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ABSTRACT 

Various problems regarding the behaviour of fixed bed catalytic 

reactors involving highly exothermic reactions have been studied in 

relation to optimal design and control. 

Steady and unsteady state mathematical models of various degrees 

of complexity have been used from those considering axial and radial 

diffusion to the simple one dimensional representation neglecting both 

mechanisms. Since these models would be used repeatedly, they must be 

relatively simply solved by a computer in a reasonable time and without 

loss of detail necessary to take full advantage of control or 

optimization processes. 

Orthogonal collocation has proved a very efficient method of solution 

for solution of the radial diffusion and axial diffusion models. It has 

been shown that in the former case, an optimal distribution of the 

collocation points in the radial direction requires the minimum number 

of points. Double collocation, under certain conditions, is an efficient 

integration procedure both for steady and unsteady state models. In the 

case of the axial diffusion model, some orthogonal polynomials converge 

faster than others depending on the profiles to be approximated. 

It has been recognised that further reduction in computing time is 

usually coupled with a reduction in model dimensionality. A model 

reduction technique has been used to lump the radial profiles in the 

unsteady state radial diffusion model. This lumped model has the ability 

to regenerate the radial profiles from simple algebraic expressionswith 

reasonable accuracy compared with the distributed parameter system. 

Studies on the transient behaviour of the reactor have indicated 

that the major dynamic factor is the solid heat capacitance and that the 

inlet temperature and concentration may be manipulated to effectively 

control the reactor in a multi-variable mode. Consideration has also 

been given to the response of the reactor to sinusoidal and damped 
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sinusoidal perturbations at the inlet. It has been found that for 

certain frequencies severe hot spots may be formed over a part of the 

radial profiles before a safe quasi-stationary state is reached. A 

detailed examination of this behaviour has shown that the differences in 

the speeds of propagation of the concentration and temperature waves 

along the reactor were significant factors in determining the resulting 

behaviour. 

A steady state axial diffusion model in which the radial variation 

in temperature is approximated by a parabolic radial temperature profile 

has been considered. The limitations of this approximation have been 

identified and treated by the model reduction technique. Thus the model 

developed gives adequate representation of axial and radial dispersion 

processes. Axial dispersion becomes important if the axial temperature 

and concentration gradients increase beyond a certain value. This value 

may be calculated from the axial profiles of the one dimensional model 

which neglects axial diffusion. 

Consideration has been given to a dynamic model based on the above 

and the collocation and the reduction technique used to solve the model. 

The solution time is reduced to reasonable levels making, it suitable for 

detailed studies. Including the axial dispersion in the dynamic model 

did not alter the qualitative behaviour of the reactor. 

The exceptional cases are those related to parametric sensitivity 

or temperature runaway studies. Instability arising from parametric 

sensitivity or multiple states in either the radial or axial diffusion 

models has been considered. The criteria developed indicate that if 

instability is to occur in the reactor, it is likely to originate from the 

solid phase regardless of the mechanisms considered in the fluid. Thus, 

conditions of catalyst particle stability are essential in establishing 

local stability of the reactor. 
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CHAPTER 1 

INTRODUCTION UU) RESEARCH OBJECTIVES 

In recent years an increasing amount of effort has been expended 

in attempting to simulate chemical processes. Simulation has been made 

possible by the wider availability of electronic computers and the work 

has been stimulated by the ever-increasing cost of experimental work, 

which is time consuming and often gives no real insight into the 

behaviour of the process being examined. This is particularly true of 

the complex systems when strong interaction occurs between some of the 

physical and/or chemical phenomena. Such interaction makes optimization 

of the process virtually impossible using experimental data only, and 

satisfactory control strategies must be developed largely by trial and 

error. 

Mathematical modelling, however, is relatively inexpensive and it 

is possible to perform many simulations in a relatively short time. 

Moreover, it is necessary to examine at least some of the underlying 

effects in the process, and this enables a greater understanding of the 

system to be developed. In general, the more complex the process, the 

more benefits are potentially available from a successful mathematical 

model. 

It is unlikely that many processes can be completely and accurately 

modelled without any experimental work being required. Whenever a 

simple mathematical model is available, however, it is possible to use 

calculations from the model to determine the best way of tackling the 

experimental programme so that the maximum benefit can be obtained from 

the minimum amount of practical work. 

If a mathematical model of a process can be developed which is 

capable of solution in a very short time, then it may be possible to 
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incorporate it into a control strategy designed to improve the 

profitability of the system as well as using it as a basis for some 

optimization procedure at the design stage. In general, the initial 

models of processes are unsuited to this type of use, since they are 

primarily designed to provide information about the way the system works 

and to examine the dominant processes involved. Once this has been done, 

it may be possible to use the results to simplify the model to a stage 

where it can be solved rapidly enough to meet the requirements necessary 

for on-line control'or optimization. Such model reduction has been 

attempted in a limited way and on steady state processes only. Since 

these reduced models are primarily designed to be put to practical use, 

it is essential that they are based on realistic and reliable mechanistic 

models of the process if they are to have the requisite flexibility. The 

wider use of reduced models will, therefore, tend to increase the number 

of complex models which are necessary, rather than reduce the demand for 

them. 

In the past, chemical reaction engineering has posed considerable 

problems in both design and operation and has received a corresponding 

amount of attention in the development of mathematical modelling techniques. 

In particular, heterogeneous systems such as the packed bed catalytic 

reactor has received much of the attention since they often form the basis 

of new manufacturing processes. 

The packed tubular reactor is particularly useful for carrying out 

exothermic or endothermic catalytic reactions, and has been in widespread 

use for many years. The reactor normally consists of a number of small 

diameter tubes, the external surfaces of which are cooled or heated by 

a flowing or boiling liquid. In the case of endothermic reactions, the 

heat is necessary to keep the reaction going at an acceptable rate, and 

hence to keep down the size of reactor required for a given production 
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rate, whereas for exothermic reactions the heat removal is necessary 

either to minimize the production of unwanted by-products, or to 

prevent overheating, which may cause damage to the reactor or catalyst. 

This overheating is commonly referred to as "temperature runaway" and 

can lead to hazardous conditions. 

One of the major problems with tubular reactors has been the 

difficulty of predicting the performance of the reactor from mechanistic 

models, since these are necessarily complex, and the system is very 

sensitive to changes in some of the parameters involved. In particular, 

the addition or removal of heat through the tube walls may set up severe 

thermal gradients in the radial direction and since the chemical rate 

terms axe-normally a highly nonlinear function of temperature, their 

values may vary by an order of magnitude across the tube radius. This 

makes it very difficult to work in terms of radial mean values of the 

state variables, and initially at least, a two dimensional model of the 

reactor is necessary. The heterogeneous nature of the system may also 

cause difficulties, since there are resistances to heat and mass transfer, 

both around and within the catalyst pellets and these will generally have 

to be included in any realistic model of a reactor. 

Although much information exists on the steady state behaviour of 

the reactor, it is insufficient to predict its performance since the 

state of the reactor variables, when subjected to any kind of change, 

depends on its previous history as well as its environmental conditions. 

Sometimes a small perturbation in reactor parameters can lead to a very 

high temperature inside it with consequential burn out of the catalyst 

or even an explosion. It is also possible for the reactor variables to 

exist in two different states for the same set of operational parameters 

or for a small change in one of them and usually one state is an order of 

magnitude larger. Such multiple states, or in the former case temperature 

runaway, can lead to the undesirable effects mentioned above. Failure to 
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allow for adequate heat removal is perhaps the greatest source of 

dangerous conditions which arise industrially. Thus studying the 

conditions under which the reactor can be considered stable (i. e. a 

small change in the parameters can only bring about a small change in 

reactor state variables) is vital for the safety of industrial processes 

and has to be considered in design or deciding on a control strategy for 

a reactor. Moreover, in. any detailed study required for reactor design 

or control, information on the transient behaviour of the reactor should 

preferably be available as well. 

A mathematical model of the complexity needed to describe the 

effects which have been mentioned is clearly unsatisfactory for use in 

either optimization or control and may well require too much computation 

even for routine design problems. Consequently, there are many 

difficulties to be overcome before the full capability of on-line control 

becomes feasible for reactors of this type. The conventional approach 

of using empirical 'black box' models is in many ways an unsatisfactory 

approach. - Particularly since there may be internal constraints on the 

operating conditions, such as a maximum temperature, and also because 

many of the effects in the system arise from the distributed parameter 

nature of the problem and may not be capable of analysis using a simple 

lumped parameter approximation. 

To try to discover the exact nature of the problems involved in 

perfectly general terms is likely to be an impossibly difficult task 

because of the large number of degrees of freedom. A more profitable 

approach is to conduct a series of case studies which, hopefully, will 

indicate some general properties. The work reported here covers some 

aspects of such a study and relates to the catalytic oxidation of benzene 

to naleic anhydride in a tubular fixed bed reactor. This reaction, which 

contains consecutive and parallel reaction steps is highly exothermic and 



-5- 

is normally carried out in the presence of a large excess of air. A 

suitable objective of the control strategy would be to maximise the 

profitability of the whole process, but this could often involve a sub- 

optimal problem, such as optimizing the production rate or yield of 

maleic anhydride from the reaction itself. 

The requirements of a mathematical model to be used in design and 

control, of such complex problems, are somewhat different. The design 

model must have general application over a wide range of conditions. 

The control model, however, must be capable of very rapid solution but 

may only need to be applied over a narrower range of conditions, but 

with frequent up-dating of the parameters. However, in both cases, the 

models have to give an accurate representation of the important state 

variables in the reactor. Preferably the control model should be 

obtained from the design model using suitable model reduction techniques. 

Much of the basic groundwork for the formulation of design model 

and the identification of the transport phenomena which occur in the 

heterogeneous reactor has been done by Cresswell(14) and Thor: iton(46) 

and the application of the model reduction technique on the steady state 

model has been tried successfully by Turnerý78) Although there is much 

information on the steady state behaviour of the heterogeneous reactor, 

no parallel studies have been carried out on the dynamic behaviour of 

fixed bed reactors, except on simplified one dimensional models, which 

are of limited use. This is because increasing complexity of the reactor 

model fly-usually results in an increase in computing time, which in turn 

makes such detailed studies difficult. 

One of the aims of this research is to introduce more efficient 

numerical methods to solve the reactor models and to develop dynamic 

models to take into consideration the radial and/or axial transport of 
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heat and mass. Another objective is to extend the application of the 

model reduction technique to the transient models of the reactor and 

identification of some of the dynamic characteristics of the complex 

system. The degree of sophistication required, with particular reference 

to the flexibility of using these models as a basis for optimal design 

and control, is also outlined. The reactor instability problem which 

may exist as a result of some of the parameter values and/or to the 

dynamic behaviour of the reactor is also considered. 

Such a general approach to the examination of'the general problem 

of the highly exothermic heterogeneous reactor contributes to the control 

and/or design policies. Since it pays particular attention to the 

accuracy of representation, the need for small computation times, and 

understanding of the interaction of the physical and chemical processes 

taking place in the reactor. In short, it identifies the essential 

structure of the problem and the influence this has on exploiting the 

capability of the system to the maximum extent within the practical 

constraints. 
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CHAPTER 2 

PREVIOUS WORK AND BASIS OP TREE PROPOSED MODELS 

2.1 General literature 

In recent years a wealth of literature has been published on 

heterogeneous catalysis and its relevance to reactor design. .. mong 

the books covering general aspects of the subject are those by Thomas 

and Thomas('), Satterfield and Sherwood 
(2) 

, ArisM and Petersen(4), 

Denbigh and Turner(5) and Perlmutter(6). Several review articles have 

also been published, the more recent ones being those by PromentMO 9 

Hlavacek(9) and Ra/10). 

Mae methods of obtaining data for the models are not discussed in 

detail within this thesis, since there have been several excellent reviews 

published(h1'12 
39). All the data required in the proposed modals (other 

that. kinetic and thermodynamic data) can be found or estiaated using 

information in the books or papers by Satterfield and Sherwood 
(2) 

Hougen(11), ' Beek(39), Carberry( 12) 
and Paris and Stevenscl3) 

Since the majority of published pork has been concerned only with 

specific aspects of reactor modelling or catalysis, it is convenient to 

discuss the main body of the work under headings which reveal the 

structure of the problem and the significance of relevant contributions 

and which are related to the present research. 

2.2 Catalyst pellet studies 

Recent work on the performance of single catalyst pellets has been 

concerned with non-isothermal systems, particularly where the rates of 

reaction are different from those which would be expected from purely 

kinetic considerations. The importance of such studies stems primarily 

from two considerations. Firstly the presence of the catalyst particles 
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in the reactor causes considerable distortion for the flow patterns in 

the reactor. Secondly, the catalyst pellets are usually porous to 

increase the surface on which the reaction can take place, and the 

reactants therefore have to diffuse inside these pores to react and 

the products then diffuse back again. These processes are normally 

classified as transport resistances and the most general models of 

catalyst particles have been developed to include the following effects: - 

1. Mass transfer resistance within the pores. This is expressed by 1. 

means of an effective pore diffusion coefficient. 

2. Mass transfer resistance, at the exterior pellet surface between 

the solid and the gas phase, expressed as a film mass transfer 

coefficient. 

3. Heat transfer resistance within the pellet expressed by means of 

an effective thermal conductivity coefficient. 

4. Heat transfer resistance across the boundary layer surrounding 

the pellet, expressed as a film heat transfer coefficient. 

The pellet model which takes into consideration the above four items, 

as well as the reaction rate and the heat generated by the exothermic 

reaction, is given in Appendix (A1.1). `Iltis model gives rise to a 

simultaneous set of non-linear two point boundary value differential 

equations, the solution of which can only be obtained by numerical methods. 

Besides requiring large amounts of computation time, the numerical method 

used to solve this system is by no means simple to apply. Nor should it 

be forgotten that the pellet model when incorporated in a reactor model 

has to be solved at each point inside the reactor to provide the temp- 

erature and concentration at the pellet surface. Due to the heat and 

mass resistances mentioned above it is to be expected that the temperature 

and concentration would have different values from those in the fluid. 

A measure of these differences has been formulated in terms of the 
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'effectiveness factor actual reaction rate at pellet conditions 
reaction rate evaluated at fluid conditions 

and the selectivity = 
rate of reactants consumption 
rate of products production 

Once they axe known, they can be used in the fluid equations. 

It is apparent that a considerable amount of computation would be 

necessary, and most of the work done has been therefore concentrated 

on two fronts. An immediate problem is to find more efficient numerical 

methods than the finite difference method(14); in this respect the 

recent development of orthogonal collocation mothod(15,16)for solving 

the differential equations have proved to be very efficient as will be 

shown in Chapter Three. The other alternative is to make assumptions 

which would simplify the model. Obviously the two procedures are 

related, and a significant part of this thesis is concerned with this 

problem. 

Much of the eaxly work appears to deal with simplified models. 

The effect of transport phenomena, on the performance of the catalyst 

pellets was initially studied to help the experimentalist in his efforts 

to measure the true kinetic rates so that the kinetic constants might 

be calculated. It is clearly desirable to measure rates' undisturbed 

by transport effects and where diffusion can be ignored as in the case 

of nonporous catalysts. However, in the case of a porous catalyst, it 

has been demonstrated that(46,18) diffusion is ýn important factor in 

catalyst performance. The influence of diffusion (effect (1) above) on 

the performance of an isothermal catalyst was first examined by Thiele 
(19 

and Zeldowitsch(20) The studies were extended by Wheeler 
(21) 

and by 

Weisz and Prater 
(22) 

who suggested a criterion for'avoiding the region 

where diffusion changed the rate of reaction by more than 5%. Weisz23'24) 
( 

also examined non-first order reactions and developed a criterion for 
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predicting an upper bound on the Thiele modulus, below which the effective- 

ness factor would vary from unity by less than a specified amount. These 

criteria were shown by Schnaider and Mikchka(25) to be inappropriate for 

reactions subject to product inhibition, such as those obeying a 

Langmuir-Hinshelwood type of rate expression. However, Hudgins(26) 

showed that a similar criterion could be developed which is valid for 

any type of kinetic expression and any order reaction. The criterion 

reduces to the Weisz-Prater form for a first order reaction. A model of 

the catalyst pellet which has a non-uniform pore structure was proposed 

by Mingle and Smith27) The pellet was considered to have a system of 

micropores branching from macropores, and the authors succeeded in 

evaluating effectiveness factor for a single irreversible first order 

reaction. This type of model is particularly useful for a catalyst made 

by compacting powder into pellets. The treatment of Mingle and Smith 

was extended by Carberry to include reversible(29) and consecutive(28) 

reaction schemes. 

Non-isothermal systems have been studied by a number of authors 

and in many cases effectiveness factors much larger than unity have been 

reportedc12,30,51) Wheeler(32) and Prater(33) considered pellets 

subject to effects (1) and (3) and demonstrated the possible existence 

of severe thermal gradients. The latter showed that for given surface 

conditions, the concentration and temperature within the catalyst pellet 

are linearly related and that this relationship is independent of pellet 

geometry and of the form of the kinetic rate expression. 

The effect of reaction order in exothermic systems was examined by 

Tinkler and Metzner(34) who showed that, in general, second order 

reactions are much less sensitive to temperature than are first order. 

fstergaard(35) studied the effect of fluid temperature on the apparent 

reaction rate, and demonstrated that the apparent activation energy can be 
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very sensitive to small changes in temperature when the reactions are 

exothermic. The exothermic case was also studied by Carberry 
(12) 

including, for the first time, the interphase resistances (effects (2) 

and (4)). However, the vast majority of published work has been concerned 

with systems where the interphase resistances (2) and (4) may be ignored. 

This is unfortunate, since in most practical cases, the interphase heat 

transfer resistance is considerable and often controls the behaviour of 

the system. On the other hand, the resistance to mass transfer is 

relatively small and can often be ignored without loss of accuracy. 

Inclusion of a heat and mass transfer resistances (effects (2) and (4)) 

between the phases means that for most of the published work, it is 

necessary to find the appropriate surface conditions by an iterative 

procedure. This clearly adds considerably to the computational effort 

required to solve the pellet models which do not already include these 

resistances. In the case of complex reactions such as used in this 

research, ignoring the interphase transport resistances can only be 

construed as an attempt at mathematical or model simplifications and must 

be regarded with suspicion for non-isothermal systems. 

Several methods of simplification have been proposed, besides those 

mentioned above. Schilson and Amundson(37t38) considered the pellet under 

non-isothermal conditions, approximating the heat generation function by 

one or two straight line segments. The method was found to be fairly good 

for the system they considered but is unsuitable for extension to complex 

reactions where interphase transport resistances are present. Beek(39) 

considered a system where interphase heat transport resistance is included. 

The model can be solved very rapidly, but is based on the assumption that 

the reaction rate varies linearly with temperature, and this severely 

restricts the range of application over which the model is valid. 

Peterson(40 
4'41) 

uced the relationship developed by Prater 
(33) 

as the 
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basis of an approximation method which is asymptotically valid under 

conditions of diffusion control where the reactant concentration falls 

to zero in the outer layers of the catalyst pellet. This method was 

extended by McGreavy and Cresswe11(7493114) to the case where inter- 

phase transport resistances are important. Hatfield and Aris(43) have 

also used this approach in a general parametric study of the catalyst 

pellet. Gunn(44) assumed that the temperature profile within the pellet 

could be represented by a straight line and Tinkler and Pigford(45) 

allowed for small, but significant, temperature rise by using a pert- 

urbation series technique. Both these methods are only useful over a 

narrow range of conditions. 

Numerical computations performed by Cresswe11(14) have shown that, 

over the whole range of practical operating conditions (when the fluid 

is a gas) the catalyst pellet is essentially isothermal, the temperature 

rise between fluid and pellet centre being concentrated almost entirely 

in the interphase region. This result was anticipated by Beek(39) and 

also suggested from the results of Hutchings and Carberry. 

Cresswell(14) proceeded to assume isothermality within the pellet, 

thus allowing an analytic solution of the mass transport equation for 

a first-order reaction. Later Thornton(46) extended the isothermal 

pellet assumption to include the complex reactions with parallel and 

consecutive reactions as well as in the case of non-first order reactions 

with the use of a pseudo-first order rate expression. His model is 

shown in Appendix (A1.2) and is used in this thesis. Thornton(46) has 

shown that the isothermal model gives an accurate estimate of the steady 

state and over a wide range of parameter values. This conclusion 

is also confirmed by Hlavacek and Kubiceký4748) The consequences of 

these simplifications are very significant, resulting in the pellet model 

being reduced to a single nonlinear algebraic equation in temperature to 

be solved, instead of the original system of differential equations. 
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While considerable effort has gone into attempts to simplify the 

description of the single catalyst pellet, a few attempts have been 

made to relax some of the assumptions on which even the more complex 

models are based. In particular, the shape of the pellets has received 

some attention. Most studies reported in the literature have been 

concerned with spherical pellets, but Ari. s(49) showed that by using the 

volume/surface ratio as a characteristic dimension, the asymptotes of 

charts (i. e. kinetic control and pore diffusion control) coincided for 

various shapes. Extensive calculations have been performed by Gunn 
(50) 

for finite and hollow cylinders, and by Was and Amundson(51) for finite 

cylinders and parallel-pipeds. 

compared by Rester and Aris. 
(52) 

Their results have been summarized and 

Attempts to simulate the effects of 

particle shape away from the asymptotes have been made by Rester et a1ý53) 

Whereas all previous papers had assumed symmetry in the fluid 

conditions, Copelowitz and Aris(54) considered the behaviour of a pellet 

situated in steep gradients in the axial direction. Solution of the 

relevant equations is not straightforward and introduction of interphase 

transport resistances would increase the difficulty. Moreover, steep 

axial gradients commonly imply steep radial gradients (in the fluid) 

and in this case not even axial symmetry can be assumed in the fluid phase. 

It therefore seems unlikely in the near future that such models will be 

used in reactor design. 

Comparatively little experimental work has been carried out on 

single catalyst pellets, and the results are somewhat contradictory. 

This is not surprising since the experimental difficulties are great, 

particularly in the measurement of intraparticle temperature profiles. 

Cunningham et alý55) demonstrated the existence of large temperature 

difference between the fluid and pellet centre, and found experimental 

values of the as high as 25. Miller and Deans(56) also reported 

large temperature rises and 7 greater than unity. Probably the most 
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reliable work on radial temperature gradients was reported by Irving 

and Butt(57) who carried out measurements on several pellets using 

extremely fine thermocouples (0.001 in. diameter). Very large temp- 

erature rises across the boundary layer were measured, with relatively 

small ones occurring within the pellet. This work showed the same 

features as that of Fulton and Crosser(58) who demonstrated the 

importance of film resistances by using catalyst pellets of various 

sizes. They also reported the work of Ramaswami(59) who is alleged to 

have obtained fluid film temperature rise of up to 420°C. 

Little attention has been given to the transient behaviour of the 

catalyst pellet and most of the research done in this area has been 

concerned with stability studies. McGuire and Lapidus(60) used a 

transient single pellet model within a transient model of the reactor. 

They ignored the interphase transport resistances which were Chown to 

be of importance in any realistic model by Feick and Qioný62) Wei(61) 

also examined the transient problem and showed that the maximum temp- 

erature achieved may be considerably greater than the steady state 

maximum which is predicted by the Prater(33) relationship. 

The equations describing the dynamic behaviour of the catalyst 

pellet and which include all transport resistances are given in 

Appendix (A1.2.2). This model has been studied by Thornton 
(46) 

for the 

highly exothermic reactions in which adsorption effects are unimportant 

as in the partial oxidation of hydrocarbons. He showed that the heat 

capacitance is much larger than the mass capacitance and therefore the 

rate of change of concentration within the pellet is much faster than 

that of temperature. This result, which has been confirmed 

computationally, means that the changing temperature drives the 

concentration profile, which may be considered to be at a pseudo-steady 

state. In systems where strong surface adsorption occurs, Nussey(105) 
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has shown that its effect may be accounted for by modification of the 

diffusion coefficient in the mass balance equation. Thus when Henry's 

law applies to the adsorption equilibrium, the parameter, DPA in equation 

(A1.1) becomes: 

(DPA + K'DS) 

(i + K') 

where K' is an adsorption equilibrium constant and Ds is'a surface 

diffusion coefficient. The reaction rate tern is similarly modified 

so that Aoi becomes Aoi 
(1 +K 

Thus the form of the unsteady state pellet equations under these 

circumstances is unchanged, although the numerical values of the 

coefficients are different from those used in the steady state. Some 

workers 
(10,106) 

have inferred from the results of Kabel et al. 
107) that 

strong adsorption will cause the adsorption time constant of the catalyst 

pellet to become greater than the thermal time constant. Kabel et alý107) 

studied the effect of temperature disturbances on the dehydration of 

ethanol over an ion exchange resin catalyst in an isothermal reactor. 

The interpretation of their results is, however, open to question for 

several reasons. No attempt appears to have been made to establish the 

lack of importance of the heat transfer effects within the system. Also, 

because the system was designed to operate isothermally, the perturb- 

ations were applied to both the reactor inlet and the coolant so that 

the effect was distributed throughout the system. Perhaps the most 

important point about this work is that virtually all of the concentration 

disturbances occurred during the temperature perturbations and not 

subsequent to them and to infer from this that the concentration changes 

are driving the response is open to question. There is no evidence that 

this is the case with the highly exothermic reactions of interest here. 

Indeed the experimental results of Kehoe and Butt(64) and Horak and 
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Jiracek(108) show that the mass capacitance of the catalyst pellet is 

much less than the thermal capacitance so that the concentration changes 

within the pellet occur faster than the temperature changes. In these 

circumstances the concentration profiles within the pellet may be treated 

as if they pass through a series of pseudo-steady states which are 

determined by the changing temperature profiles. 

Applying the assumption of pellet isothermality, Thornton(46) 

demonstrated that the catalyst pellet also remains essentially isothermal 

in the transient state. Although a slight temperature gradient within 

the pellet has been noticed at the beginning of a transient reoponse, 

it is rapidly flattened indicating isothermality. Kehoe and Butt 
(64) 

measured the temperature profiles in the pellet when subjected to fluid 

perturbations. They found that pellet isothermality might be obtained 

through the transient period for a relatively high thermal conductivity. 

Hughes and Koh 
(65) 

have demonstrated experimentally that a small intra- 

particle temperature rise during the transient response of the catalyst* 

particle is possible. However, most of this rise occurred near the 

surface with the bulk of the profile in the pellet being flat. They 

also found that the film heat transfer resistances are far more important, 

and during the transient response the intraparticle temperature gradient 

has very little effect on the effectiveness factor. These conclusions 

have also been confirmed by Thorntonc46) In this respect the approx- 

imation of isothermality of the pellet is as good in the unsteady state 

as it is in the steady state. Treating the pellet as isothermal and 

considering the mass transport equation to be at a pseudo-steady state 

and therefore can be solved analytically. The dynamic model for the 

catalyst pellet then becomes a single first order differential equation 

as shown in Appendix (Al. 2.2). The advantages of this formulation are 

clearly evident, the model gives an accurate estimate of the reaction rate 

limitation imposed by the catalyst pellet and may be solved rapidly enough 

to be included in a dynamic model of the reactor. 
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2.3 The tubular reactor 

In the fixed bed reactors, which are of interest here, the reactor 

normally consists of a cylindrical tube packed with catalyst particles 

with the gaseous reactants passing through the length of the tube. The 

reaction is assumed to take place only on, or within the catalyst pellets. 

If the pellet conditions (i. e. its temperature and species concentration) 

are considered as that of the fluid, the packing is taken purely from the 

point of fluid dynamics and its effect on the fluid flow. This type of 

treatment is categorized as a quasi-homogeneous reactor. On the other 

hand if the differences in solid and fluid conditions are allowed in 

addition to the fluid dynamical effects, the rates of reaction are 

modified by an effectiveness and selectivity factors which are obtained 

by the solution of the catalyst pellet model, the term heterogeneous 

reactors is then used. Many of the chemical reactions which occur in 

packed bed reactors are associated with large heats of reaction and it 

is often necessary to take into consideration the limitations imposed 

by the solid phase(7'46'14962) i. e. they should be treated as hetero- 

geneous reactors. In order to retain control of the reactor and. to 

prevent irreversible damage to the catalyst, external cooling around the 

tube is usually utilized. In such a situation radial temperature gradients 

exist perpendicular to the direction of reactant flow, and as a cen- 

sequence, concentration gradients. Also, due to axial temperature and 

concentration gradients as well as the turbulent effects of the packing, 

an axial diffusion of heat and mass opposing the fluid flow may occur. 

Therefore, to describe the spatial distribution of heat and mass inside 

the heterogeneous reactor, the mathematical model required should take 

into account the effects of the axial and radial gradients. 

The packed bed reactor is essentially discrete in character and an 

exact model would need to describe the fluid on a microscopic scale, 
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taking into consideration the spatial distribution of individual catalyst 

pellets. A rigorous analysis on this scale which would take account of 

the discontinuous nature of the bed, is impossible at the present time, 

and is not really warranted. In practice the fluid nntst follow the 

random passages in the bed, whereas the chemical reaction occurs only 

within the catalyst pellets. The problem is therefore best tackled as 

if the properties of the bed were averaged out to give a pseudo-homogeneous 

structure. The transport of heat and mass within the bed may then be 

described in terms of differential equations, using effective transport 

paxamaters. Such reactor models are of a continuum nature and although 

the bed properties are space averaged, the equations describing the heat 

and mass transfer within the catalyst pellets are solved for the actual 

size of the pellet being used. This means that the rates of reaction and 

heat production per unit volume may be calculated at any point in the 

reactor as if a catalyst pellet and its associated average voidage were 

acting at that point. 

In contrast to the continuum models which have been described above, 

Deans and Lapidus 
(66) 

proposed a mixing cell model in which the reactor 

is treated as a two-dimensional network of stirred tanks. Each cell has 

the dimensions of one catalyst pellet and its associated bed voidage. 

Such models have been used by several other workers 
(6o, 67) 

and although 

they have certain mathematical advantages, the computing time was found to 

be excessive. This is because to get accurate representation a large 

number of these cells must be employed and it Y then corresponds to the 

finite difference representation for solving the continuum modelý68) For 

this reason the continuum representation of a reactor is used in this 

research. 

When heat is removed through the walls of a tubular reactor, radial 

temperature gradients are set up and these cause radial concentration 
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profiles to develop. The system can therefore only be described in 

detail by a model which is at least two-dimensional. The first models 

proposed were concerned with homogeneous or quasi-homogeneous systems? 
0'69) 

Beek(71) gives an excellent review of the design of reactors based on 

quasi-homogeneous models, and also discusses some of the transport 

effects which occur in the models. Nickley and Letts(72) extended the 

model to include multiple reactions with arbitrary rate terms. An 

attempt was made to discover the size of yield losses due to radial 

mixing and failure to withdraw the reactant stream at the points where 

local yields are at their maximum. A two-dimensional transient model 

of the homogeneous reactor was solved analytically by Amundson(g73) but 

since the rate of reaction was assumed to be independent of the concen- 

tration and linearly dependent upon temperature, the solution can be 

considered to be of mathematical interest only. McGreavy and Cresswell(74 14) 

and Thornton(46) proposed a heterogeneous model taking into consideration 

the radial transport of heat and mass. The equations describing the 

behaviour of the system were of a quasi-homogeneous form, but the'rate 

terms were modified at each point in the bed to take account of the 

influence on the reaction rate of the resistances to heat and mass 

transfer in and around the catalyst pellets. The results were shown to 

be significantly different from those predicted by models taking account 

of pure kinetic rates only. In particular, it was shown that in many 

cases, where the quasi-homogeneous model predicts temperature runaway, 

the heterogeneous model predicts stable profiles. Such a model generally 

consists of a set of nonlinear-partial differential equations which 

describe the distribution of heat and mass in the reactor. These 

equations are coupled with the catalyst pellet equations and because 

of their nonlinear nature they have to be solved numerically. The most 

generally applicable method is the Crank-Nicholson finite difference 
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representation. Although the finite difference method is reliable, it 

is not an efficient method for solving the reactor model of such 

complexity and takes large computing times. If, in addition, transient 

models are considered, the computing time increases enormously(62) making 

these methods of solution unsuitable for design or control. of reactors, 

or even for a detailed study related to reactor problems. For those 

reasons, two main approaches have been developed to tackle these difficulties. 

The first approach is to use a more efficient solution method such as the 

alternating direction explicit method(62) or the relatively new collocation 

methods(63,75,76) Chapter Three in. this thesis). The second approach (see ). 

is to reduce the complexity of the original problem by, for example, 

reducing its dimensionality. Since it is the axial concentration and 

temperature profiles which are of principal importance, it is possible 

to eliminate the radial and axial diffusion derivatives. However, it 

has been shown(46'77) that this kind of simplification of the reactor 

model is unappropriate in many cases. Thornton(46) developed a one- 

dimensional model based on the assumption of a parabolic radial ternp- 

erature profile which results in a modified wall Nuscelt number. Although 

such a model takes a small amount of computational effort, it has limit- 

ations regarding the accuracy of profile rep-resentationý77) Such a model 

has been used extensively in transient studies by hdderley(109) who 

identified its limitations and tried to increase the model accuracy. 

Tuner(78) used a semi-empirical method of model reduction to approximate 

the radial profiles. His method has been shown to be adequate in the 

steady state models. An attempt to extend the method to the dynamic case 

can be seen in Chapter Four. 

In the above models the radial diffusion of heat and mass has only 
been considered and most workers tend to neglect the axial diffusion of 

heat and mass as unimportant. This tendency has been widely accepted, 
because neglecting the axial diffusion terms simpl*fies the equations 
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considerably and thus many criteria and conditions have been put forward 

to justify neglecting it. 

Generally the mixing in the axial direction which is due to the 

turbulence and the presence of packing, is accounted for by superposing 

an effective mechanism upon the overall transport by plug flotaý7) The 

flux due to this is described by an expression analogous to Pick's law 

for mass transfer and Fourier's law for heat transfer. The respective 

proportionality constants are effective diffusivities and conductivities. 

Because of the assumptions involved in their derivation, they implicitly 

contain the effect of a radial velocity profile and the short circuiting 

effects due to packing. The principal experimental results concerning 

the effective diffusivity and conductivity in the axial direction 
(131 132, 

133,134,159,160) 
show that the Peclet number based on the particle diameter 

for heat and mass lies between 1 and 2. The addition of a mixing term in 

the equations describing the heat and mass transport in the reactor 

transfer a first order ordinary differential equation, i. e. plug flow 

model, to a second order ordinary differential equation of the boundary 

value type. The form of these boundaries has given rise to extensive 

discussion. 
( 161,92,93,162,163,120) 

However, the generally acceptable 

forms are those of the derivative type based on the Fick and Fourier laws. 

This type of unsymmetrical nonlinear boundary value problem poses a 

number of difficulties in methods of solution. 

Carberry and Wendel(79) developed a nonisothermal steady state model 

based on the parabolic radial temperature profile assumption and 

neglected the interphase resistances between the fluid and solid. They 

solved the system by implicit finite difference procedure and concluded 

that the axial diffusion can be considered unimportant if the bed length 

exceeds 50 particle diameters. It was also reported that the axial 

diffusion can be neglected for high flow velocities(79980) a case usually 
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attained in industrial practice. On the other hand Liu and Amundson(125) 

studied the effect of axial diffusion in an adiabatic reactor and 

concluded that its effect cannot be ignored when dealing with multiple 

states. They solved the equations by the implicit finite difference method 

and reported a computation time of about 2 hr:. for a transient run. 

