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Abstract 

Biomass is a renewable resource which can be broken down into bio-derived high value 

molecules using industrial processing, parts of which rely on enzymatic degradation. Nature 

provides a vast pool of highly efficient lignocellulosic enzymes capable of breaking down the 

multitude of natural polymers found in biomass. Identifying organisms that thrive within 

ecological niches based around the consumption of lignocellulosic material is likely to yield 

novel biomass degrading enzymes. Shipworms are marine organisms which use shell-like 

protrusions to burrow into submerged wooden substrates in oceanic environments. 

Endosymbiotic bacteria, Teredinibacter turnerae, found within the gills of the shipworm is 

thought to provide the host with a variety of carbohydrate active enzymes for use in the 

digestion. This work characterises carbohydrate active enzymes identified within the 

genome of T. turnerae including glycoside hydrolases (GH) from families 5, 8 and 12 as well 

as a lytic polysaccharide monooxygenase (LPMO) from subfamily AA10. Analysis of three 

GH5 proteins found activities on cellulose (TtGH5_2 and TtGH5_un) and xyloglucan 

(TtGH5_4), with one protein (TtGH5_un) likely representing a new GH5 subfamily. TtGH8 

was found to be highly active on xylans, with kinetics and structural studies showing a 

preference for longer xylooligosaccharides. The molecular structure of TtGH12 was solved, 

but substrate specificity remains unknown, indicating a potentially new activity subclass 

within the GH12 family. TtAA10 was active on crystalline cellulose through copper mediated 

oxidative attack at C1 or C4 either side of the glycosidic bond, and modelled structurally at 

high resolution. Like many other specialised organisms, the genome of T. turnerae is a 

treasure chest full of potentially useful lignocellulose degrading proteins. This work has 

assessed the activity and structure of several enzymes from T. turnerae and found multiple 

different substrate activities and potentially novel functions, paving the way for further 

experimentation and potential utilisation in industry.  
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1  

An Introduction 

 

1.1 Abstract 

Demand for biofuels is increasing amid positive shifts in political and public opinion 

regarding the growing need for more sustainable fuel sources. In this Chapter the nature of 

complex carbohydrates, its effective recalcitrance towards degradation and ultimately the 

enzymatic tools for polysaccharide degradation will be discussed. Breakdown of the majority 

of different plant polysaccharides found in Nature is carried out by a class of enzymes known 

as glycoside hydrolases (GH), enzymes able to break the glycosidic bonds between the 

carbohydrate monomers of enzyme-specific substrates through hydrolytic mechanisms. 

These carbohydrate active enzymes can be classified into over 150 enzyme families based 

on their sequence homology with family groupings often showing activity through specific 

mechanisms or on specific types of polysaccharides. The portfolio of enzymes known to 

degrade complex polysaccharides was revolutionised by the recent discovery of lytic 

polysaccharide monooxygenases (LPMO); copper dependent enzymes capable of using 

oxidative chemistry to create chain breaks in otherwise GH inaccessible, insoluble, crystalline 

polysaccharides. The story of their discovery and applicability to polysaccharides 

degradation will be discussed.  Considered by some as a common marine pest, shipworms 

(marine bivalve molluscs) are able to survive off a diet of wood alone despite possessing a 

gut mostly devoid of bacteria; this makes them an interesting target of novel enzyme 

discovery. Lignocellulose degradation may occur through synergistic action of host enzymes 

and enzymes produced by a community of endosymbiotic bacteria, Teredinibacter turnerae, 

housed within the gills of the shipworm. These fascinating animals and their symbiotic 

bacteria are the source organism for this entire work, whereby the goals of characterising 

novel carbohydrate active enzymes taken from the genome of Teredinibacter turnerae will 

be discussed. 
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1.2 Fuels of the future 

A barrier towards the sustainable and efficient usage of plant biomass for fuel conversion 

lies in the complexity and recalcitrance of plant cell walls. The heterogeneous matrix of 

various carbohydrate compounds hinders the enzymatic breakdown of plant cell walls into 

energy rich carbohydrate monomers. Crystalline cellulose regions are interspersed with a 

web of more soluble polysaccharides, known as hemicelluloses. The plant cell wall matrix is 

strengthened by a hydrophobic and insoluble barrier, a mix of phenolic compounds known 

as lignin.  

The effect of human industrial activity on the planet is very significant and is likely the cause 

of the greatest issue currently facing us as a whole; climate change. The burning of fossil 

fuels is coupled with the slow increase in the Earth’s temperature due to a build up of CO2 

gas within the atmosphere. The greenhouse effect resulting from the build up of emissions 

had been predicted (and unfortunately put aside) as early as 1896 by Svante Arrhenius1-2, 

and it is only now that the true effects of unnatural increases in the planet’s temperature 

are being felt.  Governments world-wide have been alerted to the serious threat of climate 

change and many have pledged to reduce carbon emissions in an effort to reduce the 

overall temperature increase. Reduction in emissions on a global level could come from 

removing our reliance on the burning of fossil fuels for energy. Fossil fuels are a non-

renewable resource and one that is becoming scarcer as the decades progress. There are a 

wide selection of relatively untapped renewable sources of energy; solar, wind, tidal and 

hydro that are all valuable sources of potential energy. Indeed, when observing the 

countryside of Great Britain these days you will often come across enormous wind turbines, 

or looking out to sea you will be greeted by views of expansive wind farms. Steps are being 

made to use these cleaner sources of energy and another potential source is locked in the 

energy rich carbohydrates that make up plants and other biomass.  

Biomass is a term for any substance of natural origin and such materials can be used in the 

production of biofuels. Industrial biorefineries aim to produce energy in the form of ethanol, 

fermented from glucose. In concept, a biorefinery can use any type of biomass material as a 

feedstock and produce biofuels or high value bio-based molecules, but in practise this 

process is limited by several issues. The major concern in the use of biomass feedstocks is 

the origin of the material. There is an ethical conundrum over whether land should be 

prioritised for the growth of crops for food or fuel. Annual production of biomass is in the 

realm of 1011 tons, made up of approximately 60 % terrestrial and 40 % aquatic sources.3 
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Only a tiny percentage of the annual biomass production is related to human cultivation (3 

%)3, a small number, but likely due to limitations such as land availability and environmental 

conditions. Overall, approximately 50 % of biomass is lignocellulosic in nature, however 

access to biomass varies by environmental conditions and differences in cultivation 

preferences of different countries.4 Crops such wheat, corn and rapeseed, grown specifically 

for industrial conversion into fuels are known as first generation feedstocks. Sugar, starch, 

vegetable oils and even animal fats can all act as first generation feedstocks and be 

converted into useful products. Different products can be gained from different feedstocks; 

bioethanol can be made from sugarcane whilst biodiesel is made from crops such as 

rapeseed. Biomass from plants contains two types of raw material; assessible sugars 

naturally stored by the plant such as starch, and structural sugars bound in the 

lignocellulosic fraction of the plant. Starch is a polymer of glucose which is relatively easy to 

depolymerise, which can then be fermented into ethanol. Lignocellulose is recalcitrant 

towards depolymerisation due to the combination of polysaccharides which form the 

structural plant component.  An alternative source of biomass is the waste products of food 

production, namely the lignocellulosic fraction; for instance, in a crop of corn, only the corn 

is taken for food use and the rest of the plant including the leaves, stem and corn stover are 

waste. Waste biomass is termed a second generation feedstock and its use bypasses the 

ethical issue of taking land away from food production, whilst maximising efficiency by 

recycling waste material.  In second generation biorefineries the glucose (and other 

oligosaccharides) is removed from plant lignocellulosic materials through a mixture of 

chemical and enzymatic steps. Chemical refers to non-natural lignocellulosic degradation 

processes and these steps are commonly known as pre-treatments; pre-treatments aim to 

change the state of the plant material into something more amenable to enzymatic 

breakdown. For example, thermochemical pre-treatments use high temperatures and dilute 

acids or ammonia to solubilise hemicelluloses and break up the crystalline cellulose regions. 

Other treatments may involve different conditions which result in different changes to the 

accessibility of the polysaccharides.5-7  

Political change is driving research towards finding solutions to reduce the cost of producing 

bio-based molecules, with several countries committed to reaching targets involving use of 

bio-derived fuel sources in the near future.8 The success of the biorefinery concept is 

complex and relies on a multitude of issues which can limit the cost benefit of biomass 

processing. For example, transport of biomass from its source to the plant, coupled with 

storage of the material can be an inefficient and costly process. Many avenues of industrial 
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processes and political policies must combine together to efficiently take advantage of the 

abundant source of biomaterial available to us. Nature has already defined its own efficient 

process of lignocellulosic breakdown, through the synergistic action of a wide variety of 

different enzymes. A single organism can produce a consortium of enzymes capable of 

lignocellulosic degradation or can utilise the symbiotic behaviour of other smaller organisms 

such as bacteria. Enzyme cocktails are available to purchase from various biotechnology 

companies such as Novozymes, with the most recent incarnations (i.e. Cellic© CT3 HS) 

containing propriatory mixtures of β-glucosidases, hemicellulases and AA9 lytic 

polysaccharide monooxygenases. Industrial and academic research into enzymes capable of 

degrading the various natural polymers thus provides a route to improving industrial 

processing, by finding the most efficient enzymes for particular biomass materials. 

Improvements in the activity of industrial enzyme cocktails can shift biofuel production into 

a more economically vialble process, which can be used at large scale to produce cleaner 

and renewable fuels. For example, the more active a set of enzymes is in breaking down 

biomass, the less enzyme dosing is required, which in turn makes the process more cost 

effective. Biochemical research, such as the work presented in this thesis, has the potential 

to improve the knownledge basis about novel lignocellulosic enzymes. Thus, it is my hope, 

that this research may in the future be used to contribute to improving existing enzymatic 

cocktails or provide new catalytic routes in the production of renewable biofuels.  

1.3 Complex Carbohydrates 

Whilst there is an abundance of biomass produced globally every year, there is also a large 

degree of variation in the type of biopolymers made available by nature. Carbohydrate 

structures are highly variable, with their structure formation underpinned by the vast 

number of possible stereochemical assemblies. The number of isomers, both linear and 

branched, able to form from the set of atoms within a single reducing hexasaccharide is vast 

and nature has been able to use this diversity to its advantage, forming an enormous variety 

of structures from the most basic sugar building block.9 The structure of glucose, arguably 

the most recognisable monosaccharide is shown in Figure 1. A free monosaccharide unit in 

solution is able to undergo reversible ring opening and closing, forming either α or β 

isomers; carbon 1 (C1) is the anomeric carbon within the ring structure and in open form is 

linked to an aldehyde functional group. Rotation of the anomeric carbon into different 

orientations followed by ring closing produces either the α-isomer, in which the OH group 

point downwards in an axial direction, or the β-isomer, where the OH group is in an 
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equatorial position. The same process can occur in sugar units at the end of a polysaccharide 

chain in which the anomeric carbon is not bonded to another molecule. Free 

monosaccharides and free chain ends are known as reducing sugars, and reducing chain 

ends respectively due to the reversible formation of the aldehyde at C1. Functional groups 

on each carbon position of the hexose ring, C1-5 can be either axial or equatorial and 

differences in positioning and type of functional group defines an individual 

monosaccharide, as shown in Figure 2. From formation of structure within plants, energy 

storage to biological signalling, carbohydrates play a role in most areas of life. 

 

 

Figure 1 Diagram showing the ring opening mechanism of free single sugar units, or free chain 
ends of a polysaccharide. Ring closing involves the ring oxygen, (OH covalently linked to carbon 
5 in the Fischer projection) interacting with the aldehyde functional group on carbon 1. Ring 
opening and closing within solution is able to produce either isomer, α (axial) or β (equatorial) 
around the anomeric carbon. A free sugar unit such as this is known as a reducing sugar or if on 
a polysaccharide, a reducing end. 
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Figure 2 Examples of some common monosaccharides used to make up various different 
polysaccharides. The carbohydrate structures are shown without hydrogens labelled for ease of 
comparison of OH positioning. The OH group linked to the anomeric carbon is shown by a 
wiggly line, which indicates the OH group can take either axial or equatorial positions. The 
structures are annotated with their names and associated symbols as described by the Symbol 
Nomenclature for Glycans (SNFG).10 
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Figure 3 Diagram showing different types of common polysaccharides, formed by various 
different monomers. Figure adapted from one provided by G. Davies.  
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This work will focus on the enzymatic breakdown of structural plant polysaccharides, 

carbohydrate substrates which are built to withstand degradation, Figure 3. Surrounding a 

plant cell is the plant cell wall (PCW), a protective layer built up of networks of complex 

polysaccharides and often segmented into the primary and secondary cell wall.11 The 

primary cell wall is firstly comprised of crystalline cellulose, simple linear chains of β (1-4) 

linked glucosyl units, which are embedded in a matrix of complex polysaccharides formed of 

either pectin, or hemicelluloses, Error! Reference source not found.. The cellulose chains 

naturally pack together due to extensive hydrogen bonding between chains. Hemicellulose is 

formed from the same simple glucan backbone as cellulose but contains branching 

structures and other modifications that prevent the formation of ordered microfibrils. 

Instead the single chains interact and wrap around the surface of the ordered cellulose 

fibres. Pectins are complex polysaccharides with a multitude of different functions 

containing a linear backbone of α (1-4) linked D-galacturonic acid moieties, often with 

substitutions branching off the main chain by moieties such as xylose, rhamnose, galactose 

and arabinose depending on the species origin. Pectins can form hydrated gels and glues 

able to adhere neighbouring cells together via the middle lamella.11 

 

 

Figure 4 Diagram of a plant cell wall structure showing cellulose microfibrils linked with 
hemicellulose and pectin . Image free for public use from www.wikimediaorg.  

 

http://www.wikimediaorg/
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The primary cell wall can be classified by type. The primary cell wall of dicots for example is 

made up of type I materials; cellulose microfibrils surrounded by an overlapping network of 

xyloglucans (a hemicellulose) which crosslink between separate microfibrils of cellulose and 

other complex polymers (i.e glucuronoarabinoxylans (GAXs), a pectin). Primary cell walls in 

monocots are normally formed of type II structures, where the cellulose fibres are mostly 

wrapped in networks of cross linking pectins and less hemicelluloses (i.e. xyloglucan) is 

present.11 

The secondary cell wall can in most cases be attributed to plants cells which are required for 

strength and structure.11 The strength and rigidity of the secondary cell wall is formed of 

organised cellulose microfibrils buried inside interacting hemicelluloses, which is further 

cross linked by aromatic compounds such as lignin.12  Lignin is the second most abundant 

natural polymer after cellulose and is used in the cell wall for strength and stiffness and even 

to waterproof the cell from the environment. It is a heterogeneous mixture of aromatic 

polymers with basic structures formed from various phenylpropanoid monomers.13  

The issue with effectively breaking down plant materials for energy gain, be it ourselves and 

our drive towards more sustainable fuels or simply the attack of a plant pathogen is that 

nature has caused plants to evolve structures that are recalcitrant to degradation; they are 

difficult to break down. In terms of the secondary cell wall, the lignin provides the first line 

of defence. Lignin is a major barrier towards the breakdown of plant polysaccharides in an 

industrial sense and enzymatic methods are not yet fully developed to deal with this outer 

cell wall layer.8 If the lignin layer can be bypassed, the breakdown of hemicelluloses is in a 

relative sense, easier. The hemicelluloses are more freely assessable to enzymes due to their 

inability to naturally form ordered structures, and importantly can be solubilised. The main 

energy component of the plant cell wall in both secondary and primary structures is that of 

cellulose. Cellulose is the most abundant terrestrial polymer and stores a vast amount of 

potential energy if it can be broken down to glucose. The repeating and linear nature of the 

glucan chain in cellulose allows single chains to easily stack together through hydrogen 

bonding, Error! Reference source not found.; the relaxed chair conformation of glucose 

places the hydroxyl groups in equatorial positions, whilst the ring hydrogen atoms are axial. 

The edge hydroxyl groups of linear chains interact with those of another parallel glucan 

chain, forming a flat ribbon. The ribbons (or sheets) stack on top of each other with a slight 

stagger, again caused by the locked positioning of the hydrogen bonding pairs. Whilst strong 

hydrogen bonding holds chains together in microfibril groups, there are also hydrophobic 

interactions occurring between fibres and even weak C-H-O hydrogen bonding.14 Stacking of 
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multiple ribbons produces an ordered microfibril which hinders breakdown of the cellulose, 

where the outer face of the fibres is hydrophobic and thus insoluble. Furthermore, the 

natural assembly of glucan chains in this manner leads to highly ordered structures which 

are essentially crystalline.5 Regions of cellulose can become disordered, losing their 

crystalline nature somewhat and are described as amorphous. Whilst the ordered nature of 

cellulose provides an excellent structural polysaccharide for plants, it creates problems for 

organisms wishing to utilise it as an energy source.  
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Figure 5 Structure of cellulose – microfibrils are made up of flat ribbons of stacking glucan 
chains. The glucan chains interact through hydrogen bonding, both within a single chain and 
between chains, locking the chains in position.  
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1.4 Glycoside Hydrolases 

As Nature is able to build these impressive and complex carbohydrate structures, it must 

also possess a way of reversing the process and glycoside hydrolases (GH) are nature’s 

answer. GHs are found across the tree of life, providing a large degree of roles to many 

different organisms which utilise them; the clearest example being the breakdown of the 

structural carbohydrates in plants during digestion. Organisms may make their own GHs, or 

play host to digestive bacterial communities which are predisposed for the production of 

large amounts of these essential enzymes. Most GHs work on the principle that two key 

catalytic residues, held in an active site, are able to break apart a glycosidic bond within a 

bound substrate through a specific hydrolytic enzyme mechanism. Enzymatic hydrolysis of a 

polysaccharide takes place at the individual bonds between the sugar units, specifically at 

the (aldose) glycosyl C1-O bond by general acid catalysis. The hydrolysis reaction can be 

thought of as a formal nucleophilic substitution, whereby the cleavage of the glycosidic bond 

yields two products, one of which contains a new reducing end unit. The leaving group 

alcohol is a poor (high pKa) leaving group and requires protonic (Brønsted acid) assistance 

for departure. An amino acid residues acting as a proton donor is required to carry out this 

task. Likewise, nucleophilic attack in a double displacement, or Brønsted base assistance to 

attack by water are also required and in GHs these acid/base/nucleophile roles are taken up 

by what are known as the catalytic residues.  

With stereochemistry in mind, two major catalytic pathways are used to break apart a 

glycosidic bond; namely, net retention or inversion of the anomeric configuration after the 

scissile bond is broken. This leads to the enzymes being classified as either retaining or 

inverting enzymes. The residue acting as a proton donor in both retaining and inverting 

enzymes is held in an equivalent position, enabling a strong hydrogen bonding interaction 

with the glycosidic oxygen of the bound substrate moiety.  The position of the second 

catalytic residues changes based on whether there is net retention or inversion of the 

anomeric centre. In a retaining enzyme, the nucleophilic catalytic base is close to the bound 

substrate (approximately 5.5 Å), whereas a larger distance from the catalytic base to the 

substrate is required (approximately 10 Å) for an inverting enzyme as this creates enough 

room for a water molecule to be positioned in between the substrate and the base.15-16 
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1.4.1 Inversion of stereochemistry 

Hydrolysis with inversion of the anomeric configuration occurs over a single enzymatic step 

which is known to proceed through an oxocarbenium-ion like transition state; where double 

bond character between the ring oxygen and C1 is formed transiently.17 An inverting 

reaction uses two catalytic residues, typically carboxylate resides such as glutamic acid and 

aspartic acid, which take on the roles of an acid and a base. A cascade of electron movement 

drives the formation of the transition state as shown in Figure 6.18 

 

 

Figure 6 Diagram of glycoside hydrolysis via the inversion mechanism showing cleavage of a β-
glycosidic bond in a single glucan chain (where R represents the continuation of the chain). The 
inversion mechanism proceeds through a single transition state which shows double bond 
character between the ring oxygen and anomeric carbon. The simultaneous addition of water 
inverts the stereochemistry at the anomeric carbon as the leaving product, OR departs and 
becomes protonated, leaving the product with inversion of its original stereochemistry.   
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1.4.2 Retention of stereochemistry 

Hydrolysis with net retention of the configuration around the anomeric centre proceeds 

over two separate enzymatic steps involving the formation, and subsequent breakdown, of a 

covalent glycosyl-enzyme intermediate; the two steps often called glycosylation and 

deglycosylation, are shown in Figure 7.18 Each individual step results in inversion of the 

anomeric configuration but overall leads to retention of the original stereochemistry and the 

reaction was coined as a double-displacement mechanism by Koshland in 1953.17 In the 

glycosylation step, the bound substrate is attacked by the nucleophilic residue at the 

anomeric carbon, whilst the second catalytic residue initially acts as an acid, protonating the 

leaving group; this proceeds through an oxocarbenium ion-like transition state, where the 

displacement of the leaving group aglycon from either the α or β configuration results in the 

formation of a covalent glycosyl-enzyme intermediate with the opposite configuration 

around the anomeric centre. In the deglycosylation step, the second catalytic residue 

switches role to act as a base, whereby it deprotonates a nearby water molecule, which then 

attacks the anomeric carbon, resulting in a second transition state through which the 

covalent glycosyl-enzyme intermediate is broken down. This second step proceeds through 

the same transition state, creating a second inversion of stereochemistry, which results in an 

overall retention of the original conformation of the substrate.17 The ability of the second 

catalytic residue to switch roles between acid and base during catalysis is known as pKa 

cycling, in which the pKa values oscillate to be appropriate for the changing role of the 

residue.19 
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Figure 7 Diagram of glycoside hydrolysis via the retention mechanism showing cleavage of a β-
glycosidic bond in a single glucan chain (where R represents the continuation of the chain). The 
retention mechanism proceeds through two transition states which show double bond 
character between the ring oxygen and anomeric carbon. A glycosyl enzyme intermediate exists 
between the two transition steps in which the anomeric carbon at the newly formed reducing 
end forms a covalent bond with the nucleophilic residue in the opposite conformation to the 
starting material, whilst the leaving group, RO becomes protonated and departs. The addition of 
water through a second transition state inverts the stereochemistry at the anomeric carbon 
again, leaving the product with a net retention of its original stereochemistry.  

1.4.3 Binding and Conformations 

Binding of a ligand within the active site of a glycoside hydrolase involves interactions 

beyond those carried out by catalytic residues. The available binding positions for individual 

sugar units are known as subsites, which are conventionally numbered –n to + n, where 

cleavage occurs between the sugar units taking up the  -1 and +1 subsites, Figure 8. The 

catalytic residues are positioned between the two subsites, ensuring optimal positioning of 

the glycosidic bond to be broken. Common interactions which hold a ligand within an active 

site result from ring stacking interactions between the ligand and aromatic residues lining 

the active site space. Hydrogen bonding networks created by hydrophilic residues and water 

molecules also provide strong binding affinity to the ligand.20    



46 
 

 

Figure 8 Representation of subsites with the active site of a generic xylanase. The xylose 
monomers of xylohexaose, depicted as orange stars each take up one of the subsites within the 
active site. The catalytic residues, Glu and Asp are shown in the middle with the bond being 
cleaved (indicated by a dashed line) between the -1 and +1 subsites.  

The orientation of amino acid residues and the way they are able to interact with a substrate 

can assist with the hydrolysis reaction by inducing a conformational change on the sugar 

unit in the -1 position. The functional groups on a pyranose ring provide a large degree of 

variability in structure, a monocyclic ring can also undergo ring puckering which changes its 

conformational shape. In 1975 Cremer and Pople21 described a coordinate system for a 4, 5 

and 6 membered rings, in which the various conformations were mapped out using 

amplitudes and phases.  For pyranoid rings, Jeffrey and Yates22 showed how the many 

different conformations could be mapped out spherically and how this could relate to 

conformational nomenclature. The sphere is described as having a north and south pole, 

where at the north point is positioned the classic chair form of a sugar moiety, written as 

4C1. This simple nomenclature, AXB describes the puckering of the ring. Natural puckering of 

the ring will leave 4 atom positions within the same plane, whereas the remaining two 

positions will sit out of this defined plane. In the nomenclature, (superscript) A describes 

atoms which lie above the plane of the ring and (subscript) B those ring positions which lie 

below plane, and X is shorthand for the type of puckering; in the 4C1 example, C refers to the 

relaxed chair conformation, in which position 4 and 1 lie above and below the plane of the 

ring respectively, Figure 9.22 At the opposite pole, is an inverted version of this chair form, 

written as 1C4. As the conformations are mapped spherically based on the set of parameters 

calculated by Cremer and Pople, movement around the sphere based on latitude describes 

the degree of distortion away from the perfect chair conformation, whilst the longitude 
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movement describes the type of distortion; the most recognisable conformations being half 

chair, skew boat, boat and half boat, Figure 9.22 The nature of the puckering is known as 

conformational analysis and each individual conformation can be given a relative energy. 

Different sugar moieties will have access to different conformations based on their 

structure, as the changes in functional groups on each ring positions can help or hinder 

formation of certain conformations. As described previously, GHs can catalyse hydrolysis 

through either inversion or retention of the anomeric carbon, and both mechanisms go 

through transition states that possess oxocarbenium double bond character; as the ring 

interacts with the catalytic residues and/or nucleophilic water the transition states has a 

dissociative nature, whereby there is a large build-up of positive charge on the ring. To 

counter this build-up of charge and stabilise the structure, the lone pair of electrons from 

the ring oxygen dissociates and forms the double bond character observed between the ring 

oxygen and anomeric carbon. To carry out this delocalisation, the conformation must 

change to something which allows for significant orbital overlap (to allow the sharing of 

electrons).23 In Figure 6 and Figure 7 the transition states are shown distorted away from the 

chair conformation. Different combinations of substrate and enzyme will follow different 

conformational pathways during hydrolysis which result from several aspects of the 

reaction; the structure of the substrate and the non-covalent interactions within the binding 

site are key factors. Binding of a substrate in the -1 position can often induce a 

conformational change which is favourable in the formation of the transition state, aiding 

the reaction by lowering the energy barrier. This concept is used widely in biochemistry, for 

example to inhibit an enzyme efficiently one may often choose to design a transition state 

mimic, which displays a similar conformation to the reaction pathway at a higher binding 

affinity.   
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Figure 9 Conformers of a 6-membered ring. Dashed red lines give an example of four atoms 
lying in a plane in the relaxed chair form. 
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1.4.4 Topology of attack 

Further complexity is introduced in whether the GH is endo-acting, meaning within a chain, 

or exo-acting, meaning action upon the end of a sugar chain (often, but not exclusively the 

reducing end, see Figure 1) as shown by the cartoon in Figure 10. The tertiary structure of a 

GH defines its mode of action on a polysaccharide chain, and the active site architecture of 

GHs can be classified into three topological types; pocket, groove and tunnel. Examples of 

each topology type are shown in Figure 11 using examples of GHs with different activities. 

Pocket active sites are typically specific to exo attack on the non-reducing chain end, 

producing monosaccharide products. Open active sites in the form of grooves (or clefts) are 

tailored for endo action, whereby the enzyme binds to a ‘random’ region of the 

polysaccharide chain, with active sites often offering binding sites to multiple monomers of 

the substrate. Finally, tunnels are simply ‘closed over’ groves, whereby long loop structures 

have evolved to cover the substrate groove. Generally, this architecture is found in 

cellobiohydrolases, and these types of enzyme are able to release product whilst remaining 

bound to the substrate. After product release, the enzymes are able to move along (process) 

the substrate and commence another hydrolysis reaction.15 The use of loops can sometimes 

assist in substrate binding, or prevent unwarranted binding. An example is the ‘thumb’ 

region of GH11 enzymes, a long loop structure that crosses the active site and is thought to 

be involved in substrate recognition, as discussed further in Chapter 4. GHs differ on which 

mechanism they use, their preference for endo/exo activity and most importantly on their 

structure and function.24 GHs are characterised and split up based on sequence and function 

into 135 families as described by the CAZyme classification system.25 
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Figure 10 Diagram depicting generic GHs attacking a single glucan chain . Endo acting GHs will 
attack randomly along the chain, whereas exo acting GHs will start at a chain end and work 
processively along the chain.  
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Figure 11 General active site topology of GHs as shown by three examples. GH9 (PDB code; 
3H3K), cellulase CelA from Alicyclobacillus acidocaldarius in complex with cellotetraose; GH6 
(PDB code; 4A05), cellobiohydrolase Cel6A, from Chaetomium thermophilum, in complex with 
cellotetraose and cellobiose; GH27 (PDB code; 1KTC), alpha-N-acetylgalactosaminidase from 
Gallus gallus in complex with N-acetyl-D-galactosamine. 
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1.4.5  Classifying Carbohydrate Active Enzymes  

Before the genomic data boom, there was a time when enzymes of different origins 

displayed little homogeneity, and similarities in sequences were hard to detect. A major 

development in the analysis of protein sequences and the relationship with structural folds 

came about in the late 1980s, where a technique called hydrophobic cluster analysis (HCA) 26 

was used to bypass the issues related to low sequence homology (quoted as low as 10%).27 

The power of HCA was shown in the classification of a small set of cellulolytic enzymes from 

different organisms into 6 families based on their amino acid sequence.27 Even though the 

sequences came from different organisms, HCA was able to pinpoint conserved regions 

within sequences based on the clustering of hydrophobic residues. The theory of HCA uses 

the understanding that during production of an amino acid chain from the ribosome, the 

polypeptide exists as an unfolded fluctuating α-helix, consisting of 3.6 residues per turn.28 

The amino acid sequence is drawn out as a perfect α-helical cylinder which uses the residues 

per turn as scale. At some point along the cylinder, the position of the first residue is parallel 

with another, and the imaginary cylinder is cut along this parallel line producing a 2D ‘α-

helical net’. The flattening of the cylinder causes separation in 2D space of residues that 

were part of a helical turn and to mitigate for this the sequence is duplicated and stacked so 

that analysis of separated residues can be carried out.28 Certain amino acids are naturally 

hydrophobic and others hydrophilic. Sequences drawn out in such a way highlight 

hydrophobic residues which cluster together in different shapes, and such clusters were 

known to form secondary structure elements within a protein. The method is shown in 

Figure 12, taken from the original explanation by Gaboriaud et al.28 HCA compares the 

extent to which two (or more) sequences show a conservation of hydrophobic clustering, 

which indicates a conservation of structural fold. Interestingly, non conserved clustering of 

hydrophilic residues does not necessarily reduce fold homogeneity, as differences in 

hydrophilic regions often corresponds to loops, which are protein features that normally do 

not confer importance to the overall protein fold.27  
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Figure 12 Image taken from Gaboriaud et al, 1987, which gives an example of how HCA works , 
by firstly representing an amino acid sequence as an α-helix. Secondly cylinder is cut on a 
parallel line between two residues and unravelled as a 2D net. The net pattern is duplicated one 
under another to allow spatial representation of residues on the turn as 2D. Hydrophobic 
residues near each other are circled.  
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HCA began a new classification system that did not rely on functional studies (which are 

sometimes variable and as such, not comparable). The first work by Henrissat classified 6 

‘families’ of sequences based on the similarity of their, sequence defined, structural fold 

(based on a HCA scoring system 28) and found there to be no similarity between sequence 

and protein folds of the 6 families. The lack of fold similarity between families suggested that 

cellulases may adopt many different fold structures and these folds are conserved between 

similar proteins. The concept was duly extended to the prediction of active site residues and 

non-catalytic invariant residues, a feature that would be expected to be conserved within a 

family of similar proteins.27 Two years later, Henrissat analysed a further 301 sequences 

thought to be GHs, increasing the number of potential sequence families to 35.  The 

classified families were found to be either monospecific in function or contain multiple 

known functionalities (polyspecific) as shown by a protein’s associated EC number (EC 

numbers; refer to enzyme type, specific enzyme reaction mechanisms acting on specific 

substrates).29  

The occurrence of the same functionality in different fold families reflects the convergent 

nature of evolution, whereby proteins exhibiting different folds are able to carry out the 

same function. Likewise the reserve was found, whereby single fold families were found to 

contain multiple activities suggesting a specific fold is not limited to a single substrate 

activity. Indeed simple analysis comparing the activity of one enzyme to another could not 

entertain this extra complexity and HCA analysis blossomed into what we now know as the 

Carbohydrate Active Enzyme (CAZy) Database. The genomic data boom advanced the 

classification system, which originally focused on GHs, but now encompasses glycosyl 

transferases, 30 polysaccharide lyases, carbohydrate esterases, carbohydrate binding 

modules 31 and auxiliary activities 32 (the latter will be discussed later in this Chapter). 

Although structural analysis in the form of x-ray crystallography was slow to catch up, the 

steady stream of 3D structures of GHs emphasised the power of the HCA classification 

technique. Families were found to contain similar folds as may be expected from the high 

conservation of sequence observed in HCA. However, it should be noted that HCA is not able 

to predict the fold of a protein, merely identify sequences which share particular conserved 

features.  Conservation of residues and their relevance to protein function would be a key 

GH research focus over the years, helped by the family system; if one protein within a family 

had had its active site residues successfully identified experimentally, the invariant residues 

could be clearly identified in proteins of the same family.  
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Successful classification of a protein sequence into a GH fold family did not always occur. In 

the early study by Henrissat, 10 % of the sequences analysed were found not to have 

sufficient overlap in hydrophobic clustering, meaning they could not be assigned to a family; 

the definition of a ‘family’ requires more than one member. However, sequences which 

display little sequence similarity to other proteins of known families more likely indicates 

that sequences identified in the future may align and produce different families with 

potentially different structural folds and new activities. This concept was shown in the later 

set of classifications by Henrissat, which added an additional 181 sequences thought to be 

GHs or related proteins to the previously classified set of 301. Indeed, of the 181 sequences 

many were classified into the previously defined 35 families, whilst a further 10 new GH 

families were identified.33 Cellulase families were historically described with a letter, i.e. 

Cellulase family A, whereas the current CAZy classification describes families as the enzyme 

type, abbreviated, followed by a number – for example, glycoside hydrolase family 5 

corresponds to GH5.34  

The expansion of the CAZy database continues to this day, as evermore genomic data 

becomes available.31 This has led to a large collection of publicly available data, which is 

continually curated as an online database.34-35 As the number of families grew, as predicted, 

it became clear that unrelated sequence families often shared a type of protein fold.  As 

sequences are classified into families, the families can themselves be grouped into clans; 

where a clan is a collection of two or more CAZy families that are related in protein fold, but 

not in amino acid sequence, as well as display the same catalytic machinery and mechanism. 

These shared features may indicate families whose members share a common evolutionary 

ancestor.36 Protein fold is often better conserved than the sequences that form it and 

several families unrelated by sequence still adopt a specific type of structural fold, as shown 

in Table 1. 
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Table 1 GH Clans A-Q, their structural fold and containing GH families. Information taken from 
www.cazy.org accessed August 2018.34 

Clan Structural Fold GH Family 

GH-A (β/α)8 1, 2, 5, 10, 17, 26, 30, 25, 29, 42, 50, 51, 53, 59, 72, 

79, 89, 113, 128, 147, 148 

GH-B β-jelly roll 7, 16 

GH-C β-jelly roll 11, 12 

GH-D (β/α)8 27, 31, 36 

GH-E 6-fold β-propeller 33, 34, 83, 93 

GH-F 5-fold β-propeller 43, 62 

GH-G (α/α)6 37, 63, 100, 125 

GH-H (β/α)8 13, 70, 77 

GH-I α+β 24, 80 

GH-J 5-fold β-propeller 32, 68 

GH-K (β/α)8 18, 20, 85 

GH-L (α/α)6 15, 65 

GH-M (α/α)6 8, 48 

GH-N β-helix 28, 49 

GH-O (α/α)6 52, 116 

GH-P (α/α)6 127, 146 

GH-Q (α/α)6 94, 149 

http://www.cazy.org/
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1.5 Lytic Polysaccharide Monooxygenases 

Lytic polysaccharide monooxygenases (LPMO) are a recently discovered class of enzymes 

capable of using copper dependent oxidative chemistry to break glycosidic bonds within 

typically recalcitrant polysaccharide substrates such as crystalline cellulose and chitin. Unlike 

GHs which rely on a nucleophilic substitution process to break glycosidic bonds, LPMOs are 

able to form powerful copper-oxygen intermediates able to abstract a hydrogen atom from 

the strong C-H bond (bond dissociation enthalpy ~95–103 kcal mol–1) associated with the 

anomeric carbon atom. Hydrogen atom abstraction (or hydrogen atom transfer, HAT) is 

followed by breakage of the C-O glycosidic bond.37 LPMO families contain individual clades 

which group those enzymes together with similar substrate preference (i.e. cellulose or 

chitin, or both) and sequence similarity, which is further subdivided into type based on 

regioselectivity of cleavage (C1, C4 or either). Towards the end of this chapter Table 2 shows 

how AA9 and AA10 LPMOs are divided based on their clade and type. Enzyme activity is 

commonly experimentally determined with matrix assisted laser desorption-time of flight 

mass spectrometry (MALDI-TOF-MS), whereby LPMO attack of the C1 or C4 carbon of the 

scissile glycosidic bond produces classic and easily identifiable oxidised products, aldonic 

acids (C1 attack) and ketoaldoses (C4 attack) as shown in Figure 13.38 The active site of 

LPMOs is strictly conserved in its basic form, the histidine brace; a copper ion bound in T-

shaped geometry to 3 nitrogen atoms from a pair of invariant histidine residues. There are 

currently 6 classes of LPMO (AA9, AA10. AA11, AA13, AA14 and AA15), as shall be described 

in the forthcoming section, all of which contain this key metal binding site capable of using 

oxidative chemistry to break apart recalcitrant polysaccharides.39 
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Figure 13 Schematic showing the carbon positions upon which LPMO oxidative attack has been 
shown to occur. Oxidation at C1 leads to production of a lactone, which readily undergoes water 
addition to the aldonic acid form. C4 oxidation produces a ketoaldose, which can also undergo 
water addition to form a gemdiol product. The reducing end of the chain is highlighted 
throughout. Different LPMO display preferences for C1, C4 or either C1 and C4 oxidation and as 
such, products containing both aldonic acid and gemdiol can be formed where oxidation has 
occurred at both ends of a chain. 
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1.5.1 An important development towards efficient utilisation of 

biomass 

The ability of these enzymes to work on substrates typically out of the realms of activity of 

traditional GHs has caused an explosion in research into their activity, function and structure 

since 2010.  Industrial processes which work on the breakdown of lignocellulosic material 

adopted the use of these enzymes very early on in their discovery, following on from reports 

of their ability to increase efficiency of traditional cellulase enzyme mixtures by two-fold.40 

The cost of enzyme mixtures required during industrial processing of biomaterials is high 

and limited stocks are available due to the low numbers of companies producing enzymes 

for saccharification (higher costs, due to lower competition). Despite this, mixtures using 

thermostable enzymes capable of withstanding the harsh conditions of an industrial plant 

are in wide usage and improve cost efficiency of biofuel production. LPMOs are another 

avenue taken by the major enzyme production companies as they are known to improve the 

efficiency of the enzyme cocktails used during production; they are effective at reducing the 

recalcitrance of the feedstock, which is the major issue in producing fermentable sugars. 

Predictions suggest that a boom in development of industrial plants working on producing 

bio-ethanol from the enzymatic breakdown of waste lignocellulosic feed stocks will occur 

over the next several years.41  

Knowledge of LPMOs, and debate on their mechanisms and functionality is ever expanding 

and has been extensively reviewed over the past several years in order to keep up with the 

fast paced nature of this field of research: 144 papers are found under the search term ‘lytic 

polysaccharide monooxygenase’ from Web of Science’s core collection, August 2018, within 

the 8 years since their initial characterisation. The CAZy database has over 3500 sequences 

designated as LPMOs as of August 2018.34, 39 Some reviews which have tracked the 

progression of research on LPMOs can be found by Horn et al (early review of the emerging 

LPMO field, 2012),42 Beeson et al (overview of LPMOs with a focus on diversity, 2015),37 

Frandsen et al (a crystallography perspective, 2016),43 Meier et al (focusing on oxidative 

cleavage of various polysaccharides by LPMOs, 2018),44 Frommhagen et al (substrate 

specificities and electron-donating systems of fungal LPMOs are summarized, 2018)12 and 

Ciano et al (focusing on the histidine brace, 2018).39 
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1.5.2 Discovery of LPMOs – from non-catalytic to oxidative 

powerhouses! 

The concept of breaking a glycosidic bond is synonymous with the idea of a glycoside 

hydrolase, a protein class efficient in using hydrolysis to degrade plant materials (as 

discussed in the previous section). The diverse number of different types of GHs and their 

wide ranging abilities to break down a variety of different polysaccharides and 

oligosaccharides, working in nature as a coherent whole is an elegant concept. Yet there 

were flaws in our understanding of nature’s methods to breakdown those energy rich 

substrates that only came to the surface of research in the early 2010s. Importantly, whilst 

GHs are very efficient in their role as hydrolytic enzymes, they require their specific 

substrates to follow certain protein binding interactions, namely to dock to protein active 

site surfaces formed as grooves, clefts or tunnels.  

In 1950, Reese and co-workers had envisaged a system in which GHs worked in tandem with 

an unknown enzymatic entity, to proceed with efficient breakdown of polysaccharides. 

Reese suggested this unknown factor, termed C1, acted as a prelude to the degradation 

carried out by the GHs, or as he wrote the CX component.45 In order for GHs to work on 

substrates that are insoluble, and recalcitrant, there must first be a method of disrupting the 

ordered, crystalline nature of the substrate. Work carried out towards the end of the last 

century held hints about the enigmatic C1 component, which had mostly been put to one 

side due to conformations by authors such as Wood and McCrae that the C1-CX theory was 

manifested in the synergistic nature of endo and exo GHs. Authors of note, were those who 

were investigating fungal cellulose degradation systems such as Raguz et al (1992),Schrempf 

(1995) and Saloheimo et al (1997), all of whom encountered proteins linked to cellulose 

degradation which did not conform to known cellulases of the time, yet were found to be 

involved in cellulose degradation.46-48 The notion of an enzyme capable of oxidising cellulose 

was touched upon in studies by Eriksson et al in 1974, whereby it was shown that a mixture 

of enzymes taken from a cell culture were able to breakdown a cellulose substrate more 

efficiently in the presence of oxygen. Indeed, the authors discussed the C1-CX theory and 

stated that “the discovery of the oxidative enzyme reported here makes it clear that it is not 

only hydrolytic enzymes that are involved in cellulose degradation”. Despite this assertion, 

the enzyme studied was not assigned a specific function.49 Nearly 23 years later, work by 

Saloheimo et al formed the basis of the now re-classified GH family 61, into which LPMOs 

active on cellulose were initially placed. Their work on Trichoderma reesei discovered a new 
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enzyme capable of ‘endoglucanase’ activity on cellulose and found it homologous to a 

protein from Agaricus bisporus of unknown function, thus creating a new CAZy family, 

GH61.48 Similarly, work carried out around the same time by Schnellmann et al was likely the 

first activity identification of what is now known to be a chitin active LPMO, CHB1.50 

Reclassification of the GH61 family into what we now know as auxiliary activity family 9 

(AA9) would not take place for several years51 and would be sparked by analysis of a 

mysterious enzyme able to break down chitin.    

The structure of what is now known as an LPMO was first solved in 2005 by Vaaje-Kolstad et 

al, and described as a chitin binding domain, CBP21.  Importantly the chitin binding domain, 

whilst found to be essential to the function of Serratia marcescens in breaking down chitin, 

was determined to be ‘non-catalytic’, yet able to bind “to the insoluble crystalline substrate, 

leading to structural changes in the substrate and increased substrate accessibility”.52 

Several proteins with similar overall structures had also been identified and classified as 

chitin binding domain family 33 (CBM33), and sequence alignments were used to try to 

establish which residues may be important for chitin binding. A group of tryptophan 

residues within the protein sequence were hypothesised to cause chitin binding through 

aromatic interactions, but this was clearly disproved during structural analysis, which found 

them buried within the core of the structure.53 Instead, Vaaje-Kolstad et al noted a patch of 

hydrophilic residues on a flat surface of the protein, Figure 14, which when mutated, 

reduced overall activity; mutation of residues Try54, Glu55, Glu60, His114 and Asp182 to 

alanine reduced the amount of products (chitobiose) formed during a combined assay with a 

chitinase, ChiC, to a similar level as if no CBP21 had been added.52 Despite the observation 

of a conserved patch of residues (which included the histidine brace), the second feature 

that was found lacking was an active site. Naturally, the structure of CBP21 was being 

compared against canonical GHs and found not to conform to the structural expectations of 

that class of proteins: no groove, cleft or tunnel to accommodate a polysaccharide chain, no 

conserved Asp and Glu potential catalytic GH residues. As such it had been identified as 

more similar to non-catalytic carbohydrate binding domains (CBMs). The authors of this first 

structural insight into LPMOs therefore defined the protein as non-catalytic as it lacked any 

surface structure which could accommodate a chitin substrate in a typical hydrolytic fashion, 

and indeed the authors mention the lack of co-crystallisation with any soluble chitin 

oligosaccharides as evidence.52-53 With hindsight, one can look back at these now 

superseded papers and easily identify the iconic N-terminal Histidine residue that forms the 

basis of an LPMO active site in the sequence alignments shown of homologous proteins in 
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the designated chitin CBM33 family.53 Despite classification as non-catalytic it was becoming 

apparent, that this was a newly forming family of proteins able to disrupt the structure of 

insoluble, recalcitrant chitin, an idea that satisfies the requirements set by Reese et al for his 

efficient polysaccharide degradation system.45 Further evidence for the assistive power of 

CBM33 proteins came when Moser et al in 2007 described two proteins from Thermobifida 

fusca, E7 and E8 as secreted when the source organism was grown on polysaccharide 

substrates and able to improve degradation of substrates by GHs in activity tests. Moser 

found E7 bound strongly to β-chitin, whilst E8 showed a higher binding preference for 

crystalline cellulose. Both proteins were shown to improve the activity of T. fusca cellulases 

on degradation of filter paper and on the activity of Chitinase C (Serratia marscescens) on β-

chitin (evidence which supported the activity shown by Vaaje-Kolstad et al by CBP21 and its 

hydrophilic surface mutants in 2005).54 Whilst the activity enhancements were becoming 

apparent it wasn’t until further work in 2010 carried out by the same group, did it become 

known that the assistive degradation was in fact catalytic, and importantly relied on an 

oxidative mechanism.38 

 

Figure 14 The conserved surface residues observed on CBP21 , which were mutated to Ala in 
the study by Vaaje-Kolstad et al, and found to significantly affect the function of chitin degrading 
ChiC used in the synergism assay.53 Image produced in CCP4mg.55 

Whilst there was steadily mounting evidence to suggest that the CBM33 proteins were able 

to improve polysaccharide degradation by canonical GHs, similar work was being carried out 

with proteins classified to family GH61. Before conformation of LPMO oxidative activity by 

Vaaje-Kolstad et al, two key studies were able to identify a patch on the flat planar surface of 

two cellulose active enzymes from family GH61, which were most importantly conserved 

and found to accommodate a metal ion. Firstly, in 2008 Karkehabadi et al produced the first 

crystal structure of a protein from the enigmatic GH61 family, where only weak 

endoglucanase activity had ever been detected.48, 56 The structure of Cel61B from Hypocrea 

jecorina was solved in a condition rich in nickel ions, and as such the abundance of nickel in 



63 
 

the structure was used as the source of anomalous scatter, enabling structure solution 

without the need for a known model. The structure was shown to have a core consisting of a 

twisted β-sandwich, with a distinct lack of a typical polysaccharide binding site. The authors 

describe for the first time, the conservation of a surface region of the protein containing 

polar amino acids, found in the sequences of all GH61 members and forming the basis for a 

nickel ion coordination site, as observed in their structure solution. Most importantly, the 

authors draw attention to the fact that the closest structural homology of Cel61B was that of 

CPB21, which shared the highly conserved polar surface region (the histidine brace) as well 

are propensity for conserved hydrophilic surface resides 56, which in CBP21 were found to 

interact with chitin as described previously, Figure 15.52-53 The authors note the unusual 

occurrence of the bound nickel ion, and do recognise the notion that this may not be the 

natively bound ion within the coordination site, whilst holding back on their speculations 

that the metal site may be involved in some sort of catalytic function.56 Secondly, in 2010, 

Harris et al undertook a study looking into the boosting effect of several GH61 proteins in 

the presence of different metal cations (but not copper) towards the degradation of 

cellulose. The metals probed in this study were found to have an appreciable effect on the 

degree to which cellulose assistive degradation was achieved, but the major highlight of this 

study comes from their structural mutant analysis. Mutation of the N-terminal His to Asn or 

the mid-chain histidine to Ala of one GH61 protein was found to abolish catalytic function in 

both mutants, further asserting the hypothesis that this conserved surface patch, containing 

a metal ion was imperative to the function of the protein.40 
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Figure 15 Structural comparison of CBP21 (dark cyan ribbon, dark green cylinders, PDB code; 
2BEM) and Cel61B (coral ribbon, lilac cylinders, PDB code; 2VTC) , with the histidine brace 
shown as cylinders. A Ni atom was modelled into the histidine brace of Cel61B, as shown in 
grey. Image produced in CCP4mg.55  

Shortly after the study by Harris et al, the oxidative function of CBP21 was finally realised by 

Vaaje-Kolstad et al.38 Mass spectrometry was used to analyse the products of chitin 

degradation this time using a method in which a chitin deacetylase was used to solubilise 

the longer oligomers produced during degradation reactions. It was observed the CPB21 did 

not act like a random endo-GH, but produced even numbered products that one might 

associated with specific binding to one side of the chitin substrate, specifically a crystalline 

region. The use of water labelled with 18O identified that in the aldonic acid products of 

chitin degradation, only one oxygen was due to the presence of water. Further tests in 

which the air in the assays was replaced with nitrogen significantly reduced enzyme 

function, indicating that the second oxygen was due to reaction with molecular oxygen.  As 

such, Vaaje-Kolstad et al suggested that CBP21 was carrying out both a hydrolytic step and 

an oxidative step.38 One can now easily rationalise the incorporation of the two oxygen 

atoms from the different sources, where the oxidative step uses molecular oxygen during 

catalysis with the copper ion in the active site and the hydrolytic step is simply the change 
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from the initial lactone product to the stable aldonic acid through the interaction with 

water, Figure 16.  

 

Figure 16 Diagram of LPMO mediated incorporation of 18O from labelled molecular oxygen gas 
into the aldonic acid product of CBP21 degraded chitin, as observed in experiments by Vaaje-
Kolstad et al.38  
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The ambiguity about the bound metal ion was cleared up in foundational work carried out 

by Quinlan et al.57 This study looked in great detail at the active site of a GH61 from 

Thermoascus aurantiacus and was first to clearly define the catalytic properties of a GH61 

family protein; whereby the proteins were described at lytic polysaccharide 

monooxygenases (LPMO), able to break the glycosidic bonds of crystalline cellulose using an 

oxidative mechanism based on copper. Firstly, they perform an analysis of the potential 

sources of electrons from PSC. Vaaje-Kolstad had remained ambiguous regarding the need 

for a co-factor to support oxidative function of CBP21, whilst Harris suggested that the 

heterogeneous mixture of pre-treated corn stover (PCS) used during his study on GH61 

proteins provided a source of electrons.38, 40 Quinlan looked at a range of soluble products 

within the PCS mixture and found that gallate (a reducing agent) could be utilised by the 

TaGH61 as a redox partner during breakage of glycosidic bonds, whilst not affecting the 

cellulose itself. Study of fungal LPMOs, as they were becoming known, by Phillips et al found 

that it wasn’t just small molecule reductants that were able to act as reducing partners; a 

GH61 fungal protein was found to be able to accept electrons from cellobiose 

dehydrogenase.58 However, no protein electron partners have been identified for historically 

CBM33 LPMOs as yet. Future studies would also identify lignin as a potential source of 

electrons, with LPMO activity on cellulose linked to the removal of unpaired electrons from 

lignin 59 and with assays, regarding LPMOs active on hemicelluloses, carried out on complete 

wood samples were found to continue to offer a boosting effect even without the addition 

of a reducing agent or protein electron donor.60  

Secondly, Quinlan was able to clarify the debate regarding coordination of a metal ion within 

the conserved patch of surface polar residues. Where previous studies had assigned the 

coordinated metal ion based on environmental factors such as crystallisation conditions, or 

saturation of the protein with different divalent cations, this study analysed TaGH61 using 

isothermal titration calorimetry (ITC) to assess the binding affinity of various metal ions. 

Despite experiments and crystal structures indicating otherwise, the binding of divalent 

metals, Mg2+, Ca2+, Mn2+, Co2+, Ni2+ and Zn2+ to the conserved metal site was not detected. 

Instead a clear 1:1 binding ratio of TaGH61 with Cu2+ was observed, with binding so tight 

that calculating the dissociation constant was beyond the realms of experimental 

determination by classical ITC. The authors go on to suggest a practical problem noticed by 

all who now work with LPMO enzymes, they are so adept at binding copper that the proteins 

are able to scavenge it from their environment. Even introduction of EDTA (a strongly metal 

coordinating ligand) lead to the slow removal of copper, and it is likely that all previous 
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studies carried out on enzymes such as CBP21 and CelB61 already had copper bound tightly 

in their active sites, despite ‘saturation’ with other metal cations.57 NMR studies went on to 

support the assignment of copper in the binding site of LPMOs, with substrate binding 

studies showing that the planar surface, including the copper coordination site was used in 

substrate binding.61 

1.5.3 The Histidine Brace 

The strong binding of copper in TaGH61 was further assessed by Quinlan et al using a 

technique little utilised by biochemical research; electron paramagnetic resonance (EPR). 

EPR is a technique which uses an atom’s unpaired electrons and how they relax after the 

influence of microwave radiation within a strong magnetic field to produce a spectroscopic 

interpretation of the atom’s coordination environment. Copper(II) is a prime candidate for 

EPR analysis due to its single unpaired electron. As such, the coordination of the copper ion 

within the conserved site of TaGH61, coined by the authors at the ‘Histidine brace’ was 

interpreted in great detail and found to be similar to particulate methane mono-oxygenases 

(MMO) (although at the time, MMOs were thought to have two Cu ions in their active site, a 

theory that has now been revised) 62-63.  

Crystallography had already managed to observe a metal ion forming a coordination site 

with N-terminal histidine and a mid-chain histidine. The advantage of using EPR is clear in 

the analysis of LPMOs, as it captures the coordination site of the copper in pure 

spectroscopic detail, supporting crystallographic analysis with chemical interpretations, as 

shown in Figure 17, taken from Quinlan at el.57 EPR analysis of TaGH61 which had been fully 

saturated with copper produced spectra that represented a copper ion in a tetragonal 

coordination geometry. The copper species bound within the proteins conserved active site 

was found to produce spectra similar to those of other copper oxidases, which contain a 

classical type 2 copper species.64 This result was supported by crystallographic analysis, 

where a copper ion was modelled into what the authors coined the ‘histidine brace’; the 

copper was shown coordinating to three nitrogen atoms, two from the N-terminal histidine 

(one ring nitrogen and the nitrogen of the amino terminus) and a third from the ring of the 

mid-chain histidine.57 It is this structural conformation of two histidine residues forming a 

coordination sphere for the copper ion that is present in all LPMOs.  The EPR analysis 

showed that the copper was a type 2 species which supported the idea that oxidative 

chemistry 38 would occur, as other enzymes with similarly coordinated copper ions were 

known to be able to use molecular oxygen and insert it into substrates.64 
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The similarities between enzymes placed in the original families GH61 and CBM33 were 

becoming more apparent especially in terms of structure and function; whilst the primary 

scaffold of the histidine brace was consistently present, changes in the other coordinating 

ligands were found to be indicative of the type of LPMO being studied. Quinlan et al had 

observed T-shaped geometry (distorted square planar) around the copper site of TaGH61, 

defining the copper species as type II. Analysis of a CBM33 protein from Bacillus 

amyloliquefaciens followed shortly afterwards by the same group, and EPR studies showed 

significant differences within the copper coordination. They describe the copper 

coordination in BaCBM33 as “significantly distorted from axial, such that it lies somewhat 

between the usual Peisach−Blumberg type 1 and type 2 classifications”.  The positioning of 

two non-coordinating conserved residues in the active site of BaCMB33, an alanine and 

phenylalanine in the apical ligand positions allows the copper ion to only coordinate with the 

ligands in the equatorial positions.65 The differences in coordination sphere between the 

two types of LPMO are clear, and likely arise because of the differences in steric/electronic 

environments in the secondary coordination sphere of the histidine brace. 

Lastly, an obvious difference was first observed on the N-terminal histidine of TaGH61, it 

was methylated (see Figure 17, A and C).57 This post-translation modification is found in all 

LPMOs of fungal origin and the instance of such a modification remains mysterious; fungal 

LPMO proteins produced using E. coli lack this modification, yet still function.  
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Figure 17 Image taken from Quinlan et al 57 showing the clear evidence coming from EPR and 
crystallography to support the binding of copper into the TaGH61 histidine brace. A) shows the 
copper ion modelled into the electron density of copper-saturated TaGH61. B) shows the EPR 
spectra obtained from TaGH61, with clear peaks that are similar to other type II copper species 
and C) which shows a representation of the coordination sphere of the copper ion in the 
histidine brace, with main tetragonal coordination coming from the three nitrogen atoms and a 
PEG molecule.  A water molecule and a tyrosine residue are in the apical binding positions.  

1.5.4 LPMO Reclassification and Expansion 

As researchers began to focus more on these intriguing enzymes it became clear that the 

previous CAZy classifications were incorrect; proteins established as belonging to GH61 were 

definitely not glycoside hydrolases, and those proteins in family CBM33 were not just chitin 

binding modules. Thus a new family was created in the CAZy database to house LPMOs 

(among other redox active enzymes) called auxiliary activities.  GH61 was renamed as AA9 

whilst CBM33 was renamed AA10.32 The reclassification came at a convenient time, for 

other LPMO families were and are still being discovered; namely AA11, AA13, AA14 and 
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AA15 which shall be discussed briefly below. All currently known LPMO families are 

summarised in Table 2, at the end of this section.   

