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Thesis summary: 
 
There is a discrepancy in the scale at which ecological data is collected and the scale at 

which we need to understand the dynamics of populations and communities. As 

environmental conditions and population responses vary over different over time and 

space, models parameterised with small-scale data can fail to accurately capture the 

breadth of large-scale dynamics. There is therefore a need to increase the scale of 

ecological monitoring to provide adequate data for informative modelling.  

 

A central problem is the trade-off between quality and quantity when collecting data, 

detailed counting of individuals within a population is expensive, time consuming, and 

limits the scale of ecological research. In this thesis I examine novel methods of generating 

and analysing data over large scales. The first of these are density-structured models, 

which forgo counting abundances in favour of simple categorisation of a population at a 

particular site, and model dynamics as a function of the probability of transitions between 

categories. In Chapter 2 I develop these models to account for population structure by 

incorporating hierarchical effects in the parameterisation of transition probability matrices, 

which define dynamics in these models. I show that hierarchical models provide 

considerable improvement over non-hierarchical models and suggest several useful 

parameterisations for future applications. Models that incorporate field-level effects into 

the cut-point parameters of ordered category logistic regressions demonstrate the best 

performance. 

 

In Chapter 3 I apply the models developed in Chapter 2 to a national-scale density-

structured agricultural weed data set, to examine the effects of spatial heterogeneity and 

management on weed dynamics. The weed in question, black-grass, is wide-spread, 

economically damaging, and difficult to control. Through transient analysis, two-step 

ahead projections and stochastic simulations, I demonstrate that an essential part of cultural 

weed control- crop rotation- does decrease the severity of weed infestations. Using break 

crops in rotations dominated by wheat can reduce weed densities and inter-year variability, 

with some break crops providing greater reductions than others. However, variance 
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decompositions show that field-specific effects and the initial densities of weeds are 

greater contributors to the change in weed density than any specific crop-rotation. This 

suggests that site level factors may obscure or overwhelm the effect of interventions, 

highlighting the need for large-scale studies of population dynamics such as the one I have 

undertaken here. 

 

Spatial structure is a major driver of population dynamics, and as such Chapter 4 

investigates methods of expanding density-structured models to incorporate spatial 

information. I developed model parameterisations that incorporate spatial information into 

density-structured models through inclusion of a simple spatial covariate in the linear 

predictor of transition probabilities. I show that spatial models perform better than non-

spatial counterparts, and the formulations I develop provide modest improvements to the 

ability of density structured models to capture field-scale spatial structure. Despite 

relatively modest improvements to model performance, these models demonstrate different 

dynamics in response to crop-rotation than spatially naïve models, with the contribution to 

system variances between field-specific factors and managements being far more 

comparable. This suggests that future predictive applications of density-structured 

approaches should only consider spatially explicit models when modelling the effects of 

crop-rotation.  

 

The second technique I investigated in this thesis was metabarcoding, which involves using 

high-throughput sequencing and molecular taxonomy to simultaneously identify organisms 

across entire assemblages. This technology has particular promise for arthropod surveys, 

where traditional methods rely on the dwindling abundance of expert taxonomists, making 

biodiversity surveys slow, expensive, and often reliant on numerous different individuals. 

DNA-based identification using metabarcoding can be conducted using environmental 

samples or bulked samples of the organisms themselves and has been demonstrated to 

show fast and accurate identification of multiple organisms simultaneously. There has been 

little critical analysis of the limits of metabarcoding in terms of the number and type of 

organisms it can detect from bulked samples. I show that using standard pipelines and 

methodologies metabarcoding can produce taxonomic bias towards certain taxa and 

exclude others. I go on to demonstrate that pooling (or bulking) samples during DNA 
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extraction reduces community coverage, and PCR produces stochasticity in species 

detection. I then conduct diversity analyses to assess the impact of landscape features on 

agricultural arthropod assemblages, however, given that there are obvious issues with 

barcoding in this manner it is difficult to draw robust ecological conclusions from these 

data.  

 

Overall this thesis further develops methods for large scale monitoring and modelling of 

populations and communities. I develop density-structured models to incorporate 

hierarchical population effects and spatial structure and provide a demonstration of their 

utility. I also highlight potential problem areas for future metabarcoding studies of 

abundant and diverse arthropod communities.  
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Preamble - Ecological monitoring, modelling and data: 

Humankind is overwhelmingly reliant on natural systems for our food and wellbeing (Díaz 

et al., 2006; Groot et al., 2012; Pomeroy, 2018). Understanding the drivers of variability in 

these systems is central to the study of ecology, recent history, however, has seen rapid 

degradation in global ecosystems (Sutherland, 2006). Climate change, pollution, and habitat 

destruction are rapidly decreasing the ability of natural systems to provide for people 

(Cardinale et al., 2012). To ensure continued provision of vital ecosystem services, we must 

manage them effectively, and for this we must have a detailed understanding of how 

ecosystems will respond to rapid rates of global change.   

 

Our immediate understanding of populations and communities comes from direct 

observation; empirical studies of natural systems are the foundation of biological science, 

and small scale experiments are invaluable for ecological research (Whitehorn et al., 2012; 

Pennekamp et al., 2018). However, as we have built our understanding of ecology, focus has 

shifted towards statistical models. Models are key tools in and are frequently used for 

answering complex questions, for example, in the evolution of life-histories (Childs et al., 

2003; Ellner and Rees, 2006, 2007), determinants of  community structure or population 

abundances  (Freckleton and Watkinson, 1998; Freckleton et al., 2000; Chave, Muller‐

Landau and Levin, 2002), or the distributions of, and connections between, populations 

(Hanski, 1998; R P Freckleton and Watkinson, 2002; Guisan and Thuiller, 2005).  

 

Prediction is a key function of ecological models: being able to anticipate changes in 

the way an ecosystem behaves is essential for effective management. However, for 

predictions to be useful they must be accurate, and accuracy of predictions themselves are 

contingent on the quality of data used to parameterise the model. Without sufficient data, 

models can fail in the face of even slight variability in parameter values, producing erroneous 

results or high levels of uncertainty (Freckleton et al., 2008; Tredennick, Hooten and Adler, 

2017).  

 

In the majority of cases empirical data used to parameterise models are generated 

over small scales, short durations, and in standardised conditions. Typically, studies of 

population responses to stimuli are generated in meter scale plots  (Queenborough et al., 
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2011; GarcÍa De León et al., 2014), and studies that collect detailed demographic data over 

long time periods are typically tied to focal populations by logistics and practicality 

(Coltman et al., 1999; Coulson et al., 2001).  The overwhelming reality, however, is that 

natural systems are defined by their diversity and dynamism. Populations and communities 

vary enormously through time and space, dynamics can be complex or chaotic in even 

homogenous environments (Blasius, Huppert and Stone, 1999; Robert P. Freckleton and 

Watkinson, 2002), and these patterns in variability are dependent on scale and environmental 

context (Levin, 1992; Steffan-Dewenter et al., 2002; Urban, 2005; Chase et al., 2017). 

 

Important management issues play out on land-scape, regional, or even international 

scales, leaving a conflict between the scale at which we have data, and the scale at which we 

need to model important phenomena (Lee, 1993; Berkes, 2006; Cumming, Cumming and 

Redman, 2006; Guerrero et al., 2013). This particularly limits the ability of models to 

forecast the effects of environmental change on ecosystems whilst accounting for spatio-

temporal variability in model parameters and dynamic processes. Reconciling this mismatch 

is a primary task in ecology and has led to significant effort in finding methods for 

‘upscaling’ the small scale processes to larger spatial and temporal scales (Levin, 1992; 

Miller et al., 2004; Urban, 2005). Extrapolation can be achieved in numerous ways (e.g. 

Rastetter et al. 2003; Cipriotti et al. 2016), but the assumption that small scale processes are 

representative at broader scales are unrealistic  (Chase et al., 2017), and can lead to erroneous 

predictions (Freckleton et al 2008). A lack of data and a poor mechanistic understanding of 

the processes that dictate variability organism responses over different scales will ultimately 

lead to predictive errors (Tshapa and Bossler, 1992; Ludwig, Wiens and Tongway, 2000; 

Miller et al., 2004).   

 

The overriding message is that to manage natural systems, management must reflect 

their inherent variability. For models to help us to manage real-world ecosystems, 

predictions must be applicable at scale, and good management ultimately requires good data 

(Stephens et al., 2015; Cadotte et al., 2017). Unfortunately, for studies of abundance, 

diversity, and demography, data collection is often difficult, expensive and time consuming. 

The costs of biological surveys combined with the budget limitations of most projects, limit 

the scale of research, and thus our ability to tackle large-scale problems effectively.  
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Fortunately, technological innovation has kept pace with the rates of global change. 

Rapid advances in technology over the past century are now providing promising 

opportunities to address the mismatch of scales in ecology and gather data over increasingly 

large areas. For example, increased connectivity and ease of communication has enabled the 

rise of sophisticated citizen science initiatives (Silvertown, 2009; Dickinson, Zuckerberg and 

Bonter, 2010) which economises data collection or analysis through crowdsourcing. Remote 

sensing is now routinely applied, with capture of = environmental data possible from satellite 

imagery, aircraft, and automated UAVS (Turner et al., 2003; Wiens et al., 2009; Lambert et 

al., 2018). Next-generation sequencing has revolutionised molecular studies in ecology and 

evolution, allowing economical access to vast amounts of genetic data (Shendure and Ji, 

2008; Metzker, 2010).  

 

Novel methodologies have always been part of the analytical toolbox in ecology, as 

economical data collection has always been a necessity. Also, many metrics are inherently 

hard to observe. For example, measuring the exact age of an organism is often impossible, 

but summarising it into a particular stage category is common practice when studying 

demography. Technology has opened up new opportunities. For example elusive or rare 

species require effort to find, species detection and estimations of population size can now 

be achieved through camera trapping (Burton et al., 2015; O’Connel, Nichols and Karanth, 

2015; Hsing et al., 2018), acoustic analysis (Bardeli et al., 2010; Stowell et al., 2018), or 

through molecular analysis of environmental samples (Taberlet and Coissac, 2012a; 

Thomsen et al., 2012; Bohmann et al., 2014). In turn, new data collection techniques have 

facilitated new methods of analysis.  Matrix projection models were developed to model 

demography as a function of discrete stage categories (Leslie, 1948; Lefkovitch, 1965; 

Caswell, 2001), and have in turn inspired more sophisticated analyses (Childs et al., 2003; 

Ellner and Rees, 2006).  

 

There is great potential for a synergy between novel methods and technologies to 

spur a drastic uptake in data, and subsequently provide insightful and sophisticated analysis. 

The motivation behind this thesis was to begin to address the lack of data in ecology by 

developing and applying innovative approaches that rely on recent advances in technology.  
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I use two techniques designed to capture large quantities of data rapidly, and over large 

scales, to investigate the dynamics of populations and communities. These methods have the 

potential to address the mismatch in scale between the data available to us, and the scale at 

which we need to model dynamic processes.   

 

Density-structured models: 

The first technique I introduce in this thesis are density structured models, which are 

designed for rapid collection and analysis of population dynamics. Conventional population 

models have the form: 

 

!(# + 1) = !(#)	)(#)	*[!(#)] 

 

Where N is the number of individuals at times #	and # + 1, ) is the population growth rate 

and, the function * represents the density-dependence of populations resulting from 

processes such as competition.  Part of the limitation of these models is that they require 

continuous counts of abundance, which are potentially difficult to collect: based on counts 

of individuals in defined survey sites, population sizes may be time consuming to estimate, 

especially when populations are large, or difficult to count accurately over large scales. They 

also require knowledge of the phenomena that dictate the parameters involving growth rate 

and density dependence (Freckleton et al., 2011). 

 

Density-structured models forgo time consuming detailing of abundances for a simple 

categorisation of the state of a population at a given site:  

 

!(# + 1) = -!(#) 

 

In density structured frameworks, survey areas are divided up into pre-defined sites, and the 

population is assigned one of a number of density states based on a set of criteria. Here, the 

state variable, N, is a vector of density categories which represent the probability of an 

observation being in one of the pre-defined states. The dynamic processes are modelled as a 

function of transition probabilities contained in the matrix T, which can be estimated from 

the observed transitions between states over subsequent surveys.  
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This approach provides numerous advantages over standard methodologies. 

Primarily, categorisation rapidly speeds up the data collection process, allowing researchers 

to collect data over much larger areas. It is also reasonably easy to assess the levels of 

observation error as surveys are easily repeatable. Numerous studies have demonstrated that 

the dynamics captured and simulated by density-structured models are comparable to 

traditional models (Freckleton et al., 2011; Queenborough et al., 2011; Tredennick, Hooten 

and Adler, 2017). The advantages, however, extend beyond rapidity. Although these models 

are simple, they have a considerable body of literature underpinning their theory (Caswell, 

2001). Analysis is also straightforward: a mechanistic understanding of the intricacies of the 

dynamics of a particular system is not needed, as it is defined solely by the transition 

probabilities (Freckleton et al., 2011). The simplicity of these models makes them stable and 

robust to errors induced by parameter sensitivity that are a concern in many demographic 

models (Freckleton et al., 2008). 

 

Metabarcoding: 

The second technique I use is known as metabarcoding (MBC), which uses next-generation 

sequencing technology to provide large amounts of data on community composition.  

Conventional biodiversity surveys are limited by a phenomenon known as the ‘taxonomic 

impediment’, which results from our imperfect knowledge of biodiversity and our reliance 

on the dwindling availability of taxonomic expertise (Cody and Rodman, 2003; Giangrande, 

2003; Wilson, 2004). Studies of diversity and community dynamics are again limited by the 

difficulty in collecting adequate data. Morphological identification is slow, expensive, and 

often requires multiple experts for full coverage of communities.  

 

With the molecular revolution in biological science, it has become possible to 

identify organisms through genetic data (Hajibabaei et al., 2011; Taberlet and Coissac, 

2012b; Cristescu, 2014). Next-generation sequencing has enabled the sequencing of vast 

amounts of genetic information at increasingly affordable costs. DNA-barcoding refers to 

the practice of molecular identification of organisms through short gene sequences taken 

from organisms or environmental samples, and Metabarcoding therefore refers to the 

sequencing of ‘barcodes’ from multiple organisms simultaneously. Identifying organisms in 
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this way decouples research from the reliance on slow, unreliable and expensive methods of 

identification. MBC therefore facilitates rapid surveys and accurate identification over large 

scales. 

 

 

 

 

Agricultural systems:  

Agricultural systems are particularly important when considering the impacts of global 

change and the relevance of large-scale monitoring. Agriculture is a leading cause of 

biodiversity loss worldwide (Tilman et al., 2001), with the declines in many important 

species being linked to intensification (Bengtsson, Ahnström and Weibull, 2005; Brussaard 

et al., 2010; Woodcock et al., 2016, 2017). However, agriculture is also reliant on natural 

systems for provision of ecosystem services that support production (Altieri, 1999; Zhang et 

al., 2007; Aizen et al., 2009), meaning food security is inherently linked to diversity. In the 

context of climate change this makes them particularly vulnerable. Rapid environmental 

degradation threatens both agricultural production and the systems it relies on. Nevertheless, 

without dramatic change to the consumption habits of society, large-scale industrial 

agriculture will remain our primary source of food for the foreseeable future (Tilman et al., 

2002).   

 

At the outset, monitoring and anticipating changes in agro-ecosystems may seem 

relatively simple, as monocultures of crops normally make up the majority of organisms. 

However, as we need to produce a lot of food, agricultural systems are widespread by 

necessity, and as a result are exposed to considerable environmental variation (Tscharntke et 

al., 2005). Balancing agricultural production with conservation is a major goal for ecologists, 

which is essential for continued food security (Tilman et al., 2011), but to do so we must 

have a thorough understanding of the dynamics of agro-ecosystems at the relevant scales.  

 

Unfortunately, many monitoring efforts are poor (Kleijn et al., 2001; Kleijn and 

Sutherland, 2003).  Agri-environment schemes aimed at preserving biodiversity often do not 

provide enough data to protect vital characteristics of ecosystems, and most information on 
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processes affecting production are derived from small field-scale experiments (Metcalfe et 

al., 2018; Nordmeyer, 2006; Uchida, Hiraiwa, & Ushimaru, 2016). In time, this will lead to 

poor management with detrimental effects on both biodiversity and food production. To 

maintain ecological integrity and ensure continued provision into the future, the scale of our 

monitoring has to expand. The two technologies we discuss in detail above have great 

potential for improving our understanding of agricultural populations and communities over 

the scales needed for effective management.  

 

Agriculture and density-structured models: 

Climate change induced range shifts mean that agricultural systems are under increasing 

threat from invasive species in the form of agricultural pests (Ziska et al., 2011). Pests are 

defined as organisms that are detrimental to human health or wellbeing, often in terms of 

damage to agriculture. Within this subset are agricultural weeds, which can be extremely 

destructive and expensive to control (Freckleton et al., 2000; Rew and Cousens, 2001; Jones 

et al., 2005). Most empirical studies of weed dynamics and the impacts of controls are 

derived from extremely small scales ( Metcalfe i., 2017; Metcalfe et al., 2018; Queenborough 

et al., 2011). For us to fully understand weed populations and their response to management 

in variable environments, we have to be able to measure them across the full range of 

conditions they exist in. Density structured models are an effective tool for this challenge 

allowing surveys to take place over large scales. In one of the first applications, Taylor & 

Hastings (2004) demonstrate how they can be used to plan optimal control strategies for 

invasive weeds. In this thesis I aim to further develop density-structured models to account 

for broad-scale spatial patterns and use them to investigate the management implications of 

the dynamics of an agricultural weed. 

 

 

Agriculture and metabarcoding: 

Arthropods are key components of agro-ecosystems, providing essential services such as 

pollination, nutrient cycling and pest control (Klein et al., 2007; Van Veen et al., 2008; Aizen 

et al., 2009; Isaacs et al., 2009).  The focus of crop management is on health and yield, but 

interventions aimed at tackling problematic pests can have negative effects on many 

organisms other than those they target (Tscharntke et al., 2005; Henle et al., 2008; 
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Woodcock et al., 2016, 2017). Such management is thought to be responsible for observed 

declines of biodiversity and ecologically important taxa. To understand agricultural 

arthropod diversity, its causes, consequences, and how widely observed declines may affect 

production, we must track it at the relevant scales.  

 

The vast majority of insect diversity surveys in agriculture however, are lacking in 

scale, taxonomic coverage, and resolution. Almost all surveys focus on a few indicators or 

ecologically important taxa over a few sites, whilst ignoring the vast majority of organisms 

(e.g. Steffan-Dewenter et al. 2002; Giangrande 2003; Westphal et al. 2008; Rader et al. 2013; 

Uchida & Ushimaru 2014; Uchida et al. 2016). As such, our knowledge of agricultural 

diversity is biased and incomplete, we lack knowledge of how the diverse array of species 

respond to changes in land-use and management. MBC provides a mean to track entire 

communities in their entirety, accurately, and over large-scales (Yu et al., 2012; Ji et al., 

2013). In this thesis I aim to asses MBC as a technique for assessing diverse arthropod 

assemblages over large scales and use molecular diversity data to investigate how land-use 

affects diversity.  

 

 

 

Aims and objectives: 

 

Chapter 2 – Developing hierarchical Bayesian density-structured models. 

Density-structured models have the potential to provide large scale empirically backed 

estimates of population dynamics. However their applications so far have been limited to 

relatively isolated populations (Taylor and Hastings, 2004; Freckleton et al., 2011; 

Mieszkowska et al., 2013). Structure is common in ecology, with environmental variation 

leading to differing responses and effects across groups with various different levels. 

Hierarchical modelling is a statistical method that allows group-level variance to enter 

population models (e.g. Wu & David 2002; Zipkin et al. 2009; Cafarelli et al. 2017).  

Implementing hierarchy in density-structured models will increase their potential for large-

scale modelling, allowing them to account for variable environmental factors. In this chapter 

I parameterise and test hierarchical density structured models with a view to finding the best 

candidate for future density structured analyses. 
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Chapter 3 – Using density-structured models to investigate weed population dynamics. 

In Chapter three I apply the models parameterised in Chapter two on a large-scale data set 

of black-grass (Alopecurus myosuroides) densities, to investigate national-scale population 

dynamics and methods of control. I look at how an essential part of weed control, crop-

rotation, affects black-grass densities. I simulate density-structured dynamics for a variety 

of cropping systems, to understand the variability in black-grass dynamics as well as the best 

rotational strategies for control.  

 

 

 

Chapter 4 – Incorporating spatial information into density structured models. 

Spatial structure is a key determinant of population dynamics (Durrett and Levin, 1994), but 

so far density-structured models have only been applied as simple descriptors of populations 

without consideration of internal spatial structure. In Chapter 4 I further develop density-

structured models to incorporate spatial information, a key determinant of population 

dynamics in all systems. I test a variety of models and investigate the effect that spatial 

structure has on dynamics. I look at how to incorporate the effect of neighbour density on 

state to state transition probabilities to account for different spatial processes at the field-

scale. I then compare dynamics between spatially naive and explicit models under a variety 

of crop rotations. 

 

Chapter 5 – Using metabarcoding for assessing arthropod diversity in agro-ecosystems. 

MBC has much potential to gather an abundance of diversity data across large scales. 

However, most ecological applications have been small scale proof-of-concepts or 

addressing highly localised problems. In Chapter 5 I assess the utility of MBC for large scale 

assessment of agricultural arthropod communities. I apply MBC to bulk arthropod samples 

collected across the UK during the course of this PhD. I assess the community coverage 

provided by bulk extraction of DNA, by comparing species detection across levels of 

replication & sequencing depth. I then compare detection success and accuracy with 

morphological identification. Finally, I investigate how landscape features affect the 

community composition and biodiversity of these communities. 
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Datasets: 

 

1) RELU weed data. 