Lee(127) utilized the quadratic conversion of the quasilinearization 

technique and reduced the computing time. In the case of isothermal 

reactions 
(164'165,166), 

where the number of equations can be reduced to 

one, it can be integrated backwards with the aim of satisfying the 

boundary condition at the reactor inlet. However, apart from the numerical 

instability problems, in the case of adiabatic or nonisothermal cases which 

are of industrial importance and where the number of equations is more than 

one,. the method of solution becomes infeasible, and may require optimis- 

ation methods to promote convergence. As an alternative method of solution, 

collocation procedures have shown to be more suitable and can deal with 

such unsymmetrical problems. 
"20,80 

Considering the axial and radial diffusion, the problem becomes even 

more complex. Deans and Lapidus 
(66) 

and later McGuire and Lapidus 
(60) 

used the concept of mixing cell arrays in formulating such a comprehensive 

model. However the computing times were 
130) 

g prohibitive. Ranzi et a1. 

used an integral transformation method and indicated that under certain 

conditions axial diffusion may affect the temperature and concentration 

profiles in the reactor. The most comprehensive dynamic model has been 

solved by Feick and Quoný62) They. included the axial and radial 

diffusion terms and the particle inter and intra particle transports 

and employed the alternative direction explicit finite difference method. 

The computing time was again excessive to the extent that no detailed 

studies have been carried out. 

It is clear that the problems imposed by considering the axial 
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diffusion are considerable and the criteria and conditions for neglecting 

it have not been definitively establishedc120) The collocation method 

together with the model reduction technique will be employed in Chapters 

Six and Seven to solve such comprehensive models including axial and 

radial diffusion, and extensive investigations of the basic assumptions 

made. 

It is worth examining some of the other assumptions implicit in 

the formulation of reactor models. In all the models, axial symmetry 

of the concentration and temperature profiles is assumed. In single 

tube reactors this is usually the case, since the coolant conditions 

do not vary around the tube circumference. In the larger industrial 

units where the coolant may flow perpendicular to the tube axis, 

temperature gradients may, under some circumstances, occur in the 

coolant flow directionP09) There will also, of course, be variations 

in the coolant velocity around the tubes. The difficulties of 

describing these variations are very great and to obtain an accurate 

description, the temperatures and heat transfer coefficients around all 

the tubes would have to be measured or estimated. Even if sufficient 

data existed to estimate these variations to any degree of reliability 

the results would certainly not be reproducible in other systems or even 

in the same system. 

Similar reasoning may be applied to conditions inside the tube so 

that it is generally assumed that within the bed every point on the 

surface of each catalyst particle is in contact with gas of uniform 

concentration and temperature and is also equally accessible for the 

purposes of heat and mass transport. This further implies that the 

rates of reaction and heat generation at each point in the bed may be 

calculated as if a catalyst particle is acting at that point. 

For the purposes of the work described in this thesis the catalyst 

pellets are asszed spherical and of uniform size and activity. Other 
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pellet shapes may be considered without much difficulty by defining an 

appropriate characteristic radiusc4) The effect of varying the pellet 

size throughout the bed, in an attempt to optimise the reactor performance, 

has been investigated by Brusset et al(104) 
(102) 

Calderbank and co-workers 

and Stewart and Sorensen( 70) have modelled reactors in which the packing 

is diluted with inert spheres, and Shadman-Yazdi and Peterson(103) have 

considered the effect of varying the catalyst activity within individual 

pellets in order to obtain better yields in cases where the product can 

be consumed. Catalysts are usually subject to deactivation with time and 

more importantly with temperature. Little is known, however, about the 

exact mechanism of catalyst deactivation except that a rapid increase in 

temperature will usually enhance it. In most studies of the dynamic 

behaviour of reactors the perturbations last for a relatively short period 

compared with the time needed to cause significant deactivation. Over 

longer periods deactivation may need to be considered and studies have 

been made of long term performance where it is the principal factorýhh1 83) 

When temperature runaway occurs, deactivation can take place so that the 

kinetic model is no longer applicable. Since one of the purposes of 

reactor modelling is to identify regions of operation where such un- 

desirable behaviour occurs, inclusion of catalyst deactivation effects 

in the models used here is not really necessary. 

A common assumption employed in reactor modelling is that all of the 

physical and chemical parameters in the system are independent of position, 

concentration and temperature. Clearly this is not the case in practice, 

but usually the increase in computational efforts required to solve a 

model which includes such variations (even when they are known) is not 

justified by the increase in accuracy which is obtainedc46) This is 

especially true in, for example, the case of heat transfer coefficients 

which can usually only be estimated to about 10% accuracy in any case. 

Perhaps the most doubtful of assumption is that of plug flow of the gas 
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through the reactor which is related to the assumption of uniform bed 

voidage. The voidage of a packed bed is not uniform, being greatest 

near the tube wall(. 
81) Since the gas will tend to take the path of 

least resistance through the bed, its velocity profile will therefore 

be deformed. This in turn will also cause a variation in the values of 

the mass and heat transport parameters. Thornton(46) has shown that 

the performance of a reactor can be significantly affected by small 

variations in value of the voidage. Valstar(82) found similar dis- 

agreement between the predictions of a reactor model which contain a 

velocity profile expression and one in which plug flow was assumed. 

More recently Stanek and Szekely(112) have suggested that significant 

gas flow maldistribution may occur not only due to local variations 

iii bed voidage but also because of the variation in properties caused 

by the radial temperature gradients. These results appear to some 

extent to conflict with those of Hoiberg et alý77) who found that the 

steady state and transient response predicted by a plug flow model was 

no different from that predicted by a model which included an arbitrarily 

specified velocity profile with a large peak near the tube wall. They 

concluded that in their system, at least, the radial heat and mass 

transfer occurred rapidly enough to counteract the effects of the 

higher local velocities. Clearly then, more investigation of this 

problem is required. As Valstar(82) and Hoiberg et alý77) have shown, 

inclusion of a velocity profile in the reactor model is not difficult. 

However, the validity and applicability of both the model and its 

predictions is uncertain. The distribution of voidage within the bed, 

and therefore the form of the velocity profile, is very system-dependent 

Since one of the aims of this work is to contribute towards a general 

picture of reactor behaviour, there seems to be little alternative to 



-26- 

using the assumption of plug flow, at least until more is known about the 

fluid dynamics of packed beds. 

As a result of these concepts and assumptions the reactor models, 

in general, becomes a set of simulations, non-linear ordinary or partial 

differential equations describing the spatial variation of temperature 

and concentration within the bed. One equation consists of a heat balance 

over the reactor and the others axe mass balances on each reactant. These 

equations are coupled with the catalyst pellet model. In the solution of 

the reactor equations at each point in the bed, where the gas concentration 

and temperature are calculated, the catalyst pellet model must also be 

solved to obtain the reaction rate and heat generation rate. 

2.4 Reactor stability 

If a small change in reactor inlet conditions can bring about large 

changes either within the reactor bed or at the exit, then the reactor 

is said to be unstable. This instability may be due to parametric 

sensitivity, in which case removing the perturbation causes the system 

to tend to return to its original state. The other cause for instability 

is the existence of multiple steady states in the reactor whereby the 

original state caxL-iot be restored by merely removing the inlet pert- 

urbations46t Iiltiplicity may occur in the catalyst pellets or may be 

present in the reactor without packing. The existence of possible multiple 

steady state for the catalyst pellet creates considerable difficulties in 

the reactor design and operation, since the performance of the reactor is 

uncertain unless the history of each pellet is known. The reactor is also 

likely to be unstable in the transient case, since the pellets tend to 

change from one state to another under these conditions. Even more 

important, however, is the fact that the reaction rate at one steady 

state is often several orders of magnitude greater than at another. 

rdevertheless instability due to parametric sensitivity or multiplicity 
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can lead to several undesirable results, such as bad selectivity, 

catalyst deactivation or reactor burn out. Therefore the primary motive 

for identifying the regions of potential instability is that operating 

conditions of the reactor can be kept away from these regions, thus 

avoiding the associated undesirable effects. 

The vast majority of published literature on the catalyst pellet 

stability or multiplicity has been concerned with systems where the 

inter- and intra-phase resistances' were not taken into consideration. 

Since these investigations cannot be extended to allow for the phase 

resistances(10 
46) they are of academic interest only. Use can be made, 

however, of stability criteria for catalyst pellets with no intraphase 

resistances(47'11ý when applied to nonporous pellets or catalytic wires. 

For models developed which include all transport resistances there 

appear to be three possible steady states of which the middle one is 

metastable. However as high as five steady states have been reported(43'82) 

These results lie outside the practical range of operating conditions and 

occur only over a very narrow range of parameters. 

For unpacked reactors or even quasi-homogeneous systems when radial 

or axial diffusion of heat and mass are included in the reactor model, 

the possibility(87) of three steady states-for the same inlet conditions 

exists. This kind of multipliciiy and its relation to the system stability 

has been discussed by Perlmutter 
(6) 

and reviewed by Rayý'O) If axial 

diffusion is considered in the reactor model, multiplicity may arise, 

as Froment has pointed outý8) However, the magnitude of the back mixing 

which could produce multiple steady states is greater than that usually 

encountered in industrial fixed bed reactors 
: 92793) Instability may also 

occur due to recycling in the reactor system 
(88,89990) 

or to using counter 

current coo7. ing fluidsc91) Recently the effects of the cooling medium on 

the stability of the packed bed reactors has been investigated by 

Adderleyý109) 
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In an attempt to relate the pellet multiple steady states with the 

general stability problem of the fixed bed reactor, McGreavy and 

Thornton(94) and Thornton(46) developed a method in which the region 

of multiple steady states of the pellet may be plotted on a phase diagram, 

then the reactor trajectories can be plotted on the same diagram to 

indicate whether they pass through a region of multiplicity or not. 

However it has been shown that in fact parametric sensitivity near regions 

of mui. tiplicity(46,109) could pose more serious problems. 

Most of the studies stated above have been concerned with the simple 

reaction of the type A-B. Extension of the available methods or 

criteria to the complex reactions of the type under study is either in- 

valid or gross assumptions have to be made, which in turn gives very 

conservative estimates on the stability or multiplicity of the reactor. 

This point is discussed in more detail in Chapter 8 of this thesis. 

2.5 Concluding comments 

The widespread use of high speed computers has enabled increasingly 

sophisticated models of chemical reactors to be solved and some of the 

assumptions usually made to be relaxed and tested. Studies concerning 

asymmetrical heat and mass profiles within the catalyst pellet(95,96,97) 

or catalyst pellets exists in non-uniform fluid concentration and temp- 

erature 
(98,99,100) 

have been carried out. This kind of study is impossible 

to verify by the present state of experimental techniques and appears to 

be of little practical value. Attempts to control the hot spot formation 

in the reactor have been suggested, for example, by using larger catalyst 

pellets near the hot spot; 
104) 

since this will tend to slow the reaction 

down. Dilution of the bed with inert spheres is also possible; 
102,76) 

or 

even considering the effects of varying the catalyst activity within 

individual pellets has been studied by Petersen et alý103) The cooling 



-29- 

jacket may also be divided into several sections each at a different 

temperatureý101) However, such a strategy may add to the mechanical 

problems considerably. 

Although the trend has been towards increasingly complex models, 

it seems likely that in the future, the emphasis will be on the develop- 

ment of models of reducing complexity or on more efficient solution 

methods, while retaining the detailed description which is associated 

with the more complex models. ' Such efficient models can thus be used 

in design and improvements of practical systems with minimum expense. 

Also as basis of control algorithms using state and parameter estimators. 

I 
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CHAPTER 3 

SOLUTION OF THE RADIAL DIFFUSION MODEL WITH COLLOCATION METHOD 

3.1 Introduction 

Many catalytic systems of industrial importance involve transport 

effects in and around the catalyst particles of the reactor bed, and 

this can cause apprecible variations in the reaction rate predicted. 

Therefore it is desirable that heterogeneous models distinguishing 

between solid and fluid should be employed. Moreover, in many industrial 

systems the catalytic reactions are highly exothermic and a cooling medium 

is needed at the outer walls of the reactor tubes to remove the excess 

heat generated. This will induce radial variations in temperature and 

consequently in concentration. Thus, a two dimensional model is needed 

to describe the radial temperature and concentration profiles at various 

axial positions. 

McGreavy and co-workers(14946) have proposed a suitable heterogeneous 

model. Although the equations describing the system are essentially in a 

quasi-homogeneous form, the rate terms are modified at each point in the 

bed to take account of the influence on the reaction rate arising from 

the resistances to heat and mass transfer in and around the catalyst 

pellets. Their proposed model will be used in the following work. The 

treatment which follows will deal with a reaction scheme of the following 

form: A--- B --- C 

ND 
where B is the desired product and it is typical of a wide range of 

reaction schemes found industrially. The set of partial differential 

equations which represents the above scheme is given below (equations 

3.1 to 3.5). These are coupled and nonlinear equations and can 

only be solved numerically. Unfortunately, quite often in such a 
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complicated system, large computation times have to be used in the 

solution, and this cannot really be justified. 

In the present study, orthogonal collocation as an alternative 

numerical procedure to the finite difference method will be investigated. 

This method has been exploited by Villadsen and St rart(113) for boundary 

value problems and showed that collocating at the zeros of an orthogonal 

polynomial gives better convergence properties. McGowin and Perlmutter(h14) 

used arbitrary chosen collocation points and obtained slower convergence. 

Ferguson and Finlayson(16 
) 

used it to solve the transient heat and mass 

transfer equations for a catalyst particle and Legendre polynomials were 

recommended for Neumann type boundary conditions. The equations for the 

homogeneous reactor have been solved by Finlayson(15) who showed that 

as the wall Nusselt number increases more collocation points are needed 

to approximate the radial profiles. In all these investigations the 

orthogonal collocation method has been used to reduce the equations to 

a system of ordinary differential equations which subsequently are 

integrated by Runge Kutta methods. Villadsen and Sorensen(h17) integrated 

the resulting ordinary differential equations by the collocation method 

as well, and called the method double collocation. They used the linear 

heat transfer equation to illustrate the procedure and claimed that this 

method is more efficient than integrating by the fourth order Runge Kutta 

method. Stewart and Sorensen(76) outlined the use of orthogonal 

collocation in solving the distributed parameter system typical of fixed 

bed catalytic reactors and have shown that it is a feasible procedure. 

In this chapter the double collocation method will be applied on 

the nonlinear problem under study. The minimum number of collocation 

points required to approximate the radial profiles and its relation with 

the location of the collocation points will be investigated. An assess- 

ment in terms of accuracy of representation and computing times between 
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the finite difference, the single collocation and the double collocation 

methods is also given. 

3.2 Formulation of the Equations 

The heat and mass balances on an element of fluid volume in the 

catalytic tubular reactor and for the reaction scheme, subject to the 

assumptions given in Appendix(A4), can be represented in dimensionless form 

as follows: 
(46) 

r är (r rA) 
- G, ý a 

ZA 
- G1 G2 (ß 22 

+ 3) CA =0 (3.1) 

rar 
(r är)- 

Gib + G1 G2? r (O + 9,3)CA =0 

rr(r r) 
-G3 äz +G3G4(TP-T) =0 

The boundary conditions being 

CA Ö CB 0 at r=0, z0 r dr = er '- 

- 
@CA 

--? =0 
atr=1, zy0 

= Nuw(Tc - T) 

Let the inlet conditions be 

CA = CA(r), CB = CB(r) and T= T(r) at z=0,0<'r C1 

The dimensionless groups introduced are defined as follows: 

CA = CFI 

Co 

r= x_ 
B 

G= R2u = R2 Pe}i 
I) AL 2bL 

CB CFB 

Co 

2=1. 

L 

G2 = (1-e)LDPA 

b2 ue 

(3.2) 

(3.3) 

(3.4). 

(3.5) 
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G3 = R2 (ep u 
KFL 

b= DFA 

DFB 

Tc=TCR 
E1 

PeN = 2bu 
DFA 

G4 = (1-e) 3hL 
b('cpue 

= R2PeH 

2bL 

N= RU 
uw eKF 

T= TPR 
E1 

PeH = 2b ('ep u 
KF 

Bi exp(- 
E. 

T E1 
9? = b2 A. 

of 
DPA 

i=1,2,3 

The radial heat and mass transfer coefficients are related to the 

velocity in such a way that PeM and Peh remain constant 
(168) 

, with a 

value of approximately 10. Moreover, it may also be assumed that the 

radial diffusivities are equal for each component in the fluid phase, 

making b=1.0. This occurs because dispersion is caused mainly as a 

result of the turbulent motion of the fluid. 

The effectiveness factor, , selectivity, t'', a. -id pellet temperature 

Tp are obtained by solving the isothermal pellet equation (details are 

given in Appendix (A1.2.1)). It can be represented in dimensionless form 

as follows(46) : 

BO(Sh(CA -c )(Kl (1 + H2) 
+K A PH, )- ShBH2(CPBS - CB)) - Tp +T 

Ký + K3 K1, ß++KK3 

= 0.00 (3.6) 

The dimensionless groups and the equations giving the concentrations 

CPS and CPBS at the pellet surface can be seen in Appendix 
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3.3 Methods of Solution 

3.3.1 Finite difference: 

The equations given by (3.1 to 3.5) can be solved by a Crank- 

Nicholson finite difference formulation. The dimensionality of the 

system imposes limitations on the numerical solution in terms of computing 

time and storage requirements. Also the nonlinearity of the problem 

restricts the integration steps to low values. For more details involved 

in the steps required for solution, see reference (46). 

This method has the advantage of giving a solution which can be used 

as a basis for comparison of other approximation methods. 

3.3.2 Single collocation: 

Obviously, any method which can reduce the dimensionality of the 

above system of equations and retain the accuracy of the numerical 

solution must be welcomed. Orthogonal collocation is but one technique 

in a class of methods known as weighted residual methods, which have the 

ability to reduce the dimensionality of the system, thus leading to 

shorter computing time, less storage and acceptable accuracy of the 

solution. In this section the orthogonal collocation method will be 

employed to approximate the radial differential operations only. Details 

of its application can be found in Appendix (A1.4). 

The radial heat and mass profiles can be approximated by the following 

trial solutions: 

T(r, z) = T(1, z) + (1 - r2) 
N 

a. P. (r2) (3.7) 

i=0 

N-1 
CA(r, z) = CA(1, z) + (1 - r2) > ai P. (r2) (3.8) 

i=0 

CB(r, z) = CB(1, z) + (1 _ r2) 
N-I 

ai pl(r2) (3.9) 

J=O 

where the ai are arbitrary coefficients determined in such a way as to 
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minimize the errors between the above approximate solution and the 

exact one over the domain. Pi(r2) are members of a suitable family of 

even power orthogonal polynomials. The approximate solution can be 

substituted into the differential operators, thus enabling the equations 

to be solved directly for the ordinate instead of for the coefficients 

ai (see Appendix (A1.4)). 

Substituting for the radial differential operators in the system 

given by equations (3.1 to 3.5), a 3(IT+1) ordinary differential equation 

results. The number of equations can be reduced to 3N equations by 

eliminating those accounting for the boundary conditions. This is done 

by substituting into the resulted ordinary differential equations and 

thus the final form may be represented as follows: 

N 

dzAl G1 QJ+i CAS (G2 (O + %3 )CA) 
J 

(3.10) 

i=1 

d 
dCB 

= G1 

N 
QJ, i CB - (G2ý It- %+ 3)CA) 3.11) 

IJ1b IJ 

i=1 

N 
cl T 
dz 

I=G> WJ, i Ti +G VJ + G4(Tp - T) (3.12) 
J3 i=1 3 

J=1,2..... N 
with initial conditions 

CA(z) = CAJ(0), CB(z) = CBJ(0) and T(z) = TJ(0) dt z=0.0, O< r <l 

where 
NN 

QJ i (BJ BJ, 
'AN+l, i 

i=1 i=1 AN+1, N+1 

NN 

(B 
J9i - 

BJ 
T+1) WJq i= 

>11 
Li i=1 i=1 

u 
Nw+A N+1 , N+1 

VJ = 
BJ, 

N+1 Uif 

üw 
+ _N+1, IST+l 
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The AJi and BJi are the collocation coefficients for the first and 

second order differential operators respectively and N is the number of 

interior zeros of the orthogonal polynomial used. Explicit forms for A 

and B may be found in Appendix (Al )p tables (A1. land A1.2). 

3.3.3 Remarks on the solution stetes: 

The system of equations (3.10 to 3.12) is an initial value problem 

and may be solved by any suitable explicit integration procedure. In 

this study the fourth order Runge Kutta Merson has been used. The pellet 

equations are solved at the collocation points radially (i. e. at J=1,2... 

N) and at every axial step. To obtain the state variables values anywhere 

along the radial direction, a quadrature formula is used based on the trial 

solutions given by (3.7 to 3.9). To do this we first estimate the values 

of the parameters ai at the collocation points where the values of the 

otate variables were obtainod (see Appendix (A1.4.1)). Having estimated 

ai, the radial profiles can be generated at any point 0r1. This method 

has been used during the integration and the state variables values obtained 

at r=0.0 by extrapolation and is therefore subject to some error, 

depending on the order of the orthogonal pol; jnomial used. It should be 

mentioned here that reducing the number of equations to be integrated from 

3(N+1) to 3N does not reduce the accuracy of solution, when working to 4 

significant figures. 

3.3.4 Double collocation: 

The above system given by (3.10 to 3.12) can in fact be solved by 

any integration method, either explicitly by Runge Kutte, methods or 

implicitly using a finite difference procedure or collocation method. 

It is useful to attempt to apply the double collocation, i. e. in each of 

the two independent variables, r and z. The attraction of double collocation 

is particularly evident when transient behaviour of the system is heir 

-1 



-37- 

studied. Here, a three-dimensional partial differential equation can, 

in principle, be reduced to a system of first order ordinary differ- 

ential equations without loss of accuracy. 

Thus the system given by (3.10 to 3.12) may be reduced to a system 

of nonlinear algebraic equations. The details of the reduction method 

are given in Appendix (A1.5). In compact form they can be represented 

by the following: 

N M+2 M+1 N M+2 
ZZ7, 

(Az (B 
J, i CAK, i) - Gl (AAK, 

i CAI, J)) -Z RA 
J=1 K=2 i=1 J=1 K=2 

'K, 

J 

= 0.0 (3.13) 

N M+2 M+l N M+2 
Z 

L. ý L1z(BJ, . CBK, l) - G, (A 
,i 

CB. J)) -' RB 
J=1 K=2 i=1 J='I K-2 K, J 

= 0.0 (3.14) 

N M+2 M+1 N M+2 
(AZ(BJiTK'i)-G 

3(A 'iTi'J))+ 
RT 

-' I 

J=1 K=2 i=1 ' J=1 KJ s 

0.0 (3.15) 

the boundary conditions are: 

N M+2 M+1 

A CA 0 =0 
J=1 K-2 

j 
i=1 N+, 9i K9i . 

N M+2 M+1 

T+1, i CBK! 
1 

0.0 

J=1 K=2 i=1 

N 

L, 
' 

M±2 
E 

M+l 
Z 

i TK i= AN+1 
N M+2 

ZZ NuwC Te - TK N+J ý , , M J=1 K=2 i=1 J=1 K=2 

the initial conditions being: 

at r=1 (3.16) 

NNN 
CA1 J= CA(rJ), CB CB (r 

J) and T1 J= T(r J) at z=0.0 
,1 J-1 J=l 

0: 5- r: 5 1 (3.17) 
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where RA KI J= Az G1G2 (f+ o3)CA IK, 
J 

RB K, J =- 6' G1G2, '(off + ý3ýCAIK, 
J 

RT 
Ký J ='D z G3G4 (Tp - T) 

KJ 

M= number of interior zeros to approximate the axial 

profile during the integration step and M+1 - 0.0 

andM+2=1. 

z= axial integration step 

AA = The collocation coefficients used to approximate the 

axial first order differential operator. Explicit 

forms are given in Table (A1.3). 

The system of algebraic equations given above can be rearranged 

into matrix form as described in Appendix (A1.5). In general terms 

it takes the following form: 

IQ JL 
YJ 

[V] fR) 

where =a square matrix containing the coefficients B$ and AAs 

Y=a column vector containing the state variables to be 

determined 

V=a column vector containing the boundary values at r=I and 
the initial values for an integration step 

R=a column vector containing the nonlinear reaction terns. 

Two methods can be used to solve the abovo matrix system. A 

Newton Raphson method will provide aaadratic convergence of the non- 

linear system, if it does converge. Alternatively a matrix inversion 

method can be employed as in linear systems. Both methods are iterative 

and no difficulties concerning convergence have been met in all the 

cases studied. Me details of the computational procedure are given 

in Appendix (A1.6). 
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3.4 Discussion 

It is useful here to examine the conditions under which an accurate 

solution can be obtained in an acceptable computation time. Two factors 

are particularly relevant, namely, the properties of the orthogonal 

polynomials employed and the number of collocation points which can be 

used to approximate a differential operator to a certain accuracy. 

Jacobi and Legendre orthogonal polynomials have been investigated. 

These chosen types cover a wide range of the general properties of orth- 

ogonal polynomials which may be relevant to reactor problems. The general 

form of these polynomials(121) can be represented by P 'ß(x), where the 

members of these polynomials are orthogonal with respect to the weighting 

function Wa'ß(x). Thus, if V'ß(x) = (l-x)axP, varying the values of a 

and/or ß gives rise to different kinds of polynomials, as illustrated in 

Appendix (A1.3). For example putting a=ß=0 gives Legendre polynomials, 

while Jacobi polynomials may be obtained by putting a=1 and P=0. In 

effect the values of a and ß determine the distribution of the polynomials 

zeroa in the approximation interval. When a and ß take on large values, 

the zeros are usually clustered in the middle of the interval.. Changing 

only a or ß, the zeros are shifted to one end only, while using low values 

of both"a and ß in the range between -2: 1- to Ia more uniform distribution 

may be obtained. Legendre polynomials have zeros well distributed, with 

some concentration near to the two ends of the interval. Jacobi poly- 

nomials emphasize the middle of the approximation interval. It has been 

observed that(121) Legendre polynomials give the smallest approximation 

errors at both ends, although large errors may occur within the approx- 

imation interval. On the other hand Jacobi polynomials give the minimum 

errors in the middle regions. 

The general behaviour of the different orthogonal polynomials and 

the relation between the zeroo distribution and the approximation power 
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depends to a great extent on the problem to be approximated. In the 

reactor problem under study, the type of boundary conditions, the 

behaviour and magnitude of change of the nonlinear function to be 

approximated and the location where the maximum accuracy in tho 

integration interval is required may demand certain conditions not 

given by the above properties. In actual practice, this can be 

interpreted in terms of convergence rate and accuracy which sometimes 

means fewer collocation points and therefore shorter computing times. 

Listed in Tables 3.1 and 3.2 are the members of the set which 

require the smallest computational time yet give answers within the 

error tolerance specified. Comparison was made between the finite 

difference, the single collocation and the double collocation proced- 

ures and the data used in this simulation is given in Table 3.3. 

Table 3.1 for the case Nuw = 2.0 and Table 3.2 for Nuys = 5.0 

indicate that the single collocation method with N=3 (N is the 

number of interior collocation points in the radial direction) for 

any type of polynomial is from 4 to 7 times faster than the finite 

difference solution when working for 3 to 4 significant figures accuracy. 

The corresponding axial temperature and concentration profiles arc 

shown in figures 3.1 and 3.2, and the respective radial profiles can 

be seen in figures 3.3 and 3.4, which demonstrate that in such severe 

situations, when a radial temperature difference of 40iä using Nsw = 

2.0 or more than 45% in the case Nuw = 5.0, a3 point collocation in 

the radial direction is sufficient to give 4 significant figures 

accuracy in temperature and 3 figures accuracy in concentration. On 

the other hand, with N=2, the approximation of such severe radial 

profiles was inadequate. However, the Legend= polynomials still 

approximate the profiles more closely than Jacobi polynomials. 
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Table 'Z. 1: Comparison between single, double collocction 

and finite difference methods for Nuw = 2.0 

Method of integratio N M 
Approx. 
computing 

Average 
no. of 

Absolute errors at z 
0.6 and r=0.0 

rz time in 
seconds 

iter- 
ations 

T 
0.07735 

CA 
0.02166 

CB 
0.29742 

per step 

Legendre-Run. se Kutta 2* 80 150 2 0.0001 0.001 0.001 

2+ 50 120 2 it it It 

3 80 190 2 0.00001 0.0002 0.0002'41 

3 50 160 2 it It ºt 

Legendre - Legendre 2 80 130(180) 1-2(2-4) 0.0001 0.003 0.001 

2+ 50 120(200) 1-3(3-5) 11 11 It 

3' 80 160(250) 2-3(3-5) 0.00001 0.00013 0.0002 

3+ 50 150(260) 2-3(4-7) it It 11 

Jacobi-Runge Kutta 3 80 170 2 0.00001 0.0001 0.0005 

4 80 240 2 to 's 0.0001 

Jacobi - Legendre 3 80 170(300) 1-3(3-5) 0.0004 0.001 0.002 

Finite difference 15 150 750 3-5 0.0001 0.01 0.005 

(Crank Nicholson) 20 200 960 2-5 0.00001 0.0001 
10.00001 

1. N= number of interior collocation points in the radial direction r. 

2. M= number of axial integration steps. 
3. Values between brackets are solutions obtained without linearization. 

4. For the given E1 an error of 0.001 in dimensionless temperature equal 
19°C. 

+ using the square values of the zeros. 

Table 3.2: Corripaxison between single, double collocaticn 

and finite difference methods for Nuw =0 

Approx. Average Absolute errors at z= 
Method of integration computing no. of 0.5 and r=0.0 

z 
N M time in iter-- T CA CB 

seconds ations 0.06726 0.06382 0.34613 
per step 

Legendre-Runge Kutta 3 80 190 2 0.00001 0.0001 0.0001 

4 80 240 2 ýý .. .. 
Legendre - Logondre 3 80 160 1-2(3-6) n n n 

Jacobi - Legendre 3 80 180 1_2(3_6) 0.0001 0.001 0.003 
Finite difference 15 150 770 3_5 0.001 0.01 0.006 

20 200 1040 2_5 0.00001 0.0001 0.0001 
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A01 

A02 

A03 

E1 

E2 

E3 

(-4H1) 

(- dH2) 

(-AH3) 

DPA'DPD 

DFA DFB 

<°A' kCB 

3.62 x 109 sec-1 
7.99 x 105 sec-' 
1.60 x 105 see-' 

32 kcal/g. mole 
21 kcal/g. molc 

18 kcal; g. mole 

367 kcal/g. mole 

255 kcal/g. mole 

622 kcal/g. mole 

3.66 x103cm2/sec 

6.88 cm2/sec 

4.36 cm/sec 

2 
e3 

Bo 
H2 

H3 

E2/E1 

E3/E1 

ShA'ShB 

Nu 

1 I`UW 

IN NUW 

h 1.2 x 10 3 
cal/cm2sec'K 

b 0.21 cm 

L 125 cm 

Kp 5.04 x 10-4 cal/cm/sec°K 

Y"F' 1.7 x 10-3 cal. /cm/sec °K 

u 164 cm/sec 

R 2.1 cm 

ý 6.7 x 10 
4 

cal/cm2/sec°K 

e 0.4 
CP 0.25 cal/g/°K 

9.9 x 10 >/cm3 

3.05 x 10 -7 g. moles/cm3 

. F(inlet) 660 °K 

ric 660 °K 

Pe1i, PeN 10 

ter Pe Pe 600 

Cps 0.0177 cal cm3/°K 
i 

t 

I 
i 

Ö1 
ý3 

Pi 

P9 
P3 
GI 

G2 

G3 

G4 

ýuw 

CA (inlet) 

CD (inlet) 

T (inlet) 

To 

G5 

G6 
G' 5 
G 6' 
KT 

2.09 x 103 

3.10 x 103 

1.39x 103 

5.01 x 10`5 
0.695 
1.695 

0.656 

0.563 

500 

1.0 

2.0 

1.33 

24.51 

13.79 
0.667 

0.46 

1.13 

0.84 

0.095 

0.84. 

76.85 

2.0 

1.0 

0.0 
0.0408 

0.0408 

0.64 socy. 

0.64 arcs. 

0.76 : ecc. 

0.76 sees. 
1.55 secs. 

Table 3.3: A typical set of data used iu the solution of the roactor 
m: c ý: ' s" wl1 e,? s 0 thu- ,, ai. se rpecý fiý; uxes 



N 
h 
N 

a i N 

A 

ON 

N 
II 1 "' 

C\l 

N 

17 
N\ 

7-r 

U-N 

P4 
r 
to 

0 W 

1` 

0 

Cd 
C 
Q 

-ri 4i E1 
HE 

00 rd -ri Id Id CH 
$4 f . fl $4 

(D 
0\ 

0) o0a; 
tio 

r-4 rd 

¢i NMNN K1 111 
ý`' 

tia At1W 
NN 

4r 

IS. 

0 

0 
0 

Ö \lo Lr\ d- 
O 0, O 

O O O U 



-. 

117 
i 

1 

ýL 

i 

Wý 
w 

A 

U 

1 
X 
3 

_ 1_- 1 
__ 1L jýjaý 1 

O 

r 

co ýP CV 
OOpp 

CO pit 
U 

0 

W 
t] 
co 
ü 

O 

t, n 

to ¢4 

O 
F1 

O 

43 
r-1 

O 

O4 

9 
O 

cc 
p 

rl 
td 

CJ 

K\ 

O 

O 



-43- 

It is imperative here to indicate that the importance of decreas- 

ing the number of N from 3 to 2 reduces the computing time by about 

30'/ as shown from Tables 3.1 and 3.2. This reduction is mainly due 

to the smaller number of the pellet equations which have to be eval- 

uated, and also to the size of the matrix which has to be inverted. 

Nevertheless, the reason that Legendre polynomials (w = 1) with N 

2 give better approximation may be due to the fact that the zeros are 

situated nearer to r=1, and thus emphasizing this region, as can be 

seen from figure 3.3. In the case of Jacobi polynomials, with w= 

(1 - r)2, the zeros are shifted nearer to the middle of the interval 

r=0.0 and r=1. However, since the temperature and concentration 

at r=0.0 are obtained by extrapolating those at the collocation 

points, the nearer these are to the centre, the more accurate the 

extrapolated values would be. Therefore a situation arises which 

indicates that there may be an optimal distribution of the collocation 

points to give the best approximation for the function. This optimal 

distribution becomes less important as N increases as can be seen from 

figure 3.3 for N=2,3, and 4 for Legendre and Jacobi polynomials. 

In this respect it may be seen that any polynomial gives the same 

accuracy. Squaring the zeros of Legendre and Jacobi for N=2 anno. 3, 

a new distribution of the collocation points may be obtained by which 

the axial profiles can be recomputed and compared to those obtained 

above as shown in figure 3.1. It is obvious that in the case of 

Nuw =2 and using N=2, the new locations of the Collocation points 

shown in figure 3.3 give an accuracy comparable to N=3. However, 

increasing Plaw to 5 where the radial difference in temperature is 

more than 450/6 at z=0.8 (see figure 3.3), the approximation does not 

improve, although the new distribution of the collocation points still 
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gives a better approximation, and in the case of Legendre zeros an 

upper bound on temperature has been obtained at r=0.0. In other 

cases, where temperature increases of about 30"/o across the radial 

direction and for Nuw =2 or 5, the new distribution of the colloc- 

ation points for N=2 using the squares of Legendre zeros gives 3 

significant figures accuracy in temperature and 2 figures accuracy 

in concentration at the axial positions (i. e. r=0.0). Such accuracy 

needs 3 collocation points with the original distribution of the 

Legendre zeros. 