1.5.4.1 AA11 

The lack of sequence homology between proteins found in families AA9 and AA10 means 

that when one conducts a sequence search, a protein from AA9 will not yield a result from 

family AA10. Clever methods needed to be employed to search for non-sequence 

homologous LPMOs. One such method, known as ‘module walking’ was used by Hemsworth 

et al to discover proteins that would become known as LPMO AA11’s.66 The technique 

involved identifying domains that were found appended to certain LPMOs and searching for 

these domains using NCBI BLAST. LPMOs are sometimes appended with CBMs and other 

domains of unknown function, termed X-domains. Hemsworth et al found binding of a 

specific X-domain to a GH18 protein, which itself was attached to a domain of unknown 

function – whose sequence started with a signal peptide followed by an N-terminal histidine 

residue. This AA11 from Aspergillus oryzae was found to be active on squid pen chitin. The 

structure of AoAA11 shares the common LPMO fold, with a core β-sandwich and flat binding 

surface, Figure 18. Notably, as this fungal LPMO gene was produced in E. coli it lacked the 

post-translation N-terminal histidine methylation (E.coli is not capable of carrying out this 

modification), it is not yet determined what the effect of the methylation of the N-terminal 

histidine is.66 Analysis of the copper coordination geometry proved surprising, AoAA11 was 

somewhere in-between the geometry posed by AA9 and AA10 enzymes. Like in AA9s, a non-

coordinating tyrosine residue was found in the lower apical coordination site. However, like 

in AA10s, an alanine residue was found in the top apical position, preventing coordination of 

water as in AA9s.   
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Figure 18 Structure of AoAA11 (PDB code, 4MAI) . Image produced in CCP4mg.55 

1.5.4.2 AA13 

The AA13 family was found using a different bioinformatics method, which relied on the 

knowledge that all known fungal LPMOs were secreted. Vu et al looked at secreted proteins 

in the genome of Neurospora crassa, identifying those with a signal peptide followed by a 

strictly conserved N-terminal histidine (when compared with homologues). Other defining 

features, such as the second copper coordinating histidine and a known sequence motif 

were used to further identify the proteins as LPMOs. One of the newly identified LPMO 

sequences, was appended to a CBM20 domain, which is known to bind starch. Further 

characterisation proved that the LPMO was able to break down starch using the same 

oxidative chemistry as required for cellulose and chitin degradation by AA9, AA10 and AA11 

LPMOs.67 Shortly after and using a similar method, Lo Leggio et al identified another starch 

degrading LPMO in the fungi Aspergilllus nidulans.68 The activity of AA13 enzymes on starch 

shows they are capable of breaking α-1-4 glycosidic bonds, a feat not observed before 

within LPMO activity, where chitin and cellulose are made up of β-1-4 glycosidic bonds. 

However, an AA13 found in Aspergillus oryzae was found not to degrade starch, which was 
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hypothesised to be due to the lack of the C-terminal CBM20 domain.  68 Indeed, a large 

majority of AA13 enzymes possess a C-terminal CBM20 domain, which may be required for 

activity of the LPMO on starch.69 One of the most interesting aspects of AA13 is those with 

corresponding 3D structures show an alternation to the normally planar LPMO surface. 

Whilst some LPMOs have been observed to have protrusions, or binding surfaces with 

concave features, AA13 LPMOs have been shown to have a shallow groove. The authors 

suggest that this interesting adaption may be in response to the helical nature of the 

substrate amylopectin. However, it would be interesting to see how many AA13 proteins 

which are not associated with a starch binding domain contain this adaption.68  

 

Figure 19 Structure of AoAA13 (PDB, 4OPB). Image made in CCP4mg.55 

1.5.4.3 AA14 

LPMOs do not always have C-terminal domains, so module walking approaches do not apply 

in all cases, as shown by the discovery of the AA14 family of xylan degrading LPMOs, Figure 

20. The degradation of woody biomass is carried out in nature effectively by white and 

brown rot fungi. Couturier et al were investing the wood degrading ability of Pycnoporus 

coccineus, a white rot fungus, by monitoring the up-regulation of genes in response to 

different woody substrates.60 A protein secreted during growth on pine and poplar was 

compared to homologous proteins using BLAST and all were found to display the classical N-

terminal histidine residue. The authors showed a phylogenetic analysis that identified the 
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homologous proteins as clustering together into a family, made up of sequences from both 

white and brown rot fungi and was thus classified as AA14. Structural analysis by EPR 

showed that PcAA14A and PcAA14B contained strictly type 2 copper species, as seen in AA9 

LPMOs, but both were found unable to degrade cellulose. Their activity was instead focused 

on xylans, and importantly those xylan chains which were interacting with cellulose, the so-

called hemicellulose fraction of woody biomass. Transmission electron microscopy and NMR 

analysis observed an enzymatic effect only on the xylans bound to the underlying cellulose 

structure. Interestingly, the AA14 enzymes were not active on soluble xylans, to which the 

authors suggest is due to the three-fold helical screw formed by the solubilised substrate.  

Instead it is suggested that the binding of the xylan chain in a parallel fashion orientates the 

xylan in such a way that it is susceptible to oxidative cleavage in the same way as cellulose.60  

 

Figure 20 Structure of PcAA14 (PDB code, 5NO7) in apo form, meaning the protein structure 
lacks copper in the active site. Image made in CCP4mg.55 



74 
 

1.5.4.4 AA15 

The most recent addition to the LPMO family is AA15, which contains a selection of proteins 

found through analysis of the genome of the firebrat insect, Thermobia domestica, Figure 

21.70 This primitive and ancient insect is able to degrade crystalline cellulose without the 

need for a digestive microbial community, much like the shipworm as will be discussed 

shortly. Identification was carried out by analysing the gut contents of animals feed on 

Avicel, and of the identified CAZymes, 20.2% were attributed to being putative LPMOs. 

Comparison of the sequences identified using transcriptomics, BLAST searching lead to the 

identification of a multitude of homologues from a wide array of organisms – marine and 

terrestrial insects, algae and oomycetes. Uncommonly, a sequence homology link was 

observed to other LPMOs and the group of proteins was classified as AA15, LPMOs active on 

cellulose.70 

 

Figure 21  Structure of TdAA15 (PDB code 5MSZ) , showing a change from the normal rounded 
globular structure of other LPMOs.  Image made in CCP4mg.55 
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Table 2 Overview of the 6 LPMO classes currently known. A more detailed analysis can be found in Ciano et al, supplementary spreadsheet.39 

AA 

Family 

Bacterial 

/Fungal 

Structures of 

different 

species 

Clade Sub group* Cleavage 

Site 

Substrate Cu Inner Sphere 

(other than 

Histidines) 

Copper Type Points of Interest* 

AA9 Fungal 13 - Type 1 C1 Cellulose Apical: Tyr, H20 I N-terminal methylation , elongated square 

bipyramid geometry - Type 2 C4 Cellulose 

- Type 3 C1/C4 Cellulose 

AA10 Bacterial 

Viral 

12 

3 

I Type 1A C1 Chitin Apical: Phe, Ala II Trigonal bipyramid geometry 

I Type 1B C1 Chitin Distorted square pyramidal geometry 

II Type 2 C1 Cellulose See-saw geometry 

II Type 3 C1/C4 Cellulose Apical: Tyr, Ala Elongated square bipyramid geometry 

AA11 Fungal 1 - - C1 Chitin Apical: Tyr, Ala Between I and 

II 

Active site a mixture of AA9/AA10 elongated square 

bipyramid geometry 

AA13 Fungal 1 - - C1 Starch Apical: Tyr, Gly II Grooved binding site, elongated square bipyramid 

geometry 

Recombinant protein, no N-terminal methylation 

AA14 Fungal 1 - - C1 Xylan 

attached to 

cellulose 

Apical: Tyr, H20 II Recombinant protein, no N-terminal methylation 

AA15 Invertebrates,

alage, 

oomcytes, 

etc.  

1 - - C1 Cellulose 

Chitin 

Apical: Tyr, ? II (distorted) No N-terminal methylation 

*Subgroup information and geometry taken from Vu et al.
71
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1.5.5 LPMO – A fast moving research focus 

Since their discovery, LPMOs have had a major impact on the field of lignocellulosic 

breakdown, and research into these oxidative enzymes is fast paced and still gaining 

momentum as more and more research groups study every aspect of their behaviour and 

function. A key area of this research is how the oxidative mechanism actually works; how 

does the enzyme use copper to catalyse the breakdown of a glycosidic bond. There are 

other enzymes in nature that use metal catalysed oxidative chemistry. In what seemingly 

cannot just be a fascinating coincidence, particulate methane monooxygenases also play 

host to a copper ion, housed within a histidine brace capable of oxidative chemistry.62-63, 72-73 

As such, one may assume that nature has produced a copper coordination complex that is 

powerful in producing different activities in different scenarios.  The mechanism of action is 

a widely debated topic and is reviewed well in Walton and Davies (2016)74, Vu and Ngo 

(2018)71 and Ciano et al (2018).39  

In an early study, Beeson et al used isotopic labelling to determine that an AA9, from 

Neurospora crassa, was able to facilitate hydrogen atom abstraction at either the C1 or C4 

carbon atom positions of the glycosidic bond, which was then followed by cleavage of the 

joining glycosidic C-O bond (carbon at either position).37 As has been noted in many crystal 

structures, the copper ion is almost always in the Cu(I) state, most likely due to reduction of 

any Cu(II) form to Cu(I) during x-ray exposure. The Cu(I) state is thought to be more stable 

than Cu(II), an idea supported by electrochemical studies of the reduction potential of the 

enzymes in solution. As such, most catalytic mechanisms that have been suggested (of which 

there are many) centre on the copper being the (I) state at rest.74 Combination of 

experimental observations, orbital theory and density functional theory (DFT) have 

produced several possible mechanisms for the copper oxidative attack on polysaccharides. 

LPMOs are a remarkable example of how different fields of study can come together to 

support each other in the understanding of enzyme action. For example, in studies by Kim et 

al 75 and Kjaergaard et al 76 both were able to produce DFT models of LPMO active sites 

which matched the copper active site geometry and observed oxidation states seen in 

crystal structures.74 There are several proposed mechanisms of action, or the LPMO 

‘catalytic cycles’, each one with their own merit and potential issues. Walton and Davies, 

review these potential cycles, which can be split into two routes; catalysis in which 

molecular oxygen binds before the substrate, and catalysis in which molecular oxygen binds 

after the substrate. A multitude of copper-oxygen intermediates (such as copper-superoxide 
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and copper-oxyl species) are suggested amid various different catalytic routes. Unresolved 

issues remain that confound and complicate these proposed mechanisms, as described in 

Walton and Davies74, including but not limited to; the variety of substrate specificity and 

differences between substrates (such as the strength of the C-H bond from which 

abstraction takes place) and how this may affect mechanism, whether it is possible to 

spectroscopically observe a copper intermediate state (which would undoubtedly assist in 

the conformation of certain aspects of mechanism), the lack of available kinetic 

measurements (methods are emerging which can measure LPMO rates even when the 

substrate is insoluble), understanding the binding nature of LPMOs to the substrate 

(knowing whether the enzyme is processive, remaining bound to the substrate is a key 

factor in some proposed mechanisms, and what effect a CBM has on LPMO action), and the 

effect of the reducing agent (fungal AA9s are able to gain electrons from CDH, whereas 

there is no known protein based equivalent for other classes of LPMO).74 Elucidating the 

mechanism of LPMOs will prove a fundamental step in further utilising their biomass 

degrading power, be it in the form of engineered artificial enzymes to tailor substrate 

specificity, or make a one-substrate-fits-all approach, to the creation of small molecule 

mimics which could potentially be made in bulk, cutting out the need for high cost enzyme 

production.  

1.6 Mimicking Nature 

The ability of an organism to successfully breakdown a variety of polysaccharide substrates 

relies on the combined usage of many different CAZymes. The boosting effect provided 

when an LPMO is used in addition to traditional GHs on the breakdown of polysaccharides is 

well known42, and is a mixture already employed in biorefineries worldwide. Depending on 

the source biomass material, there is likely to be a difference in structural composition. As 

such, to mimic Nature, we must also use a variety of enzymes to efficiently break down 

biomass materials. At present, the ‘gold standard’ in producing industrial enzymes for bio-

processing is Trichoderma reesei; a fungus identified during World War II, found degrading 

the cellulose fibres that made up US army tents on the Soloman Islands, reviewed by Bischof 

et al.77 Over time, this model organism has undergone many changes to become what is 

known as a ‘hyperproducer’, and those strains used to produce proteins in industry are 

capable of making over 100 g L-1 of protein. Indeed, Bischof quoted in 2016 that of the 480.5 

million liters per year of ethanol produced from cellulosic biofuel production, 80 % of this 

was due to enzymes produced by T. reesei.77 Despite sounding as if the industrial process of 
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lignocellulose breakdown into usable products is firmly taken care of by T. reesei, there are 

still many improvements to be made. Enzymes need to work in a synergistic manor, have 

high activities, be stable over the course of their usage, be resistant to inhibition by end 

products and be able to operate under the same conditions as one another. There is also the 

fact that lignocellulose is a very heterogeneous mixture and requires a large number of 

enzymes with different substrate specificities to effectively breakdown a type of biomass. As 

such, there are always more enzymes to be found, a practise known as ‘bioprospecting’, 

whereby new and superior enzymes which could potentially improve these industrial 

‘enzyme cocktails’ are searched for.78  As many organisms have evolved to use specific 

substrates as a food source, their genomes provide a treasure chest of possibilities that 

could potentially be used in an industrial process. Organisms that survive in different 

ecological niches can be a source of new protein-industrial advances in terms of improving 

the biomass breakdown; be it enzymes capable of tolerating higher temperatures, those 

with high levels of stability or longevity, or those with usual substrate specificity that allows 

for the degradation of particularly difficult polysaccharides. With this thought in mind, the 

work described herein discusses an organism which has evolved to survive in a very specific 

niche. The organism of interest, the shipworm, was chosen due to its combined choice of 

habitat and food source; the marine animals burrow into submerged wooden substrates and 

use the material extruded during burrowing as a food source.79 Success within this very 

specific ecological niche would suggest that the animal has a set of CAZymes capable of 

efficiently providing enough nutrients for survival from a substrate displaying high levels of 

recalcitrance. This work uses the genome of a symbiotic bacterium, Teredinibacter turnerae, 

found within the gill region of shipworms, as a potential source for new and novel CAZymes.  

1.7 A question of symbiosis 

Throughout the ‘Tree of Life’ there exists a multitude of symbiotic associations in which host 

and symbiont may rely on one another to provide them with key elements of survival.80 The 

variations in the type of symbiotic relationships are vast and range from specific adaptations 

(such as the algae growth on the fur of sloths to provide camouflage) to more general 

harmonious communities of bacteria within a host digestive system. Ruminants are an 

excellent example of this, where the digestion of nutrient poor grass is assisted by a vast 

array of bacteria contained within the digestive system of the animals, enabling access to a 

wider source of nutrients such as carbon sources from the diet and nitrogen from bacterial 

fixation. The development of bacterial relationships within terrestrial animals is thought to 
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provide the symbionts with a relatively stable and importantly, ‘aquatic’ environment in 

which they may exist. Without habitation within terrestrial organisms a large proportion of 

bacteria would be limited to niche areas such as lakes or rivers. Thus, co-habitation may 

represent a necessary shift in bacterial evolution as aquatic animals moved towards 

terrestrial environments.81 In aquatic environments one may then ask the question, why is 

there a need for symbiosis between bacteria and aquatic animals? Symbiosis may be 

considered a choice of the bacteria, as water is available both inside and outside of the 

aquatic host. Yet, in a wide array of marine species, there exists dense populations of 

bacterial symbionts. Bacterial communities present in several forms, transient, opportunistic 

and resident, where the latter is more likely associated with bacteria containing some 

adaption which allows them to maintain survival within the host; for example, adhesion to 

the lining of a host stomach to avoid extrusion along with the remains of digested food.81 

The type of association often relates to the diet of the host animal, with animals ingesting 

mostly cellulose substrates found to have digestive systems which support a diverse 

microbiome (genes provided by a community of microbes), adept at cellulose degradation.  

 

Figure 22 Big ear shipworms, photographed within their burrows. Image by David Fenwick and 
taken with permission from www.aphotomarine.com 

1.8 The Humble Shipworm 

This work focuses on novel enzyme characterisation from bacteria living in a symbiotic 

relationship with marine bivalve molluscs. This specific group of bivalve molluscs of the 

family Teredinidae are found across the globe, and are commonly referred to as shipworms 

or teredo. The creatures do indeed resemble worms, Figure 22, having evolved an extended 
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translucent tubular body at the head of which sits two shells, or valves, covered in a row a 

tiny teeth like structures which the animal uses to mechanically bore into wooden 

substrates. Indeed, the way the animals bore through the wood without collapse of the 

resulting tunnel is said to have inspired the great engineer Sir Marc Isambard Brunel to 

invent the tunnelling shield, a machine capable of supporting the leading face of a tunnel 

during deep excavations, and most famously used to build the Thames tunnel in the early 

19th century.82  The animals live within the submerged wooden material, burrowing along 

the grain of the substrate as they grow, ingesting and processing the extruded wood as a 

food source as they go along, Figure 22. Food particles are known to collect in a region of 

the digestive system called the cecum (see Figure 23), whereby agitation of the substrate 

and absorption of the solubilised degradation products such as glucose takes place.70 They 

are able to extrude a protective layer of calcium carbonate around the surface of the 

burrow, which forms a protective yet brittle layer which may strengthen the structure, 

provide a water-tight layer and protect against predators. Animals have been known to 

create walls of calcium carbonate to seal off sections of their burrow, as they change 

direction with the grain of the wood.83 Two siphons from the tail-end of the animal, one for 

the controlled influx of water containing essential oxygen and phytoplankton and the other 

for excretion often protrude out of the small initial bore hole, where the juvenile shipworm 

entered the wood substrate. Once the siphons are retracted, the animal is able to seal the 

entry hole by pushing forward its pallets, paddled shaped calcareous structures that flank 

the siphons.83-84 This is an important adaption if the wooden substrate enters or is sustained 

by a habitat containing tidal surges, as sealing the burrow effectively allows the shipworm to 

remain submerged in water even if the outside of the burrow is exposed to the air. The 

siphons are known to pump ‘fresh’ sea water over the gills of the animals which likely 

contains microorganisms such as plankton, which can be filtered into the digestive system 

through a connective structure to the mouth, Figure 23.85 Indeed, studies have noted the 

incorporation of 14C within the tissue of adult animals from labelled phytoplankton, 

indicating the shipworm’s ability to filter particulates from seawater and utilise them as a 

source of nutrition.86 Reproduction in shipworm results in larvae release into the water 

column, where the only practical food source seems to be abundant microscopic plankton, 

before the animals settle on a burrow location.83 However, larvae were found not to contain 

tissues labelled with 14C from plankton.  Hence filter feeding of plankton (mainly in the 

summer months) may be opportunistic once the animals become sedentary within a 

substrate. Some studies have shown that shipworms can survive in sea water alone, utilising 
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plankton as a food source, whilst others saw decline of the animals upon removal of a 

wooden food substrate. Plankton may provide a source of many essential amino acids to the 

animals, but its abundance seems to affect certain species of shipworms differently.84-85 

 

Figure 23 Basic diagram of a shipworm (image not to scale) showing the general layout of the 
main organs within the animal. A connective structure runs from the gill region to the mouth of 
the animal.  

1.8.1 A historic animal 

Whilst interesting to some, shipworms are generally considered pests by the maritime 

profession, inflicting damage onto wooden structures such as piers and ship hulls by 

burrowing into the material and destabilising it.87 Shipworms have been endemic in oceanic 

environments since antiquity, one event of historical note was the great shipworm ‘plague’ 

of the 1730’s, where changes in weather caused storm surges around the coast of the 

Netherlands, creating a prime environment for a shipworm epidemic which threatened the 

structural integrity of the dikes. Public outcry was high, with many people frightened by the 

greatly enlarged images of animals threatening the coastline.88 The abundance of shipworms 

within the ocean is high, illustrated by common experiments carried out by researchers, 

whereby blocks of wood left submerged for a period of time will become entrenched with 

shipworms, allowing collection and study of the animals. The natural environment of 

shipworms has become intrinsically mixed with human settlement, where terrestrial wood 

unlikely to interact with oceanic organisms finds its way through to the ocean in the form of 

man-made structures such as boats, flood defence mechanisms or coastal structures. It is 

therefore unsurprising that the shipworm is found spread across the globe, most likely 

having been easily transported around as shipping routes expanded. Studies have also 

shown how natural disasters such as tsunamis can aid the dispersion of local shipworm 

species further afield, with one study tracking the movement of Japanese localised species 

all the way to America.83 Animals are known to exist in various environments made up of 



82 
 

different types of wooden substrates – these substrates may be sedentary such as man-

made docks or mangrove forests, or be pelagic, driftwood or other wood-like substrates 

such nuts and seeds held aloft in the open ocean.83 

Table 3 List of Shipworms mentioned in the main text, their geographical location, key research 
finding and associated reference.  

Shipworms Origin Key Research finding Analysis 

Teredo navalis 

Worldwide distribution, transported 

by ships worldwide, dubbed ‘The 

naval shipworm’ 

Reduction in lignocellulose content by 

passage through shipworm digestive 

system 

Dore, 1923.  

Bankia 

setacea 

Pacific Coast Reducing sugars found after digestion of 

wood 

Boynton, 1926 

Bankia 

australis 

Western Pacific Ocean, Australian 

coastline, predominantly intertidal, 

mangrove forests. 

Electron microscopy study observed 

bacterial associations in gills 

Popham, 1973 

Teredora 

malleolus 

North Atlantic Ocean, intertidal, 

British Coastline 

Nitrogen fixation study Carpenter, 1975 

Lyrodus 

pedicellatus 

Northern Altantic Ocean, English 

Chanel, coastline 

Survival off of wooden substrate alone 

found possible 

Gallager, 1981 

Bankia gouldi 
Western Atlantic Ocean Isolation of gill bacteria – Teredinibacter 

Turnerae 

Waterbury, 1983 

Kuphus 

polythalamia 

Western Pacific Ocean,  western and 

eastern Indian Ocean and the Indo-

Malaysian area 

Giant shipworm, sulfur oxidising enzymes  Distel, 2018 
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1.8.2 Bacterial Associations 

In 1975, Carpenter and Culliney studied four shipworm species and found a high rate of 

nitrogen fixation, suggested to support the growth of the animals. They identified a bacteria 

able to fix nitrogen under anaerobic conditions in one of the species, which was interestingly 

also found capable of ‘liquefying cellulose’, isolated from the cecum.89 Nitrogen fixation is 

commonly carried out by prokaryotes and the products used by other organisms. The 

process involves the conversion of atmospheric nitrogen (N2) into ammonia (NH3) which can 

then be used in protein synthesis.90 In the late 1970s, studies by Gallager observed that 

some shipworm species could survive without filtration of particulate matter and could 

instead survive solely off of woody substrates. It was also noted that despite the wood diet, 

a nutritionally poor source of nitrogen with a high C:N ratio, the shipworm seemed to have 

an unusually high nitrogen conservation level.91  

During burrowing, wood which has been ingested after being mechanically destabilised by 

the rasping motion of the shells, is processed within the digestive system and the remains 

extruded as faecal pellets. Unlike most other organisms, the digestive system of the 

shipworm lacks any significant microbial communities.87 Although Carpenter’s study 

describes isolation of a bacterium from the cecum of a shipworm, colonisation of the 

digestive system is not commonly observed. Larger organisms existing on a diet containing 

lignocellulose will utilise bacterial symbiosis to supplement host digestion. In 1923 Dore 

observed the disappearance of 80% of cellulose and 15-56% of hemicellulose from Douglas 

fir piling during its transit through the digestive tract of Teredo navalis, which was later 

confirmed to occur in Bankia setacea by Boynton.92-93 Without bacterial assistance, this 

would be an amazing feat of eukaryotic lignocellulose degradation.  

The first observation of bacteria associations was in an electron microscopy study in 1973 by 

Popham and Dickson. They were studying the so called ‘gland of Deshayes’ a region of the 

gills of shipworms that had been studied and named in 1848 by Deshayes. The glandular 

nature of this region of the gills was disproved by Popham and Dickson’s use of electron 

microscopy, which instead observed a mass of rod shaped gram negative bacteria, Figure 24. 

In this short paper the authors show that the shipworm does indeed have some sort of 

bacterial association, localised in the gill region, which they suggest may be symbiotic.94 

Carpenter mentions this study and how they were unable to isolate bacteria from the gill 

region.89 10 years later, in seminal work by Waterbury et al the gill bacteria were physically 

isolated, and grown as a pure culture. From this work, their existence was experimentally 
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described as symbiotic, specifically endosymbiotic, supporting the original instinctual 

suggestion by Carpenter and Culliney.79 

 

Figure 24 Electron micrographs taken from Popham and Dickson, 1973 .94 A) View of the ‘gland 
of Deshayes’ shown instead to contain a mass of rod shaped bacteria. White box is magnified in 
B) showing the ordered hexagonal arrangement of bacterial cells.  

Dense populations of the bacteria were observed by Waterbury being held within 

specialised cells called bacteriocytes inside the same internal region of the gills (now without 

the name, gland of Deshayes). The bacteria were isolated from the shipworm Bankia gouldi 

collected from Beaufort, North Carolina in 1979 and named Teredinibacter turnerae (strain 

T7901). Waterbury suggested that as well as the provision of nitrogen to the host, T. 

turnerae also provided some cellulolytic function as the bacteria were able to grow as a pure 

culture on cellulosic substrates.79 Griffin et al examined this hypothesis and did find evidence 

of secreted endoglucanase enzymes from T. turnerae that were able to break down long 
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chain soluble cellooligosaccharides.95 In 2009, Distel et al showed evidence that shipworm 

gill regions contain small consortiums of different endosymbionts, with T. turnerae being the 

most prevalent.96 A breakthrough in the understanding of what role the symbiosis may 

provide the host came about after the genome of T. turnerae was sequenced. Yang et al 

analysed the T. turnerae genome and compared the amount of potentially carbohydrate 

active enzymes to other closely related bacteria, Saccharophagus degradans and Cellvibrio 

japonicas. Of the potential GH domains found within the genome of T. turnerae, 53.5 % 

were thought to be associated with cellulose or xylan, almost double the number of similar 

observed genes in S. degradans and C. japonicus. Furthermore, the GH domains specific for 

cellulose and xylan were thought to be adapted to the degradation of terrestrial wood. 

Interestingly, 7 genes were found to consist of multiple catalytic domains, which unusually 

were predicted to have different functions, which could possibly be involved in the 

degradation of hemicellulose.  The authors also investigated the high number of CBMs 

present in the genome; 117 domains were found. Approximately 50 % of the domains 

belong to family CBM2 and CBM10, which are known to be associated in binding crystalline 

cellulose.97-98 A similar finding can be observed in the genomes of S. degradans and C. 

japonicus. However, T. turnerae was also found to contain a high proportion of CBMs 

thought to be involved in binding to xylan (CBM22) compared with S. degradans. The 

analysis of the genome suggested that T. turnerae lacks the typical carbohydrate active 

enzymes required for degradation of typical marine polysaccharides such as agar and chitin. 

Instead, the plethora of CAZymes, which represent 38 GH families appear to specialise in the 

degradation of substrates rich in cellulose, xylan and mannans, which are typically found in 

woody plant materials.99 

1.8.3 Probing the shipworm symbiotic relationship 

The question remains as to why a community of bacteria containing such a large proportion 

of potentially wood-degrading genes are held localised in the gills, and not within the 

digestive system of the animal. T. tunerae was known to fix nitrogen in pure culture and 

animals were known to have a higher nitrogen content than would otherwise be expected 

from their diet. The nitrogen fixation by T. turnerae in situ was elegantly shown by Lechene 

et al, who in 2007 used a technique called multi-isotope mass spectrometry (MIMS) to 

measure the abundance of 15N in the gill tissue of shipworm L. pedicellatus. The animals had 

been grown in tanks enriched with isotopically-labelled nitrogen gas, and stable 15N isotope 

incorporation into the gill region was mapped by MIMS coupled with transmission electron 
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microscopy (TEM). The visual map provided evidence that newly fixed nitrogen was highly 

abundant within the symbiotic bacteria and lower amounts were observed in nearby host 

cells, indicating that transfer of the newly fixed isotopically labelled nitrogen to the host cells 

was occurring.100 Further mapping of host-symbiont interactions was carried out by 

O’Connor et al.101 Probes specific for 16S rRNA endosymbiont gene fragments were 

detected using fluorescence in situ hybridisation (FISH). The probes were highlighted in high 

abundance within the gill region where the bacteriocytes were located. Interestingly, the 

probes were also identified within the cecum of the animals, which are known to be free of 

bacteria. This identification of endosymbiont gene fragments within the digestive system of 

the host strongly indicated that bacterial proteins active on carbohydrates were being 

translocated from bacteriocytes in to the gills to the gut of the animal.101  

The majority of T. turnerae CAZymes are secreted, with experiments showing accumulation 

of GH proteins within spent growth media was higher when the culture conditions included 

cellulose as a substrate.99 A major gap in the understanding of the shipworm-symbiont 

relationship is how the bacteria know to produce the vast array of lignocellulosic proteins 

when the substrate is distant to their localisation. O’Connor et al studied the movement of 

bacteria proteins around anatomy of the shipworm and several intriguing aspects were 

uncovered. Firstly, much like the earlier study (carried out by the same group), a selection of 

bacterial (phylogenetically similar to T. turnerae) enzymes were found within the gut of the 

shipworm, Bankia setacea. Importantly, this study highlights the fact that only a small 

number of bacterial enzymes were translocated to the gut, and all were predicted to be 

‘wood-degrading’.101 Tissue extracts containing bacteriocytes were analysed for their protein 

content, of which 11 % was suggested to be due to expression of functional CAZymes with 

potential activity or binding to cellulose and hemicelluloses. As if confirming previous 

studies, the cecum contents of the animals were analysed for the endosymbiont protein 

content. Approximately all (~98 %) of the bacterial proteins detected within the cecum were 

predicted to have some involvement in cellulose or hemicelluloses binding or catalytic 

activity. All the cecum located proteins were also identified within the bacteriocytes 

themselves. Interestingly, a selection of bacterial proteins identified in the cecum were CBM 

domains linked to domains of unknown function, likely to represent uncharacterised 

activities.101 

Several studies have focused on the bacterial association, whilst little research into 

shipworm endogenous proteins has been carried out. Sabbadin et al undertook a study 

which focused on assessing the role of native shipworm proteins in lignocellulose digestion. 
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They identified the ‘digestive gland’ as the major source of host lignocellulosic protein 

transcription in L. pedicellatus. Like with the bacterial proteins, the majority of host CAZymes 

are also secreted GHs, the majority of which are predicted cellulases. Sabbadin and 

colleagues highlight a potential flaw in the analysis of the cecum proteome of B. setacea by 

O’Connor in 2014, which focused entirely on analysing the bacterial content. This recent 

study shows that of the CAZymes found within the cecum of L. pedicellatus, only 15 % are of 

bacterial original, with the remaining 85 % thought to be produced by the shipworm itself; 

they are also able to link abundant cecum GHs to those highly transcribed within the 

digestive gland.70 It seems that there exists both a complex translocation system of both 

bacterial and endogenous proteins to the site of digestion.  

The relationship between shipworm and their endosymbiotic bacteria appears complex, 

despite several years’ worth of research on this interesting relationship. The abundance of 

bacteria containing so many potential carbohydrate active genes in a region far distinct from 

the digestive system of the animal is puzzling. The way the bacteria are housed within 

specialised gill cells also seems strange, as if their existence is somehow being controlled by 

the host animal. The gill region is connected by a long tubular structure, known as the food 

groove which links the gill to the mouth (and thereafter the digestive system). This structure 

may be involved in filtering out particulates taken in by the gills, such as plankton. However, 

this also represents a prime route for bacterial enzyme translocation. The nitrogen fixation 

provided by T. turnerae is of great importance to the shipworm, as it supplements the low 

nitrogen content of their wooden food source. The utilisation of CAZymes could have been a 

secondary outcome as the bacterial population is maintained at a steady level by the host, 

and only found in a specific area of the animal. Some hypothesise that the evolutional 

increase in gill size may have induced growth of bacterial populations rather than increase 

the amount of filter feeding; a higher surface area of the gill can accommodate more 

bacteriocytes and indeed this idea holds true based on the studies of shipworms grown in 

laboratory conditions where the only food source was their wooden burrows.85, 91 A recent 

advance in 2017 saw the discovery of a new species of shipworm, a greatly enlarged version 

found living within mud burrows instead of wooden substrates; Distel et al, used video 

evidence in their study, showing the animal being removed from its protective calcium 

carbonate layer, and is well worth seeing as a visual representation of the size of the animal. 

The metre long animals, Kuphus polythalamia are an interesting development in the 

evolutional study of the shipworm species, who have a greatly reduced digestive system. 
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Instead of cellulytic bacteria, the gill regions of the giant shipworm play host to bacteria 

capable of oxidising sulfur, a major component within the buried marine sediments.102  

 

1.9 This Work 

To summarize, there is still mystery surrounding the relationship between shipworm and 

bacterial symbionts such as T. turnerae. The shipworms have been shown to produce their 

own digestive enzymes, yet they are thought to also utilise the enzymes produced in the gills 

by their symbiotic bacteria for both nitrogen fixation and for the digestion of woody 

substrates.87, 96, 99, 101, 103 Experiments have shown that certain enzymes are secreted when T. 

turnerae is grown on cellulose substrates, but little characterisation of these enzymes has 

been carried out.104-105 Shipworms and their bacterial symbionts represent one of many 

untapped enzymatic resources for the discovery of novel lignocellulosic enzymes. 

Biochemical characterisation of the lignocellulosic enzymes used by shipworms may prove 

useful in future research focusing on improvements to industrial systems creating cleaner 

energy sources from waste biomaterials.  

1.9.1 General Aims 

The aims of this project were to investigate the activity and structural properties of several 

likely carbohydrate active enzymes taken from the genome of T.turnerae. This work has 

focused on the characterisation of several novel glycoside hydrolases and a single LPMO. 

Several experimental enzyme characterisation techniques have been used throughout this 

work and for ease these will be described in Appendix 2, in the hope that this provides the 

reader with enough background knowledge to underpin the subsequent results chapters.   

In the initial 1-2 years of this 4-year project a large proportion of time was dedicated to the 

analysis of a several bacterial homologues of a single gene found within the cecum of the 

shipworm L. pedicellatus, thought to be an endogenous protein similar to peptidylglycine 

alpha-hydroxylating monooxygenase (PHM) – another example of a copper oxidative 

enzyme.106 This work is shown in Appendix 1. 

Thereafter, work focused on the shipworm symbiont T. turnerae. Chapter 2 describes the 

strategies used to produce recombinant versions of several T. turnerae CAZYmes. 

Characterisation of novel enzymes from the bacterial symbiont genome is organised based 
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on enzyme family and Chapters 3, 4, 5 and 6 offer insights into T. turnerae enzymes from 

families GH5, GH12, GH8 and LPMO AA10 respectively. Chapter 7 will summarise the results 

of this novel enzyme characterisation endeavour and provide the reader with perspective 

and describe potential opportunities for future work in this exciting marine area of 

discovery.  
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2  

Protein Production 

2.1 Abstract 

A marine bivalve mollusc, commonly known as a shipworm is adept at surviving on a diet 

rich in recalcitrant carbohydrates, as its main food source is woody material found in oceanic 

environments. The shipworm is thought to utilise carbohydrate-active enzymes produced 

from a community of symbiotic bacteria housed within the gills of the animal.  A set of 245 

carbohydrate active enzymes are found within the genome of shipworm endosymbiont, 

Teredinibacter turnerae, over half of which are thought to be involved in the breakdown of 

polysaccharides to useful products. 15 T. turnerae genes were selected for protein 

expression trials on the basis of their glycoside hydrolase (GH) family, whether they were the 

sole representative of a family and the expected or unknown activity of the target protein. 

As such the targets covered a broad range of GH families as well as a single LPMO family, 

and potentially display degradative ability on a wide variety of lignocellulosic substrates. 

After several purification trials, pure protein for 5 GH enzymes from family 12 (ACR14297.1), 

8 (ACR14722.1) and 5 (ACR12145.1, ACR12247.1, ACR11279.1), were obtained through 

cytoplasmic expression by E. coli of the enzyme catalytic domains, tagged with a removable 

N-terminal hexahistidine purification tag. Purification of an LPMO, from subfamily AA10, 

TtAA10 (ACR14100.1), the only LPMO in the genome of T. turnerae was carried out by 

expression with a pelB signal peptide, allowing soluble protein to accumulate in the 

periplasm of E. coli and purified with the aid of a C-terminal Strep tag. This chapter shows 

the purification strategies employed leading to the development of suitable, and importantly 

soluble, target expression routes for 6 carbohydrate active enzymes from T. turnerae; 3 

proteins from family GH5, a GH12, GH8 and an AA10 LPMO.  
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2.2 Introduction 

2.2.1 Carbohydrate Active Enzymes in T. turnerae 

As discussed in Chapter 1, the genome of T. turnerae contains 245 open reading frames 

that have been classified as carbohydrate active enzymes.99 A large proportion of these are 

further expected to be glycoside hydrolases and the sequences have been classified into a 

variety of GH families, as shown in the CAZy database.34 The mechanism of movement of 

the carbohydrate active enzymes produced by T. turnerae from their initial localisation, 

held in the specialised bacteriocytes within the gills of the host shipworm has been 

discussed by O’Connor et al and more recently by Sabbadin et al and the final destination 

of the extracted bacterial proteins is suggested to be in the digestive region of the 

shipworm’s anatomy.70, 101 Perhaps unsurprisingly, large numbers of the CAZymes produced 

by T. turnerae are secreted, with peptide leader sequences found at the beginning of the 

each GH sequence and LPMO, indicating that proteins are secreted and held within the 

host bacteriocytes until they are mechanically extracted; bacteriocytes are not found 

within the gut of the animal, yet bacterial proteins are, indicating there to be some host 

driven process of protein removal from bacteriocytes Questions still remain as to how the 

relationship between host and endosymbiont is maintained; especially with regards to 

access to a food source by the bacteria. 

The large number of carbohydrate-active enzymes (or binding domains) 34, 104, 107-108 within 

the genome of T. turnerae are classified into many different GH families, which suggests 

that these proteins will have very specific activities, and cover a broad range of substrates. 

Whilst the host organism does encode its own carbohydrate active enzymes, combination 

with the wide variety of GHs produced by T. turnerae would provide the host with the large 

enzymatic toolbox needed to efficiently breakdown the environmentally localised 

polysaccharides. The type of polysaccharides found within the shipworm food source 

depends on the localisation of the animal in the world and source of woody material used 

for the animals burrow; for example, animals living in burrows made in the bottom of boat 

hulls would likely require a slightly different set of enzymes to the animals living in natural 

submerged mangrove forests, due to the difference in wood type. It remains unknown 

whether T. turnerae produces all its CAZymes simultaneously, or whether there is some 

feedback system which provides the bacteria with information on which enzymatic 

functions are required depending on the wood substrate chosen for inhabitation by the 
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host shipworm. It may be that T. turnerae possess a wide variety of enzymes from different 

GH families to combat this lack of choice when it comes to the food source, or that a 

selection of key enzymes remain encoded and expressed based on evolution of the 

symbiosis over time; however a 2018 study into the mutation rate of T. turnerae found that 

the symbiont was resistant to the typical erosion of the genome normally associated with 

bacteria living as endosymbionts, which could explain its ability to survive as a free-living 

culture in laboratory studies 109 and possibly allowing it to retain a wider variety of 

lignocellulosic proteins. 

As discussed in Chapter 1, whilst T. turnerae is the main characterised bacterial strain 

found within certain species of shipworm110,  it is clear that other related bacterial species 

are prevalent in both single animals and in animals found in different regions.96, 108, 110-111 

Sequence analysis shows a high similarity between T. turnerae proteins and those from 

other bacterial clades such as Bs12/Bs08 110. However, it is likely that differences in the 

type of GHs produced by bacteria from different shipworm species occurs and may be a 

response to the type of substrate chosen by the animal. Despite the circumstances of 

expression of GH proteins remaining unknown, the genome of T. turnerae, and by 

extension other related bacterial clades provides an excellent pool of targets for which 

lignocelluloses degradation can be probed. 

2.2.2 The Targets 

Of the 245 carbohydrate active proteins and binding domains found within the genome of 

T. turnerae, 101 are suggested to be GHs.34, 101 Work by Yang et al suggested that of these 

101 GHs, just over half were expected to be involved in the degradation of cellulose or 

xylan, about a quarter devoted to other polysaccharides such as chitin, agarose, laminarin, 

and pectin, whilst the last quarter were defined as ‘non-specific’. 99 It is likely that the non-

specific portion of the GHs are labelled as such due to insufficient similarity to existing 

characterised enzymes. As such, this set of marine CAZymes provides a vast pool of 

sequences from which novel proteins with existing and possibly new function may be 

derived. Some of the work needed to begin characterising these likely polysaccharide 

degrading enzymes has already been started by their incorporation in the CAZy database. 

Sequence analysis, involving HCA is used to match the proteins to their likely structural fold 

and to members of known GH families.15, 25, 27, 34, 36 Indeed, there is an extensive list of 

sequences from the T. turnerae genome shown as classified into predicted GH families, 

from which one can narrow down possible functions. 
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Whilst the scope of this project would not be able to cover all 101 GH proteins from T. 

turnerae, a selection of 15 sequences were chosen which covered several GH families and a 

single LPMO from auxiliary activity family AA10. Table 4 shows the sequences chosen with 

their associated CAZy codes, expected family and subfamily, as well as the potential 

functions as determined by sequence analysis with BLAST 112-113. A couple of sequences were 

chosen based on the fact that they were the sole representative of their associated GH 

family, namely the GH8 and GH12. A third, GH5_un, was chosen as the sequence has not yet 

been characterised into a GH5 subfamily (see Chapter 3 for a discussion of GH5 subfamily 

assignments).
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Table 4 Carbohydrate active genes chosen from T. turnerae for characterisation, with potential 
function as suggested by sequence homology searches.  

Name ORF Genbank 

Code 

Family 

_subfamily 

Potential Function 

AA10 TERTU_0046 ACR14100.1 AA10 Chitin binding protein/likely LPMO 

GH5-2895 TERTU_2895 ACR12145.1 GH5_2 Β-1,4-glycan cleaving enzyme 

(extracellular) 

GH5-3565 TERTU_3565 ACR11017.1 GH5_1 Β-1,4-glycan cleaving enzyme 

GH5-0183 TERTU_0183 ACR12128.1 GH5_26 Endo β-1,4-glycanase 

GH5-3751 TERTU_3751 ACR11279.1 GH5_un Unknown subfamily/activity 

GH5-3361 TERTU_3361 ACR12247.1 GH5_4 Endo-β-1,4 glucanase-specific for 

xyloglucan 

GH5-0428 TERTU_0428 ACR12792.1 GH5_53 Cellodextrinase/β-glycanase 

GH5-0427 TERTU_0427 ACR13327.1 GH5_53 Cellodextrinase/β-glycanase 

GH6-2898 TERTU_2898 ACR12723.1 GH6 Cellobiohydrolase 

GH6-3996 TERTU_3996 ACR14000.1 GH6 Cellobiohydrolase 

GH6-2895 TERTU_2895 ACR12145.1 GH6 Cellobiohydrolase 

GH8-4506 TERTU_4506 ACR14722.1 GH8 Endo β-1,4-xylanase 

GH9-0607 TERTU_0607 ACR11786.1 GH9 Cellulase/endo-β-1,4-D-glucanase 

GH9-0645 TERTU_0645 ACR14629.1 GH9 Endoglucanase 

GH12-0353 TERTU_0353 ACR14297.1 GH12 Endoglucanase, 

hydrogenase/urease accessory 

protein hupe prior to GH12 

GH45-3400 TERTU_3400 ACR13005.1 GH45_A Endoglucanase 

 

2.2.3 The Purification Key: Searching for Solubility 

Successful production of target proteins is often underpinned by inherent or conditional 

solubility of the translated protein. Incompatible conditions can cause a particular protein 

construct to be produced in an insoluble form. This can be a serious road block on the 

journey towards production of pure protein and often needs a significant amount of time 

devoted to the de-convolution of the appropriate ’soluble’ experimental expression 

condition.  Insolubility can arise due to issues with the protein structure, for example a high 

degree of hydrophobic surface residues may cause the formation of inclusion bodies which 

minimise solvent-protein surface interactions. Inclusion bodies can sometimes be used as 
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an advantage in some cases, where the protein is actually in a sense protected within the 

aggregate from outside interference such as proteases or reactions to changing conditions; 

the protein can be reclaimed in a soluble form if the protein aggregate is appropriately 

denatured and refolded on return to more native conditions. The production of inclusion 

bodies can sometimes in itself act as an in vivo purification step. Successful reclamation of 

protein from inclusion bodies is however, not always possible.  Production of the protein 

may not be optimised to the system, leading to misfolding events which can cause 

insolubility. Refolding of proteins with unknown functions may also result in a folded final 

protein product, but there may be changes in structure caused by the laboratory conditions 

that do not reflect the native structure. As such it is important to optimise expression 

conditions to suit an individual target and this is often driven towards producing soluble 

forms of a protein as this is most often easier to work with. Lines of optimisation can 

include the following; construct design, E. coli cell lines, temperature, additives, growth 

media, amount of oxygen during culture growth, construct toxicity to the cell strain, 

inducer concentration, shaking speed, growth time, protease inhibitors and extraction 

buffer. 

2.2.4 Ensuring a good start; constructs with a Native N-terminal 

Histidine 

The T. turnerae LPMO target protein, TtAA10, was first produced by Dr. G Hemsworth using 

SUMO tagged expression construct, SUMO-TtAA10, albeit in a very small amount. At the 

start of this work, very little protein was extracted using this construct, and it did not yield 

enough protein for further characterisation. As an LPMO, the N-terminal histidine residue 

forms an integral part of the active site of the protein. Therefore, the construct designs 

need to ensure that the native N-terminal Histidine residue remains unencumbered. A 

SUMO tag, which stands for Small Ubiquitin-like Modifier, is eukaryotic in origin and forms 

partners with other proteins as a post translational modification, which is thought to play a 

role in cell processes. The SUMO protein is now a well-used biotechnological system, in 

that its attachment to a recombinant protein has been found improve the solubility and 

stability of the target. On top of this, the SUMO tag contains its own N-terminal 

hexahistidine tag, making it both ideal for improving solubility and enabling typical affinity 

chromatography for purification. The SUMO protein is easily removed from the 

recombinant protein assembly using a specific SUMO protease, which recognises the C-

terminal region of the tag, cutting after the last two glycine residues, leaving no left over 
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residues on the partner protein, Figure 1 114-118. The production of a native N-terminal 

residue on the released partner protein makes it an ideal system to use with LPMOs, which 

require their N-terminal Histidine for activity, and has been demonstrated by Gregory et al 

to improve LPMO yield in an E. coli expression strategy.119 

 

Figure 1 Schematic showing the SUMO and SUMO-like NEDD8 solubility tags (preceded by a 14 
residue long histidine tag) and LPMO sequence.  Two c-terminal glycine residues, positioned 
directly before the N-terminal Histidine of the LPMO are the recognition site for cleavage by the 
corresponding SUMO protease. (19)  

2.2.5 Purification aims 

The goal of this section of work was to produce soluble forms of as many target proteins 

out of the chosen set of 15 sequences from T. turnerae described previously as possible. In 

the drive to produce the GH targets, several different expression testing conditions were 

employed which enabled identification of the most promising targets for soluble and large 

scale protein expression. This ultimately led to the successful large scale production of 5 GH 

proteins, TtGH12, TtGH8, TtGH5_2, TtGH5_4 and TtGH5_un, and their purification route is 

shown herein. Production of TtAA10 proved more difficult and strategies to improve the 

expression yield of TtAA10 included specialised induction conditions such as autoinduction 

and the effects of stress on chaperone co-expression. A large number of constructs were 

designed in the hope of improving the solubility and yield of TtAA10, whilst maintaining an 

uncompromised free N-terminus of the protein. The protein was successfully produced 

using a C-terminal Strep tag and periplasmic expression (similar to the native production of 

the protein), using a construct designed by Luisa Elias, (CNAP, and University of York), and 

its purification will be shown in the forthcoming Chapter. 
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2.3 Methods: 

2.3.1 Competant Cells  

Six competent cell lines were using during cloning and are described in Table 5 

Table 5 List of E. Coli expression strains used for expression testing of T. turnerae GH and LPMO 
targets, with key characteristics described (as noted in manufacturer product details).  

Expression Strain Supplier Characteristic 

NEB 5-Alpha New England 

Biolabs 

T1 phage resistant and endA deficient 

BL21(DE3) New England 

Biolabs 

Lacks two proteases normally found within the 

cytoplasm (Lon) and outer membrane (OmpT) 

One Shot BL21 Star (DE3) New England 

Biolabs 

Greater mRNA stability 

SHuffle T7  New England 

Biolabs 

Promotes disulfide bond formation within cytoplasm, 

by expression of disulfide bond isomerise (DsbC) 

pGro7 Takara Co-expression of chaperone groES-groEL by induction 

of the araB promoter with L-Arabinose.  

pTf16 Takara Co-expression of chaperone tig by induction of the 

araB promoter with L-Arabinose.  

2.3.2 Vectors, Primers and DNA 

The vector pNT-TrxT containing the thioredoxin tag was purchased from Addgene; the pNT-

TrxT vector was received as a cell stock and was plated onto agar (kanamycin, 30 µg/ml) and 

stock plasmid produced using the QIAprep Spin Miniprep kit (QIAGEN). The vector 

containing the maltose binding protein (MBP), pETFPP2 was given by the Professor. J Potts 

group (Department of Biology, University of York) and originally made by the University of 

York Technology Facility.  All primers were bought from Eurofins-GATC and reconstituted on 

arrival according to the manufacturer instructions. DNA sequences for all T. turnerae GHs 

were produced, and constructs cloned into pET28a vectors, by Genscript.   

2.3.3 CAZyme Mining 

The T. turnerae (Taxid; 377629) genome is publicly available and the 245 potential 

carbohydrate active enzymes are displayed in the CAZy database. A selection of glycoside 

hydrolase families were chosen to provide a spread of coverage over a range of possible 
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substrate specificities, as described in Table 4. A single LPMO is found within the T. turnerae 

genome, henceforth known as TtAA10, and was also proposed as a target for 

characterisation. 15 sequences were taken from NCBI and analysed using NCBI BLAST for the 

presence of different domains. The genes contained mixtures of domains; signal peptide, 

linker regions, CBM domains and the catalytic domains. The catalytic domain boundaries 

were identified based on those used in the CAZY modular classification, and the information 

used to design constructs suitable for cytoplasmic expression. 

2.3.4 GH Construct Design 

All GH genes used in this work were designed as follows, from N to C-terminus: 

 Two CC bases – to move insert into the correct reading frame in PET28a, 
 Methionine codon (ATG) 
  N-terminal hexahistidine affinity tag, 
 3C protease cleavage site  
 GH target sequence 
 Stop codon (TAA) 

 Sequences were codon optimised for expression by E. coli (as collated in Appendix 3) and 

cloned into plasmids (pET28a) containing antibiotic resistance (kanamycin) by GenScript. The 

plasmids were individually transformed by E. coli competent cells. Transformation was 

carried out by adding 1 µl plasmid to 25 µl competent cells and left on ice for 30 mins, 

before heat shock at 42 °C for 30 secs and cooling on ice for 2 mins. Cells were added to 300 

µl SOC media (super optimal broth with catabolite repression) and incubated at 37 °C for 1 

hr with shaking (800 rpm). The cells were then spread on agar plates containing antibiotic 

(kanamycin at 30 µg ml-1 for BL21 (DE3) and SHuffle T7, and kanamycin/chloramphenicol 30 

µg ml-1 and 20 µg ml-1 respectively for chaperone co-expression cells pGro7 and pTf16 and 

incubated overnight at 37 °C. Single colonies were picked and small cultures grown in LB 

containing appropriate antibiotic to an OD of 0.6 and mixed in a 1:1 ratio with glycerol (50 % 

v/v) to create cell stocks (25%) at -80 °C.  

2.3.5 Cloning of LPMO  

A plasmid containing the gene SUMO-TtAA10 within the vector Champion SUMO (Appendix 

3) made previously by Dr G. Hemsworth prior to the start of this project was used as a 

starting point to produce all further TtAA10 constructs. 
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2.3.5.1 Cloning: Vector and Insert Preparation 

Polymerase chain reaction (PCR, see Appendix 2 for method theory) was carried out using 

the following mixture to amplify DNA; 

 Template DNA (1 µl) 
 Q5 buffer (10 µl) (New England Biolabs) 
 dNTPs (10 mM) (1 µl) (Thermo Fisher Scientific)  
 Forward primer (1.5 µl)  
 Reverse primer (1.5 µl)  
 Water (34 µl) 
 Q5 DNA polymerase (1 µl) (New England Biolabs) 

PCR reaction times were specific to each primer pair (forward and reverse) annealing 

temperature – see Table 6 and Table 7. Primers for the vectors produced blunt ended 

double stranded vector DNA. One or more points within the vector sequence were chosen 

as the annealing positions for the forward and reverse primers, Table 6. PCR initiates DNA 

replication forming a double stranded DNA sequence containing only the required vector 

sequence, removing any unwanted vector sequence which was originally between the two 

primer annealing positions. To make the inserts, primers were designed with two regions; 

once region binds to the DNA of the target sequence, and a second region which acts as an 

overhang. The overhang sequence is complementary to a section of DNA on the vector 

sequence. After PCR, additional nucleotides would have been built along the single stranded 

overhang region by the DNA polymerase. Before ligation of the insert and vector DNA 

fragments can occur, the double stranded overhang on the insert must be ‘chewed’ back 

enzymatically.  

Vector and insert were combined using the HiFi DNA assembly cloning kit (New England 

Biolabs). In the reaction, a 5’-3’ exonuclease creates single stranded 3’ overhangs – allowing 

the complementary regions on the 3’ end of the vector and insert to bind together. The DNA 

polymerase then carries out extention of the newly forming complimentary strand using the 

available nucleosides within the ligation reaction. A DNA ligase is then able to seal the nicks 

in the sequence. Ligation reactions were carried out by mixing vector and insert fragments in 

a 1:3 molar ratio. Quantities required for ligation were calculated using the free online tool 

NEBioCalculator (Clontech, Takara) (http://NEBiocalculator.neb.com/#!/ligation) based on 

the size of the DNA sequence. The ligation reaction (total reaction volume, 20 μl) was 

heated at 50 °C for 1 hour and used the HiFi DNA Assembly Master Mix. Reactions were then 

transformed into competent cells, NEB 5-alpha (New England Biolabs) and plasmid extracted 
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using the QIAprep Spin Miniprep kit (QIAGEN). Plasmid stocks were then transformed into 

different expression cell strains. 

2.3.5.2 DNA and Plasmid Analysis  

PCR reactions were analysis for the correctly sized fragments by agarose gel electrophoresis. 

Agarose gels (6 %) for DNA fragment separation were made using the following materials; 

 TAE buffer (Tris-acetate-EDTA), 60 mL – microwaved for 1 minute 
 0.6 g agarose 
 1 µL SYBR safe DNA gel stain (Thermo Fisher) 

Agarose gels were run for 1 hr at 100 V, using TBE (Tris-Borate-EDTA) running buffer. DNA 

samples were pre-mixed with DNA gel loading dye (6X, Thermo Fisher). A 1 kb DNA ladder 

was purchased from New England Biolabs.  

Plasmid uptake into cloning cells (OneShot Top10) was tested using colony PCR. Single 

colonies were picked from agar plates and analysed to check if the correct target insert had 

been ligated successfully into the plasmid. The single colony was mixed into a pre-made PCR 

reaction solution containing the following: 

 Taq buffer (10 µl) (New England Biolabs) 
 dNTPs (10 mM) (1 µl) (Thermo Fisher Scientific)  
 Forward primer (1.5 µl) (specific for gene insert) 
 Reverse primer (1.5 µl) (specific for gene insert) 
 Water (34 µl) 
 Taq polymerase (1 µl) (New England Biolabs) 

The PCR reaction was run using the following thermal cycling conditions: 

 Denaturation – 94 °C – 30 sec 
 Annealing – temperature dependent on primers -30 sec 
 Extension – 72 °C - time dependent on DNA fragment length   

Three stage process cycled 30 times.  
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Table 6 Forward and reverse primers were designed to anneal to specific points on the vector 
sequence, which when amplified using PCR would create linear double stranded vector DNA. 