The black-grass data I analyse in the first three data chapters comes from rural economy and 

land use (RELU) surveys conducted as part of a NERC study on weed distributions across 

UK arable farms. The data were collected between 2007 and 2011 and consist of density-

state observations for 1416 field-level surveys across counties where weed infestations are 

typically severe, including Oxfordshire, Bedfordshire, Cambridgeshire, Norfolk, 

Lincolnshire, Nottinghamshire, and Yorkshire. We analyse the density-state observations for 

a single weed, black-grass (Alopecurus myosuroides), which is particularly destructive and 

a growing concern for farmers. Black-grass can have severe effects on yields and control is 

becoming increasingly difficult due to evolution of multiple herbicide resistances. (Moss and 

Clarke, 1994; Freckleton et al., 2017; Hicks et al., 2018). To control herbicide-resistant 

black-grass across the entirety of its range, it is necessary to assess the impact of cultural 

control over a range of environmental conditions. This survey collected data over a range of 

crop-rotations, an essential part cultural weed control, and allows large-scale analysis of the 

effect of rotation on weed density.  

 

 

2) Arthropod diversity data: 

The molecular diversity data I analyse in the final data chapter was funded by a NERC 

biomolecular analysis facility (NBAF) support grant and processed in the NBAF facility in 

Sheffield. I collected this data using over a three-year period in consecutive pan-trapping 

surveys from 27 UK arable farms. We use a region of the COI gene to assign taxonomies 

and molecular operational taxonomic units (mOTUs), to each unique sequence. I analyse 

this data alongside data on landscape variables derived from the CEH land cover and crop 

cover maps.  
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Abstract: 

Populations show highly variable responses across time and space in the face of 

environmental heterogeneity. Understanding how and why populations change is central to 

the study of ecology, and population models are key tools for understanding dynamics. 

However, without adequate data, models can often fail to produce accurate or useful 

results. Density-structured models provide a route to rapid and large-scale modelling and 

monitoring of populations, but so far, their use has been limited to small scale proof-of-

concept or relatively localised applications without consideration of broad-scale 

environmental heterogeneity. Developing these models to account for hierarchical effects 

that act across widely-distributed populations will increase their value for understanding 

large-scale population ecology. In this article we parameterize and test hierarchical 

density-structured models using a large-scale dataset of agricultural weed density. We 

demonstrate they provide a significant improvement in capturing population dynamics over 

non-hierarchical models across three different crop rotations. Leave-one-out cross 

validation shows that models that incorporate hierarchical effects in model cut-point 

parameters provide superior predictive performance, and posterior predictive checks 

demonstrate they better describe the state of field-scale populations.  

Introduction: 

Ecological populations often exist over large spatial scales, and as a result can be subject to 

a wide range of environmental conditions. Following perturbation, these populations can 

exhibit an equally large number of responses in both time and space (Wiens 1989, Levin 

1992, Lundberg 2000, Coutts 2016). Managing large-scale populations in stochastic 

environments requires detailed knowledge of environment-driven spatio-temporal 

dynamics, whether the focus is the balancing natural resources and conservation (Tscharntke 

et al., 2005; Flesch and Steidl, 2010), or eradicating problematic species (Freckleton et al., 

2000; Bianchi, Booij and Tscharntke, 2006; Ziska et al., 2011). Considering the current rate 

and scale of environmental change (Sutherland 2006, IPCC 2013), large scale monitoring is 

an especially important part of modern ecology. However, gathering data of sufficient 

quality to encapsulate both the full range of population responses, and environmental drivers, 

is as challenging as it is important. 
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A detailed understanding of the range of responses in a population is essential, as the 

effects of focal variables can often be offset or masked by the enormous variance inherent 

in a population itself (e.g. Freckton et al 2017). Most approaches to studying population 

dynamics use local population density as the state variable, meaning large scale data 

collection is required to capture population responses in their entirety.  Unfortunately, there 

is an inherent trade-off between scale and detail when collecting data. Large scale studies 

are expensive, time consuming, and although they may produce a large quantity of data, 

errors can be large (Wallinga et al., 1999; Freckleton et al., 2006). On the other hand, 

intensive but smaller scale studies may produce higher quality data, but often fail to 

encompass the full range of conditions large populations are subject to (Forman, 1995; Miller 

et al., 2004).This trade-off limits both the scale of ecological monitoring, as well as the 

potential to effectively assess population dynamics and inform management strategies. As 

key tools in ecology, population models are limited by this quantity-quality trade-off, as 

large scale heterogeneity in both population responses and the environment can make it 

difficult to obtain data to accurately estimate variance in key parameters (Freckleton et al 

2006, Freckleton et al. 2008).  

Density-structured models are a method of generating and modelling large scale data 

whilst also permitting accurate prediction of population dynamics (Taylor & Hastings. 2004,  

Freckleton et al 2011, Queenborough et al 2011, Miezchowska et al. 2013).  Instead of 

collecting a continuous measure of abundance, density-structured approaches involve 

discretizing population counts into ordinal density 'states', and modelling future population 

sizes as a function of transition probabilities between these categories. The advantage of this 

method is that it facilitates rapid data collection over large scales, as time consuming 

enumeration of abundances is dropped in favour of a categorization of the state of a 

population in a survey unit. Despite their apparent simplicity, density-structured models have 

several advantages over conventional approaches for some purposes. They enable large scale 

surveys to capture the full range of population responses, whilst retaining the potential to 

yield accurate representations of current and future abundances (Tredennick et al. 2016), and 

unlike demographic models, they are robust to numerical instability resulting from 

environmental heterogeneity (Freckleton et al., 2008). 
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Although densty-structured models represent a promising technique for addressing 

large-scale problems, the use of these models has been limited, and previous approaches 

have been narrow in their exploration of possible methods of analysis. Most density-

structured models have all used some variation on multinomial logistic regressions to model 

transition probabilities between density states, with fitting methods varying between studies. 

For example Freckleton et al. (2011) use a maximum likelihood approach using Vector 

Generalised Additive Models (VGAMS), whilst Mieszkowska et al. (2013) use a baseline-

category logit model within a bayesian framework. A limitation of these methods, however, 

is that transition probabilities are modelled as multinomial, or un-ordered,  responses. 

Modelling data in this way ignores information about the natural ordering of density states 

and any impact on inference is lost. Moreover, multinomial analysis requires that transition 

probabilities from each possible source state to each possible destination state are estimated 

individually. This can lead to a potential explosion of parameters: for n states, there are n2 

such probabilities. Ordinal regression methods on the other hand account for the natural 

ordering of density categories, and simplify the parameterisation of transition probabilities 

within a single model.  

Accounting for inherent structure within populations, generated by variation in 

environmental drivers as well as variance intrinsic to populations themselves, is an essential 

step in modelling populations in hetereogenous environments. A powerful approach for 

modelling structured data are hierarchical models, also commonly known as mixed effects 

models, which been used extensively ecology (Myers and Worm, 2003; Bolker et al., 2009; 

Cressie et al., 2009; Zipkin, DeWan and Andrew Royle, 2009; Cafarelli et al., 2017).  

Hierarchical modelling involves accounting for effects that act upon groups defined at 

various levels which reflect structure in a population. For example, incorporating group-

level effects into a model could account for variation between, individuals within a single 

population (Buckley, Briese and Rees, 2003), variation between geographically separate 

sub-populations (Myers and Worm, 2003), or individual species within communities 

(Zipkin, DeWan and Andrew Royle, 2009). Previous density-structured approaches have 

modelled ‘global’ population responses as a function of a number of environmental 

covariates. However, hierarchical effects have yet to be incorporated into density-structured 

frameworks to account for the contribution of geographic and environmental variation on 

population dynamics.  
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Accounting for the natural ordering of density states and the inherent hierarchy of 

environmental effects acting upon a population are two clear opportunities for increasing the 

utility of density-structured models for large-scale ecological problems. Here we develop 

such methods for analyzing the population dynamics of arable weeds. These are a major 

concern for global agriculture, food security and conservation (Mack et al., 2000). 

Infestations are often detrimental to yields, expensive in terms of control, and can have 

numerous negative indirect effects on management (Jones et al., 2005; Walker et al., 2005; 

Popp, Peto and Nagy, 2013). Importantly, these costs are becoming compounded by the 

evolution of herbicide resistance in many systems worldwide (Heap 1997, Hicks et al. 2018). 

Managing populations of weeds is a difficult problem, partly, due to the large scale over 

which populations exist. Populations are often subject to a large range of environmental 

conditions, including variations in soil, climate, and crop varieties, and can exhibit extreme 

levels of variation (Wallinga et al., 1999; Freckleton and Stephens, 2009; Lima, Navarrete 

and González-Andujar, 2012).  Hierarchical density-structured modelling of arable weed 

populations could be especially useful in addressing a suite of problems for which 

demographic approaches are unstable in the face of variability (Freckleton et al 2008.) 

In this paper we identify and test a set of models that incorporate group-level effects 

to account for inter-population variability on a national-scale weed density dataset collected 

between 2007 and 2010. We develop and test alternative parameterizations of a hierarchical 

ordered category logistic regression with the aim finding of the best model to describe field-

level population dynamics of black-grass. We show, through out-of-sample cross-validation 

and a series of posterior predictive checks, that hierarchical models perform better in terms 

of one-step-ahead field-level prediction than non-hierarchical models. We demonstrate 

various models which account for field-level population variance through hierarchical 

effects with comparable predictive performance. 
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Methods: 

Study system & Survey. 

Data on the density of black-grass (A. myosuroides) were collected in a series of repeated 

surveys from 2007-2010.  This data set is culmination of 1007 field-scale surveys from 427 

fields across 48 arable farms. The density-structured survey method, described in detailed in 

Queenborough et al. (2011), involves repeated surveys of individual fields to map the black-

grass densities and how they change through time. Each field is divided up into a set of 20m 

x 20m survey quadrats, or ‘sites’ (predefined using a GPS system). Researchers walk the 

fields recording the densities of each site as one of five categories: absent (A), low (L), 

medium (M), high (H), or very high (VH). These categories were chosen based on previous 

surveys, and this method has been critically evaluated to demonstrate high within and 

between observer repeatability (Freckleton et al. 2011, Queenborough et al. 2011).  

Because crop rotation is an integral part of arable weed dynamics and a common method of 

control (Zacharias and Grube, 1984; Liebman and Dyck, 1993; Melander, Rasmussen and 

Bàrberi, 2005), we select data from the three most common rotations, wheat to wheat, wheat 

to oil seed rape (OSR), OSR to wheat, to test our models on a variety of cropping systems 

with different dynamics.  

 

Modelling density-structured data. 

A typical density-structured model has the structure: 

                                                 .(t + 1) = T. .(t)   (1) 

Where N is an ordered vector of the distribution of density states at time t, and T is a 2	3	2 

matrix of transition probabilities, where 2	is the number of density states: 

 T= 4
566 ⋯ 568
⋮ ⋱ ⋮
586 ⋯ 588

;  (2) 

Diagonal entries of T represent probabilities (5) that a site in a given site will remain in that 

state for the next survey, and off diagonals represent the transition between states between 
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years. For example, 5 11 is the probability that a site in state 1, will remain in state one, and 

5 21 is the probability that a site in state 1 will transition to state 2.  By using the first order 

Markov chain model in equation (1), these models can be used to predict future density state 

distributions. A more detailed explanation of density-structured models can be found in 

Freckleton et al (2010). The relationship between field-scale surveys, density state 

distributions and transition matrices is illustrated in figure 1.  
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Ordered Category Logistic Regressions. 

The transition matrix, T, defines the population dynamic processes in these models. Previous 

approaches have estimated transition probabilities for density-structured models using 

multinomial regression (Taylor & Hastings 2004, Freckleton et al 2010, Queenborough et al 

2011, Freckleton et al 2017). These methods treat the density states as discrete unordered 

factors. However, ordered category logit models are arguably better suited for analysis of 

systems with categorical variables with a natural ordering, such as density states.  

In an ordered category model, the probability of observing a certain category, k, at site i is 

expressed in terms of a real-valued latent variable that reflects the true (unobserved) value. 

In the simplest form of this model (equation 3), the linear predictor,	<=, is constructed from 

the row-vector of J site-specific explanatory variables, 3		, and the unknown column-vector 

parameter >	. >=? is therefore the effect of explanatory variable 3=? on <	, at site i. The 

constraint >=6 	= 0	 is enforced to allow identifiability, a common practice in logistic 

regressions (Agresti 2002, p271 – 273). 

<= =A3=?

B

?C6

>=?													(3)		 

The ordering of categories in this model is then enforced through a set of K-1, (Where K is 

the total number of categories) 'cut-point' parameters, E. These cut-points have an inherent 

ordering; E6 < EG < EH < EI. Although < is unobserved, we categorise outcomes according 

to the following rules, where J=K, is the logit of the probability of observing state k at site i.  

 

J=6 = 1 − (<= − E6) 

J=K = (<= − EKM6) − (<= − EK) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 

J=8 = <= − E8M6 

 

(4) 
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We can then calculate the probability of an observation Yi being in state k, through the 

inverse logit function. 

NO(PQ = 2) =
RSTU

6V∑ RSTUXYZ
U[Z

         (5) 

The non-linear transformations of the parameters in these models can make model output 

difficult to interpret. Fortunately, the effect of changes in model covariates on the linear 

predictor can be easily visualized by thinking about the probability distribution of < in 

relation to the model cut-points. Figure 2. illustrates how changes in the construction of < 

will affect the probability,	J, of observing density state k. The value of J can be thought of 

as the integral of the density of < that lies between the corresponding cut-points. Panels show 

how changes the location of the linear predictor < (due to changes in covariates), change the 

probability of observing a particular category. As there is considerable uncertainty when it 

comes to estimating parameters in these models with non-orthogonal observational data, we 

employ a Bayesian framework using the probabilistic programming language Stan (Stan core 

development team 2017) to allow flexibility in parameterization and to account for this 

uncertainty.  
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Figure 2. The distribution of the unobserved parameter < for a single observation with changes in model 

covariates. The distribution of the linear predictor <, is in blue and global model cut points are 

represented by dashed grey vertical lines. Logits of state transition probabilities are denoted by J, the 

red arrows illustrate the part of the probability distribution of <, where the integral of which is equal to 

the logit of the transition probability. Panels illustrate how changes in the location of <, (as a result of 

changes in model covariates), change the logit of transition probabilities to different outcome states.  
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We construct a series of ordered category logistic regressions to compare alternative 

formulation for constructing the transition probabilities to model population dynamics in a 

hierarchical density-structured framework. A. myosuroides occurs country-wide in the UK, 

yet sub-populations exist and are measured within individual fields. Some processes will 

affect all populations in a similar manner, however each field-level population will 

simultaneously be subject to a variety of different local environmental drivers and will 

display differing responses.  Models II-IV (summarized in table 1.) all take different 

approaches to modelling the hierarchy present in our dataset.  

 

 

Model I is the baseline formulation presented in equations (3) - (5).  Our general model 

incorporates the effect of source (i.e.   density state of site i at time t) state as covariates 

3=6 … 3=^. The linear predictor <= is therefore a function of the source state j at site i. 

Modelling the dynamics in this manner allows us to construct the transition probability 

matrix for any given set of sites, as source state is recorded in the matrix x. Model I is used 

as a reference for comparison and has no hierarchical components, but we use this 

formulation as a baseline for all subsequent models. 

 

 

Model Description Linear predictor Cut-points 

I Global / non-hierarchical !" = $"%&"% Global 

II Field-level intercept !" = $"%&"% + (") Global 

III Field-level source state effect !" = $"%*&"% + ("%)+ Global 

IV Field-level cut-points !" = $"%&"% Field-level 

V Field-level cut-points & intercept !" = $"%&"% + (") Field-level 
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Model II – Field-level intercept.  

The simplest implementation of a model that accounts for the between field variance 

involves including a field-level effect in the construction of the linear predictor. The scalar 

intercept term _̀  represents the field level effect on the linear predictor within field f. Here 

the cut-point parameters EK … E8M6 remain as in equation (4): 

																																										<=` =A3=?

B

?C6

>=? + _̀ 																(5)						Model	II 

_̀  was drawn from a vague prior, a normal distribution with mean 0 and standard deviation 

σ`. Where σ` is the hyper-parameter for the standard deviation for field effect _̀ , itself 

drawn from a half-cauchy distribution with 5 degrees of freedom.  

      			_̀ 	~	!(0, σ) 

       		σ~	jklEℎn	(0,5)             (6) 

The population wide effect of source states 1-4,	>?V6	 … 		>B, were drawn from independent 

normal distributions, of mean 0 and standard deviation 10: 

          >?	~	!(0,10)                  (7) 

Cut-point parameters were given a wide uniform prior: 

																			E	~	loQ*(0,10)               (8) 

 

 

Model III – Field-level source state effects. 

The logical extension of this model is to allow more flexibility in the construction of the 

linear predictor by allowing the source-source state effect to vary between fields. The global 
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effect of source state 	>=?	  and global cut-points EK … E8M6, remain as in model II. The addition 

to this model is vector _?` which represents the effect of source state j in field f on <. As the 

source state effect 	>=?	 , is the parameter that allows us the construct transition matrices, 

allowing this to vary between fields aims to account for the various drivers that affect 

changes in black-grass densities between surveys:   

																		<= =A3=?

B

?C6

p>=? + _?`q																(9)					Model	III 

The population wide effect of source states 1-4,	>=?V6	 … 		>=B, were again drawn from 

independent normal distributions, of mean 0 and standard deviation 10: 

       >?	~	!(0,10)                (10) 

The field-level source state effects, _?`  were drawn from a multivariate normal prior with 

dimension 5, for each source state.  

																			_?`	~	st!(u, Σ)											(11) 

 

Where u is a K length vector of 0’s, and Σ, is a K dimensioned covariance matrix. We induce 

a prior on Σ through Σ = 	w.W. w  (Barnard, McCulloch and Meng, 2000) where S is the 

diagonal matrix of the standard deviations of each component of Σ, sk, and W	 is the 

corresponding correlation matrix of Σ. Within Stan this is parameterized in terms of cholesky 

decompositions of the covariance matrix for efficiency and numerical stability (Stan 

development team 2017). Hence, we use the recommended combination of a half-cauchy 

prior on the standard deviations and LKJ distribution (Lewandowski, Kurowicka and Joe, 

2009) as a prior on the cholesky factor of W. Where W =LLT; L is the lower-triangular matrix 

of W, and LT its transpose.  

σK~	jklEℎn	(0,5) 

																			L	~	yz{(Η)																							(12) 
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The hyper-parameter (H) in this case is set to 1, which reflects a uniform distribution on the 

correlation matrix.  

 

Model IV – Field-level cut-points. 

Many approaches to random effects modelling utilize the approach we have outlined above, 

accounting for group level variance by including a term for random effects in the 

construction of the linear predictor. In an ordered category logistic regression an alternative 

approach is to allow cut-points, which control the conditional probability of an observation 

being in state 1:K, to vary between each group. This can be implemented by allowing for 

each field, f, to have its own set of cut-points, as outlined below.  

J=6` = 1 − p<= − E6`q 

																																														J=K` = p<= − EKM6`q − p<= − EK`q												(13)					s~�ÄÅ	Çt 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 

J=8` = <= − E8M6` 

Within this framework, however, it is necessary to ensure that the ordering of the cut-point 

parameters remains intact, i.e. E6 < EG < EH < EI must be true for a given field. This can be 

achieved by re-parameterization  of the cut-points themselves (Tutz and Hennevogl, 1996; 

Hartzel, Agresti and Caffo, 2001). Ordering is handled by mapping the ordering constraints 

onto the differences between cut-point parameters: 

EK		 	É		
E6																																								Q*	2 = 1, ko�
	log	(EK	 − 	 	EKM6	)										Q*	1 < 2	 ≤ z

          (14) 

 Group-level cut-points can then be implemented by using hierarchical priors on the 

parameter space between model cut-points and fixing the first group-level cut-point 

parameter E6`: 

E6`~	!(0,1)	

																																							EK` − EKM6`	~	!(u, σ)            (15) 
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The first group-level cut-point,	E6`, is given a standard normal prior whilst distance between 

subsequent cut-points are given normal priors with a mean of u and standard deviation	σ. 

The mean for all cut-point distances u is given a wide normal prior with a mean of 0 

and standard deviation of 10. The standard deviation of cut-point distances σ is given a half-

cauchy prior with mean of 0 and 5 degrees of freedom.  

u~	!(0,10) 

						σ	~	jklEℎn(0,5) 

Here the linear predictor and associated prior distributions are identical to the formulation in 

model I. We can illustrate the effect of field-level cut-points on the transition probabilities 

J in the same way we have above. Figure 3. illustrates how changes in cut-points on the 

value of <= for a model with a global linear predictor. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Illustration of the effect on J from a model with hierarchical cut-points. The distribution of the 

linear predictor < is in blue, whilst random cut-points are grey vertical lines. Logits of density state 

transition probabilities are denoted by J, the red arrows illustrate the part of the probability distribution of 

< where the integral of which is equal to the logit of the transition probability. Panels illustrate the 

distribution of < between sets of cut-points for different fields. 
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Model V – Field-level cut-points and field level intercept. 

The final model, Model V, is a combination of the above, with both random cut-points and 

a random intercept included in the linear predictor. As such the linear predictor is the same 

as in Model II, and the cut-point parameters are the same as in model IV. 