From figure 3.3 the zeros of the Legendre polynomials and their 

squared values are located on the radial temperature profile. It 

can be observed that the positions for N=2 depend to some extent 

on the behaviour of the function to be approximated. The new loc- 

ations of the squared zeros are located such that they take into con- 

sideration the full variations which occur. This is more apparent 

for-Legendre than Jacobi squared values. Moreover the new Legendro 

squared zeros for N=2 enable the extrapolated values to be obtained 

with more accuracy. 

It has been noticed that, in all the cases studied, the converg- 

ence rate of the new distribution of the collocation points has 

improved for N=2 and 3 and for both Legendre and Jacobi squared 

zeros. This observation contradicts the basic property of collocating 

at the orthogonal polynomial zeros, namely that the best distribution 

of the collocation points is at the zeros of the orthogonal polynomials. 

However, this property applies strictly to linear problems and should 

be looked at with reservation when dealing with nonlinear problems. 

Moreover, it seems that the rate of convergence for low values of N 
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is independent of the orthogonal polynomials properties and that for 

N ?'4, the convergence rate becomes better for the collocation points 

situated at the orthogonal polynomial zeros. For high values of N 

any orthogonal polynomial can be used, and thus the argument about 

the best locations for the collocation points is not so important. 

The above results therefore indicate that a reduction in the 

number of collocation points can be attained if the location of the 

collocation points are chosen in such a way as to take into consider- 

ation the behaviour of the function to be approximated. From the 

above results N may be, reduced by one for the same accuracy of approx- 

imation or an increase in accuracy for the same N can be obtained. 

When the collocation method is also used as an integration 

procedure instead of Runge Kutta method, the term double collocation 

is used. It has to be remembered that although one kind of orthogonal 

polynomials may be used in the radial and axial directions, the 

difference is that the first are even polynomials (due to the radial 

symmetry), while in the axial direction and due to the unsymmetry of 

the axial profiles, the zeros of the polynomials and their coefficients 

are slightly different (see Appendix (A1.4.2)). 80 axial integration 

steps were sufficient when either Runge Kutta Merson or the colloc- 

ation procedures were employed. In fact even with steep gradients 

such as those shown for temperature and concentration profiles in 

figures 3.1 and 3.2,50 axial steps can be used without affecting 

the accuracy of integration. It has been indicated that the optimum 

value of M (the number of interior collocation points in axial direction) 

is between 2 and 3. This optimum number is based primarily on con- 

sideration of the size of the matrices involved, the number of axial 
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steps and therefore on computing time. 

found to give the most accurate results 

method. This could be expected, since 

minimum errors at the ends of the integ 

inherited errore from any previous step 

throughout the integration. 

Legendre polynomials were 

when used as an integration 

Legendre polynomials give the 

ration interval, and thus the 

should be kept to a minimum 

From Tables 3.1 and 3.2, using Runge Kutta Merson or Legendre 

orthogonal polynomials with M=2, together with Newton Raphson method 

to enhance convergence as an integration method, indicates that gor a 

given accuracy no appreciable reduction in computing time results 

using the latter. This contradicts the results of Villadsen and 

Sorensen who claimed that using Legendre polynomials, instead of the 

fourth order Runge Kutta method, reduces the computing times by a 

factor of 4 to 10 for linear problems. The argument for their 

resultant improvements has been based on using M=2 in the axial 

direction where the fifth term in the truncated Taylor series expansion 

is almost correct, while it is truncated in the fourth order Runge 

Kutta. Thus the attainable accuracy as well as the convergence rate 

might be expected to improve using the collocation method with fewer 

axial steps. However, in our case two factors must be taken into 

consideration. Due to the nonlinearity of the problem, use is made 

of Newton Raphson method, which in turn involves a matrix inversion. 

The second factor which to a great extend depends on the first, is 

that due to the iterative nature of the solution method in each 

integration step, more than one matrix inversion is usually necessary. 

This is not the case with Runge Kutta. So it seems that the time taken 

in matrix inversion ever-rides the advantages to be found in the linear 

problem. It is possible to solve the system without Newton Raphson and 
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in this case, no matrix -inversion is involved, although the solution 

procedure is still iterative. As can be seen from Tables 3.1 a: ad 3.2, 

the values in the brackets indicate that the number of iterations 

increases and as a result the computing time is even greater. 

Thus the decision to use either procedure depends on three factors: 

1. The relative computing time involved in function evaluation at 

each collocation point (in our case the pellet equations) as compared 

to the time taken in matrix inversion, the size of which is determined 

by N and M. 

2. The magnitude of changes taking place in the integration process 

which can be translated to the number of iterations per step. 

3. Whether the solution is repeated several times as in the case of 

optimization, or optimal control algorithms. 

Using the procedure without Newton Raphson, making the double 

collocation faster than Runge Kutta Merson, if the number of iterations 

per step does not exceed 2. In the case of Runge Kutta Merson, 5 

function evaluations are needed per step and it has been observed that 

it takes 2 iterations for convergence. In the case of the double 

collocation, 4 function evaluations are needed, so it is apparent that 

the latter could be faster in nonlinear problems as is the case here. 

The conditions stated above are found in the transient state where 

the changes during a time step are usually small, and this makes the 

double collocation a more suitable method of solution. In addition, 

its ability to reduce a system of three dimensions, as in the transient 

state, to one dimension is certainly a significant factor and cannot be 

ignored. This method will therefore be used in the next chapter and 

examined further. 
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3.5 Conclusions 

Me system of nonlinear partial differential equations describing 

the physical and chemical processes in the reactor at steady state, has 

been solved by collocation. Comparisons in terms of accuracy of solution 

and computing time have been made between the implicit finite difference 

representation (Crank Nicholson), the single and double collocation 

procedures. 

It has been shown that the single collocation method (collocating 

in the radial direction and integrating with Runge Kutta Merson), with 

N153 is from 4 to 7 times faster than the finite difference method with 

N< 20 for a comparable accuracy. A radial temperature gradient of more 

than 45% needs 4 collocation points while less than 409/6,3 collocation 

points can be used. If for such steep gradients less radial collocation 

points were used, the approximation seems to underestimate the parameters 

at the boundary. However it has been shown that a better approximation 

with fewer collocation points can be obtained if the distribution of the 

locations of the collocations is such that they emphasize certain regions 

where the function value is needed with great accuracy. In this respect 

reduction of N by one point has been obtained for comparable accuracy, 

faster convergence and reduction of computing times by about 30%. 

The comparison between the single collocation and the double 

collocation procedures revealed that for nonlinear problems, where linear- 

ization procedures are used, no appreciable reduction in computing tines is 

possible, unlike the linear problems. 

Without linearization, the solution converges with slower rates. 

However, in certain cases where the changes taking place are small, and 

where not more than 2 iterations per step are required for the solution to 

converge, the double collocation, without linearization, can be appreciably 

faster than single collocation. Such conditions can be found in the study 

of transient problems. 
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Finally the collocation solution (for N-< 3) for tho radial 

diffusion model solved in this chapter takes from 3 to 4 times longer 

computing time than the corresponding plug flow model without radial 

diffusion. 

p 
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CHAPTER 4 

DYNAMIC MODEL WITH RADIAL DIFFUSION 

4.1 Introduction 
4 

The parts ular attraction of mathematical modelling of fixed bed 

catalytic,, jeactors has been the possibility of using these models as a 

basis for the design and control of reactors, and more importantly 

also for investigating the dynamic behaviour in regions of potential 

instability. 

While dynamic models can, in principle, include as much detail as 

required to describe the behaviour adequately, the time taken to solve 

them is usually excessive. Thus it is desirable to develop either a more 

rapid method of computing the solution, such as the collocation method 

already described, or to simplify the models used. At this point, it is 

worth considering the general characteristics upon which. selection of the 

appropriate model might depend. Clearly, it is not profitable to employ 

'ý 

a model which is more elaborate than is necessary to satisfy the minimum 

requirements of accuracy and description in any given situation. Two 

considerations are relevant here; the first is the discrepancy between 

solutions obtained from different models of the system. If the results 

do not differ significantly over the practical range of operating 

conditions, then the simpler model should be used, provided that the 

necessary parameters can be satisfactorily measured or predicted. The 

second consideration is the need to relate the parameters of the model 

to physically identifiable processes. This is usually possible in 

complex models, but in the case of simpler models, the parameters may 

not be so readily identifiable. 

For highly exothermic reactions, particularly where radial temp- 

erature gradient exists, a two dimensional model is needed to satisfy 

the constraints of accuracy, general reliability and description of the 
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physical phenomena. In dynamic modelling the situation becomes even more 

demanding as the resulting three dimensional model results in such pro- 

hibitive computing times 
(62,109) 

that no detailed examination of the 

reactor performance is possible. Most of the above workers used some 

form of finite difference methods of solution. However, it has been 

shown in the previous chapter that a substantial reduction in computing 

time can be achieved by using the more efficient methods such as 

collocation76) 

Transient one dimensional models may be derived, but this is a 

result of grossly simplifying assumptions for the problem being con- 

sidered, for'example a parabolic radial temperature profilec46,109) In 

such cases the estimated radial profiles tend to be inaccurate. Thus, 

although the dynamic models based on the one dimensional approach take 

considerably less computation time, they are inadequate in representing, 

such systems and limit their use to qualitative predictions only. 

Consequently, any method which would both reduce the dimensionality of 

the model, yet retain some knowledge of that eliminated dimension 

certainly would be welcomed. 

Model reduction techniques have been applied by McGreav, r and Tu-rner(135) 

to steady state models with reasonable success. Basically tha technique, 

which will be the basis of that used here, is to eliminate one dimension, 

in this case the radial direction, and then reconstruct the solution in 

that eliminated dimension in a. simple algebraic form. This can con- 

siderably reduce the computing time. In other words, instead of solving 

the system of equations as in the collocation method, by evaluating the 

parameters ai to satisfy a trial function of the form 

N-1 
Y(r, Z) =E ai Pl (r 

i_0 

in model reduction an attempt is made to formulate the parameters aj 
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in terms of the physical. parameters of the system and/or to a general 

form of Pi(r2), not necessarily orthogonal polynomials, to satisfy the 

radial boundary conditions. In some measure this takes account of the 

problem by choosing the appropriate polynomial and collocation points. 

In this chapter the model reduction technique will be applied to 

the heterogeneous two dimensional dynamic model based on that given in 

Chapter Three. An assessment of the reduced model in terms of accuracy 

of representation and computing time in comparison with the collocation 

procedure solution-will be carried out. Its advantages and disadvantages 

over the one dimensional dynamic model with the assumption of radial 

parabolic temperature profile will be examined. 

Consideration is aleo given. to the identification of some of the 

dynamic characteristics of the reactor which may be of particular concern 

in formulating control strategies. 

4.2 Formulation and solution of equations 

Using the same nomenclature as that used for the steady state. model 

of the reactor (see Chapter Three), the equations representing the heat 

and mass balances for the system may be written in dimensionless form as 

follows: 

G 
C) Ä 

_1 a CýCAý_G OCA 
_GG (O2+O)CA 

5T TL r cý c r' 1 a. 1 2ý 13 

Ga (rýý} _G 
G= 

+G Gý y+-(ý2 +ßi2}CA 5 Ti 7Crr1z1 2ý 13 

aT 
G6 

4- 
C) T 

(r Qi) 
- G3 Z+ G3G4 (T - T) cf C IL =r 

with boundary conditions 

CA 
_ O = 

rTp 'ICB 
r_ O r r 

Sq 
.. _p N dr. dr 

ar üw 
Tc ILI / 

atr=0, zý0, T? 0 

at r=1, z>0,1 >0 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 
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the initial conditions being 

CA=CA(r, T), CB = CB(r, T) andT=T(r, T) at z =0,0<r-c1 and 

>o 
The additional dimensionless quantities are 

G5 =Gü sec. and G6 = G3 
ü sec. 

The pellet temperature Tp, the effectiveness factor and the selectivity 

y, can be estimated by solving the dynamic pellet equation 

H3 Nü M=T- 
Tp + Bo (sh 

A 
(CA - Cpl) K1(i + H2 )+ ý_... 

`3 I. L KI +K3 K1 + K3 

- shx 1,2 ( CABS - CB) 
] (4.6) 

This equation represents a heat balance on the pellet which is 

assumed to be isothermal. This assumption has been shown to be valid 

in the dynamic case, For details and equations giving trio concen- 

trations CpAS and Cp$a see Appendix (A1.2.2). The double-collocation 

method applied in Chapter Three is employed here to reduce the partial 

differential equations to a system of first order ordinary differential 

equations. The Runge Kutta Merrion integration method can then be used 

to integrate both the fluid and pallet in the time domain. 

In a dynamic system -where coupled transient effects are occurring, 

as is the case bore, it is necessary to consider only those phenomena 

where the relative rates of change are of the same order of magnitude. 

If this is not the case, then. the faster charges will enable one of the 

variables to reach a pseudo steady state, and the response will depend 

only on the transient event having the longest tirie ccnstant. It is 

clear in the present case that the time constants of the fluid are stas. ll 

compared with that of the solid phase, since G5 = G6 = 0.639 sec. as 

against that of the solid KT = 1.55 sec. This means that by putting the 
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time derivatives equal. to zero, the fluid equations are reduced to 

algebraic system of nonlinear equations. The dynamic effect, therefore, 

comes only from the transient pellet equations. The system has been 

solved using this approximation which is in fact valid, as demonstrated 

elsewhere. 
46,109) 

Me solution procedure, in general, is similar to that described 

in the case of steady state, except that the inlet variables are up- 

dated at the beginning of every time step. For details of the solution 

steps followed, see Appendix (A2.1). 

Preliminary computation indicates that the changes in fluid 

conditions over the period of a time step are small. In this case, 

the system of algebraic equations describing the fluid may be solved 

without employing the Newton-faphson iteration. This approach has 

confirmed that the convergence of the system is quite satisfactory. 

The average number of iterations per axial step has been found to be 

1 or 2 over. wide ranges of conditions. However, in the case of temp- 

erature runaway or similar severe cases, the number of iterations 

increases to 3 or 4. Such severe conditions usually occur over short 

time durations, mating the advantage of solving the system without 

Newton-Raphson attractive, since it obviously requires shorter comput- 

ation time and less storage. 

In the following section a lumped dynamic model will be developed 

and assessed against the distributed parameter model described above. 

4.3 The dynamic lumped model 

In a one dimensional representation all the state variables are 

radial mean values. The reaction rates are also radial mean values and 

this is likely to raise problems of evaluation, since for nonlinear 

functions the radial mean value is not the same as the value at the 

radial mean conditions. Methods of tackling this difficulty have been 
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mostly confined to assuming radial parabolic temperature profiles(46+109) 

from which the mean rate is evaluated and an effective wall Plusselt 

number is derived as NzW = 
Naw 

. However it has been shown(46) 
1+C. 5 üw 

that the discrepancy between the one and two dimenoional models is mainly 

due to the deviation of the radial temperature profile from the assumed 

parabolic representation with the result that either the reaction rate 

is underestimated, or tho heat removal is being overestimated, or both. 

Since the two cases produce similar effects, it appears that the model 

can be improved by adjusting both of them in a suitable way. 

4. .1 Formulation of equations 

The distributed system of equations given by (4.1 to 4.5) can be 

lumped to eliminate the radial operator terms and so defining the state 

variables as mean values (for details of reduction procedure see 

Appendix (A2.2)). Multiplying the above system of equations by 2rdr, 

integrating with respect to r over the radius(78) and then substituting 

for the boundary conditions, we get: 

G5 L= 
-G, - DCA( (O k1 + 

g3 k3 ) CA) 
m 

(4.7 

G5 _G 1b -ý + DCB (7 L (04, k1 +3 k3) )CA) (4-8) 

G6 _ -G3 -2 Nu'(Tm - 1) + DTG3G4(TP - T) (4.9) 

The initial condition being 

C At = CA( L, z), CBM= CD(L , z) and Tm = T(L, z) at z=0 and L }0 

The dimensional quantities which have been introduced are defined as 

follows: 

T= TF , CA = CFA , CB _ C-11 
TC Co Co 
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`12 (1-e R2A i exp(- 

L) 
o1 

eDFA 

Ei 
where i=1,2azid3 

FtT C 

T- 
ýý Kip' (Tm) =! (m) exp(Öi) exp(-LZ ki = exp( öiT(m) 

mT 

The parameters involvinG arGuaent m are evaluated at the mean 

conditions and the pseudo paxameters are defined as follows: 

1. The modified wall Nusselt number Nu' =N 
(T r-1l -1) 

utI ` T(r m) -1 

2. The distribution factor D= 
the mean rate R(T, CA, CB) 
the rate at the mean state conditions 

i'`(Tm, uw CBM) 

It should be noted that accuracy of the : educed mode?. given by 

(4.7 to 4.9) depends on adequate formulation of the pseudo pa-zrneters. 

They are radially dependant and therefore, knowledge of the radial temp- 

Brature and concentration profiles is necessary. 

4. >. 2 The general form of the radial Rrofiles 

The algebraic expressions for estirnatinf; the radial teiperature 

and concentration profiles are given belowý78) In the case of temp- 

erature, a correction function io added, to the parabolic representation 

to account for the distortion of the profiles from the parabolic forms 

resulting from chemical reaction. The equations take the form: = 

(T (r) - 1) _ (1 + 0.5 N. (1 ß, 
2)) (w5 (ß - 3r` + 2r3) + 1) ) 

üW )2(1 3r2 + 2r3)+ 1)(T(1) - 1)) (4.10) 
1.2 N +4 

CA(r) = ICAT (: r2 - 2r3 - 0.7) + CA(m) (4.11) 

CB(r) =A CB (3r2 - 2r3 - 0.7) + CB(m) (4.12) 

where w5 = -13-0{¢, ý GCA1 + ß3 d CA3 + ß2 -(M) dCAT) 
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13l, ß2 and ß3 are the thermicity factors for different reaction 
DF 

steps, in dimensionless form ßi - 
AH 

iCoAi=1,2 and 3 
KF TC 

QCAT and A CB are pseudo parameters which will be defined later. 

4.3.3 The form of the modified Nusselt number 

Based on the corrected form of the radial temperature profile 

expression given above, the modified Nusselt number may be formulated 

as follows (see Appendix (&2.2)). 

If Nu =N(T 
(l) 

Tm1 

where the mean temperature is defined by 

(T(m) - 1) =2 

0 

(T(r) - 1)r dr 

Substituting for (m(r) - 1) from equation (4.10) and crying out the 

integration, an expression for Nu' can be derived as 

N 
uw 

(1 + 0.25 Nw )'+ P 
ühý +Q (w59 1) 

i4" ý! 3) 

2 
where P(2NW)_( üw ) (0.3+0.11NzW) 

1.2 Uw 

2 
Q(w5, üw) = w5 ý ý0.3 + 0.11 üj. 

T) + (1.2 
N 
lýlw 

a. 4) 
(0.17 -4 0.47 üw) ) 

uw 

For a particular reactor, the wall Nusselt number NNuw is constatlt, 

so that P(N 
147) 

is constant and Q(95, N 
zW) 

is a direct linear function of 

w5. The terms P and Q are considered as corrections to the effective 

Nusselt number NU $ derived from the assumption of a parabolic temperature 

profile. 

4.3.4 The form of the distribution factor 

The distribution factor as defined earlier can be considered a 

correction factor for the radial fluid temperature and concentration 
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profiles in the one dimensional model which assumes it to be equal unity. 

It is possible to generate the radial reaction rate profile from the 

radial temperature and concentration profiles, from which the radial 

mean reaction rate can be determined by direct numerical integration 

using Simpson's rulec78) However in generating the reaction rate at 

each radial node it is necessary to solve the pellet equations so that 

the reduced model could be said to be degenerating back to a two 

dimensional system. Therefore the number of radial points used in the 

radial integration should be kept to a minimum when evaluating the radial 

mean reaction rate (R(m)). 

Using the simplest form of Simpson's integration rule, i. e. 

R(m) =3 R(2) +*R(1) 

and the general form of the distribution factor can be written as 

D_ 2R + R1) 
3R(m) 

where R(m) is defined as follows: 

for species A given by equation (4.7) 

R(m) ( (ý1 ký + P3 Y3)CA) 
im 

for species B given by equation (4.8) 

R(m) k1 + O3 k3)CA)I 
m 

and for temperature Tm given by equation (4.9) 

R(m) = (Tp - T)) 
m 

4.3.5 The pseudo parameter ACAT 

The functional form of QCAT should reflect the inter-dependance of 

concentration and temperature profiles through the reaction rate 

expressions. A measure of the radial concentration difference may be 

used, namely QCAT = CA(1) - CA(0). The value of Q CAT is not directly 
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available in terms of the reduced model., but is required in order to 

estimate the distribution factors, Na' and to generate the radial temp- 

erature and concentration profiles. An empirical derivation has been 

carried out; 
78) based mainly on relating nCA,, to the mean system states 

such as CAM, Tm and the reaction rate constant K*(m). The resulting 

asymptotic value for ACA can be written as 
N (K '(m) - 1) 

uw 1 
QCAai. 1.18 K *(M) (N + 0.25) + 7.2 N+ 1/j6 2, (4.14) 

i uw uw 

where i=1,2,3 for each reaction step. 

For the general case where K1(m) y' 1, ACAS does not fulfil the 

inlet conditions for the concentration (i. e. A CAai 0= 
0). In that 

event, the functional A CAa approaches its asymptotic form from the 

inlet &CAaj 0=0 in a manner which may be described by a development 

function of the following form: 

,6 CA. 
.= 

ACAai(1 - exp(- Vii)) where A CAa, is the asymptotic value 

and is a pseudo parameter which is axially dependent function having 

in general an inverse relationship to ACA 
ai .A convenient form is 

given by: 
z 

2(Ki(t10) - 1) + CAM) 4.15) ýi [1 KK*(tmo) -1 

This form becomes zero at z=0 for CAm = 1. The principal dependent 

variable of this function Pýi is the radial mean conversion (1 -- C Am)* 

While this function takes care of the general temperature inlet conditions, 

in the case of concentration disturbances, where CAM t 1, the developing 

function will not be zero initially. Depending on such disturbances, 

the development function will therefore pass through a maximum or 

minimum which will result in large errors being introduced. To remove 

this problem, a modified function of the following form can be uced. 
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2 

f 2Ki(tmo) - 1) + 
1/f1 

=l (CAI - CAM) C4. ý6) K1CTmo) -1 

where CAI =a constant, always equal to the inlet mean concentration 
CAm. 

as: 

Finally the overall A CAT for the complex reaction can be written 

p, CAT =& CAS + Ll CA3 

and ACB =- 11"(m) & CAIN 

4.3.6 Method of solution 

This hyperbolic system of equations given by (4.7 to 4.9) can 

profitably be solved by the method of characteristics described in 

appendix (A2.3), using the Runge Kutta Merson procedure. The steps of 

the solution are as follows: 

1. Assume values of CAm, CBm and Tm at the first (or next) axial 

position where they are unknown. 

2. Using the values of step 1, evaluate CA, CB and T from the radial 

expressions at r=0.5 and r=1.0. 

3. Integrate the transient equations for the catalyst pellet to 

evaluate Tpm, ým and cm and also the values at r=0.5 and r=1.0 

for this axial position and at the current time step. 

4. Using the values of step 3, i. e. Tp, 7 and r at r=0.5 and 1.0, 

evaluate the distribution factors for the fluid variables, and the 

values m and Y to evaluate Nu'. 

5. Integrate the fluid equations to evaluate the mean state variables 

at that position. 

6. Compare the evaluated state variables with those used in step 1. 

If agreement is satisfactory continue to step 7, otherwise repeat from 

step 2 using the new predicted values of CAM, CBm and Tm. 
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7. Repeat from step 1 for z 

8. Repeat the whole computation for the next time step and continue 

as long as necessary. 

For the purpose of this algorithm, Tp, ý and rare needed between 

each time step. Changes in Tp can be considered linear over the time 

step and the fluid equations are effectively subjected to a ramp 

change in Tp. Numerical calculations of the distribution factors have 

shown that the values of I and q- required may be estimated by using 

noniterative steady state equations, for the pellet. This approximation 

has been found more accurate in estimating intermediate values for 'j 

and q-'than considering the changes to be linear, especially in regions 

of temperature runaway or multiplicity. 

4.4 Comparison of the models and improvement of the lvmped model 

4.4.1 General comments 

Previous numerical evidence(46109) indicates that the capacitance 

of the fluid to absorb heat and mass is usually negligible in comparison 

to that of the catalyst pellets and therefore can be considered at a 

pseudo steady state. \tJhile this assumption has been found adequate in 

cases of one and two dimensional dynamic models, it is not necessarily 

valid in this lumped model because of its semi empirical structure. 

Preliminary computed results of the lumped model may be seen in Figure 

4.1 where the temperature profiles arc compared at three times for a 

step decrease in inlet temperature, for G5 = G6 =0 and G5 = G6 = 0.6; 9. 

The difference between the curves is negligible in comparison with the 

magnitude of the changes which are occurring. Treating the reactor fluid 

as being at a pseudo steady state enables great savings in computational 

effort to be made, particularly when step changos in concentration occur 

at the inlet, since it would then be necessary to take very small steps 

in the time direction to follow the disturbance through the reactor. 



l 
O N 

ý. 
OO 
co co 

O ýJ 

lJ 

ýD O 

OO 

II II 

ü 
C) 

U !1 

C9 C9 

1 
1 
1 

(0 öö0 
0 
0OOO 

D 
r 

N 

UN 
0 

C) 

0 

O 

0 

9 
a) W 

CL) 
O 

Fa 
OO 

rd is 

P, fi 

-- 
w 

G'! 

hn 
tý 

C) 
O r4 

r 
Cd 

OH 
44 

0 

ri N 

P -VD 
P-0 C) 

Cd 4- 
CJ 

a"" 
Q) Q) U 

Qý -0 N 

r1 O r1 

9 04 
Üý"! 

S 
CJ O 

C) r4 F. 4 
IV, i CLL, 
+' ri ýl 

0 C7 
0 Cl) U] 

tD r--1 r: 
c0 a1 

0 C) 

c 
Cl) P, 
WN 

ö5 

o Nl% 0 
vr 4.4 O Cl) 

v-1 0 "ri 
a) 

O -ý' 
a) 

ÖW 

aý 
s 

1 C=. 



-62- 

In the case of G5 = G6 ,-0, time steps of 0.05 to 0.1 have been found 

necessary, to ensure convergence, while in the case of G5 = G6 = 0.0 

a time step of 1.0 second has been found adequate in all cases studied 

here. In all cases 80 axial steps have proved satisfactory. 

Comparison between the two dimensional dynamic model (3 point 

collocation) and the lumped model is shown in Figure 4.2 for a step 

decrease in inlet temperature. It can be seen that the discrepancy is 

negligible. Furthermore the ability of the lumped model to generate 

the radial temperature and concentration profiles may be seen from 

Figure 4.3 and Figure 4.4. 

It is worthwhile mentioning here that, at each axial step, the 

pellet dynamic equations are evaluated at three radial points in the 

lumped model compared with only one evaluation in the one dimensional 

model. The direct solution of the two dimensional model using three 

point collocation also requires the solution of the pellet equations 

three times. Indeed, the lumped model gives accuracy comparable with 

the three point collocation, but it takes about the computation time. 

This is because the increase in the number of fluid field equations, as 

a result of radial discretization, increases the computational effort. 

In fact, it takes the same time as a two point collocation solution. 

Comparing the computational times of the one dimensional model, the lumped 

and the two dimensional model (three collocation points), they are of the 

order 1: 3: 4 respectively. 

It has been observed that most of the computation time is taken up 

with pellet parameter evaluations. Thus, any gain to be made from this 

point onwards should be directed to reduce the number of pellet equations 

evaluations. 
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4.4.2 Improvement of the lumped model 

As noted above, the evaluation of the distribution factors in the 

lumped model requires the evaluation of the pellet equations at two 

radial points (at r=0.5 and r=1.0) other than at the mean state 

values. If the pellet temperature can be estimated without solving the 

pellet equations, a significant gain can be made in computation time. 

4.4.3 A first approximation for the distribution factor 

From extensive numerical calculations, it has been observed that 

near the wall, the difference between the fluid and solid temperatures 

is almost constant, except in regions where parametric sensitivity or 

multiplicity prevail. At these conditions the nonlinear behaviour 

dominates, especially at r=0.5 where the pellet temperature gradient 

increases more rapidly than that of the fluid temperature. At r=1, 

the difference between the fluid and pellet temperatures is almost 

constant over a wide range of parameter values and in most cases can be 

fitted without any difficulty. The solid temperature at the wall can be 

estimated by the following expression: 

N 
(p(1) - ý) 

NuI 
(TP(a) -ý) (4.17) 

This expression is similar to that used to evaluate the fluid 

temperature at the wall. While this expression satisfies the conditions 

of nearly constant temperature difference, it also implicitly takes into 

account the various pellet parameters and their effect in the value of 

Tp(m) used. Figure 4.5 shows the transient response for a step decrease 

in temperature with this modification. It can be seen that the errors 

due to this approximation are negligible compared with the original model. 

The error estimate for the most severe conditions of this model was tested 

has not exceeded 1%. Moreover, a 30iä reduction in computation time has 

been achieved. 
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4.4.4 A second approximation for the distribution factor 

The problem of approximating the pellet temperature at r=0.5 is 

difficult to predict since the nonlinear relation between the fluid and 

solid temperature dominates at the radial positions where the fluid 

temperature is already high (i. e. high reaction rates). Nevertheless, 

as a first approximation and following the same argument stated above 

and using a similar algebraic expression as that used in the case of the 

fluid temperature estimate, it is possible to evaluate the radial solid 

temperature and add a correction function to account for the deviation 

which occurs as the fluid temperature increases. Thus, 

(Tp(r) -1) = (1 + 0.5 N (1 -r2)) (w5(1 -3r2 + 2r3) + 1)(( NzW )2 

1.2N'uW+4 

(1 -3r2 + 2r3 + 1))(Tp(1) -1) + AF(T, 9p, z) (4.18) 

where F(T, Tp, z) is an axially dependent function which depends on Tp(m), 

while A is radially dependent. The simplest form for this correction 

function is: 

AF(T, Tp, z) = B(1 - r2)% (Tp(m) - T(m)) 4.19) 

From numerical experimentation, it has been observed that B is a 

constant over a wide range of fluid temperature and has a value of 0.04. 

Figure 4.5 shows also the dynamic behaviour of the reactor to a 

step decrease in inlet temperature with this approximation. It can be 

seen that even with this gross approximation, the errors in predicting 

the axial fluid temperature profiles are not serious. From several test 

runs with these approximations and for variation in inlet fluid temperature 

and concentration, errors amounting to 5% have been noticed compared with 

1%, using only the first approximation given by equation (4.17). However, 

in cases of temperature runaway, using the completely lumped model, errors 
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of 15% may be obtained. Nevertheless, the ability of this model to 

detect these cases is always adequate, since these are the regions which 

are always avoided in practice. The time of computation is about the 

same as that of the one dimensional model with radial temperature 

parabolic approximation. The ability of the lumped model to estimate 

the radial profiles, as well as the mean state variables, with minimum 

error makes this completely reduced model adequate and reliable even for 

optimisation and control studies. 

4.5 Discussion of results 

Despite the fact that the postulated models represent moderately 

complex cases in identifying the chemical and physical behaviour, typical 

of the class of highly exothermic heterogeneous reactors, it is still 

not possible to give a perfectly general solution which will cover all 

possible types of behaviour. Even by confining attention to the practical 

ranges for the dimensionless groups characterizing the differential 

equations, it is only feasible to attempt to investigate the kind of 

response for a particular problem and to try to find some pattern, or 

special features, which will characterize the system. This is the kind 

of information which is useful in deciding on the control strategy to 

be used (i. e. what variables will be manipulated, measured and controlled). 

Furthermore any unusual behaviour will be invaluable when deciding how 

near to the limit of stability the reactor can work. In short, the 

simulation should provide a basis for knowing what effects to take into 

account when designing a reactor. The lumped model developed above will 

be used in some of the present computations and will be compared with the 

two dimensional model (using a3 point collocation in the radial direction) 

to further establish its validity. In the following discussion, most 

attention will be paid to the longitudinal axial profiles (i. e. at r= 0) 
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because at this position these are the major variables which limit the 

long term behaviour of the system and the safety and satisfactory 

operation of the reactor. Table 3.3 in Chapter Three gives the values 

of the data and the corresponding values of the dimensionless groups 

used in the simulation discussed here. 

The reactor response to a step decrease in inlet temperature is 

shown in Figure 4.2. In the period immediately following the initial 

drop in inlet temperature, the most important effect is the resulting 

fall in temperature of the solid in the inlet region caused by the cooling 

effect of the gases entering the reactor. This results, in less of the 

reactant being consumed until it reaches the section of the bed which has 

not yet been cooled. A situation thus arises where an increasing concen- 

tration is reaching parts of the bed which are already hot, so that the 

temperature begins to rise rapidly. As the cooled regions in the reactor 

inlet gradually move into the bed, the balance between reaction and 

heat removal is adjusted until the final steady state is reached. This 

type of response is an excellent demonstration of the distributed tiara- 

meter effect and of how an apparently safe action, i. e. reduction of the 

inlet temperature, may give rise to severe hot spots. Although it is 

ultimately the reaction rate dependency on temperature and concentration 

which gives the fixed bed its characteristic behaviour, it is the travelling 

heat and mass waves down the bed and their interaction which is responsible 

for this unexpected behaviour. 

To generalise the above behaviour, the response will be termed the 

cold wave effect. In front of this wave the concentration is always 

higher than it should be at any axial position in the reactor. This 

results in a high concentration wave reaching an already hot part of the 

bed which leads to the formation of accentuated hot spot,. At the back 

of this cold wave the concentration in also higher than originally, due 

to the cooling down of the solid. This results in feeding more reactant 
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than that supplied by the cold wave alone. 

Studying a step decrease in inlet concentration, the temperature 

and concentration profiles are shown in Figure 4.6. As a cold wave is 

developed, it can be observed that a monotonic decrease in temperature 

results. Although the concentration in front of the cold wave is still 

higher than it could have been without the cold wave, the difference is 

that at the rear of the cold wave, the concentration is lower than 

originally. In effect, no supply of reactant is added to that produced 

by the cold wave. Moreover, because the concentration wave moves at 

about the same velocity as the fluid, the level of concentration every- 

where in the reactor is immediately lowered. This action would still 

weaken the concentration wave in front of the cold wave. As a result, 

the temperature decreases monotonically: However, if the cold wave is 

so extensive, as when applying a step decrease in temperature and concen- 

tration at the same time, the cold temperature wave could. supply more 

reactant than originally and a situation may arise where temperature 

increases before settling down, as in the case of a step decrease in 

temperature alone. Of course, this situation may arise if the step 

decrease in concentration and temperature does not affect the reaction 

rate with equal magnitude, i. e. it depends on the reaction rate expression. 

This point will be discussed later. 

Opposing the cold wave, there is the hot wave which can be 

demonstrated by observing the temperature and concentration profiles for 

a ramp increase in the inlet fluid temperature. This is seen in Figure 

4.7. First, it causes a new peak to begin to form nearer the inlet than 

the old peak, while the latter begins to decay and moves towards the 

reactor outlet. The response of the reactor to a ramp increase in temp- 

erature is basically what would be expected from intuitive consideration. 

As this hot wave moves down the bed, and as a result of the reaction, a 

low concentration wave always occurs in front of the hot wave. This low 
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concentration wave lowers the temperature level in the rest of the 

reactor. At the back of the hot wave, the concentration is always 

higher than in front. This higher concentration wave keeps the temp- 

erature at a relatively high level as the heat wave passes through. 

