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Abstract 

The livestock grazing system is one of the most important human natural coupling 

systems on the earth. More than one-quarter of the global land surface is managed 

grazing grasslands, and the intensification of animal production and grazing systems 

is likely to continue worldwide. Managing the grassland grazing system towards a 

sustainable future is, therefore, an important issue for herders, grassland managers 

and policymakers. This requires dynamic monitoring and assessment of the grazing 

system, which consists of the complexities plant growth, livestock dynamics, plant-

herbivore interactions and grazing management. Leaf Area Index (LAI) is 

commonly used as a proxy for grassland condition. However, current studies all 

focus on the year-round aggregated LAI change or seasonal variation rather than the 

specific grazing-led LAI defoliation for each pixel, which is the important indicator 

for quantifying grassland grazing activities.  

The contribution of this research to grassland grazing management can be 

summarised through three main components: a new growth function under grazing 

considering both the growth and senescence of grass with an estimation algorithm; 

the employment of a LUE-VMP model to estimate Net Primary Productivity (NPP) 

for improved LAI validation; and a first attempt in building an agent-based model 

(ABMGG) integrated with patch-specific grazing information for the assessment of 

various grazing management strategies. It was found that although different grazing 

management scenarios could not significantly improve or decrease grassland 

productivity, rotational group grazing performed best in terms of producing a 

smaller number of degraded grassland patches. Although there are some drawbacks, 

the agent-based modelling is highly suited to the grassland grazing system that is 

characterized by individual interactions and contains hierarchical grazing strategies 

and institutional arrangements. It is also suggested that by improvement of the data 

quality and extension of the model, ABMGG would be able to predict and analyze 

the performance of different grazing management scenarios further, and would be an 

important tool for aiding the sustainable development of the grazing system for both 

herders and policymakers. 
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Chapter 1 Introduction 

1.1 Background and research motivation 

Grasslands are a valuable natural resource that covers about one-third of the Earth’s 

land area (Heady, 1975; Gilmanov et al., 2010). Grasslands are referred to as 

savannas in Africa (O'connor and Pickett, 1992); in the regions of Eurasia, they are 

commonly named steppes (Bai et al., 2007); in the U.S. Midwest, grasslands are 

called prairies (Collins et al., 1998; Fuhlendorf and Engle, 2001b); while in South 

America, they are known as pampas (Altesor et al., 2006). What they all have in 

common is that grass is the naturally dominant vegetation. Numerous studies have 

reported that grasslands are of great importance for local ecosystems, including soil 

and water conservation (Davis, 1979), carbon sequestration (Schuman et al., 2002) 

and biodiversity (West, 1993). However, for centuries, in both developed and 

developing countries, livestock grazing has played a dominant role in removing 

grass biomass (Peet et al., 1999). Almost all livestock farmers, herders or 

pastoralists depend on grasslands and conserved products such as hay and silage and 

on a wide range of fodder species for their livelihoods (Suttie et al., 2005). Rapid 

increases in human and livestock populations have been marked that natural 

grasslands in many areas of the world have been extensively modified or even 

destroyed, particularly in arid and semi-arid environments (Milchunas et al., 1998; 

Watkinson and Ormerod, 2001). Humans have already profoundly affected 

grassland regions by grazing, mainly for short-term profit, and have ignored the 

long-term stability of the grassland ecosystem (Hadjigeorgiou et al., 2005). In 

addition, most of the grasslands are distributed in eco-sensitive areas – areas with 

relatively low vegetation diversity compared with forestlands, and they are, 

therefore, susceptible to climate change – facilitating the uneven distribution of 

grass forage at https://mini.eastday.com/a/n190217000041389.html?qid=03123 both 

spatial and temporal scales (Coupland, 1979; Dixon et al., 2014a). The spatial and 

temporal differences of forage availability and the complexity of interactions of 

grassland grazing make the management of grassland utilization challenging to 

secure in terms of both animal production and the renewal of natural feed resources 

(Jouven et al., 2010). Now more than ever, grassland grazing information is needed 

to monitor and precisely assess the grassland system.  

It is almost impossible to have a real-time and continuous time series of in situ 

observation data on the current status of grass and grazing activities (Ali et al., 

2016). Precise information on grass status and grazing activities can be obtained 

precisely at farm or local scale by in situ methods, including simple visual analysis 

(Rouse Jr, 1972), advanced rising plate measurement (Nakagami, 2016) and more 

complicated laboratory analysis (Cougnon et al., 2016; Hoffmann et al., 2016). The 

drawbacks of in situ monitoring techniques are obvious: they are time-consuming;  

labour-intensive; and almost impossible to apply to large scale grassland monitoring 

(Ling et al., 2014). On the other hand, remote sensing and modelling approaches 

allow for large scale monitoring and further assessment of grassland status (Rose et 

al., 2015). By measuring the reflectance at visible and infrared wavelengths, remote 

sensing can be used for identifying different grassland species and status (Todd et 

al., 1998; Green et al., 2016), which can be implemented on static platforms 

(Aubinet et al., 2012), unmanned aerial vehicles (Rango et al., 2006), and aircraft or 

https://mini.eastday.com/a/n190217000041389.html?qid=03123
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satellite platforms (Loris and Damiano, 2006) for local scale mapping and 

monitoring at varying spatial and temporal resolutions. From grassland species 

monitoring (Geerken et al., 2005; Xie et al., 2008) and grassland biophysical 

characteristic quantification (Goetz, 1997; Huete et al., 2002) to grassland change 

detection (Cohen and Goward, 2004; Shalaby and Tateishi, 2007), the integration of 

multispectral and multi-temporal (Gómez et al., 2017a) remote sensing data used in 

combination with simulation models has been successfully demonstrated as an 

economically cost-effective, statistically reliable and consistent, and operationally 

robust tool for monitoring (Prince, 1991b) and assessing (Nagendra et al., 2013) of 

the status of grassland grazing systems (Svoray et al., 2013). But remote sensing 

techniques often have the problem of cloud cover, which will be discussed in the 

literature review chapter. 

However, the grassland grazing system is often a non-linear (Banegas et al., 2015), 

multi-state, dynamic (Woodward et al., 1995b) system evolving under the 

interactions between nature and humans and the interactions between those two 

systems within time and space (Herrero et al., 2000a; Hutchings and Gordon, 2001; 

Seabloom and Reichman, 2001; Donnelly et al., 2002b). To monitor and assess such 

a complex system, knowing aggregate information about grassland is not enough to 

have a synthetic, objective understanding of it, that understanding of management 

strategies is also necessary. In fact, different grazing strategies (Woodward et al., 

1995b; Wang et al., 2016) and institutional arrangements (Dong et al., 2009; Wang 

et al., 2013) have been proposed by herders, grassland managers and policymakers, 

with the purpose of a better use of grasslands. In addition, recent advances have 

been devoted to identifying the paradigms of grassland management (Lovett and 

Ockwell, 2010), which have provided basic principles and guidance, but there are 

still considerable challenges imposed by historical-cultural impediments and 

regional natural environmental differences (Johnson et al., 1983; Seabloom and 

Reichman, 2001). In order to model the interactions of such a co-evolving system 

and assess the policy implementations of grassland protection, it is of great 

importance to be able to account for the interactions involving stakeholders and the 

interactions with the environment at an individual level, which has major 

implications for both improving policies and developing sustainable grassland 

management (Bellamy and Lowes, 1999; Boyd and Svejcar, 2009). 

To understand the complexity of grassland grazing systems, concepts that take the 

human sub-system and ecological sub-system as a whole are widely used in the 

natural grassland management literature (Janssen et al., 2004; Folke et al., 2005; 

Ostrom, 2009). For many years, grassland management has been dominated by a 

philosophy that simplifies this complexity with top-down control, but that inevitably 

results in mismatches between model outcome and the reality: scaling mismatches, 

synthesis of heterogeneous information, multi-scaled system interactions, complex 

management systems, uncertainty in causal relationships, assessment of trade-offs 

(Holling and Meffe, 1996) and issues with model validation. In such a human-

natural coupling system, macro-level properties of grassland often emerge from 

individual behaviours or decisions (Levin et al., 2013). Emergence from such 

individuals could also produce feedbacks that affect individual decisions by 

managers and subsequent higher-level policy interventions (Milchunas et al., 1988; 

Seabloom and Reichman, 2001). Ignoring these characteristics might obscure crucial 

features that we observe in reality, as the risk of abrupt or irreversible grassland 

ecosystem changes (Levin et al., 2013). Therefore, a clear understanding of the 
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different stakeholders and related institutions and their interactions with the system 

is needed to avoid such modelling problems.  

1.2 Problem identification 

This thesis will specifically look at the grassland of Zeku, China, which is located in 

the source area of the Yangtze, Yellow and Lancang rivers (the three largest rivers 

in China). This area has long been known as the "Water Tower of China" and Zeku 

is typical grassland grazing county for the area (Quanqin et al., 2013). For thousands 

of years, those three rivers have been of key importance to the river basin ecological 

environment of China and even south-eastern Asia. The Three Rivers Head source 

Region (TRHR) National Nature Reserve was legally established in May 2000 

(Shao et al., 2016). The establishment of the nature reserve aimed to protect the 

Tibetan Plateau ecosystem, with an emphasis on alpine swamp meadow and the 

natural habitat of the unique wildlife in the region, and to promote sustainable 

economic development in the region (Wang et al., 2010a). Therefore, the protection 

of grasslands in this area is extremely important in terms of China’s long term 

environmental, social and economic development. In addition, the status of the 

ecosystem in TRHR also has an inevitable international focus in regard to ecological 

stability and diversity of the river basin region (Fan et al., 2010a). 

There are two key problems for understanding and modelling grassland grazing 

systems in Zeku. The first one is how to obtain precise information about grassland 

status and herders’ grazing activities. Remote sensing data can only capture the 

status of vegetation at discrete time points, which obscures the wider process of 

vegetation development. Ignorance of the complete picture can lead to 

underestimates or otherwise incorrect assessments of rangeland productivity, 

especially in carrying capability estimations in grazing intensive regions (Lebert et 

al., 2006; Nyima, 2015).  The information we have from current remote sensing 

derived datasets (for example, the MODIS LAI dataset) is very limited with regards 

to extracting the amount of grass that is eaten by livestock, which is the crucial 

indicator that would be used in guiding sustainable grazing pasture management. 

Therefore, we need to explore further within those datasets to estimate consumed 

forage between each satellite observation interval. 

The second problem is how to build a model that considers not only the physical 

growth of grass, but also herders’ decision-making and wider institutional 

arrangements. These must be considered in an integrated way because they all 

contribute to the overall dynamics of the grazing system (Browning et al., 2014). 

Only in this way can an objective assessment of the grassland system status be 

made. A new approach to model these complex systems and to overcome the above 

limitations is agent-based modelling (ABM). ABM has a good capability for 

representing the spatial and temporal heterogeneity of grassland forage productivity 

through the use of environmental agents. A herder can be described as a decision-

making agent that can join in different institutional groups which can be used to 

analyse the impact of different institutional arrangements (Jun et al., 2013). The 

employment of ABM resource management and environmental science is a better a 

way than the traditional empirical or process-based models (which will be discussed 

in Chapter 2) in capturing the complex system characteristics of grassland grazing as 

it describes the interactions individually at various levels. It enables the modeller to 

represent the behaviour of humans more realistically, “accounting for bounded 

rationality, heterogeneity, interactions, evolutionary learning and out-of-
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equilibrium dynamics, and to combine this representation with a dynamic 

heterogeneous representation of the spatial environment” (Filatova et al., 2013). 

ABM is an ideal tool to integrate with remote sensing data to further assess different 

grassland management scenarios. 

1.3 Aims and objectives 

The overall aim of this thesis is to establish an agent-based model based on the 

grazing information derived from remote sensing data in Zeku with the purpose of 

assessing various grassland management scenarios. Herders’ grazing activities have 

a profound influence on the grassland ecosystem. The impact can be positive (e.g. 

promote productivity) or negative (e.g. grassland degradation or desertification) or 

both, depending on grazing intensities, various grazing strategies and institutional 

stakeholders. This thesis will study grass growth dynamics under grazing based on 

remote sensing data, and most importantly, by analysing the impact of different 

grazing strategies and institutional arrangements on grassland status using an agent-

based model. The results of this thesis will be useful to guide the livestock 

husbandry in Zeku. 

To achieve these aims, the objectives of this thesis are to: 

1, review, discuss and critique the grassland grazing literature and analyse the 

current theories and system complexities in the grazing system in order to identify 

those that should be employed in the model; 

2, review, discuss and critique the modelling techniques and data availability for the 

grassland grazing system to highlight the necessity of the techniques used for this 

research and to guide the model development process; 

3, develop a new method to derive information about grass growth and the effect of 

grazing from remote sensing data; 

4, design and build an agent-based model that is able to account for the different 

grazing strategies and institutional arrangements and use remote sensing data as an 

input; 

5, assess different management scenarios after making sure the model has the ability 

to simulate the grassland status under grazing based on current grazing strategies 

and institutional arrangements. 

1.4 Organisation of the thesis 

The thesis organisation is outlined as follows: 

In Chapter 2, starting with the definitions of grasslands and grassland grazing, the 

complexities of the grassland grazing system will be discussed; followed by the 

overall paradigms for modelling such complex systems, which forms the basic 

theory for later modelling. Then some traditional grassland grazing models and the 

state-of-the-art modelling technique—the agent-based models are discussed. In 

addition, the role of remote sensing in modelling such a complex system is 

elaborated as it is the most important tool for the data collection of grassland 

grazing.  

Chapter 3 describes the study area and the data collection undertaken. After 

profiling the case study area, the reasons why the study area is an ideal place for 
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agent-based modelling of grassland grazing are explained. This is followed by a 

detailed description of current grazing strategies and institutional arrangements in 

the case study area. Then, a list of the datasets used in this thesis along with 

descriptive statistics summarises the main features of the study area. 

Chapter 4 presents a prototype agent-based model of a grassland grazing system. 

There are two themes highlighted in this chapter. The first section provides a 

rationale of the basic theory concluded in Chapter 2; the second describes the 

suitability of using agent-based modelling to simulate the effect of different grazing 

strategies and institutional arrangements, using a simplified process of the grass 

growth and interactions among agents. 

To quantify the difference between normal vegetation growth in an area and the 

reduced growth that could be caused by grazing (as measured using the Leaf Area 

Index – LAI), Chapter 5 outlines the creation of a novel growth-grazing function for 

the grassland in the case study area. Two important measures are produced: 

improved LAI (a more accurate estimate of LAI from remotely sensed data) and 

expected LAI (the LAI that would be expected if where no grazing had taken place). 

In order to validate those results, the carbon mass of grazed LAI estimated from 

remote sensing is calculated, with the purpose of comparing it with statistical 

livestock consumption, which is also converted to carbon mass. In addition, the 

uncertainty of such estimation is discussed.  

Chapter 6 further validates the result of Chapter 5 using a Light Use Efficiency 

(LUE) model. This is essentially a comparison of the results of new growth-grazing 

function and estimation algorithm with some in situ data. The chapter begins with a 

brief review of current Net Primary Production (NPP) models; followed by the 

detailed parameterization of Vegetation Phenology Model of LUE (LUE-VPM) to 

simulate the NPP based on improved LAI. 

Chapter 7 describes the creation of the agent-based model and its use in the 

assessment of different grassland management scenarios. It begins by describing the 

model before outlining the processes of verification, sensitivity testing, calibration, 

and validation. The chapter concludes with the analysis of different grazing 

strategies and institutional arrangements, followed by recommendations for the 

future grassland management in Zeku. In addition, the error propagation and 

uncertainty analysis of the model is discussed in this chapter. 

Finally, in Chapter 8, the aims and objectives are reviewed and conclusions are 

drawn. The chapter also documents some limitations of the research and provides 

suggestions for further development of the grassland grazing model and potential 

applications.  

A table of chapters and what they mainly achieve (Table 1.1) summarises the 

aforementioned structure of this thesis, including detail about how the research 

objectives map to relevant chapters.  

Table 1.1: A table of chapters and what they mainly achieve. 

Chapter 1 An introduction to the whole Thesis 

Chapter 2 ➢ Review the grassland management theories and the progress 

of current models dealing with grass grazing system. 

➢ Review the models and remote sensing methods in grassland 

monitoring and the gaps of current research. 

➢ Identify the complexities of grassland grazing system and 
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specify which should be included in the model. 

Chapter 3 ➢ Describe the case study area and justification for the selection 

of the study site. 

➢ Introduce the land tenure system, grazing strategies and 

institutional arrangements in the case study area. 

➢ Introduce the data collection undertaken. 

Chapter 4 ➢ Develop a prototype agent-based model describing the 

complexities of grassland grazing system. 

➢ Preliminary analysis of the impact of different institutions on  

the performances of grassland grazing (the response of 

grassland quality, quantity and net benefit of herder agents to 

different institutional arrangements). 

Chapter 5 ➢ Develop a new growth function considering both grass 

growth and the effect of grazing using remotely sensed data. 

➢ Results of improved, expected and grazed LAI based on this 

new growth function and the impact of search radius on the 

estimation results. 

➢ Validation of the grazed LAI by comparing with statistical 

data with aggregated grazed grass mass.  

➢ Explore the uncertainty of the estimation. 

Chapter 6 ➢ A brief review of NPP models and specify the reason why the 

LUE-VPM is used for further validation. 

➢ Parameterization of LUE-VPM for the grassland productivity 

calculation. 

➢ Validation of improved remote sensing products to further 

assess the accuracy of the new growth function.  

➢ Uncertainty analysis of the LUE-VPM. 

Chapter 7 ➢ Build and evaluate the agent-based model through 

verification, sensitivity analysis, calibration and validation. 

➢ Assess differing grazing management scenarios. 

➢ Quantify the uncertainty of the agent-based model. 

➢ Suggestions for the future grazing management of Zeku. 

Chapter 8 ➢ A synthesis of the findings of this thesis. 

➢ Limitations of this work. 

➢ Recommendations for future research. 

 

1.5 Summary 

The work presented in this chapter has clarified the aims and objectives of this 

research.  By discussing the background of grassland grazing modelling, the 

importance of using remote sensing data and agent-based modelling for grassland 

monitoring and assessing was addressed. The overall aim is to provide an agent-

based approach to explore the management of grassland grazing systems based on 

the remote sensing data, to reach the goal of analysing the performance of the 

grassland grazing system under different grazing strategies and institutional 

arrangements. 
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Chapter 2  Literature Review of Modelling the Complexity of 

Grassland Grazing 

A detailed understanding of any complex system is required in order to develop a 

useful, representative and synoptic agent-based model of it. This chapter provides a 

literature review focusing on the complex nature of grassland grazing systems. It 

begins with a discussion of different grassland definitions and describes a variety of 

grassland grazing systems. It then focuses on what a complex system is and how 

this is different from a complicated system. The complex nature of the specific type 

of grassland grazing system which is the focus of this study is defined. The parts of 

these systems to be represented, and the general nature of the complex interactions 

between these parts are described. For modelling such systems, the limitations of a 

wide number of other approaches and the potential benefits of agent-based 

modelling are considered. The chapter provides: a brief overview and critique of 

different approaches to modelling grassland grazing systems; a typology of 

grassland grazing system models; and, a brief review of some models of each type 

focussing on both those designed to model the specific type of grassland grazing 

system that is the focus of this study, and/or those that are agent-based models. The 

important role of remote sensing in modelling the grassland grazing system being 

studied is highlighted. The chapter does not consider the difficulties of developing 

agent-based models of grassland grazing systems in general or the specific type that 

is the focus of this study. These difficulties are considered in a prototype model 

described in Chapter 4 and an agent-based model of grassland grazing discussed in 

Chapter 7.  

2.1 Grasslands, grazing systems and common pool resource  

Grassland can be thought of as land where the majority of land cover is grass. 

Grasslands can be thought of as regions where grassland dominates. Using this 

subtle pluralistic difference is one way to be clear that in grasslands, land cover and 

land use may vary, but that the region, on the whole, is characterised by the 

grassland. 

Grasslands, sometimes also referred to as rangelands, cover about one-third of the 

world’s terrestrial area (Coupland, 1979; Chen et al., 2015). There are various types 

of grasslands, the main typology can be based on the level of human influence, how 

continuous, and extensive grassland is in these regions, and whether in agricultural 

settings the grasses are grown to feed cattle or produce cereal. Those less influenced 

by and that would exist without the influence of people and are sometimes called 

natural grasslands or wild grasslands. Those used more by people can be referred to 

as agricultural grasslands – some are farmed more extensively by more nomadic 

herders that may or may not deliberately manage the lands using fire; other 

agricultural grasslands might be more intensively farmed by more settled farmers 

where the movements of animals might be partly controlled using fences and walls 

and where the vegetation may be cut and stored as well as foraged more exclusively 

by domesticated breeds of livestock animals. There are those vast regions where 

there is little land-cover other than grassland, and those regions where grassland is 

more patchy and where there is perhaps a greater competition perhaps more 
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naturally between grass, shrubs and trees, but also with different land use where land 

managers might decide to change grassland to other land cover types and vice versa. 

One of the most authoritative institutions in the area of grassland science, the 

Society for Range Management (SRM) defines grassland as “land on which the 

indigenous vegetation (climax or natural potential) is predominantly grasses, grass-

like plants, forbs, or shrubs and is managed as a natural ecosystem. If plants are 

introduced, they are managed similarly” (Bedell, 1998). This definition stands on an 

ecological perspective and is suitable for a range of situations, in either less 

intensively grazed regions such as Southern Europe (Zarovali et al., 2007), or 

intensively grazed regions such as Northern Africa (Aronson et al., 1993; Le 

Houerou, 2014).  

There can be a huge economic value in grassland which can be realised both by 

harvesting forage and allowing animals to graze. A lot of grassland definitions also 

incorporate economic or social concepts. In the context of grassland utilization in 

the Mediterranean, grassland has been defined as the natural forage resource of grass 

communities characterized by high heterogeneity in its spatial and temporal 

distribution patterns (Perevolotsky and Seligman, 1998; Röder et al., 2007; Jouven 

et al., 2010). In social studies, grasslands have option values, that reflect the benefits 

from potential future use, as well as existence and bequest values, that results from 

the knowledge of continued existence (Lehmann and Hediger, 2004). 

There are many other local legal connotations throughout different regions and 

disciplines (Suttie et al., 2005). Buck et al. (2015) have categorised grasslands into 

four types according to their biomass, mowing season, soil and slope - within the 

context of biodiversity conservation. In biodiversity studies, grasslands are 

dominated by native herbs, with a low cover of exotic species (Lunt et al., 2007; 

Bryant et al., 2017). Dixon et al. (2014b) defined grasslands as those where non-

human ecological processes primarily determine species and site characteristics; 

while in land management research, grasslands are defined as primarily planted and 

maintained for agricultural reasons (pasture; hay; intensive livestock production). To 

be clear, the grasslands which are the focus of this thesis are regions where: 

• the dominant land use/cover type is grassland; 

• land cover is strongly affected by livestock grazing; 

• livestock grazing is managed by herders and/or grassland managers that may 

implement different grazing strategies; 

• herders and/or grassland managers may be grouped institutionally and react 

to the policy which may be implemented to help manage resources. 

In many cases, grazing and how it is managed is one of the most influential activities 

on grasslands, and everything to do with the grassland can be thought of as being 

part of a grassland grazing system (Adler et al., 2001). There is much scientific 

evidence about the impact of different grazing patterns on: the movement and 

persistence of other organisms (Gonzalez et al., 1990; Hahn and Höfle, 2001; Qu et 

al., 2016); plant functional traits (Cingolani et al., 2005b); and, the redistribution of 

species composition (Frank et al., 2016) and nutrients (Ford et al., 2016). Especially 

in semi-arid terrestrial grasslands, grazing plays a critical role in the continuous and 

directional changes of grasslands at different time-scales and compositional 

gradients (Moreno García et al., 2014; Porensky et al., 2016). Those effects can be 

found across typical grazing grassland around the world, including Northern China 

(Yong-Zhong et al., 2005); Europe (Ellenberg, 1988; Rochon et al., 2004); Tibet-

Qinghai Plateau (Cao et al., 2004); the adjacent mountains of the Himalaya 
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(Sundriyal and Joshi, 1990); the cold land of Patagonia (Cingolani et al., 2005b); 

and the Altiplano (Preston et al., 2003); Australia (Fensham et al., 1999); the 

Mediterranean region (Noy-Meir et al., 1989); Asia (Bösing et al., 2014); Sahara 

grassland (Nwaogu et al., 2016); the vast Sudano-Zambesian zones (Ahoudji et al., 

2014); North America (Eby et al., 2014)  and South Africa (Koerner and Collins, 

2014). 

For grasslands where grazing is overseen by herders or managers, grazing strategies 

and institutional arrangements are important and can be thought of as tools for 

managing resources. The choice of grazing strategy, e.g. rotational grazing or 

continuous grazing, may have variable effects on the frequency, severity, variation 

of grazing-led grass defoliation (Hart et al., 1993) and on the botanical composition 

of grassland (Taylor, 1989) depending on stocking densities, movement rate and 

other factors. Grasslands with intensive rotational grazing that have a higher number 

of subdivisions with longer resting periods have been shown to produce higher 

yields by preserving biomass and maximising plant growth (Savory and Parsons, 

1980; Barnes et al., 2008; Teague et al., 2011; Jakoby et al., 2014). Although 

rotational grazing strategies have been shown to increase income and improve 

rangeland conditions, they also tend to have higher management costs (Beukes et al., 

2002) and there are associated risks of forage shortage in winter period if livestock 

stocking rates are too high (Hart et al., 1993). 

Macro-level policies can affect grassland grazing systems both positively and 

negatively. Research on the institutional arrangements aimed at reducing grassland 

grazing to mitigate land degradation in Sanjiangyuan, China (Wang et al., 2010b; 

Lu et al., 2015), suggests that the policy actually runs the risk of exacerbating 

poverty and instead contributing to land degradation – the reduction in the capability 

and capacity of the land to support ecosystems and agriculture (Yeh, 2009). It is also 

worth noting here that land market institutional arrangements can aggregate grazing 

land into larger units, which can lead to a more efficient allocation of grassland 

resources and economies of scale in livestock production (Gongbuzeren et al., 

2016). The impact of different grazing strategies and institutional arrangements on 

the ecological, socio-economic and climatic conditions of grassland systems is 

complex which makes it hard to prescribe what management strategies and 

institutional arrangements might be best (Hart et al., 1993; Campbell et al., 2006; 

Thornton et al., 2009; Briske et al., 2015).  

Grassland is generally considered as a Common Pool Resource (CPR) for its 

physical attributes of the resources. The CPR has two common characteristics: first, 

the resource is large in its scale that it is costly to exclude the potential resource 

users; second, the resource is not unlimited, and the use of the resource by one user 

reduces its availability to others (Ostrom et al., 1994).  

In common grasslands, one possible situation is when the number of animals 

exceeds the capacity of the pasture, each herder is still motivated to add more 

animals since the herder receives all of the proceeds from the sale of animals and 

only a small cost of overgrazing. This is called the tragedy of the commons, a term 

and notion put forth by (Hardin, 1968), whereby the limited natural resources 

become exhausted by utility-maximizing individuals – an almost universally tragic 

situation where group benefit has been undermined by the dominance of individual 

rationality (Crépin et al., 2009; Baerlein et al., 2015). In addition, extensive free-

riding resource users often problematically proliferate and deplete common-pool 

resources by not contributing to the upkeep of the resource (Ostrom, 2008). 



- 10 - 

Solutions to the tragedy of the commons have relied upon the centralized control of 

all common-pool resources. National legislation has been passed in many countries, 

and administrative responsibilities for managing natural resources have been turned 

over to centralized agencies (Wade, 1987). Unfortunately, the actions of these 

agencies in some cases has deteriorated the situation further (Walker and Janssen, 

2002). One possible reason for this failure is that effective communication can be 

poor in systems of centralized control which led to the advocacy of more distributed 

more local (self-)organization (Hardin, 1968; Thwaites et al., 1998). 

The tragedy of the commons assumes that the resources users are “short-term, 

profit-maximizing actors who have complete information and are homogeneous in 

terms of their assets, skills, discount rates and cultural views and anyone can enter a 

resource and take resource units” (Ostrom, 2008). The fact that resource users can 

self-organize and devise institutions to extract themselves from tragic overuse was 

for some time largely not recognised. Some studies have identified well-managed 

examples demonstrated that tragedy is not inevitable and that sustainable resource 

use is possible with robust, long-lasting, institutional arrangements for the 

governance of common-pool resources (Brady, 1993; Weinstein, 1999). Weinstein 

(1999) reported that large groups have more difficulty in governing common-pool 

resources than smaller groups, due to the communication cost among individuals, 

difficulty in reaching a binding and enforceable agreement or the difficulty in 

monitoring others conformity with rules. Non-cooperative game theory and 

cooperative game theory are commonly used to design strategies for managing 

CPRs (Ostrom et al., 1994; Huang and Smith, 2014). It can be quite efficient for 

relatively homogeneous groups to limit the use of their resource if there exist 

mechanisms for reaching binding agreements (Ostrom, 2008). 

In addition, multiple-use of the grassland resource can be an important way to 

manage the commons. The commons can support multiple land uses going beyond 

the primary productive industries like agriculture and mining to support things like 

recreation and tourism. The extent and the type of use of land may change with 

demographic, technological and economic development (Edwards and Steins, 1998). 

To balance multiple interests, “collective action among the user groups is required 

to agree to rights about access to, allocation of, and control over the resource, since 

resource uses by the separate user groups are interdependent” (Steins and Edwards, 

1999). The comparative analysis framework for multiple-use commons is helpful to 

direct attention to important factors which affect decisions of the institutions 

governing the resource and whether changes are necessary or desirable (Ostrom, 

2002). 

In especially the last few decades, policies and institutions have changed 

dramatically, and there has been extensive privatisation of CPRs in much of the 

world (Humphrey and Sneath, 1999; Wisner, 2012; Archambault, 2014; Ojanen et 

al., 2014). It has been suggested that the motivation for privatization is to create a 

better incentive for herders to improve the productivity of grasslands (Conte and 

Tilt, 2014; Fernandez-Gimenez et al., 2015; Moritz et al., 2015). Whether 

intentional or not, the effects of privatization is an interesting and complicated study 

not least because of the varying success this has been seen to have in both social, 

economic terms and with respect to the resources. With the privatization of 

grassland, the behaviours of herders and their decision-making can change as the 

relationship between herders and institutions change, and these changes can be 

dramatic (Jun et al., 2013).  
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The decision-making of herders can be affected by high-level institutional 

arrangements. Those institutional arrangements, in some place, are essential to 

promote group management. For example, in China’s grasslands, the government 

encourage herders to join the grazing groups by investing their lands or livestock 

(Xiaoyi, 2007). How those new institutional arrangements and grassland policies 

affect the performance of the grassland grazing system is an important topic in 

grassland sustainable development, and that is the crux of this study. Agent-based 

modelling has proved to be an effective tool to evaluate the effect of different 

institutional arrangement on grassland grazing systems (Jun et al., 2013), before 

attention to these types of model in Section 2.4.4, the following section describes the 

complex nature of grassland grazing systems (as introduced), and following this 

there is a review of different modelling approaches. 

2.2 The complex nature of grassland grazing systems 

Grassland grazing systems are often being modelled as complex systems. This 

section will discuss the common characteristics of a complex system (Section 2.2.1 

and Section 2.2.2), and what are the complexities in a grassland grazing system 

(Section 2.2.4). In addition, the difference between a complicated system and 

complex system is detailed in Section 2.2.3. 

2.2.1 Complex geographical systems 

A system consists of entities and relations between them (Bertalanffy, 1980). A 

complex system is synergistic in that the properties of the whole system cannot be 

explained simply by somehow summing up all the properties of the constituent 

entities (Mitchell, 2011). Complex geographical systems are those where the entities 

in the system are distributed in regions on or near the surface of Earth and interact 

with other entities of the same type and also entities of other types, these interactions 

occur within regions and across regions over time, and such interactions can give 

rise to higher-level emergent behaviours of the system. In a geographical context, 

each region is connected to other regions, and the regions themselves are entities in 

their own right, and these may grow or shrink and move through space over time by 

interacting with neighbouring regions. In a physical sense, all geographical regions 

effectively interact through movements in air and water and with things moving 

across the land. Additionally, the boundaries between regions are often gradual in 

nature though they might also be naturally abrupt. In more managed contexts people 

make boundaries to abruptly change land uses and land covers from one type to 

another.  

The entities of any complex system may self-organise and may collectively organise 

with entities of the same type, and this organisation may be based on the distribution 

and characteristics of entities of other types in the system. Complex systems tend to 

have no centralized overarching controlling entities that completely determine the 

characteristics of all other entities in the system, though often some entities have a 

more significant influence than others. Typically organization evolves in complex 

systems - emerging as a consequence of localized interactions between entities that 

typically further evolve and result in further organisational change (Diana, 2012). 

The emergence of new types of entity and new forms of organisation which begin 

interacting with other entities or sub-systems is in some ways the defining nature of 

a complex system. Though it may seem that this might lead to ever more complex 

systems, this is not necessarily the case, as some organisational entities might not 
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perpetuate, they may just exist for a short time as part of a phase transition of the 

system, or they may be ephemeral, appearing every now and again when the 

conditions are right, and those conditions may even be somewhat regular and in a 

geographical sense, this is often part of a normal annual cycle of seasons or another 

cycle of climatic conditions (Miller and Page, 2007). 

There are other definitions or expressions of complex systems that are worth 

considering, for example,  Cotta and Schaefer (2017) defined complex systems as 

“…composed of many components, whose structure and interaction leads to 

emergent properties of the system as a whole, that is, the system exhibits properties 

and behaviours that are not explicit in its isolated components”; while Whitesides 

and Ismagilov (1999), in chemistry, defined a complex system as “one whose 

evolution is very sensitive to initial conditions or to small perturbations, one in 

which the number of independent interacting components is large, or one in which 

there are multiple pathways by which the system can evolve. Analytical descriptions 

of such systems typically require nonlinear differential equations. A second 

characterization is more informal; that is, the system is complicated by some 

subjective judgment and is not amenable to exact description, analytical or 

otherwise”.  

The next section reviews complex system definitions as summarised by (Ladyman et 

al., 2013). 

2.2.2 The properties of a complex system 

Ladyman et al. (2013) summarised the common properties associated with a 

complex system: non-linearity, feedback or interactions, spontaneous order, 

robustness and lack of central control, emergence, hierarchical organisation, 

numerosity. However, having those properties do not necessarily mean that a system 

is complex, they are the key features that differentiate complex systems from other 

simple systems (Zeng et al., 2017). 

The components of a complex system are highly interdependent, and this 

interdependence creates non-linearity between the parameters of the model and the 

outputs. Non-linearity arises from the fact that the overall system properties are not a 

simple linear addition of each component’ properties in isolation (Bradbury and 

Vehrencamp, 2014). By comparison, in a linear system the next state of the system 

is the linear sum of the next state of each component in the system; however, the 

emergent behaviour can still be observed in a linear system. For example, two 

metallic balls attached to springs with distinct frequencies can generate an 

emergence of beats, which occur when the two normal mode frequencies get close. 

The frequency of oscillations can be calculated by the linear average of the two 

normal mode frequencies modulated by half the difference in the two frequencies. 

The trajectories of a linear system can progress to an equilibrium when the further 

changes stop, spiral off into infinity or exhibit oscillation at some fixed frequency, 

but each trajectory is entirely predictable given the relations among entities and their 

initial conditions (Bradbury and Vehrencamp, 2014); notice that it is perfectly 

possible to think in a linear way about systems that exhibit non-linear dynamics  

(Ladyman et al., 2013). However, it worth noticing that exponential changes can 

exist in a non-linear system. For example, the rate of change of the number of 

individuals in a population can be predicted as a function of age with a fixed 

distribution and an exponential growth of time (Iannelli and Martcheva, 2003), thus, 

complex systems are known to be shift or flip into all new regimes within a period 

of time, and the nonlinear behaviour of the system results from disproportionate 
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response to proportional increases/decreases of an input on an output variable 

(Sturmberg et al., 2017). 

Changing the values of the parameters in the non-linear systems can cause the 

system to be non-deterministic or stochastically chaotic. The system behaviours can 

be at “the edge of chaos” (Langton, 1990), in the sense that they lie in the middle 

ground between ordered systems and chaotic ones. This is often the result of the 

presence of non-linear interactions and feedback loops which often lead to self-

organizing patterns (Steven, 2012). In fact, complexity is often linked with chaos 

which is characteristically “sensitive to the initial conditions” (Langton, 1990), and 

it is the central idea within chaos theory (Flake, 2001). In chaotic systems, small 

changes in the initial conditions may lead to dramatic differences in what is 

predicted yet often in the short-term (Hayles, 1991).  

Feedback is an essential condition of a complex system. The entities in the system 

can receive feedback from the other entities, and the way the other entities interact 

with them at a later time depends on how they interact with the other entities at an 

earlier time (Ladyman et al., 2013). Yet due to the feedback loops among entities, 

some small change in the input value to the system can trigger a large systemic 

effect. However, the existence of feedbacks among entities does not necessarily 

mean a system is complex; it is complex if the feedback involves multiple entities 

and when this can give rise to higher level order/emergence (Ladyman et al., 2013). 

Complex systems are not completely random but also not completely ordered, and 

they also tend to be somewhat hierarchical in that entities are nested inside of 

subsystems and are also part of larger systems or other related interdependent 

systems (Ladyman et al., 2013). It is sometimes reasoned that all complex systems 

have this multi-dimensional property and that they are composed of many entities at 

different levels with lots of interaction between these levels making it difficult to 

isolate any component or reduce the whole system to one level.  

Complex systems have no top-down, centralized mechanism coordinating all the 

operations in the system. The entities in a complex system have a degree of 

autonomy, which is often formed through their capacity to adapt to the local 

environment based on a set of rules (Watson and Scheidt, 2005). Without centralized 

coordination and with a degree of autonomy, entities can synchronize their states 

locally, or they can cooperate with each other, which can result in the higher-level 

emergent patterns of the system. With autonomy and adaption, the complex system 

can exhibit a variety of different responses for the given changes in the system. It 

means that complex systems are often heterogeneous with diverse high-level 

emergent behaviour. Ecosystems, for example, are diverse complex systems because 

the entities in the systems are subject to evolutionary forces of natural selection and 

competition between species and their dependencies on each other for food and 

habitat. In grasslands, the grass itself depends on grazing (or cutting or burning) to 

reduce competition from larger plants, especially trees which in themselves cannot 

be grazed and once established can supersede grasses for so long that their seeds are 

no longer around to take advantage when gaps appear in a canopy.  

A complex system can also involve dense interconnectivity among entities. How the 

entities are connected and at what scales becomes key to understanding the system 

(Hannigan, 2013). Spatially, for example, a system may divide into subregions 

where each subregion interacts with other subregions, and subregions with different 

characteristics or traits may interact with each other differently depending on how 

they are connected. For example, different subregions can be thought of connecting 
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spatially with adjoining regions and with each other across other regions. With such 

degree of connectivity, the system stops being separate parts and becomes a network 

of connections. The key to understanding the system is then how entities flow in this 

network. Space may be redefined in terms of topology created by connectivity. 

Understanding of the system can be gained by studying the positions of entities in a 

network structure and by examining the degree of connectivity in the system (Jha 

and Sivakumar, 2017).  

Emergence arises only in systems that can be described as operating across multiple 

levels (De Wolf and Holvoet, 2005); in other words - the system has some kind of 

hierarchical structure. The emergent behaviour in modelling the natural world is that 

the systems are organized hierarchically across spatial scales from subatomic 

particles, atoms and molecules that are nutrients and raw materials for life (energy, 

hydrogen, water, oxygen, carbon etc.), to organisms that exist at the bottom of the 

food chain/web (bacteria, fungi, algae, grass), to ecological regions with complex 

food webs (herbivores, ants, predators etc.), to the ecosystem and biosphere and 

solar system (Mazzocchi, 2008). At each of these levels, there are certain emergent 

principles that do not appear in the lower level of the system (Kesić, 2016). 

Complex systems have the property of numerosity, which means there are many 

entities rather than one or two entities in the system. Often too there is plurality or 

many different types of entity. Again, we should notice that numerosity (and indeed 

plurality) in the system does not mean a system is complex. The overall system 

properties can be simply the summation of the properties of the entities in the system 

and not lead to emergence at other levels (Ladyman et al., 2013). 

To summarise, a complex system (for the purpose of this thesis) is a system that has 

many entities interacting with each other or with their environment in a somewhat 

disorderly but definable way, where the emergent behaviour of the system arises 

from local or individual interactions. 

Because there can still be some confusion with regard to the difference between 

complex systems and complicated systems, the next section attempts to distinguish 

these before discussing the components of the complexity in the grassland grazing 

systems studied. 

2.2.3 The difference between complicated systems and complex systems 

The terms “complicated” and “complex” are often used interchangeably; however, 

they are fundamentally different in dealing with the entities’ behaviours and the 

system structure. As highlighted in Section 2.2.1 and Section 2.2.2, complex 

systems refer to the emergence of unordered but robust behaviours presented by 

many locally and often non-linearly interacting components (Sun et al., 2016). 

Model complexity, however, can arise from complexity either in the model structure 

(Aldebert et al., 2016) or in the behaviours of the model (Duckworth et al., 2018).  

In order to distinguish “complicated” and “complex” in modelling work, Sun et al. 

(2016) proposed the usage of “complicated model” instead of “complex model” 

when referring to model structure. Both models have a structure with many entities 

and relations between them, and the entities can be diverse and interact with each 

other. However, in a complicated model, the outcomes of the system are usually 

knowable or predictable. To understand a complicated system, the primary way is to 

decompose the whole system into the main structural parts, and their relations and 

via further decomposition subdivide these into smaller parts and relations (Poli, 

2013).  
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The complex model, however, refers to the model behaviours/functions at the 

system level, which arises from lower-level interactions (as discussed in Section 

2.2.2). The entities can also be diverse and interact with each other, but they cannot 

be individually decomposed or isolated in order to understand the system, and thus 

the system behaviour emerges through the network of the individual interactions 

(Poli, 2013). The same structure of the complex model can produce an infinite 

variety of outcomes (or system functions/emergence) (Poli, 2013). This leads to 

outcomes of the complex model that cannot be precisely predicted, and emergent 

behaviours caused by the complexity of the system abound (Sturmberg et al., 2017). 

It is important to realise that although precise predictions of a complex system state 

are not possible (because a system may have multiple outcomes), predictions can 

still be useful and bounded with certainty estimates. This is especially important 

with regard to analysing the stability and uncertainty in predictions derived from a 

given state of the system modelled. One way to explore the sensitivities of the model 

or variations in predictions of a complex system is to analyse an ensemble of 

simulations where parameters are varied along with stochastic aspects provide for 

example by pseudo-random inputs. This will be illustrated in Chapter 7.  

  

Figure 2.1: Colloquial and scientific meaning of complex from Sturmberg et al. 

(2017), page 427 

 

Having summarised the properties of complex systems, distinguished complex 

systems from other complicated systems, and defined the grassland grazing system 

under study. Section 2.2.4 now focuses on the complex system nature of the 

grassland grazing system under study. 

2.2.4 The complex nature of grassland grazing systems 

Understanding the complexities of a system is the key to understanding its outcomes 

(Liu  et al., 2007). A grassland grazing system is complex because it contains both 

the interactions within the ecosystem (Milchunas et al., 1988) and interactions 

within its social-economic system through different stakeholders (Dobó et al., 2006). 

The degree of complexity depends not only on the number of types of interactions 

but also on how this social-economic-ecological system is organized and the degree 
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of interrelationships within each subsystem. It is a complex system that varies both 

in time and in space (Boyd and Svejcar, 2009). However, biological diversity is 

often equated with grassland complexity (Martinez et al., 2006). Descriptions and 

measurements of ecosystem diversity usually have a strong species and population 

basis (Pavlik, 1995). Those descriptions do not adequately account for the 

interaction among grassland components and the local environmental characteristics 

of grassland. They largely underestimated or ignore the fundamental effects on 

grassland dynamics of the behaviour of herders and/or land managers and their 

institutional arrangements (Dong et al., 2009).  

Complexity in the grassland grazing ecosystem arises through interactions of 

livestock and plants in an inherently heterogeneous land resource (Tainton et al., 

1996). Complex systematic behaviour can emerge from even relatively simple rules 

with few interactions or entities, and additionally, “the transition from a simple to 

complex problem can be triggered by an increase in the scale of the problem (either 

spatial and/or temporal by our desire to understand simple problem at a more 

mechanistic level)” (Boyd and Svejcar, 2009). The interactions within the grassland 

grazing system may be one directional or bidirectional and either strong or weak 

(Power et al., 1985).  

A typical example of this complexity is the ‘wolf-sheep’ model as implemented 

using the NetLogo by Wilensky (1997). The model contains three elements: grass 

which grows at a certain fixed rate, sheep who travel around (often randomly) 

grazing and breeding, and wolves who also move around hunting the sheep and 

breeding. The individual behaviour of the wolves and sheep is very simple, but the 

model leads to complex dynamics in the population of wolves and sheep. If there are 

too many wolves on the grassland, they could not survive due to the limited number 

of sheep that can be raised on the grassland and over-predation;  Similarly, if the 

number of sheep reach a certain degree, the sheep also could not survive due to the 

limited grass forage that grassland can provide (Wilensky, 1997). In addition, the 

grazing activities of sheep on the grassland also have an effect on the available 

forage produced by grassland. The interconnected relationship and individual 

interactions among wolves, sheep and the grass lead to the emergence of the overall 

stable systematic behaviours: a dynamic population of wolves, sheep and grassland 

productivity. However, the system could also “collapse” (sheep or wolf may die out) 

when one of the relations or interactions among wolf, sheep and grass is extremely 

weak or extreme strong (for example, the regrowth time of grass is too long or too 

short, the reproducing rate of wolves or sheep is extremely high or low). This means 

that the system behaviour depends on the initial conditions of the entities in the 

system. However, such dependency is quite gentle, such that tiny changes in the 

initial conditions will not result in the huge difference in the behaviours of the 

system, which is different from deterministic chaos where the system behaviour is 

sensitive to the initial conditions and thus they are unpredictable in the long term 

(Šarloši et al., 2014).   

The complexities of the grassland grazing system are manifested at a number of 

levels or scales. The scientist, manager, government and the herder, all those who 

are observers of the grassland grazing system, will define the scope of interaction 

behaviours themselves that are relevant to particular purposes (An et al., 2005; Liu 

et al., 2007; Briske et al., 2011). Generally, those complexities can be categorized 

into four types: complexity of the forage distribution (Seagle and McNaughton, 

1992); complexity of the livestock population (Fynn et al., 2016); complexity of the 

plant-livestock interaction (Cronin et al., 2015); and the complexity associated with 
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management strategies (Lemaire et al., 2014). When modelling such a complex 

system, it is important to choose an appropriate scale and perspective to analyse 

(Belsky, 1987). As an integral part of the grassland grazing system, herders and 

institutions’ actions contribute to the complexity of grassland grazing (Christina 

Prell, 2009).  

2.2.4.1 The complexity of forage distribution 

Different plant species have different digestibility for livestock, and abiotic factors 

(e.g. precipitation, temperature) have a dominant effect on the distribution and 

availability of forage (Walker, 2012). The floristic composition of vegetation 

(Pucheta et al., 1998), especially edible and productive species, determine the forage 

available for grazing due to its digestibility (Jouven et al., 2006); nutrient content 

(Whitehead, 2000); and accessibility (Bakker et al., 2003). Abiotic factors have an 

intense pressure and lead to large-scale changes to vegetation composition “from 

increased nitrogen deposition to altered disturbance regimes and new suites of plant 

species (many weedy) in regional floras” (Huenneke and Ward, 2003). In addition, 

researchers have found socio-economic changes can influence resource use patterns 

(Crecente et al., 2002), which in turn directly impact on the vegetation (Gordon et 

al., 2004). Factors such as changes in institutional control, levels of unemployment 

and local perceptions of rights have resulted in a dramatic increase in harvesting of 

natural resources in the world’s grasslands (Twine, 2005a; Rohde et al., 2006). 

Increased grazing intensities have a significant impact on the vegetation, which in 

turn reduces local resource supply (Kantrud, 1981; Qu et al., 2016). This results in 

increasing reliance on resources purchased from commercial harvesters or on 

substitute resources (Warford, 1987). In addition, the social-economic factors such 

as changes in institutional control, levels of unemployment and local perceptions of 

rights and responsibilities since democratic elections have resulted in a dramatic 

increase in harvesting of vegetation and the resultant impacts on the vegetation thus 

form a feedback loop between society and the natural environment (Twine, 2005b). 

2.2.4.2 The complexity of plant-livestock interactions  

The livestock population is complex because it is controlled by the condition of the 

grassland, the growth of livestock, herders’ willingness and power to gain from 

grassland, as well as the social-economic demands of livestock production (Seré et 

al., 1995; Turner and Williams, 2002). There are a number of direct effects of 

grazing on plants, which may subsequently affect their population dynamics 

(Hutchings and Gordon, 2001). In addition, other herbivores that live in the 

grassland are an important part of the grassland ecosystem (Farnsworth et al., 2002); 

in the grassland of Zeku, more than 200 species coexist (Zhou et al., 2007b), 

although it is common for most of the biomass in the herbivore population to be 

derived from three or four species (Suttle et al., 2007). However, there is a 

considerable degree of dietary overlap between those herbivores, with plant species 

preferred by one type of animal generally thought to be favoured by other species as 

well (Milton, 1999).   

In the past, it was generally believed that positive feedback between grazed grass 

and grazing herbivores was the norm (Srivastava and Jefferies, 1996). However, 

livestock grazing can also have negative effects on plant growth as a consequence of 

defoliation, and reduced biodiversity and stability of the grass ecosystem – leading 

to reduced productivity (McNaughton, 1993). In addition, the trample effect on 

grassland of livestock can lead to soil compaction to the extent that inhibits grass 

growth (Turner, 1987; Cluzeau et al., 1992). On the other hand, the effect of grazing 
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on resource distribution affects animal grouping patterns, social behaviour and the 

mating system (Bradbury and Vehrencamp, 2014). Removal of biomass and 

photosynthetic tissue tends to reduce plant growth rates (McNaughton et al., 1983), 

can increase mortality (Dyer, 2003) and decrease fecundity (Hanley et al., 1995). So, 

livestock has direct effects on vegetation as a result of the selection of bite site, bite 

depth and the amount of trample. Those behaviours play a key role in creating 

spatial heterogeneity in the grassland grazing (Hutchings and Gordon, 2001), and 

can form hotspot grazing sites (Person et al., 2003), where the productivity of plants 

is relatively high with abundances of nutrients and minerals (Augustine et al., 2003). 

“Heterogeneity is created as a consequence of particular parts or components of the 

sward” (Hutchings and Gordon, 2001).  

2.2.4.3 The complexity of grassland management  

Grassland grazing strategies and institutional arrangements, which involve the 

individual complexities discussed above, are key in a complicated grazing system. 

This means management approaches need to protect and conserve natural resources 

and enable the herders to maintain their livelihoods (Quinn and Ockwell, 2010). 

However, most grassland management policies were developed based on the 

concept of increasing and sustaining livestock production by reducing rangeland 

heterogeneity and favouring the most productive, most palatable forage species for 

livestock grazing (Fuhlendorf and Engle, 2001a). Obviously, this rangeland 

management approach is incapable of providing an ecological framework for 

maintaining heterogeneity of grassland systems (Fuhlendorf and Engle, 2001a). In 

fact, maintaining heterogeneity is important to maintaining productivity as well as 

biodiversity of grasslands (Fuhlendorf et al., 2006);   

The complexities mentioned above have contributed to the formation of different 

paradigms when modelling such a complex system—equilibrium and non-

equilibrium conditions. The next section focuses on these different paradigms.  

2.3 Ecological paradigms for modelling grassland grazing 

systems 

Due to the complex nature of the grassland grazing systems and the various types of 

the grassland grazing systems, equilibrium and non-equilibrium paradigms are 

employed to understand grassland dynamics. This section, therefore, discusses these 

two paradigms before reviewing the specific models for grassland grazing systems. 

The equilibrium paradigm is discussed in Section 2.3.1.1, followed by a review of 

the non-equilibrium paradigm in Section 2.3.1.2. Critiques of those two paradigms 

are discussed in Section 2.3.2, where state and transition models are briefly 

introduced. 

2.3.1 Equilibrium and non-equilibrium paradigms 

Paradigms play a critical role in science and help to establish models of nature that 

can be used to identify problems and interpret results (Kuhn and Hawkins, 1963; 

Andersen et al., 2006). The paradigms for rangeland management and modelling 

are, therefore, the important ways to understand the grazing system for both 

grassland managers and modellers (Illius and O’connor, 1999; Fuhlendorf and 

Engle, 2001b). Grassland grazing systems often have esoteric problems and 

experience unpredictable events and issues that can have major effects. This makes 

it a challenge to build a model of any grassland grazing system (Haijing Gong et al., 
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2006). For many years, scientists have been looking for general and simple models 

to solve specific problems. This has proven a difficult aim to realise when modelling 

a complex natural world that is coupled with complex human activities (Liu et al., 

2007). 

There are numerous optimization methodologies and technologies for managing the 

grassland grazing systems (Liu  et al., 2007a; Alberti et al., 2011; An, 2012a; 

Boumans et al., 2015), but losing insight of interactions among factors and lack of 

the knowledge of the specified systems are critical defects which lead to results that 

do not match actual data (Power et al., 1985). Simulations of such systems need to 

consider not only vegetation processes, but also biochemical processes, as well as 

climate factors (Liu et al., 2007). In addition, different management practices and 

the interaction between grassland and livestock are also important aspects that 

cannot be ignored. Furthermore, even for a very simple system, we also need to 

consider time, space, extreme events and discontinuity, which make the problem 

much more complicated. In order to understand the grassland grazing system under 

study, some parts of the system may be adequately expressed using simple linear 

models, whereas others may require methods to handle nonlinear dynamics. It 

should also be noted that as more factors need to be considered, the data 

requirements also increase, which can be problematic as data are often sparse, 

incomplete and may contain significant amounts of noise and error. 

The complex nature of grassland grazing systems has imposed the equilibrium and 

non-equilibrium debate on the theory of grassland modelling, which has important 

ramifications for identifying problems and interpreting modelling results (Agassi, 

1966). Ecologists have been debating the validity of two current paradigms for the 

assessment of the vegetation dynamic on grasslands. The equilibrium paradigm 

assumes that the dynamic system will always return to its pre-disturbance state or 

pre-disturbance trajectory when disturbance has stopped (O'Neill, 2001), that is, the 

system has the ability to regulate itself or balance itself against the internal drivers 

(for example, overgrazing) or external disturbance (for example, climate change). It 

postulates that, once disturbance occurred in a system, the system either returns to 

tie former equilibrium or equilibrates within a new “domain of attraction”, which is 

a new level of equilibrium (Hodgson and Illius, 1996).  

The non-equilibrium theory supposes that the system has a limited capacity for such 

regulation (Wu and Loucks, 1995). This section will discuss in detail. In terms of 

modelling grassland grazing, “the equilibrium model stresses the importance of 

biotic feedbacks such as density-dependent regulation of livestock populations and 

the feedback of livestock density on vegetation composition, cover and productivity. 

Range management under this model centres on carrying capacity, stocking rates 

and range condition assessment. In contrast, non-equilibrium grassland systems are 

thought to be driven primarily by stochastic abiotic factors, notably variable 

rainfall, which results in highly variable and unpredictable primary production. 

Livestock populations are thought to have negligible feedback on the vegetation as 

their numbers rarely reach equilibrium with their fluctuating resource base” 

(Vetter, 2005). Researchers have devoted much time to finding a suitable paradigm 

for the sustainable development of grassland grazing according to a different 

characteristic of the grassland, and equilibrium and non-equilibrium theory play to 

that theme (Derry and Boone, 2010). This thesis will then discuss the detail of the 

equilibrium and non-equilibrium theories and their critiques. 

2.3.1.1 Equilibrium paradigm 
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Equilibrium paradigm suggests a tight coupling of the plant-herbivore system. A 

system in equilibrium does not change dramatically, but it may still change 

seasonally, so temporal scale and resolution is important; that is, the vegetation 

composition might change a lot over a year, but is pretty similar at the same time of 

year (year to year) on a broad scale - and that this is a form of equilibrium even 

though things are continually changing. In fact, in the evaluation of grassland 

grazing systems, the equilibrium theory emphasizes the continuous and reversible 

vegetation dynamics (Briske et al., 2003).  

The equilibrium theory has developed from the European and US perspective of the 

rangelands in temperate climates, where “the developmental study of vegetation 

necessarily rests upon the assumption that the unit or climax formation is an 

organic entity” (Clements, 1916), which is known as “range model”. It assumes that 

the grazing intensity proportionally counteracts secondary succession, in a 

continuous, directional manner, to modify species composition variously (Westoby 

et al., 1989). The range condition is determined by the relative position of the 

community composition along a successional gradient. It assumes that the 

composition of a presumed pre-settlement climax community is the expected 

excellent range condition (Dyksterhuis, 1949).  

Equilibrium theory assumes that the vegetation composition will progress towards a 

climax community under the climate and soil conditions, through the process of 

succession (Begon et al., 1986). The climax community is therefore considered to be 

the most stable plant community that could occur. The disturbance, either internal 

drivers like grazing intensity, or external disturbance such as drought, will result in 

the vegetation being “pushed back” to an earlier successional stage, and once 

internal or external disturbance ceases or removed, the natural processes will lead 

back to the climax condition (Briske et al., 2003). In equilibrium theory, 

overstocking and overpopulation are recognized as the primary cause of degradation 

of grasslands. The management regimes aim to control the stocking rate and change 

the land tenure to maintain the grassland in an optimal condition. 

The stable state of such equilibrium grazing system can be evaluated by the carrying 

capacity of grassland, which is a widely applied method to management the 

grassland grazing system in many places around the world and especially to pastoral 

systems in some areas of Africa where livestock are primarily dependent on 

grassland grazing (Unruh, 1993; Lebert et al., 2006). Under the equilibrium theory, 

the secondary production (mainly livestock production) of the grassland is linearly 

related to the successional status of vegetation; then it is possible to calculate the 

number of herbivores that can be supported on the range—carrying capacity (Quinn 

and Ockwell, 2007). This density dependence assumption in the carrying capacity 

means the quantity of herbivores on the grassland is controlled by the primary 

production of the vegetation on the land. The management of the grassland grazing 

system is then to maintain the vegetation at some optimal sub-climax composition 

with the purpose to maximize the livestock production. 

The carrying capacity provides a powerful planning and management tool which has 

formed the basis of many proposed development interventions designed to ensure 

the continued sustainable exploitation of these grassland ecosystems (Sandford and 

Overseas Development, 1983; Mulindwa, 2009). Setting the carrying capacity of 

grassland implies that there is an equilibrium between a certain level of sustained 

livestock production and the grassland forage provision of grassland (Zubrow, 

1971). The carrying capacity assumes a climax vegetation production, which is 
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dependent on the soil and climate, potentially occurs at a particular site (Heady, 

1975). In livestock grazing systems, population density affects vegetation 

production and condition which leads to less vegetation being produced – plants 

need enough maturity to grow at their fastest rates, and if they are grazed to a lesser 

extent, then they grow more slowly (Evans et al., 2006).  

So based on this concept, the mainstream of equilibrium scientists’ efforts is to 

identify the climax capacity of grassland or the optimal carrying capacity of 

grassland (Shuan et al., 2007). Applications such as the prediction of grassland 

degradation or the modelling of grassland livestock system collapse from livestock 

overgrazing are widely discussed both in academic areas and by policymakers 

(Derry and Boone, 2010). It is also argued that climatic variability is the single 

largest cause of poverty in pastoral societies due to the spatial heterogeneity of 

resource distribution (Ojima et al., 1993; Parton et al., 1995). However, it seems that 

in regions where intensive dairy or beef production is highly dependent on the 

availability of grassland resources, the notion of a carrying capacity is not helpful, as 

potential livestock production is not restricted by the amount of available land, but 

it’s primary productivity which varies based on climatic and other factors as 

discussed (Svenning, 2002; Smit et al., 2008). 

Under the equilibrium theory, grazing intensity has a profound impact on species, 

see Figure 2.2, where H stands for the stocking rate of herbivores, and S represents 

the change in proportional species composition. These figures demonstrate a 

theoretical relationship between plant species and herbivores based on long-term 

grazing trials. “∆S=0 is the line where all points are stable with respect to grazing 

intensity” (Hodgson and Illius, 1996). However, what cannot be ignored is that 

although grazing is a key factor affecting plant composition, other abiotic factors 

including human activities (Bowles and Gintis, 2011), are usually more important 

than grazing (Arévalo et al., 2011).  

  

Figure 2.2: Plant-herbivore relationship from Hodgson and Illius (1996), page 286. 

The vegetation compositional zero isocline (∆S=0, left figure) and the herbivore 

zero isocline (∆H=0, right figure) in the plane of plant species composition (S) 

and stocking rate (H). Arrows indicate the direction of change.  

 

As for the impact of grassland grazing on biomass productivity, Zhao et al. (2011b) 

have a detailed explanation of experiments showing that different grazing intensities 

have a different impact on the above-ground net primary productivity (ANPP), the 

“increase-maximum-decrease” productivity pattern emerges during the period of the 

experiment. With the increase of grazing intensity, ANPP tends to decrease, and it is 
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more obvious in the heavy grazing area. The plants on the grassland provide the 

forage for livestock grazing, and most importantly, livestock affects the growth of 

plants via selective foraging (Stebbins, 1981a) and in how they trample the ground 

(Phelan et al., 2013).  

However, researchers have found that grazing activities have an over-compensatory 

effect on plant growth (Vickery, 1972; López-Mársico et al., 2015), but the overall 

effect depends on the net effect of compensation and inhibition, and it is highly 

affected by the specific environmental conditions and the management measures. 

That is, overgrazing reduces grassland productivity, but moderate, rational grazing 

can promote grassland productivity (McNaughton, 1979b; Luo et al., 2012).  

As can be seen from the right of Figure 2.2, with the increase of the change in 

proportional species composition, the stocking rate presented a “rapid increase—

max—slow decrease” trend. This indicates that plant composition has a strong effect 

on the grassland carrying capability. The “zero isocline for herbivore ∆H=0 means 

all joining points in the S-H space at which the herbivore population is constant for 

the given value of S” (Hodgson and Illius, 1996), page 285, where the constant is the 

maximum stocking rate that can be maintained on the grassland.  The management 

approach to equilibrium systems is generally to reduce the heterogeneity and to 

maintain stability. “In such systems, the perception is that the more diverse the 

system, the more complex the management required to optimize production and 

maintain system stability. Management actions aimed at dampening fluctuations in 

the system are effective because the manager has relatively strong control over the 

dynamics of the system via manipulation of management inputs, such as fertilizer 

levels, stocking rates and burning schedules” (Hodgson and Illius, 1996). 

 

2.3.1.2 Non-equilibrium paradigm 

The equilibrium paradigm addresses the importance of vegetation competition and 

plant-herbivore interactions on ecosystem behaviour, which are the important 

negative feedback mechanism that regulates the ecosystem (Briske et al., 2003). 

This is a high degree of internal system organization and regulation (Chesson and 

Case, 1986). However, when applying the equilibrium paradigm to the sub-Saharan 

African, where annual plants are the important component of the plant community, it 

cannot depict the reality of the grassland (Vetter, 2005), and it received criticism for 

its ineffective over-simplification of vegetation dynamics (Westoby et al., 1989). It 

is argued that grassland grazing systems are non-equilibrium because the 

environmental variability seldom allows the system to equilibrate (Behnke et al., 

1993). The vegetation composition depends on a variety of factors rather than the 

plant competition or the plant-herbivore interactions at the succession stages 

(Sullivan and Rohde, 2002). 

The non-equilibrium paradigm has been proposed by grassland scientists, 

sociologists and socio-economists to describe the dynamics of grazing systems 

susceptible to climatic variability and for which animal populations periodically 

collapse (Behnke et al., 1993). The density-dependent plant-herbivore interactions 

are weak or even do not exist in the non-equilibrium, and the abiotic factor, 

especially rainfall, are the dominant factors driving the productivity, distribution and 

composition of the vegetation (Quinn and Ockwell, 2007).  