Model Fitting 

All models were fitted using adaptive Hamiltonian MCMC, implemented in Stan  version 

2.17  (Stan Development Team 2017 ), interfaced with R (R version 3.4.0, R core 

development team 2017) through the package Rstan (Version 2.17.3, Stan development team 

2017). All Models were run with 4 independent chains over 3000 iterations each with a 1000 

iteration adaption period. Trace plots were inspected to assess mixing and potential 

convergence problems, of which no evidence was found. Scale reduction factors were 

calculated to assess if increased iterations would improve mixing, all of which were close to 

1, suggesting iteration number was providing optimum efficiency.  

 

Assessing predictive performance and posterior checks. 

To assess model performance across all rotational subsets we use leave-one-out cross 

validation implemented in the 'loo' R package (Vehtari, Gelman  & Gabry 2016), and WAIC 

as a measure of relative predictive error (Watanabe 2012). We also visualize model 

performance via graphical posterior predictive checks. We simulate field scale density 

distributions from posterior distributions and compare them to the observed distributions in 

each corresponding field, to assess model fit. We compare full distributions mean density 

states, and a measure of continuous abundance calculated by fitting a gamma distribution to 

the categorical density state distribution (Freckleton et al 2011). 
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The log of field-scale population density can be approximated from fitting a gamma 

distribution to a stable density state distribution in the form: 

 

Ükáák(3; â, >) = 	
>ä

Γ(k)
	3äM6ÄåMç 

Where this distribution is defined by two key parameters, the shape (â) and rate (>).  The 

mean of this distribution is â	/>, and variance is   â	/>2. If the distribution of density states 

1:K, predicted or observed, was s, then the numerical mean of s (â	/>) can be approximated 

by finding the values of â and > that best fit the stable density distribution. The above fits 

were optimised using the ‘optim’ function in R (R Development Core Team 2017).  

 

Results 

Models that incorporate field-level effects into estimating transition probability have better 

predictive accuracy than our non-hierarchical model (Figure 4). The lower row of Figure 4 

removes model I to allow clearer comparison within the set of hierarchical models. Here 

LOO cross-validation provides the most support for models that incorporate hierarchical 

effects through cut-point parameters, however they all provide similar levels of predictive 

accuracy. The hierarchical cut-point models (Models IV & V) provide the best estimates, 

while models that only incorporate hierarchical structure in the linear predictor fare slightly 

worse than group-level cut-point models, whilst there is no difference between in the field-

level cut-point model and the combined linear predictor/ cut-point model. Rotational subsets 

of our data all display the same order of model preference, suggesting that each model 

performs similarly under different cropping systems. 
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Overall observed vs predicted outcomes for each model (figure 5), show that higher density 

states are more difficult to predict accurately for all models, but models II-IV do 

considerably better than model I. Despite relatively poor point-wise predictive performance, 

all hierarchical models capture field-scale density state distributions well. Observed and 

model predicted density state distributions for 5 example fields that rotated from wheat to 

wheat are shown in figure 6. These fields were selected to demonstrate performance over a 

range of different field scale density-state distributions. These examples illustrate that our 

non-hierarchical model provides less accurate predictions than models that have hierarchical 

structure, as median density frequencies are further away from observed values and 90% 

density intervals are wider. Adding field-level effects to the linear predictor (Model II & III) 

visibly reduces model error in these examples and median density frequencies are relatively 

accurate for most distributions. Implementing the hierarchical effects through model cut-

points provides a further increase in accuracy, with predicted density state distributions 

matching observed values in most cases. Although there is considerable inaccuracy from all 

models when predicting the distribution in the final field (column 5 of figure 6.), all 

hierarchical models correctly predict the shift to a larger proportion of higher density states, 

whilst Model I does not. 

Figure 7, illustrates the difference between predicted and observed field-scale mean density 

states (top row) and mean log density per survey quadrat (bottom row). It again is apparent 

that hierarchical models provide better predictions than our baseline model, and although 

slight improvements are seen from models IV & V compared to II & III, all hierarchical 

models have similar performance in that in all case the prediction error and 90% density 

intervals are close to zero.  There are, however, noticeable differences in the predictive 

accuracy of the non-hierarchical models between rotational subsets. Variance in predictive 

error is much higher in fields rotating from wheat or OSR into wheat, than from wheat into 

OSR. The lower Spearman’s rank correlation coefficient associated with the predictions of 

Model I is also accompanied by a tendency to overestimate field-scale density. This is not 

the case with the hierarchical implementations, with all models displaying smaller error 

distributions and higher correlations between observed and predicted densities. Moreover, 

looking at the difference between overall predicted vs observed density-state distributions it 

is apparent that hierarchical cut-point models perform better than those that incorporate field-

level effects in the linear predictor (Figure S1).  
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Model I 

Model II 

Model III 

Model IV 

Model V 

Figure 5.  Predicted vs observed density states for each model in the wheat:wheat subset. Quadrat level transition probabilities were 

computed over the entire set of posterior samples, these probabilities were then sampled 1000 times to produce a distribution of density 

state predictions. Each bar represents the entire set of predictions for each observed density state, and each coloured sub-bar represents 

the proportion of those predictions in each category. 
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Figure 6. Examples of field-scale observed vs predicted density state distributions in the wheat to wheat 

rotational subset. Black points represent are median predicted densities, vertical bars are 90% density intervals, 

and hollow points are the observed distribution for that field. Dashed blue lines represent the source state 

distribution. Columns represent individual fields, whilst rows represent each of our five models.  
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Discussion: 
It has previously been argued that density-structured models offer the potential to provide accurate 

measurement and prediction of population dynamics over large scales (Taylor & Hastings 2004; Freckleton 

et al. 2011; Queenborough et al. 2011; Mieszkowska et al. 2013; Tredennick et al. 2017). Consideration of 

environmental heterogeneity is an essential step towards understanding large scale population dynamics. 

Above we have implemented several hierarchical models designed to account for different sources of 

environmental and population heterogeneity. We demonstrate that a non-hierarchical approach based on a 

simplistic global model does not provide adequate field-scale predictions: this is to be expected given the 

enormous spatio-temporal variance in the dynamics of arable weeds (Freckleton and Watkinson, 1998, 

2002; Freckleton and Stephens, 2009; Hicks et al., 2018). Previously, most approaches to modelling 

density-structured data have treated density-state distributions as a multinomial response variable and have 

ignored the natural ordering of the data. Above we have implemented a simple improvement, in terms of 

efficiency and straightforwardness of parameterization, by using ordinal regression methods. Previously 

such models may have been harder to apply, but, as we demonstrate above, with modern probabilistic 

languages flexible implementations of these models are now straightforward and formulations much 

simpler. 

 

Hierarchical models are a powerful approach when accounting for environmental or population 

heterogeneity and are capable of tackling problems with multiple layers of complexity (Wu & David 2002, 

Zipkin et al. 2009, Cafarelli et al. 2017). As density-structured models are inherently empirical approaches 

to understanding large scale dynamics of populations they naturally encapsulate large amounts of 

information on population and environmental variation. We have shown that adapting a density-structured 

framework to incorporate the hierarchical structure of a populations was both relatively simple and 

improved predictive power. Poor predictive performance for higher density states for all models may seem 

a cause for concern, yet all hierarchical models capture field-level density state distributions well, which 

are the primary input for density-structured models. It is important to note that although we assess predictive 

performance at the field level, the benefit of improved power will mainly be felt at the landscape-scale. 

Group-level effects are unmeasurable in advance, and the field-level components of this model probably 

could not be used to accurately predict the dynamics of a new field. However, as we have measured the 

variance in parameters across a large range of fields and environmental conditions, predictions of regional 

dynamics will be achievable. An obvious area for future research is therefore making these models better 

at field-scale prediction, which may be achievable by including more comprehensive covariate data. For 

example soil type, weather and climate all affect black-grass dynamics (Colbach and Sache, 2001; Colbach 

et al., 2006; Metcalfe et al., 2018), and including this information may increase model performance.  
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One clear criticism of modelling group-level effects in terms of model cut-points is that it deviates from 

the philosophy of using latent variable analysis for problems of this nature  (Agresti 2002, p10-21). Latent 

variable models are useful tools for describing patterns in systems where the defining processes are 

complicated and difficult to observe directly. These models are popular in ecology as they allow inference 

for systems with complex interacting dynamic process and structures (Arhonditsis et al., 2006). In most 

cases (and in models II,III & V presented above), the effects of environmental or biological factors are used 

to construct a linear predictor. Although not a true ‘latent-variable’, this component models the effects of 

underlying biological processes on the response variable. The key advantage of this approach is that it 

allows conceptualization of how biological processes contribute to the outcome. Incorporating hierarchical 

effects into the variables that produce the linear predictor allows specific statements to be made about the 

biological processes that vary between populations.  

 

Modelling hierarchy as a function of the model cut-points makes it less obvious which biological processes 

are responsible for the variation. Shifts in relative cut-point positions essentially signify the same thing as 

a shift in the linear predictor; a change in the probability of an observation to transition to another density 

state.  In models II & III, the global cut-points are directly tied to the definitions of density states, which in 

turn are tied to processes involved in the ecology of the weed, or the sampling process. Although density-

structured models are generally robust to census error, density-state definitions are not static; they will vary 

through over time, space and observer. As hierarchical cut-point models are more flexible than models that 

account for field specific effects in the linear predictor, they may also account for more variation in 

observation error. Transition probabilities will also be linked to the condition of the crop or weeds (i.e. its 

competitive ability), both of which are features that might be missed by less flexible models. How variation 

in the observation process and more subtle aspects of weed ecology affect outcome in hierarchical cut-point 

formulations for these models should be considered when fitting these models in future applications.  

However, the major defence in response to this criticism is that density-structured models are inherently 

empirical and designed to be applied to real world problems. Model IV has better accuracy, comparable 

efficiency (Figure S2), and fewer parameters than other versions of the model, and as such will provide 

more useful information to managers about the state of current and future populations  

 

 

 
Implications for future large-scale surveys: 

 

Density-structured models have demonstrated their utility in addressing questions about large-scale 

population dynamics. These models offer improvements over many mechanistic or demographic models, 

which are often limited to small scales and are unreliable in the face of variation (Freckleton et al., 2008, 

2011; Queenborough et al., 2011).  With the addition of hierarchical effects, the potential utility and 
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accuracy of these models can be expanded even further. Density-structured studies have the ability to 

capture population dynamics over scales much greater than the areas surveyed by more conventional 

approaches, and as such encompass a large degree of environmentally driven variation in population 

responses.  Improving model prediction of when this variability will arise in population dynamics will allow 

better understanding of how and why populations change, but also how to manage them.  

 

The dataset we analyze in this study is a good example of how density-structured models that account for 

population hierarchy will increase the landscape-scale predictive power of such frameworks.  Our analyses 

demonstrate how variability in the environment a population can result in large prediction errors, but when 

field-level effects on transition probability are included, error margins are drastically reduced. Accounting 

for hierarchy demonstrably improves prediction accuracy of density-structured models in the face of 

environmental variation. In future, hierarchical density-structured models will allow us to understand and 

predict how individual sub-populations will respond to the multitude of interacting environmental variables 

over large scales. Hopefully, this approach will enable managers to apply localized interventions to address 

the specific drivers and responses of a particular population.  
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Appendix: 
 
 

 
Results & Discussion: 
 
The field scale errors are broken down into errors for each destination density state in Figure S1. Here the 

error is the difference between the observed and predicted proportion of a field occupied by each density 

state. Predictive errors are noticeably higher in the Model I with wider density intervals and average field-

scale errors diverging from zero. The models which implement a hierarchy through field-level effects in 

the linear predictor display lower levels of error than Model I, but there is not much discernable different 

between the two. Models IV & V are noticeably more accurate, with most of the error distributed close to 

zero. Most of the error is contained in the lower density states, with all models having lower error in density 

states 4-5. Figure S2. illustrates the differences in efficiency between models, in the terms of number of 

effective samples per second of sampling time. Model II (i.e. the simplest hierarchical model) is the most 

efficient, whilst model IV (the best performing model) is the second most efficient.    
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Figure S1. Field-scale error distributions by rotational subset. Black dots are median field-scale differences between 

predicted and observed frequencies of each density state (1:5), vertical bars are 90% density intervals. Coloured points 

represent the difference in observed vs predicted proportion of a density state in individual field. Colours highlight 

the across-state error distributions for each of our 5 models.  
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Despite the numerous advantages for using a Bayesian framework for hierarchical density-

structured modelling, these kinds of models are notorious for being computationally intense and having 

long run times.  Aside from predictive performance an important criterion for the ‘useful-ness’ of a model 

is its ability to produce predictions in a timely manner, as such we have presented the relative efficiencies 

of each model which are a useful metric from which to judge utility.  From this it is apparent that in terms 

of effective samples per second that our simplest hierarchical model (Model II) is the most efficient, as in 

it produces the most effective samples relative to run time. In cases where practitioners may have limitations 

in terms of computational power we suggest that this model could be used in lieu of one of the more 

complicated versions, at only a slight loss in predictive power.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2. Model efficiencies in terms of effective samples per second of sampling time. Points are the mean value 

across all parameters and vertical bars standard errors. Models II and IV demonstrate better efficiencies.  
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 Abstract: 

Weeds are widely distributed, exhibiting varied population dynamics in response to a wide range of 

environmental conditions. Most studies of responses to managements, however, are derived from localized 

experiments under a very small range of environmental conditions. To limit the damage done by agricultural 

pests, we must understand how they respond to managements over the relevant scales and under a broad 

range of conditions. Unfortunately, traditional methods of gathering data and modelling population 

dynamics are expensive and limit the scale of ecological studies. Density-structured models are a method 

that facilitate large-scale assessment of populations via rapid surveys in an analytically simple framework. 

In this study we apply these models to study the population dynamics of an agricultural weed in response 

to a common control method: crop rotation. We analyse transient dynamics, short term and stochastic 

simulation experiments to assess the effect of different crop rotations on the dynamics of black-grass in a 

UK wide dataset. We identify several rotational strategies that, on average, reduce weed densities, as well 

as their temporal variance and autocorrelation. We demonstrate that rotations with high wheat dominance 

exhibit the most severe infestations, and rotations such as beans and potatoes have lower weed densities. 

However, the prevailing result is that localized field-specific effects contribute the most to the change in 

density over time, with rotation contributing comparatively little overall. Our results highlight the need for 

modelling large scale population dynamics whilst accounting for local scale variability in the drivers of 

weed dynamics.  

Introduction: 

The dynamics and drivers of population change vary at multiple scales (Gurevitch et al 2016, Chase et al. 

2017),  consequently, populations that are distributed over landscapes or regions are often of interest to 

ecologists (Levin, 1992). Due to their large distributions, these populations are invariably subject to a large 

range of environmental conditions,  yet populations are typically studied in a single location where 

conditions are relatively static (Miller et al., 2004). The combination of large-scale distributions combined 

with fine scale heterogeneity makes it difficult to draw general inferences about population dynamics when 

our empirical understanding is limited to local populations (Urban 2005; Coutts et al. 2016).  

Pests are organisms detrimental to human wellbeing, and as the most important have wide distributions, 

the dynamics of these organisms has to be considered at large spatial scales and in the context of 

environmental heterogeneity (Mack et al., 2000). An area of particular interest and relevance to large-scale 

population monitoring is the persistence and spread of agricultural weeds. Weeds are widespread problems 

by definition, with populations causing enormous economic loses and damaging biodiversity over large 

spatial scales (Wiese et al., 1997; Tilman et al., 2001; Walker et al., 2005). Population models are key tools 

that allow the inference and prediction of range expansions of pests and have seen extensive use in weed 

ecology (Buckley, Briese, & Rees, 2003; Colbach et al 2005; Freckleton & Stephens, 2009; Freckleton & 

Watkinson, 1998; Freckleton et al. 2000; MacDonald & Watkinson, 1981). However, modelling weed 
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dynamics is hindered by the difficulties in collecting detailed demographic data to parameterize accurate 

models (Cousens, 1995), and demographic models may become numerically unstable when highly variable 

data are used for parameterization (Freckleton et al. 2008). 

Density-structured models are particularly suited to tackling these problems (Taylor & Hastings 2004). 

Assessing population dynamics at any scale requires intensive data collection, but there is a tradeoff 

between the amount of data an observer can collect and its quality: high quality data collection is time 

consuming and costly, whilst less thorough methods may produce data with large errors (Freckleton et al., 

2006). Density-structured models are an alternative to detailed local-scale surveys that can generate 

accurate population assessments and predictions over large scales, and are robust to errors from rapid, 

course resolution density surveys (Taylor & Hastings 2004, Freckleton et al. 2011, Queenborough et al. 

2011, Mieszkowska et al. 2013,  Tredennick et al. 2017, Freckleton et al. 2017).   

Various factors influence the abundance of weeds in agro-ecosystems. These include climatic variables 

(Lima, Navarrete and González-Andujar, 2012; GarcÍa De León et al., 2014), the state & management of 

soils (Metcalfe et al., 2017), and direct control interventions  (e.g. Buhler 1999, Chauvel et al. 2001; Batlla 

Benech-Arnold 2003, Moss et al. 2007). Empirical measures of the impact of environmental drivers and 

weed control strategies are typically derived from meter scale study plots or individual fields (Buhler, 1999; 

Metcalfe et al., 2017, 2018). Indeed, previous attempts at modelling weed dynamics have looked at 

relatively localized populations (e.g. Rees et al. 1996, Freckleton et al. 2000, Buckley et al. 2003), or have 

parameterized models based on small scale experimental data (Gonzalez-Andujar & Fernandez-Quintanilla 

1991, Colbach et al. 2005, Colbach et al. 2006). In such studies, where the range of environmental 

conditions are narrow, predictions are difficult to extrapolate to larger areas. In the real world, these 

problems are spread over extremely large scales. To understand the impact of the various interacting 

combinations of management and environmental conditions, expanding the scale of empirical studies of 

weed population dynamics is essential. Density-structured models allow rapid data collection as well as 

analytically robust modelling of dynamics. And promise to allow examination of effectiveness of 

interventions over much larger areas than traditional methods.  

Predicting densities of weeds is vital for understanding the effect of management. However, this is 

challenging given the huge spatial and temporal variability in population dynamics (Cardina et al., 1997). 

We apply density-structured models to a multi-year survey that included over 1400 field-level assessments 

of black-grass densities. Black-grass is one of Europe’s most economically damaging weeds (Moss, et al. 

2007); it is widespread, inflicts significant yield penalties and is becoming increasingly hard to manage 

with cost-effective herbicides (Hicks et al., 2018). Due to this diversifying management options is 

necessary to continue control, with increasing emphasis needed on non-chemical options.  In this article we 

focus on the impact of crop rotation on weed populations, as it is an integral part of weed dynamics and 
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central to cultural control strategies. To our knowledge this study and data set, which covers a total survey 

area of approximately 50 km2, represents one of the largest studies of weed dynamics to date.  

Using this data set within a density-structured framework we examine the effects of different rotations on 

weed densities that are directly estimated from large scale empirical data. We set out to investigate which 

rotations provide the best control for black-grass, as well as the spatio-temporal variability in management 

outcome. We examine the transient dynamics of black-grass populations using stable-state projection, short 

term effects using two-step-ahead predictions and long-term effects using stochastic models. Our results 

support the current consensus that crop rotation helps alleviate weed infestations, and our empirically 

supported models suggest some effective rotations for black grass control. However, on average, the effect 

of even the most effective crop rotation is small compared to environmentally driven between-field 

differences in black grass density.  

 
 
 
Methods: 

Study system & Survey: 

The data set used in this study was collected as part of weed survey between 2007 and 2010, during this 

period the surveys recorded black-grass densities from over 400 fields across 72 UK arable farms in 

Bedfordshire, Cambridgeshire, Lincolnshire, Norfolk, Oxfordshire and Yorkshire. Data collection involved 

repeated surveys of individual fields across this four year period, to map changes in black-grass densities. 

Fields were divided up into a series of 20x20m survey quadrats or ‘sites’. Observers walked the tramlines 

of each field and recorded black-grass densities in each quadrat as one of five discrete states; absent, low, 

medium, high or very high. This method produces an accurate description of black-grass densities as well 

as high inter/intra observer repeatability (Queenborough et al 2011). 

 

Density-structured models: 

Our density-structured models have the structure: 

                                                 è(# + 1) = Têë. è(#)   (1) 

Where N is an ordered vector of the distribution of  z	density states at time t. This can be viewed as either 

the  proportion of a given population occupied by each state, or the probability that a given site is in a 

particular state. Tfr is a z	3	z matrix of transition probabilities parameterized from observed transitions in 

a field in a particular rotation, e.g. a field rotating from wheat into barley. 
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 Têë = 4
566 ⋯ 568
⋮ ⋱ ⋮
586 ⋯ 588

;  (2) 

Entries 5=? are probabilities that a site in a state j will transition to state i. Diagonal entries of Tfr represent 

probabilities that an observed site will remain in the same state for the next survey, and off diagonals 

represent the probability of transition between states. For example p11 is the probability that a site in state 

1, will remain in state 1, and p21 is the probability that a site in state 1 will transition to state 2. Equation 

(1) therefore represents a first order Markov model that can be used to predict future density state 

distributions.  

 

Population dynamics under different rotations can be modelled by changing the rotation specific transition 

matrix at a specific time step in the Markov model: 

 

                                                è(# + 1) = Têë6. è(#)        (3) 

																																																			è(# + 2) = TêëG. è(# + 1) 

 

Where Têë6	is the field-level matrix containing the transition probabilities for the first half of the rotation 

(e.g. wheat to barley), TêëG  is the field-level matrix for the second half (barley to wheat), and è(#) is the 

initial density distribution.   

