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Abstract

Soprano singers are capable of singing at pitches exceeding 1000 Hz, where

the spacing of the harmonics means that the vocal tract resonances are not

fully utilised. Sopranos therefore move the articulators, to “tune” the reso-

nances of the vocal tract near to harmonics of the voice source, improving

the efficiency of sound production. Although resonance tuning has been ob-

served in soprano singers, it is not yet understood how this phenomenon is

achieved and which articulators play the most significant roles in altering

the vocal tract resonances. A preliminary experiment explored the use of

broad band noise excitation of the vocal tract to observe resonance tuning

behaviour in girl choristers. A second experiment extended this procedure

to include MRI to observe the vocal tracts of 6 professional soprano opera

singers and investigate how the articulators affect vocal tract resonances.

The effects of MRI measurement conditions on singers were also investigated

to establish whether measurements obtained during MRI are representative

of normal singing. Finally, a perceptual test was conducted to study the

perception of different methods of resonance tuning. As expected, consid-

erable R1:f0 tuning, and some R2:2f0 tuning was observed in both groups.

MRI revealed some links between resonances and articulators, however no

consistent patterns in production were observed across subjects. The results

showed strong differences in resonance production between different vowels

and subjects, suggesting that resonance tuning production is not only a com-

plex and context-specific topic, but also highly individual.
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Chapter 1

Introduction

The study of the mechanism of the human voice,

very instructive for the physiologist, can also

have some undeniable advantages for the singer.

Nothing, in fact, can be more valuable to him

than to know by what procedures the vocal

instrument manages to produce the vibrations,

to what operation of the organs we owe the

range of the voice, the registers, the timbres, the

ring of the tones, their intensity, their volume,

the rapid succession of the notes.

Manuel P Garcia, A Complete Treatise on the

Art of Singing, 1984 [1]

Singing is a highly complex activity requiring precise movements by the singer

of parts of their body largely invisible and inaccessible to them or their

teachers. To become a professional singer, an individual must spend years of

dedicated study, cultivating an ability to control to a fine degree the breathing

apparatus, larynx, and vocal tract. Understanding this intricate and nuanced

activity provides an insight into the most fundamental method of human

communication: the voice.

23



CHAPTER 1. INTRODUCTION 24

There are many different genres and styles of singing, including pop, church

music, musical theatre and contemporary musical theatre within Western

music, and even within classical music singing there are sub-genres such

as consort singing, lieder, and opera. Opera represents one of the most

technically demanding styles, as the singers not only have to perform to

audiences of thousands without amplification, but must also act at the same

time, and the best singers train for decades to hone their abilities.

Musical pedagogy is not a modern concept. Plato (c. 427-437 BC) discussed

the concepts of musical education in children, and recommended three years

of compulsory study on the lyre [2]. Modern (classical) singing pedagogy

aims to teach singers the skills of vocal technique, including audience com-

munication, dramatic interpretation, linguistic exactitude, and artistry and

musicianship [3]. However, language used by singers and singing teachers

is often based on sensation and uses imagery which can be confusing. In-

structions such as “imagine you are winding a golden ribbon” can be difficult

to translate into physical gestures (as described by Miller [3] p4). All this

must happen with apparent ease, and in the case of opera and other musical

genres, alongside acting.

Physiologically, singing is a precise and complex art, and research on the

vocal tract during singing has advanced greatly in recent years [4]. The de-

velopment of new techniques such as articulography, and the improvement

and wider availability of existing methods such as magnetic resonance imag-

ing (MRI) [5, 6, 7, 8] and laryngoscopy [9], have allowed researchers to gain

more detailed insight into the inner workings of the voice organ: the breath-

ing apparatus, larynx and vocal tract.

In male voices, with a low fundamental frequency (∼ 80 - 250 Hz) the har-

monics are closely spaced, and it is relatively straightforward to extract for-

mant information from the voice spectrum. Much of the existing research

examining the acoustic spectrum of singing voice has therefore focussed on

male voices (for example, [10]). Until recently however, very little research

existed on the female voice, as in female voices the fundamental frequencies
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are significantly higher than male voices (up to ∼ 1000 Hz), meaning that

the harmonics are very widely spaced, and it is therefore more difficult to

extract information about the vocal tract from the acoustic spectrum.

The wide spacing of harmonics in the female voice also means that at high

pitches (exceeding 1000 Hz) sopranos (the voice type with the highest fre-

quency range) gain little from techniques commonly observed in classically

trained males, such as the Singer’s Formant Cluster [11]. This is a technique

whereby male singers alter the frequencies of formants 3, 4, and 5, to in-

crease the acoustic power produced within a certain frequency range. For a

soprano, there may be few or no harmonics within the appropriate frequency

range [12], however sopranos are able to alter their vocal tract shape, to

move the resonances closer to a nearby harmonic [13]. This has the effect of

amplifying the harmonic, and boosting the acoustic energy produced by the

singer with little additional energy from the singer. This technique is known

as resonance tuning, and has been found to be employed by sopranos across

a wide frequency range [14, 15].

This research investigates the female singing voice, specifically the production

and perception of resonance tuning in soprano singing. To identify vocal

tract resonances at high fundamental frequencies (nearing 1 kHz), a method

of measuring the vocal tract resonances using external noise excitation is

investigated. Magnetic resonance imaging will be employed to investigate the

role of different articulators during singing. As the conditions experienced

by subjects during MRI scans are not conducive to normal behaviour, the

implications of using MRI in singing voice research will also be considered.

Finally, to contextualise the results obtained about resonance tuning in so-

prano singing, the listeners’ perception of different methods of resonance

tuning will be investigated using a subjective test.
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1.1 Hypothesis

The Hypothesis tested in this PhD research is:

Noise excitation to measure vocal tract resonances, and magnetic resonance

imaging to observe the articulators can be used to understand the production

of resonance tuning methods employed by professional soprano singers, which

vary across different vowels and pitches as well as between singers.

1.1.1 Description of Hypothesis

Noise excitation to measure the vocal tract resonances An experiment

will be conducted to test the method of measuring vocal tract reso-

nances in girl choristers using broad band noise.

Magnetic resonance imaging to observe the articulators

MRI will be used to collect images of the vocal tract during singing.

Comparisons will be made between resonance measurements, speech

and singing recordings, and recordings of sung vowels produced under

normal and MRI conditions, to verify that measurements collected by

MRI are representative of normal singing production.

The production of resonance tuning Statistical analysis will be carried

out to investigate the relationships between the vocal tract articulators

and vocal tract resonances.

Vary across different vowels and pitches

Resonance tuning will be explored for three different vowels, for six

professional opera singers, across each singer’s entire vocal range.

Resonance tuning varies between singers The resonance tuning meth-

ods used by both girl choristers and professional soprano opera singers

will be investigated.
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1.1.2 Objectives

The main objective of this PhD research is therefore:

1. To understand the methods by which resonance tuning is produced by

soprano singers.

To achieve this aim, two sub-objectives have also been identified:

2. To better understand the purpose of resonance tuning by studying its

perception by listeners.

3. To understand the effects of MRI measuring conditions on singers, and

verify the usefulness of MRI in singing research.

1.2 Structure of Thesis

Chapter 2 begins with a Literature review, presenting an overview of voice

production and different methods of analysing the voice. This is followed by

a summary of resonance tuning techniques used in both low and high voices,

and the perception thereof.

Chapter 3 investigates the perceptual effects of different resonance tuning

techniques, in order to consider the effects of using resonance tuning to im-

prove acoustic efficiency. This was achieved by asking listeners to complete

a perceptual test rating synthetic singing samples using different methods of

resonance tuning. This will allow the results of Chapter 6 (investigating the

articulatory mechanisms used in the production of resonance tuning) to be

viewed in the context of listener perception.

Chapter 4 describes a preliminary experiment carried out to measure vocal

tract resonances in girl choristers, using broad band noise excitation. The

data collected will allow the equipment and methods used in the main (MRI)
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experiment to be tested, as well as providing an insight into resonance tuning

strategies used by girl choristers, a group for which this has not previously

been studied.

Chapter 5 introduces the main experiment at the core of this thesis, which

aims to understand which articulators are important in affecting the vocal

tract resonances. It involves speaking and singing tasks in three different sit-

uations; firstly, MRI conditions, then “normal” conditions (standing in a nor-

mal performance pose in an anechoic chamber), and finally “simulated MRI”

conditions (lying supine in an anechoic chamber with MRI noise played over

headphones). This chapter also details the the analysis undertaken to confirm

that the measurements taken in MRI conditions are comparable to “normal”

conditions. This includes a comparison of resonance measurements stand-

ing and lying in the anechoic chamber, long-term average spectra (LTAS)

of speaking and singing, both standing and lying, in the anechoic chamber,

and comparison of the audio recorded in the MRI machine with the anechoic

chamber.

Chapter 6 presents the results obtained from the experimental method intro-

duced in Chapter 5 pertaining to the production of resonance tuning, using

measurements of vocal tract resonances and measurements of articulators

(obtained by MRI) in professional soprano opera singers. This chapter also

discusses some of the conclusions that can be drawn from this data.

Finally, Chapter 7 provides a conclusion for this thesis, an overview of the

experiments and analysis carried out, a consideration of the impact of this

work, and directions for future research.

1.2.1 Novel Contributions to field

Contributions to the field, resulting from this PhD research are:

• Measurement of the type and extent of resonance tuning used by girl

choristers, a group for which this has not previously been studied.
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• Analysis of the effects of MRI measuring conditions on professional

singers during speaking and singing, by comparing resonance measure-

ments, long-term average spectra, and recordings of sung vowels.

• Measurement of the type and extent of resonance tuning in professional

soprano opera singers (at national/international principal level). A

group of this size and level has not previously been studied.

• An improved algorithm for generating three-dimensional area functions

from MRI scans of the vocal tract.

• Measurement of articulators in singing using three-dimensional mag-

netic resonance imaging, in professional soprano opera singers, on three

vowels, across their entire vocal range. Previous studies involving 3D

MRI have not included multiple vowels or the full range of pitches.

• Perceptual study on the perception of different methods of resonance

tuning in synthesised soprano voices by listeners. This is inspired by a

similar study involving synthesised male voices.



Chapter 2

Literature Review : Voice

production and Analysis

This chapter provides an overview of voice production, covering the respi-

ratory system (the lungs, chest wall and diaphragm), the phonatory system

(larynx or vocal folds), and the articulatory system (the vocal tract). It

also discusses the various theoretical models available for predicting the be-

haviours of the vocal folds and vocal tract.

This thesis focusses specifically on the female singing voice, so special atten-

tion is paid to the specific methods of voice production employed by female

singers, and in particular the technique of resonance tuning.

The literature review was conducted using online resources such as research-

gate [16] and google scholar [17], as well as books and papers on voice produc-

tion (including exploring the bibliographies of these works). Key terms used

for searches included: “female voice”, “female singing”, “resonance tuning”,

“formant tuning”, and “MRI of voice”.
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2.1 Voice Production

Voice production is a highly complex process that requires many precise

movements of a large number of muscles to be executed in a particular way.

Sound produced by the human voice can either be voiced (in which the vocal

folds are vibrating) or unvoiced, and may or may not include a fricative

component (turbulent noise). The voice apparatus can be divided into three

major subsystems according to Kent and Read [18]. These are the respiratory

system (the lungs, chest wall and diaphragm), the phonatory system (larynx

or vocal folds), and the articulatory system (the vocal tract), and are shown

in Figure 2.1

Figure 2.1: The three major subsystems involved in voice production, from
[19].

The respiratory system is responsible for breathing, and can be thought of as

the “power source” of the voice [19], pushing a steady stream of air through

the phonatory and articulatory subsystems.

In the next part of the system this stream of air is then converted into har-

monic sound (sound containing frequency components of integer multiples).

This is achieved by the phonatory subsystem, where the vocal folds open

and close repeatedly to regulate the airflow and convert the stream of air

into harmonic sound.
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A measure of the air flow through the glottis (the gap between the vocal

folds) is shown in Figure 2.2. The cycle repeats over its period T, whereby

the flow is at its maximum when the glottis is the most open, and minimum

when the glottis is the most closed.

Figure 2.2: Shows a graph of the measure of the air flow through the glottis
as a function of time, and the corresponding position of the vocal folds.
(Reproduced with permission from [20])

A useful parameter of the glottal cycle is the open quotient (OQ), a calcu-

lation of the fraction of the cycle during which the glottis is open, as it can

indicate the laryngeal mechanism used [21]. Conversely the closed quotient

(CQ) is the fraction of the cycle during which the glottis is closed. A low CQ

produces a breathy voice quality, whereas a high CQ can result in a pressed

quality [22].

The spectrum of the signal produced by the glottis is approximated in Figure

2.3. Note that it consists of equally-spaced frequency components, with an

overall sloping envelope shape of approximately -12dB per octave [23].

The final part of the voice production system is the articulatory system; the

vocal tract approximates a tube (from the glottis to the lips) (see Figure

2.4), however, its shape is not fixed, due to the range of possible positions

of the tongue, soft palate, lips, and many other smaller parts. Moving these

components alters the shape of the vocal tract, so that when a signal (in this
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Figure 2.3: The spectrum of the glottal signal produced, consisting of the
fundamental frequency and integer multiples thereof. (Reproduced with per-
mission from [20])

case the sound produced by the glottis) is passed through it, the different

frequency components are amplified or attenuated according to the proper-

ties of the vocal tract, changing the quality of the sound produced [19, 24].

Different vowel sounds, tones and timbres are produced by the filtering of

the sound source by the moving vocal tract.

Figure 2.4: The basic structure of the vocal tract. (Reproduced with per-
mission from [20])
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2.1.1 The source-filter model

The previous descriptions of the effects of the vocal tract on the glottal

source are based on the so-called source-filter model [25], which is a set of

assumptions and conditions used in speech processing and synthesis, allowing

the individual subsystems of the human voice to be processed and manipu-

lated separately and independently. From this, detailed models of the glottal

source have been created such as the Liljencrants-Fant Model (LF model)

[26], which is based on two assumptions: linearity of the vocal tract, and

independence of the voice source and vocal tract.

If the vocal tract is assumed to be a linear acoustic system, the properties

of superposition and scaling apply, so the relationship between the input

and output signals are known and can be modelled mathematically. A hard-

walled system of tubes without sharp bends, tight constrictions or sharp

projections is a linear acoustic system for sounds of reasonable amplitudes

(within the dynamic range of the human voice). The vocal tract can therefore

be considered as a linear system, if vibration of the softer walls is neglected.

For fricative sound production, the constrictions used to produce turbulent

air flow mean that the system can no longer be classed as linear, however for

vowel sounds this is not an issue.

The assumption of independence between the voice source and the vocal tract

can be examined in two ways; the acoustic interaction [27], which refers to

how the acoustic properties of the vocal tract affect the airflow at the glottis,

and the physiological interaction, which refers to how the position of the

vocal tract affects the vibration of the vocal folds [28].

The ability to model the behaviour of the voice source and vocal tract sep-

arately, makes it relatively easy to reproduce them artificially, which can

aid our understanding of voice production. Changing the parameters of the

LF model [29] changes the properties of the voice source, and can be used

to produce different qualities in the voice, for example breathy, pressed, or

ringing voice.
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It is possible to extract information on the glottal flow as a function of time

g(t), its time derivative dg
dt

, and information about the effects of the vocal

tract, from the acoustic output of the voice using inverse filtering techniques.

This involves taking a speech signal and using adaptive filtering techniques

where the error is repeatedly calculated and minimised, to obtain accurate

models for both the glottal flow model and the vocal tract effects [30].

In many cases, since the source-filter model allows the voice source and vocal

tract to be examined independently, it can be assumed correct, and provides

a useful tool for voice analsis. In truth, however, the assumption that they

can be treated independently is not entirely correct, as there is some acoustic

and physiological interaction between them [31]. This interaction is not yet

fully understood, and so the source-filter model will be assumed to be largely

accurate for the purposes of this research, as it provides a convenient platform

for analysing the vocal tract effects without taking into account the behaviour

of the voice source.

2.1.2 The Sound Source

Having established the three subsystems that allow voiced sound to be pro-

duced, this section examines the phonatory subsystem in more detail. The

different pitches that can be produced by the larynx are addressed, as well

as methods of altering the quality of this sound (in isolation from the artic-

ulatory subsystem).

The vocal folds are fleshy folds inside the larynx, which have a complex

structure. They adduct (close) and abduct (open) very rapidly, the number

of cycles per second corresponding to the fundamental frequency (f0) of the

sound source.

One of the earliest and simplest explanations of vocal fold vibration relies

on the Bernoulli force [19]. This is the force generated when a stream of

fluid passes around an object, so that some layers of the stream are forced
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Figure 2.5: Shows how the pressure difference between layers of air creates
the Bernoulli force, pulling the vocal folds together.

to travel a longer distance than the others. Since the layer that travels the

furthest from the object must cover a larger distance than the closer layers,

it has a greater velocity and so a lower pressure relative to the other layers.

This creates a pressure difference between layers, exerting a force on the

object which pulls it into the stream. In the case of a stream of air passing

over the vocal folds, the layers of air closest to the folds (at the edges of the

stream) have to travel the furthest, so they have the lowest pressure and the

vocal folds are pulled towards the centre of the glottis, closing it. This is

illustrated in Figure 2.5, where the horizontal arrows indicate the force on

the vocal folds.

Once the vocal folds have been closed, the pressure builds up below them,

eventually forcing them open and allowing a stream of air to pass through.

At this point the elasticity of the vocal fold tissue limits how far outwards

they are pushed, and pulls them back to a neutral position, ready for the

whole cycle to start again. This is known as the myoelastic aerodynamic

theory of phonation [32].

This model was previously accepted by theorists [33]; however, it does not
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provide a full explanation for the mechanism by which the vocal folds vibrate,

as the damping effect of the vocal fold tissue would soon cause the vocal folds

to stop moving: the air stream would not be able to provide enough energy

to sustain vibration. The neurochronaxic theory states that the method by

which the vocal folds produce sound is the rapid movement of muscles to

control the adduction (closing) and abduction (opening) of the vocal folds,

however, repeating this cycle at the frequency required for a female singer (up

to 1000 times per second) is beyond the capability of these muscles [19, 34].

More recent models [35] therefore take into account another component; an

acoustic tube to represent the vocal tract. When the vocal folds are pulled

together by Bernoulli forces, the air stream continues to move up the tube,

creating a low pressure area just above the glottis. This low pressure area,

combined with the increased pressure below the glottis (from the air stream

continuing to flow up from the lungs) helps to pull the glottis open from

above while it is also pushed open from below. This is known as the one-

mass model, and was proposed by Flanagan and Landgraf in 1968 [36]. It

modelled vocal fold vibration with a single mass-spring oscillator driven by

airflow from the lungs, and produced self-sustained oscillations as long as

the vocal tract load was inertive, unlike the myoelastic-aerodynamic model

(without the tube). However, it is still not an entirely accurate representation

of vocal fold vibration. The one-mass model is shown in Figure 2.6(a), with a

spring to model the elastic properties of a vocal fold and a damper to model

the absorption of the tissue.
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(a) The one mass model of the
vocal folds with a spring and
damping component (after Titze,
[37])

(b) The two mass model of the
vocal folds, which models the be-
haviour of both the muscle and
covering layer of the vocal folds.

Figure 2.6: The one and two-mass models of the vocal folds.

The main issue with the one-mass model is that the vocal folds do not move as

single masses. Observing the movement of the vocal folds during phonation

reveals that they move in a wave-like motion, with the bottom edge opening

first and closing first (vertical phase difference) [38]. To allow for this wave-

like motion, the body-cover or two-mass model was proposed by Ishazaka and

Flanagan in 1972 (see Figure 2.6(b)) [39], which consisted of a large mass

representing the vocalis muscle (main body of the vocal fold, see Figure

2.8) and two smaller masses, representing the outer layers of the vocal folds.

This model was able to sustain oscillation with or without a vocal tract

and provided the degrees of freedom necessary to produce the vertical phase

difference. This model has been widely used as a simple, low-dimensional

model of the vocal folds, although models involving up to 16 masses are in

use [40].
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Vocal folds in Singing

In singing, being able to accurately sing at the desired pitch is of paramount

importance. According to Sundberg [19], the fundamental frequency of the

sound produced by the vocal folds is affected by two major factors. The

most significant of these is the laryngeal musculature, or more specifically,

the length of the vocal folds; the more they are stretched, the longer, thinner

and tenser they become and the higher the frequency produced.

Altering the length of the vocal folds is achieved by the cricothyroid muscle

contracting and tilting the cricoid cartilage (see Figure 2.7), which decreases

the distance between the thyroid and cricoid cartilages, and increases the

distance between the thyroid and arytenoid cartilages [19].

In addition to the length of the vocal folds, the fundamental frequency of

the note can also be affected by the pressure in the lungs. It has been

shown by Van den Berg et al. [33], that increasing subglottal pressure, in

addition to increasing the intensity of phonation can cause a small increase

in phonation frequency, which must be actively controlled by singers in order

to preserve constant f0. Other factors are also thought to contribute, for

example Sataloff [32] adds that contracting the cricothyroid muscle can also

increase the f0 of the note produced, by increasing the stiffness of the vocal

fold cover. A complex system, the length of the vocal folds is the most

influential mechanism for controlling the phonation frequency.

There are many factors that can affect the behaviour of the vocal folds;

professional singers reduce the breathiness of their voice by increasing glottal

closure [41] which in turn increases the vocal efficiency and the volume of

sound produced. Commonly in training, a “trial and error” approach is used,

or exercises such as lip trills, tongue trills, bilabial fricatives, humming, and

phonation into tubes or straws [28], which are intended to increase the vocal

tract interaction with the source, and improve the vocal economy [42].
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Figure 2.7: The detailed inner structure of the larynx (from [19]).

Voice quality

The exact properties of each individual larynx and vocal tract are unique,

and therefore the precise qualities of each voice are particular to the singer,

including for example, the extent and duration of vocal fold closure. If the

vocal folds do not close fully, a gap in the vocal folds called a chink can

remain, the shape of which can vary between subjects. Poor closure can

result in the voice having a breathy or airy tone and is generally discouraged

in classical singing training [43, p. 41].

Females tend to have a more “breathy” voice than males. The causes of this

are thought to be both psychological and (particularly in females) physical
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[44].

Varying the use of the vocal folds produces different effects in singing. One

example is pressed voice, which is thought to occur as a result of excessive

adduction of the vocal folds, and is characterised by high harmonic content

(low spectral slope). Another is ring, which is thought to be related to the

area of the epilaryngeal tube, skewing quotient and possibly the fundamental

frequency, and is defined by perceptual experiment by Bergan [45] as a boost

of energy around 3000 Hz, which is acoustically linked to clustering of F3-

F5. “Ring” is however a highly ambiguous term, with Howard et al. [46]

describing a voice with ring as having more energy in the “region around

4 kHz, which is more than 1000 Hz higher than what is observed in [male]

adults; and in the region around 7.5 - 11 kHz”.

The behaviour of the vocal folds can also be affected adversely by factors

beyond the singer’s control. For example, dehydration has been found to

increase the phonation threshold pressure - the minimum pressure the lungs

must produce to make the vocal folds produce a pitched sound [47].

Differences in vocal fold vibratory characteristics are also observed between

sexes. Sulter et al. [41] found that females were more likely to have a chink

in their glottal closure, exhibit horizontal phase differences (the back of the

glottis opening and closing before the front) and have a larger amplitude

of vibration. They also observed a slight difference between trained and

untrained singers, with the trained singers exhibiting more complete glottal

closure. This supports Howard’s [22] findings for a group of 26 singers singing

at high pitches, where trained singers were found to have higher closed quo-

tient than untrained singers for pitches above 494 Hz (B4), however, the

untrained singers were found to have higher closed quotient at pitches below

294 Hz (D4). This study also found that the gradient [CQ/log(f0)] tended

to correlate positively with the number of years singing training/experience.

Barlow et al. [48] also observed differences in CQ between singers singing

in different genres, with singers exhibiting higher glottal closure for musical

theatre styles than classical.
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The length of the vocal folds increases with age [49], and generally reach a

larger size in males. The length of vocal folds can contribute to a singer’s

voice classification, with Roers et al. [50] finding mean vocal fold lengths of

14.9, 16.0, 16.6, 18.4, 19.5 and 20.9 mm for sopranos, mezzo-sopranos, altos,

tenors, baritones and basses, respectively.

Registers

The vocal folds consist of several layers of muscle (see Figure 2.8), which

allows the vocal folds to vibrate with different masses, depending on which

layers are vibrating. The transitions between laryngeal vibratory mechanisms

are commonly marked by pitch “breaks” and changes in the quality of note

produced.

Figure 2.8: The structure of the vocal folds. (After [51])

In 1880 this was seen by the physiologist and voice production teacher Emil

Behnke and the throat surgeon Lennox Browne using a laryngoscope to view

the vibrating glottis [52]. They noticed that:

“During the lowest series of tones the vocal ligaments vibrated

in their entire thickness. During the next series of tones the vocal

ligaments vibrate only with their thin inner edges, and during the

highest series of tones a portion of the vocal chink is firmly closed,

and only a small part of the vocal ligaments vibrates.” ([52], p86)



CHAPTER 2. LITERATURE REVIEW 43

These different modes of glottal vibration correspond to different singing

registers, defined by Garcia [1] as:

“A series of consecutive and homogeneous tones going from

low to high, produced by the same mechanical principle, and whose

nature differs essentially from another series of tones equally con-

secutive and homogeneous produced by another mechanical princi-

ple. All the tones belonging to the same register are consequently

of the same nature, whatever may be the modifications of timbre

or of the force to which one subjects them.” ([53], p68)

Garcia claimed that the human voice is composed of different registers:

poitrine (chest), fausset (falsetto), head (tête), and contre-basse (counter

bass) [54]. There is, however, considerable disagreement on the terminol-

ogy and definition of registers, with different naming schemes proposed by

various authors. For example Behnke [52] described three registers for the

male voice (lower thick, upper thick and upper thin) and five registers for

the female voice (lower thick, upper thick, lower thin, upper thin and small),

based on his observations of the vocal folds.

Roubeau et al. [55] detected four laryngeal mechanisms using electroglottog-

raphy. Representing the lowest f0
1, M0 is also called the creak voice or vocal

fry. The vocal folds vibrate aperiodically and this produces a broad band

spectrum with no clear pitch. Slightly higher in f0 is mechanism M1, known

as the modal voice or chest voice, which is usually used for speech. Vocal fold

vibration is highly periodic and the relatively rapid closure of the vocal folds

results in a spectrum rich in harmonics. Mechanism M2 produces higher f0s,

and is known as the falsetto voice in men and head voice in women, in which

only the ligament and mucosa covering the vocalis muscle vibrate. Vocal fold

vibration is still highly periodic, but the higher harmonics are usually rather

weaker than those of M1. The highest singing register is M3, used mainly by

sopranos specialising in the highest ranges and typically starting somewhere

1Since the M0 register can involve aperiodic phonation it does not necessarily have a
f0.
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near 1046 Hz (C6). It is known as the whistle register, and the physiology

and acoustics of it are not yet well understood [56].

Sopranos generally transition from laryngeal mechanism M1 to M2 at around

340 Hz (∼E4–F4) [9, 55, 57]. The next transition in the soprano range

occurs at around 500–700 Hz (∼C5–G5), and is thought to be related to

vocal tract tuning [57], as this range corresponds approximately to the pitch

range where the fundamental frequency is equal to or higher than the first

vocal tract resonance, above which sopranos tune the frequency of their first

vocal tract resonance (R1) to the fundamental frequency [13, 58, 59]. A

third transition is commonly reported in the top range of the soprano voice,

occurring somewhere in the broad range 660 Hz (E5) to 1570 Hz (G6) [52,

55]. This break is associated with a transition to the highest vocal register,

commonly known as the whistle register (also known as flageolet, flute, bell,

small, and pipe [55]). In this very high range, some studies [9, 55] report

significant differences in laryngeal behaviour compared to the M2 laryngeal

mechanism, as the vocal folds are thin and more tensed, and have a smaller

amplitude of vibration. The vocal fold contact is also reduced, and in some

cases there may be no contact at all. This is based on electroglottograph

data [55], as well as inspection via endoscope [9].
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2.1.3 The Vocal Tract

Figure 2.9: The detailed structure of the vocal tract. [60]

The third subsystem; the articulatory system, consists of the vocal tract,

which is roughly the shape of a cylindrical tube open at one end (the mouth)

and closed at the other (the glottis).

The vocal tract begins at the glottis; the air gap between the vocal folds,

which is situated within the larynx. The back of the throat is known as the

pharynx and is made up of three parts - the lower part is the hypopharynx, the
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middle part is the oropharynx, and the upper part (inside the nasal cavity) is

the nasopharynx, which is separated from the oral cavity by the soft palate.

The oral cavity is bounded by the hard palate at the top, the tongue at the

bottom, and the teeth or cheeks at the sides. Finally the lips control the

entrance to the mouth, and the jaw can alter the shape of the whole vocal

tract.

The acoustic behaviour of the vocal tract is dominated by its tube-like prop-

erties. A rigid pipe, open at one end, will produce reflections of the acoustic

wave from the closed end. This causes standing waves to form, with a veloc-

ity node (minimum) at the closed end, and a velocity antinode (maximum)

at the open end. The lowest resonance of the tube is the frequency at which

a quarter of a wavelength is equal to the length of the tube (this type of tube

is also known as a quarter-wave resonator). Multiples of the fundamental

frequency are also generated, as shown in Figure 2.10 [61].

Figure 2.10: The velocity of air moving in a rigid tube open at one end for
the first four resonances. [62]

An equation can be derived for the relationship between the wavelengths of

the resonant frequencies of a simple tube, open at one end, and the length

of the tube:

L =
(2n− 1)λ

4
(2.1)

Where L is the length of the tube, and n is an integer.
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This rearranges to give the equation for the tube’s resonant frequencies:

fn =
(2n− 1)c

4L
(2.2)

If the frequency response of a rigid tube is plotted, it can be seen that there

are peaks in amplitude at the resonant frequencies, which occur at regular

intervals (see Figure 2.11). A plot of this nature is known as a transfer

function, and shows the ratio of the output of a system to its input, as a

function of frequency.

Figure 2.11: Plot of frequency response of a rigid tube, closed at one end and
open at the other. The resonances are regularly spaced and of consistently-
decreasing amplitudes.

One of the key properties of the vocal tract (compared to a simple rigid tube)

when considering resonances, is that the cross-sectional area of the vocal tract

can be increased or reduced at different points along its length. Constriction

of the vocal tract at a place where the standing wave of a resonance exhibits

minimum-amplitude pressure causes that resonance to drop in frequency,

whereas expansion of the tract at those same places raises the frequency of

the relevant resonance [63]. This allows singers to shift the frequencies of

the resonances of the vocal tract by altering parts of the tract known as

articulators or sound modifiers : the soft palate, jaw, tongue, etc.
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Similar to a simple rigid tube, the frequency response of the vocal tract also

shows peaks in amplitude at the resonant frequencies of the vocal tract (see

Figure 2.12), however, unlike the simple tube, their spacing is not necessarily

regular. The vocal tract resonances form the envelope of the voice signal, with

the fundamental frequency and its harmonics as the carrier function.

Figure 2.12: Shows how a vowel is produced on three different fundamental
frequencies (top - lowest, bottom - highest). The left plot shows the glottal
signal, the middle plot shows the transfer function of the vocal tract, and the
right plot shows the resulting acoustic output. (Reproduced with permission
from [20])

The series of broad peaks in the voice spectrum are known as vowel formants

(Fn), defined by Fant [64] as “spectral peaks of the sound spectrum of the

voice” and arise from the effect of the resonances of the vocal tract (Rn) on

the glottal source spectrum [58]. There is some confusion in later literature

as to the distinction between the terms formant and (vocal tract) resonance.

In this thesis, a formant is defined as a broad peak in the spectrum of an

acoustic signal, arising from a resonance of the vocal tract, whereas a vocal

tract resonance is a resonant frequency of the vocal tract. In older works, the
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term formant has been used to mean both formant and vocal tract resonance

interchangeably [65].

It is generally accepted that the first 3-5 formants are responsible for the

perception of vowels [66] and their frequencies determine which vowel is per-

ceived by a listener. The formant frequencies can be changed through move-

ments of the vocal tract to give changes in the accent, timbre, quality or even

the vowel perceived. For example, movements of the jaw have been found

to alter the position of the first vocal tract resonance [67], whilst movements

of the body of the tongue alter the frequency of the second vocal tract res-

onance, and the position of the tip of the tongue affects the position of the

third vocal tract resonance [63].

2.2 Analysis of The Voice

Advances in computing and research technology means that there are many

different methods of analysing the human voice and these can be divided

into three broad categories; methods that analyse the acoustic output of the

voice, methods of analysing the voice source (larynx and vocal folds) and

methods that investigate the properties of the vocal tract and any physiolog-

ical changes made to it.

2.2.1 Analysis of the Acoustic Output

Fourier Transforms

The Fourier series allows any waveform to be synthesised by adding sine

waves of integer multiples of a fundamental frequency. A Fourier analysis

is the inverse process, which examines a harmonic signal and decomposes it

into its frequency components. This can be carried out on a sound recording

to examine the spectrum (frequency content) of the sound. In voiced sounds
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(when the vocal folds are phonating), this allows the harmonics and their

relative amplitudes to be detected. In low voices (below approx. 300 Hz),

when the harmonics are closely spaced, the positions of the formants can be

detected by simply examining the envelope shape of the acoustic spectrum.

Examples of this can be seen in Figure 2.13, which shows a spectrum of a

male voice singing an /A/ vowel (a), and a female voice singing the same

vowel (b) (produced using a 214-point Fourier transform in MATLAB [68]).

Fourier transforms are performed over a “window” of a defined number of

samples. A short (time) window gives good temporal resolution, but poor

frequency resolution, whereas a long window gives a good frequency reso-

lution, but poor temporal resolution. Choosing the window length for the

Fourier transform is therefore a compromise; the value chosen in this example

gives adequate frequency and time resolution.