Under the non-equilibrium paradigm, the patterns of highly variable climatic factors 

are more important in determining the productivity and the composition of 
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grasslands compared with livestock grazing, and they are also the important drivers 

of the system that vegetation and herbivores do not reach equilibrium (Quinn and 

Ockwell, 2007). The animal populations need most of the time recovering from the 

natural disasters (for example, drought or prolonged snow) and rarely reach densities 

at which density-dependent mechanism acts to moderate the animal populations 

(Fernandez‐Gimenez and Allen‐Diaz, 1999). This has the effect of decoupling the 

plant-herbivore relations that historically underpin ‘equilibrium’ theory in grazing 

systems; with non-equilibrium theory it is proposed that because of decoupled plant-

herbivore interactions livestock have little impact on forage resources (Sullivan and 

Rohde, 2002) and so are not to blame for the degradation of grassland that, in 

extreme circumstances, has been claimed to lead to desertification (Dean et al., 

1995).  

According to the non-equilibrium theory, the grassland grazing system has no 

equilibrium points in plant-herbivore space (Sullivan and Rohde, 2002). Plant-

herbivore dynamics track external (abiotic) variability rather than plant and 

herbivore density-dependent interactions (Vetter, 2005). As such, the policy advice 

is to support the development of pastoralist coping strategies to deal with climate 

variability, and that the land tenure and accessibility of the land are more important 

than stocking rates (Briske et al., 2003). It has proved that the fluctuations in 

primary productivity driven by low and erratic precipitation, which in turn breaks 

the density dependence between herbivore populations and the available forage on 

the grassland (Ellis and Swift, 1988).  

The differences between the equilibrium and non-equilibrium paradigms are shown 

in Table 2.1. The equilibrium paradigm existed at the very beginning of the 

scientific inquiry, while the non-equilibrium paradigm emerged more recently when 

assessing the effect of external disturbance on the system (Wu and Loucks, 1995). 

But in essence, both paradigms were used to interpret the system behaviour in 

response to internal or external disturbance (Briske et al., 2003). They are in a way 

saying the same thing, but are using different ways to say it (Derry and Boone, 

2010). In fact, neither paradigm is sufficient to interpret and evaluate the system 

dynamics for all grasslands (Lockwood and Lockwood, 1993; Briske et al., 2003). In 

areas with intensive plant competition and plant-herbivore interactions, the 

equilibrium paradigm has been proved more effective in interpreting the dynamics 

of vegetation (Walker and Wilson, 2002; Stringham et al., 2003). But models based 

on the equilibrium paradigm are limited by a stable equilibrium status with 

reversible continuous change. The non-equilibrium paradigm is more effective than 

the equilibrium paradigm in the places dominated by the events, which could cause 

non-reversible and discontinuous changes in vegetation dynamics (Walker, 1993). 

Table 2.1: The characteristics of equilibrium and non- equilibrium grassland grazing,  

modified from Hodgson and Illius (1996), page 283 

 Characteristics Equilibrium theory Non- equilibrium 

theory 

Philosophical 

viewpoints 

Stability   Stable and non-

resilient 

Unstable, resilient 

The balance 

between plants 

and animals 

Stable – negative 

feedback determines 

equilibrium position 

Plant and animal 

populations fluctuate 

widely – ‘non-

equilibrium.’ 



- 24 - 

Appropriate 

models 

Succession (range 

condition), stable 

isoclines, relatively 

simple dynamics 

State and transition, 

complex dynamics 

Real world 

ecological 

differences 

Environment  Uniform—rainfall 

high and consistent 

Variable – rainfall 

low and erratic 

Floristic  Comprised of 

perennial plants 

Comprised largely of 

annual plants 

Forage flow Relatively constant 

and predictable 

Variable and 

unpredictable 

Driving forces Grazing and fire, 

‘management – 

driving’ – the level of 

management input 

determines response, 

e.g. stocking rate, fire 

frequency, etc. 

Moisture availability, 

‘event-driven’ –

chance and 

contingency of non-

biological (e.g. 

rainfall) and 

biological (e.g. 

grazing) events 

determine dynamics 

Management 

policies 

Management 

control 

Strong  Weak 

Management of 

complexity  

Manipulative to 

reduce heterogeneity 

1. sedentary – 

camping, 

rotation and 

regulation of 

animal nos 

2. manipulative – 

aim to 

maximize 

stability and 

uniformity 

3. control 

selection  

Exploitation of 

heterogeneity 

1. migratory-

transhumance 

to exploit 

resource 

heterogeneity 

2. opportunistic 

and flexible – 

aim to 

maximize 

production 

while 

reducing risk 

3. allow 

selection 

 

2.3.2 Critiques of equilibrium and non-equilibrium paradigms 

Both the equilibrium paradigm and non-equilibrium paradigm have been widely 

employed in interpreting the vegetation and livestock dynamics, and they have been 

discussed in the last two sections. The core challenge is to identify under what 

circumstances the paradigms apply to better understand the grassland grazing system 

(Vetter, 2005).  

The dichotomy between density-dependent assumptions in equilibrium paradigm 

and abiotically driven population dynamics assumptions in the non-equilibrium 
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paradigm has been criticised for being a temporal and spatial overcomplication of 

the dynamics of grassland grazing systems. In southern Zimbabwe (Scoones, 1990) 

and southern Ethiopia (Desta and Coppock, 2002), during the non-drought years, 

density-dependent dynamics can be observed. When the quantity of the livestock 

reaches the carrying capacity of the grassland, the competition among livestock will 

increase, and therefore the reproductive rate has been decreased, and mortality rate 

has been increased, and this lead to an overall reduced secondary productivity (Jones 

and Sandland, 1974). However, during the drought years, the density-independent 

occurs. The rainfall has limited the forage availability, on which the population of 

livestock actually highly depends, while the competition for grass forage is less 

important in regulating the population of the livestock (Ellis and Swift, 1988). 

Therefore, neither equilibrium nor non-equilibrium is able to describe the dynamics 

of the livestock population along with the timelines in such systems. 

In addition, the equilibrium paradigm is exclusively applied at the coarse scales 

(Pickett et al., 1992), while the non-equilibrium paradigm is often at multiple scales 

(Fuhlendorf and Smeins, 1996); “the quality, quantity and seasonal availability of 

forage differs between parts of the landscape, and that people and livestock do not 

utilize all areas at the same frequency and intensity. Herded animals use the 

landscape differently to animals kept in paddocks, resulting in different impacts on 

different parts of the landscape. Some areas are more resilient to transformation 

than others, either because livestock cannot access them for prolonged periods (e.g. 

annual grasslands, grazing areas far from permanent water) or because the 

dominant plant species are tolerant of heavy defoliation (e.g. stoloniferous grasses). 

Patterns and processes in such heterogeneous landscapes are scale dependent, such 

that inferences about large-scale behaviour cannot reliably be made on the basis of 

smaller-scale observations” (Vetter, 2005). The scale-dependence is an important 

prerequisite for the assumptions for the implications of equilibrium and non-

equilibrium paradigms, but it has not been clearly defined upon those two paradigms 

(Walker and Wilson, 2002). “Many range ecologists are struggling to overcome the 

mismatch between the scales of ecological investigation and those at which 

ecological processes in rangelands take place. While there is now a plethora of 

experimental results at the plot scale, larger-scale data from heterogeneous 

landscapes are still scarce” (Vetter, 2005).  

A critique of the current paradigms demonstrates that the criteria based on which 

distinguished the two is not enough to represent the dynamics of the grassland 

grazing system. Numerous researchers suggest that species composition may vary 

substantially in response to disturbances, while ecosystem variables including 

species richness, productivity and energy use, may remain relatively constant 

(Chesson and Case, 1986; Tilman and Downing, 1994; Wardle et al., 1999; Brown 

et al., 2001). It has even been hypothesized that species fluctuations may represent a 

compensatory mechanism that contributes to ecosystem stability (i.e. homeostasis 

from Ernest and Brown (2001)) in numerous ecosystems (Seabloom, 2007), which 

indicate that the emphasis on vegetation compositional dynamics alone may be an 

insufficient criteria to evaluate these two paradigms. 

Evidence summarised by Friedel (1991) has shown that the vegetation responses to 

grazing, drought and fire are often not linear and reversible. That equilibrium and 

non-equilibrium are extremes along a continuum and that many systems encompass 

elements of both, are widely supported (Ellis and Swift, 1988; Sullivan and Rohde, 

2002; Oba et al., 2003). There are multiple thresholds of the rangeland states, which 
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leads the employment of State-and-Transition models (ST models) as an alternative 

to the rangeland succession model (Westoby et al., 1989).  

The ST model incorporates multiple successional pathways, multiple steady states, 

thresholds of change (Stringham et al., 2003), and it enables the modelling of both 

continuous and discontinuous dynamics of the vegetation (Briske et al., 2003). 

Although the ST models can be considered to as a non-equilibrium paradigm 

(Westoby et al., 1989; Briske et al., 2003), they also have been used to understand 

the grassland grazing system with succession-based equilibrium models(Phelps and 

Bosch, 2002). 

The main principle of the ST model is to construct a realistic model of the dynamic 

system, which can be either reversible or irreversible, equilibrium or non-

equilibrium (Cingolani et al., 2005a). This flexibility of the modelling framework in 

the ST model makes it continuously developed and clarified, and it becomes a 

“management language” rather than an ecological theory (Westoby et al., 1989). The 

vegetation dynamics can fall into either transient dynamics (“driven by disturbance 

or weather events, produce significant but temporary changes in vegetation 

composition or production that can be reversed in a few years to several decades”) 

or state transitions (“involve persistent changes in vegetation such that recovery of 

the former state is dependent on unacceptably long recovery times, active 

restoration, extreme events, or a reversal of climatic change that occurs over 

several decades or never occurs”) (Bestelmeyer et al., 2003). However, many ST 

models are developed based on a narrow set of ecological and management 

practices, and a limited emphasizing on livestock production (Knapp et al., 2011). In 

addition, it may be difficult to identify a reference state as “healthy” (Stoddard et al., 

2006), and the mechanism behind the change is not clearly represented in the model 

(Wintle et al., 2011).  

As for the grassland grazing system in this thesis, vegetation dynamics are the 

primary focus. A better way to understand the dynamics of grassland grazing is to 

put the debate between equilibrium and non-equilibrium theory aside, and take the 

ecological, socio-economic and institutional effect of grassland grazing into 

consideration, analysing it at a broader scale (different grazing strategies and larger 

spatial/temporal scale) (Oba et al., 2003; Richardson et al., 2005), even if it does not 

encompass all the processes or states argued in the equilibrium or non-equilibrium 

paradigms (Ellis and Swift, 1988; Briske et al., 2003).  

2.4 Grassland grazing system models 

In this section, specific models of grassland grazing systems will be reviewed. This 

includes empirical models (Section 2.4.2), process-based models (Section 2.4.3) and 

agent-based approaches (Section 2.4.4). The common characteristics and the pros 

and cons of those models will be discussed at the end of each section.  

2.4.1 Introducing the different types of model 

A variety of models have been developed to help understand the dynamics of the 

grassland grazing systems. Each specific model tends to be used to provide a 

summary and understanding of the observed data or some phenomenon of the 

system being studied. Models are useful for the interpolation, extrapolation and 

prediction of the real world system (Thornley, 2001). Models for grassland grazing 

systems can be deterministic or stochastic, dynamic or static, mechanistic or 

empirical, mathematical or computational, and vary based on the purpose of the 
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models. This section contains subsections which describe the main types of model 

which are introduced briefly in this first part. The characteristics and limitations of 

current models are summarised at the end of each subsection. Agent-based 

modelling approaches are summarised in Section 2.4.4. 

Deterministic models tend to produce definite quantities or exact predictions for a 

system based on clearly defined relationships. Clements (1916)’s succession 

pathway is an example of such a deterministic model used to predict succession in a 

grassland grazing system, where “succession towards this climax is a steady 

process. Grazing pressure produces changes which are also progressive and are in 

the opposite direction to the successional tendency. Therefore, the grazing pressure 

can be made equal and opposite to the successional tendency, producing an 

equilibrium in the vegetation at a set stocking rate” (Westoby et al., 1989). 

Deterministic models can be used to better understand uncertainty by varying their 

initial conditions. Weather models, for example, are typically deterministic, but their 

initial conditions (temperature, pressure, etc.) can never be known precisely. 

Therefore, the initial conditions are varied slightly across numerous model runs, and 

the distribution of the results provides information about the uncertainty associated 

with the weather forecasts. Where all models produce quite different results from 

only small variations on the initial conditions, the deterministic model suggests that 

there is a large degree of uncertainty in the system. In addition, the parameters in the 

deterministic models can also cause the uncertainty of the model outputs. For 

example, in the Light Use Efficiency (LUE) model (details can be found in Section 

6.3), the values of the parameters (for example, the maximum radiation conversion 

efficiency or the projected leaf area per unit mass of leaf carbon) are not the same 

when it is employed in a new place with different vegetation compositions. By 

varying the value of the parameters, we can estimate the distributions of the 

grassland productivity, and the uncertainty of the LUE model can be inferred. The 

parameter values of the LUE model are usually kept fixed (typically we use the 

average values of multiple measuring sites for a giving vegetation species) while the 

model is running. This is the common way to use the deterministic models.  

On the other hand, stochastic models consist of at least one random element as part 

of the model to represent the relevant processes behind it. One critical problem with 

the stochastic models though is that they can be difficult to validate or explain the 

mechanism behind the model outcomes (Thornley, 2001). In a stochastic model, 

some of the parameters or processes can be described by a probability distribution, 

for example, the direction of the next movement of the livestock on a land can be 

simply modelled through picking up a random direction, and it can change 

throughout the period of the model running. 

When describing a model as dynamic, what is meant is that it is designed to 

represent the change in the status or quantities of the system over time. There are 

two main types of dynamic model. One which ticks at regular intervals, where some 

things are modelled for example from day to day or from year to year. Whereas 

others can be event-based and one set of events tends to be scheduled to occur in 

more continuous handling of time, for example, baby animals can be scheduled to 

appear at around about a set time in a model. In addition, there can be a hybrid that 

mixes these two treatments of change over time. In such models, the time t is often 

being expressed as an independent variable in the ordinary differential or difference 

equations (in a discrete manner) mathematically, for example, the rates of changes in 

the shoot and root mass described in Johnson (2013a)’s grassland productivity 
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model. Static models (as opposed to dynamic models), however, do not model 

changes over time and therefore cannot produce time-dependent status or quantities. 

An empirical model is usually used to explore the quantitative relationships with two 

or more things (which can be described as either mathematical or statistical 

equations), without the consideration of any scientific content but still following a 

particular principle (Standiford and Howitt, 1992). A mechanistic model, however, 

can additionally provide a certain degree of understanding or explanation of the 

phenomena being modelled (Thornley, 2001). “A mechanistic model is a structure of 

empirical components. Any empirical component can be modelled mechanistically at 

still lower levels. However, any model or scientific explanation has to stop 

somewhere, and a mechanistic model is therefore always incomplete” (Thornley, 

2001). However, it also clear that a well-constructed mechanistic model should be 

flexible and transparent to modification and extension without practical limit. 

Section 2.4.2 will discuss more on such models.  

A mathematical model is a description or explanation of a system state, phenomenon 

or processed by mathematical language and concepts; it may present with a 

combination of either deterministic or stochastic, dynamic or static, mechanistic or 

empirical, mathematical or computational models. With the increasing availability 

and capability of computational resource, more computing power has enabled the 

modelling of lower levels in systems where previously this was not possible because 

of the associated difficulty (Levin et al., 1997). Such low-level components and 

mechanism usually are difficult to be described in a mathematical manner as a 

whole, for example, the foraging behaviours of the herbivores (Dumont and Hill, 

2004a). Those computational models provide a new way to explore the higher-level 

system behaviour that arises from entities in the lower level. 

This thesis will review the models of grassland grazing systems in three categories: 

empirical models (Section 2.4.2), process-based models (Section 2.4.3), and 

individual-based or agent-based models (Section 2.4.4). 

 

2.4.2 Empirical models 

Empirical models of the grassland grazing systems are often static models which 

aim to explore the relationship between the driving factors and the response 

indicators (Van Oijen et al., 2018). Usually, data are collected that captures the state 

or quantity of the entities in the grassland grazing system, but the data alone cannot 

provide more than a description or summary of the entities. the empirical model is 

the most intuitive and direct way to understand such data. In many process-based 

models, some processes are also presented by the empirical relationships (Thornley, 

2001), and they are, therefore, the important models for the grassland grazing 

systems. 

The empirical models can be used in a linear regression fashion. For example, Bai et 

al. (2007) used a linear regression model (species richness = a × productivity + b) 

under different grazing intensities in Xilingol Grassland in China to explore the 

effect of grazing on grassland productivity and species diversity. It has found that 

grazing decreased both primary productivity and species richness. Couvreur et al. 

(2006) identified a linear relationship between the proportion of fresh grass in the 

cow diet and milk fatty acid composition and also butter properties. However, these 

two examples only involve one driving factor to the response variable,  
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There are empirical models that the number of driving factors are more than one, 

which leads to the employment of multivariate regression models. For example, 

Verbyla and Venables (1988) used a multivariate regression model with constraints 

which can be written as two seemingly unrelated regressions, to examine the effect 

of the sex and grazing regimes on the growth of the lambs on the grassland. Further  

vegetation-environment relationships were revealed through a multivariate 

regression, which aimed to explore the effect of seasonal fire, bison grazing and 

climatic on the residual aboveground productivity after grazing and abundance of 

plant functional groups (Coppedge et al., 1998).  

More generalised linear and additive mixed models were developed by Woodcock et 

al. (2005), where the effect of grazing on the vegetation structure was quantified; the 

impact of different management treatments (grazing, mowing, mulching twice per 

year, mulching once per year, succession) on functional and floristic development 

was investigated using generalised linear models (GLM) (Römermann et al., 2009). 

The generalized linear mixed model (GLMM), which was an extension of GLM 

models, was employed by Jamil et al. (2013) to identify which species traits and 

environmental variables associated with the species distribution; and also, van Klink 

et al. (2015) found an overall significant positive effect of increasing grazing 

intensity on plant diversity by using GLMM.  

A generalized additive mixed model (GAMM) allows the researcher to break the 

total variation into fixed effect, random effect and the residual variation (Dumont 

and Hill, 2004a). For example, by adding gradient direction and year as random 

effects, Sasaki et al. (2018) suggested a nonlinear relationship between the distance 

from the livestock camp and the cover of each vegetation functional group except 

forbs.  

In addition, non-linear regression models are outlined by Brown et al. (1976), where 

the effect of age on the lifetime growth of beef cattle was quantified. Frank and 

Hofmann (1989) found a nonlinear relationship between air temperature or growing 

degree-days (GDD) and growth stage scale (HGS) under different grazing intensities 

for western wheatgrass. Nonlinear species-interaction models have been used to 

explore the effect of the pairwise interactions among the species in the vegetation 

communities on the grassland diversity (Connolly et al., 2013). Carmel and Kadmon 

(1999) used a slope-aspect interaction model under different grazing intensities to 

explore the effects of grazing and topography on long-term vegetation changes 

(Carmel and Kadmon, 1999) for a mountainous area in the Mediterranean region of 

Israel. More structuralized equation model can be found in the evaluation of abiotic 

factors controlling species densities in both grazed and un-grazed coastal meadows, 

and it is actually an extended multivariate regression model (Grace and Jutila, 1999).  

With the increasing availability of spatial data, more spatially explicit empirical 

models were developed. An example is Amiri et al. (2014)’s work which aimed to 

identify suitable land for livestock grazing considering the spatial heterogeneity and 

vulnerability of the vegetation to drought and erosion. More recently, Tsutsumida et 

al. (2017)’s work on  spatial and temporal trends of livestock population change 

used geographically weighted principal component analysis (GWPCA). Such 

models have to date tended to be implemented at the landscape scale considering the 

spatial heterogeneity of the grassland ecosystem in different landscapes (Roy and 

Tomar, 2000).   

Generally, empirical modelling is rooted on the key principle of William James's 

“radical empiricism”, which postulates that all knowledge is rooted in connections 
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that are given-in-experience (James, 1976). Empirical modelling aspires to craft the 

correspondence between the model and its referent in a way that its derivation can 

be traced to connections given-in-experience. The underlying philosophy of 

empirical models has been described by James (1976), that “the knowing can easily 

be explained as a particular sort of relation towards one another into which 

portions of pure experience may enter. The relation itself is a part of the pure 

experience”; such models give an intuitive and flexible representation of the 

relations among things. However, as the data collected in the grassland grazing 

systems are usually under certain local climatic, vegetation and soil conditions, 

when extrapolating of empirical models to the new conditions, they may be 

speculative or even false interpretation of the system (Van Oijen et al., 2018); in 

addition, the empirical models are usually built under certain spatial and temporal 

scale, from laboratory via field scale to global scale, the results from different scales 

are sometimes contradictory (Reichstein and Beer, 2008). 

 

2.4.3 Processed-based models 

Process-based models are based on theoretical understanding of relevant ecological, 

biophysical or physicochemical processes, and they provide a useful framework to 

incorporate specific responses to novel conditions (Cuddington et al., 2013). A 

definitive system for classifying process-based grassland grazing models may not 

exist. Scholarly literature about grass models is vast and diverse. This section 

focusses on process-based models involving interactions or feedback between 

vegetation and grazing animals, or at least the effect of grazing is considered in the 

model (either embedded in the input data or the processes of the model). 

Three types of process-based models can be distinguished according to their 

modelling purpose: grassland process models; grassland livestock production 

models; and, decision support systems. A similar classification can be found in 

Feenstra (1998). This review does not intend to list all the models but rather, to 

provide an overview of current models with some pros and cons.  

2.4.3.1 Grassland process models 

Grassland process models focus on the process of vegetation development and 

interactive feedbacks between this, the environment and livestock. The dynamics of 

vegetation can be represented from the scale of individual plants to large scale 

regions. A variety of environmental conditions and geographical places have been 

investigated using such models. As vegetation dynamic depends on climatic 

conditions, models are also developed to explore the effect of climate change, 

grazing and management regimes on grassland ecosystems through biophysical or 

ecological processes of the system (Anderies et al.). 

An example is the Discrete-Time Model of Woodward et al. (1995b) , which is a 

relatively simple model of pasture growth and removal. The model assumes the rate 

of grazing by each animal is proportional to the herbage mass of the field. The 

results showed that compared with grazing stocking rate and the initial conditions of 

the grassland, grazing management has no or little effect on grassland productivity. 

The main issue with this model is that it relies heavily on detailed data about the 

physical condition of grasslands and thus is thought likely to be unsuitable for 

modelling area where the physical conditions are very variable and how they vary is 

not well understood (Woodward et al., 1995b). 
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A more complicated model is the Tropical Pasture Simulator developed to simulate 

the grass growth in Kikuyu (Herrero et al., 2000b). The model considers vegetation 

physiological processes: light interception and photosynthesis; leaf area expansion; 

growth; ageing; and, senescence of plant tissues. The grassland productivity 

dynamics were simulated under rotational or continuous grazing with responses to 

nitrogen fertiliser, temperature and irradiance. 

The Carbon Cycle of Grassland (CCGRASS) was developed for long-term studies 

of the effect of grazing on vegetation productivity - to evaluate the carbon 

sequestration in the soil (Dasselaar et al., 1995). In the model, the contribution of 

grazing to the soil carbon sequestration depends on the site-specific stocking rate, 

herbage intake per animal and the herbage digestibility. In addition, the CENTURY 

model, which is a widely used vegetation productivity model, was developed to 

simulate the dynamics of carbon (C), nitrogen (N), phosphorus (P), and sulphur (S) 

for different plant-soil systems for either grassland systems, agricultural crop 

systems, forest systems, or savanna systems (Parton, 1996). For the CENTURY 

model, the grazing effect on the vegetation was simply assumed proportional to the 

vegetation mass. 

At the leaf scale, Coughenour (1984) constructed the GRASS model to examine the 

effect of grazing on the grass growth, water use and light interception, but the effect 

of leaf angle on the productivity was not considered. By including and excluding 

livestock grazing in the simulation, the Hurley Pasture Model  (Thornley and 

Cannell, 1997) was used to reveal the impact of grazing on grassland. Thornley and 

Cannell (1997) suggested that grazing can drastically alter the magnitude and sign 

(positive or negative) of the response of grasslands to climate change, especially 

accounting for rising temperatures. 

A comparison of some of grassland process models is shown in Table 2.2. The 

common drawbacks in these are summarised at the end of Section 2.4.3.2. 

Table 2.2: Comparison of grassland process models, modified from Feenstra 

(1998) and (Ehrhardt et al., 2018) 

Model  Spatial 

resolution  

temporal 

resolution 

Pros/cons Key 

reference 

Tropical 

Pasture 

Simulator 

1 m2 daily A mechanistic model representing 

the growth of vegetative tropical 

pastures under rotational or 

continuous grazing with responses 

to nitrogen fertilizer, temperature 

and irradiance that can be used as a 

tool to study management options 

for the development of sustainable 

grazing systems; 

Too many parameter values need 

quantified when applying to novel 

conditions, and plant population 

dynamics are not explicitly 

presented in the model. 

(Herrero et 

al., 2000a). 

Discrete 

Time Model 

1 ha daily A simple process-based modelling 

that can simulate the effect of 

different grazing management 

(Woodward 

et al., 1995b) 
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strategies (rotational or continuous 

grazing) on grassland productivity; 

Needs sufficient and precise 

information about the system, which 

makes it difficult to be applied to 

the other areas, and it only focuses 

on the productivity of the system. 

CCGRASS site yearly Well suited for management and 

climate interaction on soil and plant 

dynamics; 

Effects of grazing and mowing 

incorporated from site-specific 

experimental data, and it does not 

include the effects of the other 

herbivores in the model. 

(Dasselaar et 

al., 1995) 

CENTURY 1 m2 monthly Well suited for studying the 

biogeochemical cycling:  C, N, P, 

and S dynamics for the plant soil, 

and seasonal effects of burning and 

grazing simulated; 

Only simplified herbivore 

Routing. 

(Parton, 

1996) 

GRASS 1 m2 monthly Well-designed for the assessment of 

the impact of grazing on African 

grassland systems: shoot number, 

C, and N budget, energy 

balance, and water 

budget; 

Physiologically based grazing-plant 

feedbacks at leaf level makes it 

difficult to be applied for large-scale 

studies. 

(Coughenour, 

1984) 

Hurley 

Pasture 

Model 

site yearly Simulate the fluxes of C, N, and 

water and allows for the study of 

soil-grass-animal interactions with 

mature, nonlactating sheep; 

Grazing effect is associated with 

stocking rate, and like all the other 

models, many parameters are 

needed. 

(Thornley 

and Cannell, 

1997) 

APSIM site daily It is flexible for the users to assess 

the management actions, and 

grazing in rotations (based on SGS 

model, which is also listed in this 

table) and is a major strength of the 

model; 

It does not handle phosphorus 

properly and, unless configured 

with GRAZPLAN, only a simple 

representation of the grazing animal 

is possible. 

(Holzworth 

et al., 2014) 
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CenW 1 ha daily The generic structure and 

comprehensive inclusion of 

many key processes and system 

feedbacks. It thus responds both 

directly and indirectly to a wide 

variety of changes in external 

environmental and management 

conditions. It is also embedded in a 

user-friendly interface that allows a 

wide range of changes to 

management or environmental 

condition to be readily 

implemented; 

CenW relies on the assumption of a 

horizontally uniform plant canopy 

and includes no sophisticated 

phenological routines. It is thus 

suitable for grass swards or forests 

with uniform tree 

cover, but not suitable for modelling 

isolated plants. 

(Kirschbaum 

et al., 2015) 

SGS 1 m2 daily DairyMod contains a detailed 

simulation of photosynthesis, 

growth, C partitioning in response 

to water and N stress, designed for 

grassland systems and includes a 

sub-model of the animal and its 

effects on the pasture through 

grazing and the spatial modelling of 

the deposition of excreta, as well as 

capturing sward dynamics, such as 

the competition between grasses 

and legumes, grazing offtake rates 

and cutting residuals; 

The model does not simulate herd 

dynamics, tactical buying or selling 

of animals. The model does not 

account for plant death per se. 

(Johnson, 

2013b) 

DayCent 1 m2 daily It examines soil C and N dynamics 

for a wide range of C (CH4 and 

CO2) and N (N2O, NOx, NH3, and 

N2) gas fluxes, and it is adjusted 

based on the site-specific 

information; 

DayCent does not explicitly 

simulate animals and therefore 

cannot simulate enteric methane nor 

can the model simulate multi-

species cropping or grassland 

systems. 

(Parton et al., 

1998) 
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SPACSYS site daily It links plant, water and nutrient 

cycling together, and the model can 

simulate root architecture; 

The model has a large number of 

parameters and is only applicable to 

plot and field scale. 

(Wu et al., 

2007) 

Note: the site means the model was implemented in a relatively small place where 

the experiment or observation data was collected. 

2.4.3.2 Grassland livestock production models 

Grassland livestock production models consist of various components for the 

simulation of livestock productivity. These include how the grass is converted into 

meat or milk or how grazing effects grass growth. Some researchers have found that 

there was a linear relationship between animal production and vegetation utilisation 

rate (Bellamy and Lowes, 1999); but, in fact, it is quite complicated to identify the 

relationship between grass and livestock due to their dynamic and bidirectional 

features. The dynamics of livestock production depends on such herbivore-plant 

interaction (Hutchings and Gordon, 2001). However, more experiments or grassland 

monitoring work needs to be done to get the right value of parameters in specific 

areas (for example, grazing time and frequency) (Vries and Daleboudt, 1994; 

Johansen et al., 2004; Augustine and Derner, 2013). 

An example is the vegetation dynamics in the rangeland production and utilization 

model (SPUR) (Hanson et al., 1988). SPUR enables the quantification of the effect 

of grazing management, environmental variation, and fertilizer application on 

livestock production through carbon (C) and nitrogen (N) flow in the soil-plant-

animal continuum (Hanson et al., 1988). A more detailed model on dairy cow 

grazing with mathematical description of the daily energy requirement for growth, 

fatting and milk yield was shown in Topp and Doyle (1996)’s model, which includes 

both abiotic factors (temperature, water, light, nutrients) and biotic processes 

(growth and senescence), as well as the energy partitioning in the cow (conversion 

of nutriment to milk or fat). In addition, the PaSim (Calanca et al., 2007) and the 

DairyMod (Johnson, 2013b) models are both process-based models, which involves 

C and N cycling through the shoot and root compartments, and in particular, 

compared with the other models, the livestock rotations between paddocks in the 

DairyMod enables it to simulate the effect of managemental practices. 

Table 2.3 provides a summary comparison of grassland livestock production models. 

One of the major limitations to all of the models listed in Table 2.3 is that they are 

highly site-dependent models. The values of parameters and the relationships in the 

models are derived from local or regional observations. However, the properties of 

livestock and the types of livestock varies spatially, which make them sometimes 

difficult to be implemented in the new conditions.  

Table 2.3: Comparison of the grassland livestock production models, modified 

from Feenstra (1998), page 9-17 

Model  Spatial  Time  Pros/cons Key reference 

SPUR 1 m2 daily Simulate C and N dynamics 

for the plant-soil system, and 

simulates plant-herbivore 

interactions at multi-site or 

(Hanson et al., 

1988) 
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pastures, and it can simulate 

the effects that changes in 

temperature and precipitation 

regimes and CO2 may have 

on milk production and silage 

conservation; 

However, the vegetation 

composition in the model is 

complicated. Not suited for 

tropical or phosphorous 

limited soils. 

Topp and 

Doyle Model 

site daily Simulate changes in above 

and below ground plant 

production, simulate the 

growth, milk production, and 

grazing;  

Unsure of model performance 

in tropical conditions. 

(Topp and 

Doyle, 1996) 

DairyMod 1 m2 daily The same as SGS in Table 

2.2, they are integrated into 

one system. DairyMod is a 

sub-model which can simulate 

herd size, calving dates, 

animal weight, lactation status 

etc., and livestock rotations 

between paddocks; 

But the livestock dynamics 

have not being represented, 

tactical buying or selling of 

animals. 

(Johnson, 

2013b) 

PaSim 1 ha daily An animal module (sheep or 

cattle) in the model simulate 

the ingested biomass, milk 

production, gain of live 

weight, animal excreta and 

CH4 emissions; 

PaSim does not yet consider 

nutrients other than N. Carbon 

pools are distributed over the 

whole soil profile rather than 

described in the soil layer, and 

it does not take into account 

plant competition. 

(Calanca et 

al., 2007) 

Note: the site means the model was implemented in a relatively small place where 

the experiment or observation data was collected. 

 

Although this chapter has not reviewed the literature on all process-based models of 

the grassland grazing systems, the common characteristics and drawbacks of these 

diverse set of models can be summarised as follows: 
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• The models represent the dynamics of vegetation and herbivore via either 

biophysical process, chemical cycling, eco-functioning or energy flows, 

which make them capable and available to simulate lots of diversified 

grassland grazing systems. 

• The values of the parameters are usually site-dependent (under certainty 

spatial or temporal scale), which means the models may be difficult to apply 

in new conditions, though they may work fine in the case study areas where 

they have been applied. 

• Climate data are commonly used as a driving force behind the growth of the 

vegetation, but the errors propagated from the uncertainty of such data are 

rarely reported. 

• The evolution and co-evolution of the interactions between plants and 

herbivores are not well-represented.  

• Plant-herbivore feedback is simulated in a “static” way (herbivores cannot 

move), and the stochastic nature of foraging behaviour of livestock is usually 

disregarded. 

 

 

2.4.3.3 Decision support systems 

What cannot be ignored is that grazing activities are under the guidance and 

involvement of humans that often try to maximise the utility of natural resources, 

and optimise biological utilization efficiency via grassland management 

(Heitschmidt and Stuth, 1991; Vallentine, 2000; Conant et al., 2001). It is possible to 

achieve high and stable productivity of grasslands by balancing grazing activities 

and grassland ecosystem protection (Pompilica and Romulus, 2014). This kind of 

management could especially benefit degraded grasslands, whilst helping to 

maintain the living standards and livelihoods of herders (Kim et al., 2006). Any 

reasonable grassland management strategy is constrained by various factors 

including meat price (Bernués et al., 2011), national policies (Li and Huntsinger, 

2011), and local culture (Maurer et al., 2006).  

Decision support system (DSS) models allow the user to examine the potential 

effects of management decisions in a given system based on a set of decision rules 

that have been formulated in the model (Feenstra, 1998). In the mid-1990s web-

based decision support systems were developed to enable users to monitor, 

investigate, analyse and predict likely outcomes of the decision on grasslands. One 

such recently developed model is the FORAGE model, which aims at facilitating the 

best management practice for grazing land (Zhang and Carter, 2018). The structure 

of the FORAGE is shown in Figure 2.3. 



- 37 - 

 

Figure 2.3: Structure of the FORAGE system (the arrows indicate information 

flow) from Zhang and Carter (2018), page 304 

 

The underlying theory of the FORAGE system is the GRASP model, which is a 

deterministic, point-based, native pasture model developed for semi-arid and 

tropical grasslands (Chilcott et al.). GRASP is an empirical model designed to 

simulate aspects of grass production and to predict soil water, pasture growth and 

animal intake by separating the processes of soil evaporation, pasture transpiration 

(McKeon et al., 1982). Thus, the defects of FORGE are similar to all the other 

empirical models, which have been discussed in Section 2.4.2. 

Another typical DSS model is GrazPlan, which was designed to simulate the 

biophysical processes of grassland grazing (Donnelly et al., 2002b). GRAZPLAN is 

a suite of the biophysical process-based simulation tools for Australian grazing 

system management (Donnelly et al., 2002b). It has been developed by CSIRO Plant 

Industry to test the sustainability of different management strategies (for example, 

stocking rate and selection of pasture species) with an economic purpose (Freer et 

al., 1997). The DDS tools were designed to generate cost and price indices to enable 

estimation of production risk in financial as well as in biological terms (Moore et al., 

1997a). Daily weather information is needed as input for the model (Donnelly et al., 

2002a). The pasture growth part involves a process-based model considering the 

daily root and shoot growth of the grass, based on the light use efficiency model 

(LUE, which will be further reviewed in Chapter 6) (Moore et al., 1997b). It highly 

depends on the observed climatic, vegetational and the empirical values from the 

other models, which makes it impossible being implemented in the areas where for 

example the daily climatic data are not available. The basic relationships in the 

GRAZPLAN family are shown in Figure 2.4, and the more detailed description can 

be found in (Donnelly et al., 1997; Freer et al., 1997; Moore et al., 1997b). 
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Figure 2.4: The relationship between the GRAZPLAN family of decision 

support (DS) tools and the GRAZPLAN pasture and animal models, 

Donnelly et al. (2002b), page 117 

 

An example of a state-and-transition model implemented in a DSS is the Landassess 

spatial decision support system, which was developed in collaboration with 

government agencies responsible for pastoral land management in the Northern 

Territory, Australia. Landassess is based on a state and transition model assessing 

sustainable grazing management within spatially variable paddocks, and it examines 

the approach used to handle some of these modelling issues (Briske et al., 2005; 

Bashari et al., 2008). It is based on a number of alternative stable system states 

derived from vegetation change, soil erosion risk, animal forage preference and a 

suite of possible transitions associated with the change from one state to another. A 

transition from one state to another state is defined in terms of alternate causes that 

would lead to a change of vegetation state. Landassess provides a representation of 

the driving interactions between ecological systems and human management 

interventions. The deficiencies of the DSS are in part a consequence based on the 

State-and-Transition models, a critique of which was outlined in Section 2.3.2. 

There are too many DSS relating to grassland grazing system to pay them individual 

attention in this review. Yet, in general, the DSS of grassland grazing systems are 

either based on empirical, process-based or integrated models (including agent-

based models, which are outlined in Section 2.4.4). A more detailed discussion on 

DSS for the management of grassland grazing systems can be found in Stuth and 

Lyons (1993). 

In summary, process-based models of the grassland grazing systems are often the 

mathematical (and usually computer-based) representation of one or several 

processes characterizing vegetation dynamics, livestock dynamics, energy and/or 

chemical cycling. The processes can be affected by either biotic factors or abiotic 

factors. Each of the processes is, in essence, the description of the functioning which 

contributes to a higher level (bottom-up model) or lower level (top-down model) 

functioning, and the output of one process can be the input of the other process. The 
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processes in the model enable us to capture the important biological or 

physiochemical mechanism mechanisms driving the behaviour of the grazing 

system. However, as the earth itself has a variety of vegetation and herbivore types, 

and the heterogeneity in climatic and natural condition across different spatial and 

temporal scales makes the description of the processes sometimes only meaningful 

in unique grassland ecosystems (Vandvik and Birks, 2002). In addition, the process-

based models reviewed thus far have weaknesses with regard to describing or 

integrating the evolution or coevolution of vegetation and herbivores on grassland 

(McNaughton, 1983). Although there is research on the compensatory growth of the 

vegetation caused by grazing (McNaughton, 1983) or coevolution of the plants and 

herbivores (Stebbins, 1981b), the accuracy of long-term predictions and the 

behaviours of the grassland grazing systems need more scientific attention especially 

with regard the evolution or coevolution of the plants and herbivores. 

 

2.4.4 Agent-based models 

As discussed in previous sections, numerous models have been built for the 

grassland grazing systems. However, “any model with a natural resource 

management application should ideally incorporate the human systems associated 

with that resource” (Deadman, 1999). For grassland grazing modelling, it has been 

argued that a grassland forage productivity sub-model (natural system) and a 

grassland livestock grazing sub-model (human system) should be combined to 

discover the relationships and regularities under the interactions of those 

components (An, 2012b; Wang et al., 2013). Efforts within the human systems of 

grasslands have been taken up in the fields of grassland economics (Burt, 1971; 

Röder et al., 2007; Ritten et al., 2010), institutional arrangement assessment, game 

theory analysis of grassland management and perception studies of humans (Quinn 

et al., 2003; Bunting et al., 2013).  

In addition, as the grassland grazing system is part of the regional or global 

ecosystem (Thornton and Herrero, 2001), it is highly dependent on environmental 

factors, such as climate change (Stokes et al., 2008; Fan et al., 2010a; Graux et al., 

2011; Jun et al., 2013; Ye et al., 2013; Jakoby et al., 2014), ecology (Douglas et al., 

1998; Cingolani et al., 2005a; Soder et al., 2007; Arévalo et al., 2011) and the 

physical properties of the land (Aronson et al., 1993; Dean et al., 1995; Phelan et al., 

2013). Grassland grazing systems have socio-economic or ecosystem service values 

(Lamarque et al., 2011). Therefore, the models of grassland grazing systems are 

often presented as integration with climate models, socio-economic models or 

management models (Ellis et al., 1987; Smith and Foran, 1990; Parsons et al., 2001). 

These are important research area, but they are beyond the focus of this thesis, and 

instead, this thesis concerns one particular type of the integrated models of the 

grassland grazing system—Agent-based Models (ABM), which is an effective tool 

for exploring grassland grazing complexities (Bell, 2011). 

Similar to the complex system, there is also no precise definition of ABM and 

definitions vary across disciplines, but it commonly an ABM consists of three key 

components (Macal, 2010): 

• a set of agents with attributes and behaviours; 

• relationships or connections among agents and rules or ways they interact; 

• agents can additionally interact with their environment; 
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By explicitly considering the components of a system consisting of individual 

agents, ABM can be used to understand how system properties emerge from 

interactions among lower-level entities (Grimm, 1999). In this particular way, an 

ABM of a grassland grazing system is fundamentally different from an empirical or 

process-based model of the same system. ABMs have the potential to more 

realistically model by considering the decision-making or interactions among 

individuals, which may be difficult or impossible to do with other models.  

It is a bottom-up tool that has been employed both in theoretical (Lilibeth et al., 

2014) and empirical studies (Juliette et al., 2011; Wang et al., 2013) in grassland 

grazing. The quantitative computational features of ABM make it easier to describe 

the heterogeneity, learning and adaptation, evolution and interactions of various 

agents (Gimblett, 2002). “A community of agents acts independently of any 

controlling intelligence, they are goal-driven and try to fulfil specific objectives, 

they are aware of and can respond to changes in their environment, they can move 

within that environment, and they can be designed to learn and adapt their state and 

behaviour in response to stimuli from other agents and their environment” (McLane 

et al., 2011). 

The decision-making process of agents can be described in a flexible and context-

dependent way with the specification of interdependencies and 

feedbacks/interactions between the agents and their environment (Groeneveld et al., 

2017a). Currently, the decision-making in the ABM is based on either ad hoc 

assumptions or established theories. The later has been credited as more transparent 

and comprehensible for communication or reuse of the model when compared with 

the former (Groeneveld et al., 2017a). The agent’s decision-making can be made 

based on the economic theories such as expected utility theory, rational decision-

making theory, bounded rationally theory and stochastic medications of expected 

utility theory, or on psychological human decision-making theories such as planned 

behaviour theory (Groeneveld et al., 2017a). A further detailed investigation of the 

agent’s decision-making theories can be found in Groeneveld et al. (2017a) and 

Balke and Gilbert (2014), and the employment of the decision-making theories when 

building the ABM is still insufficient across disciplines (Gimblett, 2002), therefore, 

it is suggested that a structured, guided framework (such as MoHuB framework, see  

Schlüter et al. (2017)) should be developed  on the choose of theories and factors in 

the ABM, and the participatory evaluation or the empirical research could deep our 

understating of human decision-making (Groeneveld et al., 2017a).  

 

2.4.4.1 Previous modelling of complexity: limitations and future research 

directions 

The use of ABM in grassland grazing modelling is still in its very early stage,  

although ABM has been widely used in the field of land use/cover change 

modelling. Examples include the Land Use Dynamic Simulator (LUDAS) (Le et al., 

2010), FEARLUS-ELMM (Polhill et al., 2007), and AgriPoliS (Happe et al., 2006). 

They were not strongly related to grassland grazing, but they used ABM for 

simulating grassland changes (spatial distribution pattern of the grassland), and for 

exploring how environmental and socioeconomic factors affect the decision-making 

of grassland owners, for example, whether the pastoralists should change the 

grassland to cropland for agriculture use (Le et al., 2010). A more recent review of 

the ABM in land use/cover models can be found in (Parker et al., 2003; Groeneveld 

et al., 2017b) and (Groeneveld et al., 2017b). But none have considered plant-
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herbivore interactions and the process of the vegetation development, which limited 

their use in understanding the vegetation dynamics of the grassland grazing system. 

In a similar research area—wildlife ecology and management—specific models 

were developed to simulate the behaviours of animals. The animal, landscape and 

man simulation system (ALMaSS) was used to assess the effect of changing 

landscape structure or management on key animal species (Topping et al., 2003). 

ABM has even been employed in wildlife ecology and management by exploring the 

selectivity of their habitat, and how they respond to environmental changes (McLane 

et al., 2011). A summary of these studies can be found in McLane et al. (2011). 

Such models have not included the effect of social system and human’s decision-

making, as well as the policy effect on the behaviours of animal, which make them 

difficult to be used directly in evaluating the management practices of the grassland 

grazing systems. 

Agent-based models consider the grassland, the pastoralists and a policy maker as a 

complex adaptive system (Abel, 1998). In order to better understand such Coupled 

Human and Natural Systems (CHANS), agent-based modelling for the CHANS 

should make use of both empirical knowledge and decision-making theories (An, 

2012b), which indicates that the social theories that can explain agent actions and 

interactions can be used for modelling CHANS (Jun et al., 2013). Actually, the 

agent-based models of grassland grazing can be linked with ecological and socio-

economic submodels. While the ecological sub-system is commonly a simplified 

version of the more comprehensive model and the relations in the model are usually 

empirically based (Gross et al., 2006a). As such, an example would be a socio-

economic sub-system which typically affects the decision-making of the ‘regulator’ 

or the behaviour of pastoralists. The regulator comprises the policy and institutional 

environment within which pastoralists make management decisions. The decision-

making of the regulator or the pastoralists should be ideally based on theory 

(although ad hoc assumptions are widely used in the ABMs) (Abel, 1998), with 

consideration of cultural anthropology, economics, organisational and management 

practice, and political-economic background. Potential decision rules for pastoralists 

should ideally be developed in discussion with experts on grassland management 

and simplified for the model (Levin et al., 2013). 

There are agent-based models focused on the population dynamics of herders, 

pastoralists and nomads in the grassland grazing system. An example work can be 

seen from Kuznar and Sedlmeyer (2005); (Rogers, 2013), whose work aimed at 

exploring the interactions among pastoral nomads and peasants by trading or raiding 

for goods according to different wealth condition. Grazing is just a simple overall 

decrease in productivity in the model. The fixed grassland productivity assumption 

and the lack of plant-herbivore interaction make it unable to simulate the vegetation 

and livestock dynamics under different management practices. The Common 

Resources Management Agent-based System CORMAS was employed by Saqalli et 

al. (2010) to explore the evolution of the village population under different family 

originations. The CORMAS model consists of a biophysical environment linked 

with the social and economic status of the human agents, and it considers the 

relationships and dependencies between villagers (who are the livestock and 

landowner) and their differentiated accesses to economic activities (agriculture, 

livestock keeping, seasonal migration, dry-season gardening). It has found that the 

larger group proportion and specializations led to an increase in the village 

populations’ robustness. In the model of Hailegiorgis et al. (2010), the effect of 

climate change on the population dynamics of the herders was analysed, and the 
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authors found that cooperation and conflict were at the minimum due to the 

significant reduction of the population of herders when drought happened; but after 

the population recovered to some extent, cooperation and conflict increased 

dramatically. Kennedy et al. (2010) have developed an agent-based model for 

exploring the competition of the grass and water pole utilization, which caused the 

emergence of the conflicts. It was found that greater environmental scarcity leads to 

faster domination by a single ethnic group. However, the oversimplified ways of 

handling the conflicts when using resources, and the ad hoc assumptions about 

herders’ knowledge of resource availability make the simulation results vary 

dramatically. Therefore, the uncertainty of the model should be quantified (Kennedy 

et al., 2010). 

For the simulation of the mobility of the pastoralists, an example is the 

HouseholdsWorld model (Rogers, 2013), which used lineage and clan as the basis 

for the household. It aimed to simulate the herder’s population and mobility under 

clan leadership, collective or local social network. It has found that the regions with 

dense populations and by expanding the scope of landscape knowledge could 

improve micro-mobility to mitigate social restrictions effectively, and therefore the 

herder’ population expanded but became poorer. In the less densely inhabited 

regions, more knowledge of the landscape expanded the mid-range of the wealth 

distribution without expanding the number of poor herders. Milner-Gulland et al. 

(2006) have used an agent-based model to explore the impact of agents’ decision-

making on flock dynamics under climatic and economic change, which included 

both household decision-making and vegetation-herbivore interactions. Agents 

optimise their investments in an uncertain environment by allocating their wealth 

between livestock and capital. It found that winter forage availability is the key 

determinant of overall livestock number, and if there was enough winter forage, 

larger herds were predicted to settle away from the village. Okayasu et al. (2010) 

further used this model to explore the spatial distribution of the wealthy herders and 

poor herders. The authors found that agents they can co-exist in the area because 

even in the dry year when the home pasture could not provide enough forage for the 

whole animal population, the wealth herders (who own more livestock) could move 

to the remote pasture to reduce the grazing pressure on the home pasture because 

they can afford the moving costs. Although the poor herders may not move to the 

remote pasture due to the high moving costs, they could better access the home 

pasture as the grazing pressure had been reduced. However, this model cannot be 

used in the region where the movement of herders is determined by the other non-

economic factors, for example, privatised lands where other herders do not have 

access to; secondly, the effect of the water availability and other social factors, for 

example, market, education and medical services, on the decision-making of herders 

also have not been considered in the model (Okayasu et al., 2010). In addition, the 

plant-herbivore interactions and the policy and institutional arrangements are not 

considered in the model. 

There are also agent-based models focusing on livestock dynamics in the grassland 

grazing system. An example is Milner-Gulland et al. (2006)’s work, which was 

discussed in the previous paragraph. Dressler et al. (2018) examined the effect of 

household’ behaviours on the resilience of the pastoral system considering the 

feedback between pastures, livestock and household livelihood. The results showed 

that short-term profit-oriented behaviours of the herders led to long-term pasture 

degradation and livestock loss. A satisficing behaviour constrained the herd size, but 

it diversified income source of herders, and therefore, led to improved pasture 



- 43 - 

conditions and higher total livestock numbers. An example of the other works can be 

found in Aktipis et al. (2011), who even used ABM to explain how the gift-giving 

relationship under exchange scenario improves the herd longevity. 

With regards to the employment of ABM to the study of grassland grazing systems, 

ABMs have improved the popularity of plant-herbivore interactions and the 

behaviours that determine herbivore foraging (Dumont and Hill, 2004b). The 

Simulation of Ecological Compatibility of Regional Development model (SERD) 

was an example of a household involved and spatially explicit model that integrated 

with socio-ecological stock-flow (Gaube et al., 2009). But the temporal resolution 

was 1 year, which means the short-term effect of plant-herbivore interactions was 

ignored in the model. A more detailed ABM of plant-herbivore interactions has been 

constructed to simulate movements of cattle grazing corn residues (Liu et al., 2016). 

That model involved the employment of a GPS tracking system, with which the real-

time behaviour of herbivores was identified, but grassland management strategies 

and institutional arrangements were not considered.  

There are models that concern both the decision-making of the pastoralists and 

regulators, based on the biological process of vegetation and herbivore, as well as 

the policy and institutional regimes with real-world observation data. Janssen et al. 

(2000) built an adaptive agent model, which includes competition between grass and 

shrub, and heterogeneity in the vegetation growth rate. The decision-making of the 

pastoralist was based on the economic status of the pastoralists and the ecological 

status of the grassland. The different policies changed the opportunity cost according 

to the threshold of percentage of properties (an indicator for grassland status). 

However, the real-time learning of pastoralists and novel management strategies and 

combinations were not considered in the model. In addition, using a fixed climatic (a 

5-year moving average of the historical rain data) driving data means the model was 

only suitable in a stable climatic environment. In addition, the thresholds of the 

percentage of properties are ad hoc assumptions, which limit the use of this model to 

the other regions. Similar research was carried out by Gross et al. (2006b), where a 

conceptual framework of an adaptive ABM has been built that tried to link the 

climatic condition, biophysical processes, and institutional arrangements. The 

decision-making and learning of the individual are considered by updating the usage 

of fixed rules when there was sufficient environmental or economic perturbation to 

the system. However, the fixed stocking rate assumption and assumed values of the 

parameters in both the biophysical and pastoral sub-models make the results 

susceptible to the uncertainty caused by such setting. Jun et al. (2013) analysed the 

social-ecological performance of different institutional arrangement experiments 

with the employment of agent-based modelling, and revealed cooperation 

mechanisms under climate change adaptation (Jun et al., 2013), but the absence of 

real productivity and livestock grazing data in the model make the results less 

convincing. 

A model of particular relevance is that of Sakamoto (2016) who developed an agent-

based model based on remote sensing data. In this model, the moving behaviours of 

the pastoralists were driven by the availability of the local resource represented by 

the vegetation index and the movement cost. The spatiotemporal patterns of the land 

use intensity caused by the movement of the pastoralists were reproduced. However, 

there are numerous ad hoc assumptions about the behaviours of the pastoralists (for 

example, grazing range, frequency and carrying capacity), which make it less 

credible when applied to a place where the conditions violate such assumptions. 

Also, the results of the model have not been validated, and the effect of different 
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grazing strategies and institutional arrangements have not been considered. Troost 

and Berger (2014) analysed the uncertainty of the ABM at the farm-level; the 

importance of interactions among agents was highlighted in this fully connected 

agent-based model. Their work addressed the uncertainty in model structure, as well 

as gaps and fuzziness caused by data uncertainty and ad hoc model assumptions, but 

such uncertainties can be reduced by cautious calibration and comprehensive 

uncertainty analysis. This is an important research area in modelling the grassland 

grazing system and will be further illustrated and discussed in Chapter 7. 

To conclude, it appears from the literature that common character of the agent-based 

approach and their defects in modelling of grassland grazing are:  

• the biophysical parts (vegetation dynamics) in the ABM of grassland grazing 

systems are commonly empirical-based, which makes the development of the 

vegetation highly dependent on the historically observed data, and they have 

all the defects that the empirical model shares; 

• ABMs of grassland grazing systems usually involve large numbers of input 

datasets, parameter values and the ad hoc or theory-based assumptions, and 

they are sometimes derived from the data with uncertainty, but there are few 

examples of research that addresses such uncertainty. This is partly due to 

the difficulty with collecting data or carrying out the experiment; it is also 

important to balance modelling complexity with uncertainty (Holling, 2001); 

• the plant-herbivore interactions in the models are simply assumed to be a 

negative effect on the plant productivity—direct loss of the equivalent 

consumed by the herbivore. Neither the evolution or coevolution of the plant 

and the livestock are considered, nor the compensation/suppression effect of 

the livestock on the plant growth is considered;  

• the models mainly focus on the vegetation productivity or the quantity of the 

livestock, the broader scale of the vegetation dynamics (for example, 

composition, diversity or resilience) as well as the livestock (for example, 

meat and milk quality); 

• institutional arrangements and grazing strategies are recognized as the 

important policies in managing grassland resources, more in-depth, multi-

scale, multi-level analysis of different managemental consequences should 

be carried out; 

• the aggregated overall regional/farm/site scale dynamic of the vegetation or 

the livestock can be well-presented in the model output, but the spatial 

distribution patterns are rarely to be seen from the existing researches, 

especially the model with real-world data;  

 

2.4.4.2 Modelling the grassland grazing system in Zeku 

For the Agent-Based Modelling of Grassland Grazing (ABMGG) presented in this 

thesis, the interactions between herders and different institutions have the nature of 

individual-based features, which can be affected by the different decision-making 

practices of individual resource users. Classical models of natural resource use 

centre more on the economic inputs and outputs at the system level (Burt, 1971), but 

it has long been realised that human activities are the most powerful factor affecting 

those interactions and decision-making, and it can be a disaster for the ecosystem 

when the plundering of natural resources occurs (Vitousek et al., 1997; Wackernagel 

and Rees, 1998). So, the dynamic patterns of grazing which are controlled by 

individual decision-making activities need to be modelled to find the optimal 
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strategy to maximise the output of natural resources and maintain a sustainable 

ecosystem. 

Modelling the behaviour of an individual is complicated work because of their 

various characteristics and decision-making processes. For example, households 

may expand their livestock scale, increase capital or invest in other businesses after 

selling their livestock. Individual behaviour could also be affected by the degree of 

information one has, the availability of forage can lead to distinctive moving 

behaviour, while individual responses to external cues can lead to aggregative 

behaviour at the larger scale (Juliette et al., 2011). The interventions of 

administrations aimed at improving sustainability, efficiency or equity of use of 

resources affect individuals differently, depending on factors such as their assets, 

aspirations or location (Milner-Gulland et al., 2006). In addition, the ownership of 

land in China is in the hands of the state (government). The government plays an 

important role in allocating the grassland resources to herders. In addition, the 

government is also the policymaker who has the final decision-making right over 

how to use the land, through subsidies or penalties. It is an indispensable part of the 

grassland grazing model. So the framework of agent-based modelling of a grassland 

grazing system should consider the strategy of the government, which should 

balance between the socio-economic demand, ecological demand and the interest of 

all stockholders. Hence in order to understand the impact of policy interventions on 

both individuals and the overall system it is useful to take an individual-based 

approach albeit with the government acting on the individuals. 

Herders in the Three-River Headwaters Region of China depend heavily on the 

annual production of natural forage, or herbage, from grasslands (Foggin, 2008). But 

to best utilize this forage they must understand the seasonal productivity of the 

annual grassland ecosystem (Menke, 1985). Four factors: precipitation; temperature; 

soil characteristics; and residue largely control forage productivity and seasonal 

species composition. These factors also change the timing and characteristics of the 

four distinct growth phases: winter hibernation, break of the quiescent season, rapid 

spring growth, and peak forage production. Many of these patterns can be used to 

guide management decisions. As the seasons progress, the patterns become set and 

the outcome more predictable in reality (Menke, 1985). 

However, existing grazing ABM models have a key assumption which is that long-

term land degradation does not occur in the model system. This means that grazing 

in a particular season does not affect the next season’s forage availability (Milner-

Gulland et al., 2006). But, in fact, this is an inaccurate assumption for the Three-

River Headwaters Region of China, where overgrazing contributed a lot to grassland 

degradation (Liu et al., 2008a). This has a great impact on the sustainable 

development of the regional ecological environment and grassland husbandry, and 

seriously threatens the ecological protection of associated areas. Some research has 

also indicated that overgrazing is the most prominent factor in the region’s grassland 

degradation (Zhang et al., 2014a). 

We can control the livestock quantity to some degree to reduce the pressure on 

grassland, but it is difficult to estimate the potential livestock-carrying capacity of 

grassland in different regions and different seasons in such a sensitive and fragile 

area, because of the complicated co-evolutionary relationship between grass and 

livestock, which can be seen through the lens of plant-herbivore interactions (Knapp 

et al., 2012). Traditionally, herbivory was considered detrimental to grassland, and 

much research has the assumption that herbivory has a purely negative impact on 
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plant growth because it suppresses the growth of plants (Crawley, 1983; Baldwin, 

1990). However, both theoretical and empirical studies in grasslands suggest that 

individual plants, as well as net primary productivity (NPP) at the ecosystem scale, 

may respond in a neutral or even a positive manner to grazing (Douglas et al., 1998). 

This is an interesting and important topic in grazing agent-based systems, and 

methods to estimate the grass yield accurately would be of great value to the 

scientific management of grassland and the decision-making associated with animal 

husbandry.  

2.5 The role of remote sensing 

To overcome limitations in the spatial-temporally explicit data on grassland status, 

researchers urgently need a tool with the capability of real-time observation of 

grassland status. Remote sensing is an important tool for monitoring and assessing 

such a complex system consisting of grass, livestock and human management. 

Remote sensing is the science of obtaining and interpreting information from a 

distance, using sensors that are not in physical contact with the object being 

observed (Lillesand et al., 2014). It is widely used in the field of earth surface 

observation by visible and non-visible radiation, where radiation interacts with 

surface materials and the atmosphere (Liaghat and Balasundram, 2010) to enable 

sensing. However, due to its perceived inability to quantify rangeland vegetation 

regardless of season or condition, it was not applied for the management of 

grassland at an early stage in the science (Hunt Jr et al., 2003).  

Remote sensing has been useful in detecting green vegetation, but senescent or 

cured vegetation was missed (Marsett et al., 2006), which was one of the most 

important sources for winter feeding (Hudson and Watkins, 1986) and an important 

component in intercepting rainfall to reduce soil erosion (Li et al., 2008) and as well 

as a source of fine fuels for grassfires (Kidnie et al., 2015). With the availability of a 

wide variety of sensors and platforms, remote sensing has gradually become an 

important tool for grassland management (Asner et al., 1998; Hunt Jr et al., 2003; 

Numata et al., 2007). The combination of in situ experiments and remote sensing 

observations especially enable near real-time monitoring of grassland status under 

grazing and detecting human pressure on the grassland system (Pickup et al., 1994; 

Kawamura et al., 2005). 

Remote sensing provides temporal and spatial patterns of grassland change and has 

been used to estimate the biophysical characteristics of grasslands (Numata et al., 

2007). Canopy biophysical parameters can be inferred from vegetation structural 

and biochemical properties and the quantity and quality of incoming radiation 

observed by remote sensing (Adam et al., 2010), which are the key parameters for 

predicting both the radiative and chemical balance of grassland systems (Asner et 

al., 1998). The applications of remote sensing based on this vary from grassland 

classification (Langley et al., 2001), and productivity change (Prince, 1991b) to 

biophysical variables such as such as LAI (Asner et al., 2003), biomass (Tucker et 

al., 1985b), photosynthetically active biomass (Tucker, 1979), green herbage ratio 

(Loris and Damiano, 2006), soil moisture (Vinnikov et al., 1999) and energy flux 

components (Kustas and Norman, 1996). 

Another important use of remote sensing on grasslands is grazing activity 

monitoring. Kawamura et al. (2005) has proved that the normalized difference 

vegetation index (NDVI) obtained by the moderate resolution imaging 
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spectroradiometer (MODIS) to estimate grazing spatial distribution and grazing 

intensities was an effective tool (Kawamura et al., 2005); Feng and Zhao (2011) 

further confirmed that livestock grazing could be monitored at broad scales by 

remote sensing (Feng and Zhao, 2011).   

However, the grassland status and grazing information are all accompanied by errors 

and/or uncertainties. Remote sensing usually uses discrete snapshots representing 

the status of the earth surface; but in some cases, the standard discrete information 

could provide an unrealistic representation (Foody, 1999). Another uncertainty is the 

mismatch between the group samplings of training data (Illyés et al., 2007), which 

are used to derive the relation between remote sensing observation and grassland 

properties (Darvishzadeh et al., 2008). In addition, remote sensing derived datasets 

are frequently contaminated by clouds or sensor error (Congalton, 1991). Therefore, 

the reprocessing of remote sensing data is needed before using it, and this will 

further be discussed in Chapter 5. 

2.6 Summary 

In this chapter, the features of grassland grazing systems have been reviewed. The 

review revealed four aspects of the complexities of grassland grazing systems which 

caused the debate within the scientific modelling communities about the differences 

between equilibrium and non-equilibrium theories. Current models dealing with the 

complexities were reviewed in three categories: empirical, process-based and 

integrated models. The characteristics and drawbacks were discussed. Consideration 

of the complexity of grass and livestock dynamics, plant-herbivore interactions, 

different grazing strategies and institutional arrangements were introduced. Agent-

based modelling is introduced in Section 2.4.4, and its attempted use in modelling 

the grassland grazing system under study is justified. In addition, the role of remote 

sensing in monitoring and assessing the grassland grazing system for such an agent-

based model is highlighted. 
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Chapter 3 The Study Site 

This chapter provides an overview of the study area and explains why the study site 

has been selected. The natural condition and livestock grazing system in Zeku will 

be elucidated to give a clear understanding of the system. It also describes the new 

trend of grazing management and the new grassland tenure system in Zeku, based on 

which the land market and group grazing play an important role in the grazing 

system of Zeku; in addition, three basic grazing strategies will be explained.  

3.1 Selection of the study site  

In this thesis, Zeku County was selected as the case study area for the Agent-based 

Modelling of Grassland Grazing (ABMGG) system; it is an ideal place to do 

research about the impact of livestock grazing on grasslands under different grazing 

strategies and institutional arrangements. Zeku is relatively far away from the Hoh 

Xil Natural Reserve region, where other large herbivores may have the dominant 

influence on grassland forage dynamics rather than livestock (Zheng et al., 2000). 

