducing the bias on actual received 
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power to enforce user associations; besides, CRE will stabilise UE within specific tier of 

HetNets and therefore reduce ping-pong handover. However, introducing CRE will also 

enhance cross-tier interference and decrease QoS, which makes it quite complicated to 

determine CRE value. This chapter will introduce Markov Chain Process to simulate UE’s 

mobility model and shadow fading randomness when UE is trying to Handover. And then 

use this MCP system to find the optimal CRE value for different kind of scenarios with 

Markov Chain Process. Finally, simulation results will show this proposed method’s 

advantage with other fix CRE value method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



174 
 

Chapter 6. Conclusion and Future Work 

 

In conclusion, the research of this paper can be summarized into three categories.  Meanwhile, 

these three parts will also contribute to solve the challenge of the HetNets. The first part has 

managed to apply game theory to implement eICIC and FeICIC design so that not only the 

cross-tier interference is mitigated but also the QoS for all UEs within the system is secured. 

The second part has applied unsupervised machine learning algorithm to solve the offloading 

issue of HetNets, which includes offloading macro cell UEs and small cell backhaul load; 

meanwhile, supervised algorithm has been applied to predict and implement the SON system 

for later data set. The third part has adopted Markov Chain Process model not only to design 

a random mobility model but also to model the UE offloading/Handover process from macro 

cell, so that the optimal CRE during the offloading process can be obtained.  

In details, Chapter 3 have managed to solve cross-tier interference issue of HetNets with 

Almost Blank Subframes. Through muting macro cell in specific ABS, small cell UEs will 

benefit from it without cross-tier interference. This chapter firstly apply Nash Bargain 

Solution with proportional fairness to determine the optimal ABS ratio and UE allocation. 

Which UE are more vulnerable and how ABS affect small cell UEs are also discussed. With 

the information from ABS, we propose the Power-Layer Based NBS algorithm to realize 

reducing power ABS. During Rp-ABS, macro cell power is no longer fully muted, we 

implement the cost of NBS according to power layer and introduce stepped power reduction, 

so that both the small cell and macro cell UEs may enjoy a system balance. The optimal Rp-

ABS ratio and UE allocation for different layer subframe is obtained and evaluated in the 

end.  
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Chapter 4 have managed to solve offloading problem of HetNets, which includes (1) UE 

offloading from higher tier to lower tier, and (2) small cell backhaul traffic offloading. This 

chapter applies a widely used unsupervised Machine Learning (ML) algorithm, K-means 

Clustering Algorithm (KCA) to address these two offloading issues. For first issue, we 

propose a User-Based K-means Algorithm (UBKCA) by involving HetNets background and 

Enhanced Inter Cell Interference Coordination (eICIC) to decide the optimal Cell Range 

Expansion (CRE) bias given specific offloading objective. The center user group set is 

established to reduce computing complexity. Meanwhile, CRE bias and Edge User Factor 

are introduced to enhance user offloading so that loading balance objective can be achieved. 

Simulations are then performed to show UBKCA’s better performance than KCA; the 

optimal combination of CRE bias and Edge User Factor are taken based on both accuracy 

and offloading factor; furthermore, we have implemented a close-loop SON system with 

KNN and linear classification so that new UE will be automatically assigned to suitable 

network tier and offloading factor is maintained within a moderate range. In order to solve 

the backhaul traffic offloading, we have managed to establish a cache system within small 

cell by applying modified KCA. With the help of the cache system, both small cell users’ 

download speed and request time will be enhanced. KNN is then applied to predict new users’ 

content preference and prove our cache system’s suitability. Besides that, we have also 

proposed a system to predict users’ content preference even if the collected data is not 

complete.    

Chapter 3 and chapter 4 manage to solve issue when UEs are in static state. Conversely, 

chapter 5 aims to solve ping-pong handover issue during offloading phase within HetNets. 

Ping-pong Handover can result in communication delay, call dropping, capacity reduction, 
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and this issue may be even more severe in HetNets because of transmission power unbalance. 

Cell range expansion (CRE), as an important technique of enhanced inter-cell interference 

coordination (eICIC), can mitigate this issue by adding or reducing the bias on actual received 

power to enforce user associations; besides, CRE will stabilise UE within specific tier of 

HetNets and therefore reduce ping-pong handover. However, introducing CRE will also 

enhance cross-tier interference and decrease QoS, which makes it quite complicated to 

determine CRE value. This chapter will introduce Markov Chain Process to simulate UE’s 

mobility model and shadow fading randomness when UE is trying to Handover. And then 

use this MCP system to find the optimal CRE value for different kind of scenarios with 

Markov Chain Process. Finally, simulation results will show this proposed method’s 

advantage with other fix CRE value method. 

 

For the research of chapter 3, Nash Bargain Solution game theory has been applied to obtain 

the optimal parameter ABS ratio. During the bargain process, it is easy to define the 

performance of each type of ABS once the structure of the game theory is established. 

However, the concept of the cost is hard to define because it requires a reasonable explanation 

and should generate as few negative again as possible. Conventional method applies partial 

fairness to avoid negative gain, which ignores the cost of players. We have explained and 

defined the opportunity cost for the game theory instead of partial fairness for FeICIC design. 

However, we cannot guarantee opportunity cost model is the most suitable one for HetNets. 

The future work can be focused on finding better cost model, which may lead a higher total 

utility.  
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For the research of chapter 4, machine learning algorithms has been applied to solve 

offloading issue in HetNets. For deciding CRE bias to reach predefined offloading objective, 

we did not introduce interference factor during training phase of K-means Algorithm. 

Therefore, the negative effect of CRE could be added during the learning phase so that the 

SON offloading mechanic will also consider cross-tier interference as a constraint. Moreover, 

the cache system for small cell backhaul offloading assumes that the small cell storage device 

is accessible for all UEs within the system. However, the limitation of low transmission 

power of small cell may cause QoS problem for edge users. We believe that we can also add 

the geo information as part of UPP through intelligent normalization in future work, so that 

the clusters will automatically keep away from each other to maintain a range coverage.   

For the research of chapter 5, Markov Chain Process has been applied to model the mobility 

and Handover Process, so that CRE’ effect during offloading has been exploited. We have 

established the Markov-based mobility model to simulate human’s behavior when moving. 

However, the transition probability may not be suitable defined due to the lack of relevant 

data. In the future, we can find related documents to enhance this mobility model. Moreover, 

HM is another parameter which may affect the ping-pong handover. We have managed to 

add it on transition probability but did not make further analyze its effects on handover and 

its difference between CRE, which may become our future work  
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