Spectrograms

A spectrogram is an extension of the Fourier transform [69], with the added

dimension of time. Higher amplitudes are represented by darker shades, so

that not only can the frequency components of a single sample be observed,

but also their changing behaviour over time. An example spectrogram cre-

ated in Praat [70] of a female saying “the north wind and the sun were

arguing about which of them was the strongest” is shown in Figure 2.14(a)

(window length 0.1 seconds, frequency step 20 Hz).

Long-term average spectra

A long-term average spectrum (LTAS) displays the average sound level over

time in different frequency bands [71] and can give information on quasi-

constant glottal and vocal tract characteristics, such as the singer’s formant

or speaker’s formant [72]. It is often applied to running speech (as in Löfqvist,

[73]); however, it also has applications in singing.
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(a) Spectrum of a male voice singing an /A/ vowel [62], produced using
a 214-point FFT.

(b) Spectrum of a female voice singing an /A/ vowel (subject 1 from
Chapter 5), produced using a 214-point FFT.

Figure 2.13: The different spectra of singing produced by a low (male) voice
and a high (female) voice.



CHAPTER 2. LITERATURE REVIEW 52

(a) Spectrogram of a female saying “the north wind and the sun were
arguing about which of them was the strongest”.

(b) LTAS of a female saying “the north wind and the sun were arguing
about which of them was the strongest”.

Figure 2.14: Shows two different examples of analysis of the acoustic output
of the voice.



CHAPTER 2. LITERATURE REVIEW 53

A number of methods have been suggested for quantifying LTAS information,

for example by calculating the ratio of power in different frequency regions.

The singing power ratio (SPR) is calculated by subtracting the amplitude of

the strongest harmonic between 2 and 4 kHz from the level of the strongest

harmonic between 0 and 2 kHz, and was found by Watts et al. [74] to be

significantly higher in non-talented singers than talented singers.

The occurrence of LTAS peaks has been found to be related to voice quality

[75, 76], and the sex of the speaker/singer, for example Mendoza et al.,

observed differences between male and female voices, including differences

in aspiration noise and spectral tilt [77]. White et al. [78] also observed

differences in male and female child voices using LTAS.

Figure 2.14(b) shows the LTAS for the same audio sample as 2.14(a), created

in Praat [70] (bandwidth 100 Hz).

Linear Prediction

Linear prediction [62, 79] is a mathematical technique where future values

of a discrete-time signal are predicted as a linear function of a number of

previous (known) samples. The most common mathematical representation

(from [79]) is:

ŝ(n) = −
M∑
i=1

ais(n− i) (2.3)

Where ŝ(n) is the predicted signal value, s(n− i) are the previous observed

values, and ai are the predictor coefficients to be found. The order of the

linear predictor (M) refers to the number of previous samples that are linearly

combined. The minus sign is chosen so that the error is based on a difference

of two variables [79].

This allows an error to be generated (where s is the actual value of the signal),

which becomes the driving function of the linear prediction:

e(n) = s(n) − ŝ(n) (2.4)



CHAPTER 2. LITERATURE REVIEW 54

The coefficients are chosen to minimise the error between the sample and its

predicted value. The solution to the model is found using auto-covariance

or auto-correlation, and can be used to describe the original signal using an

all-pole filter, or the inverse filter with an all-zero filter.

It is possible to use linear predictive coding (LPC) to estimate the envelope

shape of a voice spectrum [80], and once this is obtained, the positions of

the formants can be found in two possible ways. The simplest is to use a

peak-picker algorithm, which simply finds local maxima, however this only

works if all the peaks are true maxima in the envelope shape, and not just

points of inflection, so it might occasionally fail to detect peaks that are close

together or not high in amplitude. The other method is to use a root-finder,

such as the MATLAB “root” function [81], which is slightly more complex,

but much more reliable.

% calculate LPC coefficients from signal (12th-order LPC):

[a,g] = lpc(x(: ,1) ,12)

% take FFT of zero -padded coefficients:

Temp = fft([a zeros(1,length(x)-length(a))])

% calculate envelope spectrum:

filter_spectrum =20* log10(abs (1./ Temp )) -10* log10(g)

Figure 2.15 shows the same spectrum as Figure 2.13(a), with the envelope

spectrum found using the LPC method (dotted line) and the formant values

detected (asterisks). In this case the fifth formant is detected by the root

solving method, but not by the peak-picking method, due to the lack of a

distinct peak in the envelope function.

Difficulties analysing high voices

As demonstrated in Figure 2.13, the acoustic spectra of low and high voices

show distinct differences, leading to several issues with the analysis of very

high (soprano) voices. The main problem for researchers stems from the fact

that since the fundamental frequency is high (soprano range approx. C4 -

C6, or 261 - 1046 Hz), the harmonics are widely spaced and it can be difficult
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Figure 2.15: The spectrum of a male voice singing an /6/ vowel [62], with
the envelope spectrum found using LPC

to detect the positions of the formants accurately using the usual methods

of speech analysis such as spectrography, linear predictive coding or (poly-

nomial) root solving, which are generally highly accurate at low frequencies

[82]. Neither spectral analysis nor linear prediction (popular in speech anal-

ysis) are reliable for detecting resonances at fundamental frequencies above

approximately 350 Hz [83].

This difficulty in determining the locations of the formants spectrographically

is also reflected perceptually in the difficulty of perceiving vowels accurately

at high pitches, with vowels becoming harder to identify with increasing

fundamental frequency (discussed further in section 2.4.2).

2.2.2 Analysis of the Voice Source

Analysis of the voice source (separate from the effects of the vocal tract)

allows mathematical models of the vocal folds to be created, so that the

mechanics of their vibration can be better understood. The vocal folds can

also be directly observed by inserting a laryngoscope or endoscope into a
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singer’s nose or mouth to watch the vocal folds vibrating. In 1880 Behnke

and Browne [52] used a laryngoscope, a small mirror on a rod, to view the

vocal folds vibrating and observed the differences between different laryn-

geal mechanisms. Modern methods allow more detailed information to be

obtained, and involve the use of an endoscope, a small camera on the end

of a flexible tube, in conjunction with a stroboscope [41], to observe the ex-

act vibratory patterns of the vocal folds. Alternatively, a high-speed camera

could be used and the recordings then viewed in slow motion to obtain the

same result. The disadvantage of this method is that it is an invasive and un-

comfortable procedure and it may be difficult for the singer to sing naturally

with their throat obstructed.

Properties of the vocal folds, such as the open or closed quotient can be

monitored more easily than endoscopy or laryngoscopy using electrolaryn-

gography. This technique was developed by Fabre in 1957 [84], and requires

the singer to wear a pair of electrodes (or several pairs), attached using an

elastic neck-band, then a low-intensity, high-frequency modulated current

is passed through the electrodes, and the impedance between them is mea-

sured. The impedance is approximately proportional to the vocal fold contact

area, and so this allows the vocal fold activity to be monitored. Changes in

the laryngeal vibratory mechanisms can be detected by examining the elec-

troglottograph (EGG) signal, and its derivative [55].

More pairs of electrodes allow more information to be obtained about the

vocal folds. In 1992 a two-channel EGG was introduced by Rothenberg [85],

which was also capable of measuring the height of the larynx. In 2009, Kob

et al. proposed an EGG with 6 pairs of electrodes that would give access

to EGG signals as well as a two-dimensional larynx tracking signal [86].

In 2012, Hezard et al. [87] proposed an alternative method called electrical

impedance tomography (EIT), which consisted of “injecting a high-frequency

current inside a body with two electrodes and measuring the resulting po-

tential distribution (with other electrodes) at the body’s surface”. Although

EIT offers the potential for more detailed observation of the vocal folds, it is

not yet widely used.
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2.2.3 Analysis of the Vocal Tract

The physiological properties of the vocal tract can be analysed using imaging

techniques, such as X-ray or magnetic resonance imaging (MRI) data, or by

observing the moving parts of the vocal tract using an articulograph. It

is also possible to measure the resonances of the vocal tract using external

excitation, such as noise excitation at the larynx or injecting a signal into

the mouth.

X Ray

Figure 2.16: An example of an image of the vocal tract obtained using X-ray
imaging (from [88]).

In 1951 MacMillan and Keleman X-rayed all standard Russian vowels and

consonants (reported by Fant [25]), to examine the configuration of the vocal

tract. Although pioneering at the time, the information about the vocal tract

that can be obtained from X-rays of the vocal tract is limited, due to poor

resolution of tissue and the fact that the images are a two-dimensional repre-
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sentation of a three-dimensional object. Added to this is the deterrent that

repeated exposure to X-rays increases a person’s risk of developing cancer

[89].

Articulography

Figure 2.17: Jaw opening for an /a/ vowel, plotted as a function of the pitch
interval in semitones to the formant value measured when the subject sang
the vowel at a pitch located in the lower part of the pitch range. Different
symbols refer to subjects. (from [67]).

One technique that does allow three-dimensional, dynamic data on the vocal

tract to be gathered is the use of an articulograph. This requires small

connector coils to be positioned on and in the subject’s mouth. Each of the

coils is a transmitter that produces an alternating magnetic field at different

frequencies. This induces an alternating current in the sensors, and allows

the user to obtain the distances of each sensor from the nine transmitters. It

is then possible to calculate the location of each transmitter in 3 dimensions,

and store and display the positions of the sensors [90]. This allows the

researcher to obtain specific information about the movements of the tongue,

mouth, soft palate, and jaw, which yields information about how they are
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adjusted to achieve resonance tuning. However, information about the vocal

tract resonances cannot be gained in this way, as it does not yield enough

information to create a 3D model. An example of articulograph data is shown

in Figure 2.17: measurements of jaw opening against the pitch interval in

semitones to the nearest formant for two different vowels (from [67]).

Acoustic excitation of the vocal tract

Measuring the frequencies of the vocal tract resonances (RN) can give im-

portant information about the effect of the vocal tract on the voice source.

Methods of directly measuring the vocal tract resonances generally involve

using a known signal to excite the vocal tract at one end and recording the

output from the mouth.

One method of extracting an impulse response of an acoustic system is ex-

citation using a swept-sine signal [91]. This method is successfully used in

room acoustics applications [92] and also has applications to voice science. In

1970 Fujimura and Lindqvist [93] measured the resonances of the vocal tract

by applying a swept-sine signal to the neck of subjects, just above the glottis,

and recording the output. The results obtained for vowel sounds were mostly

reliable, and yielded detailed information on the locations and bandwidths of

the vocal tract resonances. However, a problem with this method was that

the subject was required to close their glottis while the measurements were

taken, which a small number of subjects found difficult to do, leading to poor

results. The effects of measuring through the neck are also unknown, which

could lead to errors in the results.

Excitation at the mouth using swept-sine excitation has also been success-

fully used to measure the transfer functions of 3D printed vocal tracts [94].

However, since the frequency content of the signal varies with time (unlike

noise-like signals that contain all frequencies simultaneously), this method

is sensitive to movements of the articulators, which can cause an apparent

broadening of the resonance peaks [93], and is therefore not an appropri-
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ate measurement method for the vocal tracts of real subjects, who are not

capable of remaining perfectly motionless.

Another method of obtaining the vocal tract transfer function, pioneered by

Epps et al. [95], and used by others including Garnier et al. [15], Henrich et

al. [14], and Joliveau et al. [58], involves exciting the vocal tract at the mouth

with a synthesised pseudo-broad-band-noise signal, consisting of harmonics

spaced 5.38 Hz apart. The use of harmonic components as opposed to actual

broad band noise allows a “calibration” procedure to be carried out, where

the subject keeps their mouth closed while the signal is played and recorded

at the mouth, and the amplitudes of the different frequency components

are adjusted to ensure that the excitation signal produces a flat frequency

response when recorded. The measurement is then taken by exciting the

vocal tract with this “calibrated” signal and the transfer function calculated.

This allows the locations of the resonances to be deduced and provides a more

natural result, since the subject can sing normally while the measurement

is being taken, rather than being asked to hold an artificial position. This

method is also more robust to small movements of the subject than swept-

sine excitation, as the frequency content of the signal does not vary with

time.

Magnetic resonance imaging

MRI data overcomes many of the problems with X-rays, as it does not involve

ionising radiation [96], but instead uses a strong magnetic field to detect radio

frequency signals from excited hydrogen molecules. MRI is well suited for

investigating the vocal tract, as it allows the articulators to be observed

directly, in a way that is relatively non-invasive for the patient. MRI does

have its disadvantages however; scans are expensive, loud and tend to require

the subject to lie supine in a narrow tube (unsuitable for claustrophobic

subjects). They must also satisfy the safety criteria for MRI (not have metal

in their body, be pregnant, obese or have tattoos).



CHAPTER 2. LITERATURE REVIEW 61

Figure 2.18: an example of MRI of vocal tract.

MRI scans are commonly available either as static 3-dimensional images, or

as a dynamic 2-dimensional slice. Static MRI scans capture a series of 2-

dimensional image slices through the head of the subject, allowing detailed

3-dimensional information concerning the body part of interest to be obtained

and a highly accurate 3D model of the vocal tract to be generated. However,

static MRI scans are only able to generate one set of these 2D slices at a

time, requiring the subject to maintain a single position for enough time to

obtain a single 3D image (usually of the order of 10 seconds). Dynamic MRI

scans allow a moving image of a slice of the vocal tract to be captured, with

a frame rate up to approximately 10 frames per second [6]. As it is only a

single slice, this unfortunately does not allow a full three-dimensional moving

model to be obtained, but can shed light on factors such as the behaviour of

the tongue, soft palate, jaw, and epiglottis during singing.

The main advantage of 2D MRI is that it allows images to be captured in

real-time which is closer to normal voice production. However, images from

3D MRI, although static, allow data in the transverse as well as mid-sagittal

plane to be collected over a range of pitches, which can be used to generate

more accurate cross-sectional area functions (plots of cross-sectional area of

the vocal tract against its length) [97]. It also allows information in the
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transverse dimension, such as the width of the pharynx and other adjustable

parts of the vocal tract (e.g. tongue) and the volume of the vocal tract to be

examined over a singer’s entire pitch range.

A number of studies have used MRI to observe the vocal tract during both

speech and singing. For example Delvaux et al. [98] studied 1 female and 2

male singers to investigate the impact of the piriform fossae on the singing

voice and found that they created a spectral trough in the 4-5 kHz region.

Similarly, Echternach et al. [99] used MRI to study the vocal tract of a single

soprano singing at very high frequencies and found minor modifications of the

vocal tract shape, consisting of a decrease of the piriform sinuses, and small

changes of tongue position. Echternach et al. [5] also investigated register

changes in one tenor and one baritone using MRI and found that the singers

made “few and minor modifications of vocal tract shape” when they changed

from modal to falsetto and “some clear modifications” with changes in pitch

(but not register). Narayanan et al. [100] used dynamic two-dimensional

MRI to investigate the vocal tract shape during fluent speech, obtaining 8-9

images per second, showing clear real-time movements of the lips, tongue,

and velum. Takemoto et al. [101] used a 3D “cine-MRI” technique to capture

speech production, where the subject repeated a phrase 640 times.

There is very little research using 3D MRI to specifically investigate singing

techniques in soprano voices. This will be discussed, together with resonance

tuning in female voices using MRI, in section 2.3.2.

Visualising teeth in MRI

Apart from the unusual conditions required for MRI (the supine position

and loud noise of the scanner), a significant limitation of magnetic resonance

imaging is the difficulty in imaging teeth. Due the low hydrogen content of

tooth and bone, these materials have the same appearance as air in an MRI

image [102], as can be seen from Figure 2.18.

Failing to account for the teeth in segmentation of the vocal tract, can lead
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to over-estimation of the vocal tract volume [102, 103] (as the volume of the

teeth are mis-estimated). A number of studies have attempted to integrate

MRI images of the vocal tract with images of the teeth obtained separately,

with varying degrees of success and these can be approximately divided into

three categories [104].

The first of these involves a dental cast, such as Yang et al. [105], who used

a plaster cast, which was then scanned, and Hasegawa-Johnson et al. [106],

who also made a dental cast of each participant and submerged them in

water. The disadvantage of this method is that bubbles and foams can form

on the cast, causing artefacts.

The second type used MR-visible mouthpieces to cover the teeth, such as

Kitamura et al. [107], who used a mouthpiece made from a thermoplastic

elastomer, or Wakumoto et al. [108], who developed plates for upper and

lower dental crowns. The weakness in this method arose from the thickness

of the dental plates used (a few mm), which did not allow the air-tooth

boundary to be accurately defined.

The final category uses a liquid contrast medium in the oral cavity. Olt

et al. [109] asked subjects to fill their mouths with water, which resulted in

clearly distinguished dental structures. Similarly, Takemoto et al. [103] asked

subjects to hold blueberry juice in their mouths. In both of these methods,

the subjects were required to remain in a supine position holding the contrast

medium for a long data acquisition time, which was uncomfortable for the

subjects and artefacts were caused by flow of the contrast fluid.

2.3 Resonance tuning

In classical singing and particularly in opera, one of the most important

objectives for any singer is to be heard over the orchestra or other accompa-

niment. One method by which this is achieved is by altering the spectrum of

the sound produced by adjusting the position of the vocal tract [14] in order



CHAPTER 2. LITERATURE REVIEW 64

to move the position of one or more formants away from their typical values

in speech.

This altering of the vocal tract is known as formant tuning, or more correctly,

resonance tuning, whereby the singer alters the resonances to move one or

several of the early formants. This is done to increase the acoustic power

transmitted by their voice, hence reducing the amount of energy required

from the singer to produce a note of given amplitude and allow them to be

heard over an accompaniment more easily.

2.3.1 Resonance Tuning in Male voices

In low male voices (bass/baritone), where the fundamental frequency does

not exceed about Hz, the harmonics are closely spaced and there is a large

amount of energy in the range of the first few formants. This makes it easy

to deduce the positions of the vowel formants from the envelope shape of the

sound spectrum of the vocal output [82] (for example, see Figure 2.15).

The closely-spaced harmonics in the frequency range of the low formants

allows bass/baritone singers to alter the sound spectrum so that there is

more energy in a frequency range of the spectrum not being masked by other

noise sources (known as the singer’s formant cluster, SFC).

Henrich et al. [14] investigated the resonance tuning methods used by all four

voice types (sopranos, altos, tenors and basses), and observed that where the

fundamental frequency is around 100 Hz (for low voices such as basses), the

harmonics are sufficiently closely spaced that at least one will usually fall

near to the normal value of R1 (the first vocal tract resonance) to give a

boost in sound level (see Figure 2.19), meaning that systematic resonance

tuning would offer little advantage. The values of R1 appeared near their

values in speech, although may be slightly shifted to give better acoustic

efficiency. Similar patterns for R2 were observed.
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Figure 2.19: The many resonance tuning strategies available to be used by
Basses, due to the large number of harmonics falling into the ranges of R1

and R2 (after [14]). Diagonal black lines show the first n harmonics, and
diagonal red lines show the harmonics that can be tuned to the first or
second resonance.

The Singer’s Formant Cluster

It is extremely important for opera singers to be heard over large orchestras

in concert halls and opera houses, so increasing their perceived loudness and

making their singing more “resonant” is essential. One well-understood tech-

nique used by male singers and altos is the Singer’s Formant Cluster (SFC)

(formerly called the Singer’s Formant), which is a clustering of formants 3,

4, and 5 [11] and is characterised by increased energy in the voice spectrum

in the region between 2-4 kHz. It is generally found in operatic singing and

some other western classical styles, including musical theatre, and has also

been found in theatrical speaking [72]. The SFC is usually achieved by al-

tering the position of the articulators, for example by lowering the larynx

or increasing the space in the pharynx, which results in the convergence of

formants 3, 4, and 5, which are not crucial for accurate vowel identification

[66].
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The long-term average spectrum of a whole orchestra produces a sloping

spectrum (shown in Figure 2.20), meaning that the acoustic energy in the

frequency region of the SFC (2-4 kHz) is relatively low. Therefore when a

singer sings using the SFC, they exploit this lack of acoustic energy, allowing

the audience to hear the singer over the orchestra. Significantly, the 2-4 kHz

frequency region is also the most sensitive region of human hearing [110].

Figure 2.20: A representation of the LTAS of (a) a singer alone, (b) an orches-
tra alone, and (c) the two performing together (not to scale) (Reproduced
with permission from [20]).

The SFC is not the only method of formant tuning used by male singers.

They are also capable of tuning one or more of their formants to near a

harmonic of their voice. This is known to be employed by several famous

singers, including the tenors Luciano Pavarotti and Placido Domingo. Miller

[111] found that while Domingo relied on the resonance of the SFC at around

2.8 kHz, Pavarotti used formant tuning to shift the second formant of the

vowel /6/ by about 500 Hz, to coincide with the third harmonic of the note,

giving the sound an entirely different quality, and Pavarotti his distinctive

tone.

For higher male voices such as tenors (f0 range approx. 131 - 523 Hz), the

tuning of individual resonances is also thought to have advantages. Near

the upper limit of the tenor range at around 500 Hz, it is possible that the

nearest harmonic to R1 (in speech) might be 250 Hz away. This is especially
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the case for the /u/ vowel, which has a low value of R1, and hence R1:f0,

and R1:2f0 tuning are possible over the full tenor range, and R1:3f0 tuning

might be useful in the lower part of the range. R2 could also be tuned to

2f0, 3f0, or even 4f0 [14, 112]. The full range of resonance tuning strategies

available to tenors is shown in Figure 2.21.

Figure 2.21: The resonance tuning strategies available to be used by Tenors,
due to the harmonics falling into the ranges of R1 and R2 (after [14]). Diag-
onal black lines show the first n harmonics, and diagonal red lines show the
harmonics that can be tuned to the first or second resonance.

This was investigated by Titze et al. [113] who used an analysis-by-synthesis

technique, adjusting the formant frequencies and glottal properties of a source-

filter model to match the spectra of 6 tenor voices. R1 was found to be higher

than the fundamental for all vowels except /u/, and the absence of R1:f0

tuning was interpreted as due to a desire to maintain a “characteristic male

quality” [113].

Both R1:2f0 and R2:2f0 formant tuning were investigated in baritone singing

by Miller and Schutte [114] using measurements of sub- and supra-glottal

pressure. They concluded that the “resonance-enhancing effects of formant

tuning appear to be intentionally exploited by the singer in response to the
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demands of the musical phrase”.

Neumann et al. [115] inferred from the sound spectrum that, for male opera

singers in the chest register, the second harmonic was “resonated by” the first

resonance (R1:2f0 tuning) and the fourth harmonic by the second resonance

(R2:4f0 tuning) with the implication that R2 ≈ 2R1 ≈ 4f0. Across the

passaggio (the transition between registers), R2 often fell near 3f0.

2.3.2 Resonance Tuning in Female voices

Unlike male singers, where the SFC helps to boost the amplitudes of the

harmonics around 3 kHz, evidence of a true SFC in sopranos is extremely

limited. At higher fundamental frequencies, the acoustic possibilities of the

SFC become less useful to the singer, as it can only increase the relative

amplitude of harmonics in the spectrum between 2-4 kHz. Therefore at very

high fundamental frequencies, very few harmonics will fall in the SFC area

of the spectrum. Whilst low female voices may make use of the technique

to a limited extent, the physiological and acoustic limitations of the soprano

voice make the use of alternative techniques necessary.

Since sopranos sing at extremely high pitches there is already a considerable

amount of spectral energy in this region due to the presence of high-amplitude

“early” harmonics [12], caused by the high fundamental frequencies. For

example if a singer sings a high C, at approximately 1000 Hz, then the first,

second and third harmonics will be at 2 kHz, 3 kHz, and 4 kHz respectively, so

only 3 harmonics will fall in the frequency range usually associated with the

singer’s formant cluster. Barnes et al. [116], in a study involving 6 sopranos,

also found a large amount of energy at high frequencies for successful singers

(in the region 2-4 kHz), but no evidence of a singer’s formant cluster.

Sundberg [13] proposed that soprano singers could tune one or both of the

first two vocal tract resonances to near the harmonics of the larynx voice

source in order to make full acoustic use of these resonances and increase the
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acoustic output power without requiring increased effort from the singer.

At the upper end of the soprano range, fundamental frequency can exceed

1000 Hz. It is not only possible, but highly likely, that the fundamental

frequency will fall above one or more of the first two formants, as the first

and second formants typically lie between 310 and 860 Hz and 920 and 2790

Hz, (D#4 and A5, and A#5 and F7) respectively [117], which are mostly

within a soprano’s range. This implies that not only will the production of

sound be much less efficient, as some resonances of the vocal tract are not

being utilised to their full potential, but it is also likely that the vowel will

be harder to identify, as there is little or no spectral energy at the formant

frequencies.

In the speech of an adult female, for example, the expected frequency of

the first formant for an /A/ vowel would be approximately 850 Hz [117].

However, if singing in the upper middle of her range at an A5 (880 Hz),

the first formant is redundant as there is no sound energy in this frequency

range to amplify. The soprano singer therefore tunes this resonance (again by

manipulating the placement of the sound modifiers) near to the fundamental

frequency, greatly increasing the relative intensity of the fundamental and

increasing the perceived loudness of the sung tone.

An experiment by Garnier and Henrich [15] investigated the resonance tuning

strategies used by sopranos across their range. The study involved twelve

sopranos (4 non-experts, 4 advanced, 4 professionals) who sustained pitches

on /A/ vowels, from A4 (440 Hz) to their highest sustainable note, while the

frequencies of the first two vocal tract resonances (R1 and R2) were measured

by broad band excitation at the mouth [58].

They found that R1:f0 tuning was employed below C6 by all the professionals

and advanced singers and, to some extent, by the non-expert singers as well.

R2:2f0 tuning was seen in 3 professionals, 2 advanced, and 2 non-expert

singers. Six of the singers used R2:f0 tuning at very high pitches (above C6),

whilst R1:2f0 tuning was only found in two of the singers (in the lower part

of the range investigated).
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The resonance tuning strategies available to soprano singers is shown in Fig-

ure 2.22. It can be seen that R1 can be tuned to f0 throughout the entire

vocal range, and 2f0 at the lower end of the range. R2 can be tuned to 3f0,

or in the upper part of the soprano range, to 2f0.

Figure 2.22: The few resonance tuning strategies available to be used by
Sopranos (after [14]). Diagonal black lines show the first n harmonics, and
diagonal red lines show the harmonics that can be tuned to the first or second
resonance.

Production of Resonance Tuning

Although research into the effects of various articulators on speech has been

ongoing for over 40 years, e.g. [25, 118, 119, 120, 121], it cannot be assumed

that the same articulatory techniques are used in singing. Indeed Ventura et

al. [122] investigated the differences in the vocal tract between speaking and

singing and found differences in the volumes of the whole vocal tract cavity

and the oral and the pharynx cavities for some vowels.

The resonance tuning techniques available to professional soprano opera

singers are now understood to an extent [13, 14] (limited to very few subjects

and vowels), as well as those strategies most used in different pitch ranges of
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the soprano voice [59]. However, the exact methods used to produce these ef-

fects are not yet fully understood. Garnier et al. [59], investigated resonance

tuning while capturing video of the singer’s face to measure effects such as lip

opening and spreading, and found that while some singers increased mouth

area with f0 over the whole range of R1:f0 tuning, others only showed this

strategy on the higher part of this range. Studies investigating male singers,

such as Pabst et al. [123] and Daffern [124] found that some singers raise

their larynges with increasing fundamental frequency, although this was not

always the case.

Previous studies on resonance tuning using MRI include Echternach et al.

[6], who investigated registers in both male and female voices using real-

time 2D MRI, considering factors including lip opening, jaw opening, tongue

height, jaw protrusion, oropharynx width and uvula elevation. Clear vocal

tract changes were not found to be associated with either of the register tran-

sitions investigated. However, changes in the measured physical parameters

were found when f0 approached the first formant. In a subsequent study,

Echternach et al. [99] also used a combination of real-time 2D and static 3D

MRI to investigate 3D factors including the tongue shape, the size of the pir-

iform sinuses, and lip and jaw opening at very high fundamental frequencies.

The study found only minor modifications of the vocal tract shape, involving

a decrease of the piriform sinus as well as small changes of tongue position.

Formant frequencies were not very different between C6 and G6 for F1 and

F3, respectively, and F2 was only slightly raised for G6. Bresch et al. [7] used

real-time 2D MRI to investigate resonance tuning in five sopranos, and al-

though subjects generally showed a more open mouth shape with increasing

fundamental frequency, it was suggested that sopranos might not all employ

the same generalisable strategies for resonance tuning as had previously been

thought.

Studies researching resonance tuning in soprano voices have generally not

included as many subjects as would be desirable statistically, due to the

difficulties involved in obtaining suitable subjects and suitable measurement

facilities (such as the very high cost of MRI scans). For example, in Sundberg
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et al. [13] and Carlsson et al.’s [125] early work identifying resonance tuning,

only one soprano was considered. Similarly, Echternach et al. used MRI

to study the vocal tract of a single soprano singing at very high frequencies

[99], and register changes in one tenor and one baritone [5]. Miller et al.

[126] compared methods of locating formant frequencies in one bass-baritone

singer, and Delvaux et al. [98] studied one female and two male singers to

investigate the impact of the piriform fossae on the singing voice. Similarly,

in a study on speech, Sulter et. al [118] studied a single male subject to

compare predicted resonances with measured values. Clément et. al [127]

compared vocal tract resonances obtained from recorded speech with those

calculated from an area function of the vocal tract acquired using MRI in

one male speaker.

2.3.3 Other resonance tuning techniques

While the SFC and soprano resonance tuning techniques are now beginning

to be understood, these are by no means the only resonance tuning techniques

available to singers. The human voice is an incredibly versatile and adaptable

instrument, the product of thousands of years of evolution, and can produce

sound in a variety of methods.

The Whistle register

The highest vocal register is commonly referred to as the whistle register,

and uses laryngeal mechanism M3. It is characterised by a concentration

of acoustic power in the two first harmonics [128], reduced power around 3

kHz and enhanced jitter [129]. Perceptually, its voice quality is described as

fluty. In this frequency range, R1 : f0 tuning becomes less useful, as above a

certain frequency the vocal tract cannot be further lengthened and the jaw

reaches its lower limit, which prevents R1 being raised any higher. Evidence

of R2 : f0 has been found in professional soprano singers above 1046 Hz (C6)

[15].
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Overtone singing

An extreme example of resonance tuning is Tuvan throat singing [130], where

a low fundamental note is sung and one resonance of the vocal tract is varied

to play a tune, producing a whistling or fluty tone. Resonance tuning tech-

niques are also used in the Bulgarian folk singing styles “teshka” and “leka”

[131]. These involve tuning the first vocal tract resonance to the second

harmonic of the voice, in order to produce a distinctive tone.

2.4 The Perception of Resonance Tuning

Although resonance tuning is advantageous to the singer in terms of acoustic

efficiency, it does have disadvantages; the primary function of the lower for-

mants is to convey information about vowels, so it would be expected that

changing the position of the formants would change the quality of the vowel,

which may be one of the reasons that vowels at high pitches are harder to

identify.

This has implications on performance practice and the training of singers,

as there is considerable disagreement between singing teachers on the cor-

rect approach to singing high notes, many believe that at high pitches it is

necessary to “neutralise” vowels to some extent and produce them in a more

similar way, whereas others believe it is important to keep the different vowel

sounds distinct [3].

2.4.1 Perception of formant/resonance properties

The frequency response of the vocal tract is characterised not only by the

locations of the peaks in the transfer function (resonances), but also by prop-

erties such as the relative amplitudes of formants/resonances, their Q factor

(the centre frequency relative to the bandwidth) and their bandwidths.
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Each of these separate factors can be altered to a certain extent before a

perceptual difference is noticed by a listener. A study by Flanagan [132]

found that for synthesised vowels with a fundamental frequency of 120 Hz,

the first formant could be shifted 20 Hz and the second formant 20-35 Hz

before listeners could detect a difference. A study by Mermelstein [133],

found that the difference limen (in speech) was 50 Hz for F1, and 142 Hz for

F2. However, this was greater when the vowel was between two consonants

than when it was just spoken alone.

The effects of the relative amplitudes of the formants has been investigated

by Flanagan [134], who varied the amplitude of the second formant of syn-

thetic vowel sounds and found that 50 % of listeners identified two sounds as

“different” when their second formants differed by 3 dB. Kiefte et al. [135]

found that the amplitude of the second formant affected whether the listener

perceived an /i/ or an /u/ vowel and concluded that this might partly be due

to masking effects when the amplitude of a formant was very low relative to

neighbouring formants.

Although evidence of resonance tuning in professional soprano singers has

now been observed in a number of studies (although it should be noted that

not all singers employed the same techniques), there is a lack of research into

its perception.

There have been very few studies specifically investigating the perception

of resonance tuning. In 1991, Carlsson-Berndtsson and Sundberg published

a perceptual study [125] in which synthesised sung vowel sounds were gen-

erated to represent a male voice at fundamental frequencies ranging over a

descending octave-wide chromatic scale from C4 (261 Hz) to C3 (131 Hz),

representing the vowel /A/. These vowel sounds were then treated in one

of four ways. In “strategy A” the first formant was tuned to the harmonic

closest to 550 Hz. In “strategy B”, the second formant was tuned to the

harmonic lying closest to 1000 Hz. In “strategy C” either the first or second

formant was tuned to the harmonic closest to 550 or 1000 Hz, depending

on which option gave the smallest formant frequency deviation from these
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values. Finally in “strategy D”, the formants remained at 550 and 1000 Hz

in all vowel sounds. Sounds with tuned formants (using strategies A, B,

or C), were presented together with the non-tuned vowel sounds (strategy

D) in pairs, and 19 listeners were asked, “Which voice production do you

find most correct?”. The vowel sounds with unchanged formant frequencies

were preferred by all subjects except for one (out of nineteen), however the

mere-exposure effect [136] (the psychological phenomenon whereby people

prefer stimuli that they are more familiar with) could contribute to these

findings, as due to the pairing methods used, subjects heard the sounds with

unchanged tuning three times more often than the other tuning strategies.