 

The asymptotic dynamics of a two-step rotation, analogous to running the Markov chain continuously, can 

be studied via  net transition matrices which are defined as the product of two component matrices: 

 

     Tíìî = Têë6. TêëG                             (4) 

 

A detailed explanation of density-structured models can be found in Freckleton et al (2010). The 

relationship between field-level surveys, density distributions and transition matrices is summarized in 

figure 1, Chapter 2. 
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Analysis of rotational controls: 

To investigate the effect of different rotations on black-grass densities we use hierarchical density-

structured models parameterized for each of the rotations summarized in Table 1. We parameterized field-

specific transition matrices for each field observed in a rotation. For example, we generated 16 field-level 

transition matrices using observed density state transitions from the 16 fields rotated from barley into wheat, 

and 38 of wheat into barley. Transition probabilities are a function of the change (or stasis) in density states 

between years, so the observed density states in two consecutive years can be used to parameterize Têë  for 

a given field.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Observed sets of rotations in the weed survey dataset, with number of surveyed 

fields and individual quadrats in each subset. 

 

 First crop Second crop No. fields No. observations 

Barley Barley 16 3135 

 OSR 17 3580 

 Sugar beet 10 2043 

 Wheat 7 1468 

Beans Wheat 29 5890 

OSR Wheat 145 29937 

Potatoes Wheat 13 2352 

Sugar beet Barley 11 2782 

 Wheat 30 6320 

Peas Wheat 12 2508 

Wheat Barley 38 6969 

 Beans 36 7660 

 OSR 121 23370 

 Potatoes 9 1698 

 Sugar beet 28 5286 

 Peas 17 3637 

 Wheat 143 28518 
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Transient dynamics: 

As the sum of N will always equal 1, the dominant eigenvalue in T is always 1. Density state transition 

models will therefore converge on a stable density structure (Caswell, 2001). A general approach to 

studying the transient dynamics of these models is to compare the stable structures and the rates of 

convergence of different models. To investigate the transient dynamics of particular cropping systems we 

compare net transition matrices for each two-step rotation. For each rotation we generate each possible 

permutation of net matrix from each possible combination of component matrices.  For each of these 

matrices we then produced  two summary statistics that allow us to examine the dynamics of a particular 

cropping system.  

 

We calculate the stable density structure for each net matrix, from the ratio of the first and second 

eigenvectors of a net transition matrix (equation 5): 

 

		ï	 =
ñ6	

ñG
		 

 

Where ñ6 is the first eigenvector and ñG the second of the net matrix. S is therefore the field-level 

distribution in terms of proportion of the field in each density state. We calculate the mean density state to 

summarise the stable density structure for each net matrix. This is calculated from the proportion of a 

population occupied by each state multiplied by the integer value (i.e. 1-5) of each state category. The rate 

of convergence to this structure is governed by the relationship between dominant and subdominant 

eigenvalues (equation 6).   

 

		ó =
)6	

)G
=
1	

)G
		 

 

Where )6 is the dominant eigenvalue (which is always 1 as row probabilities all sum to 1) and )Gis the 

second largest eigenvalue. P is the ‘damping-ratio’ and gives a measure of sensitivity in the face of 

perturbation, or the rate at which a population will reach its stable density structure. The higher this ratio, 

the slower the convergence. 

 

Short-term projections: two-step rotations: 

Examining short-term dynamics allows understanding and prediction of tangible outcomes under each 

cropping system. Using the component matrices from each rotation from table 1, we constructed models 

for all possible wheat rotations. We made 2-step-ahead projections from winter wheat to an intermediate, 

(6) 

(5) 
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or break crop, and then back to winter wheat (i.e. one full rotation), using the markov model in (3). We take 

the mean density state of the final density distribution è(# + 2), as the outcome. These projections were 

generated for each possible combination of field-level matrices, for three initial starting densities 

(representing typically low, middling and high levels of black-grass). Thus, for the wheat: barley: wheat 

example, there would be 16 * 38  = 608  outcomes for each starting density, and therefore 608 * 3 = 1824 

outcomes in total. We compare the average outcome of each rotation from each initial starting density, as 

well as the relative change compared to winter wheat. 

 

We use a transient life table response (LTRE - Caswell 1989), to analyse the variance in model outcomes 

due to local environmental effects (or field identity), initial densities and, rotation. This method uses the 

change in black-grass density from the two-step projections above as a response variable in a linear mixed 

effects model (e.g. Freckleton et al. 2017), to account for variance in population structure and intrinsic 

dynamics. We estimate the variance components associated with the field identity (i.e. the permutation of 

field-level matrices used in the projection), the initial density distribution, and the rotation applied to that 

field, to evaluate the relative contributions of each to the overall variance of the system.  

 

Long-term dynamics: stochastic projections: 

Finally, we model the stochastic dynamics of black-grass under a range of different cropping systems to 

allow us to examine the overriding effects of wheat dominance (i.e. the proportion of winter wheat in 

rotation), and type of break crop, on black-grass density. These alternative rotational options are 

summarized in Table 2. Stochasticity is implemented by random selection of a component matrix for a 

particular step in a rotation, projecting the density state forward with the markov model in (3), then 

calculating the mean density state at each time-step. All models were started at the average density 

distribution across all fields and projected for 10000 time steps to ensure convergence. Across time series 

we then compare means, variances, and coefficients of autocorrelation, for a series of rotations with 

differing break crops, levels of wheat dominance and rotational diversity (summarized in table 2). From 

this we can examine rotational effects on black-grass density, variability and autocorrelation - which can 

indicate whether observed densities are likely to persist. 
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Table 2. Cropping systems included in the stochastic simulations. Includes the length of the rotation in years, the number of 

years a field spent in a break crop and the wheat dominance (proportion spent in wheat) of a rotation. Rotation denotes the 

sequence of wheat crops (W) and break crops (B), where B1 & B2 represent the first and second break crops in systems with 

two different break crops. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Break Crop Length No. of Break 
Years 

Rotation Wheat 
Dominance 

Barley 1 1 B : B 0 

 6 4 W : B : B : B : B : W 0.33 

 5 3 W : B : B : B : W 0.4 

 4 2 W : B : B : W 0.5 

 3 1 W : B : W 0.66 

 4 1 W : W : B : W 0.75 

 5 1 W : W : W : B : W 0.8 

     

Beans 3 1 W : B : W 0.66 

 4 1 W : W : B : W 0.75 

 5 1 W : W : W : B : W 0.8 

     

Beet 3 1 W : B : W 0.66 

 4 1 W : W : B : W 0.75 

 5 1 W : W : W : B : W 0.8 

     

OSR 3 1 W : B : W 0.66 

 4 1 W : W : B : W 0.75 

 5 1 W : W : W : B : W 0.8 

     

Peas 3 1 W : B : W 0.66 

 4 1 W : W : B : W 0.75 

 5 1 W : W : W : B : W 0.8 

     

Potatoes 3 1 W : B : W 0.66 

 4 1 W : W : B : W 0.75 

 5 1 W : W : W : B : W 0.8 

     

Barley : Beet 2 2 B : B 0 

 6 4 W : B1 : B2 : B1 : B2 : W 0.33 

 5 3 W : B1 : B2 : B1 : W 0.4 

 4 2 W : B1 : B2 : W 0.5 

 5 2 W : W : B1 : B2 : W 0.6 

     

Barley : OSR 4 2 W : B1 : B2 : W 0.5 

 5 2 W : B1 : B1 : B2 : W 0.6 

     

Cont. Wheat 1 0  W : W 1 
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Parameterising transition matrices: 

To account for spatial variability and allow us to investigate the effects of individual rotations, we 

implement a field-level hierarchical approach to generating transition matrices.  We construct hierarchical 

ordered category logistic regressions in terms of a real-valued latent variable that reflects the true 

(unobserved) density.  

The response variable n=`, is the outcome density at site Q in field * and is an ordinal variable on a scale 

1,… , z. We model probability of observing a category k as a function of a linear predictor <=. The linear 

predictor is constructed from the row-vector of J site-specific explanatory variables 3		and the unknown 

parameter column-vector >	: 

 

<= =A3=?

B

?C6

>=?													(7)		 

 

In (7), >? is the effect of explanatory variable 3=? on <	, at site i. We use the density state observed at site i 

in the previous year as covariates >6  through to >^ to account for the effect of current density state on the 

density next year, and the constraint >6 	= 0	 is enforced to allow identifiability (Agresti, 2002, p271 – 

273).  

In a typical ordered category logistic regression, the ordering of categories are enforced through a set of K-

1 'cut-point' parameters, E, which have an inherent ordering, i.e. E6 < EG < EH < EI. We introduce 

hierarchical field-level effects to account for between population variance into the model through  these 

cut-point parameters, such that E6`  is the first cut-point for field f  and EI` the final cut-point. Outcomes 

are categorized according to the following rules: 

 

J=6` = 1 − p<= − E6`q 

																							J=K` = p<= − EKM6`q − p<= − EK`q													(8) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 

J=8` = <= − E8M6` 
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where J=K`, is the logit of the probability of observing state k at site i within field f. We can then calculate 

the probability of an observation n=`  being in state k, through the logistic function: 

NOpn=` = 2q =
R
STUõ

6V∑ RSTU`XYZ
U[Z

         (9) 

It was assumed that each observation was drawn from a categorical distribution:    

n=`	~	Ek#ÄÜ~OQEkÅpPrpn=`qq													(10) 

Prior specification: 

We employ a Bayesian framework using the probabilistic programming language Stan (Stan core 

development team 2017) for its flexibility. We use the following prior specifications. The population-wide 

effects of source states 1-4,	>?V6	 … 		>B, are drawn from independent normal distributions, of mean 0 and 

standard deviation 10: 

     >?	~	!(0,10)												(11) 

To ensure that ordering of the cut-point parameters remains intact, i.e. E6 < EG < EH < EI. ordering 

constraints are enforced on unordered vectors (Tutz & Hennevogl 1996; Hartzel et al. 2001), by mapping 

these constraints onto the differences between cut-point parameters: 

EK		 	É		
E6																																								Q*	2 = 1, ko�		
	log	(EK	 − 	 	EKM6	)										Q*	1 < 2	 ≤ z		

						(12) 

Modelling the group-level effects was implemented by imposing priors on the difference between model 

cut-points and fixing the first group-level cut-point parameter E6`.  

						E6`~	o~OákÅ(0,1)	

EK` − EKM6`	~	o~OákÅ(u, σ)									(13) 

The first group-level cut-point,	E6`, is given a standard normal prior whilst distance between subsequent 

cut-points are given normal priors with a mean of u and standard deviation	σ. 

 

The mean cut-point distances across all fields, u, is given a wide normal prior with a mean of 0 and standard 

deviation of 10. The standard deviation of cut-point distances σ is given a half-Cauchy prior with 5 degrees 

of freedom.  

			u~	o~OákÅ(0,10)															 

			σ	~	EklEℎn(0,5)												(14) 
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Results: 
 
Transient dynamics: 

Average transition matrices for each of the modelled wheat rotations in table 1 are presented in figure 1. 

There are clear trends even from a simple visual inspection of these matrices. Fields of continuous winter 

wheat exhibit higher probability of transition into higher density states than continuous barley (Figure 1, 

row 1). For example, an absent quadrat in continuous wheat has a 0.28 probability of being occupied by 

low densities of black-grass in the next year, whilst rotating from barley to barley the same transition is 

0.11.  A similar trend is apparent in matrices that model rotations into wheat (Figure 1, row 2). For example, 

there is an 0.18 probability that a patch of ‘very high’ density black grass will remain in that state when 

rotating from peas to wheat. Conversely, rotations into an intermediate crop (Figure 1 row 2) show the bulk 

of the transition probability into lower density states.  

 

There is a great deal of diversity both between and within rotations. Fields of continuous winter wheat have 

higher probability of transition to higher density states than rotations that involve a break crop, but there 

are also differences between break crops themselves.  Higher density states are more probable in barley & 

peas, whilst in beans, sugar beet and potatoes they are less likely. These differences in transition probability 

are reflected in the resultant stable density distributions (Figure 2b). Equilibrium density states for 

continuous winter wheat are higher and more variable than in rotations that include break crops or 

continuous barley.  Using barley as a break crop results in the highest equilibrium density for rotated 

systems, whilst potatoes have the lowest. Continuous barley produces higher equilibrium densities than all 

rotations using break crops except those that use continuous barley.  
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Differences in field-scale damping ratios between different rotational strategies are also 

evident (Figure 2a) . Populations of black-grass that have been subjected to a rotation 

demonstrate higher damping ratios and therefore slower convergence on stable state 

distribution. As low damping ratios give an indication of convergence ‘speed’ to its stable 

density structure, higher values suggest sensitivity to perturbation. Paired with low 

equilibrium densities (as in the case of sugar beet, beans, OSR and potatoes), this can 

suggest that populations are easier to reduce or eradicate. As continuous wheat systems 

have low damping ratios paired with generally high stable density structures, this 

suggests that these systems allow the rapid growth and establishment of weed 

populations.  

 

Short term dynamics: two-step rotation: 

After two-step rotations, field-scale mean density states differ between, but are highly 

variable within each rotation (figure 3a). Continuous wheat and, to a lesser extent,  

continuous barley show sensitivity to the initial density, but some rotations seem to be 

invariant to initial state, for example rotation into OSR produces the same outcome 

regardless of initial conditions. The changes in mean density state relative to continuous 

wheat also vary with initial density distribution (Figure 3b). At low densities, beans and 

sugar beet offer low reductions and OSR and barley offer next to no reduction in final 

densities, whilst rotating to peas increases densities. This trend attenuates with higher 

starting densities with all rotations, except into peas, offering considerable reduction in 

relative density state at the highest initial density. As wheat is the only rotation that shows 

Figure 2. Results from analysis of transient dynamics using damping ratios  and mean density states from stable state 
distributions .  Distribution of field level log damping ratios  (a) and mean density states (b) for each rotation, and 
continuous crops of barley and wheat (C.barley & C.wheat).  Red points are the median value across all permutations 
of net matrices, red and black bars are 90% and 50% density intervals respectively.  

a b 
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sensitivity, this will be driven by the effect of initial conditions on wheat, and not by the 

effect of particular break crops. 
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The role of large-scale spatial heterogeneity, i.e inter-field scale variation, in the outcome 

of management is presented in figure 4. The figure illustrates the variance in change in 

density due to the identity of the pair of matrices used in the model (Field ID), the initial 

density conditions, and each of the rotations. Using a linear mixed effects model we 

estimated the variance contributions of each of these as 0.513, 0.118 and 0.0804, with  a 

residual variance of 0.287. Within these two-step rotations it is clear that field ID (i.e. 

the field specific conditions) has the largest contribution to the final density state. The 

initial density contributes a reasonable proportion, whilst the actual management 

intervention, rotation, contributes the least.  

 

Long-term dynamics: stochastic projections: 

Stochastic projections of densities generate high variability between years (Figure 5) and 

also between cropping system. Continuous winter wheat has a higher mean and variance 

in density state compared to continuous cropping of continuous barley or continuous 

barley to sugar beet rotation. Introducing break-crops into a rotation has a varied effect, 

with variance & mean density ranging from almost as high as continuous winter wheat 

Figure 4.  Contribution to the variance in the difference between initial and final densities by Field ID / matrix origin (first 
panel), initial density (second panel) and rotational control (third panel). Each point represents the size of the effect that 
variable had on the change in density.  

Low Mid High Min Max CB Po Be SB OSR Ba Pe CW 
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(in the case of peas & OSR), to much lower ( e.g. rotation to potatoes). Variability, 

however, remains high throughout all break-crops,  and increases with the larger amounts 

of winter-wheat in a rotation.  
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Figure 5. Exam

ple tim
e series for stochastic m

odel projections for continuous w
heat &

 non-w
heat rotations, 

rotations (First row
), 3 year w

heat rotations w
ith a single break crop (second row

) and 4 year w
heat rotations 

w
ith a single break crop (third row

). M
odels w

ere run for 10,000 iterations and the final 150 displayed above. 
N

um
bers at the top of each plot represent the across tim

e-series m
ean, variance and autocorrelations for the 

full 10,000 iterations. 
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There are significant additive effects of winter-wheat dominance and break crop on both mean density state 

(Linear model, Adj R2 = 0.9431,  F=43.64 ,  df=7,11, p<0.001) and variance (Linear model, Adj R2 

=0.7506,  F=8.739 ,  df=7,11, p<0.001). Reducing the proportion of winter wheat in a rotation decreases 

overall black-grass density and between year variability (Figure 6 a & b). Although there are no significant 

relationships between wheat dominance, break crop and autocorrelation (Figure 6, c), the pairings of 

outcome density and autocorrelation are worth consideration. Low densities paired with high 

autocorrelation suggests that the rotation is effective in a continual suppression of black-grass populations. 

However single break-crop rotations (winter-wheat proportions 0.66 – 0.8) display interesting dynamics. 

In these rotations, decreasing wheat dominance decreases auto-correlation, shifting from positive (density 

is positively correlated with density in the previous year) to negative autocorrelation. The implication of 

this is that higher densities in these rotations may persist while lower densities may not.  

 

Figure 7 illustrates the effect of break crop on outcome density from single break-crop systems 

aggregated over all rotation lengths and levels of wheat dominance. There is noticeable variation in the 

effect of break crop on outcome density, between year variance and autocorrelation. Using potatoes as a 

break crop produces significantly lower overall black-grass density, sugar beet and beans slightly higher, 

and barley, OSR and peas at comparably high levels. Potatoes again also produce significantly lower 

between year variability, beet, barley and beans produce higher levels of variance. OSR and peas produce 

the highest levels of between year variability in black-grass densities. Similar trends are evident in the 

relationship between break crop and autocorrelation. Potatoes are the only crop that produces almost 

consistent negative autocorrelation, barley and OSR produce consistently positive autocorrelation between 

years, whilst beans, beet, and peas vary around zero. The implications for rotation specific densities are 

therefore mixed, the high densities found in barley and OSR are likely to persist, whilst the low densities 

in potatoes are not.   
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Figure 6. Relationship between the proportion of wheat in a rotation and the mean density state (a), variance (b), 
and Lag-1 cutocorrelation (c), across stochastic model projections. Individual points represent time-series 
averages for a model under with a specific break crop/rotation at a specific proportion of winter wheat. Colours  
and shapes of each point represent the break-crop or combination of break crops used in each model.  
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Discussion: 
Weed populations are inherently variable and there is a significant body of literature dedicated to 

understanding the causes and consequences  of their variability (Freckleton and Watkinson, 1998, 2002a; 

Gonzalez-Andujar and Hughes, 2000; Freckleton and Stephens, 2009). Monitoring and predicting highly 

variable dynamics is challenging, but the first step to tackling the issue is capturing the range of responses 

exhibited by a population. Large scale monitoring is needed to gather all the important variation in the 

effect of interventions or control strategies. Our hierarchical density-structured approach captures high 

inter-population variability across a national scale; results from stable-state projections, two-step-ahead 

analysis and stochastic models all demonstrate that weed density is highly variable within all the cropping 

systems we consider. Field-scale variation can have various origins; for example persistent seedbanks, soil 

type, and local climatic variables will all substantially impact on black-grass populations throughout the 

season (E.g. Colbach et al. 2006, Metcalfe et al. 2018). Importantly though, the large contribution of field-

level effects on total system variance suggests that rotational controls could have little impact compared to 

environmental drivers at a particular site.  

 

The high variation in black grass-density between fields, regardless of rotation used, has 

implications for both large scale modelling and management of black-grass. High levels of variability 

suggest that in some cases, any benefit from an applied control may be overwhelmed by site-specific effects 

positively influencing black-grass growth (Freckleton et al., 2017). Without the necessary data to model 

the drivers of the site-level effects of black-grass dynamics, it becomes extremely difficult to predict 

outcomes for individual populations. Here we only consider one-aspect of population dynamics in 

agricultural systems – rotation, while there are many more that could improve model predictions and tease 

apart the contributions to site-level variance. Including more information on site-level factors could only 

improve our understanding of the dynamics in these systems.  

 

Despite high levels of variability, we still provide evidence for the effectiveness of rotation for 

reducing weed infestations. In our models, cropping continuous wheat results in high density, highly 

variable infestations that are likely to persist (due to high autocorrelation). Winter wheat is well known to 

be particularly susceptible to black-grass (Hicks et al. 2018) as managing black-grass in wheat directly is 

difficult due to overlapping germination profiles, meaning control is limited by the risk of damage to the 

crop itself (Thurston 1964). We show that rotation decreases not only the average density of black-grass, 

but also its variability and autocorrelation, suggesting that weed populations will be more predictable and 

less likely to persist in rotated systems. The benefits of rotational controls are widely appreciated in the 

literature and  have various modes of action (Zacharias & Grube 1984, Liebman & Dyck 1993).  Primarily, 

rotation is allows opportunities to apply controls without risking damage to crops. As black-grass 
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emergence usually occurs during autumn (Thurston 1964, Moss 1990) rotating into a spring crop (known 

as spring cropping) is often cited as an effective control measure.  

 

Spring cropping can reduce black-grass abundance by facilitating targeted herbicide application, 

seed bed preparation, and cultivation during a period where the field is empty of crop, but still during the 

germination period of the weed (Moss & Clarke 1994, Chauvel et al. 2001, Moss et al. 2007, Lutman et al. 

2013). Indeed, many of the cropping systems with the lowest black-grass densities from our analyses 

include spring crops. For example, broad-leaf crops such as sugar beet, beans and potatoes (which provide 

the highest density reductions in our models) will almost invariably be planted in spring and will also be 

resistant to grass-specific herbicides. The larger reductions in density seen from potatoes may well be due 

to a combination of features; as well the benefits seen from spring cropping, potatoes require additional 

cultivation through ‘hilling’, which may destroy seedlings that were missed during the initial round of 

control (Eberlein et al., 1997).  