Although there exist other large herbivores and small mammalian herbivores in 

Zeku, and some even heavily threaten the soil quality and local ecosystem (Shengde 

and Haining, 1993), this thesis does not consider the effect of other herbivores due 

to the fact that the livestock grazing has a dominant role in the grassland forage 

consumption (Suonancairang, 2006; Zhou et al., 2007a).  

The second main reason for selecting Zeku is the relatively exclusive land use in 

Zeku, that almost all the land in Zeku is covered by grass (Suonancairang, 2006). 

Zeku County is located in the southeast of Qinghai Province. The total land area is 

about 6600 km2, of which grassland area accounts for 95%, including 6200 km2 

exploitative grassland (95% of the total grassland area) (Zhou et al., 2007a). Most 

importantly, there is no agricultural cropland in Zeku, making the abstract modelling 

simpler by ignoring the effect of agricultural activities (Zhou, 2015). 

In addition, in early 2003, all the grasslands in Zeke were privatised via household 

contracts (Ma et al., 2003). That means individual users of grassland have the “final 

say” right in terms of grassland use, they can make decisions about which grazing 

strategies should be undertaken for livestock grazing, and whether they join the 

grazing group in the village; agent-based modelling fits extremely well with the 

individual and institutional decision-making of grassland grazing in Zeku. 

3.2 Geographical overview of Zeku 

The geographical location of Zeku is shown in Figure 3.1; it is one of the seventeen 

counties in the Qinghai Three River Head Source Conservation area (TRHR). The 

three rivers: Yellow River, Changjiang River and Lan-Changjiang River, are of 

great ecological significance to the Qinghai-Tibet Plateau with elevation varying 

from 3450 m to 6621 m; the area is known as “China's water tower” (Liu et al., 

2008b). The main vegetation types are alpine meadow, alpine steppe, and marsh, 

with some temperate steppe and alpine desert (Dong et al., 2002). The TRHR is 

located in the world's highest altitude region with the most diversified biodiversity; 

it has China's largest wetlands at a high elevation area (Wang et al., 2010b). The 
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TRHR region suffers from global climate change as well as increasing human 

activities: overgrazing; poaching of plants and wildlife; gold mining, etc. (Huakun, 

2005), which have endangered the ecosystem stability of the region (Jin et al., 2008; 

Zhou et al., 2009). The growing concern of national ecosystem security and 

sustainable economic  growth prompted China to launch the Ecological Protection 

and Restoration Program (EPRP) in the TRHR region in 2005 (Wang et al., 2010b). 

The overall aim of EPRP is to conserve and rehabilitate the ecological functions of 

the region through ecological migration, grazing bans, wetland protection, and 

degraded grassland restoration (Yin and Yin, 2010). A total of 7,500 million yuan 

(at present, 1 pound = 8.7 yuan) was budgeted for the EPRP in “12th Five-year 

Plan” and this amount doubled in the “13th Five-Year Plan” (Wang et al., 2010b), 

which shows the great importance and determination associated with protecting this 

area. 

The elevation of Zeku is above 3500 meters for the vast majority of the land, of 

which the highest elevation is 4971 meters, and the lowest is 2800 meters. The 

average annual temperature is -3 ℃ to 2.8 ℃, with no absolute frost-free period. The 

herbage growth period usually lasts about 150 days (Zhou et al., 2007a). Annual 

average rainfall ranges from 437.2 mm to 511.9 mm, and is mainly concentrated 

from May to September; usually, the amount of rainfall in the southeast is more than 

that of the northwest (Suonancairang, 2006). Annual solar radiation is about 580-

650 KJ/cm2, and annual sunshine hours is about 2500-2600h, with 4.1 m/s annual 

average wind speed, and there are 44 days windy days on average, of which the 

maximal windy days can reach 98 in extreme years (Du et al., 2010). Due to the 

special natural geographical environment, extreme weather such as serious 

prolonged snow, hail, drought, and sandstorms happens frequently, traditionally, "a 

minor catastrophe happens within three years, a moderate catastrophe happens 

within five years, and a great catastrophe happens within 10 years" (Zhou, 2015), 

prolonged snow and drought happens almost every year in some areas, which 

seriously affects the stability of grassland livestock husbandry in Zeku. This is an 

important factor that could affect the decision-making of herders. This thesis will 

show this effect by a prototype model in Chapter 4.  
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Figure 3.1: Geographic location of Zeku, China 

 

3.3 Grassland resource overview 

The data used for describing the land use/cover status is the Global Land 30 meters 

product (GlobalLand30), which is mainly derived from 30-meter multispectral 

images, including Landsat TM and ETM+ multispectral images and multispectral 

images from the Chinese Environmental Disaster Alleviation Satellite (HJ-1). 

Landsat TM and ETM+ images are free to the public and can be downloaded from 

USGS (http://landsat.usgs.gov/) at Level 1T; while the HJ-1 images are from the 

China Centre for Resource Satellite Data and Application (http://www.cresda.com). 

The overall accuracy is 83.51% (Jun et al., 2014; Wulder and Coops, 2014; Yu et 

al., 2014).  The definition of different land use/cover type is shown in Table 3.1: 

Table 3.1: Definition of land use/cover type in GlobalLand30, from 

GlobeLand30 product guide (http://www.globallandcover.com) 

Code Type Content 

10 Cultivated 

land 

Lands used for agriculture, horticulture and gardens, 

including paddy fields, irrigated and dry farmland, 

vegetation and fruit gardens, etc. 

Three River Head Source Area of Qinghai 

Zeku China 

Zeku 

http://landsat.usgs.gov/
http://www.cresda.com/
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20 Forest Lands covered with trees, with vegetation cover over 

30%, including deciduous and coniferous forest, and 

sparse woodland with cover 10-30%, etc. 

30 Grassland Lands covered by natural grass with cover over 10%, 

etc. 

40 Shrubland Lands covered with shrubs with cover over 30%, 

including deciduous and evergreen shrubs, and desert 

steppe with cover over 10%, etc. 

50 Wetland Lands covered with wetland plants and water bodies, 

including inland marsh, lake marsh, river floodplain 

wetland, forest/shrub wetland, peat bogs, mangrove 

and salt marsh, etc. 

60 Water 

bodies 

Water bodies in the land area, including river, lake, 

reservoir, fish pond, etc. 

70 Tundra Lands covered by lichen, moss, hardy perennial herb 

and shrubs in the polar regions, including shrub 

tundra, herbaceous tundra, wet tundra and barren 

tundra, etc. 

80 Artificial  

Surfaces 

Lands modified by human activities, including all 

kinds of habitation, industrial and mining area, 

transportation facilities, and interior urban green 

zones and water bodies, etc. 

90 Bareland Lands with vegetation cover lower than 10%, 

including desert, sandy fields, Gobi, bare rocks, 

saline and alkaline lands, etc. 

100 Permanent 

snow and 

ice 

Lands covered by permanent snow, glacier and 

icecap. 

 

Grassland is the dominant land use/cover type in Zeku (Figure 3.2), and covers 

about 95% of the total land area; the second land use/cover type is wetland, which 

accounts for about 3% of the total land area; cultivated land only occupies about 

1.5% of the total land area; forest, shrubland, water bound, artificial land, bare land 

and permanent snow and ice land are all less than 1% of the total land area. By 

comparing of the land use/cover change between 2000 and 2010, it has found that 

the land use/cover is quite stable in the area, with just some tiny changes during 

those 10 years. Grassland area in 2010 has decreased by about 0.6% compared with 

that of the year 2000. Wetland has increased by about 0.7% during this period while 

the region of permanent snow and ice has increased by about 0.1%; the other land 

use/cover changes are all less than 0.1%. Due to such tiny conversion of grassland 

from and to the other land use/cover types, the effect of structural change of 

grasslands in Zeku can be ignored in the ABMGG. 
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Figure 3.2: Land use/cover of Zeku, 2000 & 2010 

 

The vegetation type of Zeku belongs to alpine meadow family, which dominated by 

Kobresia species (Zhou et al., 2006). Some palatable grass species can be found in 

this alpine meadow family such as Kobresia pygmaea, Kobresia capillifolia, 

Kobresia schoenoides (Figure 3.3). Kobresia is the local dominant species at Zeku, 

with a high degree of coverage ranging from 80% to 95%; in addition, it has a great 

resistance to grazing activities and is one of the most palatable grass species for 

livestock grazing in Tibet area (Zhao et al., 2011b). They are the most common and 

the most efficient species at photosynthesis in a cool and wet climate, and they have 

high protein content, high  crude fat content, high nitrogen-free-extract and high 

calorific value, but relative low content of coarse fibre (Xue et al., 2005; Zhan-hong 

2000 

2010 
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et al., 2007). Alpine meadow lands are therefore excellent grazing destinations 

within the Tibet area (Wen et al., 2004). 

  

Kobresia pygmaea: photo from 

http://cyperus.onlineflora.cn/taxonomy/term/5383

?language=zh-hans 

Kobresia capillifolia: photo from 

http://cyperus.onlineflora.cn/taxonomy/term/534

5 

  

Kobresia tibetica: photo from 

http://cyperus.onlineflora.cn/taxonomy/term/5373 
Stipa purpurea: photo from 

http://www.plantphoto.cn/tu/28678 

Figure 3.3: Photos of typical grass species in Zeku, China 

 

The spatial distribution of the grass species is diverse across 17 main species (Figure 

3.4). Given the dry and cold weather, the vegetation species on the grassland in 

Zeku have evolved to the natural conditions, and different grasslands have 

developed their own structures and compositions to adapt to the local environment 

(Wang et al., 2008). By calculating the area of each main species in Zeku, results 

show the grassland is dominated by three main species, of which Kobresia pygmaea 

is the largest species covering 53.8% of the total area in Zeku; while the second 

widely distributed grass species is Kobresia capillifolia, accounts for 19.57% of the 

total land area; however, the percentage of another grass family, Carex, is just 10%; 

the rest of the species are all less than 5% of the total land area. These plants enrich 

the soil via their living (dominant portion) and dead root biomass (Kaiser et al., 

2008) and have been used by pastoralists for about 8800 years (Miehe et al., 2009). 

Alpine meadows in Zeku have the highest levels of edible grass forage in the 

Qinghai-Tibet area, which  supports a reasonable density of grazing livestock (Zhou, 

2001).  These different grass species dominated patches have different physical 

properties in terms of solar radiation attenuation, root-shoot ratio and digestibility, 

which will affect the accuracy of the grassland productivity estimation in Chapter 6 

and increase the uncertainty in the validation process of grazing-led LAI defoliation 
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in Chapter 5. Unfortunately, there is no species-specific biophysical properties 

dataset in Zeku, and constructing such a dataset would require a considerable 

scientific and financial investment. 

 

Figure 3.4: Grassland type of Zeku, data from Yang et al. (2007) 

 

Precipitation and temperature are the two main causes of seasonal difference across 

grassland resources (Del Grosso et al., 2008; Shen et al., 2011). From the climate 

monitoring data from 1960 to 2012 (Figure 3.5), it can be seen that precipitation has 

a strong fluctuation in yearly variance from May to September, with the monthly 

average precipitation variance reaching as high as 100 mm, varying from 50 mm to 

125 mm; those months have the highest monthly average precipitation during the 

year as well, with the lowest precipitation of 25 mm and highest precipitation of 

about 200 mm. The other months see a smaller mean and variance of monthly 

average precipitation. 

In contrast, the monthly average of maximum temperatures or monthly average of 

minimum temperatures, do not have an increased variance within the months from 

May to September, but they do have the highest average temperature with regard to 

both maximum and minimum temperature. The maximum temperature reaches as 

high as 15 ℃ with a tiny fluctuation in July and August; and only in July and 

August, the average minimum temperature is above 0 ℃. Both the temperature and 

precipitation data from the observations for 52 years (1960~2012) shows an increase 

gradually from January to July when they reach their yearly maximum, and then 

decrease to their yearly minimum in December (Figure 3.5). In alpine meadow 

ecosystems on the Qinghai-Tibetan Plateau, the vegetation growing season is 

shortened mainly by low temperature, although abundant solar radiation and 
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precipitation during the growing season are likely to favour plant growth during the 

short growing season (Kato et al., 2004). 

 

Figure 3.5: Average monthly rain and temperature of Zeku, 1960-2012 (data 

from the National Meteorological Information Center: 

http://data.cma.cn/data) 

 

3.4 Livestock grazing profile  

Zeku governs two towns (called “zhen” in China) and five rural townships (called 

“xiang” in China), along with one state-owned farm. These include in their zones 

some 64 administrative villages. At the end of the year 2011, the total population 

was 70664, and the livestock husbandry population was 59611. Livestock stock 

number was about 0.856 million (0.112 million yaks, 0.665 million sheep and 0.017 

million horses). The net income per capita was about £300 (Zhou et al., 2007a).  

The livestock husbandry of Zeku is basically the same as in the past situation, 

heavily relying on natural grass forage feeding (Zhou et al., 2007a). The economic 

development is not stable due to the seasonal difference of grass forage (see Chapter 

5 and Chapter 6 for detail), livestock and precipitation. According to statistics in 

2006, each sheep unit occupies 0.009 km2 of available pasture area theoretically, and 

artificially improved grassland areas account for only 0.45% of available pasture 

area (Ma et al., 2003; Zhou, 2015). The livestock capacity is 1.13 million sheep 

units, but in actuality, the land has been carrying 1.56 million sheep units, of which 

0.43 million sheep units are overloaded (Shao and Fan, 2012). At the same time, due 

to the large percentage of grassland in this area and the uneven distribution of water 

resources (Figure 3.5), serious water shortages have occurred in some areas, 
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especially in the central and western regions where these are a big issue for stable 

development; water is often at more than 1 km’s distance for both people and 

livestock. 

Household livestock structure 

Household data in this study is mainly from the field survey in 2012 provided by the 

Centre for Chinese Agricultural Policy (Huang et al., 2016).  This field survey was 

supported by the National Key Programme for Developing Basic Science 

(2012CB95570001) project “Impact of Climate Change on Key Parameters of 

Socio-economic System in Typical Regions”, which was led by the Centre for 

Chinese Agricultural Policy, Chinese Academy of Science. The current author was 

part of the survey team. The investigation method we used was stratified random 

sampling. Three counties were chosen in the Golog Tibetan Autonomous Prefecture, 

Huangnan Tibetan Autonomous Prefecture and Hainan Tibetan Autonomous 

Prefecture respectively, according to three criteria:  

Criteria 1, average grassland area: Zeku; Tongde; and Maqin are the smallest, 

medium and largest average grassland size per capita areas in all the 10 counties 

under those three autonomous prefecture administrations; 

Criteria 2, population: the total population of Tongde and Maqin are the biggest in 

their own autonomous prefecture regions. Zeku and the Xingmei have almost the 

same population. Hence, either one of them could be representative; 

Criteria 3, total GDP: Zeku and Maqin have the biggest GDP in their own 

autonomous prefecture regions. Although the population of Tongde is a little smaller 

than that of Zeku, the difference is not significant; 

According to the three criteria above, the weighted average score of each county was 

calculated and, considering the climate, altitude and the accessibility for vehicles, 

Tongde, Zeku and Maqin were chosen as the field survey counties.  

Sample size: the sampling size of each county was determined by its total population 

size, the ratio of the total population of the three countries is 1.6:1.2:1, hence the 

sampling size was 2:1:1. Then, we randomly chose the towns and villages within 

each county. Finally, the sampling size of Zeku was 52, Tongde was 54, and Maqin 

was 101.  

From all 52 field survey records, the main big livestock were yak, sheep and horse 

(Figure 3.6, panel 1), and the horse was used only for transportation purposes; it is 

an important vehicle for herdsman riding for grazing. This is why there are basically 

no horses sold during the year (Figure 3.6, panel 3). Although other wild large 

herbivores exist in Zeku, due to the small population of them, this thesis only 

considers yak, horse, goat and sheep as grassland foragers. 
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Figure 3.6: Livestock structure of Zeku, China, 2011. 

 

A sample size of 52 households suggests average access to 100-300 mu (0.067 km2-

0.200 km2) of winter pasture, while that of summer pasture is 100-500 mu (0.067 

km2-0.333 km2). This means that in the modelling process, where our cell size is 

0.21 km2 (the size of remote sensing data used in this thesis), a large proportion of 

herdsmen will share the same land patch. There are two ways of handling this 

problem: one is dividing the land parcel to the herdsman agents according to their 

proportion, and another is merging the sharing herdsman agents to one. The second 

way is adopted later in this thesis. 

 

 

Figure 3.7: Household winter natural grassland area (left) and household 

summer natural grassland area and summer artificial grassland (right) 

distribution in Zeku, 2011 
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3.5 Grassland tenure system in Zeku 

In order to explore a sustainable way of grassland grazing and to avoid falling into 

the dilemmas of the “Tragedy of the Commons” (Hardin, 1968), scientists and 

policy-makers have rolled across the privatisation of the grassland in some regions, 

and this has become the policy arrangement interfacing with grassland degradation 

in Zeku. However, grassland degradation is a controversial question in academic 

communities. The perspective that climate change and overgrazing are the key 

drivers of grassland degradation is contentious (Liu and Diamond, 2005; Harris, 

2010). The land tenure system adopted in Zeku has not fundamentally change the 

“common” use property of the grassland, where under the “Tragedy of the 

Commons” situation the resource users cannot be excluded and the one uses of the 

limited resource means reduced availability of the resource to the others, everyone’s 

maximum use of the resource will lead to the exhausted resource, and thus “Tragedy 

of the Commons”  may be an important factor contributed to grassland degradation 

(Wu, 2011; Aryal et al., 2013; Cao et al., 2013; Li et al., 2013). For the Agent-based 

Modelling of Grassland Grazing (ABMGG) in this thesis, this new land tenure 

system implies that herder agents have the right to make decisions about how to use 

their grassland (except change the land use type, e.g. change the patch from 

grassland to cultivated land which is not allowed by the government). They can 

lease the land from the other herders or invest their lands to local cooperative 

institutions. 

Grassland conservation projects: a new trend emerges 

To counteract ecosystem deterioration in the TRHR, the Chinese government 

implemented the “Ecological Protection and Restoration” project in 2005, allocating 

7.5 billion Chinese yuan (about £0.7 billion) to carry out ecological restoration and 

degradation control in the TRHR (Wang et al., 2010a), and the second round 

funding is 16 billion Chinese yuan (about £1.7 billion) (Commission, 2014; Shao et 

al., 2016). This is the largest project for nature reserve protection and reconstruction 

in China, and includes ecological emigration, ecological compensation and returning 

grazing to grassland etc. It aims to benefit the local environment, but how it affects 

the interest of stakeholders such as herders and local institutions, whose decision-

making behaviour can directly change the status of the grass (Huang et al., 2016), is 

a complicated question. For example, herders would give up grazing if subsidies are 

reasonable, and tend to reduce the grazing livestock amounts if penalties are high. 

Nevertheless, in general, their aims are to maximise herd sizes, and more livestock 

means more foraging on the grassland, and if the grassland cannot supply that 

number of livestock, the resilience of the grassland ecosystem can be endangered 

(Shao et al., 2016). 

A new trend in the TRHR is for the local government to encourage the herders to 

take part in ecological animal husbandry economic cooperatives (grazing groups), 

which are based on the current condition of the local environment at a village level 

(Zheng, 2012). They focus on improving husbandry productivity for more economic 

gain and protecting the local ecological environment at the same time (Cao et al., 

2011). What is more, the development of the local grazing groups can effectively 

liberate the labour force and curb overgrazing by more advanced management (Li, 

2011; Conte and Tilt, 2014). Models of grassland forage dynamics under their 

various grazing strategies and institutional arrangements are fundamental to 

understanding the grassland ecosystem status, that is, whether grassland is 

overgrazed or overcompensated. What is more, identification of grazing “hot spots”, 
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where heavy grazing happens, is crucial to protecting the grassland with 

precautionary measures. 

From state control to privatization 

For a long time, there has been no clear and comprehensive grassland use right 

system in the TRHR. Up to the early 1950s, the people’s communes were some sort 

of institutional structure having land use rights. However, communes were 

dismantled by the government and the land resources became collectively owned  

(Hongbo, 2005). The grassland was disregarded by the reformist policy-makers and 

became seriously degraded consequently. In 1985, the proclamation of the Grassland 

Law had expressed an official attempt to devolve grassland use rights and liability 

from the state and collectives to the individual, through grassland was still owned by 

either the state or the collective. Households just have the land use right but do not 

own the land. They are allowed to lease the grassland use right for 30 years at a time 

by contract (Yundannima, 2012). The boundaries between collectives would be 

assessed or reassessed every 30 years, and the pastures appraised in terms of 

stocking rates. Finally, a system of incentives and penalties was implemented to 

ensure that the producers abided by the carrying capacities of the grassland assigned 

to them. Thus, the efforts of government departments and research institutes were to 

assess the grassland carrying capacities quickly and accurately and to enforce them 

(Yan et al., 2005).  

The grassland tenure system embedded in the Grassland Law was based on the 

assumption of the tragedy of the commons (Hardin, 2011), and held that subsidies 

and penalties could provide an adequate incentive for households to manage their 

livestock with concern for the grassland ecosystem and towards sustainable 

grassland development (Harris, 2010). After the Grassland Law, there were 

reiterated Land Administration Laws in 1986, 1998, and 2004, the amended 

Grassland Law of 2002, the Rural Land Contract Law of 2002, and the Property 

Law of 2007 that reinforced this concept (Yundannima, 2012). “Traditionally, what 

was termed ‘grazing along with water and grass’ typified local animal husbandry 

production systems. Pastures for each of the four seasons were distinct, with 

frequent movement among them. However, with the implementation of grazing 

tenure laws, the scope and space of available grassland were reduced. In addition, 

with barrier fences separating each household’s allotment, herders lost the ability to 

transit seasonally” (Cao et al., 2011). The characteristics of the current grassland 

tenure system are: 

• households have the “final say” of how to use their contracted land, but the 

rights to land are still collectively held (Manderscheid, 2001); 

• a rotational grazing strategy is widely suggested and adopted; 

• cooperative grazing groups have been strongly supported by the local 

government both institutionally and financially in recent years. 

However, the ambiguity of state-owned and collective-owned definitions in those 

laws and the inconsistency of basic unit grassland use rights allocation in terms of 

whether pasture should be used individually or collectively creates unsolved 

problems for grassland management, and is one of the main reasons for many 

grassland inequalities and even conflicts (Ho, 2005; Cao et al., 2013; Ma et al., 

2015). Some researchers even doubt this new grassland tenure system and have 

proved that traditional Tibetan nomadic grazing systems were often well managed 

and had elaborate regulations of seasonal transhumance (Goldstein et al., 2003; 

Bauer, 2005; Bauer and Nyima, 2011). In addition, they recommend that while 
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institutional arrangements should not stop, if possible they should aim to restore the 

traditional nomadic style grazing (Banks et al., 2003; Swift, 2012). 

3.6 Grazing strategies in Zeku 

There are three basic grazing strategies in Zeku: rotational; continuous; and un-

grazed (reserved land for winter fodder or other purposes). Due to the fact that all 

the land patches are contracted to individual households, and there is no precise data 

about individual strategies that have been taken, precise analysis of the impact of 

different grazing strategies and institutional arrangements on the grassland status 

directly is currently impossible and needs prioritization. However, those grazing 

strategies and institutional arrangements exist in Zeku and play an important role in 

the grassland grazing system. A thorough understanding of management is 

necessary to reveal the hierarchal structure of plant-herbivore interactions. 

The rotational grazing strategy is adopted for all the group grazing land (from both 

our survey in 2016 and literature later cited). “Under rotational grazing, only one 

portion of pasture is grazed at a time while the remainder of the pasture “rests”. 

Pastures are subdivided into smaller areas (referred to as paddocks) and livestock 

are moved from one paddock to another. Resting grazed paddocks allows forage 

plants to renew energy reserves, rebuild vigour, deepen their root system, and give 

long-term maximum production” (Undersander et al., 2002). For example, the land 

patches in one grazing group may be divided into three, the livestock, therefore, can 

forage on the first sub-group in May and then move to the second sub-group in June 

and finally the third sub-group in July. The number of sub-groups and grazing 

duration in each sub-group are decided by individual herder’s or groups’ 

management skills experience. The rotational grazing strategy on large 

heterogeneous grassland has proved to provide adequate lengths of time between 

successive defoliations, and deterioration of heavily grazed grassland thus could be 

reduced; it is important to the sustainable management of grassland and grassland 

restoration (Teague and Dowhower, 2003). In addition, rotational grazing could 

increase the soil organic carbon and nitrogen, ground-litter accumulation and reduce 

potential soil contamination, while reducing the Nitrate and extractable P 

concentrations due to the increased grass growth compared with continuous grazing 

(Pavlů et al., 2003; Sanjari et al., 2008). A relatively bigger number of subdivisions 

could lead to a longer rest period for grassland, and this is a recommended grazing 

management strategy for the recovery of the soil after each grazing in both physical 

and chemical dimensions (Sanjari et al., 2008). 

With continuous grazing, on the contrary, livestock grazes on the land continuously 

throughout the season (Brummer and Moore, 2000), and there is no “rest” time for 

grass growth. Continuous grazing would contribute to the loss of ground cover, soil 

organic carbon and nitrogen and other soil biological properties (Hiernaux et al., 

1999). Both above-ground  productivity and below-ground productivity are higher 

for short duration pastures than for continuous grazing pasture (Michael et al., 

1991). Although the consumption of individual livestock is relatively similar under 

both extensive and intensive management, the livestock production per area unit is 

significantly decreased under extensive continuous grazing (Pavlů et al., 2006). It 

could change the composition and structure of grassland vegetation (Pavlů et al., 

2003). Lower quality of grass forage has been confirmed on continuous grazing 

lands (Sharrow, 1983).  It has been proved that by excluding livestock grazing from 

continuous grazing lands, the status of the grassland can improve recovery with litter 
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accumulation, and the development of annual and perennial grasses (Yong-Zhong et 

al., 2005). This concept has also been widely used in Zeku’s grasslands with fencing  

assisting degraded grassland restoration (Qing-shan, 2009).  

 

3.7 Institutional arrangements in Zeku 

There are two institutional arrangements in Zeku: group grazing and the land 

market. Group grazing is a higher level policy that affects the herders’ grazing 

strategies. Group grazing is an important institutional arrangement in Zeku. It has 

been proved to be beneficial to the optimisation of resource utilization and 

improvement of herders’ livelihoods (Tian et al., 2009) due to economies of scale : 

grazing leads to more professional management, grazing techniques, and stronger 

response to natural hazards; and it has been successful in implemented optimization 

of livestock structure, production and  the livelihood of herders (Han-qing, 2011). In 

addition, a well-managed group grazing strategy in this area is a potential 

mechanism for developing sustainable livestock husbandry and social stability 

(Sheng, 2012): the rotational grazing strategy was implemented by all the grazing 

groups, and the group rotational grazing works by groups pooling land which is then 

subdivided to provide rotational pastures. Then main characteristics can be 

summarised as (Huang and Li, 2017): 

• herders can become a shareholder of the grazing group by investing their 

grasslands and/or livestock; 

• livestock are fed by group according to their species, sex, raising purpose 

and etc.; 

• grasslands are divided into sub-groups which have a clear grazing order, 

grazing frequency and grazing duration; 

•  herders work in a specialized way according to their experience, 

professional knowledge and qualification; 

• the profit of herders is allocated according to the amount of their investment 

(grasslands and/or livestock). 

The grassland market is based on the rationale that market-based land redistribution 

can increase the forage availability for grazing and thus achieve better grassland 

resources use efficiency, and support more livestock production and improve 

herders’ income by making use of capital-led redistribution and re-aggregation of 

land and economies of scale in the grazing system (Zhang et al., 2007). The 

grassland market means individual households have the legal right to transfer the 

use-rights of their grasslands to a third party for animal husbandry by renting or sub-

contracting (Ma, 2003). One herder rents or leases land from another herder at the 

beginning of the year, and then they can manage some of their livestock on that 

rented land. This, in essence, is a kind of smaller scale group grazing, but in line 

with market demand. The land market makes up for the loss of livestock mobility 

and the spatial connectivity needed to deal with the heterogeneity of grassland 

resources (Yeh, 2011). The relationship of these two institutional arrangements and 

three grazing strategies is shown in Figure 3.8. Almost no herders will lease land for 

the purpose of just leaving it there for conservation purposes. Therefore the land 

market arrangement has no effect on the un-grazed strategy. The sedentary grazing 

is a fixed site grazing strategy, and the herders would not move to the other places. 
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But in this thesis, sedentary grazing means the livestock will continue to graze on 

one pixel or land patch. So the sedentary here indicates continuous grazing.  

 

Figure 3.8: Relationship of institutional arrangements and grazing strategies 
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Chapter 4 Developing a conceptual model of ABMGG  

The Agent-based Modelling of Grassland Grazing (ABMGG) aims to provide a 

dynamic grassland simulator under different grazing strategies or institutional 

arrangements. Chapter 2 outlined the theories (equilibrium and non-equilibrium) and 

paradigms for modelling the grassland grazing system. Chapter 3 has a detailed 

profile of the grazing system in Zeku. In this chapter, a conceptual model will be 

discussed by incorporating current grassland grazing modelling theories with the 

local grassland management in Zeku. The conceptual model is critical to verify the 

key processes of the model and to test the modelling theories. This chapter will 

discuss the conceptual models of grassland grazing using Netlogo5.1 (Wilensky and 

Rand, 2015) focusing on forage-livestock dynamics, individual-level interactions 

and grassland management of the grazing system in Zeku. This chapter will compare 

the different grazing strategies and institutional arrangements, under which the 

socio-economic and ecological performance of grassland grazing system will be 

different.  

4.1 A conceptual and empirical explanation of ABMGG 

A conceptual model is a simplified abstraction of a real system (Heath et al., 2009). 

It relies upon the knowledge of known theories of the real system and is based on 

the assumptions of the parameters describing the abstracted system (Simon, 2012). 

“The conceptual model forms the foundation of an ABM; an invalid conceptual 

model indicates the model may not be an appropriate representation of reality. For 

a model to be completely valid, it must be validated both conceptually and 

operationally” (Heath et al., 2009). A high-quality conceptual design for an agent-

based model is critical to the early detection and correction of system development 

errors (Wand and Weber, 2002; Onggo and Karpat, 2011), and, where there is 

participatory development, to represent the actions of stakeholders with an adequate 

detail in the system (Pastor and Molina, 2007; Parker and Filatova, 2008). This 

conceptual design can then be transferred to a software product which is functionally 

equivalent to the conceptual specification, and has the ability to model changes of 

the entity behaviours and the dynamic and the temporal relationships among them 

(Chen et al., 1999; Pastor and Molina, 2007). The conceptual model of ABMGG is 

thus important and essential for the successful modelling of the grassland grazing 

system at an early stage.  

The key for the conceptual ABMGG model is how to describe the behaviours of 

herders and the impact of different institutional arrangements on the grassland 

dynamics (e.g. livestock population and grassland forage availability), and the 

performance of grassland grazing (e.g. net income of herders and number of patches 

degraded). The conceptual model of ABMGG must be able to integrate with 

equilibrium and/or non-equilibrium theory; and most importantly, the natural growth 

of grass and the effect of different grazing strategies and institutional arrangements 

on the grassland system must be appropriately considered. In addition, the 

complexity of the interactions between grass and livestock should be included in the 

model. The conceptual model should also consider the availability of the data 

needed for the parameters, which is the main limitation on the later transition from 

the conceptual to the real model development. The outputs should include the 
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grassland status and forage production after grazing as well as the economic status 

of herders. This chapter will explain the conceptual framework of ABMGG and the 

socio-ecological theory behind them. As said before, ABMs should have an 

acceptable representation of herders, livestock, grass growth, grazing strategies and 

institutional arrangements. Importantly, defining what makes a model ‘acceptable’ is 

extremely difficult, so this chapter will also discuss the means by which 

acceptability is determined. 

Prolonged snow is an event that is considered to happen randomly in Zeku, affecting 

the grass growth in the early spring (Zhang, 2010). Un-predictable extreme climatic 

events like prolonged snow will break the equilibrium status of the forage and 

livestock population, and result in a new equilibrium status for the system. The next 

step for the conceptual model in this thesis is to convert these theories into an 

executable computer program.  

An abstract landscape with equally divided pasture patches is designed in the 

conceptual model (because the data on grassland patches is all derived from remote 

sensing datasets with a spatial resolution of 463 × 463𝑚2, it is easier to have 

equally divided pasture patches in the conceptual model). In the conceptual model, 

each land patch has a randomly assigned initial amount of available forage and a 

random growth rate for each month, representing the heterogeneity of the natural 

grassland productivity. Pastures and livestock are owned privately by herder agents, 

all of the livestock are measured by sheep units, currently, and a matured yak can be 

transferred in to 4.5 sheep units (Su et al., 2003). For each time step of the model, 

the available grass forage is a summation of newly increased grass forage and the 

remaining forage in the end of the last step. The livestock on the patches will eat a 

certain amount of grass forage, thus the forage after grazing is the available forage 

minus the grazed material.  

In assessing the results, it is assumed that if the aboveground grassland productivity 

left after the first year grazing is less than 50% of its initial assigned above-ground 

grassland productivity, the patch will be counted as a degraded grassland patch. The 

model will check the overgrazing status for each step during the simulation runs. 

This measure is chosen as a temporary estimate; the definition of three different 

biomass reduction metric related to grassland degradation from the Chinese National 

Criteria are shown in Table 4.1 (Su et al., 2003). A degraded grassland patch has 

lower grass productivity after grazing, and this decreased grass productivity is used 

to represent the damage to plants by overgrazing. This simplified metric (Table 4.1) 

of grassland degradation provides an alternative perspective on the grassland status 

to productivity. 

Table 4.1: National criteria of parameters for degradation in terms of 

aboveground grassland productivity 

items Degree of degradation 

Ungraded Light 

Degraded 

Medium 

Degraded 

Severely 

Degraded 

Aboveground 

grassland 

productivity 

Total decrease ratio (%)  0-10 11-20 21-50 >50 

Edible decrease ratio 

(%) 

0-10 11-20 21-50 >50 

Inedible and toxic 

increase ratio (%) 

0-10 11-20 21-50 >50 
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The grass growth rate for each patch in the model is a random value between 0 and 5 

from October to May, and a random value between 0 and 60 from June to 

September. This is used to represent the seasonal variation of grassland forage. 

These simply randomized growth rates are used to represent the complexity of grass 

growth under grazing. The consecutive comparison experiment of grass growth 

under different grazing intensities in the Three River Head Source area (TRHR) is a 

typical example that shows this complexity. The Absolute Growth Rate (AGR) and 

Relative Growth Rate (RGR) are used in the experiments to describe the net biomass 

accumulation per unit time (Zhao et al., 2011a): 

𝐀𝐆𝐑 =
𝑾𝟏−𝑾𝟏

𝒕𝟐−𝒕𝟏
 And 𝐑𝐆𝐑 =

𝐥𝐧 𝑾𝟐−𝐥𝐧 𝑾𝟏

𝒕𝟐−𝒕𝟏
 

           Eq.  4-1 

, where 𝑾𝟏 and 𝑾𝟐 are the biomass at time 𝒕𝟏 and 𝒕𝟐 respectively.  

Table 4.2 (Zhao et al., 2011a) shows the AGR of total above-ground biomass under 

different grazing intensities during the growing season (June, July, August & 

September), from which we can see the diverse impact of different grazing 

intensities on the first year and the second year’s growth of grass. For summer 

pastures, the above-ground biomass reached a maximum value in July under slight 

grazing and with a control group (grazing free) for both the first year and the second 

year; while under medium and heavy grazing, the maximum above-ground biomass 

appeared at August for the first year. However, for winter pastures, no matter under 

what kinds of grazing intensities, the maximum above-ground biomass were all in 

August for the first year and in July for the second year. Although there are some 

changes in AGR under different grazing intensities in the grassland grazing system 

in Zeku, the results here provide an example of the complexity of different grazing 

intensity patches within the grazing system and have demonstrated the importance 

of incorporating grazing in the grass growth model (this will be further discussed in 

Chapter 5). 

Table 4.2: AGR of total aboveground biomass under different grazing 

intensities, from Zhao et al. (2011a), page 205 (unit: gm-2d-1) 

Pasture 

type 

month Control 

group 

Slight 

grazing 

Medium 

grazing 
Heavy 

grazing 

1st 

year 

2ed 

year 

1st 

year 

2ed 

year 

1st 

year 

2ed 

year 

1st 

year 

2ed 

year 

Summer  June 0.98 1.11 0.83 0.94 0.69 0.71 0.48 0.62 

 July 3.58 6.90 3.01 4.31 1.97 3.58 1.48 3.58 

 August 1.88 4.08 2.05 2.53 2.23 3.36 2.73 1.39 

 September -0.79 -0.52 -0.75 -0.31 -0.52 -0.35 -0.97 -0.71 

Winter  June 0.82 1.85 0.73 1.60 0.67 1.47 0.70 1.02 

 July 0.89 3.97 0.76 4.51 0.71 4.96 0.68 2.61 

 August 2.2 1.8 2.75 1.57 2.32 1.80 2.31 1.21 

 September -0.11 -0.93 -0.12 -4.08 -0.23 -0.44 -0.17 -0.68 
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Table 4.3 shows the percentage of different grass species under different grazing 

intensities. With an increase in grazing intensities, the percentage of edible species 

(Cyperaceae and Poaceae) were decreased substantially in both summer and winter 

pastures, while the percentage of poisonous species were increased (Zhao et al., 

2011a). Assuming the productivity doesn’t change overall, the interannual 

percentage of palatable grass species have decreased on heavy and medium grazed 

lands, and they have increased in the control group and slightly grazed lands. This 

can be explained by the increased percentage of palatable grass species, which has a 

negative effect on poisonous species. In summer pasture lands of medium and heavy 

grazed areas, although the stimulation of grass regrowth caused by grazing-led 

defoliation can compensate for the loss of grass biomass, the suppression effect of 

those palatable species on unpalatable or poisonous species will be weaker, which in 

return will improve the productivity of unpalatable or poisonous species (1998). In 

addition, livestock grazing would increase the amount of sunlight transmission to the 

lower layers of the grass (Yonghong and Shiping, 1999). This is why Table 4.3 

shows increased productivity of Cyperaceae species compared with that of the 

control group. The example here illustrates the complexity of livestock-herbivore 

interactions, which will be included in the ABMGG.  But, in order to make the 

conceptual model as simple as possible at this stage, the model set the growth rate of 

available forage for grazing at a random value for different seasons to account for all 

the considerable variance associated with all the above effect. 

Table 4.3: Percentage of different grass species under different grazing 

intensities (from Zhao Zhao et al. (2011a), page 204  (unit: %) 

 Grass type Heavy 

grazing  

Medium 

grazing 

Slight 

grazing 

Control 

group 

 1st 

year 

2ed 

year 

1st 

year 

2ed 

year 

1st 

year 

2ed 

year 

1st 

year 

2ed 

year 

s

u

m

m

e

r 

Cyperaceae 28.14 25.45 35.28 35.20 40.55 37.47 27.33 25.96 

Poaceae 14.07 9.16 25.81 25.82 29.44 33.44 40.14 47.69 

Edible species 37.07 41.38 24.32 24.73 21.69 20.07 16.67 11.97 

poisonous species 20.79 24.01 14.59 15.45 11.33 9.02 9.86 5.38 

% palatable 

species 

42.21 34.60 61.09 62.02 66.98 70.91 67.48 73.66 

interannual 

change of % 

palatable grass 

-7.61 -0.07 3.93 5.88 

w

i

n

t

e

r 

Cyperaceae 31.03 25.91 35.98 28.38 38.32 29.88 41.09 32.80 

Poaceae 29.49 29.78 25.64 33.37 27.22 37.90 27.50 1.25 

Edible species 25.66 28.46 24.96 25.47 22.40 20.94 20.42 16.87 

poisonous species 13.81 15.86 13.42 13.78 12.06 11.28 11.0 9.08 

% palatable 

species 

60.52 55.68 61.62 61.75 65.55 67.78 68.59 74.05 



67 

 

interannual 

change of % 

palatable grass 

-4.84 0.13 2.23 5.46 

 

Prolonged snow is an external driver that causes a rapid decrease in grassland 

productivity and the loss of livestock. For the moment, prolonged snow hits pastures 

in the agent world randomly, and each parcel has the same probability to be hit. The 

grass productivity of the parcel hit by prolonged snow and its neighbourhood parcels 

(i.e., within a radius) are influenced by the snow. The impact of snow on grass 

productivity was simplified by setting a certain degree of loss of assets and a sharp 

decrease in grassland productivity. When prolonged snow happens, the herder 

agents tend to overuse their pastures if they cannot find available parcels for 

migrations and/or do not have enough money to buy fodder. In the real world, the 

restoration of livestock populations after climate hazards is from both natural 

reproduction and purchasing livestock from markets. In the real world, the price of 

buying lambs fluctuates when hazards happen (Wang et al., 2013), but this model 

will assume constant costs. 

Herder agents are assigned a random number of sheep and assets initially. Each 

herder occupies one land patch, and all land patches have their own herder agent. 

Herder agents raise livestock on their pastures; the model does not consider the 

breeding process of livestock and nor does it consider herd deaths, save under snow-

based disasters. At the end of each year, herder agents have the possibility of selling 

their sheep to gain benefits (assets), and at the beginning of each year, herder agents 

will buy a certain number of lambs with a certain probability. We assume that the 

number of sheep owned by each agent is stable during the other times of the year. 

The influence of market incentives on the livestock management behaviours of 

herders is not included in the model to keep the model simple.  

The framework of AMBGG is shown in Figure 4.1. There are two main sub-models. 

The human system is designed to simulate the decision making of herders including 

selling, buying of livestock and joining groups. The natural system accounts for the 

natural growth of grass. The interactions of the model include livestock grazing and 

grass response to grazing, which will be further affected by macro-level grazing 

strategies and institutional arrangements. There are also two types of outputs: socio-

economic results and the ecological results of the grazing system. At the base, the 

land tenure system is the core for forming the grazing strategies and institutional 

arrangements in Zeku. 
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Figure 4.1 : The framework of ABMGG 

 

4.2 Agent-based modelling of grassland grazing 

As has been mentioned in Chapter 3, rotational grazing is a common grazing 

strategy for the herders in Zeku due to the unique climate conditions with long-

lasting winters and short summers. Zeku is located in the subnival belt in China; 

summer is the most productive season of the whole year, and the short summer 

grazing period contributes a lot to winter grassland grazing pressure (Sanzhi, 2001). 

According to our field survey, the winter grazing period is from October to May (the 

following year), this is mainly on stored fodder; while the summer grazing period 

just lasts from June to September. In addition, different behaviours of the herders 

will lead to different ecological and economic performance for the grassland grazing 

(e.g. net income of herder and grassland quality). The prototype model in this 

chapter will be used to explore three different management: sedentary grazing (un-

grazed), land market and group grazing (see Chapter 3 for details). Institutional 

management strategies have their own socio-economic mechanism that affects the 

performance of grassland grazing. 

Grassland productivity  

Grazing-led loss of grass productivity could affect the overall grassland productivity 

(McCarthy et al., 2016b). It has been proved that grazing could affect the grass 

biomass accumulation, nutritive value and utilization (Stobbs, 1975; Pontes et al., 

2007; Ganche et al., 2013; Tuñon, 2013). Researchers have further confirmed it is 

the main reason for the grassland productivity change of grazing systems (Mott, 

1960; Baudracco et al., 2010; McGregor et al., 2014; Pulido et al., 2016) except 

climate change. Although a moderate grazing severity could lead to the 

improvement of grassland utilization (Baudracco et al., 2010), the impact of grazing 

severity on grassland productivity has been extensively studied but inconsistently 

reported (Rawnsley et al., 2014), which were similar to the results in Table 4.2 and 

Table 4.3, and the evaluation of such effects are often complicated due to the various 

grazing decisions and natural conditions (Clark et al., 2016). One of the most simple 
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and effective indicators of grassland change under grazing is the quantity of grass 

forage, and this has been widely used in grassland grazing studies (McNaughton, 

1979a; Lezama et al., 2014; Chang et al., 2015; Sabatier et al., 2015; Zhang et al., 

2015; McCarthy et al., 2016a). In this prototype model, the total available forage 

under grazing throughout the year can be calculated by the subtraction of grazed 

forage eaten by livestock from the total newly grown available forage, which can be 

express as: 

𝐓𝐍𝐆𝐀𝐅 = ∑ ∑ (𝑮𝑮𝑹𝒎𝒊. 𝑳𝑷𝑨𝒊 − 𝑳𝑮𝒎𝒊)
𝟏𝟐

𝟏

𝒏

𝟏

 

           Eq.  4-2 

TNGAF is the total newly grown available forage of all the patches during the year, 

𝑮𝑮𝑹𝒎𝒊 is the grass growth rate in month m of land patch i, 𝑳𝑷𝑨𝒊 is the total area of 

land patch i. 𝐿𝐺𝑖 is the grazed amount of forage by livestock at land patch i during 

month m; n is the total number of patches. 

Grassland degradation 

Another important indicator for quantifying the effect of grazing is the degradation 

status. In fact, over the last few decades, the degraded grasslands caused by 

overgrazing account for the largest proportion of land degradation among all major 

biomes (Salvati and Carlucci, 2015; Kwon et al., 2016a). Grazing-led degradation 

poses a big threat to sustaining and/or increasing global livestock productivity, 

which serves multiple purposes including economic, social and ecological functions 

(Salvati and Carlucci, 2015; Kwon et al., 2016b). On the other hand, livestock also 

plays a critical role in maintaining soil nutrients in grassland, as livestock manure 

accounts for more than half of the total nitrogen phosphorus for grass growth 

(Sheldrick et al., 2003; Bouwman et al., 2013). Given the importance of livestock 

and grazing severity on grassland degradation, it is necessary to report the grassland 

degradation status to identify cost-effective strategies of sustainable grazing. In 

Zeku, although the judgement of grassland degradation has many factors to 

consider, this prototype model just keeps it simple with the one definition of 

grassland degradation according to the productivity change (Su et al., 2003), which 

can be expressed as: 

TND = {

𝐶𝑖>50   𝑠𝑒𝑟𝑣𝑒𝑟𝑒𝑙𝑦 𝑑𝑒𝑔𝑟𝑎𝑑𝑒𝑑
𝐶21≤𝑖≤50 𝑚𝑒𝑑𝑖𝑢𝑚 𝑑𝑒𝑔𝑟𝑎𝑑𝑒𝑑
𝐶11≤𝑖≤20       𝑙𝑖𝑔ℎ𝑡 𝑑𝑒𝑔𝑟𝑎𝑑𝑒𝑑

 

           Eq.  4-3 

, where i is the percentage of decreased available forage productivity to the forage 

productivity of the base year and C is the number of degraded land patches at this 

level. 

In Section 3.6 of Chapter 3, different grazing strategies and institutional 

arrangements have been discussed. How do those management scenarios affect the 

herders’ economic status and grassland status? There are three different management 

scenarios designed in the prototype model: sedentary grazing (un-grazed, it is called 

continuous grazing as well in the literature), pasture rental market and Ecological 

Animal Husbandry and Economic Co-operative Grazing (EAHECG, which is a 

group grazing management scenario in essence but has a different name). The model 



70 

 

will report both the economic status of the herders and the degradation status of the 

land patches under these three management scenarios: 

Sedentary grazing 

The monthly (month “m”) net benefit of each agent (agent “i”) under the sedentary 

grazing can be calculated by: 

 𝑁𝐵𝐴𝑆𝑖𝑚 = 𝐴𝐼𝑖𝑚 + 𝑃𝑃𝑈𝑚. 𝑊𝐺𝑜𝐿𝑖𝑚 − 𝐿𝐹𝐶𝑖𝑚 − 𝑇𝑀𝐶𝑖𝑚 

           Eq.  4-4 

and the monthly (month “m”) total benefit of the agent (agent “i”) can be calculated 

by: 

 NBAS𝑚 = ∑ 𝑁𝐵𝐴𝑆𝑖𝑚
𝑛
1 = ∑ 𝐴I𝑖𝑚

𝑛
1 + 𝑃𝑃𝑈𝑚. ∑ WGoL𝑖𝑚

𝑛
1 − ∑ 𝐿𝐹𝐶𝑖𝑚

𝑛
1 − ∑ 𝑇𝑀𝐶𝑖𝑚

𝑛
1  

           Eq.  4-5 

, where 𝑵𝑩𝑨𝑆𝒊𝒎 is the net benefit of agent i at month m, and ∑ 𝑁𝐵𝐴𝑆𝑖𝑚
𝑛
1  is the net 

benefit of all the agents, and the total number of agent is n. 𝑨𝑰𝒊𝒎 is the asset 

investment benefit of agent i at month m, 𝑷𝑷𝑼𝒎 is the price per sheep unit at month 

m, 𝑾𝑮𝒐𝑳𝒊𝒎 is the weight gain of livestock of agent i at month m, 𝑳𝑭𝑪𝒊𝒎 is the cost 

of buying lambs or calves and fodder of agent i in month m. 𝑻𝑴𝑪𝒊𝒎 is the 

transhumance cost of agent i at month m. 

Where the monthly available forage for each land patch can be calculated by: 

𝐴𝐹𝑆𝑚𝑖 = 𝐴𝐹𝑆(𝑚−1)𝑖 ∙ (1 + 𝐺𝑅𝑖𝑚) − NoL𝑖𝑚 ∙ 𝐶𝑜𝐿𝑖𝑚 − 𝐿oSD𝑖𝑚 

           Eq.  4-6 

and the monthly total available forage can be calculated by: 

𝐴𝐹𝑆𝑚 = ∑ 𝐴𝐹𝑆(𝑚−1)𝑖
𝑛
1 ∙ (1 + 𝐺𝑅𝑖𝑚) − 𝐶𝑜𝐿𝑖𝑚 ∙ ∑ NoL𝑖𝑚

𝑛
1 − ∑ 𝐿oSD𝑖𝑚

𝑛
1   

           Eq.  4-7 

, where 𝑨𝑭𝑺𝒎𝒊 stands for the available forage of land patch i at month m, 𝑨𝑭𝑺(𝒎−𝟏)𝒊 

is the available forage of land patch i at month m-1(last month), 𝑮𝑹𝒊𝒎 is the 

increase rate of forage of land patch i at month m; ∑ 𝐴𝐹𝑆(𝑚−1)𝑖
𝑛
1 ∙ (1 + 𝐺𝑅𝑖𝑚) is the 

total available forage at month m before livestock grazing.  𝑪𝒐𝑳𝒊𝒎 is the 

consumption of forage by livestock (per sheep unit) within land patch i at month 

m, N𝐨𝐋𝒊𝒎 is the number of livestock of agent i at month m, and ∑ NoL𝑖𝑚
𝑛
1  is the 

total amount of livestock on the grassland land for month m;  𝑳𝐨𝐒𝐃𝒎 is the amount 

of forage loss if prolonged snow hits the land patch i at month m, and ∑ 𝐿oSD𝑖𝑚
𝑛
1   is 

the total forage loss due to the prolonged snow in month m. In the conceptual model, 

the growth rate of the grass is represented by a random amount forage increase 

(absolute value with unit kg) rather than a growth rate for simplification. 

Pasture rental market 

The monthly (for example, month “m”) net income of the agent (agent “i”) is: 

𝑁𝐵𝐴𝑅𝑖𝑚 = NBAS𝑖𝑚 + 𝐿𝑃𝑇𝑂𝑖𝑚 − 𝐿𝑃𝐹𝑂𝑖𝑚 − 𝑇𝐶𝑖𝑚 

           Eq.  4-8 

and the monthly total net income of agents can be calculated by: 
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 NBAR𝑚 = ∑ 𝑁𝐵𝐴𝑅𝑖𝑚
𝑛
1 = ∑ NBAS𝑖𝑚

𝑛
1 + ∑ 𝐿𝑃𝑇𝑂𝑖𝑚

𝑛
1 − ∑ 𝐿𝑃𝐹𝑂𝑖𝑚

𝑛
1 − ∑ 𝑇𝐶𝑖𝑚

𝑛
1  

           Eq.  4-9 

, where 𝑵𝑩𝑨𝑹𝒊𝒎 is the net income of agent i at month m, and ∑ 𝑁𝐵𝐴𝑅𝑖𝑚
𝑛
1  is the 

total net income for all the agent at month n, and the number of the agents is n; 

𝑳𝑷𝑻𝑶𝒊𝒎 is the net income of leasing pasture to others of agent i at month m, and 
∑ 𝐿𝑃𝑇𝑂𝑖𝑚

𝑛
1  is the total net income of leasing pasture to others for all the agents; 

𝑳𝑷𝑭𝑶𝒊𝒎 is the cost of leasing pasture from others of agent i at month m, 𝑻𝑪𝒊𝒎 is the 

cost of transportation for migration of agent i at month m, and ∑ 𝑇𝐶𝑖𝑚
𝑛
1  is the total 

cost of leasing pasture from others for all the agents; 

The monthly available forage of land patches is: 

𝐴𝐹𝑅𝑚𝑖 = 𝐴𝐹𝑅(𝑚−1)𝑖 ∙ (1 + 𝐺𝑅𝑖𝑚) − NoL𝑖𝑚(1 ± 𝜑) ∙ 𝐶𝑜𝐿𝑖𝑚 − 𝐿oSD𝑖𝑚 

           Eq.  4-10 

and the monthly total available forage can be calculated by: 

𝐴𝐹𝑅𝑚 = ∑ 𝐴𝐹𝑅(𝑚−1)𝑖
𝑛
1 ∙ (1 + 𝐺𝑅𝑖𝑚) − 𝐶𝑜𝐿𝑖𝑚 ∙ ∑ (1 ± 𝜑)NoL𝑖𝑚

𝑛
1 − ∑ 𝐿oSD𝑖𝑚

𝑛
1   

           Eq.  4-11 

, where 𝑨𝑭𝑹𝒎𝒊 stands for the available forage of land patch i at month m, 

𝑨𝑭𝑹(𝒎−𝟏)𝒊 is the available forage of land patch i at month m-1 (last month), and 

∑ 𝐴𝐹𝑅(𝑚−1)𝑖
𝑛
1 ∙ (1 + 𝐺𝑅𝑖𝑚) is the total available forage of all the lands before 

grazing;, 𝝋 is the percentage of livestock migrated to the newly leased land patch 

(for leaseholders it would be a “-”, while for landlords it would be “+”; 
∑ (1 ± 𝜑)NoL𝑖𝑚

𝑛
1  is the total livestock moved in/out the original lands in the whole 

region. 

EAHECG (or group grazing) 

The EAHECG organisation is an economic group that aims at improving the 

development of livestock husbandry. It is an effective organization dealing with 

employment and overgrazing in Zeku and was strongly encouraged by the local 

government. In ABMGG, we set 3 EAHECG groups initially, each of them has 7 

herders.  

The monthly (month “m”) net income of agent (agent “i”) can be calculated by: 

 𝑁𝐵𝐴𝐶𝑖𝑚 = 𝐴𝐼𝑖𝑚 + 𝑃𝑃𝑈𝑚. 𝑊𝐺𝑜𝐿𝑖𝑚 ∙ 𝛼𝑖 + 𝑃𝑃𝑈𝑚. 𝑊𝐺𝑜𝐿𝑖𝑚 ∙ (1 − 𝛼𝑖) ∙ (1 + 𝜋) −
𝐿𝐹𝐶𝑖𝑚 − 𝑇𝐶𝑖𝑚(1 − 𝜇) − 𝑆𝑃𝐶𝑖 

           Eq.  4-12 

The total monthly income of agents: 

NBAC𝑚 = ∑ 𝑁𝐵𝐴𝐶𝑖𝑚
𝑛
1 = ∑ 𝐴I𝑖𝑚

𝑛
1 + 𝑃𝑃𝑈𝑚. ∑ 𝛼𝑖 ∙ WGoL𝑖𝑚

𝑛
1 + (1 +

𝜋) ∑ 𝑊𝐺𝑜𝐿𝑖𝑚 ∙ (1 − 𝛼𝑖)𝑛
1 − ∑ 𝐿𝐹𝐶𝑖𝑚

𝑛
1 − (1 − 𝜇) ∑ 𝑇𝐶𝑖𝑚

𝑛
1 − ∑ 𝑆𝑃𝐶𝑖

𝑛
1   

, where 𝑁𝐵𝐴𝐶𝑖𝑚 is the net income of agent i at month m, 𝑁𝐵𝐴𝐶𝑚 is the total net 

income of all agents at month m, and ∑ 𝑁𝐵𝐴𝐶𝑖𝑚
𝑛
1  is the total the net income of all 

the agents; (1 − 𝛼𝑖) is the proportion of livestock invested in the ecological animal 

husbandry economic co-operative, 𝜋 is the increased proportion of cooperation 

benefit. 𝜇 is the decreased cost proportion of the transhumance cost with the 
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increase in the number of co-operators, 𝑆𝑃𝐶𝑖 is the cost of sharing the pasture of 

agent i, and ∑ 𝑆𝑃𝐶𝑖
𝑛
1  is the total cost of sharing the pasture of all the agents. 

The monthly available forage for each land patch is: 

𝐴𝐹𝐸𝑚𝑖 = 𝐴𝐹𝐸(𝑚−1)𝑖 ∙ (1 + 𝐺𝑅𝑖𝑚) − (𝛼𝑖 ∙ NoL𝑖𝑚 +
(1 − 𝛼𝑖)

𝐿𝑆𝑃𝐺𝑖
∙ NoL𝑖𝑚

∙ LPPG𝑖) ∙ 𝐶𝑜𝐿𝑖𝑚 − 𝐿oSD𝑖𝑚 

and ∑ LPPG𝑖
𝑁
1 = 1 , ∑ 𝐿𝑆𝑃𝐺𝑖

𝑁
1 = 1 

           Eq.  4-13 

The total monthly available forage is: 

𝐴𝐹𝐸𝑚 = ∑ 𝐴𝐹𝐸𝑚𝑖
𝑛
1 = ∑ 𝐴𝐹𝑅(𝑚−1)𝑖

𝑛
1 ∙ (1 + 𝐺𝑅𝑖𝑚) − 𝐶𝑜𝐿𝑖𝑚 ∙ (∑ NoL𝑖𝑚 ∙ (𝛼𝑖

𝑛
1 +

LPPG𝑖

𝐿𝑆𝑃𝐺𝑖
∙ (1 − 𝛼𝑖))) − ∑ 𝐿oSD𝑖𝑚

𝑛
1    

           Eq.  4-14 

, where ∑ 𝐴𝐹𝐸𝑚𝑖
𝑛
1   is the total monthly available forage for all the agents at month 

m;  𝛼𝑖 is the percentage of livestock of agent i invested in the co-operative, 𝐿𝑆𝑃𝐺𝑖 is 

the livestock proportion of agent i invested in the co-operative, LPPG𝑖 is the 

percentage of land area of agent i invested in the group, and (∑ NoL𝑖𝑚 ∙ (𝛼𝑖
𝑛
1 +

LPPG𝑖

𝐿𝑆𝑃𝐺𝑖
∙ (1 − 𝛼𝑖))) means the total livestock consumption of the forage of all the 

group grazing herders; the rest are the same as they have been explained earlier. 

4.3 Model specification 

All the values of parameters are assumed in the conceptual model of ABMGG 

(Figure 4.8). There are three types of parameters: land patch related parameters, 

livestock and herder agent related parameters and grazing strategy parameters. Land 

patch related parameters describe the initial productivity of grass forage and the 

grass growth of different seasons. Livestock and herder agent related parameters 

account for the grazing activities on grassland: the quantity of livestock owned by 

the herders and the quantity of grass forage consumed by livestock. Other 

parameters are related to the grazing strategies and institutional arrangements: 

market cost for leasing/renting, the cost for joining/leaving the grazing groups and 

the number of grazing groups. At present, little information is known about patch 

specific grassland productivity and livestock grazing (Chapter 5 develops a method 

to extract this information from remote sensing data). Here, all the values are 

assumed, and they are shown in Table 4.4. 

Table 4.4: Variables in the conceptual models and their assumed values  

Type  Parameters Value source 

Land 

patch 

Pasture size per land patch 1 km2 Assumed 

Percentage of edible grass 100% Assumed 

Grassland productivity Random (next rows) Assumed 

Summer growth rate Random 60 (kg) Assumed 
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Winter growth rate Random 5 (kg) Assumed 

livestock Consumption rate of grass per 

sheep unit 

0.5kg per sheep 

weight 

Assumed 

Weight gain from grazing per 

sheep unit 

0.1kg per sheep 

weight 

Assumed 

herder Number of Land patches 

owned 

1 Assumed 

Asset  random Assumed 

Number of sheep bought at 

the beginning of the year 

19 Assumed 

percentage of sheep sold at 

the end of the year 

90%  Assumed 

Probability of buying lambs or 

calves   

50% Assumed 

Probability of selling sheep or 

yaks  

50% Assumed 

Transhumance cost 200 Assumed 

market Price of leasing land patch 0 Assumed 

Transportation cost per patch-

unit 

0 Assumed 

Snow 

disaster 

Percentage of productivity 

loss from snow disaster 

90% Assumed 

Probability prolonged snow 

occurs 

0.1% Assumed 

Co-

operative 

Group 

Registeration cost for co-

operative  

0 Assumed 

Numbers of co-operatives 7 Assumed 

Exit cost of leaving a 

cooperation group 

0 Assumed 

The proportion of livestock 

invested in co-operative 

within the group 

100% Assumed 

The proportion of land 

invested in co-operative 

within the group 

100% Assumed 

 

Three models are developed representing the sedentary, land market and group 

grazing practice respectively. The values of the parameters for all three models are 

the same as those listed in Table 4.4. When degradation happens (less than 50% of 

the initial randomly assigned forage, and see Eq.  4-3), the herders are assumed to 

sell half of their livestock in the sedentary grazing model. Herders can rent land in 
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good condition for livestock grazing from other herders when degradation happens 

in the land market model. In the group grazing model, some of the herders are 

formed the grazing groups at the beginning of the year, and the herders in the same 

grazing group share the land resource. Only when the available forage in the group 

is less than 50% of the initially assigned available forage, then the herders in the 

group will sell half of their livestock. At the start of the year, herders are assumed to 

buy a fixed number of livestock (for example lamb or calf) for next year’s grazing, 

and sell 90% of their livestock at the end of the year. Since the transhumance cost is 

assumed to be a fixed number, and it only affects the net benefit of the herders in 

June and November, it was excluded in calculating the monthly net benefit for all 

three models. In addition, the income from the investment is not considered in these 

three conceptual models. 

4.4 Computational simulation 

The overall purpose of the computational simulations is to understand the economic 

(net income of herders) and ecological (numbers of degraded land patches) 

performance of the grassland grazing system under the three institutional 

arrangements. For each patch, different grazing strategies or institutional 

arrangements could have a diverse effect on the growth of grass and the dynamics of 

livestock, but when considering all the grassland patches as a whole, do these 

managements have the same effect? The results of a computational simulation 

would be helpful in understanding whether those management strategies are the 

cost-effective ones, or how can they be more effective in the future with the aim of 

realizing sustainable grassland management.  

Through 500 repeated simulations with the same parameter values, the stable 

outputs of the models can be obtained. However, the results presented in this section 

would, of course, vary when the values of the parameters are different from the 

assumed values. However, there is limited data on the uncertainty of the assumed 

parameter values in the conceptual models; therefore, this section aims to provide an 

example of assessing the grazing strategy and institutional arrangement by using 

ABM. A further sensitivity analysis in Section 4.5 will explore the effects of 

parameter value changes on the model outputs. The reason for choosing 500 

repetitions is that it is large enough to produce a stable mean value of the properties 

of the model outputs. We can see that, with the increase of the number of repeated 

simulations, the mean values and the standard errors are close to a certain fixed 

range; especially when the number of the repeated simulations exceeds about 400 

for all the conceptual models (see Figure 4.2, Figure 4.3 and Figure 4.4). 
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Figure 4.2: The means and standard errors of the model outputs with different 

numbers of repeated simulations in the sedentary model 
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Figure 4.3: The means and standard errors of the model outputs with different 

numbers of repeated simulations in the land market model 
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Figure 4.4: The means and standard errors of the model outputs with different 

numbers of repeated simulations in the EAHEC (group grazing) model 

 

The models were run for 20 simulated years from January 2000 to 2020. Figure 4.5 

shows the screenshots of ABMGG in 2020. The green land patches in all snapshots 

mean good conditions of the grassland, i.e. degradation do not happen; brown ones 

stand for the land patches that are degraded, and the yellow ones represent the 

patches that are hit by prolonged snow. The arrows in the screenshot of pasture 

rental market model show that the herders' lease land from their neighbours, and 

they change dynamically according to the status of the land patches. When one land 

patch is degraded, ABMGG will change its background colour to brown, and the 

herder agent will lease land from its neighbour. However, when the condition of a 

land patch is good (green colour), the herder agent will end up the leasing 

relationship and take the livestock back to his/her own land to save money. The lines 

in the screenshot of the EAHEC model show the initially established co-operatives, 

which will be kept the same until the end of the simulations; that is, there are no 

other herders joining/leaving the group during model runs. The models check land 

patch status at every time step to identify the degraded land patches. A severely 

degraded patch is defined as that the available forage is less than 50% of its initially 
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assigned value. All the parameters values are the same in those three grazing 

management scenarios. The mean values of the model outputs with their standard 

variance as shown in Figure 4.6, Figure 4.7, Figure 4.8 and Figure 4.9. 