2.4.2 Perception of vowels at high frequencies

There have been a number of studies on the perception of vowels at high

frequencies (nearing 1000 Hz) which show that the likelihood of a sung vowel

being misunderstood increases with f0. Scotto di Carlo et al. [137] showed

that in perceptual tests, where listeners were played samples of sung vowels,

the vowel was identified incorrectly much more frequently as the pitch of

the note increased, for all vowels. 64 % and 62 % of samples were correctly

identified in lower and lower-middle registers respectively, but only 18 % and

9 % were correctly identified in upper-middle and upper registers. They also

found that incorrectly identified vowels tended to be confused with /A/ the

most, and suggested that the reason for this was that, at high pitches, the

vocal tract tends to the shape required to produce an /A/ sound. The differ-

ence in perception between registers was thought to be caused by different

methods of resonance tuning and different use of articulators. The vowels

were categorised according to features such as lip rounding and jaw opening;

it was found that lip rounding was not conserved at high pitches, as the

singer tended to spread the lips, explaining why /i/ and /e/ were relatively

well-perceived at high pitches. Jaw opening was also found to be important

and closed vowels such as /u/ (see Figure 2.23) were only well-identified at

lower pitches.
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Figure 2.23: The relationship between different IPA vowels and how they can
be categorised as open to closed and front to back.

A similar study by Benolken et al. [138] recorded a soprano singing 12

vowels over her entire range and asked listeners to identify which vowel it

was. This study also found that vowels were more likely to be mis-identified

with increasing fundamental frequency and concluded that this was due to

the fact that several vowels have similar second formants, but are mainly

distinguished by their first formants, so as the fundamental frequency is

increased and the first formant raised, these sound increasingly similar.

2.5 Summary

This chapter has presented an overview of voice production and the main

mechanisms by which sound is produced by the vocal folds and subsequently

modified by the vocal tract to produce the different vowel sounds and tim-

bres that allow production of a wide range of voiced sounds. Measurement

techniques for analysing the various aspects of the voice were considered.

Spectrograms, LTAS, LPC and Fourier transforms can be employed to anal-

yse the acoustic output of a singer, while laryngoscopy or endoscopy allow

direct observation of the vocal folds and EGG can be used to deduce key

parameters such as glottal closure, allowing insight into the workings of the



CHAPTER 2. LITERATURE REVIEW 77

vocal folds and larynx. Finally, the structure of the vocal tract itself can be

studied using X-ray, magnetic resonance imaging or articulography.

Current literature (and findings) concerning resonance tuning in classical

singing have been reviewed; how a singer can modify the vocal tract reso-

nances and the effects of this on the acoustic output have been discussed.

Some of the modifications that are commonly applied have been introduced:

the singer’s formant cluster technique in male voices, possible methods of

resonance tuning in higher male voices (including tuning higher formants to

harmonics) and finally the reasons for resonance tuning in soprano voices

and the observed methods of resonance tuning in professional sopranos.

The main focus of this work will be on resonance tuning in soprano voices.

This work will build on findings of Joliveau, Garnier and Henrich et al.

[14, 15, 58], which has established the extent and type of resonance tuning

by sopranos (section 2.3.2), and work by Echternach and Bresch et al., [7, 99],

which has investigated articulator movement in the mid-sagittal plane using

MRI techniques.

————————————————————————–



Chapter 3

The Perception of Resonance

Tuning

This chapter details an experiment carried out to investigate listeners’ per-

ception of different methods of resonance tuning. The chapter sheds light

on the purpose and effects of resonance tuning to better understand how it

can be applied. Resonance tuning aims to increase the acoustic efficiency of

voice production across a range of fundamental frequencies, but it also has

an impact on perceptual aspects of the singing voice.

This pilot study investigates the nature of these perceptual effects and in-

forms the main work of this thesis, presented in Chapter 6, in which the type

and extent of resonance tuning used by adult soprano singers is investigated,

as well as the articulatory mechanisms involved in its production.

This work was first published as a journal paper “The Perception of Formant

Tuning in Soprano Voices” in Journal of Voice [139].
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3.1 Introduction

As introduced in Chapter 2, when singing at high fundamental frequencies,

resonance tuning represents a highly efficient method of increasing the acous-

tic power produced by the voice and it is now an accepted phenomenon in

soprano singing [13, 15, 58]. Adjusting the resonances of the vocal tract en-

sures that a harmonic will fall within the frequency range of a vocal tract

resonance and allows the singer to match the acoustic impedance of the source

(glottis) and the filter (vocal tract) [59, 140]. The first and second formants

in female speech typically lie between 310 and 860 Hz (D#4 and A5) and

920 and 2790 Hz (A#5 and F7) respectively [117]. The soprano range can

extend to above 1000 Hz, there is therefore a wide range of frequencies over

which resonance tuning can be used by a soprano singer.

In 1991, Carlsson-Berndtsson and Sundberg [125] published a perceptual

study in which synthesised sung vowel sounds were generated to represent

a male voice and had the first formant tuned to a nearby harmonic. The

samples with unchanged formant frequencies were preferred by all listeners

except for one (out of nineteen), so it was concluded that listeners preferred

singing without formant tuning. However, the design of the study meant that

formants could be tuned to different harmonics in adjacent vowel sounds.

Also, listeners heard the untuned samples three times as often as any of the

other tuning strategies, possibly introducing confounding effects such as the

mere-exposure effect [136].

In addition to the effects of resonance tuning, acoustic theory suggests that

vowel recognition greatly diminishes at high fundamental frequencies [137]

and there is still some debate as to whether singers should attempt to “neu-

tralise” vowels at high fundamental frequencies. Singers can therefore either

choose to focus on the sound quality produced (rather than the perceptual

distinction between vowels) or make a special effort to keep vowels distinct,

potentially sacrificing some acoustic efficiency and ease of production [3].

This chapter will discuss a study conducted using a perceptual test to inves-
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tigate the perception of resonance tuning at high fundamental frequencies.

In previous works [14, 15], four different methods of resonance tuning have

been observed in sopranos:

(i) extensive R1:f0 tuning,

(ii) often in conjunction with R2:2f0 tuning;

And at the upper and lower ends of the frequency range,

(iii) some R2:f0 and

(iv) R1:2f0 tuning.

The two most common tuning conditions reported in previous work are R1:f0

and R2:2f0 tuning. Therefore, these are investigated in this experiment, both

together and in isolation, producing four different tuning strategies in total.

The protocol used alters that of Carlsson-Berndtsson and Sundberg [125] to

be suitable for the soprano voice and removes the possibly confounding in-

fluence of the mere-exposure effect [136]. The properties investigated include

which tuning strategies are preferred, their naturalness and which produce

the mostly clearly identifiable vowel sounds.

The hypothesis of this experiment is that the strategies used most frequently

by sopranos in practice will be those that are preferred by listeners, perceived

to be most natural and correctly identified most often. A good performer

should aim to not only produce a sound that is pleasing and natural to the

audience, but also be understandable and accurately convey the meaning of

the text. It might not be possible to achieve all of these aims, so some degree

of compromise may be required.
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3.2 Method

Similar to the procedure used by Carlsson-Berndtsson et al. [125], synthe-

sised vowel sounds were created to replicate voiced sounds, for which the

resonance frequencies could be controlled to represent different resonance

tuning strategies. Samples with f0 typical for a soprano range were syn-

thesised and, as resonance values have been shown to remain approximately

constant in singing up to the frequency where f0 = F1 [125], the average

formant values in speech for women’s voices were used for the baseline reso-

nance values (as defined by Peterson and Barney [117]). These are shown for

the three vowels investigated in Table 3.1. As in [125], four resonance tuning

strategies were tested:

• In “strategy A” no resonance tuning was used, so the vowel resonances

remained constant at the average values for the vowel.

• In “strategy B”, the first resonance was tuned to the fundamental

(R1:f0), while the second and third resonances (R2 and R3) were kept

constant at the average values for the vowel.

• In “strategy C”, the second resonance was tuned to the second har-

monic (R2:2f0), while the first and third resonances (R1 and R3) were

kept constant at the average values for the vowel.

• In “strategy D”, the first resonance was tuned to the fundamental

(R1:f0), and the second resonance was tuned to the second harmonic

(R2:2f0), while the third resonance (R3) was kept constant at the av-

erage value for the vowel.

3.2.1 Synthesised Signal

Synthetic vowel sounds were used in this study, as they offered control over

the parameters to be investigated (i.e. resonances). Synthetic vowels also
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Vowel F1 F2 F3

/A/ 850 Hz (G#5) 1220 Hz (D6) 2810 Hz (F7)
/u/ 370 Hz (F#4) 950 Hz (A#5) 2670 Hz (E7)
/i/ 310 Hz (D#4) 2790 Hz (F7) 3310 Hz (G#7)

Table 3.1: The first three formant values for three vowels, when spoken by
female voices [117].

eliminate the variations that occur in natural vowel sounds, which could

potentially introduce confounding effects in the results. The synthesised

sounds were generally not perceived to be authentic, but they nevertheless

permitted the assessment of relative changes in perceptual attributes, such as

preference, naturalness and vowel identification. This is useful for informing

the design of the main study in Chapter 6.

Glottal Signal

The synthesised vowel sounds were produced in MATLAB [68] using a Liljencrants-

Fant (LF) glottal flow model to create a model of the voice source (glottal

signal). Typical parameter values for a female were used from [26] (setting

Rd = 1) (full parameters in Appendix I):

Fa = 400Hz, Rk = 0.30, Rg = 1 (3.1)

Where Fa is the cut-off frequency (accounting for the degree of spectral tilt),

Rk specifies the relative duration of the falling branch from the peak at time

Tp to the discontinuity point Te, and Rg is a parameter which increases with

a shortening of the rise time Tp.

Vibrato was also added to the voice source to increase naturalness, and make

it sound sung rather than spoken. This consists of a 6 Hz [141] sinusoidal

modulation of the fundamental frequency, with an extent of 60 cents [141].
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Vocal tract effects

The resonances of the vocal tract were treated as a series of connected single-

peak IIR filters using the iirpeak function in MATLAB [68] (all synthesis

code in Appendix N). The glottal signal was passed through each filter in

turn. A study investigating formant bandwidth [142] used averaged data

from Fujimura and Lindqvist [93] and Fant [143]. It was found that the

bandwidth remains approximately constant, at around 50 Hz, for formant

frequencies between 300 and 2000 Hz. In light of this, the values used for

the resonances here are the formant values shown in Table 3.1 [117]. The

resonances and formants can be considered approximately equivalent, with

the bandwidths fixed at 50 Hz.

To make the synthesised voice sound more natural, and to prevent transient

effects due to a sudden onset and offset of the sound, an amplitude window

the same length as the sample was applied. The window consisted of the

rising and falling halves of a Hanning window in the first and last quarter

of each sample, respectively. This simulated a “flat”, sustained vowel sound,

with an onset, constant period, and offset [144]. The amplitude window was

defined as a proportion of the sample length, but since all the samples had the

same length, this equated to a constant onset duration, as typically occurs

in natural vowels.
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Figure 3.1: The glottal signal (black) synthesised using the LF model, and
the output signal including the vocal tract effects for an /u/ vowel (grey).

The resulting synthesised signal was then de-emphasised (as recommended

by Hermes [145]) to improve the naturalness. This was done by low-pass

filtering the signal to produce a resultant spectral slope of approximately

-12 dB per octave, so that the relative resonance amplitudes more closely

resembled the human voice [19]. The fundamental frequencies were chosen

to be around the frequency of the first resonance, as shown in Table 3.2.

Examples of the spectrum of the glottal signal and resulting output signal

(including the vocal tract effects) are shown in Figure 3.1.

The samples were each 2 seconds in length, with bit depth 16 bits and a

sampling frequency of 44.1 kHz. The samples were generated as a single

channel, but played over two channels in dual mono.

In practice, a vocal tract resonance at a frequency just above a harmonic pro-

duces an inertive reactance, causing the vocal tract to assist the vibration

of the vocal folds, which results in an increased acoustic power output [27].

Conversely, when a vocal tract resonance is slightly below a harmonic, there

is a compliant reactance and the vocal tract no longer assists the vibration

of the vocal folds, resulting in a reduced acoustic power output [146]. There-



CHAPTER 3. THE PERCEPTION OF RESONANCE TUNING 85

Pitch no.
Vowel

1 2 3 4

/A/ 529 Hz
(C5)

671 Hz
(E5)

(F1 = 850 Hz) 843 Hz
(G#5)

1053 Hz
(C6)

/u/ 233 Hz
(A#3)

294 Hz
(D4)

(F1 = 370 Hz) 370 Hz
(F#4)

472 Hz
(A#4)

/i/ 220 Hz
(A3)

277 Hz
(C#4)

(F1 = 310 Hz) 349 Hz
(F4)

440 Hz
(A4)

Table 3.2: The fundamental frequencies of the four synthesised vowel sounds
for each vowel sound (12 in total). These were generated for each resonance
tuning strategy.

fore, to maximise the impact of resonance tuning, vocal tract resonances are

tuned to just above the relevant harmonic frequencies (5 cents above in this

experiment).

The relationship between the resonances and harmonics can be seen in Figure

3.2, where the harmonics are plotted against fundamental frequency and the

formant values in speech (the untuned values for R1 and R2) are represented

by horizontal lines (from [117]).



CHAPTER 3. THE PERCEPTION OF RESONANCE TUNING 86

(a) /A/ vowel.

(b) /u/ vowel.

(c) /i/ vowel.

Figure 3.2: The values of the first and second formants in speech (solid
and dashed lines respectively), for each vowel, and the values of f0 and 2f0
(triangle and circle, respectively) for each of the four pitches.
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3.2.2 Participants and Distribution

A perceptual test was designed to test the hypothesis and distributed via

email and social media using the online survey software Qualtrics [147]. The

audio files for each vowel, pitch and tuning strategy were converted to mp3

files and uploaded to Qualtrics. Before commencing the perceptual test,

participants1 first answered a questionnaire to ascertain demographic infor-

mation, their level of vocal ability, singing training and their music listening

habits. This captured the listener’s own singing ability, as well as their ex-

perience of listening to professional singing. Nine listeners had some singing

training (four of whom had professional training). None of the participants in

this experiment had participated in the other experiments of this thesis (the

preliminary experiment in Chapter 4, or the main experiment in Chapters 5

and 6).

45 participants took part, but results from 15 of these were discarded, either

because they did not complete the entire test, or because they reported seri-

ous hearing problems. Of the remaining 30 participants, 20 were male, and

8 female (2 chose “other/prefer not to say”). They were aged 20-75, with a

mean age of 33.7 years. The time taken (including breaks) varied from 13

minutes to 73 minutes (discounting 2 outliers), with an average time of 32

minutes.

Participants were able to take the perceptual test on their own devices (ex-

cluding mobile devices). 15 participants used closed-back headphones, 7 used

open-backed headphones, and 7 used earbuds. Participants were instructed

to take the test in a quiet environment with no distractions and not to adjust

the audio level on their computer after starting the test.

There may have been slight differences in audio quality between participants,

but internet distribution allowed a greater number and variety of partici-

1The terms “participant” or “listener” have been used to refer to people who partici-
pated in the listening test described in this chapter. To distinguish between the different
types of involvement, “subject” is used to refer to the singers studied in Chapters 4, 5 and
6.



CHAPTER 3. THE PERCEPTION OF RESONANCE TUNING 88

pants to participate in the test, so was considered worthwhile. Schoeffler et

al. compared laboratory and web-based results of an auditory experiment

and found no significant differences [148], suggesting that this can be an

acceptable distribution method.

Prior ethical approval was gained from the Physical Sciences Ethics Com-

mittee at the University of York.

3.2.3 Perceptual test design

The perceptual test consisted of comparisons between sets of four vowel

sounds using sliders. Each set contained four synthesised vowel sounds, cre-

ated as outlined in section 3.2.1, with the same f0 and vowel, but treated

with the four different tuning strategies A, B, C and D.

The design was similar to a MUltiple Stimuli with Hidden Reference and

Anchor (MUSHRA) [149] test design, where the untuned sample could be

considered as a reference. The participants could press the buttons to play

the vowel sounds as many times as they wished. Each set of four vowel sounds

was presented in a random order and the order of vowel sounds presented

in each question was also randomised to minimise the effects of program-

dependence. Participants were asked to rate preference and naturalness on

continuous sliding scales from 0 to 100, with 100 indicating the highest pref-

erence or naturalness.

For the vowel identification, listeners were presented with each sample indi-

vidually. They were asked “which vowel does this sample sound the most

like?” and given a choice of 12 different vowel sounds, presented as short

words.

Examples of the test graphical user interface (GUI) used to present compar-

isons to participants for the (a) preference, (b) naturalness, and (c) vowel

identification are shown in Appendix A.
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This design ensured that each resonance tuning strategy was heard by the

listeners an equal number of times, reducing the possibility of confounding

effects due to the mere-exposure effect [136].

3.3 Results and Analysis

3.3.1 Data Processing

Data collected from the questionnaire, together with the perceptual test an-

swers were collected in Excel and then imported into MATLAB for analysis.

Raw results are included in Appendix N.

The scores for preference and naturalness were first normalised to have a

mean of zero and a standard deviation of 1 across each participant, to reduce

inter-participant variability. The mean score and the standard error of the

mean across all participants were then calculated for each vowel, f0 and

tuning strategy, so that the average normalised score could be plotted against

f0 for each vowel. The results for preference and naturalness are shown in

Figures 3.3 and 3.4 respectively.

The question on vowel identification was analysed by calculating the per-

centage of participants that chose the correct vowel sound for each sound.

These values are shown in Figures 3.5(a)-(c)(i) for each vowel, and the most

commonly chosen vowel sound (correctly or incorrectly) is shown in Figures

3.5(a)-(c)(ii).

The continuous scales for the questions on preference and naturalness allowed

Analysis of Variance to be carried out on these results. This is discussed in

section 3.3.6.
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3.3.2 Results

(a) /A/ vowel.

(b) /u/ vowel.

(c) /i/ vowel.

Figure 3.3: The average scores for the different tuning strategies A-D (see
section 3.2.3) investigated for preference, for each vowel. The standard er-
ror of the mean is shown by error bars. The thick vertical line shows the
frequency of the first formant in speech, from [117].
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(a) /A/ vowel.

(b) /u/ vowel.

(c) /i/ vowel.

Figure 3.4: The average scores for the different tuning strategies A-D (see
section 3.2.3) investigated for naturalness, for each vowel. The standard
error of the mean is shown by error bars. The thick vertical line shows the
frequency of the first formant in speech, from [117].
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(a) /A/ vowel (“barn”). (b) /A/ vowel (“barn”).

(c) /u/ vowel (“boot”). (d) /u/ vowel (“boot”).

(e) /i/ vowel (“beet”). (f) /i/ vowel (“beet”).

Figure 3.5: Vowel identification results for all three vowels. Figures (a),
(c) and (e) show the percentage of vowel sounds correctly identified for each
pitch and tuning strategy. Lighter cell shading indicates a higher percentage.
Figures (b), (d) and (f) show the most commonly chosen vowels (correct
choice in bold) for each pitch and tuning strategy.

3.3.3 /A/ vowel

The results for the /A/ vowel are similar for preference and naturalness, with

strategies withR1 tuning (B and D) scoring highest at f0 values belowR1, but

strategies without R2 tuning (A and B) scoring highest at higher fundamental

frequencies. There is no clear relationship between tuning strategy and vowel

identification. The results for the vowel identification for the /A/ vowel show

that at f0 below R1 strategy C (R2 tuning only) scored the highest, with
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strategies A and D (no tuning and both resonances tuned) scoring slightly

lower. Strategy B (R1 tuning) was the most commonly mis-identified. At f0

values above R1 no tuning (A) was correctly identified most frequently and

R2 tuning (C) least frequently.

3.3.4 /u/ vowel

The results for the /u/ vowel do not appear to show a clear difference be-

tween the different tuning strategies for preference. However, there is some

separation for naturalness with strategies with R2 tuning (C and D) scoring

highest in the middle of the f0 range investigated. The vowel identification

was generally very poor for this vowel (only 9 % correct on average). There

did not appear to be a clear pattern in these results, although tuning strate-

gies involving R2 tuning (C and D) scored a little lower than those without

(A and B) at most f0 values. Figure 3.6 shows how this vowel was commonly

mis-identified.

Figure 3.6: A simplified map of the IPA monophthong vowels, and the ways
in which the /u/ vowel (top right) was most commonly mis-identified.

Even the untuned vowel sounds were mostly incorrectly identified for the

/u/ vowel. However, the most often chosen vowel sounds were similar to

the intended vowel (adjacent on the IPA diagram - Figure 3.6). Where
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sounds were not identified as the intended vowel, the results for preference

and naturalness are still valuable, as the listener was not told the intended

vowel, simply asked to choose which sound they preferred/found the most

natural. Considering these results compared to the other vowels seems to

suggest that the /u/ vowel (the most closed and back vowel) is unusual and

perhaps fundamentally more difficult to identify or synthesise.

3.3.5 /i/ vowel

The results for the /i/ vowel show clearer responses than the other vowels,

with strategies with R2 tuning (C and D) scoring much higher than strategies

without R2 tuning (A and B) for both preference and naturalness. However,

this effect is reversed for the vowel identification, with approximately 70 %

of the vowel sounds without R2 tuning correctly identified, but none of the

vowel sounds with R2 tuning.

3.3.6 Analysis of Variance

The results for the questions on preference and naturalness were split by

vowel, and Analysis of Variance (ANOVA) was carried out in MATLAB (code

included in Appendix N). The variables considered were tuning strategy (A,

B, C or D) and fundamental frequency. An interaction model was used, to

determine whether the variables interacted significantly.

Figure 3.7 shows the p-values for each vowel, for both preference and nat-

uralness questions. The chosen significance level was 5 % (p ≤ 0.05), and

significant results are highlighted in grey.
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Figure 3.7: The p-values from the analysis of variance (ANOVA) results for
preference and naturalness questions. Significant results are highlighted in
grey.

The ANOVA results for the questions on preference show that there was

a significant difference between the results for different tuning strategies as

well as different f0 values for the /A/ vowel. There was also a significant

interaction between these two variables, meaning that the listeners’ prefer-

ence for the sounds depended on a combination of both of these attributes.

For the /u/ vowel no significant results were seen, which supports what can

be observed in Figure 3.3(b), that is, that there is no clear pattern in the

results. For the /i/ vowel there was a significant difference between tuning

strategies, but not f0 values (and no interaction). Again, this supports the

results illustrated in Figure 3.3(c), where there is a clear difference between

the different tuning strategies, but no great variation in the results across

fundamental frequencies.

For the naturalness results, no interaction between the variables was seen

for any vowel, so the effects of tuning strategy and f0 can be considered

separately. The results for all three vowels were the same: all three showed

a significant difference in naturalness, both between tuning strategies and

fundamental frequencies.

Based on the results of the ANOVA, no conclusions can be drawn as to the

nature of the effects of tuning strategy and f0 on the perception of synthesised
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singing sounds for preference and naturalness. However, this analysis does

indicate that both these variables have a significant effect on perception,

although the exact relationship varies between vowels.

3.4 Discussion

In this section, the results for each vowel will be discussed together, first in

respect to the preference questions, then naturalness and finally for vowel

identification.

3.4.1 Preference

From Figure 3.3(a), it can be seen that for the /A/ vowel, at the lower two f0

values, strategies with R1 tuning (B and D) were preferred above strategies

without R1 tuning (A and C). The four tuning strategies all scored similarly

when f0 was equal to R1. However, when R1 was above f0 the results differed,

with strategies without R2 tuning (A and B) preferred over those with R2

tuning (D and C). R1 tuning only (B) scored highly across the whole range

of f0 values, which is indeed the method used most often by sopranos in this

range [15]. R2 tuning only (C) scored the lowest across the whole range of

f0 values, indicating that it was the least preferred tuning strategy. This is

not surprising at lower fundamental frequencies, because R2 tuning is rarely

observed in that region. However, above the normal range of R1 tuning, R2

tuning has been observed, although rarely in isolation [15].

Interestingly, the results for the /u/ vowel (Figure 3.3(b)) show no significant

difference in preference scores between the four tuning strategies used. There

is a slight increase in score with increasing f0 for all tuning strategies, which

could simply indicate that the listeners preferred the higher-pitched sounds,

or that difficulty identifying vowel sounds might play a part. The ANOVA

results in Figure 3.7, support this, indicating that for preference, neither
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tuning nor fundamental frequency had a significant effect.

For the /i/ vowel (Figure 3.3(c)), strategies with R2 tuning (C and D) were

preferred over those without it (A and B) across all f0 values. The second

formant for this vowel is very high in speech (2790 Hz) compared to that

of the other two vowels investigated (1120 Hz and 950 Hz for /A/ and /u/,

respectively). Therefore, when R2 is tuned to either the first or second har-

monic, this represents a considerable increase in the amount of energy in the

lower part of the spectrum compared with an untuned R2. The very high

scores in preference for tuning strategies with R2 tuning (C and D) indicate

that this increase in low-frequency energy was preferred by listeners, which

suggests that, in practice, listeners would prefer singers to lower the second

resonance to frequencies similar to those in the other vowels.

This preference for tuned second resonances may explain why this technique

is employed at very high fundamental frequencies [15] and why “sympathetic”

composition takes this into account, using vowels with lower formant values

at high frequencies such as an /A/ vowel over an /i/ vowel [150].

3.4.2 Naturalness

From Figure 3.4(a), as for preference, it can be seen that for the /A/ vowel,

strategies involving R1 tuning (B and D) were considered the most natural at

f0 values below R1. However as f0 rose above R1 the perceived naturalness

of strategy D (R1 and R2 tuning) decreased, while strategy A (no tuning)

remained roughly constant, so that at higher f0, strategies without R2 tuning

(A and B) were perceived as more natural than those with R2 tuning (C and

D). These results are surprising as they do not reflect the resonance tuning

methods known to be used by singers for this vowel [15].

One possible explanation for the unexpected results for this perceptual at-

tribute could be explained by Smith et al. [150], who suggests that listeners

who often listen to a certain type of vocal production, for example classi-
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cal singing, may learn to use a different “formant map” for sopranos, giving

them their own categorisation of the vowel plane. Therefore, since the par-

ticipants in this study were not highly trained singers or listeners and were

inexperienced with opera, they found the usual resonance tuning techniques

used in opera (e.g. R1 : f0) unnatural in general. The use of synthesised

samples could also have a confounding effect on this question, although this

is consistent between all the samples, so the relative naturalness of the tun-

ing methods can still be considered. In addition to this, “naturalness” is of

course a subjective term, and in this experiment the participants were left to

decide for themselves what it meant, so there may have been some variation

in this between participants.

For naturalness, as for preference, all four tuning strategies scored similarly

for the /u/ vowel (Figure 3.4(b)). There was, however, some separation

for the middle two f0 values, with strategies involving R2 tuning (C and D)

scoring a little higher than those without (A and B). This is supported by the

ANOVA results (Figure 3.7), which show that, for naturalness, both tuning

and fundamental frequency had a significant effect.

The results for both the preference and naturalness questions for the /i/ vowel

are somewhat unexpected, considering that R2 tuning in isolation at these

fundamental frequencies has not often been observed [15, 151]. However,

these results must be considered in conjunction with the vowel identification

results, in that the participants were simply asked how natural the sounds

were, but not told which vowel sounds they represented. It seems that the

participants found the sounds with R2 tuning more preferable and natural

than those without, but had difficulty identifying them as an /i/ vowel. This

may perhaps be due to the participants’ lack of experience with opera and

singing in general.

For the /i/ vowel (Figure 3.4(c)), tuning methods involving R2 tuning (C

and D) consistently scored the highest, followed by those without (A and B).

The average scores for naturalness remained fairly stable at all f0 values and,

again, a general increase in naturalness with f0 was seen. As for preference,
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these results suggest that lowering the high second resonance has the greatest

effect on naturalness, irrespective of whether R1 is tuned.

3.4.3 Vowel Identification

In terms of vowel identification, the results for the /A/ vowel (Figure 3.5(a))

show that at f0 values below R1, strategy C (R2 tuning) scored the highest,

with A and D (no tuning and both resonances tuned, respectively) just below.

Strategy B (R1 tuning) was the most commonly mis-identified. At f0 values

above R1 this pattern changed to a completely different order (similar to

preference and naturalness) with A the most correctly identified and C the

least. The average percentage of sounds correctly identified across all f0

values and tuning strategies was 46 % (with a standard deviation of 16 %).

The results for the /u/ vowel (Figure 3.5(b)) show that this vowel was cor-

rectly identified much less frequently than the /A/ vowel (only 9 % correct

on average, with a standard deviation of 7 %). There did not appear to

be a clear pattern in these results, although tuning strategies involving R2

tuning (C and D) scored a little lower than those without R2 tuning (A and

B) at most f0 values. This could be due to the importance of the position

of the second formant in distinguishing this vowel, meaning that at all f0

values, tuning of R2 distorted the vowel sound. Tuning strategies A and B

were most commonly identified as an /A/ vowel across all f0 values, whereas

strategies with R2 tuning (C and D) were most commonly identified as /o/

(as in “boat”) at the lowest f0, /O/ (as in “ball”) at the middle two f0 values

and /A/ at the highest f0. This suggests that tuning R2 causes the vowel to

sound more open (see Figure 3.6). However, the poor identification of even

the untuned sample suggests that there may have been issues with the syn-

thesis of this vowel sound. Figure 3.8(a) shows a long-term average spectrum

(LTAS) for the untuned synthesised /u/ vowels (top). Figure 3.8(b) shows

the LTAS of subject 1 from the main experiment (Chapters 5 and 6) singing

the same vowel sound on a similar fundamental frequency. It can be seen

that the real sample includes more high-frequency energy, which may explain
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the poor identification of vowels in this study. However, spectral accuracy

was not the primary focus of this thesis.

(a) LTAS of the synthesised untuned /u/ vowel

(b) LTAS of subject 1 singing an /u/ vowel at a similar fun-
damental frequency

Figure 3.8: LTAS of both the synthesised /u/ vowel, and a real singer singing
the same vowel. Averaged over all four synthesised pitches.

The results for the /i/ vowel (Figure 3.5(c)) show a very clear pattern, where

strategies without R2 tuning (A and B) were correctly identified in around
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70 % of vowel sounds (with a standard deviation of 4 %), however, strategies

with R2 tuning (C and D) were never correctly identified. One explanation

of this might be provided by Benolken [138], who suggests that some vowels

which have similar first formant frequencies, like the /i/ and /u/ vowels (only

60 Hz apart), are differentiated by their second formants, so altering the

second formant results in a dramatic loss in identifiability. The sounds with

R2 tuning (C and D) were most commonly identified as /O/ (as in “ball”),

/o/ (as in “boat”) or /A/ (as in “barn”), implying that the perceived vowel

sound changed from closed to open (see Figure 3.6).

3.4.4 Overall impressions

There were marked and unexpected differences between the results for the

three vowels for the three perceptual attributes investigated. The /i/ vowel

produced the most notable differences across tuning strategies for all three

perceptual attributes, with strategies involving R2 tuning scoring the highest

for both preference and naturalness, but the lowest for vowel identification.

Based on the findings of previous studies [14, 125, 152], it was predicted that

the strategy with no resonance tuning (A) would score the highest for all

three of the perceptual attributes investigated at fundamental frequencies

below the first resonance, as there is little evidence of singers using resonance

tuning within this frequency range. However, the opposite of this was found:

at f0 values below R1, strategy A was generally one of the lowest scoring,

whereas strategy D (both resonances tuned) scored highly for both prefer-

ence and naturalness. The results therefore suggest that for certain vowel

sounds, if physically possible, it might be perceptually beneficial to employ

resonance tuning over a wider range of fundamental frequencies than had

previously been thought. At fundamental frequencies below the first reso-

nance, lowering R1 slightly to coincide with the fundamental would increase

the acoustic power transmitted, therefore reducing the effort required by a

singer to communicate effectively to an audience. This has not yet been ob-

served in practice, however, which suggests either that it is not possible (e.g.
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physiologically), or that it is undesirable.

At fundamental frequencies above R1, it was expected that R1:f0 tuning

(strategy B) would score highly for all three perceptual attributes, as this is

the most commonly observed in practice [14, 15] and R2:2f0 tuning (strategy

C) would score the lowest, as it is rarely observed in isolation [14]. Indeed,

Wolfe [140] suggests that R2 tuning might be unintentional, based on the

theory that as the fundamental frequency rises, R1 is tuned to the funda-

mental by increasing the opening of the mouth, and as both R1 and R2 rise

with increased mouth opening, R2 is raised as a side effect of raising R1. This

would suggest that R2 tuning in isolation (C) should score quite low for both

preference and naturalness. However, for some vowels and f0 values this was

not the case. For example, for preference, R2 tuning (C) scored highly for

the /i/ vowel.

An interesting pattern seen in the results is that the strategies seemed to

“pair up” for most of the perceptual attributes, with strategies without R2

tuning (A and B) behaving similarly, and strategies with R2 tuning (C and D)

also behaving similarly. This seems to suggest that the presence or absence

of R2 tuning had the greatest influence on the listeners’ perception of the

sounds. Further investigation is required to fully understand this result,

perhaps involving spectral analysis to compare the synthesised vowel sounds

to real vowels.

Although most previous studies have focussed on single vowels (most com-

monly /A/), this study found that the rankings of different tuning strategies

are highly dependent on the vowel, as extremely different patterns are ob-

served across the three vowels investigated, /A/, /i/, and /u/. In addition to

this, resonance tuning (by any of the three strategies investigated here) does

not necessarily improve the preference, naturalness or vowel identification, as

in some cases strategy A (no tuning) scored the highest, even at fundamental

frequencies above R1. For example, for the /i/ vowel, no tuning (A) scored

lower than the other tuning strategies for naturalness and preference, but

improved the vowel identification. In addition to this, some tuning strate-
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gies might improve one perceptual quality, whilst having little effect on or

detracting from another quality. For example, R1 tuning alone (B) scored

poorly for both preference and naturalness for the /i/ vowel, but resulted in

good vowel identification.