 

Control can also be achieved through direct and indirect competition for resources. Competitive 

cultivars such as barley or OSR can suppress weed populations through rapid accumulation of biomass, 

exclusion from nutrients and sunlight (Nicholas 1991, Christensen 1993), or other biotic interactions such 

as allelopathy (Wu et al., 2001). We see reductions in density from crops often cited as competitive 

cultivars, namely OSR and barley. Compared to continuous wheat there are noticeable reductions in 

density, but these reductions are generally lower than most alternatives. Some of the benefit of competitive 

cultivars, however, comes from resistance to yield penalties rather than reduction of seed return (Andrew, 

Storkey and Sparkes, 2015), which may account for their popularity despite continued abundance of black-

grass.  

 

The well documented benefits of rotation mean the relationship between wheat dominance and 

black-grass density in a system is relatively intuitive: the lower proportion of  wheat in a rotation, the more 

opportunity there is to use spring cropping or competitive cultivars as control. However, as winter wheat is 

the most valuable crop in the UK, the value of particular rotations needs to be considered in terms of 

economics. Rotations that reduce the prevalence of wheat will reduce income, and this economic loss will 

have to be balanced against the potential loss of continued infestation or the viability of alternative crops.  
 

With the evolution of multiple herbicide resistances across the UK and Europe (Hicks et al 2018), 

the value of rotational control is only likely to increase. The surveys we use in this study were carried out 

between 2007 and 2010, just three years after a new selective herbicide in winter wheat (Atlantis) was 

released in 2003. Evolved resistance to Atlantis and older herbicides means that UK farms have no effective 

chemical treatments that target black-grass (Hicks et al 2018). The broad-spectrum herbicide glyphosate is 
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currently used in conjunction with spring cropping to effectively control black-grass between rotations 

(Hicks et al. 2018). However, there is considerable concern that repeated use of glyphosate will lead to 

resistance in black-grass, especially as it has driven resistance in several other agricultural systems 

(Sammons and Gaines 2014).  The cultural components of rotational control are therefore becoming 

increasingly relevant and show promise for reducing the reliance on herbicides (Travlos, 2012). Although 

modern agriculture is heavily reliant on pesticides, reducing pressure on them as the main provider control 

has multiple benefits. Reducing reliance will reduce the destruction of biodiversity (Beketov et al., 2013; 

Woodcock et al., 2016), as well as preserving efficacy for continued use in integrated control strategies 

(Harker and O’Donovan, 2013).  

 

Density-structured models are extremely capable of evaluating large scale dynamics of spatially 

expansive populations and our application shows how rotational control can help manage the widespread 

infestations of one of Europe’s most damaging weeds. However, an important limitation of these models is 

that they only provide summary descriptions of field-level populations. Within field dynamics and 

demography and spatial structure are extremely important in dictating larger scale patterns in weed 

abundance (Cardina et al., 1997; Freckleton and Watkinson, 2002b). Improving this approach to include 

information on spatial interactions and lifecycles will be an important step for extending utility of density-

structured models for improved landscape scale prediction and more targeted managements. Fortunately, 

the nature of density-structured frameworks makes approaching these questions relatively simple.  

 

Monitoring, understanding and predicting large scale population dynamics and their variation is an 

essential step for effective pest management. Above we have demonstrated that density-structured models 

can directly tie empirical observations to management predictions for spatially extensive and variable 

populations. In doing so, we show that several rotational management strategies decrease the infestation of 

an economically damaging weed, but all these systems demonstrate extreme inter-field variance in the 

degree of control. Developing integrated controls that are effective over a wide range of environmental 

conditions is necessary to limit the detrimental effects of destructive weeds. Landscape assessments of 

dynamics such as ours are the first step in understanding population responses to interventions and 

achieving effective management over large scales.  
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Abstract: 
Within-population spatial structure is linked to all drivers of organism abundance and is a fundamental part 

of population dynamics at larger scales. Economically important weed populations are often characterised 

by their patchy distributions within fields but modelling their spatial interactions can often be difficult due 

to the lack of adequate data. Density structured models allow large scale empirical data to be collected in a 

framework that is amenable to modelling the effects of within-population spatial structure. In this study we 

develop and test spatially explicit density-structured models that attempt to account for different spatial 

processes at the field scale. We incorporate spatial information into the parameterisation of field-level 

transition matrices, via a covariate describing the density of the neighbours of a focal quadrat. We build a 

series of these models in an attempt to account for field-scale spatial processes that may affect population 

dynamics, each are implemented by applying different configurations of weights upon neighbouring 

quadrats. We show that point-wise predictive performance (calculated via LOO cross validation), is better 

in spatially explicit models but there is no difference between different spatial parameterisations. Using 

custom posterior predictive checks, we then demonstrate that spatial models only slightly improve on non-

spatial models in terms of description of field-scale spatial structure and mean density state. However, using 

simulations spatial models demonstrate drastically different population dynamics in response to crop-

rotation, with more comparable effects of field-specific effects and crop rotation on overall system 

variability.  

 
Introduction: 
Agricultural weeds are an increasingly problematic aspect of large-scale population ecology, being costly 

both environmentally and economically (Swinton et al. 1994; Wiese et al. 1997; Hicks et al. 2018). There 

is wide recognition of the importance in spatial structure on the dynamics of weed populations (Cardina et 

al. 1997; R. Freckleton & Watkinson 2002b; Nordmeyer 2006; Gonzalez-andujar et al. 2018), and diverse 

spatial interactions and complex dynamics can even occur in environmentally homogenous systems like 

arable fields (Freckleton & Watkinson 2002). At the scales relevant to pest control, however, environments 

are both highly variable and complex (Forman 1995). Given the importance of spatial interactions in 

population dynamics (Levin 1992; Legendre 1993), they must be considered in the context of 

environmental variability that already hinders management of damaging weed populations (Wallinga et al. 

1999; Urban 2005; Freckleton & Stephens 2009; Coutts et al. 2016). 

 

In general, empirical and theoretical frameworks tend to focus on large scale interactions between 

separate populations (Durrett & Levin 1994; Dunning et al. 1992; Hanski 1998; Blasius et al. 1999; R. 

Freckleton & Watkinson 2002b; Wintle et al. 2005), but an important aspect of weed populations is the 

‘patchiness’ observed at within fields (Cardina et al. 1997; Rew & Cousens 2001; Holst et al. 2007). The 

meso-scale dynamics evident at this level are distinct from the processes that drive broader scale 

distributions or small scale population self-structuring (Cardina et al. 1997; Somerville et al. 2017; 
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Gonzalez-andujar et al. 2018). Moreover, this spatial structure has consequences for weed management, as 

high density patches can cause severe yield loss (Hicks et al. 2018), and accounting for spatial structure can 

increase the efficiency of control (Bennett & Pannell 1998; Nordmeyer 2006; Metcalfe et al. 2017). 

Spatially explicit models are necessary to predict, monitor and manage these problems, however, we 

currently lack an empirical foundation for modelling field scale structure in widely distributed populations. 

 

Typically, data on abundance are difficult and expensive to collect over large scales. Density 

structured models expand the potential scale of population monitoring through inexpensive, rapid surveys, 

and analytically simple modelling (Taylor & Hastings 2004; Queenborough et al. 2011). These models 

provide accurate assessment and prediction of population trends, as well as being robust to errors commonly 

associated with demographic models (Freckleton et al. 2011; Mieszkowska et al. 2013; Freckleton et al. 

2017). Further, placing density structured models in a hierarchical framework allows models to account for 

variability in abundances over large scales (Wu & David 2002; Chapter 2).  So far, however, these models 

have only been analysed as non-spatial descriptors of whole-field population dynamics. Importantly, the 

survey process naturally captures within-population spatio-temporal information; sampling locations are 

divided up into defined quadrats which map changes in density from year to year. As the data from surveys 

are spatially structured, in principle they can be analysed in a spatially explicit context; Incorporating spatial 

information into density-structured models provides a convenient way to model and eventually link, patch, 

field, and regional scale dynamics.  

 

Dynamic models of weed populations have proved useful tools for improving understanding and 

management (Freckleton & Watkinson 1998; Freckleton et al. 2008; Freckleton & Stephens 2009). Spatial 

structure in weed populations is well known to be characteristic of population dynamics at the field level 

(Paice 1998; Rew & Cousens 2001; Metcalfe et al. 2017), and there are numerous different spatial processes 

that can affect the density of weeds across a field. Dispersal from the plant itself will generally be isometric 

and limited to its immediate vicinity, but other processes such as ploughing or harvest can directionally 

spread seed (Somerville et al. 2017). However models of weed dynamics typically neglect spatial 

information (Holst et al. 2007), and empirical measures are normally only derived from a few locations 

without consideration of large scale environmental heterogeneity (Buhler 1999; Travlos 2012; Metcalfe et 

al. 2017; Metcalfe et al. 2018). Scale-dependencies are rife within ecology (Urban 2005; Steffan-Dewenter 

et al. 2002; Chase et al. 2017), and understanding the interaction between spatial processes and 

environmental heterogeneity will be vital for effective pest control. Density-structured models offer a 

means to model the interaction between field scale spatial dynamics and management, parameterised with 

real-world observations of weed density gathered from a range of environmental conditions.  
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In this study we have two objectives. I) To Parameterise and test density-structured models that 

account for the different processes influencing spatial structure of weeds in arable fields. II) To Compare 

predictions of density-structured dynamics from spatial and non-spatial models for populations subjected 

to different managements to quantify and understand how important spatial processes are for population 

dynamics. We show that spatial density structured models perform as well as non-spatial models when 

summarising the state of field-level populations but are better in terms of observation-level predictive 

performance and capturing spatial structure. We demonstrate that spatial structure plays an important role 

in the dynamics of the weed Alopecurus myosuroides, and its response to rotational management. 

 
Methods: 

Study system & Survey: 

Weed density state data was collected between 2007 and 2010 and surveys recorded black-grass densities 

from over 400 fields across 72 arable farms. Individual fields were repeatedly surveyed across this four 

year period to map changes in black-grass densities. Before each survey, fields were divided up into a series 

of 20 x 20m quadrats or ‘sites’. Observers then walked the tractor wheelings of each field and recorded 

black-grass densities in each quadrat as one of five discrete states: absent, low, medium, high or very high. 

This method produces an accurate description of black-grass densities as well as high inter/intra observer 

repeatability (Freckleton et al 2011, Queenborough et al 2011). 

 

Density structured models: 

A density-structured model has the structure: 

 

                                                    .(t + 1) = T. .(t)  (1) 

 

Where N is an ordered vector of the distribution of  2	density states at time t. This can be interpreted as 

either the proportion of a given population occupied by each state, or the probability that a given site is in 

a particular state. T is a 2	x	2 matrix of transition probabilities: 

 T = 4
566 ⋯ 568
⋮ ⋱ ⋮
586 ⋯ 588

;  (2)  

Diagonal entries of T represent probabilities (p) that a site in a given site will remain in that state for the 

next survey, and off diagonals represent the transition between states. For example, p11 is the probability 
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that a site in state 1, will remain in state 1, and p12 is the probability that a site in state 1 will transition to 

state 2.  Given an initial distribution of density states, the resulting first order Markov model in equation 

(1) can be then used to predict future density state distributions. A detailed explanation of density structured 

models can be found in Freckleton et al (2011), and the relationship between field-level surveys, density 

distributions and transition matrices is summarized in figure 1 Chapter 1.  

 
Parameterising transition matrices: non-spatial model: 

We generated field-specific transition matrices using hierarchical ordered category logistic regression. We 

model the probability of observing a certain category 2 at survey quadrat	Q, as a function of a real-valued 

latent variable <=`. In equation 3, this linear predictor is constructed from the row-vector of J site-specific 

explanatory variables 3,	and the unknown parameter column-vector >	. >=? is therefore the effect of 

explanatory variable 3? on <	, at site i.  

In the non-spatial formulation of this model, explanatory variables 36  through to 3^ are the current density 

state of quadrat Q, and parameters >=6  through to >=^ are the effect of current density state on density next 

year. The constraint >=6 	= 0	 is enforced to allow identifiability (Agresti 2002, p271 – 273).  We model 

variability in population level (i.e. field-level) black-grass dynamics through the parameter _̀ 	, which 

accounts for field-level effects in attaining different density states:  

<=` = A3=?

B

?C6

>=? + _̀ 											(3) 

 

A set of K-1 cut-point parameters, E, enforces the ordering of density state categories, they have the inherent 

ordering E6 < EG < EH < EI. We categorise the probability of observing a density state according to the 

relationship between eta and the cut-points as in (4), where J=K`, is the logit of the probability of observing 

state k at site i within field f:  

J=6 = 1 − (<= − E6) 

																																																									J=K = (<= − EKM6) − (<= − EK)         (4) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 

J=8 = <= − E8M6 
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We can then calculate the probability of an observation Yif  being in state k, through the inverse logit 

function: 

NOpP=` = 2q =
R
STUõ

6V∑ RSTU`XYZ
U[Z

         (5) 

 

Spatial density structured models: 

 

To investigate the spatial dynamics of black-grass populations, we fitted a series of models that incorporate 

the density of weeds surrounding a focal quadrat into estimating the probability of observing density states 

in subsequent surveys. We calculate spatial covariates, S, as a function of the density states in the 

neighbourhood of a focal quadrat (Figure 1B). Each quadrat within this neighbourhood has a location, l (1-

8), and a density state, x, valued 1-5 respective to ordering. The spatial covariate for a specific configuration 

can then be calculated through a series of weights, w, assigned to each location within the neighbourhood, 

so that: 

 

 

  

 

Where †° is the weight assigned for location l and the total of all weights is constrained to sum to one over 

the neighbourhood (see table 1). 3=° is the density state value at location l, within the neighbourhood of 

observation i, and w= is the spatial covariate for observation i. Figure 1 illustrates the relationship between 

the neighbourhood locations, density states and weights during the calculation of a spatial covariate.  

 

 

 

 

 

 

 

 

 

 

 

 

w= = A†°

¢

°C6

3=°										(6) 
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Figure 1. Calculating the spatial covariate for a single observation using an isometric 
configuration of location weights. (A) The distribution of density states within a field (B) The 
neighbourhood and locations for a focal quadrat (Li), the density states (Xi) and weights (Wi) for 
each location. (C) A heatmap of the spatial covariate calculated over the entire field in (A).  
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There are numerous different spatial processes that can affect the density of weeds within each quadrat, 

most of which will be related to seed dispersal. As black-grass seed is shed around the plant before the 

maturation of the crop, any effect on density will be isometric, and limited to a locality. However, dispersal 

can also be directional, for example seed can be spread large distances across a field via harvest or 

ploughing. To account for the different spatial processes affecting transition probability at the quadrat scale, 

we costruct models with different spatial covariates. Each covariate uses a different configuration of 

weights (wl),  and allows different parts of the neighbourhood to vary in their contribution to the probability 

of observing a particular density state next year (Table 1).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w=6 
 

w=G 
 

Table 1. The suite of models with the configuration and value of weights for each spatial 

covariate. 

 

Model Configuration 

w=6 
 

Model I Q 
 

= 1/8 
 

w=6 
 

Model II Q 
 

+ Q 
 

= 1/4 
 = 0 
 

= 1/4 
 = 0 
 

w=6 
 

w=G 
 

w=6 
 

w=G 
 

Q 
 

Model III Q 
 

+ 
= 1/6 
 = 0 
 

= 1/6 
 = 0 
 

w=6 
 

w=G 
 

Model IV 

w=6 
 

w=G 
 

w=H 
 

+ Q 
 

Q 
 

+ Q 
 

= 1/2 
 

= 1/2 
 

= 1/4 
 = 0 

 
= 0 
 

= 0 
 

w=6 
 

w=G 
 

w=H 
 

w=¶ 
 

Naive Q 
 

= 0 
 

w=ß 
 

®© 
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We incorporated spatial covariates into the linear predictor:  

																	<=` = A3=?

^

?C6

>=? +		Aw=™

´

™C6

>=™ 	+ _̀ 														(7)		 

 

Where C, is the total number of spatial covariates (or different configurations of weights for the 

neighbourhood of i), w=™ is the spatial covariate value for observation i, within configuration c,  and >=™ is 

the effect of  spatial configuration c on the density state in quadrat i next year.  

 

To model different spatial processes, each model in table 1 introduces flexibility in the ways different 

components of the neighbourhood can contribute to the density of the focal quadrat in subsequent years.  

 

Model I. 

The first of these models, Model I is the simplest model where disperssal is assumed to be uniform around 

the focal quadrat.  Here the entire neighbourhood	contributes equally to <=,  producing a single spatial 

covariate w=6.  

 

Model II. 

As the majority of the contact between the focal and surrounding quadrats will be between non-diagonal 

neighbours, these components may have a potentially greater influence on future density state. We can 

allow for more flexibility in contributions of the diagonal and non-diagonal components of the 

neighbourhood to the linear predictor by seperating these components,  calculating different covaraites for 

each and modelling their effects seperately. In our second model, we model the effects of adjacent (w=6) and 

diagonal (w=G) surrounding density states on the linear predictor, by introducing individual terms for each. 

 

Model III. 

The distribution of black-grass seeds within a field is influenced by management, with practices such as 

ploughing and harvest spreading seed throughout the field (Somerville et al. 2017). Typically fields are 

travelled along the longest axis, which means that seed spread will likely be greater longitudinally. Future 

density states may therefore be influenced more heavily by quadrats perpendicular to the longest axis.  To 

account for this possibility, our third model incorporates covariates from the means of perpendicular (w=6) 

and parallel (w=G) neighbouring density states.  

 

Model IV. 

Our fourth model is a combination of models II & III, allowing for varying contributions from surrounding 

quadrats that are perpendicular (w=6) or parallel (w=G) to the longest axis, as well as those that are diagonal 
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to the focal quadrat (w=H). This seperates effects of longitudinal seed dispersal from the potentially limited 

effect from diagonally adjacent quadrats.  

 

Prior specification: 

We employ a Bayesian framework using the probabilistic programming language Stan (Stan core 

development team 2017) for ease and flexibility of parameterization. The population wide effects of source 

state and spatial covariates, >?V6	 … 		>B, were drawn from independent normal distributions, of mean 0 and 

standard deviation 10: 

 

     >?	~	!(0,10) 

 

The field level effect on probability of observing a particular state, _̀  was drawn from a vague normal prior, 

with mean 0 and standard deviation	σ. Where σ is the hyper-parameter for the standard deviation for field 

effect _̀ , itself drawn from a half-Cauchy distribution with 5 degrees of freedom.  

     			_̀ 	~	!(0, σ) 

     	σ	~	jklEℎn	(0,5) 

 

Cut-point parameters were given a wide uniform prior: 

E	~	loQ*(0,10) 

 

 

 

 

Model fitting: 

We compare the predictive performance of these models using approximate leave-one-out cross validation 

and WAIC using the ‘loo’ R package (Vehtari, Gelman  & Gabry 2016). We use a series of posterior 

predictive checks to visualize and compare field-level outcomes across models derived from one-step-ahead 

projections. Across models, we compare field-level differences between observed and predicted mean 

density states, and differences in predicted and observed spatial autocorrelation.  
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Simulation experiments: 

To assess the impact of spatial structure on density structured dynamics we compare spatially naïve models 

to our ‘best’ spatial model for three rotations in our data. We simulate spatially-explicit density structured 

dynamics for each rotation in a hypothetical field with 20 x 20 quadrats. As the transition probabilities for 

each quadrat are conditional on their unique neighbourhood densities, the model becomes: 

 

																																																											.¨≠Æ(t + 1) = TØêë. .¨(t)												 (8) 

 

Where .¨(t) is the initial density state in quadrat i of the simulated field. TØêë is the transition matrix for 

an observation in quadrat i, conditional on its neighbourhood density, and parameterized from the linear 

predictor estimated for field f in rotation r (equation 7). .¨≠Æ(t + 1), is therefore the resultant density state 

in the next year. Each field in each rotation is therefore represented by a set of 202, transition matrices.  

Using this model we made two-step projections for three rotations: continuous, wheat to OSR, and wheat 

to sugar beet. Rotations were simulated by changing the set of matrices that model quadrat level 

transitions at each time step. For example when t = 1 , the set of matrices could model transitions for a 

specific field rotating from wheat to OSR, and when t = 2,  OSR to wheat. Within each rotation we made 

projections for every permutation of fields, i.e. all field-level matrix sets parameterized for the first step of 

a rotation (e.g. a field rotating from wheat to OSR), would be paired with every possible combination of 

field-level matrix sets in the second step of the rotation (OSR to wheat). All projections were started from 

the same initial density distribution and spatial layout, which represented the average field-level 

conditions across all three rotations. For each projection we calculate the mean density state of each field, 

then compare the distribution of these field-scale measures across rotations, and between spatial and non-

spatial models.  

To assess the contributions of rotation and local environmental effects to the overall system variance we 

use a transient life-table response experiment (LTRE – Caswell 1989). This uses the change in black-grass 

density in the two-step projections above as the response variable in a linear mixed effects model 

(Freckleton et al. 2017). We compare the effect sizes of field identity (i.e. the matrix set combination for a 

projection) and each rotation within and between spatial and non-spatial models. 
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Results: 
 
Model fitting: 

WAIC scores from approximate leave-one-out cross validation are summarised in figure 3. The spatially 

naïve model performs considerably worse (lower values indicate better performance) than models that 

incorporate a covariates for the surrounding density of the focal quadrat. There is not, however, any 

difference in predictive performance between any of the spatially explicit models.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Widely applicable information criterion (WAIC), calculated via leave-one-out cross validation 

from the Loo R package. Vertical bars are one standard error and text next to each point are the exact 

WAIC scores to the nearest integer.  
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There is little difference between models in terms of predicted and observed field-scale mean density state 

(Figure 4). Each point on this figure represents the difference between the observed and predicted mean 

density state for a particular field, or field-scale prediction error. Positive values represent cases where the 

model overestimated the mean density state of a given field and negative values represent underestimation. 