 

: good condition 

land 

         : rent land from the 

other herders 

: degraded land 

  

: hit by prolonged 

snow 

           : grazing groups 

   

A: sedentary seasonal 

grazing      

B: pasture rental market          C: EAHEC (group) 

grazing  

 

Figure 4.5: Screenshots of three institutional arrangements in ABMGG 

 

Population and forage dynamic 

In order to keep the conceptual model simple, livestock here actually stands for the 

livestock weight*livestock number for each land patch. As we can see from Figure 

4.6, the overall dynamics of livestock and forage is the same under these three 

managements. Notice there are some extremely large numbers of the livestock in the 

first few years; this is because the initial model setting is not “appropriate”. This 

does not matter much for evaluating the modelling results. Due to the natural growth 

of forage and the decision making of herder agents, overgrazing (the patches with a 

lot of livestock but limited available forage) will trigger the selling behaviour of 

herders. These large values, therefore, represent large numbers of livestock that exist 

only for a very short period in the first year.  

In the three prototype models, herders will buy some yaks and sheep in January 

(step 1, 13, 25…). After reaching a stable forage-livestock pattern, we can see the 

maximum overall weight of livestock appear in February (step 14, 26, 38…) due to 

the buying behaviour of herders. The selling behaviour is assumed to occur at the 

end of the year, hence the minimum overall weight of livestock present in the next 

month (January). From Figure 4.6, there is a local maximum livestock weight in July 

and local minimum weight of livestock in November for each year. This is because 

the summer growing season has a greater forage growth rate, and there is plenty of 

available forage for livestock grazing. During the non-summer growth seasons, the 

growth rate is smaller, and the prototype model will check the degradation status of 



79 

 

land patches; therefore the herder agents have to either sell some of their livestock or 

rent land from others. 

The seasonal dynamics of available forage are well represented. We can see a 

greater available forage from June to September (step 6, 7, 8, 9, 17, 18, 19, 20…) 

compared with the other months. The maximum total available forage appears in 

September (step 9, 21, 33…), and minimum total available forage occurs in June 

(step 6, 18, 30…). From Figure 4.6, an obvious difference in available forage of the 

three models can be seen: the EAHEC has the largest available forage, followed by 

the sedentary grazing, while the pasture rental market has the smallest available 

forage. This is mainly because on EAHEC grazing land patches, the average number 

of livestock is much larger than that of the other two. The pasture rental market and 

EAHEC grazing management can actually ‘reduce’ the heterogeneity of the grass 

forage distribution; thus a higher productivity land can raise more livestock. The 

pasture rental market and EAHEC grazing can optimize the livestock number on the 

land by increasing accessibility of the grass forage (compared with sedentary 

grazing). This prototype results match well with the field based analysis (Hart et al., 

1993; Pavlů et al., 2003), which means the conceptual design of the prototype model 

is reliable and consistent with current studies. 
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Figure 4.6: Dynamics of livestock and available grass forage during 2000-2020 

 

The emergent pattern of the grassland grazing system is that the livestock population 

and the available forage “twist” together (Figure 4.7). When there is an increased 

overall weight of the livestock, the available forage will decrease due to the increase 

in livestock consumption. The forage increases fast from June to September, but it 

decreases gradually after September. This is expected to represent the seasonal 

dynamics of grass growth. Therefore, different grazing management strategies lead 

to similar emergent patterns with regards to the dynamics of the livestock and 

forage. 
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Figure 4.7: Average livestock and forage trend from 2000.01 to 2020.01 under 

sedentary seasonal grazing, pasture rental market and EAHEC 

arrangements 

 

Another important aspect of evaluating the grazing system is economic 

performance. Although Zeku is located in the national reservation area, the herders 

have lived in the same natural-grazing lifestyle for thousands of years, and it is 

impossible to exclude grazing for both cultural and economic reasons, and thus 

grazing still exists in this national reservation area. Livestock grazing is almost the 

only way of gaining income for the majority of herders in Zeku (Zhou et al., 2007a). 

The evaluation of the natural contribution to herders’ income is important for both 

academic research and policy-making (Campos et al., 2016). The value of the 

private amenities associated with grassland grazing, such as the enjoyment of the 
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grazing lifestyle (Kemp and Michalk, 2007; Oviedo et al., 2012), are not considered 

in this thesis. In fact, the herders in Zeku are low-income groups compared with the 

people in the northeast of China; livestock provides food and almost the only source 

of income supporting herders’ livelihoods for the vast majority (Zhou et al., 2007a). 

Different grazing strategies and institutional arrangements will affect the herders’ 

economic benefits from grassland grazing (Li et al., 2015b). Research has found that 

a continuous grazing strategy leads to a decrease of the herders’ net income and this, 

in turn, could affect grassland grazing management practices (Rittenhouse and 

Roath, 2002; Michalk et al., 2003). It is difficult to identify the impact of different 

grazing intensities on livestock production and herders’ economic benefits through 

laboratory experiments (McCollum III et al., 1999), but it is possible to evaluate the 

herders’ income when using agent-based modelling by exploring with different 

grazing management strategies (Jun et al., 2013). When the stocking rate is high in 

continuous grazing grassland, the weight gains of grazing livestock decrease 

(Ackerman et al., 2001; Miguel et al., 2003), and this could further affect the 

economic benefit (Whitson et al., 1982). Empirical analyses have shown that the net 

income per cow was higher for dairy farms that employed moderate very intense 

grazing than for dairy farms that employed extensive grazing in Pennsylvania and 

New York (Hanson et al., 1998). For the effective and sustainable development of 

the grazing grasslands, the economic measures need to be considered under those 

different grazing strategies and institutional arrangements to improve grassland 

condition while increasing herders’ incomes (Pannell et al., 2006). 

Net income 

The results of net income of the three models are shown in Figure 4.9. They are 

calculated by the average of individual herder agents’ net income for each step. The 

maximum net income appears in December, and the minimum net income stands in 

January for each year. This is because herder agents will sell their livestock at the 

end of the year, and buy baby lambs and yak at the beginning of the year. In 

addition, the models assume that transhumance happens in June when livestock 

travels to the summer pasture lands and November when livestock get back to the 

winter pasture lands. The transhumance happens at the cost of losing net income. 

From Figure 4.8, the average net income increases slower from June to September 

compared with the other months. Due to the higher grass forage growth rate from 

June to September, the livestock have enough feeding forage, and there is less 

weight of livestock being sold during those months; the available forage is less (see 

Figure 4.7) in the other months, and therefore the livestock is more likely to be sold, 

as the land patches will be more likely to be degraded. The sedentary grazing 

performs better compared with the EAHEC and pasture rental market with regard to 

the average net income of herder agents. The EAHEC produces the least income, 

indicating that EAHEC is not economically effective compared with sedentary 

grazing and the pasture rental market. 
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Figure 4.8: Economic performance under three institutional arrangement 

 

Sedentary continuous grazing is widely recognized as a key factor in grassland 

degradation caused by overgrazing (Teague and Dowhower, 2003). The main reason 

is that, on continuous grazing lands, the selective behaviour of livestock would 

contribute to the  higher stocking rate on patches with palatable species (Teague and 

Dowhower, 2003; von Müller et al., 2017); while rotational grazing, to some extent, 

would force the livestock to move to the other patches strategically. Various forms 

of rotational grazing have been proposed as alternative grazing strategies that are 

likely to avoid degradation (Norton and Bartle, 2014). The theory behind this is that 

rotational grazing lands can provide some rest time between grazing events (Teague 

and Dowhower, 2003), which allows palatable species to recover from the 

defoliation and compete effectively with less palatable species. However, 

researchers have found that continuous moderate grazing management promoted 

biomass production as well (Oñatibia and Aguiar, 2016). Therefore, the grazing 

intensity also plays an important role in grazing-led grassland degradation as 

“intensive grazing has been proved unsustainable because maximization of livestock 

revenue incurs high supplemental feed costs, marginalizes net household income, 

and promotes larger flock sizes to create a positive feedback loop driving grassland 

degradation” (Briske et al., 2015). It is, therefore, of great significance to report the 

degradation status under different grazing strategies and institutional arrangements. 

Degraded patches 

Figure 4.9 shows the numbers of degraded patches, which are simply defined as the 

patches where available forage decreased by 50% to their initially assigned values. 

A sharp decrease in the number of degraded patches can be seen from June to 

September each year due to the fast growth of the grass. Another local sharp 

decrease in the number of degraded patches is at December when the livestock are 

sold. On the whole, we can see that the EAHEC performs best in terms of the 

number of degraded patches, of which the mean and variance is much smaller than 
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the other two. Under the EAHEC management, herder agents can choose an 

alternative land patch to graze rather than continuously graze on their own land 

patch when prolonged snow happens. Herder agents in the land rental market model 

can rent land from other herders when there are not enough forage on their own 

lands, this may lead to the degradation on both lands. Thus the highest number of 

degraded patches can be seen in the sedentary model from Figure 4.9. Therefore, the 

most stable strategy is group grazing (EAHEC), which produces a smaller number 

of degraded patches and smaller standard deviation of them (blue area). 

  

Figure 4.9: Ecological performance under three grazing management 

 

 

4.5 The sensitivity analysis of the models 

The results presented in Section 4.4 are all based on the assumed values of the 

parameters, and changes in these values may lead to different model outcomes. 

Therefore, a sensitivity analysis is necessary to understand the conceptual models 

further. The aim of the sensitivity analysis is to explore the response of the model to 

the parameter value changes. One direct way is numerical simulation with different 

parameter value sets, and if there are too many parameters (for example, hundreds of 

parameters), the common way is to identify the most influential parameters and only 

explore the sensitivity of these parameters. 

In this section, six parameters in the sedentary and land market mode, and eight 

parameters in the group grazing model (EAHEC) are analysed by using partial 

(rank) correlation coefficient (PCC/PRCC), which is used to measure the 

relationship and the strength of the relationship between parameters and outcomes of 

the model (Saltelli et al., 1993; Manache and Melching, 2008). PCC can be used for 

measuring linear relationships, and PRCC is used for the measurement of non-linear 

but monotonic associations.  
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For each model, four aspects of the model outputs are evaluated: net benefit of the 

herders, livestock dynamic, forage dynamics and the number of degraded patches, 

which are all measured by their average value during 2000~2020. There are multiple 

years (2000~2020), multiple steps (46 steps for each year) and multiple dimensions 

(four aspects) of model outputs with single parameter value set for each model. This 

thesis uses the mean value of each dimension of the model outputs during the 20 

years, with 2000 parameter value sets created by Latin Hypercube Sampling (LHS) 

method (Stein, 1987). LHS is a stratified sampling method without replacement, 

which partitions each parameter distribution (see Table 4.5 for the value ranges of 

the parameters, which are also assumed values to cover the majority of all possible 

situations) into certain intervals of equal probability, and selects one parameter value 

from each interval. The interval sizes are determined by the probability density 

distribution of the parameters. For each parameter value set, the models are repeated 

5 times to extract the mean value of the model outputs (four aspects).  

Table 4.5: parameters value ranges used for sensitivity analysis 

parameters Lower limit Upper limit Unit 

numLambToBuy 0 1000 kg 

snowProbility 1 10 % 

lambPrice 1 1000 Yuan 

sellPrice 1 1000 Yuan 

forage_consumption_per_weight 0.01 1 kg 

weight_gain_factor 0.01 1 - 

numberCooperative 1 6 - 

numberParticipant 3 10 - 

 

The results of the PCC/PRCC analysis for the sedentary, land market and the group 

grazing (EAHEC) models are shown in Figure 4.10, Figure 4.11 and Figure 4.12 

respectively. Each figure shows the relationship between parameters and the four 

dimensions of the model outputs. There are strong negative relationships between 

the amount of livestock (parameter “a”,  see Figure 4.10) bought at the beginning of 

the year, price (parameter “c”), the forage consumption per livestock weight 

(parameter “e”) and the average net benefit (model output) of the herders for all the 

models. This is reasonable as the cost would be higher with the increase in the price 

or the quantity of the livestock (lamb or calf). The forage consumption per livestock 

weight (parameter “c”) plays as a consumption coefficient role in the models. With a 

higher value of the forage consumption per livestock weight, the less livestock can 

be raised on the land, which in turn leads to the lower net benefit to the herders. The 

weight gain of livestock from grazing (parameter “f”) is contrary to the forage 

consumption per livestock weight (parameter “c”) as a higher livestock weight gain 

from grazing means that more livestock (measured by weight) can be raised on the 

land, and this further leads to greater average net benefit for the herders.  

For the livestock dynamics, there is a monotonically negative effect of the forage 

consumption per weight (parameter “e”) on the overall livestock dynamic (measured 

by weight), while a positive effect of forage consumption per weight (parameter “f”) 
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on the livestock weight. The other parameters, however, show no obvious influence 

on the overall livestock weight, as they are more of economic value for the herders. 

The amount of livestock bought at the beginning of the year (parameter “a”) has a 

weak positive effect on the overall available forage on the lands in sedentary and 

group grazing (EAHEC) model, but it has a strong negative effect on the overall 

available forage in land market model. One reason would be that more livestock 

means more consumption of forage and therefore less available forage can be 

observed in the land market model. Such evidence can be seen from the effect of 

weight gain from grazing (parameter “f”), which has a strong negative effect on the 

overall available forage for all the models. However, when overgrazing happens, the 

herders must sell half of their livestock, and the reduced livestock could result in an 

increase in the availability of the grass forage. In addition, the overall livestock 

weight on the sedentary and group grazing model is smaller than that of the land 

market model, so the effect of selling behaviours is more obvious on the sedentary 

and group grazing model.  

It is interesting to see that the weight gain from grazing (parameter “f”) has a 

positive effect on the number of degraded patches for the three models; and the 

forage consumption per livestock weight (parameter “e”) has a weak or no effect on 

the number of degraded patches for the three models. This is because the overall 

livestock quantity depends on the increase rate of the livestock, which is determined 

by the weight gain from grazing (parameter “f”); the higher increase rate of the 

quantity of the livestock means the greater the demand for grass forage and, 

therefore, the higher the chance of the patches being degraded. The forage 

consumption per livestock weight (parameter “e”) affects the quantity of livestock 

on the grassland due to the limited forage, but it cannot improve or decrease the 

overall rate of forage consumption. When the consumption of the forage is the same, 

the lower value of the forage consumption per livestock weight means the land can 

support more livestock, but the overall weight does not change. 
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Figure 4.10: Results of the PCC/PRCC analysis of the sedentary model 

 

 

 

 

Figure 4.11: Results of the PCC/PRCC analysis of the land market model 
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Figure 4.12: Results of the PCC/PRCC analysis of the group grazing model 

(EAHEC) 

 

4.6 Summary 

This chapter introduced the conceptual design associated with building prototype 

models under different grazing strategies and institutional arrangements. Three main 

grazing management scenarios were modelled to understand their impact on the 

economic and ecological performance of the grassland grazing system. Results 

showed that EAHEC has the largest available forage, followed by sedentary grazing, 

while the pasture rental market has the smallest available forage. Essentially, the 

livestock population and the available forage presented a dynamic pattern: when one 

was rising, the other was falling. This prototype model is helpful to understand the 

dynamics of the grassland grazing system, which is essential in realizing the aim of 

dynamic grassland management under different grazing strategies and institutional 

arrangements. However, notice again that all the parameter values are assumed in 

those conceptual models, the work of the next chapter in this thesis is then to extract 

spatio-temporal explicit information on grass status and grazing activities.   
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Chapter 5 Identifying Grazing-led LAI changes from Remote 

Sensing Derived Datasets 

In Chapter 4, a prototype has been developed to model the dynamics of the 

grassland grazing system in Zeku. However, all the parameter values are assumed or 

abstract values. The results of the prototype model can only be used as a reference 

test of the basic modelling theories or as a way of assessing the feasibility of agent-

based modelling of grassland gazing. The values of the grazing system in Zeku 

would surely be different from the prototype models, meaning the next challenge is 

how to collect the patch-specific data needed for the successful modelling of the 

grassland system in Zeku. As discussed in Chapter 2, remote sensing derived 

datasets provide high spatiotemporal information for the land, which can be further 

explored to extract grazing information for the grassland specifically. This chapter 

will discuss in detail how to extract grazing information based on Moderate 

Resolution Imaging Spectroradiometer (MODIS) datasets. The results of this chapter 

will be further used in Chapter 6 for validation and in Chapter 7 for the 

parameterization of Agent-Based Model of Grassland Grazing (ABMGG). 

5.1 Problem identification 

Remote sensing derived datasets are extensively employed in the field of grassland 

monitoring (Potter et al., 1993; Field et al., 1995; Piñeiro et al., 2006; Gao et al., 

2013). In this research area, Leaf Area Index (LAI) is the commonly used measure 

to quantify the vegetation status of grassland (Fang et al., 2012). LAI is generally 

defined as the total one-sided green leaf area per unit ground area for flat broadleaf 

plants (Monteith and Reifsnyder, 1974) or one-half the total green leaf area per unit 

ground area for needles of conifers (Chen and Black, 1992) in describing radiation 

interception of plants. It gives an estimation of the green leaf area of the vegetation. 

The LAI is a key parameter for assessing the carbon and energy in the biosphere 

(Verger et al., 2015; Swain et al., 2016; Zhang et al., 2016), photosynthesis (Verrelst 

et al., 2016; Wei et al., 2016) and biomass production (Prieto-Blanco et al., 2009). It 

plays an important role in measurement and monitoring of land surface 

characteristics to assist policymakers in making decisions concerning the 

management of our environment (Cohen and Justice, 1999; Tian et al., 2002). 

The in-situ measured LAI of plant canopies be obtained either directly by green leaf 

collection or indirectly from the physical properties of green leaves; a detailed 

discussion on these measurements was presented in Jonckheere et al. (2004). Large-

scale in-situ measurement of LAI is almost impossible due to the disadvantage of 

being extremely time-consuming and/or labour-intensive (Jonckheere et al., 2004). 

Remote sensing of vegetation spectral information acquired from moderate 

resolution optical sensors provides an alternative way of observing canopy LAI, and 

extended the LAI observation process from the regional to global scale (Buermann 

et al., 2001; Tian et al., 2004). Datasets such as CYCLOPES (Baret et al., 2007) and 

GLOBCARBON (Deng et al., 2006) from Satellites Pour l’Observation de la Terre 

or Earth-observing Satellites (SPOT/VEGETATION) since 1998; Moderate 
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Resolution Imaging Spectroradiometer LAI  (MODIS LAI) from TERRA-AQUA 

sensors since 2000 (Yang et al., 2006) report the global vegetation LAI.  

Among all the global LAI products derived from remote sensing, the MODIS LAI 

dataset is one of the most widely used (Hill et al., 2006; Fang et al., 2008). 

Compared with the value of other vegetation indices which vary with soil conditions 

(Fang et al., 2015), local viewing and illumination conditions (Los et al., 2005; 

Galvão et al., 2013; Croft et al., 2014) and canopy structure (Croft et al., 2014), 

MODIS LAI reduces these effects by taking the canopy and scene geometry 

specifications into account when estimating (Jensen et al., 2011). Therefore, MODIS 

LAI changes, especially time-series MODIS LAI changes, are suitable and 

consistent for the detection of vegetation status changes. It is widely used and 

extensively validated around the world (De Kauwe et al., 2011). It expands our 

capability to estimate and monitor the biophysical characteristics of vegetation 

across a relatively large area with high geolocation accuracy (Gitelson et al., 2007). 

By comparing the LAI of two different catchments in South Africa, Palmer and 

Bennett (2013) use MODIS LAI to identify the grassland degradation of communal 

grasslands; Bobée et al. (2012a) reported the seasonal dynamics of  grasslands by 

the employment of time series MODIS LAI observations. Mayr and Samimi (2015) 

further validated the consistency of MODIS LAI by comparing the spatial patterns 

of field-measured LAI, LAI derived from High-Resolution RapidEye Imagery and 

MODIS LAI.  

MODIS LAI retrieval techniques are mainly based on the spectral and angular 

sampling of the radiation field reflected by vegetation canopies. The LAI values of 

MODIS data depend on biome-specific properties; it was derived based on a global-

scale 3D radiative transfer model (Knyazikhin et al., 1998a). It provides the best fit 

LAI to measured data by considering background effects (soil reflection), and 

biome-specific spectral and angular information for vegetation (Knyazikhin et al., 

1998b). This approach minimises the number of unknowns when solving the inverse 

problem of retrieving LAI from the atmospherically corrected and bidirectional 

reflectance distribution function (BRDF) corrected MODIS spectrum 1–7 (Myneni 

et al., 2015). The main Look-Up-Table (LUT) uses the spectral information of the 

red (648 nm) and near-infrared (NIR, 858 nm) bands, and a backup algorithm uses 

the empirical relationship between Normalized Difference Vegetation Index (NDVI) 

and canopy LAI (Myneni et al., 2015). Together they generate the LAI averaged 

over all acceptable solutions. If no solution exists, a backup routine using biome-

specific conversion algorithms for the vegetation index is applied for LAI. A 

detailed description of MODIS LAI modelling can be seen in Fensholt et al. (2004); 

Knyazikhin et al. (1998a); and Myneni et al. (2015). 

However, the remote sensing derived datasets are affected by noise caused by 

aerosols and bidirectional reflectance distribution factors (Sakamoto et al., 2005). 

The MODIS estimation algorithm may fail, and an empirical LAI would generally 

be used to fill pixels where this is the case. For example; radiation is strongly 

affected by clouds, meaning the MODIS LAI needs to be reprocessed before use. 

Thus, noise reduction is necessary before phenophase can be detected correctly.  

Yet due to the presence of cloudiness and seasonal snow, instrument problems and 

other issues, there are lots of gaps and noise in the data which make the “good 

quality” data discontinuous and inconsistent in space and time-series, and limits the 

potential for identifying the amount of LAI grazed by livestock. Numerous 

researchers have looked at noise reduction methodologies, such as polynomial 
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transformation and median filters (van Dijk et al., 1987; Popescu et al., 2003), 

locally adapted moving windows (Jönsson and Eklundh, 2004), Temporal Window 

Operations (PARK et al., 1999), logistic curve fitting (Zhang et al., 2003a; Bradley 

et al., 2007) and The Best Index Slope Extraction (Viovy et al., 1992). These 

improved LAI are widely used for a broad view of pixel-specific vegetation 

dynamics at both regional level (Bobée et al., 2012b; Jin et al., 2017) and global 

level (Zhang et al., 2017).  

However, when looking into the vegetation dynamics for each time period in 

grazing monitoring, the improved LAI dataset has the disadvantage that it 

demolishes the original grazing information through spatiotemporal averaging 

(Hansen et al., 2003; Fang et al., 2008; Xiao et al., 2011; Yuan et al., 2011; Zhang et 

al., 2012; Liu et al., 2017). In the context of grassland, especially in intense grazing 

areas (Gignoux et al., 2001), the grazing-led LAI changes caused by livestock 

grazing could have a significant effect on the quantity and quality of grass 

productivity (Matches, 1992). None of these noise reduction techniques can be 

applied in grazing information extraction related processing at Zeku, or, indeed, any 

other area where grazing is important in calculating carbon cycling. Remote sensing 

data can only capture the time period status of vegetation, rather than the whole 

process of vegetation development; nevertheless, improvements can be made. 

Ignorance of the grazing activities that may cause LAI change can lead to 

underestimates or otherwise incorrect assessments of grassland Net Primary 

Productivity (NPP), especially in NPP based carrying capability calculations in 

grazing intensive regions (Lebert et al., 2006; Nyima, 2015).  

In addition, grazing is considered to be the most influential factor for grass biomass 

dynamics (Numata et al., 2007). By using tracking data recorded by GPS, remote 

sensing has been employed to quantify grazing intensities by Kawamura et al. 

(2005), and this work suggested a poor negative correlation (R2 = 0.217, P < 0.01) 

between remote sensing estimated plant biomass as conducted currently and grazing 

intensities (Kawamura et al., 2005). This represents an important unknown in 

grazing information, yet it is clear from grazing studies that all year round grazing is 

detrimental to vegetation and has led to pasture degradation compared with a winter 

grazing only pasture (Kayhko and Pellikka, 1994).  

Grazing may directly lead to the change from green land to bare land, and a grazing-

led LAI change could be observed in the grass growth season (Miller-Goodman et 

al., 1999; Tsalyuk et al., 2015).  The LAI value of land patches will generally be 

underestimated due to the LAI consumption by herbivores (in this thesis, mainly 

livestock), especially in grazing intense areas (Gignoux et al., 2001). The ignorance 

of the effect of herbivore removers of vegetation is acceptable on a global scale of 

vegetation carbon assimilation or fixation, especially in forest areas, where 

herbivores contribute little to the plant LAI fluctuation. Nevertheless, in the context 

of rangeland, especially in intensive grazing areas, the grazing-led LAI changes 

could have a significant effect on the quantity and quality of grassland productivity.  

In fact, some researchers have even argued that grazing coupled with climate change 

are the main factors contributing to regional grassland degradation and even 

desertification (Dean et al., 1995; Harris, 2010). It may directly lead to the change 

from green land to bare land, and under those circumstances, it is expected that a 

rapid decrease of LAI would be observed even in the grass growing season. 

Considering the problem, it is of great importance to identify the spatial distribution 

and quantity of grazing-led LAI changes on grassland. The basic concept associated 
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with extracting grazing information from remote sensing is similar to that of other 

land observations or monitoring, that is, “identify and measure easily observed (via 

remote sensing) features that are related to more complex features or phenomena 

that a range scientist or manager wishes to identify, measure, and judge the 

significance of ” (Tueller, 1989).  

The aim of this chapter is therefore to estimate the grazing-led LAI changes by the 

employment of MODIS LAI datasets. However, the information we have from 

MODIS LAI datasets is very limited with regards to extracting the exactly grazing-

led LAI changes directly, which is the crucial indicator that would be used in 

guiding sustainable grazing pasture management; therefore, we need to explore 

further within those datasets to estimate grazing-led LAI changes at each satellite 

observation interval. There are two main difficulties directly or indirectly related to 

the MODIS LAI datasets:  

• MODIS LAI datasets are inevitably affected by clouds or other modelling 

error (Myneni et al., 2015). When we only use “good quality” data, the other 

pixels (non-good quality) make the dataset discontinuous. We need to pre-

emptively decide how to fill these “non-good quality” pixels reasonably and 

consistently in a manner that is best for estimating grazing-led LAI changes 

on grassland. 

• How to estimate the grazing-led LAI changes during the grass growing 

season based on the LAI after grazing observed by MODIS. This depends on 

how we calculate expected LAI before grazing. For a specified pixel, both 

the effect of current grazing and previous grazing should be considered 

simultaneously. 

To solve these two problems, we need to develop a new integrated growth grazing 

function that can describe seasonal growth cycles of the grass LAI under grazing. By 

fitting the new growth-grazing function to reliable data, the gaps of the MODIS LAI 

data will be filled in a reasonable fashion. The MODIS LAI datasets will be used for 

the estimation of grazing-led LAI defoliation by using the new growth function in 

Section 5.4. 

The rest of this chapter deals with time-series MODIS LAI changes during the 

summer growth period of the grass, which is the green grass period as the LAI is 

based on the greenness of the plants (Kang et al., 2003). The GlobalLand30 (Yu et 

al., 2014) data is used to extract grassland information. Due to the relatively tiny 

changes of land use/cover in Zeku from 2000 to 2010 (see Chapter 3), we assume 

the land use/cover has not changed during the estimation period (2003~2012). The 

estimation algorithm discussed in Section 5.6.3 is used to calculate grazing-led LAI 

changes for every 8 days. Then this estimation will be used to fit the new growth 

function (Section 5.4), based on which the improved (including grazing) and 

expected LAI (assuming no grazing) is to be estimated. Finally, rotational grazing, 

continuous grazing and un-grazed pixels will be distinguished according to the 

grazing frequency of estimated results. Since there is no direct data to validate the 

estimation of grazing-led LAI changes, we use two indirect ways to validate it (one 

is discussed in this chapter, the other will be discussed in next chapter). 
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5.2 Overall framework 

Estimation of grazing-led LAI changes is mainly based on the MODIS LAI datasets 

of grasslands for Zeku. The framework of grazed LAI estimation during the summer 

growing season is shown in Figure 5.1.  

After extracting the grassland LAI for Zeku based on MODIS LAI and 

GlobalLand30 land use/cover datasets from 2003 to 2012, the “good quality” LAI 

data (unaffected, for example, by cloud) were retained by setting the LAI value of 

“non-good quality” pixels to “NA”. The retained “good quality” LAI data are not 

continuous over the 46 observations taken during the year (see below) due to the 

“NA” settings. This chapter focuses on the grass growth period for the estimation of 

grazing-led LAI changes. The value of LAI basically stays the same during the 

winter period (remote sensing can reflect little grass information in winter, due to 

the grassland burning in Zeku, the LAI value mainly reflects a constant soil 

information value) for grassland in Zeku. The first work is then to detect the 

phenophase of the grassland in Zeku. A change detection technique was employed 

to estimate the starting date and end date of the grass growing season. The initial 

background LAI (mainly soil information) can be calculated after phenophase 

detection. 

A new grass growth function is developed to describe the growth of grass under 

grazing. In order to fit this new growth function, the initial background LAI, current 

LAI (MODIS “good quality” LAI) and the expected LAI (LAI before grazing with 

the effect of the previous grazing) need to be determined. An estimation algorithm is 

then developed to extract the value of expected LAI for each pixel, which 

considering both current grazing and the effect of the previous grazing. Finally, by 

curve fitting, an improved LAI and expected LAI would be produced. The grazing-

led LAI changes are then the difference between expected LAI and improved LAI. 

The rest of this chapter will outline the fitting of the new growth function. But first, 

we will introduce the conventional growth function and the new growth function: 
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Figure 5.1: Concept framework for quantifying grazing-led changes in Zeku, China 

 

5.3 Conventional growth function 

Growth functions are widely used in biological science. Most commonly, the simple 

exponential growth function and the logistic growth function are the two widely 

used empirical models in plant growth (Thornley and Johnson, 1990). With 

empirical statistical fitting, they can reflect the smooth growth of plants easily; but 

like the other empirical models, conventional growth functions have a common 

drawback: they can only deal with a theoretical smooth growth of plants. When the 

plant growth is affected by external events (grazing or mowing), the statistical fitting 

of such data will lead to relatively high modelling errors. Therefore, it is difficult to 

deal with situations where current plant growth is affected by grazing or mowing 

that took place some time ago. Researchers have reported that these factors could 

produce a totally different growth rate (Grant et al., 1983; Thornley and Johnson, 

1990). Figure 5.2 shows three growth phases of a perennial plant. The conventional 

growth functions work well with Phase I and Phase II, which follows a logistic or 

exponential growth curve. The basic forms of conventional growth functions can be 

summarised as the following equations: 

MODIS LAI data GLC30 land cover 

Grassland 

LAI 

QC=0

? 

Current grazing 

LAI 

Grazing growth function  

Phenophase  

Initial 

background LAI 

Change detection 

Good LAI (gaps) 

Set LAI=NA 

Set LAI= Fitted LAI (P=estimated) 

N 

Y 

Y 

Estimation algorithm 

Improved LAI  Expected LAI  

Set LAI= Fitted LAI (P=0) 

Previous effect 
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𝒅𝑾
𝒅𝒕⁄ = 𝝁𝑾                               →  𝑾 = 𝑾𝟎𝒆𝒖𝒕    

Eq. 5-1  

or 𝒅𝑾
𝒅𝒕⁄ = 𝛍𝐖 (𝟏 − 𝑾

𝑾𝒎𝒂𝒙
⁄ )  →  𝐖 =

𝑾𝟎𝑾𝒎𝒂𝒙
𝑾𝟎 + (𝑾𝒎𝒂𝒙 − 𝑾𝟎)𝒆−𝒖𝒕⁄  

Eq. 5-2 

where W is the current plant LAI and t is the current time, 𝑊0 is the initial value of 

W, 𝑊𝑚𝑎𝑥 is the final value of W.   

However, in many cases, especially when dealing with LAI data derived from 

remote sensing, the above functions cannot explain the growth behaviour at Phase 

III, where defoliation or senescence dominates the plant development process. This 

is because, in general, in the above growth equations, the growth rate only depends 

on the current vegetation status; it could never be negative to represent when 

senescence or defoliation is dominating the plant development. This is the key 

reason for the consequent difficulties when interpreting the modelling results. This is 

a well-known issue; for example Parsons, Schwinning and Carrère (2001) highlight 

that “using a logistic growth curve that is empirically based on data from infrequent 

severe defoliation can ironically lead to the interpretation that greatest yields would 

be achieved using continuous lenient grazing”. In addition, the statistical fitting 

process will diminish the effect of grazing or mowing, and lead to unreasonable 

explanations for the growth of plants in some circumstances.  

Considering the fact that grass development is highly related to defoliation in the 

near past, Schwinning and Parsons have therefore modified the logistic growth 

function (Eq. 5-2) by introducing a patch state factor after the last defoliation 

(Schwinning and Parsons, 1999), which is an important step forward in integrating 

grazing-led defoliation into the model. This modified grass growth function can be 

expressed by the following equation: 

𝒅𝑾
𝒅𝒕⁄ = 𝝁𝑾(𝟏 − 𝑾′

𝑾𝒎𝒂𝒙
⁄ ) (𝟏 − 𝑾

𝑾𝒎𝒂𝒙
⁄ )      

Eq. 5-3 

with 𝑊′ standing for the initial condition for regrowth after the last defoliation (the 

regrowth factor). When 𝑊′ → 0, this equation is just the same as a conventional 

logistic function. Under other conditions, the growth rate can be affected by the 

regrowth factor 𝑊′ as well. The difficulty that appears when using this equation is 

how to collect 𝑊′ data, as it is assumed as a “pre-known” constant value for each 

time interval. There is still no perfect solution for 𝑊′ determination yet; lab 

experiments are generally unrealistic, while remote sensing methods are unable to 

derive this regrowth factor after defoliation as they can only capture the final status 

of grass under grazing. 

5.4 New growth function under grazing 

One way to estimate the grazing-led LAI change is to estimate the full growth curve 

and compare it with the recorded one. For years, researchers have been devoted to 

finding a simple function that describes the basic characteristic of plants’ growth. 

For perennial grasses, which are the dominant species in the Zeku, Qinghai-Tibet 
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area, the LAI dynamics during the year can be described by a curve with three 

growth stages (Figure 5.2). This can be observed both in field measurement 

(Hoffmann et al., 2005) and by remote sensing (Garrigues et al., 2008; Xiao et al., 

2011). In this chapter, a new empirical growth function will be discussed that 

models the dynamics of LAI. It considers both the growth and defoliation of a plant, 

as well as the effect of grazing. The estimation process starts by identifying the 

grazing-led LAI changes caused by livestock during the grass growing season for 

each 8-day period; the parameters of this new growth function for each pixel being 

fitted by the employment of the MODIS LAI dataset. 

 

Figure 5.2: LAI during a regrowth follows a bell curve as the canopy develops from low 

LAI (Phase I: low LAI increase rate) to maximum LAI (Phase II: high increase rate, 

growth dominated) and then to low LAI again (Phase 3: high LAI decrease, 

senescence dominated).  

 

The defects of a conventional growth function when describing the live grass mass 

accumulation can be summarised as: 

• senescence factor is totally ignored; 

• the lack of parameters representing the grazing effect on growth. 

A feasible way to deal with those problems is to add senescence defoliation (leaf 

changes colour from green to yellow) and grazing-led defoliation coefficient to the 

exponential growth function according to the nature of plant development. In this 

way, the whole processes of plant development can be described appropriately in 

one function. The ordinary exponential growth function is detailed in Thornley and 

Johnson (1990). When considering livestock grazing, the new function can be 

expressed as: 

𝒅(𝑳𝒕+𝑮𝒕+𝑮𝑩𝒕)

𝒅𝒕
= 𝒌𝟏(𝑳𝒕 + 𝑮𝒕 + 𝑮𝑩𝒕) − 𝒌𝟐(𝑳𝒕 + 𝑮𝒕 + 𝑮𝑩𝒕)𝒕    

Eq. 5-4  

Where 𝐿𝑡 is the current LAI that can be observed; 𝐺𝑡 is the grazing-led LAI loss; 

𝐺𝐵𝑡 is the previous grazing effect on current LAI.  𝑘1(𝐿𝑡 + 𝐺𝑡 + 𝐺𝐵𝑡) represents the 

current total growth rate, which is proportional to the current LAI, this is widely 

examined in ecological related studies (Johnson and Thornley, 1983; Thornley and 

Johnson, 1990); while 𝑘2(𝐿𝑡 + 𝐺𝑡 + 𝐺𝐵𝑡)𝑡 represents the total senescence rate, and 

is proportional to the current LAI. Notice that it takes the time as a weight; f(𝑡) = 𝑡, 

and is calculated in a time-dependent manner; the total senescence rate is linear to 

time t, this is according to the observations from Borrás et al. (2003) and Leopold et 

Phase III Phase I Phase II  

Time 

L
A

I 

Phase I… 
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al. (1959); although this relationship may be linear or non-linear across plant 

species, this chapter uses linear for simplicity. There is an improvement that can be 

made to the function, which is that, given the quantity of growth is the effect of 

growth and senescence combined, that growth is proportional to its current LAI (𝐿𝑡); 

equally, senescence rate can be related to both current LAI (𝐿𝑡) and time t; it can be 

written as: 

𝒅(𝑳𝒕+𝑮𝒕+𝑮𝑩𝒕)

(𝑳𝒕+𝑮𝒕+𝑮𝑩𝒕)
= (𝒌𝟏 − 𝒌𝟐𝒕)𝒅𝒕        

Eq. 5-5 

To integrate this equation, it is written as:  

∫
𝒅(𝑳𝒕+𝑮𝒕++𝑮𝑩𝒕)

(𝑳𝒕+𝑮𝒕+𝑮𝑩𝒕)

𝑳𝒕

𝑳𝟎
= ∫ (𝒌𝟏 − 𝒌𝟐𝒕)𝒅𝒕

𝒕

𝟎
       

Eq. 5-6 

where L(t = 0) =  𝐿0 is the initial LAI. This equation now can be solved to have: 

𝒍𝒏
(𝑳𝒕+𝑮𝒕+𝑮𝑩𝒕)

(𝑳𝟎+𝑮𝟎+𝑮𝑩𝟎)
= 𝒌𝟏𝒕 − 𝒌𝟐𝒕𝟐       

Eq. 5-7 

in fact, at the start, 𝐺0 = 𝐺𝐵0 = 0, and therefore we have: 

 
𝑳𝒕+𝑮𝒕+𝑮𝑩𝒕

𝑳𝟎+𝑮𝟎+𝑮𝑩𝟎
=

𝑳𝒕+𝑮𝒕+𝑮𝑩𝒕

𝑳𝟎
=

𝑳𝒕+𝑮𝒕+𝑮𝑩𝒕

𝑳𝒕
∗

𝑳𝒕

𝑳𝟎
=

𝟏

𝑷
∗

𝑳𝒕

𝑳𝟎
=

𝑳𝒕

𝑷𝑳𝟎
    

Eq. 5-8 

where P is defined as the percentage of LAI or live mass which has been observed 

(remaining LAI after grazing): 

𝑷𝒕 =
𝑳𝒕

𝑳𝒕+𝑮𝒕+𝑮𝑩𝒕
          

Eq. 5-9 

Substituting Eq. 1.8 into the integrated growth equation Eq. 1.7 , we can get: 

𝑳𝒕 = 𝑳𝟎𝑷𝒆𝒌𝟏𝒕−𝒌𝟐𝒕𝟐
         

Eq. 5-10 

this is the basic form of the new growth model. When using it, an initial LAI value 

is set in 𝐿𝑡– it is more convenient to have an initial background value (𝐿𝑚, or 

background value) in the function when fitting the observed data; in fact 𝐿𝑡 =
𝐿𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐿𝑚, thus, it becomes: 

𝑳𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅 = 𝑳𝒎 + 𝑳𝟎𝑷𝒕𝒆𝒌𝟏𝒕−𝒌𝟐𝒕𝟐
       

Eq. 5-11 

We additionally define  
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𝑷𝑩𝒕 =
𝑮𝑩𝒕

𝑳𝒕+𝑮𝒕+𝑮𝑩𝒕
         

Eq. 5-12 

𝑷𝑮𝒕 =
𝑮𝒕

𝑳𝒕+𝑮𝒕+𝑮𝑩𝒕
         

Eq. 5-13 

where 𝑃𝐺𝑡 is the percentage of current grazing-led LAI change, 𝑃𝐵𝑡 is the effect of 

previous grazing on LAI change. Then we can have the following relation between 

𝑃𝐵𝑡, 𝑃𝐺𝑡 and 𝑃𝑡: 

𝑷𝒕 = 𝟏 − 𝑷𝑩𝒕 − 𝑷𝑮𝒕         

Eq. 5-14 

Substituting this into Eq. 5-11, we have the final equation: 

𝑳𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅 = 𝑳𝒎 + 𝑳𝟎(𝟏 − 𝑷𝑩𝒕 − 𝑷𝑮𝒕)𝒆𝒌𝟏𝒕−𝒌𝟐𝒕𝟐
     

Eq. 5-15 

and usually, 𝐿𝑚 = 𝐿0 = min {𝐿𝑡}.  

Notice that at the start point, when t=0, the value of the exponential part would be 1, 

and the observed LAI 𝐿𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 would be double the initial background value, 

which is not true in real-world situations. Therefore, when using this function to fit 

against the observed data, a mitigate constant variable C, needs to be added to the 

exponent part of the function to adjust growth and senescence of grass: 

𝑳𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅 = 𝑳𝒎 + 𝑳𝟎(𝟏 − 𝑷𝑩𝒕 − 𝑷𝑮𝒕)𝒆𝒌𝟏𝒕−𝒌𝟐𝒕𝟐+𝑪     

Eq. 5-16 

where C is an empirical parameter to be estimated, and the value of C can be 

estimated through the non-linear fitting of this equation against the “good quality” 

MODIS LAI data. In general, this new growth-grazing function can improve the 

accuracy of the regression coefficient if we intend to find a curve across the sample 

points that match as reasonably as possible. This new growth-grazing function is not 

enough alone; it needs to be accompanied by a grazing-led LAI change estimation 

algorithm (step 1~4 in Section 5.6), which will be discussed in Section 5.6.3, where 

𝑃𝐵𝑡 and 𝑃𝑡 will be calculated. 

The next sections outline the components of a curve fitting procedure with regard to 

this new growth function; this procedure following the framework in Figure 5.1. 

5.5 MODIS LAI and GlobalLand30 data processing 

The LAI datasets here were gathered from the MODIS collection 6 LAI 

(MOD15A2H006). Similar to the other remote sensing derived products, LAI is 

affected by off-nadir viewing, sun angle, background material reflectance and 

atmospheric aerosols; in addition, LAI has an asymptotic or saturation response to 

high levels of plant densities (Tucker et al., 1985a). To solve this problem, there is a 
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quality control (QC) value stored as 8 bits of data (Figure 5.3) for each pixel ( here 

about 463×463 m²) in MODIS LAI data. The unit of the LAI is m2/m2, and the scale 

factor is 0.1 (meaning the real value is 10 times than that of the MODIS LAI data 

recorded). The MODIS LAI products use the Sinusoidal grid tiling system (Figure 

5.3). Tiles are 10 degrees by 10 degrees at the equator. The origin of this tile 

coordinate system is (0, 0) (horizontal tile number and vertical tile number) in the 

upper left corner and proceeds right (horizontal) and downward (vertical). The tile 

of the case study area is (26, 5). 

 

Figure 5.3: Sinusoidal Tiling System and the tile of Zeku (red box), figure 

modified from Myneni et al. (2015), page 5  

 

Table 5.1: MCD15A2 quality control (QC) definition (from 
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd15a2 )  

Bit 

No. 
Parameter 

Name 

Bit 

Comb. 
FparLai_QC 

0 MODLAND_QC 

bits 

0 Good quality (main algorithm with or without saturation) 

1 Other Quality (backup algorithm or fill values) 

1 Sensor 0 Terra 

1 Aqua 

2 DeadDetector 0 Detectors apparently fine for up to 50% of channels 1,2 

1 Dead detectors caused >50% adjacent detector retrieval 

3–4 CloudState 

(inherited from 

Aggregate_QC 

bits {0,1} 

cloud state) 

00 0 Significant clouds NOT present (clear) 

01 1 Significant clouds WERE present 

10 2 Mixed cloud present on the pixel 

11 3 Cloud state not defined, assumed clear 

5–7 SCF_QC (five 

level 

confidence 

score) 

000 0, Main (RT) method used, best result possible (no 

saturation) 
001 1, Main (RT) method used with saturation. Good,very usable 

010 2, Main (RT) method failed due to bad geometry, the 

empirical algorithm used 

https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd15a2
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011 3, Main (RT) method failed due to problems other than 

geometry, empirical algorithm used 

100 4, Pixel not produced at all, value couldn't be retrieved 

(possible reasons: bad L1B data, unusable MODAGAGG 

data)  

In this chapter, only the data with QC=0 are used in order to avoid introducing any 

further uncertainties or errors to the model. In the MODIS LAI dataset, we have LAI 

observations every 8-day period which in total is 46 observations each year; these 

are the "best" pixel available from all the acquisitions of the Terra sensor from 

within the 8- day period. The average percentage of the number of “good quality” 

(QC=0) pixels to the total number of grassland pixels is shown in Figure 5.4; the 

average ratio is 81.52% for Zeku during 2003~2012. The time range of the dataset is 

from 2003 to 2012. Figure 5.5 shows a single pixel example of a QC=0 LAI time 

series at one pixel in Zeku, where we can see the obvious discontinuity when only 

QC=0 is used. Different colours represent different years. We can see the maximum 

values of LAI for these years are different, and the “gaps” caused by “non-good 

quality” settings occur at various dates of the year. The first problem of grazing 

information extraction when using MODIS LAI data is how to fill in these “gaps” 

reasonably and accurately. But before doing so, a basic understanding of the profile 

of the grassland grazing in Zeku is needed. 

 

Figure 5.4: Percentage of “good quality” (QC=0) pixels for MODIS LAI in 

Zeku, China 
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Figure 5.5: An example of discontinuous time-series LAI 

 

Since there is no exact spatial boundary data of the distribution of winter and 

summer pasture lands, a field survey was conducted by the Centre for Chinese 

Agricultural Policy, Chinese Academy of Science in 2012 (Table 5.2), see Chapter 

3, with the purpose of understanding the impact of climate change on herdsman’ 

daily life and the local environment in The Three Rivers Head Source Region in 

China. As noted in Chapter 3 in Zeku, there were 52 field survey records, the main 

big livestock was yak, sheep and horse (Figure 3.6 panel 1), with the horse only used 

for transportation purposes. Horses are an important vehicle for herdsman riding for 

grazing, and thus, there are no horses sold during the year (Figure 3.6 panel 3). 

Although there are other large wild herbivores existing in Zeku, due to their small 

population size, this thesis only considers yak, sheep, horses and cows as grassland 

foragers.  

After 2003, all the land patches were contracted to the herders (as discussed in 

Chapter 3), so we can assume nomadic grazing does not exist in Zeku County. The 

basic land patch statistics from the field survey data are shown in Table 5.2. The 

average summer pasture area is about 0.22 km², which means the average area of 

land patches in Zeku is a little bit greater than the MOD15A2H006 pixel cell area 

(0.21 km²), but if the herders join the ecological economic cooperation grazing 

group (group grazing), the total area of the group is much bigger than a pixel cell 

area. This group grazing area then becomes rotational grazing pasture land during 

the grass growth seasons. 
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Table 5.2: Winter and summer pasture land area from field survey data, Zeku, 20121 

(unit: km², the total pasture and group data are from Livestock Husbandry Bureau 

of Zeku)  

 households total area Mean area percentage 

Winter pasture  51 9.33 0.18 44.84% 

Summer pasture 53 11.48 0.22 55.16% 

Total pasture 13504 5409.77 0.40 -- 

 cooperative 

pasture 

5147 1501.80 0.29 -- 

 

Other important information is the land use/cover status. It is important that if there 

are severe land use/cover changes during the estimation years in Zeku, the land 

use/cover status should be updated accordingly with the estimation of the year’s 

changes. The land cover data is from the 30 meters Global Land Cover dataset 

(GlobalLand30). The overall classification accuracy reaches 83.51% (Kapaa= 0.78). 

Specifically, the accuracy for grassland is 76.88%. The coordinate system is WGS84 

(UTM Projection) (Chen et al., 2015). As it is organized in tiles, four of the tiles are 

downloaded to cover the extent of Zeku County (tile numbers are: 

N47_30_2010LC030, N47_35_2010LC030, N48_30_2010LC030 and 

N48_35_2010LC030). After mosaicing, re-projection and extraction, the data is 

resampled to about 463m spatial resolution by the majority percentage principle 

(same as the MOD15A2H006 LAI dataset). It is assumed that the land cover type 

has not been severely changed during the modelling period (see the land use/cover 

change analysis in Chapter 3).  

 

5.6 Processes for grazing-led LAI changes estimation 

The estimation of grazing-led LAI changes consists of four steps: phenophase 

detection, calculation of initial background LAI, preliminary estimation of grazing-

led LAI changes and the fitting with the new growth function. This section will 

elaborat on each step by detail. 

5.6.1 Step 1: phenophase detection 

The first element of the analysis is identifying the grass growth period. To do this, 

we utilise change point detection, applied to the 8-day MODIS LAI data time series. 

The change point detection is to identify the location of change (single or multiple) 

in the statistical properties of a sequence of observations that change in the series 

data. In fact, identifying the phenological stages of plants can facilitate the 

estimation of plant growth under various regional climates (Sakamoto et al., 2005; 

                                                 
1 In order to understand the impact of climate change on herder’s daily life and the local 

environment, the Centre for Chinese Agricultural Policy, Chinese Academy of Science 

had managed the investigation in Three Rivers Head Source Region in China, 

supported by the National Key Programme for Developing Basic Science 

(2012CB95570001), “the impact of climate change on key parameters of socio-

economic system in typical regions”, 

气候变化对典型区社会经济系统影响的关键参数研究 
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Motohka et al., 2010). Advanced or delayed heating will result in obvious changes 

in plant productivity (Sakamoto et al., 2005). Based on the time series analysis of 

the vegetation index data, a trend has been found of earlier greening in the northern 

latitudes between 45° N and 70° N since 1981 (Myneni et al., 1997a). With climate 

data, the results of phenological stage detection based on MODIS LAI data can be 

improved (Kang et al., 2003).  

Notice that there are 29423 valid pixels in Zeku on the 463m MODIS LAI map. 

Instead of identifying the change points for each of those pixels, the change points 

based on the mean values of those pixels are identified using change point detection 

technique. The results, therefore, contain the mean start dates and end dates of grass 

growth for the whole region. Changepoint detection methods are widely used to 

identify the location of the change in the statistical properties of a sequence of 

observations that change in time series data. The cost-penalty function is a 

commonly used method (Killick and Eckley, 2014) in identifying the change points. 

The change point approach is to minimize the value of Eq. 5-17: 

∑ (𝐶𝑦(𝜏𝑖−1+1): 𝜏𝑖) + 𝛽𝑓(𝑚)

𝑚+1

𝑖=1

 

Eq. 5-17 

where C is a cost function for a segment, the log-likelihood is a commonly used cost 

function (Horváth, 1993); 𝜏𝑖 is the ith change point and the total number of change 

points is m; 𝑦(𝜏𝑖−1+1): 𝜏𝑖 represent the ith segment, the 𝛽𝑓(𝑚) is a penalty to guard 

against over fitting. This chapter uses the PELT method, which assumes the penalty 

is linear to the number of change points, that is, βf (m) = βm (Jackson et al., 2005; 

Killick et al., 2012), as a choice of penalty function with the Modified Bayes 

Information Criterion (Zhang and Siegmund, 2007). For this research, we need to 

identify the change point where the mean value of the ith segment has a maximum 

likelihood statistic which minimizes the value of the cost-penalty function. The 

change detection software used here is the R “changepoint” package developed by 

Killick and Eckley (2014). 

At least two change points wound be expected according to Phase I in Figure 5.2: 

the beginning and end date for grass growth which makes the mean value of LAI of 

the segments divided by them have a maximum likelihood statistics. 

The following figures (Figure 5.6) show the mean LAI distribution from 2003 to 

2014, from which the most conservative change points were chosen as the start and 

end dates of the growth season. There is a basic symmetrical trend for each year. On 

the left side, all the figures basically fit logistic growth in which growth processes 

dominate, but after they reach the peak value, there is an obvious decrease of LAI 

for each year, which could be explained by senescence and/or defoliation processes. 

They are quite similar to Figure 5.2, but due to the effect of grazing, lots of 

fluctuations are present on the curves.  
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Figure 5.6: Average MODIS LAI for each 8-days from 2003 to 2012 (QC=0) 

 

Figure 5.7 shows the results of change point detection, where the values of two 

neighbouring pixel-mean segments are significantly different from each other, and 

the most obvious phenomenon is that all the change points for each year are 

basically symmetric around the winter period. The change points are where the 

mean value of the two neighbours are changed such that the maximum likelihood 

statistics minimize the cost-penalty function. The most obvious phenomenon is that 

all the change points for each year start and end appear at the change from a stable 

to a rapid increase (for the beginning) and at the sharp deceleration to a stable level 

(for the end), indicating the start of the fast-growing period and the end of the rapid 

senescence period respectively. These points appear at a relatively fixed time and 

the LAI value during the year, we can see they can basically connect one line 

parallel to the x-axis. We can also see the peak growth point, where the maximum 

value of LAI is observed. There are other change points detected among the peak 

point and the first and last change point for each year; these are either represent the 

most fast growing season or the fast senescence season; but due to the effect of 

grazing, these points are not fixed at both time and LAI value. Considering this and 

based on the conservative principle, the minimum date of the first change point is 

chosen as the start day of the fast-growing season, and the maximum value of last 

change point is the start day of the senescence dominated period for the whole set of 

datasets. 
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Figure 5.7: Change points detection of the mean LAI values (QC=0) in Zeku, 2003-2014 

 

 

All the change points are also shown in Table 5.3. The start and end dates of the 

grass growth period are used to extract the modal value of MODIS LAI (taken from 

those points with QC=0) during the non-growth season (date 1-14 and date 37-46); 

which is taken as the initial value of LAI (or background LAI). The initial 

background LAI will be used to fitting our new growth function (see below). 

Table 5.3: Detected change points of mean LAI (QC=0) 

year Change points (Julian Day) Observation in the year 

2003 137 169 185 209 217 241 265 281 18 22 24 27 28 31 34 36 

2004 129 153 177 225 257 281 17 20 23 29 33 36 

2005 129 153 185 201 249 265 289 17 20 24 26 32 34 37 

2006 113 145 177 217 257 281 15 19 23 28 33 36 

2007 129 145 169 193 225 257 273 17 19 22 25 29 33 35 

2008 121 153 169 233 257 281 16 20 22 30 33 36 

2009 113 145 161 185 225 241 273 15 19 21 24 29 31 35 

2010 129 153 169 225 257 289 17 20 22 29 33 37 

2011 145 161 177 217 257 289 19 21 23 28 33 37 

2012 129 161 201 249 273 17 21 26 32 35 

2013 137 153 169 193 225 249 281 18 20 22 25 29 32 36 
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5.6.2 Step 2: Initial background LAI 

After identifying the phenophase by using the change point detection technique, the 

first element of curve fitting, which is the initial background LAI, can be calculated 

using the LAI data during winter periods. The initial background values of LAI 

during the non-growth seasons are taken as constant in spite of the fluctuations 

(caused by the noise or error within the MODIS LAI data). Since the data used are 

the “good” quality LAI data (see Section 5.5), and all the unreliable or uncertain 

data are left as “gaps” in the time series LAI datasets; the initial background values 

of LAI should be observed during the non-growth seasons, and the majority of them 

should be the same (no greenness information can be detected by remote sensing 

during this period).  

For global scale research, a series of calculation algorithms are generally integrated 

into the initial background LAI calculation schema (Yuan et al., 2011), which 

consists of a conditional multi-year average, TIMESAT SG filter, local per class 

mean, per class mean and multi-year per class mean. In addition, improved 

ecosystem curve fitting (VCF-ECF) has been proved a useful method when 

producing continuous field products (Hansen et al., 2003). A detailed comparison of 

these techniques can be found in Hird and McDermid (2009). 

In fact, MODIS LAI product provides green vegetation green LAI (Myneni et al., 

2002), the LAI in winter for perennial grass is more informative of the background 

environment (such as soil type), rather than the grass status. In the LAI studies, one 

assumption is to keep LAI the same during winter. For example, it may be assumed 

that there is not much change in LAI beyond the growing season and consequently 

LAI during this period can be set to be constant (Liu et al., 2002). Therefore, 

producing an LAI winter image for the non-growth season is a very common way to 

reprocess the LAI data (Simic et al., 2004). We can, therefore, take the mode of the 

LAI values during the non-growth season as the initial background LAI value, 

which is the starting LAI value (or background LAI value) for the year’s growth. 

In addition, although we can use the mean value of LAI during the non-growth 

periods, individual plant phenology varies according to the different latitude or 

different land cover types (Zhang et al., 2003b); the results of grass phenophase in 

Section 5.5 is the average date of the start and end dates of all the pixels, which 

means it may be late for some pixels while too early for other pixels, the initial 

background value of LAI can vary spatially. If the initial background LAI is taken as 

the mean value of the LAI during the non-growth period detected in Section 5.5, the 

results would be inaccurate for many pixels. Therefore, in this thesis, the modal 

value of MODIS “good” quality LAI is used as the initial background LAI.  

 

 

 

5.6.3 Step 3: preliminary estimation of grazing-led LAI changes  

2014 129 153 185 209 241 273 17 20 24 27 31 35 

final choice Start date{113},  end date{289} Start date{15},  end date{37} 
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The next step is to calculate the grazing-led LAI changes for each pixel 

preliminarily. The values of this calculation will be used to fit with the new growth 

function (𝑃𝐵𝑡 and 𝑃𝐺𝑡 in Eq. 5-16). When comparing the LAI growth curve of 

rotational grazing, continuous grazing and no-grazing (where grass is preserved for 

winter use), the LAI curve should be exactly the same as the full growth curve in no-

grazing pixels (Figure 5.2); while pixels of rotational grazing pixels should present a 

fluctuated profile (Figure 5.19). Despite expectations, during the fast growth period, 

the LAI value may be smaller than its previous value due to the grazing LAI 

defoliation. Utilising such features we can estimate the grazed LAI and the effect of 

previous grazing. 

For each pixel, here we define  

• full growth LAI as the theoretical LAI curve if there is no grazing (without 

the effect of previous grazing and current grazing);  

• expected LAI as the LAI before grazing (with the effect of previous grazing 

but without the effect of current grazing); and  

• observed LAI as the LAI after grazing (with the effect of current grazing and 

previous grazing, it is the LAI to be improved). The observed LAI is a time-

series point data (46 points during the year).  

When there is an adverse observed LAI value, we can calculate the expected LAI by 

the new growth function and compare it to that of observed LAI recorded. The field 

measurement of grazing treatment suggests that when grazing stops, grassland LAI 

can regrow to pre-grazing levels (Harrison et al., 2012; Jerrentrup et al., 2015). 

Taking this model, it is assumed that local maxima in the growth curves represent 

expected seasonal growth.  

In addition, MODIS LAI was estimated associated with the day when the highest 

fraction of Photosynthetically Active Radiation (fPAR) was observed during every 

8-day period, and those days have not been recorded in the MODIS LAI datasets. 

This thesis assumes an equal day’s interval (8-days) starting on the last day. The 

uncertainty of the estimation of the grazing-led changes caused by such assumption 

will be further analysed in Section 5.10.2. 

An illustration of how the grazing-led LAI change is calculated is shown in the 

following figure (Figure 5.8) and elucidated below: 

 

Day of the year 

L
A

I 

Current 
grazing 

Previous 

grazing 

effect 

LAI after grazing 

Expected LAI  

Full growth LAI  
Grazing-led LAI change  
(without the effect of  
previous grazing) 

The effect of previous  
grazing 
Left neighbouring points 
(search radius =3)  
Right neighbouring points 
(search radius =3) 

Estimation point 

Legend 
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Figure 5.8: Illustration of grazed LAI estimation 

 

For example, the red point in the figure represents the current estimation point i, 

yellow points are the left neighbouring points with neighbourhood radius 3 (For 

MODIS, the unit is an 8-day period), while the green points are the right neighbours. 

The grazed LAI is then the difference between expected LAI and observed LAI 

(arrowed red segments), the effect of the previous grazing on current growth is 

calculated by the difference of full growth LAI and expected LAI (arrowed blue 

segments). The algorithm can be summarised as: 

• for each time slice point i (means ith observation recorded by MODIS LAI, 

i=1, 2…46), the time-series LAI points data is divided into its left neighbour 

points set (from point i-r to point i-1; r is the radii, ranging from 1 to 46, it is 

defined as the radii to search the neighbouring points for current estimation 

point) and right neighbour points set (from point i+1 to point i+r) by a 

predefined neighbourhood radius r. In this chapter, the radius is allowed to 

range from 1 to 21. The estimation algorithm will choose the radius which 

minimizes the root mean squared error (RMSE) for each pixel (see below). 

• Search for the point with maximum LAI in the left neighbouring points set 

and right neighbouring points set separately (the left maximum LAI point 

𝑃𝑚 = max(𝑃𝑖−𝑟 , … , 𝑃𝑖−1) and the right maximum LAI point 𝑃𝑛 =
max(𝑃𝑖+1, … , 𝑃𝑖+𝑟)). 

• Calculated the full LAI for point i, utilising the time difference as a weight, 

✓  if 𝑃𝑚 <  𝑃𝑛, the full LAI is: 𝐿𝐴𝐼𝑓𝑢𝑙𝑙 = 𝑃𝑚 +
𝑖−𝑚

𝑛−𝑚
∗ (𝑃𝑛 − 𝑃𝑚) 

✓ if 𝑃𝑚 >  𝑃𝑛, the full LAI is: 𝐿𝐴𝐼𝑓𝑢𝑙𝑙 = 𝑃𝑛 +
𝑛−𝑖

𝑛−𝑚
∗ (𝑃𝑚 − 𝑃𝑛) 

✓ if 𝑃𝑚 =  𝑃𝑛, the full LAI is: 𝐿𝐴𝐼𝑓𝑢𝑙𝑙 = 𝑃𝑚 = 𝑃𝑛 

• Calculate the difference between full LAI and observed LAI. If this 

difference is bigger than zero, calculate the observed percentage of LAI by: 

𝑃𝑖 =
𝐿𝐴𝐼𝑃𝑖

𝐿𝐴𝐼𝑃𝑖
+ 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

; if not, this percentage will be set to 100%. 

• If the previously observed percentage of LAI 𝑃𝑖−1 is smaller than 100% 

(means it has been grazed previously), change the left neighbour to point i-1, 

do step 3 and we can get 𝑃𝐵𝑖 (𝑃𝐵𝑡 in Eq. 5-15); If not, set 𝑃𝐵𝑖 = 0. 

• The estimation error can be evaluated by the sigma value of the nonlinear 

fitting of Eq. 5-15, which indicates the average fitting residual. 