This suggests that choosing the most appropriate resonance tuning tech-

niques is a balancing act for the singer, as they must tailor the resonances of

their vocal tract according to their performance aims and decide whether to

prioritise a pleasing voice quality over the clarity of the text in a particular

situation, or perhaps sacrifice some naturalness to achieve a higher SPL in

another. Deciding when and how to use resonance tuning is therefore an ex-

ercise in compromise in terms of performance for the ease of the singer and

what the listener might hear. The practical implications of the findings of

this experiment, however, hinge on the assumption that singers are capable

of controlling their vocal tract resonances with great precision: an interesting

point worthy of further research.

Limitations

The compression (using mp3) of the audio samples presented online would

have slightly reduced the quality of the samples. However, since this was the

same for all samples, the comparison between different tuning methods is not

substantially affected. Ideally, the participants would have listened to un-

compressed audio in identical listening conditions. However, as discussed in

section 3.2.2, the decision to distribute the test online made this impossible.

The conditions were, however, consistent between samples for each partici-

pant, allowing individuals to appropriately compare the different resonance

tuning strategies.

Another point worthy of consideration is the possible variation in regional

accents in the participants, which may have affected their perception of the

synthesised vowel sounds. No guidance was given on the intended accent of

the samples; participants were instructed to “try to remember that the voice
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is meant to be singing, not speaking, and that it is imitating a classical/opera

type voice.” There is a generally-accepted pronunciation in opera. However,

not all the participants were familiar with opera, so it is possible that this

may have introduced some variation into the results.

As is often the case, it would have been desirable to have had more par-

ticipants in the listening test, to improve the statistical robustness of the

findings presented. The listeners were also mostly male and non-experts,

which may have impacted on their perception of the singing samples. It

would have been particularly interesting to have had more expert listeners,

to compare their perception of different resonance tuning techniques to that

of the non-experts.

3.5 Conclusion

The experiment that forms the basis of this chapter investigated the impact of

specific resonance tuning techniques on perception through a perceptual test

which compared synthetic vowel sounds. Although recorded samples would

provide better context for the listeners, the main advantage of synthesised

sounds is that this allowed the resonances to be directly manipulated and

controlled.

The hypothesis that the strategies used most frequently in practice, such as

R1:f0 and R2:2f0 tuning, would be preferred by subjects and perceived as

more natural and more accurately identified, does not seem to be supported

by these results. Rather, the results show no clear patterns or trend, sug-

gesting that the perception of resonance tuning is a highly complex issue,

which must take into account a variety of acoustic factors.

The results for the three vowels show very different trends; this was expected

to an extent due to the differences in formant values between the different

vowels. Previous work [14] has shown that the resonance tuning strategies

used by singers varied considerably between different vowels. Since the use of
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resonance tuning is so different between the different vowels, it is unsurprising

that the perception of different resonance tuning strategies is also highly

dependent on vowel.

The fact that the results for perception and naturalness for the /i/ vowel did

not show dependence on fundamental frequency also ties in with the pattern

of resonance tuning observed in Henrich et al [14], which showed that subjects

used the same resonance tuning strategies over (nearly) the whole frequency

range investigated.

The results from the vowel identification part of this experiment support

theories that vowels sung at high fundamental frequencies tend perceptually

towards an /A/ vowel, as vowels were most commonly mis-identified as the

/A/ vowel.

These findings bring to light some of the complex relationships between dif-

ferent resonance tuning strategies and perceptual attributes, and the different

requirements of different vowels. The results show no general patterns for

the perception of the different tuning strategies investigated, which appears

to be highly dependent on the vowel synthesised. This suggests that, in

practice, resonance tuning is likely an exercise in compromise for a singer, as

employing a certain resonance tuning strategy might improve one perceptual

attribute whilst worsening another.



Chapter 4

Resonance Tuning in Girl

Choristers

This chapter presents a preliminary experiment carried out to investigate

resonance tuning in girl choristers, a group for which this has not previ-

ously been studied. Vocal tract resonances are measured using pseudo-broad

band noise excitation. The results of this preliminary experiment inform the

methodology of the main experimental work of this thesis, where this mea-

surement technique is used to investigate resonance tuning in adult soprano

singers.

The subjects in this experiment were three girl choristers recruited from

local cathedral and church choirs. This group of subjects was chosen as their

vocal ranges are very close to those of adult sopranos, and they were readily

available to participate in the experiment.

Wide-band excitation at the subjects’ mouths was used to measure their

vocal tract resonances during singing, and vowel formant values in speech

were extracted from recordings of spoken text. Measured resonance values

were cross-referenced with first and second harmonics for sung vowels across

the subjects’ ranges to identify the resonance tuning techniques employed.

These results were compared with those previously observed by others in

106
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professional adult classical singers.

4.1 Introduction

Both male and female children have similar vocal ranges to adult females;

Moore [153] found that children had vocal ranges from approximately G3 to

G5 (196-831 Hz), while adult females had a range of approximately E3 to F5

(165-698 Hz). Therefore, it can be assumed that similar difficulties in both

the production and the perception of singing at high fundamental frequencies

will be observed in children’s singing as in that of adult sopranos.

Since children have shorter vocal tracts than adult females, their vocal tract

resonances are higher by approximately 20 % [152, 154]. However, because

children are also generally able to sing at a higher range of pitches, it is to be

expected that they will encounter similar effects to adult female singers, as

there will be a part of their range when the fundamental frequencies become

higher than one or both of the first two resonances. There exists very limited

research on young singers, although Barlow et al. [48] investigated closed

quotient in adolescent girls.

In previous studies on adult singers [14, 15], evidence of R1 and R2 tuning

has been observed in the upper part of the soprano range. These tuning

techniques were found to be employed extensively by professional singers

and also by advanced amateur singers and, to some extent, by non-expert

singers (one had trained but had not sung for 7 years, the other three had

experience in choirs and two of them had had some singing lessons).

The detection of resonance tuning in non-expert singers in the Garnier study

[15], who all employed R1:f0 tuning over some part of their range, raises the

question of whether resonance tuning is a technique unique to trained adult

singers and learned with singing training and experience, or one which is also

employed by experienced young singers.
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As discussed in sections 2.2.3 and 2.2.1, it is difficult to measure the frequen-

cies of the vocal tract resonances in higher voices, where the harmonics of the

voice source are so widely spaced. However, it is possible to extract informa-

tion about the resonances of the vocal tract using external noise excitation,

such as swept-sine or broad band noise. Using an external sound source to

excite the vocal tract during phonation allows an accurate picture of the

vocal tract transfer function to be generated. It causes little inconvenience

to the singer, compared to methods injecting sound into the vocal tract or

requiring singers to maintain vocal tract shapes.

The method of vocal tract resonance measurement used in this preliminary

experiment is the method proposed by Epps et al. [95] and used by others

including Garnier et al. [15], Henrich et al. [14] and Joliveau et al. [58]. It

involves exciting the vocal tract at the mouth with a synthesised broad band

signal consisting of harmonics spaced approximately 5 Hz apart (referred to

in this thesis as “broad band noise”). The use of harmonic components, as

opposed to true broad band noise such as white noise, allows a “calibration”

procedure to be carried out, where the subject keeps their mouth closed

while the signal is played and recorded at the mouth, and the amplitudes of

the different frequency components are adjusted individually to ensure that

the excitation signal produces a flat frequency response when recorded. The

measurement is then taken by exciting the vocal tract with this “calibrated”

signal and the transfer function calculated. This can be assumed to be rep-

resentative of normal singing, since the subject can sing normally while the

measurement is being taken, rather than being asked to hold an artificial

position. This method is also more robust to small movements of the subject

than swept-sine excitation (as discussed in section 2.2.3).

The main focus of this chapter will be the protocol used and the quality of

the results obtained by taking measurements of vocal tract resonances using

broad band noise excitation. The use of resonance tuning in young singers

will also be considered.
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4.2 Method

4.2.1 Subjects

The subjects for this experiment were three female choristers from York

Minster and one chorister from a well-respected local church choir (aged 13-

15). All three took singing lessons and performed regularly; the Minster

choristers, 6 days per week; the Church chorister, at least twice per week.

Details of the choristers are summarised in Table 4.1. Older choristers were

chosen (York Minster choristers are aged around 7-13 years) so that the effects

of experience and training were most likely to be observed, based on the

current understanding of increased resonance tuning with singing experience

in adults [15].

Older female choristers, who may have started to undergo physical changes

due to puberty (typical age of puberty onset is 11 years in girls [155]), were

chosen so that any resonance strategies employed could be compared with

those of their adult counterparts. The subjects chosen all reported vocal

ranges up to around A5.

Subject Age
(years)

Choir Years as
chorister

Singing
lessons

ABRSM grade
exams1

1 14 York
Minster

6 3.5 years Grade 5 Singing

2 15 St Olave’s
Church,
York

9 3 years Grade 5 Singing,
Grade 5 Clarinet,
Grade 5 Piano

3 13 York
Minster

5 1.5 years Grade 4 Singing,
Grade 3 Clarinet,
Grade 2 Piano

Table 4.1: Details of the choristers’ ages and singing experience.

1The Associated Board of the Royal Schools of Music (ABRSM) is an examinations
board and registered charity based in London, UK. (http://gb.abrsm.org/en/home).
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4.2.2 Resonance detection

The method used in this study to measure the vocal tract resonances (initially

developed by Epps et al. [95]) involved exciting the vocal tract at the mouth

with a synthesised broad band noise signal and recording the response with

a lavalier microphone also placed at the subject’s mouth, as shown in Figure

4.1.

Figure 4.1: The equipment used to simultaneously play and record a signal
at the subject’s mouth using a 3D-printed impedance-matching horn and a
microphone. The impedance-matching horn is mounted in a wooden enclo-
sure filled with sand. The flexible tubing allows the subject to position the
acoustic source and microphone on their bottom lip.

The excitation signal consisted of 606 harmonics spaced 5.38 Hz apart2 (syn-

thesised by adding sine waves), from 250 Hz to 3500 Hz. Their phases were

randomised to improve the signal-to-noise ratio (as investigated by Smith

et al. [156]). The set-up consisted of a loudspeaker with an impedance-

matching horn contained within a sand-filled wooden enclosure. A flexible

tube was used to deliver the sound to the subjects’ mouth. Although the

2The frequency resolution of 5.38 Hz was a result of the 44.1 kHz sampling frequency,
and 213-point FFT, which was found to be sufficient for observing the vocal tract reso-
nances.
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equipment was a little heavy, the length of the tube meant that, once posi-

tioned, it did not need to be moved and the subject could simply stand next

to it. The flexible tube was held by the subject, who lightly pressed it against

their bottom lip. A calibration measurement was first carried out, measuring

the pressure response at the mouth with the subject’s mouth closed (Pclosed),

then taking an 8192-point Fourier transform of the signal, and adjusting the

amplitudes of the frequency components individually to flatten the magni-

tude response of the signal from the microphone at the subject’s mouth. This

calibrated signal was then used as the excitation signal for the measurements

taken while the subject sang the required note (Popen) (see Epps et al. [95]).

The ratio Popen/Pclosed is a measure of the ratio of the impedance of the vo-

cal tract to that of the radiation field, as the source approximates an ideal

current source [95]. The spectrum of the signal recorded at the subject’s

mouth therefore shows the harmonics of the voice source superimposed on

the approximate transfer function of the vocal tract. The amplitude of the

excitation signal (for all subjects) was approximately 96 dB SPL, which in-

troduced sufficient acoustic energy to generate a transfer function accurate

enough to allow the researchers to deduce the resonance values, but was low

enough to allow the subject to hear themselves, to cause minimal interference.

As the calibration procedure relied on the random phases of the frequency

components, it did not always generate a signal with a sufficiently flat fre-

quency response. It was therefore sometimes necessary to repeat the cali-

bration procedure several times to get a sufficiently frequency-independent

calibration signal. This however only took a few seconds and, once a suitable

calibration was obtained, did not need repeating until the subject stopped

holding the tube against their lip, so was not a great inconvenience.

4.2.3 Protocol

Subjects were asked to answer a short questionnaire about their singing ex-

perience, read an information sheet explaining the nature of the experiment,
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and sign a consent form (included in Appendix B). Due to their ages, the

subjects in this study were accompanied at all times by a parent/guardian,

who did not participate in the experiment.

The subjects were fitted with a head-mounted microphone (DPA4066, DPA

microphones) approximately 4 cm from the lips, which was used to record

the speaking task required to find the formant values in speech. A second

microphone (Earthworks M30, Earthworks microphones) was placed approx-

imately 1 m from the subject. This was used to record the entire experiment

for later reference. These signals were recorded simultaneously during the

entire experiment, using a Tascam DR680 portable digital recorder. The

procedure took place in an anechoic chamber.

The first task for the subject, was to read a short text in their normal speak-

ing voice. They were given a practice attempt to familiarise themselves with

the text (without broad band noise excitation). For the second task, the

subject was asked to sing individual notes into the wide-band vocal tract

measuring device, each on one breath, in an ascending chromatic sequence

(12 notes per octave) from C4 to the top of their range, for three vowel sounds

(/A/, /u/ and /i/) (see Appendix A for IPA vowels). They were played each

note on an electric piano before singing and required to hold each note for ap-

proximately 6 seconds. The subject was asked to sing in their normal singing

voice, as if they were singing a solo with their choir, at a medium level and

keeping their mouth shape constant. They were reminded if necessary during

the tasks. Notes were only repeated if the measurement was insufficient or if

the subject failed to maintain the note until the end of the measurement.

Data collected consisted of: (1) answers to a questionnaire to determine the

subject’s level of singing and their training; (2) their acoustic speech and

singing recordings, and (3) recordings made by the broad band vocal tract

measuring device.

Prior ethical approval was gained from the Physical Sciences Ethics Com-

mittee at the University of York (see Appendix J).
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4.3 Results

4.3.1 Data Analysis

As in previous works [14, 15], the frequencies of the vocal tract resonances

were measured manually from the plot of Popen/Pclosed against frequency by

one author, and then checked by another researcher. This was done in MAT-

LAB [68], using a graphical user interface, with a frequency resolution of 5.38

Hz. An example plot of Popen/Pclosed against frequency is shown in Figure

4.2. In some cases, for example when the subject did not remain completely

still while singing3, it was not possible to accurately identify the vocal tract

resonances. In these cases the data were omitted from the results. The per-

centages and numbers of measurements omitted for R1 and R2 for each vowel

are shown in Table 4.2.

Vowel /A/ /u/ /i/

R1 10.8 % (9/83) 9.7 % (7/72) 14.5 % (11/76)
R2 2.4 % (2/83) 0.0 % (0/72) 27.6 % (11/76)

Table 4.2: The percentage (and number) of measurements omitted for each
resonance, for each vowel

Perhaps unsurprisingly, the measurement method was more effective for the

open vowels investigated (/A/ and /u/) than for the closed vowel (/i/). This

can be deduced from the number of measurements excluded (see Table 4.2);

significantly more measurements for the /i/ vowel were excluded than for

either of the other two vowels, including over a quarter of the R2 measure-

ments. This is likely to be caused by the small lip opening of closed vowels

not allowing enough acoustic energy to enter the vocal tract to produce a

measurement. In spite of this, a sufficient number of results of suitable qual-

3In some cases this could be identified by observing the subject; however different
types of movements produced characteristic errors in the transfer function obtained. If
the subject altered the position of the tube and microphone during measurement, this
introduced a wave-like error to the transfer function. A change in fundamental frequency
caused a “smearing” of the harmonic peaks, and movements of the articulators caused
widening of the resonance peaks.
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Figure 4.2: A plot of Popen/Pclosed against frequency for an /u/ vowel. The
first four harmonics are marked with asterisks, and the resonances are marked
with arrows. These were measured manually as described above.

ity were still obtained for the /i/ vowel. The broad band noise measurement

method is therefore still suitable for future research on the /i/ vowel, as long

as the protocol allows the results to be viewed immediately, so that rejected

measurements could be repeated.

4.3.2 Speech formant measurements

As the fundamental frequencies in speech were significantly lower than for

most of the sung notes investigated in this experiment, it was possible to

calculate the frequencies of the formants in speech (which are assumed to

be equivalent to the vocal tract resonances) by analysing a spectrum of the

spoken voice for each vowel sound. The recordings of the choristers read-

ing a short text were used for this purpose. The average reading rates of

the choristers were 234, 242, and 174 words/minute respectively. Samples

of the relevant vowels were extracted from the audio signal by hand: the

samples chosen were from the middle of the vowel, where the formant values
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remained approximately constant across the entire sample, and had an av-

erage length of 0.2 seconds. These samples were then analysed using Praat

[70], by plotting a spectrogram and using the built in formant detection func-

tion to extract formant values, and then collated using Microsoft Excel [157].

Between two and six values were obtained for each formant measurement,

and the average and standard deviation of these were calculated and shown

on the left sides of Figures 4.3(a)-(c).

4.3.3 Resonance tuning

The measurements of the vocal tract resonances R1 and R2 obtained for all

three subjects (as described in section 4.2.2) were plotted against frequency

(separately for each vowel), and can be seen on the right of Figures 4.3(a)-

(c). The first and second harmonics are represented as solid and dashed lines,

respectively. The vocal tract resonances of the first subject are represented

by circles, the resonances of the second by squares, and the resonances of the

third by triangles.

The average formant values in speech were also plotted against frequency, for

all three subjects, for each vowel. These can be seen on the left of Figures

4.3(a)-(c).

In order to maintain a perceptually constant pitch interval, the most logical

way to define resonance tuning would be using a frequency-dependent interval

such as a fraction of a tone. However, it was decided in this work to use the

same criteria for determining resonance tuning as in previous works, so that

the results would be directly comparable.

Henrich et al. [14] identified resonance tuning in adult voices by plotting a

histogram of the difference in frequency between the first resonance and the

fundamental frequency (R1 - f0). In their study, a central peak approximately

50 Hz wide was found, so they defined resonance tuning as occurring when

R1 was within 25 Hz of f0.
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(a) /A/ vowel

(b) /u/ vowel

(c) /i/ vowel

Figure 4.3: The first (crosses) and second (circles) formants in speech for each
subject are shown on the left side, and the resonances against fundamental
frequency for all the subjects singing three different vowels (the solid line
represents f0, and the dashed line represents 2f0) are shown on the right
side.
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A similar technique was adopted in this experiment, and Figure 4.4 shows the

difference between R1 and f0 (R1 - f0) for all measurements of R1 (left). As

expected, it shows a strong correlation between R1 and f0. It can be seen that

there is a much broader central peak in R1 measurements around f0 than

those in Henrich et al. [14], and that this is approximately 140 Hz wide.

In this experiment therefore, resonances were assumed to be “tuned” to a

harmonic when they fell within 70 Hz of them. The resonance measurements

were inspected using Microsoft Excel, to look for four types of resonance

tuning: R1:f0, R1:2f0, R2:f0, and R2:2f0.

Figure 4.4: Histogram showing the distribution of the difference in frequency
between the measured values of R1 and f0 (R1 - f0).

These results are illustrated in Figure 4.5, which show the extent of resonance

tuning used by each of the three subjects, across the entire fundamental fre-

quency range sung, for the three vowels investigated. This Figure indicates

that all three choristers employed R1:f0 tuning over a wide range of funda-

mental frequencies, and some R1:2f0 and R2:2f0 tuning, and that the pattern

of resonance tuning is highly dependent on the vowel sung.
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(a) /A/ vowel

(b) /u/ vowel

(c) /i/ vowel

Figure 4.5: The resonance tuning strategies employed by each subject, for
the /A/ vowel (top), /u/ vowel (middle) and /i/ vowel (bottom). The tuning
strategies investigated were R1 : f0 tuning (dark grey), R1 : 2f0 tuning (dark
stripes), R2 : f0 tuning (not observed) and R2 : 2f0 tuning (light grey).

It can be seen from Figure 4.3(a), that for the /A/ vowel, at the lower end

of the frequency range investigated, the formant values remained roughly

constant at approximately the same values as in speech. Figure 4.5 shows

that the subjects tuned R1:2f0 at the lower end of the range investigated,

and then began tuning R1:f0 when f0 was between 4 and 2.5 tones below R1,

and continued this to the upper limit of their ranges (with the exception of

one note for subject 3). R2:2f0 tuning was less consistent, beginning when R2

was 1-4 tones4 below 2f0, and extending over a range of 3 tones for subjects

1 and 2, but continuing to the top of her range for subject 3. R1:2f0 tuning

4A “tone” here is defined as 2 semitones, where there are 12 semitones in an octave.
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was only observed for this vowel.

Figure 4.3(b) shows that for the /u/ vowel, at low frequencies, the formant

values were again similar to those in speech, and again all the subjects tuned

R1:f0, this time over the whole range of the fundamental frequencies investi-

gated. In addition to this, R2:2f0 tuning was employed by all three choristers

to some extent; from a range of 4 tones for the first subject to 1.5 tones for

the third subject.

For the /i/ vowel, all the subjects tuned R1:f0 over almost the entire range

of fundamental frequencies investigated (although subject 2 had a gap of

around 3 tones around F4); however, only a small amount of R2:2f0 tuning

was seen at the upper limit of the range investigated for subjects 1 and 3,

and none for subject 2. For this vowel Figure 4.3(c) shows that the value

of F2 in speech, and R2 at low frequencies was very high, and although it

steadily reduced with increasing frequency, R2 only approached 2f0 at the

very highest frequencies investigated.

4.4 Discussion

In general, this experiment showed that broad band noise excitation was a

very effective method for measuring vocal tract resonances. The subjects gen-

erally found the sensation of the broad band noise excitation a little strange,

but became very comfortable using it after a practise session. The practise

session was also very helpful to the subjects, as none of them had been in an

anechoic chamber before, so this allowed them time to acclimatise, as well as

learning to use the equipment. None of the subjects expressed any feelings

of discomfort and all enjoyed the experiment.

The plots of Popen/Pclosed against frequency produced for each measurement

clearly showed the frequencies of the vocal tract resonances to a suitable

degree of accuracy, and the MATLAB GUI used allowed the researcher to

observe immediately if a result was unsatisfactory, which allowed it to be re-
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peated without causing significant interruption to the procedure. The num-

ber of measurements omitted was small enough to provide information about

resonance tuning in choristers across the entire frequency range investigated.

To improve the robustness of these results, it would have been desirable to

collect several repeated sets of data. However, the current protocol took

around 45 minutes on average and it became apparent that a longer experi-

ment would have been tiring to the participants. An alternative would have

been to use more participants, but these were unavailable at the time and

unnecessary for a preliminary experiment.

4.4.1 Resonance tuning behaviour in Choristers

In this experiment, the method of measuring vocal tract resonances was

tested on young singers - experienced girl choristers. Figure 4.3 shows a

distinct pattern in the resonance measurements for all three vowels, and

Figure 4.5 shows clear evidence of R1 tuning (to both f0 and 2f0) in all three

of the choristers for all the vowels. Evidence of R2 tuning was seen in both

the /A/ and /u/ vowels, but very little in the /i/ vowel, suggesting that

the extent to which the different resonance tuning techniques were used was

highly vowel specific.

For the /A/ vowel (seen in Figure 4.3(a)), the pattern of resonance tuning

used was similar to resonance tuning in adult singers. All three choristers

maintained approximately constant values of both R1 and R2 until they be-

came close in frequency to f0 and 2f0, and then tuned them to the relevant

harmonic until near the tops of their ranges.

The resonance tuning observed for the /u/ vowel (Figure 4.3(b)) was very

similar to that of the /A/ vowel, with R1:f0 tuning beginning a little earlier.

The range of R2 tuning varied a great deal between subjects, with subject

1 employing second resonance tuning over a range of 4 tones, but subject 3

over only 1.5 tones.
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For the /i/ vowel, it can be seen from Figure 4.3(c) that all three choristers

employed R1:f0 tuning over a very wide range of the fundamental frequencies

investigated, whereas there was little evidence of any R2:2f0 tuning at all. For

all the choristers R2 fell as f0 increased. Only one chorister was able to sing at

a fundamental frequency above 900 Hz, and some evidence of R2:2f0 tuning

is seen here, however, since the other choristers were not able to reach higher

fundamental frequencies, it is not known if they might also have employed

R2:2f0. Because the frequencies of R2 in speech fell between 2404 and 2880

Hz for this vowel, for f0 to reach R2 it would need to be approximately 1400

Hz, which would be unlikely for any chorister. It is unsurprising therefore

that this method of resonance tuning was not observed in this experiment.

This difference in tuning techniques between vowels was also seen in the

study by Henrich et al. [14], which investigated four vowel sounds: /A/, /3/,

/O/, and /u/. As in this study, the sopranos showed a similar range of R1

tuning, but a greater range of R2 tuning for the /u/ vowel than for the /A/

vowel.

The frequency range over which resonance tuning was employed on an /A/

vowel in this study was approximately the same as the non-expert singers in

the studies by Garnier et al. [15] for subjects 1 and 2, although subject 3

employed the same techniques over a slightly smaller range. However, it is

important to realise that the criteria for determining resonance tuning are

different in this study. Resonance tuning is said to occur when a resonance

is within 70 Hz of a harmonic (the left part of Figure 4.5). This extends the

wide range of resonance tuning observed.

It seems therefore reasonable to conclude that the resonance tuning tech-

niques used by the choristers were similar to those observed in adult singers

(in the Garnier et al. study), although they did not tune their resonances

as closely to the relevant harmonic as the adults. There were no great dif-

ferences in resonance tuning behaviour between the three choristers but as

expected, based on speech formant values, differences between the vowels

were observed.
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4.5 Conclusion

This chapter has presented a preliminary experiment to evaluate the suitabil-

ity of measuring vocal tract resonances using broad band noise excitation. It

has been shown to be highly effective. The measurements of vocal tract res-

onances obtained in this experiment were generally of good quality, allowing

clear observation of resonance tuning to within 5.38 Hz.

The protocol allowed for data to be collected across the entire vocal range

of the subjects, was minimally intrusive and not tiring or unpleasant for the

singers despite their youth and inexperience. Singing a scale on each vowel

in turn is a familiar exercise for a singer and the real-time feedback available

to the researcher allowed unsatisfactory results to be repeated with minimal

disturbance.

Clear evidence was observed of R1:f0, R1:2f0 and R2:2f0 resonance tuning

by the choristers in this experiment, which is as expected, considering the

values of the formants in speech. This was comparable with the resonance

tuning techniques used by non-expert adult singers, although the subjects in

this study did not tune their resonances as close to the relevant harmonic as

the adults.

Further investigation would be beneficial in this area, with more subjects at

different stages of training. This would allow investigation into the points at

which these strategies are employed and the extent of the effect of training.

This experiment has shown that broad band noise excitation is a reliable

method of measuring the vocal tract resonances non-invasively. The protocol

is a valid method for analysing resonance tuning behaviour in young singers.

This technique will therefore be used as part of the method for the experi-

ments in the next two chapters, investigating resonance tuning in professional

soprano opera singers, in conjunction with magnetic resonance imaging to

obtain images of the vocal tract structure.



Chapter 5

Experimental Protocol and

Validation

This chapter outlines the protocol and testing of the method used in the main

experiment of this PhD research, which used magnetic resonance imaging

(MRI) to consider how professional soprano opera singers alter the shape of

their vocal tracts to employ resonance tuning techniques. It aims to provide a

solid understanding of the effects of MRI measurement conditions on singers,

as per the second objective of this PhD research: to understand the effects

of MRI measuring conditions on singers, and verify the usefulness of MRI

in singing research.

In Chapter 4, a method for measuring the vocal tract resonances was tested.

It was found that the method provided measurements of vocal tract res-

onances of sufficient quality, and that the protocol used was suitable for

investigating resonance tuning in girl choristers.

The current chapter details the protocol followed for MRI data collection

in the main experiment of this work and the data collected. It then details

three types of analysis carried out to establish the validity of the measurement

method, and finally, draws conclusions about the suitability of this method

for investigating resonance tuning. Once this has been established, Chapter

123
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6, will address the first (main) objective of this PhD: to understand the

methods by which resonance tuning is produced by soprano singers, using the

MRI data described and validated in the current chapter.

5.1 Introduction

Magnetic resonance imaging (MRI) is an invaluable tool in singing research,

making it possible to visualise the inside of a singer’s body and observe the

movements of the individual articulators during sound production. Despite

advances in imaging technology, however, the conditions experienced by the

singer during an MRI scan are far from natural when compared to their

normal performance environments. With the increased use of MRI in voice

research, it is ever more important to fully understand the effects of the mea-

suring conditions on the singer in order to justify using the results obtained

using MRI as an indicator of normal singing behaviour.

Although singers often perform in odd situations, the environmental restric-

tions necessary for MRI data acquisition (see section 5.2.2) create a distinctly

alien environment, even for the most experienced and versatile singer. That

they perform as they would on a stage or in the rehearsal studio whilst in an

MRI scanner cannot be presumed.

As discussed in section 2.2.3, a number of studies have used MRI to observe

the vocal tract during both speech and singing, [98, 100, 101]. However, there

is very little research using 3D imaging to specifically investigate singing

techniques in soprano voices.

Advances in MRI have led to the development of “open-type” MRI scanners,

which allow the subject to sit upright or lie supine. Unfortunately, these are

not yet in widespread use. Kitamura et. al [158] investigated the differences

in spoken vowels in three male subjects and found differences in the positions

of the tongue between upright and supine positions, as well as differences in

the shape of the lips and uvula, and larynx height.
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The effects of singing training (speaking training was not investigated) may

cause subjects to produce sound more consistently between upright and

supine conditions. Although there has not yet been any research specifi-

cally investigating the effects of MRI conditions on the female singing voice,

Traser et al. [159] investigated differences in vocal tract shape between up-

right and supine MRI in professional tenors and observed small changes to

larynx height and jaw protrusion, but no changes in registers.

There has been some research on speech production in a supine position.

However, due to the differences in speech and singing production, this is

not directly comparable to singing production. Stone et al. [160] compared

speech production of non-expert speakers using ultrasound, in both upright

and supine positions. They measured the tongue position in both positions

and found small differences for most subjects. The largest differences ob-

served were less than 3 mm on average and were seen in the posterior tongue.

Importantly, the acoustic differences were found to be negligible between up-

right and supine positions. Speed [161] also investigated the difference be-

tween speaking in upright and supine positions and found that they were

consistent at least up to 4 kHz. Engwall et al. [162, 163] studied speech us-

ing both MRI and electromagnetic articulography (EMA)/electropalatograpy

(EPG), which allow measurement of tongue contact with the roof of the

mouth and a two-dimensional mid-sagittal display of the articulatory move-

ments of the tongue. They observed differences in jaw position, lip protrusion

and tongue contours and concluded that speech produced during MRI rep-

resented “hyperarticulated speech”.

The aim of this chapter is to establish the effects of MRI measurement con-

ditions on the singers involved in order to ensure the reliability1 of results

obtained through MRI. This is achieved by proposing a method for observ-

ing singing production using MRI and testing the suitability2 of this method.

1Reliability in this case is judged as the similarity of sound production between different
positions, based on the acoustic output.

2A suitable protocol in this case is defined as one that allows quality measurements to
be obtained while not being distressing or unpleasant for the subject.



CHAPTER 5. EXPERIMENTAL PROTOCOL AND VALIDATION 126

Key features of the MRI conditions, such as the supine position and back-

ground noise, will be reproduced and their effects tested in a controlled en-

vironment.

This will then allow the central research question of this research to be ex-

plored: understanding the methods by which resonance tuning is produced

by soprano singers by using MRI to investigate how different vocal tract

articulators affect the vocal tract resonances with increasing fundamental

frequency.

5.2 Method

The purpose of this protocol was to measure vocal tract resonances and al-

low the collection of MR images of the vocal tract articulators when singing

(see Chapter 6), as well as measuring the effects of MRI measurement condi-

tions on singers when singing (for this research) and speaking (to benchmark

against previous studies). Therefore in this experiment, six opera singers

performed various speaking and singing tasks in three different situations: in

an MRI machine, in their normal singing position, and in “simulated MRI”

conditions (defined in section 5.2.2). Vocal tract resonance measurements,

Long-term Average Spectra (LTAS), and audio recordings were compared for

each singer, for speech and singing in different situations.

5.2.1 Subjects

Very highly trained subjects were chosen for this investigation for two rea-

sons: firstly (and most importantly), to shed light on the production of

resonance tuning in very advanced singers (addressed in Chapter 6); and

secondly, in the hope that their extensive training will mean that they will

not be greatly affected by singing in unusual conditions and will be able to

sing in an MRI machine in their normal way.
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The subjects in this study were six professional female soprano or mezzo-

soprano opera singers. Their ages ranged from 32 to 57, with a mean of 43.7

years and a standard deviation of 8.8 years. They all measured level 2.1 or

3.1 on the Bunch-Chapman scale [164] (International or National principal),

and reported no health issues. Their details can be found in Table 5.1.

Subject Age (years) Voice type Bunch-Chapman Nationality

1 47 Soprano 3.1 British
2 57 Mezzo-Soprano 2.1 British
3 32 Soprano 3.1 Irish
4 40 Mezzo-Soprano 2.1 British
5 48 Soprano (light) 2.13 Italian
6 38 Soprano 2.1 Hungarian

Table 5.1: Details of the subjects’ ages, voice types (self reported),
Bunch-Chapman [164] classifications and nationalities.

5.2.2 Experimental Protocol

Procedure

The experiment was divided into three parts. The first part took place in an

MRI machine at York Neuro-Imaging Centre (YNiC), which has a General

Electric 3 Tesla HDx Excite MRI scanner. The second part took place in

an anechoic chamber with the subject standing up, singing as normally as

possible with minimal vibrato, as in a performance or rehearsal. The third

part of the experiment also took place in the anechoic chamber, and was

designed to simulate the conditions in the MRI machine as closely as possible,

to collect data that would allow comparison between normal conditions and

MRI conditions (both actual MRI, and simulated conditions). The third

part of the experiment involved the subject lying supine on a foam board,

3Subject 5 was actually an early music singer (medieval, renaissance, and early
baroque), but the Bunch-Chapman [164] classification does not distinguish this from
Opera.
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wearing headphones, through which MRI noise was played at a similar sound

pressure level to the MRI machine.