Vector 
Forward 

Primer 

Reverse 

Primer 
Heating conditions Purpose 

pET11a 

pelB-

SUMO-

TtAA10* 

CGCCATCGC

CGGTTGGGC 

TAAGGATC

CGGCTGCT

AACAAAGC 

94 °C (30sec) 

[94 °C (30sec), 69 °C (30sec) 72 °C (3 mins)]  

(35 cycles) 

 72 °C(5min)  

 

Retain pelB site but 

remove SUMO-

TtAA10 

pNT-TrxT 

AGTAAAGGT

GGATACGGA

TCC 

CATGGATT

GGAAGTA

CAAGTTCT

C 

94 °C (30sec) 

[94 °C (30sec),64 °C (30sec) 72 °C (2 mins, 10 sec)]  

(35 cycles) 

 72 °C(5min) 

Vector kept intact, 

only made linear 

pETFPP2 

His6-MBP-

3C 

TGAGATCCG

GCTGCTAAC

AAAGCCCG 

TGCTGGTC

CCTGGAAC

AGAACTTC

CAG 

94 °C (30sec) 

[94 °C (30sec),63 °C (30sec) 72 °C (2 mins, 20 sec)]  

(35 cycles) 

 72 °C(5min) 

Anneals  at 3C site  

and at the stop 

codon after the C-

terminal His6 tag 

pET28 YSBL 

LIC 

CACCACCAC

CACCACCAC

TGAGATCCG

GC 

CATGGTAT

ATCTCCTT

CTTAAAG 

94 °C (30sec) 

[94 °C (30sec),58 °C (30sec) 72 °C (2 mins, 20 sec)] 

 (35 cycles) 

 72 °C(5min) 

Removal of N-

terminal His and 

YSBL LIC section, but 

keeps C-terminal His 

tag 

 

pSF 1477 

BdSUMO-

MBP 

TAAGGATCT

CATCACCAT

CACCATCA 

GCCACCAC

GCAGGGC

CAGA 

94 °C (30sec) 

[94 °C (30sec),67 °C (30sec) 72 °C (2 mins 20 sec)]  

(35 cycles) 

 72 °C(5min) 

Remove MBP 

sequence 

pSF 1478 

BdNEDD8-

AGT 

As above As above 

94 °C (30sec) 

[94 °C (30sec),67 °C (30sec) 72 °C (2 mins 20 sec)]  

(35 cycles) 

 72 °C(5min) 

Remove AGT 

sequence 

pSF 1479 

SsNEDD8-

AGT 

As above As above 

94 °C (30sec) 

[94 °C (30sec),67 °C (30sec) 72 °C (2 mins 20 sec)]  

(35 cycles) 

 72 °C(5min) 

Remove AGT 

sequence 

pelB pSF 

1477 

BdSUMO-

MBP 

As above As above 

94 °C (30sec) 

[94 °C (30sec),67 °C (30sec) 72 °C (2 mins 20 sec)]  

(35 cycles) 

 72 °C(5min) 

Remove MBP 

sequence 
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Table 7 Forward and reverse primers used to produce TtAA10 inserts for the intended vectors 
as shown in Table 6. Primers contain a complementary region to the target gene sequence and 
overhangs (small case) which are complementary to each end of the linear vector. All inserts 
were created from a complete plasmid made by Dr G. Hemsworth prior to the start of this 
project, in which sequence was available for SUMO-TtAA10, within the Champion SUMO vector.  

Insert 

Sequence 

Forward Primer Reverse Primer PCR Conditions Vector Final 

expression 

cassette 

SUMO-

TtAA10 

gagaacagattggtggt

CATGGCTATATTG

AATCGC 

 

gcagccggatcctta

TCAACCAAAGTC

CACGTC 

94 °C (30sec) 

[94 °C (30 sec),69 °C(25sec) 

72 °C(15 sec)] (30 cycles) 

 72 °C(5min) 

pET11a pelB-SUMO-

TtAA10 

TtAA10 caaccggcgatggcgC

ATGGCTATATTGA

ATCG 

gcagccatccttaTC

AACCAAAGTCCA

CGTC 

94 °C (30sec) 

[94 °C (30sec),69 °C (15sec) 

72 °C (15 sec)] (30 cycles) 

 72 °C(5min) 

pET11a pelB-TtAA10 

TtAA10 gaaggagatataccat

gCATGGCTATATT

GAATCGC 

tcagtggtggtggtg

gtggtgTCAACCA

AAGTCCACGTC 

94 °C (30sec) 

[94 °C (30sec),58 

°C(30sec)72 °C(15 sec)]  

(30 cycles) 

 72 °C(5min) 

pET28 YSBL 

LIC 

TtAA10-His 

pelB-

SUMO-

TtAA10 

gaaggagatataccat

gATGAAATACCTG

CTGCCG 

tcagtggtggtggtg

gtggtgTCAACCA

AAGTCCACGTC 

94 °C (30sec) 

[94 °C(30sec),62 °C(30sec) 

72 °C (25 sec)] (30 cycles) 

 72 °C(5min) 

pET28 YSBL 

LIC 

pelB-SUMO-

TtAA10-His 

SUMO-

TtAA10 

ccagggaccagcaAT

GGGCAGCAGCC 

gccggatctcaACC

AAAGTCCACGTC

CAC 

94 °C (30sec) 

[94 °C (30sec),69 °C (30sec) 

72 °C (15 sec)] (30 cycles) 

 72 °C(5min) 

pETFPP2 His-MBP-3C-

SUMO-TtAA10 

SUMO-

TtAA10 

tgtacttccaatccatg

ATGTCGGACTCAG

AAGTC 

ccgtatccacctttac

tTCAACCAAAGT

CCACGTC 

94 °C (30sec) 

[94 °C (30sec),69 °C (30sec) 

72 °C (15 sec)] (30 cycles) 

 72 °C(5min) 

pETFPP2 Thioredoxin-

TEV-SUMO-

TtAA10 

TtAA10 caccagactggtggcC

ATGGCTATATTGA

ATCGC 

tggtgatgagatcctt

aTCAACCAAAGT

CCACGTC 

94 °C (30sec) 

[94 °C (30sec),69 °C (30sec) 

72 °C (15 sec)] (30 cycles) 

 72 °C(5min) 

BdSUMO-MBP BdSUMO-

TtAA10 
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Table 5 continued... 

Insert 

Sequence 

Forward 

Primer 

Reverse 

Primer 

PCR Conditions Vector Final expression 

cassette 

TtAA10 gccctgcgtggt

ggcCATGGC

TATATTGAA

TCGC 

tggtgatgagat

ccttaTCAAC

CAAAGTCCA

CGTC 

94 °C (30sec) 

[94 °C (30sec),69 °C (15sec) 

72 °C (15 sec)] (30 cycles) 

 72 °C(5min) 

 

BdNEDD8-AGT BdNEDD8- 

TtAA10 

TtAA10 gccctgcgtggt

ggcCATGGC

TATATTGAA

TCGC 

tggtgatgagat

ccttaTCAAC

CAAAGTCCA

CGTC 

94 °C (30sec) 

[94 °C (30sec),69 °C (15sec) 

72 °C (15 sec)] (30 cycles) 

 72 °C(5min) 

SsNEDD8-AGT SsNEDD8- 

TtAA10 

TtAA10 caccagactgg

tggcCATGGC

TATATTGAA

TCGC 

tggtgatgagat

ccttaTCAAC

CAAAGTCCA

CGTC 

94 °C (30sec) 

[94 °C (30sec),69 °C (15sec) 

72 °C (15 sec)] (30 cycles) 

 72 °C(5min) 

pelB 

BdSUMO-MBP 

pelB BdSUMO- 

TtAA10 

TtAA10 gccctgcgtggt

ggcCATGGC

TATATTGAA

TCGC 

tggtgatgagat

ccttaTCAAC

CAAAGTCCA

CGTC 

94 °C (30sec) 

[94 °C (30sec),69 °C (15sec) 

72 °C (15 sec)] (30 cycles) 

 72 °C(5min) 

pelB 

BdNEDD8-AGT 

pelB BdNEDD8- 

TtAA10 

TtAA10 gccctgcgtggt

ggcCATGGC

TATATTGAA

TCGC 

tggtgatgagat

ccttaTCAAC

CAAAGTCCA

CGTC 

94 °C (30sec) 

[94 °C (30sec),69 °C (15sec) 

72 °C (15 sec)] (30 cycles) 

 72 °C(5min) 

pelB 

SsNEDD8-AGT 

pelB SsNEDD8- 

TtAA10 
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2.3.6 Soluble Protein Expression Testing  

2.3.6.1 Visualisation by Sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS PAGE) 

SDS PAGE gels were used to analyse expression levels of target proteins. SDS PAGE gels were 

made at 12% using the following amounts of materials: 

:

Resolving gel -  

  2.5 ml resolving gel buffer (1.5 M 

TRIS pH 8.8, 0.4% SDS) 

 4.2 ml acrylamide  

 3.2 ml water 

 16µl Tetramethylethylenediamine 

 100 µl 10% ammonium persulfate 

 

Stacking gel -  

 1.3 mL stacking gel buffer (0.5 M 

TRIS pH 6.8, 0.4% SDS) 

 0.5 mL acrylamide 

 3.2 mL water 

 8 µl Tetramethylethylenediamine 

 100 µl 10% ammonium persulfate 

 8 µl 1% Bromophenol blue   

SDS PAGE gels were run at 200 V for 50 minutes using 10 % SDS as running buffer. Gels were 

stained using Magic Dye (150mg Coomassie Brilliant Blue (Thermo Fisher), 2.49 L water, 

8.6mL HCl).  

Samples were prepared using SDS PAGE loading dye (2X) by mixing an equal volume of 

protein samlpe to loading dye. Samples were heated at 95 °C for 5 minutes prior to loading 

onto the gel. Low and broad range molecular weight SDS PAGE ladders were purchased from 

Biorad.  

The loading dye was made up of the following material: 

 4.8mL Milli-Q water                                                        

 1.2mL 0.5M TRIS HCl pH6.8 

 1.0mL Glycerol 

 2.0mL 10% SDS 

 0.5mL 1% Bromophenol blue   

 0.5ml B-mercaptoethanol 
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2.3.6.2  Expression testing  

Expression of protein targets was tested in several different E. coli expression strains, 

described in Table 5. Small test cell cultures (LB media with either kanamcyin (30 μg mL-1) or 

ampicillin (100 μg mL-1) and/or chloramphenicol (30 μg mL-1) depending on 

construct/expression system) were analysed for target expression using Bugbuster Protein 

Extraction Reagent (using 1/5th culture volume for cell lysis, Sigma Aldrich) and SDS PAGE 

visualisation (12%, 50 mins, 200 mV). Cultures were inoculated using glycerol stocks of 

Cultures were grown at 37 °C with shaking until an OD of 0.6 or above was reached. Target 

expression was induced with IPTG (1 mM final concentration) followed by incubation at 16 

°C overnight with shaking. Further expression testing was carried out on different targets 

using different E. coli cell strains and specific expression conditions.  GHs not produced in a 

soluble form in the BL21 strain were also screened with SHuffle T7 (New England Biolabs) 

(incubation with IPTG was carried out at 37°C as well as 16°C overnight) and with a set of 

chaperone co-expression strains, pGro7 cells (Takara), where co-expression was controlled 

by the addition of L-arabinose at the start of culture growth. TtAA10 constructs were all 

initially screened for soluble protein expression using E. coli cells BL21*, followed by SHuffle 

T7 and BL21 (DE3).  The construct SsNEDD8 TtAA10 was tested for soluble protein 

expression using cell strain pGro7.  
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Table 8 TtAA10 constructs and the type of E.coli expression strain that was tested. A dash 

indicates unsuccessful transformation into expression cells. 

TtAA10 Construct E.coli Expression Strain 

pelB SUMO TtAA10 BL21*, SHuffle T7 

BdSUMO TtAA10 BL21*, SHuffle T7 

BdNEDD8 TtAA10 - 

SsNEDD8 TtAA10 BL21*, SHuffle T7, Takara Chaperone 

plasmid set 

pelB BdSUMO TtAA10 BL21*, SHuffle T7 

pelB BdNEDD8 TtAA10 - 

pelB SsNEDD8 TtAA10 - 

pelB TtAA10 BL21*,BL21 (DE3), SHuffle T7 

SUMO TtAA10 BL21 (DE3), SHuffle T7 

PNT Trx SUMO TtAA10 BL21 (DE3), SHuffle T7 

His MBP SUMO TtAA10 BL21 (DE3) 

TtAA10-His BL21 (DE3) 

 

2.3.6.3 Expression testing of SUMO-TtAA10 under Stress Conditions 

SUMO-TtAA10 was tested for expression under stress conditions. Conditions included 

Lysogeny broth media containing an additional 500 mM NaCl or 5 % glycerol and both 500 

mM NaCl and 5 % glycerol. One culture containing both additives was subjected to heat 

shock: the culture tube was heated in a water bath (approx. 47 °C) for 10 minutes before 

induction with IPTG (1 mM). Expression was carried out overnight at 16 °C, samples 

harvested by treatment with Bugbuster and fractions analysed on a 12 % SDS PAGE. The 

remaining culture (9 ml) was lysed by sonication in a buffer containing 20 mM Tris, 250 mM 

NaCl and 30 mM imidazole and both unlysed and lysed soluble/insoluble fractions analysed 

by gel electrophoresis. 
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2.3.7 Optimised Culture Growth of TtAA10-Strep 

Final expression conditions (expression strain, growth temperature, IPTG concentration) 

were chosen based on the amount of soluble protein produced as visualised by SDS PAGE. 

Large cultures (6 x 500 ml LB, kanamycin 30 μg/ml) were inoculated with 500 μl starter 

culture (grown overnight) and grown at 37 °C, 200 rpm, until an OD of 0.6 was obtained. 

IPTG (1 mM final concentration) was then added and cultures cooled to 16 °C and left 

overnight. 

TtAA10-Strep was initially made on a large scale by Luisa Elias (University of York) using 

Rosseta E. coli competent cells. Subsequent batches made by myself were expressed using 

Tig Chaperone cells (Pgro7 Chaperone set TAKARA). Culture media, (LB, Ampicillin (100 

ug/ml), chloramphenicol (35 ug/ml), was inoculated with starter culture and L-arabinose (0.5 

g L-1 final concentration) added to induce expression of the Tig chaperone. Cultures were 

grown at 37 °C until the OD was approximately 0.6. The cultures were left to cool slightly 

before IPTG was added to a final concentration of 1 mM. Cultures were incubated overnight 

at 16 °C with shaking. 

2.3.8 Protein purification of GHs 

Cultures were harvested by centrifugation and the pellet resuspended in buffer A (50 mM 

HEPES, 250 mM NaCl, 30 mM imidazole, pH 7). The sampled was then sonicated (30 s on, 30 

s off x5, in an ice bath) and the lysed cell mixture centrifuged at 15 g for 30 minutes. The 

supernatant was collected and loaded onto a pre-equilibrated Ni HiTrap Crude 5ml affinity 

column (GE Healthcare Life Sciences). Ni affinity chromatography was carried out using the 

ÄKTA Start (GE Healthcare Life Sciences), with an elution gradient of buffer B (50 mM HEPES, 

250 mM NaCl, 300 mM Imidazole, pH 7), 30 -300 mM imidazole over 25 column volumes. 

Peak fractions containing the protein were pooled and concentrated down for concentration 

measurement (Nanodrop). Protein samples were diluted to approximately 1mg ml-1 to dilute 

the imidazole concentration and GH targets treated with 3C protease (1:100 ratio 3C 

protease:target protein), DTT (5 mM) and left at 4°C overnight to remove the hexahistidine 

tag. The cleavage products were loaded onto a pre-equilibrated (buffer A) Ni HiTrap Crude 

5ml affinity column and the flow through and wash collected. The collected sample was 

concentrated to approximately to 1 ml or less and loaded on a Superdex gel filtration 

column (S75 or S200 depending on protein size, GE Healthcare Life Sciences) and run using 

an ÄKTA Start with buffer C (50 mM HEPES, 250 mM NaCl). Peak fractions were combined, 
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concentrated down and exchanged into a 10 mM HEPES storage buffer. A wide variety of 

protein yields were obtained depending on the target protein being purified. 

2.3.9 LPMO- Streptavidin chromatography 

Cultures were harvested by centrifugation, 5000 g for 30 min. For each 100 ml of original 

culture the pellet was gently resuspended in 5 ml of ice cold buffer A (50 mM Tris, 20% v/v 

sucrose, pH 8) and left on ice for 30 minutes with occasional mixing. The cell suspension was 

centrifuged again at 8000 rpm for 10 minutes, and the cells subjected to osmotic shock; 

pellet was resuspended in ice cold buffer B (1 mM MgSO4 + protease inhibitor, 5 ml per 100 

ml of initial culture) and left on ice for 30 minutes with occasional mixing. The suspension 

was centrifuged again and the supernatant collected, filtered and diluted to make up a 1X 

PBS solution (using stock 10X PBS, pH 7.4). 

The sample was loaded onto a strep column (GE Healthcare) pre-equilibrated in buffer D (1X 

PBS, pH 7.4). The column was washed with 1X PBS buffer for 5 column volumes. The protein 

was eluted from the column using 5 column volumes of buffer D (1X PBS, 2.5 mM 

desthiobiotin, pH 7.4) and protein collected. 

The dilute TtAA10-strep protein sample was copper loaded by incubation with CuSo4, (1 mM 

final concentration equivalent to 10X protein concentration) at 4 °C overnight. The protein 

sample was filtered and concentrated down to less than 1 ml.  The concentrated protein 

sample was loaded onto an S75 gel column and run using buffer A to remove the excess 

copper. 

2.3.10 Protein Quality Analysis  

During all protein preparations SDS PAGE (12%, 50 mins, 200mV) were run using aliquots 

from each step of purification, including samples from cell lysates, column loads, column 

flow through, cleavage reactions and peak fractions. Final sample purity was assessed with 

mass spectrometry (ESI/TOF) and in one instance SECMALS (Andrew Leech, Biology TF). For 

mass spectrometry analysis, protein samples were buffer exchanged into 2 mM Tris pH 8.  

  



109 
 

2.4 Results: Production of Tt GH targets 

2.4.1 Expression Testing of GH Targets 

All 14 GH targets were initially tested for soluble protein expression using cell line BL21 

(DE3), culture growth at 37 °C, followed by addition of IPTG before overnight incubation at 

16 °C. Culture samples were analysed for soluble protein expression by comparison of 

soluble material from cultures induced with IPTG and a negative control (no IPTG), using SDS 

PAGE. Figure 25 shows the results of this first expression strategy, where 4 targets are found 

to be successfully over expressed as the desired soluble protein. The four proteins, shown in 

lanes 6, 7, 8 and 11 of Figure 25, TtGH5_un (3751) (40.4 kDa), TtGH5_4 (3361) (40.6 kDa), 

TtGH5_53 (0427) (53.7 kDa) and TtGH8(4506) (45.1 kDa) respectively, were observed at 

their expected molecular weight. 

The soluble expression of the 10 remaining GH targets was tested with SHuffle T7 cells. After 

induction of the cultures with IPTG, incubation was tested at either at 37 °C for 2 hours 

(Figure 26A) or 16 °C overnight (Figure 26B). In the higher temperature test, Figure 26A, only 

lane 11 shows a small amount of soluble protein compared with the control; TtGH12 (0353) 

(35.8 kDa). Incubation of the test cultures for a longer period at 16 °C resulted in a high yield 

of soluble expression of TtGH5_2 (2895), lane 12 Figure 26B. A slight increase in yield was 

also seen for TtGH12 (0353), lane 5, Figure 26B. The test cultures were also analysed for 

production of insoluble protein, by analysis of the solid pellets and it was found that TtGH9 

(0607), TtGH9 (0645), TtGH5_26 (0183) produced large amounts of insoluble protein (data 

not shown).  
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Figure 25 Initial expression test of the Tt glycoside hydrolases visualised using SDS PAGE . 
Lanes contain the samples described to the right of the image.  Target proteins were expressed 
by BL21 E. coli. Cultures were grown at 37 °C until an OD above 0.6 was achieved, whereby the 
cultures were induced with IPTG (1 mM final concentration) and incubated overnight at 16 °C. 
Lane 2 contains a culture sample in which no IPTG was added and therefore displays no target 
proteins. This control sample is used as comparison to pick out over expression of target 
proteins, and bands compared to the molecular marker (Biorad). TtGH5_un (3751) (40.4 kDa), 
TtGH5_4 (3361) (40.6 kDa), TtGH5_53 (0427) (53.7 kDa) and TtGH8 (4506) (45.1 kDa) all 
display soluble over expression. 

Samples:  
1)Low range molecular marker 
2)Uninduced control sample 
3TtGH5_2 (2895) 
4)TtGH5_1 (3565) 
5)TtGH5_26 (0183) 
6)TtGH5_un (3751) 
7)TtGH5_4 (3361) 
8)TtGH5_53 (0427) 
9)TtGH6 (2898) 
10)TtGH6 (2895) 
11)TtGH8 (4506) 
12)TtGH9 (0607) 
13)TtGH9 (0645) 
14)TtGH12 (0353) 
15) TtGH45 (3400) 
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Figure 26 Expression test of the Tt glycoside hydrolases analysed by SDS PAGE. Lanes contain 
the samples described to the right of the image. Expression was trialled using T7 Shuffle E. coli. 
Cultures were grown at 37 °C until an OD above 0.6 was achieved, whereby the cultures were 
induced with IPTG (1 mM) incubated either at 37 °C (A) or 16 °C (B) overnight. Lane 2 (A,B) 
contains a culture sample in which no IPTG was added and therefore displays no target 
proteins. This control sample is used as comparison to pick out over expression of target 
proteins. Lanes 5 and 12 show over-expression bands compared with the controls and the 
molecular marker (Biorad); TtGH12 (0353) and TtGH5_2 (2895) are 31.3 and 35.8 kDa 
respectively. 

 
1) Low range molecular marker 
2) Uninduced control sample 
3) TtGH45 (3400) 
4) TtGH5_53 (0427) 
5) TtGH6 (2898) 
6) TtGH5_2 (2895) 
7) TtGH5_26 (0183) 
8) TtGH5_53 (0428) 
9) TtGH9 (0607) 
10) TtGH6 (3996) 
11) TtGH12 (0353) 
12) TtGH9 (0645) 
13) TtGH6 (2895) 
 

 
1) Low range molecular marker 
2) Uninduced control sample 
3) TtGH9 (0645) 
4) TtGH5_26 (0183) 
5) TtGH12 (0353)  
6) TtGH6 (2898) 
7) TtGH45 (3400) 
8) TtGH9 (0607)  
9) TtGH6 (3996) 
10) TtGH5 (0427) 
11) TtGH5_53 (0428) 
12) TtGH_2 (2895) 
13) TtGH6 (2895) 
 

A 37 °C, 2 hours 

B 16 °C, 18 hours 
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The GH targets were then tested for soluble protein expression using a cell strain, pGro7 

from the plasmid chaperone set from TAKARA. Co-expression of a recombinant protein with 

a chaperone team such as those available in the plasmid chaperone set have been known to 

improve protein solubility and prevent aggregation 120-121. Protein expression was tested 

using co-expression of the chaperone team grosEs-groEL (pGro7), which was induced with L-

arabinose. Controls during the experiment were tested based on samples which had no 

induction and chaperone induction only. It was found that use of IPTG to induce target 

expression caused the chaperone to become insoluble, Figure 27. This may have decreased 

the likelihood of the targets being successfully expressed in a soluble form. Figure 27A-D 

shows a large number of targets found in the insoluble fraction of the prepared samples. 

Despite this, TtGH5-2895 was once again found to be highly soluble, lane 4 and 5, Figure 27A 

and 3D respectively. To assess the effect of temperature on soluble protein expression using 

this system, expression was also tested at a lower temperature and cultures incubated 

overnight, Figure 28. Soluble expression was improved for TtGH12 (0353), but the already 

large yield of TtGH5_2 (2895) was not affected. 
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Figure 27 Chaperone co-expression test of the Tt glycoside hydrolases using pGro7 cells 
(Takara), visualised by SDS PAGE. Chaperone (grosEs-groEL) was induced with L-arabinose at 
the start of culture growth. Expression of target proteins was achieved with IPTG (1 mM final 
concentration) at an OD above 0.6. Cultures were either induced with IPTG (continued…)   

Samples:  
1) Low range molecular marker 
2) Uninduced control 
3) Chaperone only 
4) TtGH5_2 (2895) 
5) TtGH5_26 (0183) 
6) TtGH6 (3996) 
7) TtGH6 (2895) 
8) Insoluble uninduced control 
9) Insoluble chaperone only 
10) Insoluble TtGH5_2 (2895) 
11) Insoluble TtGH5_26 (0183) 
12) Insoluble TtGH6 (3996) 
13) Insoluble TtGH6 (2895) 
 

 
 
 
 

A 37 °C, 2.5 hours B 37 °C, 2.5 hours 

 

C 37 °C, 18 hours 

 

D 37 °C, 18 hours 

 

Samples 
1) Low range molecular marker 
2) Uninduced control 
3) Chaperone only 
4) TtGH5_53 (0428) 
5) TtGH9 (0645) 
6) TtGH45 (3400) 
7) TtGH9 (0607) 
8) TtGH12 (0353) 
9) Insoluble uninduced control 
10) Insoluble chaperone only 
11) Insoluble TtGH5_53 (0428)  
12) Insoluble TtGH9 (0645) 
13) Insoluble TtGH45 (3400) 
14) Insoluble TtGH9 (0607) 
15) Insoluble TtGH12 (0353) 

 

Samples 
1) Low range molecular marker 
2) Uninduced control 
3) Chaperone only 
4) TtGH12 (0353) 
5) TtGH5_2 (2895) 
6) TtGH9 (0465) 
7) TtGH5_53 (0428) 
8) Insoluble uninduced control 
9) Insoluble chaperone only 
10) Insoluble TtGH12 (0353) 
11) Insoluble TtGH5_2 (2895) 
12) Insoluble TtGH9 (0465) 
13) Insoluble TtGH5_53 (0428) 
 

 

Samples 
1) Low range molecular marker 
2) Uninduced control 
3) Chaperone only 
4) TtGH6 (2895) 
5) TtGH6 (3996) 
6) TtGH5 _26 (0183) 
7) TtGH45 (3400) 
8) TtGH9 (0607) 
9) Insoluble uninduced control 
10) Insoluble chaperone only 
11) Insoluble TtGH6 (2895) 
12) Insoluble TtGH6 (3996) 
13) Insoluble TtGH5_26 (0183) 
14) Insoluble TtGH45 (3400) 
15) Insoluble TtGH9 (0607) 
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 (…continued) and incubated at 37 °C for a further 2.5 hours (A,B) or 18 hours (C,D). Gels A and 
C both show over expression of soluble TtGH5-2895 (36 kDa). Gel D shows possible soluble 
expression of TtGH5-0183 (37 kDa), albeit in a low amount.  

 

Figure 28 Lower temperature chaperone co-expression test of the Tt glycoside hydrolases 
using Prog7 cells (Takara), visualised by SDS PAGE. Chaperone (grosEs-groEL) was induced 
with L-arabinose at the start of culture growth. Expression of target proteins was achieved with 
IPTG (1 mM final concentration) at an OD above 0.6. A,B) Cultures were induced with IPTG and 
incubated at 16 °C for a further 18 hours. Samples are described below each image. Two 
controls were used, uninduced (no L-arabinose or IPTG) and chaperone only expression (L-
arabinose only).  Gel B shows over expression of TtGH5-2895 (35.8 kDa). Soluble expression of 
TtGH12-0353 (31 kDa) is also seen in gel B, where the protein is found in both soluble and 
insoluble fractions. Comparison of the bands to the molecular marker (Biorad) suggests the 
proteins are the expected size.  

Samples:  
1) Low range molecular marker 
2) Uninduced control 
3) Chaperone only 
4) TtGH6-2895 
5) TtGH45-3400 
6) TtGH5-0428 
7) TtGH5-0183 
8) Insoluble uninduced control 
9) Insoluble chaperone only 
10) Insoluble TtGH6-2895 
11) Insoluble TtGH45-3400 
12) Insoluble TtGH5-0428 
13) Insoluble TtGH5-0183 
 

 
 
 
 

Samples 
1) Low range molecular marker 
2) Uninduced control 
3) Chaperone only 
4) TtGH12-0353 
5) TtGH5-2895 
6) TtGH9-0645 
7) TtGH6-3996 
8) TtGH9-0607 
9) Insoluble uninduced control 
10) Insoluble chaperone only 
11) Insoluble TtGH12-0353 
12) Insoluble TtGH5-2895 
13) Insoluble TtGH9-0645 
14) Insoluble TtGH6-3996 
15) Insoluble TtGH9-0607 

 

A 16 °C, 18 hours 

B 16 °C, 18 hours 
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2.4.2 GH Protein Production 

Protein expression testing indicated that several T. turnerae GH targets could be produced in 

soluble forms on a test scale (approx. 10 ml), as described in Table 9. 

Table 9 Summary of best expression conditions to yield soluble protein 

Protein Expression Cell Strain Conditions 

TtGH8 BL21 37 °C culture growth to OD 0.6, then IPTG induction, 16 °C overnight 

TtGH12 pTf16 37 °C culture growth containing L-Arabinose for chaperone 

expression to OD 0.6, then IPTG induction, 16 °C overnight 

TtGH5_2 pGro7 37 °C culture growth containing L-Arabinose for chaperone 

expression to OD 0.6, then IPTG induction, 16 °C overnight 

TtGH5_4 BL21 37 °C culture growth to OD 0.6, then IPTG induction, 16 °C overnight 

TtGH5_un BL21 37 °C culture growth to OD 0.6, then IPTG induction, 16 °C overnight 

 

Large scale (3 L) batch production and purification of the 5 soluble GH targets is shown in 

the following sections, carried out using the same conditions as described above. It should 

be noted that soluble expression and large scale production of pure protein was obtained 

for TtGH5_53 (0428) but little subsequent characterisation was carried out, so this has been 

omitted from the following work. The targets will henceforth be named by their GH family 

and subfamily only, as the CAZy identifiers are no longer required to distinguish between 

targets from the same family; TtGH12, TtGH8, TtGH5_2 TtGH5_4 and TtGH5_un. The Tt GH 

constructs were designed to be used with Ni affinity chromatography, where the 

incorporated N-terminal hexahistidine region could be used as an Ni column purification 

affinity tag to separate out the target protein from the soluble fraction of the cell lysate. In 

the interest of protein characterisation, it is preferable to remove any tag from a target 

protein to ensure that future experiments are not inhibited or altered by the presence of the 

solubility or affinity tag. The hexahistidine tag was engineered to be removable by 

incubation of the tagged protein with 3C protease, which is able to recognise the 

incorporated cleavage site after the tag and prior to the start of the target sequence. 

Cleavage by the protease is efficient, but does leave two non-native residues left over at the 

start of the target sequence. The overall purification strategy used to produce the soluble Tt 

GH targets on a larger scale is shown in Figure 29 where the chromatograms from three 

different chromatography steps correspond to the purification of TtGH12. 
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Figure 29 The purification strategy used during the production of all TtGH12 , which was used 
during production of all Tt GH target. The displayed chromatograms show the purification by Ni 
affinity and size exclusion chromatography, with response of protein absorbance (…continued) 

Peak fractions pooled and 

concentrated 

Culture grown according to 

optimised conditions 

Culture harvested and cells lysed 

with sonication 

Crude lysate loaded onto Ni 

HisTrap column and protein eluted 

with imidazole gradient 

Peak fractions pooled and concentrated 

to estimate yield 

Protein treated with 3C protease 

and DTT to cleave His6 tag.  

Ni HisTrap flow through collected 

and concentrated 

Gel filtration column loaded with 

protein 

Flow  

through 

Flow  

through 

Elution 

Elution 

Imidazole 

Gradient 

Pure  

protein 

1st Ni Affinity Column Chromatography 

2nd Ni Affinity Column Chromatography 

Size Exclusion Chromatography 

Cleavage products loaded onto Ni 

HisTrap column; cleaved protein 

flows through whilst 3C protease 

requires elution with imidazole. 
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(continued…) at A280 monitored over time. On each chromatogram, blue lines indicate the 
absorbance at A280 in mAU (flat lines occur as the detector limit is 2000 mAU on the AKTA 
Start), whereas the pink line indicated the concentration of imidazole (sloping line is gradient 
elution, whereas upwards line is using 100% imidazole buffer). 

2.4.2.1 TtGH12 

Large scale expression of TtGH12 was carried out using the T7 Shuffle cell strain. The size 

exclusion column chromatogram in Figure 29 shows a sharp peak, indicating that the protein 

eluted from the column was homogeneous. Subsequent analysis of the final pure sample of 

TtGH12 by ESI mass spectrometry confirmed that the protein was indeed pure and at the 

correct molecular weight, Figure 30. The yield was approximately 12 mg purified protein per 

litre culture media (12 mg/L). 

mass/ da 

Figure 30 TtGH12 protein molecular weights and purity analysed by mass spectrometry (TOF 

Ms ESI). A) TtGH12 peak observed at 29145.7 Da, corrected to 29150.5 Da by reference to an 

external standard (myoglobin). TtGH12 was found to be pure and no other protein peaks 

observed. 

 

 

mass
28000 28250 28500 28750 29000 29250 29500 29750 30000 30250 30500 30750 31000 31250 31500 31750

%

0

100

010317_MS0618_TtGH12_1  36 (1.812) M1 [Ev-134111,It27] (Gs,0.700,749:2000,0.10,L66,R66); Sb (15,10.00 ); Cm (2:59) TOF MS ES+ 
1.43e429145.7

29165.2
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2.4.2.2 TtGH8 

TtGH8 was expressed using BL21 E. coli strain and Figure 31 shows the first and third 

chromatography steps carried out during purification. Samples taken from the various steps 

of the purification are shown in Figure 32 by SDS PAGE visualisation. Due to the large 

amount of protein being purified, the size exclusion chromatogram shows a very broad 

elution peak, with a shoulder peak beforehand. The broadness of the peak may have hidden 

some impurities, and as such a few small bands can be seen below the main TtGH8 band in 

the SDS PAGE shown in lane 8, Figure 32. The smaller protein bands may be degradation 

products, but their concentration compared with the amount of TtGH8 protein present 

suggested their presence was not significant enough to disrupt further analysis. As such, the 

protein was tested for purity by ESI mass spectrometry and found to be relatively pure with 

only a small secondary peak which was suggested to be a salt adduct, Figure 33. The overall 

yield from the purification process was approximately 6 mg/L. 

 

 

Figure 31 TtGH8 chromatography purification measured as protein absorbance at A280 using A) 
Nickel affinity chromatography on the crude lysate to collect his6 tagged protein and B) Size 
exclusion chromatography to collect pure protein. 

A B 
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Figure 32 Purification of TtGH8 as shown by SDS PAGE . Lanes contain the samples described 
below each image. Gel A shows the first step in protein purification, whereby harvested cultures 
are loaded onto a Ni affinity column and bound protein eluted with an increasing gradient of 
imidazole. Fractions were taken from the start, middle and end of the protein elution peak 
obtained during chromatography. Gel B shows the second and third steps in purification; 
passing the 3C cleavage products through a Ni affinity column and gel filtration. Comparison of 
the bands to the molecular marker (Biorad) suggests the TtGH8 is the expected size. 

mass/da 

Figure 33 TtGH8 Protein molecular weight and purity analysed by ESI MS . TtGH8 main peak 
observed at 45068.3 Da, corrected to 45070.9 Da by reference to an external standard 
(myoglobin). The smaller peak at 45109.1 Da, corrected to 45111.7 Da was suggested to be a 
salt adduct. TtGH8 was found to be pure and no other protein peaks observed. 

mass
44000 44200 44400 44600 44800 45000 45200 45400 45600 45800
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100

020216_MS0579_TtGH8_1  50 (2.537) M1 [Ev-201467,It33] (Gs,0.780,751:2000,0.10,L66,R66); Sb (15,10.00 ); Cm (3:59) TOF MS ES+ 
1.93e545068.3

45109.1

Samples:  
1) Low range molecular marker 
2) Ni column load 
3) Ni column flow through 
4) Ni column elution fraction F22  
5) Ni column elution fraction F28 
6) Ni column elution fraction T4 
 
 

Samples:  
1) Low range molecular marker 
2) Concentrated protein collected from 1st Ni column 
3) 3C protease cleavage products 
4) Ni column flow through (target protein) 
5) Ni column elution (3C protease) 
6) Gel filtration fraction 19 
7) Gel filtration fraction 22 
8) Gel filtration fraction 26 
9) Gel filtration fraction 29 

A B 
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2.4.2.3 TtGH5_2 

TtGH5_2 was produced by co-expression with the chaperone grosEs-groEL chaperone using 

the pGro7 E. coli cell strain. Samples taken from various stages of purification are shown in 

Figure 34, where the last lane indicates there to be some smaller distinct bands in the final 

pure sample. However, the protein was shown to be relatively homogenous during elution 

from the size exclusion column and as such the bands are possibly degradation products of 

the protein, Figure 35C. An approximate yield of 4 mg L-1 of protein was obtained. TtGH5_2 

was tested by ESI mass spectrometry and found to be relatively pure and of the correct 

molecular weight, Figure 36.  

 

  

Figure 34 Purification of TtGH5_2 as shown by SDS PAGE . Lanes contain the samples described 
to the right of the image. Harvested culture lysate was loaded onto a Ni affinity column and 
bound protein eluted with an increasing gradient of imidazole. Further purification was carried 
out by treatment with 3C protease, a second Ni affinity chromatography step to collect unbound 
target protein and a final polishing step of gel filtration. Comparison of the bands to the 
molecular marker (Biorad) suggests the TtGH5_2 is the expected size. 

 

Samples:  
1) Low range molecular marker 
2) Lysate 
3) Ni column load 
4) Ni column flow through 
5) Ni column elution  
6) 3C protease cleavage product 
7) Uncleaved protein and 3C protease elution 
8) Gel filtration column load 
9) Final sample 
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Figure 35 TtGH5_2 chromatography purification steps measured as protein absorbance at A280 

over time ; A) Crude lysate loaded onto Ni affinity column and protein eluted with imidazole 
gradient (pink line). B) 3C protease treated protein loaded onto Ni affinity column and flow 
through collected. C) Size exclusion chromatography. 

 

 

A 

B 

C 

ml 
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mass/da 

 

Figure 36 TtGH5_2 protein molecular weight and purity analysed by ESI MS . TtGH5_2 main 
peak observed at 33785.4 Da, corrected to 33792.1 Da by reference to an external standard 
(myoglobin). TtGH5_2 was found to be pure and no other protein peaks observed.  

2.4.2.4 TtGH5_4 

TtGH5_4 was expressed using the BL21 E. coli strain. Samples taken from the different 

stages of protein purification are shown in Figure 37, where SDS PAGE analysis summarises 

the state of the protein in the different steps.Figure 38Figure 31 shows the first and third 

chromatography steps carried out during purification. The protein was tested for purity by 

ESI mass spectrometry and despite the peaks observed in lanes 7-11, Figure 37B, TtGH5_4 

was shown to be relatively pure and of the correct molecular weight, Figure 39. An 

approximate protein yield of 6 mg L-1 was achieved. 
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Figure 37 Purification of TtGH5_4 as shown by SDS PAGE. Lanes contain the samples described 
below each image. Gel A shows the first step in protein purification, whereby harvested cultures 
are loaded onto a Ni affinity column and bound protein eluted with an increasing gradient of 
imidazole. Fractions 14-28 were taken from the start, middle and end of the protein elution 
peak obtained during chromatography. Gel B shows the second and third steps in purification; 
passing the 3C cleavage products through a Ni affinity column and gel filtration fractions 15-21. 
Bands observed as lower molecular weight in the gel filtration fractions are most likely 
degradation products. Comparison of the bands to the molecular marker (Biorad) suggests the 
TtGH5_4 is the expected size. 

Samples:  
1) Low range molecular marker 
2) Crude sample 
3) Lysate 
4) Ni column load  
5) Ni column flow through 
6) Ni column elution fraction 14 
7) Ni column elution fraction 16 
8) Ni column elution fraction 20 
9) Ni column elution fraction 24 
10) Ni column elution fraction 28 
 
 
 

Samples:  
1) Low range molecular marker 
2) Ni column load (3C protease cleavage products) 
3) Ni column flow through (target protein) 
4) Ni column elution (3C protease) 
5) Gel filtration load 
6) Gel filtration fraction 15 
7) Gel filtration fraction 16 
8) Gel filtration fraction 17 
9) Gel filtration fraction 18 
10) Gel filtration fraction 19 
11) Gel filtration fraction 20 
12) Gel filtration fraction 21 

 

A B 
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Figure 38 TtGH5_4 chromatography purification steps measured as protein absorbance at A280 
over time; A) crude lysate run on a Ni affinity column and protein eluted with an imidazole 
gradient (pink line) and B) size exclusion chromatography. 

B 

A 
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mass /da 

Figure 39 TtGH5_4 protein molecular weight and purity analysed by ESI MS. . TtGH5_4 peak 
observed at 40693.5 Da, corrected to 40696.6 Da by reference to an external standard 
(myoglobin). TtGH5_4 was found to be pure and no other protein peaks observed. 
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2.4.2.5 TtGH5_un 

TtGH5_un expression was carried out with the BL21 E. coli cell strain. Samples taken from 

the different steps during the purification are shown visualised by SDS PAGE in Figure 42. 

The affinity chromatograms from one of the batch purifications are shown in Figure 41. 

Analysis of the protein by SEC-MALS and ESI mass spectrometry showed that whilst the 

protein is pure it is not at the expected molecular weight of 40.4 kDa, Figure 42. Instead the 

protein molecular weight was characterised from two separate protein preparations to be 

33.4 kDa, which indicated a loss of 64 amino acids from the protein sequence. A high protein 

yield of 19 mg L-1 was achieved. 

 

 

Figure 40 Purification of TtGH5_un- as shown by SDS PAGE. Lanes contain the samples 
described to the right of the image. This gel shows the first step in protein purification, whereby 
harvested cultures (lysate) are loaded onto a Ni affinity column and bound protein eluted with 
an increasing gradient of imidazole. Fractions were taken from the start, middle and end of the 
protein elution peak obtained during chromatography. Further purification was carried out by 
treatment with 3C protease, a second Ni affinity chromatography step to collect unbound 
protein and a final polishing step of gel filtration (not shown). Comparison of the bands to the 
molecular marker (Biorad) suggests the TtGH5_un around the expected size. 

  

Samples:  
1) Low range molecular marker 
2) Culture lysate 
3) Ni column load 
4) Ni column flow through  
5) Ni column elution fraction T18 
6) Ni column elution fraction T22 
7) Ni column elution fraction T28 
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Figure 41 Purification of TtGH5_un , A) Ni affinity chromatography and B) Size exclusion 
chromatography, where protein eluted at the end of the column, but was collected manually 
after the set programme ended. Red lines show conductivity, pink buffer gradient and blue is 
the response measured at A280. 
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Figure 42 TtGH5_un SEC MALS plotted as molar mass (g/mol) against time. The solid green line 
is the refractive index, the dashed is light scattering. The line within the central peak is an 
estimate of the ‘weight averaged molecular weight’ which equates to 3.32 x104 g/mol. The 
second green line to the left of the main peak indicates the ‘weight averaged molecular weight’ 
of the small shoulder peak, at 3.34 x104 g/mol. 
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2.5 Results: LPMO Production 

2.5.1 Construct Creation 

To make the various constructs, primers were designed to enable extraction of the various 

sequence building blocks, be it the TtAA10 sequence from the original stock plasmid 

containing pelB-SUMO-TtAA10 or the solubility tags from different vectors. The 14 different 

designs are shown in  

 where the N-terminal region of the construct is built up with the different sequence blocks 

taken from various vectors, conferring either a signal peptide for target movement to the 

periplasm and/or a solubility tag. Complete removal of either the signal peptide (by natural 

cell processing), the SUMO tag, or SUMO-like tag (NEDD8, both removable by specific 

protease cleavage) would be possible and produce TtAA10 with the native N-terminal 

Histidine intact and not encumbered with left over residues from a cleavage site. The 

original SUMO tag was used (taken from the Champion SUMO vector by Dr G.Hemsworth 

whilst making the stock pelB-SUMO-TtAA10 plasmid used in this work) along with two other 

similar versions taken from vectors gifted for use in this work by the Frey group, BdSUMO 

and the SUMO-like SsNEDD8 tags from two different organisms, Brachypodium distachyon 

(Bd) and Salmo salar(Ss).122 Three constructs were designed to have non removable C-

terminal tags, two contained a hexahistidine tag, and the third (designed and made by Luisa 

Elias) included a Strep tag. The C-terminal position of these tags was thought to be unlikely 

to affect LPMO activity. 
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Table 10  Construct designs to try improve soluble expression level of TtAA10. Construct 14 

was designed and made by Luisa Elias, CNAP, University of York. 

 N-terminal Tag Target 

Protein 

C-terminal 

Tag 

Expected 

weight (KDa) 

1  pelB SUMO TtAA10  38.5 

2   BdSUMO TtAA10  36.3 

3   BdNEDD8 TtAA10  34.3 

4   SsNEDD8 TtAA10  34.4 

5  pelB BdSUMO TtAA10  38.4 

6  pelB BdNEDD8 TtAA10  36.4 

7  pelB SsNEDD8 TtAA10  36.5 

8   SUMO TtAA10  36.4 

9   pelB TtAA10  25.1 

10  pelB SUMO TtAA10 His 39.32 

11    TtAA10 His 23.75 

12 His MBP Linker 

 (3C Cleavage site) 

SUMO TtAA10  78.79 

13  Thioredoxin Linker 

 (TEV cleavage)    

site) 

SUMO TtAA10  48.29 

14    pelB TtAA10 Strep 24.0 

 

 Several different vectors were required to make the 14 TtAA10 constructs. An 
example agarose gel is shown in Figure 43, where three vectors have been linearised 
– PCR reactions to create linear double stranded DNA using specific primers as 
described earlier in  
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Table 6. The PCR of pET28 YSBL LIC 3C vector removed the YSBL LIC region, removing both 

the N-terminal hexahistidine tag and the 3C cleavage site. This left only the C-terminal 

hexahistidine tag ready for incorporation of the TtAA10 insert, by ligation. The PCR of 

pETFPP2 His-MBP-3C amplified vector sequence without MBP-3C and the C-terminal 

hexahistidine tag. The PCR pf pnT-TRxt vector sequence was amplified after the TEV 

cleavage site (forward direction) and after the LIC cleavage site (reverse) leaving the 

thioredoxin tag, as the soluble tag was intended to be positioned prior to the SUMO tag of 

TtAA10. 

 

Figure 43 Agarose gel of the linear vectors required to build some of the TtAA10 constructs. 
Lanes are the following, 1) DNA ladder, 2) pET28 YSBL LIC 3C, 3) pETFPP2 His-MBP-3C and 4) 
pNT-Trxt.  

Inserts were made by designing different primers to anneal to specific sections of the target 

gene sequence, as described in Table 7, with sequence overhangs which were 

complementary base pairs on the intended vector. The amplified double stranded DNA 

fragments were ligated to the vectors via the complementary base pair overhangs (sticky 

ends). Figure 44 shows an example agarose gel of four inserts prepared from the stock 

plasmid, each containing different overhangs and tag ‘building blocks’. 
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Figure 44 Agarose gel showing four TtAA10 inserts with different overhangs ready for 
incorporation into the various linear vectors. All inserts were made from a stock plasmid 
containing pelB-SUMO-TtAA10. Lanes 1) DNA ladder, 2) TtAA10 to make the TtAA10-His 
construct, 3) pelB-SUMO-TtAA10, 4) SUMO-TtAA10 with overhang for the MBP construct and 5) 
SUMO TtAA10 with overhang for the thioredoxin vector. 

2.5.2 Expression Testing using different cell strains 

Constructs 1-7 (Table 10) were tested for soluble protein over expression at different times 

using BL21* and SHuffle T7 competent cells. Figure 44 shows constructs 1-4 being tested for 

the presence of soluble or insoluble target protein. It should be noted that the SDS PAGE 

also shows several constructs of SdAA10 which were being tested alongside TtAA10 during 

the first year of this work but were subsequently not taken further than expression testing. 

None of the constructs shown in Figure 45 were produced in a soluble form. A large amount 

of insoluble protein was observed for BdSUMO-TtAA10 and SsNEDD8-TtAA10. A further 

expression test was carried out on the SUMO constructs 5-7 which contained an N-terminal 

pelB signal peptide, but no expression was observed (data not shown).  It was noted that 

during expression testing, no over expression of any construct containing a pelB signal 

peptide was observed, not even as an insoluble aggregate.  Constructs 11-13 were tested for 

soluble protein production using BL21* and SHuffle T7 E. coli cell strains, Figure 46. Despite 

the incorporation of two solubility tags (MPB or thioredoxin as well as the SUMO), the 

proteins were found in the insoluble cell extract, and expression was found to not be under 

the control of IPTG induction. A small band at the approximate molecular weight for the 

Trxt-SUMO-TtAA10 protein was observed in the soluble fraction, lane 7, Figure 46. No 

expression was observed for TtAA10-His (data not shown).  
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Figure 45 SDS PAGE results for expression tests of TtAA10 and SdAA10 in BL21* and T7 
SHuflle. BdSUMO-TtAA10, SsNEDD8-TtAA10 and SsNEDD8-SdAA10 expressed in the insoluble 
fraction in BL21*. BdSUMO-TtAA10, BdNEDD8-SdAA10 and SsNEDD8-TtAA10 also expressed 
insolubly in SHuffle T7. 

A  BL21* 

1) Uninduced pelB-SUMO-
TtAA10 Soluble 
2) pelB-SUMO-TtAA10 Soluble 
3) uninduced pelB-TtAA10 
Insoluble 
4) pelB-SUMO-TtAA10 Insoluble 
5) Uninduced SsNEDD8 TtAA10 
Soluble 
6) BdSUMO TtAA10 Soluble 
7) SsNEDD8 TtAA10 Soluble 
8) SsNEDD8 SdAA10 Soluble 
9) Uninduced SsNEDD8 TtAA10 
Insoluble 
10) BdSUMO TtAA10 Insoluble 
11) SsNEDD8 TtAA10 Insoluble 
12) SsNEDD8 SdAA10 Insoluble 
 

 

 

 

B  SHuffle T7  

1) Uninduced BdSUMO-TtAA10 
Soluble 
2) BdSUMO-TtAA10 Soluble 
3) BdSUMO-SdAA10 Soluble 
4) BdNEDD8-TtAA10 Soluble 
5) SsNEDD8-TtAA10 Soluble 
6) Uninduced BdSUMO-TtAA10 
Insoluble 
7) BdSUMO-TtAA10 Insoluble 
8) BdSUMO-SdAA10 Insoluble 
9) BdNEDD8-TtAA10 Insoluble 
10) SsNEDD8-TtAA10 Soluble 
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Figure 46 Expression testing of the constructs TrxT-SUMO-TtAA10 (BL21 and SHuffle T7) and 

His-MBP-TtAA10 (BL21) under typical growth conditions , 37°C, induction with IPTG (1 mM) 
once cultures reached an OD of 0.6, followed by incubation at 16°C overnight. The expression of 
both constructs appears to even within induction with IPTG. 

1)Low molecular weight marker 

2)Uniduced BL21 Trxt-SUMO-TtAA10 Soluble 

3)BL21 Trxt-SUMO-TtAA10 Soluble 

4) Uniduced BL21 Trxt-SUMO-TtAA10 Insoluble 

5)BL21 Trxt-SUMO-TtAA10 Insoluble 

6)Uninduced SHuffle T7 Trxt-SUMO-

TtAA10 Soluble 

7) SHuffle T7 Trxt-SUMO-TtAA10 Soluble 

8) Uninduced SHuffle T7 Trxt-SUMO-

TtAA10 Insoluble 

9) SHuffle T7 Trxt-SUMO-TtAA10 

Insoluble 

1) Low molecular weight marker 

2) Uniduced His-MBP-SUMO-TtAA10 Soluble 

3) His-MBP-SUMO-TtAA10 Soluble 

4) Uniduced His-MBP-SUMO-TtAA10 Insoluble 

5) His-MBP-SUMO-TtAA10 Insoluble 
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2.5.3 Increasing the availability of copper 

Constructs, BdSUMO-TtAA10, pelB-BdSUMO-TtAA10 and pelB-SUMO-TtAA10 were 

expressed in LB media containing additional copper. It was thought that an excess of copper 

ions in the growth medium may stabilise TtAA10, as it could be incorporated into the protein 

active site. The culture growth was not inhibited by the addition of CuSo4 (7 µM or 100 µM) 

but there was no improvement in protein solubility or expression. Failure to improve the 

stability of the protein may be due to the solubility tag preventing the correct formation of 

the active site, holding the N-terminal residue in a position that prevents the correct 

coordination of the copper ion. 

2.5.4 Inducing E. coli Chaperone production with Stress 

The actions of native E. coli proteins during expression of a target protein can often interfere 

with protein production. A key example lies in the proteolytic breakdown of a recombinant 

protein during culture growth. One way to take advantage of using a living organism to 

produce a target protein is to encourage the production of native chaperones. In E. coli this 

includes DnaK-DnaJ-GrpE, ClpB, GroES-GroEL, and IbpA/IbpB. These proteins will often be 

produced during conditions of cellular stress, to fight against stress induced alterations to 

native E. coli proteins. Chaperones are known be able to encourage proper folding of 

aggregation prone recombinant proteins. As such, they are sometimes co-expressed with a 

target protein to facilitate this.123-124 By exposing the E.coli cells expressing SUMO-TtAA10 to 

conditions such as high salt molarity, glucose content and heat shock before expression, 

they may produce helpful chaperones. Once induced, these chaperones will still be within 

the cell and may be able to assist in the production of soluble and correctly folded target 

protein. 52 

SsNEDD8-TtAA10 had been observed to be produced as insoluble protein in previous 

expression tests and so was deemed an appropriate target to undergo expression under 

different ‘stress’ conditions, Figure 47. Unfortunately, the gene expressed by E. coli was still 

producing insoluble protein in all cases; however some small bands could be attributed to 

soluble protein in gel B, lanes 4-6, but it is unclear if this is directly related to the conditions 

imposed on the cells during growth and expression. 
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Figure 47 Expression testing of SsNEDD8-TtAA10 using various conditions shown over two 
gels. Gel A Soluble fractions: 1) Low weight molecular marker, 2) uninduced SsNEDD8-TtAA10, 
3) 1 mM IPTG, 16°C overnight, 4) 0.1 mM IPTG, 16°C overnight, 5) Cold shock before induction, 
by cooling culture for 15 mins in an ice bath, 1 mM IPTG, 37°C for 1 hour, 6) Cold shock before 
induction, by cooling culture for 15 mins in an ice bath, 1 mM IPTG, 16°C for overnight, 7) 1 mM 
IPTG, 37°C overnight, 8) Repeat, 1 mM IPTG, 16°C overnight,  
Insoluble Samples of above (2-8) are in lanes 9-15.  
Gel B Soluble fractions: 1) Low weight molecular marker, 2) uninduced SsNEDD8-TtAA10,   
3) Media changed before induction and replaced with media containing an extra 300 mM NaCl, 
the 1 mM IPTG, 37°C for 16 hours overnight, 4) 1 mM IPTG, 16°C overnight with containing 
covered with loose foam bung rather than screw cap, 5) 2 mM IPTG, 16°C overnight, 6) Repeat 
of number 4, cold shock before induction, by cooling culture for 15 mins in an ice bath, 1 mM 
IPTG, 16°C for overnight. Insoluble samples of above (2-6) are in lanes 7-11
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2.5.5 Successful Protein Production 

The pelB TtAA10-Strep construct was made in the first instance by Lusia Elias, transformed 

by E. coli Rosetta competent cells and co-expressed with a chaperone. Further production of 

the target protein was carried out with co-expression of the chaperone Tig (trigger factor, 

pTf16, using cells from the Prog7 chaperone set from TAKARA), which was induced with L-

arabinose. Expression of this construct required extraction of the soluble protein from the 

periplasm of E. coli. This was carried out using the osmotic shock method, whereby the cells 

were soaked in a solution of sucrose before centrifugation and resuspension in a water- 

MgSO4 solution. Resuspension in water was sufficient to burst only the outer membrane of 

the cells, releasing the target protein into the supernatant which was then purified using a 

streptavidin column, Figure 48. Displacement of the bound protein, with high resolution, was 

achieved by washing the column with a buffer containing desthiobiotin, which binds strongly 

to the streptavidin. An approximate yield of 1.6 mg L-1 of protein was obtained. The protein 

samples were produced in several batches and each batch was individually treated with a 

solution of CuSO4 to ensure that the active site of each protein in the sample was fully 

saturated. The excess copper was removed from the protein by gel filtration. 
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Figure 48 Strep column purification of TtAA10-Strep. The column is loaded with approximately 

150 ml of dilute sample, before a short wash of the column with buffer. Elution is carried out 

with buffer containing desthiobiotin, which displaces the bound protein from the column, 

causing a sharp elution of the protein. 
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2.5.5.1 Analysing the purity of TtAA10-Strep 

After purification, TtAA10-Strep was analysed by SDS PAGE, Figure 49 and ESI-TOF mass 

spectrometry to assess its purity, Figure 50. The protein was found to be pure, but was 

further tested by SEC-MALS to determine if the Strep tag might initiate dimer formation in 

solution. Figure 51 shows that only a single peak was obtained during the SEC-MALS 

experiment, which indicates that the protein exists as a monomer in solution. The molecular 

weight measured by mass spectrometry was also supported, with SEC-MALS suggesting an 

approximately equivalent weight of 2.442 x104 g/mol. 

 

 

Figure 49 SDS PAGE of TtAA10-Strep during and after purification TtAA10 molecular weight of 

24 kDa is indicated. 

kDa 

 

 

 

24 
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Figure 50 ESI mass spectrometry analysis of TtAA10-Strep, where a peak at 24 kDa was 

observed. 

 

 

Figure 51 SEC-MALS analysis of TtAA10-Strep, where the solid red line indicates the refractive 
index, the dashed line is the light scattering, dotted line the UV response at 280 nm and the 
central line inside the peak representative of the molecular weight (2.442 x104 g mol-1). 
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2.6 Discussion 

2.6.1 GH Targets 

Extensive expression testing using different E. coli cell strains and temperature conditions 

lead to the soluble protein expression of 6 GH targets, as summarised in Table 11. Large 

scale production of these proteins was carried out in E. coli using batch cultures. Production 

of TtGH5_53 was achieved but little characterisation was carried out on this protein, so its 

purification was intentionally not included in this work. The proteins were purified using a 

simple method of Ni affinity chromatography, whereby the incorporated hexahistidine tag 

binds the protein to the column, allowing it to be collected from the cell lysate. The proteins 

were produced in good yields, and all final protein samples deemed to be of high enough 

purity to be used in the forthcoming protein characterisation experiments (subsequent 

Chapters). TtGH5_un was found to have been cleaved at some stage during preparation, 

possibly due to protease activity. This was found to be the case during two separate 

preparations of the protein. There were 14 GH targets tested for protein expression and 

whilst 5 were successfully produced, 9 were not. Several proteins were found to be 

expressed in an insoluble form. Future work on these GH targets from T. turnerae could 

focus on trying to purify these particular proteins from the inclusion bodies, alter the 

constructs to introduce a solubility tag or try localisation to the periplasm during expression. 