𝑃𝐵𝑖 and (𝑃𝑖 − 𝑃𝐵𝑖) will be used as the input values for 𝑷𝑩𝒕 and 𝑷𝑮𝒕 in Eq 5-16 

respectively, and the values of parameters (k1, k2 and C in Eq 5-16) can be estimated 

through non-linear fitting with Eq 5-16. One problem needs to be further clarified 

before we can use this estimation algorithm, that is, whether 8-days’ time interval is 

a proper time to observe the effect of livestock grazing. The field measured LAI of 

grazing treatments in years 2007 and 2008 (Harrison et al., 2012) strongly showed 

that grass regrowth took 1~2 month depending on the duration and severity of 

livestock grazing recently (Figure 5.9). Sensitivity analysis of the regrowth duration 

of Guinea grass has found 55d was the best regrowth duration for the recovery of 

dry matter yield (Santos et al., 2014). As for the time of grazing (early or late 
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grazing), the reserve-dependent growth function (Jing et al., 2012) was integrated 

into the CATIMO grass model (Bonesmo and Bélanger, 2002), which showed that 

regrowth happened on both early and late defoliation by cutting (cutting has the 

same effect as grazing, both are removers of leaves), and it took 1~3 months for the 

regrowth of grass to its previous state during the grass growing season (Figure 5.10). 

All of these field measurements and simulations showed that grazing would cause a 

direct and sharp LAI decrease. This is the basis for the remote sensing monitoring of 

livestock grazing on grassland. As long as the satellite observing time interval is 

frequent enough; ie. a shorter period than the regrowth time, the change of grazing-

led LAI defoliation can be extracted from the time series LAI data.  
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Figure 5.9: Measured (points) and simulated (lines) leaf area indices of grazing 

treatments (A) HS, (B) GM, (C) LL and (D) GN during 2007 and 2008. Shaded 

regions represent the duration of grazing and vertical arrows show the observed 

dates of anthesis. Measured values are means ± one SEM (n = 3). Treatment 

abbreviations: GM, grazed Mackellar; GN, grazed Naparoo; HS, heavy short; and 

LL, light long. All grazing treatments were performed at 68 DSE ha−1 for 31 d, 

except LL which was performed at 34 DSE ha−1 for 62 d, figure from Harrison et al. 

(2012) 
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Figure 5.10: Simulated (lines) and measured (symbols) values of leaf area index (LAI, 

left) and aboveground biomass (right) versus day of year for the primary growth and 

regrowth of timothy with an early harvest (□, —) or a late harvest ( ) in 2000 

(calibration) and in 2001 and 2002 (validation) in Norway. This figure is from Jing et 

al. (2012) and data can be found in Höglind et al. (2005). 
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5.6.4 Step 4: Fitting with the new growth function 

Having preliminarily estimated the grazing-led LAI changes and full growth for 

each point on the per-pixel LAI curve, and knowing the initial background LAI, the 

analysis can proceed to fit the growth curve to the observed growth points, filling in 

the “non-good quality” pixels (improved LAI). The improved LAI can be calculated 

by the new growth equation directly; while the expected LAI is calculated by setting 

𝑃𝐺𝑡=0 (percentage of current grazing). The expected LAI is calculated by making 

sure the percentage of winter pasture area (44.8%) is same as the percentage of the 

pixels estimated where no grazing happens; we use the percentage of pixels with the 

smallest estimated grazing-led LAI changes for the match up and set the preliminary 

estimation of grazing-led LAI changes to 0 (𝑃𝑡 = 1, 𝑃𝐵𝑖 = estimated 𝑃𝐵𝑖 and 

𝑃𝐺𝑡 = 0). Note 𝑃𝐵𝑡 should stay the same as has been calculated in step five, as the 

whole estimation algorithm depends on the previous status of vegetation, and if 

there is no grazing at the current time period it does not mean the previous time 

period has no grazing as well. The grazing-led LAI change (without the effect of the 

previous grazing) can then be calculated by taking the difference between expected 

LAI and improved LAI.   

5.7 Modelling results 

Having outlined the algorithm in theory in previous sections, the specific results 

associated with the components are now presented. 

5.7.1 Result: Initial background LAI  

In order to achieve fitting with the new growth function (Eq. 5-16) discussed in 

Section 5.4, the first thing is to determine the initial background LAI value, that is, 

the value of 𝑳𝒎. This is the point from which the grass starts to grow, it is therefore 

the minimum LAI value for each pixel during the year as explained earlier. The 

published minimum value for LAI of grasslands are in a range from 0.3 to 2.0, for 

example, in Majella National Park, Italy, the measured minimum LAI of the 

grassland is 0.39 m2/m2 (Darvishzadeh et al., 2008), while have reported a minimum 

LAI between 1 m2/m2 and 2 m2/m2 for four grass species in Mead, Nebraska, United 

States (Mitchell et al., 1998).  

The result of the initial background LAI values of Zeku is shown in Figure 5.11. 

The majority of the pixels have a value of 0.2 m2/m2, which accounts for 82% of the 

total pixels. In the South and Eastern part of Zeku, a lot of the pixels have the value 

of 0.3 m2/m2, but they occupy just 12% the total pixels. In the northeast of Zeku, 

there are some pixels that have the initial LAI of 0.1 m2/m2, but these are only 5% 

of the total pixels. The pixels beyond these three values are less than 1% of the total 

pixels. The results here will be further used in the statistical fitting of the new 

growth function (Eq. 5-16) for each pixel.  
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Figure 5.11: Initial LAI of the grassland in Zeku, 2003~2012  

 

5.7.2 Results: curve fitting with the new growth function 

Using the estimation algorithm discussed in Section 5.6.3 and the results of the 

initial value of LAI in Section 5.6.2, the new growth function can be fitted for each 

pixel (see Figure 5.2 for example). Missing data during key parts of the growing 

season strongly influence the results of curve fitting based on MODIS Vegetation 

Index data (Zhang et al., 2006), but this problem can be well resolved by fitting the 

new growth function. From the right side of the figures (marked as “dense” data 

figures: A, C and E) in Figure 5.12, there are lots of “missing” points compare with 

their left counterparts (marked as “sparse” data figures: B, D and F). We can see that 

those “missing” points were reasonably filled with improved LAI (yellow curves).  

The assumption is that there is no grazing in the periods of no data that is not at least 

in part captured by points either side of the missing data, where this is the case the 

algorithm will underestimate grazing. 

The improved LAI data, where the “gaps” were filled, and the value of LAI is 

replaced by the new growth function based on MODIS LAI “good” quality data, can 

be derived directly (green curves in Figure 5.12). Similarly, the expected LAI data, 

which represents the LAI values of the pixels if no grazing happens, can be 

calculated (red curves in Figure 5.12). We can see the new growth function fits well 

with the “good” quality data points. In addition, Un-grazed, continuous and 

rotational grazing pixels can be classified according to the estimated grazing 

frequencies, as will be discussed later.  
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A: Un-grazed (“dense” data) 

 

B: Un-grazed (“sparse” data) 

 

C: Continuous (“dense” data) 

 

D: Continuous (“sparse” data) 
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E: Rotational (“dense” data) 

 

F: Rotational (“sparse” data) 

 

Figure 5.12: Examples of fitting the new growth function with MODIS “good” 

quality LAI data for un-grazed, continuous and rotational grazing pixels 

(left side figures: “gaps” did not appear at the key points; right side 

figures: “gaps” did exist at some key points) 

 

5.7.3 Results: estimated grazing-led LAI changes 

As discussed in Section 5.6.3, the grazing-led LAI changes for each pixel are the 

difference between the expected LAI (under no grazing but with previous effects) 

and the improved LAI (LAI after grazing, which can be observed by remote 

sensing).  

Our field survey in 2012 showed that the percentage of un-grazed grassland is 

44.8% in Zeku (Huang et al., 2016; Huang et al., 2017). This thesis uses this 

percentage to filter out small LAI fluctuations, which cause overestimates of grazed 

LAI due to the effect of modelling error and background noise within the MODIS 

LAI data (Li et al., 2014), that is, the percentage is used to truncate out the un-

grazed areas even where there is low fluctuation (which might be low-level grazing 

or error). The uncertainty of this estimation is explored in Section 5.10. 

The estimated grazed LAI are shown in Figure 5.13, ranging from 0 m2/m2 to 15.34 

m2/m2, with the annual average grazing-led LAI change from 7.2 m2/m2 to 9.08 

m2/m2 during 2003~2012. Note that there is a consistent spatial pattern whereby the 

southeast part of the region has higher grazed LAI than that of its counterparts; this 

is similar to the pattern found by other researchers (Fan et al., 2010b).  

Given an estimate of the grazing-led LAI changes, these figures can be converted to 

equivalent leaf mass and aggregated to a summated total for each year. This will be 

shown in the validation section. 
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Figure 5.13: Estimated grazing-led LAI changes  

 

5.7.4 Results: grazing frequencies 

Based on the grazing-led LAI changes discussed above, the grazing frequencies 

(revisit times) can be easily calculated by counting the number of nonzero grazing-

led LAI changes for each pixel, that is, the number of points where the calculated 

value of 𝑃𝐺𝑡 is bigger than 0 during the year (46 points of 8-day periods). Figure 

5.14 shows the results of estimated grazing frequencies, after filtering with the 

above threshold for the whole region. Rotational grazing should have the highest 

grazing frequency as the livestock will move in or move out more times and thus, 

more frequent grazing-led LAI changes should be detected. While for un-grazed 

pixels, the difference between the improved LAI and expected LAI would be zero 
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and therefore the grazing frequency is 0 (see panel A and B in Figure 5.12). The 

estimated grazing frequencies for continuous grazing pixels would be 1 because 

after livestock moved into the pixels, they will continuously graze, they will not 

move to the other pixels and therefore, just one sharp decrease can be observed in 

LAI curve. 

Based on the grazing frequencies counted for each pixel, the grazing type can be 

further inferred: if no grazing happens (with 0 grazing frequency), the pixels will be 

classified into un-grazed pixels; if the grazing frequencies are 1, the pixels will be 

regarded as continuous grazing pixels; while the rest of the pixels are rotational 

grazing pixels with grazing frequencies greater than 1, which means the livestock 

was moved in and out at least twice during the growth period. The spatial 

distribution of these three grazing types is shown in Figure 5.15. These maps will be 

further used in Chapter 7 as the grazing type data for each year. The validation of 

these results will be discussed in later sections both in this chapter and the following 

chapter. 

 

Figure 5.14: Distribution of estimated grazing frequencies 
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Figure 5.15: Classified grazing types of Zeku from 2003 to 2012. 

 

 

5.8 Impact of neighbour radius on grazed LAI estimation 

The neighbourhood radius used in estimating the grazed amounts could potentially 

have a significant effect on the grazed LAI estimation. There is a contradiction when 

choosing an appropriate neighbourhood radius. A smaller neighbourhood radius is 

expected to be more precise, but may equally underestimate grazed LAI. A greater 

neighbour radius value would also potentially increase the error of the searching 

algorithm, especial near inflexion points of the LAI growth curve. This section, 

therefore, looks at this sensitivity. In the algorithm, each pixel has its own radius 

calculated using its data. However, as a sensitivity test, we will here look at the 

effect of fixing a radius for all pixels. Setting the neighbour radius at values of 1, 2, 

3 and 4 neighbouring points separately, the distributions of the aggregated grazing-

led LAI changes are shown in Figure 5.16. It is clear that there are differences in the 

distributions between search radius 1 and search radius 2, and, likewise, 2 and 3. But 

values are almost the same between searching radius 3 and 4. Making a ‘natural 

breaks’ assumption, therefore, the best search radius value is 3 in this sensitivity 

analysis, indicating the actual calculated optimal search radius for all the pixels 

should be distributed at least around 3. More directly, by plotting out the histogram 

of optimal neighbourhood radius for all the pixels (Figure 5.17), which shows the 

optimal radius that minimizes the average fitting residual between “good quality” 

remote sensing data and their fitted values using Eq. 5-15; these results are 

consistent with the sensitivity test reported, of which the distribution is centred at 

radius 3. 
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Figure 5.16: Distribution of estimated grazed-led LAI changes at neighbour radius 1, 2, 3 

and 4 



120 

 

 

 

Figure 5.17: Histogram of optimal neighbourhood radius for all pixels when 

choosing minimum RMSE 

 

As is introduced in Section 5.6.3, the estimation algorithm will choose the radius for 

each pixel which minimizes the RMSE for that pixel. In fact, one way to evaluate 

the strength of fit is to assess how far off the model is for the real data. The 

magnitude of a typical residual can give us a sense of generally how close our 

estimates are.  

However, recall that some of the residuals are positive, while others are negative. In 

fact, it is guaranteed by the least squares fitting procedure that the mean of the 

residuals is zero. Thus, it makes more sense to compute the square root of the mean 

squared residual, or root mean squared error (RMSE). R (the software used here) 

calls this quantity the residual standard error. Notice that in linear regressions, the 

sums of the total squared errors has a specific manner: SSregression explained + SSresidual 

error= SStotal error, indicating the relationship between variables is linear; and therefore 

an R-squared value is commonly reported when using linear fittings; it is used to 

report the ratio of the total variance can be explained by the linear regression 

models; however, in non-linear fittings, such an opportunity does not exist, that is 

SSregression explained + SSresidual error does not equal SStotal, and the value of R-squared is 

no longer between 0 and 100% (Schoolfield et al., 1981; Fox, 2002). 

To make the non-linear estimates unbiased, many classical statistical models have a 

scale parameter, typically the standard deviation of a zero-mean normal (or 
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Gaussian) random variable which is denoted as σ (sigma) is used to extract the 

estimated parameter from a fitted model (Fox, 2002). In R, the sum of the squared 

residuals is divided by the degrees of freedom; RMSE then becomes,  

RMSE = √1
(𝑛 − 𝑝)⁄ ∑ 𝑒𝑖

2

𝑖

2

 

           Eq. 5-18 

where (n-p) stands for the degree of freedom, n is the total number of observations, 

p accounts for the number of parameters to be estimated, and 𝑒𝑖 is the ith weighted 

residual, which is calculated based on the difference between observed LAI 

(MODIS “good quality” LAI) and fitted LAI (improved LAI). A smaller RMSE 

value means a smaller overall non-linear regression error and thus the fitting result is 

better. The first step in the estimation algorithm (see Section 5.6.3) therefore uses 

RMSE to choose the optimal search radius for each pixel; in R, it is also called the 

square root of the estimated variance of the random error. 

Figure 5.18 shows an example of how the optimal neighbourhood radius is selected 

in the estimation algorithm for one pixel. The RMSE values are calculated with the 

neighbourhood radius ranging from 1 to 9. With increasing neighbourhood radius 

from 1 to 7, the RMSE values are decreased significantly from 4.96 to 1.94. 

However, the RMSE value has increased to 1.97 when the neighbouring radius is 8, 

and it increased to 1.95 when setting the neighbouring radius to 9. Therefore, the 

optimal neighbouring radius is 7 as it has the smallest RMSE value. For each pixel, 

the optimal neighbourhood radius was calculated on a yearly basis (46 observations 

for each year). The overall distribution of the RMSE values will be analysed in the 

next section. 
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Figure 5.18: An example of optimal neighbouring radius selection 

 

5.9 Grass growth under different defoliation severity 

The indicator used in this thesis is LAI, which will be used to extract grazing 

information based on the equations in Section 5.4 shortly. This section is an example 

of a theoretical analysis of the growth function under two typical grazing strategies: 
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continuous grazing and rotational grazing. Note that LAI is based on the greenness 

of vegetation, so it mainly provides the grazing information during the grass growth 

season (both the growth dominated period and the senescence dominated period), 

beyond which remote sensing cannot reflect the change of perennial grass. Some 

grass is harvested for winter stocks, but the amount is very small, and the local 

herders tend to keep one spare grassland area un-grazed for winter, according to a 

field survey in 2012 (Huang et al., 2016). In addition, no matter how much grass has 

been consumed by livestock during winter, the grass should be able to recover next 

year as long as the soil condition and grassroots have not been severely affected by 

livestock browsing or trampling (Hoffmann et al., 2016), though grazing does have 

an effect on the next year’s growth as discussed in Chapter 2. This is an important 

area that should be considered in growth functions, but it is beyond the scope of this 

thesis, involving, as it would, agricultural tests. In this thesis, this does not influence 

results greatly, given that the growth function will be estimated empirically for each 

year separately. It is not a multi-year growth-grazing integration function. 

Globally, livestock grazing can be divided into two types with regard to the land 

tenure system. In some places, grasslands are a free-access natural resource for 

herders: everyone in the village or tribe could have their livestock grazing on the 

grasslands. The second is limited-access grasslands, which have either been 

contracted to the herders or are private, only the owner having the right to raise 

livestock on the grasslands. As is discussed in the “Case Study Area” chapter 

(Chapter 3), the grasslands in Zeku have been contracted to herders, meaning that 

the use of the land is spatially constrained.  

Rotational grazing, continuous grazing and un-grazed land are the three grazing 

patterns found in limited-access grasslands. The grass on the un-grazed lands will be 

used as livestock’s winter forage; no grazing activities occur on these lands during 

pasture summer growth period. Livestock would graze on rotational grazing or 

continuous grazing lands, the difference being that there is a “rest period” of grass 

for rotational grazing: livestock moves to neighbouring land patches then back to 

grazed land again.  

For the agent-based modelling of rangeland grazing, it important to assess the effect 

of defoliation severity on the observed LAI or net instantaneous growth rate when 

making a rational decision. As such, we need to understand grazing-led defoliation. 

This assessment is based on the LAI development function (see Eq. 5-15). Here, the 

abstract results generated by Eq. 5-15 under three different grazing defoliation 

severities are shown in Figure 5.19.  

The results show that different grazing regimes are likely to have a negative effect 

on observed LAI, a bigger percentage of grazed LAI means there will be a smaller 

observed LAI. The same is true for the instantaneous growth rate of LAI. Compared 

with a continuous grazing strategy, an intermitted grazing strategy will be preferred 

because the observed LAI would at least for this model regrow to the same amount 

as an un-grazed one after a recovery period. However, these results are based on the 

assumption that livestock will consume the same percentage for every 8-day period 

around the year. Another assumption is that the parameters k1 and k2 stay the same 

in spite of grazing, which may be not true in reality – plants may grow at different 

rates under grazing due to the over/under compensation of grazing both in the long 

term (McNaughton, 1983) and short-term (Gignoux et al., 2001) grass development. 

In fact, a fitted growth function can only reflect growth parameters under the current 

grazing method and intensity. The local maximum of LAI could be present as a 
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result of either overcompensation of grazing or under compensation of grazing on 

the grass. Remote sensing can only capture the status of grass under grazing, but 

cannot distinguish what kind of effect is (over or under compensation) on grass 

growth, which is highly depended on grazing intensities (Hickman and Hartnett, 

2002). The figures here are an illustration of how grazing severity would affect the 

observed LAI and its instantaneous growth rate if these parameters remain 

unchanged. This is why we cannot use this function to predict LAI under grazing. It 

is a year-round grass growth under grazing function rather than a predictive plant-

livestock interaction function. 

 

Figure 5.19: An example of the effect of grazing severity on the observed LAI and 

instantaneous net growth rate of LAI, with k1= 0.16, k2=0.0003, C=-14. The bottom 

two are 𝑳𝒕
′ 

 

5.10 The uncertainty of the estimated grazing-led LAI changes 

In Section 5.7.3, the results of grazing-led LAI changes were shown in Figure 5.14; 

however, the uncertainty of the estimated grazing-led LAI changes and the 

uncertainty of the improved LAI have not been quantified. This is important to 
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quantify the accuracy of the estimated results. In this section, this thesis uses the 

summation of the three components of the uncertainty of the estimated grazing-led 

LAI changes to quantify the behaviour of the method in extreme cases; as a 

measurement of the uncertainty of the estimation, this allows a lower and upper 

bound on the actual implied errors of the final LAI to be derived. 

5.10.1 Background noise and fitting goodness analysis 

Both background noise and modelling error could contribute to the uncertainty of 

grazing-led LAI defoliation estimations. They can further affect the identification of 

different grazing types. The rest of this chapter will mainly analyse the background 

noise and the goodness of fit, which could affect the grazing-led LAI estimation. 

5.10.1.1 Sensitive analysis of background noise: 

Background noise is the stochastic fluctuation of the LAI value, best seen during the 

non-growth season. During that season it is a measurement of the difference 

between the observed LAI value (𝐿𝐴𝐼𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) and expected LAI value (𝐿𝐴𝐼𝑚𝑜𝑑𝑒). 

Due to the effect of measurement error of the satellite sensors and modelling error of 

the MODIS data (Tian et al., 2002), sometimes MODIS LAI values will deviate 

from their “true” value slightly. Nevertheless, the overwhelming majority of MODIS 

LAI values should be constant during the non-growth season. From Section 5.5, 

change detection results show the non-growth season is from observation numbers 1 

to 14 and from 38 to 462. For each possible non-growth season period, from 1 to a 

(a<= 14) and from b (b>= 38) to 46, the maximum background noise for each pixel 

is defined as: 

𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑛𝑜𝑖𝑠𝑒𝑚𝑎𝑥 = max (abs(𝐿𝐴𝐼𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐿𝐴𝐼𝑚𝑜𝑑𝑒)) 

where 𝐿𝐴𝐼𝑚𝑜𝑑𝑒 is the mode of observed LAI value from 2003 to 2014 during the 

non-growth season which is defined by a and b (start and end of the season). Notice 

here, modal value is used rather than mean value, for the modal value accounts for 

more than half of all the values. 

The effect of the background noise will obviously be dependent on the value of a 

and b, between which the background noise is assessed; varying this is, therefore, a 

key sensitivity test. The maximum difference, mean difference, standard deviation 

and coefficient of variation are potential statistics we might use to evaluate the 

sensitivity of the background noise to the choices of a and b in defining the non-

growth season; these are shown in Figure 5.20.  

                                                 
2 There are 46 observations every year, 1th observation means the first day of the year, the 

2ed means the 9th day of the year and so on. 
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Figure 5.20: Sensitivity of a and b on MODIS LAI background noise during the non-

growth season (I, maximum difference; II, mean difference; III, standard deviation; 

IV, the coefficient of variance), Zeku, 2003-2014. 

As we can see from the figures, the maximum difference, mean difference, standard 

deviation and coefficient of variance tend to be fixed when the maximum of a is 

equal to 6 or less and the minimum of b equals 41 or bigger, that is, the background 

error estimation time period where the error is lowest is from 1 to 6 and from 41 to 

46. The mean value of the background noise is 0.1128 m2/m2 with the standard 

variance of 0.3545 m2/m2. For each pixel, the background error estimation time 

period means the most stable and reliable representation for the winter non-growth 

period, and that sensitive test is to make sure the chosen time period is stable and 

reliable for all the pixels; in this way, the background noise can be calculated less 

affected by the individual phenological difference and the other mixed vegetation.  

The results of the background noise are shown in Figure 5.21, where the maximum 

background noise is about 0.6 m2/m2, which is relatively small compared with the 

results of grazing-led LAI changes (see Figure 5.13). 
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Figure 5.21: Background noise of MODIS LAI data during 2003~2012, Zeku, 

China 

 

5.10.1.2 Goodness of fit 

The estimation algorithm does cause an error when estimating the expected LAI. 

The statistics of the differences (absolute and squared) between measured and 

predicted values at sampled points are often used as an indicator of the performance 

of an inexact method (Li and Heap, 2011). As has been discussed in Section 5.7, 

RMSE is used to select the optimal neighbouring radius; here the RMSE is used to 

evaluate the estimation results, or more precisely, the model performance of our new 

growth function. RMSE has been used as a standard statistical measurement for 

model performance evaluations in both social and physical research (Babin and 

Boles, 1998; Landau et al., 2000; An et al., 2005). Another measurement, the mean 

absolute error (MAE) is also widely used in model evaluations. To simplify, if there 

are n samples of model errors 𝑒𝑖 (𝑒𝑖 , i = 1, 2 . . . n). The RMSE and the MAE can be 

calculated as: 
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RMSE = √
1

𝑛
∑ 𝑒𝑖

2

𝑛

𝑖=1

 

           Eq. 5-19 

MAE =
1

𝑛
∑|𝑒𝑖|

𝑛

𝑖=1

 

           Eq. 5-20 

While they have both been used to assess model performance for many years, there 

is no consensus on which is the most appropriate. MAE gives the same weight to 

each modelling error 𝑒𝑖, while the RMSE penalizes variance as it gives errors with 

larger absolute values more weight than errors with smaller absolute values (by the 

squared operation on 𝑒𝑖 ). A comparison between MAE and RMSE has shown that 

RMSE is an inappropriate and misleading measure of average modelling error 

(Willmott et al., 2009), and therefore the MAE would be a better measure of average 

error and is unambiguous for the dimensioned evaluations and inter-comparisons of 

average modelling performance (Willmott and Matsuura, 2005). However, when the 

error distribution is expected to be Gaussian and, there are enough samples, the 

RMSE has an advantage over the MAE in illustrating the error distribution (Chai 

and Draxler, 2014). Figure 5.23 shows the distribution of the RMSE when fitting 

with the new growth function for each pixel, representing the difference between the 

fitted LAI and the observed LAI (MODIS “good quality” LAI). The average RMSE 

for each year ranges from 0.089 m2/m2 to 0.11 m2/m2 with the standard deviation 

ranging from 0.030 m2/m2 to 0.036 m2/m2. One sample T-tests show there are no 

significant differences in both the annual mean and standard deviation of RMSEs, 

indicating the fittings are stable across the years.  
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Figure 5.22: Fitting residuals of the new growth function against MODIS “good 

quality” data during 2003~2012, Zeku, China 
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Figure 5.23: Distribution of RMSE using new growth function 

 

5.10.2 The uncertainty of MODIS “good quality” LAI data 

For each pixel, MODIS LAI was estimated associated with the day when the highest 

fraction of Photosynthetically Active Radiation (fPAR) value was observed during 

every 8-day period, and the fPAR was estimated based on daily surface reflectance 

data (Knyazikhin et al., 1999). Unfortunately, this date has not been recorded in the 

MODIS LAI dataset. In Section 5.6.3, we have used time difference as weight and 

assumed that the observing date of LAI is exactly the same as MODIS LAI recorded 

date (Julian day 1, 9…361). This assumption would affect the weight in calculating 

grazing-led LAI changes.  

5.10.2.1 The uncertainty of date in MODIS LAI on the weight of time  

This thesis, therefore, set up an uncertainty simulator, with the purpose of assessing 

the effect of the uncertainty of date in MODIS LAI on the weight of time. Taking 

assumed weight ( 
𝑖−𝑚

𝑛−𝑚
 in Section 5.6.3) for example, we assume r, i, m, n can be any 

day during the 8-day period in reality, the values of them are then randomised value 

between 0 and 1 (within 1 unit of 8-day period), we use 10000 iterations to 

recalculate the possible actual weight (possible MODIS weight), the mean and 

variance are plotted with regards to the different neighbourhood radius (Figure 

5.24). Result shows on the average, the uncertainty of date in MODIS LAI has 

limited effect on the assumed weight. The variation of the weight in both assumed 
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date and simulated random date has the same range, and are mainly caused by the 

position of left or right neighbourhood point (in 8-day period unit) within the 

optimal neighbourhood radius. The most obvious difference of the weight between 

the assumed date used in this chapter and the simulated random date during the 8-

day period in Figure 5.24 is when optimal neighbourhood radius equals 1, the 

weight based on assumed date is a fixed at 0.5, while the weight of random 

simulated date ranges from about 0.3 to 0.7 (although the average value is also 0.5). 

This is because the left and right neighbourhood point is fixed when optimal 

neighbourhood radius equals to 1 for the assumed date we used in the estimation 

algorithm, while the randomly simulated date can be any day within the 8-day 

period. However, considering that the average optimal neighbourhood radius is 3 

(Figure 5.17), and more than 99.5% of the optimal neighbourhood radius is bigger 

than 1, this effect has limited effect on the estimation of grazing-led LAI changes.  

 

Figure 5.24: Uncertainty of the date recorded in MODIS LAI on the weight of 

the estimation of grazing-led LAI changes 

 

5.10.2.2 The uncertainty of date in MODIS LAI on grazing-led LAI 

estimation 

To further quantify the effect of uncertainty of date in MODIS LAI on grazing-led 

LAI estimation, an extreme situation analysis is carried out. The purpose of this 

extreme situation analysis is to explore the possible dates when extreme 

overestimating and underestimating of the grazing-led LAI changes might occur. An 

example of this extreme analysis theory is shown in Figure 5.25, where we have the  

following observations when the LAI value of a left neighbouring point is bigger 
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than that of the right neighbouring point ( 𝑃𝑚 > 𝑃𝑛, see Panel A and Panel B in 

Figure 5.25): 

✓ The preliminary estimation of grazing-led LAI change 𝑃𝑖 would be smaller 

when the date of the left and right neighbouring point being closer to the 

first day in 8-days period; 

✓ The grazing-led LAI change would be greater when the actual date of the 

estimation point (the point at date i) being closer to the first day in 8-days 

period. 

Similarly, when 𝑃𝑚 > 𝑃𝑛, see Panel C and Panel D in Figure 5.25, the following 

phenomenon is obvious: 

✓ The preliminary estimation of grazing-led LAI change 𝑃𝑖 would be greater 

when the date of the left and right neighbouring point being closer to the 

first day in 8-days period; 

✓ The grazing-led LAI change would be smaller when the actual date of the 

estimation point (the point at date i) being closer to the first day in 8-days 

period. 
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Figure 5.25: An example of the effect of the uncertainty of date in MODIS LAI 

on the estimation of grazing-led LAI change  

 

Actually, for each estimation point, there are two extreme situations that the 

maximum and minimum grazing-led LAI changes can be estimated: the maximum 

grazing-led LAI changes can be calculated through: 

✓ setting the date of right and left neighbouring point to the last day of the 8-

days period (see Panel A and B in Figure 5.25) and, letting the date of the 

estimation point to be the first day of the 8-days period (if the LAI value of 

the left neighbouring point is bigger than that of left neighbouring point); 

✓ setting the date of the right and left neighbouring point to the first day of the 

8-days period (see panel C and D in Figure 5.25) and, letting the date of the 
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estimation point to be the last day of the 8-days period (if the LAI value of 

the left neighbouring point is smaller than that of left neighbouring point). 

In the above two extreme situations, the maximum possible grazing-led LAI changes 

can be calculated. If this is the case in the real world, the grazing-led LAI changes 

estimated by equal days interval assumption (day 1, 9, 17…) were underestimated. 

In a similar way, the grazing-led LAI changes estimated by equal days interval 

assumption were overestimated when the minimum possible grazing-led LAI 

changes are the real case, which can be calculated by the following settings: 

✓ setting the date of the right and left neighbouring point to the first day of the 

8-days period and, letting the date of the estimation point to be the last day of 

the 8-days period (if the LAI value of the left neighbouring point is bigger 

than that of the left neighbouring point); 

✓ setting the date of the right and left neighbouring point to the last day of the 

8-days period and, letting the date of the estimation point to be the first day 

of the 8-days period (if the LAI value of the left neighbouring point is 

smaller than that of the left neighbouring point). 

The underestimation error and overestimation error for each year at the pixel level, 

therefore, can be calculated by: 

𝐸𝑟𝑟𝑜𝑟𝑢𝑛𝑑𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑀𝑜𝑑𝑒𝑙𝑎𝑠𝑢𝑚𝑚𝑒𝑑  

Eq. 5-21  

𝐸𝑟𝑟𝑜𝑟𝑜𝑣𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 𝑀𝑜𝑑𝑒𝑙𝑎𝑠𝑠𝑢𝑚𝑒𝑑 − 𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑚𝑖𝑛𝑖𝑚𝑢𝑚   

Eq. 5-22  

where 𝑀𝑜𝑑𝑒𝑙𝑎𝑠𝑢𝑚𝑚𝑒𝑑 is the grazing-led LAI changes calculated by the equal days 

interval assumption during the year; 𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑚𝑎𝑥𝑖𝑚𝑢𝑚 and 𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑚𝑖𝑛𝑖𝑚𝑢𝑚  are 

the maximum possible grazing-led LAI changes and minimum possible grazing-led 

LAI changes estimated by the extreme situation analysis.  

The spatial pattern of underestimation error and overestimation error are shown in 

Figure 5.26 and Figure 5.28. The maximum underestimation error reaches as high as 

about 9 m2/m2, and the minimum overestimation error is about -8 m2/m2. The 

maximum estimated grazing-led LAI change by equal days interval assumption is 

about 15 m2/m2 in Figure 5.11. However, when looking into the distribution of the 

underestimation error and overestimation error (see Figure 5.27 and Figure 5.29), 

the majority of the pixels have a relatively small absolute error. Further statistical 

analysis shows that 78.81% ~ 91.55% of the pixels with a possible underestimation 

error smaller than 1 m2/m2 from 2003 to 2012, and 92.35% ~ 97.70% of the pixels 

are possibly underestimated within 2 m2/m2 during 2003~2012. Similarly, 75.8% ~ 

93.4% of the pixels are possibly overestimated within -1 m2/m2, and 92.92% ~ 

98.82% of the pixels with a possible overestimation error within -2 m2/m2. The 

distribution of the overestimation error and overestimation error shows that the 

assumption of the equal day interval has a limited and relatively small impact on the 

estimation of grazing-led LAI changes. An overall uncertainty analysis which 

consists of the background noise (see Section 5.10.1), fitting residuals (also see 

Section 5.10.1), underestimation error and overestimation error, will be discussed 

below. 
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Figure 5.26: Underestimation error caused by equal days interval assumption 

during 2003~2012, Zeku, China 
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Figure 5.27: The distribution of underestimation error during 2003~2012, 

Zeku, China 
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Figure 5.28: Overestimation error caused by equal days interval assumption 

during 2003~2012, Zeku, China. 
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Figure 5.29: The distribution of overestimation error during 2003~2012, Zeku, 

China 

 

5.10.3 The overall uncertainty of the estimated grazing-led LAI changes  

The overall uncertainty of the grazing-led LAI changes estimated in this thesis can 

be quantified by the summation of the three components of the uncertainties: 

𝐸𝑟𝑟𝑜𝑟𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝐸𝑟𝑟𝑜𝑟𝑛𝑜𝑖𝑠𝑒 + 𝐸𝑟𝑟𝑜𝑟𝑓𝑖𝑡𝑡𝑖𝑛𝑔𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 +

𝑀𝑎𝑥(𝑎𝑏𝑠(𝐸𝑟𝑟𝑜𝑟𝑢𝑛𝑑𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛), 𝑎𝑏𝑠(𝐸𝑟𝑟𝑜𝑟𝑜𝑣𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛))  

Eq. 5-23  

Where 𝐸𝑟𝑟𝑜𝑟𝑛𝑜𝑖𝑠𝑒 and 𝐸𝑟𝑟𝑜𝑟𝑓𝑖𝑡𝑡𝑖𝑛𝑔𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙  are the background noise and the fitting 

residuals discussed in Section 5.10.1. They can be added up because they are all 

absolute values which represent different error components. 

𝑀𝑎𝑥(𝑎𝑏𝑠(𝐸𝑟𝑟𝑜𝑟𝑢𝑛𝑑𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛), 𝑎𝑏𝑠(𝐸𝑟𝑟𝑜𝑟𝑜𝑣𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛)) means taking the 

maximum absolute value between underestimation error and overestimation error, as 
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the grazing-led LAI changes can only be either overestimated or underestimated for 

each pixel.  

The results of the overall error are shown in Figure 5.30, where the maximum 

overall error can reach as high as about 9 m2/m2, and the distributions of the overall 

error are within the error of error of 3 m2/m2 from 2003 to 2012. These are shown in 

Figure 5.31. A further statistical analysis of the overall error shows that 56.62% ~ 

81.74% of the pixels have an overall error of less than 1 m2/m2; 86.37% ~ 95.93% of 

the pixels have an overall error of less than 2 m2/m2; and the percentage of the pixels 

with an overall error smaller than 3 m2/m2 is 94.98% ~ 98.90 % from 2003 to 2012. 

One the annual average, the overall error ranges from 0.59 m2/m2 to 1.08 m2/m2, and 

this is about 7.97%~12.34% of the estimated annual average of the grazing-led LAI 

changes (the average grazing-led LAI changes in Figure 5.14), and for the year 2011 

(which will be used to quantify the input uncertainty in Chapter 7), it is about 

10.26% of the estimated annual average of the grazing-led LAI changes. Those 

overall errors will further be used to quantify the upper and lower boundary of the 

estimation of grazing-led LAI changes, see Section 5.12, next. 

 

 

Figure 5.30: Overall error for the estimated grazing-led LAI changes during 

2003~2012, Zeku, China 
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Figure 5.31: The distribution of the overall error of estimated grazing-led LAI 

changes during 2003~2012, Zeku, China 

 

To this point, all the error components were quantified, and the overall error has 

been shown. The next section will discuss how to validate the estimation result of 

grazing-led LAI changes. 

5.11 The uncertainty of the improved LAI 
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As mentioned in Step 4 of Section 5.6.4, the improved LAI can be derived from the 

new growth equation directly. There are 46 improved LAI images for each year, and 

due to the limited pages in this thesis, they are not visualized in GIS maps. Here, this 

thesis rather uses the average improved LAI of the whole region during 2003~2012 

(see Figure 5.33). 

In the same way, as the uncertainty of the estimated grazing-led LAI changes were 

quantified in Section 5.10, the uncertainty of the improved LAI is also quantified. 

The uncertainty of the improved LAI mainly consists of three parts:  

1. Background noise. This is the same as has been calculated in Section 5.10.1; 

2. The uncertainty of MODIS “good quality” data. This quantification is also 

the same as per Section 5.10.2, but that the underestimation and 

overestimation of the improved LAI are calculated directly rather than that of 

the grazing-led LAI changes; 

3. The fitting residual of the new growth function. Underestimation and 

overestimation of the improved LAI have different fitting residuals. This 

thesis uses the biggest fitting residual of the underestimated improved LAI as 

the upper limit, and uses the smallest fitting residual of the overestimated 

improved LAI as the lower limit.  

The overall uncertainty of the improved LAI is then the summation of those three 

components of the uncertainty. The uncertainty of the improved LAI is shown in 

Figure 5.33. We can visually see that the overall uncertainty of the improved LAI is 

quite fixed during the non-growth period, and the uncertainty of the improved LAI 

during the growth period is relatively smaller than that of the non-growth period.  

 

 

Figure 5.32: The average improved LAI of the whole region with 

underestimation limit and overestimation limit during 2003~2012, Zeku, 

China 

To further investigate the uncertainty of the improved LAI during the growth period, 

and to compare with the degree of uncertainty of the estimated grazing-led LAI 
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changes in the last section (Section 5.10), an average of the underestimation limit 

and overestimation limit are shown in Table 5.4. Although the highest 

underestimation rate and can reach 24.28%, and the biggest overestimation rate 

(absolute value) is 29.65% during the year, the maximum underestimation rate and 

overestimation rate are 14.48% and 18.71% respectively during the growth period 

(day 113¬289), which is at the similar level (within the range from 10% to 20%) for 

the uncertainty of the grazing-led LAI changes (the maximum uncertainty is 

12.34%) during the growth period. The background noise and fitting residual of the 

estimated grazing-led LAI changes is the same as that of the improved LAI, but the 

effect of the uncertainty of the date in MODIS LAI data on the two is different, 

because the value of improved LAI and grazing-led LAI changes is different and 

therefore, the relative ratio of the uncertainty is different. 

Table 5.4: The uncertainty of the improved LA during 2003¬2012 

type 

unit unit: m²/m² unit: % 

Year 

underest
i-mation 
limit  

overesti
-mation 
limit 

improved 
LAI 

underesti
-mation 
rate 

overesti-
mation 
rate 

average 
LAI of 

the 
whole 
year 

2003 0.91 0.51 0.73 24.28 -29.65 

2004 1.00 0.58 0.81 22.75 -28.01 

2005 1.03 0.60 0.84 22.59 -27.76 

2006 1.02 0.58 0.82 23.83 -29.71 

2007 0.98 0.57 0.80 23.09 -28.48 

2008 0.93 0.54 0.76 22.94 -28.88 

2009 1.03 0.61 0.85 21.91 -27.98 

2010 1.05 0.63 0.86 21.13 -26.97 

2011 0.95 0.54 0.77 22.39 -29.50 

2012 1.04 0.59 0.84 24.18 -28.89 

average 
LAI of 

the 
growth 
period 
(day 

113¬289
) 

2003 1.40 1.00 1.22 14.48 -17.89 

2004 1.57 1.15 1.39 13.38 -17.00 

2005 1.63 1.19 1.44 13.36 -16.81 

2006 1.61 1.15 1.41 14.13 -18.71 

2007 1.55 1.13 1.36 13.83 -17.29 

2008 1.46 1.07 1.29 13.52 -17.33 

2009 1.65 1.21 1.46 13.02 -17.16 

2010 1.69 1.25 1.50 12.54 -16.47 

2011 1.49 1.08 1.32 13.16 -17.94 

2012 1.64 1.18 1.44 14.29 -17.96 

 

 

5.12 Validation of grazing-led LAI changes 

The LAI should decrease proportionally to the amount eaten in grazing (Johnson et 

al., 2010). One direct way to validate the accuracy of grazed LAI estimation is to 

measure the on-the-ground LAI at both pre-grazing and post-grazing sites for every 

8 days during the growth period. However, this requires continuous sampling on the 

same site for years. An alternative way is to compare with the total carbon mass 
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consumption of the livestock for each year in Zeku. The total numbers of livestock 

recorded in the annual statistical yearbook are available from the Zeku Statistics 

Bureau. To calculate the livestock consumption, all the livestock including sheep 

(usually considered grazers on the ground), goat (usually considered browsers), yak 

and horse are converted to Sheep Unit (SU), then according to the SU conversion 

coefficient (Table 5.5), see NY/T 635-2002 NY/T635 (2002)), the carbon 

consumption is calculated during the grazing period for each year using the 

following formula: 
Raised Sheep Unit

= (𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑡𝑜𝑡𝑎𝑙𝑠𝑡𝑎𝑟𝑡
− 𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑦𝑜𝑢𝑛𝑔𝑠𝑡𝑎𝑟𝑡

) ∗ 𝑆𝑈𝑐𝑜𝑒𝑚𝑎𝑡𝑢𝑟𝑒

+ (𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑦𝑜𝑢𝑛𝑔𝑠𝑡𝑎𝑟𝑡
+ 𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑦𝑜𝑢𝑛𝑔𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒

) ∗ 𝑆𝑈𝑐𝑜𝑒𝑦𝑜𝑢𝑛𝑔

− (𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑡𝑜𝑡𝑎𝑙𝑑𝑒𝑎𝑑
− 𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑦𝑜𝑢𝑛𝑔𝑑𝑒𝑎𝑑

) ∗ 𝑆𝑈𝑐𝑜𝑒𝑚𝑎𝑡𝑢𝑟𝑒

∗ 𝐶𝑜𝑒𝑓𝑑𝑖𝑒 − 𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑦𝑜𝑢𝑛𝑔𝑑𝑒𝑎𝑑
∗ 𝑆𝑈𝑐𝑜𝑒𝑦𝑜𝑢𝑛𝑔 ∗ 𝐶𝑜𝑒𝑓𝑑𝑖𝑒 

Eq. 5-24  

Carbon Mass = Raised Sheep Unit ∗ GrassDryWeight𝑝𝑒𝑟𝑆𝑈/0.5 ∗ 155  

Eq. 5-25  

For each livestock type (sheep, goat, yak and horse), 𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑡𝑜𝑡𝑎𝑙𝑠𝑡𝑎𝑟𝑡
 is the total 

number of livestock at the start of the year; 𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑦𝑜𝑢𝑛𝑔𝑠𝑡𝑎𝑟𝑡
 is the number of 

young livestock at the start of the year; 𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑦𝑜𝑢𝑛𝑔𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒
 is the number of 

livestock increased during the year; 𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑡𝑜𝑡𝑎𝑙𝑑𝑒𝑎𝑑
 and 𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑦𝑜𝑢𝑛𝑔𝑑𝑒𝑎𝑑

 is 

the number of total and young livestock dead separately during the year; 

𝑆𝑈𝑐𝑜𝑒𝑚𝑎𝑡𝑢𝑟𝑒 and 𝑆𝑈𝑐𝑜𝑒𝑦𝑜𝑢𝑛𝑔 is the SU convert coefficient for mature and young 

livestock (Table 5.5); 𝐶𝑜𝑒𝑓𝑑𝑖𝑒 is the percentage of livestock dead before the grazing 

period: here, we give this a constant value 0.5, assuming the number of dead 

livestock is evenly distributed during the year. In Zeku, the herders treasure the 

livestock as a fortune, and the livestock is mainly sold after the grass growth period 

according to our 2012 field survey. After calculating SU, the SU is converted to 

carbon mass using the second equation. A 0.5 multiplier accounts for the conversion 

from dry matter to carbon (Maselli et al., 2013), and 155 is the total grazing days 

during grass growth period according to Fan et al. (2010b) (Fan et al., 2010b). 

GrassDryWeight𝑝𝑒𝑟𝑆𝑈 is the dry grass consumed per SU, the value is 1.8 kg day-1 

according to Fan et al. (2010a) (Fan et al., 2010a). 

Table 5.5: Livestock convert coefficients: 

 Mature (sheep unit) Young (sheep unit) 

Sheep 1  0.4*1 

Goat 0.8 0.4*1 

Yak 4.5 0.3*4.5 

Horse 6.0 0.3*6.0 

Year-round statistical carbon mass vs grazed LAI based leaf mass 

To compare with the statistically calculated carbon mass, the grazed LAI are 

converted to carbon mass using (Johnson et al., 2010):  
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LeafMass = LAI/σ 

Eq. 5-26  

where σ is the Specify Leaf Area (SLA); we take the same value in the MODIS 

Biome-Property Look Up Table (BPLUT) (Running et al., 2000b). The following 

table (Table 5.6) shows the correlation matrix between the yearly time series of LAI 

based grazed leaf mass and the carbon mass calculated from raised livestock 

according to the statistics yearbook. The unit for carbon is 1×106 kgC. The herders 

would not sell the yaks until there was not enough feed from the grassland in Zeku, 

which is why we can see a correlation coefficient about -0.01 between raised yaks 

and estimated grazed carbon mass. However, the total number of sheep more 

accurately reflect the change in grassland provision, this is because sheep can be 

traded anytime and during any growth period as needed (the correlation coefficient 

is 0.59). The overall correlation between sheep units of actual sheep and estimated 

grazed leaf mass is 0.42, while the p-value of a paired T-test is 0.71 (with R-

squared= 0.17), which indicates a consistent trend between estimated grazed amount 

of leaf mass and the statistically revealed consumed carbon mass over time. 

Table 5.6: Correlation matrix among raised livestock and identified grazed leaf 

mass  

 year yak horse goat sheep total leafmass 

year 1.00 -0.78 0.82 -0.38 0.57 -0.50 0.28 

yak -0.78 1.00 -0.61 0.75 -0.68 0.84 -0.01 

horse 0.82 -0.61 1.00 -0.49 0.32 -0.36 0.06 

goat -0.38 0.75 -0.49 1.00 -0.39 0.71 0.12 

sheep 0.57 -0.68 0.32 -0.39 1.00 -0.22 0.59 

total -0.50 0.84 -0.36 0.71 -0.22 1.00 0.42 

leafmas 0.28 -0.01 0.06 0.12 0.59 0.42 1.00 

Note: leafmass is the converted carbon mass from grazing-led LAI changes 

The overall error of the grazing-led estimation can be converted to the equivalent 

carbon through the same converting equation. The upper and lower limit of the 

grazing-led LAI changes are then can be calculated by adding and subtracting the 

converted leaf mass from the overall error map (see Figure 5.30). The relative error 

of the estimation of grazing-led LAI changes is evaluated by: 

Relative estimation error
= (𝐿𝑒𝑎𝑓𝑀𝑎𝑠𝑠𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛

− 𝐶𝑎𝑟𝑏𝑜𝑛𝑀𝑎𝑠𝑠𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙)/𝐶𝑎𝑟𝑏𝑜𝑛𝑀𝑎𝑠𝑠𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙 

Eq. 5-27  

Where 𝐿𝑒𝑎𝑓𝑀𝑎𝑠𝑠𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 is the leaf mass converted from grazing-led LAI 

change, 𝐶𝑎𝑟𝑏𝑜𝑛𝑀𝑎𝑠𝑠𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙 is the livestock carbon consumption calculated from 

statistical data.  

Table 5.7 shows the comparison of the converted carbon mass from grazing-led LAI 

changes and the total carbon mass consumption of the livestock from statistical data. 

The relative estimation errors range from -27.3% to 32.98% during 2003~2012 at 
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the aggregated annual level. One cause of such high relative error can be sourced in 

the uncertainty of statistical data, where the total livestock structure data were only 

recorded at the end of the year, but the detailed data such as the number of young 

livestock and mature livestock sold, killed or naturally died during the grass growth 

period have not been recorded in the statistical data, this thesis can only make an 

evenly distributed assumption during the year when calculating. With more detailed 

ground measured and statistical data being collected in the future, the accuracy of 

grazing-led LAI changes can be improved. Nevertheless, the results of this chapter 

are the first attempt to quantify the per-pixel grazing information from remote 

sensing data, which will be useful for the large-scale grazing monitoring and further 

assessment of the grassland ecosystem. 

Table 5.7: Comparison of converted carbon mass from grazing-led LAI 

changes and total carbon mass consumption of the livestock 

year SCC  

(106 kgC) 

Leaf mass 

(106 kgC) 

Leafmass 

Upper (106 

kgC) 

Leafmass 

Lower (106 

kgC) 

Relative 

estimatio

n error 

(%) 

2004 207.76 150.78 163.74 137.82 -27.43% 

2005 204.87 221.35 235.00 207.70 8.04% 

2006 209.51 236.73 254.97 218.50 12.99% 

2007 196.23 174.75 187.29 162.21 -10.95% 

2008 196.48 160.94 173.12 148.76 -18.09% 

2009 206.31 274.34 292.03 256.66 32.98% 

2010 189.25 239.02 255.32 222.71 26.30% 

2011 185.11 149.27 163.57 134.98 -19.36 

2012 206.09 250.74 265.02 236.47 21.67% 

mean 200.18 206.43 221.12 191.75 - 

Pearson correction 

value with SCC 

0.420 0.416 0.424 -- 

Note: SCC means the converted statistical carbon mass 

leafmass is the converted carbon mass from grazing-led LAI changes 

 

 

5.13 Summary 

Current reprocessing methods are focused on producing smoother and more 

spatiotemporally consistent LAI products by taking spatial, temporal, or hybrid 

combinations of weighted LAI. However, for grazing grasslands, the spatiotemporal 

weighted average LAI reprocessing methods diminish grazing information. In fact, 

for grassland vegetation, the temporal consistency is more important than the spatial 

consistency: every pixel is likely to have different conditions and/or different 

grazing patterns. This chapter considered the characteristics of grassland growth, 
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developed a new exponential growth function under grazing to produce the final 

improved LAI data (after grazing or if grazing happens) and expected LAI data 

(before grazing or if no grazing happens), which is suitable for extracting grazing 

information effectively and consistently. This chapter developed a new growth 

grazing function with an estimation algorithm, to identify the grazing-led LAI 

changes for each pixel. 

In this chapter, the main focus is on the estimation and fitting of the grazing-led LAI 

changes based on the MODIS LAI curve. The MODIS LAI does not account for the 

winter death and grazing of grasslands, so a new equation for growth curving fitting 

has been introduced and used for the production of improved LAI data. After that, a 

search algorithm has been developed to calculate the grazing-led LAI defoliation. 

The whole process is a series of algorithms consist of the calculation of initial 

background LAI, preliminary estimation of grazing-led LAI changes and expect 

LAI. Then the ratio of winter pasture area from household survey data was used to 

match up with the estimation results. Due to the limited summer/winter pasture map 

data, this thesis uses statistical aggregate data to validate the result. It shows that the 

estimates track the validation dataset consistently over time. The grazing-led LAI 

changes were calculated as the difference between improved LAI and expected LAI; 

then it was converted to leaf mass in this chapter. The carbon mass consumption of 

livestock during the grass growth period was calculated according to statistical 

yearbook data. Although the linear coefficient between grazed NPP estimated from 

this chapter and NPP consumption of livestock from the statistical yearbook is 0.42, 

the magnitude and the time trend show consistency with p-value = 0.71, indicating 

the new exponential growth function can be used to improved MODIS LAI data and 

to quantify livestock grazing. In addition, the possible overestimation error and 

underestimation error was quantified through an extreme situation analysis. 

Together with background noise and fitting residuals, the overall estimation error 

was calculated. 

Another validation effort is to check the improved LAI produced in this chapter. To 

this end, in the next chapter, the improved LAI data will be used to calculate the Net 

Primary Productivity (NPP) using the light use efficiency with vegetation 

photosynthesis model (LUE-VPM). It is almost impossible to collect the grazing 

data before and after grazing over a sufficient time period in the field; however, 

given the requirement of grassland ecosystem monitoring work in China, grassland 

monitoring data is available, along with other data like in situ fresh weight, which is 

a crucial parameter for modelling grass growth under grazing. After converting the 

fresh weight sampling data to equivalent leaf mass, the LUE-VPM model is 

developed for such validation, and it is found that the improved LAI produced in 

this chapter is more accurate than the MODIS LAI with regards to NPP estimation.  

 

  



147 

 

 

Chapter 6 Grassland Productivity Sub-model 

The productivity of the grassland patch is a key factor for the maximum number of 

livestock that can be raised on one specific land patch. It depends not only on the water 

and heat condition of the grassland, but also the grazing severity of the herbivores. These 

factors affect both the quality and quantity of grass (Briske et al., 2015). The chemical 

composition of pasture species has not been considered in this thesis due to the lack of 

relevant data. Only the quantity of grassland productivity is evaluated for each land patch. 

In Chapter 5, a grass status indicator, LAI, has been used to describe grazing during 

dynamic grass growth. The LAI is based on MODIS LAI dataset, and an improved 

MODIS LAI was produced by using a new growth function considering both senescence 

and grazing.  

However, the accuracy of this improved MODIS LAI data has not been evaluated directly. 

Although the grazed LAI has been validated by the aggregated livestock consumption in 

Chapter 5, the accuracy of the improved LAI (LAI after grazing and with previous grazing 

effect) has not been evaluated, that is, whether the improved LAI has really been improved 

through the new growth function. This chapter, therefore, aims to validate the improved 

LAI. However, there is no available LAI data measured in Zeku. A survey that was done in 

2016, the Livestock Husbandry Bureau of Zeku, has provided data for fresh grass weight 

from 15 sample sites collected in 2012. The validation work is then to convert MODIS 

LAI data and grass fresh weight data into a comparable unit. Thus, we need a Net Primary 

Productivity (NPP) model to calculate the NPP of the grassland (unit: gCm-2) based on the 

improved LAI data, and then convert the in-situ measured grass weight data to carbon 

mass (unit: gCm-2). In this way, the accuracy of the improved LAI can be evaluated 

indirectly.  

NPP is defined as the net flux of carbon from the atmosphere into green plants (Odum, 

1971). As an ecosystem structural and functional indicator, the amount of NPP is 

commonly used to measure the consumption of herbivory (Gignoux et al., 2001). NPP 

provides an energy and matter basis for ecosystems, it is also an important indicator 

showing the health of ecosystems and ecological balance, a key element for estimating 

carbon storage (which can be used as an indicator of the amount of forage grassland can 

provide (Fan et al., 2010a)) and the regulation of the ecological processes (Odum, 1971). 

Research has found the response of NPP to grazing intensity emerges as a complex result 

of both positive and negative, and direct and indirect, effects of grass productivity 

(Gignoux et al., 2001). Herbivores can maximize NPP (Luo et al., 2012), but high grazing 

intensity could strongly reduce the fraction of below-ground NPP (Gong et al., 2015). 

There are numerous biomass estimation models at both global and regional scale, ranging 

from statistical models to process-based models and remote sensing based models. The 

purpose of this chapter is not to build a brand new NPP model, but to utilize the available 

high spatial resolution dataset to produce a highly reliable estimate of NPP. The Light Use 

Efficiency (LUE) model is widely used in NPP estimation (Xiao et al., 2004), and MODIS 

also used this model to produce their global 500 m and1000 m NPP data. The difference 

between the LUE model in this chapter and the conventional model used in the MODIS 

data is that the Vapour Pressure Deficit (VPD) attenuation scalar is replaced by a 
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Vegetation Photosynthesis Model (VPM) scalar due to data limitations (called “LUE-

VPM” model for later reference).  

Starting from a brief introduction of current NPP models, a detailed LUE-VPM model will 

be discussed that converts LAI to grass productivity. The grassland NPP that is calculated 

based on the improved MODIS LAI will be validated with the annual grassland monitoring 

data provided by the Zeku grassland monitoring station (a sector of Livestock Husbandry 

Bureau of Zeku), and be further compared with the MODIS NPP product. This process is 

essential to ensure the accuracy of the improved LAI product we have produced in Chapter 

5. 

6.1 Vegetation productivity models  

Estimation of land productivity is crucial to the management of grassland grazing as well 

as allowing the quantification of the carbon balance for both regional and global 

sustainable grassland development. Essentially, there are four major categories of land 

productivity models: Canopy Photosynthesis Models (CPMs), Production Efficiency 

Models (PEMs), Ecosystem process models and statistical models. When data was limited, 

statistical models were prevalent, linking vegetation with climate factors. However, these 

are not suitable for large-scale spatial and/or pixel-specific modelling. In addition, the 

temporal resolutions are relatively low (usually, on a yearly basis) compared with the other 

three.  

PEMs are based on the theory that the fraction of Photosynthetic Active Radiation (fPAR) 

absorbed by terrestrial vegetation can be derived from remote sensing data (Kumar and 

Monteith); for example, the Normalized Difference Vegetation Index (NDVI) recorded by 

the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High 

Resolution Radiometer (AVHRR) sensor (Anyamba and Tucker, 2005). Remote sensing 

based models have the advantage of near real-time, high spatial resolution and large-scale 

observation data, but these models are highly dependent on hard to estimate empirical 

parameter values such as radiation conversion efficiency, which is sensitive to the optical 

properties of the background environment and directional effects of the landscape (Myneni 

and Williams, 1994; Fensholt et al., 2004). Therefore, a predefined ‘conversion efficiency’ 

or an optimum value considering other environmental factors is used in NPP calculation. 

They are also called “diagnostic models” as remote sensing derived vegetation indices are 

employed in the calculation. 

Ecosystem Process Models (EPMs) are “bottom-up” oriented – they are commonly 

modelled at the level of each ecosystem process: phenology, leaf thickness, minimum 

stomatal conductance, photosynthetic pathway, allocation, rooting depth based on the 

structural characteristics of the vegetation (Woodward and Cramer, 1996), then integrated 

through the canopy with biochemical fluxes (CO2, water and energy exchange) (Cramer et 

al., 1999). However, such models are commonly complicated and involve lots of parameter 

estimation work. They either do not use PAR as an input, or are not able to provide the 

basis to compute fPAR. The following table (Table 6.1) shows some typical models of 

NPP simulation. 

While in CPMs, the estimation process is basically the same as PEMs or EPMs, they are 

more focused on the leaf level plant photosynthesis, and usually integrated with the 

seasonal canopy dynamics (typically, LAI dynamics during the year) and biochemical 
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exchanges. CPMs are called ‘process models’, because they evolved from ecosystem or 

crop models which have explicit processes for individual plant growth. The significant 

difference between CPMs and PEMs is that remote sensing measurements are not 

necessary for CPMs. For this reason, CPMs have the ability to produce results for future 

climate scenarios, and they are “prognostic models” as well (Ruimy et al., 1999a). 

However, CPMs depend highly on the vegetation seasonal parameters, which would be 

different across different vegetation types. 

Table 6.1: Comparison of the broad features of the participating NPP models, 

modified from Cramer et al. (1999) and Ruimy et al. (1999a). Note: R, solar 

radiation; LAI; leaf area index; T, temperature; SW, soil water content; VPD, 

vapour pressure deficit; LeafN, leaf nitrogen; VegC, vegetation carbon; P, 

precipitation; AET, actual evapotranspiration; PET, potential 

evapotranspiration; S, soil inorganic sulphur; AWC, available water capacity. 

 model tempora

l 

resolutio

n 

as 

calculate

d 

as 

influenced by Strategy Key 

referen

ce 

Statistical 

models 

Miami  1 year statistical NPPT =
3000

1 + e(1.315−0.119T)⁄

, 

Or, NPPr =
3000(1 −
e−0.000654r) 

 

Regression with 

temperature 

(Lieth, 

1975) 

Thointh

waite 

Memor

ial 

1 year statistical NPP = 3000(1 −
𝑒−0.0009695(𝑣−20)), 

v =
1.05𝑅

√(1+1.05𝑅/𝐿)2
, 

L
= 3000 + 25t
+ 0.05𝑡3 

 

Regression with 

potential 

evaporation 

(Lieth, 

1975) 

CSCS 1 year statistical NPP = 𝐿2 ∙
0.1∙∑ 𝜃∙(𝐾6+𝐿(𝐾)𝐾3+𝐿2(𝐾))

(𝐾6+𝐿2(𝐾))∙(𝐾5+𝐿(𝐾)𝐾2))
∙

𝑒−√13.55+3.17𝐾−1−0.16𝐾−2+0.0032𝐾−3

, 

L(K)
= 0.58802𝐾3

+ 0.50698𝐾2

− 0.0257087𝐾
+ 0.0005163874 

Classified by 

ecophysiological 

feature and 

regional 

evapotranspiratio

n 

(Lin, 

2009) 

Chikug

o 

1 year statistical NPP =

0.29𝑒−0.216×𝑅𝐷𝐼2
×

𝑅𝑛, 

RDI =
𝑅𝑛

𝐿 ∙ 𝑟
 

Regression with 

radiation and 

radiative dryness 

index 

(UCHIJ

IMA 

and 

SEINO, 

1985) 

HRBM 1 month NPP NPP = f(T, P, 

AET/PET, CO2, Fert) 

regression of 

annual NPP on 

climate, 

(Esser, 

1994) 
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seasonality driven 

by AET 

Productio

n 

Efficiency 

Models 

(PEMs) 

CASA 1 month NPP NPP = f(Rs, FPAR, T, 

AET/PET) 

PEM, LUE 

derived 

empirically, 

applied to NPP 

(Potter 

et al., 

1993) 

GLO – 

PEM 

10 days GPP–RA GPP = f(Rs, FPAR, T, 

SW, VPD) 

RA = f(Veg C, GPP) 

PEM, LUE 

derived from a 

mechanistic 

model, applied to 

GPP 

(Prince, 

1991a) 

SDBM 1 month NPP NPP = f(Rs, FPAR, 

CO2) 

PEM, LUE 

derived 

empirically, 

applied to NPP 

(Knorr 

and 

Heiman

n, 1995) 

TURC 1 month GPP–RA GPP = f(Rs, FPAR) 

RA = f(Veg C, T) 

PEM, LUE 

derived 

empirically 

(global value), 

applied to GPP, 

environmental 

constraints 

applied to RA 

(Ruimy 

et al., 

1996) 

Canopy 

Photosynt

hesis 

Models 

(CPMs) 

FBM 1 day GPP–RA GPP = f(Rs, LAI, T, 

SW, CO2) 

RA = f(Veg C, T) 

leaf level 

photosynthesis 

model, C and H2O 

balance integrated 

over the canopy, 

phenology 

internal 

(Kinder

mann et 

al., 

1993) 

PLAI 1 day GPP–RA GPP = f(Rs, LAI, T, 

SW, CO2) 

RA = f(Veg C, T) 

leaf level 

photosynthesis 

model, C and H2O 

balance integrated 

over the canopy, 

phenology 

internal 

(Plöchl 

and 

Cramer, 

1995) 

SILVA

N 

6 days GPP–RA GPP = f(Rs, LAI, T, 

AET/PET, CO2) 

RA = f(Veg C, T) 

leaf level 

photosynthesis 

model, C and H2O 

balance integrated 

over the canopy, 

phenology 

internal 

(Kaduk 

and 

Heiman

n, 1996) 

KGBM 1 day GPP–RA GPP = f(Rs, LAI, T, 

SW, VPD) 

RA = f(GPP) 

estimates LAI 

from water 

balance, 

phenology (= 

inactive period) 

from satellite 

(Kergoa

t, 1998) 

BIOM

E3 

1 month GPP–RA GPP = f(Rs, LAI, T, 

AET/PET, CO2) 

RA = f(LAI, GPP) 

simulates 

vegetation 

structure and 

physiological 

processes, 

coupled C and 

H2O balance, 

(Haxelti

ne and 

Prentice

, 1996b; 

Haxelti

ne et al., 

1996) 
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phenology 

internal 

CARAI

B 

1 day GPP–RA GPP = f(Rs, LAI, T, 

SW, VPD, CO2, O2) 

RA = f(Veg C, 

LAI, T) 

leaf level 

photosynthesis 

model, C and H2O 

balance integrated 

over the canopy, 

phenology 

internal 

(Warna

nt et al., 

1994) 

HYBRI

D 

1 day GPP–RA GPP = f(Rs, FPAR, T, 

SW, CO2, N) 

RA = f(Veg C, T, Veg 

N) 

simulates 

vegetation 

structure and 

physiological 

processes, 

coupled C and 

H2O balance, 

phenology 

internal 

(Friend 

and 

Cox, 

1995; 

Friend 

et al., 

1997) 

SIB2 12 min GPP–RA GPP = f(Rs, FPAR, 

LAI, T, SW, VPD, 

CO2) 

RA = f(GPP, T, SW) 

SVAT model, 

coupled to GCM 

(Randal

l et al., 

1996; 

Sellers 

et al., 

1996a; 

Sellers 

et al., 

1996b) 

Ecosyste

m process 

models 

DOLY 1 year GPP–RA GPP = f(Rs, LAI, T, 

SW, VPD, CO2, Soil 

C & N) 

RA = f(Veg C, T, Soil 

C & N) 

simulates 

vegetation 

structure and 

physiological 

processes, 

coupled C and 

H2O balance, RA 

and NPP annual 

(Wood

ward et 

al., 

1995a) 

CENT

URY 

1 month NPP NPP = f(Veg C, T, 

SW, P, PET, N, P, S) 

mechanistic soil C 

and N model with 

above – ground 

vegetation 

processes, 

calibrated against 

observations 

(Parton 

et al., 

1993a) 

TEM 1 month GPP–RA GPP = f(Rs, 

KLeaf, T, AET/PET, 

CO2, N) 

RA = f(Veg C, 

GPP, T) 

mechanistic 

process model, 

using climate and 

soils data with a 

water balance 

algorithm to 

estimate NPP 

(McGui

re et al., 

1995) 

BIOM

E – BG

C 

1 day GPP–RA GPP = f(Rs, LAI, T, 

SW, VPD, CO2, Leaf 

N) 

RA = f(Veg C, T) 

estimates LAI 

from water 

balance, no 

phenology 

(Runnin

g and 

Hunt Jr, 

1993) 

 

6.2 NPP model selection  
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NPP is mainly affected by climate factors, so statistical models associate climate factors 

(precipitation, temperature, sunshine (Ye et al., 2013) and flux of radiation (Zhou et al., 

1995), etc.) with plant dry matter production through a simple mathematical regression to 

estimate NPP (Lieth and Whittaker, 1975). The advantage of statistical models is the high 

availability of meteorological data, and that the result of them can truly reveal the climate-

affected patterns of NPP, but NPP is also affected by other factors (e.g. soil conditions) 

therefore, this kind of model is too simple to represent the true NPP distribution. 