During the MRI scan, the subject was required to lie flat on their back on

a hard “bed”, they then had a coil surrounding their head and neck fitted,

and were inserted into the MRI machine. This was a fairly confined space, a

tube of approximately 60 cm diameter. Once the scan began, the patient was

required to stay absolutely still, which is difficult to achieve while singing, as

any movement (including excessive vibrato) produces blurry images. During

scanning, the MRI machine makes a loud noise, which has a pitch of approx-

imately 300 Hz. The subject was therefore required to cope with loud noise,

in addition to maintaining the pitch of the required note against the per-

ceived pitch from the hum of the scanner. Finally, the temperature around

the MRI machine was quite cold, at approximately 21 ◦C, so they were given

a blanket to wear for warmth.

Subjects were also asked to fill in a questionnaire, detailing their singing

experience and asking about their techniques for singing high notes. They

were asked to fill in part of this before the experiment and then the remaining

part afterwards, to see if their experience had affected their opinions on their

techniques. The questionnaire, information sheet, and consent forms are

included in Appendix C.

Prior ethical approval was gained from the Physical Sciences Ethics Com-

mittee at the University of York (details in Appendix J).

Part 1 - MRI conditions

For this part, the subject and experimenter had to relocate to York Neu-

roimaging Centre (YNiC) to make use of the MRI machine there (a 2-minute

walk). The subject was briefed by a member of YNiC staff and final writ-

ten consent to be scanned was obtained. They were then positioned in the

scanner by a member of YNiC staff (as shown in Figure 5.1) and fitted with

foam ear-plugs and headphones. One optic microphone (Sennheiser MO2000)
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was attached to the head mount and another set up as far away as possible

within the scanner room. A number of configuration scans were then taken

to prepare the scanner for the image capture.

Figure 5.1: Shows a patient (not from this study) being placed into the MRI
scanner (reproduced with permission from [96])

Tasks:

1. The subject sang three different vowel sounds (/A/, /u/, and /i/) for

16 seconds, on 8 different pitches (shown in Table 5.2), chosen to be

equally spaced (on a logarithmic scale) across the whole frequency range

investigated. A separate scan was taken for each note. Before each scan,

a reference tone (a recorded piano note) was played over the intercom

and the subject was told which vowel to sing. The scan duration was

16 seconds per note, which required the singer to maintain the shape

of her vocal tract during this time.

2. The subject was asked to hold a neutral vocal tract shape with their

mouth slightly open, and to breathe as normally as possible without

phonating or moving for 16 seconds, as this was the scan duration.

After the MRI scan, the subject was encouraged to take a break with food

and drink, as required, before proceeding to parts 2 and 3 of the procedure.
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Table 5.2 shows the fundamental frequencies investigated for each vowel. The

G4 measurement for the /A/ vowel for subject 2 was initially thought to be

of poor quality (blurred due to movement) and repeated, but later found to

be adequate and included in the study. The C6 measurement for the /A/

vowel for subject 2 was discarded due to poor quality. The C6 measurement

for the /A/ and /u/ vowels for subject 6 were initially thought to be of poor

quality and repeated, but later found to be adequate and included in the

study.

Vowel /A/ /u/ /i/

C4 3 6 1 2 3 6 3 6
E4 1 2 3 6 1 2 3 6 1 2 3 6
G4 1 2 3 6 1 2 3 6 1 2 3 6
C5 1 2 3 6 1 2 3 6 1 2 3 6
E5 1 2 3 6 1 2 3 6 1 2 3 6
G5 1 2 3 6 1 2 3 6 1 2 3 6
A#5 1 2 3 6 1 2 3 6 1 2 3 6
C6 1 2 3 6 3 6 1 2 3 6

Table 5.2: The fundamental frequencies investigated for each vowel sound.
The numbers represent the subjects that sung each vowel and fundamental
frequency investigated.

Part 2 - “Normal” conditions

The subjects were asked to stand on a board4 in their “normal performance

stance” in the fully anechoic chamber at the University of York. This will be

referred to in this work as “normal” conditions. They were then fitted with

a head-mounted microphone (DPA4066, DPA microphones) approximately 4

cm from the lips, which was used to record the speaking and singing tasks. A

second microphone (Earthworks M30, Earthworks microphones) was placed

approximately 1 m from the subject, and this was used to record the entire

experiment for later reference. The subjects were also fitted with a neck

band carrying laryngograph electrodes [165] and the signal generated by this

4to counteract the effects of the mesh floor in the anechoic chamber.
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was also recorded. These signals were recorded simultaneously during the

entire experiment, using a Tascam DR680 portable digital recorder (sampling

frequency 96 kHz). The subject was asked to sing a calibration tone and

the sound pressure levels (A-weighted) at both the head-mounted and room

microphones were measured and noted.

The subjects were then shown how to sing into the vocal tract resonance

measuring device and a calibration recording was taken with the subject’s

mouth closed.

Then followed three tasks:

1. The subject was asked to read the standard text, “Arthur the rat” [166]

(see Appendix D) in their normal speaking voice.

2. The subject sang individual notes, each on one breath, in an ascend-

ing chromatic sequence (12 notes per octave) from C4 to the top of

their range5, for three vowel sounds (/A/, /u/ and /i/), while their vo-

cal tract resonances were measured using the broad band noise device.

They were played each note on an electric piano before it was sung and

required to hold each note for approximately 6 seconds. The subjects

were asked to sing in their “normal resonant performing voice” at a

medium volume, keeping their mouth shape constant. They were re-

minded of the protocol during the tasks, if, for example, they moved

(these measurements were repeated as necessary).

3. The subject sang one verse of the song “Once in Royal David’s city”

(see Appendix D).

5Notes were only repeated if the measurement was unsatisfactory or if the subject failed
to sustain the note until the end of the measurement.
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Part 3 - “Simulated MRI” conditions

The subject was then required to lie supine in the anechoic chamber, still

wearing the microphone headset, to simulate the conditions in the MRI ma-

chine (demonstrated in Figure 5.2). To protect them from the floor of the

anechoic chamber, the subject lay on a foam-covered board.

This experimental set-up will be referred to in this work as “simulated MRI”

conditions. The vocal tract resonance measuring device was adjusted to be in

the same position (relative to the singer’s mouth) as when standing. Another

calibration recording was taken, and the subject was then re-fitted with the

laryngograph electrodes and fitted with earplugs and headphones to play

recorded MRI noise6.

Tasks 1 to 3 were repeated from part 2 (speaking and singing tasks), with

MRI noise playing over the headphones for tasks 1 and 2 (speaking and

singing individual notes).

Figure 5.2: “Simulated” MRI conditions, from the side and from above.
Demonstrated using the head and torso simulator K.E.M.A.R. [167]

6This was recorded from the MRI machine, carrying out the same scanning procedure
as in part 1. The subject was asked to indicate when they felt the level was the same as
in the MRI machine.
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Resonance measurements using broad band noise excitation

The method used to detect vocal tract resonances was tested in a prelim-

inary experiment involving girl choristers (see Chapter 4). It employs the

broad band noise excitation (at the lips) method described in section 4.2.2,

after Epps et al. [95]. This method was chosen as it is minimally invasive

to subjects, allows them to sing naturally and produces reliable resonance

measurements. As in Chapter 4, the excitation signal consisted of harmonics

spaced 5.38 Hz apart, from 250 Hz to 3500 Hz, and the method included a

calibration procedure. The average amplitude of the excitation signal was 87

dB SPL.

As in previous works [14, 15, 151] and in Chapter 4, the frequencies of the

vocal tract resonances were measured from the plot of Popen/Pclosed against

frequency by one researcher, and then checked by another. The values were

then averaged between the two observations (where the results were different

by more than approximately 100 Hz, they were discarded). The percentages

and numbers of measurements omitted for R1, R2 and R3 for each vowel are

shown in Table 5.3.

Vowel /A/ /u/ /i/

“normal”
conditions

R1 8.4 % (16/190) 4.9 % (9/183) 14.6 % (26/178)
R2 2.1 % (4/190) 7.7 % (14/183) 12.4 % (22/178)
R3 11.5 % (22/190) 34.4 % (63/183) 5.6 % (10/178)

“simulated
MRI”
conditions

R1 16.6 % (27/163) 7.0 % (12/171) 14.6 % (24/164)
R2 0.0 % (0/163) 2.9 % (5/171) 9.8 % (16/164)
R3 9.2 % (15.163) 29.8 % (51/171) 3.0 % (5/164)

Table 5.3: The percentages (and number) of measurements omitted for each
resonance, for each vowel

There was considerable variation between subjects, with total measurements

omitted per subject: subject 1: 5.6 %, subject 2: 14.4 %, subject 3: 9.5 %,

subject 4: 10.8 %, subject 5: 18.1 %, subject 6: 5.8 %.



CHAPTER 5. EXPERIMENTAL PROTOCOL AND VALIDATION 134

5.2.3 Data

In part 1, the data collected consisted of 3-dimensional MRI images (be-

tween 19 and 26 for each singer), and audio recordings of the whole scanning

procedure (taken from optic microphones). Since the MRI scan was only

started after the subject had started singing, a short sample (average length

0.7 seconds) of clean audio was also collected for each vowel and fundamental

frequency.

In parts 2 and 3 of the procedure, anechoic recordings of speech and singing

were obtained, as well as resonance measurements for 3 vowels on all pitches

from the chromatic scale task. As in part 1 of the experiment, the broad band

noise excitation was only started after the subject had begun to sing, to allow

samples of “clean” audio (without broad band noise) to be collected for each

vowel and fundamental frequency (average length 1.1 seconds). Figure 5.3

shows how the clean audio samples were selected in Audacity [168], based on

the waveform and spectrogram of the signal.

Figure 5.3: Screen shot of spectrogram (top) and waveform (bottom) of
singing with broad band noise excitation, indicating the part of the signal
chosen as “clean” audio.

In order to remove differences due to the different microphones used in the
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anechoic chamber (parts 2 and 3) in the MRI machine, the clean audio sam-

ples were inverse filtered in MATLAB (code included in Appendix L). This

was achieved by convolving the audio samples with the inverse of the relevant

microphone response (the DPA response for the anechoic recordings, and the

optic microphone response for the MRI recordings). This was deemed nec-

essary as, in some cases, the third resonance approached 3 kHz, where the

microphone responses started to deviate from each other.

The microphone responses taken from the manufacturers datasheets are shown

in Figure 5.4. Better compensation might have been achieved if the individ-

ual microphone responses had been measured, as the individual microphone

responses may deviate a little from the published responses. However, in this

application, minor deviations from a nearly-flat response are not of concern.

Figure 5.4: Frequency responses of the DPA microphone used in the anechoic
chamber (dashed line), and the optic microphone used in the MRI machine
(solid line).

The data collected in each part of the procedure is shown in Table 5.4.

The images obtained from MRI (green in Table 5.4) allowed the observation
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Task: Reading: The North
Wind and the Sun

Sung scale with resonance
measurements (3 vowels)

Singing: One verse
of short song

Sung vowels
(3 vowels, 8 pitches)

Part 1
(MRI machine)

MRI images
Clean audio samples

Part 2
(“normal”)

Anechoic recordings
of speech

Resonance measurements
Clean audio samples

Anechoic recordings
of singing

Part 3
(“simulated MRI”)

Anechoic recordings
of speech

Resonance measurements
Clean audio samples

Anechoic recordings
of singing

Table 5.4: Data obtained from each task, for each part of the procedure.
Data of the same colour were compared to each other.

of modifications to the shape of the vocal tract between the different funda-

mental frequencies and vowels, not only a mid-sagittal slice, as in previous

studies [6, 7, 169], but full 3D images of the vocal tract. This will allow ef-

fects in other planes to be seen, such as widening of the pharynx and lateral

changes to the shape of the tongue, and will be discussed in Chapter 6.

Unfortunately, although all six singers completed the second two parts of the

protocol, only four of the singers were able to complete part 1 (MRI scan).

Subject 4 found singing in the MRI machine a very unpleasant experience and

was unable to sing properly. Although Subject 5 was willing to be scanned,

the MRI machine malfunctioned and was out of order for several days, so

only a calibration scan was obtained for this subject, with no images of the

vocal tract captured during singing.

5.3 Analysis and Results

In this section, the differences between speech and singing produced in MRI

conditions, “normal” conditions and “simulated MRI” conditions are inves-

tigated. The purpose of conducting this analysis was to better understand

the effects of MRI measurement conditions on subjects, to inform singing

research using data obtained through MRI.

As described in section 5.2.3, the data obtained consisted of measurements of

vocal tract resonances, audio recordings of speech and song, and short audio

recordings of sung vowels. Using the three different types of data collected,
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three different tests were carried out.

The first analysis was carried out to ascertain whether the differences be-

tween “normal” and “simulated MRI” conditions (red in Table 5.4), elicited

a change in the vocal tract resonances. This was done by investigating the

difference in vocal tract resonance measurements of the three sung vow-

els, obtained in the two different conditions using a Kolmogorov-Smirnov

test. Neither the resonance measurements used in the first analysis, nor

the magnitudes of the harmonics used in the third analysis followed nor-

mal distributions (tested using a one-dimensional K-S test in MATLAB), so

non-parametric tests were used.

The second set of data to be considered was the anechoic recordings of speech

and singing (orange in Table 5.4), produced in both “normal” and “simulated

MRI” conditions. The comparison of this data served two purposes, firstly it

allowed the effects of MRI conditions on both speech and singing to be studied

and, secondly, it allowed for comparison of the effects of MRI conditions

between speech and singing, since much of the existing literature on the

effects of MRI conditions has focussed on speech. This was achieved by the

comparison of the Long-Term Average Spectra (LTAS) of speech and singing

produced in both “normal” and “simulated MRI” conditions.

Apart from the MRI images, the only data collected from part 1, were the

short samples of clean audio (blue in Table 5.4). Since the same data were

collected from all three parts of the experiment (anechoic and MRI), this was

used to further test the similarity of voice production in the different situa-

tions, and therefore the suitability of MRI for research into resonance tuning

involving MRI. The third analysis of the data therefore involved comparing

audio samples between different conditions, by extracting information about

the harmonics. The use of the data obtained is summarised in Table 5.5.
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Resonance measurements Analysis 1: Comparison of anechoic resonance
measurements (KS testing)

Anechoic recordings of speech and singing Analysis 2: Comparison of standing and supine
acoustic recordings (LTAS)

Clean audio samples Analysis 3: Comparison of anechoic/MRI audio
recordings (Spearman correlation)

MRI measurements Chapter 6 analysis

Table 5.5: Data obtained from each task, for each part of the procedure.
Data of the same colour were compared to each other.

5.3.1 Analysis 1: Comparison of resonance measure-

ments between “normal” and “simulated MRI”

conditions (KS testing)

The aim of this analysis was to investigate the differences in singing pro-

duction between “normal” conditions and “simulated MRI” conditions. This

was achieved by comparing resonance measurements of sung vowels produced

in parts 2 and 3 of the experiment.

The resonance measurements (obtained using broad band noise excitation,

as discussed in section 5.2.2) were first collated in Excel [157], and then

imported into MATLAB to evaluate the similarity between the “normal”

and “simulated MRI” resonance measurements (code included in Appendix

L). This was done using a two-dimensional Kolmogorov-Smirnov (K-S) test,

a non-parametric test, where the null hypothesis is that both data sets were

drawn from the same continuous distribution (after Peacock [170]).

The resonance measurements for all singers in both “normal” and “simulated

MRI” conditions, are included in Appendix E (MATLAB code and raw data

in Appendix L). Examples to highlight the differences between resonance

measurements in the different conditions are shown in Figure 5.5. These are

plots of the first three resonances against fundamental frequency, for an /A/

vowel, for subjects 2 and 3. The “normal” and “simulated MRI” conditions

were not found to be significantly different for subject 2 (top), however for

subject 3 (bottom) the second and third resonances were significantly differ-

ent (according to the K-S test, at the 5 % significance level) in the different
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(a) subject 2, /A/ vowel.

(b) subject 3, /A/ vowel.

Figure 5.5: The first three resonances (R1, R2 and R3) against fundamental
frequency for an /A/ vowel for subjects 2 (top) and 3 (bottom).

conditions.

Table 5.6 gives the results of the 2-dimensional Kolmogorov-Smirnov (K-S)

test between resonance measurements in “normal” anechoic conditions and

“simulated MRI” conditions, for each vowel and resonance, for all subjects.

It can be seen that in most cases, the results accept the null hypothesis
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Subject 1 Subject 2 Subject 3
Vowel R1 R2 R3 Vowel R1 R2 R3 Vowel R1 R2 R3

/A/ 0 1 0 /A/ 0 0 0 /A/ 0 1 1
/u/ 0 0 0 /u/ 0 0 0 /u/ 0 0 0
/i/ 0 0 1 /i/ 0 0 0 /i/ 0 0 0

Subject 4 Subject 5 Subject 6
Vowel R1 R2 R3 Vowel R1 R2 R3 Vowel R1 R2 R3

/A/ 1 1 0 /A/ 0 0 0 /A/ 0 1 0
/u/ 0 0 0 /u/ 0 1 0 /u/ 0 0 0
/i/ 0 0 0 /i/ 0 0 0 /i/ 0 1 0

Table 5.6: The H-values for Kolmogorov-Smirnov test results for comparison
of samples sung normally and in “simulated MRI” conditions (in the ane-
choic chamber). An H-value of 1 indicates that the results were significantly
different (at p ≤ 0.05).

Vowel R1 R2 R3

/A/ 1 4 1
/u/ 0 1 0
/i/ 0 1 1

Table 5.7: The H-values for Kolmogorov-Smirnov test results from Table 5.6,
summed over all six subjects.

(that the samples were drawn from the same population), meaning that they

are not significantly different. Table 5.7 summarises the results presented

in Table 5.6, across all subjects. It can be seen that the /A/ vowel more

often showed a significant difference between the two conditions than the

other vowels, which never showed a significant difference in first resonances,

and only showed a significant difference in second and third resonances for

one subject (apart from /u/ R3). This may suggest that subjects produced

the /A/ vowel less consistently (between the different conditions) than the

other two vowels investigated. This may be due to the fact that other vowels

tend to “neutralise” towards the /A/ vowel at high frequencies. This will be

discussed further in section 5.4.
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5.3.2 Analysis 2: Comparison of acoustic recordings

between “normal” and “simulated MRI” condi-

tions (LTAS)

The purpose of the second analysis was two-fold: firstly to observe the ef-

fects of “simulated MRI” conditions on spectra of both speech and singing;

and secondly, to compare the effects of “simulated MRI” conditions between

speech and singing.

Using Audacity [168] the recordings of the spoken reading and song verse for

each singer were cut from the audio recordings of the second and third parts

of the experiment. In order to view the distribution of energy over the whole

frequency range, the LTAS of each speech or song recording for each subject

was then generated using Praat [70], in 100 Hz intervals. These values were

then exported as a text file (.txt) and imported into MATLAB [68].

Figure 5.6 shows the LTAS results for each singer, plotted on the same axes

for each subject. The results were not normalised, to allow differences in

amplitude to be observed. The LTAS of speech are in black and of singing are

in grey. Sound produced in “normal” (anechoic) conditions is represented by

a solid line and those in “simulated MRI” (anechoic) conditions by a dashed

line. The difference in LTAS between the two conditions was also calculated,

for both speech and singing (as indicated in equation 5.1):

difference = ′′normal” LTAS − ′′simulated MRI” LTAS (5.1)

This difference was plotted against frequency in Figure 5.7.
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(a) subject 1 (b) subject 2

(c) subject 3 (d) subject 4

(e) subject 5 (f) subject 6

Figure 5.6: The Long-Term Average Spectra for speech (black) and for
singing (grey), in “normal” (solid line) and “simulated MRI” (dotted line)
conditions, for all 6 subjects.
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(a) Speech

(b) Singing

Figure 5.7: The difference in Long-Term Average Spectra for speech (top)
and singing (bottom), between “normal” and “simulated MRI” conditions,
for all 6 subjects.

It can be seen from Figure 5.6 that the LTAS for singing consistently has more

energy in the 1-4 kHz range than speaking, for both conditions investigated.

Five of the six subjects produced sound of a higher amplitude in the “normal”

conditions than “simulated MRI” conditions for singing (grey) (up to 15

dB difference), but for speech (black) this was true for only four of the six

subjects.

The differences between the “normal” and “simulated MRI” conditions were
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mostly very small; for speech, the difference between conditions was more

constant with frequency than for singing, consisting of a shift in amplitude

of approximately 5-10 dB (normal conditions had a higher amplitude than

“simulated MRI” for all but one subject). The small acoustic differences

agree with previous studies. However the Lombard effect [171] suggests that

subjects should increase the volume of voice production in the presence of

other noise, rather than decrease it.

For singing, the difference between the conditions was smaller than for speech

(up to approximately 8 dB), suggesting that the singers in this study were

less affected by MRI conditions when singing than when speaking.

As expected [172], the LTAS showed differences between speaking and singing

for all singers (irrespective of conditions), suggesting that the production of

speaking and singing is very different. Conclusions drawn about the effects of

MRI conditions on speech (from previous studies) therefore cannot necessar-

ily be assumed to be true for singing. Both the differences in LTAS between

conditions and between speaking and singing varied considerably between

subjects, suggesting that this is quite an individual matter.

5.3.3 Analysis 3: Comparison of Anechoic/MRI audio

recordings (Spearman correlation)

The third set of analyses involved the short samples of clean audio recordings

of sung vowels, gathered during both the anechoic and MRI recordings (all

three parts of the experiment). This is the only data collected from all three

parts, so plays an important part in testing the similarity of voice production

in the different situations.

Using Audacity [168], individual “clean” audio samples (that did not include

any background MRI or broad band noise) for each note and vowel were

cut out from the audio recordings from all three parts of the experiment.

Samples were chosen by inspection of the waveform and spectrogram of the
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recordings. Samples were selected to be as long as possible, while maintaining

a near-constant amplitude and frequency spectrum. Care was taken to avoid

the onset period and to select an integer number of periods of vibrato, when

this was present.

A MATLAB program (see Appendix L) was used to detect the frequencies

and magnitudes of the first 20 harmonics below 10 kHz in each sample. An

example plot of the spectrum of a sample, including the harmonics detected,

is shown in Figure 5.8. Similarity of the samples was then deduced by carry-

ing out a Spearman test for correlation on the harmonics in pairs of samples

of the same fundamental frequency (code in Appendix L). The Spearman

correlation is similar to the Pearson correlation (which is used for parametric

data), but represents a statistical measure of the strength of a monotonic

relationship between paired data [173]. It can take a value between -1 and

+1, with a value of close to ±1 indicating the strongest correlation between

the two variables. This test was chosen as it is a common test of correla-

tion between bivariate, non-parametric data. The data to be compared by

this test were the amplitudes of harmonics in two different samples of audio,

which, if identical, would correlate perfectly.

Figure 5.8: The spectrum of an anechoic clean audio sample and the har-
monics detected (asterisks), plotted in dB.
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One example plot of the magnitudes of corresponding harmonics of two sam-

ples of the same fundamental frequency, in “normal” conditions and “simu-

lated MRI” conditions (parts 2 and 3) is shown in Figure 5.9. As expected,

considering that the two samples represent the same vowel, sung by the same

subject, at the same frequency, the correlation between the magnitudes of

harmonics in the two samples is very strong, and the line of best fit has a

gradient close to 1.

Figure 5.9: A plot of relative magnitudes of harmonics in two samples, for
the “normal” and “simulated MRI” conditions. (Subject 6, f0 = 343 Hz, /A/
vowel)

The mean of results of the Spearman correlation comparing the amplitudes of

relevant harmonics across the same vowels and pitches in different conditions,

were taken across each subject, and these results are summarised in Tables

5.8 (comparison between “normal” and “simulated MRI” conditions), and

5.9 (comparison between vowels sung in the anechoic chamber and in MRI

conditions).
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Subject min max mean stdev

1 0.583 0.967 0.881 0.061
2 0.676 0.983 0.866 0.072
3 0.615 0.992 0.868 0.077
4 0.661 0.980 0.859 0.072
5 0.541 0.983 0.889 0.068
6 0.697 0.983 0.877 0.062

Table 5.8: The Spearman correlation results (minimum, maximum, mean and
standard deviation) for comparison of harmonics in vowels sung in “normal”
and “simulated MRI” conditions in the anechoic chamber.

Table 5.8 summarises the comparison between vowel sounds produced in

parts 2 and 3 of the experiment (“normal” and “simulated MRI” conditions).

From these results, it can be seen that the mean Spearman correlation was

between 0.859 (subject 4) and 0.889 (subject 5). A correlation value ex-

ceeding 0.8 indicates a very strong positive correlation (according to Evans’

[174] classification7) showing that the sung vowel sounds were in general very

similar between the two conditions investigated.

The left half of Table 5.9 summarises the comparison between vowel sounds

produced in parts 1 and 2 of the experiment (the real MRI recordings and

“normal” conditions), and the right half shows the comparison between vowel

sounds produced in parts 2 and 3 of the experiment (“simulated MRI” con-

ditions and the actual MRI recordings). Only 4 singers completed all three

parts of the experiment, and hence, these results can only be calculated for

them.

For the comparison between MRI and “normal” conditions, the means lay

between 0.793 and 0.876. For the comparison between MRI and “simulated

MRI”, the means lay between 0.832 and 0.888. Again, these values indi-

cate a strong/very strong positive correlation, showing that the sung vowel

sounds were in general very similar between the three conditions investi-

7According to Evans [174], R values are classified as follows: 0.00 - 0.19 : “very weak”,
0.20 - 0.39 : “weak”, 0.40 - 0.59 : “moderate”, 0.60 - 0.79 : “strong”, 0.80 - 1.0 : “very
strong”.
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comparison: MRI / “normal” MRI / “simulated MRI”
Subject min max mean stdev min max mean stdev

1 0.600 0.967 0.852 0.080 0.297 0.943 0.832 0.122
2 0.314 1.000 0.793 0.194 0.657 1.000 0.862 0.107
3 0.371 1.000 0.876 0.147 0.371 1.000 0.888 0.128
6 0.674 0.976 0.847 0.098 0.459 0.983 0.848 0.139

Table 5.9: The Spearman correlation results (minimum, maximum, mean
and standard deviation) for comparison of harmonics in vowels sung in the
anechoic chamber (“normal” and “simulated MRI”) to those from the MRI
machine.

gated. For three of the four subjects, the MRI conditions and “simulated

MRI” conditions produced higher correlations than between MRI conditions

and “normal” conditions, which is as expected.

The results of the audio comparison using Spearman correlation showed that

the correlation between the harmonics in all three situations was either strong

(0.60-0.79) or very strong (>0.8), indicating that the samples were very sim-

ilar. As expected, the actual MRI and “simulated MRI” audio were more

similar to each other than the MRI and “normal” conditions.

5.3.4 Singers’ Experience

As discussed in section 5.2.2, the subjects were asked to complete a question-

naire which was split into two parts, one to be answered before the experiment

began, and one after. The purpose of this was to observe any change in a

subject’s perception of their own singing and singing production, and to al-

low them to reflect on any differences in their singing technique between the

different conditions investigated (MRI conditions, and “normal” and “simu-

lated MRI” conditions in the anechoic chamber). The questions allowed for

open-text answers.

The full questionnaire responses can be found in Appendix K. The com-

ments relevant to this chapter are summarised below. A popular method
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of analysing questionnaire data is qualitative data analysis. However, the

purpose of this is often to reduce the complexity of large datasets, so was not

deemed necessary in this study due to the small sample size. Only the sub-

jects that completed the MRI part of the experiment successfully (subjects

1, 2, 3, and 6) have been included.

The subjects were asked if they had noticed any differences in the way they

sang in the different positions (standing up and lying down), and what they

were. Comments mostly focussed on the subjects’ spatial perception, and

were similar to the comments made prior to the experiment, with subject 1

commenting on the lack of a feeling of “connection” and the different head

and neck alignment. Subject 2 said that she found the MRI machine “very

restrictive”, and remarked that standing on the netting in the anechoic cham-

ber in parts 1 and 2 of the procedure also affected her feeling of “support”

during singing. Subject 3 commented that she found it harder to sing high

notes in the MRI machine, and said that she felt “stretched” and wanted

to move her legs for support. Subject 6 said that singing lying down was

challenging but she thought that it went surprisingly well.

Subjects generally found the MRI machine a very strange environment to

sing in, with subject 1 describing it as “surreal”. She commented on the lack

of projection or sense of space, said she found it awkward and had tension

in her shoulders. Subject 2 also found it “odd” and said she was affected by

the lack of freedom. Subject 3 commented that she “hated not being able to

hear properly” and the lack of feedback. Subject 6 said she found it difficult

at first (finding it claustrophobic).

All subjects agreed that they felt they sang differently in the MRI machine

when compared to more normal conditions. Three mentioned “support”.

Subject 1 said she felt constricted, deprived of connection to the outside

world and her “emotional centre”. Subject 2 commented on the lack of

pelvic/leg support. Subject 3 said she “had to try much harder”. Subject

6 commented that she would normally use more vibrato and would position

breathing support lower (she claimed to have used “chest” support in the



CHAPTER 5. EXPERIMENTAL PROTOCOL AND VALIDATION 150

MRI machine).

5.4 Discussion and Conclusions

In this chapter, a three-part protocol was tested, which allowed for the col-

lection of MRI images, vocal tract resonance measurements, recordings of

speech and singing and audio samples of sung vowels. The subjects per-

formed speaking and singing tasks in three different situations (MRI condi-

tions, “normal” and “simulated MRI”). This achieved the aim of collecting

MRI images and anechoic resonance measurements of the vocal tract, as well

as audio data. The overlap of data between the three different situations

allowed for three statistical analyses to be carried out, for the purpose of

evaluating the validity of MRI in investigating the singing voice.

The first statistical analysis used a 2-dimensional Kolmogorov-Smirnov test

to evaluate the difference in resonance measurements collected in “normal”

and “simulated MRI” conditions. It showed that in most cases there were no

significant differences at the 5 % level. The significant differences that did

occur were not consistently in the same vowels and resonances for different

subjects, suggesting that these results were individual. The resonances of the

/A/ vowel were found to be different between “normal” and “simulated MRI”

conditions more often than the /u/ or /i/ vowels (6/18 tests were significantly

different for the /A/ vowel, compared to 1/18 and 2/18 for the /u/ and /i/

vowels, respectively). This suggests that the /A/ vowel was produced least

consistently between conditions.

The second statistical analysis investigated the difference between speech and

singing produced in “normal” and “simulated MRI” conditions, using Long-

Term Average Spectra (LTAS) to examine the distribution of energy with

frequency, in both speech and song. The difference between “normal” and

“simulated MRI” conditions for speech was almost frequency-independent,

but consisted of a shift in amplitude of approximately 5-10 dB (higher ampli-
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tude in normal conditions for all but one subject), which may be explained by

the lack of auditory feedback in the anechoic chamber. For singing, the dif-

ference between “normal” and “simulated MRI” conditions was considerably

smaller than for speech (up to approximately 8 dB), suggesting that singers

were less affected by MRI conditions when singing than when speaking, which

could suggest that this is an effect of training, as singers train very hard to

be able to produce vowels in a certain way, making them very consistent

in reproducing them in different conditions. These results appeared to vary

considerably between subjects, suggesting, like the first analysis, that this is

quite an individual matter. Cross-subject analysis has not been carried out

in this section and differences in articulator movements between subjects will

be examined in Chapter 6. As expected [172], the LTAS results showed dif-

ferences between speech and singing. However, these were similar across the

conditions investigated (“normal” and “simulated MRI”), with the singing

containing more energy in the 1-4 kHz range.

The third statistical analysis investigated the differences between the har-

monics of sung vowels produced in actual MRI conditions and “simulated

MRI” conditions. This was done using a Spearman correlation to evalu-

ate the correlation between the magnitudes of corresponding harmonics in

pairs of samples (on the same vowel and fundamental frequency). The re-

sults indicated a strong or very strong correlation between the magnitudes

of the harmonics, which demonstrates that the harmonic content of sound

produced in the “simulated MRI” conditions was not significantly different

to that produced in actual MRI conditions. This is further supported by

the fact that the correlation between the MRI conditions and “normal” con-

ditions, although still strong, was not as high as between actual MRI and

“simulated MRI” conditions.

The results of the questionnaire indicated that singers felt the MRI machine

was a very difficult environment to sing in, due to the feeling of constriction

and lack of “support”, even though this was not reflected in the acoustic pa-

rameters investigated. The comments made generally referred to the physical

sensation of being in the MRI machine, rather than the auditory effects. Sev-
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eral commented that they lacked a feeling of being “grounded” in the MRI

machine, and found it restrictive and claustrophobic. Several also made com-

ments about specific articulators, such as feeling a difference in the positions

of their tongue and jaw. Articulator measurements were of course only ob-

served in a supine position, but there were no consistent patterns in the

acoustic spectrum to suggest that this was the case. It is possible that there

may be more subtle differences in the sounds produced than has been dis-

covered in this experiment. A larger data set, with repeated measurements

and more subjects, would be useful for investigating this.

It is worth considering at this point that the singers in this study were self-

selecting to an extent; not only did one singer not complete the MRI, but

when arranging the study, several singers were approached who declined to

take part, which could have been because they would find it too stressful.

In addition to this, although the major aspects of the MRI conditions were

replicated in the anechoic chamber (such as the supine position, ear occlusion

and noise), more subtle aspects such as the cold temperature and reverber-

ation of the MRI scanner were not. Further results using audio recorded

in MRI machines would be of use in studying the effects of MRI conditions

more extensively.