Table 11 Overview of the expression and purification of the 6 T.turnerae GHs produced in this 
work 

Protein Expression 

System 

Expression Conditions Purification – Ni Affinity Chromatography  Average 

yield  

TtGH8 BL21  

 

37 °C, IPTG 1mM, 16 

°C overnight 

 

Binding buffer: 50 mM HEPES, 250 mM 

NaCl, 30 mM imidazole, pH 7 

Elution Buffer: 50 mM HEPES, 250 mM NaCl, 

300 mM imidazole, pH 7 

His Tag removal: 3C protease 1:100, DTT 5 

mM, 4 °C overnight.  

Final buffer: 50 mM HEPES, 250 mM NaCl 

6 mg/L 

TtGH12 T7 Shuffle 12 mg/L 

TtGH5_4 BL21 6 mg/L 

TtGH5_2 BL21 4 mg/L 

TtGH_un BL21 19 mg/L 

 



 

142 
 

2.6.2 LPMO 

The production of TtAA10 proved difficult. The original plasmid containing the gene SUMO-

TtAA10 was used to produce small amounts of protein by Dr G. Hemsworth prior to the start 

of this work. The amount of protein produced from a normal 3 L culture using this construct 

was very low which was subsequently lost during cell preparation and the different 

chromatography steps. An attempt was made to produce a set of different constructs with a 

set of sequence ‘building blocks’, notably different solubility, affinity tags and the pelB signal 

peptide. It was hoped that one of the 14 constructs designed may improve the expression 

yield of TtAA10, but unfortunately the majority of constructs were unsuccessful in this 

endeavour. A set of plasmids were obtained from the Frey group, which contained a 

variation of the typical SUMO tag found in commercial plasmids (the SUMO tag used in this 

work was taken from the Champion SUMO vector). These constructs, BdSUMO-TtAA10, 

BdNEDD8-TtAA10 and SsNEDD8-TtAA10 were able to produce a good yield of the target 

protein, but it was unfortunately located in the insoluble fraction of the cell preparations. 

Versions of the later constructs containing the pelB signal peptide were not found to 

express. An attempt was made to produce a construct containing multiple solubility tags 

with the desire that there would be enough ‘folding power’ from the tags to pull the target 

protein into a soluble form. Two constructs, one containing MBP and the other thioredoxin 

were truncated to the N-terminus of the SUMO-TtAA10 sequence. Unfortunately, both 

constructs suffered from leaky expression, where the protein was found in the insoluble cell 

lysate fraction in both the IPTG induced and uninduced samples. The efforts to design a 

construct capable of producing larger amounts of TtAA10 had failed. TtAA10 was finally 

made in several batches using a construct designed by Luisa Elias, whereby the protein was 

collected from the periplasm and purified using a non-removable C-terminal Strep tag (a 

feature which actually proved fruitful during crystallisation and structure solution, as shall be 

described in Chapter 6). Whilst the yield was still very low, approximately 1.6 mg/L, 

repetitions of gene expression and protein purification were sufficient to produce enough 

protein sample for characterisation and analysis. 
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2.7 Conclusions 

In this section of work, the design, expression trialling and purification of 6 target proteins 

from T. turnerae has been described. 6 out of 14 recombinant GH targets were successfully 

synthesised in soluble forms by E. coli, with successful large scale purification carried out 

using a simple hexahistidine affinity tag of 5 proteins, TtGH8, TtGH12, TtGH5_2, TtGH5_4 

and TtGH5_un shown. Several other GH targets were produced as insoluble aggregates. The 

single LPMO found in the genome of T. turnerae, TtAA10 was also successfully made, but 

attempts to improve the yield of the protein did not prove fruitful. In conclusion, this work 

was able to produce nearly half of the protein targets selected for characterisation in forms 

suitable for further study. In the forthcoming Chapters, characterisation of the 6 successfully 

produced proteins will be described in detail and divided based on CAZy family; experiments 

pertaining to substrate specificity, enzyme function, kinetic analysis and in several cases, 

structural insight will be presented and discussed. 



 

144 
 

3  

Characterisation of 

three TtGH5s 

3.1 Abstract 

T. turnerae possesses a wide variety of glycoside hydrolases from many different families, 

possibly providing it with a large protein ‘reservoir’ which can be used to tackle the various 

substrates that the host Shipworm ingests. Three proteins from T. turnerae, classified as GH 

family 5 proteins under the CAZy database, TtGH5_2 (ACR12145.1), TtGH5_4 (ACR12247.1) 

and TtGH5_un (ACR11279.1) had been successfully purified and have now been 

characterised by activity analysis using thermal shift assays, thin layer chromatography and 

mass spectrometry. TtGH5_2 and TtGH5_un were both found to be similar in their substrate 

specificity, and have been shown by this work to be β-glucanases. Both proteins were active 

on konjac glucomannan (kGM) and cellulose based substrates, but not ivory nut mannan 

(inM), indicating preferential cleavage at glucose residues. TtGH5_un is as yet unassigned to 

a GH5 subfamily due to the absence of related sequences from the available genomic data. 

This study provides a base line characterisation for any subsequent similar sequences 

discovered in the future and indicates the likelihood that this protein will form a new GH5 

subfamily. TtGH5_4 was found to be specific for xyloglucan, adding to the small number of 

xyloglucanases observed within this subfamily and preliminary kinetics were carried out. 

Crystallisation was attempted for all three GH5s, with TtGH5_un producing crystals that 

diffracted to 1.8 Å, but due to the lack of available reference models of sufficient sequence 

homology, the structure was not solved. This study has identified the activities of three new 

GH5 enzymes from T. turnerae, two of which possess preferential activity for a glucose-

based polymer and a third which is able to accommodate the complex branching structure 

of xyloglucan. It is suggested that TtGH5_un will form a new GH5 subfamily in the future and 



 

145 
 

its established activity will assist characterisation of similar novel enzymes when they 

become available through the ever-increasing influx of genomic data.    

3.2 Introduction 

3.2.1 The GH5 Family 

One of the largest GH families is that of GH5, containing 11640 individual entries in the CAZy 

database at the time of writing.34 Historically known as ‘cellulase family A’ it was the first 

cellulase family to be described. The GH5 family belongs to clan GH-A, a group of 19 GH 

families linked together by a distant evolutionary ancestor, where all members of the clan 

share certain features such as protein fold and catalytic machinery.31, 36, 125 The GH5 family 

contains a variety of different functionalities, with a significant portion active on breaking 

down polysaccharides with a glucose backbone. Whilst the general structure and catalytic 

ability of GH5s remains similar across the family, the low sequence identity between 

different clades within the family has created a vast pool of enzymes capable of breaking 

down a variety of different substrates. For example, cellulases typically exhibit a tight 

binding groove in which the polysaccharide chain fits snugly, whereas some xyloglucanases 

have evolved larger binding clefts in order to accommodate the branched nature of the 

substrate.126    

3.2.2 Subfamilies of GH5s 

During the 1990s, ‘cellulose family A’ was split into subfamilies as new emerging 

experimental data was produced. The subfamilies, known as A1-A10 covered a range of 

enzymatic specificity and origin. As is the same for all GH families, but more importantly for 

older families, the ever-increasing amount of sequencing data available brings into question 

whether the older classifications meet the needs of today’s data. Members of the GH5 

family cover a very wide diversity of activities and are found in a multitude of ecological 

niches. Current estimates suggest over 20 experimentally determined enzymatic activities 

form a broad degree of functionality within the family, yet this is most likely set to increase 

due to recent work by Aspeborg et al in 2012, who undertook a large phylogenetic based 

reclassification of the family. The work by Aspeborg and colleagues was induced, in some 

respect, by a rearrangement of several GH5 sequences into family GH30. This came about 

due to new structural insights that linked certain conserved structural features of the 

catalytic machinery not to the GH5 family, but to GH30. Aspeborg states that the steady, but 
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enormous increase in genomic data has led to a large proportion of GH5 sequences sitting in 

the family, unassigned to subfamilies, and with often unknown functions. Aspeborg’s new 

classification system of GH5 throws away the old A1-A10 subfamilies and presents 51 new 

subfamilies, Table 12. In 2012, their bioinformatics analysis split the publicly available set of 

2300 GH5 catalytic modules based on the production of a phylogenetic tree, of which the 

distinct branches (clades) represent an individual subfamily. Some of the historical subfamily 

classifications held true, whilst some were combined. As such, GH5_3 and GH5_6 no longer 

exist. The naming system of each subfamily is simply GH5 followed by an underscore and a 

number. As would be expected, those subfamilies with more historical entries contain a 

much larger selection of sequences. GH5_2 for example, historically the A2 subfamily, now 

consists of 245 sequences. Similarly, GH5_4 gained a combined data set coming from 

historical subfamilies A3 and A4, giving a total of 160 entries.  A baseline definition of five 

publicly available sequences was set as the requirement to create a new subfamily; ten 

subfamilies contain only five sequences. The classification success rate is deemed to be 80%, 

meaning 20% of the publicly available sequences did not meet these criteria. This hints at 

the significant number of sequences yet to be assigned to a subfamily due to lack of 

genomic data, suggesting that there will be new subfamilies uncovered as time goes on. The 

spread of diversity over the new subfamily classification also highlights taxonomical data; 

several subfamilies contain sequences that are limited to belonging to a specific taxonomical 

origin, for example to fungal, or a certain species. Aspeborg also draws attention to the 

prevalence of non-catalytic subfamilies, for example GH5_30 in which all sequences are 

deemed unable to carry out canonical GH activity, due to a loss of essential elements that 

traditionally yield catalytic ability. Other losses of catalytic prowess are seen in a couple of 

other families, where certain members display a lack of catalytic activity and are appended 

to other modules.125 It can be suggested then that 20% of publicly available sequences will in 

the future be characterised completely, whether into existing GH5 subfamilies or new ones 

with catalytic or novel non-catalytic functions.  
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Table 12 Summary of the GH5 subfamily classification as proposed by Aspeborg et al. 
Subfamilies where evidence exists for the characterisation of members, shown as taxonomical 
origin and general activities with their associated EC numbers. Several sub families have no 
activities determined.  

Subfamily Origin Activity 

GH5_1 

 

Archaea, bacterial, 

uncultured symbionts 

Endo-β-1,4-glucanase activity (EC 3.2.1.4) 

 

GH5_2 

 

Extracellular Endo-β-1,4-glucanase Activity (ec 3.2.1.4) 

GH5_4 

 

Majority extracellular 

bacterial 

Endo-β-1,4-glucanases(EC 3.2.1.4) , Xyloglucan-specific 

Endo-β-1,4-glucanase (EC 3.2.1.151), licheninases (EC 

3.2.1.73), and xylanases (EC 3.2.1.8) GH5_5 

 

 Endo-β- 1,4- glucananase (EC 3.2.1.4) 

GH5_7  Eukaryotic, archaeal, 

bacterial 

Β-1,4-mannan-cleaving enzymes (EC 3.2.1.78 and EC 

3.2.1.25) 

GH5_8  Endo-β-1,4-mannanase (EC 3.2.1.78) 

GH5_9 

 

Fungal, cell wall 

modifying 

Exo-β-1,3-glucanase (EC 3.2.1.58), endo-β-1,6-glucanase (EC 

3.2.1.75), β-glucosidases (EC 3.2.1.21) 

GH5_10  Endo-β-1,4-mannanase (EC 3.2.1.78) 

GH5_11  Not experimentally determined 

GH5_12 

 

Fungal Β-glucosylceramidases (EC 3.2.1.45)and (flavonoid) β-

glucosidase (EC 3.2.1.21) 

GH5_13 - Not experimentally determined 

GH5_14 

 

Plant Exo-β-1,3-glucosidase (EC 3.2.1.58) 

GH5_15 

 

Fungal Not experimentally determined 

GH5_16 

 

Fungal Endo-β-1,6-galactanase (EC 3.2.1.164) 

GH5_17  Endo-β-1,4-mannanase (EC 3.2.1.78) 

GH5_18 - Not experimentally determined 

GH5_19 - Not experimentally determined 

GH5_20 - Not experimentally determined 

GH5_21 Bacteroidetes Endo-β-1,4-xylanase (EC 3.2.1.8) 

GH5_22  Endo-β-1,4-glucanase activity(EC 3.2.1.4) 

GH5_23 Fungal, secreted Fungal β-diglycosidases (EC 3.2.1.149 and EC 3.2.1.168) 

GH5_24 - Not experimentally determined 

GH5_25 Thermophilic Endo-β-1,4-glycanases (EC 3.2.1.4 and EC 3.2.1.78) 
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GH5_26 Uncultured 

microorganisms 

Endo-β-1,4-glycanases (EC 3.2.1.4 and EC 3.2.1.73) 

GH5_27  Eukaryotic, extracellular Endo-glycosylceramidases (EC 3.2.1.123) 

GH5_28 

 

Actinobacteria, bar one Endo-glycosylceramidases 

(ec 3.2.1.123) 
GH5_29 

 

Rhodococcus bacterial Endo-glycosylceramidases 

(ec 3.2.1.123) GH5_30 - Not experimentally determined 

GH5_31  Fungal, secreted Β-1,3-(gluco)mannanase activity (EC 3.2.1.-) 

GH5_32 - Not experimentally determined 

GH5_33 - Not experimentally determined 

GH5_34  Bacterial, extracellular Arabinoxylanase activity (EC 3.2.1.-) 

GH5_35 - Not experimentally determined 

GH5_36 Bacterial Endo-b-1,4-glycanases (EC 3.2.1.73 and EC 3.2.1.78), endo- 

Β-1,4-mannanase activity (EC 3.2.1.78), licheninase activity 

(EC 3.2.1.73) 

GH5_37 Bacterial Endo-β-1,3/4-glycanases (EC 3.2.1.4 and EC 3.2.1.73), 

cellodextrinase (EC 3.2.1.74) GH5_38 Bacterial Activity on model plant cell wall (PCW) compounds  

GH5_39  Endo-β-1,4-glucanase activity (EC 3.2.1.4) 

GH5_40 - Not experimentally determined 

GH5_41 - Not experimentally determined 

GH5_42 - Not experimentally determined 

GH5_43 - Not experimentally determined 

GH5_44 - Not experimentally determined 

GH5_45 - Not experimentally determined 

GH5_46 Bacterial Activity on model plant cell wall (PCW) compounds  

GH5_47 - Not experimentally determined 

GH5_48 Bacterial Activity on chitin and chitosan derivatives 

GH5_49 - Not experimentally determined 

GH5_50 - Not experimentally determined 

GH5_51 - Not experimentally determined 

GH5_52 

 

Bacterial Cellodextrinases (EC 3.2.1.74) 

GH5_53  Extracellular Cellodextrinase (EC 3.2.1.74) 
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3.2.3 Structural Overview of GH5s 

Despite the separation into subfamilies and differences in activity, members of the GH5 

family all share some common features, including protein fold, catalytic machinery and 

reaction coordinate itinerary. GH5 sequences vary little in their overall tertiary structure, 

however, there are only a handful of residues that are invariant across the entire family.127 

Structural data are available for 75 separate “apo” proteins from subfamilies, 1, 2, 4, 5, 7, 8, 

9, 10, 26, 27, 28, 34, 36 and 37.  Some of studies have also expanded further and produced 

structures of protein-substrate complexes to map out the binding site and assess catalytic 

activity. The overall structure of all GH5 proteins is conserved and can be described as 

having a (β/α)8  fold, as first identified in the structural characterisation of endoglucanase 

CelC in the late 1990s, Figure 52.128-129 This fold is also known as a TIM (named after Triose-

phosphate isomerise) barrel structure and consists of an alternating backbone configuration 

of eight parallel β-sheets and eight α-helices. This common ‘doughnut’ shape fold is created 

by a circular repeating pattern of ‘β-loop-α-loop’ secondary structures. The inner surface is 

primarily made up of the parallel β-sheets, inside which there is a hydrophobic core.  The α-

helices make up the protein exterior, meaning there is a secondary hydrophobic ‘interface’ 

positioned between the β-sheets and α-helices which run like a channel between the C- and 

N-terminus.130-131 The amino acid side chains on the β-sheets are described as forming two 

layers; sides chains on strands 1,3,5 and 7 point inwards towards the central hydrophobic 

core, whilst strands 2,4,6 and 8 side chains point outwards towards the α-helices. As such, 

the barrel displays a four-fold symmetry instead of eight-fold.130  Silverman et al, carried out 

a study focused on understanding the structural importance of components creating the 

(β/α)8 protein fold in the namesake protein, triose-phosphate isomerise. They mutated 

residues in different regions of the fold to assess the effect on structure and protein 

functionality. It was suggested that the hydrophobic interface between the β-sheets and α-

helices was relatively flexible compared with the internal hydrophobic core, where 

mutations in the internal core resulted in a severe loss of function.131 Being the most 

common protein fold suggests it has existed for a relatively long time on the evolutionary 

timescale. The overall barrel structure has recently been proposed to have evolved from 

fusion events of ‘half barrels’ ((β/α)4), indicating the possibility of hidden or lost sub-domains 

that could assist in sequence analysis. 130, 132-133 
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Figure 52 Structural overview of a GH5 enzyme , Cel5A, showing the classic (β/α)8 protein fold. 
The helices and sheets are labelled and pack in a doughnut shape. The inner hydrophobic core 
and interface region between the sheets and helices can be easily seen. The nucleophilic 
glutamate is labelled N and is positioned on strand β7, whilst the glutamate that acts as the 
catalytic acid/base, labelled A/B is on the C-terminal loop of strand β4. PDB code: Q102  

3.2.4 Catalytic Activity in GH5s 

The catalytic breakage of glycosidic bonds is carried out through a double displacement 

mechanism, in which the configuration around the anomeric carbon is ‘retained’ (see 

Chapter 1).31 Two carboxylic acid side chains, which have been experimentally determined as 

glutamates, act as the catalytic residues and sit on one of the loops between a β-sheet and 

α-helix. In a sustained effort, Davies et al were able to analyse the catalytic reaction itinerary 

of an endoglucanase known as Cel5A from Bacillus agaradhaerens. This characterisation 

created a representative catalytic reaction mechanism of glycosyl catalytic activity in GH5. 

Crystallography of Cel5A with chemical mimics capable of producing complexes where the 

substrate is effectively trapped, Figure 53 (known as Wither’s reagents, covalent inhibitors of 

glycoside hydrolases that use sugar units containing fluorine134), allowed the authors to see 

snapshots of the reaction itinerary within the electron density. Such extensive 

crystallographic work on Cel5A enabled the reaction conformational itinerary to be mapped. 
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The cleavage reaction was found to proceed through initial substrate binding in a distorted 

1S3 conformation, followed by formation of a 4C1 glycosyl enzyme intermediate, where the 

configuration around the anomeric carbon is inverted. The transition state between the two 

conformations was suggested to continue through a 4H3 half chair conformation. Finally, the 

binding of the product complex was found to be unfavourable, leading to dissociation and 

opening up the binding site for further and higher affinity substrate binding.135 

 

Figure 53 Close up view of Cel5A bound with a Wither’s trapping reagent ; β-D-Glcp-(1-4)-β-D-
Glcp-(1-4)-α-D-Glcp2F-(1-4)-GLU. The catalytic nucleophile (N) and acid/base (A/B) are 
labelled, and correspond to Glu228 and Glu139 respectively. The sugar is bound in the -1 to -3 
subsites, with hydrogen bonding shown to the nearest neighbours (within 4 Å). Several residues 
remain conserved throughout the GH5 family, for example, Trp39 and Trp262 that provide ring 
stacking interactions with the bound substrate. PDB: 1QI0. 

3.2.5 Conservation in GH5s 

The positions of the catalytic residues are conserved throughout the family and general 

protein fold bar a few inactive subfamilies, as previously mentioned. The nucleophilic 

glutamate is positioned three quarters of the way along β-strand 7, whilst the glutamate 

acting as the catalytic acid/base is found on the C-terminal loop end of β-strand 4.127, 129, 136 

This suggests that the loop regions create the active site environment, possibly endowing 

substrate specificity due to the large degree of promiscuity.130 Sequence analysis can 

determine the identity of those residues that are conserved throughout the entire GH5 

family, as well as those specific for certain subfamilies. Several studies have gone on to 
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access the function of these invariant residues to ascertain the role they play within; 

structural, catalytic, or substrate specificity. Indeed, including the catalytic residues (written 

in italics), only a small number of amino acids are conserved across family GH5; Glu303, 

His249, Glu172, Tyr251, Trp339, Arg67, His111 and Asn171 (numbering from a 

xyloglucanase, assigned to GH5_4, AC2aCel5A).126 For example, substrate specificity is 

provided by an invariant cis-peptide, of trp339 (Cel5A). It acts as a base for the -1 subsite, 

allowing the formation of a hydrogen bond between the residue and the O-2 hydroxyl group 

of the moiety bound in the adjacent -2 subsite.127  

3.3 T. turnerae GH5s 

The bacterium Teredinibacter turnerae contains 107 glycoside hydrolases as quoted in the 

CAZy database, of which 14 have been classified as belonging to family GH5. As discussed in 

Chapter 2, a selection of T. turnerae GH targets from a range of different families were 

chosen for purification trials using an E. coli expression strategy. The 14 targets had the 

potential to cover a large range of activities and substrate specificities due to the diverse GH 

family classifications. The work described in this Chapter builds on the successful purification 

of 3 recombinant T. turnerae GH5 proteins, as described in Chapter 2. Two of the 

successfully produced GH5 proteins are classified as belonging to subfamilies 2 and 4, which 

shall be described in more detail in the forthcoming section. The third GH5 protein produced 

in this work has not been classified into a subfamily as of yet and the implications of 

sequences lacking significant homology to other members within the GH5 family shall be 

discussed further below. 

3.3.1 TtGH5_2 

As mentioned above, TtGH5_2 is the largest subfamily, and at the time of writing (August 

2018), CAZy quoted 119 sequences as characterised, with 14 structures available, out of a 

potential pool of 986.34 The major activity for this subfamily is β-1,4-glucanase, where the 

proteins are often multimodular. Some contain CBM binding domains and others are linked 

to dockerin-like domains. The sequences mostly come from bacteria, but representatives 

from archaea and uncultured protists are also included.137 Even within a subfamily there 

exists a disparity in the sequence, yet there remain several conserved motifs that endow 

structural and functional similarity. The most structurally characterised member of GH5_2 is 

that of Cel5A from Salipaludibacillus agaradhaerens, where 22 separate structures exist; 2 of 
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which are apo and the remaining 20, substrate complexes. Such high level of investigation 

allowed the substrate binding site to be mapped. For example, the study of a cellobiose 

complex showed the interaction of tyrosine, common to the subfamily and located on a turn 

between strand 5 and helix 5, acting as a substrate binding plane at the -1 subsite; the 

aromatic side chain and the pyranose ring of the sugar moiety of the substrate are able to 

interact through ring stacking.127  

3.3.2 TtGH5_4 

At the time of writing, the GH5_4 subfamily contained 578 members, of which, 98 have 

been characterised by biochemical methods and structures of 17 deposited in the PDB.34   In 

GH5_4, 79 entries out of the 98 characterisations specifically quote endo β-1,4-glucanase 

(EC 3.2.1.4) as the enzyme activity. A further selection of entries quote β-glucanase activity 

without definition of what form this activity takes, i.e. endo or exo, whilst several entries 

quote multiple activities, including that of β-1,4-glucanase. Of the 98 characterised entries, 

only 6 bacterial sequences exhibit known xyloglucanase function, with a further 4 of these 

structurally characterised.34 GH5_4 is the only subfamily containing enzymes active on 

xyloglucan and these activities appear to have developed at different times; the 

xyloglucanases form part of two different clades within the overall GH5_4 subfamily 

phylogenetic tree.137 Xyloglucanase is composed of a backbone of glucose residues, at which 

branching occurs at the C6 hydroxyl position with xylose residues. Further branching of the 

xylose residues with other moieties, galactose, fucose and arabinose, create a spatially large 

and complex polysaccharide. Due to the complexity, the substrate is often described in 

‘modules’ and labelled as follows; G = Glcp, X = [Xylp(_1,6)]Glcp, and L = 

[Galp(_1,2)Xylp(_1,6)]Glcp.138 Figure 54 describes the various different sides chains found in 

the xyloglucan of different species of plants, using common glycan symbols and showing the 

typical linkages.138-139 Alterations in the active site cleft enable xyloglucanases to 

accommodate a more complex substrate, where a broadening of the active site has been 

observed crystallographically compared with GH5 enzymes active on simpler substrates, 

such as cellulose. For example, in Figure 55, a common cleavage product of xyloglucan 

degradation is shown in the binding site of a xyloglucanase from Paenibacillus pabuli, written 

as GXLG.   
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Figure 54 Possible branching chains found, where arrangement of the various ‘modules’ can 
fully describe a specific polysaccharide pattern.  

C 
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Figure 55 Close up structural view of a GH5_4 enzyme active on xyloglucan , where a xyloglucan 
oligosaccharide (GXLG) is shown bound in the active site. The glutamate nucleophile and 
catalytic acid base are labelled as N and A/B, respectively.  

3.3.3 TtGH5_un 

As mentioned previously, a large proportion of glycoside hydrolases in GH5 have not been 

assigned to a subfamily. This is due to the cut-off point imposed by Aspeborg and colleagues 

that defined their most recent GH5 classification system; 5 similar sequences are needed to 

define a new subfamily.137 As such, GH5_un is representative of any sequence that has been 

classified overall as a GH5, but it does not have enough similarity to other sequences to be 

placed into a subfamily. However, the ever expanding CAZy database, which was earlier 

proposed as an issue to GH overall classification, will most likely result in providing more 

genomic data and as such, more matching sequences to those ‘unknown’ sequences already 

in existence. As such, it can be suggested that once these unassigned sequences are 

characterised, they will inform new activities/subfamilies in the future. A major issue 

regarding the characterisation of GH5_un sequences is that their sequence similarity with 

other characterised sub-families enzymes is very low. Sequence analysis determines a 

protein’s position within the CAZy classification system, but a sequence defined as a GH5 still 

has a large degree of possible activities.25, 27, 129 Sequence alignments with online tools, such 

as NCBI BLAST, can often assist in forming a proposal of a protein’s activity based on the 

activities of the highest sequence match.112-113 When a sequence is known to be relatively 
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unique and has little similarity with other proteins, the GH5_un protein in question can be 

difficult to hypothesise a function for.  This can cause issues with designing experiments to 

test the substrate specificities of the enzymes, as unless one takes a broader view on 

potential activities; it will be a stab in the dark.  

3.4 This Work 

The aims of this section of work were to analyse TtGH5_2, TtGH5_4 and TtGH5_un to assess 

their substrate specificity, activity and structure. A broad spectrum of characterisation 

methods, has been applied to successfully define the activity and function of all 3 enzymes. 

Kinetic analysis of all 3 enzymes was also carried out to assess the efficiency of each enzyme 

for their proposed substrate.  
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3.5 Methods 

3.5.1 Materials 

Substrates used in this study were tamarind xyloglucan (tXyG), mixed linkage Barley beta 

glucan (bMLG), Avicel (Sigma), Phosphoric acid swollen cellulose (PASC) (Sigma), ivory nut 

mannan (inM), carob galactomannan (cGM), konjac glucomannan (kGM), mannohexaose 

(Sigma), birchwood xylan (bX), wheat arabinoxylan (wAX), rye arabinoxylan (rAX), corn 

arabinoxylan (cAX), potato starch, rice starch, squid pen chitin, crab chitin (Sigma), guar 

gum, locust bean gum, apple pectin (Silverspoon). Orcinol monohydrate used for staining 

thin layer chromatography plates was purchased from Sigma. Substrates for kinetics and 

dyed insoluble polysaccharides were purchased from Megazyme (Ireland); 4-

Methylumbelliferyl-β-cellobioside (4-MU-C2), 4-Methylumbelliferyl-β-cellotrioside, 4-

Methylumbelliferyl-β-laminaribioside (4-MU-B1/3-C2), AZCL-HE galactomannan (Carob) and 

AZCL-HE cellulose (fine). Pure recombinant TtGH5_2 (ACR12145.1), TtGH5_4 (ACR12247.1) 

and TtGH5_un (ACR11279.1) were produced as described in Chapter 2.  

3.5.2 Thermal shift analysis 

Samples containing SYPRO-orange dye (15 µL) and enzyme (final concentration of 1 mg mL-1) 

with either buffer or substrate (30 µL total) were run using a Stratgene qPCR. Small amounts 

of solid polysaccharides were added directly to the sample tubes, to a point where a quarter 

of the 30 µL volume of the sample was taken up by the solid. Soluble substrates were used 

at concentrations of either 1 mg mL-1 or 10 mM depending on substrate type. Samples were 

heated from 20 °C to 91 °C in increments of +1 °C over 71 cycles. The fluorescence of SYPRO 

orange was monitored throughout and the data used to calculate the protein melting 

temperature (see Appendix 2 for further information about this method) Curves were fitted 

using a free online tool developed by Paul Bond at the University of York and is available at; 

http://paulsbond.co.uk/jtsa.    

3.5.3 Activity Assays 

Reactions were carried out in 1.5 mL Eppendorf tubes, held horizontally during shaking to 

ensure thorough mixing of insoluble substrates during incubation. Enzyme concentrations 

were used at 1 mg mL-1 and substrates at 1 mg mL-1 unless otherwise stated. Assays were 

carried out either at 37 °C (TtGH5_2, TtGH5_un) or room temperature (22 °C) (TtGH5_4) 
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and left overnight before further analysis. Samples were centrifuged to pellet the remaining 

solids and to ensure only the soluble products were taken forward for analysis. A second 

quick method for activity analysis involved the use of dyed insoluble polysaccharides – AZCL-

HE galactomannan (Carob) and AZCL-HE cellulose (fine) (Megazyme), dissolved to 1 mg mL-1 

in buffer. Addition of an enzyme capable of breaking down the substrates releases the dye, 

measurable at 590 nm.  

3.5.4 Thin Layer Chromatography (TLC) 

Soluble products (4 µL total) were spotted on a TLC plate 1 µL at a time and left to dry 

between applications. Appropriate oligosaccharide standards were run alongside reaction 

samples to provide a weight ladder for comparison. The TLC plate was placed in a pre-

equilibrated chromatography tank containing the running buffer (50% v/v n-butanol, 25% 

v/v acetic acid, 25% v/v water). Plates were run once, dried and then re-run to improve the 

separation of sugars. The plates were visualised using a staining solution (3% v/v sulphuric 

acid, 75% v/v ethanol, 0.1% w/v orcinol monohydrate), dried and then heated to 

approximately 100 °C using a hot plate. TLC plates were photographed immediately after 

visualisation as the stain fades quickly.  

3.5.5 High performance anion exchange chromatography with 

pulsed amperometric detection (HPAEC-PAD) 

HPAEC-PAD was carried out at Newcastle University under guidance of the Gilbert group, 

using a Dionex system. TtGH5_4 overnight hydrolysis reactions were run at 37 °C on tXyG. 

The soluble samples were mixed with a fucose internal standard and run on an anion 

exchange column (CARBOPAC) using a sodium acetate gradient. The peak areas observed in 

the HPAEC-PAD traces were normalised against a fucose internal standard.  

3.5.6 Matrix assisted laser desorption ionisation – time of 

flight- mass spectrometry (MALDI-TOF) 

Soluble fractions activity reactions were analysed using MALDI-TOF (ultraflex III) mass 

spectrometry. Samples were mixed with the 2,5-dihydroxybenzoic acid matrix (20 mg mL-1 

concentration, in 50% acetonitrile, 0.1% trifluoroacetic acid) in either a 1:1 or 1:5 sample to 

matrix ratio. Sample-matrix mixtures were spotted (1 µL) onto the sample plate and left to 

dry. A pre-made calibration solution (containing a set number of protein standards) was 



 

159 
 

mixed with the matrix and spotted onto the plate, making sure that all samples were within 

1 spot of the calibration spot. The instrument was controlled using the Bruker FlexControl 

software. Using the spot imaging, the laser (100 Hz laser frequency, laser power of 40 mW) 

was manually moved around the spot to prevent damage to the sample. Depending on the 

sample concentration, data collection (standard run set at 800 shots) was repeated 

(sometimes at different laser intensities) and spectra added together in a cumulative 

manner to improve signal definition and to observe the growth of product peaks relative to 

noise. Spectra were processed and analysed using the related Bruker flexAnalysis software.      

3.5.7 Polysaccharide Analysis Using Carbohydrate Gel 

Electrophoresis (PACE) 

TtGH5_2 and TtGH5_un were analysed by PACE140, carried out by Dr. Theodora Tryfona, 

University of Cambridge. 100μl reaction volume using reaction buffer (20 mM HEPEs, 200 

mM NaCl, pH 7) were mixed with 3 μg enzyme (TtGH5_2 or TtGH5_un) and 250μg substrate 

(bMLG, inM, kGM, GM substrates were boiled for 10min to solubilise). For deacetylation the 

samples were treated with 20μl 4M NaOH for 1h at room temperature followed by desalting 

on PD-10 column. Reactions were incubated at 37 °C overnight. The undigested 

oligosaccharides were precipitated out with 80% ethanol followed by collection of the 

supernatant. Sequential digestion analysis of the products of TtGH5_un were carried out 

using 1μl of β-glucosidase and/or β-mannosidase and samples incubated for 4h at room 

temperature. Enzymes were thermally deactivated (100 °C for 30min) before the next 

enzyme was added. Finally, samples were labelled with ANTS (8-aminonaphthalene-1,3,6-

trisulfonic acid) and run on the gel.  

3.5.8 Kinetics   

The activity of TtGH5_2 and TtGH5_un was tested on 4-Methylumbelliferyl-β-cellobioside (4-

MU-C2), 4-Methylumbelliferyl-β-cellotrioside and 4-Methylumbelliferyl-β-laminaribioside (4-

MU-B1/3-C2). Enzyme scoping experiments were used to find a suitable enzyme 

concentration for the assay (0.06-1 μM) using substrate at 1 mM. A standard curve of 

fluorescent product 4-MU over a concentration range, 15.6 - 1000 μM was carried out and 

used for analysis. Substrate was distributed in 48 well black plates and enzyme pipetted into 

each condition simultaneously and the assay started in a Clariostar plate reader.  The assay 

was run using 0.5 μM enzyme and a substrate gradient 1-0.015 mM and data recorded every 
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5 seconds for 400 s. The experimental gain had to be decreased for reactions involving 4-

MU-C3 as fluorescence was high. The gradient from the separate plots of each different 

substrate concentration were plotted against their corresponding assay substrate 

concentration. The gradient of this graph, if linear as in the case of 4-MU-C2, was used to 

calculate kcat/Km by dividing by the enzyme concentration. The 4-MU-C3 substrate produced 

curved profiles with both TtGH5_2 and TtGH5_un, which was analysed using the Michaelis-

Menton kinetics option available in Origin, to calculate values for Km, kcat and kcat/Km.    

The activity of TtGH5_4 was analysed by 3,5-Dinitrosalicylic acid (DNSA) reducing sugar assay 

(see Appendix 2 for more information) on tamarind xyloglucan (tXyG). Five different 

substrate concentrations were used, 0.25-2 mg mL-1 and incubated with enzyme (100 nM) at 

37 °C and aliquots removed over time and enzyme deactivated. The rates for each different 

substrate concentration were plotted against substrate concentration, to give a relatively 

linear plot. Division of the gradient by the enzyme concentration gave a value for kcat/Km. 

3.5.9 Crystallisation and data collection 

Initial crystallisation screening was performed on all 3 TtGH5 proteins using commercial 

screens; PACT, Index and Crystal HT. Wells were set up using a Mosquito crystal robot to 

produce sitting drops in a 1:1 ratio of protein to mother liquor; total volume of the drop was 

300 nL.  
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3.6 Results  

3.6.1 Thermal Shift Analysis 

3.6.1.1 TtGH5_un  

Thermal shift analysis was used as a tool to probe any potential substrates of TtGH5_un that 

could affect the protein melting temperature, measured at 65 °C, Figure 56. The bar chart 

clearly shows two increases in melting temperature; kGM and bMLG. Figure 57 shows the 

fluorescence curve measured for the apo protein and protein mixed with kGM. The 

extremely large shift on addition of solid kGM was investigated further and it was found that 

incubation with a lower concentration of substrate (1 mg mL-1) affected the degree of 

positive shift in the melting temperature of TtGH5_un. A higher amount of substrate may 

have allowed more of the protein access to the substrate and as such produce a larger shift 

in melting temperature. The kGM stock suspension was made at 1 mg mL-1, however, 

removing small aliquots from the stock solution of insoluble compounds can often lead to 

errors in the expected substrate concentration of the assay solution (due to pipette 

clogging). 

 



 

162 
 

 

Figure 56 Thermal shift assay of TtGH5_un against a range of different polysaccharides, with 
melting temperatures displayed as the average of three experiments. The protein only melting 
temperature is displayed on the far right at 65.0 °C, and the largest differences in melting 
temperature observed are with Barley mixed linkage glucan and Konjac glucomannan.  

 

 

Figure 57 Thermal shift assay of TtGH5_un with and without addition of solid Konjac 
glucomannan. Samples were mixed with SYPRO orange dye and temperature increased in 1 °C 
cycles up to 96 °C. Melting temperatures are displayed to the side of each curve, where a shift of 
approximately +10 °C was observed upon mix TtGH5_un with the substrate.   
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3.6.1.2 TtGH5_2  

Small shifts were observed when TtGH5_2 was mixed with mannose-based substrates. 

Figure 58 looks at the melting curves for GM, inM and kGM in detail compared with apo 

protein. Interestingly, a large destabilising effect was seen upon addition of mannohexaose, 

where a negative change in protein melting temperature of approximately 5 °C was 

observed.   

 

 

Figure 58 Thermal shift assay of TtGH5_2 with and without addition of A) Ivory nut mannan, 
Carob galactomannan, Konjac glucomannan, and B) mannohexaose. Samples were run using 
SYPRO orange dye, a protein concentration of approximately 1 mg mL-1 and addition of 
approximately half the sample volume of substrate suspensions (1 mg mL-1). Melting 
temperatures were calculated as the average of three experimentss and are as follows; Apo – 
59.1°C, Ivory nut mannan – 62.8 °C, Konjac glucomannan – 63.6 °C, Carob glactomannan – 61.2 
°C, mannohexaose – 54.2 °C.  

B 

A 
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3.6.1.3 TtGH5_4 

A positive shift in melting temperature of 3.2 °C is observed between the apo protein and 

the protein mixed with rAX, as shown in Figure 59.  The proposed substrate, xyloglucan 

(tXyG) for this enzyme based on sequence analysis did not show a significant positive shift in 

melting temperature. 

 

Figure 59 Protein melting temperatures of TtGH5_4 when mixed with various polysaccharides 
as determined by TSA.  

3.6.2 Activity analysis with insoluble colourmetric substrates 

TtGH5_2 was tested on AZCL-HE galactomannan and AZCL-HE cellulose (1 mg mL-1). 

Breakdown of the dyed substrate is synonymous with the release of the dye molecules held 

within the cross linked insoluble substrate matrix, Figure 60. Once in solution, the dye 

molecules are soluble providing a quick visual test for enzyme activity whilst also being 

measurable by UV/Vis spectrometry at 590 nm. Addition of TtGH5_2 and incubation 

overnight saw a small amount of dye released from the GM substrate compared with the 

control (0.115 Abs with enzyme, 0.04 Abs control). Whilst this small amount of dye release 

indicated that there was some activity, GM is unlikely to be the real substrate for TtGH5_2, 

as the majority of the dye remained trapped in the insoluble substrate. In contrast, the 

breakdown of AZCL-HE cellulose with TtGH5_2 was visible almost instantly, with the soluble 

fraction of the reaction mix turning blue within minutes of enzyme addition. Figure 60 shows 
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the dye release after an hour of incubation with TtGH5_2 and the difference between the 

two types of substrates is very clear.  

 

Figure 60 Insoluble polysaccharide colourmetric assay. Left; general diagram of the dye 
substrate, where dye molecules are held with the insoluble substrate matrix. Once substrate is 
degraded, dye molecules are released into the solution. Right; Incubation of AZCL-HE 
Galactomannan and AZCL-HE Cellulose (100 uL, 0.2% w/v solution) with TtGH5_2 (5 uL, 45 mg 
mL-1 stock) for 1 hour at 25 °C shows visible dye release. A small amount of dye is released into 
solution in the galactomannan reaction but is not significant compared to the amount released 
from the breakdown of the cellulose substrate.  

3.6.3 Hydrolytic Activity Analysis using TLC  

3.6.3.1 TtGH5_2 

Based on the thermal shift assay indications, the activity of TtGH5_2 on mannans was tested 

further with TLC, Figure 61. No degradation of GM was observed, which supports the lack of 

efficient enzyme activity during incubation with the dyed AZLC-He galactomannan. No 

degradation of inM or manno-oligosaccharides (2-6) was observed compared with the 

controls. TtGH5_2 did show activity on kGM with discrete bands at various weights being 

observed on the TLC plate.  

AZCL-He 

Cellulose 

+ TtGH5_2 

AZCL-He 

Galactomannan 

+ TtGH5_2 
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Figure 61 TLC analysis of TtGH5_2 activity on glucomannan (kGM), galactomannan (GM) and 
ivory nut mannan (inM). Standards shown on the left are mannobiose - mannohexaose. No 
activity is observed for galactomannan or ivory nut mannan when compared with the control 
samples. Glucomannan degradation products are observed at various weights as compared with 
the oligosaccharide standards. No activity is observed on the manno-oligosaccharides.  

3.6.3.2 TtGH5_un 

The thermal shift assay indicated that TtGH5_un showed significant protein-substrate 

interactions with kGM and bMLG. TtGH5_un was tested for hydrolytic activity on mannose-

based substrates (kGM, GM and iNM) and bMLG by TLC, Figure 62. Hydrolysis reactions 

were run overnight at 37 °C using 1 mg ml-1 protein and 1 mg ml-1 substrate concentration.  

The soluble fraction of each reaction was analysed alongside control reactions that 

contained no protein. Figure 62 shows hydrolysis products of kGM, but the protein showed 

no hydrolytic effect on either GM or iNM as compared with the control samples. TtGH5_un 

also displays very specific activity on bMLG.  

inM M2   M3   M4   M5   M6 

 

+ TtGH5_2 
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Controls 
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Figure 62 TLC analysis of TtGH5_un activityon glucomannan (KGM), galactomannan (GM), ivory 
nut mannan (INM) and mixed linkage glucan (BMLG). Standards shown on the left are mannose, 
mannobiose and mannotriose. No activity is observed for galactomannan or ivory nut mannan 
when compared with the control samples. Glucomannan and mixed linkage glucan are broken 
down by TtGH5_un into discrete products of various sizes. bMLG is broken down in small 
products equivalent in size of mannobiose and smaller, whereas, kGM is broken down into a 
high density of different sized products.  

3.6.3.3 TtGH5_4 

Hydrolytic activity of TtGH5_4 was tested on a variety of xylans and tXyG, following on from 

the indications of possible interactions in the thermal shift assay. TLC analysis of the reaction 

products show that TtGH5_4 is only catalytically active on tXyG, Figure 63. Two strong and 

discrete bands are shown on the TLC plate, and by comparison with the ladder, at molecular 

weights larger than X6 (810 g mol-1). Several smaller molecular weight bands are seen but 

appear significantly fainter that the major reaction products. The lack of substrate remaining 

at the baseline, compared with the other substrate spots indicates that all the substrate has 

been solubilised and broken down.  

kGM M1 M2 M3 GM inM kGM GM inM 

Controls + TtGH5_un 

bMLG bMLG  
+ 

TtGH5_un Standards 
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Figure 63 TLC of TtGH5_4 on wAX, rAX, cAX, bX, bMLG and tXyG. The tXyG (written as XG 
above) was the only substrate specifically degraded by TtGH5_4, showing two main discrete 
bands at a larger molecular weight than the standard X6 on the left-hand side of the plate. 
Fainter bands can be seen at lower molecular weights but are hard to distinguish. The general 
smearing of the band could be related to the complexity of the substrate, with a multitude of 
products possible. There are also faint bands around a molecular weight equivalent to X3 for 
rAX and bX.  

3.6.4 Hydrolytic Activity Analysis using HPAEC-PAD of TtGH5_4  

The soluble fraction of the reaction of TtGH5_4 on tXyG was then analysed by HPAEC-PAD, 

Figure 64. Comparison with the control shows a large release of soluble products upon 

incubation with the enzyme. Unfortunately, it was not possible to assign these peaks, which 

have instead been used, in this instance, to highlight the overall activity of TtGH5_4 on the 

substrate. Xyloglucan is primarily formed of a linear backbone of β (1-4) linked glucosyl 

residues but it is increased in its complexity through the addition of xylose moieties bound in 

an α (1-6) fashion with extended regions of galactosyl ,fuscosyl and/or arabinosyl resiudes as 

discussed in earlier in this chapter, Figure 54.141-142 As such, the degradation pattern 

observed in Figure 64 reflects the complex nature of this substrate, and whilst it is not 

beneficial in determining an average ‘output’ product of TtGH5_4, it highlights the enzyme’s 

ability to navigate a complex polysaccharide.    
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Figure 64 HPAEC-PAD spectra of TtGH5_4 activity on tXyG. Hydrolysis reactions were carried 
out overnight at 37 °C using approximately 1 µM enzyme and 1 mg mL-1 substrate. The soluble 
fraction of the reaction and control was run on the HPAEC-PAD Dionex system using a sodium 
acetate gradient. Breakdown of tXyG, producing soluble products is observed on the addition of 
enzyme.  
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3.6.5 Hydrolytic Activity Analysis using MALDI-TOF-MS 

3.6.5.1 TtGH5_4 

To expand on the results obtained from HPAEC-PAD analysis, where peaks were not 

characterised, the soluble reaction products of TtGH5_4 incubated with tXyG was examined 

using MALDI-TOF, Figure 65. In the control reaction with no enzyme, there were no 

identifiable oligosaccharide peaks. A very high product response was observed in the 

hydrolysis reaction sample, indicating a large degree of substrate degradation by the 

enzyme. Major peaks were observed at 1409.5, 1247.4, 1115.4, 923.3, and 659.1 m/z and all 

have been assigned as oligosaccharide products of xyloglucan hydrolysis. The observed 

products correspond with those typically formed during the enzymatic breakdown of tXyG 

as discussed previously in this chapter.138, 142-143  

 

Figure 65 MALDI-TOF MS spectra of TtGH5_4 (2.7 mg mL-1) activity on xyloglucan (1 mg mL-1). 
The m/z values of the major peaks have been labelled in red and annotated with the most likely 
oligosaccharide products; 1409.5 m/z (XLLG), 1247.4 m/z (XLXG/XXLG), 1115.4 m/z 
(XXGGG/XLGG), 923.3 m/z (XXX), 659.1 m/z (XX).  
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3.6.5.2 TtGH5_2 

The soluble products resulting from the hydrolysis reactions of TtGH5_2 with mannose- and 

glucose-based substrates were analysed by MALDI-TOF mass spectrometry. As expected, 

soluble hydrolysis products of inM and GM were not observed. Hydrolysis of kGM saw the 

production of native oligosaccharides 4-17 degrees of polymerisation, Figure 66. Smaller 

peaks separated by 42 m/z units after the main oligosaccharide peaks are likely to be caused 

by an acetyl group found somewhere within the oligosaccharide chain. The soluble 

degradation products of PASC (phosphoric acid swollen cellulose) and Avicel also showed a 

clear production of oligosaccharides; PD 4-11 for PASC and PD 4-13 for Avicel. The mass 

spectra are shown as a mass range 825-2100 m/z, due to the presence of a highly intense 

peak in both samples at 803 m/z (also presentment in Figure 67, but to a smaller extent). 

This weight does not correspond to an expected degradation peak. Mass spectrometry of 

TtGH5_2 activity on bMLG saw only one peak corresponding to that of a potential sugar 

product, cellotetraose. The mixed linked nature of the substrate may prevent production of 

larger products, allowing the enzyme to only cleave at certain points only the chain, avoiding 

the β (1-3) linkages.  
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Figure 66 MALDI-TOF MS of the soluble hydrolysis products of TtGH5_2 activity with A) kGM, 
B) GM and C) inM. Clear degradation products are observed for KGM; oligosaccharides which 
are shown peak picked and labelled 4-17. Oligosaccharides with acetylation are separated by 
+42 m/z after the main peaks.  
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Figure 67 MALDI-TOF MS of TtGH5_2 activity on PASC (top) and Avicel (bottom). Spectrum 
centred on 825-2100 m/z due to the presence of an intense peak at 803 m/z to allow analysis of 
the products. Smaller hydrolysis peaks were also observed at 689 m/z indicating for both 
substrates that products of a PD of 4-11 are formed.   
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3.6.5.3 TtGH5_un 

MALDI-TOF analysis of the soluble degradation products after incubating TtGH5_un with 

kGM shows species for DP 4-11 (in the mass range tested, 500-2200 m/z), Figure 68. As seen 

on the TLC analysis, no product preference for TtGH5_un is observed, suggesting that the 

enzyme is endo acting. TLC analysis of TtGH5_un activity on bMLG emphasised the 

formation of products of a unit length of 4 and perhaps 1 or 2, with the latter allocation 

being difficult to assign. However, in Figure 69, the MALDI mass spectrum of the hydrolysis 

products show a clear product pattern; DP 4,7,9,12,15,18 and 21 display significantly larger 

intensities than any of the other observed products. 
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Figure 68 MALDI-TOF MS of the soluble reaction products of TtGH5_un (0.1 mg mL-1) 
incubated, shaking sideways, at 37 °C overnight with Konjac glucomannan.  Native 
oligosaccharides are labelled above the corresponding peak, from 4-11 degrees of 
polymerisation.  
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Figure 69 MALDI-TOF MS of the soluble reaction products of TtGH5_un (0.1 mg mL-1   
incubated, shaking sideways at 37 °C overnight with mixed linkage Barley glucan. The 
oligosaccharide product peaks are labelled in black as the DP size, with the spectrum showing a 
clear preference for products of certain sizes. 
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3.6.6 PACE 

Both TtGH5_2 and TtGH5_un were analysed for activity by Dr. Theodora Tryfona, University 

of Cambridge using PACE.140 The enzymes were analysed by PACE and confirmed to act 

strongly on MLG, weakly on iNM and relatively strongly on kGM, Figure 70.  

 

Figure 70 PACE showing activity of TtGH5_2 and TtGH5_un on MLG, iNM, kGM and GM, 
alongside various controls and a manno-oligosaccharide ladder. Experiment, analysis and figure 
performed and prepared by Dr. Theodora Tryfona, University of Cambridge. 

TtGH5_2 and TtGH5_un were both found to act on deacetylated and acetylated kGM. The 

lack of co-migration of the products of both enzymes with those products resulting from 

control reactions with Man5A suggests that the GH5 products do not have mannose 

moieties at the reducing end. The kGM products of TtGH5_un were analysed further by 

sequential addition of β-glucosidase and β-mannosidase which show a propensity for 

products of the form ManxGlc with a small proportion of them also being GlcManxGlc.  
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Figure 71 PACE of TtGH5_un on kGM, with sequential addition of either β-glucosidase or β-
mannosidase to further break down the products. Left diagram refers to deacetylated kGM, and 
the right diagram shows acetylated kGM. Products are labelled as MMG, GMG and MG as 
potential product forms (where M is mannose, and G is glucose). Experiment, analysis and 
Figure prepared by Dr. Theodora Tryfona, University of Cambridge. 

3.6.7 Kinetic Analysis 

All 3 TtGH5 enzymes have been subjected to activity analysis with certain substrates, and 

kcat/KM derived. Based on the reactivity of TtGH5_2 and TtGH5_un on both bMLG and 

cellulose substrates, it was deemed sensible to test both enzymes on 4-Methylumbelliferyl-

β-cellobioside (4-MU-C2), 4-Methylumbelliferyl-β-cellotrioside and 4-Methylumbelliferyl-β-

laminaribioside (4-MU-B1/3-C2).  TtGH5_4 has been shown to be active on xyloglucan and 

was instead analysed using the 3,5-dinitrosalicylic acid (DNSA) reducing sugar assay.  

3.6.7.1 TtGH5_2 

An appropriate enzyme concentration was determined for TtGH5_2 by testing between 1, 

0.5 and 0.125 μM enzyme with a constant substrate concentration of 1 mM 4-MU-C2, Figure 

72. This scoping experiment also determined whether the enzyme was active on the 

fluormetric substrates. Figure 72 shows the change in fluorescence over time for the 

reaction of TtGH5_2 with 4-MU-C2. The rate of change over the experimental timescale 

indicates that the substrate is being cleaved by the enzyme. The same experiment repeated 

with 4-MU-B1/3-C2 however did not show any change in fluorescence, indicating that the 

enzyme is incapable of breaking down this substrate.  
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Figure 72 Enzyme scoping experiment using 4-MU-C2 (1mM) and TtGH5_2 (1, 0.5 and 0.125 
μM).  

 

Figure 73 Standard curve of fluorescent product 4-MU over a concentration range, 15.6 - 1000 
μM. 

In order to assess the amount of product formation during the enzymatic reaction, a 

standard curve with known amounts of the fluorescent product 4-MU was produced as 

shown in Figure 73. A concentration of 0.5 µM enzyme was chosen based on the 

concentration scoping experiment and TtGH5_2 was tested on different concentrations of 4-

MU-C2 and 4-MU-C3 over a short timescale. A significant difference can be seen in the rate 

of reaction of TtGH5_2 against the two substrates, with more activity observed for the 

longer cellotriose based substrate. As such during collection of the data, the gain of the 
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instrument needed to be reduced for the reaction of TtGH5_2 on 4-MU-C3 as the 

fluorescence was out of the measurable range (indicating high reactivity). Figure 74 shows 

the activity of TtGH5_2 on 4-MU-C2, where the rates of reaction are plotted against the 

substrate concentration. Figure 75 shows the product formation curve of TtGH5_2 on 4-MU-

C3, followed by Figure 76, where the rates are plotted against substrate concentration. In 

the latter Figure, the plot observed true Michaelis-Menten kinetics, and as such the data was 

fitted using the ‘enzyme kinetics’ mode within Origin to deduce the values for Vmax and KM. 

Table 13 draws together the kinetic values determined for TtGH5_2.  

 

Figure 74 Kinetic analysis of TtGH5_2 on 4-MU-C2. A) Plot of the formation of 4-MU product 
over time. B) rate of reaction plotted against the corresponding substrate concentration.  
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Figure 75 Product formation curves of TtGH5_2 on 4-MU-C3 over time. 
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Figure 76 Kinetic analysis of TtGH5_2 on 4-MU-C3 . A) Plot of reaction rate against substrate 
concentration, showing error bars determined by calculating the standard error of the mean of 
the data. B) the same plot fitted to Michaelis-Menten kinetic analysis using Origin.  
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Table 13 Kinetic parameters determined for TtGH5_2 on three substrates, 4-MU-C2, 4-MU-C3 
and 4-MU-β1/3-C2.  

Substrate Vmax (µM s-1) KM (µM) kcat/KM (µM-1 s-1) 

4-MU-C2 Not determined Not determined 2.32 x10-2 ± 1.05 x10-4 

4-MU-C3 1.25311 ± 0.0268 103.12 ±7.29 2.43 x10-2 ± 7.2 x10-3 

4-MU-β1/3-C2 No reaction No reaction No reaction 

 

3.6.7.2 TtGH5_un 

TtGH5_un was treated in the same way as described for TtGH5_2 above. The enzyme 

scoping experiment suggested an ideal concentration of 0.5 μM and suggested that the 

protein is active on 4-MU-C2 albeit at a lower rate than observed for TtGH5_2, Figure 77. 

The timescale of the experiment was significantly longer than that used for TtGH5_2 and 

produced a smaller overall fluorescence change. TtGH5_un proved similar to TtGH5_2 in 

that it was also unable to react with 4-MU-B1/3-C2, as no change in fluorescence was 

observed over the timescale of the reaction.  

 

Figure 77 Enzyme scoping reaction with 4-MU-C2 (1 mM) and TtGH5_un (0.5, 0.25, 0.125 and 
0.063 μM). 
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Figure 78 Analysis of multiple curves produced in TtGH5_un assay. A) The effect of changing 
the substrate concentration on the reaction of TtGH5_un with 4-MU-C2. B)  reaction shown as 
the increase in production formation over time, as calculated using the fluorescence data in A 
and a standard curve of the product complex (not shown). 

Figure 78 shows the experiment in which the change in fluorescence from reactions of 

different substrate concentrations with a set amount of enzyme, can be monitored. The 

recorded fluorescence values can be converted into a measure of product formation using 

the specific relationship y=mx+c that describes the standard curve shown in Figure 73 

Standard curve of fluorescent product 4-MU over a concentration range, 15.6 - 1000 μM. 



 

185 
 

The gradients for each individual plot of concentration of 4-MU vs. time are themselves 

plotted against their corresponding substrate concentration, Figure 79. The change in 

product formation over time is essentially the rate of reaction, and as such the rates plotted 

against substrate concentration yield a final overall rate constant, in this case equal to 

0.0026 s-1. Division of this value by the enzyme concentration (0.5 μM) produces a value for 

the rate constant kcat/KM; 5.2 x10-3 ± 1.05 x10-4 μM-1 s-1. 

 

Figure 79 Final graphical analysis of the activity of TtGH5_un on 4-MU-C2, showing rate of 
reaction against substrate concentration. The gradient of this plot is used to work out a value 
for kcat/kM.  