All models perform similarly well, with the majority of field scale errors being confined between +/-10% 

of the observed value. The first two spatially explicit models perform slightly worse than the naïve model 

in terms of root mean square error (RMSE), with more of a tendency to overestimate mean density state. 

At this level there is little to differentiate the accuracy of spatially explicit models. Similar results are seen 

in terms of observed vs predicted density-state distributions (Figure S1), and Moran’s I measure of spatial 

autocorrelation (Figure S2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Field-scale differences in observed vs predicted mean density states for each model. Black 

points represent the median difference in mean density state across all fields, and vertical bars are 90% 

quantile intervals. Individual coloured points represent the difference between the predicted and 

observed mean density state for an individual field. Positive values represent model overestimation of 

current density state, negative values represent underestimation 
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Figure 5 displays field scale maps of density state distributions for three example fields, picked to display 

the range of predictive performances by each model. The first row displays the observed density state 

outcome, and the subsequent rows show predictions for each spatial model. It is clear that in some cases 

the spatially explicit models perform considerably better in predicting the patchy distribution of black-grass 

distributions (Field 1), than the naïve model – which predicts diffuse patterns. However, there are also 

numerous situations where there are no discernible differences between the predictions of the spatial and 

non-spatial models. Again, there is little difference between the spatial models.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Field 1 

Observed 

Naïve  

Model I 

Model II 

Model III 

Model IV 

Figure 6. Maps of black-grass densities in three example fields. Density states are indicated by colour; 

grey = absent, yellow = low, orange = medium, red = high, dark red = very high. The first row shows 

the observed density distribution in each field, and the second shows the density-state predictions from 

the spatially naïve model. Subsequent rows show predicted density states from models I-IV.  

Field 2 Field 3 
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Predictive performance of models decreases with spatial autocorrelation (Figure 7). Root mean square error 

(RMSE) of observed and predicted field-scale mean density states increases with higher spatial 

autocorrelation. All models again perform similarly, with the increase in error with spatial autocorrelation 

slightly lower in models III & IV. Overall, however spatial models better recover the spatial structure of 

the observed data, with higher correlations between observed and predicted spatial autocorrelation in 

spatially explicit models (Figure 8).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Observed Moran’s I 

Fig 7. Model specific relationships between root mean square error for field-level mean 

density state and the observed Moran’s I measure of spatial autocorrelation. Model 

predictive performance is lower for fields with higher spatial autocorrelation. 
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Figure 8. Observed vs predicted field-scale values of Morans I for each model. 

Numbers on each plot are spearman’s rank correlation coefficient. Spatially explicit 

models better capture the spatial structure of a field, with a larger proportion of points 

being closer to the dashed 1:1 line.  
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Simulation experiments: 

For ease of parameterisation, all simulations were run using Model I. Equilibrium densities under 

continuous wheat are much higher when spatial information was incorporated into the model (Figure 9). 

Moreover, the effect of rotation produces slight reductions in weed density in naïve models, but this effect 

becomes much more pronounced in spatially explicit models. The distribution of mean density states is 

wider, and the mean of equilibrium states is higher in spatial models than their naïve counter parts, but the 

densities in wheat are comparatively much higher than in systems rotation to OSR or beet. Stochastic time-

series display a similar trend (Figure S3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Distributions of mean density states for naïve and spatially explicit models. Distributions are 

from mean density states for each permutation of field-level matrices projected two time steps, from 

wheat, to a break crop, and back to wheat. Black points represent the median value for each 

distribution.  
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Examining the contributions to overall system variance of rotations and local environmental effects (i.e. 

field specific effects) reveals that crop rotation explains more variation in the change in density in spatial 

models (Figure 10). In spatial models, the variance contributions of field identity and rotation are 0.27 and 

0.43 respectively with 0.30 residual variance. Naïve models have field identity and rotation variance 

contributions of 0.81 and 0.07 and a residual variance of 0.12. In naïve models there is a steep gradient 

towards the end of the field ID curve, meaning that in the absence of positive feedbacks caused by spatial 

structuring, a large proportion of variance in black-grass density is due a few fields where environmental 

conditions led to high densities. In spatially explicit models, the curve is more linear but steeper overall, as 

positive feedbacks can occur and overcome conditions which limit the spread of black-grass in a field. 

Rotation in spatial models, however, inhibits feedbacks from self-structuring, and contributes to system 

variance by reducing densities compared to continuous wheat. The Rotational effect sizes are much lower 

in naïve models, hence the greater impact of field specific effects. 
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Figure 10. Contribution to variance in the difference between initial and final densities from Field ID (i.e. the 

combination of matrices made for that projection) and rotational control, for spatially naïve (top row) and 

explicit (bottom row) models. Each point represents the contribution to the change in density of each different 

variable, e.g. a point in the rotation panel represents the contribution to the change in density from a 

particular rotation.  

 

Rotations are labelled; Continuous wheat = WW : Wheat -> OSR = WO; Wheat -> Beet = WB.  
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Discussion: 
 
Including spatial information into density-structured models is important for assessing the dynamics of 

black-grass infestations over large scales. Within-population structure is intrinsically linked to almost all 

drivers of organism abundance such as dispersal, competition, predation, and reproduction and is a 

fundamental driver of larger-scale population dynamics (Blasius, et al 1999; Nathan and Muller-landau 

2000). As we show using density-structured simulations, it is necessary to include spatial structure in these 

models as it has important consequences for weed dynamics. Cropping continuous wheat in spatially 

explicit models leads to severe infestations, whilst rotation reduces density considerably. Conversely, non-

spatial simulations show little difference between densities in rotated systems or those in continuous wheat. 

The two sets of models, spatial and non-spatial, have drastically different outcomes in terms of management 

decisions, with rotation being an extremely effective control in spatially explicit systems, but less so in 

those that do not consider spatial self-structuring. 

 

Under our naïve model, increases in density will only affect transition probabilities of a focal quadrat 

without any impact on those in close proximity. Allowing neighbourhood density to contribute to the 

density of a focal quadrat allows seed dispersal to neighbouring patches to affect weed density in subsequent 

seasons. Without the spatial interaction between patches of weeds, there is no positive feedback from spatial 

structure and naïve models predict much lower levels of black-grass abundance. Rotation may have a 

marginal effect in these models, but when spatial information is included the benefits become much more 

apparent. The likely cause of reduction is through a break down in self-structuring, which reduces positive 

feedbacks resulting high density patches of weeds. The modes of action of rotation are numerous, but the 

primary benefit is desynchronization of the germination profiles of black-grass and the crop, allowing a 

window for chemical or cultural control (Liebman & Dyck 1993; Moss & Clarke 1994; Chauvel et al. 2001; 

Melander et al. 2005; Colbach et al. 2006; Freckleton et al. 2017). Introducing more opportunity for control 

will reduce densities at regular intervals and reduce the positive feedback from higher seed density and 

dispersal. 

 

 

Above we have highlighted the consequences of spatial interaction between patches of weeds subject to a 

range of environmental drivers and managements. Complexity and variability are apparent in our study, 

with fields in rotations of continuous wheat displaying a wide range of densities. Climatic, or other 

management effects are likely to play an important part in the variability we observe and, given that the 

required data are available, will be easy to incorporate to an expanded analysis. However, there are 

limitations to the spatial models we present above which also need consideration. Although incorporating 
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spatial information improves fit, benefits are modest, and patterns do not capture the true spatial pattern of 

weed distribution. Moreover, model fit is poorer when there is higher spatial autocorrelation within a field, 

suggesting that these models do not adequately capture spatial structure. There are numerous factors that 

may be limiting these models to accurately predict spatial patterns across varied situations. Firstly, the 

neighbourhood effect kernels we use here are relatively simplistic and assume that only directly adjacent 

patches will influence the density of the focal quadrat. The reality is that seed can spread over large 

distances and through various mechanisms within a field (Colbach & Sache 2001). It may be model fits 

could be further improved by alternative kernels that model these processes in a more sophisticated manner. 

For example, Doxford & Freckelton (2012), use several different models to investigate the spread of plants 

across the UK. The Phalanx spread model they use in part of their analyses uses neighbourhood kernels 

from multiple time steps in the estimation of colonisation probability.  

 

The way in which we model the dynamics of spatial processes in this application may also contribute to the 

limitations of these models. Density structured approaches are inherently probabilistic; dynamics are 

modelled as a function of the transition matrices which dictate the change in density states between years. 

Here we modelled spatial dynamics as a function of the mean transition probability for an observation in a 

field conditional on a set of neighbour densities. However, we do not consider how spatial interactions may 

affect the variance in responses between patches. The use of ‘mean-field’ approaches to summarise 

dynamics by taking the mean values of parameters through time or across space, is common in ecology 

(e.g. O’Dwyer & Chisholm 2014).  Moreover, they have seen frequent use in spatial modelling (Morozov 

& Poggiale 2012) as they can simplify computationally intense and complicated problems. There are 

parallels to be drawn between mean-field models, and density structured models, with both reducing 

complexity of a problem by simplifying dynamic processes. However the former have drawn criticism as 

they ignore important information when modelling spatial dynamics; incorporating moment-closures that 

better encapsulate spatial patterns can improve the accuracy of spatially explicit models (Murrell et al. 

2004).The discussion of how spatial processes are modelled has been mostly either in continuous space or 

with continuous measures of population abundance, but modelling dynamics as discrete systems is an area 

of research that would potentially further improve density-structured approaches (Durrett & Levin 1994).  

 

Another notable limitation of these models is that they assume the existence of a seedbank across the 

simulated field. Seed banks form an integral part of plant population dynamics and are often included in 

population models (MacDonald & Watkinson 1981; Queenborough et al. 2011). They allow populations to 

persist through time and can decouple dynamics from the above-ground life cycle of the plant. This means 

that they can remain unaffected by managements applied the visible part of the population, for example 

post-emergence pesticides or cultural controls (Buhler 1999). Despite the relative ease of modelling, seed 

banks are much harder to observe and spatial distributions hard to estimate before emergence (Gonzalez & 
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Ghermandi 2012). As density structured frameworks are intrinsically empirical, this poses problems for 

implementation of seed banks into modelling weed dynamics. 

 

If long time series of repeated surveys are available, then it may be possible to simply infer the presence of 

a seedbank by looking at absence/presence of blackgrass in a particular quadrat. However, the unobserved 

nature of the seedbank in these systems means that inclusion of an additional ‘hidden’ state may be the best 

option. Hidden state Markov models (Baum & Eagon 1966; Louvrier et al. 2018), are a set of models within 

ecology that can account for ‘missing-ness’ in empirical data describing dynamic processes.  They have 

seen frequent use in modelling animal movement (e.g. Langrock et al. 2012), but are amenable to 

integration into the Markov process in density structured frameworks. Accounting for seedbanks will begin 

to improve predictions for limited scale infestations of fields, and potentially expand the uses of density 

structured models through allowing study of invasion dynamics and spatial patterning under a wide variety 

of scenarios.  

 

To conclude, incorporating spatial information into density structured frameworks is both simple and 

beneficial to model performance, but it has important consequences for predictions of population dynamics. 

We recommend that future applications of density structured frameworks should take spatial information 

into account when assessing large-scale population dynamics. However, there are clear limitations to this 

approach, with predictions often failing to capture the patchiness of weed distributions. There is a need to 

better account for within-field demography as well as population structure to be able to fully capture and 

accurately predict the range of dynamics displayed by weeds in arable systems.  
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Appendix: 
 
Methods: 
Model fitting: 

Two additional posterior predictive checks were made, the first compares density state distributions 

within each field for all models. The second compares differences in observed and predicted Morans I.  

 
Simulations: 

Stochastic projections of black-grass density are made through the Markov model in (8), where the set of 

quadrat level matrices for a given field, TØêë, are randomly selected from all available matrices in a given 

rotation. The model is projected over 10,000 time steps to ensure convergence, and we then compare the 

time series of spatially explicit and naïve models.  

 
Results & Discussion: 
In terms of field-level errors across the entire density distributions, all models again are comparable in 

figure S1.  Most displaying almost identical error patterns, with the highest level of error in low and absent 

density states and higher density states have lower error distributions. All models show a tendency to under-

predict the presence of absent states but over predict occupied states, again there is little difference between 

spatially explicit models.  
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There are slight improvements in the ability of spatial models to capture spatial autocorrelation (Figure S2) 

with median values closer to 0 and lower RMSE, but again there is little to distinguish between spatially 

explicit models. All models systematically under-estimate the level of autocorrelation.  

 

 

 

 

 

 

Figure S1. Field-scale differences in density state distributions for each model. Density states 1-5 

represent states ‘absent’ to ‘very high’ respectively. Black points and vertical bars represent the median 

difference between observed and predicted density state proportions and 90% quantile intervals. 

Individual coloured points represent the difference in predicted and observed density state proportion 

for a density state within a single field.  
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Figure S2. Field-scale differences in the observed vs predicted Morans I statistic for spatial correlation 

for each model. Black points represent the median difference between predicted and observed Morans I 

statistic across all fields, and vertical bars are 80% quantile intervals. Individual coloured points 

represent the difference between the predicted and observed Morans I for an individual field. Positive 

values represent model overestimation of current density state, negative values represent 

underestimation. 
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Figure S3 provides a closer look at the stochastic dynamics of spatial and naïve models. Inspection of naïve 

models reveals that all rotations will tend towards lower density states at equilibrium. Continuous wheat in 

a spatially explicit system has a much higher equilibrium density, even when perturbations push it towards 

lower densities it will tend back to a mean density state of around 4. Spatially explicit systems with a break 

crop included in the rotation will show very similar dynamics to spatially naïve models.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3. Example time series for rotations for each naïve and spatially explicit model. The last 150 

time steps are shown for clarity.  
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arthropod diversity in agro-ecosystems. 
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Abstract: 
 

Managing agricultural invertebrate biodiversity is essential to maintain agricultural productivity and 

prevent environmental degradation. Arthropods are an integral part of productive agro-ecosystems, but 

functionally important communities are in decline worldwide. Implementing large scale monitoring 

schemes is therefore a priority but this is typically hindered by the expensive nature of standard survey 

techniques. Through mass sequencing of communities, metabarcoding (MBC) provides a potential means 

of cost-effective monitoring over large scales. One of the major selling points of metabarcoding is 

simultaneous identification of organisms through extraction of bulked samples. However, there have been 

few studies that assess the limit to which bulk MBC can provide accurate and reliable community data. We 

undertook a three-year national-scale invertebrate survey to investigate the utility of high-throughput 

metabarcoding as a tool for assessing agricultural arthropod communities, and the impacts of land use on 

their composition and diversity. We show that bulked DNA extraction results in lower detection rates across 

our samples and can result in poor and even stochastic detection of taxa in our samples. Taxonomic bias in 

our pipeline is present, with many important organisms from Apidae being excluded from our samples 

entirely. We conduct diversity analyses (that demonstrate no apparent associations between our detected 

taxa and landscape features) however due to the issues we highlight with this pipeline we cannot draw 

robust ecological conclusions from these data. 

 

 
Introduction: 
 
Biodiversity allows ecosystems to provide invaluable services to mankind (Cardinale et al., 2012). 

Agricultural production depends on arthropod communities, which are an essential component of 

biodiversity in agro-ecosystems. These organisms provide essential services, such as pollination, nutrient 

cycling, and pest-control (Losey & Vaughn, 2006; Aizen et al., 2009; Isaacs et al., 2009), but the 

intensification of agriculture destroys the communities that it so heavily depends on (Tilman et al., 2001; 

Woodcock et al., 2016, 2017; Tsvetkov et al., 2017). As diversity supports agricultural productivity, 

designing agricultural economies that support biodiversity is essential to balance conservation and food 

production (Altieri, 1999; Zhang et al., 2007; Tilman et al., 2011). Understanding what drives arthropod 

diversity is therefore important if we are to build productive and sustainable agricultural economies. 

 

When managing the diversity and function of agro-ecosystems, landscape context matters (Tscharntke et 

al., 2005; Fiedler, Landis and Wratten, 2008; Phalan et al., 2011). In principle we understand the 

relationship between landscape-scale dynamics and their implications for management (Clough, Kruess 

and Tscharntke, 2007; Haaland, Naisbit and Bersier, 2011; De La Fuente et al., 2014; Uchida and Ushimaru, 
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2014; Uchida, Hiraiwa and Ushimaru, 2016). However, despite appearances these systems are dynamic and 

complex (Steffan-Dewenter et al., 2002; Tscharntke et al., 2005; Chase et al., 2018). To understand how to 

conserve biodiversity we have to capture the intricacies of environmental dynamics, and for this, long term, 

large scale, and thorough monitoring frameworks are necessary.  

 

 Effective management is wholly reliant on our ability to accurately and rapidly measure changes in the 

environment. In general however, ecological monitoring efforts are lacking (Kleijn & Sutherland, 2003), 

and without accurate information to inform managment they will often fail to protect biodiversity (Kleijn 

et al, 2001). Many of the inadequacies in current monitoring programs stem from problems with standard 

methodologies that limit the scale of ecological surveys. Standard identification of organisms is reliant on 

the availability of taxonomic expertise (often requiring multiple taxonomists) and the data often have low 

taxonomic resolution due to difficulty in distinguishing related species (Giangrande, 2003). These 

techniques are expensive and time consuming by nature, making it difficult to capture the information 

necessary for well-informed management.  

 

Recent advances in next generation sequencing and molecular techniques have enabled rapid collection of 

diversity information through analysing short gene sequences, collected either from environmental samples, 

or en-masse from organisms themselves (Taberlet and Coissac, 2012; Yu et al., 2012; Ji et al., 2013; 

Bohmann et al., 2014). Known as metabarcoding (MBC), this technology can provide rapid and high-

resolution identification of organisms, without the need for taxonomic expertise. One of the major selling 

points of MBC is its ability to track entire arthropod assemblages simultaneously, which is achieved through 

bulk DNA extraction and the use of ‘universal’ primers that target a diverse array of organisms (Leray et 

al., 2013; Brandon-Mong et al., 2015). Universal MBC pipelines are a promising development for 

biological monitoring, and have now been applied to a wide range of problems (Thomsen et al., 2012; Ji et 

al., 2013; Yang et al., 2014; Fritz et al., 2018).  

 

Despite the obvious promise of MBC, there is no unifying framework for the mass survey of arthropods, 

and there are numerous points during the survey process that might influence the detection of different 

species. For example, most studies pool samples during DNA extraction, but there is evidence to suggest 

that pooling reduces detection success (Mata et al., 2018). Studies also generally neglect to report how 

much sample biomass was DNA extracted from, which could influence rates of detection and species 

richness estimates. To ensure good community coverage practitioners suggest having multiple replicates 

during amplification (Douglas Yu, Personal communication), but the vast majority of applications use only 

one (Andersen et al., 2012; Thomsen et al., 2012; Ji et al., 2013; Quéméré et al., 2013; Schmidt et al., 2013; 

Mollot et al., 2014; Oliverio et al., 2018). Moreover, numerous studies demonstrate detection bias towards 

certain taxa during bulk sequencing (Yu et al., 2012; Zhou et al., 2013; Brandon-Mong et al., 2015; Ficetola 
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et al., 2015; Mata et al., 2018), but the extent of biases and their limitations are rarely considered in 

applications using standard pipelines. Furthermore, sequencing depth per sample (i.e. the number of reads 

per sample) will affect detection probability, but some validation studies for universal primers use 

sequencing depths far in excess of what is economical for large scale studies (Brandon-Mong et al., 2015), 

and performances have yet to be tested with realistic constraints. 

 

It is not entirely clear what the limits are for high-throughput MBC in terms of community coverage, and 

there has been little discussion of detection under the restrictions of an economical large-scale survey. 

Considering the potential for MBC to reveal patterns of arthropod diversity in agricultural systems, we had 

two objectives. Firstly, we wanted to test the utility of high-throughput MBC for revealing agricultural 

arthropod diversity over large scales. We undertook a three-year national-scale survey, collecting 729 bulk 

invertebrate samples from 27 UK arable farms, and sequenced them under a standard cost-effective 

protocol. We compared detection rates of samples extracted using two levels of pooling to examine whether 

mass extractions accurately captured community composition and species richness. We then assessed 

whether total community complexity or biomass affected detection probability and to assess potential 

detection biases we compared molecular and morphological identification in a subset of insects in our 

samples. Secondly, we aimed to use this data to investigate the drivers of the structure and biodiversity of 

detected communities in intensively farmed agricultural habitats. We investigated the relationships between 

community composition and species richness with the abundance of broadleaf woodland and all non-arable 

habitat, as well as the diversity of crop cover. We demonstrate that using standard laboratory techniques, a 

set of regularly used universal primers shows poor detection rates and fails to detect ecologically important 

taxa from Apidae in our samples. In our molecular dataset we find no visible trends in diversity or 

community composition that could be explained by the three landscape features we consider. 
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Methods: 
 
Survey: 

Our study was conducted over a set of 27 UK arable farms, spanning from Oxfordshire to North-Yorkshire. 

We conducted pan-trapping surveys (Westphal et al., 2008) over the course of a three year period (2015–

17), with surveys taking place between June and August in each year. A single trap consisted of triplicate 

sets of blue, yellow and white bowls coated in UV reflective paint (Sparvar Leuchtfarbe, Spray-Color 

GmbH, Merzenich, Germany), attached to wooden stakes and filled with 400ml of water and a drop of 

odour-less detergent. Replicate traps were placed at vegetation height on north-facing hedgerows in two to 

three fields per farm (depending on farm size) with a separation of between 200–300m.  During each survey, 

traps were emptied once every 24 hours over a three day and contents were stored in 50ml centrifuge tubes 

with 100% ethanol until DNA extraction. Over the three repeated surveys, we collected 729 trap-samples 

in total. 