In the case of a ramp increase in concentration, as can be seen from 

Figure 4.8, the same mechanism as for the hot wave applies here. The 

only difference is that the hot wave originated at the inlet by the 

increase in concentration, rather than by temperature. The hot and 

cold wave propagations always occur when the reactor is subjected to 

inlet temperature or concentration perturbations. The intensity of the 

effect of these waves for a specific set of parameters is a function of 

the magnitudes of the perturbation, the form of the reaction rate, and 

the initial steady state profiles (i. e. the levels of the temperature 

and concentration in the spatial co-ordinates of the reactor). 

In practice the flow rate might be subjected to fluctuations. 

Indeed, in severe cases these perturbations may arise as a result of 

electrical or mechanical failure in a pumping system. Perturbations 

in the system linear fluid velocity should also be studied as a factor 

which might be of importance in reactor control. The film transfer 

coefficients h and KCA, as well as the effective thermal conductivity KF 

and the overall wall heat transfer coefficient U, are dependent on the 

fluid velocity and increase as the fluid velocity increases. Any 

perturbations in velocity must also be applied to these coefficients. 

Figure 4.9 shows the axial concentration and temperature profiles for a 

6% (10 cm/sec) ramp increase in the inlet fluid linear velocity. It can 

be seen that as the fluid velocity increases, the film coefficients h 

and K and KF and ü also increase, allowing more heat to be dissipated 

from the catalyst pellets and eventually transferred through the reactor 

wall more easily. As a result of lowering the pellet temperature because 

of these cooling effects, the reaction rate is lowered. Thus, we arrive 
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at a situation where a cold wave starts to develop and produce higher 

temperature peaks before the final lower steady state is established. 

This general behaviour is similar to that encountered with a ramp decrease 

in temperature. Increasing the fluid velocity leads to a final lower 

temperature profile, contrary to an increase in concentration, and it 

seems that the reactor behaviour is relatively sensitive to small pert- 

urbations in flow rates. 

The response of the reactor to a ramp decrease in fluid linear 

velocity of 6% (10 cm/sec) can be seen from Figure 4.10 for a monotonic 

increase in temperature, with the formation of hot waves which move down 

the reactor. Those hot waves are caused because the film transfer 

coefficients and KF and U decrease and as a consequence increase the 

pellet temperature and the reaction rate. 

It is obvious from the previous study that the heat effects in the 

packed bed are the most important factor in reactor dynamics. It has 

been shown that the slow moving heat waves, which may vary in intensity, 

can interact with the fast moving concentration waves and a situation may 

arise which cannot even be detected from the input or output variables. 

Thus, studying the factors which affect and determine the velocity of 

propagation of heat waves may prove of importance. Knowing the relative 

velocity of propagation of concentration and heat waves and their intensity, 

it may be possible to act in opposition, thus weakening the reaction at 

certain specific axial positions. The concentration waves in this study 

propagate at approximately the velocity of the fluid. It is possible to 

take into account the absorbing capacity of the catalyst pellets. However, 

it has been shown (see Appendix (A1.2.2)) that the pellet capacitance for 

mass is much smaller than that for heat and can be neglected. On the other 

hand the major factor which deterrv. nes the heat wave propagation velocity 

is the thermal capacity of the solid and its ratio to that of the fluid, 
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i. e. e((Cp)fluid/(1 - e)( 
*e*)solid' This ratio for the values of 

parameters used here is 0.0011, which indicates that the capacity of 

the solid to absorb heat is nearly 1000times that of the fluid. 

Increasing the solid thermal capacitance will thus slow down the heat 

wave velocity. Figure 4.11 shows the reactor axial temperature profiles 

at different axial positions for a step decrease in inlet temperature, 

for a solid thermal capacitance of 1.55 and 3.0 seconds. Changing the 

thermal capacitance of the solid amounts to changing the specific heat 

of the solid, or its density Not only does the moving heat wave slow 

down, but because the-heating up of the solid takes more time, packing 

of high thermal capacity may stabilize the reactor against any small 

perturbations in operational parameter values, if these perturbations 

are of small time duration. 

From the structure of the rate equations, which in general are of 

Arrhenius form, the effectsof concentration and temperature on the reaction 

rates vary in magnitude depending on the temperature and concentration 

levels in the reactor. In fact, it is these differences which characterize 

the dynamic behaviour of the reactor. For example the cold wave action 

which results from a step decrease in inlet fluid temperature can cause 

severe hot spots in the later sections of -briebed. The reason for this has 

been shown to be the result of mass accumulation by convective flow which 

reaches these high temperature zones before the cold wave. If this mass 

accumulation can be reduced by changing the inlet concentration, it will 

prevent the hot spot formation and give enough time for the cold wave to 

move far enough to eliminate these high temperature zones. In this case, 

with knowledge of the relative speeds of concentration and temperature 

wavcs and the manner in which they interact with the reaction rate, it is 

possible to manipulate the temperature and concentration to act so as to 

enhance or reduce the reaction rate at specific positions in the reactor. 
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Figure 4.12 shows the responses of the temperature profiles at 

different axial positions for a step decrease in temperature. The inlet 

concentration is kept at the steady state value for 40 seconds. This 

time lag is to allow the cold wave to move down the bed where the 

reaction rate is not very large and also to keep the solid hot enough 

in the first part of the bed. As the cold wave reaches z=0.5, it can 

be observed that the hot spot is starting to develop at z=0.6, as a 

result of mass accumulation from the early parts of the bed. The inlet 

concentration is then reduced from 1.0 to 0.8 for a period of 40 seconds. 

This step decrease in concentration depletes the reactor of species A 

at those parts of the bed where the reaction rate is very sensitive to 

small increase in CA. It can be seen that this action has completely 

eliminated the hot spot. In fact the decrease in concentration was large 

enough to cause excessive reduction in the rate of reaction. However, 

under the same conditions as above, but with the concentration reduced 

from 1.0 to 0.9 only, Figure 4.13 indicates that this step decrease in 

concentration has not been enough to overcome the accumulation of'mass 

formed in the latter parts of the bed. As a result, a hot spot has been 

formed. These figures emphasize the fact that knowledge of the effects 

of different concentration and temperature levels on the specific reaction 

rate must be available. This information can be obtained by solving the 

pellet equations at various concentration and temperature values to 

estimate bounds on temperature, and would define allowable concentrations 

at certain parts of the bed to prevent overheating or overcooling. It is 

not the concern here to give these optimum conditions, but rather to 

demonstrate the importance of studying trio relative velocity of prop- 

agation of heat and mass waves and their interaction on the reaction rate 

for a specific system. 

Despite the fact that step changes are not common in practice, they 
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are used here for convenience and ease of interpretation. The dynamic 

behaviour for ramp changes has the general features produced by step 

changes. In this case, the gradients and duration of the romp changes 

in temperature and concentration are adjusted to obtain the desired 

effect. In this case it might be necessary to use optimization or 

searching techniques to establish the best response. 

It should be noted that while the system under study involves more 

than one concentration wave (i. e. for species CA and GB), the kinetic 

data used here is based on benzene oxidation, and indicates that CB 

does affect the dynamic response to a measurable extent. However, it may 

be always possible in such circumstances to consider the concentration 

CB as if it were a fraction of CA which is still in the reactor and 

interacting with the thermal wave. This point will be considered further 

in the next chapter. 

4.6 Conclusions 

The model reduction technique has been applied on the two dimensional 

dynamic model for the complex reaction scheme. The resulting one dimensional 

reduced model overcomes the limitations of the parabolic radial profile 

assumption, and the difficulties in estimating the radial mean values for 

the nonlinear reaction rates, by using a modified Nüsselt number and 

suitably defined distribution factors. 

The reduced model gives an estimate of the radial profiles with 

accuracy comparable with that of double collocation of the distributed 

system using 3 point collocation (N = 3) in the radial direction over a 

wide range of operating conditions. Computing time in relation to that 

of the collocation solution (N = 3) and the one dimensional using a 

parabolic radial temperature profile is of the order 3: 4: 1. The reduced 

model takes about the samc computing time as the collocation solution with 

N=2. 
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As the estimation of the distribution factors needs the solution 

of the pellet equations twice per axial step, further reduction in 

computing time has been achieved in two steps. A first approximation, 

where the distribution factors were evaluated by solving the pellet 

equations only once, which amounts to reduction of about 30% in computing 

time with maximum error of 1% in estimating the state variables at reactor 

axis (i. e. r=0.0). A second approximation where the distribution factors 

are evaluated from purely algebraic expressions with maximum errors of 

159/6 at r=0.0. Computing time is comparable with the one dimensional 

model based on a parabolic radial profile. 

The proposed dynamic reduced model with the first approximation can 

be used over a wide range of operating conditions. The computational 

load is not excessive and the solution time is reduced to the extent that 

it is suitable for control and design purposes. 

The dynamic behaviour of the reactor is determined by a combination 

of chemical and thermal effects, the relative magnitudes of which may 

change considerably with time and position in the bed. This results in 

dynamic responses which are not easily predicted without extensive 

simulation. Perturbations in inlet temperature, concentration and fluid 

flow indicate that the major dynamic effect is the solid thermal capacity, 

and its ratio to that of the fluid, since this causes the temperature 

effects to be delayed. Such action causes disturbances in mass distri- 

bution which have faster dynamic responses, with the result of irregular 

behaviour of the temperature profiles which are surprising. Knowing the 

relative velocities of propagation of the thermal and concentration waves, 

it is possible, by manipulating the inlet conditions, to enhance the 

reaction rate or to lower it in certain parts of the bed, where the 

reaction rate is very sensitive to temperature, and thus control temp- 

erature fluctuations. 
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This type of multivariable approach can be used to cor rol the 

reactor when working near the maximum allowable temperature, without 

the possibility of excessive hot spots forming, and thus avoids the 

undesirable effects such as temperature runaway, general instability, 

catalyst deactivation or poor selectivity. 
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CHAPTER 

REACTOR RESPONSE TO INLET SIUUSOI])AL DISTURBANCES 

5.1 Introduction 

Concentration and temperature disturbances propagate through fixed 

bed reactors in a wavelike manner. While knowledge of the interaction 

between these travelling waves is central to the design of reactor control 

systems, and indeed to the design of the reactors, there has been. only 

limited exploration of the nature of such phenomena. 

In the previous chapter the dynamic response to step and ramp 

changes in inlet conditions were treated. Although they showed come 

of the dynamic effects of the reactor, they do not really reveal typical 

responses of the reactor to the control actions which are basically damped 

oscillatory responses. Thus, a study based on sinusoidal perturbations in 

feed variables should highlight some of the dynamic characteristics which 

can occur in real control problems. 

Reported studies on sinusoidal perturbations in inlet temperature 

and concentration has been given by Foss and co-workers for liquid 
(67) 

and gaseous systemsý779167) In the liquid system, inert glass packing 

has been used which merely acted as heat sink. in heterogeneous gaseous 

reactors, attention was confined to the development of a suitable linear- 

ized model to fit their experimental results. Denis and Kabol(107'h16) 

have studied the response of a heterogeneous reactor to inlet saw tooth 

and square like waves. However, they assumed that the rate of adsorption 

of the reactant on to the catalyst surface is a significant dynamic effect. 

Hansen(110) has considered oscillatory inlet conditions on an adiabatic 

fixed bed reactor and confined his attention to the applicability of the 

model without linearization. 

'ilia above reported work considered the simple reaction A----B and the 

studies were confined. to the quasi-stationary state (i. e. after the reactor 
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had settled down to a. sustained dynamic response). No attempt has 

been made to study the period before the quasi-stationa_ºy state 

develops. As will be shown, this initial dynamic period could be of 

importance in control studies. Attention in this chapter is directed 

to sinusoidal disturbances in inlet temperature, concentration and 

fluid velocity when these lead to a unique steady state but where 

there is a complex reaction scheme. The importance and effect of 

radial temperature variations is outlined where temperature runaway or 

hot spots may develop over parts of the radial profile. Another 

objective is to conduct preliminary studies of the response of the 

reactor to damped sinusoidal disturbances. While in sinusoidal 

perturbation studies an initial and a quasi-stationary state have been 

observed, in damped disturbances the latter state is not achieved. 

5.2 Formulation and solution of equations 

The reaction scheme considered is the complex irreversible first 

order reaction A ---B. The reactor model used is two dimensional 
\, / 

C 

taking into account radial variations in tcmperature and concentration 

and neglecting the axial diffusion, as given in the last chapter 

(equations 4.1 to 4.5). This model is coupled with the isothcrmal 

pellet model given in Appendix (A1.2.2). For reasons outlined in the 

last chapter, the mass and heat capacitances of the fluid are neglected, 

and only the heat capacitance of the pellet is considered. The fluid 

equations are solved by the double collocation method, while the pellet 

model is integrated by the Range-IKutta-Merson procedure. The initial 

steady state profiles used in the following study are shown on figures 

3.1 to 3.3 in Chapter Three. The foria of the inlet perturbations 

applied to the reactor inlet is: 

w(l) = w(0) +A cin(2ii P L) (5.1 ý 
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where w(L) = value of inlet variable at time -L 

w(O) = value of inlet variable at time zero 

A= amplitude of oscillation 

P= frequency of oscillation. 

5.3 Sinuscidal wave propagation characteristics 

While in homogeneous reactors, temperature and concentration waves 

travel at the fluid velocity, in packed beds, because of the thermal 

capacity of the packing, the temperature wave travels slower than the 

concentration wave. Thus, because of the propagation velocity differ- 

ences, they may act so as to enhance the reaction rate. In other 

locations, they may have opposing effects on that rate, causing it to 

be damped down. The concentration waves travel at a velocity which 

depends on the adsorptive capacity of the packing for the components 

in the fluid. However, in the case under study, the adsorption is 

neglected and thus it propagates at a velocity equal to that of the fluid 

flow rate. On the other hand, the ratio of the temperature wave velocity 

to the fluid velocity is approximately equal to the fraction of the total 

heat capacitance of the system contributed by the fluid. For the data 

used here (see Table 3.3), the concentration wave residence time is about 

0.75 second and has a velocity. of 164 cm/sec, while those of the temp- 

erature wave are respectively about 100 seconds and 1.24 cm/sec. 

Knowing the propagation velocities of temperature and concentration 

waves, it is possible to predict when they would interact constructively 

or destructively. Thus, if the steady state values are taken as a 

reference, it can be said that at a given frequency, a slow-temperature 

wave will interact, say, constructively with the concentration waves. 

The number of times will be approximately equal to the number of half 

periods elapsed at the inlet before the temperature wave reaches the 

reactor outlet. For example, for the frequency of 0.025 hz (i. e. a 
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period of 40 seconds) shown in figures 5.1 and 5.2, the high temperature 

wave would interact with two high and three low concentration waves 

and similarly for the low temperature wave (i. e. troughs). In the case 

of a frequency of 0.0125 hz (i. e. a period of 80 seconds) shown in 

figure 5.4, a high temperature wave would interact with half the number 

of concentration waves stated above. This argument then leads to the 

conclusion that if the frequency is lowered so that the half period 

is larger than the temperature wave residence time, it is then possible 

to result in only destructive interaction, i. e. for an initially positive 

going sine wave. In this case, the response of the reactor closely 

resembles that which occurs for ramp changes discussed in the last 

chapter and the reasoning and conclusions arrived at also applies here. 

Nevertheless, this point will be clearly seen in the following sections 

when dealing with different frequencies. 

Because of the complex nature of the phenomena which occur, some 

typical cases have been described in some detail to illustrate the 

general behaviour of the reactor when subjected to inlet variable'' 

sinusoidal disturbances. 

5.4 Temperature forcing disturbances 

5.4.1 The initial transient-period 

For an amplitude of 0.0012 (equivalent to 20K for the given data) 

and a frequency of 0.025 hz , figures 5.1 and 5.2 show the reopcnso of 

the reactor at different axial positions. The initial transient is 

indicated on the figures by the first temperature peak. The duration of 

the initial transient period is equal to the residence time of the first 

temperature wave. It can be observed that the temperature peaks during 

this period are higher than those found in the quasi-stationary state. 

Thus, atz = 0.6, the first peak is higher by 40K, while at z 0.3, it 
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is only 13K higher. Such temperature differences may lead to hot spots, 

or even temperature runaway, although those would not necessarily arise 

in the quasi-stationary state. At a frequency of 0.02 hz ,a severe 

hot spot is formed at the initial transient only near the reactor axis 

where the temperature peak is higher than the subsequent ones by 62K. 

Decreasing the frequency further to 0.0125 h (see figure 5.4), temp- 

erature runaway takes place, at z=0.6 near the reactor axis, both in 

the initial and quasi-stationary states. However. the temperature peak 

at the initial transient is still higher than the subsequent ones. 

The reason for the higher temperature peaks observed in the initial 

transient period is that the temperature at the trough before the first 

peak is higher than the others. The solid is then heated up to temperature 

levels higher than those found in the quasi-stationary state. 

The development and propagation of different waves may become more 

apparent by a closer examination of their interaction in the reactor. . 

Thus, reference to figures 5.1 and 5.2, indicates that as the inlet temp- 

erature increases, a low concentration wave, resulting from the increase 

in temperature, moves down the bed. Because the concentration wave of A 

moves nearly at the fluid velocity, the temperature at axial positions 

z=0.5 and 0.6 start to decrease slightly. However, little effect is 

apparent at z=0.3 or at the wall (r = 1.0) of the reactor, where the 

temperature level is low. After about 30 seconds (i. e. 0.75 of the period), 

when the temperature wave arrives at z=0.3, it causes the temperature to 

increase still further, resulting in a decrease further down the bed. At 

the same time, a large concentration wave, CA, is initiated at the inlet 

because of the fall in temperature in the second half of the first period. 

At z=0.3 the high temperature peak occurs concurrently with that of CA, 

but with a slight phase lag. Consequently, they act constructively, 

increasing the rate of reaction. At z=0.6 CA starts to increase at the 
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centre of reactor (i. e. -at r=0.0), until it reaches the temperature 

wave which has already arrived at that axial position. This results 

in a higher temperature peak than would be expected. However, because 

the temperature level at this axial position is high, it dominates the 

whole response. As a result of the coupling between the temperature and 

the concentration CA, the latter is forced to follow the temperature wave. 

The importance of the temperature levels and their effects on the 

CA wave propagation can be observed from the difference in phase between 

the temperature and CA waves at the centre of reactor (r = 0.0) and at 

the wall (r = 1.0). At z=0.6, the crests of fluid temperature wave 

and the troughs of the concentration CA wave differ in phase and increases 

at r=1.0, where the temperature level is lower than that at the centre. 

This phase difference is observed in all cases where the temperature 

levels are not high enough to eliminate differential phase shifts between 

temperature and concentration across the radius. 

The wave propagation of B is also shown on figures 5.1 and 5.2. 

With the values of the kinetic parameters used in this study, B is not 

produced in appreciable quantities until half-way down the reactor. 

Since CB production depends on CA consumption, it appears that the CB 

wave propagates at the same velocity as that of CA, with opposite trend 

as demanded by the kinetic rates. At z=0.6 and r=0.0, the CB wave 

is very flat compared with that at r=1.0 or at the axial position 

z=0.5 (figure 5.1). This suggests that part of the B produced is 

immediately consumed, thus contributing some heat to the temperature 

wave. Although the effect of CA wave starts to die out at the latter 

part of the bed, the CB wave can act constructively or destructively 

on the temperature wave. However, because the CB wave in the latter part 

of the bed is able to act independently of the CA, the phase shift between 

the CB axed temperature waves can be changed, depent i. ng on the temperature 

levels. 
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5.4.2 Effect of sinusoidal perturbations on radial profiles 

It is to be expected that as the radial temperature gradient 

increases, the rate of heat removal through the reactor wall also 

increases. However, due to the nonlinear nature of reaction rate it 

is possible to have a situation where the heat generation, arising from 

increase in reaction temperature, surpasses the rate of heat removal. 

This would lead to accumulation of heat over part of the reactor tube 

radius. As a consequence, a further increase in reaction rate occurs 

which in turn leads to severe hot spots or temperature runaway. The 

above situation manifests itself in the present study as can be seen 

from the plot of a frequency of 0.025 hz (figure 5.1), where the 

amplitudes of temperature oscillations are larger at r=0.0 than 

at the wall at r=1.0. Increasing the effective thermal conductivity 

and mass diffusivity, i. e. decreasing Peclet numbers, would decrease 

the amplitude differences of temperature and concentration across the 

radial direction. Figure 5.3 shows the reactor response for the same 

frequency as above (0.025 h z) but with the Peclet number equal B. The 

result is a better temperature distribution across the tube radius. It 

can also be observed that the phase shift between temperature and concen- 

tration waves at r=0.0 and r=1.0 has decreased. For a Peclet number 

equal 6 or less the mean axial temperature computed by the one dimensional 

model closely follows the mean temperature based on the radial diffusion 

model used in this study, to frequencies as low as 0.0083 h z. It must be 

noted here that this low frequency has resulted in temperature runaway 

as will be discussed in the next paragraph. Nevertheless, the above 

observations may explain why Foss et a1(, 
167) found agreement between 

their one and two dimensional models. his is because they were using 

a Peclet number equal 4.8, a value far below those usually found in 

industrial units. 
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In such exothermic reactions, where the radial temperature gradient 

is severe, as in the case under study, it is possible to have a temp- 

erature runaway over part of the radial profile because of the limited 

rate of heat removal. Over how much of the radial direction this could 

happen depends on the frequency of the perturbations. As has been 

reported, earlier, for frequencies larger than 0.02 hz, temperature 

runaway did not take place. However, decreasing the frequency of 

temperature waves merely allows more time for the solid to heat up 

or cool down. Thus, at a frequency of 0.0125 hz, figure 5.4 shows 

the temperature and concentration waves at different axial positions. 

While the initial transient can still be seen as a high temperature 

peak of the first wave, it seems that at z=0.6 temperature runaway 

has occurred near the reactor axis (i. e. r=0.0) but is not apparent 

at the wall (i. e. r=1.0). The radial profiles at z=0.6 and at the 

peak temperature occurred in the first wave as can be seen in figure 5.5 

for the above frequency as well as other frequencies. It is clear that 

as the frequency decreases, the temperature gradient increases, but the 

steepest part of the radial profile is at the reactor wall. This 

illustrates how the temperature wave moves across the radial direction. 

It can also be observed from figure 5.5 that in the case of species CB 

at a frequency of 0.025 hz the peak in the profile arises at points 

other than the reactor axis. At a frequency of 0.0083 hz, the species 

CA was depleted completely, so a further decrease in frequency would 

result in the product CB reacting. 

5.5 Concentration forcing disturbances 

Since the reaction rate terms are structured to have an Arrhenius 

form, thus emphasizing the nonlinear dependency on temperature, it in to 

be expected that the rate torms will be more sensitive to temperature 

than to concentration perturbations. Moroovor, in the case under study, 
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the reaction orders for species A and B are taken as unity, making the 

response to CA disturbances smoother. This can be seen from figure 5.6 

which shows the temperature and concentration waves at the axial position 

z=0.6 at a frequency of 0.0125 hz and an amplitude equal to 10% of the 

inlet concentration value. The general features observed in the case of 

a temperature forcing function also apply to concentration variations. 

Mus, the higher temperature peak occurring in the initial transient 

can still be seen. 

As would be expected, decreasing the frequency will increase the 

temperature wave amplitude. Figure 5.7 shows such effects for frequency 

of 0.00333 hz at the axial position z=0.6. 

Note that this frequency has caused temperature runaway in the case 

of temperature forcing with an amplitude of 2.9% of the inlet temp- 

erature value. In the case of concentration forcing and for an emplituce 

of 10'° of the inlet concentration, temperature runaway occurs at a 

frequency of 0.0063 hz or less. 

It should be noted that for equal amplitudes of 1O% of inlet 

variable, a frequency five times smaller is needed for the concentration 

forcing to give approximately similar behaviour to that of temperature 

forcing. It is therefore expected that significantly less stringent 

constraints will. be required for perturbations in concentration, than 

for temperature. 

5.6 Velocity forcing disturbances 

Figure 5.8 shows the temperature and propagation waves for CA and CB 

at different axial positions for a sinusoidal perturbation in the mean 

fluid feed velocity of 0.0125 hz and an amplitude of 10% of the steady 

state value. As the fluid velocity increases in the first half period, 

the effective thermal conductivity RC' and the wall heat transfer 

coefficient U increase, making the radial dissipation of heat fester. 
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Also the heat transfer between the solid and the fluid increases. Thus 

the increase in rate of heat removal whether from the solid to the fluid 

and/or from the fluid through reactor wall would cause a drop in fluid 

temperature in the inlet region with the result of an increase in conc- 

entration. Although this high concentration wave should increase the 

temperature everywhere in the reactor, as in the case of concentration 

perturbations, a decrease in temperature is observed down the bed as far 

as z=0.6. Unlike the previous cases of temperature and concentration 

forcing, three waves are interacting with each other, i. e. temperature, 

concentration and fluid velocity. It seems that because the temperature 

level is still low at z=0.6, the effect of increasing the transfer 

coefficients, as a result of velocity increases, does not allow the 

solid to heat up sufficiently for the reaction rate to increase. In 

this case, the effect of the velocity is apparent. However at z=0.7 

and 0.8, the temperature level is already high making the reaction rate 

more sensitive to concentration changes. As a result the reaction rate 

increases, i. e. the heat generation increase is larger than can be 

dissipated by the increase in heat transfer and thus the temperature 

increases at these positions. 

As the velocity passes through a minimum in the second half of the 

first period, the transfer coefficients decrease. The solid is then 

not able to dissipate the heat generated fast enough, and so becomes 

hotter. These conditions favour higher rates of reaction resulting in 

higher temperature and low concentration waves at the reaction inlet 

region. Their interaction with the fluid velocity wave follows a 

similar argument as discussed above. 

Some observations are worth mentioning on the effect of sinusoidal 

fluid velocity perturbations compared with concentration disturbances. 

These are: 
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1. Unlike the case of concentration disturbances, in fluid velocity 

perturbations, the temperature peaks found in the initial transient 

period have lower values than those of the quasi-stationary state. 

For example from figure 5.8 for a frequency of 0.0125 hz and at z=0.7, 

the temperature peak at the initial transient is lower by about 56K. 

At a lower frequency of 0.0083 hz (figure 5.9) the temperature peak is 

lower by 80K at z=0.7 compared with peaks in the quasi-stationary 

state. 

Following the propagation mechanism of fluid velocity described 

earlier, it is reasonable to say that the different behaviour observed 

in the initial transient is due to the fact that the fluid velocity 

wave acts against the concentration wave, i. e. they always interact 

destructively with the temperature wave. This behaviour manifests 

itself in the initial transient period as seen above. 

2. When the reaction is subjected to a sinusoidal perturbation in 

inlet concentration or fluid velocity for frequencies larger than 0.01 hz 

and amplitude of 10%O of the inlet value, the temperature waves in the 

quasi-stationary state have about the same magnitude of oscillation. 

For frequencies lower than 0.01 hz the reactor is generally more sensitive 

to concentration changes than to fluid velocity. In this respect, for 

a frequency of 0.0063 hz temperature runaway did not take place in the 

case of velocity disturbances which is not the case in concentration 

perturbations. Note that the low temperature peaks found in the initial 

transient in the case of fluid velocity disturbances indicate that at 

certain frequencies temperature runaway or severe hot spots may develop 

after the quasi-stationary state is reached. 
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5.7 Temperature damped sinusoidal perturbations 

Many industrial reactions are highly exothermic. Unavoidably, 

the temperature gradients in the reactor will vary, making the control 

problem more difficult. Trying to avoid high temperatures by operating 

the reactor at low but safe temperature levels, productivity and 

efficiency of the reactor itself may be affected. Thus, knowledge of 

the dynamic behaviour of the reactor under various conditions can widen 

the safe limits of operation. The control of feed temperature is but 

one important problem among many. The response of industrial control 

instruments in general is a damped oscillatory function. It is therefore 

useful to study a damped oscillation as a further step in investigating 

the reactor response to such idealized responses, but at the same time 

ensuring that it is sometimes near to a real control situation, The 

damping effect is represented as a decreasing function of time (i. e. e -P L 

in equation 5.2 below), where p is a damping factor. As 'p is increased, 

the oscillations decrease, thus taking less time to return to the original 

setting. Decreasing the damping factor has the reverse effect. Neverthe- 

less, the following study is only°intended to outline some of the differ- 

ences, if any, which may exist if a damning effect is present. The 

equation describing the damped sinusoidal perturbation in inlet fluid 

temperature is of the following form: 

T(i) _ Trl(O) + Äe-P L sin(2iiP i) (5.2) 

where T(O) is the steady state inlet temperature. The term Ae pT has 

been chosen such that its value gives a maximum rice in temperature in 

the first half of the first period, equal to that without damping, 

considered previously. 

Figure 5.10 rthows the response of the temperature at the reactor 

axis (r = 0.0) to a damped oscillation in feed temporature of a frequency 
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of 0.025 hz and a damping factor p=0.0157 and 0.0314. For an 

initially positive going sine wave, the feed temperature starts to 

increase, initiating a heat wave. At the same time a low concentration 

wave also moves down the bed. The effect of this wave can be seen as 

the temperature starts to decrease everywhere in the reactor. Meanwhile, 

the first temperature wave continues to move slowly down the bed. In 

the second half of the first period, the temperature starts to decrease 

which initiates another high concentration wave and in general the 

propagation follows the same features observed before. However, as these 

waves continue to propagate, the amplitude also continues to decrease 

exponentially. As a result they die down. On the same figure is shown 

the effect of decreasing the damping factor, and it can be seen that-the 

amplitudes of the oscillations increase, and take more time to damp down. 

By comparing the reactor response for sinusoidal perturbations with 

and without damping (see figures 5.10 and 5.1 respectively), it should 

be noted that the temperature peak in the initial transient period is 

higher in the case with damping. For example at z=0.6 on both figures, 

the peak temperature is 0.077 for the case with damping while it is 

0.075 for the case without damping. This is in spite of the fact that 

in the former case the successive concentration waves are weaker because 

of the damping effect. The reason for this is due to the propagating 

temperature waves, which are of higher intensity in the case without 

damping, so it reduces the possibility of mass accumulation from the 

early parts of the bed. This concentration accumulation also accounts 

for the higher hot spots formed in the latter parts of the bed. The 

initial transient period appears to be even more important in the case 

with damping. This is because the reactor actually does not reach the 

quasi-stationary state observed previously. 
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Although the sinusoidal perturbations analysis has given invaluable 

insight into the reactor behaviour, with damped disturbances more 

stringent conditions may be required regarding the allowable amplitudes 

and/or frequencies, to prevent temperature runaway or hot spot formation 

in the initial transient periods. 

While damped oscillation with an initially positive going sine 

wave may lead to the formation of severe hot spots in the reactor, its 

response to an initially negative going sine wave is different. Thus, 

figure 5.11 shows such a response at different axial positions for a 

frequency of 0.025 h z. It can be seen that the initial decrease in 

temperature (as a result of the negative going sine wave) has led to 

the formation of a cold wave to propagate. Even the hot spots formed 

later are not so large as to endanger the activity of the catalyst or 

cause any other undesirable results. This behaviour is partly due to 

the fact that the catalyst bed is cooled down by the first temperature 

wave and that the successive waves are not of the same intensity. Thus, 

even their constructive interaction will always be weaker. 

The initial transient in this case shows comparatively low temp- 

erature peaks. This observation has been reported on a similar system 

by Adderley(109) in his studies on sinusoidal oscillations without 

damping. Note that the behaviour shown above may be compared with that 

given-in Chapter Four on the multivariable approach (i. e. manipulating 

both the inlet temperature and concentration) shown in figures 4.12 and 

4.13. In that respect the damped negative going sine wave behaviour 

suggests that it may be possible to decrease the reactor inlet temp- 

erature without the dangers of hot spot formation in an oscillatory 

manner. In this way, it is in fact a multivariable approach but with 

the difference that the-Cheat waves are used to manipulate the concentration 

propagation. This approach to the reactor control, however, needs further 

investigation. 
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5.8 Concluding Remarks 

The dynamic response of the fixed bed reactor to sinusoidal 

perturbations in inlet temperature, concentration and fluid velocity 

indicates that two apparently distinct transient situations exist. 

There is an initial transient period followed by a, quasi-stationary 

state. The time duration of the former is approximately equal to the 

residence time of the first temperature wave. While the concentration 

wave propagates at the fluid velocity, the ratio of the latter to the 

temperature wave velocity equal to the fraction of the total heat 

capacity of the system contributed by the fluid. Thus the concentration 

and temperature waves have residence times of 0.75 and 100 seconds 

respectively. 

In the case of temperature and concentration disturbances with an 

initially positive going sine wave, the temperature peaks reached 

higher values in the initial transient than those in the quasi-stationary 

state. Thus, for certain frequencies, temperature runaway or hot spots 

may take place in the initial transient period only. In the case of 

fluid velocity disturbances the temperature peaks which occurred in the 

initial transient period have lower values than those in the quasi- 

stationary state, indicating that temperature runaway or severe hot 

spots may develop after the quasi-stationary state is reached. 

For a Peclet number of 10, a hot spot may occur over some part 

of the radius near the axis and a two dimensional model should be used. 

However, for Peclet less than 6, the one dimensional axial mean temp- 

erature closely follows that based on the two dimensional model. 

Preliminary study of damped sinusoidal perturbations with an 

initially positive going sine wave indicates that temperature peaks 

occur in the initial transient which may reach higher values when 

compared with cases without damping. This means that more stringent 
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controlling action is needed in such cases. For an initially negative 

going damped sine wave, comparatively low temperature peaks occur. This 

suggests that reactor inlet temperature may be changed in a sinusoidal 

damped manner without the danger of severe hot spot formation. 

Finally the complex nature of the phenomena taking place in the 

reactor has been further demonstrated in this chapter and revealed 

some of the characteristics which might be of importance in control 

studies of fixed bed reactors. Further work on damped oscillations 

is required. This will be a necessary step before deciding on a 

control strategy. 



-91- 

CHAPTER 6 

AXIAL DIFFUSION MODEL 

6.1 Introduction 

The complex nature of the events in fixed bed catalytic reactors 

has recently invoked an assessment of the importance of axial dispersion 

of heat and mass. Generally the significant mixing mechanism in axial 

direction is due to the turbulence arising from the presence of the 

packing and can be-accounted for by superimposing an effective mechanism 

upon the overall transport by plug flowc118,7) The flux due to this is 

described by an expression analogous to Fick's and Fourier's laws for 

mass and heat respectively. The respective proportionality constants 

are effective diffusivity and conductivity coefficient (see equations 

6.1 to 6.5), and they implicitly take into account the effect of velocity 

and short circuiting due to packingc1310321133034) 

Considering axial mixing in adiabatic operation, Carberry and 

Wendel(118) and Hiavacek and Marek{119 indicated that axial dispersion 

effects may be neglected, provided the length of the reactor is long 

enough. It appears that the length should be of the order of 400 pellet 

diameters. This may be justified on physical grounds, since at that 

length the conversion due to reaction is nearly completed and thus the 

temperature in adiabatic operation reaches a constant magnitude at the 

reactor outlet regardless of what effect the axial diffusion might have 

on the profiles in the reactorc120) In fact the axial dispersion may 

result in a redistribution of heat and mass inside the reactor and this 

has been shown by Liu and Amundson 
(125) 

who reported that the axial dis- 

persion can have a significant effect on axial profiles especially in 

the region of multiple states. 