TtGH5_un was then tested on 4-MU-C3 and found to display Michaelis-Menten kinetics on 

this substrate, Figure 80. Origin was used to analysis plot B in Figure 80, from which the 

values for Vmax and KM have been determined. The third kinetic parameter, kcat/KM was also 

calculated and all parameters shown in Table 14.  
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Figure 80 Kinetic analysis of TtGH5_un on 4-MU-C3. A) Plot of product formation over time. B) 
Michaelis-Menten analysis of the rates of reaction plotted against substrate concentration.  
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Table 14 Kinetic parameters determined for TtGH5_un on three substrates, 4-MU-C2, 4-MU-C3 
and 4-MU-β1/3-C2.  

Substrate Vmax (µM s-1) KM (µM) kcat/KM (µM-1 s-1) 

4-MU-C2 Not determined Not determined 5.2 x10-3 ± 1.05 x10-4  

4-MU-C3 0.321 ± 0.0124 104.61 ±14.18 6.00 x10-4 ± 1.75 x10-3 

4-MU-β1/3-C2 No reaction No reaction No reaction 

 

3.6.7.3 TtGH5_4 

Initial kinetic analysis of TtGH5_4 on tXyG was carried out using the 3, 5-dinitrosalicyclic acid 

(DNSA) reducing sugar assay (Appendix 2 for information on method). The enzyme was 

tested using 5 different substrate concentrations, carried out at 37 °C, and rates taken and 

plotted against substrate concentration. Figure 81 shows the plots required to produce a 

value of kcat/Km, whereby the gradient of the plot of rate against substrate concentration is 

divided by the concentration of protein used to yield a value of 7.71 x105 mg-1 ml min-1. 

3.6.8 Crystallisation and Data Collection 

A crystal hit was obtained for TtGH5_un, where crystals grew in a condition containing 0.1 M 

HEPES, 25% w/v peg 3350, 0.2M NaCl, at pH 7.4. A 24-well optimisation screen containing 

variations on the mother liquor was set up using protein at a very high concentration (300 

mg mL-1). Crystals were fished and found to diffract to 1.8 Å. Crystal data sets were collected 

at the Diamond synchrotron (Oxford) by remote collection. Due to lack of sequence 

homology with other available proteins in the PDB, a structure solution was not determined 

by molecular replacement.   
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Figure 81 DNSA analysis of TtGH5_4(100 nM) on tXyG. A) Concentration of reducing sugars 
produced by action of TtGH5_4 against time for 5 different substrate starting concentrations of 
tXyG. B) Rate of tXyG hydrolysis by TtGH5_4 against substrate concentration.  
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3.7 Discussion 

3.7.1 TtGH5_2 

During the analysis of this work it came to light that TtGH5_2 had been previously studied by 

Ekborg et al as part of a multidomain protein called CelAB, which found both 

cellobiohydrolase and endo- glucanase activity.105 CelAB contains both GH5 and GH6 

domains as was noted in Table 4 (Chapter 2). Due to the difference in name, and accession 

code at the start of this project, this study was not refered to during the experimental work. 

Subsequent updates the the CAZy database (including a change in the accession code to be a 

combined code) brought this study to light and it has proved a useful comparison regarding 

the functionalty of the GH5_2 domain when separated from its GH6 partner domain.  

The combined activity experiments testing the degradation of kGM, inM and AZCL-He 

cellulose suggest that TtGH5_2, whilst it may interact with mannose-based substrates 

(based on small positive shifts in melting temperature) the interaction is likely to be non-

specific and does not yield hydrolytic activity against mannose glycosidic bonds. The ability 

of the protein to break down kGM but not inM, where the only difference is the dispersion 

of glucose moieties within the polysaccharide chain, suggests that enzymatic cleavage is 

limited to glycosidic linkages at glucose moieties. TLC analysis showed a wide range of 

weights of hydrolysis products on incubation of TtGH5_2 with kGM. This result was 

confirmed by MALDI mass spectrometry, where native oligosaccharides products in the 

range 4-17 degrees of polymerisation where observed. Smaller peaks at +42 m/z to the 

oligosaccharides are suggested to be due to acetylation of the mannose residues, a feature 

known to be present within the kGM substrate. Although defining the position of the acetyl 

groups would not be possible by this method of mass spectrometry, fragment analysis may 

provide a better view. Glucomannan is made up of β 1-4 linkages of glucose and mannose in 

a 1:1.6 ratio respectively.144 However it is likely that the activity of TtGH5_2 on kGM is an 

opportunistic hydrolytic reaction, and kGM is not the natural substrate of the enzyme. 

Indeed, analysis using PACE showed that the enzyme was able to degrade both MLG and 

kGM, but the latter products were not likely to have mannose reducing ends, which signifies 

that the enzyme only cuts at a glucose moiety.   

The high rate of dye release upon addition of TtGH5_2 to AZCL-He cellulose lead to the 

hypothesis that glucose-based polysaccharides are the major substrate for this enzyme. Dye 

release was observable by eye as soon as the enzyme was added to the polysaccharide 
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solution; the reaction could be seen occurring as a ‘cloud’ of blue colouring emerging 

around the 1 µL of enzyme, before the sample was mixed thoroughly. Conformation of 

activity on normal cellulose substrates, PASC and Avicel was carried out by MALDI mass 

spectrometry. Similarly, to the activity observed on kGM, TtGH5_2 produced cleavage 

products in a wide range of molecular weights; PD 4-11 for PASC and PD 4-13 for Avicel. 

TtGH5_2 was found to only produce one peak relating to an oligosaccharide (likely 

cellotretraose) with mass spectrometry when incubated with bMLG. It may be that the 

enzyme is unable to accommodate parts of the substrate into the binding pocket due to the 

addition of β-(1,3) bonds. Another possible explanation may be due to substrate solubility, 

bMLG is easily solubilised whilst the other cellulosic substrates PASC and Avicel remain 

insoluble in solution. The enzyme may prefer to hydrolyse more crystalline regions of 

cellulose, rather than the easily accessible substrates like bMLG.  The hydrolysis pattern of 

the cellulose substrates suggests that TtGH5_2 acts as an endoglucanase, working at 

random points within the polysaccharide chain, to produce a wide range of products. This is 

an interesting finding when compared with the Ekborg study on CelAB, where it was found 

that the multidomain protein displayed a higher specific activity on bMLG than on CMC, but 

no activity was displayed on PASC.105  

TtGH5_2 displayed Michaelis-Menten kinetics on the cellotriose based fluorescent 

substrate, 4-MU-C3, and not on the cellobiose substrate. There was also no activity with the 

substrate 4-MU- β1/3-C2 which suggested that the enzyme is not able to fit β (1-3) linkages 

within its active site. The higher activity of the enzyme on 4-MU-C3 allowed the kinetic 

parameters Vmax and KM, to be determined as 1.25311 ± 0.0268 µM s-1 and 103.12 ±7.29 µM 

respectively. The activity of TtGH5_2 is comparable to other GH cellulases, with similar KM in 

the µM range, indicating that the enzyme has a high binding efficieny for 4-Mu-C3.127, 145  

The enzyme is suggested to be more proficient at interacting with a substrate of three units 

or larger.  

3.7.2 TtGH5_4 

TtGH5_4 was found to be active on xyloglucan. Only six GH5 enzymes are active on 

xyloglucan and are subsequently only found in subfamily TtGH5_4. Whilst TSA of the protein 

with different substrates indicated a positive shift in melting temperature for rAX, through 

TLC the activity was defined as specific only for tXyG. The degradation pattern of tXyG by 

TtGH5_4 observed by TLC showed two discrete bands at a slightly higher molecular weight 

than the largest standard on the xylose oligosaccharide ladder, X6 (810 g/mol) as well as 
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smaller more indistinct bands. Due to the branching structure of tXyG, this most likely does 

not indicate a product with a backbone length larger than that of X6. TtGH5_4 family 

members active on xyloglucan are thought to cleave primarily between the unbranched 

glycosyl units. Cleavage at unbranched glycosyl units creates products with variable side 

chains; 19 possible side chain structures have been identified, albeit not all at once but on a 

variety of different xyloglucans from different plant species.146 Whilst there is a good variety 

of possible products, a set of four xyloglucan oligosaccharides are canonically observed in 

the degradation of tXyG by other members of the GH5_4 subfamily; XXXG, XLXG, XXLG and 

XLLG, whereby G equates to Glcp, X to [Xylp(_1,6)]Glcp, and L to 

[Galp(_1,2)Xylp(_1,6)]Glcp.138, 142 These canonical GH5_4 degradation products are made up 

of 7, 8, 8 and 9 sugar units, respectively. The TLC indicated two major bands were a higher 

molecular weight than was observed for the X6 standard that contains 6 sugar units. 

Therefore, it could be suggested that XXXG as well as XLXG/XXLG are being formed as the 

major products. The TtGH5_4-xyloglucan reaction was analysed by HPAEC-PAD but due to 

lack of available standards at the time, the individual product components were not 

characterised. The HPAEC-PAD spectrum for the breakdown of tXyG by TtGH5_4 was a 

complex picture, possibly indicating the complex nature of the polysaccharide and the 

variety of products produced by the enzyme. On the other hand, comparing the observed 

TtGH5_4 HPAEC-PAD data with similar enzymes in the literature may suggest that during this 

analysis there was incomplete hydrolysis of the substrate. Whilst it is very likely that there 

are products in the format of XXXG, XXLG, XLXG and XLLG (around a retention time of 10 

minutes), the peaks at longer retention times indicate larger but soluble oligosaccharides; 

these could be in the form of repeat units of the common tXyG breakdown products that 

had not yet been cleaved by the enzyme – i.e. [XXXG]2, [XXXG]4, [XXXG]6, [XXXG]8.  There 

could also be differences in chain extensions to which TtGH5_4 is unable to accommodate, 

yielding a slightly different pattern of products to presented in the literature. To further 

elucidate these findings, the soluble reaction products were also analysed by MALDI-TOF. 

Four major peaks were assigned as XLLG (1409.5 m/z), XLXG/XXLG (1247.4 m/z), 

XXGGG/XLGG (1115.4 m/z), XXX (923.3 m/z), XX (659.1 m/z). Despite accurate molecular 

weights, there remains some ambiguity in the assignment due to several species having the 

same molecular weights. However, the major peaks fit well with the expected degradation 

pattern on tXyG by a GH5_4 enzyme; where cleavage occurs at the unbranched glucose 

residue at position G. Preliminary kinetics analysis using the DNSA reducing sugar assay was 

carried out on this enzyme, albeit at a temperature that is slightly above the protein melting 
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temperature. Despite this, the enzyme proved efficient at degrading tXyG with a kcat/kM of 

7.71 x105 mg-1 ml Min-1. It can therefore be expected that further kinetic analysis on this 

protein at a more suitable temperate would result in a much higher value of kcat/kM. Other 

GH5_4 enzymes show similar kinetic parameters, with examples being BoGH5 (kcat 2.61 

x104 min-1, Km 0.82 mM) and PpXG5 (V0/[E]t= 8700 min-1 at 0.5 mg ml-1 substrate) which, as 

seen in the analysis of TtGH5_4, show enzyme specificity for xyloglucan only. 147-148 

3.7.3 TtGH5-un  

As TtGH5_un remains unassigned to a GH5 subfamily, there are many possible functional 

roles for this enzyme. Sequence analysis of TtGH5_un using NCBI BLAST did not lead to any 

definitive possibilities in enzyme activity due to the very low sequence identity the protein 

shares with other members of GH5. Purification of TtGH5_un was extremely successful in 

terms of yield, but cleavage of the protein had occurred during its preparation and as such, a 

loss of 64 amino acids was observed by ESI MS. Despite this, the protein was found to be 

stable, with a melting temperature of 65.0 °C. A broad range of substrates were initially 

tested by TSA. Large shifts in protein melting temperature were observed upon mixing with 

solid kGM and bMLG, although little increase was observed when the protein was mixed 

with a 1 mg mL-1 suspension of kGM. The latter result was most likely due to the insoluble 

nature of the substrate, resulting in little substrate reaching the test sample after pipette 

transfer. Test reactions were set up for TtGH5_un on both substrates, as well as inM and GM 

and products visualised using TLC. TLC showed no observable bands for samples from the 

inM or GM reactions, an observation that was backed up by MALDI-TOF analysis; no 

oligosaccharide peaks were observed in the soluble fractions taken for mass spectrometry 

analysis and the samples matched with the soluble fractions of the no-enzyme control 

reactions. TtGH5_un hydrolysis of kGM was evident on the TLC plate, with a large number of 

products separating poorly on the plate. The product profile was also observed as a range of 

oligosaccharide products of PD 4-11 in MALDI-TOF analysis. The enzyme, whilst unable to 

cleave inM was able to act on kGM, indicating that the enzyme works on the cleavage of 

glycosyl and not manosyl residues. Indeed, PACE analysis suggested that degradation of kGM 

produced products with glucose at the reducing end, and not mannose.  TLC saw discrete 

bands for activity of TtGH5_un on bMLG, with the predominant product being a PD of 4. 

MALDI-TOF analysis of the breakdown of bMLG also observed a discrete degradation 

pattern, where beginning at PD 4, predominant product peaks were 3 sugar units apart. The 

ratio of products could suggest that the enzyme works in a processive manner and requires 
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movement of 3 units along the chain before another cleavage event takes place. However, 

this theory does not consider the mixed linkage nature of the substrate. The mixed linkage 

glucan is typical formed of repeating 3-5 units of β 1-4 linked glucose, separated by a single 

β 1-3 linked moiety.149-150 The inability of the enzyme to produce oligomers at certain 

degrees of polymerisation may reflect the repeating nature of the β (1-4), β (1-3) bonding 

pattern. During kinetics analysis using a fluorescent assay with 4-MU-C2, 4-MU-C3 and 4-

MU-B1/3-C2, TtGH5_un was found to cleave only the compounds containing β 1-4 linked 

glucose. This, coupled with the mass spectrometry profile of TtGH5_un on mixed linkage 

glucan suggests that the enzyme is not able to accommodate β 1-3 linked moieties within 

the active site; as such the enzyme is active only on sections of the substrate that do not 

containing β 1-3, which resulted in a strong preference for oligosaccharides of DP 3 units 

apart.  Drawing on the kinetic analysis, TtGH5_un, like that observed for TtGH5_2 displayed 

Michaelis-Menten kinetics on the cellotriose based fluorescent substrate, and not on the 

cellobiose substrate. It can therefore be suggested, based on the values of Vmax and KM, 0.321 

± 0.0124 µM s-1 and 104.61 ±14.18 µM respectively that the enzyme is more proficient at 

interacting with a substrate of three units or larger.  

TtGH5_un was successfully crystallised in apo form and a data set obtained at the Diamond 

synchrotron. The data set obtained was of good quality, resolution at 1.8 Å, however, 

molecular replacement consistently failed during structural analysis due to the low sequence 

similarity of closest related structures. The majority of structures in the NCBI BLAST PDB 

search produced results of less than 30% identity over an incomplete range of the sequence. 

As such, molecular replacement pipelines failed to produce a structural model. Heavy atom 

soaking strategies were employed; crystals were dip-soaked in a 0.5 M KBr solution (made 

up in mother liquor) and data sets analysed using Br as a heavy atom for SAD phasing. This 

technique as well as using the natural sulphur atoms contained in the structure did not have 

enough anomalous signal of the heavy atoms to produce a model.  One train of thought was 

related to the issue in sequence length of the purified protein. It was noted in Chapter 2 that 

TtGH5_un was not at the correct molecular weight when the protein was analysed by ESI 

mass spectrometry. It was suggested that cleavage of the protein had occurred at some 

point during purification (this was noted in two separate purifications) with a loss of 64 

amino acids. Despite this the protein was still active, as evidenced by the previous 

discussion. In an attempt to alleviate any issues caused by inputting a protein sequence that 

was too long, the actual molecular weight was used instead. This method of molecular 

replacement still failed to produce a model.  
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3.8 Conclusion 

This section of work has led to the substrate specific characterisation of three GH5 proteins 

from T. turnerae. Two proteins, TtGH5_2 and TtGH5_un were determined to cleave glycosyl 

moieties within insoluble cellulose-based polysaccharides and soluble mixed linkage glucans. 

The third protein, TtGH5_4 was active on complex xyloglucan and able to navigate the highly 

branched structure, cleaving at unbranched glucose residues. Activity was determined using 

various analytical techniques to enable assignment of hydrolysis products. TtGH5_un is a 

completely novel protein, unassigned to a GH5 subfamily, shown here to favour cellulose 

based substrates. This novel characterisation will hopefully pave the way for characterisation 

of new related GH5_un sequences once they become available from genomics.  
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4  

Characterisation of 

TtGH12  

4.1 Abstract 

The ability of the shipworm to use a variety of wooden substrates as a food source has been 

explored by focusing on characterisation of novel lignocellulosic enzymes provided by the 

animal’s endosymbiotic bacteria, T. turnerae. Despite localisation of the bacteria within 

specialised gills cells, it is thought that the animals are able to use lignocellulosic bacterial 

enzymes within their own digestive system, which is otherwise void of any major microbial 

communities normally involved in polysaccharide degradation. This work features an 

enzyme belonging to the glycoside hydrolase 12 family, members of which are known to 

breakdown cellulose and xyloglucans. The structure of TtGH12 (ACR14297.1) was solved at 

1.6 Å using molecular replacement, and shows the classic ‘jelly-roll’ fold and long substrate 

binding grove found in other GH12 structures.  A protein-inhibitor complex was also solved 

at 1.9 Å, where the compound, Glc β1,4 noeuromycin was found to bind in the -2 to -1 

subsites, with the glucose moiety ring stacking with nearby tryptophan residues, two of 

which are rotated compared to other GH12 enzymes. TtGH12 was found to lack the typical 

aspartate residue thought to form a catalytic triad in the centre of the active site and instead 

exhibits a threonine in this position. An arginine residue in close proximity to the -1 subsite 

was found to provide hydrogen bonding interactions with the Glc β1,4 noeuromycin and 

may be involved in substrate binding or catalysis. Sequence and phylogenetic analysis 

suggest TtGH12 contains an alteration in the normally conserved catalytic triad, and sits with 

two other sequences as a single branch within the GH12 phylogentic tree. Thermal shift 

assays showed TtGH12 to have a biphasic thermal profile, with TM at 48 and 61 °C. 

Interaction with substrates xylan, mixed linkage glucan, xyloglucan and mixed linkage xylan 

produced only single melting curves at 62, 66, 54 and 62 °C respectively. TtGH12 was found 
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to have some background activity on xylan and mixed linkage glucan over a long reaction 

time but no typical GH12 cellulase activity was observed. Based on lack of activity on 

substrates typically acted on by GH12 enzymes and by significant changes within the active 

site of the protein, TtGH12 remains ambiguous but likely has a new, as yet unknown, 

substrate range within the GH12 family.  This work provides a platform for further analysis of 

TtGH12, which should elucidate the function and ultimately its place among other GH12 

enzymes.  

4.2 Introduction 

4.2.1 The 12th Family 

Glycoside hydrolase family 12 is one of the smaller families within the CAZy database, and as 

of 2018, is comprised of a mixture 828 bacterial and eukaryotic sequence entries. Of these, 

69 sequences have been characterised, and enzyme function covers endoglucanases, 

xyloglucanases and β-1,3-1,4-glucanases.34 The GH12 family, historically known as cellulose 

family H, was identified based on the similarity to known enzymes found within the GH11 

family, which primarily contains xylanases. Despite this, no primary xylanase activity has 

been observed in the GH12 family. The GH11 and GH12 families are grouped together into 

clan GH-C; both of which share a similar protein fold and break β-1,4 glycosidic bonds 

through a retaining mechanism (for a discussion on hydrolytic cleavage mechanism, please 

refer to Chapter 1).151 

Clan GH-C exhibits a β-jelly roll structure; whereby two twisted anti-parallel β-sheets, linked 

by flexible loops, stack together. Stacking of the sheets creates a ‘sandwich’ structure in 

which the aliphatic residues are exposed on the sheet outer surfaces, whilst hydrophobic 

residues are held as the ‘filling’ between the two stacked β-sheets.151 A small α-helix is 

positioned packing against the outer face of the structure. Hydrophobic cluster analysis 

identified some major structural similarities between the two clans, an observation that was 

analysed crystallographically by Sulzenbacher et al from 1997-1990. 24, 151-152 Sulzenbacher 

looked at a GH12 protein, CelB2 from Steptomyces lividans, producing models which were 

extremely informative in providing a comparison between ‘apo’ and glycosyl-enzyme 

intermediate structures, as well as distinguishing the differences between GH12 and 

previously characterised GH11 enzymes. 24, 151 CelB2 consists of two separate but stacking β-

sheets, one of which is made up of fewer individual β-strands than the other.  The stacking 

of the two slightly differently sized sheets creates a curvature, whereby on the concave face, 
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a long substrate groove is observed. 151 The perimeter of the binding groove is defined by 

the loop regions, which pass through the two β-sheets. One inserted loop is significantly 

longer, and its positioning is thought to close off the reducing end of the substrate binding 

groove; a major similarity with GH11 enzymes, and commonly referred to as ‘the cord’. A 12 

residue long loop representing this ‘cord’ structure was shown to have well defined electron 

density within CelB, indicating a possible structural function. 151, 153 The cord has been 

suggested to undergo a conformation change upon substrate binding 153, but this has yet to 

be observed in GH12 or GH11 substrate complexes. The apo structure of CelB2 was 

conformation of the expected similarity of GH12 and GH11 proteins, whereby the core 

structure is common to both families, and differences are observed in loop regions. For 

example, it was noted that in CelB2, a loop near subsite +2 was longer compared with the 

corresponding loop in GH11 structures, allowing the binding groove of CelB2 at this position 

to be significantly deeper.151 The shape of GH11 proteins has been previously described as 

analogous to a hand, where the β-sheets represent the ‘fingers’, the concave face as the 

‘palm’ and a third region of β-sheets protruding in front of the concave face as the 

‘thumb’.153 A major difference between GH12 and GH11 proteins was found to be that GH12 

proteins lack the ‘thumb’ region; without the β-strand region crossing over the binding cleft, 

GH12 proteins can adopt a more open active site, Figure 82.24 
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Figure 82 Structural comparison of a GH12 (CelB2, PDB; 2NLR) and GH11 (PDB; 3ZSE) protein , 
shown as ribbons and as surfaces. A single asterisk marks the ‘cord’ on both GH12 and GH11 
ribbon structures, a structured loop conserved at the reducing end of the active site cleft in both 
GH families. A double asterisk on the GH11 ribbon structure highlights the ‘thumb’ region, 
which is not present in GH12 proteins, and protrudes around the front of the active site. The 
effect of this ‘thumb’ region can be easily seen on the surface views, where the GH11 active site 
is partially covered by this region, whilst the GH12 active site is completely open. Both proteins 
are shown with enzymatic trapping agents bound within the active sites. Images produced in 
CCP4mg.55 
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Catalytic residues are conserved in clan GH-C, and are known to be two glutamic acid 

residues, located closely to each other in order to facilitate the retaining mechanism of 

glycosidic bond cleavage.  The similarity between GH11 and GH12 families meant that the 

catalytic residues could be predicted by sequence homology modelling. Experiments which 

were able to define the catalytic residues of GH11 xylanases firstly involved the use of 

enzymatic trapping agents,154 (inhibitors displaying poor leaving groups, essentially trapping 

the covalent intermediate within the active site) the interpretations from which could be 

applied to CelB2, allowing the catalytic nucleophile to be automatically assigned. 151 

Secondly, NMR analysis was able to identify the general acid/base residue in a GH11 

xylanase from Bacillus circulans, as a second glutamic acid, by comparing the residue’s pKa 

values during enzymatic titrations; changes in pKa in the general acid/base as it alters role 

during the reaction itinerary is described as pKa cycling.19 Site directed mutagenesis was also 

employed to test whether altering the proposed catalytic glutamic acid residues would form 

inactive mutants of the endoglucanase Cel12A from Trichoderma reesei, whereby the 

authors reported a 98% loss of function upon mutation of both catalytic residues to 

glutamine.155 Further use of enzymatic trapping agents, this time with a longer substrate 

allowed Sulzenbachen to map out the interactions occurring within the binding cleft.  

Crystallography of CelB in complex as an enzyme-intermediate and product complex was 

used to defined the hydrogen bonding network surrounding the bound ligands, confirming 

the occurrence of 5 subsites; -3 to +2. 

Despite the conservation of catalytic machinery, the two families display different activities, 

with GH12 showing very limited activity on xylan. Sulzenbacher suggested this to be due to a 

slight change in the topology around the -1 subsite, where the directionality of a Tyr 

adjacent in space to the proton donor, forms a cavity which is likely to induce preference for 

the exocyclic hydroxy-methyl substituent of glucose moieties, over xylan which lacks this 

group.151 Indeed, as mentioned above, the increased depth of the active site compared with 

GH11 proteins may drive substrate preference towards glucan based polysaccharides which 

are able to fill the cleft and form more stabilising interactions than a slightly simpler xylan 

backbone polysaccharide.  

As mentioned previously, GH12 enzymes lack the ‘thumb’ region conserved in GH11 

xylanases 24. Lack of this cross over loop opens up the binding cleft to more substituted 

substrates and has resulted in some GH12 enzymes accommodating complex xyloglucans 

into their active site (see Chapter 3 for a discussion on xyloglucan structure). Indeed, studies 
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of a xyloglucanase XG12 from Bacillus licheniformis by Gloster et al highlighted the ability of 

the enzyme to tolerate substitutions on the glucan backbone in the -3,-2, +1 and +2 

positions. This allows for activity to occur on both branched and unbranched glucose based 

polysaccharides.148 As such, GH12 enzymes are one of the few families able to break down 

complex xyloglucans.  

4.3 This Work 

Teredinibacter turnerae exhibits only one GH12 sequence in its vast array of glycoside 

hydrolases and as such, the study of this enzyme, TtGH12, was deemed an interesting 

target. The goal of the work presented herein was to establish the functionality of TtGH12, 

assess its hydrolytic capability and use x-ray crystallography to investigate the 3D structure 

of the protein.  
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4.4 Methods 

4.4.1 Materials 

Substrates used in this study were tamarind xyloglucan (tXyG), mixed linkage barley beta 

glucan (bMLG), Avicel (Sigma), Phosphoric acid swollen cellulose (PASC) (Sigma), birchwood 

xylan (bX), mixed linkage β 1-3, β 1-4 xylan(MLX) (Elicityl/Oligotech). Crystallisation screens 

were obtained from Molecular Dimensions (PACT) and Hampton Research (PEG/ION and 

Crystal Screen HT). Cellohexaose (Megazyme) and Glc β 1,4 noeuromycin (a gift for the 

Davies Lab for a previous project) were obtained for crystal soaking experiments. Pure 

recombinant TtGH12 (ACR14297.1) was prepared as described in Chapter 2. 

4.4.2 Thermal shift analysis 

The TSA assay was carried out using a Stratagene rtPCR machine, SYPRO orange dye (1000X 

stock, 15 µL) using 1 mg ml-1 final concentration of TtGH12 protein, with small amounts of 

the solid polysaccharides mixed into the final sample. Samples were heated from 20°C to 91° 

in increments of 1 °C over 71 cycles. The fluorescence of SYPRO orange was monitored 

throughout and the data used to calculate the protein melting temperature. Curves were 

fitted using a free online tool developed by Paul Bond at the University of York and is 

available at; http://paulsbond.co.uk/jtsa.         

4.4.3 Activity Assays 

Reactions were carried out in 1.5 mL Eppendorf tubes, held horizontally during shaking to 

ensure thorough mixing of insoluble substrates during incubation, which was carried out at 

37 and 45 °C. Enzyme concentrations were used at 1 mg mL-1 and substrates at 1 mg mL-1. 

The products were analysed by TLC, as described in Chapter 3   

4.4.4 Crystallisation 

TtGH12 (38 mg ml-1) was tested for crystallisation hits using three commercial screens, 

PACT, Crystal Screen HT and Peg Ion HT. A 24 well hanging drop plate was set up using 

magnesium chloride hexahydrate (0.2 M) at pH 5 and pH 6 with the PEG 3350 concentration 

increasing from 15-25% w/v. Protein and buffer were mixed in a 1:1 ratio. Large long plate 

crystals grew overnight and showed a preference for pH 6 and 15% w/v PEG 3350. Crystals 
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were fished using cryo loops and crystals dipped in a drop containing 50% v/v mother liquor 

(magnesium chloride hexahydrate 0.2 M, pH 6, 15% w/v PEG 3350 and 25% v/v glycerol as a 

cryoprotectant before being flash frozen in liquid nitrogen. Ligand soaks with cellohexaose 

(1 mg ml-1) glc β 1,4 noeuromycin and glucose β-1,3-isofagamine (powder soak) were also 

carried out on TtGH12 crystals. The crystals were tested for diffraction in house, before 

being sent to the Diamond synchrotron and processed using the beamline I04. 

4.4.5 Structure Solution 

The diffraction data for TtGH12 was collected to a resolution of 1.6 Å. The data was analysed 

using the CCP4I2 pipeline156. Data reduction was carried out using AIMLESS, with data cut to 

1.9 Å. Molecular replacement was run using PHASER (Expert MR)157. The model chosen for 

molecular replacement was a truncated version (CHAINSAW) of 2JEM which has a 30% 

sequence identity with TtGH12. The structure solution was used in BUCCANEER 158, where 

the model was only used to place and name chains, before iterations of seed chain growth 

were carried out. Scripted model building in COOT 159 was used to automatically build side 

chains into the remaining density, before several iterations of REFMAC 160 and manual model 

building in COOT were carried out. Data sets for crystals soaked in ligands were treated in 

the same manor except the model used for molecular replacement was the ‘apo’ TtGH12 

structure solution. The active sites were checked for extra electron density that could be 

attributed to a ligand molecule using COOT. Glc β1,4 noeuromycin  was built into one model 

using JLigand 161 before being subjected to refinement cycles in REFMAC.  
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4.5 Results 

4.5.1 TSA 

The melting temperature of apo TtGH12 was analysed by TSA assay and the protein was 

found to exhibit two distinct melting curves. The first melting event was at approximately 48 

°C with the second event occurring at approximately 60 °C. To identify any possible 

polysaccharide interactions, TSA assays were conducted on TtGH12 in conditions containing 

protein incubated with Avicel, PASC, bX, bMLG, tXyG and MLX. Incubation with bX, MLX, 

bMLG and tXyG removed the biphasic curve seen for the apo protein sample, and only a 

single melting event was observed. Incubation with crystalline cellulose Avicel and PASC saw 

no change in the dual melting event with similar melting temperatures calculated.  

Table 15 summarizes the observed melting temperatures under the different substrate 

conditions, whilst Figure 83 shows some of the melting curves. 

Table 15 TtGH12 protein melting temperatures as analysed using the TSA assay with different 
substrates. Some conditions yielded dual melting events, whilst others saw only one protein 
melting event (highlighted in bold).  

Substrate Average Melting Temperature (°C) 

Protein only 48,61 

Cellulose (Avicel) 49, 60.1 

Cellulose (PASC) 49, 60 

Barley β glucan 

(bMLG) 

66.0 

Birchwood Xylan (bX) 61.8 

Xyloglucan (tXyG) 53.5 

Mixed linkage xylan 

(MLX) 

62.0 
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The biphasic melting temperature of TtGH12 was investigated further by first heating 10 

individual protein samples at temperatures ranging between 41 and 66 °C for 2 hours, 

before analysing the samples by TSA. Samples heated at 41 °C showed two melting curves, 

albeit with only a small first melting curve. Whereas 41.5 and 42.7 °C exhibited only one 

melting curve, with a TM of 55 and 59 °C respectively. All protein samples heated above 42.7 

°C exhibited no melting curves indicating that protein degradation had already occurred.  

 

Figure 83 TSA of TtGH12 . A) TtGH12 apo melting curve, two runs displays which showed the 
two melting events and the subsequently fitted sigmoidal curves. B) TtGH12 apo melting curve 
compared with TtGH12 with cellulose (PASC), mixed linkage glucan (bMLG) and birchwood 
xlyan (bX).  

A 

B 
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4.5.2 TLC Analysis 

TtGH12 was incubated at 37°C overnight, at pH 5, 6 and 8, with tXyG, bX, bMLG and MLX. 

The soluble fractions of the reactions were analysed by TLC. No activity was observed for 

tXyG whilst very little activity was observed with bX (some smearing). Discrete bands were 

seen for reactions of TtGH12 with bMLG and MLX, although the amount of smearing and 

substrate still at the initial sample spot position on the plate indicates incomplete 

degradation of the substrate. Analysis of the TLC plate suggested the smallest products were 

equal to or larger than 3 glucose units, by comparison with the xylooligosaccharide 

standards. There was a preference for lower pH values, with more activity seen in tests run 

at pH 5. The experiment was repeated at higher temperature; incubation overnight at 45 °C 

significantly reduced the amount of activity observed. Incubation at 50 °C destroyed all 

protein function observed at lower temperature, with a white precipitate being produced.  

 

 

Figure 84 TLC plate showing the soluble reaction products from incubation of TtGH12, at three 
different pHs on tXyG, bX, MLG, MLX. Xylooligosaccharide standards, X1,X2, X3 and X6 are 
shown on the right.  



 

206 
 

4.5.3  Structure Solution of TtGH12 

4.5.3.1 Crystallisation 

TtGH12 was tested for crystallisation hits using three commercial screens, PACT, Crystal 

Screen HT and Peg Ion HT. TtGH12 was quick to crystallise in various different crystallisation 

conditions, mostly forming long thin plates as shown in Figure 85. Condition A in Figure 85 

was chosen for optimisation based on the size and separation of individual crystal clusters. A 

24 well hanging drop plate was set up using magnesium chloride hexahydrate at pH 5 and 

pH 6 with the PEG 3350 concentration increasing from 15-25% w/v. Protein and buffer were 

mixed in a 1:1 ratio. Large long plate crystals grew overnight and showed a preference for 

pH 6 and 15% w/v PEG 3350.  

   

A) PEG/Ion A5: 0.2 M 

Magnesium chloride 

hexahydrate, 20% w/v 

Polyethylene glycol 3,350, pH 

5.9 

B) PACT H11: 0.2 M Sodium 

citrate tribasic dehydrate, 0.1 

M Bis-Tris propane, pH 8.5, 20 

% w/v PEG 3350 

C) PEG/Ion F1: 4% v/v 

Tacsimate, pH 6.0, 12% w/v 

Polyethylene glycol 3,350 

 
  

D) PEG/Ion C9: 0.2 M Sodium 

sulfate decahydrate, 20% w/v 

Polyethylene glycol 3,350, pH 

6.7 

E) Crystal Screen HT B10: 0.2 

M Sodium acetate trihydrate, 

0.1 M TRIS hydrochloride pH 

8.5, 30% w/v PEG 4,000 

F) PACT C10: 0.2M 

Magnesium chloride 

hexahydrate, 0.1 M HEPES, pH 

7.0, 20 % w/v PEG 6000 

Figure 85 TtGH12 crystallization screening produced hits in many different mother liquor 
compositions.  
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4.5.3.2 Data collection and structure solution 

TtGH12 crystals were initially tested in house to access the quality of x-ray diffraction. Figure 

86 shows two images, how a single crystal is positioned inside small loops containing mother 

liquor and cryo-protectant during the diffraction experiment, and finally a diffraction image. 

TtGH12 crystals were strongly diffracting and showed clear diffraction spots (Figure 86) 

during in-house analysis. Complete data sets used during structure solution of TtGH12 were 

collected at the Diamond Light Source, using beamline I04. Crystals dip soaked in Glc β 1,4 

noeuromycin had data sets collected separately. 

 

Figure 86 A) Crystal held in loop and photographed after in house testing. B) Test TtGH12 
crystal x-ray diffraction pattern, showing strong spots and an ice ring.  

 

A B 
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Table 16 Data collection and refinement statistics for TtGH12 apo and Glc β 1,4 noeuromycin  
complex structures. Values given in brackets corresponds to the outer shell. 

  TtGH12  

Apo 

TtGH12 Glc β 1,4 

noeuromycin  

Data collection Space group P 21 2 21 P 2 21 21 

 a, b, c (Å) 51.5 81.2 139.1 52.43 72.99 141.09 

(°) 90.0 90.0 90.0 90.0 90.0 90.0 

 Resolution (Å) 52.8 (1.6) 70.5 (1.9) 

 Rmerge 0.094 (1.46) 0.229 (2.65) 

 Rpim 0.037 (0.576) 0.144 (1.20) 

 CC(1/2) 0.995 (0.730) 0.995 (0.411) 

 I / σ(I) 9.0 (1.4) 5.9 (1.0) 

 Completeness (%) 99.9 (99.3) 99.9 (100.0) 

 Redundancy 8.1 (8.3) 6.6 (6.8) 

Refinement Resolution (Å) 1.6 1.9 

 No. reflections 77728 43507 

 Rwork / Rfree 0.24/0.27 0.24/0.31 

No. atoms Protein 4021 3975 

 Ligand/ion 30 56 

 Water 194 299 

B-factors (Å2) Protein 26.0 26.1 

 Ligand/ion 39.9 36.2 

 Water 33.0 32.6 

R.m.s. deviations Bond lengths (Å) 0.013 0.010 

 Bond angles (°) 1.6 1.4 

Ramachandran plot Most favoured (%) 97.7 96.4 

 Allowed (%) 1.8 3.4 
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The diffraction data for TtGH12 was collected to a resolution of 1.6 Å. Subsequent data 

reduction using AIMLESS found the space group to be P 21 21 21 with a solution probability of 

85 %. However, this was complicated by the occurrence of translational non-crystallographic 

symmetry within the unit cell (at a coordinate (0.5 0.5 0.458), chance probability 0.0177, 

height 0.435 of origin, as suggested during data reduction). Molecular replacement using the 

space group suggested by AIMLESS did not produce a structure solution, as indicated by r 

factors above 0.5. MOLREP was used to test the space groups, P 2 2 2, P 2 2 21, P 21 2 2 and 

P 21 2 21, which indicated the likely space group as P 21 2 21. A search model was found using 

NCBI BLAST (PDB search, 113) by similarity of the TtGH12 sequence to structures deposited in 

the PDB 113. The model chosen was 2JEM, a GH12 protein from Bacillus licheniformis 

(BlGH12), known to be active on xyloglucan, which shared a 30% sequence identity with 

TtGH12. The search model was truncated using CHAINSAW based on sequence alignment 

(CLUSTALW) with TtGH12. Molecular replacement was carried out in PHASER (Expert MR)157, 

using the truncated search model and manual definition of the space group as P 2 21 21. A 

unique solution was found, with two molecules in the asymmetric unit, but with Rcryst and 

Rfree as 0.49 and 0.52 respectively. The solution was used in BUCCANEER158, where the model 

was only used to place and name chains, before iterations of seed chain growth were carried 

out. This significantly improved the model, with Rfactor at 0.26 and a completeness of 100%. 

Scripted model building in COOT159 was used to automatically build side chains into the 

remaining density, before several iterations of REFMAC160, 162 and manual model building in 

COOT were carried out. The model was found to be acceptable, with final Rfactor and Rfree as 

0.22/0.25 respectively. Aspects of the structure were validated using the various tools within 

the COOT manual interface. The structure of TtGH12 is shown in Figure 87, created using 

CCP4mg 55, as front and side-on views, with and without a surface (coloured by electrostatic 

potential). 

TtGH12 crystals were soaked with three ligands; cellohexaose and two glyosidase inhibitors, 

Glc β 1,4 noeuromycin and glucose β-1,3-isofagamine. The latter two soaking experiments 

were carried out by powder diffusion into the crystal drop. Data were collected at the 

Diamond Light source, and processed in a similar manner to that of the apo structure. 

However, molecular replacement was carried out using the solved apo structure of TtGH12 

instead of the original search model 2JEM, and free R sets maintained. Only crystals soaked 

in Glc β 1,4 noeuromycin  displayed extra density within the active site, Figure 88. The Glc β 

1,4 noeuromycin  ligand was manually incorporated into the model using the COOT 

extension JLigand161, and refined with REFMAC. The final model for TtGH12 in complex with 
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Glc β 1,4 noeuromycin  displayed the statistics Rcrst and Rfree as 0.24 and 0.31 respectively. 

The ligand is observed binding in the centre of the active site cleft, and has a likely defined 

set of interactions from nearest neighbour residues (CCP4mg55 was used to show 

residues/water molecules up to 4 Å away from ligand atoms) as shown in Figure 89. 

 

 

Figure 87 TtGH12 apo structure, shown as different perspectives , ‘front’ and ‘side’ (coloured 
dark blue to light green, N-C terminus), with and without surface (coloured by electrostatic 
potential). An asterisk highlights the ‘cord’, a structured loop which crosses the reducing end of 
the active site. Images produced in CCP4mg55.  
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Figure 88 Overview of ligand incorportation into TtGH12 structure  Above; Positive electron 
density within the binding cleft of TtGH12 before the Glc β 1,4 noeuromycin  ligand was 
manually fitted and refined using COOT159 and REFMAC160, image taken in COOT. Middle; 
Electron density around ligand before refinement. Below; electron density of ligand after 
refinement (REFMAC160). Latter two images produced in CCP4mg55. 
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Figure 89 TtGH12 in complex with Glc β 1,4 noeuromycin , shown above bound centrally in the 
active site, and below surrounded by nearest neighbours (with 4 Å). The series of four 
conserved Trp residues surround the ligand, with proposed catalytic residues Glu232 and 
Glu138 positioned on the right. Images produced in CCP4mg55 
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4.5.4 Comparison of TtGH12 Structure with other Family 

Members  

The structure of TtGH12 was compared with several other GH12-complex structures in the 

PDB in an attempt to discern more clues about the possible activity of the enzyme. TtGH12 

was found to be display slight activity on mixed linkage glucan and mixed linkage xylan, but 

not on cellulose or xyloglucan. The TtGH12-Glc β 1,4 noeuromycin  inhibitor complex has 

provided structural information regarding the -2 to -1 subsites within the active site. 

Comparison of the active site of TtGH12 with that of the xyloglucanase structure BlGH12 

used for molecular replacement and structure solution of TtGH12 shows some significant 

differences. This may indicate why TtGH12 does not display activity on xyloglucan. Figure 90 

shows a comparison of the positions of the tryptophan residues (cylinders) in both TtGH12 

and BlGH12 proteins, with ligands bound (thin bonds). There is significant movement around 

some of the conserved tryptophan residues, specifically Trp78 and Trp187 which are shown 

to be rotated in TtGH12 compared with the equivalent residues in BlGH12.   

 

  

Figure 90 Comparison of the positioning of the four GH12 conserved tryptophan residues in 
TtGH12 and BlGH12. TtGH12 residues are labelled and Glc β1,4 noeuromycin  is shown in blue. 
The xyloglucan ligand bound in the BlGH12 structure is shown in green.  
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Figure 91 A) Close up view of Glc β1,4 noeuromycin  bound in the active site of TtGH12 , 
showing the distances between the two catalytic glutamate residues, a nearby arginine and two 
water molecules. B) Structure of TtGH12-Glc β 1,4 noeuromycin overlaid with BlGH12, a 
catalytically inactive mutant xlyoglucanase with bound substrate (tan, PDB;2JEM). Extra 
hydrogen bonding to the Glc β 1,4 noeuromycin  is provided by a close arginine residue, which 
is not present in the overlaid xyloglucanase structure, where an isoleucine is found instead.   
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Figure 91 shows the binding environment of Glc β 1,4 noeuromycin in TtGH12, where 

distances to the nearby residues are shown. These distances are likely to represent the 

hydrogen bonding network, where the bound inhibitor is able to interact with the nearby 

Arg 175 and Glu 138 (likely the catalytic acid/base) as well as several water molecules. 

Comparison of the catalytic residues of TtGH12 with BlGH12 shows that the catalytic 

acid/base residues are in equivalent positions. The structure of BlGH12 in this instance is a 

catalytic mutant, E155A, where the alanine residue can be seen in a similar position to the 

catalytic nucleophile of TtGH12, Figure 91. In BlGH12 the xyloglucan ligand appears to bind 

in a slightly ‘deeper’ position than glc β 1,4 noeuromycine in TtGH12, which may be a result 

of the catalytic mutation to an inactive alanine residue providing more space for binding.  A 

significant difference is in the presence of Arg 175 in TtGH12 instead of Ile 189 in BlGH12. 

The change in residue type from Ile to Arg provides the bound inhibitor with more hydrogen 

bonding interactions.  

 

Figure 92 Active site comparison of TtGH12 (pink) and TmGH12 (corel, PDB; 3AMM). Residues 
in TmGH12 that are different to those in TtGH12 are labelled in corel, whereas all other black 
labels are residues in TtGH12. Only one tryptophan residue is rotated, but there are some other 
differences, including Arg60 which appears to bend over the bound glucan ligand, as well as 
replacement of Arg175 with another Trp residue.  
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Comparison of TtGH12 with a cellulose active GH12 enzyme, TmGH12 (Thermotoga 

maritima, PDB; 3AMM), produced a similar alignment. Figure 92 shows that both catalytic 

glutamate residues occupy the same position within the active site, with the catalytic 

acid/base sitting below the -1 subsite. There are some significant differences between the 

two active sites, with a series of different residues around the peripheries of the binding 

cleft in TmGH12, such as addition of Lys73 and a lack of Arg175 and subsequent 

replacement with another residue unable to provide hydrogen bonding interactions to 

ligands, Trp176. Movements in residue positions are also observed, Glu116/Glu117 of 

TmGH12 and TtGH12 respectively are in altered locations and as observed previously 

Typ187 of TtGH12 is rotated compared with the equivalent residue in TmGH12. A major 

difference in the active site of TmGH12 is the positioning of an unusual loop (Tyr61-Arg60) 

which is shown to cross over the bound cellooligosacchaide, forming a pocket which may be 

responsible for helping maintain the linear path of the substrate through the active site. 

Figure 93 shows the surface view around the active site of TmGH12 and highlights how the 

glycosyl unit of Glc β 1,4 noeuromycin would clash with the Arg60 residue if it undertook the 

same binding position in TtGH12 as the cellooligosaccharide does in TmGH12.   

 

Figure 93 Surface of TmGH12 (70% transparent, coloured by electrostatic potential) showing 
the Arg 60 creating a pocket behind which the cellooligosaccharide runs through the binding 
site. The Glc β 1,4 noeuromycin  inhibitor as bound in TtGH12 is shown overlaid, and would 
clash with the arginine of TmGH12 if it followed the same binding configuration.  
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4.5.4.1 Sequence Analysis 

The sequence of TtGH12 was compared to other GH12 sequences (taken from CAZy) by 

sequence homology alignment using T-Coffee. The structure of the TtGH12-Glc β 1,4 

noeuromycin complex was compared with other structures with bound ligands to assist in 

identifying the catalytic residues. There were some noted residue differences in the 

comparison of TtGH12 with two other GH12 as described above, so a broader sequence 

analysis was carried out to assess if there were any other significant changes that were not 

immediately apparent in the structural analysis. Interestingly, TtGH12 displayed little 

similarity to eukaryotic sequences, of which there was little overall sequence alignment 

between any of the sequences. However, comparison with bacterial GH12 sequences 

produced an alignment that was relevant to further interpretation. As discussed previously, 

the catalytic and tryptophan residues are conserved in all the bacterial sequences and Figure 

94 clearly shows this trend across the selected sequences. Several coloured asterisks mark 

residues in TtGH12 which deviate from the seemingly invariant residues within the other 

proteins; for example, the pink marker shows that in TtGH12 there is a phenylalanine 

adjacent to the catalytic nucleophile instead of the common Leu or Ile residue. The purple 

marker shows TtGH12 has a serine instead of a highly conserved tyrosine. Finally, the grey 

marker shows TtGH12 having a serine instead of phenylalanine. Surprisingly, when looking 

for conservation around Arg 175 (marked with a red asterisk), which sat close to the Glc β 

1,4 noeuromycin ligand in the TtGH12 ligand complex, all other sequences exhibit I or L 

residues.  
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Figure 94 Sequence alignment (T-coffee) of TtGH12, labelled as T.turnerae against GH12 proteins from several other bacteria. Note, the numbering of TtGH12 is 
slightly different in this alignment due to the use of the entire sequence as taken from the CAZy database, whereas previous numbering used in the text and 
structural analysis is based on the catalytic domain only. Stars; Blue) Catalytic residues, Green) Conserved tryptophans, Pink) Arg175, Red, Purple and Grey) 
variant residues against those strongly conserved. 
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During collaboration with the Brumer group at the University of British Columbia, Alexander 

Holm Viborg carried out an extensive sequence analysis with 762 full GH12 sequences from 

the CAZy database. This work highlighted that TtGH12 is one of 16 entries that display a 

different residue at a position near the catalytic residues, an aspartate thought to act as part 

of a catalytic triad (an example of which is shown in Figure 91B). GH12 sequences normally 

have an aspartate residue at position 134 which is occasionally replaced with a glutamate. 

TtGH12, along with two other sequences instead display a threonine residue at this position, 

as shown in Figure 95. Phylogenetic analysis carried out by Holm Viborg suggests that 

TtGH12 and the other sequences with a Thr variant clearly represent their own branch 

within the GH12 phylogenetic tree.  

 

Figure 95 TtGH12-Glc β1,4 noeuromycin  complex showing the catalytic residues and Arg175  
as previously discussed as well as a threonine residue between the two glutamate residues. This 
position is normally taken up by a third glutamate, or more rarely an aspartate and is thought to 
act as a catalytic triad. 
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4.6 Discussion 

4.6.1 Stability and Activity 

Within the GH12 family, enzymes are only known to exhibit function as cellulases, working 

on β(1-4) and mixed β(1-3)/(1-4) glucans, and as xyloglucanases. Looking at the organisation 

of characterised sequences within the CAZy database it is also clear that the majority of 

bacterial GH12 proteins are specific endoglucanases; only one sequence from Bacillus 

licheniformis is described as displaying xyloglucanase activity, and is noted alongside the 

endoglucanase annotation. Sequences grouped coming from eukaryotic sources contain a 

mixture of the three functions, with many proteins being described as xyloglucan specific. 

Hence, one might expect that another bacterial sequence this time coming from T. turnerae 

would follow this pattern and exhibit activity on cellulose based substrates. To test this 

hypothesis, TSA was used to evaluate the effect of certain substrates on the melting 

temperature of the protein. Firstly, it was noted that the apo protein possesses two melting 

curves, one at 49 °C and the second at 61 °C. A similar occurrence was described by Damasio 

et al, where a GH12 from Aspergillus niveus also exhibited a biphasic melting temperature. 

The authors suggest that the fungal GH12 undergoes an activation event upon increasing 

temperature, as the activity of the protein was found to be optimal at temperatures higher 

than the first TM.163 During TSA experiments where the TtGH12 protein was incubated with 

different substrates it was found that introduction of substrates bMLG, bX and MLX 

removed the biphasic temperature profile; bX and MLX, both xylan substrates, induced a 

state in which only the higher protein melting temperature occurred. Incubation with bMLG 

removed the lower melting temperature and raised the overall TM by 5 °C, suggesting 

formation of a stabilised protein-substrate complex. Furthermore, incubation of the protein 

with tXyG produced one melting temperature, but at a 7 °C lower TM that that of the other 

substrate conditions, suggesting the substrate is able to destabilise the protein in some way. 

No change in thermal profile was observed on introduction of the crystalline cellulose 

substrates, PASC or Avicel. The TSA experiment indicated that the protein was strongly 

stabilised by introduction of a mixed linkage glucan, and possibly destabilised by interaction 

with a branched substrate such as tXyG. The fact that there was no interaction with PASC or 

Avicel suggests that the protein is incapable of activity against crystalline cellulose; the 

strong interaction with bMLG may be due to the nature of the substrate, in that it is 

amorphous, so is easily solubilised and as such accessible to the protein. PASC and Avicel are 
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crystalline forms of cellulose, where chains are tightly packed together in a regular 

configuration which severely limits solubility and can prevent GH activity.  

The dual melting temperature of TtGH12 was tested in controlled heating experiments and 

showed that a quantity of protein undertook a melting event above 41°C but the sample still 

maintained a large amount of intact protein which went on to melt at 61 °C in the TSA assay. 

In line with the suggestion posed by Damasio et al, it is likely that the second melting event 

of TtGH12 is simply the protein denaturing, whilst the first event could be a temperature 

induced transition from a less stable form, possibly oligomer to monomer.  The interactive 

power of the non-crystalline substrates with TtGH12 may have disrupted the oligomeric 

form; substrates bX and MLX produced a melting temperature similar to that of the apo 

protein second melting event which suggests that the substrates may have induced a 

transition to the monomer form, but not provided any binding stability.  

To further assess the possible function of TtGH12, activity tests were carried out on tXyG, 

bX, bMLG and MLX at three different pH values and at different temperatures. The protein 

was shown to degrade bX and bMLG over an 18 hr timescale at 37 °C, but the reaction was 

incomplete, with insoluble substrate remaining at the bottom of the TLC plate. However, the 

degradation pattern of bX and MLG showed discrete bands and suggested products lower 

than C3. Despite the results of the TSA assay which indicated the protein was stable at 

higher temperatures, more activity was observed at 37 °C than at 45 °C or 50 °C. In the latter 

experiment it was obvious that the protein had precipitated out of solution during 

incubation. The stability index of TtGH12 determined by Expasy ProtPara164 suggested the 

protein to be unstable, and it may be the case that during the experiment the protein 

denatured naturally. It was also found that a lower pH increased the amount of degradation 

products observed on the TLC plate. Typically, when a GH is tested on the substrate it is 

specific for, one would expect complete degradation of substrate. As such, the slow rate of 

substrate degradation by TtGH12 indicates that the tested substrates may not be 

appropriate for the enzyme. Furthermore, TtGH12 was tested by Gregory Arnal at the 

University of British Columbia, whereby it was found to be inactive over a 2 hour timescale 

on a range of other substrates; glucomannan, laminarin, HE-cellulose, CM-cellulose, 

arabinan, curdlan, pustulan, galactomannan, cellooligosaccharides as well as sulfated 

carrageenan. 
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4.6.2 Structural Analysis 

Crystal structures of TtGH12 and a TtGH12-Glc β 1,4 noeuromycin complex were solved at 

1.6 Å and 1.9 Å respectively. TtGH12 displays the typical structural fold seen in clan GH-C, 

with a curved β-sandwich structure upon which sits a large open active site cleft on the 

concave face of the protein. The ‘cord’ structure is well defined in density and the structure 

lacks the ‘thumb’ region typically seen in GH11 proteins. Sequence alignment with other 

GH12 proteins shows that there are a series of strongly conserved residues, specifically the 

catalytic glutamates and several tryptophans as has been discussed in the literature148. 

TtGH12 was found to bind the inhibitor Glc β 1,4 noeuromycin within its active site, in the -2 

to -1 subsites. Glc β 1,4 noeuromycin  is similar in structure to isofagamine, where addition 

of an OH group on the carbon adjacent to the anomeric centre confers nano molar binding 

affinity to canonical cellulases; the compound is thought to mimic the transition state 

oxocarbenium ion formed during the inverting mechanism of glycosidic cleavage.165 The 

binding of this particular inhibitor does pose an interesting question as GH12 proteins all 

perform retaining mechanisms during cleavage of the scissile bond. One possibility into the 

binding of the inhibitor is in the presence of Arg175, which is positioned pointing towards 

the -1 subsite and is within hydrogen bonding distance (2.8 Å) with the amide group of the 

ligand. Structural overlays with TmGH12 and BlGH12 show non-

hydrogen bonding groups Thr and Trp respectively at a similar position to Arg175. As such, 

sequence analysis was carried out to determine whether there was any conservation around 

this position, and it was found that there was no conservation of residues around this region 

of the sequence when the selected GH12 bacterial sequences were compared.   

Structural comparison of the TtGH12-Glc β 1,4 noeuromycin  complex with other GH12 

proteins identified some adaptations within the active site cleft. Firstly, significant rotational 

movement in Trp78 and Trp187 was observed compared with the equivalent residues in 

BlGH12.  The set of conserved tryptophan residues which line the active site of GH12 

proteins are known to provide ring stacking interactions with the pyranose rings of the 

substrate chain.  GH12 endoglucanases have a deeper cleft (through pockets created by 

other residues) than GH11 proteins which allows them to preferentially accommodate the 

CH2OH groups at position 6 of glucose moieties. It may be possible therefore that the 

rotation of Trp78 and Trp187 helps define the substrate tolerance of the protein. The 

rotation of Trp78 and Trp187 may also explain why the glycosyl moiety of Glc β 1,4 

noeuromycin  had appeared to stick out of the binding site compared to other ligands in 
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similar GH12 structures, as ring stacking is still likely to occur between the residue and 

substrate rings.   

 The both catalytic residues were shown to adopt similar positions as seen in other GH12 

structures active on both cellulose and xyloglucan substrates, with the catalytic acid/base 

occupying a position below the -1 subsite.  Positioning of this residue defines the spatial 

positioning of the sugar moiety within the -1 subsite, pushing the observed Glc β 1,4 

noeuromycin  ligand out of the binding site slightly. TtGH12 was compared with the 

structure of BlGH12, an inactive mutant in complex with a xyloglucan ligand. The catalytic 

acid/base of BlGH12 was mutated to an alanine, which possibly allowed the xyloglucan 

substrate to move deeper into the active site, as Glc β 1,4 noeuromycin was found to sit 

further out of the active site. A major difference between the two structures, and to others 

was noted as the positioning of Arg 175 near the -1 subsite. Residues unlikely to provide 

hydrogen bonding interactions were observed in the same spatial position in other GH12 

structures. Arg 175 was shown to be off a sufficient distance to hydrogen bond to Glc β 1,4 

noeuromycin ligand, which could suggest a role in substrate binding or in catalysis. 