Physiological models consider the transformation mechanism of chemical energy from 

solar energy by plants, and canopy transpiration, as well as photosynthesis accompanied by 

soil and water effects (CENTURY 4.0 (Parton et al., 1993b), TEM 4.0 (McGuire et al., 

1997), CASA (Potter et al., 1993) ). Such models are important tools estimating NPP and 

predicting ecosystem or environmental change problems, but due to the complicated 

dynamic bilateral feedback of NPP with the environment, it is difficult to apply these 

models at different scales. Remote sensing based models are developing rapidly with 

remote sensing becoming increasingly popular. The basic theory is that different plants 

have different spectral reflectance and even the same plant has different spectral 

reflectance according to different growth stages (Li et al.; Field et al., 1995). The common 

assumption is that such models view above ground NPP (ANPP) as NPP and they have not 

taken full account of both turnover and below-ground NPP (BNPP) (Long et al., 1989). 

To conclude, both PEMs and CPMs are the LUE based models, which concentrate on the 

conversion processes of solar radiation to carbon mass (or biomass). PEMs have the 

advantage of using remote sensing data to quantify fPAR; while CPMs consider the 

photosynthesis processes of vegetation leaves and the exchange of carbon and water, based 

on which the conversion of carbon mass from PAR can be calculated. Other ecosystem 

process models simulate the structure of vegetation and biogeochemical fluxes. 

Considering this, remote sensing based PEMs are more suitable for this thesis. The purpose 

of this chapter is to check whether the improved LAI produced in Chapter 5 is reliable. It is 

the most important input data we have to integrate into the final model.  

In addition, MODIS NPP products were produced by the combination of PEM and an 

ecosystem process model (see Figure 6.1). By using the biome-specific ecosystem process 

model, BIOME-BGC, the maximum value for the conversion efficiency 𝜀𝑚𝑎𝑥 for each land 

type can be derived. However, while 𝜀𝑚𝑎𝑥 is the potential maximum convert efficiency for 

specific land type, the value of 𝜀𝑚𝑎𝑥 varies to different local environmental conditions 

(mainly temperature and atmospheric moisture). In the MODIS NPP algorithm, the Vapour 

Pressure Deficit (VPD) model was employed to calculate the final conversion efficiency ε : 

𝛆 = 𝜺𝒎𝒂𝒙 ∙ 𝐓𝐌𝐈𝐍𝐬𝐜𝐚𝐥𝐚𝐫 ∙ 𝑽𝑷𝑫𝐬𝐜𝐚𝐥𝐚𝐫       

Eq. 6-1 

TMINscalar and 𝑉𝑃𝐷scalar represent the constraint of minimum temperature and VPD. 

Both of the data were held by the Global Modelling and Assimilation Office of National 

Aeronautics and Space Administration (GMAO/NASA) at the daily scale. 
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Figure 6.1: Flowcharts showing the logic behind the MOD17 Algorithm in calculating 

both 8-day average GPP and annual NPP, from Running (2015) 

Unfortunately, the daily temperature and VPD data archived by GMAO/NASA are not 

publicly accessible, and most importantly, the spatial resolution (0.5 Latitude degree by 

0.67 Longitude degree) of them (Zhao et al., 2006) is not enough to reflect the spatial 

heterogeneity of Zeku, which is an important factor that would affect the accuracy of any 

regional NPP calculation. Given these complexities, this thesis turns to the same algorithm 

as MODIS NPP, but instead of using LUE-VPD in calculating ε, an LUE-VMD model is 

selected as the best way forward, for the reasons that: 

-The LUE model is one of the most widely used models in remote sensing based NPP 

estimation. MODIS itself published a global NPP dataset, with an 8-day period resolution, 

based on this model, with which we can easily compare our estimation;  

-in Chapter 5, the LAI dynamic under grazing is analysed with remote sensing data; given 

this, the NPP estimation modelling is ideally done using a remote sensing based model; 

-there are limited high spatial resolution climatic and planetary data for us to use to 

parameterize a process-based model (sadly, as the mechanism would be more clear if we 

could). 

The following parts of this chapter will discuss the radiation, LUE and plant growth in 

detail. It will start with a Photosynthetic Active Radiation (PAR) estimation, then the VPM 

model and finally the NPP calculation. 

6.3 General processes of LUE-VPM model  

The LUE models are based on the rationale that daily photosynthesis is proportional to the 

Absorbed Photosynthetic Active Radiation (APAR) according to the Monteith theory 

(Monteith, 1972; Monteith and Moss, 1977), which proposed a linear relationship between 
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aboveground photosynthesis and APAR for barley, potatoes, sugar beet, and apples in 

Britain. Later, a similar linear relationship has been found for cereals (Gallagher and 

Biscoe, 1978) and tropical trees (Harrington and Fownes, 1995). Thus, light use efficiency 

has been widely used to quantify the amount of APAR in energy units converted into 

vegetation biomass in carbon units (GPP) (Odum, 2013). 

GPP = ε ∙ APAR 

Eq. 6-2 

where ε is known as light use efficiency (LUE), and it represents the conversion efficiency 

of solar radiation to carbon mass. A detailed theoretical analysis of Eq. 6-2 was discussed 

in Haxeltine and Prentice (1996a). The value of ε has been estimated both theoretically and 

experimentally for various species (Ruimy et al., 1994; Landsberg et al., 1997; Medlyn, 

1998). It depends on the local environmental conditions: water, nitrogen, and temperature 

(Hunt Jr and Running, 1992; Wright et al., 1993; Ruimy et al., 1999b). MODIS NPP 

products (MOD17A2/A3) use temperature and moisture (VPD) as the two main constraint 

parameters to calculate ε (see Eq. 6-1). But as mentioned earlier in this chapter, a VPM 

model is used to calculate the value of ε. The other algorithms for NPP calculation are 

exactly the same as the MODIS NPP algorithms (see Figure 6.1). Before introducing these, 

a brief description of the APAR calculation (in Eq. 6-2) is presented first. 

6.3.1 Quantifying the absorbed solar radiation for photosynthesis: APAR 

Solar radiation is the key factor in vegetation growth, providing the essential energy for 

photosynthetic activities (Monteith, 1972). Solar radiation has a variety of wavelengths, 

but only the wavelengths between 0.4 μm and 0.7 μm can be used by vegetation for 

photosynthetic activities, that is, photosynthetically active radiation (PAR) (McCree, 

1972). APAR (Absorbed PAR) describes the amount of PAR received by the vegetation 

canopy and used for photosynthesis. It varies with the change in day length due to axial tilt 

and the daily cloud over the aerosol attenuation of solar radiation (Odum, 2013), as well as 

the upwelling radiance reflected by the land surface (Roujean and Breon, 1995). Therefore, 

it is also an important component of any analysis of the global carbon balance through the 

estimation of vegetation photosynthetic carbon sink (Tucker et al., 1986). In addition, 

APAR implicitly indicates how much leaf area the vegetation (LAI) is exposed to absorb 

solar radiation, and it follows the form:  

𝑨𝑷𝑨𝑹 = 𝒇𝑷𝑨𝑹 ∗ 𝑷𝑨𝑹        

Eq. 6-3 

where PAR is Photosynthetic Active Radiation (PAR), which is part of the solar radiation 

within the spectral range of 400-700 nm for vegetation photosynthesis, which controls the 

accumulation of NPP and the carbon fixation on the earth (Frouin and Pinker, 1995). It 

plays an important role in evaluating global productivity change and carbon balance (Li et 

al., 2015a) incoming photosynthetically active radiation. It is the potential radiation that 

could be absorbed to do photosynthetic work: not all this light is used, and fPAR is the 

Fraction of Photosynthetically Active Radiation absorbed by vegetation; the actual 

proportion used is known as the APAR.  
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Basically, all the methods of fPAR estimation are based on the relationship between 

vegetation indices and vegetation canopy properties. For example, fPAR was calculated by 

quantifying the linear relationship with the Normalized Difference Vegetation Index 

(NDVI) (Sims et al., 2006): FPAR = 1.24NDVI − 0.168; or the linear relationship with the 

Enhanced Vegetation Index (EVI) (Fisher et al., 2008): fPAR = 1.2EVI. The MODIS 

fPAR product has used a more advanced vegetation index, which consists of three or four 

wavelengths (Odum, 2013). Among all those calculations, the relationship between fPAR 

and LAI, which is known as Beer’s law, is the most widely used one (Hu et al., 2013), 

which follows: 

𝒇𝑷𝑨𝑹 = 𝟎. 𝟗𝟓(𝟏 − 𝒆𝒙𝒑 (−𝒌 ∗ 𝑳𝑨𝑰))      

Eq. 6-4 

where fPAR is the fraction of incident PAR absorbed by the canopy, k is the light 

extinction coefficient, LAI is the one-sided leaf area per ground area. Similar to the other 

light use efficiency models, the light absorption here integrates leaf photosynthesis to the 

canopy (Ruimy et al., 1999b). The value for k is 0.5 in this thesis, which has been 

extensively validated for both herbaceous crops (Varlet-Grancher et al., 1980), forest 

(Jarvis and Leverenz, 1983) and grass (Zhang et al., 2014b). 

6.3.2 Calculation of PAR from solar shortwave radiation  

PAR is affected by atmospheric conditions (water vapour and ozone amounts, surface 

visibility, aerosol type and cloud optical thickness) (Frouin and Pinker, 1995) and radiation 

geometry (solar zenith angle) (Myneni et al., 1997b). However, numerous studies have 

confirmed there is a robust linear relationship between PAR and solar Shortwave 

Irradiance (SI) (Britton and Dodd, 1976; Papaioannou et al., 1993). Notice that, solar 

radiation is also called solar shortwave radiation compared with terrestrial radiation 

(longwave radiation) (Mani, 1980). Thus, PAR can be calculated by using SI at the top of 

the atmosphere and a conversion ratio, which can be expressed as: 

PAR = φ ∗ SI 

Eq. 6-5 

where φ accounts for the ratio of PAR to the solar shortwave radiation; SI stands for the 

solar shortwave radiation. Studies have found that the value of φ varied according to 

weather conditions. The early most commonly used value of φ was 0.44 (Moon, 1940). 

Under clear sky conditions, the value of φ changed from 0.47 to 0.5; while under cloudy or 

rainy conditions, the range was 0.47–0.59 (McCree, 1966).  

In the Carnegie–Ames–Stanford Approach (CASA) model, φ is a constant value, which 

accounts for the fact that approximately half of the SI can be considered as PAR (Potter et 

al., 1993). For practical purposes, the ratio of photosynthetically useful radiation has been 

suggested to be half of the SI (Monteith and Reifsnyder, 1974). In Barrow, Alaska, the 

value was found to be 0.45, and similar results have been revealed in Jerusalem, Israel, and 

Rockville, Maryland, U.S.A (Goldberg and Klein, 1977), although the value ranged from 

0.45 to 0.47 in Ultuna, Sweden (Rodskjer, 1983). The results for California State 
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University, Fresno site, indicated that φ varied from 0.458 in July to 0.446 in April 

(Blackburn and Proctor, 1983). 

While in China, especially in the Qinghai-Tibet regions, the value of φ has been 

extensively investigated. A comparison of observed and modelled φ is shown in Figure 

6.2. Although there are obvious seasonal differences in the ratio of PAR (“QP” in Figure 

6.2) to SI (“RS” in Figure 6.2), the observed standard deviation is 0.004 at the monthly 

level with a mean value of 0.446 in Tibet (Li et al., 2010). The ratio (
𝑄𝑃

𝑅𝑆
⁄ ) of 

photosynthetically active radiation (𝑄𝑃) and global solar radiation (𝑅𝑆) is not significantly 

different for each month. In this thesis, the value of φ is set to be 0.446, based on Li et al. 

(2010)’s observation. 

 

Figure 6.2: Monthly measured and modelled ratio (
𝑸𝑷

𝑹𝑺
⁄ ) of photosynthetically 

active radiation (𝑸𝑷) and global solar radiation (𝑹𝑺), figure from Li et al. (2010) 

 

Unfortunately, in the algorithm used for calculating the MODIS daily NPP 

(MOD17A2/A3) products, PAR is estimated in this manner (Eq. 6-5) from data provided 

by the Global Modelling and Assimilation Office in the National Aeronautics and Space 

Administration (GMAO/NASA). The spatial resolution of this shortwave radiance data is 

in increments of 2/3° latitude and 1/4° longitude (Masuda, 2004), which is not suitable for 

estimating NPP at a 463×463 m2 spatial resolution. In addition, the MODIS method does 

not consider the shadow effect of hills’ elevation on the total incoming shortwave 

radiation. This thesis uses a viewshed model developed by Fu and Rich (2002) to calculate 

the downward surface radiation for each day. The elevation data is from the Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital 

Elevation Model (GDEM) (ASTER, 2005) with a spatial resolution of 30m and resized to 

463m (see Figure 6.3). 
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Figure 6.3: DEM of Zeku, China 

 

Generally, when solar radiation travels from the sun through the atmosphere to the top of 

the canopy, it is inevitably affected by astronomical and meteorological factors (Brock, 

1981). There are three components actually arriving at the top of the canopy: direct, 

diffuse, and reflected insolation. Direct radiation is the main component of solar radiation, 

it is not reflected or scattered and reaches the surface directly; while diffuse radiation is the 

second largest component, it is the scattered radiation that reaches the ground. Reflected 

radiation from surrounding landscapes (reflected from the ground onto the inclined 

receiver) generally accounts for a small proportion of total incident solar radiation and 

usually can be neglected (Hofierka and Suri, 2002). If both the diffuse and global solar 

radiation is known (diffuse ratio), the direct component of solar radiation can be obtained 

through simple subtraction (Tuller, 1976). However, the diffuse ratio varies inversely with 

cloudiness, the value of this ratio ranging from 0 to 0.35 has been observed (Tuller, 1976). 

In China, the value of the diffuse ratio for different regions are listed in Table 6.2. The 

diffuse ratio is set to 0.31(row “NC” in Table 6.2, means Northwest China region) in this 

thesis following the table (Fu et al., 2015). 
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Table 6.2: Sunny diffuse radiation percentage, from Fu et al. (2015) 

 

 

Considering the effect of the solar altitude, atmospheric water vapour content, dust content, 

ozone content and any other radiation depletion, a transmission coefficient for direct and 

diffuse radiation have been proposed by Liu and Jordan (1960); it was also referred to as 

either the clearness index or cloudiness index. It is a very attractive parameter for 

estimating the response of solar radiation to different atmospheric conditions; using this 

the diffuse ratio can be calculated by using the global transmissivity of the atmosphere 

(Carroll, 1985). The transmissivity is set to 0.72 based on regional figures given by Pan et 

al. (2013) (see Figure 6.4), and the calculation interval is 30 minutes. Slope and aspect are 

from the DEM, and 32 different incident radiation directions are calculated.  

 

Figure 6.4: The spatial pattern of the atmospheric transmission coefficient under 

clear-sky conditions over the Tibetan Plateau, the labels are percentages. From 

Pan et al. (2013) 
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To summarise, the SI can be calculated by using the viewshed method, which includes two 

key parameters: diffuse ratio and transmissivity. The value of these two parameters were 

all referred to the current studies in the case study area. Then the PAR can be obtained 

through Eq. 6-5. The ratio for the PAR (φ) was derived from the study in Qinghai-Tibet 

region. According to Eq. 6-2, Eq. 6-3 and Eq. 6-4, the main difficulty for NPP estimation 

is the value of LUE for each pixel in Zeku. Due to the limited data accessibility and low 

spatial resolution of climatic data, instead of using VPD model, a VPM model will be used 

to calculate LUE (ε). 

6.3.3 An alternative way of calculating LUE: VPM 

The MODIS NPP algorithm uses the Water Vapour Deficit (VPD) model to calculate the 

scalars that attenuate the solar radiation. The main purpose of this calculation is to convert 

the maximum radiation conversion efficiency (𝜀𝑚𝑎𝑥) to the local instantaneous radiation 

conversion efficiency (𝜀) on a daily basis. The formula for the VPD model was shown in 

Eq. 6-1, where 𝑇𝑚𝑖𝑛𝑠𝑐𝑎𝑙𝑎𝑟 is the scalar factor that reflects the effect of temperature on 

radiation conversion efficiency (the value range is from 0 to 1), and 𝑉𝑃𝐷𝑠𝑐𝑎𝑙𝑎𝑟 reflects the 

effect of water on the radiation conversion efficiency (the value range is from 1 to 0). The 

default value of 𝜀𝑚𝑎𝑥 can be obtained from the Biome Property Look Up Table (BPLUT, 

see Table 6.3) (Running, 2015). 

Table 6.3: Biome Property Look Up Table (BPLUT) for MODIS GPP/NPP algorithm 

(from MODIS data user guide, *: the constant 𝑸𝟏𝟎 = 𝟐. 𝟎 is applied to fine roots 

and live wood, while for leaves, a temperature acclimation 𝑸𝟏𝟎 value is used as 

described in Equation) 

Classification type grass Description 

𝜀𝑚𝑎𝑥 (KgC/m²/d/MJ) 0.00086 The maximum radiation conversion efficiency 

Tmin_min (C) -8.00 The daily minimum temperature at which ε = 𝜀𝑚𝑎𝑥 

Tmin_max (C) 12.02 The daily minimum temperature at which ε = 0 

VPD_min (Pa) 650.00 The daylight average vapour pressure deficit at which ε = 0  

VPD_max (Pa) 5300.00 The daylight average vapour pressure deficit at which ε = 𝜀𝑚𝑎𝑥  

SLA (LAI/KgC) 37.5 Projected leaf area per unit mass of leaf carbon 

𝑄10
∗ 2.0 Exponent shape parameter controlling respiration as a function of 

temperature 

froot_leaf_ratio 2.6 The ratio of fine root carbon to leaf carbon 

leaf_mr_base 0.0098 Maintenance respiration per unit fine leaf carbon per day at 20 ℃ 

froot_mr_base 0.00819 Maintenance respiration per unit fine root carbon per day at 20 ℃ 

 

However, the value of 𝜀𝑚𝑎𝑥 varies in different biome types and by local environmental 

conditions (Landsberg and Waring, 1997). The value of 𝜀𝑚𝑎𝑥 for grassland in the MODIS 

NPP products calculation is 0.00086 𝑔𝐶/𝑚2/𝑀𝐽 (Running et al., 2000a), but one of the 

key uncertainties is the spatial and temporal variation of the daily 𝜀𝑚𝑎𝑥 value (Goetz and 

Prince, 1999; Turner et al., 2002). Therefore, in the NPP calculation, especially in regional 

or local areas (smaller scale calculations), the value of 𝜀𝑚𝑎𝑥 would be different (Goetz et 
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al., 1999). In this thesis the value of 𝜀𝑚𝑎𝑥 is 0.0006 𝑔𝐶/𝑚2/𝑀𝐽 when calculating the NPP 

based on ground measurement in Qinghai-Tibet (Li et al., 2012).  

The main reason for choosing the VPM model is data availability. Since there is no access 

to the daily climatic data provided by GMAO/NASA, and the spatial resolution (0.5 

Latitude degree by 0.67 Longitude degree) of GMAO/NASA climatic data is too low thus 

cannot be used. One pixel of GMAO/NASA data could cover all the area of Zeku and 

could result in the homogeneity of local ε, which is not true in reality. The China 

Meteorological Forcing Dataset (CMFD) (Chen et al., 2011) has provided high spatial 

resolution climatic data for every three hours from 1979 to 2012 (this is also the main 

reason for this thesis choosing 2003-2012 as a case study period; from 2003, the grasslands 

have also been contracted to individual households). By aggregating the three-hour 

temperature data to the daytime temperature data of CMFD, the effect of temperature on 

𝜀𝑚𝑎𝑥 can be quantified. Basically, the VPM uses the following equation to calculate 𝜀 at 

the daily scale (Xiao et al., 2004): 

𝜺 = 𝜺𝒎𝒂𝒙 ∗ 𝑻𝒔𝒄𝒂𝒍𝒂𝒓 ∗ 𝑾𝒔𝒄𝒂𝒍𝒂𝒓 ∗ 𝑷𝒔𝒄𝒂𝒍𝒂𝒓     

Eq. 6-6 

where 𝜀𝑚𝑎𝑥 is maximum light use efficiency, and 𝑇𝑠𝑐𝑎𝑙𝑎𝑟, 𝑊𝑠𝑐𝑎𝑙𝑎𝑟 and 𝑃𝑠𝑐𝑎𝑙𝑎𝑟 are the 

downward-regulation scalars for the effect of temperature, water and leaf phenology on the 

light use efficiency of vegetation, respectively. 

𝑇𝑠𝑐𝑎𝑙𝑎𝑟 is estimated at each time step, using the equation developed for the Terrestrial 

Ecosystem Model (Raich et al. 1991),: 

𝑻𝒔𝒄𝒂𝒍𝒂𝒓 =
(𝑻−𝑻𝒎𝒊𝒏)(𝑻−𝑻𝒎𝒂𝒙)

(𝑻−𝑻𝒎𝒊𝒏)(𝑻−𝑻𝒎𝒂𝒙)−(𝑻−𝑻𝒐𝒑𝒕)𝟐        

Eq. 6-7 

where 𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥 and 𝑇𝑜𝑝𝑡 are minimum, maximum and optimal temperature for vegetation 

photosynthesis. If air temperature falls below 𝑇𝑚𝑖𝑛, when the temperature is beyond the 

minimum temperature for vegetation photosynthesis, the photosynthesis is at a low rate or 

there is no photosynthesis, and 𝑇𝑠𝑐𝑎𝑙𝑎𝑟 is set to zero. The value of 𝑇𝑚𝑖𝑛, 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑖𝑛 are 

different according to the vegetation types. In the research of Qinghai-Tibet alpine 

ecosystems, the values for these three parameters are 0, 20 and 35 °C respectively (Li et 

al., 2007). In their research, the average daytime temperature during light periods was used 

instead of using the daily mean air temperature that is calculated as the average value 

between daily maximum temperature (generally daytime) and daily minimum temperature 

(night time) in calculating 𝑻𝒔𝒄𝒂𝒍𝒂𝒓 (Li et al., 2007). They argued that the day time average 

temperature would better capture the temperature effect on 𝜺. But in this thesis, the average 

temperature is the average value during the whole day as it is the most commonly used 

way of calculating 𝑻𝒔𝒄𝒂𝒍𝒂𝒓 (Xiao et al., 2004; Sannigrahi et al., 2016). 

The main contribution of the VPM model is that it considers the effects of both water 

stress and vegetation phenology on ε. In the VPM, a water sensitive vegetation index 

(LSWI) was utilized to capture the effects of water stress and phenology on light use 

efficiency,  
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𝑳𝑺𝑾𝑰 =
𝝆𝑵𝑰𝑹−𝝆𝑺𝑾𝑰𝑹

𝝆𝑵𝑰𝑹+𝝆𝑺𝑾𝑰𝑹
          

Eq. 6-8 

where 𝜌𝑁𝐼𝑅 is the surface reflectance band intensity between 841nm and 876 nm (near-

infrared band), and 𝜌𝑆𝑊𝐼𝑅 is the surface reflectance band from 1628 nm to 1652 nm (short 

infrared band). Both of the data can be derived from the MODIS reflectance dataset 

MOD09A1 (Vermote, 2015). 

Then, the effect of water on plant photosynthesis (𝑊𝑠𝑐𝑎𝑙𝑎𝑟) can be calculated as: 

𝑾𝒔𝒄𝒂𝒍𝒂𝒓 =
𝟏+𝑳𝑺𝑾𝑰

𝟏+𝑳𝑺𝑾𝑰𝒎𝒂𝒙
         

           Eq. 6-9 

where 𝑳𝑺𝑾𝑰𝒎𝒂𝒙 is the maximum LSWI within the plant growth season. 

Finally, Pscalar is included in the VPM model to account for the effect of leaf phenology 

(leaf age) on photosynthesis at the canopy level: 

𝑷𝒔𝒄𝒂𝒍𝒂𝒓  =
𝟏+𝑳𝑺𝑾𝑰

𝟐
          

Eq. 6-10 

during bud burst to leaf full expansion 𝑷𝒔𝒄𝒂𝒍𝒂𝒓 was set to be 1 after leaf full expansion. 

6.3.4 Daily maintenance respiration 

Maintenance respiration costs (MR) for leaves and fine roots are summarised in the 

flowchart Figure 6.1 and are also calculated on a daily basis. Leaf mass (kgC) is calculated 

as (Running, 2015): 

𝑳𝒆𝒂𝒇 𝑴𝒂𝒔𝒔 = 𝑳𝑨𝑰
𝑺𝑳𝑨⁄          

Eq. 6-11 

where LAI is the leaf area index, and SLA is the specific leaf area (projected leaf area /Kg 

C). 

Fine root mass is then estimated by: 

𝑭𝒊𝒏𝒆 𝑹𝒐𝒐𝒕 𝑴𝒂𝒔𝒔 = 𝑳𝒆𝒂𝒇 𝑴𝒂𝒔𝒔 ∗ 𝒇𝒓𝒐𝒐𝒕_𝒍𝒆𝒂𝒇_𝒓𝒂𝒕𝒊𝒐    

Eq. 6-12 

Leaf maintenance respiration is calculated as: 

𝑳𝒆𝒂𝒇 𝑴𝑹 = 𝑳𝒆𝒂𝒇 𝑴𝒂𝒔𝒔 ∗ 𝒍𝒆𝒂𝒇_𝒎𝒓_𝒃𝒂𝒔𝒆 ∗ 𝑸
𝟏𝟎

(𝑻𝒂𝒗𝒈−𝟐𝟎)/𝟏𝟎   

Eq. 6-13 

𝑇𝑎𝑣𝑔 is the average daily temperature (℃). 𝑄10 describes the short term temperature 

dependence of the rates of biological processes widely used among biologists, which could 
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affect the respiration of vegetation (Wager, 1941; Tjoelker et al., 2001b). 𝑄10 is calculated 

through the equation which developed by Tjoelker et al. (2001a) :  

𝑸𝟏𝟎 = 𝟑. 𝟐𝟐 − 𝟎. 𝟎𝟒𝟔 ∗ 𝑻𝒂𝒗𝒈 

Eq. 6-14 

Similarly, the maintenance respiration of the fine root mass can be calculated as: 

𝑹𝒐𝒐𝒕 𝑴𝑹 = 𝑹𝒐𝒐𝒕 𝑴𝒂𝒔𝒔 ∗ 𝒇𝒓𝒐𝒐𝒕_𝒎𝒓_𝒃𝒂𝒔𝒆 ∗ 𝑸
𝟏𝟎

(𝑻𝒂𝒗𝒈−𝟐𝟎)/𝟏𝟎  

Eq. 6-15 

and finally, the net photosynthesis can be calculated: 

𝑷𝑺𝑵𝒏𝒆𝒕 = 𝑮𝑷𝑷 − 𝑳𝒆𝒂𝒇 𝑴𝑹 − 𝑹𝒐𝒐𝒕 𝑴𝑹       

Eq. 6-16 

In addition, for the energy cost for constructing organic compounds fixed by 

photosynthesis, which is empirically parameterized as 25% of NPP, the MODIS NPP 

algorithm simply uses a fixed percentage of NPP to calculate energy cost for constructing 

organic compounds fixed by photosynthesis, that is.  

𝑵𝑷𝑷 = 𝑮𝑷𝑷 − 𝑹𝒎 − 𝑹𝒈 = 𝑮𝑷𝑷 − 𝑹𝒎 − 𝟎. 𝟐𝟓 ∗ 𝑵𝑷𝑷     

Eq. 6-17 

where 𝑅𝑚 is the plant maintenance respiration, and 0.25 ∗ 𝑁𝑃𝑃 represents calculate energy 

cost for constructing organic compounds fixed by photosynthesis, therefore, the NPP can 

be calculated by: 

𝑵𝑷𝑷 = 𝟎. 𝟖 ∗ (𝑮𝑷𝑷 − 𝑹𝒎) 𝒘𝒉𝒆𝒏 𝑮𝑷𝑷 − 𝑹𝒎 ≥ 𝟎, 𝒂𝒏𝒅   

𝑵𝑷𝑷 = 𝟎 𝒘𝒉𝒆𝒏 𝑮𝑷𝑷 − 𝑹𝒎 < 𝟎        

Eq. 6-18 

To summarise, all the process for NPP estimation have been discussed in detail. They 

broadly followed the flow in Figure 6.1, but due to the data availability of climatic data 

and daily radiation data, the viewshed model and VPD model were employed to estimation 

solar radiation and the conversion rate of solar radiation to carbon mass on grassland. The 

rest of this chapter will show the results of the NPP calculations based on the improved 

LAI data produced in Chapter 5. 

6.4 Improved and expected NPP of Zuku: new view of grazing effect 

on carbon fixation 

Using the above estimation methods, the NPP after livestock grazing is shown in Figure 

6.5. The LAI data for the calculation is the improved LAI data (improved by fitting with 

new growth function considering both the effect of the previous grazing and current 

grazing). The value of NPP ranges from 43.66 gCm-2 to 664.39 gCm-2. the average NPP is 

380.09 gCm-2 for the whole region. We can see obvious spatial heterogeneity in the NPP 
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distribution, with the high productivity concentrating to the southeast of Zeku. The low 

productivity areas are mainly distributed in the northern mountainous areas (see DEM 

figure in Figure 6.3). Notice that there are some black points in the figures: these are the 

points where the improved LAI cannot be calculated (non-linear regression cannot find a 

solution for the new growth function). The total number of these black points is 45. 

Considering a total of 29423 pixels in Zeku, these black points have no noticeable 

influence on the NPP calculation. The spatial pattern is quite similar to that of Fan et al. 

(2010b). 

 

Figure 6.5: Improved NPP products, 2002~2012, Zeku (unit: gCm-2) 

Similarly, the expected NPP can be calculated by using the expected LAI (the LAI value if 

the pixel has not been grazed) produced in Chapter 5. The calculation keeps all the other 

parameters the same, and changes the improved LAI to expected LAI. The aggregated 

annual NPP distribution is shown in Figure 6.6. On the whole, the spatial patterns have not 

changed compared with the improved NPP distribution. The minimum productivity is 
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45.79 gCm-2 and the maximum productivity reaches as high as 735.76 gCm-2. On the 

average, the productivity is 405.58 gCm-2 from 2003 to 2012, which means that the effect 

of livestock grazing on the productivity is 25.49 gCm-2 in Zeku, accounting for 6.28% of 

the expected grassland productivity. This provides a new view in evaluating the effect of 

livestock grazing on grassland. Although a relatively high grazing pressure has been 

observed in Zeku (Fan et al., 2010b), the overall effect of grazing on the reduction of 

carbon fixation in Zeku by plants is 6.28%. Presumably, we cannot tell where the carbon 

goes—some as dung, some as cattle, some respired. 

 

Figure 6.6: Expected NPP of Zeku, 2003~2012 (unit: gCm-2) 

 

6.5 Validation of the improved NPP 
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This the Net Primary Productivity (NPP) produced by the improved LAI with in-situ 

measured grass weight data that were collected from the Grassland Livestock Bureau of 

Zeku. In order to validate improved NPP, the daily NPP calculated in this chapter needs to 

be aggregated to the exact sampling date (Table 6.5).  

6.5.1 Estimate NPP based on the improved LAI with LUE-VPM 

To convert the improved LAI to NPP this thesis here utilises the Light Use Efficiency 

(LUE) model which is widely used in NPP estimation, most specifically by MODIS, to 

produce their global 500m and 1000m NPP data. The difference between the LUE model 

in this thesis and the conventional model used in the MODIS data is the Vapour Pressure 

Deficit (VPD) attenuation scalar is replaced by a Vegetation Photosynthesis Model (VPM) 

scalar due to data limitations; for more information on the LUE-VPM construction, see 

(Xiao et al., 2004); the key parameters and datasets for models are shown in Table 6.4: 

Table 6.4: Model parameters for NPP calculation 

 MODIS (Running 

and Zhao, 2015) 

LUE-VPM (Light Use 

Efficiency with Vegetation 

Photosynthesis Model) 

Light Use efficiency 

(LUE)  

Vapour Pressure 

Deficit (VPD) 

Vegetation Photosynthesis 

Model (VPM) (Xiao et al., 

2004) 

Maximum radiation 

conversion efficiency 

(𝜀𝑚𝑎𝑥, KgCm-²/d/MJ) 

0.00086 0.00061(Li et al., 2012) 

Photosynthetic Active 

Radiation (PAR) data 

from Global 

Modelling and 

Assimilation Office 

(GMAO/NASA) 

calculated by Area Solar 

Radiation (Fu and Rich, 2002) 

the fraction of 

Photosynthetically 

Active Radiation 

absorbed by vegetation 

(fPAR) data 

from MODIS fPAR calculated with Beer-Lambert 

law (Ruimy et al., 1999b) 

 

There are 14 national grassland monitoring sample sites in Zeku, 2012. The locations are 

shown in Figure 6.7. 
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Figure 6.7: Locations of validation stations in Zeku, 2012 

 

6.5.2 Modelling results vs MODIS NPP and in-situ measurements 

For each sampling site, there are 4 samples, of which the size is 1m x 1m. Table 6.5 shows 

the average carbon of the 4 samples for each grassland monitoring site after converting 

from above ground fresh matter to whole plant carbon (column “Converted in-situ NPP”). 

Unfortunately, no information about the uncertainty of these estimates is provided. In 

comparison, this table also lists the MODIS NPP (column “MODIS NPP”) and the NPP 

this thesis has estimated (column “LUE-VPM NPP (improved LAI)”). 

The NPP was calculated on a daily basis for our improved LAI (Table 6.5, column “LUE-

VPM NPP (improved LAI)”). In order to compare with the in situ observed data (Table 

6.5, column “LUE-VPM NPP (improved LAI)”; below), we aggregate the daily ANPP 

from the first day of 2012 to the date listed in Table 6.5 (column: “collecting time”, these 

are the date when the fresh grass weight was measured). The original MODIS NPP product 

is in Table 6.5 (column: “MODIS NPP”). In addition, with the purpose of showing our 

improved LAI is better than the MODIS LAI, we calculated the NPP using MODIS LAI as 

well (column: “LUE-VPM NPP (MODIS LAI)”). However, before we can compare those 

results, the in situ grass weight (gm-2) should be converted to grass mass (or NPP, gCm-2), 

as described below.  

The relation between aboveground dry matter (ADM) and NPP can be described as 

(Maselli et al., 2013; Running, 2015): 
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𝐍𝐏𝐏 = 𝐃𝐌 ∗ (𝑹𝒐𝒐𝒕_𝑳𝒆𝒂𝒇_𝑹𝒂𝒕𝒊𝒐 + 𝟏) ∗ 𝟎. 𝟓 

Eq. 6-19 

where the multiplier (𝑅𝑜𝑜𝑡_𝐿𝑒𝑎𝑓_𝑅𝑎𝑡𝑖𝑜 + 1) converts the above ground dry matter to 

whole plant dry matter (both above ground mass and below ground mass). This value is 

taken as 0.28 following Running (2015). The 0.5 multiplier accounts for the conversion 

from dry matter to carbon (Maselli et al., 2013). The ratio of dry matter to fresh grass in 

Zeku is 0.37 according to Lai et al. (2008).  

Table 6.5: Validation with in-situ measured carbon mass (unit: gCm-2) 

ID longtitute latitut

e 

altitute collecting 

time 

Converte

d in-situ 

NPP 

LUE-VPM NPP 

(improved LAI) 

MODIS 

NPP 

LUE-VPM NPP 

(MODIS LAI) 

1 101.13 35.31 3482 2012-08-06 143.56 191.47 151.12 182.79 

2 101.08 35.27 3495 2012-08-05 548.06 285.35 203.60 264.61 

3 101.32 35.27 3636 2012-08-06 180.38 245.00 175.12 223.42 

4 101.73 35.06 3617 2012-08-07 335.81 316.31 194.16 272.44 

5 101.80 35.06 3549 2012-08-08 233.40 235.56 167.36 228.64 

6 100.87 35.22 3371 2012-08-09 193.42 NA 194.96 NA 

7 100.87 35.22 3380 2012-08-09 346.88 NA 183.36 NA 

8 101.01 35.19 3511 2012-08-06 290.71 301.43 219.12 269.31 

9 101.46 35.04 3671 2012-08-08 103.15 256.47 156.64 202.58 

10 100.91 35.39 3411 2012-08-07 149.98 245.32 170.16 230.09 

11 100.94 35.39 3420 2012-08-07 288.73 271.83 170.24 243.14 

12 101.15 35.30 3481 2012-08-06 139.91 230.29 146.64 194.44 

13 101.18 35.29 3524 2012-08-06 321.60 254.39 161.76 210.04 

14 101.70 35.03 3619 2012-08-10 328.38 339.67 188.80 262.48 

15 101.61 35.08 3789 2012-08-07 346.54 295.67 195.84 289.53 

mean     262.32 266.83 176.97 236.42 

 

The results of Tukey's honest significance test (TukeyHSD test) (Tukey, 1949) (Table 6.6) 

shows there is no significant difference between NPP calculated by LUE-VPM based on 

our improved LAI and converted in-situ measured carbon mass with a p-value equalling 

0.998 (the RMSE between the two is 97.77 gCm-2). Conversely, the p-value between 

converted in-situ measured carbon mass and the MODIS NPP product is 0.011 (the RMSE 

between the two is 133.98 gCm-2), indicating the MODIS NPP product for Zeku is 

significantly different from the in-situ measured data. When keeping all the parameters of 

LUE-VPM the same, the p-value between converted in-situ measured NPP and the NPP 

calculated based on MODIS LAI is 0.760. In addition, from Table 4, the average converted 

NPP from in-situ measured data is 262.32 gCm-2, while the NPP calculated by LUE-VPM 

based on our improved LAI is 266.83 gCm-2, and if all the LUE-VPM parameters are kept 
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the same, the average recalculated NPP by LUE-VPM based on MODIS LAI is 236.42 

gCm-2, which indicates that the improved LAI estimate has improved the accuracy of the 

NPP calculations on average.  

Table 6.6: Multiple comparisons with one-way ANOVA test 

(I) group (J) group Mean 

Difference 

(I-J) 

Std. Error Sig. 95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

LUE-VPM NPP 

(improved LAI) 

MODIS NPP 89.861
*
 26.350 .007 19.735 159.988 

Converted in-

situ NPP 

4.504 26.350 .998 -65.623 74.6301 

LUE-VPM NPP 

(MODIS LAI) 

30.404 26.350 .658 -39.723 100.531 

MODIS NPP LUE-VPM NPP 

(improved LAI) 

-89.862
*
 26.350 .007 -159.988 -19.735 

Converted in-

situ NPP 

-85.358
*
 26.350 .011 -155.485 -15.231 

LUE-VPM NPP 

(MODIS LAI) 

-59.458 26.350 .123 -129.585 10.669 

Converted in-

situ NPP 

LUE-VPM NPP 

(improved LAI) 

-4.504 26.350 .998 -74.631 65.623 

MODIS NPP 85.358
*
 26.350 .011 15.231 155.485 

LUE-VPM NPP 

(MODIS LAI) 

25.900 26.350 .760 -44.227 96.027 

LUE-VPM NPP 

(MODIS LAI) 

LUE-VPM NPP 

(improved LAI) 

-30.404 26.350 .658 -100.537 39.723 

MODIS NPP 59.458 26.350 .123 -10.669 129.585 

Converted in-

situ NPP 

-25.900 26.350 .760 -96.027 44.227 

*. The mean difference is significant at the 0.05 level. 

Notes: Converted in-situ NPP is the converted NPP from the in-situ measurement of fresh grass weight; 

MODIS NPP is MOD17A3H (MODIS collection 6 NPP), which is public free from 

https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod17a3h_v006; 

LUE-VPD (improved LAI) is the NPP calculated by Light Use Efficiency with Vegetation Photosynthesis Model 

based on improved LAI produced by this paper; 

LUE-VPD (MODIS LAI) is the NPP calculated by Light Use Efficiency with Vegetation Photosynthesis Model 

https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod17a3h_v006
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based on MODIS LAI (MOD15A2H006, MODIS collection 6 LAI, which is public free from 

https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod15a2h_v006 ). 

 

6.6 The uncertainty of the NPP calculation 

The LUE-VPM model was employed to calculate the NPP based on the improved LAI. 

However, the outputs of LUE-VPM depend on the model structure, input datasets, and the 

values of parameters describing the NPP, all of which affect the accuracy and reliability of 

the model output. Uncertainty will inevitably arise from the simplifications and 

abstractions of the real system used to create the models, as well as through the processes 

of data collection and the parameterization of the model {Bagnara, 2018 #1058}.  

Imperfect simplification or abstraction of processes in a model leads to structural 

uncertainty. However, both the LUE model and VPM model have been widely used and 

validated worldwide; they have comparable consistency and can be assumed to reliably 

estimate the NPP with minimal structure uncertainty {Sannigrahi, 2017 #1056;Bao, 2016 

#1057}. A multi-model comparison should be carried out in Zeku to quantify the structural 

uncertainty of LUE-VPM, but as it has been discussed in Section 6.2, the availability of 

data in Zeku region make further multi-model comparison extremely difficult. This is an 

important research area for future work that could be carried out when all of the datasets 

required for model parameterization are available (such as soil water content; vapour 

pressure deficit; leaf nitrogen; vegetation carbon; precipitation .etc., which have been listed 

in Table 6.1). 

Inadequate information or knowledge of the values of parameters associated with the 

processes describing the system result in parametric uncertainty. The effect of the LAI 

change on NPP depends on many other factors, such as temperature, solar radiation, light 

use efficiency, leaf root ratio, etc. In this chapter, the values of those components were all 

derived from published literature or published datasets (see Section 6.3 for detail), but 

unfortunately none of these sources also published the uncertainty associated with their 

data. This makes it impossible to estimate parametric uncertainty meaningfully. More 

scientific effort on collecting site-specific values of parameters will be beneficial, but this 

would require collaboration among scientists from different research communities, and 

such an endeavour is well beyond the scope of this thesis.  

The above-mentioned difficulties in quantifying uncertainty make it impossible to conduct 

a complete uncertainty analysis. Section 6.7 will further elaborate on these difficulties and 

the reasons that such an analysis is beyond the scope of this work. Instead, this section will 

use a numerical simulation approach to explore the relationship between LAI and NPP 

within the error range of the improved LAI in Zeku. The uncertainty of the improved LAI 

(produced in Chapter 5) is the main concern of this thesis as this uncertainty could 

propagate through the modelling process of LUE-VPM. Since no uncertainty estimates are 

available for the other parameters and the input data used in LUE-VPM for the Zeku 

region, the assumption here is all the other parameter settings and input data have no 

uncertainty (again, Section 6.7 will elaborate). 

https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod15a2h_v006
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6.6.1 Numerical simulation for exploring the relationship between LAI and 

NPP using LUE-VPM model within the error range of the improved 

LAI 

As it has been discussed in Chapter 5, the error range has been quantified along with the 

improved LAI based on the MODIS LAI product. However, the validation of the improved 

LAI in Section 6.5 would not be reliable if the uncertainty of the NPP is not accounted for. 

Figure 6.8, below, decomposes the estimation equations, showing how the Net Product 

Productivity (NPP), in equation 6.21 of Figure 6.8, can be estimated from the Leaf Area 

Index (LAI). As the NPP must be greater than 0 gCm-2, the value of equation 6-21 should 

also be greater than 0 gCm-2, and the monotonicity between LAI and NPP needs to be 

explored within such range. All the other input data and parameter values can be 

represented as two constant variables, A and B. These are shown in equation 6.21 in Figure 

6.8, which expresses the relationship between LAI and NPP. Importantly, this relationship 

can take two forms, depending on the values of A and B. It can be either: 

• non-linear but monotonic (see Figure 6.9) in the case that A is sufficiently larger 

than B; or 

• non-linear and non-monotonic (see Figure 6.10) in the case that A is not 

sufficiently larger than B. 

A feasible way to quantify the uncertainty of NPP caused by the LAI is to explore the real 

value of A and B in equation 6-21, and determine whether A is sufficiently bigger than B. 

In this case, the maximum and minimum improved LAI can be used to calculate the 

maximum and minimum NPP as the relationship between LAI and NPP in Zeku would be 

monotonic. If this were not the case and the result was non-monotonic, then the 

maximum/minimum NPP may not be calculated by giving maximum/minimum LAI. Such 

method will not work, and a more efficient exploration method should be developed to 

solve this problem, but it would be more complicated and time-consuming. We need to 

theoretically find all the extreme values of the NPP within the error range, and they may 

not locate at the points where LAI are the maximum/minimum, due to the non-monotonic 

relationship between LAI and NPP. It will be further discussed in Section 6.7. 
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Figure 6.8: Decomposition of key equations for the NPP calculation in LUE-VPM 

𝑵𝑷𝑷 = 𝟎. 𝟖 ∗ (𝑮𝑷𝑷 − 𝑹𝒎) Eq. 6-18 

𝑮𝑷𝑷 = 𝜺 ∙ 𝑨𝑷𝑨𝑹 Eq. 6-2 

𝑨𝑷𝑨𝑹 = 𝒇𝑷𝑨𝑹 ∗ 𝑷𝑨𝑹 Eq. 6-3 

𝒇𝑷𝑨𝑹 = 𝟎. 𝟗𝟓(𝟏 − 𝒆𝒙𝒑(−𝒌 ∗ 𝑳𝑨𝑰)) Eq. 6-4 

𝑹𝒎 = 𝑳𝒆𝒂𝒇 𝑴𝑹 +  𝑹𝒐𝒐𝒕 𝑴𝑹 Eq. 6-20 

𝑹𝒐𝒐𝒕 𝑴𝑹 = 𝑹𝒐𝒐𝒕 𝑴𝒂𝒔𝒔 ∗ 𝒇𝒓𝒐𝒐𝒕_𝒎𝒓_𝒃𝒂𝒔𝒆 ∗ 𝑸𝟏𝟎
(𝑻𝒂𝒗𝒈−𝟐𝟎)/𝟏𝟎  Eq. 6-15 

𝑳𝒆𝒂𝒇 𝑴𝑹 = 𝑳𝒆𝒂𝒇 𝑴𝒂𝒔𝒔 ∗ 𝒍𝒆𝒂𝒇_𝒎𝒓_𝒃𝒂𝒔𝒆 ∗ 𝑸𝟏𝟎
(𝑻𝒂𝒗𝒈−𝟐𝟎)/𝟏𝟎  Eq. 6-13 

𝑭𝒊𝒏𝒆 𝑹𝒐𝒐𝒕 𝑴𝒂𝒔𝒔 = 𝑳𝒆𝒂𝒇 𝑴𝒂𝒔𝒔 ∗ 𝒇𝒓𝒐𝒐𝒕_𝒍𝒆𝒂𝒇_𝒓𝒂𝒕𝒊𝒐 Eq .6-12  

𝑳𝒆𝒂𝒇 𝑴𝒂𝒔𝒔 = 𝑳𝑨𝑰 𝑺𝑳𝑨Τ   Eq. 6-11 

𝑵𝑷𝑷 = 𝑨 ∗ (𝟏 − 𝒆𝒙𝒑(−𝒌 ∗ 𝑳𝑨𝑰)) − 𝑩 ∗ 𝑳𝑨𝑰  Eq 6-21 
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Figure 6.9: An example of non-linear but monotonic relationship (NPP monotonically 

increase with the increase of LAI between 0 and 6 m2/m2) between LAI and NPP (the 

equation for the red curve is NPP=3*(1-exp(-0.5*LAI))-0.01*LAI) 

 

 

 

Figure 6.10: An example of non-linear and non-monotonic relationship (LAI between 0 and 6 

m2/m2) between LAI and NPP (the equation for the red curve is NPP=3*(1-exp(-

0.5*LAI))-0.3*LAI) 

This section, therefore, uses a numerical simulation method to explore the 

relationship between LAI and NPP, that is, whether they are monotonic or non-

monotonic. The process for this exploration is: 

• for each data point during the year, the error range is equally divided into N 

segments (N=10 in this analysis, it can be any positive integer, and the 

bigger value of N, the better accuracy of the analysis); 

• for each segment, a random number is produced within the upper and lower 

limit of the segment, and then this step is repeated M times (M=10 in this 

analysis, and also the bigger value of M, the better accuracy for the 

analysis); 

• run the LUE-VPM to obtain the NPP output using LAI which has been 

randomly produced in the last step; 

• check whether the NPPs based on the LAIs randomly produced in the same 

segment are all smaller or bigger than that in the next segment, and the 

overall trend for all the segment is increasing or decrease monotonically. 

In this section, the relationship between LAI and NPP in Zeku is examined at both 

year-round NPP and stational NPP level. The year-round aggregated NPP is 

calculated by the summation of the daily NPP during the year for each pixel, and the 

regional average NPP is the mean NPP value for all the pixels in the whole region. 

The stational NPP is calculated by the summation of the daily NPP from the first 
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day of the year to the sampling day of the year (see column “collecting time” in 

Table 6.5 for the exact date), with the purpose of giving the error boundary of the 

estimated NPP in Table 6.5.   

The segments were produced within the error range of LAI from the lower limit to 

the upper limit, that is, the 10 randomly produced LAI values in the current segment 

were smaller than that of the next segment. The first 10 randomly produced LAI 

values within the lower and upper limit of the first segment (segment 1) were the 

smallest LAI value set among all randomly produced LAI values and then last 10 

randomly produced LAI values made up the biggest LAI value set. For each pixel at 

the same time, the LAI values in segment 1 were smaller than that of segment 2, and 

the LAI values in segment 2 were smaller than that of segment 3, and that continues 

in the same way). The results will be discussed in the next two sections. 

6.6.2 Result at the regional scale 

The corresponding regional average NPP calculated by LUE-VPM based on the 

randomly produced LAI within the upper and lower limit of each segment for 2012 

(in Section 6.5, the validation data was in 2012) is shown in Figure 6.11. The 

regional average NPP during the year monotonically increases within LAI values. 

The biggest NPP value calculated by the randomly produced LAI value within the 

lower and upper limit of segment 1 is smaller than the smallest NPP value calculated 

by the randomly produced LAI value within the lower and upper limit of segment 2, 

and that is true for all the two neighbouring segments, indicating “A” is sufficiently 

larger than “B” (see Eq 6-21 in Figure 6.8) at the regional average level.  

 

 

 Figure 6.11: Boxplot of regional average NPP with 10 equally divided error 

segments within the error range of LAI in the year 2012 

 

6.6.3 Results at the in situ grassland monitoring stations  

However, the regional average trend for the NPP with the increment of LAI within 

the error range does not ensure a similar trend at the grassland monitoring station 

(pixel level). This section, therefore, examines the relationship at the 15 grassland 
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monitoring stations. The name and identifications of the stations were shown in 

Table 6.5, and the spatial locations of the stations were shown in Figure 6.7. Similar 

to the validation process, the daily NPP values, that are based on a randomly 

produced LAI for each segment, are summated to the exact date when the in situ 

NPP was collected, and the specific dates were shown in Table 6.5. 

The boxplot of NPP with 10 equally divided error segments within the error range of 

LAI in the year 2012 at 15 grassland stations is shown in Figure 6.12. There is an 

obvious increase trend in the NPP with the increase of the LAI (a larger number of 

segment identification means a greater value of LAI used in the NPP simulation). To 

summarise, both the regional aggregated NPP and the stational (pixel level) 

aggregated NPP shows a monotonic relationship between LAI and NPP within the 

error range of the improved LAI. This indicates A is sufficiently larger than B (also 

see Eq 6-21 in Figure 6.8). 

Notice that a quite strong linear relationship between segment identification and 

NPP can be observed in Figure 6.12 and in Figure 6.11 (the horizontal axis is the 

numerical identification of the segment for both figures). This is possible because 

the variation of LAI is in a quite small range. In Table 5.4, the maximum 

underestimation error of the improved LAI was 24.18%, and the maximum 

overestimation error was 28.89% for the year 2012. These are quite small 

percentages compared with the possible LAI values (about 0 m2/m2 ~ 6 m2/m2 in 

Zeku). For example, for a point with a possible LAI value of 3 m2/m2, the upper and 

lower LAI value considering the uncertainty is 3.73 m2/m2 and 2.13 m2/m2, and this 

point can only either be overestimated or underestimated. This error range (2.13 

m2/m2 ~ 3.73 m2/m2) is quite a small LAI range, and although the overall 

relationship between LAI and NPP is non-linear in Figure 6.9 or Figure 6.10, an 

obvious linear relationship between the two can be observed in a small value range 

of LAI. 
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Figure 6.12: Boxplot of NPP with 10 equally divided error segments within the 

error range of LAI in the year 2012 at 15 grassland stations 

 

In addition, the upper and lower boundary of NPP caused by the uncertainty of the 

improved LAI can, therefore, be calculated by setting the maximum and minimum 

LAI within the error range. The results are shown in Table 6.7, and it gives 

complementary information about the reliability of the validation results in Table 6-

5. The relative maximum estimation errors are less than 32% for all the stations. The 

percentage of overestimation errors and underestimation errors listed in Table 6.7 

are all the maximum possible error ratios; it would be very unlikely for the error to 

be this large in practice.    

Table 6.7: Error range of NPP simulated in 2012 caused by the uncertainty of 

the improved LAI 

ID Converte

d in-situ 

NPP 

LUE-VPM NPP 

(improved LAI) 

Overesti

mation 

error 

Underes

timation 

error 

1 143.56 191.47 32% 31% 
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2 548.06 285.35 19% 16% 

3 180.38 245.00 25% 18% 

4 335.81 316.31 27% 31% 

5 233.40 235.56 24% 22% 

6 193.42 NA NA NA 

7 346.88 NA NA NA 

8 290.71 301.43 21% 13% 

9 103.15 256.47 28% 34% 

10 149.98 245.32 19% 19% 

11 288.73 271.83 25% 22% 

12 139.91 230.29 32% 26% 

13 321.60 254.39 30% 19% 

14 328.38 339.67 16% 18% 

15 346.54 295.67 15% 29% 

mean 262.32 266.83 23% 23% 

 

 

6.6.4 The spatial distribution of the uncertainty in NPP caused by the 

uncertainty of the improved LAI 

Since there is a monotonic relationship between LAI and NPP using LUE-VPM in 

Zeku, the error limits of NPP can be calculated using the lower and upper limit of 

the improved LAI value. The maps of the lower and upper error boundary of NPP 

simulated by the improved LAI are shown in Figure 6.13 and Figure 6.14 

respectively. For each pixel, the NPP is the summation of the daily NPP of that pixel 

during the year 2012. There is a similar spatial pattern of NPP in both Figure 6.13 

and Figure 6.14, that is, the majority of the high productivity regions are distributed 

in the southeast part of Zeku, and we can visually identify that they are generally 

located in the low altitude area in Zeku (see Figure 6.3 for the DEM of Zeku). The 

regions with the lowest productivity are located in high mountainous areas.  

In Figure 6.13, the lower limit of NPP in Zeku ranges from 0 gCm-2 to 570.92 gCm-

2, with the regional average of the NPP at 310.18 gCm-2; while in Figure 6.14, the 

upper limit of NPP in Zeku varies from 0 gCm-2 to 759.49 gCm-2, and the regional 

average of the NPP is 487.75 gCm-2. The difference between the upper and lower 

limit of NPP is shown in Figure 6.15. The difference ranges from 0 gCm-2 to 427.54 

gCm-2, and the average difference is 177.57 gCm-2. Compared with the NPP based 

on the assumption in Section 6.4 during 2012, of which the mean value is 407.78 

gCm-2, on the regional average, the overestimation error of NPP is 23.93%. This was 

calculated by:  

𝑂𝑣𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛Error = (𝑁𝑃𝑃𝑎𝑠𝑠𝑢𝑚𝑒𝑑 − 𝑁𝑃𝑃𝑙𝑜𝑤𝑒𝑟) 𝑁𝑃𝑃𝑎𝑠𝑠𝑢𝑚𝑒𝑑Τ × 100% 

where 𝑁𝑃𝑃𝑎𝑠𝑠𝑢𝑚𝑒𝑑 is the NPP calculated under equal date intervel of LAI (see 

Section 5.10.2 in Chapter 5 for detailed information), and 𝑁𝑃𝑃𝑙𝑜𝑤𝑒𝑟 is the NPP with 

the smallest LAI within the error range. In a similar way, the average 

underestimation error of NPP is calculated and the error is 19.61%.  
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Figure 6.13: Lower limit of NPP (lower error boundary of NPP) by using 

improved LAI, 2012, Zeku, China 

 

 

Figure 6.14: Upper limit of NPP (upper error boundary of NPP) by using 

improved LAI, 2012, Zeku, China  
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Figure 6.15: The difference in NPP estimation between the upper limit and 

lower limit of the improved LAI 

 

 

 

6.7 Discussion 

This chapter has modified the MODIS NPP estimation algorithm to calculate the 

grassland NPP of Zeku. In order to validate the modelling results, the improved LAI 

data was used to calculate the NPP using the LUE-VPM model. It is very difficult to 

collect real grazing data before and after grazing over a sufficient time period; 

however, given the requirement of grassland ecosystem monitoring work in China, 

grassland monitoring data is available, along with other data like in situ fresh weight 

which is a crucial parameter for modelling grass growth under grazing. After 

converting the fresh weight sampling data to equivalent leaf mass, the LUE-VPM 

model was validated, and found to be more accurate than the MODIS NPP 

estimations. The grazing-led LAI changes were calculated as the difference between 

improved LAI and expected LAI, then converted to leaf mass. The carbon mass 

consumption of livestock during the grass growth period was calculated according to 

statistical yearbook data. Although the linear coefficient between grazed NPP 

estimated from this paper and NPP consumption of livestock from statistical 

yearbook is 0.42, the magnitude and the time trend shows a great consistency with 

p-value = 0.71, indicating our new exponential growth function can be used to 

improve MODIS LAI data and to quantify livestock grazing. 

The model is a simplification or abstraction of the real system. Due to an imperfect 

representation of the model structure, inadequate information or knowledge of the 

parameters or input data, and the uncertainty in measuring the observation data, 

output uncertainty exists in almost every model. A complete uncertainty analysis of 
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the LUE-VPM should consider all sources of uncertainty that contribute to the 

modelling process and to the indicators or statistical properties of the model output. 

However, it is difficult to give a comprehensive uncertainty analysis of the NPP 

produced by the LUE-VPM. Although the uncertainty of the grazing-led LAI 

estimation has been calculated in Chapter 5, and the effect of such uncertainty has 

been clarified through a numerical simulation analysis, there are other components 

involved in the NPP calculation that may also affect the accuracy of NPP outputs. 

The source for those uncertainties includes: inaccurate assignment of the biological 

parameters (for example, seasonal difference in the value of light use efficiency); 

error in the remote-sensing measurement (uncertainty of surface reflectance data in 

VPM model); bias in in-situ measurement; and the structure uncertainty of the 

model. These were discussed in Section 6.6. This thesis is not able to determine the 

overall effect of all those uncertainties on NPP calculation because of a lack of data. 

Obtaining sufficient data would require a collaborative scientific effort from 

numerous different research communities. 

Instead of conducting full uncertainty analysis, this chapter explored the uncertainty 

of NPP by analysing the extreme values of the NPP using a numerical simulation 

with random sampling. The upper limit and lower limit of the model can be derived 

easily by setting the model input to the maximum or minimum value within the error 

range. However, this is only feasible when there is a monotonic relationship between 

model parameters/inputs and model output (here, LAI was the input, and NPP was 

the output), as if the relationship is non-monotonic then this approach to estimating 

the uncertainty will not work. Section 6.6 showed that the relationship between LAI 

and NPP, when considering only the extreme (minimum and maximum) values of 

the improved LAI in Zeku, was monotonic both at the regional level and at the 15 

measuring sites. Therefore an analysis of the extreme values of NPP was conducted, 

and the results showed that the estimated NPP values were not overly affected by the 

uncertainty in the LAI.  

It is important to note that although there is a monotonic relationship between LAI 

and NPP at the regional level, as well as at the monitoring locations, this will not be 

the case for all the pixels. However, the presence of monotonic relationship at 

regional level indicates even if some pixels have a non-monotonic relationship 

between LAI and NPP at the pixel level, the effect of the monotonic relationship 

between LAI and NPP of the other pixels are big enough to diminish the effect of 

the non-monotonic relationship between LAI and NPP at the regional level. That is, 

they do not significantly affect the uncertainty of NPP calculated in Section 6.6 at 

the regional level. Increasing the number of segments within the LAI error range and 

increasing the number of sampling points in each segment will improve the 

reliability of the results in Section 6.4, but there is a comprise between computing 

cost and reliability. Nevertheless, 10 sampling points in each segment (10 segments 

for each LAI error range) means there is 100 sampling point within the error range 

of LAI for each pixel, and it is big enough to ensure the reliability of the result. 

In addition, the monotonic relationship at the regional level might not be observed if  

the uncertainty of the other parameters and input datasets other than LAI change 

such relationship. That is, if the relationship between LAI and NPP at the regional 

level is non-monotonic, then the maximum/minimum NPP cannot be calculated by 

giving the maximum/minimum LAI. More comparison with the local convex and 

concave values for each pixel needs to be done. A more efficient sampling and 

analysis schema need to be adopted to well-represent the statistical properties of the 
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data while requiring lesser combinations, but there is a compromise between the 

accuracy or confidence level of the analysis and the computational efficiency. 