 

Sample preparation, PCR protocol and Illumina sequencing of COI amplicons: 

Each trap-sample worth of specimens was prepared for DNA extraction by drying at 56oC overnight. In 

each sample we sorted material for extraction by removing two fore-legs of specimens equal to or larger in 

size than a honey bee (workers of Apis mellifera, ~10–15mm), or using the whole specimen if smaller. 

These sorted samples were then pooled over each season so that each pool consisted of three days’ worth 

of invertebrates from the same trap within a given survey year. Pooled samples were frozen in liquid 

nitrogen and homogenised in a pestle and mortar, reducing the number of samples for extraction to 422 

(including extraction blanks and negative controls). We then took 50mg or 10% of this homogenate by 

weight (whichever was larger), or the entire sample if under 50mg. We added 50mg of each extract to 1ml 

of digsol solution (tris-HCL 30 mM ph 8, EDTA 10 mM, and 0,4% SDS) and 20μl of proteinase K (20mg/ml 

= 9:1) in a 2ml Eppendorf. Multiple digestions were prepared for the 6 samples that had over 50mg of 

extract, with the sample being divided equally between Eppendorf tubes. The homogenate was then 

incubated at 56oC overnight in a rotary oven.  DNA was extracted from the supernatant using ammonium 

acetate and quantified using the FluoStar Optima micro-plate flourometer. Samples were then diluted to 

between 10–15 ng μl-1 for amplification.  

 

422 samples were amplified using PCR with the degenerate primers mlCOIintF & dgHCO2198 (Leray et 

al., 2013; Brandon-Mong et al., 2015). This primer pair was chosen as it showed the highest amplification 

success out of several pairs tested on DNA mixtures of 80 invertebrate taxa from 11 orders (Brandon-Mong 

et al., 2015).  The Illumina sequencing library was prepared using a two-step PCR process, following 

Campbell et al. ( 2015). Firstly the DNA was amplified using primers with the target COI sequences and 

adapters added to the 5’ end (adapters are italicised; 5’ to 3’): 
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mlCOIintF: TCTACACGTTCAGAGTTCTACAGTCCGACGATCGG WACWGGWTGAACWGTWTAYCCYCC 

 

dgHCO2198: GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT TAAACTTCAGGGTGACCAAARAAYCA 

 

Each sample was amplified in a 20 μl reaction volume containing 2μl of DNA template, 10μl of Qiagen 

PCR Master Mix (Qiagen, Manchester UK ), 4μl of each primer (2ng per μl) and  4μl of ddH20. In negative 

controls we replaced the DNA template with ddH20. We used the following cycling profile of 95oC for 2 

minutes, 16 cycles of 95oC for 15 seconds; 52oC for 30 seconds; 72 oC for 2 mins and a final extension of 

72oC for 10 min.  

 

The PCR products were separated on a 1% agarose gel stained with ethidium bromide, and amplicon sizes 

were compared to a 100bp ladder (ThermoFisher Scientific, Paisley, UK) to assess amplification success 

and potential contamination in negative controls. PCR products were re-quantified on the fluorimeter and 

diluted as necessary to ensure equal quantities were added to the second PCR. Unique multiplex-identifier 

tags were attached to each sample using a second 10μl PCR containing, 5μl of Qiagen PCR master mix, 

1μl of the forward and reverse Ilumina Multiplex Identifier (MID) indexed primers with sequence 

complementary to the adapters used in the first PCR (1um), 1μl ddH20 and 4μl of template. The reaction 

conditions were initial denaturation at 95°C for 15 minutes; 10 cycles of 98°C for 10 seconds, 65°C for 30 

seconds, 72°C for 30 seconds; final extension of 72°C for 5 minutes. Product concentrations were again 

quantified with a fluorimeter.  

 

Samples were randomised and selected to be pooled in either of two libraries for sequencing. Equal 

concentrations of each sample were pooled into groups of 8, with pools having approximate concentration 

of 15ng μl-1.  PCR products were purified using a bead clean-up using AMPure XP PCR purification kit 

protocol (Beckman Coulter Genomics; Austria). We selected two purified pools at random to analyse on a 

Tape Station (Agilent Technolies, USA), to inspect the distribution of product sizes and check for presence 

of primer dimer. A Blue Pippin (Sage Science Inc,. Beverly MA), was used for final size selection of our 

target sequences and to remove primer dimer. We made serial dilutions of each pool and quantified them 

using qPCR with a KAPA Library Quantification kit (Kapa Biosystems). The products were compared 

against kit standards and normalised to 4nM for sequencing. Each library was run using a 500 cycle kit (2x 

250bp paired-end reads) on the Miseq Desktop Sequencer (Illumina, San Diego CA), samples were 

randomly divided between these two runs to provide adequate depth and to account for any ‘run effect’.  

 
Validation: 

To assess whether our extraction method gave full taxonomic coverage we retained un-pooled homogenate 

from 45 trap-samples (i.e. 15 pooled samples) and extracted and sequenced each of these individually. After 

these un-pooled extractions, each sample was pooled and extracted following the protocol for the rest of 
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the samples above. In each un-pooled sample we extracted an equivalent amount of material and sequenced 

these samples on the same run as the corresponding pooled samples. We also sent a set of Apidae specimens 

to an expert taxonomist to assess whether our pipeline was providing accurate representation of 

communities. The sequence of steps for these validation sets is detailed in figure 1.  

 

Bioinformatic analysis: 

We used a bioinformatics pipeline established at the NERC Biomolecular Analysis Facility at the University 

of  Sheffield, validated for biodiversity metabarcoding and diet analysis. Analyses were performed on 

‘Iceberg’ and ‘Sharc’, the high performance computing clusters at the University of Sheffield, UK. 

Trimmomatic v0.32 (Bolger, Lohse and Usadel, 2014) was used for quality filtering of paired end reads 

(Min. quality score of 20 in a 4bp sliding window) and to remove Illlumina adapter sequences. Reads under 

100bp in length were discarded. FLASH (Magoč and Salzberg, 2011) and Mothur (Schloss et al., 2009) 

were used to align sequences, match reads to our primer sequences, and remove the primer sequence from 

the aligned COI read. Low frequency sequences (i.e. fewer than 10 copies) and chimeric sequences were 

removed using Usearch v9.2.64 (Edgar, 2010), and the remaining sequences clustered into mOTUs at 97% 

similarity. Unique COI mOTUs were matched to reference sequences in the NCBI GenBank nucleotide 

database using BLAST (Altschul et al., 1997), and assigned a taxonomic unit with at least 97% certainty. 

MEGAN (Huson et al., 2007) was used against the NCBI taxonomic framework for mapping and 

visualisation of the BLAST results, using the top 2% of bitscores in the LCA assignment. A custom R script 

was used to filter out non-arthropod reads and low frequency (< 30 reads) mOTUs.  

 

Statistical & Ecological  analyses: 

All statistical analyses were run in R version 3.4.4 (R core development, 2018). We analyse community 

composition and biodiversity metrics against three environmental variables, i) the proportion of broadleaf 

woodland within a 1km radius of each farm, ii) the proportion of all non-arable land cover and iii) an index 

of rotational complexity calculated from the diversity of land cover of different crops. We use the Shannon-

Wiener diversity function to calculate a measure of rotational complexity that takes into account diversity 

as well as evenness: 

 

∞± = 	−A5=

=C™

=C6

ln 5= 

 

Where E is the number of different crops in a 1km radius from the survey site, and  5= is the proportion of 

total cover for crop i. Land cover and crop cover statistics were derived from the CEH Land Cover and 

Crop maps (LCM 2015). As these values were derived from a 1km radius from the centre of each farm we 

aggregated samples for each farm over each survey year, so each individual sample consisted of the detected 

(1) 
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mOTUs in three sets of sequence data. Each sample in our statistical analyses therefore represented the 

community of a survey farm within a particular survey season.  

 

Ordination: 

We use non-metric multidimensional scaling (NMDS) to visualise patterns in community composition with 

regard to gradients in our three land use variables, and multidimensional fuzzy set ordinations to evaluate 

sensitivity in community structure to these variables. Fuzzy set ordination (Roberts, 1986, 2008, 2009) is 

an ordination method that directly incorporates information of environmental variables into calculation of 

ordination coordinates. The algorithm (implemented in the fso package in R) uses community composition 

to create similarity metrics between all communities. Simultaneously fuzzy set membership (on a [0,1] 

interval) is assigned on the basis of the value of a communities environmental variable in relation to the 

entire sample. This membership is then used to weight the similarity metrics of community samples. A 

positive correlation between the observed  value of an environmental variable and the weighted fuzzy set 

membership µ, indicates sensitivity in community composition to that variable. We also used multivariate 

generalised linear models in the mvabund package in R, (Wang et al., 2012; Warton, Wright and Wang, 

2012) fitted to absence/presence measures to further examine effects of our land cover variables on 

community composition. For our ordination analyses we removed singleton species (i.e. species only 

observed once in the entire data)  as per (Ji et al., 2013), but these are retained for the alpha diversity 

analyses below.  

 

Regression models: 

As well as analysing the drivers of community structure, we examine the drivers of insect diversity. We 

look at three indices of diversity; overall mOTU richness as a proxy for species richness, incidence based 

measures of Chao’s index (Chao, 1984) and the Jack-knife index (Zahl, 1977), with the latter two both 

accounting for detection bias against rare species and sampling frequency when calculating species 

richness. We use generalised linear mixed effects models using lme4 (Bates et al., 2014) to analyse trends 

in diversity with land cover variables. We incorporate group-level intercept terms for year in these models 

to account for differing environmental effects over each season. 
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Results:  
 
General description: 

Our sequencing runs yielded 2,176,215 post quality control reads from our COI barcode that 

could be assigned to arthropods. In this MBC dataset we retrieved a total of 368 insect mOTUs 

clustered at 97% identity, 366 of these were identified down to order, 274 to family, 209 to 

genus and 130 to species level. The breakdown of taxon-level assignments by region is 

displayed in table 1. There was representation of five insect orders within our dataset, including 

Diptera, Hymenoptera, Coleoptera, Lepidoptera & Hemiptera. The vast majority of our mOTUs 

were Dipteran, making up 80% of the total mOTUs in our sample.   

 

 

 

Region Class Order Family Genus  Species 
 

Total 368 366 274 209 130 

Bedfordshire 140 139 105 85 56 

Cambridgeshire 96 95 74 59 42 

Lincolnshire & Nottinghamshire 202 201 158 126 76 

Norfolk 103 102 80 68 49 

Oxfordshire 124 122 97 77 51 

Yorkshire  150 148 117 98 64 

      

      

 

Figure 2. visualises the alpha diversity in our dataset, as well as the main groups represented 

down to genus level. This illustrates how the majority of our mOTUs were from Diptera, 

primarily from families Syrphidae and Anthomyiidae. This figure also visualises the frequency 

at which each taxon was found across our samples, with mOTUs from many Dipteran families 

being ubiquitous, whilst other orders were less well represented.  Hymenopteran families 

Andrenidae &  Halictidae, were also common, as were Cantharids in Coleoptera.   

Table 1. The number of mOTU designations at each taxonomic level in total and by each survey 
region. 
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Figure 2. Visualisation of the com
position of the M

BC data set by order. Trees represent all m
O

TU
s in each of the five Insect orders represented in our sam

ples, 
Diptera (a), Hym

enoptera (b), Coleoptera (c), Lepidoptera (d), and Hem
iptera (e). Taxa are displayed dow

n to genus level for clarity. Intensity of colour 
represents the frequency of occurrence of a particular taxon across our survey farm

s, the size of each node represents the num
ber of tim

es m
O

TU
s w

ere 
detected in that taxon.   
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Comparison of pooled and un-pooled mOTU counts (Figure 3A) reveals pooling during 

extraction results in the detection of fewer taxa (Generalised linear mixed effects model, df = 

1, F value = 47.6, P<0.001).  Although some samples detected identical or near identical 

assemblages, coverage of pooled samples was poor, only picking up 37% of the mOTUs 

detected in the corresponding un-pooled extractions on average, spatial replicates increased this 

figure to 50% (Figure S1).. Figure 3B illustrates the number of unique mOTUs found in pooled 

and un-pooled extractions, i.e. the number that were only found in either set. Although on 

average un-pooled samples had more unique mOTUs, pooled extractions still contained a 

considerable number of mOTUs unrepresented in the equivalent un-pooled samples. This 

difference in mOTU detection was not be explained by the total pooled sample weight (i.e. the 

dry mass of the insects caught in a trap over a 3-day period),but had a strong negative 

relationship with the OTU number detected by un-pooled extractions, which is an indicator of 

overall community complexity (Figure 4). Similarly there was also no association between 

mOTU richness and sample weight (Figure S2).  In our morphological validation set, detection 

of Apidae species was very poor compared to morphological identification (Figure 5). 

Morphological identification was able to identify a total of 22 species across 20 samples, 

whereas our MBC pipeline only detected a single mOTU in 2 samples (corresponding to Apis 

mellifera).  
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Figure 4. The relationship between the difference in mOTU detection and pooled sample weight (Left) and 
sample complexity (Right). There was a significant negative relationship between the number of mOTUs 
missed by pooled samples, and the number of mOTUs in un- pooled samples (Linear model, Adjusted R-
squared = 0.7782, F=23.81, df=11, P<0.001), but no such relationship between mOTU detection and pooled 
sample weight (P=0.588).  
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Figure 5. The difference between number of Apidae OTUs detected by our MBC pipeline (red), and by a 
specialist taxonomist (blue). Numbers above each line are the difference in OTU/Species number between 
each set.  
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We intended to investigate whether community composition drove the likelihood of failed 

detections. However, as so few non-dipteran taxa were detected in even un-pooled extractions 

this makes robust statistical inference difficult on this data. It is likely that amplification bias 

was so severe that we failed to detect many of organisms present even with multiple extractions 

(Figure S3).  

 
Dissimilarity ordination (Figure 6) shows little differentiation in community composition of 

shared mOTUs by region.  Mapping the topography of environmental variables to these 

ordinations also did little to visualise potential predictors of the variance in community 

composition (Figure 7.) with generalised additive models returning non-significant  smooth 

terms (P>0.05).  There are no clear patterns to their arrangement, nor is there any explanatory 

power given by region or  environmental variables.  

Figure 6. Non-metric multidimensional scaling (NMDS) ordinations of presence absence 
measures. Points are communities pooled across farms within each season, ellipses are 95% 
confidence intervals of centroids for each survey region (Okansen et al 2012).   



 

  131 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. N
on-m

etric m
ultidim

ensional scaling (N
M

DS) ordinations of presence absence m
easures. Points are com

m
unities pooled across farm

s 
w

ithin each season, contours are calculated from
 environm

ental variables using a G
AM

 in ‘ordisurf’. Adjusted R squared values and percentage 
deviance explained difference in com

position of each com
m

unity explained by each variable  are displayed in the top left. The num
bers next to the 

contours are the predicted values of each environm
ental variable given sam

ple position in ordination space. All sm
ooth term

s w
ere non-significant 

(P>0.05) and are only displayed to dem
onstrate lack of ability to explain variation in com

m
unity com

position.  

Proportion of Broadleaf W
oodland 

Proportion of N
on-arable 

Rotational com
plexity 
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   Fuzzy set ordinations (Figure 8) provide weak evidence  that community structure is sensitive 

to the proportion of Broadleaf Woodland and our index of rotational complexity. Statistically 

significant  but  very weak positive correlations can be observed between fuzzy set membership 

and the real values of the the proportion of broadleaf woodland (rs = 0.28, df = 76  P =0.017) 

and rotational complexity (rs = 0.24, df = 74,  P = 0.049), indiciating that these variable may 

have a small impact on community strucure.  There was no such trend with  the total proportion 

of non-arable habitat (rs = -0.07 , df = 75, P=0.51). However, multivariate generalised linear 

models fitted to absence/presence measures (manyglm & many.anova -Wang et al 2012), did 

not corroborate these results , with no significant effects on community composition found for 

prorportions of broadleaf woodland (wald value = 11.53,df = 76, P=0.53), non-arable (wald 

value = 11.90, df = 75, P=0.64), or rotational complexity (wald value = 12.98, df=74, P=0.25).    

 

There were also no significant effect of any landscape features on  raw mOTU richness 

(Generalised linear mixed effects model, df = 1, F value = 1.4, 0.0332, 1.48, P>0.05), chao’s 

index (df = 1, F values = 0.33, 0.005, 0.5172, P>0.05) or the jackknife index (df = 1, F value 

= 0.94, 0.08, 0.262, P>0.05). Figure 9 illustrates the high variance observed in diversity 

between farm-scale samples, yet the absence of any impact of the surrounding landscape 

features on the diversity of assemblages.  
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Figure 8. Fuzzy set ordinations for com
m

unities against real values environm
ental variables. Fuzzy set m

em
bership,µ  represents the gradient of 

sim
ilarity betw

een plots along the environm
ental gradient, and is displayed on the y axis. The actual value of the environm

ental variable is 
displayed on the x axis. Positive correlations betw

een µ and the actual variable represent sensitivity in the com
position of a com

m
unity to 

perturbations in the environm
ental variable. P values are derived from

 perm
utation tests.  
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Figure 9. Relationship betw
een three m

etrics of diversity, (m
O

TU
 counts, Chao’s index and the Jackknife index) and the three environm

ental 
variables. G

eneralised linear m
ixed effects m

odels w
ere run to exam

ine the effect of all environm
ental variables on diversity indeces, all of w

hich 
had non-significant (P>0.05) term

s.  
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Discussion: 
Previous barcoding studies have showcased the use of MBC across a variety of taxa and 

environments (Yu et al., 2012; Ji et al., 2013; Leray et al., 2013; Brandon-Mong et al., 2015; 

Oliverio et al., 2018). In this study we find that at large scales and high-throughputs, detection 

success is highly variable and much lower than expected. Pooling samples for extraction is 

justifiable on the basis of cost effective species detection and is advised by many (Yu et al., 

2012; Ji et al., 2013; Cristescu, 2014). Here we show it likely comes at the cost of vastly 

reduced coverage due and stochasticity in mOTU detection. Moreover, previous studies have 

demonstrated that MBC performs as well as, or better than expert taxonomists (Ji et al., 2013), 

however we demonstrate the opposite, as morphological identification of Apidae specimens 

vastly outperformed molecular identification.  

 

These issues are indicative of an underlying problem with extraction and amplification, 

resulting in low probability of detecting target sequences that represent the entire community. 

A possible explanation is that, despite size selective sorting of samples and the fact that most 

samples were extracted from over 50% of available biomass (unpublished data), our sub-

sampling of a minimum of  10% by  sample weight was too conservative, and we did not extract 

DNA from all organisms in the sample. If this were the case, we may expect detection failures 

to scale positively with higher sample weight, but as we have shown, the degree of detection 

failure is not related to biomass. It is also unlikely that primer availability was a limiting factor 

as we had to remove excess primer dimer before qPCR. Detection failure does, however, 

increase with un-pooled OTU abundance, suggesting that detection failure is a function of 

community complexity. With this being the case it seems more likely that the poor performance 

of our pipeline was due to insufficient sequencing depth and primer biases towards certain taxa.  

 

Primer sequences can exhibit a binding preference for certain targets, resulting in biased 

amplification towards taxa that have a higher binding site affinity (Yu et al., 2012; Deagle et 

al., 2014; Piñol et al., 2015). The exponential rate of target amplification in PCR can mean any 

bias results in drastic overrepresentation of taxa compared to true abundances. Numerous 

studies have now reported low detection rates for Hymenoptera (Yu et al., 2012; Zhou et al., 

2013; Brandon-Mong et al., 2015), so it is perhaps unsurprising that these taxa were 

discriminated against in our pipeline. The topic of affinity bias is a concern to advocates of 

MBC (Ishii and Fukui, 2001; Sipos et al., 2007; Piñol et al., 2015; Krehenwinkel et al., 2017; 

Mata et al., 2018), and numerous suggestions have been made to reduce its impact. Despite 
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taking the majority of these, including maximising template concentration, using degenerate 

primers, lower annealing temperatures, and providing biological replication, our community 

coverage is still poor.  

 

Affinity bias is likely to be compounded by high abundances of specimens towards 

which primers exhibit affinity bias. Although the universal primer set we use in this study has 

been validated across diverse communities (Leray et al., 2013; Brandon-Mong et al., 2015), 

demonstrations of utility were across taxonomic orders and not within. Binding site similarity 

will likely correlate with taxonomic similarity of species, meaning that if a community contains 

an abundance of similar organisms with a high affinity for the primer sequence, the average 

competition for primer molecules will be higher, and less similar taxa will be discriminated 

against at a higher rate. In this case, its probable that the abundance of Diptera combined with 

a high affinity for our primer sequence meant they dominated the sample after amplification. 

So far, validation of ‘universal’ pipelines has been done with contrived communities that do 

not reflect the compositions of real-world assemblages (Brandon-Mong et al 2015). The 

problem of affinity bias with regards to large communities with multiple levels of diversity is 

an important one, and it is necessary to test these technologies over more diverse communities. 

 

Poor detection due to subsampling and bias introduced by primer preference are 

justification for deeper sequencing and technical replicates during PCR (Ficetola et al., 2015). 

Although we have considerable biological replication during our study, technical PCR 

replicates are something that our study, like many others, neglected. The discussion of suitable 

sequencing depth for bulk MBC applications in the literature is limited. We modelled our 

sequencing strategy around that of Ji et al (2013), who study a similar set of organisms, and as 

such we adopted a similar level of sequencing depth and similar universal primers. These 

primers were validated in Brandon-Mong et al (2015), where they report high detection rates 

but report over half a million post-QC reads were devoted to a single community. This vastly 

outweighs our sequencing strategy of around two million runs for 422 samples. However, as 

commercial MiSeq runs can cost upwards of £2000, adopting a deep sequencing strategy with 

multiple PCR replicates per sample to ensure adequate coverage, is far from cost-effective.  