The results of these three analyses indicate that, in spite of the subjects’ per-

ception, the singing produced in the different conditions investigated was very

similar in terms of the three measures investigated: vocal tract resonances,

overall frequency content (LTAS) and harmonic content. These results are

in agreement with previous studies such as Traser et al. [159], who observed

small changes to the vocal tract in tenors, but no changes in registers. This

also supports the previous studies on speech, such as Speed [161], who found

that speakers were consistent at least up to 4 kHz, and Stone et al. [160], who

found small changes in the vocal tract between upright and supine positions,

but negligible acoustic differences.

Results obtained using MRI should still be treated with caution, however, it

should be noted that there does exist some variability between subjects, and
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it is not possible to predict from these results how singers of different ages,

voice types and experiences would react when in MRI conditions. For this

reason it would be beneficial if further voice research involving MRI were

to include some kind of verification procedure as standard to investigate the

effects of MRI conditions on singers, similar to the analysis carried out in

this work.

Further study investigating the auditory effects of the MRI environment

would be a valuable addition to all research studies involving this method of

imaging the human body. It is also worth noting that although an anechoic

chamber is a much more natural performance environment than an MRI

machine, it is still an unusual performance environment for singers. The

methods used in this study were sufficient for contextualising and validating

the results obtained in this work, as they show that the effects of MRI con-

ditions on singing are small enough that results obtained by this method are

still valuable. However, they do not give a complete picture of the perceptual

and auditory effects of MRI conditions on subjects.

Overall, the results presented in this chapter have shown that the effects

of MRI conditions are generally not significant for this group of singers,

although it is not known whether these results can be extrapolated to other

groups. These results therefore provide a solid foundation for analysis of the

professional operatic soprano singing voice using MRI. Since MRI provides an

insight into the inner workings of the vocal tract which is unobtainable by any

other method, the unpleasant effects of the conditions for the singer represent

an acceptable compromise. Based on the findings of this chapter, therefore,

the following chapter will report the results of the full experiment, focussing

on the analysis of images obtained using magnetic resonance imaging and how

they can improve our understanding of the production of resonance tuning.



Chapter 6

Production of Resonance

Tuning

In Chapter 5, the methods of the main experiment at the centre of this

thesis were outlined, involving resonance measurements, audio recordings

and MRI image capture. It was established that MRI conditions did not

have a significant effect on singing production in most cases.

This chapter will present the results of the experiment that address the main

objective of this PhD research: to understand the methods by which resonance

tuning is produced by soprano singers.

The chapter begins by discussing the type and extent of resonance tuning

observed in this experiment (in parts 2 and 3 of the protocol, “normal”

and “simulated MRI” conditions) and how it compares to previous stud-

ies. This will be followed by a description of how the MRI images obtained

were processed to generate area functions (using a novel algorithm) and two-

dimensional measurements of the vocal tract articulators. Finally, it discusses

the statistical analysis carried out to explore the relationships between the

articulators and the vocal tract resonances, and the meaning and implications

of these results.

154
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Parts of this work have been previously published in a journal paper, “De-

termining the relevant criteria for three-dimensional vocal tract characteri-

zation”, in Journal of Voice [8].

6.1 Introduction

In Chapter 5, the protocol used for the main experiment was described, which

involved collecting measurements of vocal tract resonances, audio recordings,

and MRI data. Various tests were carried out to evaluate the appropriateness

of comparing data obtained in anechoic “simulated MRI” conditions to actual

MRI measurements. The different types of data gathered from each part

of the experiment (MRI, “normal” and “simulated MRI” conditions) are

summarised in Table 6.1, which illustrates the comparisons that can be made

between them.

Task: Reading: The North
Wind and the Sun

Sung scale with resonance
measurements (3 vowels)

Singing: One verse
of short song

Sung vowels
(3 vowels, 8 pitches)

Part 1
(MRI machine)

MRI images
Clean audio samples

Part 2
(“normal”)

Anechoic recordings
of speech

Resonance measurements
Clean audio samples

Anechoic recordings
of singing

Part 3
(“simulated MRI”)

Anechoic recordings
of speech

Resonance measurements
Clean audio samples

Anechoic recordings
of singing

Table 6.1: Data obtained from each task, for each part of the procedure.
Data of the same colour were compared to each other. (repeat of Table 5.4)

The current chapter focusses on measurements of the vocal tract resonances

obtained using broad band noise excitation and the analysis of images of the

vocal tract obtained using MRI, in order to investigate the resonance tuning

behaviour of soprano singers and the links between specific articulators and

resonances.

The first stage of the analysis will examine the resonance tuning measure-

ments, to establish the type and extent of resonance tuning strategies used

by singers and identify whether this aligns with expectations (based on both

acoustic theory and previous studies).
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In addition to this, the differences in resonance tuning between vowels will

be investigated. It is expected that different resonance tuning strategies will

be used for different vowels, due to the differences in formant values between

vowels. The first resonance is significantly different for different vowels, for

example the closed-front /i/ vowel has its first formant at approximately

310 Hz, while the open-front/closed-back /a/ vowel has its first formant at

approximately 850 Hz [117]. Acoustic theory [13] suggests that resonance

tuning is employed once the resonance frequency equals the fundamental

frequency, to produce sound more efficiently.

Differences in resonance tuning between subjects will also be examined. Al-

though the subjects in this experiment have similar backgrounds, it is possi-

ble for singers to produce a very similar sound by different methods (known

as articulatory compensation [64]), which might not be apparent from the

acoustic spectrum, but could be identified from MRI images.

In the next stage of the analysis, the resonance tuning techniques used by

the singers will be assessed in light of the MRI data. Area functions will

be obtained by generating a 3D model of the vocal tract, and then “slicing”

this at regular intervals to produce an area function. The iterative bisection

algorithm, adapted from that used by Story [102], was used to generate

a 2D area function from each mid-sagittal slice. Area functions for each

subject and fundamental frequency will be examined for relationships with

fundamental frequency, and this will be compared to the resonance tuning

results.

The final stage of the analysis, which represents the fundamental purpose

of this research, will aim to determine which articulators affected the vocal

tract resonances the most strongly. To achieve this, the resonance tuning

results and the MRI data will be combined, using a feature selection pro-

cess to identify which variables (articulator measurements) produce the best

fitting regression models for the data. Additionally, to determine whether

the movements of articulators used to alter the vocal tract resonances vary

between vowels and between singers, patterns of resonance tuning and area
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functions will be compared between singers and statistical analysis carried

out on data for individual singers.

6.2 Data Processing

The experimental protocol for this experiment was discussed in detail in

Chapter 5, (section 5.2.2). In summary, it consisted of three parts: the first

part taking place in a “normal” standing position in an anechoic chamber,

the second part in “simulated MRI” conditions in an anechoic chamber, and

the third part in an MRI machine. In the first two parts the subjects carried

out speaking and singing tasks, producing acoustic recordings and vocal tract

resonance measurements (obtained using broad band noise excitation). In the

third part of the experiment, acoustic recordings and MR images of the vocal

tract were obtained as singers sang a range of notes in the MRI machine.

As discussed in Chapter 5, only four of the six subjects completed the MRI

part of the experiment, so analysis involving data obtained through MRI

only includes these subjects.

The following section will detail the processing and analysis of the vocal tract

resonance measurements, and the MRI images obtained.

6.2.1 Resonance Measurements

As described in section 5.2.2, the resonances of the vocal tract were measured

using broad band noise excitation of the vocal tract. Each singer sang notes

of approximately 4-5 seconds’ duration from C4 (262 Hz) to the top of her

range, on three different vowels, /A/, /u/ and /i/. This yielded suitable

measurements of vocal tract resonances over a wide frequency range.
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(a) /A/ vowel

(b) /u/ vowel

(c) /i/ vowel

Figure 6.1: The first two resonances plotted against fundamental frequency,
for all subjects, for the /A/ vowel (top), /u/ vowel (middle) and /i/ vowel
(bottom). The first resonances are represented by filled-in shapes, and the
second resonances are represented by empty shapes.
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The first and second resonances for all subjects were plotted against the

fundamental frequency sung for each vowel and these are shown in Figure 6.1.

Plots of the first three resonances for each singer individually are included in

Appendix E.

As in previous works [14, 151], resonance tuning was identified by plotting

a histogram of the frequency difference between the first resonance and the

fundamental frequency (R1 - f0), which is shown in Figure 6.2. In this study,

a central peak approximately 120 Hz wide was found, so resonance tuning

was defined as occurring when the resonance was within 60 Hz of the relevant

harmonic.

Figure 6.2: Histogram showing the distribution of the difference in frequency
between the measured values of R1 and f0 (R1 - f0).

The resonance tuning strategies used by each subject are summarised in

Figure 6.3 (a figure including both “normal” and “simulated MRI” measure-

ments is included in Appendix F). The four tuning strategies investigated

were R1 : f0 tuning (dark grey), R1 : 2f0 tuning (dark stripes), R2 : f0 tuning

(not observed) and R2 : 2f0 tuning (light grey). The highest fundamental

frequency reached varied between singers, as can be seen from the upper limit

of Figure 6.3.
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The results for the /A/ vowel showed that most subjects employed R1 : f0

over the upper half of the frequency range investigated. Some R2 : 2f0 tuning

was seen for all subjects, mostly just above the middle of the frequency range.

All subjects employed R1 : 2f0 tuning sporadically over the lower part of their

range, and subject 5 also employed R2 : f0 tuning near the very top of her

range.

For the /u/ vowel, all subjects employed R1 : f0 tuning extensively across

most of the range investigated. Subjects 4, 5, and 6 exhibited some R1 : 2f0

tuning at the lower end of the range investigated. R2 : 2f0 tuning was also

widely employed across the middle of the frequency range, but no R2 : f0

was observed for this vowel.

Finally, for the /i/ vowel, again all subjects employed R1 : f0 tuning exten-

sively across the entire frequency range. Subject 6 exhibited a very small

amount of R1 : 2f0 tuning at the lower end of the range investigated. Two

of the subjects also used R2 : 2f0 tuning for one note near the top of their

range.

The subjects showed the least similarity (with each other) for the /A/ vowel.

This vowel also had the least resonance tuning overall of all the examples

studied and, as seen in Chapter 5, showed the least consistency between dif-

ferent conditions. The resonance tuning patterns for the /u/ and /i/ vowels

were very similar, between both singers and vowels, although the /u/ vowel

had more R2 tuning than the /i/ vowel. These two vowels were very con-

sistent between subjects, and did not show a large variation with frequency,

with singers typically employing the same resonance tuning techniques over

wide frequency ranges.
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(a) /A/ vowel

(b) /u/ vowel

(c) /i/ vowel

Figure 6.3: The resonance tuning strategies employed by each subject, for
the /A/ vowel (top), /u/ vowel (middle) and /i/ vowel (bottom). The tuning
strategies observed were R1 : f0 tuning (dark grey), R1 : 2f0 tuning (dark
stripes) and R2 : 2f0 tuning (light grey). (R2 : f0 tuning was not observed.)

In previous studies on resonance tuning, Garnier et al. [15] found that in 12

soprano singers (described as 4 non-experts, 4 advanced and 4 professional
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singers), both advanced and professional singers employed extensive R1:f0

tuning, between C5 and C6, for the /A/ vowel. A few of the singers also

exhibited R2:2f0 tuning, beginning around C6. In another study, Henrich et

al. [14] found that for sopranos, for the /A/ vowel, R1:f0 tuning was employed

between C5 and C6, and R2:2f0 tuning was also observed for 3-5 notes near

the frequency of R2. Extensive R1:f0 tuning was also observed for the /u/

vowel, with similar R1:f0 tuning to the /A/ vowel (2-5 notes for the /A/

vowel, and 2-4 notes for the /u/ vowel). The /i/ vowel was not investigated

in either of these studies. The singers in these previous works were described

as ranging from “nationally recognized to amateur singers” [14].

In this current study, much less resonance tuning was observed in general

for the /A/ vowel: R1:f0 tuning only occurred sporadically over the upper

part of the subjects’ ranges (across 12 semitones for subject 6, but not at all

for subject 4). Very little R2:2f0 tuning was observed (0 - 5 semitones) and

this was mostly around the middle part of the frequency range investigated

(C5). The resonance tuning pattern observed for the /u/ vowel was similar

to previous studies, with extensive R1:f0 tuning (over one-and-a-half octaves

for subjects 3 and 6) and a little R2:2f0 tuning (0 - 7 semitones).

6.2.2 Two-Dimensional MRI measurements

To obtain measurements of the vocal tract articulators, to compare to the

resonance measurements already collected, the MRI images were imported

into ITK-snap [175] for analysis. In ITK-snap, the “annotation” tool was

used to directly measure the dimensions of the vocal tract in the mid-sagittal

plane. After Echternach et al. [6], the parameters measured were: lip opening

a, jaw opening b (between fixed points on the lower and upper jaws), height

of tongue dorsum c (height of highest point above fixed point on jaw), jaw

protrusion d (from the wall of the pharynx), oropharynx width e, and uvula

elevation f (relative to hard palate). In addition to these, the oropharynx

breadth g (perpendicular to e), larynx height h (relative to the collarbone),

lip spreading i, and vocal tract length j (the length of the mid line of the vocal
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tract calculated with the area function - see section 6.2.3), were measured.

The larynx height was measured by taking the distance of the larynx to a

fixed point (the collarbone) for all sung notes and the “neutral” position,

then subtracting the distance for the neutral position. The mid-sagittal

measurements are shown in Figure 6.4.

These measurements were collated using Microsoft Excel [157] and later im-

ported into MATLAB for analysis (see section 6.3). The two-dimensional

measurements are included in Appendix L.

Figure 6.4: 2D MRI measurements: lip opening a, jaw opening b, height of
tongue dorsum c, jaw protrusion d, oropharynx width e, uvula elevation f
and larynx height h. (oropharynx breadth g, lip spreading i, and vocal tract
length j not shown). Figure after [6].

Since the vocal tract articulators are all physically connected, a high degree of

correlation was expected between the variables. To investigate the type and

degree of the relationships between variables, the linear correlation between

each pair of variables was calculated and plotted [173]. Figure 6.5 shows

the correlation between variables for all singers, for the /A/ vowel (top), /u/

vowel (middle) and /i/ vowel (bottom). Since only four of the six singers
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completed the MRI part of the experiment, only results for these singers

could be analysed in this way.

From Figure 6.5 it can be seen that, as expected, there is a high degree of

correlation between variables and the pattern of correlation varies between

vowels.

Several correlations were found to be consistent across all three vowels; for all

three vowels, the lip opening a and jaw opening b showed positive correlation

with fundamental frequency, which is expected based on acoustic theory [19].

Both the lip opening a and lip spreading i also correlated positively with jaw

opening b, which is expected, as both these measures describe the degree of

openness of the singer’s mouth.

The number of statistically significant correlations only varied a little between

vowels, with 15/55 found for the /A/, and 23/55 and 21/55 for the /u/ and

/i/ vowels, respectively.

For the /A/ vowel, the variables found to correlate with others most often (5

times) were the fundamental frequency and lip opening a. The jaw opening

b, tongue height c, oropharynx breadth g and lip spreading i also appeared

often (4 times).

The results for the /u/ vowel show that the lip spreading i was found to

correlate most often (7 times), and the lip opening a, jaw opening b, jaw

protrusion d, uvula elevation f and lip spreading i also frequently showed a

significant correlation (6 times each).

Finally, for the /i/ vowel, the variable showing the most correlation was the

lip opening a (6 times), followed by the oropharynx width e (5 times).
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(a) /A/ vowel

(b) /u/ vowel

(c) /i/ vowel

Figure 6.5: The linear correlation between all variables1 for the /A/ vowel
(top), /u/ vowel (middle) and /i/ vowel (bottom), for all subjects. Non-
significant results are not shown.
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To investigate the differences between singers, the same correlation was cal-

culated again, but split by singer as well as vowel. These results are shown in

Figure 6.6. Unfortunately the number of articulator measurements obtained

was not sufficient to calculate the correlations for subjects 3 and 6 (as the

sets of measurements were not complete for all fundamental frequencies - see

data in Appendix L), but the correlations between variables for subjects 1

and 2 show distinct differences, both in the variables that show correlations

between each other and in the type of correlations (positive or negative).

This may imply that the different variables either serve different functions

(in terms of resonance tuning), depending on the vowel sung, or do not relate

to the resonances at all. In the latter case, the singer may have developed

a habitual movement with a negligible bearing on the acoustic output (al-

though based acoustic theory, it seems unlikely that articulator movement

could have no acoustic effects).

1As described in section 6.2.2, these variables are: lip opening a, jaw opening b, height
of tongue dorsum c, jaw protrusion d, oropharynx width e, uvula elevation f, oropharynx
breadth g, larynx height h, lip spreading i, and vocal tract length j.
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(a) Subject 1, /A/ (b) /Subject 2, /A/

(c) Subject 1, /u/ (d) /Subject 2, /u/

(e) Subject 1, /i/ (f) /Subject 2, /i/

Figure 6.6: The correlation between all variables1 for the /A/ vowel (top), /u/
vowel (middle) and /i/ vowel (bottom), for subjects 1 and 2. Non-significant
results are not shown.
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6.2.3 Generation of 3D Area Functions

Once the two-dimensional articulator measurements had been generated in

ITK-snap [175], the airway was segmented to produce a 3D vocal tract vol-

ume. This was done using the built-in feature of ITK-snap, which is designed

for the analysis of anatomical structures and performs a segmentation based

on the image contrast. As discussed in section 2.2.3, due to the lack of hy-

drogen in teeth, these were indistinguishable from air. In this experiment,

the position of the teeth was estimated by inspecting all the MRI images for

each subject, as in some of these the subjects had their tongue or lips pressed

against their teeth, allowing the position of the teeth to be deduced in other

scans and the teeth to be removed from the segmentation. The MRI seg-

mentation procedure is prone to leakage into the surrounding tissues, so the

segmentation volume was allowed to expand until the whole volume of the

vocal tract had been filled and the volume had continued out of the mouth

to form a rough “radiation dome”.

The segmentations were therefore inspected and the parts representing teeth

(incorrectly included in the segmentation) were removed by hand, as well as

any leakages into the surrounding tissue. Finally, the radiation dome was

defined as ending at the narrowest point between the lips and removed. The

segmentation was then imported into ParaView [176] and exported as a list

of 3D points on the surface of the vocal tract, as well as connectivity data for

the points to be loaded into MATLAB [68] for analysis. All segmentations

are included in Appendix M.

The positive x direction was defined as transverse (left-right), the positive

y direction as anterior-posterior (front-back), and the positive z direction as

superior-inferior (up-down). All measurements were taken in mm.
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Figure 6.7: Illustration of the algorithm to determine slicing of vocal tract.

Then, following an algorithm originally developed to analyse upper airway

geometry and volume with regard to sleep disorders [177] and adapted to

generate a 2D area function from a mid-sagittal slice [102], the area function

was calculated using an iterative bisection algorithm.

Unlike existing methods of calculating 3D area functions, such as those em-

ployed by Baer et al. [119], which assume that the two ends of the vocal

tract are straight and the middle section has constant radius of curvature,

this algorithm adapts better to the shape of the vocal tract.

The start (glottis) and end (mouth) of the vocal tract were manually defined

by the researcher (as the narrowest point of the glottis, and the point between

the lips at the narrowest point, respectively) and labelled as (1) on Figure

6.7.

Firstly, the line joining the start and end of the vocal tract was calculated (2)

and then a plane was defined at the midpoint of this line, normal to it (3).

The intersection of this plane with the vocal tract was found and its area and

centre were then calculated (4). The coordinates of the centre of this area

was stored as a point, the full set of which defined the mid line of the vocal

tract. This process was repeated between the start of the vocal tract and the

midpoint, and between the midpoint and the end. This “sliced” the vocal
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tract into quarters (5) and the areas and midpoints of these intersections (6)

were again calculated.

This slicing was repeated (slicing into eighths, sixteenths etc.) to produce

a vocal tract cut into 2n parts. The areas of the start and end points were

also included, with the first “slicing” plane defined as horizontal (xy), and

the last as vertical (xz). This yielded an area function of 2n + 1 slices, and

in this study, n was chosen to be 5, giving 33 slices in total. This value was

found to provide a sufficient level of detail for analysis, while not taking an

excessively long time to calculate. Increasing the number of slices above this

was found to introduce errors in the area function produced, due to slices

overlapping. An example of the 3D vocal tract mesh, with the planes used

to slice it, is shown in Figure 6.8(a) and the area function generated by this

is shown in Figure 6.8(b). The MATLAB code used to produce the area

functions is included in Appendix L.

A number of restrictions were implemented in this procedure to make the

process more robust. Firstly the x component of the centre of each area slice

was restricted to the midpoint of the previous and following x components, to

prevent transverse shifts. In addition to this, the “slicing” plane was forced

to face forwards, (the x component of the normal was made zero), to reduce

the likelihood of areas overlapping with the previous or following ones.
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(a) 3D mesh of vocal tract, sliced by 33
planes.

(b) Area function produced

Figure 6.8: An example of the planes used to generate an area function (left),
and the resulting area function generated (right).

Some difficulty was encountered in analysis due to the piriform fossae and

other side branches, as in some cases the intersection of the vocal tract with

the “slicing plane” produced more than one area. If there was more than

one separate area identified, the most central one was chosen and its area

calculated. Due to the slight asymmetry of the piriform fossae, however, this

meant that occasionally one (or part of one) of them was included in the area

(as it was not quite separate from the main area of the vocal tract), while

the other one was discarded. This led to some error in the measurements of

cross-sectional area in the region around 1-2 cm from the glottis. An example

of this is shown in Figure 6.9. For the same subject, vowel and pitch as Figure

6.8, the 4th plane from the glottis slices through three separate areas (Figure

6.9(a)), however the 6th plane (Figure 6.9(b)) only identifies 2 areas.
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(a) Slice through the 4th plane from the
glottis.

(b) Slice through the 6th plane from the
glottis.

Figure 6.9: An example of two slices through the vocal tract used to generate
the area function; the 4th and 6th slices show how the cross-sectional areas of
side branches may be inadvertently incorporated into the central vocal tract
area.

Although the resonances of the vocal tract could be calculated directly from

the area functions generated from MRI images, effects such as the radiation

impedance at the subject’s mouth, or the wall compliance within the vocal

tract are not precisely known and so could not be taken into account. Since

the resonance measurements made in this experiment (using broad band

noise excitation) measure the resonances directly, they can be assumed to be

already taking these effects into account.

Using the algorithm described earlier in this section, the area functions were

calculated for each MRI scan. The area functions generated for each subject

individually are shown in Appendix G, Figures 13 (subject 1), 14 (subject

2), 15 (subject 3) and 16 (subject 6).

The results are summarised in Figure 6.10 which shows the area functions for

the lowest note sung by all singers (E4 - 330 Hz), and the highest note sung

by all singers (G5 - 784 Hz). As discussed in section 5.2.2, not all singers

reached the same range of frequencies, so the highest note common to all

singers was chosen here.

The area functions for the /A/ vowel (Figure 6.10(a) and (b)) are charac-
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(a) E4, /A/ vowel (b) G5, /A/ vowel

(c) E4, /u/ vowel
(d) G5, /u/ vowel

(e) E4, /i/ vowel (f) G5, /i/ vowel

Figure 6.10: A plot of area functions for all subjects, (a-b) for the /A/ vowel,
(c-d) for the /u/ vowel and (d-e) for the /i/ vowel, (a, c, e) on the lowest
note sung, E4, and (b, d, f) highest note sung, G5.
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terised by an approximately bell-shaped vocal tract: narrowing to approx-

imately 1 cm2 around 6 - 7 cm from the glottis (right side of Figure 6.10)

(around the back of the tongue), then opening out around 13 cm, before nar-

rowing again near the mouth (left side of Figure 6.10). Although the extent

of the mouth opening varies for different fundamental frequencies (between 3

and 7 cm2), there does not appear to be any relationship between fundamen-

tal frequency and mouth opening, and no consistent trends with fundamental

frequency can be observed across all subjects.

The area functions for the /u/ vowel (Figure 6.10(c) and (d)) are very con-

sistent between singers; at the lower fundamental frequencies a large area is

observed of about 8 cm2 around the pharynx (approx. 5 cm from the glot-

tis), which then decreases to a very small cross-sectional area around 12 cm

from the glottis and then opens up a little, before a final restriction at the

mouth. For the higher fundamental frequencies, the shape is very similar to

the /A/ vowel, with a narrowing around 6 cm, then a large opening up to ap-

proximately 14 cm2, before a slightly smaller mouth area. At certain points

along the vocal tract, a relationship between the cross-sectional area and the

fundamental frequency can be observed. For example, around the pharynx

(5 cm from the glottis), the lowest fundamental frequency has the highest

area and the highest fundamental frequency has the lowest area. The oppo-

site effect is seen at 13 cm from the glottis, where the highest fundamental

frequency has the lowest area and vice versa. A noticeable shortening of the

vocal tract is also seen with increasing fundamental frequency, possibly due

to the corners of the mouth being pulled back, changing its effective length.

The same patterns between the cross-sectional area and fundamental fre-

quency are also seen for the /i/ vowel (Figure 6.10(e) and (f)): at the mouth

the lowest fundamental frequencies has the lowest cross-sectional areas, 4-6

cm from the glottis (pharynx) the lowest fundamental frequencies have the

highest areas (approximately 6 cm2) and a shortening of the vocal tract is

observed with increasing fundamental frequency. For both this vowel and

the /u/ vowel, the area function at high frequencies is very similar to that of

the /A/ vowel.
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(a) /A/ vowel

(b) /u/ vowel

(c) /i/ vowel

Figure 6.11: The lip opening for each singer, plotted against fundamental
frequency. Figure (a) shows the /A/ vowel, (b) shows the /u/ vowel and
(c) shows the /i/ vowel. Not all fundamental frequencies and vowels were
captured for all singers (see Table 5.2).
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Figure 6.11 shows the lip opening plotted against fundamental frequency for

all three vowels. It can be seen that while there is a positive correlation

between lip opening and fundamental frequency for the /u/ and /i/ vowels

(Figure 6.10(b) and (c) respectively), this is less pronounced for the /A/

vowel (Figure 6.10(a)).

The area functions are similar between subjects, with the same general

changes in area function observed for all subjects.

6.3 Statistical Analysis

To address the research question identified in Chapter 1, investigating how

singers achieve resonance tuning, the statistical analysis carried out in this

section aims to link the datasets obtained. These consist of vocal tract res-

onance measurements (obtained by broad band noise measurement) and pa-

rameters describing the vocal tract shape (articulator measurements obtained

from MRI images).

As it was not known in advance what the relationship between the predictor

variables (articulator measurements) and the response variables (resonances)

would be, it was necessary to initially consider all the available variables. A

model of the lowest complexity possible could then be created by excluding all

but the necessary variables. The number of predictor variables was also very

large (11) for traditional methods such as regression analysis, so a method

to reduce this number was required.

6.3.1 Feature Selection

The algorithm used to explore the links between articulator measurements

and vocal tract resonances is similar to feature selection [178], which aims

to reduce the dimensionality of a model by including only a subset of the

predictor variables that provide the best prediction of the data. The method
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used in this work was an “all possible subsets” method [179], which involved

generating regression models for all possible subsets of variables, then evalu-

ating which of these models represented the best fit of the data. In this case,

since there were 11 predictor variables, there were 211 − 1 = 2047 possible

subsets of variables (not including the empty set). This method is very useful

for dealing with data with a large number of predictor variables [178]. Its

main disadvantage is generally its high computational cost. However, in this

analysis computation speed proved to be adequate.

The model generation was achieved using an iterative algorithm, which in-

volved the following steps:

1. A small amount of random noise (equivalent to 1 mm variation) was

added to the data (as explained below);

2. a list of all possible subsets of the variables was generated;

3. for each subset of variables (with a constant term added to represent

the intercept [180]), a regression model was generated;

4. the mean squared error (MSE) for each model was calculated and the

model with the smallest MSE was selected and stored;

5. steps 1-4 were repeated 1000 times (with random noise re-generated for

each iteration);

6. a bar chart was plotted, showing the number of times that each vari-

able appeared in the model over the 1000 iterations, and the variables

appearing most often were selected for a final regression model;

7. a final regression model was calculated using the variables selected in

step 6 and a constant term.

This analysis was carried out in MATLAB [68], and the code is included in

Appendix L. As described in point 6, a bar chart showing the most selected
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variables was generated for each vowel and singer. An example is shown in

Figure 6.12, for the second resonance of the /u/ vowel.

Adding normally-distributed random noise to the data at each iteration of the

algorithm has an effect similar to regularisation. Adding small variations to

the data improves the robustness of the model and prevents overfitting [181],

where the model fits the training data too well and is therefore unnecessarily

complex and ultimately inaccurate.

The quality of fit of the final regression models can be evaluated by examining

firstly the R2 values, which should be as close as possible to 1, secondly, the

p-values, which should be below the chosen significance level of 0.05, and

finally the residual errors, which should be random, rather than patterned.

Figure 6.12: Bar chart showing the number of times that each of the 12
variables was selected by the feature selection algorithm (fundamental fre-
quency, 10 articulator variables (a-j 2), and a constant term), for the second
resonance of the /u/ vowel.

2As described in section 6.2.2, these variables are: lip opening a, jaw opening b, height
of tongue dorsum c, jaw protrusion d, oropharynx width e, uvula elevation f, oropharynx
breadth g, larynx height h, lip spreading i, and vocal tract length j.
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6.3.2 Evaluation of Models

The main method of evaluating the quality of fit of a regression model is by

examining the residual error of the model. This has been done for all nine

vowels and resonances in Figure 6.13. From this plot it can be seen that

the residuals are random and do not appear to follow any pattern or have

an envelope shape. A test for randomness was applied using the MATLAB

function runstest [182]. The test was applied to the residuals for each of the

nine models above and returned the null hypothesis (showing that the data

was random) for eight of the nine models. Applying the test to the model

for the /u/ vowel did not give a random result. However, performing the

regression individually for the different singers did produce random residu-

als. This is encouraging in the context of this thesis, as it suggests that the

significant models generated fit the data well and that there are no missing

variables or non-linear effects that have not been accounted for. The magni-

tude of the residual errors suggests that the data contains a large amount of

variation, which is to be expected, as the data consists of measurements of

real movements.

Figure 6.13: Residual errors of the nine regression models generated (three
vowels x three resonances), showing random errors in the models.
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Although regression analysis provides a useful tool for evaluating the influ-

ence of various articulators on the vocal tract resonances, this method should

be treated with caution, as regression analysis is not ideal in cases where there

exists a large degree of multicollinearity between variables. When the vocal

tract system is considered as a whole, it is clear that since the articulators

are all physically linked together, their motion is similarly tied together and

the correlation between variables is high. The correlation between variables

for each vowel was shown in Figure 6.5. From this it was observed that for

all vowels there existed a large amount of correlation between variables, as

expected.

One method commonly used to reduce the effects of multicollinearity is prin-

cipal component analysis [183], which reduces collinear variables to new,

orthogonal variables. However, although this would improve the regression

models able to be generated, the new variables generated by principal com-

ponent analysis would not be particularly meaningful, compared with the

original real measurements. It is important therefore not to lose sight of the

purpose of this research, which is not to create a perfect statistical model of

vocal tract resonance production, but rather to use a more holistic approach

to gain an insight into how the system functions, and regression analysis

provides a useful method of determining the relative influence of different

variables.

6.3.3 Regression Models

For each resonance and vowel, a regression model was generated for all singers

using all the “all possible subsets” method described above to select the most

appropriate variables to fit the data. The nine resulting regression models (3

vowels x 3 resonances) are given in Table 6.2.

Of the nine models generated by the feature selection algorithm (three vowels

x three resonances), only three of these produced a good fit of the data (R2

value of 0.7 or above to 1 decimal place): the models for the second resonance
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Model Regression equation R2 F p value

/A/ - R1 -7.42*j + 1996.75 0.11 0.98 0.35
/A/ - R2 10.90*b -19.07*d -9.79*j + 3347.23 0.68 7.07 0.01
/A/ - R3 -18.93*j + 5870.94 0.21 3.25 0.10

/u/ - R1 -1.91*j + 941.38 0.03 0.35 0.57
/u/ - R2 0.91*f0 + 18.23*f + 1.24*g + 285.18 0.74 27.22 0.00
/u/ - R3 0.44*j + 2908.36 0.00 0.01 0.92

/i/ - R1 -17.86*j + 3225.55 0.53 8.90 0.02
/i/ - R2 18.27*j -660.58 0.76 31.79 0.00
/i/ - R3 0.12*f0 -6.85*d + 7.50*g + 3001.60 0.08 0.72 0.55

Table 6.2: The regression models generated for each vowel and resonance
investigated. Models with a good fit (high R2 value) are shaded grey.

for all three vowels. In addition to this, the model for the /i/ vowel, first

resonance, had a quite good fit (R2 value of 0.53).

Of the variables included (identified in section 6.2.2), the variables that ap-

peared in the nine regression models were:

f0 - fundamental frequency

b - jaw opening

d - jaw protrusion

f - uvula elevation

g - oropharynx breadth

j - vocal tract length

This suggests that these are the variables that are the most important when

considering resonance production. Both the jaw opening and jaw protrusion

(variables b and d) feature in the model for the second resonance of the

/A/ vowel. Based on the tube acoustics of the vocal tract, previous studies

[184] have suggested that the tongue position is very important for the second

resonance, however the tongue height was not selected by the feature selection

algorithm for any of the vowels or resonances investigated. The range of

variables included in the regression models for R2 suggest that this resonance

is actually affected by several articulators jaw opening (b, jaw protrusion d,
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uvula elevation f, oropharynx breadth g and vocal tract length j ).

The only vowel where the feature selection algorithm produced a model with

quite good fit for R1 was for the /i/ vowel (R2 value of 0.53), and only in-

cluded the vocal tract length. In addition to this, the coefficient pertaining

to the vocal tract length was almost always negative, suggesting that short-

ening the vocal tract raises the resonances. This is not surprising based on

acoustic theory - shortening the length of a tube raises the frequencies of all

its resonances. However, based on previous understanding of the effects of

jaw opening on the first resonance [67], it is surprising that the jaw variables

are not included.