In non-isothermal operation, where account of radial variation of 

heat and mass must be taken into consideration, the resulting system would 
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be complex and difficult to solve 
c126) 

Carberry and Wendel(h18) develoted 

a steady state model for a catalytic reactor which includes axial dis- 

persion of heat and mass and radial variations in temperature were approx- 

imated by assuming a parabolic radial temperature profile. They reported 

that axial dispersion can be neglected if the bed depth is more than 50 

particle diameters, which is a condition usually satisfied in industrial 

practiceý7) Although their conclusion has found acceptance by others, 

more recently Young and Finlayson(120) analysed their results and argued 

that the Carberry and Wendel criterion is not general and that they, in 

fact, were studying the effect of varying the axial diffusivity and 

conductivity (i. e. variation in PeHa and Pe. 1 and not the reactor length. 

The former authors(120) showed that for a reactor length of 50 particle 

diameters the axial diffusion does have, in certain cases, a significant 

effect. 

It seems, therefore, that the criterion put forward for non-isothermal 

reactors is open to question and it may be incorrect to extrapolate these 

conclusions to more general cases. 

If an attempt is made to include axial and radial dispersion of heat 

and mass in the system, the resulting model is even more complex and takes 

a considerable amount of computing time to solve. 
60,66,62) 

Such general 

models have been ignored, apparently for two reasons. Firstly, axial dis- 

persion has generally been considered unimportantt9'7 
129 Secondly, the 

model has been considered too formidable to solveý9,128) Nevertheless, 

for the simple reaction A- . B, Dente, Mardi and Ranzi(130) did give a 

solution using an integral transformation technique. They included the 

particle transport limitations and indicated that for comparatively long 

reactors (200 pellet diameters) the axial dispersion has a significant 

effect on axial profiles. Similar conclusions have been reported 
(120) 

for reactor lengths of 50 particle diameters. 
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The generally acceptable methodsfor solving the above models are some 

forms of finite difference representation and even using quasi-linear- 

ization(127) to increase the efficiency of solution, the reported computing 

times are excessive. More recently the application of the collocation 

method on such problems has proved more efficientý80,1219120) 

In this chapter, a mathematical model with axial dispersion is 

developed for the complex reaction scheme in which the inter- and intra- 

particle transport resistances are included. The radial heat transport 

is lumped at the wall based on the assumption of parabolic radial profile. 

An assessment of this model and the applicability of the collocation 

method to such problems, particularly with reference to computing time 

and accuracy of approximation, is presented. In addition, the limit- 

ations imposed by the parabolic temperature profile assumption is treated 

with the lumping technique used in Chapter Four. This increases the 

accuracy of radial profile representation without increasing the 

computing time appreciably. 

The effects of axial dispersion will be investigated and an attempt 

made to identify circumstances in which it may be significant. 

6.2 Formulation of equations 

The heat and mass balances are most conveniently expressed in 

dimensionless form as follows: 

2 

Pella d- 
aCZ 

- G2'ý (ßi j+f )CA =0 (6.1 

d2 CB dCB 
Pella dZ2 dZ + G2 ýý + ý3ýCA =0 (6.2) 

2 

Pe dZ2 
E, 

2G (T - Tc) + G4(TP - T) =0 (6.3) 

3 
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Subject to the boundary conditions 

1 dCA 
= (CA - CA 

Pella dZ 0 

1 dCA 
= (C - CB) at Z=0 (6.4) 

Pe Ma dZ 

1 dT 
= (T - T0) 

PeHa HE 

dT dCA dCB 
U __ dZ dZ =0 at Z=1 (6.5) 

= 

The additional dimensionless quantities which have been introduced 

are the Peclet numbers Pew= F 
and Pew= 

(CPUL 
. The axial peclet 

aa 
number Pet for mass and PeHa for heat are usually linear functions of 

velocity, having values between 1 and 2 (based on the pellet diameter) for 

high fluid velocitiesc133,134) It may also be assumed that the axial 

diffusivities are equal for each component in the fluid phase. This occurs 

because dispersion is caused mainly by mechanical disturbances of the 

stream lines under conditions of turbulent flow. The additional assumptions 

involved in the formulation of the above equations are given in appendix 

(A4). The state variables occurring in the above system of equations are 

all radial mean values and for an initial policy the rates of reaction may 

be evaluated by solving the catalyst pellet equations given in appendix 

(A1.2.1) at the radial mean conditions. 

6.3 Solution of the equations 

The solution of the system of equations given above can be obtained 

by applying the collocation method. The system of equations at the Jth 

collocation point can be written as follows: 

M+2 M+2 

Pella 
BBJýi CAS AAJ, i CAi - G2 7(ý + jCAI =D (6.6) 7--j 

3 
i=1 i=1 J 
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M+2 NT+2 

Pe 
ý BBJ, i CB A il i CBi + G2 ! ý^ oi + 

o3) CA I=0 (6.7 

i=1 i=1 
J 

M+2 M+2 2N * 

BB Ti - AAJ T. - 
! 

-(T - Tc) + G4(Tp -- T)I =0 (6.8) 

A 
J, i, iiGJ Pe 

ai=1 i=1 3 

The boundary conditions are transformed as 

M+2 

AA19 i CAI = Pe (CA, 
) - CAC 

M+2 
(6.9) AA CB= PeMCB1 = CBO) at Z=0 . 9) 

i=1 

M+2 

AAýýi Ti = Peý(T, ý - T0) 
i=1 

M+2 M+2 M+2 

AAM+2, i' CA, = AAI4+2, i' CBi AAM+2, i' Ti =0 at 
i=1 i=1 i=1 

Z=1" (6.10) 

Thus, the system of differential equations has boen reduced to 

3(M+2) algebraic nonlinear equations. By substituting the boundary 

conditionsto eliminate CA1, CB1 and T1 and CAn4+2, C3 
+2 and M+2, the 

number of algebraic equations may be reduced to 3M nonlinear equations to 

be solved simultaneously. A Newton Raphson method can be used to promote 

the convergence of the solution. The pellet equations are given in 

Appendix (A1.2.1) and are used to calculate Tp, ý and ý-at the Jth collocation 

point. The steps in the solution are as follows: 

1. Assume values for the inlet fluid temperature To and species concen- 

tration CAo and CBo. 

2. Assume values for the state variables, T, CA and CB at the collocation 

points equal to the values of the previous iteration (or equal to the inlet 

conditions). 
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3. Solve the pellet equations at the collocation points to obtain values 

for Tp, 7 and tr for the current iteration. 

4. Estimate the linearized reaction rate terms at the collocation points. 

5. Evaluate the function values at each collocation point and for each 

state variable, i. e. Fm where m=1,2,....... 3M. 

6. Evaluate the Newton Raphson iteration matrix Qm. 

7. Estimate the new values of the state variables by the general form 

Yi+1 =Yi - %1 m. 

8. Compare the new values at the (i+1)st iteration with those of the 

previous iteration i. If unsatisfactory, repeat from step 2, otherwise 

continue to step 9. 

9. If satisfactory, the converged values at iteration number i+1 are the 

required values of the state variables at the interior collocation points. 

10. To obtain values of state variables at the inlet and outlet (i. e. T1, 

CA1, CB1 and Tr1+2, CAM+2' CBM+2)' use can be made of the boundary equations 

given by 6.9 and 6.10. 

Since the axial dispersion problem given above is unsymmetrical, it 

is expected that the matrix of coefficients AAJsi and BBJOi are different 

from those used in the case of a symmetrical boundary value problem. 

However, they can be evaluated by a similar method as shown in appendix 

(A1.4.2). The solution at any point other than the collocation points can 

be approximated by an unsymmetrical expansion function of the following 

form: Y(z) _ (1 - Z)Y(0) + ZY(1) + 
t4 

ai Pi-1(z) 

where the Y's are the state variables, ai are arbitrary coefficients which 

can be determined in a similar manner to that described in appendix (A1.4.1)" 

Pi-1(z) are the shifted orthogonal polynomials, of a kind which depend upon 

the weighting function used. Usually, from 11 to 19 interior collocation 

points are required for the problems considered in this study. 
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6.4 Evaluation of the collocation method 

Apart from the collocation technique, the type of orthogonal poly- 

nomials used gives some idea of the power of the method itself. It 

might be possible in some cases to choose certain types of orthogonal 

polynomials to satisfy some conditions in the desired solution. In the 

problem considered here, shifted Legendre and Chebyschef polynomials 

have been used. A property'of the Legendre polynomial is that it gives 

although large errors may arise elsewhere minimum end point errors; 
121) 

in the integration interval. On the other hand, Chebyschef polynomials 

minimize the maximum errors over the whole interval. In reactor problems 

where high peaks in temperature or concentration may arise in the 

integration intervals, interest is primarily in observing the magnitudes 

of these changes. In this respect Chebyschef polynomials may be more 

appropriate. 

Figure 6.1 shows the axial radial mean temperature profiles for an 

axial peclet number Pea = 1200.0. (This value is equivalent to Pea = 4.0 

when based on pellet diameter. ) Both Legendre and Chebyschef shifted 

polynomials have been used. These temperature profiles have been compared 

with those of the one dimensional model without axial diffusion (i. e. Pea 

oo). By using such high value of Pe = 1200.0 the axial diffusion 
a 

would have a negligible effect on the concentration and temperature 

profiles. This last comparison, with the case of Pea = 00 , is intended 

to show that the collocation method is quite adequate in approximating 

the temperature and concentration profiles. 

6.4.1 Approximation accurate 

Table (6.1) compares different kinds of polynomials for estimating 

the axial mean temperature and concentration (for Pe 
a= 

1200.0). Also 

the case of Pea = is presented for comparison. 
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Table 6.1 

Plug 
flow 

F. D. 
(1) 

A_l1M 

Cheb. 
(2) 

Legdr. 
(3) 

Case A Case B 

Z=0.0 Z=0.7 Z=1.0 Z=0.0 Z=0.6 Z=1.0 

T 0.0408 0.05652 0.05367 0.04080 0.06592 0.0506 

CA 1.0 0.2620 0.01659 1.0 0.1042 0.0031 

CB 0.0 0.3394 0.25587. 0.0 0.3412 0.2117 

T +0.00003 -0.00014 -0.0003 +0.00005 -0.0002 -0.00036 

CA -0.0008 -0.005 -0.002 -0.0009 -0.01 +0.0002 

CB +0.00005 +0.001" -0.0001 +0.00006 +0.002 +0.0001 

T +0.00001 -0.00036 -0.0001 +0.00001 -0.00043 -0.00031 

CA 1.0 -0.01 +0.001 1.0 -0.012 -0.0001 

CB +0.00002 +0.0039 0.0000 +0.00005 +0.0045 +0.0001 

(1) Integrated by finite difference method (200 axial steps) 

(2) Chebyschef polynomials, 15 points used 

(3) Legendre polynomials, 15 points used 

(+) Added values to those of plug flow 

(-) Subtracted values from those of plug flow. 

It can be seen that the discrepancies in values of the state variables 

at Z=0.0 and 1.0 approximated by the different polynomials are comparatively 

small. However, the differences increase at the peak values (i. e. at Z=0.6 

and 0.7). For concentration profiles, the differences are greater than in the 

case of temperature, but follow the same pattern. In case B, the differences 

between this and the polynomial approximation using 15 points is about 1% at 

the hot spot. If these profiles are approximated by 14 collocation points, 

from 2 to 3 decimal places accuracy can be obtained in comparison with those 

profiles computed by 15 points and the difference between the two polynomials 

increases to about 2%. 



-99- 

It should be noted that the differences for the various polynomials 

are related to a great extent to the order of the polynomials employed, 

as well as to the function to be approximated. Generally for problems 

which can be approximated by low order polynomials (less than 7 points), 

the distribution of these collocation points in the integration interval 

and various polynomials of different distribution becomes crucial; 
121) 

of zeros will be expected to give different accuracies as indicated in 

Chapter 3. As higher order of polynomials are used, the distribution of 

zeros becomes less important and so the differences in approximation 

between various polynomials decreases. In the problem under study, the 

minimum number of collocation points used was 11. This may explain why 

the different polynomials gave about the same accuracy. 'In this case, it 

is profitable to look to other advantages these polynomials may have. 

6.4.2 Converoence properties 

The convergenceproperties of the orthogonal polynomials has been 

demonstrated by the fact that starting from flat profiles at values equal 

to the inlet conditions, profiles such as those shown in figure 6.1 result. 

However, Legendre polynomials have been observed to converge faster than 

Chebyschef polynomials in several cases. For example, from figure 6.1, 

Case A, when approximated with 15 points needs 7 and 10 iterations to 

converge to about 4 figure accuracy, using Legendre and Chebyschef poly- 

nomials respectively. In Case B, shown in figure 6.1, using 15 to 19 

Chebyschef points requires from 12 to 20 iterations, while using Legendre, 

from 8 to 15 iterations are sufficient. Not only do Legendre polynomials 

give faster rates of convergence, but in the case of changing the value 

of Pea from 1200 to 100 for case B, the rate of convergence remains 

essentially unchanged. In other words, for the same set of parameters 

used in case B, as Pea is decreased from 1200 to 100, the number of-iter- 

ations increases from 8 to 10 for the solution to converge, using 15 

Legendre points; on the other hand, an increase from 12 to 17 is necessary 
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in the case of Chebyschef polynomials. This may be explained on the 

basis that, in the case of Legendre, the number of zeros near the ends 

of the integration interval is greater than those of Chebyschef. This 

leads to a more accurate approximation for changes in inlet conditions, 

i. e. changes in Pea, and hence is consistent with rates of convergence. 

6.4.3 Function behaviour 

As seen above it is advantageous to use a small number of collocation 

points, as this will not only decrease the computing time and storage 

requirements considerably, but also the number of iterations. However, 

the number of points required is usually related to the behaviour of 

the function to be approximated, and whether it is well behaved or not 

inside the integration interval. For example a high order polynomial 

(17 points) has to be used to adequately approximate the temperature 

profile for the comparatively severe case shown in figure 6.5, with the 

corresponding CA and CB profiles being shown in figure 6.6. It is 

apparent why high order polynomials are required, not only because of 

the temperature and CA profiles, but also because of the variations in 

CB. This poses one of the major problems in solving a complex reaction 

scheme. If the reactor is terminated at Z=0.5, the axial profiles 

can be represented by a much lower order polynomial. In fact 11 points 

are sufficient for comparable accuracy. A maximum of 11 points has been 

reported in the literature; 80) for the simple reaction A -º B. No 

information has been given regarding the accuracy of the approximations, 

or the type of polynomials used. Only Young and Finlayson(120) reported 

an accuracy of 1% (equivalent to 2 figures accuracy here), using 6 points 

and this is reasonable for the case they reported. 

It may also be observed that the computing time per iteration, using 

15 and 17 collocation points, is of the order of 5 and 7 seconds respect- 

ively (using ICL-1906A computer). For cases A and B using 15 collocation 
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points, about 30% more computing time is required over the plug flow 

model (i. e. Pea = oo ) integrated by an implicit finite difference scheme 

with 200 axial steps. 

In the above study the collocation method is shown to be feasible 

with respect to the accuracy of the approximation and small computational 

times for solving such complicated problems. The final decision 

concerning the number of collocation points required is related to the 

case being solved, and usually an initial check is required to estimate 

the minimum number of points to the demanded accuracy. This check is 

especially important in cases where a certain accuracy is necessary 

consistent with minimum computing time. 

In the next section a model will be proposed which can estimate, 

in addition, the radial profiles with reasonable accuracy, so any 

discussion of results using the above model may therefore be more 

conveniently carried out and/or compared with the more detailed model. 

6.5 The proposed lumped model 

The axial diffusion model discussed above represents a moderately 

complex one, since it takes into account the back mixing of heat and mass. 

It also takes into consideration the radial transport of heat based on 

the parabolic radial temperature profile assumption. In the case of a 

highly exothermic reaction, it has been demonstrated that the parabolic 

temperature approximation does yield erroneous results. Attempting to 

include the radial and axial transport of heat and mass, the resulting 

model becomes very complex and takes very large amounts of computing 

time 
c60,62) 

Most workers argue that only the transport mechanism which 

has an appreciable effect on the temperature and concentration profiles 

in the reactor should be included. In this respect, the radial transport 

is the most important, and the axial dispersion mechanicm can be neglected 
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for a high aspect ratio L/Dp (i. e. reactor length to pellet diameter). 

However, as will be shown later, this is not always the case. Even for 

relatively large ratios of L/Dp, axial diffusion can affect the temp- 

erature and concentration levels in the reactor. 

Therefore in the case of highly exothermic reactions, it is preferable 

to have a general model which includes the axial and radial transport. 

This is especially true if the aim is to use these models in optimizing 

such quantities as yield, maximum axial temperature, reactor length, etc. 

It has been shovm in Chapter Four that the radial diffusion can be 

lumped and accounted for by introducing a modified Nusselt number and 

distribution factors. The radial profiles are then regenerated from the 

algebraic expressions which depend on the axial radial mean state 

variables. The fully distributed model. which takes into account the 

radial and axial diffusion of mass and heat and which is represented by 

a system of coupled nonlinear partial differential equations, may thus 

be lumped in a similar way. For the steady state equations, lumping the 

system to eliminate the radial transport differential operators, a system 

of ordinary differential equations of the boundary value type may be 

obtained. In dimensionless form the lumped system of equations is as 

follows: 

2 QAM 
Pella dZ 

ddZ 
- DCA (7 (g1 k1 +"' k3) CA) 1=0(6.11) 

G1 

1 d2CBM dCP, m ýj ý 
Pella dZ2 U+ DCB [ Sy' (t°, ý ký +3 k3 CA) ým =0 (6.12 

1 

=0 (6.13) 
21 

Pella dZ d 
2G3 (Tm - 1) + DT G4(Tp - T) Im 

The boundary conditions axes 
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dCAm 
_ (CA - CAO 

Pe dZ in m 

1 ddZ 
_ (CBS - CBOm) at Z=0 (6.14) 

IleMa dZ 

1 dTm 
PeHa dZ - (T - Tom) 

dCAm 
_ 

dCBm 
_d=0 at Z=1.0 (6.15) 

dZ dZ dZ 

where all the quantities subscripted by in are mean values. The 

distribution factors D CA, DCB and DT as well as the modified Nusselt 

number Nu' have the same general formsas stated in Chapter Four. The 

system of equations shown above is similar to those given by equations 

(6.1 to 6.5) and can be solved by the collocation method. Thus, the 

above set of differential equations can be reduced to an algebraic system 

of nonlinear equations similar to that given by equations (6.6 to 6.10), 

and may be solved similarly. The isothermal pellet equation given in 

Appendix (A1.2.1) is solved by Newton Raphson method at the collocation 

points permitting evaluation of TpmI ýj 
m and tf-"m which are necessary for 

the solution of the fluid equations. The evaluation of the distribution 

factors necessitates the solution of the pellet equation at two other 

radial positions, namely r=1.0 and r=0.5. The fluid state variables 

at these positions which are required to solve the pellet equation can be 

obtained from the algebraic expression given in Chapter Four equations 

(4.10 to 4.12). Apart from the above mentioned modifications, the 

solution follows the same steps. At any axial collocation point the 

radial profiles may be obtained by making use of the algebraic expression 

given by equations (4.10 to 4.12). Having obtained the radial temperature 

and concentration profiles at the collocation points, the following 

expansion function can be used to obtain the values of the state variables 

at points other than that at the collocation points: 
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M 

Y(r, Z) = (1 - Z) Y(r, 0) + ZY(r, 1) + ai(r)P 
-1 

(Z) 

i-1 

where ai(r) are arbitrary coefficients dependent of the radial co- 

ordinates, the value of which may be obtained as discussed before (see 

appendix A1.4.1). 

6.5.1 Assessment of the -proposed model 

To assess the proposed lumped model given by equations (6.11 to 6.15) 

in terms of accuracy and computing times, it must first be compared with 

the previous model given by equations (6.1 to 6.5). In this comparison, 

the addition of the distribution factors and the modified Nusselt number 

in the proposed model can be looked at as correction factors which depend 

on the point values of the state variables. The axial mean temperature 

profiles computed by both models are shown in Figure 6.2. For a high 

axial peclet number Pea = 900.0, where the effect of axial mixing is 

small, the profiles are compared with those based on the radial diffusion 

model (i. e. Pe =oo )solved in Chapter Three. It can be seen that the 

proposed model gives a more accurate representation. The large discrepancy 

of the profiles based on the parabolic representation is mainly because 

of the values of the parameters used here since rather large radial temp- 

erature gradients are formed. The axial temperature at r=0 is about 

30'ho more than that at the wall of the reactor at the hot spot. These 

steep gradients are usually poorly approximated by a parabola. When such 

large errors arise it makes the addition of the axial diffusion terms 

meaningless. On the other hand, for relatively small differences in the 

temperature between the reactor wall and axis, the lumped model based on 

the parabolic approximation may be used. In the case of a radial temp- 

erature difference of about 15%, it can be seen in Figure 6.3 that the 

discrepancy between the profiles of the different models are quite small. 
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Such bounds would restrict the practical advantage of lumped models, 

especially if used in dynamic simulation, where the radial temperature 

profiles may increase beyond such limits. 

In the above discussion, although the proposed lumped model has 

been shown to approximate the mean temperature for radial differences 

of more than 50%, this advantage may be overridden by the increase in 

computing times, to more than twice the computing time over that based 

on the parabolic approximation. This is because at each collocation 

point, the pellet equations must be solved twice to evaluate the 

distribution factors. It has been shown (see Chapter Four) that the 

distribution factors may be evaluated by solving the pellet equations 

once (i. e. the first approximation denoted by D1) or it may be evaluated 

from a purely algebraic expression (i. e. the second approximation D2). 

While approximations for the distribution factors have proved adequate 

in the case of the dynamic model, it can also be shown to be valid in the 

case of the steady state model with axial diffusion. Figure 6.4 shows 

the axial fluid temperature at r=0.0 and for Pea = 600 for the three 

cases using the distribution factors with D1 and D2. There is hardly 

any difference between using the distribution factors or their first 

approximation Dj. In the case of D2, it is clear that the discrepancies 

increase as the peak temperature increases. The average computing time 

for the proposed model compared with that using the first approximation 

D1, the second approximation 112 and the one dimensional model with Pea =oo 

are of the order 3: 2: 1.5: 1 respectively. In this comparison, 15 collocation 

points have been used in the axial diffusion model. At this stage, the 

axial diffusion model with the distribution factors being estimated by 

the first approximation D1 is adequate and represents the radial and axial 

temperature and concentrations with reasonable accuracy over a wide range 

of parameter values. 
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6.6 Discussion of results 

The axial temperature profiles at r=0.0 for different inlet 

concentration CA and for an axial peclet numbers Pea = 300,600 and co 

are shown in Figure 6.5. It is clear that for a given value of Pea, as 

the changes in temperature and concentration increase, the effect of the 

axial diffusion increases. In particular this is true at places where 

the axial temperature gradients become steep. When Pea = 300, as shown 

in Figure 6.5, when it is within the allowable practical range used in 

design, the effect of back diffusion is even more significant. These 

figures indicate that the magnitudes of temperature and/or concentration 

changes in the reactor, and particularly the steepness of such changes, 

has a significant bearing on the axial diffusion. In other words, as 

the temperature and concentration gradients increase, the effect of axial 

diffusion becomes more significant, as would be expected from physical 

considerations. 

When axial diffusion is considered, it can affect the temperature 

and concentration distribution in the bed in two ways: 

1. In the inlet region 

2. Outside the inlet region. 

This kind of classification is arbitrary and not entirely rigid, 

but is convenient as a basis for discussion of the main effects. Thus, 

= T9' - TO where T* from the boundary conditions at Z=0.0, Pea U a 

is the temperature at Z= 0+ and T0 is the temperature at Z= 0-. 

Similar argument can be made for concentrations. It is apparent that 

for T* to approach T0, the temperature gradient at the inlet should 

approach zero. However if Pe dZ 0, then 9= T0 + 
Pe 

d, and 
a 

similarly for Ce and CBS' These values will be different from the inlet 

values T0, CAO and CBO and thus may affect the heat and mass distribution 

inside the reactor. 
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For non-isothermal reactors (and less than 50 particle diameter(118))s 

it is to be expected that the peak temperature would induce a gradient 

near the inlet and thus the effect of the inlet boundary conditions can 

be significant. Young and Finlayson(120) simulated experimental results 

for the oxidation of sulphur dioxide in a reactor (25-50 particle diameter, 

where it would be expected that axial diffusion is negligible. However 

the peak in temperature occurred at z=0.3 and they reported an increase 

in T*over T0 of 15°C for Pea = 1.0. As a result, a 20°C decrease in peak 

temperature was predicted in a total temperature rise of 120°C. This 

difference is significant and in cases where higher magnitudes and/or 

gradients occur at the inlet, and could increase. In the case under study, 

where the reactor length is about 300 particle diameters, no steep gradients 

take place near the inlet, as shown in Figures 6.5 and 6.6, and T* is 

higher than T0 by only 1.6K. It is obvious that discrepancies in temp- 

erature and concentration occur at points other than the inlet region as 

a result of the axial diffusion. It is possible, based on the absolute 

values of the state variable gradients, to approximately indicate whether 

axial diffusion should be included or not. If the axial temperature 

gradient is approximated by finite differences, i. e. 
, TJ 

9 bounds JETZ 

can be established relating to the importance of axial diffusion. In the 

case under study, based on the Pea =� if I 
IAT 
ÄI>0.08 (this value is 

based on the dimensionless groups used), axial diffusion can be a significant 

effect. From Figure 6.5, the approximate gradients for cases C and D 

between Z=0.5 and 0.6 are 0.025 and 0.08 respectively, and for case E 

between Z=0.4 and 0.5, it is approximately 0.16. Of course, the above 

condition may vary according to the values of Pea used, but it has been found 

Thus, that for 1 Pea 52 (based on pellet diameter, then 0.08< 
IkO. 

O9. AZ _ 
for example, in case D in Figure 6.5, if the reactor is to be terminated at 

z=0.65, which represents a reasonable length to give nearly complete 
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conversion of species CA, -the outlet temperature would be higher in the 

case of axial diffusion (Pea = 1.0), by about 27°K. These discrepancies 

in temperature can mean longer reactor for the same conversion, if the 

axial diffusion has not been considered. In cases D and E shown in Figure 

6.5, the maximi. nn discrepancies in axial temperature for Pea = 300 is 

between 4 to 5% of that computed for Pea =oo . This percentage represents 

from 25°K to 60°K respectively. 

For the complex reaction considered and where the temperature 

gradients at some point in the reactor can exceed 0.08, it is therefore 

desirable to include axial diffusion terms in the reactor models, 

especially when used in optimization or design algorithms. Note that if 

the gradients occur in the inlet region, lower values than above may be 

used as a condition. Thus, in the case studied by Young and Finlayson(, 120) 

IQ 
ZI = 0.035 for Z between 0.0 and 0.2 (figure 6 in their paper). Also 

Ranzi and co-workers(130) simulated experimental results for the catalytic 

oxidation of methyl alcohol in a tube length of 200 particle diameters and 

found that including the axial diffusion in their model fitted their results 

much more satisfactorily. Their peak temperature occurred at Z=0.16 with 
II0i055 (figure 2 in their paper) and it was lower by about 50°K than 

that calculated ignoring axial diffusion. 

Although the condition put forward depends on the state variable 

gradients is not rigorous, it does give an indication as to whether the 

axial diffusion should be included. How much the magnitude of the resulting, 

discrepancies will have any significance will obviously depend on the 

individual case under study, and in particular on the dependancy of the 

kinetic rates on temperature and concentration. Certainly the criterion 

put forward by Carberry and Wendel 
(118) 

is necessary but not a sufficient 

condition for ignoring the effects of axial diffusion. - 

From Figure 6.5 for case E, it can be observed that not only does the 
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peak in temperature move nearer to the reactor inlet, but it flattens 

and in the case of Pea = 300 the temperature peak is actually higher 

than for Pea moo-, (see figure 8.7 also). This behaviour may be explained 

by the complex nature of the reaction. Examining Figure 6.6 shows the 

corresponding axial concentration profiles for species CA and CB for 

Pea = 300. Due to the axial diffusion, higher temperature levels may 

be encountered at higher concentrations in the earlier parts of the bed 

with a resulting increase in rate of reaction. For highly temperature 

sensitive reactions such small increases may have a considerable effect. 

In addition, the product CB diffuses to regions of still higher temperature 

and thus generates an additional amount of heat. Although such amounts of 

heat may be small, it promotes consumption of the more sensitive temp- 

erature species CA. This behaviour would result in not only flatter 

temperature peaks, but in certain cases higher peaks than expected are 

forced even for the case of the simple reaction A- s-B. 

Therefore, in formulating any criteria for bounds of runaway or 

multiplicity, and where the axial gradients of temperature are usü lly 

large, the changes occurring in the axial profiles due to axial disporsion 

should be considered. 

Since axial dispersion of heat increases as the temperature gradient 

in the reactor increases, it would be expected that in the case of a steep 

radial temperature profile, the axial diffusion should be maximum at the 

reactor axis and decrease to a minimum near the wall. In effect, the 

axial dispersion causes not only flatter axial profiles but also flatter 

radial profiles. Figure 6.7 shows the radial temperature profiles 

(corresponding to the case E in Figure 6.5), at different axial positions 

for Pea = 300 and oo . For both cases the radial peclet number, Per = 10, 

for heat and mass. Although in some parts of the bed the axial temp- 

erature at r=0.0 is higher than that at the case of Pea = co , e* g* Z= 

0.5, the interaction of both axial and radial diffusion transport results 
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in higher temperature levels everywhere at that radial position. At Z 

0.6, where the radial temperature gradient in the case of Pea = oo is 

severe, the effect of both transport mechanisms is evident, resulting in 

flatter profiles than for Pea = 300. The corresponding radial profiles -, 

for the species CA and CB can be seen from Figure 6.8. The effect of 

axial diffusion of mass on the radial concentration profiles is not as 

apparent as in the case of radial temperature profiles. This is due to 

the fact that for the exothermic reaction discussed here, the axial 

diffusion of heat overshadows the effect of mass diffusion, with a 

resulting increase in the rate of reaction. 

Although it is of importance to study the transport of heat and 

mass mechanisms in the reactor bed, such quantities as the axial peclet 

numbers for heat and mass, the argument as to whether these physical 

phenomena should be considered or not rests to a great extent on their 

interaction with the kinetic rates and their dependency on temperature 

and concentration. In other words, the importance of such physical 

quantities affecting the distribution of heat and mass in the reactor 

should be evaluated through their effect on the kinetic rates of the 

reaction under consideration. For reactants having high activation 

energies and heats of reaction, the reactions are usually sensitive to 

temperature and reaction order. This complex interaction between the 

physical and chemical parameters obviously renders any criterionput 

forward which does not take into consideration such interaction, unreliable. 

The gradient of state variables can be computed by simpler models 

which give an indication as to whether the axial dispersion should be 

considered and if not what deviation from the true state variable values 

may be expected. 
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6.7 Conclusions 

An axial diffusion model in which a parabolic radial temperature 

distribution is assumed has been solved by the collocation method. 

From 11 to 19 collocation points were used, depending on the case under 

study. It has been indicated that when using 15 points, about a 30'/ 

increase in computation time is required compared with that of the plug 

flow model without axial diffusion. Legendre polynomials are shown to 

converge faster than Chebyschef polynomials and is better suited to 

integrate these unsymmetrical boundary value problems. 

For more than 15% increase in temperature across the reactor tube 

radius, the model may give inaccurate representation of axial profiles 

due to the deviation of the radial temperature profile from the assumed 

parabolic distribution. 

A model has been proposed which treats the limitations imposed by 

the radial temperature parabolic assumption and represents the axial and 

radial profiles with reasonable accuracy. The solution of this model, 

using 15 collocation points, takes twice the computational time required 

by the corresponding plug flow model without axial diffusion. 

It has been shown that the effect of the axial diffusion of heat 

and mass on the axial temperature and concentration profiles becomes 

increasingly significant as the gradients increase. If the axial temp- 

erature gradient, computed by the plug flow model without axial diffusion, 

increases beyond 0.08 (this value is based on the dimensionless quantities 

used in this study), the axial dispersion may have a significant effect 

and should be included in a reactor model. In some cases, the axial 

diffusion when included in a model may result in a flatter radial profile. 

This effect becomes significant for radial profiles of about 30/16 or more 

increase in temperature across the tube radius. 



-112- 

CHAPTER 

DYNAMIC MODEL INCLUDING AXIAL AND RADIAL DIFFUSION 

7.1 Introduction 

It has been demonstrated that if the axial and radial diffusion 

of heat and mass are included in a reactor model, the resulting system 

of equations is very difficult to solve in the steady state. If the 

transient case is considered, the system becomes even more complex, and 

may become intractable. As a result this has encouraged the adoption of 

some simplifying assumptions for engineering design or verification 

purposes. Neglecting either radial or axial dispersion or both has been 

common practice in most of the work done in this field. The validity of 

some of these simplifications is justified by the satisfaction of some 

semi-quantitative criteria or sometimes merely on intuitive grounds. 

But when the discriminatory criteria are not satisfied, it is desirable 

to examine a more exhaustive description by treating the complete problem 

(i. e. including both radial and axial transport of heat and mass). 

Most of the work reported has been concerned with quasi-homogeneous 

reactors with axial diffusion and arose fron consideration of stability 

and parametric sensitivityý92'93'161,163,166) Liu and . mundson(125) 

developed an adiabatic reactor with axial diffusion and concluded that 

in the multiple state region, the temperature and concentration profiles 

were more sensitive to axial diffusion than in the case of a single steady 

state. They solved it with an implicit finite difference representation 

and reported a computation time of about 2 hours for a transient run 

(using Control Data 1604 computer). Although linearization of the system 

reduces the computing time(, 127) it is still too long for practical use and 

it has already been shown that orthogonal collocation is a feasible and 
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efficient method of solution for such problems. 

Attempts to solve the comprehensive model (i. e. including axial 

and radial diffusion) have been made by Feick and Quonc62) They employed 

a modified alternating direction explicit method. However, the computing 

time reported was excessive and no detailed studies were reported. 

All the models discussed above are a continuum representation, 

where once the mathematical model is formulated, the equations no longer 

reflect the idea that there are discrete particles in the bed. In 

contrast Deans and Lapidus 
(66) 

and later McGaire and Lapidus 
(60) 

utilized 

a model which describes the bed by an array of two dimensional mixing 

cells. Again the computing time is quite long and no detailed studies 

have been reported. 

It seems that very limited studies have been carried out for the 

transient nonisothermal case and this may be construed as acceptance of 

the criteria found in literature on the corresponding steady state 

studies. However, it was indicated in the last chapter that these 

criteria do not necessarily apply and that the importance of the axial 

diffusion increases as the state variable gradients increase, a situation 

frequently existing in transient studies where the gradients can vary 

appreciably in magnitude over a period of time. 