 

 

Uneven sequencing depth and extraction biomass across samples, may justify multiple 

levels of rarefaction to accurately estimate species richness (see figure S1 – 

Appendix).Nonetheless, this is something that numerous studies reject on the grounds that 
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amplification bias means that some low frequency detections will be discarded (Ji et al., 2013; 

McMurdie and Holmes, 2014). Additionally, some advocate adding taxa specific primers to 

increase detection chance for low-frequency taxa (Parducci et al., 2013), and one study has 

shown how more thorough size selective sorting can increase taxonomic coverage (Elbrecht, 

Peinert and Leese, 2017). Both of these however, require more sequencing, more time spent on 

extraction and additional replication. Spending resources on time consuming size selective 

sampling, technical PCR replicates, and extra sequencing depth to achieve adequate coverages 

conflicts with the promise espoused by some that MBC can provide high-coverage, rapid, and 

cost-effective taxonomic survey. There needs to be a concerted effort to identify the limits to 

MBC detection rates in a variety of scenarios, questions involving the relationship between 

primer bias, community composition, complexity, detection probability and sequencing depth 

should be included in future work into the efficacy of MBC.  

 

Despite stochasticity in detection and a clear bias against Apidae, our MBC survey still 

detects a considerable number of taxa across a national scale survey. Our surveys detected a 

wide range of taxa, but most representation was from Diptera.  The emphasis in surveys of 

agricultural biodiversity has overwhelmingly been on species from Hymenoptera, due to their 

importance for pollination (Klein et al., 2007; Garibaldi et al., 2014). The majority of 

agricultural surveys generally neglect the diversity of Diptera, likely due to difficulties in 

morphological identification, and when they are included studies usually focus on just a few 

families (e.g. Jauker & Wolters, 2008). 

 

Diptera are also some of the most diverse and abundant agricultural taxa (Howlett et 

al., 2009) and have important roles in supporting ecosystem function through pollination 

(Jauker and Wolters, 2008; Rader et al., 2013), and natural pest control (Pfister et al., 2017). 

Despite the aforementioned short-comings of this survey the diversity and frequency of these 

taxa across our samples is likely to be a reasonable approximation of the communities in UK 

agro-ecosystems. The role of flies as pests is well studied, with an abundance of literature on 

controlling damage to important agricultural crops (Miller and Cowles, 1990; Vanninen, 

Hokkanen and Tyni-Juslin, 1999; Dosdall et al., 2000; Jyoti et al., 2001; Soroka et al., 2004). 

Moreover, some of the most widely distributed species in our MBC survey are damaging 

agricultural pests, for example Delia platura, D. antiqua and  D. florensis (common pests of 

beans and onions) were almost ubiquitous across our samples. Molecular methods promise to 

increase the rapidity and scale of pest detection and monitoring, as they are capable of 

identifying diverse, but hard to distinguish species in bulked samples.  
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Previous research has demonstrated that habitat availability and diversity has positive 

effects on arthropod biodiversity in agricultural systems (Tscharntke et al., 2005; Diekötter et 

al., 2008; Diekötter & Crist, 2013; Hendrick et al., 2014), as well as ecological function (Altieri 

et al, 1999; Gurr et al., 2003). Despite detection of a large array of taxa, we find no such 

associations with our environmental metrics and measures of community structure or diversity. 

The majority of arthropod studies focus on a few well studied taxa (namely specific families 

within Hymenoptera, Lepidoptera & Coleoptera), which are under-represented in our data. 

Surveys that do focus on the taxa we detect are few in number, and often focus on effects of  

local habitat features adjacent to arable fields (Andersen, Sjursen and Rafoss, 2004; Grégoire 

Taillefer and Wheeler, 2010). The few landscape scale studies that investigate the diversity of 

flies, generally find that diversity and community composition is invariant to crop cover and 

availability of semi-natural habitat, or only have weak, and highly variable associations across 

different scales (Josso et al., 2013).   

 

It is necessary to acknowledge the apparent homogeneity of our communities in context. 

This study represents one of the largest molecular diversity studies in the UK, and has identified 

a large quantity of organisms to a high resolution, the quantity and quality of data we provide 

here is far in excess of those that could be identified in a morphological study with the same 

resources. Despite finding no associations between land-use and diversity, this still has 

implications for conservation of the taxa we detect. In this instance, conserving broadleaf 

woodland, creating rotational complexity, and overall habitat diversity are clearly not priorities.  

The range of the environmental drivers included in our study sites may seem narrow compared 

to some studies that assess landscape scale affects (Steffan-Dewenter et al., 2002), but these 

values represent the typical landscape scale variation present in intensively farmed UK 

agricultural systems (LCM 2015).  Improvements to biodiversity may be seen at the higher 

ends of these scales, but the economic feasibility of increasing the availability of broadleaf 

woodland, for example, is extremely low.  

 

MBC is a promising technique for expanding biodiversity monitoring, but large scale 

and high throughput pipelines are likely to miss key taxa and give inaccurate representations 

of communities. Fine-scale dynamics play an important role in maintaining diversity and 

ecological function, and molecular methods have a clear role in improving our understanding 

of these dynamics. Despite the flaws we highlight, MBC can still outperforms standard 

techniques in terms of both resolution and scale, but only with careful planning. Pipelines 
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should take into account the composition of communities before sampling, including primers 

for important taxa, conduct multiple PCR replicates, and size selective sorting. Despite their 

power MBC surveys should still be approached with caution, as standard and cost-effective 

pipelines are likely to cause bias when assessing diverse communities with high abundances.  
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We assess the sampling efficiency in our validation set as a function of sequencing depth 

using rarefaction curves. Although there is debate about whether this is appropriate, and is not 

included many studies (Ji et al., 2013; McMurdie and Holmes, 2014), we include it here to 

investigate whether higher sequencing depth was responsible for high species detection rates. 

We also compare un-pooled extractions to biological replication over their respective survey 

farms to see whether biological replication increased detection rates. Finally we investigate 

whether detection failures differed among taxonomic order.  

 
Results & Discussion: 

 
Biological replicates detected 50% of mOTUs present in our un-pooled subset (Figure S1), 

which suggests that spatial replication can increase the chances of successful detection. Even 

so there is clear stochasticity in detection success, as some extractions at a single location 

were still picking up more species than those spread over a larger area We also found no 

significant relationship (Linear model, adjusted R2= -0.041, F=0.49 df=1,12, P=0.50) 

between overall sample weight (i.e. pooled sample weight) and the mOTU richness for un-

pooled extractions (Figure S2).  

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure S1. The number of mOTUs detected by all farm scale spatial replicates within a single season (red) 

and un-pooled extractions for a single trap on the same farm. Numbers above each horizontal line represent 

the percentage of mOTUs found in un-pooled samples that were represented in our spatial replicates.  
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Figure S3. The difference between pooled and un-pooled mOTU detection numbers by insect order. Point 
size represents total read number for pooled and un-pooled samples. Numbers above the horizontal lines 
represent the difference between un-pooled and pooled samples. 

Figure S2. The relationship between sample weight and total mOTU richness of un-pooled extractions. 
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Chapter Six: 

General Discussion.  
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Technology can help address the mismatch between scale and quality of ecological data. In this 

thesis I have demonstrated that two novel methods, density-structured modelling and 

metabarcoding, have real potential for providing large-scale and high quality data. In the 

introduction to this thesis I laid out the research I present in each chapter and the questions I 

aimed to address: 

 

Chapter 2 – Developing hierarchical Bayesian density-structured models. 

 

In my first data chapter I aimed to implement hierarchical density structured models and 

examine their utility for future applications. As population dynamics in density-structured 

models are defined by transition probabilities, a central issue is how to account for population 

structure in the transition matrices of these models. In this chapter I evaluate several models 

which account effects in population structure via parameterising hierarchical ordered category 

logistic regressions. I evaluate models that incorporate hierarchical effects via incorporating 

intercept terms into the linear predictor, via model cut-point parameters, and a combination of 

both, against a baseline non-hierarchical model. Using leave-one-out cross validation and a 

series of posterior-predictive checks I demonstrate that all hierarchical models perform much 

better than non-hierarchical counterparts. Models that incorporate hierarchical effects via cut-

point parameters provide superior predictive performance (in terms of LOO cross validation), 

and better fit the data, in terms of difference between the field-scale observed and predicted 

density-state distributions. These models all perform well across data gathered from a range of 

cropping systems in which population dynamics show considerable variation.  

 

Chapter 3 – Using density-structured models to investigate the dynamics of weed populations. 

 

In Chapter 3 I aimed to estimate the impact of differing rotation strategies on national-scale 

black-grass densities through examining measures of transient dynamics and simulation 

experiments. I reveal the efficacy of a series of rotations in controlling black-grass densities in 

context of high geographic variability. Using a combination of analysis of transient dynamics, 

two-step ahead, and stochastic simulations I demonstrate that black-grass exhibits a range of 

dynamics under different crop rotations. Increasing the proportion of winter wheat in a rotation 

increases densities and relative to winter wheat most rotations reduce black-grass densities 

under low, medium or high starting densities. The exception to this rule are rotations including 

peas which can increase the severity of an infestation at low or medium initial densities 

compared to continuous wheat. However, using variance decompositions of our two-step model 
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projections, we show that by far the largest contributor to variance in the change in weed 

density are the origin of the matrices used to parameterise the models. This suggests that field-

specific conditions are the principal driver of black-grass dynamics across our study system. 

This result highlights the need for large-scale assessment of management interventions, as well 

as consideration of variability within managements when assessing their impact on population 

dynamics. 

 

Chapter 4 – Incorporating spatial information into density structured models. 

In Chapter 4 I set out to investigate ways of incorporating spatial information into density-

structured dynamics, how spatial models differ from naïve ones, as well as how spatial 

information affects dynamics in the context of crop rotation. Firstly, I built models that 

incorporated spatial information through consideration of the neighbour densities of a focal 

observation. Each of these models calculates a spatial covariate from a kernel across the direct 

neighbours of a focal observation, with each model using a different configuration of weights 

across this kernel. Comparison of these models with a baseline non-spatial model reveals they 

provide considerable improvement in terms of point-wise predictive error (calculated from 

LOO cross validation), but only slight improvements in the ability of these models to better 

describe spatial patterning within a particular field. Additionally there was very little difference 

between spatial models parameterised with different configurations of neighbour density 

weights. However, there was a considerable difference in the dynamics of weeds between 

spatial and non-spatial models. In Chapter three I demonstrated the small impact of crop 

rotation compared to field-specific effects, in spatially explicit models, the relative weed 

densities between rotated and un-rotated systems are dramatically different and matrix origin 

is comparable to rotation in terms of its contribution to total system variance.  

 

 

Chapter 5 – Using metabarcoding for assessing arthropod diversity in agro-ecosystems. 

In Chapter 5 I wished to investigate the level of community coverage from metabarcoding 

using standard protocols, as well as assess the relationship between diversity and land-use. As 

one of the major selling points of metabarcoding is the retrieval of community information 

from bulk DNA extractions I tested the effect of different levels of bulk extractions on 

community coverage. I show that pooling samples during extraction reduces community 

coverage considerably with bulk extractions resulting in poor or even stochastic detection. All 

samples were biased towards specific taxa, with many important organisms from apidae 

being excluded from sample coverage. I performed diversity analyses on these data, from 
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which I found no associations between community composition or species richness and the 

prevalence of landscape features such as broadleaf woodland or diversity in crop-cover. 

However due to the problems with the method I highlighted it is not possible to draw any 

robust ecological conclusions about community composition and landscape features from this 

molecular data.  

 

 

Implications for modelling agro-ecosystems: 

Monitoring and modelling agro-ecosystems using novel methods reveals important features of 

population and community dynamics that would be neglected by smaller-scale studies. In 

Chapters two to four, the main conclusion we can make is that managing the weed Alopecurus 

myosuroides, or other pests, requires acknowledgement of the variables that drive the 

variability in dynamics over large scales. The fact that that rotational management contributes 

little to the overall density of weeds compared to local conditions, may be surprising (and 

worrying) for farmers. The evidence from experimental trials strongly suggest that successful 

control would be achieved from numerous rotations (Zacharias and Grube, 1984; Liebman and 

Dyck, 1993; Chauvel et al., 2001; Melander, Rasmussen and Bàrberi, 2005; Moss, Perryman 

and Tatnell, 2007), but, in many cases, the extreme inter-field variability we observe will offset 

and mask the effect of  these interventions. To be able to plan comprehensive management, we 

need thorough understandings of how populations respond to specific conditions.  

 

The application of density structured models presented in this thesis allows us to model 

dynamics over an impressive scale: we can capture the variance in dynamics of populations 

across this landscape, but we cannot attribute the causes of variance to specific drivers. Without 

this information it is difficult to plan individual managements which is one of the ultimate goals 

of large-scale modelling of weed populations. Climatic variables such as rainfall and 

temperature, as well as other idiosyncrasies in management, will undoubtedly have an 

important role in driving the observed variability in weed density (Freckleton et al., 2000; 

Colbach et al., 2006; Lima, Navarrete and González-Andujar, 2012; Metcalfe et al., 2017), and 

there is already research underway to investigate how these will influence density-structured 

dynamics.  

 

When it comes to preserving biodiversity, its clear that studies need to expand in two 

ways. First, to include the full range of organisms present in agro-ecosystems, and second 

conduct research into their effects on agricultural productivity. Diptera made up the majority 
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of the species in our samples, yet they are under-represented in the literature in terms of study 

of prevalence and function, mainly due to difficulty in accurate identification. With sufficient 

planning and development, MBC will be an excellent tool for expanding our knowledge of the 

role that these organisms play in agro-ecosystems. As I identify several important pest species 

across the survey locations, it may be particularly useful for early detection and tracking of pest 

species or disease vectors (Bohmann et al., 2014; Davy, Kidd and Wilson, 2015).  

 

Implications for developing methods for large scale monitoring: 

In Chapter three I highlight why expanding the scale of monitoring and modelling must be a 

priority for ecologists. Populations are highly variable over large scales, the primary 

contributors to this variability however, are not the managements routinely applied to reduce 

weed densities, but spatial-heterogeneity.  This high variability really accentuates a point that 

is frequently made in the ecological literature: local measurements of key variables are not 

large enough for robust predictions of dynamics or the effect of management. In order to make 

accurate predictions over the appropriate scales our monitoring efforts must expand.  

 

In the case of this study, dissecting the roles of the numerous factors that vary over our 

study sites will be an important step in being able to make predictions and inform management 

on the scale of individual farms or fields. More generally, however, my results demonstrate 

that for a full understanding of large-scale population dynamics, monitoring must provide more 

than just information on populations: data on the drivers of change must be gathered alongside. 

Large scale monitoring programs must therefore be multi-faceted, and reliant on more than a 

single technique. Indeed, the RELU weed data survey I analyse in this thesis was underpinned 

by extensive social research on management data. Combinations of technologies or methods 

must be employed to gather comprehensive data on populations and their drivers, a relevant 

example would be using environmental data obtained through remote sensing with density 

structured models to model the effects of climate on weed abundance.  

  

It is also important to consider the current limitations of promising technologies, as 

there are always issues facing transition from a successful proof of concept study to a successful 

application. My fifth Chapter covers the use of metabarcoding for diversity surveys, and 

highlights the need for thorough validation before application. I show that even using standard 

practices in a specialised facility, that MBC often fails to detect all species present in a 

community. Despite a thorough review of the literature, I could find little evidence of work 

done to address issues surrounding adequate levels of technical replication, sequencing depth, 



 

  153 

impacts of the level of community diversity, primer bias, and multiple levels of subsampling. 

All of the above can limit high-throughput and large-scale applications like ours without proper 

consideration. These issues obviously need to be addressed for MBC to become a main-stay of 

diversity monitoring and this result highlights a general need for thorough frameworks to be 

developed before techniques are applied. A major problem is that the literature is very positive 

about the potential of MBC,but does not hold enough information on the limitations of the 

technology at scale. Although the problems above are specific to MBC, this will likely hold 

true for most technologies scaling from small proof of concept to large-scale long-term studies.  

 

It is necessary that the failures of studies are discussed in terms of the way in which the 

scientific community disseminates research. In science, bias is endemic and self-propagating. 

Publication bias, where positive messages and results are disproportionality propagated (Lortie 

et al., 2018), can in turn drive authors to spin journal articles in favour of a positive message. 

Bias may also be introduced by enthusiasm for new technologies that exhibit potential, causing 

people to ignore negative findings. For example, a search on google scholar reveals that 

references to Neural Networks in the literature have increased dramatically over the past few 

years. However, there is evidence to suggest that much simpler regression models perform as 

well or better than their far more sophisticated counterparts (Matloff and Mohanty, 2018). Bias, 

whatever its origin, holds particular relevance for research into developing new technologies, 

as studies describing failures, and the conditions that led to them, may be either left 

unpublished, or failures glossed over to reflect a positive message. For future users wanting to 

apply these technologies, limitations are as relevant as potential, and without consideration of 

both, any ability to inform effective management will be compromised.  

 

Future work: 

Aside from further development of existing technologies and applications in new 

systems, there are numerous avenues of future research that stem from this thesis. At the start 

of this project, the research goals I laid out were very different from what eventually 

materialised. The project was initially aimed completely around developing novel MBC 

pipelines in tandem with quantitative methods of analysis. Unfortunately, these plans never 

came to fruition and the project changed direction to encompass a broader theme. However, 

these goals are still relevant and worth consideration. 

 

MBC can provide amounts of data far in excess of what is achievable for traditional 

surveys within a similar timescale and budget. Pipelines for generating this data have developed 
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quickly, increasing the quality of molecular data from sources (Zhou et al., 2013; Bálint et al., 

2014; Brandon-Mong et al., 2015; Tang et al., 2015). Analysis of the data, however has 

remained relatively static, almost all studies do not progress beyond some version of ordination 

(Littlefair et al., 2018), mixed effects models (Edwards et al., 2018; Littlefair et al., 2018; 

Nakagawa et al., 2018), or in some cases generalised multivariate models (Ji et al., 2013).  

 

Part of the lack of ambition in analysis of MBC data is likely due to the lack of 

familiarity with statistical models that are suitable for type of data that MBC generates. Biases 

in amplification and sequencing mean MBC produces only absence-presence measures and is 

incapable of producing accurate data on abundance (Ishii and Fukui, 2001; Sipos et al., 2007; 

Amend, Seifert and Bruns, 2010; Piñol et al., 2015; Krehenwinkel et al., 2017). There are, 

however, an abundance of sophisticated methods of analysing absence-presence data in 

ecologically relevant ways. Foremost among these are occupancy models, which model the 

probability of observing particular species at a particular site, or given a set of covariates 

(Bailey, MacKenzie and Nichols, 2013; Dextrase, Mandrak and Schaefer, 2014; Woodcock et 

al., 2016; Louvrier et al., 2018). Although they require careful planning of surveys, these 

models are well suited to MBC datasets, especially given the extensions that can be made to 

model multiple species simultaneously (Enzie, Ichols and Eamans, 2009; Green, Bailey and 

Nichols, 2011; Woodcock et al., 2016).  

 

As with studies of weeds, large scale models of agricultural arthropod diversity would 

be extremely beneficial for balancing productivity and conservation. For such an end, there is 

scope for getting density-structured models and MBC to meet in the middle, providing 

empirically backed models of diversity dynamics. Moreover, there is also potential to 

parameterise density-structured models with estimates of rank or relative abundance from MBC 

datasets, allowing large-scale modelling of population dynamics for multiple species. With 

arthropod abundance measures in a density-structured framework, lots of relevant questions 

are then easily approachable. For example, I had plans to examine the relationship between 

weed density, pesticide applications and diversity, the central theory being that heavy 

application of herbicides to control weeds could reduce resource availability of pollinator 

populations.  

 

Part of the scope of the initial project was to investigate ways of obtaining more accurate 

information on abundance than MBC is currently capable of. Obtaining abundance data is 

difficult due to primer biases, however there has been considerable progress in gleaning more 
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and more accurate density information from read numbers. Affinity bias can be partially 

corrected for using amplification factors (Krehenwinkel et al., 2017), and accounting for it 

statistically was one of the aims I had considered at the outset of the project. Factors such as 

concentration of particular base-pairs, annealing temperature, and binding site affinity could 

all in theory be used to better predict the level of preferential amplification. There are models 

serve a similar purpose for gene expression in RNA sequencing (Li, Jiang and Wong, 2010; 

Roberts et al., 2011; Jones et al., 2012), however, PCR is inherently stochastic and with higher 

levels of community complexity, the more difficult this will be.  

 

The more likely route to accurate estimates of abundance from molecular data will be 

from PCR free methods. Metagenomic approaches do not require amplification of barcode 

regions for sufficient detection, and instead rely on the sequencing of entire genomes. De-

coupled from the biases introduced via PCR, shotgun sequencing of mitochondrial genomes 

has demonstrated that relative abundance measures are achievable (Tang et al., 2015). Due 

their expense, and level of bioinformatics expertise required, these approaches are currently out 

of reach for most molecular ecology studies, but with the drastically decreasing cost of 

sequencing, they will likely become much more prominent.  

 

Large scale population monitoring and modelling are crucial for preserving natural 

systems in the face of rapid global change. Continued development of methods of data 

collection and analysis are essential for the large-scale management of important ecosystems. 

However, it is important that methods are rigorously tested, and the limitations fully 

discussed in the literature. Unifying frameworks underlying the best practice for application 

of technologies must be established before they will be able to make meaningful impacts on 

management.   
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