Nevertheless, the extreme value analysis here is sufficient to show that the grazing-

led LAI changes estimated in Chapter 5 is reliable, and the improved LAI data is 

consistent with the in situ measured data. Theferore the next chapter will use the 

grazing-led LAI changes and the full-growth LAI as input datasets, with the purpose 

to explore the effect of different grazing strategies and institutional arrangements in 

Zeku. 
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Chapter 7 Agent-based modelling of grassland grazing-

experimenting with real data 

In Chapter 5, the grazing-led LAI changes (without the effect of previous grazing) 

and the full-growth LAI were estimated for each pixel based on “good quality” 

MODIS LAI product. Continuous, rotational and un-grazed pixels were also 

identified according to the frequency of the grazing-led LAI changes during the 

year. This was done at the resolution of remotely sensed data pixels (about 

463×463 m2), which can provide patch-specific information for the agent-based 

modelling of the grassland grazing system: grazing demands of livestock and 

grazing types of the patches (continuous, rotational and un-grazed). In this chapter 

and later, we will call pixels as patches – a term agent-based modellers are thought 

to be more familiar with. 

This chapter presents an Agent-based Model of Grassland Grazing (ABMGG) that 

incorporates grazing information derived from remote sensing data. The results of 

applying the ABMGG to explore how different grazing strategies and institutional 

arrangements affect the LAI after grazing and degradation are presented. Section 

7.1 details the general process of building an Agent-based Model (ABM). Section 

7.2 provides a detailed description of the ABMGG developed. Section 7.3 focuses 

on evaluating ABMGG. Section 7.4 details the scenario of using the ABMGG to 

examine the effects of different grazing strategies and institutional arrangements 

on grassland in the case study area. 

7.1 The general process of building an ABM  

The whole process of developing, testing and applying a model consists of various 

parts, and the key design and development stages may be revisited repeatedly as a 

result of feedback. The applied modelling processes include model (re)design, 

(re)development, verification, sensitivity analysis, calibration and validation, 

(re)use (Railsback and Grimm, 2011). The aim of feedback and validation (where 

the model is tested and its performance measured) in this process is to make sure 

the model is fit for purpose (Wilensky and Rand, 2015). Model design is the first 

and the most important part, and it should be very clear what the main purpose of 

the model is. For an ABMGG, what kinds of agents should be included in the 

model? What are the behaviours and the interactions among the agents? Are there 

any adaptive, evolutionary or learning properties of the agents – in the way they 

make decisions? All those modelling related questions should be considered before 

any implementation. However, with consideration of more complexities, which are 

usually ignored in statistical or process-based models (variability among 

individuals, local interactions, complete life cycles, and in particular individual 

behaviour adapting to the changing internal and external environment), the costs of 

agent-based modelling increase. Therefore, when starting modelling, a trade-off 

between the costs and complexities needs to be considered. The first question of 

model design is then about how to describe such complex systems effectively. An 

Overview, Design, concept and Detail (ODD) protocol has been proposed by 

Grimm et al. (2006) to give a standardized way of describing such a complex 

system. 
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Model development considers what platform to use. One option is to choose a 

single computer programming language and may or may not involve utilising 

third-party libraries (things are written in a language, but not a core part of the 

language) to help build a model. Another option is to adopt an existing Agent-

Based Modelling platform that might comprise several components that essentially 

run on a computer and allow a user to develop and run a model. Such a specialist 

platform may or may not, or may to a degree provide support for testing and 

validation. Many Agent-Based Modelling platforms are available, most of them 

(like programming well in any computer programming language) require a 

considerable amount of skill and knowledge to use well (Kravari and Bassiliades, 

2015). Numerous ABM platforms exist, include: Agent Factory, Agent Builder, 

AgentScape, AGLOBE, AnyLogic, Cormas, ECHO, JADE, Madkit, MAGSY, 

MASON, MIMOSE, Cougaar, CybelePro, EMERALD, GAMA, JACK, NetLogo, 

Repast, SimAgent, SimPAck, StarLogo, Sugarscape, Swarm, SeSAm and  

FlowLogo (Castilla-Rho et al., 2015; Kravari and Bassiliades, 2015). A detailed 

comparison of these platforms can be found in Kravari and Bassiliades (2015). 

However, there is no single best platform for all modelling purposes because each 

one follows its own set of protocols for developing and encoding ABMs; some are 

efficient for parallel computing while others may be easier for establishing a 

prototype model. Therefore, selecting a proper platform is not only dependant on 

the aim of the model but also on modeller’s programming expertise. According to 

Kravari and Bassiliades (2015) the main criteria for selecting a platform, however, 

include how the modellers could benefit more from the selected platform. 

Model evaluation is an essential part of agent-based modelling to check the 

consistency and integrity after development; that is, the design, the entities, 

processes, and associated constraints and assumptions are implemented correctly, 

and it performs as expected. Usually, for a complex model, there is an inherent 

problem to make sure all the interactions and behaviours of agents are coordinated 

around specific constraints (Yilmaz, 2006). One commonly used method is 

checking the model’s underlying mathematical and computational components do 

not fail by varying model configurations according to all foreseeable model inputs 

(Manson, 2003). For example, by varying the randomization technique used in the 

model, we can check how different randomization techniques could affect the 

agents’ behaviours and model outputs. Castle and Crooks (2006) suggest that the 

process of evaluating the model can be segregated into three distinct activities: 

verification, calibration and validation. 

Sensitivity analysis, calibration and validation are all about the further evaluation 

of the model, and these are the main process we will discuss later. For ABMGG, 

the modelling processes are listed in Table 7.1: 

Table 7.1: The modelling process, measurement, techniques and data used for 

ABMGG 

process measurement data 

(1) verification R2, t-test and 

RMSE, Chapter 

5 vs simulated 

(2011) 

Grazing-led 

LAI changes 

and degraded 

patches 
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(2) Sensitivity analysis PCC/PRCC, 

Simulated vs 

Chapter 5 

Grazing-led LAI 

changes and 

degraded patches 

(3) Calibration ABC, Simulated 

vs Chapter 5 

(2011) 

grazing-led LAI 

changes and  

degraded Patches 

(4) output validation   
 

R2, t-test and 

RMSE (2012) 

Improved LAI  

Degraded 

patches 

 

 

7.2 Description of ABMGG 

The ABMGG model in this chapter does the opposite work to Chapter 5. The full-

growth LAI and the grazing-led LAI changes are the input data sets for the 

ABMGG (see Figure 7.1). The purpose of ABMGG is to produce a similar curve 

to that of the LAI after grazing, i.e. the MODIS LAI (the LAI value with “good 

quality”). Although patches might not be grazed at exactly the same 8-day time 

period, the grazing frequency and the grazing-led LAI changes during the grass 

growing period (the non-growth period is not considered in the model) should be 

as similar as possible. 

 
Figure 7.1: The patch-specific data source in the ABMGG 

 

The ABMGG is designed for assessing the effects of different combinations of 

grazing strategies (un-grazed, continuous grazing and rotational grazing) and 

institutional arrangements (land market and grazing groups encouraged by the 

local government in Zeku) on grassland status. As was introduced in Chapter 3, 

MODIS LAI curve (LAI after grazing) 

Grazing-led LAI changes Full-growth 

LAI 

Forage demand of livestock Maximum available forage 

Similar LAI curve after grazing 

Chapter 5 

This chapter 

growth function 

Input data Input data 

ABM simulation 
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there were two institutional arrangements in Zeku: group grazing and land market. 

Group grazing is a higher-level policy that would affect the herders’ grazing 

strategies: rotational, continuous and un-grazed (reserved land for winter feed or 

other purposes). The rotational grazing strategy is adopted for all the group grazing 

land (from the survey of the author in 2016), for example, the land patches in one 

grazing group may be divided into four or five sub-groups, with the livestock 

foraging on one sub-group and then moving to another sub-group. The land market 

is another form of group grazing. One herder rents or leases land from another 

herder at the beginning of the year, and then they can put some of their livestock 

on that rented land. This, in essence, is a kind of smaller scale group grazing, but in 

line with market demand. The relationship of these two institutional arrangements 

and three grazing strategies was shown in Figure 3.8.  

In ABMGG, the herder agents in rotational grazing land patches form the grazing 

groups. The number of sub-groups is determined by the frequency of grazing-led 

LAI changes. Due to the limited data about the exact sizes and locations of grazing 

groups (although the aggregated statistics are known, see Table 7.7), the related 

parameters need to be analysed to make sure the modelling results are consistent 

with the grazing-led LAI defoliation derived from MODIS LAI (see the evaluation 

section of the model). At the beginning of each simulation year, three different 

grazing types are reinitialized. The grazing types of Zeku at 463x463 m2 spatial 

resolution are based on the grazing-led LAI frequencies for each patch. Un-grazed 

patches are the pixels with 0 grazing frequency; rotational grazing patches are the 

pixels with grazing frequencies equal to 2 or bigger than 2; the rest of the patches 

are, therefore, the continuous grazing lands.   

To demonstrate how these institutional arrangements and grazing strategies affect 

the grassland status (measured by LAI after grazing and by the number of 

degraded patches), this chapter first makes sure that the ABMGG output matches 

the remote sensing derived grazing pattern (the number of degraded patches) well, 

and then explores the impact of different combinations of group grazing, moving 

and marketing behaviours of herders on the model outputs. This section will 

introduce the ABMGG in detail; but firstly, how to simulate the LAI after grazing, 

which is the most important model output, will be explained.  

7.2.1 The LAI after grazing in ABMGG 

The LAI after grazing is the key proxy for evaluating grassland status after 

grazing. This thesis, therefore, explains how it will be simulated by the ABMGG 

before providing a detailed description of the ABMGG. 

In this study, the LAI after grazing is the focus because:  

• LAI after grazing is an indicator for the evaluation of grassland status, and 

whether LAI after grazing is significantly different under various grazing 

management scenarios will be explored through the ABMGG; and 

• degraded patches are classified based on the ratio of LAI after grazing and 

full-growth LAI, and the number of degraded patches is another important 

concern in the evaluation of overall grassland status. 

The patch-specific grazing-led LAI changes and the full-growth LAI were 

calculated based on the theory discussed in Chapter 5, that is, the grazing-led LAI 

changes were estimated for each pixel by equation 5-16 in Chapter 5. By setting 
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the previous grazing effect, 𝑃𝐵𝑡, and current grazing, 𝑃𝐺𝑡, to 0, the full-growth 

LAI were calculated using the new growth-grazing function, that becomes: 

𝑳𝒇𝒖𝒍𝒍 𝒈𝒓𝒐𝒘𝒕𝒉 = 𝑳𝒎 + 𝑳𝟎𝒆𝒌𝟏𝒕−𝒌𝟐𝒕𝟐+𝑪        

Eq. 7-1 

, where 𝑳𝒇𝒖𝒍𝒍 𝒈𝒓𝒐𝒘𝒕𝒉 is the theoretical LAI value without the effects of previous or 

current grazing; 𝐿𝑚 is the background LAI, 𝐿0 is the initial LAI, k1, k2 and C are 

the parameters describing growth and senescence of the grass, as estimated in 

Chapter 5. In Chapter 5, the grazing-led LAI changes were extracted through 

MODIS LAI, which were the LAI after grazing, and the full growth LAI can be 

produced through Eq. 7-1. In this chapter, the grazing-led LAI changes (direct 

changes in LAI caused by grazing) will be used as forage demand for every eight-

day period for each patch, and the full growth LAI is used as the maximum 

available forage in each patch (Figure 7.1). The aim is to produce a similar LAI 

curve after grazing (by calibration) as it has been observed in the MODIS LAI (see 

Section 7.3). Then, a scenario analysis will be carried out in order to assess the 

effects of different grazing strategies and institutional management on grassland 

status (see Section 7.4). 

This chapter, therefore, designs the agent landscape to match up with the MODIS 

LAI maps. Each land patch in ABMGG represents a grassland area of 463×463 m2. 

For each continuous and rotational grazing patch, a livestock agent associated with 

it at the start of the year. The grass feeding demand for each livestock agent is the 

same as the grazed LAI calculated in Section 5.7.3, and this feeding demand is 

updated for each step. The maximum available forage for each land patch is 

represented by the full-growth LAI, which is calculated using Eq. 7-1. The 

grazing-led LAI changes were derived during the grass growing period from Julian 

day 113 to Julian day 289 (the days beyond this period during the year were not 

analysed in this thesis, as cattle tend to be fed with feed and the ground in the area 

is frequently snow covered).  

In order to simulate the group grazing behaviour of the livestock in Zeku, all the 

rotational grazing patches are assigned with a group and sub-group identification. 

The livestock on the same group patch has the same group identification. The 

livestock can only move in and out of patches with the same group identification. 

For each step, the total grass feeding demand of the group is calculated by: 

𝑳𝑫𝑻𝒕 = ∑ 𝑳𝑫𝑰𝒊,𝒕

𝒎

𝒊=𝟏
 

           Eq.  7-2 

, where m is the number of livestock agents in the group and t is the time step. 

𝑳𝑫𝑰𝒊,𝒕 represents the grass feeding demand of the individual agent and, 𝑳𝑫𝑻𝒕 is the 

total grass feeding demand of the group. For continuous grazing patches, m = 1, 

which means only one herder agent on the patch, and their livestock continuously 

graze on those patches.   

For each rotational grazing patch in the sub-group, the LAI decrease caused by 

grazing is assumed to be proportional to its current available LAI, which means 

that selective foraging behaviour of the livestock is not considered in the model. 
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That is, the greater the currently available LAI of the patch, the bigger the LAI 

decrease caused by grazing. This can be expressed by: 

𝑳𝑮𝑰𝒊,𝒕 = 𝑳𝑫𝑻𝒕 × 𝑳𝑪𝑰𝒊,𝒕/ ∑ 𝑳𝑪𝑰𝒊,𝒕

𝒏

𝒊=𝟏
 

           Eq. 7-3 

, where 𝑳𝑮𝑰𝒊,𝒕 is the LAI decrease of a grazed patch in the sub-group 𝑳𝑪𝑰𝒊,𝒕 is the 

current LAI before current grazing of each patch in the sub-group; ∑ 𝑳𝑪𝑰𝒊,𝒕
𝒏
𝒊=𝟏  is 

the total available LAI in the sub-group and, n is the total numebr of patches in the 

sub-group. For continuous grazing patches, 𝑳𝑮𝑰𝒊,𝒕 is the LAI decrease of the 

individual patch, and is not affected by the other patches. 

The current LAI before grazing (𝑳𝑪𝑰𝒊,𝒕) for each patch is calculated as the 

subtraction of the effect of previous grazing on LAI from the full-growth LAI: 

 𝑳𝑪𝑰𝒊,𝒕 = 𝐿𝑓𝑢𝑙𝑙 𝑔𝑟𝑜𝑤𝑡ℎ − 𝑳𝑨𝑰𝒑𝒓𝒆𝒗𝒊𝒐𝒖𝒔 𝒆𝒇𝒇𝒆𝒄𝒕 

           Eq. 7-4 

, where 𝑳𝑪𝑰𝒊,𝒕 is the current LAI before grazing, and 𝑳𝑨𝑰𝒑𝒓𝒆𝒗𝒊𝒐𝒖𝒔 𝒆𝒇𝒇𝒆𝒄𝒕 is the 

previous effect on the LAI.  

Finally, the LAI after grazing is calculated by taking the difference between the 

currently available LAI and the grazing-led LAI changes (the grazing demand on 

the LAI, or the effect of current grazing). The effect of current grazing is the total 

livestock consumption during the eight-day period, which can be calculated by Eq. 

7-3. The livestock will eat forage production on grassland, and the LAI of the 

grassland will change accordingly. The effect of previous grazing is calculated 

through averaging previous LAI after grazing and full-growth LAI from the next 

iteration (average of the two neighbouring LAI time-series). At the beginning of 

each simulation year, the effect of both previous and current grazing is 0 (no 

grazing happening); while for continuous or rotational grazing patches where 

previous grazing has occurred, the effect of previous grazing can be calculated by: 

𝑳𝑨𝑰𝒑𝒓𝒆𝒗𝒊𝒐𝒖𝒔 𝒆𝒇𝒇𝒆𝒄𝒕 = 𝑳𝒇𝒖𝒍𝒍 𝒈𝒓𝒐𝒘𝒕𝒉 − (𝑳𝑨𝑰𝒂𝒇𝒕𝒆𝒓 𝒈𝒓𝒂𝒛𝒊𝒏𝒈−𝟏 + 𝑳𝑨𝑰𝒇𝒖𝒍𝒍 𝒈𝒓𝒐𝒘𝒕𝒉+𝟏) 𝟐Τ   

Eq. 7-5 

, where 𝐿𝐴𝐼𝑎𝑓𝑡𝑒𝑟 𝑔𝑟𝑎𝑧𝑖𝑛𝑔−1 is the 𝐿𝐴𝐼𝑎𝑓𝑡𝑒𝑟 𝑔𝑟𝑎𝑧𝑖𝑛𝑔 value at its previous iteration 

and; 𝐿𝐴𝐼𝑓𝑢𝑙𝑙 𝑔𝑟𝑜𝑤𝑡ℎ+1 is the 𝐿𝑓𝑢𝑙𝑙 𝑔𝑟𝑜𝑤𝑡ℎ value at the next iteration. At the 

beginning of each simulation year, the effect of both previous and current grazing 

is 0 (that is, 𝐿𝐴𝐼𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑒𝑓𝑓𝑒𝑐𝑡 = 0, no grazing happening). The rest of work is then 

to make sure that 𝐿𝐴𝐼𝑎𝑓𝑡𝑒𝑟 𝑔𝑟𝑎𝑧𝑖𝑛𝑔 derived from the ABMGG matches with 

𝐿𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 derived from the MODIS LAI dataset, and to examine how 

𝐿𝐴𝐼𝑎𝑓𝑡𝑒𝑟 𝑔𝑟𝑎𝑧𝑖𝑛𝑔 changes with different policy scenarios. 

One model iteration (step) accounts for eight days of simulated time (this is the 

temporal resolution of the MODIS LAI data). Simulations last for 46 time steps, 

representing the years for which data are available (2011). The livestock owned by 

herder agents moves from one sub-group of patches to another sub-group of 

patches and the livestock grazes on the patch that they are on at each time step for 

rotational grazing patches. For continuous grazing land, once livestock enters the 
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land patch, they do not move to other land patches. The LAI will decrease 

accordingly after livestock grazing, with the LAI after grazing for each patch at 

each time step being calculated by (variables introduced in Eq. 7-3 and Eq. 7-4): 

𝑳𝑨𝑰𝒂𝒇𝒕𝒆𝒓 𝒈𝒓𝒂𝒛𝒊𝒏𝒈 =  𝑳𝑪𝑰𝒊,𝒕 − 𝑳𝑮𝑰𝒊,𝒕 

           Eq. 7-6 

Now the LAI after grazing can be simulated through ABMGG. This section is an 

introduction to the key process of the ABMGG. A detailed Design, concept and 

Detail (ODD) and Decision (ODD+D) description of the ABMGG, where each 

part of the model is introduced in a standardised way. 

 

7.2.2 Detailed ODD+D description of ABMGG 

As mentioned earlier in this Chapter, the ODD protocol is a standardised way of 

describing ABMGG. This thesis employs an Overview, Design, concept and Detail 

(ODD) and Decision (ODD+D) protocol to describe the agent-based model, 

ABMGG. The protocol is widely used in social and ecological studies (Polhill et 

al., 2008; Müller et al., 2013). The detailed ODD+D descriptions of ABMGG will 

be discussed, following the guiding questions proposed by Müller et al. (2013).    

7.2.2.1 Overview  

Purpose 

The model aims to reproduce the leaf area index (LAI) after grazing based on the 

full-growth LAI and the grazing-led LAI changes. Specifically, the model attempts 

to produce the same number of unaffected, slightly-, medium- and severely-

degraded patches, the regional average of the mean and variance of the grazing-led 

LAI changes of the patches. The model is intended to be useful for researchers and 

policy-makers who are interested in grassland management (macro policies). 

Entities, state variables and scales 

There are two types of entities in ABMGG. Firstly, herder agents represent 

resource users. They are not the real herders, but the representatives of the grazing-

led LAI changes (without the effect of the previous grazing) observed in MODIS 

LAI. There are three types of herder agents according to their grassland 

management types: 

• grazing herders (sedentary or continuous) agents, whose livestock cannot 

move among land patches; 

• group grazing herder agents who have joined the group at the beginning of 

the year and can move their livestock from one land patch to another land 

patch within the group; 

• land market herder agents who can lease/rent land from/to the other 

herders. These are randomly chosen from sedentary grazing herder agents. 

Another type of entity in ABMGG is the grassland patch, which represents the 

available forage for grazing (measured by LAI). The variables associated with 

herder agents and land patch agents are shown in Table 7.2.The names of the 

variables are all self-explanatory, and all the parameters are classified into three 

types: 
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• patches related variables; 

• herders related variables; and 

• global variables. 

The land patch related parameters are mainly used to present the dynamics of the 

LAI and the group grazing information. With livestock moving between sub-

groups, the dynamic of grazed LAI can be simulated to match the grazing intensity 

and grassland status after grazing. Due to the limited data about the exact sizes and 

locations of grazing groups, the number of sub-groups they have and within which 

radius they would form a group, all these related parameters need to be analysed to 

make sure the modelling results can reveal the grassland status observed in 

MODIS LAI. 

 

Table 7.2: Key parameters in ABMGG 

 type Variable  value explanation 

land 

patche

s 

lai_current

_fullgrowth 

Chapter 5 A theoretical full-growth LAI if there is no 

grazing (calculated from new growth 

function detailed in Chapter 5. 

lai_right_fu

llgrowth 

Chapter 5 the full-growth LAI for the next time step. 

lai_current

_grazed 

state 

variable 

the LAI actually being “grazed” (grazing-led 

LAI change without the effect of the 

previous grazing). 

lai_current state 

variable 

the LAI after grazing. It will be affected by 

the previous grazing 

(“lai_current_previous”) and current grazing 

(“lai_current_grazed”). 

lai_current

_previous 

state 

variable 

the effect of the previous grazing on the 

current LAI. 

lai_left  state 

variable 

the LAI after grazing of the previous time 

step (one step before current time step). 

lai_type Chapter 5 the grazing types of the land patches (un-

grazed, continuous and rotational). 

group_id random all the rotational grazing land patches will 

form a local grazing group within the radius, 

and the locations of the groups are 

randomized. The land patch agents in the 

same group will be assigned a same group 

identification number. 

sub_group_

id 

random Each grazing group has a certain number of 

sub-groups, and the land patch agents in the 

same sub-group will be assigned a same 

sub-group identification number. 
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SU_patch Chapter 5 all types of land patch agents have a certain 

unit of livestock, which denoted by grazing-

led LAI changes (without the effect of the 

previous effect) derived from MODIS LAI. 

They are used to represent the grass forage 

demand of livestock. 

cell_size 463m×463

m 

the spatial resolution of the model. It 

represents the size of one land patch in 

reality. 

herder

s 

id_livestoc

k 

state 

variable 

from which land patch the livestock comes. 

This association is initialized at the 

beginning of the year. It is a “pointer” to a 

land patch agent and does not change during 

the year. 

SU_livesto

ck 

Chapter 5 They are the same as “SU_patch” for land 

patch agents. For each time step, the 

“SU_patch” will be updated, and then, 

“SU_livestock” will also be updated as the 

same as “SU_patch” through association 

“id_livestock”. 

group_id_li

vestock 

random these are the same as the land patch agents, 

and they are initialized at the start of the 

year after creating livestock agents on each 

land patch. 

sub_group_

id_livestoc

k 

random these are the same as the herder agent. 

destination Random  the destination for the next move of a 

rotational grazing livestock agent. It is also a 

“pointer” to a land patch agent but changes 

at each step during the year. 

Global radius 6 the radius of the grazing groups. It indicates 

the “size” of the grazing groups. 

number_pa

rticipant 

40 the minimum number of herders in a grazing 

group. 

number_su

b_group 

3 the average number of sub-groups in a 

grazing group. 

lease_perce

ntage 

16% the percentage of continuous grazing 

patches being rented to the other herders. 

prolonged_

snow_prob 

0.01 the probability that prolonged snow occurs. 

 

The administrative boundary of Zeku is initialized by the land patches where 

“lai_current_fullgrowth” does not equal to “NaN”; it is a little bit smaller than the 
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actual administrative boundary due to the presence of non-grass patches or area 

with no data. Each land path agent occupies a cell of 463m × 463m in the real 

world. The locations and spatial reference are kept the same as remote sensing 

data; each time step represents an 8-day period. There are 46 time steps during the 

year, and the model assumes that the prolonged snow happens randomly during the 

year. 

Process overview and scheduling 

At the beginning of the year, the following process will be executed. The detailed 

description and decision-making process will be discussed later in Table 7.3. 

• Store “lai_left” for each step; 

• Update the full-growth LAI for each step; 

• Update land types (un-grazed, sedentary and rotational grazing land) and 

create livestock annually; 

• Update grass forage demand for the land patch agents and their associated 

livestock agents; 

• Form the grazing groups; 

• Divide sub-groups; 

• Update the current LAI considering the effect of the previous grazing; 

• Build Leasing/renting relationships. 

During grass growth season (step 16-37, which refers to day 121~289), four 

processes will proceed: 

• Simulate the effect of prolonged snow on LAI dynamics; 

• Livestock grazing; 

• Update LAI after grazing; 

• Nothing happens outside of the grass growing season. 

7.2.2.2 Design concept 

Theoretical and Empirical Background 

The decision-making of the herders is not based on theory. However, the empirical 

background of this model is the grass regrowth under different combinations of 

grazing strategies and institutional arrangements. Rotational grazing patches will 

see a higher regrowth rate than that of continuous grazing patches (if they are in 

the same condition) due to the rest period of rotational grazing at the individual 

species level (Thornley and Johnson, 1990).  

In addition, macro policies such as institutional arrangements (group grazing), to 

some extent, may further amplify this effect by making the size or scale of 

rotational grazing larger. Thus, accurate simulation of the LAI after livestock 

grazing is highly depended on the moving behaviours of livestock and the 

interactions between livestock and grassland. These two key features play to the 

innate advantages of agent-based modelling for modelling the grassland grazing 

system. Therefore, the following theories are included in the model: 

• grass growth function based on MODIS LAI data (see Chapter 5); 

• social-ecological approach to the study of grazing grassland management 

(Wang et al., 2013). 

The ABMGG assumes that the livestock on the sedentary grazing patches do not 

move to the other patches; all the herder agents on the rotational grazing patches 
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will join a local grazing group and all the livestock on a group grazing land (owned 

by group grazing herder agents) will move from one sub-group to another to 

simulate the herders’ rotational grazing strategy. Once herders have joined a 

grazing group at the beginning of the year, they will not quit or change to another 

grazing group. According to field surveys in 2012 and 2016, the herders usually 

have been contracted to the grazing group for the whole year, and no one quits or 

changes group during the contracted year. The locations of grazing groups and the 

sub-groups are randomized due to the lack of such information. The total number 

of grazing groups was 338 in the year 2011. Although accurate locations can 

improve the accuracy of the model, randomized locations can be used if they can 

reveal the overall grazing patterns (grazing intensity and grassland status) with 

considerable uncertainties, which will be discussed in the model evaluation section 

later. 

The decision-making process underlying the model is to make sure the model 

output (grazing intensity and grassland status) is consistent with what has been 

derived from MODIS LAI. The total number of grazing groups and the average 

number of sub-groups in one grazing group are provided by Grassland and 

Livestock Bureau of Zeku. The full-growth LAI and the per-pixel grazing-led LAI 

changes (with the effect of the previous grazing) are based on the results of 

Chapter 5. The full-growth LAI and the per-pixel grazing-led LAI changes are at 

the individual level; the average number of sub-groups is at the group level; while 

the total number of grazing groups is at the system level (the whole case study 

area). 

Individual Decision-Making 

In ABMGG, all herder agents are forced to behave in a predetermined way: the 

livestock on a sedentary grazing land cannot move to the other land patches (at the 

individual level). The livestock on a group grazing land will have to move from 

one sub-group to another sub-group. The order of visiting sub-groups is 

randomized. This behaviour is at the grazing group level. Compared with 

continuously grazed land patches, rotationally grazed patches have a “rest” period, 

which can change their grassland status. The total available forage (indicated by 

LAI) for grazing should be greater than that of the forage needed. During the 

model evaluation, they make decisions based on this pre-defined rule.  

The adaptive behaviours of the herders are not considered in the model. The 

rotational grazing herder agents can only move their livestock within the spatial 

boundary of the group. The full-growth LAI and the grazing-led LAI changes 

(without the effect of the previous grazing) are updated at every step. The 

parametric and stochastic uncertainties are quantified through Approximate 

Bayesian Computation with multiple parameter sets and repeated model 

executions, and the input uncertainty is quantified through an extreme situation 

analysis. These uncertainty analyses will be discussed in the model evaluation 

section later. 

Learning 

Individual learning is not considered in the model.  

Individual Sensing 
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The herder agents sense all the endogenous state variables of patches (listed in 

Table 7.2) without error. The rotational grazing herder agents can additionally 

perceive the “group_id_livestock” , “sub_group_id_livestock” and “SU_livestock” 

of the other rotational grazing herder agents without error. Only the herder agents 

in the same group know the LAI before grazing of other agents in that group. The 

cost of cognition and the costs of gathering information are not considered. 

Individual Prediction 

Because the full-growth LAI and grazing-led LAI changes (without the effect of 

the previous grazing) are direct from the results reported in Chapter 5, the 

prediction of grass growth is not explicitly considered in this model.   

Interaction 

There are direct interactions both with the land patch agents (through grazing) and 

among the herder agents (through grouping), which depend on the group 

identification and sub-group identification. The first type of interaction is between 

livestock and grassland: livestock will eat forage on grassland, and the growth of 

grassland LAI will be changed accordingly. Similar to the grazing-led LAI change 

estimation algorithm in Chapter 5, the LAI before grazing can be calculated as the 

average of its left and right time neighbours, and the LAI after grazing is the 

difference of LAI before grazing and grazing-led LAI defoliation. Another is 

interaction among herders: the herders can join a grazing group or lease land to the 

others. The subdividing of their group grazing lands affects the LAI after grazing 

(for land patch agents), they are imposed in a predefined order. 

Collectives 

Collective behaviour is considered in the model. Herders in one group will move 

from one sub-group patches to the other sub-group patches during the grass 

growing period. By forming the grazing group and subdividing of the grazing 

group, the LAI decreased proportionally to the available forage of individuals. In 

such way, the collective behaviours of herders are simulated in the model. 

Heterogeneity 

The agents are heterogeneous with regards to the following state variables: 

• group identification; 

• sub-group identification; 

• full-growth LAI; 

• LAI before/after grazing; 

• livestock unit; 

The (decision) processes are the same for the agents with the same grazing type, 

but due to their heterogeneous attributes, different grassland degradation patterns 

emerge. 

Stochasticity 

Stochasticity is used to represent two sources of variability in livestock movement 

that are too complex to represent mechanistically.  
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• although the selective instinct of livestock could affect their moving 

behaviours, the livestock just move randomly to the sub-group patches (in pre-

defined random order); 

• the second stochasticity is where the prolonged snow would happen during the 

modelling steps. This is an unpredictable extreme climate event. An overall 

possibility of a prolonged snow event is represented by parameter 

“prolonged_snow_prob”; 

In addition, since the spatial boundary of the grazing groups and sub-groups is not 

available, another stochastic element is the locations of the group and subgroups 

(they are randomized). 

Observation 

LAI after grazing and grazing-led LAI changes are collected for each time step. 

The simulated grazing-led LAI changes (mean and variance) and the grassland 

status (the number of no-effect, slightly, medium and severely degraded patches) 

will be evaluated in Section 7.3. 

7.2.2.3 Details 

Implementation Details 

The model is implemented using NetLogo 6.0.3 with the GIS extension and R 

3.3.3. The source code is free for research purpose, and the website is: 

http://modelingcommons.org/browse/one_model/5706#model_tabs_browse_info 

 

Initialisation 

The model world is initialized with the same spatial boundary of the grassland in 

Zeku. At the beginning of a simulation year, three different grazing types of the 

patches are reinitialized: un-grazed, sedentary (continuous) grazing and rotational 

grazing; then the full-growth LAI and the forage demand on each land patch is 

loaded; the grazing groups and sub-groups are formed randomly thereafter, which 

are varied among simulations due to the random location of the grazing groups and 

sub-groups. The other initial state of the model is the same among the simulations. 

The grazing groups, sub-groups and leasing-renting relations are formed based on 

the aggregated statistical properties (the total number of grazing groups, the 

average number of sub-groups in the group and the percentage of leasing-renting 

land patches). The other initial values are chosen from the grazing information 

derived from MODIS LAI (see Chapter 5). 

Input Data 

There are three main input data sets:  

• full growth LAI, which changes for each time step; 

• “SU_livestock” is updated for each time step; and 

• the grazing types which update at the start of the year. 

The full growth LAI can be calculated from the new growth-grazing function by 

setting the previous grazing effect 𝑃𝐵𝑡 and current grazing 𝑃𝐺𝑡 to 0. We can also 

calculate the LAI consumption based on the estimated grazed LAI. In order to 

simulate the group grazing behaviours, and because there is no spatial boundary 

http://modelingcommons.org/browse/one_model/5706#model_tabs_browse_info
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data for the grazing groups and herders, the ABMGG does not aim at producing 

the results of exactly the same grazing amount and grazing frequency at the exactly 

grazing time point, but rather by producing the same grazing pattern: i.e. the same 

grazing intensity and grassland status. In ABMGG, grazed LAIs (demand of 

livestock) are updated at the same grazing-led LAI changes (without the effect of 

previous grazing) as estimated in Chapter 5.  

 

Submodels 

The detailed submodels and processes are listed in Table 7.3. There are three 

parameters related to the group rotational grazing: 

• “number_participant”; 

• “number_sub_group”; 

• “lease_percentage”. 

one related to land market: 

• “lease_percentage” 

and one related to exogenous disturbance 

• “prolonged_snow_prob” 

Their values are given in Table 7.2. 

 

Table 7.3: Details of the implementation of the model processes. 

Process Variable 

involved 

Description Formalization 

1. Store LAI 

after 

grazing of 

the previous 

step 

State variable 

(“lai_left”) 

for each land patch at 

each time step, the 

LAI after grazing 

(even if it has not 

been grazed) will be 

stored before 

updating any other 

values of the land 

patch agent. It is 

used to calculate the 

effect of the previous 

grazing on the 

current LAI. 

ask patches  

[set lai_left ai_current] 

2. Update 

full-growth 

LAI 

The full-growth 

LAI 

(“lai_current_full

growth” and  

“lai_current_fullg

rowth_right”) 

The theoretical LAI 

if there is no grazing. 

it is input data for 

ABMGG from an 

external file. 

Using NetLogo GIS 

extension to read the 

external file. 
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3. Update 

land types  

The grazing type 

of land patch 

agents 

(“lai_type”) 

At the start of a 

simulation year, three 

different grazing 

types are 

reinitialized. The 

grazing types of 

Zeku at 463x463 m2 

spatial resolution are 

based on the grazing-

led LAI frequencies 

for each patch. The 

un-grazed patches 

are the pixels with 0 

grazing frequencies; 

while the rotational 

grazing patches are 

the pixels with 

grazing frequencies 

equal to 2 or bigger 

than 2. The rest of 

the patches are 

therefore continuous 

grazing lands.   

This information is a 

pre-produced map 

derived from the 

results of Chapter 5. 

4. Update 

forage 

demand of 

the livestock 

The forage 

demand of the 

livestock owned 

by herder agent 

(“SU_patch” and 

“SU_livestock”) 

The livestock forage 

demand is measured 

by the grazing-led 

LAI changes 

(without the effect of 

the previous grazing) 

during the year. For 

each time step, 

“SU_patch” will be 

updated and then the 

associated livestock 

will update 

“SU_livestock”, the 

values of the two are 

exactly the same. 

These are also the pre-

produced maps. 

5. Form the 

grazing 

groups 

The size of the 

group (“radius”); 

The number of 

herders in the 

group 

(“number_partici

pant”); 

The group 

identification of 

All the rotational 

grazing land patches 

will have to join the 

local grazing groups. 

The locations of the 

grazing groups are 

randomized.  

Ask 

number_participant 

herder agents  

to form the group. 
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the land patch 

(“group_id”) 

6. Divide 

sub-groups; 

The group 

identification of 

the land patch 

(“group_id”) 

The sub-group 

identification of 

the land agents 

(“sub_group_id”)

; 

The number of 

sub-groups 

(number_of_sub_

group). 

The land patch 

agents in one grazing 

groups are divided 

into sub-groups. 

Ask 

number_participant/nu

mber_sub_groups 

herder agents 

to form a sub-group. 

7. calculate 

the effect of 

the previous 

grazing 

The full-growth 

LAI 

(“lai_current_full

growth”, 

“lai_right_fullgr

woth” and 

“lai_current_prev

ious”). 

The effect of the 

previous grazing is 

the difference 

between full-growth 

LAI and the expected 

LAI (with the effect 

of the previous 

grazing but without 

the effect of current 

grazing). 

See Eq. 7-5 

8. Build 

Leasing/rent

ing 

relationship

s 

The percentage of 

leasing/renting 

herders 

(“lease_percentag

e”); 

The livestock 

consumption 

demand 

(“SU_livestock”). 

This is a simplified 

land market 

behaviour. Randomly 

select the same 

percentage of the 

herder agents to form 

such relationships. 

Ask 

lease_percentage*total

_number_herders 

continuous grazing 

herder agents 

change SU_livestock 

9. The effect 

of 

prolonged 

snow 

The probability of 

prolonged snow 

(“prolonged_snow

_prob”); 

The current LAI 

(“lai_current”). 

The model assumes 

prolonged snow only 

happens on rotational 

grazing patches and 

causes a random LAI 

loss (an addition 

decrease on 

“lai_current” of 

continuous grazing 

patch leads to the 

grazing frequency 

greater than 1, which 

is not true for 

Ask 

prolonged_snow_prob 

* (count patches with  

[lai_type = 2]) 

[set lai_current 

random lai_current] 
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continuous grazing 

patches) 

10. 

Livestock 

grazing 

The livestock 

consumption 

demand 

(“SU_livestock”);  

Current LAI 

(“lai_current”) 

The identification 

of patches 

(“group_id” and 

“sub_group_id”) 

The identification 

and destination 

for next move of 

herder agents 

(“id_livestock”, 

“group_id_livesto

ck”, 

“sub_group_id_li

vestock” and 

“destination”) 

The LAI of the land 

patches will decrease 

directly on 

continuous grazing 

patches, and the 

livestock will not 

move to the other 

patches; 

For rotational 

grazing patches, the 

livestock will move 

from one sub-group 

to another sub-group 

in a randomly pre-

defined order. The 

LAI of the patches in 

the subgroup will 

decrease 

proportionally to the 

current LAI.  

See Eq.  7-2, Eq. 7-3 

and Eq. 7-4 

11. Update 

LAI after 

grazing 

The full-growth 

LAI 

(“lai_current_full

_growth”); 

The full-growth 

LAI for the next 

time step 

(“lai_right_full_g

rowth”); 

the LAI for 

previous time step 

(“lai_current_pre

vious”); 

 LAI after grazing 

(“lai_current”); 

Grazing-led LAI 

changes 

(“lai_current_gra

zed”). 

 

For un-grazed and 

sedentary grazing 

patches, the LAI 

change is the same as 

that observed in 

remote sensing. 

For rotational 

grazing patches, the 

LAI value depends 

on the number of 

livestock standing on 

a patch. The LAI is 

calculated by 

considering the effect 

of current grazing 

and the effect of the 

previous grazing.  

See Eq. 7-6 

 

8. All the 

other steps 

during the 

The current LAI 

(“lai_current”) 

The effect of grazing 

is ignored during this 

period. 

Ask patches  
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year: 

nothing 

happens 

(not 

considered 

in ABMGG) 

[set LAI after grazing 

to full-growth LAI; 

set grazing-led LAI 

changes to 0] 

 

 

7.3 Model evaluation 

This section discusses the evaluation of ABMGG. The verification of the model is 

presented in Section 7.3.1, followed by a subsection that focuses on sensitivity 

analysis to identify the effect of the parameter value changes on the model output 

(Section 7.3.2). After calibrating the ABMGG with an Approximate Bayesian 

Computing method (Section 7.3.3 and Section 7.3.4), the model validation work is 

then carried out (Section 7.3.6). Section 7.3.5 presents the uncertainties of the 

ABMGG. Finally, a scenario-based analysis is employed to assess the different 

combinations of grazing strategies and institutional arrangements for Zeku in 

Section 7.4, where the uncertainty of the results of scenario analysis is also 

discussed. 

After building the ABMGG, the rest of the work is to make sure it works 

reasonably well; that is, to ensures the parameter values, interactions, process and 

output are working in the same manner as the real grassland grazing system, 

thereby allowing the policy assessment to proceed. In fact, the process of policy 

assessment is intimately tied to the validation and scenario analysis of the 

ABMGG (Figure 7.2). The evaluation process consists of model verification, a 

sensitivity analysis and model calibration. Following the evaluation, the policy 

scenario analysis proceeds through the analysis of the outputs by changing the 

value sets of the model parameters. This chapter will now explain each of them. 
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Figure 7.2: The processes of model evaluation and scenario analysis 

 

 

7.3.1 Model verification   

Verification is an essential part of developing the ABMGG to ensure that the 

model processes have been accurately implemented such that the model behaves as 

it is expected to (Ormerod and Rosewell, 2009; Arifin et al., 2011). The main 

behaviour in ABMGG is livestock grazing according to different grazing types. 

That is, a herder agent of sedentary grazing type will not move to any patches 

during the simulation process. Randomly moving herders (herders that do not form 

grazing groups; they are used just for comparison purposes with the group moving 

herders) will move to their neighbouring patches randomly. While the group 

moving herders will move to their sub-group areas one by one, they are quite 

similar to the industrialized farms, the land in one group will be divided into 

several subgroups and the livestock will graze on the subgroups one by one. When 

the land market feature is on, the herders will find a landlord to rent land from at a 

certain probability.  

Verification 

Sensitivity analysis 

Calibration 

Scenario analysis 

-reasonable process (dynamic monitoring) 
-initial output check (degradation status) 

-value range of parameters (LHS sampling) 

-output response (PCC/PRCC) 

-optimisation of the parameter value set 
(ABC calibration) 

-value sets of parameters  

-potential outcomes (degradation status) 

LHS: Latin Hypercube Sampling; PCC/PRCC: Partial Correlation 

Coefficients/ Partial Rank Correlation Coefficients; ABC: Approximate 

Bayesian Computing 

Validation - R2, t-test and RMSE 
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Figure 7.3 shows the interface of ABMGG. The moving behaviours can be visually 

examined. The monitoring of the model results can be through either spatial maps 

or time-series graphs, which plot the indicators over the time of the model run. The 

large output extent is able to display the spatial maps of LAI after grazing, grazing 

types of land patches and the randomly formed grazing groups. 

 

Figure 7.3: Snapshot of the ABMGG 
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Another step of the ABMGG verification is to assess whether the simulation 

outputs fall within a reasonable range compared with the real data, which means 

whether ABMGG can produce the same grazing intensity and grassland status. 

Note that un-grazed patches are excluded in the test because they would produce 

almost identical LAI values as the MODIS LAI. Hence the grazing-led LAI 

defoliation would be 0, which would significantly improve the results of statistical 

tests. 

Only time steps between 16 and 37 for the simulated year are tested because these 

are the grass growth period. In addition, the LAI would be the same in winter when 

MODIS LAI cannot tell the difference between grazed and un-grazed land. The 

model was run 50 times for the year 2011 to generate the average outputs for each 

step.  

Figure 7.4 shows the average grazing-led LAI changes (without the effect of the 

previous grazing) simulated by ABMGG. The standard deviation of 50 simulated 

runs is also shown in this figure. Within all the simulation steps, the standard 

deviations are quite small, which indicate the stochastic uncertainty of the model 

output is quite small; and generally, a bigger standard deviation of the grazing-led 

LAI changes can be observed in the time steps with a higher average value of 

grazing-led LAI changes. This is expected as the stochastic setting in the ABMGG 

(for example randomised locations of grazing groups) affect the grazing-led LAI 

changes, and a higher grazing intensity would generate a bigger variance of the 

model output.  

In addition, we can see that the average simulated grazing-led LAI changes 

(without the effect of the previous grazing) are systematically higher than the 

grazing-led LAI changes (without the effect of the previous grazing) derived with 

MODIS LAI product. The main reason is that, for some of the grazing groups, the 

number of sub-groups was bigger than the actual number of sub-groups 

(unfortunately, the number of subgroups for each grazing group is not available at 

the time of writing). This may lead to the total grazing demand (represented by 

LAI) in the group was even greater than that of the total available forage of the 

sub-group; when the livestock moved in that sub-group, they only ate the 

maximum available forage rather than the actual grazing demand of the forage (it 

was bigger than the maximum available forage). Nevertheless, the R2 between 

simulated and observed grazing-led LAI changes is 0.996, and the p-value of the 

T-test is 0.88, which indicates that they are statistically similar. 



- 202 - 

 

 

Figure 7.4: Simulated and observed grazing-led LAI changes (without the 

effect of the previous grazing), 2011 

 

The numbers of degraded patches are the important aspect of evaluating the 

grassland status, and they are simply calculated according to the Chinese national 

criteria of “Parameters for degradation, sandification and saltfication of 

rangelands” (Su et al., 2003). By definition, if a decreased LAI is less than 10% of 

expected LAI, it will be classified into unaffected grassland type (“no effect” in 

this thesis), which means the patch has not been degraded. If it is between 10% and 

20%, the land patch then is classified into the slightly degraded type; The medium 

degraded land patch indicates a decrease of LAI between 20% and 50%, while that 

of severely degraded land exceeds 50%.  

Figure 7.5 shows the number of degraded patches for each time step of the year 

2011 under these four degradation criteria. The ABMGG has underestimated the 

number of unaffected patches but overestimated the number of degraded patches 

for the other three types of degradation. Three goodness-of-fit indicators are shown 

in Table 7.4. The R2 between simulated and observed numbers of degraded patches 

are all bigger than 0.6. The p-values of the t-test for the number of unaffected, 

medium and severely degraded patches are all bigger than 0.01, indicating that 

they are statistically the same on the average. However, the p-value of the t-test for 

the number of slightly degraded patches is smaller than 0.01, which means the 

average of the number of slightly degraded patches is statistically different. One 

reason for the discrepancies between statistics of model output with observed data 

is the inaccurate setting of the grazing groups and sub-groups. The ABMGG used 

randomised locations of the grazing groups rather than the actual locations, and the 
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livestock moved from one sub-group to another sub-group in a random order. Even 

if they were to eat the same amount of grass forage, the LAI after grazing would be 

different due to the differences in full-growth LAI for the land patches. These 

model discrepancies can be decreased or even eliminated by using accurate grazing 

group and sub-group information and the grazing order (or behaviour) within the 

sub-groups. On the whole, although there are differences in the number of 

degraded patches, and the simulation results did not hit the exact points of MODIS 

LAI observed ones at an individual perspective, the ABMGG has behaved as 

expected and the model output matched with observed data (except for the number 

of slightly degraded patches). In addition, such discrepancies can also be decreased 

by calibration with the observed data, which will be illustrated in Section 7.3.3. 

 

Figure 7.5: Simulated and observed number of degraded patches for each step 

of the year 2011 

 

Table 7.4: Goodness-of-fit measurements of the modelling results  

Type R2 T-test (P-value) RMSE 

Unaffected 0.8623 0.0234 1842.3160 



- 204 - 

 

Slightly 

degraded 

0.6089 0.0062 1072.2240 

Medium 

degraded 

0.8362 0.1674 615.0182 

Severely 

degraded 

0.6512 0.1563 260.1417 

 

7.3.2 Sensitivity analysis 

For agent-based modelling, sensitivity analysis is commonly carried out to explore 

the effect of a model’s parameters on the model outputs. This analysis is essential 

for identifying the most important parameters for the model before it is calibrated 

or used in scenario analysis. One widely used approach in sensitivity analysis is to 

change one parameter at a time, while keeping all other parameter values constant 

(Thiele et al., 2014). However, this approach is oversimplified as it leaves out 

possible interactions among input parameters (Ten Broeke et al., 2016). Therefore, 

cross-variation systematic sensitivity analysis should be conducted to understand 

dynamics in the real world system that are described by ABMs (Ten Broeke et al., 

2016). 

Typically, there are three different approaches: screening, local and global 

sensitivity analysis (Saltelli et al., 1993; Thiele et al., 2014). Screening methods 

are designed to explore a large set of parameters with wide value ranges and 

usually are computationally efficient. They are very fast in identifying the 

important parameters but cannot quantify importance. Local sensitivity analysis 

can deliver more detailed information about such importance by changing the 

values of parameters to a certain percentage. However, interactions between 

parameters are ignored; the results may be totally different if another set of 

parameter values were chosen. In a global sensitivity analysis, the importance of 

parameters is quantified by exploring the full range of their possible values against 

each other. The defect with global sensitivity analysis methods is they are usually 

computationally expensive. 

The global sensitivity analysis techniques are chosen for ABMGG as there are few 

uncertain input parameters. The technique for global sensitivity analysis of 

ABMGG is the Partial (rank) correlation coefficient (PCC/PRCC), which is used to 

measure the relationship and the strength of the relationship of the input 

parameters (Saltelli et al., 1993; Manache and Melching, 2008). PCC can be used 

for the measurement of linear relationships, and PRCC is used for the 

measurement of non-linear but monotonic associations.    

Figure 7.6 shows the results of the PCC/PRCC analysis of ABMGG. For the 

average values of grazing-led LAI changes in the bottom left figure, the 

PCC/PRCC results show that they are only monotonically correlated with the 

number of sub-groups. The same is true for the variance of the grazing-led LAI 

changes. As it had been explained in Section 7.3.1, the main reason for this is the 

randomized locations of grazing groups and the setting of the average of the 

number of sub-groups. For some of the grazing groups, a larger number of sub-

groups than the actual number may cause insufficiently available forage for 
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livestock grazing, and therefore, the grazing-led LAI changes would be smaller 

than the observed ones. The calibration work would be helpful to prevent the 

simulated grazing-led LAI changes being fundamentally different with the 

observed data, as only the parameter values which produce the smallest difference 

between model output and observed data could be selected as valid settings. This 

will be introduced in the next sections. 

The other four parameters do not have a strong correlation with the mean or 

variance of the grazing-led LAI changes, and this indicates they are non-linear and 

non-monotonic. Since the radius of the grazing group, number of participants in 

the group and lease percentage are grazing strategy and institutional arrangement 

related parameters, and their value would affect the size of grazing groups and the 

scale of land market, this non-monotonic relationship indicates that different 

grazing strategies or institutional arrangements cannot significantly change the 

grazing intensity in ABMGG. It is expected that the grazing intensity should at 

least keep statistically the same as the observed data, and this is the premise for the 

scenario analysis later in Section 7.4. 

There is basically no relationship between the numbers of degraded patches (four 

categories) and the number of participants in the groups and lease percentage. The 

relationship between the number of degraded patches and the radius varies 

according to the standard of degradation. Radius has a weak positive linear 

relationship (PCC < 0.5) with the number of medium and severely degraded 

patches, and a strong negative linear relationship (PCC < -0.5) with the number of 

unaffected patches, but a strong negative linear relationship (PCC > 0.5) with the 

number of slightly degraded patches.  

The number of sub-groups has a similar relationship with the number of slightly, 

medium and severely degraded patches, that they have a strong linear but 

monotonic (decreasing) relationship (PCC and PRCC < -0.8). There is a strong 

positive linear relationship between the number of sub-groups and the number of 

unaffected patches (PCC and PRCC > 0.8). In addition, the probability of 

prolonged snow has a weak negative linear relationship with the number of 

unaffected patches, and a weak positive linear relationship with the number of 

slightly and medium degraded patches, but a strong linear and monotonic 

(increasing) relationship with the number of severely degraded patches. This is 

expected as the prolong snow was simulated as an exogenous variable to decrease 

the LAI randomly, and the number of unaffected patches should increase with the 

increase of the probability of prolonged snow; while the number of slightly, 

medium and severely degraded patches would increase.  

To conclude, the relationship between input parameters and model outputs are 

revealed through the PCC/PRCC analysis. The grazing strategies and institutional 

arrangements do not have a significant effect on the mean value of the grazing-led 

LAI changes; the influence of different grazing strategies and institutional 

arrangements related parameters varies against the degradation criteria. Based on 

those analyses, although the number of sub-groups has a strong linear and 

monotonic relationship with the numbers of degraded patches (four categories), the 

relationship between the values of the parameters and the statistical properties of 

the model output are not linear and monotonic, which means the maximum values 

of the parameters will not produce the maximum statistical properties of the model 

output. This thesis, therefore, needs to calibrate the model with a method dealing 
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with such non-linear and non-monotonic relationship, which will be illustrated 

next. 

 

  

Figure 7.6: PCC/PRCC sensitivity analysis of ABMGG  

 

7.3.3 Model calibration with Approximate Bayesian Computing 

The next step is the calibration of the model. In this stage, an optimisation of the 

parameters used in the model will be involved. Generally, there are two different 

ways of fitting the modelling parameters to real-world data. Best fit strategies try 

to find a parameter set that leads to the lowest difference between observed data 

and simulated results. However, models usually have more than one criterion that 

needs to be fitted, and even the parameter set that best fits one criterion may not be 

able to reproduce the observed pattern that fits embodies a fit for all the other 

criteria. For ABMGG, the fitting criteria consist of not only grazed LAI 

measurements (mean and variance) but also degraded related patch measurements 

(no effect, slight, medium and severe). In addition, the strength of each criteria 

importance should be considered before aggregating them into one criterion when 

using best-fit strategies for ABMGG. 

Categorical calibration methods are used in a situation where a range of plausible 

parameter values is defined for each calibration criteria, rather than one single 
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value (compared to best-fit strategies). The aim of categorical calibration is 

therefore to find a parameter set that meets all predefined criteria. In this thesis, 

multiple fitting criteria is used with best fit calibration. Approximate Bayesian 

Computing (ABC) is particularly well suited for implementing this optimisation as 

ABC not only provides the best parameter value estimation but also gives the 

uncertainty with consideration of correlations between parameters (Csilléry et al., 

2012a). Rather than estimating the exact maximum likelihood through statistical 

summaries and simulations, ABCs calibrate a model by forming the posterior 

parameter distribution which is closest to the real world data (Thiele et al., 2014). 

The basic idea of ABC methods can be described as (Wilkinson, 2013): 

π(𝜃|𝐷) =
𝜋(𝐷|𝜃)𝜋(𝜃)

𝜋(𝐷)
 

where π(∙) represents different probability densities, and π(∙ | ∙) is the conditional 

probability densities; 𝜃 accounts for the parameter sets to be calibrated; D denote 

the real world observation data; 𝜋(𝜃) means the prior distribution of the parameter 

sets; 𝜋(𝐷|𝜃) is the probability of the true value under the model given parameter 

values. π(𝜃|𝐷) is the posterior distribution, and 𝜋(𝐷) is the evidence for the 

model. The calibration is then used to calculate posterior distribution based on the 

true value distribution of parameter sets. 

Suppose that a parameter named 𝜃𝑖 needs to be calibrated, the first step of ABC 

calibration is to produce a sample of 𝜃𝑖 of size j; for each parameter sample value 

𝜃𝑖,𝑗 , the relevant result of model simulation is represented by 𝑠𝑖𝑚𝑖,𝑗. Then the 

Euclidean distance 𝑑𝑖 can be used as a measurement of the statistical differences 

between 𝑠𝑖𝑚𝑖,𝑗 and actual data 𝑜𝑏𝑠𝑖 (van der Vaart et al., 2015): 

𝑑𝑖 = √∑ (
𝑠𝑖𝑚𝑖,𝑗 − 𝑜𝑏𝑠𝑗

𝑠𝑑(𝑠𝑖𝑚𝑗)
⁄ )

𝑗

2

 

If 𝑑𝑖 is smaller than a given threshold value, which is determined by the tolerance 

rate (the percentage of accepted simulation, that is, how many simulations are 

sufficiently realistic) in ABC, the parameter set will be added to the accepted 

parameter value sets. A smaller value of tolerance would lead to a better 

approximation (𝑑𝑖 is smaller) of the true posterior distribution. Therefore, tolerance 

can be regarded as a determinant of the accuracy of the algorithm. Usually, the 

value of this tolerance can be calculated by cross-validation of the parameter sets 

(see detail in Section 7.3.3.2).  

All the accepted parameter values thus form a distribution that represents the best 

estimation of the parameter values. This distribution can be further improved by 

incorporating the relationship between 𝑠𝑖𝑚𝑖 and 𝜃𝑖,𝑗; local linear regression 

(Beaumont et al., 2002) and neural networks (Csilléry et al., 2010) are commonly 

used for this improvement: 

 𝜃𝑖 = 𝑓(𝑠𝑖𝑚𝑖) 

where 𝑓(∙) is linear or other advanced methods describing the relationship between 

simulation results and parameter values. Details can be found in Csilléry et al. 

(2012b).  
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7.3.3.1 Latin Hypercube Sampling for parameter value sets 

An efficient method to reduce the number of parameter sets but still be able to scan 

the parameter space in a systematic way is Latin Hypercube Sampling (LHS) 

(Stein, 1987), which is widely used in the model sensitivity analysis (Marino et al., 

2008), calibration (Ciampaglia, 2013) and uncertainty analysis. LHS is a stratified 

sampling method without replacement, which partitions each parameter 

distribution into certain intervals of equal probability, and selects one parameter 

value from each interval. The interval sizes are determined by the probability 

density distribution of the parameters. For ABMGG, the value ranges of 

parameters are listed in Table 7.5. The radius of a grazing group is usually 1km or 

2 km from the survey (see Chapter 3), that is 2 or 5, patch distance for ABMGG. 

To make sure the calibration includes some larger grazing groups, the maximum 

value of radius is taken as 10 (4.6 km in the real world; a greater radius value than 

10 is fine, but the trade-off between the cost of computing and maximum value 

should be considered). The number of participants in one group is the minimum 

number of herders in a grazing group. The average number of herders in a grazing 

group can be calculated by dividing the total number of rotational grazing patches 

by the number of grazing groups (it is from the survey, and the number of grazing 

group was 338 in 2011), and the results is 21; this thesis, therefore, set the 

calibration range to 10~45. A bigger number of the minimum number of herders in 

a grazing group is fine, but the efficiency of the calibration should be considered; 

in addition, the herders in the ABMGG will find the closest grazing groups to join 

in if they cannot be assigned to a grazing group randomly, and if the minimum 

number of herders in a grazing group is too big, it may cause the intersection 

among grazing groups, which is unlikely to happen in the real situation according 

to the field survey by the author in 2016. For the number of sub-groups, the 

rotational grazing patches should have at least 2 sub-groups (otherwise it will be 

continuous grazing patch or un-grazed patch), the maximum is 22 because it is big 

enough to encompass all situations. From the survey, we just have one fixed 

number of lease percentage, which is about 15%. This value range extends to 

10~20% in the calibration. Unfortunately, we have not got the prolonged snow 

data, but in the neighbouring (Maqing) County, the probability is 0.27%. Therefore 

this calibration chose 0.1~1% as a value range for the prolonged snow probability. 

Table 7.5: The prior distribution of the parameter values in ABC calibration 

parameters  Value range Distribution 

radius 2~10 uniform 

num_participant 10~45 uniform 

num_sub_group 2~22 uniform 

lease_percentage 5~20% uniform 

prolonged_snow 0.1~1% uniform 

 

7.3.3.2 Cross-validation for ABC tolerance selection 

The tolerance value determines how many simulations should be accepted, and 

how to get a good tolerance value is then the next challenge for the ABC 

calibration. Cross-validation methods provide an alternative way to evaluate the 
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accuracy of the tolerance value when there is not enough data to distinguish the 

accuracy of different tolerance values (Kohavi, 1995; Csilléry et al., 2012a). Here, 

5 different tolerance values are tested: 5%, 10%, 20%, 30% and 50%. The 

summary statistics are shown in Table 7.6: 

Table 7.6: Summary statistics of the results of cross-validation for model 

parameters 

tolerance 

parameters 

5% 10% 20% 30% 50% 

radius 1.0133 0.9566 0.9858 0.9794 0.9892 

num_participant 0.983 0.9912 0.9719 0.981 1.0121 

num_sub_group 0.0265 0.0314 0.0436 0.0646 0.1785 

lease_percentage 0.9985 0.9936 0.9974 0.9972 0.9984 

prolonged_sonw 0.4268 0.5803 0.7977 0.9224 0.9767 

 

 

A simulation is selected repeatedly to be a validation simulation, while the other 

simulations are used as training simulations. The error of this “leave-one-out” 

cross-validation shows the tolerance value 20% is more suitable compared with all 

the other values. The modelling error of “radius” is decreased and then increased 

with the tolerance value varying from 5% to 20% and being fixed around 0.98 

when tolerance value exceeds 20%, while the error of “num_participant” , 

“lease_percentage” and “prolonged_snow” were all increase when tolerance value 

exceeding 20%. The error of “lease_percentage” under is not sensitive to the value 

of the tolerance rate and it is fixed to about 0.99. A bigger value of the tolerance 

rate is fine, but there is a compromise between the value and the accuracy of the 

calibration results. Usually, the smaller the tolerance rate, the higher the accuracy 

of the calibration results, but also the higher cost of the computing time. 

 

7.3.3.3 ABC calibration results 

The final step of ABC validation is to generate a parameter set that produces the 

best-matched simulation result against the remote sensing derived data. In Section 

7.3.1, the comparisons of ABMGG results show the simulated number of 

unaffected, medium and severely degraded patches match with the remote sensing 

derived data, but the simulated number of medium degraded patches was statically 

different from the remote sensing derived one. The ABC calibration results aim 

therefore to find a parameter set that produces a match as similar to the remote 

sensing derived data as possible for all the calibration years. The ABMGG focus 

on producing a similar grazing intensity and the grassland status, and the 

calibration year used is 2011. The numbers of degraded patches, mean and 

variance derived from MODIS LAI data are shown in Table 7.7. Notice that the 

un-grazed patches are excluded, and the numbers of degraded patches were also 

calculated for the continuous and rotational grazing pixels by comparing the rate of 

LAI after grazing to full-growth LAI with the degradation standard. 
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Table 7.7: Number of degraded patches, mean and variance of grazing-led 

LAI changes derived from remote sensing data 

output value unit 

no_degraded 12804 - 

slight_degraded 752 - 

medium_degraded 1474 - 

severe_degraded 268 - 

mean_grazed 0.077 m2/m2 

var_grazed 0.0680 - 

 

The posterior distributions of ABC calibration are shown in Figure 7.7. There are 

2000 LHS sampling parameter value sets. The ABC calibration, therefore, needs to 

run the model for 2000 times and repeat 10 times for each parameter value set to 

get the mean value of statistical properties of the model output. This can produce 

more robust results compared with single run with each parameter value set due to 

the stochastic settings in the ABMGG, of which only 20% of the running can be 

accepted (see tolerance rate selection for detail). The posterior distributions are all 

based on these 400 accepted simulations. These distributions provide not only the 

best-matched parameter value sets but also upper and lower confidence boundaries, 

which would be helpful in producing a confidence band for the ABMGG.  
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Figure 7.7: Posterior distribution of the parameters using ABC  

 

In addition, the estimation of posterior distributions can be improved by local 

linear regression, but it is not suitable for this research as there is no obvious 

linearity among parameters. Figure 7.8 shows the joint posterior density between 

all the parameters. The Pearson’s product-moment correlation test shows the 

correlations among parameter are all smaller than 0.2, which indicate there is no 

significant linear relationship among the parameters. This thesis, therefore, does 

not need to incorporate with the linear relationship between the parameters. 
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Figure 7.8: Joint posterior distribution between parameters: top-left part 

shows the Pearson’s product-moment correlation test value; the bottom-

right part shows their joint density counterplot 

 

The preferred parameter selection of ABC calibration in Table 7.8 is the mean of 

the posterior parameter distribution. Commonly, mean or mode values of posterior 

parameter distribution can be selected as the best match parameter value set as well 

depending on different modelling purposes; and in the R “abc” package, the 

median absolute deviation is used as a robust unbiased estimation of the standard 

deviation, and it is more resilient to outliers in the data (Csilléry et al., 2012b). 