In this chapter a comprehensive model will be proposed based on the- 

conclusions of the last chapter which takes into consideration the axial 

and radial dispersion of heat and mass, as well as inter- and intra- 

particle transport limitations. It will be shown that in spite of the 

fact that the reactor model includes such detail, the computing time is 

reduced to a reasonable level, such that it can be used in detailed 

simulation studies. The importance of axial diffusion in dynamic 

operation will also be discussed. 
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7.2 Formulation of equations and solution 

Based on the proposed model given by equations (6.11 to 6.15), the 

transient equations describing the heat and mass balances on a differential 

element of the reactor can be conveniently written in dimensionless form 

as follows: 

G, 
C 82Cm 

-_Z 
DCA 

ý¢1 k1(m) +$ k3(m))CA)m (7.1) 
5 vL Pe MaaZ2 1 

G -dz + 
DG 

(? tf'< 1 k1(m) + °3 k3(m))CA)m (7.2) 
5 a'L PeMa aZ1 

Gt Tm 1G 2Tm 
-6T, n - 

2Nu t Tm 1) +DG (Tp - T) 
6L Pella 0 Z2 

az G3 T4m 

The boundary conditions are: 

(7.3) 

Pe 
l* ýc 

ZA 
(CAM - CA0M) 

Na 

Pe ZB - 
(CBm - CBOM) 

a 

Pella JZ- 
(TM - Tom) 

atZ=0and T-0 (7.4) 

ýZ 
= ýaLL Z =0 

The initial conditions being 

at Z=1.0andLý0 (7.5) 

CAom = CAom(L , Z), CBom = CBOM(T 9 Z), Tom = Tom(T , Z) at Z=0.0 and 

To 

The additional dimensional groups introduced are 

G5 =ü sec. G6 =L sec. 

All the quantities subscripted by m are mean values. The distri- 

bution factors (i. e. DT, DCA and DCB) and the modified Nusselt number 

(Nu') have the same general form given in Chapter Four. 

0 
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The above system can be further simplified if the fluid capacitance 

to absorb heat and mass is considered small compared with that of the solid. 

This simplification has been shown to be reasonable in Chapter Four and 

also in other cases reportedc46,109) In this case the fluid temperature 

and concentrations may be considered at a pseudo-steady state, i. e. the 

time derivatives in the above system may be neglected in comparison with 

the other terms. The dynamic response therefore comes from the equations 

describing the heat and mass transport in the catalyst pellet, given in 

Appendix (A1.2.2). They may be solved simultaneously with the above 

pseudo-steady state system. The collocation method may be used to solve 

the system as shown in Chapter Six and the pellet equations solved with 

Runge-Kutta-Merson to provide Tp, j andtf-'at the collocation points, 

necessary to evaluate the distribution factors and the mean state variables. 

For the purpose of the algorithm, it is necessary to be able to specify 

values of state variables at points other than the start and finish at 

any given time step. This is done by assuming that the changes in fluid 

conditions are linear over one time step and that the pellet is effectively 

subjected to a ramp change in fluid conditions. For solving the above 

system with reasonable accuracy, from 13 to 19 collocations points are 

needed, depending on the system parameters and initial conditions used. 

Time steps from 0.5 to 1 second are adequate for representing the changes 

taking place in the cases studied here, and from 1 to 2 iterations per 

time step are sufficient for the solution to converge. 
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7.2.1 Remarks on solution method 

in the following computations, the distribution factors have been 

evaluated using the first approximation D1, as discussed in Chapter Six. 

Preliminary computed results of the above model with Pea = 1200.0 (= 4 

when based on pellet diameter) have been compared with the radial diffusion 

model results shown in Chapter Four. This comparison is necessary to 

identify the limits of accuracy and polynomial order which are required 

to approximate the transient changes taking place at the inlet. The 

following observations may be drawn: - 

1. Following a step decrease in dimensionless temperature of 0.0000 

(equivalent to 13K), similar to that shown in Figure 4.2,16 collocation 

points, using Legendre polynomials, are required to give an average of 

3 to 4 decimal figures accuracy, for a time step of 1 second. 

Generally a step change is a severe test and may require higher order 

polynomials to approximate such changes, especially near the inlet region 

to ensure that the cumulative errors from successive time steps may be 

kept to a minimum. These conditions are partially met by the properties 

of the Legendre polynomials. 

2. Following a ramp increase in inlet concentration (0.2 in 20 seconds), 

similar to that shoim in Figure 4.8, with a time step of 1 second., an 

accuracy similar to above can be obtained by 15 collocation points using 

Legendre polynomials. It may be expected that fewer collocation points 

may be required to approximate a ramp change. 

3. For profiles such as those shown in Figure 7.1 where the state 

variable profiles are reasonably well-behaved, from 13 to 14 collocation 

points can be used to describe a ramp or step change of the above 

magnitudes. 

It should be noted that in cases where the peak in temperature is at 

or near the inlet region, it may be necessary to use higher order polynomials 

than stated above or a smaller time step. 
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7.3 Discussion of Results 

Since the comprehensive model proposed above includes axial 

diffusion, it is necessary to examine its effects on the reactor 

performance. Such a study should provide a basis for evaluating the 

significance of including the axial diffusion in the transient state. 

This information would be necessary when deciding on a model for 

implementing a control strategy, particularly when the states are near 

to the maximum limits of temperature allowed, to avoid problems of 

reactor stability or temperature runaway. 

Table 3.3 gives the values of the parameters used in the simulation. 

Figure 7.1 shows the axial temperature profiles at different times 

for a ramp increase in inlet concentration. Although the initial steady 

state profiles for Pea = 300 and oo indicate that axial diffusion has an 

insignificant effect, it can be seen that as the gradient of axial 

temperature increases, the discrepancies between the profiles increase. 

In the transient response, these differences would then vary according 

to the instantaneous value of gradients. For example, at C=0.0,40,60, 

and 140, the temperature at Z=1.0 is lower in the case of Pea = 300 by 

about 0.5,10,11 and 25K respectively. Those discrepancies are not the 

same in magnitude over the whole of the transient response. Closer exam- 

ination indicates that for Pea = 300, the final steady state is essentially 

reached at T= 136 seconds, while for Pea =oo , it takes 140 seconds. 

Although this time difference is small in comparison to the total transient 

period, a decrease of 2.9% based on the case Pea = oo , it shows that 

including the axial diffusion in the reactor model may alter the response 

time. This action may be explained by the nature of axial diffusion, 

since it is the movement of the fluid temperature upstream and thus would 

tend to dispense more heat to the catalyst with a resulting increase in 

reaction rate. Since the major dynamic factor affecting the reactor 

response is the solid heat capacity and its ratio to that of the fluid, 
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it may be expected that if this ratio increases, the effect of axial 

diffusion in the fluid would have less effect on the response time. 

Thus, increasing the solid heat capacity from 1.5 in the case studied 

above to 3, the final steady state is reached after 360 seconds for 

Pea = oo , while for Pea = 300 L= 351 seconds, i. e. decrease of about 

2.5%. 

The above observations indicate that for the transient changes in 

inlet concentration where the final steady states have higher 

magnitudesof change, i. e. steeper gradients, including the axial 

diffusion would result in accelerating the dynamic response. This 

enhancement increases as the gradients increase. The fractional time 

difference depends on the ratio between solid to fluid heat capacities, 

and increases as the ratio decreases. 

Similar observations would be expected for a ramp increase in 

inlet temperature. The redistribution of heat and mass in the reactor 

space as a result of the axial diffusion can be categorized into the 

form of discrepancies in response time and differences in axial 'temp- 

erature and concentration values for specific position and time in the 

bed. 

In practical terms, however, these discrepancies stated above 

have no significant effects on the general response of the reactor. 

This is especially true if the uncertainties associated with reactor 

parameter estimation are taken into consideration. On the other hand, 

precisely because of these uncertainties, parametric sensitivity 

studies are carried out so that the discrepancies between the experi- 

mental and computed state variables can be considered in establishing a 

safe limit for reactor operation. This last point should become more 

apparent in the following paragraphs in reference to the following 

example. Figure 7.2'shows the axial temperature profiles at different 

times for a step decrease in inlet temperature with Pea = 300 and oo . 
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It can be observed that, although the initial and final steady states 

the effect of the axial diffusion is small, it is more apparent at T_ 

60 and 80 seconds. This is because the gradients of temperature and 

concentration are steeper in the latter cases. In contrast to the 

steady state problem, where the importance of the axial diffusion can 

be estimated from the state variable gradients alone, in the dynamic 

response the duration where the gradient condition is satisfied may be 

of importance. In the case shown in Figure 7.2, it can be seen that 

the gradients indicate that the axial diffusion is significant between 

L= 40 and 90 seconds. This is about 33% in a total time for the 

transient of 150 seconds. The axial temperature values computed for the 

case Pea = oo during the above period are up to 6% different from those 

for case Pea = 300. Also the maximum gradient is approximately 0.14 

(based on the dimensionless quantities used). This gradient is equi- 

valent to about 220K temperature rise over a 10% of the reactor length of 

99 cm. 

As stated before, the effect of axial diffusion on the transient 

response of the reactor is, in general, insignificant. This is true if 

only certain factors are taken into consideration, in particular if the 

reactor response is studied in the safe limits of the allowed maximum 

temperature. In this case, the response of the reactor simulated with 

a model without axial diffusion will be in error by less than 6% (i. e. 

about 60K) of the computed axial temperature values provided that the 

maximum temperature gradients do not exceed a value of 0.14. Therefore, 

if this percentage difference in temperature can be considered to be 

inside the safe limits, then the effect of axial diffusion may be 

neglected. 

However, the effects of the axial dispersion may become of significance 

if the interest is to study the maximum temperature at which the reactor 
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can operate without the dangers of temperature runaway, or other un- 

desirable effects associated with parametric sensitivity. In this case, 

the axial diffusion should be taken into consideration, since a variation 

much smaller than the indicated percentage of uncertainty stated above 

may cause temperature runaway. This may be particularly important if 

the reactor is to be controlled by a feed back mechanism where the 

discrepancies observed may result in over- or under-estimation of the 

response and lead to unsuitable control action. For example in the 

schematic diagram shown in Figure 7.3, the temperature at C for the case 

Pea =o is lower than that at D for Pea = 300. If a high concentration 

wave arrived at that position, temperature runaway may take place at D, 

but not at C if a suitable action is taken. 

In a. parallel research project, Adderley(109) has shown that for the 

simple reaction A-B without axial diffusion, it is possible to indicate 

regions where temperature runaway can take place. On a phase'diagram as 

shown in Figure 7.4, the region of non-unique solutions in the catalyst 

pellet is drawn for a given system. It is then possible to plot the 

longitudinal trajectories of the reactor on the same chart, if any 

trajectory passes through the multiple solution region the reactor will 

tend to have multiple solutions at some point. Near the cusp of the non- 

unique region a high parametrically sensitive region exists at which 

temperature runaway may result. This region is represented on the phase 

diagram by the broken line. Reactor trajectories which cross this line 

are in the runaway region and therefore potentially unstable and those 

below it are in the safe region. 

Cases C and D above can be represented on that diagram and it is clear 

that axial diffusion can result in temperature runaway. It is also possible, 

as a result of the axial diffusion, to have a temperature runaway or 

multiple states at an early stage of the transient response. For example 
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as shown on Figure 7.5, in the case of Pea = 300, runaway can occur at 

L= 20 seconds, while in the case of Pea = oo , it takes place at L= 

25 seconds. Similar cases have been shown by Liu and Amundson(125), based 

on steady state studies of adiabatic reactors (for temperature gradients 

>>>O-14). They indicated that as Pea is decreased multiplicity occurs 

nearer the reactor inlet. 

The conditions under which temperature runaway or multiplicity of 

states can take place is being studied in parallel reseaxch(109), and 

it is the intention here to show that axial diffusion warrants further 

consideration in these cases or in formulating general criteria for the 

onset of undesirable behaviour. 

7.4 Conclusions 

A comprehensive dynamic model, which takes into consideration the 

axial and radial dispersion mechanisms is proposed. Lumping the radial 

dispersion by applying the model reduction technique and solving the 

resulting system by the collocation method has been shown to be efficient 

in describing the transient response. The computing time for solving 

such a model has been reduced to acceptable levels, comparable with 

corresponding models without axial diffusion. 

It has been demonstrated that, in general, the inclusion of axial 

dispersion mechanism in the reactor model does not alter the dynamic 

response significantly. But nevertheless, the axial state variables 

computed with models which do not include the axial dispersion may predict 

values up to 6% different for a transient, if the axial temperature grad- 

ient does not exceed 0.14 (this value is based on the dimensionless groups 

used). These differences decrease as the gradients decrease and reaches 

4% for gradients of 0.08. 
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In studies related to parametric sensitivity, where deviations 

less than stated above can-greatly alter the response, the axial diffusion 

should be included in the mathematical model. Such cases, where temp- 

erature runaway may occur and where the axial temperature gradients 

approach infinity, should include axial dispersion. 
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CHAPTER 8 

REACTOR STABILITY 

8.1 Introduction 

If very small changes in the inlet conditions of a reactor can cause 

very large changes to take place in the bed, then the reactor may be 

described as unstable in operation. Such instability may be solely due 

to parametric sensitivity, in which case removal of the disturbances will 

generally restore the original state. On the other hand it may be due to 

parametric sensitivity, accompanied by multiple steady states. In the 

latter case, simply removing the disturbance will not always cause the 

reactor to return to its original state unless certain conditions are 

fulfilledc46) In either case, the consequences of the instability are 

similar; rapid reaction, ignition or blow out may occur. Both of these 

phenomena are undesirable for fixed bed catalytic reactors;, more especially 

ignition since temperature runaway develops and this causes catalyst 

deactivation, sintering and poor product selectivity. Obviously, then, 

a prior knowledge of the regions of potential instability is desirable so 

that satisfactory and safe operational procedures for the reactor may be 

specified. 

Despite the fact that at an operational level instability is essentially 

a dynamic problem, steady state information can be used to indicate regions 

of potential instability. For example, if for given inlet conditions, a 

reactor may have two steady states, then it may be possible . with small 

perturbations to cause it to switch rapidly from one state to another(115) 

If the parameter regions over which the two simultaneous steady states occur 

(i. e. multiple states) can be identified, then this behaviour may be avoided. 

To design a stable system, it may be necessary to sacrifice some of the 

steady state performance in order to achieve decired transient behaviour 

which is both stable and predictable. With this argument in mind the question 
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of stability is therefore not simply the specification of 'hard' boundaries, 

but demands a broader view that can be expressed in terms of the intrinsic 

characteristics of the system. 

The physical system can be described in quantitative terms by 

mathematical models. Such models have a common basis in that they are a 

statement of the mass and energy conservation laws. As a result, they 

take the form of ordinary or partial differential equations, the complexity 

depending on the physical mechanisms assumed to be operative. Nonetheless, 

implicitly in these models is the understanding that the equations are in 

some significant respect analogous to the physical system and that behaviour 

deduced from these models will closely parallel that of the physical system. 

For example, the model describing heat and mass balances on a catalyst 

particle indicates that a region of multiple steady states is characterized 

by an upper and lower bound fluid temperature for a given concentration. 

To attain the upper steady state the pellet must be perturbed across the 

upper bound and subsequent transition to the lower steady state is only 

possible by crossing the lower bound. In this way the catalyst particle 

exhibits hysteresis in the region of multiple states and does not actually 

attain the middle metastable state, as shown in Figure 8.1. This behaviour 

has been demonstrated experimentally with a single catalyst pellet in which 

the ethylene hydrogenation reactions occurred by Furusacua and Kunii(136) 

and Ray( 10) 
reports that similar behaviour has been observed by Horak and 

Jiraceký108) Also Luss et a1ý115) have demonstrated the existence of 

multiple states experimentally using the oxidation reaction of butane gas 

on a heated electric wire. As shown in Figure 8.2 (corresponding to Figure 7 

in reference 115), for 1.5% butane, two steady states exist for 80°C Tg 

264°C. They showed that the difference of surface temperature in the two 

steady states exceeds 600°C. 

The numerical solution of such nonlinear models contributes greatly to 

the understanding of certain reactor behaviour. On the other hand the choice 
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of a model for a given system may yield analytical results which can 

indicate qualitative behaviour and which may be used to describe the 

physical events taking place in a reactor. 

Stability, as applied to a nonlinear reactor system, can be identified 

by looking at the phase trajectories of the system variables. A steady 

state may be called stable if the trajectories in a neighbourhood all 

approach it, and unstable if any one trajectory is directed away. Some 

trajectories may form limit cycles, which are characterized by periodic 

behaviourc6) Thus, all trajectories starting within the enclosed area 

will spiral out until they merge with the limit cycle. Trajectories 

starting outside the cycle will also decay to the-same periodic pattern. 

Such behaviour was obtained experimentally as a sustained oscillation by 

Bush(139) in his studies of gas phase chlorination of methyl chloride 

and by McGowin and Perlmutter(89) in their studies of a recycle system. 

It may well be asked how small or large the region of study has to 

be before the definition of stability is to be considered satisfied. This 

requires a definition of local stability as applied to non-linear *systems. 

As the mathematical tools to analyse such systems are well established for 

linear systems, it may be reasonable to linearize the nonlinear system so 

that it can be analysed more easily. Many important reactor models can 

be approximated more or less adequately by linearization, depending on 

the purposes to which the approximation is to be put. Whether or not any 

real systems are truly linear is questionable(g6) since although continuous 

systems remain linear in the small, no physical chemical system could be 

expected to be linear over a wide range of its variables. As a consequence, 

it is usually only possible to study the local stability of a nonlinear 

system. In cases where the nonlinear system can be analysed without 

linearization, such as by computational or graphical methods and the 

analysis indicates that the system is stable for all possible operating 

conditions, the system may be said to be globally stable. 
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In the heterogeneous system of interest here, instability may be 

caused by the catalyst packing, or by the fluid phase behaviour. It 

is convenient to note here some of the studies done in these areas in an 

attempt to try to relate them to local and global stability problems 

associated with heterogeneous systems. 

For the catalyst particle, when all the interphase transport 

resistances are considered, the number of multiple steady states is 

usually three, with the middle state being unstable. Although Hutfield 

and Aris(43) have shown that five steady states are possible, the 

parameter values used are out of the practical range. Lumping the 

Laplacian operators of the distributed systems has also been used to 

simplify the problem. The disadvantages of lumping procedures are that 

not all the characteristics of the original system are carried over to 

the lumped system, the results and criteria obtained at least agree 

qualitatively with those of the real system in many casesc14o, 
141,142) 

Luss and Lee(143) lumped the space parameters of the transient pellet 

equations and obtained criteria they claimed superior to other lumping 

techniques. Their criteria indicate that it is possible to ensure 

uniqueness in the catalyst particle by reducing its size or diluting the 

reaction mixture. However, diluting the reaction mixture may reduce 

conversion and yield of a catalytic reactor and reducing the catalyst 

size may cause-temperature runaway as reported by Thorntonc46) Kuo and 

Amundson(137) have directly treated the distributed parameter system and 

developed a necessary and sufficient conditions for particle stability. 

These conditions require the computation of eigenvalues of non self 

adjoint linear system by Galerkin's method. However some computational 

difficulties were experienced by Lee and Luss(138) for very small Lewis 

number. For a Lewis number equal to unity the system can be reduced to 

a single equation for which the maximum principle can give stronger 
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conditions(144) Application of the Liapunov direct method on the 

distributed system to obtain the necessary condition for particle 

stability has been carried outc145,146,147) Although these criteria 

axe'in the form of algebraic inequalities and need steady state inform- 

ation, they are usually conservative. On the other hand Amundson and 

Raymond 
(87) 

showed that the slope condition (i. e. the slope of heat 

removal line should be greater than that of heat generation), is a 

necessary and sufficient condition for particle steady states stability. 

Also McGreavy and co-workers( 
42) 

arrived at the same conclusion studying 

the transient sinusoidal perturbation on the isothermal pellet model. 

It is recognised that for a one dimensional reactor model (i. e. 

neglecting both axial and radial dispersion), unique profiles(149) apart 

from that which may be accounted for from the pellet are possible. However 

instability in such a homogeneous reactor may arise from consideration of 

parametric sensitivity. Nonetheless, whenever heat or mass can move up- 

stream there exists the possibility of multiple steady states. 
150) The 

upstream movement can be the result of physical recycle or feedback'control, 

but can also arise even more simply from axial dispersion(g6) and has in fact 

been demonstrated experimentallyý1519152) However, when effects such as 

back mixing allow the possibility of multiple states, their occurrence is 

not in general guaxantee4, but will depend on the parameter values specific 

to the system under study. For a fixed degree of axial dispersion, as 

many as five steady states(6) may exist for a quasihomogeneous reactor 

over a wide range of heat transfer coefficients. Similar results were 

obtained by Hlavacek and Hofmann(92,93) in their studies on the effect of 

axial Peclet number. However, in the latter case Froment(7) indicated that 

the range of peclet number to cause such an effect may be considered to be 

outside the practical values found industrially. 

Van HeercLen in his studies on adiabatic reactors with axial mixing 
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suggested that the slope condition is a necessary and sufficient condition 

for stability. For an adiabatic reactor modelled by a surface reaction 

model with no concentration gradient in the interparticle region, 

Blodgett(153) and Orcutt and Lanmb(154) found that the slope condition is 

a necessary and sufficient condition for stability and for small perturb- 

ations. For large perturbations Han and Mayer(155) indicate that, for 

the same system as above, the rate of heat removal should be greater than 

the greatest slope of the heat generation curve. Vanderveen et aic156) 

obtained necessary and sufficient conditions for stability of an adiabatic 

reactor with surface reaction and for small perturbations. However, they 

treated the reactor as a series of stirred tank reactors, which is equi- 

valent to approximating the axial derivatives by a finite difference 

scheme. A similar study has been made by Agnew and Narsimhan(157) for 

a non catalytic adiabatic reactor. 

Following the criteria put forward earlier(h18) which indicate that 

the effect of axial diffusion is usually negligible in long reactors and 

for the commonly used high flow rates, the interest has been mainly 

directed towards reactor models with radial diffusion. In exothermic 

reactions, appreciable radial temperature and mass gradients are usually 

encountered and they have to be taken into consideration. A review of the 

studies which have been made on quasihomogeneous models(129) has been mainly 

concerned with criteria for parametric sensitivity or temperature runaway. 

McGuire and Lapidus 
(60) 

studied the dynamics of a two dimensional model 

without axial diffusion with the view to examining the behaviour of the 

reactor when some of the catalyst particles lie in a region of multiple 

steady states. Their interests were concerned with whether the reactor 

would return to its original steady state after the removal of an imposed 

perturbation. A similar study had been made eaxlier by Liu and co- 

workerst125,158) 

Efforts have been made to relate instabilities arising from catalyst 
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particle to that due to the reactor. Thus, McGreavy and co-workers(46,109) 

plotted regions of multiplicity and highly parametric sensitive areas of 

the particle on a phase diagram as a function of fluid conditions for each 

reaction system of the simple form A. B. Reactor trajectories can be 

plotted on the same diagram, thereby giving an immediate indication of 

potential instability and operating conditions. Using this method 

Thornton(46) indicated that radial variations should be considered in 

constructing such criteria. He indicated that some of the pellets may 

enter the multiplicity region near the reactor axis which is not accounted 

for from radial mean conditions. Although the method described above is 

simple to apply and gives an immediate indication of the potential in- 

stability regions, in complex reactions the method may be difficult to apply. 

Although the studies reviewed above cover a broad area in reactor 

stability, they involve such assumptions as neglecting the axial or radial 

dispersion or both. Also different pellet models have been used. No 

attempts have been made to analyse the complex reactions at present under 

study, either because some of the methods used above axe not applicable, 

or because of the complexity involved in their analysis. In the following 

discussion, interest will be directed to two models, the first given by 

equations (4.1 to 4.5) neglecting axial dispersion and considering radial 

transport and particle transport limitations. The second model given by 

equations (6.1 to 6.5) takes into consideration the axial diffusion while 

radial variations of heat are assumed to follow a parabolic distribution. 

This division is thought to be reasonable, since it might be indicated that 

further consideration of any of three dispersion mechanisms may not 

necessarily be required in deriving a stability criteria for the complex 

system being studied. The assumption of pellet isothermality is used and 

the models employed are given in Appendices (A1.1) and (A1.2) for the steady 

and unsteady states, together with the additional assumptions involved. 
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8.2 Method of Analyses 

In order to define the stability of a system consider a perturbation 

about the steady state profile. If the system is stable the resulting 

transient response will remain within a finite region of the steady state 

profile. If the transient profile approaches the steady state and the 

displacement can be made as small as desired, if given sufficient time, 

the system is said to be asymptotically stable. The above definition of 

stability is called Liapunov stability 
(6,146) 

and can be put in the 

following mathematical form: 

A functional V(u) is sought for the system such that 

V(u) >0 for u jL 0 

V(u) =0 for u=0 

and if ay 
0 foru? 0 and =ý0 al 

then the system is stable and if 

A <0 for u/0 and j. > L 
0 

the system is asymptotically stable. 

The general form of V(u) can be looked at as an energy function of 

the perturbed state from the steady state-and it is required therefore 

that its derivative with respect to time would decrease and thus approach 

the original steady state. A general form for V(u) used in the case of 

partial differential equations is: 
(6) 

V(u) =z 
fuTpu 

d _c 
(r, Z) (8.1) 

therefore aV u) _ 
IUT P 

'ýau 
d_a_ (8.2) 

c71 ci 
where P is a positive definite symmetric matrix and u is the vector 

containing the values of the perturbed state variables, defined as 

u(r, Z, T) = Y(r, Z, T) - Y(r, Z, O), where Y(r, Z, O) are the steady state 

values of the state variables. 
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The general steps, followed in applying equation (8.2) to the 

distributed systems to be analysed may be as follows. 

1. Substitute the perturbed form u defined above in the original 

distributed system. This will involve linearization of the nonlinear 

reaction rate terms R(u) around the steady state, by making use of a 

Taylor series approximation: 

Ri(u) = Rl(o) + 
R(O) 

ii=1,2,3,4 
J=1,2,3,4 

Y(r, Z, O) iJ 

Note that the derivative terms in the above equation (Jacobian matrix) 

are evaluated at the steady state values. 

2. Substitute for P in equation (8.2) by the linearized space 

derivatives of the distributed system. 

3. Integrate the resulting equation and substitute the boundary condition 

of the linearized system. 

4. After the necessary mathematical manipulation, conditions are sought 

that ensure that Lu) 
will be less than zero over the entire integration 

interval, thus indicating that the system is stable. 

Note that in step 4, sometimes the Liapunov functional can be 

divided into several integrals, some of which may be negative irrespective 

of the integral values. Those in which the integral values depend on the 

parameters to be integrated are computed and conditions under which they 

have negative values can be identified. This policy was adopted here, 

and the following discussion is related to the integrals which depend 

on the parameters. Further details of the application of Liapunov 

method to the distributed systemsunder study can be found in Appendix 

(A3)" 
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8.3 Discussion of Results 

Consider the application of the Liapunov direct method to the radial 

diffusion model. The elements of the weighting matrix P shown above in 

Liapunov functional can take any value. Some authors have used the 

identity matrixN6) Ilowever others 
(6,153) 

have suggested that other 

forms may yield better results. In this study the weighting matrix has 

been chosen as diagonal, with elements of the form e-, where K is a 

constant to be determined later. 

The steps taken in applying Liapunov method to the distributed system 

with radial diffusion can be seen in Appendix (A3.1). However by 

following the general steps stated in the last section the integrals 

which have to be computed to determine whether their values are larger 

or 'smaller than zero can be put in a determinant of the following form: 

c1 _ e-KZ 

2(-K G1 
+ aiA ) b12 b13 b14 

G5 CA 

b21 2(-K G1 
+ all) b23 b24 

G5 d CB 

b31 b32 2(-K G+ T) b34 
G 6 

b41 b42 b4,2 CARS 
w 

The elements of C1 represent the partial derivatives of the reaction 

rate terms arising from the linearization procedure and having values 

evaluated at the steady state (see Appendix (A3.1) for further details). 

A necessary condition for the distributed parameter system with 

radial diffusion to be stable for any small perturbation in system 

variables is that the determinant C1 should have a value less than zero 

when evaluated at any point in the reactor. A simple criterion can be 

extracted by observing that the condition for C1 to be negative definitO 

is that the diagonal elements should be negative and larger than the off- 
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diagonal elements. By making the constant K large enough, the only 

condition to be satisfied is that tl- 
(see equation (A3.7) in Appendix 

(A3.1)), should be negative. This is, in fact, the slope condition 

applied to the complex reaction in the catalyst pellet. 

Nu > Qg 

In other words the heat removal (i. e. Nu) should be greater than the 

heat generation (i. e. Qg) in the catalyst pellet (for details of Qg, see 

Appendix (A3.1)). Before examining this condition in relation to the 

reactor model, it is worthwhile illustrating the complex nature of the 

reaction under study, by confining attention to the catalyst pellet. 

For the data given in Table 3.3, figure 8.3 shows the multiple state 

region for different concentrations of species CA and CB. It can be 

observed that merely increasing the product CB can push the pellet into 

a region of high parametric sensitivity or even to the non unique region. 

Thus, increasing the concentration of CB from zero to 0.4, while keeping 

CA constant (i. e. B=5x 10-4) results in driving the pellet into the 

non unique region, as can be seen from curves A1 and A3. Of course, the 

amount of CB which can cause such behaviour depends on the relative values 

of the parameters. Such physical and chemical parameters are the activation 

energies, heats of reaction, Sherwood numbers and the rate constants. 

Nevertheless this kind of behaviour means that under certain conditions 

in the reactor where the ratio of CA to CB is changing during transient 

changes, highly parametrically sensitive areas or even multiplicity may 

occur and cannot be observed from a steady state analysis. 

The slope condition defined as (Qg - Nu) for the curves A,, A2 and A3 

is shown in Figure 8,4. For values of Qg - Na < 0, the slope condition 

is satisfied and the pellet has a unique steady state, if Qg - Nu > 0, the 

pellet has multiple states. While the slope condition is satisfied in the 

case of a unique state represented by curves Al and A2, in the case of curve 

A3 it is obvious that the heat generation in the pellet is greater than the 
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heat removal in the region of multiplicity. It should be noted that 

in the case of high temperature sensitivity, as in the case of curve A2, 

or at the positions S1 (Figure 8.3), the heat generation is about equal 

to the heat removal. These situations, when they arise in the reactor, 

are points of parametric sensitivity and may be potentially unstable. 

The values of the determinant C1 is also shown in Figure 8.4 for 

different values of the constant K. The degree of conservation of the 

C1 criterion can be examined in comparison to the slope condition in the 

pellet. It can be observed that in the case A2 where the maximum value 

of Qg - Nu = -0.07 
(indicating that the pellet is parametrically 

sensitive, as shown in Figure 8.3), the value of the determinant for 

K= 600 is C1 <0 while for K= 50, C, > 0. This latter value indicates 

that no conclusion can be inferred regarding this state stability. On 

the other hand in case A3, and for K= 600 and 50, C, changes sign from 

negative to positive by crossing the broken line at a Qg - Nu value of 

-0.05 and -0.11 respectively. In fact, for K=0.0 C1 changed sign 

according to the slope condition at Qg - Nu = -0.15. It seems that the 

sharpness of the value of C1 as a stability criterion depends on the 

value of the constant K, as would be expected. This may be determined 

for every specific case, probably by making use of optimization. 

However the above observation suggests that yor reasonable values of 

K the criterion C indicates that the reactor cannot be unstable while 

the catalyst pellet is at a stable state. This is understandable on 

physical grounds since the reaction is assumed to take place only in the 

catalyst pellet and that the spatial distribution of mass and heat in 

the reactor depends on the rate of reaction in the solid. It would 

appear that in heterogeneous reactors, catalyst stability is a necessary 

condition for a stable reactor. This conclusion has been arrived at by 

various authors(153,148) for the simple reaction scheme A B. 
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The pellet model used is the simplest which can describe the 

dynamics of a catalyst particle in regions of practical variations of 

the parameters. Studies of the pellet response to sinusoidal perturb- 

ation in temperature and concentration indicate(149) that the slope 

condition is a necessary and sufficient condition for particle stability 

for small perturbations. It is therefore required to apply the slope 

condition in the reactor and along the radial direction to determine 

how conservative this condition is. To establish this, the slope 

condition has been computed for different reactor parameters. Thus, 

Figure 8.5 shows the axial temperature profiles at r=0.0 for lower 

and upper steady states. In both cases the slope condition is satisfied 

(i. e. Qg - Nu < 0). The maximum values estimated at r=0.0 for the 

lower state is Qg - Nu = -0.13, and for the upper state is -0.096. These 

have been tested for small perturbations in temperature (10K) and 

concentration CA (0.05) and been. found to be stable. Note that the 

slope condition is applied at r=0.0. When applied along the radial 

direction the maximum mean value of (Qg - Nu)m for the lower and upper 

states are -0.188 and -0.12 respectively. In this respect, the mean 

value of the slope condition may be a less conservative criterion, as 

shown by the next example. 

Figure 8.6 showed the axial temperature profiles at r=0.0 when the 

reactor is in a parametrically sensitive region whereby increasing the 

inlet dimensionless concentration CA from 1.0 to 1.03, temperature runaway 

took place at Z=0.35. For the profile denoted by 1, the maximum value 

of the slope condition is Qg - Nu = -0.09 at r=0.0 and a radial mean 

value of 0.1, while for the profile 2, Qg - Nu = -0.05 at r=0.0, 

(Z = 0.35), and a radial mean value of -0.08. This value indicates that 

the whole radial profile at this axial position is parametrically sensitive. 

The point which should be considered here is that although some pellets 
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near r=0.0 may be parametrically sensitive, it is not necessary that 

the reactor should reflect such sensitivity unless sufficient section 

of the radial profile is in this region. Similar observations have been 

arrived at by Thornton, 
(46) 

using alternative approach for the simple 

reaction A---B. This suggests that the mean radial slope condition is 

a less conservative criterion for reactor stability. 

It appears that as a result of several computed results, the radial 

mean slope condition is a necessary and sufficient condition for local 

stability, if (Qg - Nu)m < -0.11. This condition is easily computed 

and can be used as a first estimate, since it is simple and takes neg- 

ligible computing times and requires only steady state information. 

Applying Liapunov analysis to the axial diffusion model using the 

same general form of Liapunov functional given before. The weighting matrix 

P is a diagonal matrix with elements of the form cos a't(Z - J), where a is 

a constant to be determined later. This form of P which has been suggested 

before(169) has been found satisfactory and yields a less conservative 

criterion than other forms. Following similar steps to those stated in 

the previous case the criterion shown below can be derived (for details 

see Appendix (A3.2)). 

A necessary condition for the axial diffusion model to be stable is 

that the following determinant value should be negative definite at any 

point in the reactor 

C2 = 

G5Pý2 -0.25 Pea +ÖCA 0.5 bý12 0.5 b13 0.5 b14 
a G5 

-2 
2 

0.5 b21 G5 Pe -0.25 Pea 
V-B 

0.5 b23 0.5 b24 
a G5 

- 2 0.5 b31 0.5 b32 0.25 Pea 
G 6 G 

0.5 b34 
a. 6 

0.5 b41 0.5 b42 0.5 b43 
aRS 

where the elements of C2 represent the partial derivatives of the reaction 

rate terms with respect to the variables CA., CB, T and Tp, evaluated at 
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the steady state conditions. 

An additional condition arises from the boundary conditions which 

have to be satisfied. This is 

2 Tan A= Pea 

where 
il 

= aTT and 0<a<1 
2 

Pä= axial peclet number (assuming that the heat and mass peclet 

numbers are equal). 

The value of should have the value of the smallest positive root 

of the above equation for any particular value of Pee. For the range of 

Pea numbers between 100-and 600 (with Peabased on the length of the reactor), 

the value of ý lies between 1.5 and 1.6 and starts to decrease rapidly for 

Pea < 50. This behaviour is apparent from the form of the above equation 

(i. e. tan T). 

It may be observed that in the case of the axial diffusion criterion, 

C2, as Pais increased the diagonal elements can be made a large negative 

values and again the slope condition is a criterion for stability. This 

point, which can be observed from the matrices C1 and C2, is reasonably 

sound on physical grounds. As the axial pellet number Pea increases, the 

effect of baclonixing or diffusion, which is responsible for the instability 

or multiplicity solutions in homogeneous reactors, can be considered 

negligible. As Peä oo (i. e. the one dimensional plug flow), the slope 

condition is a necessary and sufficient condition for reactor stability. 