Despite sharing a similar position of catalytic acid/base, the ligand structures of TtGH12 and 

TmGH12 show the ligands binding in different orientations. The unusual loop observed 

crossing the binding cleft of TmGH12 was investigated by Cheng et al, whereby mutations of 

the two loop residues, Try61 and Arg60 were actually found to increase the activity of the 

protein. The authors suggest this to be due to tipping the balance between substrate 

binding and product leaving the active site; mutation of Try61, which they note occupies an 

unusual conformation, to a Gly improved the activity of the protein by 70%. The removal of 

the Try and its associated OH group removes a potential hydrogen bonding group, making it 

easier for product to dissociate from the binding cleft, whilst the natural configuration of the 

glycine is thought to stabilise the loop structure.166 The loop structure forms a pocket into 

which the glucan chain binds behind and as such forces the chain to stick closely to the 

surface of the active site cleft. In TtGH12 there is no such boundary and the Glc β 1,4 

noeuromycin ligand is found to bind with the glucose moiety protruding slightly from the 

cleft.  
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4.6.3 Sequence Analysis 

Sequence and phylogenetic analysis of TtGH12 carried out through collaboration with the 

Brumer group leads us to the suggestion that TtGH12 forms a new clade within the GH12 

family. Extensive sequence alignment highlighted the lack of a conserved aspartate residue, 

thought to act as part of a catalytic triad during glycosidic bond cleavage. This aspartate 

residue is occasionally substituted with a glutamate, but in TtGH12 this was replaced by a 

threonine. A similar occurrence was found in a few other sequences, notably of marine 

origin, from Microbulbifer sp., Alteromonadaceae, Paraglaciecola arctica and Aestuariibacter 

aggregates, whereby each sequence contained the variant threonine residue. The top NCBI 

BLAST hits of TtGH12 also contained this variation, although the highest sequence identity 

homologue comes from a species related to T. turnerae, Alteromonadaceae bacterium. It 

was also found that Arg175 was not conserved in the set of sequences, but a charged 

residue was conserved. Phylogenetic analysis sets these sequences aside within their own 

clade of the GH12 family. As such it is not unlikely to suggest that TtGH12 is active on a 

completely different substrate, or functions in a different way to typical GH12 proteins.   

4.7 Conclusion 

Despite lack of any definitive activity on cellulose substrates, binding of a typical cellulose 

inhibitor, Glc β 1,4 noeuromycin occurred in the active site of TtGH12 during crystallisation. 

It would be wise for future studies to analyse the binding affinity of this inhibitor for the 

protein to determine whether it was opportunistic during crystallisation or specific to the 

active site. This leads back to the questions posed earlier about the function and specificity 

of this protein. Structural analysis saw an arginine residue forming interactions with the 

bound inhibitor, which could indicate a possible role in catalysis. Furthermore, sequence and 

phylogenetic analysis suggests a distinct alteration in the aspartate residue normally 

perceived as playing a role in the catalytic triad required for glycosidic bond cleavage. This 

Thr residue, seen in the apo and inhibitor complex of TtGH12 is suggested to have been 

replaced by Arg175. The phylogenetic tree shows TtGH12 and three other proteins with the 

same alteration as their own clade within the family. This, combined with the lack of activity 

on typical GH12 substrates suggests that this may be a new type of GH12 functionality or 

allow degradation of a completely different substrate.  
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5  

Characterisation of 

TtGH8  

5.1 Abstract  

The marine shipworm symbiont, Teredinibacter turnerae has a broad array of carbohydrate 

active enzymes within its genome which cover a range of GH families. This work shows the 

characterisation of a glycoside hydrolase from family 8, hereafter TtGH8, found to be an 

efficient endoxylanase, degrading β 1-4 linked xylan polysaccharides into shorter 

oligosaccharides, mostly xylotriose. TtGH8 was most active on red algal marine (mixed β-1,3, 

β-1,4) xylan. Kinetic parameters, obtained using high-performance anion-exchange 

chromatography with pulsed amperometric detection (HPAEC-PAD) and DNSA reducing 

sugar assays shows that TtGH8 catalyses the hydrolysis of β-1,4 xylohexaose with a kcat/Km of 

7.5 x 107 M-1 min-1 but displays maximal activity against mixed-linkage polymeric xylans, 

hinting at a possible primary role in the degradation of marine polysaccharides.  The 3-D 

structure of TtGH8 was solved providing insight into the both the native structure and 

ligand-complexes (xylobiose and xylotroise) at approximately 1.5 Å resolution. A catalytic 

mutant enabled the structure of a xylohexaose ligand complex to be captured, whereby 

binding of six hexose units across the binding site is consistent with the greater kcat/Km for 

hexasaccharide substrates.  A 2,5B conformation observed in the -1 position of bound 

xylotriose is consistent with the proposed conformational itinerary for this class of enzyme.  

This work shows TtGH8 to be effective at degradation of xylan based substrates, notably 

marine xylan, further exemplifying the potential of T. turnerae for effective and diverse 

biomass degradation. 

All work in this chapter has been published (Appendix 4) and is written as an adaption of the following;  
Fowler, C.A., Hemsworth, G.R., Cuskin, F., Hart, S., Turkenburg, J., Gilbert, H., Walton, P.H. & Davies, 
G.J. (2018). Structure and function of a glycoside hydrolase family 8 endoxylanase from 
Teredinibacter turnerae, Acta Cryst. D74, https://doi.org/10.1107/S2059798318009737. 
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5.2 Introduction 

5.2.1 The GH8 Family 

Glycoside hydrolase family 8 contains 3642 entries in the CAZy database at the time of 

writing, 75 these classified sequences have been characterised and 12 of which have had 

their 3-D structures determined. The GH8 family is one of the more historical CAZyme 

families, known as cellulase family D through the original HCA analysis,27-28, 129 before the 

subsequent classification into the present CAZy database.34 Currently, the GH8 family is 

composed of sequences of bacterial origin, and all members utilise an inverting mechanism, 

as shown originally by Fierobe et al for CelC167 and later by QM/MM metadynamics168, in 

their hydrolytic activity against a range of substrates, cellulose, xylan, chitosan and lichenan 

particularly.34 Cleavage occurs at β (1-4) linkages, but some enzymes are known to 

accommodate the mixed linkage, β (1-3)-β (1-4) lichenan substrates within their active 

sites.34GH8 members belong to clan GH-M, in which there is only one other family 

represented, GH48. GH48 enzymes are typically found in bacterial cellulosomes,169 and have 

been shown to display processive endo and reducing end attacking exo action against 

amorphous cellulose.170 Both families GH8 and GH48 have the same overall structure, an 

(α/α)6 barrel fold.169, 171-173 This common protein fold is represented in 5 other clans, GH-

G,L,O,P and Q.34 The barrel structure is formed by a set of 6 pairs of antiparallel α-helices. 

The repeating motif of helix-loop-helix creates both an inner and outer ring, forming an 

overall circular 3D shape, in which the inner core is populated by aliphatic residues174 172, 174-

175, Figure 96. 
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Figure 96 Structure of GH8 endoglucanase CelA (PDB code: 1KWF) shown as ribbon (coloured 
blue to red). Image made in CCP4mg.55  

 The first structural insight about a GH8 protein was accomplished by Alzari et al in 1996, 

which provided a first look at the overall structure of CelA, an endoglucanase from 

Clostridium thermocellum.172 Crystallisation of complexes containing glucose, cello-

oligosaccharides and an inhibitor provided models which mapped at least 5 subsites across 

the acidic active site cleft. The cleft is found on the opposite side of the structure to the C 

and N-terminus, which was thought to be involved in dockerin binding, and as such enable 

the protein to be involved in multi-protein amalgamations commonly employed in the 

cellulosome of the source organism176. Individual binding of glucose occurred in each site 

except site C which is now conventionally known as the -1 subsite, according to general 

nomenclature about GH active sites.177 Lack of binding in the -1 site of a single pyranose ring 

is likely due to the need for larger substrates, where high affinity binding of a second linked 

moiety supports the distortion of the pyranose ring held in the -1 subsite, as distortion is 

normally a prerequisite for hydrolytic cleavage; a discussion of the hydrolytic inverting 

cleavage reaction can be found in Chapter 1. This high degree of binding affinity is 

established by a conserved series of tryptophan residues that are able to provide stabilising 

ring stacking interactions with the pyranose rings of the substrate. Further binding of the 

substrate is accomplished by hydrogen bonding interactions with nearby residues and those 

in the water molecule-protein networks located within the active site.176  Subsequent work 
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on CelA by Guerin et al, under supervision of Alzari, went onto to provide an atomic 

resolution substrate complex of CelA.173 Introduction of cellopentaose produced models in 

which binding of both substrate and product, cellotriose, occurred at different positions in 

the reducing end of the cleft, highlighting the different affinities of the protein active site for 

substrate and product, Figure 97.173 

As found in more recent crystallographic studies of GH8 proteins, the binding of long glucans 

in the active site of CelA causes a large bend, or kink, in structure of the linear 

polysaccharide.178 This is thought to be due to the disruption of the normal alternating 

pattern occurring between sugar moieties in linear chains, at the cleavage position, causing 

a change in direction, which is strongly encouraged by the shape of the active site cleft 176, 

178. The long deep cleft is common throughout the GH8 family, and other crystallographic 

studies, including the work presented in the forthcoming Chapter, describes the active site 

as forming a distinct V shape, where the central point comprises of the catalytic residues, 

causing a bending of the substrate 173, 178, Figure 97. 

 

Figure 97 Structure of GH8 endoglucanase CelA , shown as surface (coloured by electrostatic 
potential). Binding of substrate and product is observed; cellopentaose is shown in dark green 
and tan, whereas the cellotriose product is shown in green and pink. The wide open active site 
is visible and forms a distinct V shape with the scissile bond in the centre.  
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5.2.2 GH8 Subfamilies 

Like many other GH families, classification of the members can be broken down further into 

subfamilies. Adachi et al proposed three subfamilies for GH8, a-c, based on the positioning 

and residue type of the catalytic general base.175 The work analysed the structure of a GH8 

chitosanase and compared the catalytic residues to those known in CelA. It was observed 

that only the catalytic general acid (Glu) was conserved, whilst the general base (Asp) was 

interchangeable 179.  Subfamily GH8a is defined by the general base, Asp, being positioned at 

the n-terminal end of helix α8, as observed in CelA and by QM/MM metadynamics.168, 172 

Subfamily GH8b differs in that the expected general base Asp residue is replaced by Asn, 

effectively inactivating the catalytic position; however the general base role is taken up by a 

nearby Glu located on a long loop between helices α7 and α8.175 Finally, the third subfamily, 

GH8c is yet to be characterised in terms of general base positioning.  

5.2.3 This Work 

Teredinibacter turnerae possess a variety of different glycoside hydrolases, but only one 

representative of the GH8 family is found in its genome, TtGH8. The goal of this work was to 

study this enzyme and define its role within the CAZyme of T. turnerae using various 

biochemical techniques. Homology searches suggested that TtGH8 was most similar to other 

GH8 enzymes shown to be active on xylan. Creation of ‘inactive mutants’ coupled with X-ray 

crystallography was applied in an effort to study the binding cleft of TtGH8, creating a vivid 

picture of enzymatic catalysis of marine polysaccharides.  
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5.3 Methods 

5.3.1 Materials 

Substrates used in this study were tamarind xyloglucan (tXyG), mixed linkage barley beta 

glucan (bMLG), Avicel (Sigma), Phosphoric acid swollen cellulose (PASC) (Sigma), birchwood 

xylan (bX), mixed linkage β 1-3, β 1-4 xylan (MLX) (Elicityl/Oligotech). Xylo-oligosaccharides 

were bought commercially; xylobiose (X2) from Sigma and TCP, Xylotriose (X3), xylotetraose 

(X4), xylopentaose (X5) and xylohexaose (X6) from Megazyme.  Crystallisation screens were 

obtained from Molecular Dimensions (PACT) and Hampton Research (PEG/ION, Index and 

Crystal Screen HT). The mutagenesis kit was purchased from New England Biolabs, and 

primers purchased from Eurofins-GATC. The HPAEC-PAD experiment was run using a HPLC-

Dionex machine belonging to the Prof. Harry Gilbert group at Newcastle University and was 

used under guidance. 3,5-Dinitrosalicylic acid was purchased from Sigma. Pure recombinant 

TtGH8 (ACR14722.1) was produced as described in Chapter 2 

5.3.2 Mutant TtGH8 production 

Catalytically inactive mutants of TtGH8 were designed, using structural and activity 

information from the literature on similar GH8 proteins as well as structures obtained of the 

apo protein during this work. The mutations were designed using custom primers and 

implemented using the Q5 site directed mutagenesis kit (New England Biolabs), Table 17. 

Expression testing for all constructs was carried out prior to large scale production, which 

was carried out as described for TtGH8. To check purity, the samples were analysed by SDS 

PAGE throughout purification. The mutants were checked by ESI MS, to ascertain whether 

there has been an appropriate mass change.  

Table 17 Point mutations for TtGH8 catalytic mutants, where Glu73 and Asp281 are altered to 
catalytically inactive residues. Primers for both the forward and reverse directions are shown 
and correspond to the TtGH8 construct described in Chapter 2 

Point Mutation Primers 

Forward Reverse 

TtGH8Glu73-Gln TGTGCGTAGCCAAGGTATGAGCTAC TCGTTGCTGTTAACGTCATAC 

TtGH8Glu73-Ala TGTGCGTAGCGCCGGTATGAGCTAC 

TtGH8Asp281-Asn CTTTCGTTACAACGCGTGGCGTAGCG TCCACGCTCTCCGGACGC 

TtGH8Asp281-Ala CTTTCGTTACGCCGCGTGGCGTAGCG 
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5.3.3 TSA of TtGH8 and Mutants 

Samples containing SYPRO-orange dye (1000X stock, 15 µL) and either TtGH8, TtGH8D281N 

or TtGH8E73Q (final concentration of 1 mg/ml) with either buffer or substrate (30 µl total) 

were analysed using a TSA programme run on a Stratagene rtPCR machine. Samples were 

heated from 20°C to 91° in increments of 1 °C over 71 cycles. The fluorescence of SYPRO 

orange was monitored throughout and the data used to calculate the protein melting 

temperature. Curves were fitted using a free online tool developed by Paul Bond at the 

University of York and is available at; http://paulsbond.co.uk/jtsa.    

5.3.4 TLC and LCMS Analysis of TtGH8 Hydrolysis Products  

Overnight hydrolysis reactions with xylo-oligosaccharides X2-X6 (1 mM), wAX, rAX, cX, bX, 

MLX and tXyG at 1 mg/ml were incubated at 37 °C with 1 µM TtGH8. The samples were 

heated at 90 °C prior to spotting on a TLC plate (total 4 µl). Standard containing X2-X6 at 1 

mM each were run on the same plate. TLC plates were run as described in Chatper 3. 

Hydrolysis samples for LCMS were prepared using ammonium acetate buffer (pH 6, 50 mM), 

approximately 1 mg/ml of substrate and 10 mM enzyme. Samples were incubated at 37 °C 

overnight and shaken at 500 rpm. If required, samples were centrifuged to remove any solid 

materials and 100 µl loaded onto a Cosmosil Sugar-D HPLC column using the LC-MS Dionex 

system where the separated products were analysed by ESI or PAD mass spectrometry. 

Running buffers were a mixture of water and acetronitrile with some test runs also including 

1 % formic acid.   

5.3.5 Substrate Depletion Kinetics  

Substrate depletion kinetics was performed on TtGH8 with xylohexaose, xylopentaose and 

xylotetraose and measured using high performance anion exchange chromatography-pulsed 

ampiometric detection (HPAEC-PAD) Dionex system. Hydrolysis reactions were run at 37 °C, 

for 25 minutes using different substrate and enzyme concentrations to find conditions which 

yielded linear results. Final enzyme- substrate conditions were as follows; X6 (50 μM 

substrate, 0.72 nm TtGH8), X5 (100 μM substrate, 3.2 nM TtGH8) and X4 (100 μM substrate, 

64 nM TtGH8). Reactions were run in 20 mM sodium phosphate, 100 mM NaCl buffer, pH 7. 

Aliquots were removed at set time points and immediately placed into a heat block at 90°C 
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for 10 mins to inactivate TtGH8; all samples were treated in the same manor and as such any 

delay in stopping the enzyme activity during heating would have been the same throughout 

the samples. All samples were mixed with fucose (250 μM) which acted as an internal 

standard. Samples were run using HPLC Dionex system, on an anion exchange column 

(CARBOPAC) using a sodium acetate gradient. Data was normalised using the peak detection 

for the internal standard to mitigate any loss in signal between runs. 

5.3.6 3,5-Dinitrosalicylic acid  reducing sugar assay 

Hydrolysis reactions with enzyme and substrate were run at 37 °C and aliquots removed and 

mixed with DNSA agent (1 % (w/v) 3,5-Dinitrosalicylic acid , 0.2 % (v/v) phenol, 1 % (w/v) 

NaOH, 0.002 % glucose (w/v), 0.05 % (w/v) NaSO3) at set time points. Phenol was not used 

during the analysis of TtGH8 D281N. The colour was developed by heating the reaction 

aliquots at 90 °C for 20 min before cooling on ice for 10 min. The absorbance of each sample 

was measured at 575 nm. A standard curve of 0-500 μg/ml xylose plus 1 mg/ml 

polysaccharide substrate was used to quantify the released reducing sugar chain ends. 

Absorbance at 575 nm was collected for each sample and data plotted and analysed using 

the method described in Appendix 3.  

5.3.7 Crystallisation Structure Solution of TtGH8 and 

TtGH8D281N 

Initial crystallisation screening was performed robotically using a Mosquito crystal robot and 

commercial screens including Crystal screen HT, Index and PACT. Crystal hits were obtained 

for TtGH8 and TtGH8D281N. A 24-well optimisation screen containing sodium acetate (0.1 

M, pH 4.6 -5.2), NaCl (0.2 M), polyethylene glycol 14-24% was used to produce the final 

crystallisation condition for TtGH8: sodium acetate (0.1M, pH 5.0), NaCl (0.2 M), 

polyethylene glycol 16%. Thin rod shaped crystals were fished and protected with a cryo 

solution (mother liquor plus 30% ethylene glycol) and soaked in ligands. TtGH8 structures 

containing X2 and X3 resulted from soaking ‘apo’ crystals for 30 seconds in a solution 

containing the mother liquor, 30% ethylene glycol and 150 mM X2 or X3. TtGH8D281N ‘apo’ 

crystals grown in a condition containing HEPES (0.1 M, pH 6.8), ammonium sulfate (0.2 M) 

and 20 % PEG 6000 were soaked in X6 (20 mM) for approximately 10 seconds and then 

frozen in liquid nitrogen. Crystal data sets were collected at the Diamond synchrotron by 

remote access using IO2 and IO4 beamlines. Molecular replacement (PHASER157) and 
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refinement (REFMAC160) were carried out using the CCP4i2 pipeline. TtGH8 was modelled 

using PDB entry 1WU4 and data cut to 1.4 Å. Manual manipulation in COOT followed by 

refinement using REFMAC was cycled several times until the Rcryst and Rfree were consistent 

(R cryst =0.15, Rfree=0.18). TtGH8-ligand complexes and TtGH8D281N-X6 were solved by 

molecular replacement using MOLREP180 with the ‘apo’ structure of TtGH8 as the search 

model  TtGH8. Structural analysis was carried out in CCP4mg181 by comparing apo with 

protein ligand complexes and several similar PDB entries.  

5.4 Results  

5.4.1 Protein Production 

TtGH8 was produced to a high yield as described in Chapter 2. Only two of the TtGH8 

mutants were successfully expressed in a soluble form and were purified using the same 

methods as carried out for production of the apo protein; TtGH8D281N and TtGH8E73Q. 

Both mutants where either Glu73 or Asp281 were mutated to an alanine were not 

expressed in a soluble form. The catalytic mutants were analysed by ESI MS to ascertain that 

the point mutations had been successful, Figure 98. 
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Figure 98: ESI-MS of TtGH8D281N (top) and TtGH8E73Q (bottom). Masses are 45068 Da and 
44967.2 Da respectively.  
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5.4.2 Thermal Shift Analysis 

Protein substrate activity was initially probed by TSA which showed a positive increase in 

protein melting temperature upon mixing TtGH8 with BX, 2.1 °C and X6, 2.9 ° C, Figure 99. 

Both catalytic mutants displayed lower protein melting temperatures than native TtGH8 

(57.2 °C), indicating lower protein stability due to alterations of the catalytic residues. 

However both mutants were stabilised by addition of X6, with melting temperatures 

increase by 7.2 °C for TtGH8D281N and 15.3 °C for TtGH8E73Q, as shown in Figure 100 and 

summarised in Table 18. 

 

Figure 99 TSA of TtGH8 (22 µM) and incubation with A) BX and B) X6 in the presence of SYPRO 
orange. Analysis of the protein melting curves was completed using the JTSA online tool 
developed by Paul Bond, available at URL http://paulsbond.co.uk/jtsa/#/input. Addition of BX 
and X6 shifted the melting temperature of the TtGH8 from 55.2 -57.3 °C and 57.2 - 60.1 °C 
respectively. Figure as published in Fowler et al.182 
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Figure 100 TSA of A) TtGH8, B) TtGH8D281N, C) TtGH8E73Q, D) TtGH8 + X6 (blue line), E) 
TtGH8D281N + X6 (orange line), and F) TtGH8E73Q + X6.  
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Table 18 Average melting temperature calculated from the TSA curves with and without 
incubation with X6 of TtGH8 and the two catalytic mutants. 

Sample Melting 

temperature/ °C 

Sample Melting 

temperature/ °C 

TtGH8 57.2 TtGH8 + X6 60.5 

TtGH8D281N 53 TtGH8D281N + X6 60.2 

TtGH8E73Q  48.2 TtGH8E73Q + X6 63.5 

 

5.4.3 TLC and LCMS Activity Analysis 

Overnight hydrolysis reactions of TtGH8 with soluble xylo-oligosaccharides and 

polysaccharides wAX, rAX, cAX, bX, MLX and tXyG were run and soluble samples analysed by 

TLC, Figure 101. A set of xylo-oligosaccharides X2-X6 were used as standards for comparison 

of the degradation products.  TtGH8 showed activity on wAX, rAX, bX and MLX. Complete 

conversion of X4-X6 into X3 and X2 products was observed. No reaction was seen for TtGH8 

with X3 or X2.  
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Figure 101 TtGH8 activity was explored using a range of different xylan polysaccharides as well 
as xyloglucan and analysed by TLC.  Standard xylo-oligosaccharide X2-X6 are shown on both 
sides of the plate to provide a weight comparison ladder. Controls of wAX, rAX, cAX, bX, MLG 
and tXyG (XG in above) show no soluble products, with all material spotted onto the plate, 
remaining in the same position. Soluble products were observed for all polysaccharides except 
CAX and XG. TtGH8 was also tested on xylo-oligosaccharides, with complete breakdown into 
smaller products observed only for X4, X5 and X6. Figure as published in Fowler et al.182 

The catalytic mutants were also tested for activity to determine whether the mutations 

prevented the enzyme from breaking down the substrate. Figure 102 shows a TLC 

comparing the activity of native TtGH8, TtGH8D281N and TtGH8E73Q on X6. For the native 

protein and the catalytic mutant containing the alteration D281N, complete degradation of 

X6 in under 5 mins. On the other hand, mutation of the catalytic glutamate residue 

abolished all enzymatic activity on this substrate.  

 

Figure 102 TLC of TtGH8, TtGH8D281N and TtGH8E73Q activity on X6 over two hours at 37 °C. 
Both TtGH8 and TtGH8D281N were able to degrade the substrate completely in under 5 mins, 
whereas TtGH8E73Q showed not activity towards X6 over two hours incubation.  
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The reactions of TtGH8 on bX and X4-X6 were probed in more detail using LCMS in order to 

assign the products observed in the TLC accurately. Figure 103 shows the LCMS profiles 

obtained from the activity of TtGH8 on X4-X6. After incubation overnight at 37°C, samples 

showed complete degradation of X4 to X3, X5 to X3 + X2, and X6 to X3. All xylo-

oligosaccharides substrates and products were observed as formic acid adducts during LCMS 

experimentation due to the buffer used to separate samples on the size exclusion column. 

Activity on BX was tested by analysing the soluble fraction of the reaction mixture after 

overnight incubation with TtGH8 at 37°C. The LCMS profile suggested a high abundance of 

X3 as the major degradation product, along with a smaller amount of X2, Figure 104. X3 and 

X2 are observed as formic acid adducts at 327.2 and 459.2 m/z respectively. 

 

Figure 103 LCMS results of TtGH8 against larger xylo-oligosaccharides. A) X4 (591.3 m/z, 
formic acid adduct) B) Reaction products of TtGH8 and X4, producing X3 (459.2 m/z formic acid 
adduct). X1 is not seen due to detections limits of the equipment. C) X5 (723.4 m/z formic acid 
adduct) D) Reaction products of TtGH8 and X5, producing X3 (459.2 m/z formic acid adduct) 
and X2 (327.2 m/z formic acid adduct). E) X6 (855.6 m/z formic acid adduct) F) Reaction 
products of TtGH8 and X6, producing only X3 (459.2 m/z formic acid adduct).Figure as 
published in Fowler et al.182 
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Figure 104 LCMS of soluble reaction products generated after incubation of TtGH8 with BX for 
18 hr at 37 °C. X2 and X3 are observed as formic acid adducts at 327.2 and 459.2 m/z 
respectively. Figure as published in Fowler et al.182 

5.4.4 Kinetic Analysis on xylose based substrates 

Following on from the TLC experiment, which indicated TtGH8 activity on 4 polysaccharides 

with xylose backbones, HPAEC-PAD was used to evaluate the soluble oligosaccharides 

produced when TtGH8 was incubated with bX, wAX, bMLG and rAX. The soluble species 

naturally present in the substrates were first analysed and HPAEC-PAD spectra are shown in 

Figure 105. All 4 polysaccharides show new peaks compared with the control samples, after 

incubation with the enzyme, indicating newly formed soluble oligosaccharides are due to the 

action of TtGH8, Figure 106. 

Kinetic measurements on the activity of TtGH8 on short chain xylo-oligosaccharides were 

made using HPAEC-PAD and an experimental method known as substrate depletion as 

described in Appendix 2; whereby reduction in a specific peak is monitored over certain time 

points of the reaction as shown in Figure 107.183-185  

Substrate depletion analysis was performed on X6, X5 and X4 using appropriate 

experimentally determined concentrations of TtGH8 and substrate, Figure 108. Substrate 

depletion of X6 was measured using only 0.72 nM of enzyme and produced the highest 

kcat/Km value out of the three xylo-oligosaccharides tested. Interestingly the observed rate of 

reaction was lowered on incubation with higher substrate concentrations. X4 was the 

slowest to be hydrolysed, (kcat/KM, 6.1 x 105   3.1 x 104 M-1 min-1), requiring approximately 

100 fold higher enzyme concentration than that needed for hydrolysis of X6. The kinetics 

shows that TtGH8 has a higher affinity for X6 (kcat/KM, 7.5 x 107   1.1 x 106 M-1 min-1) and a 
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slightly lower affinity for X5 (kcat/KM, 1.4 x 107   1.4  x 106  M-1 min-1). For comparison, all 

kinetic parameters measured are also summarized in Table 19. 

 

Figure 105 HPAEC-PAD analysis of the soluble fraction taken from un-reacted polysaccharides 
showing few peaks.  
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Figure 106 HPAEC-PAD analysis of the soluble fraction taken from overnight reactions of 
TtGH8 with bX, wAX, bMLG and rAX . Many more peaks are observed compared with the control 
reactions analysed in the previous figure. More soluble products were observed from the 
reaction of TtGH8 with MLG and BX than with either wAX or rAX, where the soluble products in 
the latter two substrates have a lower response.  
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Figure 107 HPAEC-PAD substrate depletion assay of TtGH8 on xylopentaose . Aliquots were 
removed from the reaction at set time points and later analysed by HPAEC-PAD; the above 
chromatograms show the samples taken at the beginning and end points of the reaction. A large 
amount of X5 is degraded to X3. Note, there is a small amount of contaminating xylotetraose 
within the xylopentaose sample used for this experiment, seen to the left of the X5 peak.  

X5 
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Figure 108 TtGH8 HPAEC-PAD substrate depletion analysis . A) 1.28 nM, 100uM X6, B) 0.64nm, 
100 um X6, C)3.2 nm, 100 um X5, D)3.2nm, 100 X5, E)64 nm, 100 um X4. Figure taken from 
Fowler et al.182 



 

245 
 

The activity of TtGH8 of xylose based polysaccharides was also measured kinetically using 

the DNSA reducing sugar assay on bX, wAX and bMLG for both TtGH8 and TtGH8D281N. This 

method quantifies the amount of reducing sugar produced during enzymatic hydrolysis of 

polysaccharides. Figure 109 shows the reaction as photographed after absorbance 

measurements had been taken and is a strong visual representation of the reaction progress 

over time; where the colour change from yellow to brown indicates an increasing amount of 

reducing sugar present in the sample. Figure 109 also compares two different substrates, 

where the difference in rate of reaction of TtGH8 on MLX and wAX is evident visually and 

graphically as described in the methods section) as shown in Figure 110. The activity of the 

catalytic mutant which still maintained the ability to hydrolyse xylose based substrates in 

activity assays was also tested by DNSA reducing sugar assay and graphically represented in 

Figure 110. The calculated value of kcat/KM is significantly affected by the removal of the 

catalytic aspartate residue, showing only 0.1 % retention in activity compared to the native 

enzyme. All calculated values of kcat/KM by DNSA reducing sugar assay are summarized in 

Table 19 allowing comparison of the activity of TtGH8 on different substrates, where an 

apparent preference was observed for bMLG.  

 

 

Figure 109 TtGH8 activity on polysaccharides was determined using the DNSA reducing sugar 
assay. Photograph of plate containing aliquots representing different reaction time points (0-25 
mins) and substrate concentrations (mixed linkage xylan and wheat arabinoxylan 0.5-2.0 
mg/ml). Reaction of the DNSA agent with reducing sugars causes a visible colour change from 
light yellow to deep brown, with the amount of colour change measured by absorbance at 575 
nm being equivalent to the amount of reducing sugar (chain ends) produced during the enzyme 
reaction. Figure as published in Fowler et al.182 
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Figure 110 DNSA reducing sugar assay of TtGH8 and TtGH8 catalytic mutant on A) MLX, B) 
TtGH8 on WAX and C) TtGH8 on BX. The rates for each reaction condition are plotted against 
the substrate concentration, where the gradient once divided by enzyme concentration is 
equivalent to kcat/KM. Figure as published in Fowler et al.182 
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Table 19 Catalytic activities of TtGH8 on xylan substrates, as determined by HPAEC-PAD 
(oligosaccharides) or DNSA reducing-sugar assay (polysaccharides). Activity of TtGH8D281N on 
MLX was also measured on bMLG and found to be significantly slower than the native enzyme. 
Table as published in Fowler et al.182 

Oligosaccharides kcat/KM   (M
-1

 min
-1

) Polysaccharides  kcat/KM   (mg
-1

 ml min
-1

) 

Xylohexaose 7.5 x 10
7
   1.1  x 10

6
   bX 1.8 x 10

7
 
 
 4 x 10

6
 

Xylopentaose 1.4 x 107   1.4  x 106   wAX 6.3 x 106   5 x 105 

Xylotetraose  6.1 x 105   3.1 x 104 MLX  1.6 x 108   
 4  x 106 

 MLX (TtGH8D281N)  1.8 x 104   
 1  x 103 

 

5.4.5 Crystallisation and Structure Solution  

TtGH8 was crystallised very easily and in high quantities in several well conditions in 

different commercial screens. Figure 111 shows an image of one drop where the overall 

crystal morphology is captured; long needles.  The crystal hit conditions were evaluated and 

optimised using the hanging drop method focused around slight deviations in pH and PEG 

6000 concentration. Crystals were fished from wells and soaked briefly in a cryo-protectant 

before being frozen in liquid nitrogen. Protein ligand complexes with xylobiose and 

xylotriose were achieved by briefly soaking TtGH8 crystals in the solution of the mother-

liquor and a very high concentration of ligand which proved successful in producing enzyme-

substrate complexes. Crystal soaking experiments using the catalytic mutant TtGH8D281N 

were carried out in an attempt to capture the binding of X6 across the protein active site. As 

the catalytic mutant still retained some activity, as shown previously, it was different to soak 

X6 into the crystals without it being hydrolysed and observed as a product complex. The 

soaking times were reduced significantly from 15 minute crystal soaks within mother liqueur 

and X6 in the first instance to the final successful soak timing of 10 seconds. All crystals were 

tested for diffraction in house before being sent to the Diamond synchrotron and collection 

statistics for the different data sets corresponding to TtGH8, TtGH8-X2, TtGH8-X3 and 

TtGH8D281N-X6 are shown in Table 20. 
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Figure 111 TtGH8 crystallised using the Hampton Screen. Successful well condition contained 
Sodium acetate (pH 4.6), NaCl and polyethylene glycol 6000.  

The ‘apo’ TtGH8 structure was solved using molecular replacement (MOLREP).180 A PDB 

BLAST search identified a GH8 ‘reducing end xylose releasing exo-oligoxylanase’ from 

Bacillus halodurans C-125 (PDB entry 1WU4) as the closest sequence homology match.113, 186 

Refinement cycles involving REFMAC160 and manual alteration in COOT159 were applied 

several times before the Rcryst and Rfree remained constant. All other data sets were solved 

using the model of TtGH8, where the catalytic mutation in TtGH8D281N was manually 

changed in COOT. After sufficient modelling of the main chain and water molecules within 

the structure solutions, data sets where there may have been possible ligand binding in the 

active site were analysed in COOT to check for any unmodelled electron density. The ligands 

X2, X3 and X6 were built in by incorporating the correct CIF dictionary into the PDB file. The 

refinement statistics and PDB codes for TtGH8, TtGH8-X2, TtGH8X3 and TtGH8D281N-X6 are 

shown in Table 21. 
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Table 20 TtGH8 and TtGH8D281N statistics from data collection and processing. Values for the 
outer shell are given in parentheses. Tables as published in Fowler et al.182 

 TtGH8 Native TtGH8 X2 TtGH8 X3 TtGH8D281N X6 

Diffraction source Diamond Light 

Source 

Diamond Light 

Source 

Diamond Light 

Source 

Diamond Light 

Source 

Wavelength (Å) 0.98 0.98 0.98 0.98 

Temperature (K) 100 K 100 K 100 K 100 K 

Space group P 21 21 21 P 21 21 21 P 21 21 21 P 21 21 21 

a, b, c (Å) 61.5 73.0 

90.9 

61.7 79.0 87.6 59.7 80.5 

88.0 

62.0 79.7 88.0 

α, β, γ (°) 90.0 90.0 

90.0 

90.0 90.0 90.0 90.0 90.0 

90.0 

90.0 90.0 90.0 

Resolution range 

(Å) 

51.0-1.4 

 (1.42-14.0) 

50.4-1.4  

(1.42-1.40) 

59.4-1.80   

(1.84-1.80) 

60.97 -1.80  

(1.84-1.80) 

Total No. of 

reflections 

342816 530153 316157 313138 

No. of unique 

reflections 

80610 84123 40092 40046 

Completeness (%) 99.4 (99.9) 99.1 (89.6) 100.0 (100.0) 99.0 (98.0) 

Redundancy 4.3 (4.3) 6.3 (4.1) 7.9 (7.7) 7.8 (8.0) 

〈 I/σ(I)〉 9.6 (1.7) 10.1 (1.3) 8.5 (1.6) 8.2 (2.0) 

CC(1/2) 0.997 (0.670) 0.997 (0.503) 0.994 (0.528) 0.992  (0.639) 

R p.i.m. 0.045 (0.414) 0.051 (0.549) 0.080 (0.611) 0.109  (0.970) 

Overall B factor 

from Wilson plot 

(Å
2
) 

9 9 13 12 
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Table 21 TtGH8 and TtGH8D281N mutant refinement statistics. Values for the outer shell are 
given in parentheses. Table as published in Fowler et al.182 

 TtGH8 Native TtGH8 X2 TtGH8 X3 TtGH8D281N X6 

Resolution range (Å) 51.0-1.4 
 (1.42-1.40) 

50.4-1.40  
 (1.42-1.40) 

59.4-1.80   
(1.84-1.80) 

60.97 -1.80  
(1.84-1.80) 

Completeness (%) 99.4 (99.9) 99.1 (89.6) 100.0 (100.0) 99.0 (98.0) 

No. of reflections, 
working set 

80540 84054 40032 39993 

No. of reflections, test 
set 

3924 4274 1868 1942 

Final Rcryst 0.15 0.16 0.17 0.17 

Final Rfree 0.17 0.18 0.20 0.20 

Cruickshank DPI 0.052 0.051 0.111 0.116 

No. of non-H atoms     

Protein 3163 3145 3125 3136 

Ion 1 - -  

Ligand 25 23 28 61 

Water 310 330 164 194 

R.m.s. deviations     

Bonds (Å) 0.017 0.016 0.012 0.012 

Angles (°) 1.70 1.68 1.51 1.50 

Average B factors (Å2)     

Protein 14 12 17 16 

Ion 18 - - - 

Ligand 28 15 20 26 

Water 27 22 24 22 

Ramachandran plot     

Most favoured (%) 98.2 97.5 98.0 97.5 

Allowed (%) 1.8 2.5 2.0 2.5 

PDB Code 6G00 6G09 6G09 6G0N 
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The structure of ‘apo’ TtGH8, displayed as ribbon view in Figure 112, shows the classical fold 

associated with the GH8 family, an (α/α)6 barrel. The ribbon structure clearly shows the 

inner core of the protein surrounded by 6 separate alpha helices, each themselves 

connected by short β-sheet like linker regions. When looking at the surface of the protein, 

coloured by electrostatic potential in the same figure, one can see the deep binding groove 

along one face of structure, which in this case is the catalytic mutant TtGH8D281N. The 

mutant structure is shown with X6 bound across the active site and resulted from 10 second 

mutant crystal soaks in a solution of X6. Previous attempts in which TtGH8D281N crystals 

were soaked for longer amounts of time results in product complexes bound within the 

active site. One structure (data not presented) which resulted from crystals soaked in X6 for 

15 minute, showed clear electron density for two molecules of X3 on either side of the 

‘catalytic’ residues, indicating formation of a product complex. Crystal structures of the 

native TtGH8 with smaller ligands, X2 and X3 were also accomplished and showed a 

preference of ligand binding in the negative subsites as shown in Figure 113. X2 was found 

to bind only in positions -3 to -2, X3 was found to bind -3 to -1, whereas X6 in the mutant 

structure was found to bind -3 to +3. Interestingly, binding of X3 caused movement of the 

catalytic residues Glu73, as shown in Figure 113 where the catalytic residues in ligand 

complexes are compared with those in the native. Several residues are thought to be 

involved in substrate binding, as shown in Figure 114, where ‘nearest neighbours’ (selected 

in CCP4mg181) within 4 Å to the bound X6 ligand are shown as cylinders and labelled; several 

aromatic residues are likely to provide ring stacking interactions, as well as hydrogen 

bonding interactions coming from a network of water molecules and hydrophilic residues. 

Binding of a sugar moiety in position -1 induced a conformation change in both the TtGH8-

X3 and TtGH8D281N-X6 structures, to 2,5B and 4C1 conformations respectively, shown clearly 

in Figure 115.  
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, 

Figure 112 Ribbon structure of ‘apo’ TtGH8, with surface shown as semi-transparent (above). 
Surface view, coloured by electrostatic potential of TtGH8D281N in complex with X6 (below).  
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Figure 113 Ligand complexes of apo TtGH8 and catalytic mutant, TtGH8D281N with the 
corresponding maximum likelihood weighted Fo-Fc “difference” electron density, calculated 
prior to any incorporation of ligands in refinement, at contour level of 0.35 electrons / Å3 
(approx. 2.5σ). A) Xylobiose complex with TtGH8, showing xylobiose bound in sites -3 to -2. B) 
Xylotriose complex with TtGH8, where the ligand is bound in the -3 to -1 sites. The catalytic 
residues in both the xylobiose and xylotriose complexs are overlaid with those in the apo 
structure, shown in purple and light pink respectively. Movement of Glu73 is observed in the 
xylotriose complex. C) Xylohexaose complex with TtGH8D281N, showing the ligand occupying 
all 6 subsites within the binding site, -3 to +3.  
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Figure 114 Nearest neighbours, within 4 Å to the bound xylohexaose ligand in complex with 
TtGH8D281N. Hydrogen bonding to water molecules is also shown with dashed lines. The 
catalytic residue Glu73 and mutated Asn281 are labelled in purple. Subsites are labelled -3 to 
+3.  

 

Figure 115 Close up view of the ligands, X3 and X6 and their conformation within the -1 subsite 
of TtGH8 and TtGH8D281N respectively. X3 forms a skew boat in the -1 position, whereas X6 
takes the form of an inverted chair.  
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5.5 Discussion 

5.5.1 Stability and Ligand Interactions 

TtGH8 was predicted to be associated with xylan degradation from sequence homology 

modelling using NCBI BLAST.113 The enzyme was first tested using TSA to determine the 

protein stability with and without substrates. TtGH8 on its own displayed a clear protein 

melting curve, with a TM of 57.2 °C.  The enzyme was incubated with a broad array of 

polysaccharide substrates but the only significant increase was observed with BX, where the 

protein TM increased by 2.1 °C. A similar increase was observed during the TSA assay when 

the protein was incubated with X6, whereby the melting temperature increased by 2.9 ° C. 

No other significant changes in melting temperature were observed for TtGH8 mixed with 

polysaccharides such as cellulose. The GH8 family does contain members which display 

endo-glucanase activity,34 but the lack of interaction of TtGH8 on cellulose as shown by no 

observable changes in melting temperature suggested that the protein does not have this 

functionality. The catalytic mutants TtGH8D281N and TtGH8E73Q were also analysed by TSA 

and found to have significantly reduced ‘apo’ protein melting temperatures. The changes 

made to the catalytic residues appear to have seriously affected the stability of the protein, 

more so in TtGH8E73Q than TtGH8D281N which displayed melting temperatures of 48.2 °C 

and 53.0 °C respectively. Consistent change in ‘apo’ TtGH8 Tm, incubation of the catalytic 

mutants with X6 had a large stabilising affect increasing the melting temperatures to 

approximately the same value as determined for TtGH8 (TtGH8 + X6,60.5 °C; TtGH8D281N + 

X6,60.2 °C; TtGH8E73Q + X6,63.5 °C). The large shift in melting temperature for all three 

protein samples suggests that X6 binds within the active site of the protein.    

5.5.2 Activity Assays 

In order to provide more experimental evidence for the activity of TtGH8 on xylose based 

polysaccharides, TLC and LCMS assays were carried out. Hydrolysis reaction mixtures 

containing enzyme and various polysaccharides (bX, wAX, rAX, cAX, tXyG) were separated 

into soluble and insoluble fractions. When compared to the control samples, TtGH8 was able 

to solubilise and thus degrade bX, wAX and rAX as shown by products on the TLC plate. The 

enzyme was also tested against X2-X6 and found to degrade X4-X6. The hydrolysis reaction 

products of bX and X4-X6 were also evaluated using LCMS to determine accurate masses for 

the main products observed in the TLC analysis. The xylo-oligsaccharides were found to be 
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completely degraded into smaller products, whereby X4, X5 and X6 were hydrolysed into X3, 

X3+X2 and X3 respectively. Analysing the solubilised fraction of BX also showed X3 as the 

predominant oligosaccharide product; other products were observed on the TLC analysis, 

but these other soluble products were not as clear in the LCMS trace. These results 

indicated that TtGH8 is able to hydrolyse xylan based polysaccharides with the dominant 

product being xylotriose.  

As TtGH8 had shown preferential activity towards xylans and on soluble xylo-oligsaccharides, 

kinetic parameters to assess the degree of enzyme efficiency were collected using HPAEC-

PAD and the DNSA reducing sugar assay. The kinetic data analysed by HPAEC-PAD involved a 

method known as substrate depletion, whereby the amount of soluble substrate present 

during the enzymatic reaction over time is monitored. TtGH8 was found to follow similar 

patterns observed with other GH8 enzymes with the same substrate specificity.187 Whilst no 

activity was observed for X2 or X3, increasing enzyme activity was observed with 

progressively larger substrates; with values for kcat/Km determined for  X4 as 6.1 x 105   3.1 x 

104 M-1 min-1, X5  as 1.4 x 107   1.4  x 106 M-1 min-1 and X6 as 7.5 x 107   1.1  x 106 M-1 min-1. 

Due to larger substrates being unavailable commercially it is unknown as to what point this 

trend ceases, but the difference in efficiency between X5 and X6 is less than the difference 

between X4 and X5. Therefore, one may assume a similar reducing trend between X6 and 

X7. Studies of other GH8 catalytic mutants had observed binding of 5 sugar units in the 

active site, whereas the kinetic data indicated that TtGH8 preferentially bound X6, where 

the extra sugar unit likely provided a higher substrate binding affinity.    

The kinetic efficiency of TtGH8 on three polysaccharides was also determined using the DSA 

reducing sugar assay. The measured kcat/Km values showed a clear preference of the enzyme 

for the mixed linkage xylan substrate (1.6 x 108    4 x 106 mg-1 ml min-1) which interestingly 

was a product isolated from a marine red algae. This was followed by bX (1.8 x 107   4 x 106 

mg-1 mL min-1) and then wAX (6.3 x 106   5 x 105 mg-1 mL min-1). The catalytic mutant 

TtGH8D281N, found to still retain a portion of its activity was also measured on MLX and 

found to display relatively efficient kinetics (1.8 x 104    1  x 103 mg-1 mL min-1). Although the 

mutant structure displays kinetics at a significantly lower value that the native enzyme, in 

context this mutant was still able to hydrolyse X6 within 5 minute as monitored by TLC, and 

described previously.  

The preference of the enzyme for the marine xylan (MLX) over the terrestrial xylan (bX) may 

be due to an adaption of the enzyme to available substrates within the environment of the 
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shipworm. In a discussion of shipworm larvae, Turner states that whilst shipworm larvae are 

quick to settle into burrows after extrusion from the adult, most wooden structures are 

covered in a ‘protective forest’ of various organisms including algae in which the young 

shipworm larvae may swim in before settlement.84 Bacterial symbionts are passed onto 

shipworm young, so it is possible that before or during larvae settlement, algal particles are 

digested using enzymes such as TtGH8. However, one must not be quick to jump to 

convenient conclusions. Little research into marine xylan polysaccharides has been carried 

out, so there are limited available resources to which the activity of TtGH8 can be compared. 

The mixed linkage marine xylan used in this study is found as a component of the red alga, 

Palmaria palmata, a polysaccharide involved in mechanical support, development and 

defence.188 Analysis of this polysaccharide suggests a ratio of 1:3 for 1,3: 1,4  moieties. 

Whilst pure 1,4  bonding of xylose residues would result in a twisted ribbon structure, the 

irregular distribution of 1,3 between variable lengths of 1,4  sections may cause 

disruption.188 Optical rotation alignment further suggests mixed linkage xylan exhibits a 

‘random coil’ structure, unlike linear 1,4  xylan which may form interactions with other 

chains, the presence of 1,3 introduces flexibility which may assist in the solubility.188-189 

Flexibility may improve the fitting of the polysaccharide into the V-shaped binding site of 

TtGH8. Improvement in solubility due to the flexible nature of the xylan chain may be a 

factor in the increased degradation rate exhibited by TtGH8.   

5.5.3 Structural Insights 

The structure of TtGH8 was determined by molecular replacement at a resolution of 1.4 Å, 

using the protein coordinates only from the “reducing-end-xylose releasing exo-

oligoxylanase” from Bacillus halodurans C-125 (PDB code 1WU4)186 as the search model. 

TtGH8 exhibits the classical (α/α)6 fold found within the GH8 family, whereby there is a clear 

deep substrate binding grove across one face.176 The suspected position of the catalytic 

residues was confirmed by comparing the structure of native TtGH8 with other GH8 family 

members; the residues Glu73 and Asp281 were found to be in the expected conserved 

catalytic positions.176  TtGH8 crystals were soaked in both X2 and X3, and the ligand 

complexes refined at 1.4 Å and 1.8 Å respectively. X2 was bound in the –3 and –2 subsites 

whereas X3 was observed bound across all three negative subsites.20 Structural analysis 

carried out on a GH8 from Pseudoalteromonas haloplanktis, an enzyme found to be a  cold-

adapted xylanase 178, 190-191 had revealed binding of X3 across the 3 positive binding sites, +1 

to +3 subsites. Combining structural insight from both P. haloplanktis and TtGH8 suggests 
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that there are in fact 6 binding sites available, -3 to + 3. This view is further clarified by 

structural study of an inactive variant (Asp144Ala) of P. haloplanktis, where a complex with 

X5 was captured by De Vos et al.178 The ‘inactive’ catalytic mutant of TtGH8 was used to 

capture a structure containing xylohexaose bound across the whole active site. The 

TtGH8D281N crystal soaking experiments with xylohexaose showed that, as observed in the 

activity assays, the mutant was still able to hydrolyse the substrate. The DNSA reducing 

sugar assay had indicated that TtGH8D281N retained around 0.1% catalytic activity (kcat/KM 

of 1.8 x104 mg-1 ml min-1), with MLX as substrate. Retention of activity upon mutation of the 

catalytic base is consistent with similar mutants on other GH8 systems.178, 190 As such 

product complexes (data not shown) were observed in experiments consisting of crystal long 

soaking timescales with X6; X3 in the negative subsites in longer soaking times, or shorter 15 

min soaks, separate X3 molecules bound either side of the remaining catalytic Glu73; -3 to -1 

and +1 to +3. The successful soaking process involved submerging the crystal for no more 

than 10 seconds within a solution of xylohexaose, before immediate freezing. Thus, the 

TtGH8 Asp281-Asn structure in complex with X6 was obtained at 1.6 Å, with X6 bound across 

the substrate binding grove from -3 to +3, mapping out one extra binding position as 

compared with the cold adapted xylanase of P. haloplanktis.   

5.5.4 Ligand Complex Mechanistic Insight    

Hydrolytic cleave by GH8 family members leads to inversion of the anomeric configuration 

at the scissile glycosidic bond (as described in Chapter 1).167 Comparison of the native TtGH8 

structure with that of the X3 complex, shows that binding of substrate induces rotation of 

Glu73 into a more catalytic relevant position. Glu73 interacts with the O1 hydroxyl of the 

sugar moiety in the -1 subsite whilst the catalytic base, Asp218 was found to be interacting 

with a water molecule “below” C1. The structural arrangement of the bound ligand in the -1 

subsite and the positioning of both catalytic residues, and a water molecule mimics the 

pathway expected for hydrolysis with inversion of anomeric configuration. Furthermore, the 

–1 subsite sugar is not observed in its low-energy 4C1 chair conformation, but is instead 

observed distorted to a 2,5B conformation. This distortion to a boat conformation is 

consistent with the expected catalytic itinerary of inverting GH8 enzymes in which the 

catalytic mechanism moves through an oxocarbenium-like transition state.23, 168, 192-193 The 

active site arrangement likely forces the -1 subsite bound sugar into a conformation closer 

to that of the transition state to favour catalytic movement towards product formation. 
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Indeed, similar conformations have been observed in ligands complexes of CelA 

endoglucanase173, and supported by QM/MM metadynamics.168. 

5.5.5 Retention of Activity 

Interestingly, the TtGH8D281N-X6 complex, where the substrate was found spanning 6 

subsites displayed a -1 conformation unlikely to assist in hydrolysis. In a similar occurrence 

the X5 ligand complex of GH8 from P. haloplanktis enzyme (PDB 2B4F) by De Vos 178 

displayed an undistorted 4C1 (although with scant density) sugar conformation in the -1 

subsite. Furthermore the position of the catalytic acid was found in a similar position that 

Glu73 in the native TtGH8 structure – a position not commensurate with the residues role as 

proton donor. Surprisingly, the conformation of the -1 bound sugar moiety in the TtGH8 

catalytic mutant was found to be a ring flipped to a southern hemisphere 1C4 chair 

conformation (see Chapter 1 for discussion of conformational analysis of carbohydrates in 

terms of hemispheres). It is unlikely that this X6 complex with the mutant TtGH8 reflects any 

mechanistic pathway that follows the ‘traditional’ GH8 inverting conformational itinerary. 

The 1C4 chair conformation blocks the incoming nucleophile water, by positioning O2 in an 

axial position. Hence, whilst the Asp281Asn variant has allowed definition of the interactions 

of the –3 to –2 and +1 to +3 subsites well, it highlights the occasional dangers of using 

inactive variants to study substrate distortion in –1.  

TtGH8D281N was found to retain some activity on both polysaccharide and oligosaccharide 

substrates, and indeed there is already precedence for GH8 catalytic mutants retaining 

activity. The GH8 family is split into three subfamilies, one of which, GH8b members lack the 

expected Asp catalytic base and activity is thought to occur through a nearby Glu residue.175 

Removal of the catalytic base in TtGH8 may have caused a shift in which residue is carrying 

out hydrolysis. The large reduction in activity compared with the native suggests that the 

change is very unfavourable, potentially due to the flipped chair conformation observed in 

the X6 complex, or the positioning of the acting base. A highly hydrogen bonded water, 

sitting above and slightly left of the scission site can be observed in line with Tyr259 in the 

structure of TtGH8D281N-X6. Guerin et al noted that a tyrosine residue close to the catalytic 

residues in CelA was able to interact with the nucleophilic water via hydrogen bonding and 

this residue was conserved in the majority of GH8 enzymes.173 This may be a possible route 

to catalysis whilst the use of the ‘normal’ catalytic base (Asp281) is not possible, with the 

tyrosine residue acting as a poor base, as suggested by Guerin those GH8 enzymes which 

lack a catalytic base display similar activity despite being an ‘inactive mutant’.173  
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5.6 Conclusion 

The single GH8 enzyme found in the genome of T. turnerae has been characterised as a 

highly efficient endo-xlyanase (kcat/Km for X6; 7.5 x 107   1.1 x 106 M-1 min-1, for MLX; 1.6 x 

108  4 x 106 mg-1 ml min-1), with maximal activity observed on a marine xylan 

polysaccharide known to consist of both β (1-4) and β (1-3) linkages. Due to unavailable 

comparisons in the literature, it is unknown whether TtGH8 is highly specific for mixed 

linkage marine xylans, or displays a higher activity due to the increased soluble nature of the 

polysaccharide as a result of its intrinsic linear structure. Structural analysis of native enzyme 

and ligand complexes showed a shift in the catalytic Glu73 residue upon binding on X3. The 

X3 ligand was in the 2,5B conformation in the -1 binding site, consistent with the catalytic 

itinerary for an inverting GH8 enzyme. A structure with xylohexaose was accessed through 

mutation of the catalytic base, and found to display an unusual ring flipped chair 

conformation in the -1 binding site. Furthermore, the catalytic mutant maintained some 

residual activity, meaning it was still capable of hydrolysing the substrate through an 

unknown catalytic pathway. In conclusion, this highly efficient GH8 is adept at 

depolymerisation a variety of different xylan substrates and due to its ease of production 

and stability could be a useful asset in industrial biomass degradation.   
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6  

Characterisation of 

TtAA10 

6.1 Abstract 

Lytic polysaccharide monooxygenase (LPMO) is a relatively new class of lignocellulolytic 

enzymes, which are capable of improving insoluble polysaccharide degradation through 

copper dependent oxidative chemistry. LPMO enzyme discovery and research is a constantly 

and fast evolving field, where novel enzymes and new insights are providing tools for future 

efforts towards utilising the full energy benefits of waste lignocellulosic materials. A gene 

which displays an N-terminal histidine, noted in the genome of T. turnerae, an 

endosymbiotic bacterial found within the gills of marine bivalve molluscs was proposed to 

be an LPMO, subfamily AA10. The LPMO, TtAA10 (ACR14100.1) is the single representative 

of this CAZYme family within the genome of T. turnerae, and has been characterised through 

this work as able to degrade crystalline cellulose. Growth of a T.turnerae culture on a 

cellulose substrate was found to cause over expression of native TtAA10 by secretion into 

the media. Subsequently, the activity of recombinantly produced TtAA10 was analysed by 

MALDI-TOF-MS and the enzyme found to be active on PASC and Avicel when mixed with a 

reducing agent, with major product peaks between DP 5-8. Both native oligosaccharides and 

oxidised products were observed, with mass spectrometry indicating that TtAA10 is able to 

cleave a glucan chain at both C1 and C4 positions around the scissile bond. TTAA10 

therefore belong to AA10 subgroup Type 3. TtAA10 was found to bind to crab (alpha) chitin 

but not degrade the substrate, and follows the hypothesis that the AA10 subfamily is moving 

away from chitinolytic activity.  The overall structure of TtAA10 is significantly different to 

other LPMOS, with the highest AA10 sequence homology being 30 %. As such TtAA10 was 

solved at 1.4 Å by copper phasing; the C-terminal strep tag provided a crystal contact 

through formation of a secondary copper site, enhancing the copper signal which allowed 
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for structure phasing and solution. TtAA10 displays a typical Histidine brace active site, as 

shown by EPR and structural analysis, albeit with a glycine replacing the normal AA10 

alanine residue observed in the apical position above the active site copper. This work has 

analysed the only LPMO encoded in the genome of a symbiotic bacteria from a host animal 

shown to be able to survive off a diet consisting of only lignocellulose, despite not 

harbouring any other bacterial microorganisms in its digestive system. Characterisation of 

TtAA10 will add to the ever growing collection of knowledge and chemical insights towards 

understanding this highly important class of enzymes.  