However, this thesis uses the mean value of the posterior parameter values as the 

calibration results as it is more convenient and common to visualise the uncertainty 

with the mean value. The model results produced by the other posterior values of 

the parameters, therefore, can be expressed as the uncertainty of the model. 
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Table 7.8: Posterior distribution characteristics for all the parameters after 

ABC calibration 

 

7.3.4 Evaluation of the calibration results 

The evaluation of the calibration results is to make sure the performance of the 

ABMGG has been improved. Using the mean values of the selected parameters 

listed in Table 7.8, the R2 between simulated and observed grazing-led LAI 

changes is 0.978, and the p-value of the T-test is 0.66, which indicates they are still 

statistically similar. However, this result does not ensure the same grassland status 

under the degradation standard, and therefore, the goodness-of-fit measurements 

and the spatial pattern of the grassland status should be evaluated to ensure a 

successful calibration.  

Similar to the model verification, three goodness-of-fit indicators have been 

employed to evaluate the calibration results. As it is shown in Table 7.9, the R2 and 

the p-value of the t-test between simulated degradation status and that observed in 

MODIS LAI for each degradation type has increased, while the RMSE has 

decreased. This indicates that the calibration has improved the overall model 

accuracy. However, the R2 and the p-value of the t-test for slightly degraded 

patches are still relatively low. As was mentioned in Section 7.3.1, such 

discrepancies between simulation results and the observed data can be improved 

by more accurate and explicit information and knowledge on, for example, grazing 

groups and sub-groups. 

Table 7.9: Goodness-of-fit measurements before and after calibration 

 Type R2 T-test  

(P-value) 

RMSE 

Before 

calibration 

Unaffected 0.8623 0.0234 1842.3160 

Slightly degraded 0.6089 0.0062 1072.2240 

Medium degraded 0.8362 0.1674 615.0182 

Severely degraded 0.6512 0.1563 260.1417 

After 

calibration 

Unaffected 0.8667 0.05023 1445.2860 

Slightly degraded 0.6459 0.0131 920.7647 

 
radius num_participant num_sub_group lease_percentage prolonged_snow 

Min.: 2.011 10.055 1.585 0.100 0.001 

5 % Perc.: 2.566 11.770 2.065 0.105 0.002 

Median : 5.733 26.838 4.212 0.146 0.006 

Mean: 5.939 26.797 4.203 0.149 0.006 

Mode: 4.690 15.139 4.185 0.140 0.007 

95 % Perc.: 9.615 42.962 6.269 0.195 0.010 

Max.:  9.973 44.989 6.495 0.200 0.010 
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Medium degraded 0.9112 0.1983 388.6010 

Severely degraded 0.7589 0.1943 158.2865 

 

Another aspect of the evaluation work is to compare the spatial pattern of the 

degradation status. In this section, the spatial maps of the four degradation types 

will be displayed directly. Since the simulated degradation maps were all produced 

through an average of 50 repeated simulations, the standard deviation of the 

numbers of degraded patches is shown alongside the average numbers of degraded 

patches. 

The maps of the number of degraded patches are shown in Figure 7.9, Figure 7.10, 

Figure 7.11 and Figure 7.12. Notice that the un-grazed patches identified in 

Chapter 5 are filled with black colour, and these are the patches where no grazing 

happen in both observed data from remote sensing and the model output of the 

ABMGG. The values on the maps are the counts of the patches which have been 

identified as specific degradation types during the year (there are 46 time steps in 

total for the year). In addition, the relative estimation error ratio at the patch scale 

can be represented by the ratio of the difference between the simulated and 

observed number of degraded patches to the observed number of degraded patches. 

Four descriptive statistics (maximum, minimum, mean and standard deviation) of 

the relative error are shown in Table 7.10. 

Table 7.10: Descriptive statistics of the relative error of the model 

 Minimum Maximum  Mean  Standard Deviation 

Unaffected -0.178 0.257 -0.037 0.043 

Slightly degraded -0.950 3.480 0.503 0.849 

Medium degraded -0.970 2.880 -0.013 0.538 

Severely degraded -1.000 0.899 -0.315 0.281 

 

An obvious decrease (an overall decrease in redness) in the simulated average 

number of unaffected patches in Figure 7.9b can be seen compared with that in 

Figure 7.9a, and more specifically, in Figure 7.9d, where the differences between 

the two show that the majority of the difference is negative, which mean the 

ABMGG has underestimated the number of unaffected patches. This is consistent 

with the results of the top-left plot in Figure 7.5, where the simulated numbers of 

unaffected patches were systematically smaller than that of the observed data. In 

addition, as listed in Table 7.10, the average relative error ratio is -3.7%, which 

also indicates the ABMGG has slightly underestimated the number of unaffected 

patches on the average.  
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a, observed number of the unaffected 

patches 

b, simulated average of the number of 

the unaffected patches 

  

c, simulated standard deviation of the 

number of the unaffected patches 

d, differences between simulated and 

observed number of unaffected patches 

  

Figure 7.9: Spatial maps of the simulated and observed number of unaffected 

patches  
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Contrary to the number of unaffected patches, there is an obvious increase (an 

overall increase in redness) in the simulated average number of slighted patches in 

Figure 7.10b can be seen compared with that in Figure 7.10a; and in Figure 7.10d, 

the differences between the two show that the majority of the difference is positive, 

which indicates the ABMGG has overestimated the number of slightly degraded 

patches. This is more visually obvious in the results of the top-right plot in Figure 

7.5, where the simulated numbers of slightly degraded patches were significantly 

bigger than that of the observed data. As it is shown in Table 7.10, the average 

relative error ratio is 50.3% for the simulated number of slightly degraded patches, 

and this implies the number of slightly degraded patches was largely 

overestimated.  

a, observed number of the slightly 

degraded patches 

b, simulated average of the number of 

the slightly degraded patches 

  

c, simulated standard deviation of the 

number of the slightly degraded 

patches 

d, differences between simulated and 

observed number of slightly degraded 

patches 

  

 

Figure 7.10: Spatial maps of the simulated and observed number of slightly 

degraded patches 

 

The comparison of the spatial maps of the observed and simulated number of 

medium degraded patches shows (see Figure 7.11a and Figure 7.11b) there is no 

obvious overall increase or decrease pattern; this can be further confirmed through 

Figure 7.11d, where the overestimated and underestimated number of medium 

degraded patches are scattered on the land, and we can hardly verify the overall 
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pattern (decrease or increase) through visual interpretation. The further descriptive 

statistics in Table 7.10 shows the average relative error ratio is -1.3% for the 

simulated number of slightly degraded patches, which means the ABMGG has 

slightly underestimated the number of medium degraded patches. 

a, observed number of the medium 

degraded patches 

b, simulated average of the number of 

the medium degraded patches 

  

c, simulated standard deviation of the 

number of the medium degraded 

patches 

d, differences between simulated and 

observed number of the medium 

degraded patches 

  

Figure 7.11: Spatial maps of the simulated and observed number of medium 

degraded patches 

 

For the number of severely degraded patches, there is an obvious increase (an 

overall increase in redness) in the simulated average number of unaffected patches 

in Figure 7.12b can be seen compared with that in Figure 7.12a. We can also see 

that the overwhelming positive differences between the simulated number of 

severely degraded patches and the observed number of severely degraded patches 

are shown in Figure 7.12d. This is also can be seen from the bottom-right plot in 

Figure 1.4, where some of the simulated numbers of unaffected patches were much 

greater than that of the observed data. However, the average relative error ratio for 

the number of severely degraded patches in Table 7.10 is -31.5%, which suggests a 

contrary result. This is because the average relative error ratio here is the mean 

value of the relative error ratio for all the severely degraded patches. Although 

most of the number of severely degraded patches have been overestimated, the 
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relative error ratio is relatively smaller than that of the underestimated patches; and 

therefore, a negative average relative error ratio presents.  

a, observed number of the severely 

degraded patches 

b, simulated average of the number of 

the severely degraded patches 

  

c, simulated standard deviation of the 

number of the severely degraded 

patches 

d, differences between simulated and 

observed number of the severely 

degraded patches 

  

Figure 7.12: Spatial maps of the simulated and observed number of severely 

degraded patches 

 

The spatial maps of the standard deviation in Figure 7.9c, Figure 7.10c, Figure 

7.11c and Figure 7.12c show a quite similar spatial pattern, which presents quite 

similar “clusters” at the current classification. A further detailed spatial pattern 

analysis can be helpful to understand the spatial distribution of these standard 

deviations, but this is beyond the topic of this research.  

The goodness-of-fit measurements in this section have examined the improvement 

of the model output at the regional level through model calibration, and the 

comparison of the simulated and observed spatial distribution of the number of 

degraded patches further explored the model validity. However, the spatial maps 

displayed in this section were the results of 50 repeated simulations, which is 

useful to explain the uncertainty caused by the stochastic setting in the ABMGG; 

the parametric uncertainty, however, needs to be additionally clarified to ensure the 

model output being within a reasonable range. 

  



- 219 - 

 

 

7.3.5 The uncertainty analysis of the ABMGG 

The uncertainty of the ABMGG consists of 3 parts: 

• stochastic uncertainty, which can be quantified by repeated simulations and 

it has been presented in Section 7.3.4; 

• parametric uncertainty, which typically can be evaluated through model 

calibration and the result of the parametric uncertainty will be discussed in 

this section; and 

• input uncertainty, which will be explored after the validation section. 

The parametric uncertainty can arise from imprecise settings of the parameter 

values. In the calibration section (Section 7.3.3), only the parameter value sets 

producing the results of the closest distance with observed value were selected as 

the posterior distribution of the parameter values. The parametric uncertainty, 

therefore, can be described by the model outputs with those selected parameter 

values.  

Figure 7.13 shows the distribution of the model output before and after calibration 

within the parameter space, which contains a set of all possible combinations of 

values for all the different parameters in the ABMGG. The red lines were 

additionally drawn on those figures indicating the observed results by MODIS 

LAI, which were listed in Table 7.7. We can see that the observed values are all 

included in the range of the simulated results selected by ABC calibration, except 

the number of slightly degraded patches, which was discussed in Section 7.3.4, that 

was systematically overestimated by the ABMGG.  
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Figure 7.13: Comparison of the prior and posterior distribution of the model 

outputs 

 

In addition, the descriptive statistics of the four degradation types selected by ABC 

are shown in Table 7.11, where the specific uncertainty boundary can be seen more 

clearly. The coefficients of variation (CV) of the four model outputs are all smaller 

than about 0.15, which indicate the parametric errors are distributed relatively 

close to the estimated mean value of the model outputs. Up to this point, the 

parametric uncertainty of the ABMGG has been illustrated; the next section will 

validate the calibration results with the input data from a different year. 

Table 7.11: Descriptive statistics of the parametric uncertainty of the 

simulated grassland status 

Type  Mean  SD CV Max Min 

Unaffected patches 12379.6 392.2 0.031 12988.4 11736.9 

Slightly degraded 1373.6 175.8 0.128 1672.6 1097.0 

Medium degraded 1241.7 182.3 0.155 1629.9 951.2 

Severely degraded 303.9 29.7 0.098 367.6 239.8 
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7.3.6 Validation with model output 

The final stage of making sure ABMGG can represent the grazing system correctly 

is the validation of the model outputs. Validation of agent-based models is one of 

the most difficult problems during the modelling process (Rand et al., 2003). The 

behaviour and structure generated by agents interacting are very hard to predict 

(Bankes, 2002). Where agents make decisions based on pre-defined rules, this can 

lead to the modelling results being extremely sensitive to initial settings or such 

pre-defined rules (both agents and their environment). In addition, due to the 

stochasticity and uncertainty in agents’ decision-making and interactions, one may 

have multiple emergent patterns when running the model many times.  

The aim of building ABMGG is to ensure the simulated grazing-led LAI changes, 

and the grassland status matches remote sensing derived data; then the “what if” 

assessment can be done by changing the grazing strategies and institutional 

arrangements. It is not a predictive model; that’s why we cannot validate the model 

with predictive results. In previous sections of this chapter, the behaviours of 

herder agents and grassland patches are verified. The stochastic and parametric 

uncertainties of the ABMGG have been quantified, and the values of the 

parameters were optimized as well by ABC calibration.  

The validation in this section is then to examine whether the calibration is good by: 

was it over-fitted for other years when using the parameter values after calibration? 

The validation year is 2012 because the grazing groups and sub-groups 

information were based on the information collected for the year 2011, and it was 

in the same five-years’ plan period (12th five-year plan, 2011~2015). The policies 

on grazing strategies and institutional arrangements were more relatively stable 

and coherent during the same five-year plan period. In addition, the year 2012 was 

just one year after 2011, the parameter values of the model would be more likely to 

be the same. The model was configured using the parameter value set from the 

ABC calibration (see Table 7.8). The model runs 50 times for the year 2012.  

Figure 7.14 shows the simulated and observed grazing-led LAI changes for each 

time steps during 2012. The R2 between the two is 0.97, and the p-value of the t-

test is 0.63, which indicates the observed and simulated grazing-led LAI changes 

are similar. The further comparison of the grassland status is shown in Figure 7.15, 

where the mean and variance of the number of the degraded patches for 50 

repeated simulations are plotted along with the observed ones. An obvious 

underestimation of the number of unaffected patches presents on the top-left figure 

of Figure 7.15; while for the numbers of slightly and medium degraded patches, 

the ABMGG have overestimated them.  
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Figure 7.14: Simulated and observed grazing-led LAI changes in the 

validation year, 2012 

 

 

Figure 7.15: Simulated and observed numbers of the degraded patches, 2012 
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The results of more detailed goodness-of-fit measurements are shown in Table 

7.12. Similar to the results of goodness-of-fit measurements in the calibration 

section (see Table 7.9), the ABMGG again failed to match the number of slightly 

degraded patches with the observed ones. This is a systematic defect of the 

ABMGG caused by the insufficient information on grazing groups and sub-groups, 

and the model randomly assigned the locations of the grazing groups and sub-

groups. Such patch-specific information is still not available in the study area. 

Nevertheless, the R2 for the other three in Table 7.12 are all bigger than 0.68, and 

the p-value of the t-test are all bigger than 0.05, which show they are statically 

similar. This can ensure the model has not been overfitted through modelling 

calibration. 

Table 7.12: Goodness-of-fit measurements of the validation results 

Type R2 T-test  

(P-

value) 

RMSE 

Unaffected 0.6828 0.0948 2532.5360 

Slightly 

degraded 

0.1811 0.0216 1559.1990 

Medium 

degraded 

0.6882 0.3903 944.0199 

Severely 

degraded 

0.8850 0.9238 197.0047 

 

7.4 Scenario analysis: the effect of different grazing strategies 

and institutional arrangements on grassland 

Up to this point, this thesis has discussed the methods by which the ABMGG was 

evaluated, through calibration and validation against remote sensing derived data. 

In this section, the aim of the scenario analysis is intended to explore the potential 

outcomes of the combination of different grazing strategies and institutional 

arrangements at the study site. The experiments in the scenario analysis simulate 

how the number of degraded patches changes under different strategies. Are the 

current grazing strategies and institutional arrangements the best choice, or is there 

an alternative? 

7.4.1 Scenario definitions 

To evaluate the effect of grazing strategies and institutional arrangements on the 

number of degraded patches, eight experiments will be conducted in order to 

answer these questions, involving varying the behaviour of the herder agents. The 

combinations of all these rules are listed in Table 7.13. The grazing-led LAI 

changes for different scenarios are classified into four types (notice that rotational 

and continuous grazing patches are the grazing types of the patches, which have 
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been defined before the model running and they remain unchanged during the 

simulation year): 

• group rotational grazing: assumed for TTT (current choice scenario. This is 

a way of naming the scenarios according to the behaviour of herders, see 

Table 1) and TTF (no market scenario). The grazing-led LAI change for 

each patch depends on the proportion of currently available LAI on the 

patch to the total available LAI of the sub-group (see Section 7.2.1). This is 

affected by the grazing demand in the group and the number of sub-groups 

in the group; 

• group continuous grazing: assumed for TFF (group continuous grazing 

without market scenario) and TFT (group continuous grazing with market 

scenario). The grazing-led LAI change for each patch depends on the 

proportion of currently available LAI on the patch to the total available LAI 

of the whole group. This depends on not only the total grazing demand in 

the group but also the total available forage in the group;   

• regional random moving grazing: assumed for FTT (random moving with 

market scenario) and FTF (random moving with market scenario). The 

grazing-led LAI change is the same as the grazing demand; the livestock 

moves randomly on all rotational grazing patches, and 

• regional continuous grazing: assumed for FFT (regional continuous grazing 

with market scenario) and FFF (regional continuous grazing without 

market scenario). The grazing-led LAI change for each patch depends on 

the proportion of currently available LAI on the patch to the total available 

LAI of all the rotational grazing patches. This is affected by not only the 

total grazing demand in all the rotational grazing patches but also the total 

available forage in all the rotational grazing patches. 

Table 7.13: Combinations of different grazing strategies and institutional 

arrangements 

ID grouping moving marketing explanation 

TTT √ √ √ Current choice scenario (group rotational 
grazing scenario): parameter values exactly 
the same as the validation experiment 
(mean value of parameter values after 
calibration). Grazing groups are formed on 
rotational grazing patches, and the livestock 
can move from one sub-group to another 
sub-group during grass growth period; 
herders on the continuous grazing patches 
can rent/lease land from/to other 
continuous grazing herders. 

TTF √ √ × No market scenario: similar to TTT, but 
there is no leasing/renting behaviour among 
continuous grazing herders. 

TFF √ × × Group continuous grazing without market 
scenario: grazing groups are formed on 
rotational grazing patches, but livestock 
owned by the rotational grazing herders 
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cannot move from one land patch to 
another, and they continuously graze on the 
land in the group; there are no land market 
behaviours.  

FFT × × √ Regional continuous grazing with market 
scenario: herders can lease/rent land from 
other herders on continuous grazing lands; 
there are no grazing groups, and the 
livestock does not move among patches; 
herders on the continuous grazing lands can 
lease/rent lands. 

FTT × √ √ Random moving with market scenario: 
there are no grazing groups, but the 
livestock owned by rotational grazing 
herders can move randomly among all the 
rotational grazing patches; 

TFT √ × √ Group continuous grazing with market 
scenario, it is similar to TFF, but the herders 
on the continuous grazing lands can 
rent/lease lands from the other continuous 
grazing herders. 

FTF × √ × Random moving without market scenario: 
similar to FTT, but the herders on the 
continuous grazing lands can rent/lease 
lands from the other continuous grazing 
herders. 

FFF × × × Regional continuous grazing without 
market scenario: there are grazing groups 
on the rotational grazing patches, and also 
no leasing/renting behaviours of the herders 
on continuous grazing patches.   

Note: √ means scenario include that behaviour while × not 

These eight combinations form the policy scenarios based on the grazing strategies 

(continuous and rotational grazing) and institutional arrangement (land market) in 

Zeku. The most significant advantage of ABMGG is that it is able to gain a 

quantified assessment of possible grazing strategies and institutional arrangements. 

For each scenario, the model was run for 50 replicates to capture the uncertainties. 

Through different scenario analysis using ABMGG, the LAIs after grazing and 

number of degraded patches according to the Chinese Criteria of Grassland 

Degradation (Su et al., 2003) can be obtained. The results can be used as a policy 

tool to assess the impact of policies on the grassland grazing system, and to 

pinpoint the possible optimal one when keeping the other parameter values the 

same. The time scale is the year 2011 for the assessments.  

7.4.2 Results of scenario analysis  

The regional average (continuous and rotational grazing patches) of the LAI after 

grazing is shown in see Figure 7.16. The average LAIs after grazing under FFF 

(regional continuous grazing without market scenario) and FFT (regional 
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continuous grazing with market scenario) are the highest among all the scenarios; 

TFT (group continuous grazing with market scenario) and TFF (group continuous 

grazing without market scenario) give the lowest average LAIs after grazing 

among all the scenarios. The standard deviation of the 50 simulations for each 

scenario is too small to be presented in Figure 7.16, and does not significantly 

affect the statistical analysis later. 

 

Figure 7.16: The LAI after grazing for all the combinations of grazing 

strategies and institutional arrangements (see Table 7.13 for the meaning 

of the legend) 

 

Since the t-test can report the significant level of the difference, but is only suitable 

for two-sample comparisons; in order to know whether these differences among 

the eight scenarios are statically significant, Tukey's honest significance 

(TukeyHSD) test is employed. It was designed for multiple comparisons (more 

than three samples). The results of the TukeyHSD test are shown in Figure 7.17. 

All the differences in the LAI after grazing are relatively low, and the TukeyHSD 

test shows they are statistically the same (Figure 7.17), where the zero difference 

line (red vertical line) is within the range of all 99% confidence levels of the 

difference pairs (horizontal red line segments). This is similar to previous studies 

(Woodward et al., 1995b; Jerrentrup et al., 2015) that showed that different grazing 

strategies or institutional arrangements could not improve or decrease the 

productivity of the grassland (herein, the productivity of the grassland is 

represented by the LAI) significantly. 
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Figure 7.17: Results of the TurkeyHSD test for the average LAI after grazing 

under 8 scenarios 

 

Another important output of the ABMGG is the number of degraded patches, 

which are calculated for each time step for all 50 replicates. The mean values for 

each time step are plotted against the current choice scenario (Figure 7.18). The 

standard deviations of those 50 simulations, however, are too small to be presented 

in Figure 7.18, indicating that the stochastic uncertainties in the ABMGG have a 

limited effect on the results of scenario analysis. 

The boundary of the effects of these scenarios can be seen clearly in Figure 7.18. 

In Figure 7.18-A, FFT and FFF have the largest number of unaffected patches 

when the regional continuous grazing strategy exists, and the number of unaffected 

patches in FFT is a little bit larger than that of FFF due to the positive effect of the 

land market on the number of unaffected patches. This phenomenon can be seen 
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from FTT and FTF, TFT and TFF, TTT and TTF as well. The moving behaviour 

can positively affect the number of unaffected patches as seen from the comparison 

of TTF~TFF and TTT~TFT, where the number of unaffected patches on group 

rotational grazing patches is larger than that on the group continuous grazing 

patches; however, when such comparison extended to the regional scale, for 

example, FFT~FTT and FFF~FTF, an obvious negative effects of the moving 

behaviours on the number of unaffected patches appear, that the number of 

unaffected patches on the regional continuous grazing lands are much larger than 

that on the patches with livestock randomly moving in the region. All the scenarios 

are better performed compared with the group continuous grazing without market 

scenario (TFF) and group continuous grazing with market scenario (TFT) with 

regards to the number of unaffected patches.  

For the number of slightly degraded patches (Figure 7.18-B), FFT and FFF have a 

smaller number than that of the other scenarios, both of them involve the regional 

continuous grazing behaviour. While the number of slightly degraded patches of 

TTT and TTF is larger than that of FTT and FTF, but they are much smaller than 

that of TFT and TFF, which means the group rotational grazing strategy performed 

better than the group continuous grazing strategy, but worse than the regional 

continuous grazing strategy and regional randomly moving strategy. The 

institutional arrangement of the land market has a negative effect on the number of 

slightly degraded patches, which can be seen from FFF~FFT, TTT~TTF, 

FTF~FTT and TFF~TFT.  

Scenario FFF and FFT still have the smallest number of medium degraded patches 

among all the scenarios (Figure 7.18-C), and scenario TFF and TFT have the 

largest number of medium degraded patches, but there are some model results 

where a smaller number of medium degraded patches (compared with current 

choice scenario, TTT) emerge within the range of about 0~2000. This is more 

obvious for scenario FTF and FTT, under which lots of model outputs have a 

smaller number of medium degraded patches (also compared with current choice 

scenario, TTT) within the range about 0~4000; This indicates that the regional 

continuous grazing strategy has a negative effect on the number of medium 

degraded patches, while the group continuous grazing has a positive effect on the 

number of medium degraded patches. 

It is interesting to see almost all the scenarios have a smaller number of severely 

degraded patches than that of the current choice scenario except scenario FTT and 

FTF (Figure 7.18-D), indicating that the regional randomly moving strategy 

performs worse than that of the other strategies in terms of the number of severely 

degraded patches. FFT still has the smallest number of severely degraded patches 

for all the steps during the simulation. TFT and TFF have a little bit larger number 

of the severely degraded patches than that of the FFF and FFT, but there is an  

obvious smaller number of severely degraded patches than the current choice 

scenario.  
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Figure 7.18: Number of degraded patches of current choice scenario plotted 

against other scenarios simulated by the ABMGG  

 

Overall, the regional continuous grazing scenarios (FFF and FFT) produce the 

smallest average number of severely degraded patches and the largest number of 

unaffected patches. The land market could have a positive effect on the number of 

unaffected patches, but a negative effect on the number of slightly, medium and 

severely degraded patches, which indicates that appropriate land market strategy 

could improve the grassland status under grazing, as it produces fewer slightly, 

medium and severely degraded patches, and greater number of unaffected patches.  

Group continuous grazing scenarios (TFF and TFT) can produce a smaller number 

of severely degraded patches than that of the current choice scenario (TTT), but 

they also produce a higher number of the slightly and medium degraded patches, 

and a smaller number of unaffected patches than the current choice scenario (TTT). 

Regional randomly moving scenarios (FTT and FTF) produce the largest number 

of the severely degraded patches compared with all the other scenarios, but they 

also produce a smaller number of the slightly and medium degraded patches, and a 

greater number of unaffected patches compared with the current choice scenario.  
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To conclude, under current grazing intensity in Zeku, regional continuous grazing 

appears to be the best choice, as it can produce a greater number of unaffected 

patches and a smaller number of slightly, medium and severely degraded patches. 

However, such continuous grazing assumes that all the land patches are being 

grazed proportionally according to their available forage. This is a quite strong 

assumption that all the livestock are also distributed proportionally, according to 

the available forage of the land patches, which is quite difficult to manage in 

reality. One of the key parts in grassland management is to manage the 

heterogeneity (both grass resources and herbivores) of the grassland (Stewart and 

Pullin, 2008; Bonari et al., 2017). although regional continuous grazing scenario 

could reduce such heterogeneity, there are also other difficulties such as dealing 

with the local land tenure systems across villages in the whole region. 

Group continuous grazing is worse than the current choice with regard to the 

grassland status, indicating a rotational grazing strategy is more suitable than 

continuous grazing at the group level for Zeku. That is, compared with group 

continuous grazing, group rotational grazing with the land market (current choice 

scenario, TTT) is a reasonable choice, with regard to fewer slightly, medium and 

severely degraded patches, and more unaffected patches. This ‘reduces’ the spatial 

heterogeneity of forage distribution. Livestock on low productivity land with a 

relatively high stocking rate can move to high productivity land rather than 

continuously graze on one land. This also supports field experiments in north-

central Texas, USA, where evidence suggested that, for large paddocks, rotational 

grazing allowed recovery from, and reduced degradation caused by, patch 

overgrazing (Teague and Dowhower, 2003).  

Compared with standard rotational grazing, grasslands of intensive rotational 

grazing with a greater number of subdivisions have longer resting periods 

preserving storage biomass more close to maximum yield, and therefore can 

maintain higher stocking rates (Savory and Parsons, 1980; Barnes et al., 2008; 

Teague et al., 2011; Jakoby et al., 2014). The rotational grazing strategy increases 

income and improves rangeland conditions, but might demand high management 

costs (Beukes et al., 2002) and the risk of forage shortage if livestock stocking 

rates are too high (Hart et al., 1993).However, although rotational and continuous 

grazing strategies may have little effect on the frequency, severity or variation of 

grazing-led grass defoliation (Hart et al., 1993) and its botanical composition 

(Taylor, 1989) if the stocking rates remain the same. This research reports similar 

results (see Figure 7.16 and Figure 7.17), the degradation structure of the land 

would change with different grazing strategies and institutional arrangements 

(Figure 7.18). 

In addition, macro-level policies can affect the grassland system. Research on the 

institutional arrangements targeting grazing removal on grasslands, which have 

largely been implemented in Sanjiangyuan, China (Wang et al., 2010b; Lu et al., 

2015), suggests the policy run the risk of exacerbating both poverty and 

degradation (Yeh, 2009). Land market institutional arrangements can aggregate 

grazing land into larger units, which can better achieve an efficient allocation of 

grassland resources and economies of scale in livestock production (Gongbuzeren 

et al., 2016). The complex and comprehensive nature of the impact of different 

grazing strategies and institutional arrangements (Briske et al., 2015) on the 

ecological, socio-economic and climatic conditions (Campbell et al., 2006) of 
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grassland systems should be considered before selecting robust management 

strategies and institutional arrangement. 

Up to this point, the effects of different grazing management scenarios under 

current grazing intensities have been explored. Due to the relatively small 

stochastic uncertainties in the number of degraded patches (four types), only the 

mean values of the 50 replicants were presented in Figure 7.18, and this did not 

affect the results of scenario analysis. However, as it has been discussed in Section 

7.3.5, the parametric uncertainties can also affect the model outputs, and therefore, 

to assure the conclusions discusses in this section, a further analysis about the error 

propagation through parametric uncertainty in the parameter values is carried out. 

 

7.4.3 The parametric uncertainty of the scenario analysis 

The parametric uncertainty analysis here aims to explore whether the changes in 

parameter values could change the effect of grazing strategies and institutional 

arrangements reported in the last section. It is impossible to examine the number of 

degraded patches from all the possible parameter values after calibration (see Table 

7.8 for the ranges of parameter values), and instead, this thesis examines the two 

extreme situations: 5% and 95% percentile of the parameter values after 

calibration. 

Similar to the scenario analysis, for both of the parameter value set, the ABMGG is 

repeated 50 times for each of the scenarios. The average numbers of degraded 

patches (four types) for each time step are plotted against the current choice 

scenario (TTT). 

The results are shown in Figure 7.19 and Figure 7.20, where a similar pattern of 

the number of unaffected, slightly, medium and severely degraded patches among 

the scenarios are presented. This means the parametric uncertainty of the ABMGG 

does not fundamentally change the results of scenario analysis.  

However, only examining those two extreme parameter value sets does not ensure 

the scenario analysis can produce the same results for the other valid parameter 

value sets. Ideally, such examination should cover all the possible parameter value 

sets, but as it clarified at the start of this section, the aim is to explore whether the 

changes in parameter values could change the effect of grazing strategies and 

institutional arrangements on grassland status. Simply running the model with all 

the possible parameter value sets can only quantify the uncertainty for each 

scenario. Such uncertainties are not useful for the examination of the effect of 

parameter value change on the grassland degradation status among scenarios; as 

the uncertainties of the scenarios are based on all the possible parameter value sets, 

but the effect of the parameter values on the grassland status is based on one 

specific combination of the parameter values, which is one of the possible 

parameter value sets. The error range of the former would be much larger than that 

of the later, and therefore, this thesis chooses those two extreme parameter value 

sets as an example of the parametric uncertainty analysis for the scenario analysis.  
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Figure 7.19: Number of degraded patches of current choice scenario plotted 

against other scenarios simulated by the ABMGG with parameter values 

from 5% percentile of the parameter values after calibration 
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Figure 7.20: Number of degraded patches of current choice scenario plotted 

against other scenarios simulated by the ABMGG with parameter values 

from 95% percentile of the parameter values after calibration 

 

 

7.4.4 Input uncertainty of the scenario analysis 

As mentioned in Section 7.3.5, the last part of the uncertainty in the ABMGG is 

the input uncertainty. In Chapter 5, it was estimated that the relative error for the 

estimated average of the grazing-led LAI changes was about 10.26% for the year 

2011. This chapter used grazing-led LAI changes as an input for the livestock 

consumption demand. Such uncertainty in the grazing-led LAI changes can 

propagate through the modelling processes and affect the final output of the model. 

In addition, the grazing intensity is a key factor that affects grassland status. The 

input uncertainty in this section is also related to another important research 

question: how the grazing intensity could affect the grassland status. 

This section, therefore, aims to explore the effect of input uncertainty on the results 

of scenario analysis. In the ABMGG, and additional global parameter 

“overall_error” is designed to quantify such effects. It is a ratio of the input 

uncertainty of the grazing demand. Since the relative error for the estimated 

average of the grazing-led LAI changes was about 10.26%, this section, therefore, 
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sets the “overall_error” to -10.26% and 10.26% respectively to cover the lower and 

upper error boundary of the input data. The ABMGG is also running 50 times for 

each of them, and the average number of the degraded patches (four types) are 

plotted against that of the current choice scenario. Due to the quite small standard 

deviation of the 50 repeated simulations in the number of the degraded patches, 

they are not plotted out, and they do not affect the comparison results later. 

The results of the input uncertainty analysis are shown in Figure 7.21 and Figure 

7.22. Again, a quite similar pattern of the number of the degraded patches (four 

types) emerges (compared with the scenario analysis results presented in Section 

7.4.2, and also the parametric analysis results presented in Section 7.4.3) at both 

10.26% of the average underestimation error in input data and 10.26% of the 

average overestimation error in input data. One of the reasons for such a small 

change in the number of degraded patches caused by input uncertainty is that, as it 

has been reported in Chapter 6, the loss of grassland productivity caused by 

grazing was only 6.28% of the expected grassland productivity, and 10.26% of the 

uncertainty in the input data still results in a relatively small proportion of the 

grazing intensity change. Nevertheless, the results in Figure 7.21 and Figure 7.22 

indicate that the results of the scenario analysis in Section 7.4.2 are stable and 

robust to the uncertainty in input data. 
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Figure 7.21: Number of degraded patches of current choice scenario plotted 

against other scenarios simulated by the ABMGG with 10.26% of the 

average underestimation error in input data 

 

 

Figure 7.22: Number of degraded patches of current choice scenario plotted 

against other scenarios simulated by the ABMGG with 10.26% of the 

average overestimation error in input data 

 

7.5 Discussion 

Policy assessment is critical for successful policy development and 

implementation, especially in the complex grassland grazing system. However, 

assessment of such natural resource related policies has usually been neglected, 

and a substantial gap is emerging between theory and practice (Wallace et al., 

1995), which may lead to unsuccessful or harmful policy implementations (Sallis 

et al., 1998; Sarewitz et al., 2000). An example can be seen in the effect of long-

term exclusion policies, which have been implemented to improve grassland 

productivity, but in fact have caused the loss of plant cover and diversity in arid 
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regions (Oba et al., 2000). The same is true for institutional changes in Inner 

Mongolia, where market and protection policies have actually suppressed local 

incentives for grassland conservation (Robinson et al., 2017).  

Existing methods and models for the assessment of the coupled human and natural 

system have not provided an integrated evaluation which is sensitive to household 

decision-making, policy/institutional arrangements and natural constraints 

(Bellamy et al., 2001). The bottom-up agent-based model presented in this section 

accounts for the heterogeneity in grassland resources, individual herder’ decision-

making and plant-livestock interactions. After calibration with real grassland 

situations, the ABMGG has the capability to assess the effect of different policies 

on grassland status. This provides a new perspective through which to undertake 

policy assessment for grassland management. 

A novel agent-based model that has been integrated with near real-time remote 

sensing data for the assessment of various grazing policies has been presented. In 

this chapter, the ABMGG has been evaluated through model verification, sensitive 

analysis, calibration and validation, then different combinations of grazing 

strategies and institutional arrangements were assessed under various criteria. 

Although there are some drawbacks, the ABMGG is an ideal methodology for the 

grassland grazing system that is characterized by individual interactions and 

contains hierarchical grazing strategies and institutional arrangements. There were 

eight combinations of grazing strategies and institutional arrangements. The model 

was able to estimate the number of degraded patches based on the individual level 

interactions under those combinations.  

It was found that different grazing management scenarios have no effect on the 

LAI after grazing; that is, different grazing management scenarios could not 

significantly improve or decrease grassland LAI. This is similar to findings from 

previous studies (Woodward et al., 1995b; Jerrentrup et al., 2015), suggesting that 

grazing intensity, rather than grazing strategy, is the main factor in changes in 

grassland productivity. Importantly, however, the grassland status was different 

under those scenarios. Although the regional continuous grazing scenario 

performed best, with the more unaffected patches and fewer slightly, medium and 

severely degraded patches, compared to the other scenarios, the proportionally 

spatial distribution assumption of the livestock grazing intensity to the available 

forage on the patches in regional continuous grazing scenario could make it quite 

difficult to be implemented, due to potentially high managemental cost. Compared 

to the group continuous grazing scenario and regional randomly moving scenario, 

the group rotational grazing (current choice scenario) was a reasonable grazing 

management implementation in Zeku; it is a group level management strategy, 

which involves subdividing of the land patches in the groups.  

Although spatial pattern analysis or spatial statistics could help the researchers to 

reveal different information embedded in the results, due to the fact that the 

unaffected patches will only occur on the un-grazed land patches in the simulation, 

and the slightly, medium and severely degraded patches will only happen on the 

continuous or rotational grazing patches, whose topological locations play an 

important role in the spatial pattern of the grassland status; in addition, there are 46 

time steps during the year, and they have different spatial distribution of the 

grassland degradation. To analyse the time series changes of the spatial distribution 

of the grassland degradation during the year is quite difficult and unnecessary as 
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this section seeks to quantify the overall effect of each grassland management 

scenario. Instead, this section uses the occurrence frequency of the degradation 

during the year for each land patch to represent the spatial distribution of the 

grassland status. The spatial difference can be interpreted directly from those 

frequency maps. In addition, this section also illustrated three components of the 

uncertainty in the ABMGG. The results of error propagation and uncertainty 

analysis in this section showed the reliability of the ABMGG, which was robust 

and accurate for the number of unaffected, medium and severely degraded patches, 

but it overestimated the number of slightly degraded patches due to lack of patch-

specific information on the location of grazing group and sub-groups, as well as 

the grazing behaviour of the livestock.  

Validation of the agent-based model is one of the most difficult problems during 

the modelling process (Rand et al., 2003). The behaviour and structure generated 

by agents interacting can be very hard to predict (Bankes, 2002). Firstly, agents 

making decisions based on pre-defined rules rather than gradual monotonic data 

series can lead to the modelling results having extreme sensitivity to initial settings 

(both within agents and their environment). Secondly, due to the stochasticity and 

uncertainty of agents’ decision-making and interactions, one may have a wide 

spectrum of emergence end results when running the model many times. In both 

cases, here, this section has good pixel scale constraining LAI data with which to 

limit the model and calibrate it accurately. Given this, indicative “what if” 

assessment can be done by changing the grazing strategies and institutional 

arrangements.  

One of the key difficulties in agent-based modelling of policy assessment is 

effective calibration. ABMs are usually used to simulate non-linear dynamic 

systems with different initial settings (Waldrop, 1993). Effective calibration 

requires a wealth of high-quality data, but, unfortunately, empirical data which 

describes the behaviours of the agents is usually scarce (Windrum et al., 2007). 

Therefore, the calibration of ABM is often considered a major point of weakness 

with ABM that needs to be improved (Phan, 2007; Crooks et al., 2008). In 

addition, agent-based models for the human and natural systems often involve 

numerous parameters and therefore calibration requires the searching of extremely 

large parameter spaces; even on the most powerful computing systems available, 

the time requirements can be unacceptable (Malleson, 2010). In this paper, the 

Approximate Bayesian Computing (ABC) calibration method was used with the 

assistance of Latin Hypercube Sampling (LHS), which substantially decreased the 

time cost of calibration. Nevertheless, it still took 10.5 days for 20000 model runs 

(Windows 10 Education; Inter Core i7-4710MQ @ 2.5GHz; 8 GB RAM, 64-bit 

Operating System). In ABC calibration, a larger sample size means higher 

accuracy (van der Vaart et al., 2015), there certainly exists some calibration 

schema or methods yet to be developed to improve the calibration efficiency.  
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Chapter 8 Conclusions 

8.1 Introduction 

The research in this thesis is theoretically and methodologically innovative. There 

are only limited published researches that assess different grazing management 

approaches based on natural grass growth under grazing and macro-grazing 

strategies, especially the spatial explicitly assessment. The main difficulty is, in 

essence, the lack of patch-specific grazing and management information. Hitherto, 

it has been regarded as almost impossible to collect this data for each land patch at 

a regional or global scale over a long time period; and this is especially true with 

regards to the status of grassland before and after grazing. Extracting such 

information is the basis for any further research, and it is the biggest 

methodological challenge for researchers. In addition, how to build a model that 

reflects the real-world situation, and to integrate all of the necessary components 

into the model, has been a theoretical challenge for grassland grazing modelling. 

The grassland grazing system is a complex system. The complexities consist of the 

natural growth of grass, the population dynamics of the livestock, the herbivore-

vegetation interactions and the constraints of herders’ grazing strategies and wider 

institutional arrangements. To what degree these complexities should be included 

in the model should be considered as the first priority, but in turn, they are highly 

dependent on data availability. 

This chapter will sum up the main research findings and highlight the extent to 

which the research aim and objectives have been met. Then the contributions of 

this research will be listed. After this, a critique of the research methods and the 

limitations of this project will be discussed thoroughly, based on which some 

recommendations for future work will be summarised. Finally, this chapter ends 

with some concluding remarks. 

8.2 A summary of the research findings 

The overall aim of this research was to establish an agent-based model that 

incorporated grazing information derived from remote sensing data in Zeku, with 

the purpose of assessing various grassland management scenarios. To accomplish 

this aim, five research objectives needed to be accomplished. In this section, a 

discussion about the extent to which they have been accomplished by the main 

body of the research will be carried out. 

Objective 1: review, discuss and critique the grassland grazing literature and 

analyse the current theories and system complexities in the grazing system in 

order to identify those that should be employed in the model 

This objective was accomplished in Chapter 2 through a review of the literature on 

modelling the complexities as well as the current modelling paradigms used to 

research grassland grazing systems. The grassland grazing system is not only 

affected by livestock grazing, which may be indirectly determined by the grazing 

strategies and institutional arrangements, but also by the local climate, radiation 

conditions and even extreme events (for example, prolonged snow). To model such 
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a complex system, the overall modelling paradigm will need a variety of different 

modelling theories. Chapter 2, therefore, demonstrated that it is extremely 

important to understand that the grassland grazing system is a complex, dynamic 

and unstable system.  

Before reconciling the equilibrium and non-equilibrium paradigms, Chapter 2 

reviewed the grassland modelling literature with the purpose of determining what 

kinds of complexities were indispensable in order to describe the individual-level 

dynamics of the grazing system. With respect to individual grassland patches, 

research pointed to the importance of the interaction between vegetation and 

herbivores, as it is the important lower-level factor that changes the growth of 

grass. The spatiotemporal heterogeneity of the vegetation and distribution of 

herbivores were also found to have an effect through the selectivity of herbivores 

and floristic composition of grasslands. They were mainly determined by the local 

natural conditions, but in the livestock grazing dominated regions, the dynamic of 

the livestock population was also controlled by the herders’ willingness and power 

to gain from grassland and the social-economic demands of livestock production. 

Chapter 2 and Chapter 3 also reviewed the grazing strategies and institutional 

arrangements that are used to manage grassland grazing, which would further 

affect the status of grassland by changing the grazing intensities. Those 

complexities, along with grassland grazing modelling paradigms, form the basic 

theory on which the model is based. 

Objective 2: review, discuss and critique the modelling techniques and data 

availability for the grassland grazing system to highlight the necessity of the 

techniques used for this research and to guide the model development process 

One of the main research findings in this thesis was that the heterogeneity of 

individual forage and livestock distributions, vegetation-herbivore interactions and 

grazing management strategies should be considered when assessing the overall 

status of grassland in grazing systems. Also, all the complexities that were 

discussed in Chapter 2 are based on the individual interactions among herders, 

livestock and the grasslands and, as such, should not be modelled by a constant 

fixed rate. Chapter 2 introduced empirical and process-based modelling techniques 

that could, to some extent, overcome some of those problems but it was found that 

they were not able to fully account for the mechanisms (herders’ grazing strategies 

and institutional arrangements) behind the individual vegetation-herbivore 

interactions. 

Agent-based modelling proved to be the most suitable way to deal with these 

problems, and the few published agent-based grassland grazing models were 

critiqued. The use of agent-based modelling in grazing system analysis appeared in 

studies of animals’ behaviours (Topping et al., 2003; Dumont and Hill, 2004b), but 

they were typically simple rule-based, spatially explicit models that did not 

consider the interactions between livestock and vegetation. Milner (2006) 

improved this and built the first agent-based grazing model for grassland in 

Kazakhstan, which included both household decision-making and vegetation-

herbivore interactions. However, the effect of different grazing strategies and 

institutional arrangements was ignored (Milner-Gulland et al., 2006). Wang (2013) 

further enriched the field by incorporating social mechanisms and institutional 

arrangements in their study of Mongolian grasslands, but the absence of the real 

productivity and livestock grazing data in the model make the results less 
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convincing (Wang et al., 2013). The effect of grazing has usually been ignored or 

simply represented by a fixed rate for all patches. This becomes the main 

impediment for further individual level grassland grazing modelling. Janssen et al. 

(2000) have built an adaptive agent model, but like many other ABMs in 

modelling grassland grazing systems, the grazing intensity data used in the 

research was actually the regional average intensity (at property scale). Such data 

used in the model led to the ignorance of the spatial heterogeneity of the grassland 

resource, which could produce a false expression of the plant-herbivore interaction 

due to the different grazing intensities in the different places of the property. Yet 

for this reason, the spatial distribution patterns of the vegetation have not been 

reported in many ABMs of the grassland grazing systems. 

Chapter 2 also elaborated the advantage of agent-based models in modelling 

vegetation-herbivore interactions and herders’ decision-making. Along with 

remote sensing (one of the key research findings in this thesis, see next), agent-

based modelling is the most suitable technique for the further assessment of 

grassland status based on individual interactions and decision-making.  

Objective 3: Develop a new method to derive information about grass growth 

and the effect of grazing from remote sensing data 

Remote sensing, as a widely used grassland monitoring technique, has been used in 

quantifying grazing intensities (Kawamura et al., 2005) and the impact of grazing 

on pasture biophysical properties (Numata et al., 2007; Eddy et al., 2017), but 

unfortunately, all the grazing-related information has previously been aggregated 

to the regional level as a whole for further analysis. LI et al. (2007) and Gómez 

(2017) used pixel-based analysis of grazing intensities based on vegetation index 

(VI) fluctuations caused by grazing (Gómez et al., 2017b; Li et al., 2017), but 

again, did not attempt to estimate the amount of the grass that was eaten by 

livestock. On the other hand, the current reprocessing methods for remote sensing 

data were designed to smooth the outputs through spatial or temporal averaging 

techniques. This makes them unsuitable for grazing information extraction, where 

grazing-led unusual fluctuations need to be retained during estimation. Sakamoto 

(2016) used the Normalized Difference Vegetation Index (NDVI) data as a source 

of an indicator of the grass forage distribution, and applied an agent-based model 

to simulate the behaviours of the pastoralists, in order to explore the dynamics of 

vegetation and livestock. However, the model results have not been validated due 

to the lack of data, and the ad hoc assumptions of the behaviours of the pastoralists 

(for example, grazing range, frequency and carrying capacity) make it difficult to 

be applied to new conditions. Chapter 2 and Chapter 5, therefore, explained the 

feasibility of remote sensing in the more spatiotemporal specified extraction of 

grazing information. No other techniques that can derive the grazing information 

for each grassland patch are as convenient as remote sensing related techniques.  

A novel grass growth function has been derived with consideration of both plant 

senescence and grazing-led defoliation based on the conventional exponential 

growth function. It is a year-round grass growth under grazing function rather than 

a predictive plant-livestock interaction function. This new growth-grazing function 

was not used in isolation to estimate the growth of grass under grazing; it was 

accompanied by a grazing-led LAI changes estimation algorithm, which was used 

to estimate the values of parameters in the new growth function. Using this new 

growth function, it was possible to account for a large degree of the complexities 
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that Chapter 2 has pointed to. By filling the “gaps” of MODIS LAI data caused by 

clouds or uncertainties within the MODIS algorithm, two products were produced: 

improved LAI (LAI after grazing) and expected LAI (LAI before grazing). The 

grazing frequencies and grazing types were also identified. The validation of these 

results consisted of two parts: Chapter 5 reviewed the accuracy of estimated 

grazing-led LAI changes through an LUE-VPD model. Chapter 6 has a detailed 

description of the validation of the improved LAI by comparison with the 

statistical data. The validation results showed a great spatiotemporal consistency 

with both in-situ data and statistical data and, therefore, this new growth function 

can be used in deriving grazing information based on remote sensing data. This is a 

novel contribution to the field. 

Objective 4: Design and build an agent-based model that can account for the 

different grazing strategies and institutional arrangements and use remote 

sensing data as an input 

Chapter 4 translated the complexities reviewed in Chapter 2 into a prototype model 

based on the grazing profiles of grazing system in Zeku. Chapter 3 elucidated the 

livestock grazing and grassland distribution profiles, land tenure system and three 

grazing strategies and two main institutional arrangements in the case study area. 

These features of the grassland grazing system in Zeku provided a modelling basis 

for conceptualising the key components of the prototype model. Chapter 4 began 

with an explanation of how different modelling paradigms and system 

complexities could be represented in a conceptual model. Three key features of the 

environment were represented through available forage, seasonal forage growth 

rate and degraded status. Chapter 4 also showed three conceptual models: a 

sedentary grazing model, land market model and EAHEC model. The herders in 

those three models were differentiated by the grazing strategies and institutional 

arrangements. The behaviours of agents change according to their initial decision-

making when degradation occurs. To compare the output performance of these 

three grazing systems, Chapter 4 concluded with an assessment of the livestock 

and forage dynamics, net income of herders and number of degraded patches in 

these three conceptual models. 

Building upon these three conceptual models in Chapter 4 and the grazing 

information derived from remote sensing in Chapter 5, Chapter 7 developed an 

agent-based grassland grazing model (ABMGG) which was parameterized with 

real grazing and grassland forage data. The key parameter in the ABMGG was the 

leaf area index (LAI). The overall purpose of Chapter 5 was to derive the grazing-

led LAI changes based on the remaining LAI (improved LAI), but the key issue for 

Chapter 7 was calibration: how to generate similar grazing patterns for each pixel 

as compared to the real grazing patterns (as remote sensing observed grazing-led 

LAI changes) through the full-growth LAI. For the un-grazed patches, the grazing 

pattern produced by ABMGG would be exactly the same as we could observe from 

the improved LAI (there are no grazing activities happening for un-grazed patches 

in ABMGG). For continuous grazing patches, the simulated grazing-led LAI 

changes were the same as those derived from remote sensing data, as the time, 

frequency and quantity of grazing-led LAI changes were the same. However, for 

rotational grazing patches, the difficulty was how to form the grazing group 

reasonably so that it matched up with the grazing frequencies and grazing 

quantities for each grassland patch. This required a piece of detailed survey 

information on the grazing profiles and grazing groups. Chapter 3 reviewed the 
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results of the survey in 2012 and 2016 with respect to grassland productivity, 

livestock and the grazing group profiles of Zeku. Then Chapter 7 technically 

documented the final model. The parameterized ABMGG in Chapter 7 was able to 

incorporate the paradigms and complexities discussed in Chapter 2 and later 

implemented in Chapter 4, and formed a solution that is able to account for the 

dynamics of the grassland grazing system based on individual decision-making and 

grazing management strategies. 

Objective 5: Assess different management scenarios after making sure the 

model has the ability to simulate the grassland status under grazing based on 

current grazing strategies and institutional arrangements 

Before carrying out an assessment, an essential part of the modelling endeavour is 

to make sure the model behaved as it was expected to. That is, the design, the 

entities, processes, and associated constraints and assumptions are implemented 

correctly. This is the critical step for any complicated model that involves 

numerous parameters, which could potentially or indirectly affect model outputs. 

Chapter 7 evaluated ABMGG through systematic testing and validation with the 

real-world data from Zeku. The evaluation began with a verification to track the 

key outputs of the models, along with the sensitivity analysis of the parameters, 

and was able to determine that the ABMGG was able to produce acceptable results 

in simulating real group grazing behaviours. The rest of the evaluation work was 

then to calibrate ABMGG to the remote sensing observed grazing patterns by an 

Approximate Bayesian Computing schema. The validation of ABMGG was to see 

whether the calibrated model was over-fitted to the data; this thesis used R2, t-test 

and RMSE to quantify the overall model accuracy, where an obvious improvement 

of the model accuracy could be seen when comparing the model outputs before 

calibration and after calibration. In addition, the stochastic, parametric and input 

uncertainty of the ABMGG were analysis by repeated simulation, calibration with 

Approximate Bayesian Computing (ABC) method and numerical simulation, and 

they have been extensively discussed in Chapter 7 to evaluate the accuracy and 

credibility of the ABMGG.  

To fully accomplish the final aim of this thesis, the various grazing management 

scenarios that were tested with the model were discussed in Chapter 7. The most 

significant advantage of agent-based modelling is that it is able to gain a quantified 

assessment of possible grazing strategies and institutional arrangements and to 

pinpoint the possible optimal strategy when keeping other parameter values the 

same. There were eight combinations of grazing strategies and institutional 

arrangements. The model was able to estimate the number of degraded patches 

based on the individual level interactions under those combinations. This analysis 

has not considered the effect of scales of the economy which may further decrease 

the number of severely degraded patches by with good grassland management. It 

was found that different grazing management scenarios could not significantly 

improve or decrease grassland productivity. That is, different grazing management 

scenarios had no effect on the average LAI after grazing. This is to be expected as 

animals always have the same energy requirements, regardless of the quality of 

patches, and therefore, the total amount of LAI devoured would be the same. 

However, the assessments highlighted that the rotational group grazing was a 

reasonable choice in terms of the obvious smaller number of degraded patches; 

although the regional continuous grazing scenario produced the smallest number of 

degraded patches, the assumption of the same percentage of available forage being 
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grazed was quite difficult to be implemented in reality. These results can be used 

as a policy tool to assess the impact of policies on the grassland grazing system.  

8.3 Limitations of the research  

Although the five research objectives have been achieved through the employment 

of the new growth function, the development of the model and its application in 

the scenario analysis of grazing management, there are still some limitations to this 

research. 

The effect of cell size 

The spatial resolution of the LAI data used in this research is 463×463 m2. As was 

mentioned in Chapter 7, a rotational grazing patch at a higher spatial resolution 

may appear as a continuous grazing pattern at a lower spatial resolution patch size, 

for example where the sub-division of a farm cannot be observed from remote 

sensing. That is, although the pixels are rotational grazing pixels in reality, they 

still have the possibility of being classified into continuous grazing pixels from a 

remote sensing perspective if the spatial resolution is lower than the farm size. 

Given the fact that the majority of the farm sizes in Zeku are smaller than 0.33 

km2, only spatial resolutions of remote sensing smaller than 0.33 km2 can be used 

for rotational grazing pixel identification and grazed LAI estimation. This is the 

main reason why 1 km×1 km MODIS LAI was not used in this thesis.  

At the time of writing, the highest spatial resolution LAI data are the 463m 

MODIS LAI version 6 products, which are about 0.21 km2. This is similar to the 

size of the household average summer farm size (0.20 km2); therefore, the sub-

divisions of the summer pasture of the household cannot be observed from remote 

sensing. However, when grazing groups are formed, the group grazing grassland 

size would be much larger than the spatial resolution of the MODIS LAI data. Sub-

division of the group grazing grassland for rotational use can be identified from 

remote sensing. Unfortunately, the higher spatial resolution LAI data have not 

been published, and there is no ideal method that can be used to identify the 

household level rotational grazing patterns.  

In addition, the cell size will further affect the assimilation of the survey and 

statistical data at the patch unit. Here, this includes the radius of the grazing group, 

the number of participants in the group, as well as the spatial resolution of climatic 

and radiation data. A mismatch of the spatial resolution is a common problem in 

agent-based modelling when incorporating pixel-level remote sensing data and 

regional or community level statistical data. How to ensure the change of spatial 

resolution does not induce further uncertainties into the model is the next challenge 

for modellers.  

Data scarcity and uncertainty 

Chapter 4 has presented an advanced agent-based model of grassland grazing, that 

accounts for the four main aspects that drive the system. However, the data for the 

parameter parameterizations were still insufficient, and uncertainties still exist in 

some key parameter values, as discussed in Chapter 7. In this thesis, there are three 

types of data related to those problems: 1) household social-economic data, which 

includes: the price of selling or buying livestock; the kinship of the herders (Wang 

et al., 2013); the cost of renting land; the cost of joining or leaving grazing groups; 
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and the boundary of the summer/winter pastures for each household and grazing 

group. Lacking that information, the social-economic outcomes cannot emerge 

from the individuals’ behaviours, which is why the social-economic performance 

of the grazing system has not been included. 2) species-specified biophysical data, 

which involves the value for potential light use efficiency (𝜀𝑚𝑎𝑥), specified leaf 

area (SLA) and the leaf-root ratio, which are all highly dependent on the vegetation 

types and could further affect the accuracy of Net Primary Productivity (NPP) 

estimation. The use of an empirical value for a broader vegetation type will 

introduce uncertainty. 3) high resolution climatic and Photosynthetic Active 

Radiation (PAR) monitoring data, which consist of the daily temperature data and 

ground measured PAR data. When lower spatial resolution input data have been 

used for a higher spatial resolution model, the spatial heterogeneity of the model is 

affected reducing the model accuracy. The modelling work therefore needs to be 

able to cope with such scarce or uncertain data by dynamic data assimilation or 

calibration (see next—the calibration schema). 

In Chapter 5, the uncertainty of the grazing-led LAI changes was quantified by an 

extreme situation analysis. Also, the uncertainty of the improved LAI estimated in 

Chapter 5 can propagate through a Light Use Efficiency with Vegetation 

Photosynthesis Model (LUE-VPM) in Chapter 6. The error boundary of the Net 

Primary Productivity simulated by the LUE-VPM was quantified considering the 

error range of the improved LAI estimated in Chapter 5. However, as it has been 

discussed in Section 6.7 of Chapter 6, the other sources of uncertainties in the 

parameters and input datasets (for example, the uncertainty of daily temperature 

data) used in the LUE-VPM were not given. Obtaining such uncertainty 

information would require a collaborative scientific effort from numerous different 

research communities, especially when the model is used in a new condition that 

the error range of the parameter values would be different.  

 

The calibration schema 

One of the key difficulties in agent-based modelling is effective calibration. ABMs 

are usually used to simulate non-linear dynamic systems with different initial 

settings (Waldrop, 1993). Effective calibration requires a wealth of high-quality 

data, but unfortunately, empirical data which describes the behaviours of agents is 

always scarce (Windrum et al., 2007). Therefore, the calibration of ABM is often 

considered a major weakness of ABM that needs to be improved (Phan, 2007; 

Crooks et al., 2008). In addition, agent-based models for human and natural 

systems often involves numerous parameters and therefore calibration requires the 

searching of extremely large parameter spaces; even on the most powerful 

computing systems available, the time requirements can be unacceptable 

(Malleson, 2010). In this thesis, the Approximate Bayesian Computing (ABC) 

calibration method was used with the assistance of Latin Hypercube Sampling 

(LHS), which substantially decreases the time cost of calibration. Nevertheless, it 

still took 11 days for just 20000 model runs3. In ABC calibration, a larger sample 

size means higher accuracy (van der Vaart et al., 2015); there certainly exists some 

                                                 
3 The machine used in this thesis is: Windows 10 Education; Inter Core i7-4710MQ @ 2.5 

GHz; 8 GB RAM, 64-bit Operating System. 
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calibration schema or methods yet to be developed to improve the calibration 

efficiency.  

8.4 Recommendations for Future Work 

The ABMGG can be further developed in several ways to improve upon the 

limitations discussed above. One means of improvement would be through 

integration with other models such as climate models, solar radiation models, 

vegetation distribution models, productivity models and even economic models. 

However, such integration should be followed with caution because the “more is 

different” (Anderson, 1972). The more detailed the components in the model, the 

less relevant the science behind the overly detailed structure of the model 

(Anderson, 1972). In addition, replacing simple abstracted parameters in the 

current ABMGG model with more complex sub-models would dramatically 

increase the complexity of the overall model, which would surely be more 

computationally expensive to evaluate. Therefore, the more simple and feasible 

ways to extend the current work in the future would be:  

Firstly, a predictable growth function under grazing should be developed based on 

the new growth function introduced in this thesis. That is, the long-term effect of 

grazing on the growth of grass should be considered (a multi-year’ growth function 

rather than current year-round growth function). This could improve the usefulness 

of the new growth function in the field of grassland grazing management, but this 

also requires extensive comparison experiments in different grassland types.  

Secondly, this research specifically calls for studies on social-economic data 

assimilation (Anderson and Kellam, 1992) in agent-based modelling, as human’s 

decision-making depends on his/her social-economic status and even on the 

cultural or psychological difference, which all change with time and condition. The 

spatial and temporal scale of the social-economic or psychological data can be 

considered dynamically.  

Thirdly, one direction might be to create the individual herder agents rather than 

abstract herders for each grassland patch. The behaviours of agents in this thesis 

are estimated from the regional aggregated statistical properties, but this could hide 

the influence of kinship, community and the individual interactions among herders, 

which are important elements of the complexities of the grazing system. Another 

contrary direction might be the scaling up the agents and patches and embedding 

them in a broader context, for example, to explore the effect of grazing and grazing 

management practices/policies on the landscape scale ecosystem functions. 

Fourthly, the bilateral feedbacks of vegetation and the livestock under grazing was 

not considered in the ABMGG. However, such bilateral feedbacks may change the 

long-term dynamics of both vegetation and the herbivores. In addition, the 

decision-making may also have multiple feedbacks on the vegetation, herbivore 

and the other agents. The bilateral and multiple feedbacks should, therefore, be 

considered in future work. 

Fifthly, the composition of vegetation on the grassland needs to be considered. The 

livestock has the selective behaviour of the grass species, and the favourite species 

on the land may be more frequently visited by the livestock. In addition, the 

vegetation composition is also determined by the natural conditions as well as the 
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grazing management practices. It is an evolution and co-evolution process among 

vegetation, herbivore, natural conditions and the human. 

Seventhly, the multi-spatial and multi-temporal and multi-source remote sensing 

data can be used to derive the grazing information in more detail. For example, the 

vegetation structure and composition (Wachendorf et al., 2018)and the livestock 

moving behaviours (Steenweg et al., 2017). In addition, there are researchers using 

the Unmanned Aerial Vehicle (UAV) to map the heterogeneity of the grazing 

pasture (Kawamura et al., 2016), which provides a new source of the data at high 

spatial and temporal resolution.  

Sixthly, the ABMGG can be improved by incorporating the learning behaviours of 

the agents. That is, the model can evolve by changing the grazing strategies and 

institutional arrangements and producing the best combinations of grassland 

management practice dynamically. 

Eighthly, the ABMGG can be applied to different places if the information on local 

management practices is available, and more case studies should be carried out in 

different regions and/or under different grazing management strategies where the 

model parameters could be further validated. The scenarios are common practice in 

grassland management practices. More cross sites analysis should be carried out in 

the future to evaluate the flexibility of the model.  

In addition, the error propagation and uncertainty analysis are essential to make 

sure the model is reliable. For agent-based modelling, the errors from individual 

agents or the parameters could propagate through multiple level interactions, and 

the final outputs of the models may have quite large uncertainties that even reach 

the unacceptable level. In addition, the effect of errors from individuals, 

parameters, input data or the model structure may suppress or diminish the effect 

of each other, the overall effect of the all the errors may be smaller than the 

individual ones. Current methods for the uncertainty analysis are mainly 

computational, e.g. sampling from the parameter space to see how the results 

change with the parameter values. The consideration of spatial and temporal 

heterogeneity of the entities and their relations in the ABMs should be considered 

in future work. However, as mentioned earlier in this chapter, the full uncertainty 

analysis of the model needs a collaborative scientific effort from numerous 

different research communities, especially when the parameter values are highly 

site-specific or scale-dependent.  

8.5 Concluding Remarks 

The contribution of this research to grassland grazing management can be 

summarised through three main components: a new growth function under grazing 

that considers both growth and senescence of grass with an estimation algorithm; a 

LUE-VMP model to estimate NPP for improved LAI validation; a novel agent-

based model that has been integrated with near real-time remote sensing data for 

the assessment of various grazing management strategies. Although there are some 

drawbacks, agent-based modelling is an excellent methodology for grassland 

grazing systems that are characterized by individual interactions and contain 

hierarchical grazing strategies and institutional arrangements. It is suggested that 

the ABMGG can be further developed by improving the data quality and 

considering of vegetation composition and evolution/co-evolution with livestock, 
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human and the environment. Also, it is important to address the error propagation 

and uncertainty of ABM. In addition, by involving multi-spatial and multi-

temporal and multi-source, adapting and learning in the grazing strategies and 

institutional arrangements, the ABMGG would be able to produce the optimal 

grazing management practices, which are important tools for the sustainable 

development of the grazing system for both herders and policymakers. 
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