The vowels/resonances for which the feature selection algorithm failed to

produce a good fit (R2 value below 0.5) mostly included just the vocal tract

length. This implies that this is one of the most important factors in deter-

mining the vocal tract resonance. Interestingly, it was chosen in preference

to the fundamental frequency, implying that, although there was some corre-

lation between the vocal tract length and fundamental frequency, the vocal

tract length is a better predictor of the vocal tract resonances.

Unfortunately, a large proportion of the measurements for the third resonance

were not of suitable quality (see Chapter 5, Table 5.3), as it was difficult to

accurately measure the resonances at high frequencies, so it is not surpris-

ing that this method failed to generate a suitable regression model for this

resonance.

Feature selection split by singer

In order to explore the differences between singers, the feature selection pro-

cess was repeated for individual subjects. The bar charts showing the fre-

quency with which each variable was chosen by the feature selection algo-

rithm for the first resonance of the /i/ vowel is shown in Figure 6.14. The

full results for all vowels, resonances and subjects, are shown in Appendix H.
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Subject 1 Subject 2

Subject 3 Subject 6

Figure 6.14: The variables chosen by the feature selection algorithm, for
R1 for the /i/ vowel, split by subject (The 12 variables are fundamental
frequency, the 10 articulator variables (a-j ), and a constant term (“const”)).

The reduced datasets do not allow statistically meaningful regression models

to be generated, but it can be seen that for some of the resonances and vowels

that did not produce a good model for all subjects, the feature selection

process selected different variables for the individual singers.

From Figure 6.14, it can be seen that when the data was split by subject,

the variables chosen by the feature selection algorithm were not the same.

For subject 1, the fundamental frequency (and constant term) appeared the

most often. For subjects 2 and 6, only the vocal tract length was chosen. For

subject 3, however, the variables appearing most often were the fundamental

frequency, lip opening a, and larynx height h.
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This suggests that the reason why no good general model was generated for

some resonances and vowels, was because the subjects were using different

methods to alter their resonances. A much larger dataset would be required

to fully investigate this with any statistical robustness, including many more

singers and multiple repeats. This is discussed in further detail in section

6.4.1.

6.3.4 Singers’ Experience (continued from Chapter 5)

As discussed in section 5.3.4, the subjects completed a questionnaire to in-

vestigate the effects of the MRI conditions on their singing and on their

perception of their own singing and singing production. This aimed to probe

the singers’ understanding of the specific techniques they used to sing in the

upper part of their ranges and their understanding of how they achieved this

(articulator movements, posture, visualisations etc.).

All the subjects described the changes they made to the vocal tract for singing

high notes very similarly, mentioning lifting the palate, dropping the jaw, and

being aware of their breath support. When asked if these changes differed

between vowels and if any were more difficult to sing, subject 1 said that

the /A/ was “tricky” and the shape of the /u/ vowel was hard to maintain.

Subjects 2 and 3 found the /i/ vowel difficult and subject 6 found the /u/

vowel hardest to sing at high pitches.

After the experiment, the subjects were again asked to describe the changes

they made to the vocal tract for singing high notes and whether these changes

differed between vowels. Subjects 1, 3 and 6 all said that they found the /u/

vowel hardest, which represented a change in perception for subject 3, who

had said that /i/ was hardest when asked before the experiment commenced.
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6.4 Discussion

Previous studies on resonance tuning in sopranos [14, 15] generally found that

for the /A/ vowel, singers employed R1:f0 tuning extensively, in conjunction

with R2:2f0 tuning, both beginning at around C5. For the /u/ vowel, sim-

ilar patterns were observed, with either similar or little (up to a couple of

tones) more R1:f0 tuning than for the /A/ vowel (the /i/ vowel was not in-

vestigated). In this current study, the type of resonance tuning observed was

broadly as expected, based on acoustic theory, which predicts that sopranos

should increase sound production by tuning resonances to nearby harmonics

whenever possible. However, for the /A/ vowel, the subjects in this exper-

iment used surprisingly little R1:f0 tuning. Five of the six singers in this

experiment did however employ R1:2f0 around G5. One explanation for this

difference in behaviour may be the higher level of experience of the singers

in this study. The singers in the previous works were described as ranging

from, “nationally recognized to amateur singers” [14], whereas the subjects

in this study were either national or international principals.

The changes in area functions with fundamental frequency were generally

as expected for the /u/ and /i/ vowels, showing increased mouth opening,

leading to a shorter vocal tract length, more open jaw and a reduced phar-

ynx space. These results were reflected in the subjects’ comments on their

techiques (section 6.3.4) and are also consistent with the observations of

Echternach et al. [6], who also observed widening of the lips and greater jaw

opening, as well as elevation of the tongue dorsum in soprano singers at high

fundamental frequencies.

The area functions generated for the /A/ vowel, however, showed a lack of

clear changes in area function with fundamental frequency, very different

from the /u/ and /i/ vowels, which both showed very clear patterns of res-

onance tuning and clear changes in area function. This is unexpected, as a

common idea in singing teaching [3] is that singers should attempt to “neu-

tralise” their vocal tract shape to sing at very high fundamental frequencies,
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losing the distinction between the vowels. The /A/ vowel is generally con-

sidered an easy vowel to produce and other vowels tend towards it at high

frequencies.

The comments from the questionnaire suggest that the subjects were aware

of this idea. For example, when asked if the changes they made to the

shape of the vocal tract for high notes varied between vowels, subject 3

commented that the /i/ vowel tended towards an /A/ sound at high pitches.

The area functions generated in this experiment support this idea to an

extent, as the area functions for different vowels indeed became very similar

at high fundamental frequencies. They are not completely identical, however,

as shown in Figure 6.15, which shows the highest and lowest fundamental

frequency area functions averaged across all 4 subjects (Figure 6.10 shows

the area functions for each singer individually, which are generally consistent

between subjects). It can be seen that although at high frequency the /A/

and /u/ vowels were very similar, the /i/ vowel had a slightly smaller mouth

area (left side of Figure 6.15) and slightly larger pharynx area (4-6 cm from

the glottis at the right side of Figure 6.15).

Inspection of the resonance tuning results and area functions showed that

there were strong differences in both of these between the three vowels in-

vestigated in this experiment. However, there do not seem to be very great

differences between subjects. Although the resonance tuning strategies and

area functions are not exactly the same, they appear to follow very similar

patterns with changes in fundamental frequency. Even the resonance tuning

results for subject 4 were consistent with the other singers, in spite of failing

to complete the MRI part of the experiment and showing different changes

between “normal” and “simulated MRI” conditions from the other subjects

(as discussed in section 5.3.2). The results were also consistent with results

from previous studies [14, 15, 185] (allowing for differences due to different

levels of experience).

The results of the feature selection process and regression analysis seem to

suggest that the most important factors affecting resonances are the funda-
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Figure 6.15: Area functions for each vowel, for the lowest note (E4 - black)
and highest note (G5 - grey) sung by all subjects, averaged across all 4
subjects. The area functions for individual singers are shown in Figure 6.10.

mental frequency, jaw opening b, jaw protrusion d, uvula elevation f, orophar-

ynx breadth g and vocal tract length j.

Both the jaw opening and jaw protrusion (variables b and d) feature in the

model for the second resonance of the /A/ vowel. The importance of these

variables is to be expected, as tube acoustics suggest that the most effective

way to raise the first resonance of a tube is to widen the opening [67]. Previ-

ous studies have suggested that the tongue position is very important for the

second resonance [184], although the tongue height was not selected by the

feature selection algorithm for any of the vowels or resonances investigated.

Not surprisingly, the analysis suggested that the vocal tract length was a

strong influence on all the vocal tract resonances. Not only was this variable

chosen by the feature selection algorithm, but it also appeared in many of the

non-significant models (more often than fundamental frequency), suggesting

that the vocal tract length is a better predictor of the vocal tract resonances

than fundamental frequency. It is to be expected that the vocal tract length
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is inversely related to the vocal tract resonance and that the resonance fre-

quencies are not necessarily related to the fundamental frequency, since this

is controlled by the vocal folds. The regression model coefficient pertaining

to the vocal tract length was almost always negative, suggesting that short-

ening the vocal tract raises the resonances. Again this is in agreement with

acoustic theory: shortening the length of a tube raises the frequencies of all

its resonances.

The importance of the lip, tongue and jaw correlates well with previous

studies, such as Sundberg and Lindblom [67, 184]. However, the results

of this work are not as conclusive as those of Sundberg and Lindblom. One

reason for this may be the large sample size in this study, compared to typical

values for voice research.

It is, however, a little surprising that the regression model calculated for the

second resonance of the /u/ vowel included the uvula elevation f, as this has

not previously been considered as an articulator. However, the uvula is part

of the soft palate, so the “uvula elevation” more accurately describes the

motion of the soft palate, which is known to be important in singing, not

least because it separates the vocal tract from the nasal cavity [186]. It is

surprising that this variable was only selected for this vowel, however, and

not /A/ or /i/.

The significant advantage of three-dimensional magnetic resonance imaging

(compared to two-dimensional) is, of course, that it provides the opportunity

to study the transverse properties of the vocal tract, as well as in the mid-

sagittal plane. The oropharynx breadth g (perpendicular to the oropharynx

width) was included in the regression model for the second resonance for the

/u/ vowel (and in the non-significant model found for the third resonance for

the /i/ vowel). This demonstrates the benefits of studying the entire vocal

tract, rather than just a mid-sagittal slice.

It is surprising that only three of the nine models generated produced a good

fit of the data: specifically the models for the second resonance for all three

vowels. From the resonance measurements in Figure 6.1, it could be seen
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that extensive R1 tuning was observed for both the /u/ and /i/ vowels for

all subjects. Only one model, with a “quite good” fit (R2 value of 0.53), was

found for the first resonance, for the /i/ vowel.

There are several possible explanations for the lack of a model for R1: either

there are additional variables that should have been considered (perhaps

variables describing the effects of the cheeks in some way should have been

included), or the effects of the articulators influencing the first resonance

are non-linear, and so cannot be approximated by linear regression models.

This could possibly be true if two or more articulators were working together

in a complementary fashion, with each articulator responsible for R1 over a

narrow frequency range. The overall effects would then suggest no significant

relationship between the articulators and R1.

Alternatively, it may be that the subjects used slightly different methods to

alter R1, so no overall pattern was found for all singers together. Both the

individual correlation matrices generated in section 6.2.2, and the feature

selection split by singer (section 6.3.3) would suggest that this is quite likely,

as the correlations between subjects showed considerable variation.

It should be remembered that the lack of a good regression model does not

necessarily mean that there are no meaningful relationships in the data. If

the four singers employed different methods of altering resonances, then when

the data was combined together, this would produce seemingly random rela-

tionships between the variables and the resonances. Therefore, although the

resonance tuning results and area functions suggest that singers are making

similar overall changes to the shape of their vocal tracts with fundamental

frequency and producing similar effects on the voice (in terms of resonances),

they may be producing these effects in different ways.

This may represent a much more subtle example of articulatory compensa-

tion, which refers to the possibility of two different vocal tract shapes produc-

ing almost exactly the same acoustic output [187]. This idea is not surprising

when it is considered that singers typically learn by making a similar sound

to their teachers, rather than copying some other aspect of the sound produc-
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tion process. This idea is supported by the acoustics of tubes, as it is possible

to produce the same resonances using tubes of different shapes. For example,

a vocal coach may ask a singer to “create space” in the throat, which is not

only a subjective term, but assuming that the aim is to increase the phar-

ynx volume, something that could be achieved in subtly different ways. One

singer could rely on lifting the soft palate, while another might widen the

pharynx, and a third could use a combination of these techniques, all pro-

ducing a very similar effect on the voice. This is hardly surprising when one

remembers that, in addition to a unique learning experience, all singers also

have a unique physiology - the size, range of motion, and interconnection of

different articulators is an individual matter (some physiological differences

were evident from inspection of MRI scans).

6.4.1 Limitations

This study was carefully designed to quantify the differences between results

of the same or similar tasks across anechoic and MRI conditions, to allow

the results relating to resonance tuning to be contextualised for practice, and

this was discussed in Chapter 5. Technology permitting, it would have been

better to obtain measurements of vocal tract resonances simultaneously with

MR image collection, which would remove the need for analysis of similarity

between conditions. It is hoped that advances in MRI technology will make

this possible in the future.

The current study suffered from the limitations of the MRI scanner that was

available, such as the loud noise, and the subject being required to lie supine.

Upright MRI is available currently [159], although not yet widespread.

Although feature selection using regression analysis is helpful in identify-

ing which variables (articulators) have the most influence on the vocal tract

resonances, the limitations introduced by the large amount of potential mul-

ticollinearity between variables restricts its usefulness somewhat, meaning

that the significance of this should not be overestimated.
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It is also worth noting that producing robust statistical models to fit sets

of data generally requires considerably larger data sets than the one in this

study. Although this data set is unusually large for a study of the singing

voice involving MRI, it still lacks statistical power, and a much larger dataset

consisting of many more singers and multiple repeats of measurements (at

least 3 repeats, to allow detection of outliers) would be desirable if any very

meaningful statistical models were to be obtained. Even if the population of

opera singers was of the order of magnitude of a few thousand singers, this

would mean that to obtain results with a confidence interval of 5 % would

require a sample size of several hundred singers.

It would have been beneficial to carry out repeat measurements of all the data

in this experiment, but the current protocol already took approximately four

hours to complete and was quite tiring for the singers involved, so this was

not feasible as part of this current study.

6.5 Conclusions

This experiment has highlighted the variety of resonance tuning methods

used by singers for different vowels and the corresponding vocal tract shapes

used to produce these sounds. The uniqueness of this research lies in the

richness of the dataset - never before have three-dimensional MR images of

the vocal tract been captured for a group of such highly experienced singers,

in conjunction with measurements of their vocal tract resonances.

The results of the statistical analysis, bringing together information about

the vocal tract resonances and the changes in vocal tract articulators, shows

that although some existing ideas about singing production are supported,

such as the importance of jaw position and vocal tract length, the effects are

not as straightforward as previously thought. The overwhelming message

to be gained is that, as with its perception, resonance production is very

complex and varies depending on the vowel and fundamental frequency sung,
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and according to the individual singer.

Differences between singers have been observed in every kind of data ex-

amined in this work, showing that singing production is a highly individual

matter. This suggests that early work on resonance tuning involving small

numbers of singers may benefit from being expanded; larger numbers of very

high quality singers would allow expert techniques to be better understood

and a wider range of singers would capture a broader variety of resonance tun-

ing behaviour. This has been achieved to some extent with the rich dataset

obtained in this work, but it would be beneficial to revisit established theories

in addition to this.

Although the resonance tuning methods used by different singers are very

similar, the alterations to the vocal tract that produce these effects are not

necessarily the same for all singers. That is, although singers achieve a similar

result (in terms of vocal tract resonances), this may be arrived at in different

ways.

These findings highlight the importance of considering the differences in res-

onance production between different vowels. Strong differences were seen be-

tween vowels for resonance tuning behaviour, area functions and resonance

production, which supports the results of the perceptual study in Chapter

3. This work has also emphasised the highly individual nature of singing,

illustrating the differences in voice production between singers. It would be

highly beneficial to singers if future research in this area investigated the dif-

ferences in resonance production in singers of different genres, with different

levels of experience and across a range of vowels.



Chapter 7

Conclusions

The heavenly bodies are nothing but a

continuous song for several voices (perceived by

the intellect, not by the ear); a music which...

sets landmarks in the immeasurable flow of time.

It is therefore, no longer surprising that man, in

imitation of his creator, has at last discovered

the art of figured song, which was unknown to

the ancients. Man wanted to reproduce the

continuity of cosmic time... to obtain a sample

test of the delight of the Divine Creator in His

works, and to partake of his joy by making

music in the imitation of God.

Johannes Kepler, Harmonices Mundi (1618)

Book V, Ch. 7

This thesis has focussed on the technique of resonance tuning in soprano

opera singers. Firstly, a subjective test was conducted to explore the per-

ception of common methods of resonance tuning. Following this, the usage

and extent of resonance tuning by both girl choristers and adult singers was

considered. Finally an investigation into the production of resonance tuning

193
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by the movement of the various vocal tract articulators was carried out.

This chapter reviews the experiments carried out in this thesis, their findings

and how these relate to the objectives set in Chapter 1. It sets out the

conclusions that can be drawn from this research, as well as the implications

and potential future work arising from it.

7.1 Summary

Chapter 2, the literature review, introduced the subject matter of this thesis

by presenting an overview of voice production and introducing the concept of

resonance tuning in soprano singing. Previous studies on both male and fe-

male voices were considered and the specific challenges facing soprano singers

were discussed. Studies considering resonance tuning in soprano voices were

also examined and showed that sopranos have been found to tune their first

and/or second resonances to the first or second harmonic. Since this work

involved measuring the vocal tract using magnetic resonance imaging, differ-

ent imaging methods were considered and previous studies utilising MRI to

study the voice were discussed.

Chapter 3 described the first experiment carried out for this thesis; a percep-

tual test to investigate listeners’ impressions of synthesised vowel samples,

with different resonance tuning strategies, on different vowels and fundamen-

tal frequencies. The purpose of this study was to understand the perceptual

effects of increasing the acoustic efficiency of the voice using resonance tun-

ing. The perception of resonance tuning was shown to be both very complex

and highly dependent on the vowel investigated.

Chapter 4 described a preliminary experiment conducted for the main work

of this thesis, which tested the use of broad band noise excitation for measur-

ing vocal tract resonances in girl choristers. It was shown that broad band

noise excitation is a suitable method for measuring the frequencies of vocal

tract resonances in high voices. This experiment not only provided insights
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into the use of resonance tuning by girl choristers, but also verified that the

software and hardware tested could be used in the main experiment of this

PhD research. The software consisted of a program generating random-phase

harmonic components spaced 5.38 Hz apart and included a calibration proce-

dure which adjusted the amplitudes of the harmonic components to produce

a flat frequency response when the subject’s mouth was closed. The hard-

ware consisted of a loudspeaker isolated in a wooden container, insulated

with sand, which incorporated an impedance-matching horn and a flexible

tube to deliver the sound to the subjects lips.

Chapter 5 described the method used in the experiment forming the main

study of this thesis. This was used to arrive at results relating resonances

to articulator measurements. The experiment involved both resonance mea-

surements using broad band noise excitation (as evaluated in Chapter 4) and

image capture during singing using MRI. This chapter also discussed the sta-

tistical analyses used to evaluate the effects of MRI conditions on singers in

order to assess the suitability of MRI for singing voice research, in anticipa-

tion of Chapter 6. The results showed that, although the subjects felt that

they had sung differently in the MRI machine, the singing produced in the

different conditions was not significantly different in terms of the parameters

investigated; the vocal tract resonances, overall frequency content (LTAS)

and harmonic content.

Finally, Chapter 6 discussed the main work of this thesis; processing of the

MRI data obtained during the experiment carried out in Chapter 5. It anal-

ysed both this data and the resonance measurements to investigate the ef-

fects of the different articulators on vocal tract resonances. A feature selec-

tion algorithm was first used to determine which of the predictor variables

(fundamental frequency and 10 different articulator measurements) showed

a relationship with the vocal tract resonances and then a regression model

was generated using these variables. The resulting models suggested that the

production of resonance tuning is more complex than previously thought; al-

though the use of resonance tuning was very similar between singers, this may

have been achieved by different articulatory means. Unsurprisingly, consider-
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ing the physiology of the vocal tract, the results suggested that the variables

used (articulator measurements) had a high degree of multicollinearity, so

although this analysis gives an indication of the important variables for res-

onance production, the models are not completely reliable.

7.2 Research Objectives

The main objective of this PhD research, as identified in Chapter 1, was:

1. To understand the methods by which resonance tuning is produced by

soprano singers.

To achieve this aim, two sub-objectives were also identified:

2. To better understand the purpose of resonance tuning by studying its

perception by listeners.

3. To understand the effects of MRI measuring conditions on singers and

verify the usefulness of MRI in singing research.

These objectives were addressed using three experiments: a perceptual test

using synthesised voice sounds representing different methods of resonance

tuning; an experiment investigating resonance tuning behaviour in girl cho-

risters; and an experiment using MRI to investigate resonance production in

adult soprano singers. There are four major contributions to the field from

this work, that will be discussed in detail below. In brief, these are:

Perception of Resonance Tuning - understanding of listener perception

of different resonance tuning methods, using a perceptual study of dif-

ferent resonance tuning methods, as discussed in Chapter 3.

Resonance tuning - understanding of resonance tuning behaviour in both

girl choristers and professional opera singers, two groups not previously
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studied in great detail (from the preliminary experiment in Chapter 4),

and national/international principal opera singers (from the experiment

carried out in Chapter 6).

Effects of MRI conditions - as discussed in Chapter 5, an investigation

into the effects of MRI scanning conditions on singers, to understand

how these affect the production of singing and speech.

Production of Resonance Tuning - an investigation into how different

articulators affect the vocal tract resonances, using MR images of the

vocal tract articulators, as discussed in Chapter 6.

These four contributions are considered in greater depth below.

7.2.1 Perception of Resonance Tuning

Since singing is a performance art, the first contribution of this thesis is to

provide insight into the production of resonances, in the form of an investi-

gation into the perception of different resonance tuning strategies. This was

achieved by means of a perceptual test, where subjects listened to synthesised

singing samples with different resonance tuning. Samples were compared

based on their preference and naturalness, and subjects were then asked to

identify the vowel sounds.

The findings of this perceptual test show that, as with its production, the

perception of resonance tuning is highly complex, with no clear tuning pat-

terns seen across all vowels. The perception of different resonance tuning

strategies is also highly vowel-dependent, with differences in preference, nat-

uralness and vowel identification noted in the results across the different

vowels. The differences in perception between vowels were not surprising

considering the differences in speech formant values between them. For ex-

ample, although the /i/ and /u/ vowels have similar first formants in speech

(310 and 370 Hz respectively), they have very different second formant values
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(2790 and 950 Hz respectively), causing second formant tuning to strongly

alter the sound of the /i/ vowel.

The dependence of perception on fundamental frequency also varied between

vowels, with the /i/ vowel showing almost no dependence on f0 for either

preference or naturalness. The results also supported the theory that at high

fundamental frequencies, all vowels tend to be “neutralised” towards an /A/

vowel [3], as vowels were most commonly mis-identified as the /A/ vowel.

The results of this experiment therefore suggest that for singers, resonance

tuning may be a matter of compromise, as employing a certain resonance

tuning strategy might improve one perceptual attribute whilst worsening an-

other. It also suggests that it might be perceptually beneficial for singers to

employ resonance tuning techniques over a wider range of fundamental fre-

quencies than has previously been observed. This is not observed in practice,

however, and the reason for this is unknown; perhaps there exist physiolog-

ical restrictions on the vocal tract, or perceptual or acoustic attributes of

resonance tuning not yet understood.

7.2.2 Resonance tuning

The second major contribution of this thesis is the new understanding of

resonance tuning in girl choristers, who have similar vocal ranges to the adult

sopranos studied, and therefore the same motivation for resonance tuning (in

terms of vocal efficiency). A preliminary experiment was conducted as part of

this PhD research (Chapter 4) to test the suitability of using broad band noise

excitation to measure the vocal tract resonances during singing. During this

experiment, resonance measurements for girl choristers were obtained, which

also yielded information on resonance tuning behaviour in girl choristers.

The second experiment (Chapter 6) explored resonance tuning in very highly

trained singers who are national or international opera principals. Although

previous studies such as [59, 99] have studied “professional” sopranos, the

level of these is unclear.
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Although prior work has observed resonance tuning in adult singers [14, 15],

this thesis has also found evidence of resonance tuning in girl choristers, (ex-

tensive R1:f0 tuning, and a little (1-7 semitones) R2:2f0 tuning). This shows

that even these experienced young choral singers are capable of employing

resonance tuning techniques. It is not known exactly what causes singers to

begin using resonance tuning techniques. It may be due to the physiological

changes occurring in the vocal tract as their bodies develop, or perhaps an

effect of training. The latter is supported by the findings of Garnier et al.

[59], who investigated resonance tuning in professional, advanced, and non-

expert singers. They suggest that more experienced singers employ resonance

tuning methods over a wider range than non-expert singers. However, this

theory was not entirely supported by the resonance tuning observed in opera

singers in the second (MRI) experiment of this study. Generally, they did

not seem to tune their resonances as close to the relevant harmonics, within

60 Hz in this study, as opposed to the 25 Hz in [15].

This more flexible approach to resonance tuning may be due to the very

high level of the singers in this study. Once a singer has truly mastered the

rules of their craft they may be free to use their own judgement to interpret

whether to employ the techniques that they have developed. However, this

would require further investigation.

As discussed in section 2.3.2, previous studies on the soprano singing voice

have generally included only limited numbers of subjects and limited vowels

(most commonly the /A/ vowel). There has not been any previous study

considering the /i/ vowel, which is acoustically quite extreme (compared

to other vowels) due to its high second formant and representing a very

closed vocal tract shape. Both the girl choristers and professional opera

singers showed very clear resonance tuning patterns for this vowel (as seen in

Figure 4.5): R1:f0 tuning across nearly their entire range, but no R2 tuning.

Examination of the resonance measurements shows that the frequency of the

second resonance decreased with fundamental frequency until it reached the

second harmonic near the top of the singer’s range.
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7.2.3 MRI Conditions

The second major contribution of this thesis has been the investigation into

the effects of MRI conditions on singers. Since MRI techniques are becoming

increasingly common in research into the vocal tract, it is becoming more

important to understand how the measurement process influences the results

obtained and to be aware of any measurement errors introduced during the

process. The effects of MRI conditions were investigated in Chapter 5, which

compared speech and singing produced in “normal” and “simulated MRI”

conditions. The effects of MRI conditions (or just the supine position) on

speech production has been examined in previous studies [158, 160, 161].

Some of these detected small differences in articulator positions, but no sig-

nificant differences in the speech produced. Tenor singing [159] in supine

positions has also been investigated and, again, found small differences in

articulators, but not in the sound produced.

This research has shown that for the national/international principal singers

in this study, the vocal tract resonances in singing produced under “simulated

MRI conditions” (in an anechoic chamber) were not significantly different

from singing produced under “normal” conditions.

The differences in the long-term average spectra generated for speech were

almost entirely accounted for by a fall in amplitude of 5-10 dB for “simulated

MRI” conditions compared to “normal” conditions. For singing, the LTAS

showed that subjects produced more energy in the 1-4 kHz range than for

speech, and the amplitude differences between the two conditions investigated

were smaller.

This implies that singers are more consistent across conditions for singing

than for speech, perhaps due to the effects of training. However, although the

“simulated MRI” conditions replicated both the noise and the supine position

of an MRI scan, the experience would not have been exactly the same for

the subjects, and this would merit further investigation, with more closely

replicated conditions (such as matching the temperature and reverberation
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in the MRI machine room, as discussed in section 5.4).

The differences between the conditions investigated were not completely con-

sistent between singers, which was reflected in their experience of being in

an MRI machine. Some found it highly stressful, but others not, which is

normal compared to the general population. This highlights the importance

of validating the effects of MRI for individual singers and it is hoped that

these results, in addition to validating the reliability of the current study on

resonance tuning production, may assist in the interpretation of data from

previous studies and inform future research on vocal tract resonances utilising

MRI techniques. It would be beneficial for future studies to include a verifi-

cation procedure as standard and to possibly provide training to familiarise

singers with the MRI environment.

7.2.4 Resonance Production

The main contribution of this thesis is the investigation into how the different

articulators affect the vocal tract resonances. This was investigated in Chap-

ter 4 using MRI to obtain area functions of the vocal tract and measurements

of the vocal tract articulators during singing.

Inspection of a plot of the area functions showed that for the /u/ and /i/

vowels there were clear changes with fundamental frequency, which were not

observed for the /A/ vowel. Changes observed with frequency for the /u/

and /i/ vowels included shortening the vocal tract, decreasing the pharynx

area, and increasing the mouth opening.

The regression models generated support some of the existing theories about

the production of vocal tract resonances, such as the importance of jaw po-

sition and vocal tract length, which appeared in the significant regression

models, but not as often as perhaps might be expected [63].

This suggests that the production of resonance tuning is much more complex

than previously thought [63] and varies depending on the vowel and fun-
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damental frequency sung, and according to the individual singer’s preferred

methods. Previous works investigating the production of resonance tuning

have generally not focussed on the difference between vowels [99]. This work

has shown the importance of this complexity, by illustrating differences in

resonance, area functions and regression models between vowels.

When the feature selection procedure failed to generate a significant model,

the process was repeated, but split by singer, and the results of this analysis

suggested that singers were altering their resonances by different articulatory

methods. These differed between the different vowels investigated, though

it should be noted that these data sets were not large enough to produce

statistically significant results. Therefore, although the resonance tuning

methods used by different singers were very similar, the alterations to the

vocal tract that produced these effects were not necessarily the same for all

singers, suggesting that singers achieve similar resonance tuning strategies,

but through different articulatory methods.

7.3 Hypothesis

As originally stated in section 1.1, the hypothesis informing this thesis is as

follows:

Noise excitation to measure vocal tract resonances, and magnetic resonance

imaging to observe the articulators can be used to understand the production

of resonance tuning methods employed by professional soprano singers, which

vary across different vowels and pitches as well as between singers.

Broad band noise excitation was employed in both the preliminary experi-

ment involving girl choristers and the main experiment involving professional

soprano opera singers (Chapters 4 and 6) to successfully observe resonance

tuning behaviour in these two groups. MRI was used (Chapter 6) to obtain

area functions of the vocal tract and measurements of the articulators. The

relationships between these measurements was investigated using feature se-
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lection and regression analysis to generate statistically significant models for

some of the vowels and resonances investigated (4 of 9). This seemed to

suggest that the most important factors affecting resonances are the funda-

mental frequency, jaw opening and protrusion, uvula elevation, oropharynx

breadth and vocal tract length.

Substantial variation was observed in both resonance tuning and articula-

tors between different vowels and singers, with some trends in articulator

measurements observed across pitches. The results suggest that both the

production and perception of resonance tuning are much more complex than

previously thought. Although the resonance tuning results and area functions

suggest that singers are making similar changes with fundamental frequency,

they may be producing these effects in different ways.

The results of the experiments carried out as part of this thesis clearly address

the points of the stated hypothesis, while also identifying and leaving scope

for further work on the effects of different articulators on the vocal tract

resonances. Although the results of this work do not definitively establish

how resonance tuning is produced, they provide another step along the road

to understanding.

7.3.1 Further work and Impact

Despite the significant contributions to the field identified in section 7.2, there

are still many questions left unanswered and there is considerable scope for

further work.

Perception

Although this work has begun to consider the perception of resonance tun-

ing within the context of its production, it would be beneficial to investigate

the complex relationships between different perceptual attributes utilising
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recorded singing as well as synthetic sounds, as there is a limit to the natu-

ralness of synthesised sounds.

The experiment in this thesis (Chapter 3) involved samples representing sin-

gle vowel sounds. However, in reality vowels are almost always heard in words

or phrases rather than in isolation, so future developments of this work also

need to consider the importance of context on perception, for instance within

a word or musical phrase.

It would also be useful to consider how the physical relationships between

vocal tract articulators are linked to the perception of different strategies of

resonance tuning. For example, does a resonance tuning strategy sound less

natural to a listener if it is physically impossible for a singer to produce?

Use and Development of Resonance Tuning

In order to more fully understand the motivation for employing resonance

tuning techniques it would be necessary to investigate the use of resonance

tuning in younger, less experienced singers. These include choristers just

starting to sing (to compare to the older choristers in this thesis) and music

college students (to compare to the adult opera singers). Expanding the

study to include both girl and boy choristers would also allow researchers

to explore whether boys tune their first two resonances in similar ways to

girls and adult female singers, and thus establish whether first and second

resonance tuning is exclusively a female behaviour, or is a product of singing

at high fundamental frequencies. Alternatively, the study could be expanded

to include a control group with no, or very little training. This could then be

compared to the Garnier study [15], which included singers of three different

levels of experience.

In this work, it was found that the singing produced by the professional opera

singers was not significantly affected by “simulated MRI” conditions. It is

not known whether this consistency in unusual conditions is a feature of their

extensive training or something common to all singers, so further study on
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the effects of MRI conditions involving non-expert subjects and subjects with

less training would shed light on this problem. This would help to inform

the development of MRI protocols appropriate for singers of differing levels

of experience.

Finally, this work has focussed on the use and production of resonance tuning

in choristers (classical church music) and professional opera singers, but it

would be interesting to investigate how resonance tuning is used by singers

of other music genres and other groups of singers, for example altos. Very

little work has been done on “extreme” methods of resonance tuning, such as

the whistle register and overtone singing, so a better understanding of these

would be valuable to aid with teaching these methods.

Production of Resonances

Although the analysis carried out in this thesis gives some indication as to

which vocal tract articulators affect the vocal tract resonances, it did not

provide a full explanation of how resonances are produced. Inspection of the

area functions generated suggested that singers made similar changes to area

functions, but it is possible that these are achieved by different articulatory

methods.

A much larger dataset would be required to fully investigate this with any sta-

tistical robustness, including many more singers and multiple repeats. This

is discussed in section 6.4.1. In addition to this, the measurements of vocal

tract resonances would ideally be obtained simultaneously with MRI image

collection, removing the need for multiple experimental stages and validation

procedures. Current MRI technology does not allow for this. However, it is

hoped that advances in MRI technology will make this possible in the future.

Advances in technology that reduce or remove some of the other limitations

of MRI would also be welcome, for example the significant noise levels and

the subject being required to lie supine. Upright MRI is available currently,

however this is not yet widespread. Since this work has shown that singing
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produced under MRI conditions is not significantly different from singing

produced in normal conditions, supine MRI is sufficient for studying singing

production.