6.2 Introduction 

6.2.1 Lytic polysaccharide monooxygenases (LPMOs) 

LPMOs augment the functions of their lignocellulosic degrading counterparts, GHs. LPMOs 

provide an oxidative mechanism to break up the most resilient, highly ordered, crystalline 

polysaccharide structures such as cellulose and chitin, as discussed further in Chapter 1.39, 

194LPMOs are a family of proteins which are only related by a set of highly conserved 

features, which allow the proteins to use oxidative chemistry on the surface of 

polysaccharide structures, breaking glycosidic bonds to produce breaks in the otherwise 

ordered structures. The most important of these features is the active site, commonly 

known as the Histidine brace.195 The Histidine brace creates the perfect scaffold for T-

shaped coordination of a copper ion. The brace further positions the metal on the “flat” 

surface of the protein, in a prime location to interact and react with chains on the 

polysaccharide surface.65, 195-196 In the same way as GHs, LPMOs are classified by sequence 

homology in the CAZy database and are described within a set of auxiliary activity (AA) 

enzymes.34 There are currently 6 published subfamilies of LPMOs; AA9, AA10, AA11, AA13, 

AA14 and AA15 which were described in Chapter 1.51 Each family is extremely different in 

amino acid sequence and sequence homology. However, all contain the specific and 

invariant features of an LPMO to enable it to carry out oxidative chemistry on the 

polysaccharide chain.  

6.2.2 Auxiliary Activity 10 

This Chapter will focus on an AA10 LPMO. The AA10 subfamily is large, containing at present 

(September 2018) 3623 entries, of which only 21 have been structurally characterised.34 

There are no AA9 or AA11 enzymes found within bacterial genomes (they are mostly fungal) 
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and LPMO proteins classified into the AA10 subfamily originate largely from bacterial 

sources. A smaller subset is found in viral genomes whilst a couple of sequences have been 

identified as coming from eukaryotes and archae.34 Phylogenetic analysis by Book et al 

created a clear pictorial representation of the extent to which there is no cross over 

between AA9 and AA10 proteins and by using an extremely relaxed similarity threshold, it 

was shown that there is no sequence link between the two LPMO subfamilies, even at the 

edges of the phylogenetic tree.197 AA10 proteins can be active on either chitin (AA10 clade I) 

or cellulose (AA10 clade II), with the latter likely to be a more ‘recently’ gained functionality 

considering that chitin as a substrate has been present in oceanic systems before the 

formation of cellulose structures in land plants.197-198 Book’s analysis supports this 

interesting hypothesis, suggesting that whilst there was a negative selection pressure for 

alteration to the key features of AA10 proteins, notably the active site, within the AA10 

subfamily there is currently underway a positive selection pressure to move towards 

cellulolytic function over chitinolytic.197 Whilst the AA9 and AA10 proteins may share a 

common, albeit ancient ancestor, it is clear that the continual change in function overtime 

further separates the two families, whilst maintaining their primary function.  

In an overall sense, the structures of the different LPMOs families are similar in that they 

create a near planar surface involved in the binding of the substrate. Almost at the centre of 

this flat surface, a molecule (e.g oxygen) bound to the Cu active site is perfectly positioned 

to react with the C-H bonds of the polysaccharide chains.43, 199 The tight binding of the 

copper (a Kd of 43 nM ± 2 nM at pH 5.0 was measured for BaAA10 using displacement 

isothermal titration calorimetry)61, 65 is provided by the Histidine brace, where positioning of 

two histidine residues forms a T-shaped geometry in which the Cu is coordinated by three 

nitrogen atoms; two ring nitrogen atoms from the side chains and a single nitrogen from the 

amino terminus, as described in Chapter 1. The coordination sphere of the Cu is completed 

by a fourth equatorial (exogenous) ligand, typically a water/hydroxide molecule. In the apical 

position, a further water molecule can be observed in the Cu(II) structures, while a 

conserved Tyr occupies the other axial position in the AA9, AA11, AA13, AA14 and AA15 

classes. In contrast, some AA10 active site lacks this conserved tyrosine residue, which is 

instead replaced by a phenylalanine. Furthermore, AA10s present a conserved Ala residue 

positioned above the copper ion. As a consequence of the steric hindrance given from this 

residue, the apical water molecule is tilted away from the normal to the His brace plane, as 

observed in the Cu(II) structures and confirmed by EPR studies. The difference in 

surrounding residues changes the coordination of the copper-ligand sphere compared with 
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AA9s, which is evident during EPR analysis65 EPR analysis simulates spin Hamilitonian 

parameters which can be used to assess coordination around a metal ion such as Cu. 

Analysis of the parameters measured in the Cu centre of many AA10 proteins have shown 

separation into two broad classes. The first class exhibits a high value of Az (similar to AA9 

proteins) which is consistent with more axial coordination geometry. The second class 

presents more rhombic g values, with a reduction in the Az component suggesting that the 

active site geometry around the Cu is distorted away from axial.  Comparison of AA10s to 

AA9 spectra, with those AA10 proteins acting on cellulose found to be more similar in their 

EPR copper signal to AA9s, than AA10s which are active on chitin.200 Mutation of the 

phenylalanine in active site of ScLPMO10C (CelS2) to a tyrosine still maintained copper 

binding, but negatively affected the activity of the protein and thus failing to mimic a partial 

AA9 active site (as the axial water position would still have been blocked by the alanine).  It 

is likely that other subtle changes beyond the differences in apical residues are also 

important in producing an ‘active’ active site.200 Differences in active site configuration may 

be indicative of differences in enzymatic mechanism. Crystallography studies of LsAA9, 

which is active on soluble cellooligosaccharides, combined with EPR show binding of 

substrate to the surface of the LPMO. The binding of cellotriose causes alterations in the 

copper coordination sphere, as observed in the structure and by EPR. Substrate binding 

induced movement of the so called pocket water, away from the normal axial coordination 

position, where it was then linked within a hydrogen bonding network between substrate 

and the amino terminus of His1, ultimately linking to the Cu ion, Figure 116.201 In high salt 

conditions, binding of chloride was observed as an equatorial ligand to the Cu and was found 

to lower the dissociation constant of cellohexaose (3.7 ± 0.1 μM, measured by ITC) to the 

surface of the LPMO. The changes in coordination sphere were reflected in the measured 

EPR parameters, with gz shifting from 2.28 in the native protein, to 2.23 in the presence of 

substrate and chloride. A similar shift in EPR values was observed upon mixing the LPMO 

with insoluble crystalline cellulose, indicating that the protein likely works in a similar way on 

both substrates, potentially attacking exposed corners of the substrate.201 Small differences 

in the active site and binding mode may prove to be important factor in determining the 

mechanistic pathways utilised by different LPMO families. Indeed, shifts in EPR parameters, 

or lack therefore, can provide insight into the binding interaction of substrates inaccessible 

by crystallography. 



 

265 
 

 

 

Figure 116 Structure of LsAA9 in complex with cellotriose  (PDB code: 5ACF), taken at a low X-
ray dose. A) Surface structure showing contours at the binding surface. B) Position of substrate 
over active site. C) Detailed view of Cu active site, showing presence of Cl positioned 2.3 Å away 
from copper and 3.9 and 3.7 Å away from C4 and C1 respectively (see Chapter 1 for description 
of C4 vs. C1 oxidation). The so called pocket water, has been shifted out of its normal apical 
binding position into a hydrogen bonding network linking the substrate to the Cu through the 
water’s interaction with the N-terminus.201 Image produced in CCP4mg.55 
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The near-planar surface of the LPMO is the region of the protein which interacts with the 

substrate. Unlike GHs, which often have a groove or cleft able to isolate a single substrate 

strand, the flat binding surface of most LPMOs allows it to dock onto the ordered, extended 

regions of polysaccharide surface. The usually flat surface is formed by one end of the β-

sandwich and the top of the single helical bundle, with the active site in a central position. In 

AA10s a conserved set of residues sits either side of the copper active site, likely inducing a 

substrate specific orientation through hydrogen bonding interactions and aromatic 

residues.65 Indeed, several site directed mutagenesis experiments have shown how 

mutation of certain conserved surface features reduced LPMO function.53, 61 Recent 

computational modelling by Bissaro et al also suggests that the surface is responsible for the 

precise positioning of the activated Cu-oxygen intermediate close to the C-H bond to be 

broken; the modelling of chitin active SmAA10a mimics the stereochemical cleavage 

observed during activity assays.202 AA10 family members have been found to degrade 

cellulose and chitin and as mentioned previously the family can be split into two clades 

based on this substrate preference.197-198 Sequences alignments have shown that chitin 

active AA10s are more similar to each other than they are to cellulose active AA10s, and vice 

versa. Small differences in the planar region surrounding the active site most likely 

contribute to the substrate specificity of AA10s.200  

Both AA9 and AA10 LPMOs are able to act upon substrates in a regioselective manor, and as 

summarized in Table 2 (Chapter 1), the clades can also be split into type. Cleavage of 

substrate by LPMOs has been shown to occur at positions C1 and C4 (described in Figure 13, 

Chapter 1) – some LPMOS are only capable of cleaving at C1 or C4, whereas others seem to 

lack specificity and have been shown to cleave the same substrate at both positions. Hence, 

AA10s have been shown to have the following activites, described as four types;71 

 Type 1A – cleavage of chitin at C1 

 Type 1B – cleavage of chitin at C1 

 Type 2 – cleavage of celloluse at C1 

 Type 3 – cleavage of celloluse at C1 and C4 

As of yet, no AA10 enzyme has been shown to only cleave at the C4 position, unlike in Type 

2 AA9s.  Type 1A and Type 1B are split based on phylogenetic analysis which shows the only 

Type 1B member, CjLPMO10A, as a distinct branch point from other chitin degrading 

AA10s.71 
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Catalytic breakage of glycosidic bonds by LPMOs functions through an oxidative mechanism, 

however, reduction of the copper by an external reducing agent is required before 

activation of dioxygen (or another substrate such as H2O2) and subsequence catalysis can 

occur.  Fungi use AA9s to illicit changes to substrate morphology, before using GHs to break 

down the substrate further.  In some fungal systems, cellobiose dehydrogenase (CDH) is 

upregulated along with AA9s in response to presence of substrate203-204, and is able to act as 

a reducing agent towards AA9s, leading to a possible conclusion that this protein is the 

natural reducing agent of fungal LPMOs.58, 205 The natural function of CDH converts 

disaccharides (or larger oligosaccharides) into their corresponding aldonic acids via an 

oxidative mechanism. CDH is a two-domain protein consisting of a flavin adenine 

dinucleotide (FAD) binding dehydrogenase (DH) in complex with a heme binding cytochrome 

(CYT).205 CDH can store electrons in the DH domain, due to reduction of FAD and transfer 

them via a  2 e- reduction step to a redox partner during a reaction. Alternatively, CDH can 

perform a 1 e- reduction via internal transfer of an electron to the iron held within the CYT 

domain, which can then be subsequently transferred to a redox partner such as an LPMO.205-

206 The single electron transfer ability of CDH is thought to couple with the reduction of the 

LPMO active site from Cu(II) to Cu(I). The 1 e-- reduction of copper primes the system for 

activation of O2 into an Cu(II) oxygen intermediate capable of oxidative cleavage of the 

glycosidic bond. The hydroxylation and subsequent elimination steps result in recycling of 

the copper site back into the Cu(I) form and breakage of the glycosidic bond.206  

Interestingly, CDH is only found in fungal systems and an equivalent protein in non-fungal 

organisms have not yet been identified.  The redox activity of CDH can be mimicked with 

small molecule reductants such as ascorbate (Vitamin C) or gallic acid which are commonly 

used in the study of LPMO activity.  However, use of small molecule reductants has issues. 

Auto-oxidation can occur and lead to reductions in known concentrations, and may result in 

damage to the LPMO or surrounding enzymes through formation of reactive oxygen species.  

Furthermore, addition of a small molecule reducing agent to an LPMO may cause damage 

unless substrate is already present. In nature, small molecule reductants may be present in 

lower quantities which would limit damage over time and whilst introduction of excess 

reducing agent may not mimic natural conditions effectively this process is likely to be used 

in the industrial enzymatic degradation of biomaterials.  Experiments which identified the 

oxidative action of LPMOs did not use small molecule reductants, which suggests that 

LPMOs have the potential ability to recruit electrons from their substrates.52-53, 206



 

268 
 

6.2.3 TtAA10 Domain architecture 

There is only a single LPMO found within the genome of T. turnerae and sequence analysis 

predicts it to be homologous to other AA10 protein sequences, with the closest match being 

CjLPMO10A, a chitin active AA10 from Cellvibrio japonicas, Figure 117. LPMOs are known to 

exist as single domains or be fused with other activities, such as CBMs and often domains 

with unknown functions (termed X-domains). AA10 proteins are often associated with 

binding domains from CBM2, 3, 5 or 12; with CBM2 and 3 conferring cellulose binding, 

whilst 5 and 12 are known to interact with chitin.207  The full length gene sequence of the 

LPMO in T. turnerae, TtAA10, predicts a domain architecture containing a signal peptide, the 

AA10 LPMO domain and a linker region followed by a CBM10 domain. The CBM10 domain is 

thought to be cellulose binding or provide cellulose recognition that is unlikely to be 

associated with a catalytic event, 208 and whilst different from the CBMs commonly found 

attached to AA10 proteins, 197 its presence in the domain structure of the TtAA10 gene gives 

a strong indication that this protein will be primarily active on glucose based 

polysaccharides.  

 

Figure 117 Sequence alignment (T-coffee) of TtAA10 against CjLPMO10A formatted using 
ESpript.  CjLMPO10A is currently the sole member of the AA10 subfamily Type 1B. TtAA10 
shares 50% sequence homology with CjLPMO10A, which is the closest sequence match to 
TtAA10 using NCBI BLAST.  
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6.3 This Work 

The catalytic LPMO domain from the TtAA10 gene was synthesised in E. coli, in several 

batches, as shown in Chapter 2.  The work presented herein describes the characterisation 

of TtAA10 in terms of both structure and function, testing the hypothesis that TtAA10 would 

display activity on cellulose, based on the positioning of a cellulose binding domain within 

the gene open reading frame. EPR spectroscopy was used to assess the copper containing 

Histidine brace active site. The stability of the protein with and without copper as well as the 

effect of introducing a reducing agent was assessed by TSA. The activity of the protein is 

analysed by MALDI-TOF-MS, to find out what type of cellulose TtAA10 is specific for and as 

such carry out product analysis to determine the AA10 subgroup. Finally, the structure of 

the protein is determined and used to compare with other AA10 structures in the literature.
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6.4 Methods 

6.4.1 Materials 

Pure recombinant protein, TtAA10 (ACR14100.1) was produced as described in Chapter 2, 

using the construct TtAA10-strep, henceforth written only as TtAA10. Substrates used in this 

work were Avicel (Sigma), PASC (Sigma), Carboxymethylcellulose (CMC), crab chitin (Sigma), 

squid pen chitin, and bMLG. T. turnerae (strain T7901, ATCC 39867) was purchased from the 

American Type Culture Collection (ATCC) through LGC Standards Limited. 

6.4.2 T. turnerae Culture Growth 

Growth media (100 mL) was made using LB (10 mL, 10 X stock), seawater (80 mL) (origin, 

Gulf of Mexico, sterilised, Sigma-Aldrich), Sigmacell Cellulose type 101 (10% w/v, 10 mL) 

(Sigma-Aldrich). Media was autoclaved prior to addition of MgSO4 (1 mM final 

concentration) and CaCl2 (1 mM final concentration). T. turnerae was introduced to the 

media and cultures grown at 35 °C, 50 rpm for 5 days. Cells were harvested by 

centrifugation and the media collected. Samples of the media and cell pellet (soluble 

fraction) were sent for proteomic analysis at the Technology Facility, Department of Biology, 

University of York. A pull down experiment was carried out by growing 50 mL of culture 

which was separated into media and pellet after 5 days growth at 35 °C. Cell pellet was 

resuspended in buffer (1 X PBS, pH 7.4), lysed and the supernatant collected by 

centrifugation. Both media and lysed cell pellet samples were loaded onto individual strep 

columns (Strep Trap HP, GE Healthcare) pre-bound with recombinant TtAA10 (1 mg total). 

Columns were washed with 1 X PBS buffer and TtAA10 eluted with desthiobiotin (20 mL, 2.5 

mM in 1 X PBS, pH 7.4) (Sigma-Aldrich). The eluted protein was concentrated down and all 

samples collected run on SDS PAGE.   

6.4.3 EPR 

Frozen solution EPR spectra of TtAA10 were collected at 160 K on a Bruker EMX continuous 

wave X-band spectrometer operating at approximately 9.3 GHz, modulation amplitude of 4 

G and 10.02 mW microwave power. Protein samples used during single EPR analysis were all 

in the concentration range 100-200 μM, in 1X PBS buffer at pH 7.4. Simulations of the 

collected spectra were carried out in Easy Spin 5.2.6209 integrated into MatLab 2016a 

software by Dr Luisa Ciano to determine the g and A-tensor parameters. EPR of different 
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batches of protein shows that some samples contained two copper species, whilst other 

samples contained only one.  EPR Copper titrations (CuSO4 1 M) were carried out on protein 

free of copper (10 mM EDTA treated, followed by extensive buffer exchange), with spectra 

taken before the titration was started confirming the lack of coordinated copper in the 

protein. Copper was added to the protein solution whilst contained within the EPR tubes, in 

additions of 0.2 equivalents (to the concentration of the protein in the sample). Spectra 

were measured after each addition of copper solution. EPR was also used to monitor metal 

displacement of the second copper species. The sample obtained at the end of the previous 

copper titration experiment was used as it was known to contain the second copper species.  

0.5 to 1.5 equivalents of Fe, Ni, Zn and Mn (from high concentration metal salt solutions) 

were added one after another and EPR spectra taken in between additions to monitor any 

changes in the copper signal. EPR spectra were also taken on TtAA10 samples that had been 

mixed with PASC or chitin.  

6.4.4 TSA 

TtAA10 (43 μM) was tested by TSA using Sypro-orange as described previously. Incubation of 

the protein with EDTA (10 mM), ascorbate (10 mM), gallic acid (10 mM) and solid substrates 

(PASC, Avicel and chitin) during TSA was also carried out.   

6.4.5 Activity Assays 

TtAA10 (50 μM) was tested on PASC and Avicel at pH 7 using gallic acid (1 mM). Two protein 

batches were used, one of which contained the second copper species, and reaction 

products analysed by TLC (run as described previously). Further reactions of TtAA10 (0.1 

μM) with substrate and ascorbate (1 μM) was analysed by MALDI-TOF MS (as described 

previously).  

6.4.6 Crystallography and Structure Solution 

TtAA10 was screened for crystallisation hits using Hampton HT and PEG/Ion commercial 

screens. A hit was obtained in the PEG/Ion screen (well B8) with the condition; 0.2 M 

magnesium formate dehydrate, 20 % w/v PEG 3350, pH 7. Conditions were optimised by 

changing the concentration of both magnesium formate dehydrate and PEG 3350. Crystals 

were tested in-house for x-ray diffraction before being sent to the Diamond Synchrotron, 

using beamline I04. Data collected was collected at a maximum resolution of 1.17 Å and 
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processed in the CCP4i2 pipeline. Data was reduced using Aimless 210 to 1.4 Å in order to 

improve data completeness. Copper phasing was used to produce a structure solution using 

SHELX 211, followed by model building in ARP/wARP 212 and CRANK2. Repetitive iterations of 

manual model building in COOT 159 and refinement by REFMAC 160 were carried out. 
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6.5 Results 

6.5.1 Culturing T.turnerae with cellulose as a food source 

A small culture of T.turnerae was successfully grown using nutrient supplemented sea water 

and a cellulose source.  After 5 days growth, the media and cell pellet were collected and 

protein content analysed. Proteomics identified 58 sequences corresponding to known T. 

turnerae genes within the cell pellet and 130 sequences secreted into the growth media. 

TtAA10 was found secreted into the growth media, likely in response to the availability of a 

cellulose substrate in the media. Protein hits and their associated accession codes and 

potential functions (as taken from NCBI or Uniprot) are shown in Tables 25 and 26, Appendix 

5. 

A pull down experiment was designed to elucidate any potential protein binding partners of 

TtAA10. TtAA10 was bound to a Strep Trap HP column and soluble protein from the lysed 

T.turnerae cell pellet flowed over the column. The bound TtAA10 was eluted using 

desthiobiotin and the collected fractions analysed by SDS PAGE (not shown). The SDS PAGE 

analysis showed only elution of TtAA10 and no other protein bands could be observed on 

the gel. This experiment indicated that no protein within the cell pellet bound to the 

immobilised TtAA10.  

6.5.2 EPR Analysis of the Copper Active Site 

The catalytic domain of the TtAA10 gene was recombinantly expressed using a C-terminal 

strep tag as described in Chapter 2. During production of the recombinant protein, the 

sample was incubated with an excess of copper to ensure that the protein active site was 

fully saturated. This step seemingly caused an ambiguity between different batches of 

protein. The first batch of pure protein (made by Luisa Elias, University of York) which was 

used for crystallisation and initial activity assays contained two different coordination 

environments for the copper ion as shown by EPR, Figure 118. The EPR trace clearly shows 

two sets of hyperfine peaks in the parallel region of the spectrum, indicating either flexibility 

in the coordination of the His brace or the presence of a second coordination site.  

Simulation of the EPR spectra was carried out by Dr L Ciano, whereby the spin Hamiltonian 

tensor values in the parallel direction (z) for the first species were, gz = 2.269 and Az = 405 

MHz. The second species displayed different values, with gz = 2.314 and Az = 465 MHz. 

Simulation indicated that the ratio between species 1 and 2 was approximately 3:2. The gz 
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value of the second species is high compared to what one might expect for the typical LPMO 

copper coordination in the active site.  

Subsequent batches of protein did not have this second copper species present at the end 

of the purification and it still remains unclear what caused the first incidence; Figure 119 

shows the EPR analysis of a subsequent batch of protein, made by myself, which consists of 

a only single copper species in the EPR spectrum (no specific changes were made to the 

purification protocol which yielded a different metal content). The simulated parameters (Dr 

L Ciano) were as follows; gx = 2.035, gy = 2.100, gz = 2.267; Ax = 110 MHz; Ay = 80 MHz and Az 

= 420 MHz (parameters in the xy region are estimates due to the broad nature of the 

perpendicular region and should not be taken as accurate). The data was simulated to 

include 2 nitrogen atoms coupling to the copper ion. Comparison of the gz value from this 

analysis with the previous sample containing two copper species suggests that it is the same 

as species 1. The Cu active site in TtAA10 is most similar to that of the closest homology 

match, CjLPMO10A, Table 22. 

Table 22 Comparison of EPR spin Hamiltonian parameters between TtAA10 and its closest 
homologue. The perpendicular region, XY are italicized in some instances and values are 
estimates only.  

LPMO (Substrate) Parameters G, x10-4 cm-1 

gx gy gz Ax Ay Az* 

TtAA10(species 1)(cellulose) 2.035 2.100 2.267 39.3 28.6 150 

TtAA10 (species 2)   2.314    166 

 CjLPMO10A213 2.036 3.091 2.260 31.8 26.1 154 

*A values have been converted to G (Gaus), where the TtAA10 parameters in MHz were divided by 2.8 to give an approximate 

value in G for comparison with literature values.  
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Figure 118 EPR analysis of TtAA10 which shows that the sample contains two different copper 
species in different environments. The black line is the observed signal spectrum whilst the red 
is the simulation (carried out by Dr. L Ciano). 

 

Figure 119 EPR analysis of a different batch of TtAA10, where the black line is the observed 
signal and red line the simulation (carried out by Dr. L Ciano, University of York). The signal 
shows the presence of one copper ion, with spin Hamiltonian parameters consistent with what 
previously observed for a LPMO histidine brace coordination sphere.  
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A copper titration EPR experiment was designed to test at what point a second copper 

species becomes present in the EPR signal, Figure 120. The protein was pre-treated with 

EDTA (10 X the protein concentration) to remove the copper and buffer exchanged to 

remove any EDTA. This copper-free protein sample was tested and showed no copper signal 

in the EPR. Addition of 0.2 equivalents of copper (compared to the protein concentration) to 

the protein sample showed a single signal, likely to be due to coordination to the Histidine 

brace active site. Further additions of copper increased this Histidine brace copper signal, 

but a second species also started to grow in, which is most evident after 0.6 equivalents of 

copper. Further additions of copper produced spectra that weren’t as clean which may have 

been caused by dilution of the protein.  
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Figure 120 EPR copper titration experiment in which the protein was pre-treated with EDTA to 
remove the copper (as soon by the lack of EPR signal). Addition of 0.2 equivalents of Cu (to the 
concentration of protein) produced a single Cu species indicative of the histidine brace. 
Addition of a further 0.2 equivalents caused a change in the spectra with appearance of a second 
set of hyperfine peaks in the parallel region. The clearest change is seen after 0.6 equivalents of 
Cu have been added, where multiple peaks in the spectra indicate two Cu species. Loss of 
resolution in the last two spectra may be due to signal dilution.   
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As protein stocks were too low to perform isothermal titration calorimetry, the binding 

affinity of the second copper site was tested by another simple titration experiment. The 

copper associated with the histidine brace of an LPMO is known to bind with high affinity. If 

the second copper species bound with low affinity, it may be displaced by other metals. 

Similarly, this experiment was used to assess whether any other metals may have 

preferential binding to this second metal site. A series of metals were added to the protein 

sample to see if there would be any loss of signal that would equate to copper ion 

displacement. The protein was mixed with Fe, Ni, Zn and Mn (from 0.5 to 1.5 equivalents to 

the protein concentration) following the Irving-Williams series, with the only exception of 

Mn, which was added last in order not to cover the EPR spectrum with the Mn signal. No 

change in the appearance of the spectra could be observed. Figure 121 shows the four 

spectra taken after sequential additions of metal (all to the same sample) and compared 

with the original TtAA10 EPR single showing two copper species.  

 

Figure 121 Metal titration EPR. Displacement of the second Cu was probed with 4 metals 
sequentially, Fe, Ni, Zn and Mn. Addition of each metal did not change the copper signal other 
than by dilution. Addition of Mn caused the appearance of the Mn EPR signal but with no clear 
displacement of the Cu ion form the second binding site.  
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6.5.3 TSA 

The stability of the protein was tested under different conditions by TSA. Figure 122 shows 

the comparison of TtAA10 only and protein incubated with EDTA and ascorbate. The protein 

itself exhibited a melting temperature of approximately 50 °C and was found to be 

consistent across many different TSA experiments. Introduction of EDTA to the protein 

sample, which would remove the copper from the active site, reduced the melting 

temperature by 3.4 °C. This strong negative change in temperature indicates how important 

the copper ion is within the scaffold of the Histidine brace. Furthermore, addition of 

ascorbate to the protein reduced the melting temperature by nearly 20 °C. This radical shift 

in stability of the protein indicates how introduction of a reducing agent can destabilise an 

LPMO. Interestingly, gallic acid was shown to have less of an effect on the stability of 

TtAA10, with a negative change in melting temperature only of 2.1 °C (TM of 47.7 °C curve 

not shown). 

 

 

 

Figure 122  TSA of TtAA10 with melting curves obtained from samples containing protein only, 
TtAA10 + ascorbate (1 mM) and TtAA10 + EDTA (1mM). The fluorescence level for TtAA10 is 
lower due to the occurrence of copper quenching of the dye. 
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TtAA10 was incubated with both cellulose and chitin substrates to assess what affect they 

had on the protein, and as an indication of whether any binding to substrate occurs. Figure 

123 shows the TSA experiment comparing the melting temperature of TtAA10 with and 

without chitin. A positive shift in melting temperature was observed for the protein, with an 

increase of 6.6 °C. The same test was carried out with both PASC and Avicel and a biphasic 

melting curve was observed. For each substrate, two melting events could be seen within 

the data and the curves were modelled to give two distinct melting temperatures. The first 

melting event for each substrate corresponds to that of protein which was likely not 

interacting with the substrate, at 45.7 and 45.2 °C for PASC and Avicel respectively. The 

second events showed increased melting temperatures of 59.0 and 60.4 °C for PASC and 

Avicel respectively. The large increases in melting temperature, 13.3 and 15.2°C for PASC 

and Avicel respectively indicate a strong interaction between the protein and the substrate. 

 

 

Figure 123 TSA of TtAA10 with crab chitin , showing a 6.6 °C increase in protein melting 
temperature on incubation with the substrate. 
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Figure 124 TSA of TtAA10 mixed with PASC and Avicel , producing two melting events for each 
substrate. Protein TM with PASC, Melt 1 and 2 were measured at 45.7 and 59.0 °C respectively.  
Protein TM with Avicel, Melt 1 and 2 were measured at 45.2 and 60.4 °C respectively.  The 
protein on its own during this experimental run had a melting temperature of 49.1 °C, curve not 
shown.  
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6.5.4 Activity analysis 

The ability of TtAA10 to degrade cellulose and chitin was tested by MALDI-TOF mass 

spectrometry using crystalline substrates PASC, Avicel and chitin from crab shells. TtAA10 

was found to be active on PASC using both gallic acid and ascorbate as the reducing agent; 

whereby the deffinition of activity in this case was the ability of the protein to produce 

oxidised oligosaccharide species. The enzyme was only found to be active on Avicel when 

using ascorbate as the reducing agent. Controls were run to ensure that reducing agent 

alone was not able to produce degradation products. The product profile observed for PASC 

and Avicel is shown in Figure 125 and Figure 127 and close up views of DP7 for each 

substrate shown in Figure 126 and Figure 128 respectively.  No oxidative activity was 

observed when TtAA10 was incubated with chitin.  

The peak profile observed for the breakdown of PASC covers the DP range 4-11 with clarity, 

Figure 125, whereas for the breakdown of Avicel the range DP 4-8 is produced, Figure 127. 

Other larger peaks were observed in the mass spectrum, but were close to the baseline 

noise so have not been included in this discusssion. It is possible that larger substrates are 

produced and do not show up as well due to the limit of their solubility. It is clear that a 

broad range of chain lenghts are produced, with the clearest species belonging to DP 7 for 

the PASC profile, and  DP 6 and 7 for Avicel, although these species could not be 

quantitatively assigned as the major products using this method, the ratio of species 

suggests these to be the most prevalent in the sample. To identify the peaks within the DP 7 

profile, Figure 126 and Figure 128 show  ‘zoomed in’ views of the region 1160-1230 m/z. The 

same three key peaks are observed for both substrates, which have their own isostope 

patterns, namely 1173.2, 1191.2 and 1214.2 m/z. 

Each individual peak in the DP 7 product example was identified and assigned to a potential 

species as summerized in Table 23 for PASC. All peaks are likely to be Na adducts, due to the 

buffer system used, but examples in Table 23 are given which could correspond to K adducts 

instead. The suggested species are assigned to whether the products correspond to C1 or C4 

oxidation of the glycosidic bond. The Table 23 shows a mixture of products produced by 

both C1 and C4 oxidation, with some product m/z values indicating species arising from two 

separative oxidative cleavage events at both ends of the chain. The same peaks are 

observed in the degradation of Avicel, albeit with species assigned as the ketoaldose and the 

native oligosacchardie at 1173 and 1175 m/z respectively at a smaller ratio that observed in 

PASC (see peak heights in Figure 128). 
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Figure 125 MALDI-TOF MS of TtAA10 (0.1 µM), incubated with PASC and ascorbate (1 µM) , 
showing soluble reaction products. Reaction products for glucose DP 4-10 can be observed with 
clarity and main peaks are labelled.  DP 4,10 and 11 are observed but in lower amounts and are 
close to the baseline noise.   

 

Figure 126  MALDI-TOF MS of TtAA10 activity assay on PASC using ascorbate, focusing on the 
products peaks of DP 7. The major product peaks are coloured in pink and are assigned as 
ketoaldose + Na (1173.2 m/z), aldonic acid + Na (1191.2 m/z) and aldonic acid + 2Na (1214.2 
m/z). Other peaks are isotope peaks.  
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Figure 127 MALDI-TOF MS TtAA10 (0.1 µM), incubated with Avicel and ascorbate (1 µM), 
showing soluble reaction products. Reaction products for glucose DP 4-8 can be observed with 
clarity and main peaks are labelled.  Higher DP are observed but in very low amounts and are 
close to the baseline noise.   
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Figure 128 MALDI-TOF MS of TtAA10 activity assay on Avicel using ascorbate, zoomed in view 
of the products peaks of DP 7. The profile is very similar to that observed for the degradation of 
PASC. The major product peaks are labelled in orange and are assigned as ketoaldose + Na 
(1173.2 m/z), aldonic acid + Na (1191.2 m/z) and aldonic acid + 2Na (1214.2 m/z). Other peaks 
are isotope peaks.  
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Table 23 Species assignments of PASC product peaks in the region 1173-1231 m/z, 
corresponding to the ion cluster of DP 7. Species coloured in grey indicates a possible 
alternative assignment for the peak.  

Peak 
(m/z) 

PASC Degradation Products: 
Possible Species 

Ion Adduct Cleavage Pattern 

1173.2 Ketoaldose  Na C4 

 Lactone Na C1 

1174.2 Isotope Na C4 

1175.2 Native oligosaccharide Na C1 or C1/C4 

1176.2 Isotope Na C1/C4 

1177.2 Isotope Na C1/C4 

1189.2 Ketoaldose, aldonic acid Na C4/C1 

 Ketoaldose K C4 

 Lactone K C1 

1190.2 Isotope Na C4 

1191.2 Aldonic acid Na C1 

 Native oligosaccharide K C1/C4 

Gemdiol* Na C4 

1192.2 Isotope Na C1 

1193.2 Isotope Na C1 

1194.2 Isotope Na C1 

1207.2 Gemdiol, Aldonic acid Na C4/C1 

Aldonic acid K C1 

1208.2 Isotope Na C1 

1209.2 Isotope Na C1 

1214.2 Aldonic acid 2Na C1 

1215.2 Isotope 2Na C1 

1216.2 Isotope 2Na C1 

1229.2 Gemdiol, Aldonic acid 2Na C4/C1 

1230.2 Isotope 2Na C4/C1 

1231.2 Isotope 2Na C4/C1 
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6.5.5 Crystallisation and Structure Solution 

Commercial screens were set up using TtAA10 at a concentration of 7 mg mL-1. A hit was 

obtained in the PEG/Ion screen (0.2 M magnesium formate dehydrate, 20 % w/v PEG 3350, 

pH 7), where small clusters of very thin ‘bow’ shaped crystals grew, as shown in Figure 129. 

Optimisation of the crystals by changing the mother liqueur conditions (altering the 

concentration of magnesium formate dehydrate and PEG 3350) did little to improve the size 

or definition of the crystals. The fan-like clusters were manually broken apart and crystals 

fished using loops (see Figure 129) from the detached crystal sections. Despite their size and 

difficult morphology, the crystals were found to diffract to high resolution (Figure 130, left) 

and as such were sent for data collection on the I04 beamline at the Diamond Light Source.  

 

 

Figure 129 Crystallisation of TtAA10 Top; TtAA10 crystallization screening, with a hit in the 
screen PEG Ion, well B8 which contained the following conditions; 0.2 M Magnesium formate 
dehydrate, 20% w/v polyethylene glycol 3,350, pH 7.0. The crystals produced were very small 
bow/fan shaped crystals. Bottom: optimised TtAA10 crystal held in loop during in-house 
diffraction testing.  
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Figure 130 Diffraction pattern of TtAA10. Left: TtAA10 crystal tested for diffraction in house. 
Right: Image taken from the start of data collection of the TtAA10 crystal on the I04 beamline at 
the Diamond synchrotron.   

Data collected at the Diamond synchrotron (Figure 130, right) contained a maximum 

resolution of 1.17 Å in the outer shell, but had a very poor completeness of approximately 4 

%. The data was reduced using Aimless 210 and the resolution cut off chosen based on the 

graphical representation of CC1/2 vs. resolution shown by Pimple in Aimless.  Copper phasing 

was used produce a structure solution using SHELX 211, followed by model building in 

ARP/wARP 212 and CRANK2. Repetitive iterations of manual model building in COOT 159 and 

refinement by REFMAC 160 were carried out. The copper ions were built into the structure in 

COOT. In COOT, displaying a symmetry molecule of the structure showed that a histidine on 

the strep tag of the symmetry molecule was binding in the secondary copper site of the 

model. Collection and refinement statistics are shown in Table 24. 
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Table 24 Data collection and refinement statistics for TtAA10. Data was collected at 1.17 Å but 
reduced to 1.42 Å to improve data quality. 

  TtAA10 

Data collection Space group P 1 21 1 

 a, b, c (Å) 36.64 62.52 43.19 

(°) 90.00 90.00 90.00 

 Resolution (Å) 36.18 (1.42) 

 Rmerge 0.059 (0.722) 

 Rpim 0.050 (0.672) 

 CC(1/2) 0.998 (0.606) 

 I / I 9.6 (0.4) 

 Completeness (%) 99.7 (95.6) 

 Redundancy 3.9 (2.7) 

Refinement Resolution (Å) 1.4 

 No. reflections 147995 

 Rcryst / Rfree 0.16/0.18 

No. atoms Protein 1687 

 Ligand/ion 2 

 Water 157 

B-factors (Å2) Protein 13.4 

 Ligand/ion 15.2 

 Water 21.9 

R.m.s. deviations Bond lengths (Å) 0.013 

 Bond angles (°) 1.64 

Ramachandran plot Most favoured (%) 94.2 

 Allowed (%) 4.9 
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Figure 131 Above: Structure of TtAA10, coloured red-blue for N to C-terminus, with histidine 
brace shown as cylinders and slight transparent surface. Below: Structure shown as a surface, 
coloured by electrostatic potential, with the histidine brace shown as cylinders rather than 
surface. Images made in CCP4mg.55 
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The structure of TtAA10, shown in Figure 131, displays the classic features of an AA10 LPMO. 

The core β-sandwich is surrounded by several variable loops and a single defined α-helix. 

The active site is positioned on the ‘top’ of the structure, on the flat surface. The surface 

view of the protein, based on electrostatic potential shows that there is a short protrusion to 

the left of the active site. The strep tag is observed at the C-terminal end (red) of the protein 

(ribbon view).  Figure 132 highlights the planar nature of the binding face of TtAA10.  

Molecular replacement using several AA10 models, as well as ensemble models, failed to 

find a structure solution for TtAA10 (using MOLREP and Phaser157, 214). The structure of 

TtAA10 was overlaid with the model of CjAA10 (5FJQ), which displays the highest PDB 

sequence homology, which had been used during structure solution trials. This is a chitin 

active AA10 from Cellvibrio japonicas. It is clear that whilst the core features of both LPMOs 

remain the same, significant differences arise in the loop structures, Figure 133. These 

differences are likely to have prevented a solution arising from molecular replacement. 

 

Figure 132 Surface view only of TtAA10, highlighting the planar binding surface at the ‘top’ of 
the protein. However, on the left hand side is a protrusion due to the side chain of His190. 
Image made in CCP4mg.55 
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Figure 133 TtAA10 (cyan) overlaid with CJAA10 (purple, PDB code 5FJQ). TtAA10 copper ions 
shown as grey spheres. Image made in CCP4mg.55 

The active site of TtAA10 contains the typical LPMO histidine brace motif, formed by the N-

terminal residue, His1 and a midchain residue, His107, Figure 134. The secondary 

coordination sphere of the copper ion is formed of Phe195, Gly105 and slightly further 

away, Glu193. Density for a water ligand was also present in the structure. Copper-N 

distances to the coordination histidine residues are shown in Table 25, alongside distances 

to other neighbouring residues and ligands.   
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Figure 134 TtAA10 histidine brace with observed electron density map shown at contour level 
1.0 σ (equivalent to 0.48 electrons/Å3). Image made in CCP4mg.55 
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Table 25 Distances between the Cu ion and nearby atoms on coordinating residues (bold) and 
secondary coordination sphere. 

Copper-histidine brace Distance/ Å 

Cu-N (ring, His1) 1.9 

Cu-NH2 (amino terminus, His1) 2.2 

Cu-N (ring, Hi107) 2.0 

Nearby Molecules  

Cu-C (nearest C on ring, Phe195) 3.5 

Cu-O (Glu193) 3.7 

Cu-O (Water) 3.2 

Cu-O (Gly105) 4.0 

 

 

Figure 135 TtAA10 Secondary copper site formed by three residues from the protein chain 
(Glu5, His165 Asp101), a water molecule and a histidine (207) residue from the strep tag of 
another molecule in the crystal lattice.   
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The second copper coordination site is shown in detail in Figure 135, complete with bond 

distances. Coordination of His207 shown in dark green comes from a symmetry molecule 

within the crystal lattice. Coordination of Glu5, His165 and Asp101 complete the copper 

coordination site. It was shown in Chapter 2 that TtAA10 formed a monomer in solution by 

analysis with SECMALS. It is therefore likely that the coordination of the histidine is replaced 

in solution by coordination of a water molecule, or ion such as chloride.  
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6.6 Discussion 

6.6.1 Native expression of TtAA10 

The source organism of the TtAA10 gene, T.turnerae was grown under similar conditions to 

those used upon first collection and identification of the organism in the 1983 by Waterbury 

et al.215 A sample of the original collected organism, from which the genome had been 

derived 104, was acquired and grown using sterilised seawater. The media was supplemented 

with a cellulose substrate to provide a source of food for the bacteria. Growth was very slow 

but successful and cells were harvested after 5 days of culture growth. Proteomic analysis 

yielded a large abundance of different proteins, both in the cell pellet and the media.  Yang 

et al performed a similar experiment; looking at the secreted cellulosic enzymes by LC-MS 

when T. turnerae was grown on surcrose, CMC and sigmacell.104 A broad range of 

lignocellulosic enzymes was observed, as shown in Appendix 5. As expected due to the signal 

peptide found on the TtAA10 gene, the LPMO was found secreted into the media by 

proteomic analysis and supports the theory that the enzyme is functional on cellulose. 

TtAA10 was also observed secreted when the organism was grown on CMC by Yang et al.  

No external reducing agents were provided to the cells to act as an electron source for 

TtAA10, indicating that the cells must have been providing their own reducing agent to aid 

the oxidative action of TtAA10 if they were to gain from its expression.   

Pure recombinant TtAA10 protein was used in an experiment to try and ‘catch’ any potential 

binding partners (electron source) produced by T.turnerae. The pure protein had been 

produced with a C-terminal strep tag, and this tag was used to imobilise the protein on a 

streptavadin column. A sample of the media, into which many different proteins had been 

secreted, and soluble fraction of lysed cells was flowed over the streptavadin column 

containing the bound TtAA10 protein. SDS PAGE analysis was used to determine whether 

anything had bound to TtAA10, but no extra bands were observed in the sample of TtAA10 

removed from the column. This result suggested that nothing had adhered to TtAA10 with a 

strong enough interaction to keep it bound during the washing step. If a partner protein 

used for electron transfer was within the media, it may not interact with the LPMO strongly 

enough to remain bound on a column. Secondly, a protein may not necessarily be used by 

T.turnerae as an electron source, instead the bacteria may utilise a small organic molecule, 

which would be unlikely to be observed on an SDS PAGE. As such, the experiment was a 

promising idea to try to identify any possible electron donating partners produced, or used 
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by T.turnerae. Further work using this idea could test whether the pure TtAA10 exposed to 

the harvested cell culture media would be active without an added reducing agent.  

6.6.2 Copper Coordination 

During EPR analysis of TtAA10 it was found that the first batch of pure recombinant TtAA10 

produced contained a mixture of copper species, whilst subsequent batches contained only 

a single copper species in the active site of the protein. This single species was similar 

spectroscopically to other Cu-histidine brace coordination sites, so this species was deemed 

to be the copper within the active site of the protein. The data was simulated to include 2 

nitrogen atoms coupling to the Cu ion and parameters found to be gx = 2.035, gy = 2.100, gz 

= 2.267; Ax = 110 MHz; Ay = 80 MHz and Az = 420 MHz. The histidine brace contains three 

possible nitrogen atoms through which the Cu ion can coordinate, and simulation of the EPR 

of TtAA10 with only 2 nitrogen atoms does not mean that the Cu ion is lacking a 

coordinating ligand. The measured EPR spectrum is broad and thus coupling to a third 

nitrogen atom was not accurately identifiable by EPR, but still likely to be occurring. A recent 

review of LPMO coordination chemistry by Vu and Ngo71 has complied together EPR 

parameters (among other useful measurements) of characterised LPMOs.  Comparison of 

the gz value of TtAA10 (the most reliable measured parameter from the data) with the 

complied data, shows the most similar are SmLPMO10A, BlLPMO10A, SliLPMO10A, 

ScLPMO10C (CelS2) and CjLMPO10A, whereby the latter is the most homologous protein to 

TtAA10. All these LPMO AA10s present a gz value of approximately 2.26. The correlation 

between gz and Az values for LPMOS can be plotted to show different ‘zones’ which relate to 

the geometry of the copper centre. This plot, known as the Peisach–Blumberg plot216, shows 

that TtAA10 fits into zone 2; the Az value, converted to G is approximately 150 x10-4 cm-1. 

LPMOs in zone 2 have character in which the unpaired electron of the copper ion inhabits 

the dx
2

-y
2 orbital.71 Again, the Az value is most similar to that of CjLPMO10A.  CjLPMO10A is a 

chitin active AA10, but interestingly displays features that are more consistent with LPMOs 

active on cellulose than on chitin.213 

The identity of the second copper species was analysed further by using protein, which was 

shown by EPR to contain only one copper species, and then treated with EDTA to remove all 

trace of copper from the protein sample. EPR was used to probe the ability of the protein to 

take up a second copper ion through a titration experiment on the copper-free protein. The 

titration experiment suggests the second copper site is opportunistic; addition of a very 

concentrated, but small amount of copper solution was required during the titration 
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experiment in order to limit dilution of the protein (to avoid EPR signal loss) and as such 

would result in a very high concentration gradient of copper before the sample was mixed. 

As such it seems likely that the first additions of copper were taken up by the high affinity 

binding offered by the Histidine brace, whilst later additions of copper were 

opportunistically taken up by the second copper site. However, the secondary copper site 

was not affected by introduction of other metal ions. Different batches of protein were used 

during characterisation of the activity of TtAA10, and so it was found that the presence or 

absence of the secondary metal site did not affect the activity of the protein.   

The occurance of a second copper site was intriguing, especially as the second copper was 

only 11 Å away from the active copper within the histidine brace. LPMOs are thought to 

have potential electron transport pathways within the enzyme that can facilitate movement 

of an electron from a reducing agent to the active copper ion within the histidine brace.201 

The positioning of this second metal binding site, so close to the active site of the protein 

thus suggested that it could have been a potential binding site for a reducing partner. As 

discussed earlier, through immobilised binding studies, no electron donating partner was 

captured from the expressed protein content when T.turnerae was grown on cellulose. If 

such a binding partner exists, it may have functioned through the metal binding site found 

adjacent to the histidine brace. There is precedence for secondary metal binding sites within 

LPMOs, with a similar occurance found in SliLPMO10E, where a second metal site facilitated 

dimer formation between two LPMO molecules during crystallisation. 217 

6.6.3 Enzyme Stability 

TtAA10 was expected 61 and found to be stabilised by the addition of copper as shown in the 

TSA experiment. It was also shown to be susceptible to damage by reducing agents with 

ascorbate reducing the protein melting temperature more than incubation with gallic acid. 

The majority of studies on LPMOs use ascorbate as the default reducing agent, and it is likely 

that whilst ascorbate provides a good source of electrons for the protein to work with, it is 

may to cause more damage over time and may reduce overall efficiency. The real electron 

transfer source for bacterial LPMOs is still unknown, with some indications that CDH 

proteins could be responsible in some cases in providing fungal AA9s with an electron 

source. Gallic acid was found to reduce the melting temperature of the protein to a lesser 

degree and was used during activity assays. However, gallic acid has a tendency to 

polymerise over time and often resulted in a lower activity than if ascorbate had been used 

initially during activity assays with TtAA10. 
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TtAA10 was found to interact with chitin (crab shells), but not cause degradation of the 

substrate. The melting temperature of the protein was found to shift significantly (an 

increase of 6.6 °C) upon incubation with chitin, but no degradation products were ever 

observed during activity assays. Similar occurrences have been noted with other AA10s; in a 

study by Forsberg et al200, an AA10, CelS2, was made with and without the associated CBM2 

chitin binding domain, and both versions of the protein were found to bind strongly to chitin 

but only to display activity on cellulose. Ability to bind to a substrate does not therefore 

indicate activity.200 As discussed during the introduction of this work, the AA10 family has 

been evolving more towards a cellulolytic function 197, which may indicate why AA10s with 

substrate specificity for cellulose are still able to bind to the ancestral chitin substrate.  

Incubation of the protein with cellulose substrates PASC and Avicel created biphasic melting 

curves with large shifts in melting temperature.  The calculated TM values of each melting 

event suggested that a portion of the sample retains its ‘unbound’ melting temperature 

(49.1 °C) whilst another portion of protein displayed a TM increased by 13 °C for PASC and 15 

°C for Avicel. The increase in protein stability of TtAA10 when incubated with a cellulose 

substrate suggests that a binding interaction is taking place. However, the fact that not all 

the sample was associated with this binding event may support the hypothesis that it is a 

requirement of the protein to only transiently bind to the substrate in order for continual 

activity to take place.  Hypotheses surrounding how binding of the substrate may activate an 

LPMO carry some weight to this argument; if the protein remains bound to the surface of 

the polysaccharide, as shown by the strong interaction of TtAA10 with chitin, it is not being 

reactivated ready to perform another catalytic event. This idea was touched upon early in 

the discovery of LPMO action, where Moser et al suggested that weaker binding affinity 

occurs to enable re-use of the proteins and favour equilibrium binding of the LPMO 

domain.54 However, the concept of transient binding, by our understanding of the word 

does not reflect the observations made by Eibinger et al, whose atomic force microscopy 

(AFM) studies on two AA9 proteins active on cellulose (NcLPMO9F and NcLPMO9C) showed 

that adsorption and subsequent desorption at the surface of cellulose had an average 

timeframe of minutes rather than seconds. Indeed, the proteins studied were found to be 

relatively immobile, even more so on the side faces of the cellulose chain, thought to be the 

preferred substrate region of these proteins.218 This study also visually highlighted the 

difference in mode of activity between LPMOs and cellobiohydrolases, which were shown 

moving along the cellulose fibrils in a unidirectional mode of movement. Similar 

visualisations had been made by Igarashi et al,219 who noted that without sufficient pre-
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treatment of the crystalline substrate there were not enough free movement ‘lanes’ leading 

to instances of protein ‘traffic jams’. Studies by Frandsen201 and Simmons199 on the activity 

of LsAA9 and CvAA9A on soluble glucans and xylans showed an appreciable change in the 

LsAA9 Cu active site of the protein upon interaction with substrate, by EPR. These studies 

using LPMOs capable of cleaving soluble substrates show that introduction of the substrate 

does have an effect on the Cu active site and may support the hypothesis that introduction 

of the correct substrate can mediate activation of the protein. However, differences in 

mechanism may be related to the type of substrate; soluble substrates have a larger degree 

of free movement, an LPMO may therefore requires a stronger binding interaction to hold 

the substrate long enough for oxidative cleavage to take place, possibly indicating why 

changes in the active site arrangement occur. With crystalline substrates, where the 

preferred substrate is collectively in one region, it may be more favourable for an LPMO to 

adsorb to the preferable surface and ‘bore downwards’ so to speak, rather than move on 

after a single catalytic event.  EPR studies of TtAA10 showed no change in the observed 

parameters upon incubation with crystalline cellulose, even after many days of incubation. 

The binding interactions depicted by the change in TM upon introduction of substrate 

however did show that the LPMO was interacting with the substrate to an extent that 

caused a positive change in protein stability. As no change in EPR parameters was observed 

under similar incubation conditions, it is unlikely that a binding of substrate to TtAA10 

causes any changes in the active site, ‘in preparation’ for oxidative cleavage. Hence, TtAA10 

may mechanistically act more like those LPMO AA9 enzymes observed by Eibinger, largely 

immobile whilst carrying out activity. 

As to why only a portion of the protein sample used during the TSA assay increased in 

melting temperature, settling of the substrate within the assay tube did occur, which likely 

limited the potential surface area upon which TtAA10 could interact. Subsequent assays 

using different ratios of protein to substrate may show a different ratio of ‘bound to 

unbound’.  Furthermore, TSA experiments in which TtAA10 was incubated with reducing 

agent showed destabilisation of the protein, but if protein was mixed with substrate as well, 

this showed a limited degree of destabilisation of the protein. This suggests that the 

interaction of the substrate does have a beneficial effect on the protein, potentially 

preventing degradation caused by the effect of the reducing agent. LPMOs are known to 

degrade themselves when provided reducing agent with no substrate, as the enzyme has no 

other outlet for their enzymatic potential than to produce reactive oxygen species capable 

of degrading the LPMO protein itself.199 A recent study by Loose et al described the effect of 
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site directed mutatgenesis on surface residues thought to provide chitin binding interactions 

to CBP21 (also known as SmLPMO10A).220 Alterations to certain residues thought to be 

involved in chitin binding (but not copper binding) actually lowered the stability of the 

protein and thus affected activity. The lessening of activity was proposed to be due to 

oxidative damage occurring to residues involved in the active site of the protein. The authors 

suggest that binding of the protein to the substrate effectively prevents ‘off pathway’ 

interactions which could lead to oxidative damage.220 Perhaps binding of an LPMO to the 

substrate as shown by Eibinger for such long periods of time, limits time spent in solution, 

whereby activation by the as yet unknown natural AA10 reducing agent could cause self-

inflicted damage unless substrate is already bound.   

6.6.4 Enzyme Activity 

Initial activity assays of the oxidative degradation ability of TtAA10 were carried out on PASC 

using gallic acid as the reducing agent and were found to produce oligomers by analysis with 

TLC. Further analysis of the samples by MALDI-TOF MS confirmed the presence of 

oligosaccharides resulting from oxidative degradation. Tests with Avicel were at first 

inconclusive, with limited products being observed. When the reducing agent was changed 

to ascorbate, the protein was found to work much better on this substrate. Controls were 

carried out with and without the use of reducing agent to determine if the degradation 

products were indeed due to the action of the enzyme and not through redox activity of the 

reducing agent. All substrates were found to be clear of oligosaccharides before incubation 

with the enzyme and did not react to the reducing agent alone. Activity tests with chitin 

showed no production of species relating to oxidative products and as such TtAA10 is 

deemed not active on chitin substrates.  

A clear pattern of oxidative degradation was seen for cellulose when the protein was 

incubated with a reducing agent.38 Degradation of Avicel to a range of products DP 4-8 was 

observed, whereas PASC displayed a product profile up to DP 12. Analysis of the individual 

peaks within the DP 7 peak profile firstly lead to the identification of C1 oxidising ability of 

TtAA10. This was based on the aldonic acid +Na product resulting from C1 oxidation of the 

glycosidic bond observed at 1191 m/z in the example shown in Figure 126. Other peaks of 

interest were also exhibited in high ratio to the C1 aldonic acid product and may present C4 

oxidation activity. Firstly, the peak at 1175 m/z was identified as the sodium adduct of the 

native heptamer oligosaccharide peak. This species in theory can be produced in two ways; 

firstly, through C1 oxidation of a chain whereby the leaving group alcohol possesses a 
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reducing chain end (i.e. a natural chain end), or through cleavage at both ends using two 

instances of C1 and C4 oxidation where the product is the leaving group alcohol of both 

oxidative reactions. Only the latter method uses C4 oxidation and thus the occurrence of a 

native oligosaccharide peak alone does not constitute enough evidence to suggest a protein 

is able to cleave at the C4 position. In the case of TtAA10, two other peaks point to C4 

oxidation occurring; the species at 1173 m/z could be indicative of both a C4 oxidised 

ketoaldose + Na, and a C1 oxidised lactone + Na. The intensity of the peak at 1173 m/z 

indicates a large amount of the species present within the material tested, however the C1 

oxidised lactone is an unstable species and readily undergoes hydrolysis into the more 

commonly observed aldonic acid (1191 m/z). This suggests that the peak at 1173 m/z is 

more likely to be the ketoaldose resulting from C4 oxidation. Furthermore, this species can 

undergo hydrolysis as well, resulting in a gemdiol (+ Na, 1191 m/z). However, this species 

has the same m/z value as the aldonic acid species so cannot be identified with any 

certainty. Two other peaks in the profile of the heptamer however do cooperate with the 

possibility of C4 oxidation. The peak at 1189 m/z indicates oxidation at both ends of the 

resulting oligosaccharide with a ketoaldose and aldonic acid functional groups present. 

Whilst the intensity of this peak is small, two further peaks are observed which can be 

assigned as the ketoaldose hydrolysed form, gemdiol-aldonic acid + Na (1207 m/z) and 

gemdiol-aldonic acid + 2Na (1229 m/z). This degradation profile is similar to that observed 

by Forsberg et al for ScLPMO10B, where mass spec data as well as further enzymatic 

fragmentation of products was used to determine that the AA10 was performing oxidation 

at both C1 and C4 positions.221 A similar analysis could be undertaken for the activity of 

TtAA10 on Avicel, where the only difference observed was in the intensity of the native 

oligosaccharide and C4 oxidised ketoaldose at 1175 and 1173 m/z respectively – both peaks 

were of a lower intensity compared with the activity of TtAA10 on PASC. It is likely that 

TtAA10 is acting in a similar fashion, producing a range of different species due to its lack of 

regioselectivity for C1 or C4. Despite high sequence similarity to CjLPMO10A, a Type 1B 

chitin degrading AA10, TtAA10 is likely to fall into the Type 3 AA10 subgroup; whereby 

enzymes oxidise cellulose at either the C1 or C4 position.  

6.6.5 Lack of CBM 

Characterisation of TtAA10 was done using expression of a gene that had been truncated to 

express only the catalytic domain. The truncation removed both the native signal peptide 

and a long linker region ending in a C-terminal CBM10 domain. The CBM10 domain 
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indicated in the first instance that this particular AA10 would be active on cellulose. This 

binding module is associated with cellulose binding within aerobic bacteria, grouped into 

Type A CBM which contains modules capable of interacting with crystalline cellulose, and 

displays a flat facing binding site not unlike an LPMO.222 Contradictory to this, in 1995 

Millward-Sadler et al identified the first CBM10 domain as appended to a xylanase, which 

showed no catalytic activity on cellulose. Binding modules often do not provide any catalytic 

function and are simple recognition modules which are able to bind to a particular substrate. 