The effect of the boundary conditions, which is expressed as 

2 \2/Pe,, may be considered to be of negligible importance in relation to 

reactor stability compared with 0.25 Pea, which describes the effect of 

axial diffusion in the reactor. This is true in the case of large Pä. 

As it decreases, the effect of the boundary conditions on reactor stability 

increases. 

Fi, u. re 8.7 shows the axial tempera,. profiles for the lower and 

upper steady states for Pe values of 100 and 600. The data used is given 
a 
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in Table 3.3. Applying the stability criterion developed above on the 

lower steady states, the C2 value is found to be negative over the whole 

reactor length, with an average value of -9.8 x 109 at Z=0.7. For the 

upper steady states, the stability criterion C2 has a positive value and 

therefore is unable to supply any information regarding reactor stability. 

Me slope condition is satisfied at both the upper and lower states and 

that the range of Pea used (i. e. between 100 and 600) above does not 

affect the sign of the matrix C2. 

Following the argument used in the case of the 
. radial diffusion 

model, instability is primarily due to the possible potential instabilities 

arising in the solid state. In the case of the axial diffusion model 

and due to the similarity between C. and C2, the same observation is 

applied here and the slope condition can be considered a necessary 

condition for the local stability of the reactor for the range of Pea 

used. 

8.4 Concluding Remarks 

A stability analysis using the Liapunov direct method has been carried 

out on a distributed system of partial differential equations describing 

the heat and mass transfer in fixed bed catalytic reactors. Two math- 

ematical models have been used. The first takes into consideration 

the radial transport process (RDN) and the second the axial diffusion 

process (ADII). It has been shown that for the RITA, the slope condition 

(i. e. the heat removal should be greater than the heat generation in the 

pellet) is a necessary condition for reactor local stability. The slope 

condition is able, when applied at reactor axial position r=0, to detect 

whether the lower and upper steady states are stable and it has been shown 

that the middle state is unstable. The mean radial slope condition can be 
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considered a less conservative stability criterion. In this case, some 

of the pellets near r=0 may experience instability or parametric 

sensitivity, yet the whole radial profile may be considered stable. 

In the case of the ADM model, a stability criterion in the form 

of a matrix has been developed. The criterion depends on the sign 

definiteness of the determinant value, and if it is negative the system 

is stable. Otherwise no conclusion can be drawn. For the lower steady 

state, the value of the determinant has been shown to be negative. No 

information concerning the stability of the upper steady state is 

available. The slope condition is satisfied for both states. It has 

been indicated that, as the axial peclet number increases, the slope 

criterion is a necessary condition for stability and in the limit, as 

Pe - co(i. e. approaching plug flow) the slope condition is a necessary 
a 

and sufficient condition. 
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CHAPTER 9 

FINAL COMMENTS 

9.1 Summary of the present work 

Consideration has been given to the problems of characterizing the 

behaviour of highly exothermic reactions in fixed bed catalytic reactors 

where the kinetic scheme may be represented by A-ºB -ºC. For this system, 

both steady state and dynamic models of the fixed bed catalytic reactor 

have been developed. Various aspects of the dynamic behaviour have been 

studied to identify some of the important features of the system and in 

particular those which are relevant to design or control problems. To 

establish the minimum requirements needed to adequately describe the 

physical and chemical events occurring in the reactor, models of various 

complexities have been considered. However, since the reactor model 

includes so much detail, the computation time taken to solve them is 

usually excessive. Thus, effort has been made to develop more rapid 

solution methods and also to simplify the models without sacrificing the 

detail necessary to satisfy the requirements of representation accuracy. 

The collocation method has been employed to solve the steady state 

radial diffusion model. A comparison in terms of accuracy of-solution 

and computing time has been carried out between the implicit finite 

difference representation (Crank-Nicholson), and single collocation 

procedure (collocating the radial direction and integrating the resulting 

system with Runge Kutta Merson), and the double collocation (using the 

collocation in radial and axial directions). It has been shown that 

single collocation is appreciably faster than the finite difference solution 

and a better approximation of the radial profiles has been obtained with 

fewer collocation points. This may be done if the distribution of the 
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location of the collocation points, not necessary at the orthogonal 

polynomials zeres, is such that they emphasize certain regions where the 

function value is needed with greater accuracy. 

The comparison between the single collocation and double collocation 

procedures revealed that for nonlinear problems, where linearization 

methods are used, no appreciable reduction in computing time is possible, 

unlike linear problems. This is because the time taken in matrix inversion 

involved in iterative application to the linearized process. However, 

in transient cases where the change over the time steps is small, the 

double collocation can be used without employing a linearization procedure; 

it is faster than the single collocation and the solution converged in a 

small number of iterations. 

Further reduction in computing time is necessarily coupled with a 

reduction in model dimensionality. However, this is usually accompanied 

by a loss of accuracy. Model reduction technique, in which the radial 

differential operators can be eliminated from the model and then re- 

constructed from simple algebraic expressions, have been applied to a 

dynamic radial diffusion model. The resulting one dimensional reduced 

model is treated by approximating radial temperature profiles by examining 

the deviation of temperature profiles from a parabolic distribution and 

relating this to the radial mean values, in the form of a modified wall 

Nusselt number and distribution factors. The estimation of the distribution 

factors require the solution of the pellet equations twice per axial step, 

so further reduction in computing time has been achieved in two steps, in 

which the distribution factors are estimated from algebraic expressions. 

In all cases, the reduced dynamic model evaluates the radial profile with 

an accuracy comparable with double collocation of the distributed system 

and over a wide range of operating conditions. The computational load 

is in fact reduced to . reasonable levels making it suitable for control 

studies and design purposes. 
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Examination of the dynamic behaviour of the reactor has revealed 

that it is controlled by a combination of chemical and thermal effects, 

the relative magnitudes of which may change considerably with time and 

position in the bed. This results in dynamic responses which are not 

easily predicted without extensive simulation. Step and ramp perturb- 

ations in inlet temperature, concentration and fluid velocity indicate 

that the major dynamic effect derives from the solid thermal capacity, 

which causes the temperature effects to be delayed. Detailed examination 

has shown that it is possible to categorize the dynamic responses into a 

hot and cold wave propagation mechanism which are independent of the 

particular variable causing the disturbances at the inlet. Thus, the 

mass accumulation resulting from cooling effects on the solid are 

responsible for the high temperatures reached in front of the cold wave. 

Based on the velocities of propagation of heat and mass waves it is 

possible to enhance the reaction or to oppose it in certain parts of the 

bed by manipulating the inlet conditions. Thus, the objective to control 

the intensity of the heat wave and the mass accumulation where the reaction 

is very sensitive to temperature and concentration variations. It has 

been demonstrated that this type of multivariable approach can be used 

to control the reactor when working near the maximum allowable temperature, 

without the possibility of excessive hot spots forming. 

When the reactor is controlled by manipulation of the inlet conditions, 

some oscillations of these variables are likely to occur as a result of 

control action. For this reason the behaviour of the reactor sinusoidally 

varying inlet temperature, concentration and fluid velocity has been 

considered. The response of the reactor to this type of perturbation may 

be divided into two distinct stages. There is an initial transient period, 

the duration of which is equal to the residence time of the first heat 

wave. The subsequent stage is a quasi-state in which regular oscillation 

of the whole bed is established. In the case of temperature and concentration 
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inlet perturbations, the greatest disturbances occur during the initial 

transient period. Thus, at certain frequencies severe hot spots or 

temperature runaway may take place. In the case of velocity inlet 

perturbations and at certain frequencies, the greatest disturbances 

occur in the quasi-stationary state only. As the frequencies of 

oscillation decrease further, temperature runaway or hot spot formation 

may take place in both the initial and quasi-stationary state. It has 

been indicated that the above behaviour is due to the differences in heat 

and mass wave propagation velocities and these hot spots which are formed 

may arise across the tube radius and near to the centre line. This is 

due to heat accumulation effects resulting from the increased reaction 

rates, and is not possible to dissipate fast enough across the tube radius 

and through the wall. As a result it may be necessary to limit on 

permissible inlet frequencies, or on the allowed variations in the radial 

temperature gradients. 

The behaviour of the reactor in the initial transient period has 

important implications in relation to the control strategies which may 

be adopted, since control action is often basically a damped oscillatory 

input. Further examination of the reactor response to a damped sinusoidal 

perturbation in inlet temperature indicates that disturbances which occur 

in the initial period are even greater. This is because in damped 

oscillation, the quasi-stationary state does not occur. It would appear 

that the quasi-state causes temperature waves of greater emplitude, than 

with damping and thus reduces the mass accumulation in the latter parts 

of the bed and hence the disturbances during the initial transient period. 

Consequently the feed temperature can be used for control by employing 

a damped oscillation, where the inlet temperature variations can control 

the concentration waves. 

The significance of dispersion of heat and mass on the reactor 

behaviour has been investigated and the areas where it is of importance 
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have been identified. To this end, steady and unsteady state models 

which take into consideration the effects of axial and radial diffusion 

have been developed. In these models, the reduction technique used above 

has been successfully employed to approximate the radial dispersion and 

the resulting system can then be solved by the collocation method. The 

computing time of such comprehensive models has been reduced to levels 

comparable to those neglecting axial dispersion. 

Steady state simulation indicates that the effect of axial dispersion 

on the spatial distribution of heat and mass in the reactor becomes 

increasingly significant as the axial temperature and concentration 

gradients increase as would be expected. Based on the temperature 

gradients computed from models which do not consider axial diffusion, 

it has been shown that it is possible to decide whether or not axial 

diffusion should be included in a reactor model. If the axial temperature 

gradient is not very steep, the effect of axial dispersion can be looked 

at as a discrepancy in the computed state variables estimated from models 

neglecting it. Bounds on these discrepancies have been given for certain 

axial temperature gradients. 

Examination of the dynamic response to inlet temperature and concen- 

tration disturbances has revaaled that axial diffusion does not have a 

significant effect on the general behaviour of the reactor. For certain 

responses, however, the axial diffusion may become important during the 

transient, even if it has a negligible effect on the inlet and final steady 

states. Some bounds are provided for the discrepancies resulting from 

neglecting axial diffusion, particularly in relation to the maximum 

temperature gradients attained during the transient response. Axial 

diffusion effects can be considered unimportant, if suitable adjustments 

are made in determining a safe maximum temperature for operation. In 

studies related to parametric sensitivity, multiplicity of states or 
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stability of reactor, where small discrepancies in state variables may 

result in undesirable behaviour, axial diffusion should be considered 

in making a detailed examination of reactor behaviour. 

Consideration has been given to the stability of fixed bed reactor. 

Liapunov-stability analysis has been carried out on two models. The first 

is the radial diffusion model neglecting axial dispersion. The second 

model takes it into consideration and assumes a parabolic radial temperature 

profile. The derived stability criteria for both models are in the form 

of determinants which can be computed from steady state information. 

If the sign of these determinants is negative they indicate stability, 

otherwise no information can be obtained regarding reactor stability. 

Based on computed results these criteria are able to indicate the stability 

of the lower steady states only, although the slope condition in the 

pellet (i. e. the heat removal should be greater than heat generation) 

is satisfied in both the lower and upper steady states and for both models. 

Although these criteria are conservative in their estimate, closer exam- 

ination indicates that if instability arises, it must take place in the 

pellet irrespective of the mechanisms considered in the fluid phase. 

Therefore the slope condition in the catalyst pellet is a necessary 

condition for reactor local stability and may be used as a first estimate. 

9.2 Suggestions for further work 

The present work has produced reactor models which represent the 

transport phenomena with reasonable accuracy and only requires a modest 

computational time. Yet, still much can be done to furtherreduce the 

computing time. Thus it is desirable to continue with the development 

of model reduction techniques and efforts should be directed to minimize 

the number of pellet equation evaluations since they represented the 

greater part of the computing time. The accuracy of estimating the 
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distribution factors from algebraic expressions can still be improved 

and this may be achieved by considering the limiting factors governing 

the reaction. Attempts should be made to further reduce the steady 

state model by exploitation of the analogy between the reduction tech- 

nique and the use of orthogonal splines. 

In dynamic simulation attention has been directed to classify the 

transient response into identifiable categories based on the wave 

propagation velocities. This line of approach to reactor control needs 

further investigation to proceed with the multivariable design procedures 

probably by making use of optimization or optimal control algorithms. 

Also, the damped oscillation work suggests that the control of reactors 

in this manner is a possibility and certainly warrants further exam- 

iriation. 

It is necessary to establish the relationship between amplitude 

and frequency of inlet perturbation which produce severe hot spots in 

the initial transient period. The nonlinearity of the problem, however, 

suggests a semi-empirical approachc 
42) 

Comprehensive study is needed to investigate the effects of axial 

diffusion in parametrically sensitive regions and also in relation to 

reactor stability. Although the effect of axial diffusion has been 

related to axial gradients of state variables using computed results, 

a rigorous criterion is required which involves the chemical and 

physical phenomena governing the reactor behaviour. But because of the 

highly nonlinear nature of the problem, a semi-empirical approach may 

be required. 

The stability of the reactor requires further study to establish 

the degree of conservation of the derived criteria. They indicate that 

the major factor which determines the reactor stability arises from its 

heterogeneity, and manifests itself in the catalyst particle. The fluid 
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mechanisms seem to be of minor importance. Examination of the fluid 

and solid contributions to the stability of the reactor is required. 

This may be verified by comparison with the method now available(109) 

which is based on representing areas of potential instability of the 

particle, in relation to reactor trajectories, on a phase diagram. 

Finally, although the present work has been theoretical it is 

clear that the reliability of the models can only be finally established 

by comparing the predictions of the models with the results obtained 

from real systems. There is some indication that they are basically 

correct. Clearly, it is not feasible to carry out experimental work 

on the stability problem. Nevertheless, there is ample scope for 

confirming the fundamental findings reported here and they can be used 

to identify areas where safe experiments can be conducted. The current 

experimental work of the Reactor Group on this problem will then be able 

to exploit the findings reported here. 
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APPENDIX I 

THE CATALYST PELLET MODELS 

A1.1 The fully distributed catalyst pellet model 

A1.1.1 The steady state 

For a spherical catalyst pellet in which the nth order complex 
Kj_ K2 

reaction ABCC with Arrhenius kinetics occurs, a mass balance on 
""Ilk, 

D 

species A and B in dimensionless form gives: 
(46) 

2 11 
- 2A 

- 12 y 

d_ 
- (K1CPÄ + K3 c)=0.0 (A1.1) Z: 

-c PA dy 

d2CPB 
_2 

dCpB n n2 

dy 2 T-1--y) dY +b K1 CPA -6 K2 CpB = 0.0 (A1.2 ) 

Similarly a heat balance gives: 

d. 
-2Pn, 

n2 n3 

dy2 1_ y) dy + H(K1 CPA + H2K2 0pB + H3K3 CPA) =0 (Al. 3) 

with boundary conditions 

dCpA 
= 

dCpB 
= 

dT 
=0 at y=1 

dy cry dy 

dC 
0.5 ShA (CPA - CA) 

dC 
PB 

dy = 0.5 ShB (CPB - CB) at y=0 

= 0.5 Nu (Tp - T) 
dy 

where CPA = ,,, 
C2A CA = 

CFA CPB =C BB , 
Co Co Co 

Tp = 
RgTP*, T_ RgTF 

y=1- '3/b 

K. = 02exp(-Ei) i=1,2,3 
E, Tp 

CB = 
CFA 

, 
Co 

(A1.4) 

(Al . 5) 
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H_ 
(-A H2) (-uH3) 

2 (-LH1) H3 - (-L1H, ) 

H_ 
(- AH, ) DPA C0Rg 

KpE1 

S_ 2bKCA 
A DPA 

Na _ 
2bh 
Kp 

ShB 2bKcj3 d UPA 

DP B 

Equations (A1.1) to (A1.5) may be solved numerically to give the 

temperature and concentration profiles in the pellet. 

The effectiveness factor = 1.5 ShA(CA - CpA 
Y=O) 

(A1.6) 

Ill (KýCpA + K3CpA ) 

and the selectivity ShB(CB -CB y_C) 
(A1.7) 

ShAC - CA 
PA y=O 

A1.2 The lumped thermal resistance model of the catalyst particle 

A1.2.1 The steady state 

In this model the resistance to heat transfer within the catalyst 

particle is assumed to be negligible and the pellet is, therefore, 

isothermal. Thus, the temperature, Tp, is constant throughout the pellet. 

The mass balances on the pellet are identical with that for the fully 

distributed model given above. However, since Tp is not a function of y, 

equations (A1.1)and (A1.2) may be solved analytically for first order 

reactions (i. e. n= 1) to give the concentration profiles in the pellet. 

For non-first order reactions a pseudo first order form of the rate 

expression may be used(46) and the parameter 9i 2 is then redefined by 

2- b2A0i C ni-1 
9i pA 

PA 

A heat balance on the isothermal, catalyst pellet gives, in dimensionless 

form: 
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Sh (CA -C )(K (1 + H) +KH1- BO A PAS 121 ý(CPBS ß)H2 - Tp +T 
K1 ;7+ 

=0 (A1.8) 

where OPAS = CPAIY_0 and CPBS - CPBIY_0 

B= 
(- AH1) CODPARg 

0 
2bhE1 

The analytical solution of equations (A1.1 and A1.2) then gives the two 

concentration profiles within the pellet in terms of the unknown temp- 

erature Tp, which must be obtained by choosing a value to satisfy the 

heat balance on the pellet given by (A1.8). 

The analytical solution of (A1.1) and (A1.2) takes the following 

form: 

0.5 ShA CA 
( CPA'' 

0.5 ShA -1+ K1 -+K3 Coth( K1 + K3) A1.9) 

CPBS = P2 - P1 

where Pý = 
K1 CPAS 

K1 + K3 -6K 2 

P2 2-- 
0.5 ShBCB + P1((0.5 ShB - 1) + 

l+ K23 Coth 

(0.5 ShB - 1) f6-K2 Cot 6K2 

when K2 Kl + K3 

and C 
PBS = P4 - P3 

where P3 = 
K1 Cpl 

2 Ký +K3 tanh( K1 + K3ý 

P "2 
0.5 ShB CB + P3(0.5 ShB + K, + K3 tanh( K1 + K3)) 

4 
(0.1 Shy-1)+ K1 + K3 Coth( Ký3 

+Kýýý 

(Al. 10) 

(A1.11) 

when K2 = K1 +K 
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These expressions for CpAS and CPBS may be substituted into equation 

(A1.8) which can then be solved for Tp by any of the usual root finding 

techniques, such as Newton Raphson. 

A1.2.2 The unsteady state 

In the case of the fully distributed model given by equations (A1.1) 

to (A1.5), a time derivative is added (46) in which the heat capacitance 

term KT = *Cp b2 is much larger than the mass capacitance KCA = b2_ 
KP DpA 

2 
or KCB =b (see chapter Two or reference 46), and ucually the latter 

DpB 

are neglected, thus the concentrations axe considered at a pseudo-steady 

state. 

In the case of the isothermal pellet formulation an unsteady state 
(46) 

heat balance gives: 

2 KT dTp 
-T- TP +Bf 

ShA( CA-C) (K1 (1+H2) +K'H ) 
3 Nu (1 L 0l K+ K 13 

- ShBH2 (cPBS - CB) I (A1.12) 

where CP and CPBS are given by equations (A1.9) and (A1.10) or (A1.11). 

Equation (A1.12) may be conveniently solved using the Runge Kutts Merlon 

algorithm. 

A1.3 Introduction to the collocation, method 

Almost all the numerical methods in current use for solving 

differential equations apply polynomial approximation, but by far the 

most widely used are based upon reformulation of Taylor Series 

expansions. Because of the difficulties encountered in derivative 

evaluation, --,, formulations based on judi: sious combination, -- of function 

values have led to Range Kutta methods to integrate. Initial value problems. 
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For boundary value problems, the partial derivatives are approximated 

by finite differences which is also really a representation based on 

Taylor Series. The implicit representation, which is an iterative method, 

is always preferred because of numerical stability considerations. This 

finite difference representation leads to a system of algebraic equations 

which, because it is slowly convergent, usually takes long computation 

times and sometimes cannot be justified. If a global equidiGtant 

approximation is employed, the problems of divergence arises; 
121) but 

the global approximation methods based on orthogonal polynomials such as 

Galerkin, variational methods or orthogonal collocation always lead to a 

convergent solution. Approximate methods produce the solution in the 

form of functions which are close, in some sense, to the exact solution 

of the problem. Thus, they may be classified into the broad category(122) 

of asymptotic, weighted residual and iterative methods. Combination of 

more than one of these may be used in developing the approximate solution. 

The weighted residual methods require the approximate solution to be 

close to the exact solution in the sense that the difference between them 

is minimized in some sense. The approximate solution can be represented 

in the following linear form: 

n 
Y(X)- ciQi+QO 

i=1 

(A1.13) 

where the Qi is a set of trial functions chosen beforehand. The Q. may 

be chosen to satisfy either the boundary condition or the differential 

equation or perhaps neither of them. The Qi are linearly independent and 

may be functions of all the independent variables. In which case the ci 

are undetermined parameters. One or more of the variables may not be 

included in the choice of Qi9 and then the ci are undetermined functions. 

In the weighted residual methods, the ci are so chosen as to make a 

weighted average of the equation residdl. s vanish. 
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Some linear approximation operators used to represent the linear 

differential operators axe: 
(121) 

Taylor Series Ln(f, x) _ fl(x0) 
(x xo)1 (A1.14) 

Jacobi Series I (f, x) _ 
_'ai(n) 

P (x) (A1.15) 

Fourier Series In+1(f, x) = LO + (aKcosKx + bK sinKx) (A1.16) 
2= 

And associated with every approximation operator is a distance function 

Fh(f9x) = f(x) - Ln(f, x) (A1.17) 

where E (f, x) represents a distance measure at any point x on the 

interval of approximation between the exact solution f(x) and the 

approximate one I, n(f, x). It follows that the best approximation 

operator is one that minimizes some functional derived from E (f, x). 

A suitable functional form is the norm LP(f) ýb(I En(f, x) 1Pdx]/P 
Ja 

1 (A1. '18) 

Our purpose here is to use collocation, which is one of the class of 

weighted residual methods which capitalizes on the properties of 

orthogonal polynomials, where the parameters ai(n) are given by (A1.15), 

or ci which are given by (11.13) ar_d chosen such that the norm (A1.18) 

is a minimum. Now let f(x) be the function to be approximated for 
rb 

which J w(x) (f(x))2dx exists and let P1(x) be a set of orthogonal 
ab 

functions for whichf t" r(x)Pi(x)PJ(x)dx = ci biJ b1J =0 for iLj 
Ja 

C 
oýJ-ý `°ýI(Al. 19) 

Then the best set of parameters ai(n) can be obtained as 

b 
ai =cf w(x) P1(x) f(x)dx 

xa 
(A1.2o) 

for which the weighted noxn 
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b 

ýf) (f 

a 
w(x) (f (x) - n(f , x) )2&x)2 (A1.21) 

is a minimum. 

w(x) is assumed to be integrable but not necessarily continuous over the 

interval a to b, where x (a, b). 

Now let w(x) = xP(1-x)a for an orthogonality interval (0,1). Then the 

set of approximation orthogonal functions given in (A1.15) as PI(x), or 

Qi(x) as in (1.1.13), are called Jacobi polynomials Pi(x)(«'ß) and they 

satisfy the condition 

w(Z) n(«ýß)(x) pJ(aýP)(x) 
J1 

n bnJ (A1.22) dx 2- 
0 

where )=1 for n=J 

ÖJ=O forn/J 

If w(x) =1i. e. a=0, ß=0, then the functions are I, egendse polynomial. 

w(x) = (1-x) i. e. a=1, ß=0, then the functions axe Jacobi poly- 

normal. 

W(X) = (1-x)l i. e. a=2, p=0, then the functions are Cneby sohef 

polynomial. 

These polynomials are given explicitly by(121) 

(a, p) R j1, a _ ,_1n 

17(o+, 
) do n+ß n+a nß nx -X)- äx" '3i 

[x 
(1-x) ,= 

(-'I) x (1-x) I(n+p+1) 

nh, 
xK(A1.23) 

where the coefficients hK are functions of a, ß, n and K. 

If the first two members of these polynomials are kno n, i. e. nP where 

n=1 and 2, the following recurrence formula can be used to generate the 

members for n>2. 

P (x) _2n+ec+ý3ý(2n+a+ -1) (2x-1 + a2_ 
2 

2h ý(n +a +ß ý" ?r +ýý ; ý3 .2 2n +a +ý3) 
)n-I 

_ 
(ii-1 n+a -1 2n +a+ 
n-t ßn -f- r. +0 (2n +ý - n-2 

(x, (Al 24) 
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and the coefficients defined in equation (A1.22) and used in (A1.20) 

are then given by 
(121) 

C 
[7p+)2 

n: 
(n 

+a+ 1) (A1.25 
n [Tn4+1) J7i-cz+f3+1 )( 2n+a+p+1) 

Putting x= u2 

inf1(1 - u2)a u2ß+1 Pi(u2)PJ(u2)du = 
Ci b (A1.26) 

02 

Defining 23+1 =a we obtain, for a=0,1 and 2, plane, cylindrical and 

sph3rical symmetries respectively. 

This even power series is suitable for symmetrical problems. The 

zeros of these orthogonal polynomials are well tabulated. 
(1219123) 

A1.4 Ortho Tonal Collodion 

In the solution of boundary value problems the solution can be 

represented in a similar form, to that used in other weighted residual 

methods where n is expressed (the desired ordinate solution) as a 

perturbation to the boundary function. 

n(x) = Y(1) + (1 - x2) 
7 

aiPi(x2) (A1.27) 

This takes advantage of the symmetry of the problem to be solved to 

express Yn as a sun of even polynomials. 

wie explicit representation-7 of Ynjas a boundary function added to 
. 

((I- x);. (xs))ý 

a weighted sum of trial functions ((1-x) P1 (x )) may in fact obscure 

the simplicity of the orthogonal collocation method, which does not make 

use of (A1.27) in the more satisfactory numerical schemes. Nevertheless, 

a solution of the form as presented in (A1.27) can be used to obtain the 

values of ai, as will be illustrated later. 

The assumption of a power series allows derivative terms in a 

system of differential equations to be expressed as a linear combination, 

and so can be carried forward to the trial solution ropreeented by (A1.27), 
. 
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or more simply Yn = ai(n)P1(x2). Either of these forms can be 

represented as a series byl ýýa! 

2i-2 Yý x= a "'' x. 
Yxn 

2i-2 
n( 

) a1 

i. e. Y(x1) = a0 + a1x12 + a2x14 + ......... + alx12n 

Y(x) = ao + a1 
2+l 

+ a2xn4 +1 + ....... +a 
1x21 n+1 

Now identify 

1 x2 x4 x 
2n 

111 

124 
2n 

x2 x2x2 
A_ 

24 2n 
1 n+1 n+1 n+l 

where n= number of interior zeros of the orthogonal polynomial used 

x1, x2. ...... n and xl+1 =1 to take account of the boundary condition 

atx=1. 

At any collocation point n, the first derivative can be represented 

by dY(xi) I= 2a1x,, 
`+ 

4a2xi + ........ 2n. x2n-1 
dx i 

and for the Laplacial operator. 

1dm äY 22 2n-2 
mäx ýx dx ) =4a1 +16a2xi +..... 4nax1 
X X=X. 

2 

where i=1,2,..... n+1, m =1 for cylindrical. co-ordinates. Therefore 

for the first and second derivatives QI and Q2 can be identified as 

follows: 

0 2X, ß q. x, 
ý 

2nx12n-1 

Q1 

3 2n-1 0 
n+1,4xn+1 2 n+1 
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204 
16x12 4n x12n-2 

Q2 

04 16x2 4n 2x2n-2 
n+1 n+1 

Therefore the linear differential operators can be approximated by the 

following expressions: 

aX 

I= 
Qo-1Q, Y(x1) Ai Y(x. ) 

xi Js 

1d dY 
x dx dx 

x J 
=01 Q2 Y(xi )_ Q0 

where J=1,2, ....... n+1. 

(A1.28 ) 

n+I Z_- BJ91 Y(xi) (A1.29) 

A1.4.1 Determination of the parameters a1(n) 

The parameters ai(n) are determined by the solution at the collocation 

points, i. e. at Y(x'1), Y(x2)1 ....... Y( n+1 or. from the interior 

ordinates when different quadrature formulae are used. Based on Gauss- 

Jacobi formulae, the trial solution given by (A1.27) can be put in the 

following fbrm: 

Y (x) - Y(1) - n2= ain Pi (x2) (Al 
. 30) 

1- x 1= 

Multiply both sides by w(x) and PJ(x2) and integrate from 0 to 1. Since 

FJ(x2) is at most a polyrxomial of degree n-1 in x2 and Yn(x) - Y(1) PJ(x2) 

1 -x2 

is at most a polynomial of degree 2n-2 in x2, the following quadrature is 

exact. 

1 
ai 

f 
w(x2) Pi(x2) PJ(x2) c2 

=0 
= C. a. 11 

_W 
n(xK2) - Y(i) 

.P( 
2) 

K12J xK 

where Ci -f w(x2) P. (x2 )pi (x2) dX2 0 
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1) 

and w(x) = the quadrature weights differ for different polynomials. 

n(xK 2)- Y(1) p. 2 
Therefore a. 

(n 
=_ oý 3. 

(xK) W-31) 

The solution can therefore be generated at different positions between 

the collocation points from the trial solution (A1.27). In fact it is 

possible to generate such solutions without determining the parameters 

ai(n) at all, by using a Lagrangian interpolation formula 
(121) 

based on 

Y(x12) and y(l) 

( 2) 

Y(x)"" Yý(x) _ 
n2ý x 

2)p 1)2 
y(x2 

(x -xi 
+i (% xi ) 

wherc n+1(x2) = (x2-1) (x2-x12) (x2-x22) 
.... 

(x2- n2) 

and P 
l(1) 

(xi2) = 
! -n±1 

1,2, ....... n+1 
2 

I\2 

2 dx x=X. 
i 

A1.4.2 Unsymmetric collocation coefficients 

If the problem is unsymmetric, the coefficients for the first and 

second order differential operator can still be obtainedý1179124) 

In this case, the collocation points will be x1, x2, x3, ......,. mq 

the interior zeros of the orthogonal polynomial and Ih +1 =0 and m+2 =I 

to take account of the boundaries. at both ends of the integration interval 

0 and 1 respectively. 

1 

dY x_ 
dx 

xJ 
1 

xl 

Thus following the same argument as before: 

x12x1 m+2 01 2x, ß 
(m+2 )x1MA 

2 
m+2 m+2 ý" 

+2 
01 2x (m+2)m 

m m+2 2 

- Qp Q n(x )= AAJ i Y(xi) 

Y(X. ý 
) 

Y (X 
m+2) 

(A1.32) 

where J=I, 2, .... m+2 
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and for the Laplacial operator 

1d( in dY x)I 

xmdx 
x dx 

x J 
= eb 1 Q2 m(XJ) 

= 
4"- BBJti Y(x (A1.33) 

Note: In the case of an unsymmetrical problem, no use can be made of 

the even power representation. Accuracy of computing the coefficients 

AAs and BBs for large m is restricted by the process of matrix inversion. 

In this case the method described in reference (124) is recommended. 

Tables (A1.1 to A1.3) give some of the coefficient values used in 

Chapter 3. 

A1: 5 Double Collocation 

The process leading from the original partial differential equation 

to the discretized system of algebraic equations, as in the finite 

difference formulation, may be divided into two steps. The first is a 

discretization in one independent variable, say the r-direction. The 

second is a discretization in the other independent variable, say the 

z-direction. Thus, for a partial differential equation in two independent 

variables discretization of only one variable leads to a system of 

ordinary differential equations. These can be integrated explicitly e. g. 

by Runge Kutta methods, or implicitly e. g. by finite differences. 

The second discretization is in reality a numerical method for 

integration. Collocation or a quadrature method can be used as well as 

an integration method. Thus by double collocation it is implied that the 

collocation method is used to discretize the two independent variables in 

the radial and axial directionsýh17) 
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Method of solution 

Consider the following scheme representing the location of the 

collocation points in the space co-ordinates of a tubular reactor. 

Taking three points in the radial direction (i. e. N total 4) and two 

points in the axial direction (i. e. Mtotal = 4)' 

r=0 J'-.. BC 
r=1 z=0 

J=1,2,.... N+1 

used as initial 

condition for 

the next 
integration step 

where YJ91 =A state 

Y11 Y12 Y13 Y14 i=2,3, .... ý7+2 

(1 ) 
21 Y21(l) 

(1) 
Y22 

(1 ) 
23 Y2(13) Y24 

Y31 Y32 Y33 Y34 

Y41 Y42 Y43 Y44 

-- - -- - --- -r-- Z Az 

Y) 2) Y Y 
, 

Y 2 21 2 23 i 4 

Y31 Y32 Y33 I Y34 

Y41 Y42 Y43 Y44 

---- 
Y 

, 
--- 

) 
Y 

--- 
Y 3, 

4- 

i Y2 

z=2Az 

21 22 2 4 

variable, e. g. temperatu re or concentration. 

N= number of interior zeros used in the r. -direction, i. e. 
222 

r1 ' r2 , .... rN " 
2 

and rN+1 =1 for the boundary condition (using an even polynomial 

because of the symmetry). 

M= number of interior zeros used in the z-direction, i. e. 

z1, z2, ".... zM and z,, f1 =0 and zM+2 =1 to account for 

boundary condition at both ends of an integration step. 

Az= axial'integration step. 

The differential operator in the radial direction can be approximated 
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' 

at the above collocation points as follows. 

,a r ar 
(r d. ýJý1 Y1, i+ BJr2 i, 2 + BJ, 3 i, 3 + BJ, 

4 i, 4 
i, J 

(Al. 34) 

in matrix form 
[Yi, 

1,2,3,41 
I 

B, J= 11293 

i. =2,3and4 

and the differential operator in the axial direction can be approximate. 

at the collocation points as follows: 

(ay) = AA YW AA Y+ AAi Y+ AA i, 
(Al 

-35) dz 
Ii. 

j i, ý 'ýJ ,22, Jý33, J i, 4 4, J 

J=1,2 and 3 

i= 2,3an_d4 

in matrix form _ 
[AAl [l, 

2,3,4, JI J 

The partial differential equation without the non-linear term with 

an axic. l stop z can be represented as follows: 

eg aT= ia aOz 
rar ar 

Substituting for the diffarntitl operators by these matrix approximations 

1T 
= 

[AAJ[Y 1 (A1.36) 

The above matrix equation car_ be refor=u. lated into a set of linear 

algebraic equations. 

The boundary condition in the radial direction at r=1 can be 

aproxi; atcd as fo11o'z : 

a= li, 

J 
AJ, 1 Yi, l + AJ, 2 Yi, 2 + AJ, 3 Y. 

Cý ,3+ 
AJ, 4 Yi, 4 

= xuw (Yu - Yi, 4) (A1.37) 

in caso of conccntrations, this approximation will be equated to zero, 

i. e. uV 0. 