To fully understand the production of resonance tuning in normal singing (as

opposed to isolated sustained vowels), it would be useful to study resonance

tuning in more natural situations, such as singing in a musical context. A

more holistic approach to analysis might also be beneficial, considering the

vocal tract as a whole. Both this study and previous studies have considered

the general changes to area functions for this purpose [6]. However, a reliable

mathematical technique to describe overall changes to vocal tract shape has

not yet been established. Morphoacoustic methods have previously been

applied to the pinna (outer ear) to understand how small changes in the shape

of the pinna affect the head-related transfer function [188]. It is possible,

therefore, that applying similar methods to the vocal tract might be helpful

in understanding how changes in its shape affect the resonances produced.

Implications

The final aspect of this work to be considered is the impact of these findings.

Those most directly affected by this work will likely be singers and singing

teachers. The information obtained about resonance tuning in girl choristers

may allow practical guidelines to be developed to assist teachers specialising

in this age group, who often lack a thorough understanding of vocal acoustics.

If girl choristers are developing similar techniques to adult singers, this will

influence singing teaching. Teachers may want to pay particular attention

to vowel timbre, to ensure that students produce a resonant sound without

compromising on identifiability of vowels.

The observations obtained of resonance tuning behaviour of highly profes-

sional opera singers will provide a little insight into what makes these singers

so exceptional. As well as endeavouring to employ the same resonance tun-

ing techniques, opera singers in training should take note of the adaptive
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approach taken to resonance tuning techniques.

Finally, the information obtained about the influence of area functions and

specific articulators on the vocal tract resonances will give an insight into

the importance of different parts of the vocal tract structure. This work and

further work following similar protocols will hopefully be able inform the

production of synthesised speech and efforts to alter the shape of the vocal

tract, for example in corrective surgery involving the jaw, palate or teeth.

7.4 Closing Remarks

This thesis has provided valuable insight into the female singing voice, and

the type and extent of resonance tuning used by Western Classical soprano

singers. The use of MRI has allowed the effects of different articulators to

be investigated, and represents a significant step forward in singing voice

research, which is truly an intersection of art and science.

It is hoped that this research not only informs singing students and teachers of

the available and prevalent methods of resonance tuning, but also highlights

the importance of a singer finding their own particular voice and tailoring

their approach to their individual needs to develop as a singer. To researchers

interested in the singing voice, it is hoped that this work highlights the need

to appreciate both the complex nature of singing and the individuality of

singers.



Glossary

Rn - Resonances, resonant frequencies of the vocal tract

Fn - Formants, peaks in the acoustic spectrum of the voice

f0 - Fundamental frequency of oscillation

MRI - Magnetic Resonance Imaging

SFC - Singer’s Formant Cluster

Soprano - High female voice classification. Range approx C4 - C6.

Alto - Low female voice classification. Range approx F3 - D5.

Tenor - High male voice classification. Range approx C3 - G4.

Bass - Low male voice classification. Range approx E2 - E4.

Chorister - Young singer that performs regularly in Churches/Cathedrals
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Appendices

The following materials are included as Appendices:

(A) Resonance tuning perception supplementary materials (Chapter 3)

(B) Choristers supplementary materials (Section 3.2.3)

(C) Sopranos supplementary materials (Section 4.2.2)

(D) Standard text and song (Section 4.2.2)

(E) Sopranos plots of resonances for all singers (Section 4.3.1 and 5.2.1)

(F) Sopranos plots of resonance tuning (Section 5.2.1)

(G) Sopranos plots of area functions (Section 5.2.3)

(H) Feature selection plots for all singers (Section 5.3.3)

(I) LF model details (Section 6.2.1)

The accompanying CD includes the following files:

(J) ETHICAL APPROVAL

• Choristers Ethical approval (Section 3.2.3)

• YNiC Ethical approval (Sopranos) (Section 4.2.2)
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(K) SOPRANOS QUESTIONNAIRES

• Sopranos questionnaire answers (Section 4.3.4)

(L) MATLAB CODE FOR MRI EXPERIMENT

• Mic inverse filtering code (Section 4.2.3)

• Plotting resonances and K-S test code (Section 4.3.1)

• Area Function code (Section 5.2.3)

• Feature selection and Regression analysis code (Section 5.3.1 and

5.3.3) (includes 2D MRI measurements)

• Harmonic detection and Spearman correlation code (Section 4.3.3)

(M) DATA FOR MRI EXPERIMENT

• Audio samples (Section 4.3.3)

• Vocal tract segmentations (Section 5.2.3)

(N) PERCEPTION

• Vowel synthesis code (Section 6.2.1)

• Perceptual test results and Analysis (Section 6.2.4)

• Anova code (Section 6.3.4)
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A Resonance tuning perception supplementary mate-

rials

List of IPA symbols

The following Table provides a list of IPA symbols for vowels sounds, and

examples of words containing these vowels [189].

IPA symbol Example sound

/I/ The “i” in “kit”

/e/ The “e” in “bet”

/ae/ The “a” in “cat”

/6/ The “o” in “lot”

/2/ The “u” in “strut”

/U/ The “oo” in “Foot”

/i/ The “ee” in “fleece”

/u/ The “oo” in “goose”

/A/ The “a” in “father”

/O/ The “ough” in “thought”

/3/ The “ur” in “nurse”

/@/ The “uh” in ‘afraid”

Table 1: List of IPA symbols for vowels, and example words.

Perceptual test examples

Figures 1, 2 and 3 below show the test GUI used to present comparisons to

participants, using the qualtrics survey software:
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Figure 1: An example from the set of questions on preference.
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Figure 2: An example from the set of questions on naturalness.

Figure 3: An example from the set of questions on vowel identification.
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B Choristers supplementary materials

This appendix includes the supplementary materials from the first exper-

iment investigating resonance tuning in girl chorister. This consists of the

information sheet, questionnaire and consent forms for both the subjects and

their parents.



Information sheet - A Pilot Study: Investigating formant tuning in girl choristers through wide-band 

vocal tract excitation. 

Procedure of the Experiment 

In this experiment you will be taken into the anechoic chamber and asked to wear a laryngograph 

throughout the experiment – this will involve electrodes on an elastic strap being fastened on to 

your neck by the investigator. This will feel slightly unnatural but will not be painful and should not 

impede normal breathing, speaking and singing. You will also be fitted with a head microphone, this 

is small and light and you will still be able to speak and sing normally with it on. 

You will then be asked to read a story out loud (seen beforehand) once “normally”, into a 

microphone, and once into a device designed to measure the resonances of the vocal tract. This is a 

tube-like device and will be mounted on a stand. You will need to stand close to it so that your top 

lip rests on the end of the tube. Again this will feel slightly unnatural but will not be painful and you 

will be able to speak and sing normally. 

The next part of the experiment will be singing; you will be asked to sing an ascending chromatic 

scale from the bottom of your range to the top, holding each note for about three seconds. This will 

be repeated on three vowel sounds, “ah”, “ee”, and “oo”. 

The scales will then be repeated singing into the tube-like device. 

Please sing in your best performance voice, and try to keep the shape of your mouth and throat 

constant for the whole note, and to stay at the same pitch and loudness. The note will be given on a 

piano before each note.  

The last task will be to sing the first verse of “Once in Royal David’s City”. This will be done once 

normally (into the microphone), and then once into the tube-like device. 

If you have any concerns at all (at any point in the procedure), please raise them with one of the 

investigators (Rebecca Vos or Helena Daffern). If you want to, you can leave at any time during the 

experiment, without having to give a reason. 

Data Protection 

Any data collected will be identified only by a number for the purposes of data collection, and the 

list linking names and numbers will be securely stored in a separate location. 

The data will be stored securely after the experiment, and not shared with any person outside the 

Audio lab without the permission of the participant. 

 

 



Questionnaire 

Please answer the questions below as accurately as possible. If you do not feel that any of the 

options accurately represent your answer, write a comment in the space below that question. 

1. Please select your gender:  Male □  Female □ 

2. Please enter your age: 

3. How many years have you been a minster chorister?  

5. Do you have a hearing impairment?  (for example loss of hearing, tinnitus etc.)             Yes □  No □ 

6. Are you currently having singing lessons?                                                                                Yes □  No □ 

If yes, for how long have you been having them? (in years and months) 
 
7. Have you passed any music exams? (if you have several in the same instrument, only write down 
the highest grade) 
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________                                  
 
8. Have you ever performed (singing) in public? 

□ no  
□ Only as part of a choir 
□ A few times (less than 10) 
□ Many times (10 or more) 

 

Any other comments? 
__________________________________________________________________________________

__________________________________________________________________________________

__________________________________________________________________________________

__________________________________________________________________________________

__________________________________________________________________________________                                  



Consent form for Subject 

Investigator's Names: Miss Rebecca Vos 
 
Title of Study: A Pilot Study: Investigating formant tuning in girl choristers through wide-band vocal 

tract excitation. 

Brief Description of Study: 

You will be asked to answer some questions about yourself, and how much and how often you sing. 

You will be asked to read an information sheet with your parent explaining what will happen in the 

experiment. 

You will have electrodes strapped on to your neck. Don’t worry, this doesn’t hurt at all and you will 

be able to breathe, talk, and sing normally. 

You will be asked to do 4 tasks; (1) read a short story out loud, (2) say three vowels, (3) sing scales on 

three vowel sounds, and (4) sing the first verse of “Once in royal David’s City”. 

These will be done once normally (into a microphone), and once into a tube-like device, which you 

will be shown how to use. 

Please circle “yes” or each point if you understand and are happy to continue: 

My data will be stored anonymously (without my name on), and not shared with anyone outside the 

Audio lab without my permission.  YES/NO 

Even though my data won’t have my name on it, and the investigators won’t ever tell anyone who it 

is, somebody who knows my voice well may be able to tell that it is me. If this happens they will 

never be told if they are right or wrong.  YES/NO 

Even though I agree to take part in the experiment, I am allowed to leave at any time I want to (I 

don’t have to give a reason).  YES/NO 

If I want, I can ask for recordings to be deleted at any point during or after the experiment.  

 YES/NO 

My anonymous data (without my name on it) can be used for research and teaching purposes, and 

published at conferences, in journals or online, either as it is, or in other formats.   YES/NO 

By signing this form, I confirm that I have filled out the Participant Questionnaire, read the 

Information sheet carefully, and am happy to continue with the experiment.  YES/NO 

 

Print name:        Date: 

_______________________________                                            _______________________________ 

Sign name:  



Consent form for Parents 

Investigator's Names: Miss Rebecca Vos 
 
Title of Study: A Pilot Study: Investigating formant tuning in girl choristers through wide-band vocal 

tract excitation. 

Brief Description of Study: 

You and your daughter will be asked to answer a short questionnaire about her level of singing 

training and experience of singing. 

You and your daughter will be asked to read an information sheet explaining the nature of the 

experiment and what she will be asked to do. 

Your daughter will be recorded with a microphone and wearing a laryngograph (consisting of 

electrodes on an elastic neckband). She will be asked to do 4 tasks; (1) read a short story out loud, 

(2) say three vowels, (3) sing scales on three vowel sounds, and (4) sing the first verse of “Once in 

royal David’s City”. 

She will be asked to repeat each of the tasks whilst singing/speaking into a tube-like device to 

measure her vocal tract resonances. 

Please circle either yes or no: 

I understand that my daughter’s data will be securely stored in an anonymous form, and not shared 

with any others outside the Audio lab without my permission.  YES/NO 

Due to the nature of this data, it is possible that even though it is anonymised, somebody who 

knows my daughter’s voice may be able to identify her. This will never be confirmed or denied by 

the investigators.  YES/NO 

I am happy for my daughter’s anonymised data to be used for research and teaching purposes 

within the Audio lab, and published at conferences, in journals or online, either as it is, or in 

secondary formats.   YES/NO 

By signing this form, I confirm that I have filled out the Participant Questionnaire and read the 

Information sheet carefully with my daughter, and we are happy to continue with the experiment. 

 YES/NO  

Even though I consent for my daughter to take part in the experiment, I understand that I may 

withdraw my daughter at any time, without having to give a reason. If I wish to, I may ask for my 

daughter’s data to be destroyed at any point during or after the experiment.  YES/NO  

Print name:        Date: 

_______________________________                                            _______________________________ 

Sign name:  

_______________________________ 
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C Sopranos supplementary materials

This appendix includes the supplementary materials from the main exper-

iment investigating the production of resonance tuning in adult soprano

singers. This consists of the information sheet, questionnaire and consent

forms, as well as the safety questionnaire and consent form required for mag-

netic resonance imaging at The York Neuro-Imaging Centre (YNiC).



 

MRI Capture of the Female Vocal Tract - Information for Adult 
Participants 

 
 

You are being invited to take part in a research study. Before you decide whether to take part it 
is important for you to understand why the research is being done and what it will involve. 
 
Please take time to read the following information carefully. Talk to others and particularly 
members of the project team about the study if you wish. 
 
The first part of this document explains the purpose of this study and what will happen to you if 
you take part. The second part gives you more detailed information about the conduct of the 
study. 
 
Please ask us if there is anything that is not clear, or if you would like more information 
regarding the study. Take time to decide whether or not you wish to take part. 
 

Part 1 
 
Project Background: 
 
Vowel formants are broad resonances that occur in the spectrum of speech and singing, 
amplifying nearby harmonics. They are responsible for the perception of vowels. For female 
singers, singing vowel sounds at high frequencies can mean that the fundamental frequency 
exceeds the normal first vowel formant (in speech), “wasting” the amplification of this 
resonance. 
 
It is now generally accepted that, classical singers even at a non-professional level, will “tune” 
their vocal tracts, to raise their first vowel formant, so that it occurs at close to the fundamental 
frequency. 
 
Recent research in the audio lab has focussed on the perception of formant tuning, using 
synthetic singing samples with different formant tuning methods applied. The results suggested 
that formant tuning could be used over a wider range than has formerly been observed in real 
singers and this study aims to suggest possible reasons for this. 
 
This study also aims to investigate the physiological and acoustic factors at play when a female 
opera singer sings in the different parts of her range in a full, resonant performance voice. 
 
Acoustic data will be captured during the MRI scans, using optic microphones, and subjects will 
be asked to hold particular vocal tract shapes (different vowels over 5 pitches) for the duration 
of a scan. 
 
More details of the procedure will be given in part 2. 
 
What will happen to me if I take part? 
 
If you choose to take part you will be asked to attend YNiC (the York Neuro-Imaging Centre) on 
the Science Park at the University of York, with members of the project team. You will also be 
asked to complete some simple audio recordings in the Anechoic Chamber (a sound isolated 
room with absorbing walls that produce no echoes) of the Audio Lab (also on the Science Park) 
before the scanning procedure.   
 
The audio recording procedure takes approximately 80 minutes, and the scanning procedure 



takes no more than 90 minutes. In total we will require approximately 3 ½ hours of your time. 
 
What will happen during each session? 
 
Part 1: 
In the first part of the procedure we will ask you to wear a microphone headset and a 
laryngograph neckband, and stand in the anechoic chamber in your normal singing stance. You 
will then be asked to read a passage of text in your normal speaking voice. The laryngograph 
neckband is fitted with two electrodes that allow us to monitor your vocal fold movement. This 
should not impede speech or singing or feel too unusual. 
 
You will then be asked to sing an ascending chromatic scale from the bottom of your range to 
the top in your full, “resonant”, operatic voice without excessive vibrato, holding each note for 3 
seconds. A piano note will be played for reference before each note. This will be done on three 
vowels, first “ah”, then “oo”, then “ee”. You will be asked to sing into a device to measure the 
resonances of your vocal tract (a kind of tube incorporating a speaker and a microphone which 
you will be shown how to use). 
 
The last task for this part will be to sing a short song of your own choosing, at least a verse or 
30 seconds long. 
 
 
Part 2: 
In the second part of the procedure we will ask you to lie on a foam-covered board on the floor 
in the anechoic chamber, still wearing the microphone headset, and laryngograph electrodes. 
We will also ask you to wear earplugs and headphones to simulate the MRI conditions. 
 
You will be asked to repeat the speaking and singing tasks from part 1, and while you produce 
the sounds, a recording of an MRI scanner will be played over the headphones. 
 
You will be then asked to sing 4 pitches for each vowel, again in your full, “resonant”, operatic 
voice without excessive vibrato, holding each one for 16 seconds. A piano note will be played for 
reference before each note. 
 
 
Part 3 
For part 3 we will relocate to YNiC where you will be briefed by a member of staff and your final 
consent to be scanned will be sought. An information sheet is provided with this document that 
gives more information about what it is like to be scanned. 
 
A member of YNiC staff will position you in the scanner. You will be asked to wear a set of foam 
ear-plugs and headphones during scanning (both to protect you from the noise of the scanner 
and to allow us to communicate with you). During the entire scanning process you will be in 
continuous contact with the operator via the intercom. 
 
A number of configuration scans will first be taken. You are not required to do anything for this 
time. When these are complete you will be notified over the intercom. 
 
You will first be asked to hold a neutral vocal tract shape, and breathe as normally as possible 
without moving for 16s. 
 
You will be then asked to sing 4 pitches for each vowel (as in parts 1 and 2), again in your full, 
“resonant”, operatic voice without excessive vibrato, holding each one for 16 seconds. Before 
each scan a reference piano note will be played over the intercom, and as with the audio 
recording this represents the pitch at which you should sing. You will also be told which vowel to 
sing. 



 
What are the benefits of taking part in this research? 
 
This study is focussed on exploring the ways in which formant tuning is executed by elite opera 
singers and the difference in the use of formant tuning over a range of pitches. The data 
gathered in this study will further understanding of the range of pitches over which formant 
tuning methods are used, and the physiological adjustments of the vocal tract necessary to 
achieve them. 
 
What are the other possible disadvantages and risks of taking part? 
 
The research project has been planned, and will be conducted in a manner that minimises the 
risk of harm to its participants. While undergoing scanning you may experience claustrophobia 
and/or feelings of isolation. It is also possible you will experience dis-equilibrium and/or mild 
nausea on entering or leaving the strong magnetic field the scanner produces. If you become 
uncomfortable you may leave the scanner at any time. 
 
** If you are unhappy with any aspect of the process then you may withdraw from the study at 
any time. 
 
It is of vital importance that participants do not carry any ferromagnetic materials with them 
when being scanned (e.g. keys, jewellery, coins, belt buckles). You will be asked to leave all 
similar items outside the scanning room. Please be aware that it is not possible to scan some 
groups of people (e.g. pregnant women, those with metal implants including dental braces, 
pacemakers, cochlear or brainstem implants, or those who have any other surgical implants 
containing metal). 
 
Very high sound levels are produced during scanning. For your protection you will be advised to 
wear ear plugs and headphones. 
 
What if there is a problem? 
 
Any complaint about the way you have been dealt with during the study or any possible harm 
you might suffer will be addressed. The detailed information on this is given in Part 2. 
 
Will my taking part in the study be kept confidential? 
 
Yes. All the information about your participation in this study will be kept confidential. The details 
are included in Part 2. 
 
Contact Details of the Project Team 
 
Rebecca Vos (Project Principle Investigator) – rrv501@york.ac.uk 
Dr Helena Daffern– helena.daffern@york.ac.uk 
Prof David Howard – dmh@ohm.york.ac.uk 
 
 

 
 

Part 2 
 
What will happen if I don't want to carry on with the study? 
 
You are free to withdraw from this study at any time, and without providing an explanation. Any 
data collected from you up to this point may still be used in the study unless you make a request 
to the contrary. In the latter case all data collected from you will be destroyed. 



 
What if there is a problem? 
 
There are two procedures for complaints. One addresses the case of your mistreatment by the 
project team, and the other addresses something serious happening during or following your 
participation in this study. 
 
Complaints: 
 
If you have a concern about any aspect of this study, you should ask to speak with the 
researchers who will do their best to answer your questions. Their contact details are available 
in Part 1. If you remain unhappy and wish to complain formally, you can do this through the 
complaints procedure of the University of York. 
 
Harm: 
 
The York Neuroimaging Centre takes pride and care in ensuring that no harm, or risk of harm, 
occurs to participants in research. In the event that something does go wrong and you are 
harmed during the research study and this is due to someone’s negligence, then you may have 
grounds for a legal action for compensation against The University of York. 
 
Will my taking part in this study be kept confidential? 
 
Any information which you give us, and all of the measurements that we collect from you, will be 
confidential. No names will be used when the research is written up. We shall keep your data for 
10 years and will then destroy it securely. We shall comply with the terms of the Data Protection 
Act 1988. We shall store the information and the measurements in anonymous computer files 
and in locked filing cabinets. We shall store names and addresses separately from other data. 
 We shall use your data in this study and we may combine your data with data that we gather in 
future studies. Only three people in our research team will know the contact details of the 
participants. They are Miss Rebecca Vos, Dr Helena Daffern, and Professor David Howard. In 
addition, staff of the York Neuro-imaging Centre have privileged access to the computer 
systems and can link the names of participants with their data. Those people are under a 
professional obligation not to abuse this privilege. With the approval of the Research Ethics 
Committee of the York Neuroimaging Centre, other researchers may be allowed access to the 
data which you will provide for use in research and teaching. Those researchers will be allowed 
access to your data in anonymous form only. 
 
We are not qualified to interpret brain images clinically. If we suspect that an image of your brain 
reveals a possible problem, we shall inform your GP (family doctor) who may then contact you 
and advise you. If you do not want us to do this, then you should not agree to take part in the 
study. 
 
What will happen to the results of the research study? 
 
Your anonymised data will be used for scientific research purposes, and published at 
conferences, in journals or online, either as raw data or in secondary formats. 
You should be aware that although names will never be connected to data, and the investigators 
will never confirm or deny the identity of any participants, the nature of the data (sound 
recordings) means that it could be possible for an experienced listener to identify you. 
 
Who is organising and funding the research? 
 
The study is being organised by Miss Rebecca Vos, Dr Helena Daffern, and Professor David 
Howard. They work in the Department of Electronics at the University of York. Rebecca Vos is a 
PhD student, Helena Daffern is a Lecturer, and David Howard is the Head of the Audio Lab and 



the department of Electronics. 
The study is being funded by a grant from the AES Educational Foundation. 
 
Who has reviewed the study? 
 
This study was given a favourable ethical opinion by the Research Ethics Committee of the York 
Neuroimaging Centre. 
 
 



Questionnaire 

Before the experiment 

1. Please provide your age in years  _____ 

 

2. What is your voice type? _______________ 

 

3. What is your range?  ______ to ______ 

 

4. Do you currently have any health issues that affect your singing? 

___________________________________________________________________________ 

5. What is your job? 

___________________________________________________________________________ 

6. For how many years have you been singing at your current level? _____ 

 

7. Where did you train, and for how long? 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

8. Do you have a method/technique for singing high notes? If so can you describe it? 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

9. Are you aware of making changes to the shape of your vocal tract when you sing 

high notes? If so, what are they? (eg soft palate, larynx, jaw position, tongue position) 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

10. Is this the same for different vowels? Are any of them more difficult to sing? 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

11. Do you know of any differences in the way you sing in different positions? 

Particularly standing up and lying down? If so what are they? 



___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

 

After the experiment: 

12. Do you feel that you made changes to the shape of your vocal tract when you were 

singing high notes? If so, what? (eg soft palate, larynx, jaw position, tongue position) 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

13. Was this the same for different vowels? Were any of them more difficult to sing? 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

14. Was this the same for low and high notes? 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

15. Did you notice any differences in the way you sung in the different positions 

(standing up and lying down)? If so what were they? 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

16. How did you find singing whilst in the MRI machine? 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

17. Did you feel that you sung differently than you would in a “normal” standing 

position? If so how? 

___________________________________________________________________________ 



___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

18. How did you find the whole experiment in general? 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

19. Any other comments? 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

 



Consent Form for Adult Participants 
 

MRI Capture of the Female Vocal Tract 
 

Participants should complete items 1 to 10 themselves 
 

Please circle either 
YES or NO       

 
1. That I have read and understood the information sheet entitled 'MRI Capture of 

the Female Vocal Tract – Information for Adult Participants' 
YES / NO 

2. That I have been given the opportunity to ask any questions I may have about 
my participation in the project and that these questions have been answered to 
my satisfaction. 

 
YES / NO 

3. Who has explained the study to you? 
 
     Prof/Dr/Mr/Miss........................................................ 

 
YES / NO 

4. I understand that I am free to withdraw from this study: 

• At any time 

• Without having to give a reason 

• Without prejudice to my academic standing at the University of York 

 
YES / NO 

 
5. Do you agree to take part in the study? 
 

 
YES / NO 

 
6.  I understand that I can discuss the study with a researcher at any time, if I wish. 
 

 
YES / NO 

 
7.  I know that the research information which I will provide will be kept strictly 

confidential. When the results are published no individual person will be 
identified in any way without that person’s written agreement. 

 

 
YES / NO 

8. I understand that although the data collected from me (audio and MRI) will be 
anonymised, due to its nature it may be possible for an experienced listener to 
identify me, but my identity will never be confirmed by the investigators. 

 

 
YES / NO 

9. I understand that my anonymised data may be used for scientific research 
purposes, and published at conferences, in journals or online, either as raw 
data, or in secondary formats.  

 
10. If I have any questions or concerns about the research, I know I can contact 

Rebecca Vos at the Department of Electronics at rrv501@york.ac.uk 
 

YES / NO 

 
11. Participant: 
 
Name (Block Letters):  …………………………………………………………...... 
 
 Signature  ……………………………………………………………… 
 
 Date   ……………………………………………………………… 

 

 
12. Investigator: 
 



 I have explained the study to the above participant and he/she has indicated his/her willingness to 
take part. 
 
Name (Block Letters):  …………………………………………………………...... 
 
 Signature  ……………………………………………………………… 
 
 Date   ……………………………………………………………… 
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D Standard text and song

This appendix includes the standard text, “Arthur the Rat”, and song “Once

in Royal David’s city”.



Arthur the Rat 

Once there was a young rat named Arthur, who could never make up his mind. 

Whenever his friends asked him if he would like to go out with them, he would 

only answer, "I don't know." He wouldn't say "yes" or "no" either. He would 

always shirk making a choice.  

His aunt Helen said to him, "Now look here. No one is going to care for you if 

you carry on like this. You have no more mind than a blade of grass."  

One rainy day, the rats heard a great noise in the loft. The pine rafters were all 

rotten, so that the barn was rather unsafe. At last the joists gave way and fell to 

the ground. The walls shook and all the rats' hair stood on end with fear and 

horror. "This won't do," said the captain. "I'll send out scouts to search for a new 

home."  

Within five hours the ten scouts came back and said, "We found a stone house 

where there is room and board for us all. There is a kindly horse named Nelly, a 

cow, a calf, and a garden with an elm tree." The rats crawled out of their little 

houses and stood on the floor in a long line. Just then the old one saw Arthur. 

"Stop," he ordered coarsely. "You are coming, of course?" "I'm not certain," 

said Arthur, undaunted. "The roof may not come down yet." "Well," said the 

angry old rat, "we can't wait for you to join us. Right about face. March!"  

Arthur stood and watched them hurry away. "I think I'll go tomorrow," he 

calmly said to himself, but then again "I don't know; it's so nice and snug here."  

That night there was a big crash. In the morning some men—with some boys 

and girls—rode up and looked at the barn. One of them moved a board and he 

saw a young rat, quite dead, half in and half out of his hole. Thus the shirker got 

his due. 
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E Sopranos plots of resonances for all singers

As discussed in section 5.3.1 and 6.2.1, this appendix includes plots of the

first three resonances, for all singers, for all three vowels.
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(a) /A/ vowel

(b) /u/ vowel

(c) /i/ vowel

Figure 4: The first three resonances plotted against fundamental frequency,
for subject 1, for the /A/ vowel (top), /u/ vowel (middle) and /i/ vowel
(bottom).
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(a) /A/ vowel

(b) /u/ vowel

(c) /i/ vowel

Figure 5: The first three resonances plotted against fundamental frequency,
for subject 2, for the /A/ vowel (top), /u/ vowel (middle) and /i/ vowel
(bottom).
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(a) /A/ vowel

(b) /u/ vowel

(c) /i/ vowel

Figure 6: The first three resonances plotted against fundamental frequency,
for subject 3, for the /A/ vowel (top), /u/ vowel (middle) and /i/ vowel
(bottom).
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(a) /A/ vowel

(b) /u/ vowel

(c) /i/ vowel

Figure 7: The first three resonances plotted against fundamental frequency,
for subject 4, for the /A/ vowel (top), /u/ vowel (middle) and /i/ vowel
(bottom).



APPENDICES 240

(a) /A/ vowel

(b) /u/ vowel

(c) /i/ vowel

Figure 8: The first three resonances plotted against fundamental frequency,
for subject 5, for the /A/ vowel (top), /u/ vowel (middle) and /i/ vowel
(bottom).
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(a) /A/ vowel

(b) /u/ vowel

(c) /i/ vowel

Figure 9: The first three resonances plotted against fundamental frequency,
for subject 6, for the /A/ vowel (top), /u/ vowel (middle) and /i/ vowel
(bottom).
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F Sopranos plots of resonance tuning

As discussed in section 6.2.1, this appendix includes the resonance tuning

results for all singers and vowels, in both “normal” and “simulated MRI”

conditions.

Figure 10: The resonance tuning strategies employed by each subject, for the
/A/ vowel, in both “normal” and “simulated MRI” conditions. The tuning
strategies observed were R1 : f0 tuning (dark grey), R1 : 2f0 tuning (dark
stripes), R2 : f0 tuning (light stripes) and R2 : 2f0 tuning (light grey).
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Figure 11: The resonance tuning strategies employed by each subject, for the
/u/ vowel, in both “normal” and “simulated MRI” conditions. The tuning
strategies observed were R1 : f0 tuning (dark grey), R1 : 2f0 tuning (dark
stripes), R2 : f0 tuning (light stripes) and R2 : 2f0 tuning (light grey).

Figure 12: The resonance tuning strategies employed by each subject, for the
/i/ vowel, in both “normal” and “simulated MRI” conditions. The tuning
strategies observed were R1 : f0 tuning (dark grey), R1 : 2f0 tuning (dark
stripes), R2 : f0 tuning (light stripes) and R2 : 2f0 tuning (light grey).
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G Sopranos plots of area functions

As discussed in section 6.2.3, this appendix includes plots of area functions

for each singer, for each vowel and fundamental frequency investigated. For

each Figure, the top subfigure (a) shows the area functions for all fundamen-

tal frequencies for the /A/ vowel, the middle (b) for the /u/ vowel, and the

bottom (c) for the /i/ vowel. Different fundamental frequencies are repre-

sented by different colours, as shown in the key for each Figure.
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(a) /A/ vowel

(b) /u/ vowel

(c) /i/ vowel

Figure 13: The area functions for all fundamental frequencies, for subject 1,
for the /A/ vowel (top), /u/ vowel (middle) and /(i)/ vowel (bottom).
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(a) /A/ vowel

(b) /u/ vowel

(c) /i/ vowel

Figure 14: The area functions for all fundamental frequencies, for subject 2,
for the /A/ vowel (top), /u/ vowel (middle) and /(i)/ vowel (bottom).
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(a) /A/ vowel

(b) /u/ vowel

(c) /i/ vowel

Figure 15: The area functions for all fundamental frequencies, for subject 3,
for the /A/ vowel (top), /u/ vowel (middle) and /(i)/ vowel (bottom).
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(a) /A/ vowel

(b) /u/ vowel

(c) /i/ vowel

Figure 16: The area functions for all fundamental frequencies, for subject 6,
for the /A/ vowel (top), /u/ vowel (middle) and /(i)/ vowel (bottom).
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H Feature selection plots for all singers

As discussed in section 6.3.3, this appendix includes the bar charts showing

the results of the feature selection algorithm, split by vowel, resonance and

singer.

R1 /A/ Subject 1 R2 /A/ Subject 1 R3 /A/ Subject 1

R1 /A/ Subject 2 R2 /A/ Subject 2 R3 /A/ Subject 2

R1 /A/ Subject 3 R2 /A/ Subject 3 R3 /A/ Subject 3

R1 /A/ Subject 6 R2 /A/ Subject 6 R3 /A/ Subject 6

Figure 17: The variables chosen for the /A/ vowel, for each resonance and
subject.
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R1 /u/ Subject 1 R2 /u/ Subject 1 R3 /u/ Subject 1

R1 /u/ Subject 2 R2 /u/ Subject 2 R3 /u/ Subject 2

R1 /u/ Subject 3 R2 /u/ Subject 3 R3 /u/ Subject 3

R1 /u/ Subject 6 R2 /u/ Subject 6 R3 /u/ Subject 6

Figure 18: The variables chosen for the /u/ vowel, for each resonance and
subject.
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R1 /i/ Subject 1 R2 /i/ Subject 1 R3 /i/ Subject 1

R1 /i/ Subject 2 R2 /i/ Subject 2 R3 /i/ Subject 2

R1 /i/ Subject 3 R2 /i/ Subject 3 R3 /i/ Subject 3

R1 /i/ Subject 6 R2 /i/ Subject 6 R3 /i/ Subject 6

Figure 19: The variables chosen for the /i/ vowel, for each resonance and
subject.
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I LF model details

Figure 20: The parameters of the LF model.

As discussed in section 3.2.1, the Liljencrants-Fant Model [29] parameters

used (setting Rd = 1) were:

Fa = 400Hz, Rk = 0.30, Rg = 1 (1)

Where Fa is the cut-off frequency (accounting for the degree of spectral tilt),

Rk specifies the relative duration of the falling branch from the peak at time

Tp to the discontinuity point Te, and Rg is a parameter which increases with

a shortening f the rise time Tp.

Ra = ta/t0 (2)

Rg = t0/2tp (3)

Rk = (te − tp)/tp (4)

OQ = te/t0 (5)
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Rd = (td/t0)(1/110)

= (U0/E0)(f0/110)

≈ (0.5 + 1.2Rk)((Rk/4Rg) +Ra)/0.11

(6)

the parameters of the LF glottal model are calculated from the equations:

tc = 1/f0 (7)

tp = t0/2Rg (8)

ta = 1/2πfa (9)

OQ = (1 +Rk)/2Rg (10)

te = t0(1 +Rk)/2Rg (11)
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