¶L wco equations rccultinn from boundary approximation at r=1 can 

b, D substituted back into the cysteri of equations obtained from (Al. 34), 
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thus reducing the number of algebraic equations by one. The re- 

formulation of the algebraic system (Al. 36) in matrix form, the 

equation becomes: 

Ht) - (vi 
This matrix equation can be combined with the non-linear terms R to 

give the following form: 

(Al 
- 38) 

which can be solved iteratively either by Newton Raphson or by simple 

matrix inversion. 
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cý`r 

1F 
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CID 
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0 0 0 O 

CD 

M M 
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M M M 
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O 0 0 I 

or 

M M 
N 
N N N 
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N 

cm 

O O 1ý O O 

cm 

N 

or 
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N 
N 
N 

i 

N N M 
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T 

m' 

N M 

O 0 1 0 0 
Or\ 

Or 

M 

ý 

M 

O 

TN 

1 O O 

Ký 

I O , 

1 
N 

N N sý-ýt T 

II 

0' 
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B. C. B. C. I. C. 

Y 31 
ý1 üw 

- Yc AA21 Y11 
" A +N 'r4 uw 
Y41 -- -- B1 uw c- AA41 Y11 
Y A+N 

uw 22 A 

Y= Y32 
and VJ 

B2 üw Yc - AA 21 Y12 
A24+N 

w 
Y42 r: 

BN 24 uw Yc - AA41 Y12 
Y23 A24+ uw 

'[33 uw Yc - AA21 Y13 
A, +N 34 uw Y43 

34 B uw YC - AA 
41 Y13 

A34+ uw 
.l 

Note: In the case of using the above general matrix for concentration 

calculations, put Y , the coolant temperature, and N (Nusselt number). c lw 

equal to zero. 

The reaction rate terms, together with the pellet equations given 

in the general matrix R, are evaluated at the following points: 

[nj= 

R21(T21, CA21, GB21) 

R31(T31, CA31, cB31) 

R41(T41, CA41, CB41) 

1122(T22'CA22, CB22) 

R32(T32'CA32'CB32) 

R42(T42, CA42, CB42) 

R23(T23, CA23, OB23) 

R33(T33, CA33, CB33) 

RT43, CA43, CD 43( 43) 
'L he elements QiJ are given as follows: 
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Qi, j _ AZ Bi - 
Bi'±1 

Note: In the case of concentr 

1 
Ai=1,2,3 

+ uN wJ=1,2,3 

ation, put Nlw = 0. 

A1.6 Computational procedure used to solve the system given by 

(3.13 to 3.17) in Chapter 3 

1) Assume flat axial and radial profiles for T, CA and CB at the star 

of the integration, or use the, previous profiles at the end of the 

previous integration step as the assumed values for the next integration 

step. 

2) Fix the initial conditions of the state variables at the radial 

collocation nodes at values corresponding to those obtained at the end 

of the previous integration step. 

3) Solve the pellet equations at each collocation point to obtain '7 
, 'ý 

and TP. 

4) Use these values to evaluate the nonlinear terms in the system of 

equations at each collocation node. 

5) Solve the matrix equation for new values of the state variables, as 

described in appendix (A1.5) (see equation A1.38). 

6) Test for convergence by comparing the new values with those used 

in step 1. If unsatisfactory, repeat from step 3 using the new values 

of the state variables. 

7) If satisfactory convergence is attained, repeat from step 1 while 

Z<1. 
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Table (A1.1): Collocation constants for cylindrical symmetry using 
Jacobi zeros 

N+1 i xi wi A11 A 
12 

Ai? A" 
14 

3 1 0.393765 0.188202 -2.539584 3.825616 -1.286032 
3 2 0.803087 0.256243 -1.377677 -1.245195 2.622872 
3 3 1.0 0.055556 1.715476 -9.715476 8 

4 1 0.2976373 0.11023111 -3.359794 5.2924315 -3.1010284 1.1683903 
4 2 0.63989598 0.19409673 -1.3980385 -1.5627540 4.3197367 -1.3589442 
4 3 0.88750101 0.16442216 0.69721650 -3.6766754 -1.1267583 4.106272 
4 4 1.0 0.03125 -1.2266754 5.4010626 -19.174387 15.0 

5 1 0.2389648 0.0718,67 -4.184716 6.700685 -4.2747907 2.877706 
5 2X 0.5261587 0.140677 -1.5544544 -1.9005672 5.2436245 -2.8313988 
5 3 0.7639309 0.155913 0.61626762 -3.258648 -1.3090185 5.6716139 
5 4 0.9274913 0.111551 -0.47760638 2.0256145 -6.5291519 -1.0731784 
5 5 1.0 1 0.02 0.9607694 -3.8593337 10.244479 1 -31.345915 I 

(continued from previous column) 

N+1 i A15 Bit B12 Bi3 34 Bi5 

3 1 -9.902381 12.299660 -2.397279 
3 2 9.033674 -32.76486 23.730612 
3 3 22.757482 -65.424149 42.66667 

4 1 -15.881426 19.636380 -5.2811862 1.5262327 

4 2 11.151861 -34.497415 29.235709 -5.8901550 
4 3 -3.5405872 34.512110 -99.621159 08.649637 
4 4 -33.8699871 136.24969 -252.37970 150.0 

5 1 -1.1190446 -23.61752 
-29.147844 

-7.7608926 3.4249987 -1.1344299 
5 2 1.0427958 14.888399 -43.686084 35.977207 -10.214416 3.0348938 
5 3 -1.7202151 -3.57681432.461648 -78.907038 62.645594 -12.623393 
5 4 6.0593207 2.2062306 -12.881386 87.558120 -237.72935 160.84638 
5 5 24.0 43.962646 -171.61952 413.81625 -670.15936 384.0 
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Table (A1.2): Collocation constants for cylindrical symmetry 

using the squares of Legendre zeros 

N+1 i x12 wi A11 i2 Ai3 
A 

i 

3 1 0.2113248 0.134168 -1.1744576 1.8501968 -0.6757392 
3 2 0.7886751 0.542754 -1.080966 -1.4409269 2.5218930 
3 3 1.0 0.323076 1.3706100 -8.7552254 7.3846153 

4 1 0.1227016 0.0192434 -1.4691708 1.8026562 -0.5965425 0.2630571 
4 2 0.5000 0.283846 -2.220537 1.0196078 2.0104531 -0.8095238 
4 3 0.8872983 0.476955 1.1175509 -3.0575581 -2.7493166 4.6893238 
4 4 1.0 0.219954 -1.7580995 4.3921570 -16.729295 14.095238 

5 1 0.06943184 0.0220204 -1.9476331 2.2136892 -0.35694403 0.1752583 
5 2 0.3300094 0.0962283 -3.8216261 2.7872708 1.3354975 -0.57105127 
5 3 0.6699905 0.311207 2.6435722 -5.7293136 1.3146075 3.059090 
5 4 0.9305681 0.404049 -1.9885867 3.7532664 -4.6866995 -4.8025616 
5 5 1.0 0.166493 3.3237324 -6.1591694 6.8508831 -26.819184 

(continued from previous column) 

N+1 i A. B11 ßi2 Bi B. Bis 

3 1 -10.467457 15.873371 -5.4059136 
3 2 6.2804747 -26.455619 20.175144 
3 3 17.245355 -54.168432 36.923076 

4 1 -24.952452 30.117647 -9.1805593 4.0153650 
4 2 5.3048488 -17.882353 19.625123 -7.0476191 
4 3 -8.7466123 30.117647 -84.403290 63.032254 
4 4 -45.954990 109.17647 -190.45957 127.23809 

5 1 -0.08437034 -54.231907 61.0,19615 -9.1147009 4.4222004 -2.125071 
5 2 0.26990897 4.0022945 -20.626417 20.723789 -7.6398847 3.5402183 
5 3 -1.2879563 -1.1121886 12.996080 -35.221296 36.831517 -13.494115 
5 4 7.7245804 23.422373 -46.438045 76.771487 -210.66803 156.91221 
5 5 1,4.87523 -265.57488 276.42928 -476.47729 320.74765 
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APPENDIX 2 

A2.1 Computational procedure followed in solving the system given by 
4.1 to 4.5 

1. Assume values for CA, CB and T at the inlet conditions other than 

those of the steady state values at Z=0 and L >0- 

2. Fix the initial conditions of the state variables at the radial 

collocation nodes at values corresponding to those obtained (at the 

inlet, i. e. Z=0 or)at the end of the previous axial and present time 

step. 

3. Let the state variables at the rest of the collocation points equal 

those values of the present axial step and previous time step. 

4. Solve the transient pellet equations at each collocation point to 

- obtain "J, tr and Tp at the present axial and time step. 

5. Use these values to evaluate the nonlinear terms in the system of 

equations at each collocation node. 

6. Solve the matrix equation for new values of the state variables, 

aR described in Appendix (A1.3), equation (A1.38). 

7. Test for convergence by comparing the new values with those used 

in step 3. If unsatisfactory, repeat from step 4 using the new values 

of the state variables. 

8. If satisfactory convergence is attained, repeat from step 2 while 

Z<1. 

g. Repeat the whole computation for the next time step and continue as 

long as necessary. 

For the purpose of this algorithm, it is necessary to be able to 

specify the values of the state variables at points other than the starting 

and finishing points at any time step. This is done by assuming that the 

change in fluid conditions are linear over one time step and that the pellet 

is effectively subject to a ramp ch. angc- in fluid conditions. Time stops of 
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1.0 sec. and from 60 to 80 axial steps have been found satisfactory 

over the ranges of parameter values used here. 

A2.2 Method of model reduction 

The steps followed in lumping the distributed system given by 

equations (4.1 to 4.5) will be illustrated in general terms. Consider 

the following equation: 

5l rar 
(r) 

a+ R(T) (A2.1 

with boundary conditions of the form 

aT=0 
atr=0 z0 ar (A2.2) 

är= 
-NzW(T -1) at r= 1zy0 (A2 

. 3) 

The initial conditions being 

T=T(r, L) at L? 0, Z=0. Oand 0<r<1 

The radial mean value of T can be defined as 

1 
T(m) =j 2T(r) rdr (A2.4) 

,J 

Therefore by multiplying equation (A2.1) by 2rdz and integrating over 

the radius 

aT 
2rdr = 2r 

IT 10, 
-Z 2rdr +1R (T) 2rdr J (A2.5 

0 a-L a .iaz 
T 

Assuming that 
fäz 

2rdr _ZrT 2rdr and similarly for the time 
0J0 

derivative. Equation (A2.5), after substituting for tho boundary 

conditions and considering equation (A2.4), can take the following; form: 

ý -a "--qz- 2N (T(1) - 1) + R(Tm) (A2.6 ) 
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the initial conditions being T= T(r, L) at L>0, Z 

To expreos equation (A2.6) in terms of mean conditions a pseudo 

parameter is defined as 

Nuß = üw(T(1) - 1) 

Tm 
(A2.7) 

By substituting equation (A2.7) into equation (A2.6), the final form of 

the reduced equation is as follows: 

ä =-äTm-2ru'(Tm-1)+DR(Tm) 
(A2.8) 

where D is a pseudo parameter defined as a distribution factor and it is 

the ratio of the radial mean reaction rate to the reaction rate at the 

radial mean conditions at any axial position. 

Accuracy of this reduced model given by (A2.8) will therefore depend 

on adequate formulation of the two pseudo parameters Nuß and D. 

A2.3 Method of Characteristics (17) 

The general form of the hyperbolic system of equations given by 

(4.7) to (4.9) can be represented in the following general form: 

A awaw 

6Zal (A2.9) 

where A and B are constants and R(w1,...... ) represents the reaction term. 

The transient pellet model given in appendix (A1.2.2) can be rep- 

resented as follows: 

a ws 
= R(w1, w2,...... ws,.... ) (A2.10) 

ÖL 
The initial conditions are 

w(O, z) = w(z) at T=0 and z>0 

wrL, 0) =w(T) at z=0 and Tý 0 

Consider the L -Z plane shown in Figure A2.1 and two families of 

lines I and 11 such that 
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{ 
J' 

for the line I dz -B (A2.11) 

and Z= constant for the line II (A2.12) 

These curves are plotted in figure 
. A2.1 and are known as the 

characteristics of the differential equations (A2.9) and (A2.10). 

Since 
dz az+a 

ddz 

along an arbitrary direction in the T -Z plane, then along any 

characteristic I 

dw (d )= R(w1, w2,.... wi) (A2.13) 

because of equations (A2.9) and (A2.11) the above notation denotes the 

derivative of w along the characteristic 

T= Z+ constant 

On the other hand, along any characteristic II 

(ý)II = R(wý, w2,.... ws,... ) (A2.14) 

Finally the initial conditions can be transformed into 

(dZ) = R(wi(T, 0)) along the characteristic T=Z (A2.15) 

() = R{wz),... w) along the characteristic z 
ý II s d 

= constant (A2.16) 

These two equations ara now two independent ordinary di., jlferential 

equations which have to be solved numerically along I and II with 

L= Z +KbT 

and Z=LLZ 

where QT and dZ are arbitrary steps and K and L are integers depending 

on the accuracy of integration required. 

The irdtia. 1 conditions enable the values of w. a: 1d ws at points i 
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(0, J) and (J, 0) to be calculated a priori for all integers j>0 

Z 

The significance of equation (A2.16) is self evid. ent, since at 

Z=0.0, wi = wi0 for all times. On the other hand, equation (A2.15) 

may be justified by the following physical reasoning. If the continuity 

equations are written down in the Lagrangian form, then it can easily, 

be shown that the characteristic I describes the trajectories in the 

L -Z plane of individual elements of fluid which enter the bed at Z=0 

and move through it with a velocity 
d2d 
i=AB 

(this velocity is represented 

as the slope of line I). It follows that the element of fluid which 

enters the bed at T=0 will move along the characteristic T=Z (i. e. 

along lines I) and the solid would move along the characteristic z= 

constant (i. e. along lines II). 

Note: If the constant B in equation (A2.9) is equal to zero, i. e. the 

fluid equations are considered at a speudo-steady state, then äL 
=00 and 

the characteristic lines I would be vertical. 

(Figure A2.1) 
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APPENDIX 3 

A3.1 Derivation of the stability criterion for the radial diffusion model 

The heat and mass balances given by equations (4.1 to 4.5) together 

with the dynamic pellet model given by equation (A1.12) are used to derive 

the stability criterion for small perturbations around the steady state 

values CA*, CBS, T* and Tp*. 

Define the perturbation variables as 

u(L , r, Z) = CA(r, z, L) 
- CA*(r, z) 

v(ýL, r, z) = CB(r, z, T) - CB*(r, z) 

U(, r, z) = T(r, z, T) - T*(r, z) 

V(T, r, z) = Tp(r, z, L) - Tp*(r, z) 

By substituting these perturbed variables in the system of equations 

mentioned above, the following linearized set of equations may be obtained. 

a^ 

al 
Grar 

5a 
(r a r) 

a -La GZ + RA U+ RA, bv + RAtU + RA$V 

5a a 
(A3.1 

av a 
(r Ö rý av 

RB I 
aý -Gr r 

5a a G + +R bv+RBtU+RB äs 

5a 
(A32) 

LE 
_11a ýr ä rý 

- 
G Ga Ti 

+ RT + RT v+ RT U+ RTV aL G6 rdr ä b t 6 
(A3.3) 

av 

aT 
= (RSSV + RSä + RSbv + RStU) (A ) 

The boundary conditions axe 

au av ÖII 
ar=(ýr = ar atr=0 (A5) 

auv0 
ar dr 

a II 
= -N U at r_ 1 W-6) 

ar uld 
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The initial conditions are 

u=v=U=O atZ=0.0andT ?0 

The reaction rate expressions appear in the fluid equations and are 

defined as follows: 

BA = -D(CA* - CPS 

D (CB *- CPBS 

RT = D(Tp* - T*) - üw(T* - Tc) 

GG 
where D= G1G2 

=36 
G5 G6 in the case of the radial diffusion model 

N=0.0 
uw 

and D= G2 
= in the case of the axial diffusion model G5 G6 

Therefore the partial derivatives of the above rates which appear in the 

linearized system (A3.1) to (A3.3) are as follows: 

RAa =ä 
BA 

= -D(1 -a 
CPAS 

-a 
SPAS aT 

a CA a Tp a CA 

RAb= 
äCB=D((ýCPAS 

Cý.? P 
a Tp aCB 

RA, _ä A_D(aCPAS aa a TP ÖT 

RB äRB=D(atea T-P 

+dCPBS a TP a CA a CA 

RB. b =ä 
CB 

=D (a CPBS 
+a 

CABS a Tp 
-1 

aCB a -1PaCB 
RBt= 

äR= 
D(s 1k) 

a TP aT 

RT = 
ORTDd 

a aCAOCA 
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RT RTb =D CB a CB 

RTt =a 
TT 

=D (-D - 1) - üw 

The reaction expression of the solid, i. e. RS, is given by equation 

(A3.74 in Appendix (A3) and the partial derivatives of RS with respect 

to CA, CB, T and Rp can be found in reference (46). The additional 

partial derivatives required are 

T 

aT 
CA = BO(ShA(1 -Ö 

CA ) (K1(1 + H2) + K3H3) 
_H 

2BS 

aa K1 + K3 a 

ShB Hz (1 _- 
CPBS 

)/E 
aC 

=B0 CB 

where B=1+ B0(ShA 
s aT 

p 
(K1 (1 + H2) + K3H3)- ShA(CA - CPAS) 

K1 +K3 

ä Tp 
(K1(1 + 112) + K3H3) 

+ shBH2 aýßs 
K1 +K3 a -p 

Note that all the above partial derivatives are evaluated at the 

steady state. 
J Now define a Liapunov functional of the following foza: 

71 [uvuv] P, (x) iru 
P2(x) iv 

r dr dz 
p3 00 (xP 

4) 
(x) lUv 

where the parameters P1, P2, P3 and P4 will be chosen later. 

By differentiating I with respect to time we obtain 

11 
äz 

= (P1u +P±PU+u drdz ff 
2c3 öL 4 

00 
Then substituting for the tim-(,, derivatives of the perturbed states by 

their linearized equations (A3.1 to (A3.6), we obtain: 
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11 

05 
J 

f(j. 

ra r( 

a u) u+Zr (rý) v+Pa (r a U)U)rdrdz 

00 aaraa ar ar 
11 

1r (Pi 
äZu 

+P2äZv +P3 
äZ 

G IT)rdrdz 
ýJ 

500 

11 

+II (P1 RA u2 + P2 iu v2 + P3 RTt U2) rdrdz 
0ýJ0 

11 

+rf (P1(RAb uv + RBt Uu + RAS Vu) + P2(RBa uv + "Bt Uv + RBs Vv) 
10 0 

+ P3(RTa Uu+ RTb Uv + RTs UV) + P4(R5a Vu + RSb vV+ RSt UV + RSsV2) ) 

rdrdz 

Integrating the first and second integrals by parts and substituting 

for the boundary conditions given by (A3.5) and (A3.6) we obtain: 

111 
J' ?222 I1 =J üw U dz -G (P1(ä 

r) + P2(ß r) +P (au )rdrdz 
G 

ff 
a3 

5 r=1 
500 

1+g v2 
12 (P1u2 + P2v2 + P3U2) rdr +rJ( 

J a2=1 
0P 

+z U2)rdrdz 

Add the second integral of 12 to the rest of the integrals in 

Liapunov functional to form 13. This integral has a positive sign and 
it is necessary to look for conditions for which 13 can be negative 

definite., 

By choosing P1 = P2 = P3 = P4 = e-Kz (where K> 0) and putting 13 in 

matrix form after transforming it to symmetrical 
Tform (i. e. 13 = x(13+13 

the following may be obtained: 
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[uvUV 2 (ý K+ 
ä RA) b12 b13 b14 u 

5 

b21 
G1 aRB K+ a ý) 2(- G b23 b24 v 

5 

e-KZ b31 b32 
G 

2(- K+ L 
RT) b34 U 

b41 b42 b43 als 2a v 

12 t: ºhere b =a CA aCB +b 13 a 
aRA 

T +a CAT' 
b 14 __a 

Lu RA + as aCA 

b 
21 

=b, 12' 
baM 
23 aT 

+a 
RT 

a CB 2b 24 _a 
RB 

+ 
a TP 

IRS 

a CB 
b31 - b13' b32 = b23, b34 

a RT 
'TP =ä+ T 

ä 

b41 = b14' b42 b24' b43 = b34 

For the Liapunov functional to be negative, the above matrix should 

be negative definite. A condition for this matrix to be negative is that 

the diagonal elements must be negative. . In the first three diagonal 

elements, K can be made large enough to ensure their negativity. For the 

fourth diagonal element to be negative, 
ä RS 

must be negative, 

where RS = Fl; 
(T - Tp) +H ShA(CA - Cp ý (Kl (1 + H2) + K3H3 ) KT L K1 +K3 

(CPBS CB)H2] (A3.7a) 

Ö RS 
_.. 

Nu 
+ 

[(ShA(CA 
- CPS) 

ä (K, 
ý 
(1 + H2) + KýH3) 

- 
K, 1(i + H2) + K3H3 

-fir n- Ký + K3 K1 + 1ý 

a CPAs 
S 

aCp sI 

W-7) a Tp _ý2a 

Therefore, for the above equation to be negative 

ITU > e, ý 
where Nu represents the heat removal and Qg is the heat generation in the 

ný21ft 
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A3.2 Derivation of the stability criterion for the axial diffusion model 

The heat and mass balance to be considered are represented by the 

system of equations (6.1 to 6.5)'together with the dynamic pellet model 

given in appendix (Al) by equation (Al. 12). 

Consider the stability of the reactor around the steady state values 

CA's, CBS, T* and Tp'and define perturbed variables 

A(L, z) = CA(, z) - CA*(z) 

B(T , z) = CB(i , z) - cB*(Z) 

C(L , z) = T(l, z) -T *(z) 

D(L, z) = Tp(L $ Z) - Tp*(z) 

Substituting these perturbed variables into the system of equations- 

mentioned above and linearizing around the steady state solution, the 

following simplifications can be made: 

u= Aexp(0.5 Pe Z) 

U= Cexp(0.5 Pe Z) 

v =Bexp(0.5 Pe Z) 

where Pew PeFa = Pe, and f= G5 = G6. 

After carrying out the necessary mathematical steps, the linearized 

set of equations is reduced to the following form: 

u 1e a 2u2 
+ Dý u+ RA. b v+ 1t U+ RAS V (A3. g ) 

a- az 
av= 

e 

a22+RBau 

aýZ 
PBt U +RBsV W-9) 

a 
aU 1 a2U+RT u +RTbv+DU+RT V (ßi3.10) a r' =fl'ea-2a3s 

aV 
(RS$V+RSa 

t Rco' II) (A3.11) 
aL 
with boundary conditions: 

*Add time differential operators for heat said mass similar to those in 
equations (7.1 to 7.3). 
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du_0.5Peu 

aZ 
av 

a =0.5Pev 

au 
= 0.5 Peu 

aZ 
au 

= -0.5 Peu 

aZ 
0.5Pev avZ =- 

au=-0.5 
Pe U 

az 
where D1 = RAa - 0.25 Pe /f 

and D3 = RTt - 0.25 Pe/f 

at Z=0 

at Z=1 

D2=RBb-0.25 Pe/f 

Define a Liapunov functional of the following fozm: 

I=21 
Luvuv] P1 (x) u dz "f 

ov 0 P3(x) U 
P4(x) v 

where the parameters P1 to 4 are to be determined later. 

1 

Therefore 
äL= 

(P1 L+ P2 v+ Pia II U+ Pe6 v V)dz 
L ÖL aL 

0 

(A3.12) 

(A3.13) 

Substituting for the time derivatives of the perturbed variables from 

equations (A3.8 to A3.11), we obtain: 

1 
I 

__1 
P Cý2u pa 2v P Ö2II 122 

ff (Pý uÖ 
z2 

+ 
pe v 

z2 
+ 

'1 a z2 
)dz + (P1D1u + P2RBbv 

0 Pe 0 
1 

+ P3RTtU2)dz + (P1(R uv + RAtlo + RASuV) + P2(RBä + RBtvII + 
0 

RF3avV) + P3(RTaUu + RTbUv + RTaW) + P4(RSaVu + RSbVv + RStVU))dz (A. 14) 

Integrating the first integral by parts and substituting for the 

boundar; condition-c: 
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P1 au P2 
I. ýe uaz+: ffe 

5(a U)2) )dz 
Pe az 

1 

av+ II auf 1 aZ fPe aZ fJ 
0 

1 
1 UPI 3u v 
fj 

ýPe 
azö z+ Pe 

0 

P, 
Cau, 

2 P2 
Ca v, 

2 

Pe Z+ Pe a -z + 
D 

aP2 a+II aU)dz 
aza z Pe dzaz 

Further integration by parts of the last integral above gives: 

1u apt v a' 
2= f(Pea-, u+Pea 

2 II 62p3 )dz + +pe a z2 0 

P2 UÖP11 u2 a 2P1 
v2 a 2P2 

zV+ Pe az U) f 
ýPe 

a z2 
+ Pe a z2 0 

(u 
8P1au 

+v 
8P2 

av_ +U 
I1) dz 

Pe azaz Pea zaz Pe dzaz 

The last integral in 12 is similar to the last integral in 1 1. If 

they are added together, it is obvious that they equal half the rest of 

I2. Therefore the Liapunov function, 

1 
aI 1 Pu 6u Pv 6v Pü CSU 

f Pe az Pe- az Pe a` 
0 

t2 
P2 a v)2 + 11P1au 

ff Pe (ýz) + Pe Oz Pe 
0 

82 P2 
+ý )dz 

PeaZ az2 

.1 of the system is 

- o. u2 a P1 2a P2 
+ 

U2 
-) 

1 

10 Pe az Fe- z Pe az 
f 

1 

+ (a 
II)2)dz + 0.5 Pe 

2aý 

a föz2 
f0 

two 

+ the last; integrals in equation (A3.14). 

Now all the positive integrals in the above functional may be 

represented as matrices and transformed to a symmetrical form. Further- 

more, by defining the elements of the weighting matrix to be P1 = P2 = Pý 

= P4 = cos a n(z - -), the following may be obtained: 
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[UVUW] 
e2 

2 
-0.25Pe+ä AO 

0.5bý2 
i 

- -- 
(rn2 

- --- fiRR 

0.5 b13 0.5 b14 u I 

U. 5 b21 2Pef -U. 25Pe + 0.5 b23 0.5 b24 

ws an 
f 

2 (2-i) 0.5 b31 0.5 b32 -( 2Pef -0.25Pe 
T 0.5 b34 

f 

0.5 b41 0.5 b42 0,5 ba RS 
43 öp 

For the system to be stable the above matrix should be negative 

definite. However another condition must also be satisfied for the 

Liapunov functional to be negative. By substituting the boundary conditions 

in the first part of the functional, the following conditions apply: 

2e Tan S2 <1 

Letting A= a2 for 0<a<1, 

then Man \= Pe 

where X is the smallest positive root of the above equation. 

III 

Vi 
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APPENDIX 4 

ASSMPTIONS ON WHICH THE PROPOSED MODELS ARE BASED 

The general assumptions stated and discussed in Chapter Two are 

involved in the formulation of the models used in this thesis. In addition, 

the following assumptions also apply to all models used, unless stated 

otherwise: 

1. The inlet radial temperature profile is assumed to be flat, and the 

coolant temperature value is taken as the inlet fluid temperature. 

2. The axial diffusion mechanism in the fluid is considered negligible. 

This simplifying assumption is used in Chapters 3,4 and 5. Its effect 

is discussed in detail in Chapters 6 and 7. 

3. The reactions are irreversible and obey rate expressions of the 

Arrhenius type. 

4. The rate of reaction along any path depends on the concentration of 

one reactant only, i. e. the reactant being consumed in that step, 

and the reaction scheme may then be represented by A--"B--+-C 

where species A and B are limiting reactants for the reaction steps 

in which they are consumed. 

5. 'ihe reaction order along any path is considered first order (i. e. 

n= 1). For non first order reactions the same models can be used 

without any difficulty. This is done by redefining n for the fluid 

concentrations CA and CB appearing in the rate expressions. In this 

case a pseudo-first order form of the rate expression may be used in 

case of the catalyst pellet as shown in appendix (A1.2.1). 
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NOMENCLATURE 

ai Parameter defined in the trial function given by equations 
(3.7 to 3.9)" 

A Amplitude of oscillation used in Chapter 5. 

Ai J Matrix representing the first order radial differential operator 
for cylindrical geometry. 

AA J Matrix representing the first order axial differential operator 
for planner unsymetrical geometry. 

Aoi Arrhenius pre-exponential factor for reaction i. 

b Pellet radius. 

bisJ Parameter defined in appendix (A3). 

Bo Dimensionless exothermicity factor (- AH1) DPACoR. g 
2bhE1 

Bi, J Matrix representing the radial Laplacian operator for cylindrical 

geometry. 

BBi, J Matrix representing the axial Laplacian operator for planner 

unsymmetrical geometry. 

C19C2 Determinants defined in Chapter 8. 

C. Parameter defined under equation (Al-13) 

Cn Parameter defined in equation (A1.25) 

CA, CB Dimensionless concentrations in the fluid CFA, C 

Co 
" 

Co 

CAo, CBo Inlet values of CA and CB. 

C , 
m'CBom 

Radial mean values of CAo and CBo 

CAm, C 
14 

Radial mean values of CA and CB 

CFA, CFB Concentrations in the fluid 

Dimensionless Dimensionless concentrations within the catalyst pellet CPA , CIPB 

Co Co 

CPS, S, CPBS Surface values of CPA and CPB 
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CAC Concentrations within the catalyst pellet. 

Co Reference concentration of reactant A. 

Cp, Cp* Specific heats of fluid and pellet respectively. 

DCA, Dom, DT Distribution factors defined in Chapter 4. 

D 
ä, 

DFb Effective interstitial axial diffusivities in the fluid. 

DFA, DFB Effective interstitial radial diffusivities in the fluid. 

Dp Pellet diameter. 

DP DPB Effective radial diffusivities within the catalyst pellet. 

Ds Surface diffusion coefficient. 

e, e* Porosity of the fixed bed and pellet respectively. 

Ei Activation energy for reaction i. 

F Frequency of oscillation defined in Chapter 5- 

G1 to G6 are parameters (dimensionless unless otherwise stated) 

used in the models of the reactor, and are defined as follows: 

G R2 Pe 
2bL M 

G2 (1-e LDP 

b2ue 

G R2 Pe 
3 2bL H 

G4 1-e L 
eb u cp 

G5 G6 LG, EG respectively. Gf G--L sec. 
uu3 5- 6u 

h Pellet to fluid heat transfer coefficient. 

H Dimensionless exothernicity factor (-A H1)DPA Co Rg 

KPE1 

H2, H3 Ratios of heats of reaction A HO) , 
(-A H) respectively. 

oHý (-QH3 

i Reaction number (1,2 or 3) 

i Number of a node in the collocation procedure. 

J Number of a node in the collocation procedure. 
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ki Reduced rate constant. 

Kf Adsorption equilibrium constant. 

K Constant in Chapter 8. 

K Dimensionless first order (or pseudo-first order) rate constant 

evaluated at the pellet temperature = G. exp(-Ei ) (for a first 

order reaction i. e. ni = 1) E1 Tp 

Dimensionless rate constant defined as .7 (m) exp('j)exp( Li ) 
TM 

used in Chapter 4. 

Kc 'Capacitance' of the catalyst pellet to absorb mass b2e* seconds 
UPA 

Kl 'Capacitance' of the catalyst pellet to absorb heat r*b2Cp* seconds 
KP 

KCA'KCB Fluid to pellet mass transfer coefficients. 

KF Effective interstitial radial conductivity in the fluid phase. 

KFa Effective interstitial axial conductivity in the fluid phase. 

5 Effective radial conductivity within the catalyst pellet. 

1 Distance from the reactor inlet. 

L Reactor length. 

m Denote mean condition. 

m, M Number of interior collocation points in the axial direction. 

n. i 
Order of reaction i. 

n, N Plumber of interior collocation points in the radial direction. 

Thi Modified Ntisselt number for heat transfer between pellet and 
fluid = 2bh 

Kp 

Nu' Effective Nusselt number = üw(T 
m -1) 

üw 
Nusselt number for heat transfer between fluid and tube wall 

= RU 
eKF 

N* Effective overall Nusselt number for heat transfer between 

fluid and tube wall. Used in the one-dimensional model = 41 
UW_ 

4+üw 
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P. Weight factor, element of matrix P. 

P Matrix in Liapunov functional, Chapter 8. 

P Damping factor used in Chapter 5- 

P (x2), 
Orthogonal polynomial of even degree. 

Pi(J) 

PI(z) Orthogonal polynomial of even degree. 

Pea Axial Peclet number Pea = Peres = Pe. 

Per Radial Peclet number Per = PeM = PeH 

PeMa Axial Peclet number for mass = uL 
IT 

a 

PeHa Axial Peclet number for heat =-tucpL 
KF 

a 

PeM Radial Peclet number for mass = uI, 
DF 

PeH Radial Peclet number for heat = 'ucpL 

KF 

Pt üw)' 

Q( 
Uw Correction functions to approximate effective Nusselt number. 

Q, Qi Trial functions defined under equation (A1.13). 

Q Square matrix, defined under equation (Al. 37). 

QO, Q1, Q2 Matrices defined under appendix (A1.4). Used to represent d 
and Laplacial operators. dr 

Qi J Tatrix defined under equation (3.12). 

Q9 Heat removal in the pellet, defined under equation (A3.7). 

r Dimensionless radial position in the reactor R. 

R Reactor radius. 

RA. 
' k, (' 

Ril k, J, Reaction rate terms, as defined under equation (3.17). 

RA, RB, RT Reaction rate terms as defined under equation (A3.6). 

RS The heat balance on the isothermal catalyst pellet defined by 
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Rg The gas constant. 

S Distance from the centre of the catalyst pellet. 

ShA, ShB Modified Sherwood numbers 2bKCA, 2bKCB 

DPA DPB 

T Dimensionless fluid temperature TF RT 
E 1 

To Inlet value of T. 

To Dimensionless coolant temperature TC Ro. 
E 

TC Coolant temperature. 

TF Fluid temperature. 

Tm Radial mean value of T. 

Tom Inlet value of Tm. 

. 
Tp Dimensionless pellet temperature TP R 

E 

TP Pellet temperature. 

u Interstitial fluid velocity. 

u, v, U, V Perturbed state variables used in Chapter 8, and defined in 

appendix (A3.1). 

U Fluid to coolant overall heat transfer coefficient. 

V Liapunov functional defined by equation (8.1). 

ß"r5 Temperature profile coefficient defined under equation (1.12). 

W Weighting function. 

x Distance from tha reactor axis. 

y Dimensionless pellet co-ordinate =1- 

yA state variable. 

Y Vector defined under equation (A1.3$ ). 

z Dimensionless axial position in the reactor 
L. 
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GREEK SYMBOLS 

Activation factor =E 
Rg TC 

a, ß Coefficients in orthogonal polynomials defined under equation 
(Al. 22). 

Pi Exothermicity group = 
(_ Aý )Co DFA 

1 KF TC 

b Ratio of diffusivities in the fluid = 
DNA 

DFB 

ACA Radial concentration difference for reactant i. 

QCAal Asymptotic value of MCI. 

ACA 
T' CB Overall radial concentration differences for the reactant 

and product. 

Az Axial step. 

Axially dependent coefficient. 

Effectiveness factor. 

9. Reaction-Diffusion modulus b Aoi Coni-1 
DPA 

Densities of fluid and catalyst pellet respectively. 

L Time (seconds). 

91i Thiele modulus evaluated at fluid conditions = 8i expcEi ) 
2Eý T 

Effective reactor reaction modulus = 
(1-e)'-P, 2Aoi 

exp(`Ii) 
1 

eDFq 

tr Selectivity for species B. 
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