The localisation of the CBM10 domain on the C-terminal end of the TtAA10 gene may 

suggest a recognition function as the lack of this module was not found to prevent the 

enzyme from adhering to the cellulose substrate and causing degradation. However, as only 

the catalytic domain was characterised, it is not known if the presence of this CBM10 

domain would improve the activity of TtAA10. A comprehensive study carried out by Crouch 

et al investigated the effect of removal and replacement of CBMs from two recombinantly 

expressed LPMOs from Cellulomonas fimi and Thermobispora bispora.222 In this study it was 

found that removal or replacement with a non-native CBM had a negative effect on the 

activity of the LPMO on cellulose. One possible mechanism of movement during LPMO 

binding to a polysaccharide surface has been linked to whether a CBM is present, with a 

hypothesis being that the interaction of the CBM tethers the LPMO to the substrate before 

it binds,223 therefore increasing the likelihood of LPMO oxidative action on the 

polysaccharides in the correct orientation. Crouch et al suggest that the removal of CBMs 

from LPMOs which naturally possess them may reduce the exposure time the enzymes have 

to the surface of the polysaccharide and so reduce their activity.222  The increase in melting 

temperature observed during the TSA assay, upon incubation of the protein with substrate 

does provide some weight towards this hypothesis. Only partial binding of substrate was 

observed with a higher melting temperature, whilst the remainder of the protein remained 

in an ‘unbound’ state. Protein samples were analysed by EPR after several days of incubation 

with substrate, but no change was observed in the copper coordination. Perhaps the 

transient nature of the binding, over a long timescale is not sufficient to cause an 

observation change in the EPR spectra.  Interestingly, it should be noted that one of the non-

native CBMs used in the study by Crouch et al, was in fact a CBM10 domain, and it was 

found that incorporation of this type of module was able to increase the number of non-

oxidised products formed through LPMO action. The authors suggest this to be due to the 

CBM10 directing the LPMO to the reducing ends of the chain, whereby C1 oxidation is able 

to produce a non-oxidised product.222 TtAA10 was found to produce non-oxidised products 
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in a smaller ratio to the oxidised oligosaccharides. Perhaps this is a non-coincidental pairing, 

but expression and activity analysis of the full gene would be required to assess whether 

there is a link between these ideas.  

6.6.6 Structure Solution 

Whilst the crystal morphology was not improved by optimisation of the conditions, TtAA10 

crystals diffracted to a high resolution. Indeed, the data set collected at the Diamond 

synchrotron displayed highest resolution at 1.17 Å in the outer shell. Despite this, the 

completeness of the model at this resolution was extremely low and data was reduced to 

1.4 Å as a compromise. Initial efforts to solve the structure of TtAA10 failed when using 

molecular replacement. The closest sequence homology match of TtAA10 to a model in the 

PDB was that of CjAA10 (30%, PDB code, 5FJQ), a chitin active AA10. Molecular replacement 

using this model as well as truncated versions with certain aspects of the model removed (i.e 

water molecules, flexible loops etc.) as well as combinations of other models (models of 

lower similarity combined to create an ensemble) failed to produce a solution. It should be 

recalled that LPMO homology centres around specific features of the structure, whereby the 

active site copper-histidine brace is invariant and the general fold and shape are maintained, 

but beyond that there can be large differences. The difficulty with molecular replacement 

suggested that the structure of TtAA10 would be considerably different to other AA10s in 

some respect other than the core features.  

In a strong coincidence, crystallisation was carried out using only the first batch of protein 

produced, which was shown to contain two individual copper species by EPR. The structure 

of TtAA10 was solved by phasing, where the copper anomalous signal was used to produce 

an electron density map. Even though the data set was not collected at the copper edge, the 

wavelength normally used to carry out phasing with copper atoms, the high amount of 

anomalous signal resulting from two copper atoms per molecule was strong enough to 

enable structure solution at 1.4 Å. In fact, after structure solution it became clear that the 

non-removable strep tag was actually serendipitous in forming a crystal lattice; a histidine on 

the strep tag was found to create a crystal contact through coordination to the secondary 

copper site of another molecule. Considering the poor crystallization hits produced by 

TtAA10 it is likely that without this crystal lattice contact, crystals would not have formed. 

The protein had been previously analysed by SECMALS to check the protein molecular 

weight, and this information also proved useful in ruling out the possibility that this 

coordination interaction was strong enough to occur in solution. SECMALS showed that the 
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protein existed as a monomer in solution and as such it is likely that the histidine residue 

observed binding in the crystal structure is replaced by a water molecule in solution.  

 

Figure 136 Whole structure overlay of several AA10s showing the general conserved fold ; 
TtAA10 (cyan), BaAA10 (purple, PDB code; 5IJU), CjAA10(A)(dark purple, PDB code; 5FJQ), 
EfAA10(A) (gold, PDB code; 4ALC), ScAA10(Bc) (coral, PDB code; 4OY6), JdAA10(Ad) (pink, PDB 
code; 5AA7), SlAA10(E) (green, PDB code; 5FTZ). The active site of TtAA10 is shown in cylinder 
view. Image made in CCP4mg.55 

The structure of TtAA10 was found to adhere to the typical AA10 structural features 

observed in other LPMO proteins, Figure 136. The histidine brace is positioned on the flat 

surface of the protein, created by the top region of the β-sandwich core. Overlays of the 

TtAA10 structure with the highest homology model (CjAA10, 5FJQ) showed significant 

differences in the loop regions of the protein, whilst the core β-sheets were conserved. The 

T-shaped coordination geometry around the copper created by the histidine brace was very 

similar to other structural models, Figure 137, and parameters such as bond length as 

quoted for other LMPOs. The bond lengths between the copper ion and the ring nitrogen of 

His1, amino terminus nitrogen of His1 and the ring nitrogen of His107 were 1.9, 2.2 and 2.0 

Å respectively. The bond lengths were found to match well with values reported for Cu-

histidine brace coordination in many other LMPO models as collated by Ciano et al.39 The 

ligand sphere surrounding the histidine brace was similar to other AA10s in that there were 

two residues found in the apical positions. Distances measured between the copper ion and 

the residues Phe193 (ring carbon atom closest to Cu), Gly107 (oxygen atom of main chain) 
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as 3.5 and 3.7 Å respectively. The phenylalanine was found, as expected, presenting from 

underneath the copper-histidine brace. It has been found that AA10s either have a 

phenylalanine or tyrosine residue in this position from sequence homology and structural 

comparisons. The incorporation of a hydroxyl group in the tyrosine side chain compared 

with phenylalanine, making it possible for ligand coordination to the copper Several AA9 and 

one AA10 structures quote the Cu-OH distance as 3.3 Å, whilst two AA10 structures display a 

shorter distance of 2.5 Å, indicating a likely difference in the copper coordination state. The 

second apical position was taken up by a glycine residue in TtAA10, which is uncommon 

based on the current literature data, where AA10s normally present with an alanine residue 

in this position, Figure 136. Interestingly, the only known structure of an AA13 LPMO, active 

on starch with a grooved binding site, also has a glycine in this coordination position.224 The 

position of the glycine, whose side chain simply lacks a carbon linkage compared to alanine, 

may be the reason as to why the EPR signal of the active site was deemed to be more similar 

to EPR spectroscopy of AA9 proteins; whereby these descriptions come from analysis of 

where the copper coordination aligns in the Pleisch-Blumberg plot. LPMOs copper 

coordination can be split into type based on the coordination form, type 1 or type 2. 

However, some LPMOs displaying rhombic character in the copper coordination geometry, 

fall in-between the two classic copper types.   In AA9 LPMOs, the apical coordination 

position is taken up by a water molecule, and it is thought that the positioning of the alanine 

in AA10s near the copper prevents typical geometric coordination of a water molecule65. 

Alteration to a glycine residue, may allow enough space for the binding of water (or another 

species such as chloride), although evidence for this was not observed in the crystal 

structure.  
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Figure 137 Overlay of several AA10 structures with a focus on the active site residues ; TtAA10 
(cyan), BaAA10 (purple, PDB code; 5IJU), CjAA10(A)(dark purple, PDB code; 5FJQ), EfAA10(A) 
(gold, PDB cpde; 4ALC), ScAA10(Bc) (coral, PDB code; 4OY6), JdAA10(Ad) (pink, PDB code; 
5AA7), SlAA10(E) (green, PDB code; 5FTZ). ScAA10(Bc) is modelled with an acetate ion 
coordinating from above the copper. Apart from TtAA10, only CjAA10 displays a Glu residue in 
the secondary ligand sphere of the active site. Of the structures available, only ScAA10 has a Tyr 
instead of Phe in the apical position. Only TtAA10 has a glycine where all other structures 
display an Ala. Image made in CCP4mg.55 

 

Figure 138 Coloured surface (blended through the model blue-red) of TtAA10 showing the 
exposed active site (no surface, for clarity) and the potential shallow groove created by His190 
and Ser109.  
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On closer inspection of the planar binding surface of TtAA10, two protrusions exist on one 

edge of the surface. These protrusions are formed by a single histidine (His190) side chain 

sticking out into the solvent space around the molecule and a serine residue (Ser109), Figure 

138. The two residues form a small channel which points towards the active site. Bound 

soluble oligosaccharides in crystal structures of LsAA9, has shown that the substrate binds 

across long edge of the copper active site, flanked by interacting residues on both side.201 

This binding mode is most likely to occur in TtAA10, with interacting residues along the 

length of the flat surface. Orientation EPR, using a fixed substrate with a defined axis in 

reference to experimental set up has also shown that the copper active site of LsAA9 binds 

in a parallel sense to the cellulose chain (Ciano and Walton, unpublished). Hence, it would 

be expected for the substrate to bind in the same fashion to TtAA10, which would likely 

involve the polysaccharide chain running through this small His-Ser channel towards the 

copper active site. The channel may be able to ‘select’ a specific cellulose chain through 

hydrogen bonding interactions provided by the oxygen of serine and ring stacking of the 

histidine, positioning the chain so that it binds over the copper active site.  



 

309 
 

6.7 Conclusion 

This work has successfully proved the hypothesis that the LPMO gene expressed by T. 

turnerae is active on cellulose – through culture growth experiments and testing of 

recombinant TtAA10 enzyme activity on various plant polysaccharides. TtAA10 has been 

shown to lack regioselectivity over which carbon position around the glycosidic bond the 

oxidative chemistry occurs at. Mass spectrometry strongly indicated the presence of species 

formed through C1, C4 and both C1 and C4 catalytic oxidation events on PASC and Avicel.  

The structure solution of TtAA10 was carried out by copper phasing which relied on the 

strength of two copper species for SAD phasing; a crystal contact between two molecules 

was formed by a histidine residue of the strep tag of one molecule coordinating with a 

second copper site on the surface of a second molecule. This second metal binding site was 

probed by EPR and found to contain copper in the first batch of protein, but not in 

subsequent batches. The second copper site was found not to affect activity of the protein. 

EPR experiments in which titrations of different metals could not displace the bound copper 

species, and copper titration observed binding of the second species after 0.4 equivalents of 

copper had been added to the sample. It was deemed likely that the second metal site was 

an opportunistic copper binding site and did not contribute significantly to the LPMO itself. 

However, further analysis is required to determine if this is truely the case; the positioning of 

the second metal site in such close proximetry to the active site of TtAA10 may constitute a 

potential binding site for either an electron donating protein partner, or small organic 

reducing agent. Efforts to pull out a protein binding partner from cultured T.turnerae using 

immobilised TtAA10 did not work, but the experiment does not rule out whether such a 

protein binding partner exists – the binding nature may be too transient to capture any 

potential AA10 electron donating agent.  

The structure fits all the classifications to be ‘LPMO-like’ in that TtAA10 forms a small 

globular structure with a central β-sheet core surrounded by various loops, which support a 

flat binding surface in which a centrally placed copper active site it positioned. The loops 

infer significant structural differences to the protein compared to other AA10s. The binding 

site of TtAA10 was planar, with the copper active site centrally placed and near to a slight 

surface protrusion creature by two residues His190 and Ser109, which may form a shallow 

channel through which a cellulose chain may bound. 



 

310 
 

7  

Conclusions and 

Perspectives 

7.1   In context 

For a better tomorrow the world must move towards sustainable fuel sources. Biomass, 

especially that considered waste or ‘2nd generation’ feedstocks, provides an ample resource 

from which high value carbohydrates can be obtained. Accessing the full chemical potential 

of these energy-rich carbohydrates requires the controlled breakdown of a heterogeneous 

mixture of many different natural recalcitrant polymers. However, being biological in origin 

means that these complex polymers are also susceptible to breakdown by nature’s many 

tools, namely lignocellulosic enzymes. From this perspective, a wide variety of glycoside 

hydrolases are produced by many different organisms which specialise in the breakdown of 

various types of polysaccharides; their mode of action uses hydrolysis to break apart 

individual glycosidic bonds between sugar units.15, 17 

Lytic polysaccharide monooxygenases are a comparatively new addition to our knowledge of 

how organisms break down recalcitrant materials. LPMOs use copper mediated oxidative 

chemistry to introduce chain breaks in crystalline regions of polysaccharides, regions 

typically inaccessible by GHs.40 Our understanding of lignocellulosic breakdown in nature is 

that a consortium of different enzymatic activities is required to effectively cover the vast 

number of potential substrates held within biomass. Indeed, one organism may specialise in 

production of a certain type of enzyme specific for a substrate that other organisms may not 

be able to efficiently degrade; however, together the combined efficiency of multiple 

organisms is effective at realising all the potential energy sources from a material. 

Therefore, we must find combinations of enzymes that can work synergistically, on a given 

substrate, in an industrial process. In this regard, nature provides a wealth of information on 

how to carry out the process of biomass degradation to fermetable sugars which can be 
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processed further into high value molecules such as ethanol. Enzymatic degradation in 

industrial processes is an area where scientists can focus to improve efficiency and bring 

down overall costs of running bio-renewables plants. Research often looks to organisms 

which inhabit very specific niches. For example, the most commonly used organism in 

industrial enzymatic processes is Trichoderma reesei, described as the ‘gold standard’ in 

lignocellulose degradation by Bischof et al; who describe, in a review, the 70s years’ worth 

of advances since discovery of T. reesei (originally named T. viride 225 and often now known 

as Hypocrea jecorina in some literature) an organism isolated during World War II, where US 

army tents in the Solomon Islands made of cellulose fibres were being ravaged by a 

destructive filamentous fungus.77 70 years of research on this organism has led to industrial 

strains capable of producing 100 g L1 cellulytic enzymes. Nevertheless, notwithstanding the 

efficiency of T. reesei, and the many improvements carried out over the years through strain 

development,226(reviewed by Peterson et al227) we need to seek ways of improvements, in 

which a promising method is to artificially combine multiple different enzymatic activities 

from different organisms that can work synergistically with the variety of polymers found in 

biomass.77 

 In this regard, T. Turnerae is an organism of great interest. It is a symbiotic bacteria found in 

the gills of the shipworm; an animal which uses its clam like head to burrow into submerged 

wooden substrates, living off the wooden material as a food source. Knowledge of T. 

turnerae has existed since the 1980s where it was isolated and successfully grown in liquid 

culture on a cellulose substrate.79 A burst of interest in this symbiotic-host relationship 

occurred in the early 2000s when the genome of T. turnerae was published. From then it 

became known that, of the large variety of CAZymes within the genome of this bacterium, 

over 50% were thought to function as lignocellulosic related or degrading enzymes, making 

it one of the leading bacteria in the competition for ‘best lignocellulosic enzyme 

producer’.101, 103 Questions still remain as to why the bacteria are housed so far away from 

the site of digestion – whether their primary role is in the fixation of nitrogen and the 

production of lignocellulosic enzymes is simply a secondary role  is unknown. How the 

shipworm signals the bacteria to express the correct enzymes for digestion of its food 

substrates is an interesting line of enquiry and, if so, how are these enzymes selectively 

transported to the gut of the animal? Investigating the relationship of the shipworm with its 

symbiotic microbial communities is an interesting topic on its own merit and theories about 

this coexistence have been updated recently by work from Sabbadin et al, who look at the 

role of endogenous proteins in shipworm digestion.70 Investigating the shipworm means 
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studying two co-existing organisms, which have co-evolved to be highly efficient within 

environments where survival is based on the ability to obtain energy from typically 

recalcitrant materials. As such, studying the role of T. turnerae in digestion of recalcitrant 

substrates is likely to provide new and novel enzymatic functions which may benefit 

improvements in knowledge or industrially processed renewable bio-fuels.   

7.2 7.2 This Work 

7.2.1 Target Success 

Over the course of this work the production of several likely lignocellulosic proteins was 

attempted using recombinant expression in E. coli. The genome of T. turnerae encodes many 

different GHs which most likely cover a wide range of functions. This work selected 14 GH 

ORFs using information available on the CAZy database, through which the carbohydrate 

active enzymes of individual genomes are grouped together and classified into their relative 

GH families.34 The genome of T. turnerae was known to contain 245 CAZymes, over 50% of 

which were expected to be involved in the degradation of biomass.103 A wide variety of GH5 

proteins were encoded and several of these, where BLAST searches suggested differing 

activities, were chosen as targets. A couple of ORFs were classified as proteins which were 

the sole representative of a particular GH family within the T. turnerae genome and, as such, 

two proteins from the GH8 and GH12 families were selected.  A single LPMO gene is found 

in the genome of T. turnerae, which made for an obvious research target based on the high 

level of industrial interest in these powerful oxidative enzymes. Attempts to produce all 15 

target proteins were carried out using different expression and purification strategies. As 

small quantities of TtAA10 had been produced prior to the start of this project (by Dr G. 

Hemsworth), optimisation of protein production was trialled with a focus on creating fusion 

constructs containing various solubility and affinity tags. Of the 15 target sequences, six 

proteins were successfully produced in a soluble form and taken onto further 

characterisation, as shown in Table 26. The GH constructs were designed to produce only 

the catalytic domain, and these were chosen based on sequence analysis (and confirmed 

with CAZy module boundaries kindly provided by Professor B. Henrissat) and involved a 

simple hexahistidine tag engineered to be removable by 3C protease.  

Of the remaining sequences, one protein, TtGH5_53 (GH5-0427, ACR13327.1) was 

successfully produced in a soluble form using the same purification strategy as outlined to 

produce the 5 other GHs. However, the protein degraded during storage before sufficient 
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characterisation of substrate specificity and function could be determined. The other 

sequences, pertaining to proteins from GH families 5, 6, 9 and 45 were not produced in a 

soluble form, as shown in Table 26. As discussed in Chapter 2, production of inclusion bodies 

was observed for some of the remaining eight protein constructs and optimisation of 

expression and purification was not sufficient to capture these proteins in a soluble form for 

further analysis. Despite this, the remaining eight proteins continue to be of research 

relevance; further changes in expression system or alterations in construct design are likely 

to result in improvements in production of these proteins. As shown in the main body of 

work, the characterisation of six soluble recombinant T. turnerae CAZymes was carried out 

and involved a principal focus on substrate specificity, activity and, where possible, 

structural analysis. 
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Table 26 Carbohydrate active enzymes selected from the genome of T. turnerae for analysis. 
Those highlighted in bold and orange were successfully produced and characterised and their 
functions updated from ‘potential’ to characterised. Those written in grey were not 
characterisd, and their functions remain based on sequence homology.   

Name ORF Genbank  

Code 

Family 

_subfamily 

 Function Characterisation carried out  

in this work 

AA10 TERTU_0046 ACR14100.1 AA10 Type 3 AA10 (C1/C4 

cellulose cleaving) 

Structure,  

MALDI product profile, TSA 

GH5-

2895 

TERTU_2895 ACR12145.1 GH5_2 Cellulase Kinetic assays, MALDI product 

profile, TSA 

GH5-

3565 

TERTU_3565 ACR11017.1 GH5_1 Β-1,4-glycan 

cleaving enzyme 

- 

GH5-

0183 

TERTU_0183 ACR12128.1 GH5_26 Endo β-1,4-

glycanase 

- 

GH5-

3751 

TERTU_3751 ACR11279.1 GH5_un Cellulase Kinetic assays, MALDI product 

profile, TSA 

GH5-

3361 

TERTU_3361 ACR12247.1 GH5_4 Xyloglucanase Kinetic assays, MALDI product 

profile, TSA 

GH5-

0428 

TERTU_0428 ACR12792.1 GH5_53 Cellodextrinase/β-

glycanase 

- 

GH5-

0427 

TERTU_0427 ACR13327.1 GH5_53 Cellodextrinase/β-

glycanase 

- 

GH6-

2898 

TERTU_2898 ACR12723.1 GH6 Cellobiohydrolase - 

GH6-

3996 

TERTU_3996 ACR14000.1 GH6 Cellobiohydrolase - 

GH6-

2895 

TERTU_2895 ACR12145.1 GH6 Cellobiohydrolase - 

GH8-

4506 

TERTU_4506 ACR14722.1 GH8 Endo-β-1,4-

xylanase 

Structure, mutant/native kinetic 

assays, MALDI product profile, TSA 

GH9-

0607 

TERTU_0607 ACR11786.1 GH9 Cellulase/endo-β-

1,4-D-glucanase 

- 

GH9-

0645 

TERTU_0645 ACR14629.1 GH9 Endoglucanase - 

GH12-

0353 

TERTU_0353 ACR14297.1 GH12 Activity not 

determined  

Structure,  

TSA 

GH45-

3400 

TERTU_3400 ACR13005.1 GH45_A Endoglucanase -  

Note: GH5_2895 and GH6_2895 are now described in the CAZy database as  bifunctional β-1,4-

endoglucanase / cellobiohydrolase (CelAB), with combined genbank code  ABS72374.1 
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7.2.2 GH5 

The three GH5 proteins, TtGH5_2, TtGH5_4 and TtGH5_un, represented three different GH5 

subfamilies, two of which contain several members with known substrate activities. 

Members of the GH5_2 subfamily are mostly glucanases and often exist as part of 

multimodular domains. In the genome of T. turnerae the TtGH5_2 ORF is part of a bi-

functional gene construct whereby the GH5_2 domain is positioned between two CBMs 

from families 5 and 10, upstream of a GH6 module. During the writing up process of this 

work it came to light, through updates to the CAZy database, that partial experimental 

analysis of the full gene construct had been carried out previously by Ekborg et al.105 Ekborg 

and colleagues successfully produced and tested the activity of the gene, named as CelAB, 

which contained the two suspected GH domains and CBM domains. The multimodular CelAB 

protein was suggested to be celluloytic through endoglucosidase and cellobiohydrolase 

activity for GH5 and GH6 respectively. Indeed, their work supported the expected activities 

suggested based on sequence analysis. However, the work in this thesis focused on the 

characterisation of catalytic domains only, hence, both the GH5 and GH6 modules (originally 

written with CAZy codes GH5_2895 and GH6_2895 at the start of this work) were expressed 

individually. Ekborg et al, did state a need for further study to clarify the individual activities 

of each GH domain in the multimodular protein complex.105 In this work, the GH6 domain 

was unsuccessfully produced as a separate catalytic domain but TtGH5_2 was produced in 

high amounts and its activity studied against several polysaccharides.  Analysis of TtGH5_2 

found that the catalytic module retained its activity on cellulosic substrates, breaking bMLG 

down to cellotetraose, and kinetic studies on 4-MU-C3 showed a high level of activity with 

kcat/Km measured to be 2.43 x10-2 ± 7.2 x10-3 µM-1 s-1. Initial experimentation using mannans 

had shown that TtGH5_2 was capable of degrading glucomannan but not ivory nut mannan 

or manno-oligosaccharides. The glucomannan activity was probed through collaboration 

with Dr T. Tryfona and Prof. P. Dupree at the University of Cambridge, who used PACE to 

analyse the product profile of glucomannan degradation. This analysis confirmed the 

suspected activity profile, that the catalytic domain TtGH5_2 was able to tolerate mannose 

moieties in its active site, but only cleave at glucose residues. Interestingly, this analysis 

found TtGH5_2 to be active on PASC and Avicel, where a broad array of products were 

observed from DP 4-11. The previous study by Ekborg et al suggested that the multimodular 

construct was only active on amorphous regions of cellulose.105It is possible that the 

reduction in protein size may have allowed the protein to have obtain activity against 
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crystalline substrates through better access to the substrate. However, larger 

oligosaccharide products were being produced in the degradation of the crystalline cellulose 

substrates, suggesting that incomplete degradation of the substrate was occurring, or that 

the protein may have only been able to access certain regions of the substrate. Removal of 

the CBM domains may have lifted some degree of substrate restraint; the two CBM domains 

in the full protein sequence may restrict the activity of the multimodular construct to 

substrates upon which both GH domains may act synergistically. Therefore, the separation 

of TtGH5_2 into a single protein may have extended its endo-acting ability. As such, whilst 

characterisation of the TtGH5_2 had been carried out previously, unknown to the author at 

the time of experimentation, this work has provided more insight into the individual function 

of one of the GH domains; where TtGH5_2 was not only confirmed to be an endo-glucanase, 

but also shown to be able to tolerate mannose to enable effective degradation of 

glucomannan, and as an individual protein, present activity on crystalline substrates.   

Sequence analysis of TtGH5_4 had predicted that the enzyme was likely to exhibit activity on 

xyloglucan, with the majority of GH5 xyloglucan activities found in this subfamily. Indeed, 

this was found to be the case during activity assays, where TtGH5_4 was only able to 

degrade xyloglucan. The product profile as analysed by MALDI-TOF-MS confirmed the 

presence of typical degradation products associated with GH5_4 family activity on 

xyloglucan.  

TtGH5_un remains a particularly interesting target, as the sequence at the time of this work 

is not classified into a subfamily of GH5. As such, this protein likely represents a new GH5 

subfamily, with biochemical analysis of TtGH5_un suggesting members will have activity on 

glucans. The activity of TtGH5_un was in fact similar to TtGH5_2, where the protein was 

found to tolerate inclusion of mannose units within the substrate but only cleave at glucose 

residues (as shown by activity assays and PACE). Crystallisation of TtGH5_un was carried out 

and hits were successfully optimised to produce crystals which diffracted to approximately 

1.8 Å. A data set was collected at the Diamond Light Source, but unfortunately no structure 

solution was determined. The lack of significant homology (< 30 %) with models available in 

the PDB meant that the structure could not be solved by molecular replacement. Future 

work will likely need to rely on structure solution via phasing to bypass the lack of available 

homology structures. Despite this unsuccessful structural outcome, TtGH5_un remains a 

protein likely to dictate the direction of future GH5 analysis.  
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7.2.3 GH12 

The only GH12 within the genome of T. turnerae was successfully crystallised and modelled 

at 1.6 Å using molecular replacement. The structure was found to display the classic ‘jelly 

roll’ tertiary fold associated with the GH family 12. A protein-ligand complex, solved at 1.9 Å, 

mapped out a portion of the active site, where the disaccharide Glc 1,4 Glc 1,4 

noeuromycin  (generally a cellulase inhibitor) was found to bind in the -2 to -1 subsites, with 

the glucose moiety ring stacking with nearby tryptophan residues, two of which are rotated 

compared to other GH12 enzymes. TtGH12 contains an alteration in the normally conserved 

catalytic triad, and it sits with two other sequences as a single branch within the GH12 

phylogentic tree. Substrate specificity analysis did not yield any consistent activity, however 

protein melting temperatures were increased on addition of xylan and xyloglucan suggesting 

some interaction was occurring between the substrate and the protein. Activities within the 

GH12 family consist mostly of cellulases and some xyloglucanases. The lack of confirmed 

activity of TtGH12 coupled with the interesting alteration in the active site, and the unusual 

binding of the disaccharide indicate a new subclass for the GH12 family, which will be an 

interesting branch for future studies. 

7.2.4 GH8 

The most well characterised target protein within this work was TtGH8, data on which has 

been recently published. The protein was successfully characterised in terms of function, 

substrate specificity, efficiency and structure. Interestingly, TtGH8 was the only GH8 within 

the genome of T. turnerae and shown in this work to be a highly efficient degrader of xylose 

based polymers. TtGH8 catalysed the hydrolysis of β-1,4 xylohexaose with a kcat/Km value of 

7.5 x 107 M-1 min-1 but displays maximal activity against mixed-linkage polymeric xylans, with 

a kcat/Km value of 1.6 x 108   
 4  x 106 mg-1 ml min-1, hinting at a possible primary role in the 

degradation of marine polysaccharides. Structural analysis of TtGH8 showed a classical 

tertiary (α/α)6 barrel fold, typically associated with the family. Ligand soaking experiments 

were able to bind X2 and X3 in the negative subsites of the active site, where the binding of 

X3 showed a conformation in the -1 subsite consistent with the proposed catalytic itinerary. 

Mapping of the full binding site was achieved through creation of a catalytic mutant, in 

which the catalytic base Asp281 was altered to Asn. However, this mutant still retained a 

small amount of activity relative to the native protein, and was still efficient at cleaving 

bMLG with a kcat/Km value of 1.8 x 104  
 1 x 103 mg-1 ml min-1. Rapid crystal soaking with X6 
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yielded a structure whereby X6 was bound from the -3 to +3 subsites and displayed a flipped 

chair conformation in the -1 position. The analysis of TtGH8 showed it to be stable and 

effective at degrading xylans and thus its potential use in biomass degradation processes 

could be explored by testing the activity of the protein on real heterogeneous materials 

likely to be used in biomass processing.  

7.2.5 AA10 

The only LPMO produced by T. turnerae, known to be an AA10, was analysed for substrate 

specificity and found to exhibit binding capacity for chitin (as predicted from sequence 

analysis) but showed no catalytic activity on this substrate. Instead activity was observed on 

crystalline cellulose substrates PASC and Avicel. Growth of the source bacteria T. turnerae in 

liquid culture using a cellulose substrate as a food source found the LPMO to be abundant in 

the media by proteomic analysis. Activity assays whereby the enzyme and substrate were 

mixed with reducing agents (ascorbate or gallic acid) showed a product profile consisting of 

DP4-11. The product profile as analysed by MALDI-TOF MS suggested that TtAA10 was able 

to oxidatively attack at either the C1 or C4 position, thus further experimentation (i.e. 

enzymatic digestion, NMR or permethylation 228) should be used to confirm the ‘lack’ of 

regioselectivity, as some ambiguity was present due to MS peaks of different products 

having the same m/z value. Thus, it is tentatively suggested that TtAA10 is a Type 3 AA10. 

Structural analysis of TtAA10 was carried out and a 3D-model at 1.4 Å was solved using 

copper phasing which took advantage of the presence of two copper ions in the structure. 

Classic LPMO features were observed, including the immunoglobulin-like fold and presence 

of a histidine brace. Furthermore, a second copper site was present on one side of the 

structure. Significant structural differences, likely from the loops in the protein, meant 

solution by molecular replacement with other AA10 molecules was not possible.  
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Figure 139 Structure of TtAA10 showing both copper sites. Top is the active site, whilst the 
front centred is the secondary metal site. The strep tag, shown as cylinders. A histidine from the 
strep tag of another molecule makes a crystal contact through coordination with the second 
copper site.  

Spectroscopic analysis to assess the copper active site was carried out by frozen solution 

CW-EPR spectroscopy. Spin Hamiltonian parameters (obtained from simulations by Dr L. 

Ciano) showed that the active site was similar to other AA10s within the literature; with gz 

and Az values equal to 2.267 and 420 MHz respectively. Occupancy of the second copper site 

was variable between protein batches, but the copper was found to be taken up during EPR 

monitored titrations. A change in the secondary coordination sphere of the copper was 

observed crystallographically with a glycine residue found in the apical position around the 

copper ion instead of a typically conserved alanine normally present in AA10 LPMOs. 

The second copper site may act as a binding site for an electron donating protein partner, 

similar to how CDH provides electrons to AA9 LPMOs, or small molecule reducing agents. A 

pull down experiment using immobilised TtAA10 was carried out in an effort to ‘catch’ any 
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such AA10 electron donating partner, but this was not successful. Repetitions of this 

experiment should be carried out however in an effort to elucidate whether there may be 

any transiently binding protein partners.  

It would be prudent to determine the enzymatic efficiency of TtAA10 acting on cellulose. 

However, the insoluble nature of the substrate complicates this task, preventing 

experimentation normally used to gain kinetic parameters such as those determined for the 

GHs in this study. One can instead focus on the rate of sugar release by coupling LPMO 

activity with traditional GHs and monitor the ‘boosting effect’ to determine the synergistic38, 

68 capabilities of this AA10 with industrial enzyme mixtures. Gaining kinetic insight on LPMO 

reactions has historically been difficult due to the insoluble nature of the substrates, but 

recent techniques have  shown methods which bypass these problems.229, 230 Determination 

of TtAA10 kinetics would therefore assess the efficiency of the individual enzyme but also 

provide LPMO activity parameters to a field which has so far lacked sufficient amounts of 

such data for comparison.  Finally, in a similar vein to the discussion of TtGH5_2, only the 

catalytic domain of the TtAA10 gene was characterised. A CBM binding domain from family 

10 is appended to TtAA10 in the native sequence. Sequence homology suggests that this 

CBM10 domain is likely to bind cellulose and it would be interesting to assess the effect of 

this binding domain on the activity of the protein. Analysis of TtAA10 has provided more 

information towards the ever-growing knowledge of LPMOs, as well as structural insight into 

an LPMO with a slightly variant active site. 

7.3 7.3 Future Directions 

7.3.1 The enzymes 

The symbiosis between the shipworm and T. turnerae represents a very small area of 

research from which new enzymatic functions can be found. The availability of the T. 

turnerae genome initiated this research into 15 carbohydrate active enzymes, of which six 

were successfully characterised, through what is essentially a process of genome mining; 

analysing how genomic sequences relate to characterised homologues can suggest potential 

avenues of inquiry. However, as shown by the analysis of TtGH5_un and TtGH12, novel 

proteins with potentially new functions can be still be discovered, even if classifications into 

their likely activities have already been assigned. Characterisation of other enzymes with 

activities well-known in the literature, such as those from families GH8, GH5_2 and GH5_4 

still provide valuable insight into enzymatic function and the knowledge gained through this 
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work adds to the ever-increasing scientific understanding of the workings of the various 

types of glycoside hydrolases. Research on the selection of ORFs made during this work, 

however, was limited by time and resources and, as such, there remains a large pool of likely 

lignocellulosic enzymes encoded by this interesting shipworm symbiont, which can be 

probed for their functions and activities.  Indeed, the expression of T. turnerae in pure 

culture carried out in the analysis of TtAA10 was an interesting experiment as it provided 

insight into a variety of proteins that were secreted into the media when the cells were 

being fed on a source of cellulose. Whilst the experiment was not optimised, TtAA10 was 

found in the media in ‘high’ amounts, as well as some other GHs – however, none of the 

genes selected for characterisation in this work was identified. A protein in high abundance 

in the media was classified as a GH1, based on BLAST113 characterisation and thus suggested 

to be active on xylan by sequence homology analysis, yet was expressed whilst the bacteria 

was feeding on cellulose! This experiment suggests there may be more enzymes of interest 

within the genome of T. turnerae, which could be identified through similar experiments; by 

monitoring the secreted proteome in response to different types of substrate, gives clues to 

up-regulation of enzyme activities and potentially identifies new enzymes of interest.  

An original thought prior to this culture growth experiment was that it may help identify a 

possible electron donor of TtAA10, an area of importance for research into AA10 LPMOS. 

AA9 LPMOs, from fungal systems have been suggested to work in partnership with 

celliobiose dehydrogenase (CDH) 204, 231, which are often co-secreted at the same time as 

LPMOs. They have been shown to be able to provide electrons to AA9 enzymes, likely 

through electron transfer pathways involving their own haem domain.205 However, not all 

fungal systems use CDH and some species encode multiple CDH genes, thus coupling of CDH 

and LPMOs may not be a simple ‘one size fits all’ approach.232 Analysis of secretome data 

(like that collected for TtAA10) is vital to understanding the coupling process, as shown 

recently by Adlakha et al, who identified a CDH redox partner of a specific AA9 from Botrytis 

cinerea using a holistic approach to secretome analysis.232 Such enzymatic electron donating 

partners have not yet been identified for AA10 enzymes, as bacteria lack expression of 

celliobiose dehydrogenase and an equivalent has remained elusive. Potential external 

electron donors (useable by both fungal and bacterial systems) may come from phenolic 

compounds (i.e. gallic acid), compounds released upon degradation of lignin,233 

lignosulfonates 234 oxioreductase type enzymes 235 and small molecule reducing agents such 

as ascorbate. Small molecule reducing agents are the common choice in experiments, where 

they ‘artificially’ provide LPMOs with a source of electrons, but this system may not 
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necessarily mimic LPMO systems in nature, as the general availability of small molecule 

reducing agents during biomass degradation is unknown.235  The secretion of TtAA10 into 

the media during culturing of T. turnerae on cellulose does suggest that the protein was in 

use during biomass degradation, and accordingly an electron donating partner would likely 

be found in the media. One suggestion had been that the second metal site observed on 

TtAA10 could have played a role in protein binding or docking, followed by electron transfer 

– the two copper sites were only 11 Å away. Immobilisation of TtAA10 on a column, failed to 

‘trap’ any potential binding partners, although if occurring, binding is likely to be transient.  

As shown in the introduction to this work, LPMOs are a hot topic in terms of research, with 

new classes and substrate specificities emerging regularly, and as such there is a wide range 

of interest in their chemical action and abilities. Electron donating partners are one of those 

currently elusive topics regarding AA10 enzymes, and identification of what actually provides 

electrons to these powerful oxidative enzymes may influence how they are used in human-

directed situations – specifically, their use in industrial enzyme cocktails during biomass 

degradation.  

Further topics of interest relate to understanding how the LPMO active site works, in a 

mechanistic sense. The potential mechanisms of LPMOs have not been discussed in detail 

during this work. Debates about the role of activating molecules, for example oxygen vs. 

hydrogen peroxide is underway and identification of the true activator of the copper site is 

as yet unproven.236-237 Different theories use different sequential combinations of LPMO, 

substrate, reducing agent and activator to present catalytic itineraries which go through 

various copper states and copper-oxygen intermediates – all of which are chemically 

plausible, but lack experimental confirmation.39 Further complications arise when one 

considers that different classes of LPMO may present catalysis through different pathways 

and thus the direct comparison of one LPMO to another may not always be appropriate.39, 44, 

74Combination of enzymatic analysis with small molecular mimics of the active site is likely to 

aid the discussion over which mechanism may occur, however, creating these compounds is 

a difficult task. Success has been made whereby complexes containing Cu(III)-OH species 

have been found capable of attacking strong C-H bonds, with products resulting from 

hydrogen atom abstraction found to contain a newly formed strong O-H bond.39, 238 Small 

molecular mimics should provide a unique perspective on how changes in the coordination 

sphere of copper (for example in the various LPMO subclasses) can effect formation of 

reaction oxygen species, and therefore probe thermodynamic favourability towards 
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breaking strong C-H bonds239, such as those in polysaccharides, as well as provide 

information from which real proteins could be spectroscopically compared.     

Particulate methane monooxygenases (pMMO) have recently been reclassified as mono-

copper enzymes240, and are able to oxidise methane, meaning they play an important role in 

the carbon cycle and have potential industrial usage through the production of methanol 

based fuels.39, 62-63Although, their structure was always known to contain a histidine brace 

type scaffold, the originally suggested dual copper active site, as depicted in the 2011 crystal 

structure of Methylococcus capsulatus (PDB code: 3RGB), led to extensive research on small 

molecule mimics containing dicopper sites.39 Due to increasing evidence from LPMO 

structures the nature of the copper active site in pMMOs was under scrutiny and recently 

the pMMO structure of M. Capsulatus was revisited, and subsequent re-analysis of data now 

showed that it is instead is a mono-copper species. Future work therefore should focus on 

comparing the active sites and tertiary structure of pMMOs to those of LPMOs, to help 

define which alterations in protein design change the properties of the enzyme so boldly, 

yet both still rely on the same basic copper scaffold and likely, oxidative chemistry, Figure 

140. 
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Figure 140 Diagrams comparing the active sites of TtAA10 and pMMO (reclassified, 
mononuclear site241) from M. capsulatus, where both consist of a copper ion held in the histidine 
brace scaffold.  

7.3.2 A broader outlook  

The life cycle of the shipworm is an attractive avenue for biochemical characterisation, due 

to its ability to survive on lignocellulosic biomass.70 However, the shipworm represents just 

one source from which we can gain scientific insight into lignocellulosic degradation. Across 

the tree of life there is a wide array of ecological niches in which organisms have evolved 

exquisite ways to circumnavigate the recalcitrant nature of polysaccharides – and as such 

represent places in which we can apply genome mining for effective ‘bio-prospecting’, 

finding potentially new proteins, in a similar way to work carried out on the shipworm’s 

symbiotic bacteria. Indeed, shipworm species discussed in this work are closely related to 
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similar marine bivalves which have evolved to live at higher pressures in the oceanic 

environment; Xylophagainae are found burrowing in sunken wood deposits and are thought 

to contain symbiotic bacteria, which could be a source of interesting enzymatic functions 

due to their ability to exist up to 7500 m below sea level.242-243 Even more recently, a species 

of shipworm, Kuphus polythalamia  has been found living in mud flats, whereby its bacterial 

symbiosis is centred on utilising sulfur rather than lignocellulose.244  

Likely the most well thought of source for lignocellulosic digestion is that of fungi, where T. 

reesei is the number one example. Fungi are traditionally split into white-rot and brown-rot 

classes, two phylogenetic clusters that use different approaches to the degradation of 

lignocellulosic material. White-rot fungi mainly attack wood cell walls close to the surface of 

the material through enzymatic degradation, using large numbers of complementary 

cellulases as well as oxidative enzymes capable of acting on lignin and perhaps then 

somewhat unsurprisingly, a large selection of LPMOs.80 In contrast, brown-rot fungi, whose 

evolutionary path from white-rot fungi may have caused a significant loss of cellulolytic 

machinery, exploits oxygen radical chemistry to effectively deconstruct lignocellulosic 

material; whereby oxygen radical chemistry is carried out away from the organism to 

prevent self-inflicted damage through a concentration gradient, with a recent study 

suggesting that gene regulation is staggered to effectively protect the remaining GHs found 

in the genome from the damage, when they are ultimately expressed and secreted. This 

process can be thought of as nature’s own version of lignocellulosic pre-treatment prior to 

enzymatic degradation!245 Other forms of fungal ‘rot’ exist, such as that of T. reesei, a soft 

rot species; whereby the fungus colonizes the outer layer of substrate, before extending fine 

hyphae through the wood cell walls to begin the process of enzymatic degradation.246 Whilst 

T. reesei may not possess an extraordinary amount of cellulolytic genes, its capability of 

expressing them in large quantities is why it is so highly regarded in the industrial sector.247 

Engineering of T. reesei over the past several decades has led to ever more exaggerated 

levels of production of native proteins, termed hyperproducing strains. 

Some relevant areas from which bio-prospecting research is carried out, are those habitats 

consisting of harsh conditions, which inevitably cause accumulation of organisms capable of 

tolerating issues such as high temperature, pH, lack of oxygen or light and so on. One such 

seemingly innocuous environment is compost; whether this is natural composting events 

such as accumulation of leaf litter, or in man-made habitats. The improvements in so called 

‘meta-omics’ make it possible to map the genomic data of many different species (meta-

genomics) found within a single habitat and analyse the over expression of particular genes 



 

326 
 

(meta-proteomics) which provides a targeted approach to identifying lignocellulosic 

enzymes of interest, specifically those capable of withstanding harsher conditions which 

may be of industrial relevance.248  

As is likely the case with most organisms (the shipworm, amongst other marine organisms 

such as the gribble, being an interesting outlier70, 80, 87, 96, 101), the co-evolution of the host 

and its gut microbiome have produced a mutualistic symbiosis in which bacterial 

communities are supported in attractive, food-rich, stable, moist environments and the host 

with nutrients inaccessible by endogenous digestion.81, 249-250 The gut microbiome refers to 

all the genetic material of the various microbes that reside within the digestive system of the 

host.250 There are many excellent examples of organisms which have maximised on bacterial 

habitation for efficient degradation of substrates. Termites for example, ingest ‘mechanically 

pre-treated’ materials (grinding of the insects mandibles) which are effectively broken down 

over the course of 24 hours through enzymatic degradation by an extensive selection of gut 

microbiota, housed in a series of gut chambers.251 Ruminants, larger animals like sheep, 

cattle and antelope, also support a widely diverse range of microbes in a series of gut 

chambers; and by providing mechanically degraded food substrates and a constant 

temperature of 39 °C, the host animal is able to survive solely on vegetation – a substrate 

containing mostly inaccessible carbohydrates. Varieties of bacterial species are found across 

the different digestive chambers of the animal’s anatomy, all of which have slightly differing 

conditions (i.e. pH)252 and thus produce enzymes with different condition tolerances. 

Understanding digestion in ruminants doesn’t just provide an attractive avenue of bio-

prospecting, it also leads to improve in management of cattle, which are one of the most 

important human agricultures; improving the health of the cattle will naturally increase the 

efficiency from which they (and their gut microbiome) can convert the energy held in plants 

into other useful substances such as milk.253 

Understanding the gut microbiome and its link to overall health of the host is currently a 

promising area of research in terms of improving human health and understanding disease. 

The fluctuating nature of the microbiota involves microbes which either simply pass through 

the gut during general digestive processing of food intake (digestion of passing microbes in 

ruminants provides the animals with the vast majority of their required amino acid intake 

252) or be more permanent residents within the gut; the microbiome is subject to change 

over time in response to many different factors such as ageing, diet, alcohol consumption, 

use of drugs and occurrence of disease etc.250 Current thoughts are that the microbiome can 

be considered as an individual’s personalised ‘extra organ’, which provides a variety of 
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health benefits and can be used as a marker for overall health. Indeed, studies already 

suggest that transplant of one healthy person’s microbiome into a person suffering from ill-

health may assist in re-growth of normal gut microbiota which has been lost for various 

reasons such as disease. For example, Clostridium difficile infections are endemic and 

becoming resistant to typical methods of treatment via antibiotics. The infection is often 

caught in hospitals where patients may already be in a poor state of health, but 

transplantation of healthy gut microbiota in the form of faecal enema (or more recently pill 

form) to the patient can clear an infection by providing the gut with an influx of healthy 

bacteria which are able to prevent re-infection of C. difficile, which can often lie dormant 

and reoccur.254-255 

Being omnivorous, the human diet requires digestive capability of both animal and plant 

products. Somewhat surprisingly, the human genome only encodes CAZymes capable of 

breaking down sucrose, lactose and starch,256 despite our intake of a vast quantities of 

therefore, in terms of the human genome, ‘un-digestible fibre’. Ingestion of these plants 

fibres, containing complex carbohydrates that are not able to be broken down by our own 

enzymes, is termed dietary fibre. In fact, the digestion of this dietary fibre is carried out, as 

one might now expect, by a variety of bacterial communities; the most prevalent of which 

come from the bacterial phyla, Firmicutes and Bacteroidetes.257  Degradation of 

polysaccharides into fermentable sugars by various microbes produces short chain fatty 

acids, from which we gain a significant portion of our daily calories.258  The gut microbiome 

is likely to have evolved as humans have over time, and differences are found in the 

prevalence of bacterial species in people from different areas of the world. For example, a 

recent study suggested that high levels of consumption of raw food in Japanese culture may 

have caused transfer of bacterial genes, over time, to the gut microbiome, which are 

normally associated with the bacterial degradation of marine polysaccharides, specifically 

from algae.  259 Genes encoding for proteins with ability to degrade polysaccharides are 

often positioned together on the bacterial genome, to provide efficient regulation of 

multiple proteins in response to a specific substrate, such coalescence of genes is called 

polysaccharide utilisation loci, or PULs.259 The Bacteroidetes species found in human, and 

many other mammalian digestive systems has gained a wide variety of PULs, likely through 

gene transfer events, which enable it to have activity against the complex picture of 

polysaccharides presented by our diets.260 Comprehensive understanding of PULs and the 

roles they play in lignocellulosic digestion relies on correct annotation of genes. Traditional 

experiments in which individual genes contained within PULs are recombinantly expressed 
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and characterised is time consuming although high throughput screening of substrates, as 

described by Vidal-Melgosa et al may be the way forward261; whereby  micro-arrays are used 

to screen large numbers of substrates at once, using small amounts of enzymes and even 

samples of liquid cultures.261 Whilst these techniques are further developed and made 

accessible to more research groups, one must couple traditional wet chemistry approaches, 

with computational analysis, where prediction can be used with high levels of accuracy to 

define PULs and individual gene activities, which naturally shines a light on those involved 

genes that have unknown functions.260 Study of PULs being used in human gut digestive 

processes will both give rise to information about potentially new enzyme activities as well 

as link to the broadening field of microbiome driven digestive health. The effect of enzymes 

and our understanding of them encompass a very broad area of research and of life in 

general, hence it is difficult to provide a picture which captures their overall effects, 

effectively. Human health and its reliance on bacterial enzymes is a major topic for potential 

future medicine and control of certain diseases. This slowly emerging understanding is 

gaining momentum, due to advances in our technical ability to handle such large amounts of 

genomic data256 and is likely to continue advancing in directions related to potential 

therapeutics and possibly personalised medicine.  

These advances in understanding how enzymes are important to health mirror how the 

biofuels industry has been steadily growing over the past couple of years since the 

introduction of LPMOs. It is amazing how discovery of a single enzyme type can kick-start an 

industry into something that is becoming more cost-effective and a major competitor of 

non-renewable fuels. This optimism is however, narrow. Scientists have put the vast amount 

of effort relating to improving sustainable fuels into researching ways to make enzymatic 

treatments better, and thus other areas required for efficient production of cellulosic 

ethanol have been ignored. Indeed, at the time of writing several major cellulosic ethanol 

producing plants have closed their doors, citing issues with the biomass supply chain. This 

consideration, where does the biomass actually come from, is something that is usually only 

merely discussed in terms of whether substrates are 1st or 2nd generation feedstocks – 

scientists such as myself, who focus narrowly on novel enzyme discovery to improve 

biomass processing lack the understanding of the whole chain process. Upstream of 

enzymatic biomass processing, the material must be pre-treated, using methods that clearly 

require much optimisation to avoid high costs resulting from high temperatures, or use of 

large amounts of solvents. The greatest problem however, is the source of the biomass. 

Land use needs to be appropriated for use in generation of crops suitable for biomass – 
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farmers are not keen to use their fertile, food growing land for the growth of fast growing 

weeds such as the invasive Arundo donax, a bamboo like plant able to grow up to 30 ft a 

year!262 One alternative is to use marginal land, coupled with the growth of grasses such as 

switchgrass (Panicum virgatum), a common sight in the Great British landscape and the giant 

reed, Carrizo cane, which are fast growing and able to tolerate land unsuitable for crop 

production.263 Genetic engineering of plants may also make biofuel production viable, for 

example altering the structure of carbon deposition in plants to disfavour production of hard 

to degrade compounds such as lignin, the saccharification yield (processed polysaccharides) 

can be increased.264-265 However, advances such as this are all very well, but still need to 

bypass those lingering consumer worries based on genetic modification of organisms.  

Another potential source, is microalgae, and many companies over the past decade had 

predicted that use of algae based biofuels would be commercially viable, by now. 

Unfortunately, as is perhaps the case with cellulosic ethanol, unpredicted difficulties have 

prevented this idea from being reality.266 Microalgae can produce a wide variety of high 

value natural products, which are used extensively in human and animal nutrition for 

example. The organisms naturally produce large amounts of lipids, and it is this oil which can 

be used for biodiesel production. Microalgae have a short life cycle, between 1-4 days and 

can produce relatively large amounts of biomass; the essential gain of using such organisms 

is that they are very efficient compared to plants in capitalising sunlight. In optimised 

conditions, microalgae could reach approximately 10 % photosynthetic efficiency,267 an 

attractive figure considering the maximum theoretical efficiency rate of plants is below 6 

%.268 Microalgae are also naturally adept at sequestering carbon dioxide to use during 

metabolism. Logically, it would make sense to build industrial algae ponds near current 

sources of carbon dioxide output such as factories or other fuel stations.269 However, 

climate, land type and water availability are important factors in choosing a plant site. 

Successful cultivation of algae in classic open ponds, or tubes on an industrial scale has many 

problems, such as water usage, effect of climate, contamination and control of nutrients.270 

Indeed, to make fuels efficiently from microalgae, its production needs to be maximised and 

the cost of such scale up has led to many companies abandoning biofuels and turning 

instead to commercialising microalgae by-products.270 As has occurred with the continued 

genetic appraisal and improvement of T. reesei,271 the future of microalgae for biofuels will 

likely rely on creation of new industrial strains which have maximised lipid production, 

without adversely affecting growth rate – as shown recently by Ajjawi et al.272 To induce lipid 

production in microalgae, traditional methods starve the organisms of nitrogen during batch 
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culture. Ajjwai et al, using CRISPR-Cas9273 reverse genetics, identified and modulated 

expression of a transcriptional regulator involved in lipid accumulation. The modulation of 

the regulator, named ZnCys in Nannochloropsis gaditana led to doubling of lipid production 

compared with the wild type without the normal negative effect on growth.272 Advances in 

regulation of lipid production inside the organism rather than relying on the batch culture 

control of nitrogen levels is likely to lead to strains which are more suitable for large scale 

growth and production of lipids for fuels. 

 

Figure 141 PET-ase from Ideonella sakaiensis, displaying an α/β structure containing 6 α-
helices and 6 β-sheets, The active site is centred at the top, shown as a narrow groove in the 
surface structure (grey) 

One must be practical however and understand the net benefit of producing biofuels – if 

more energy is used transporting biomass feedstocks to a bioprocessing plant, is there any 

net energy gain in doing it? Research into organisation of where plants are built and how 

materials can be efficiently collected and transported is of vital importance if such ventures 

are to succeed. Our natural associations lead us to believe that biofuel plants need to be 

massive, much like coal or oil refineries – perhaps the solution to the transport issue is to 

have more small scale plants that can be operated on the site of biomass growth – or as in 

the case of algae, coupled to other industrial sites to make use of outputs such as carbon 

dioxide.269 This way of thinking can also be applied to other sustainability issues, such as 

recycling of plastics and municipal wastes. Canadian company, Enerkem convert municipal 

waste into ethanol and are set to build 100 new plants in China, a country suggested likely to 
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reach peak carbon dioxide emissions within the next decade,274 and as such reduce their 

reliance on oil through more sustainable measures. The non-biodegradability of plastics is an 

extreme cause for concern, with generations of improper disposal causing accumulation of 

plastics with lasting effects on soil infertility as well as infiltration into oceanic food networks 

via micro plastics275. The properties of plastic, so well-renowned for its durable nature mean 

it is inevitably difficult to remove from the environment and break down. Our over 

production of plastic may have caused natural selection events, in which various microbiota 

are showing promise in developing ‘natural’ enzymatic breakdown pathways of common 

plastics. Indeed, evidence shown in studies of various creatures such as waxworms and meal 

worms identified bacteria capable of degrading plastics.276-277 More recently, directed 

structural biology has improved the degradative ability of an enzyme, named PET-ase, from 

the bacterium, Ideonella sakaiensis, which was found able to use PET as a carbon and energy 

source, Figure 141.278 Further identification of plastic-eating organisms, and subsequent 

analysis of the enzymatic actions required may aid in improving our recycling economy – 

potentially, as with LPMOs helping form a new industry centred around improving the 

sustainability of our plastic world.  

This broader outlook hopefully draws together how analysis of enzymes in a single 

seemingly narrow field of study can have out reaching effects on a broader scientific 

landscape. Understanding of the microbiome (or lack of it in the shipworm) and the role 

bacteria play in degradation of biomass, is important to a wide range of diverse research 

areas from human health, breakdown of plastics to production of bioethanol. All these 

questions rely on an interdisciplinary approach, whereby enzymatic analysis needs to be 

considered in context. Thus, such understanding may improve our knowledge of how nature 

degrades biomass in such efficient ways, allowing us as a species to hijack this information 

and provide ourselves with a greater understanding of our own co-evolving microbiome 

‘organ’ and more sustainable and, importantly, renewable fuel sources for the future.  
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Appendix 1:  

Initial Work on 

PHM 
A1.1 Abstract 

A protein found within the Shipworm, S-PHM, is homologues to the oxygen binding C-

terminal domain of Peptidylglycine-alpha-hydroxylating monooxygenase (PHM). The closest 

bacterial and eukaryotic homologues to S-PHM have been expressed under a variety of 

different expression conditions, purified under different buffer conditions, gene truncated 

according to sequence analysis and had the addition of a SUMO tag. Further testing 

involving on-column refolding and western blot analysis lead to the conclusion that the S-

PHM homologues were intrinsically misfolded and unavailable for further characterisation at 

this point. 

A1.2 Introduction 

A1.2.1 An Interesting Link 

LPMOs are known for their incorporation of a single copper ion within the active site and 

their use of molecular oxygen in its enzymatic activity. A protein found within the hindgut of 

the Shipworm has been highlighted due to its classification as a ‘copper monooxygenase 

domain’ during sequence homology searches. Sequence analysis shows the protein is 

related to one commonly found in higher eukaryotes, peptidylglycine-alpha-hydroxylating 

monooxygenase (PHM).  
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Figure 142 General reaction scheme of PHM actin upon peptidylglycine extended peptides. 

PHM, a bi-copper protein, catalyses the stereospecific hydroxylation of the glycine α-carbon 

of peptidylglycine substrates (prohormones). This is the first step in the post-translational 

amidation of glycine extended peptides; a process used for activation of peptides such as 

growth factors, hormones and neurotransmitters, Figure 142 General reaction scheme of 

PHM actin upon peptidylglycine extended peptides.Figure 142 Depending on the situation, 

PHM can act as a single, independent enzyme or as part of the bi-functional PAM protein. 

279-281
 

 

Figure 143 PHM from Rattus norvegicus (PDB: 1sdw). The image clearly shows the cleft 
separating the two copper ions. Green/blue refers to the C-terminal domain whereas the 
purple/blue half is the N-terminal domain. Image produced in CCP4mg.55 

Structurally PHM can be described as a scaffold holding two non-coupled copper ions 11 Å 

apart, Figure 143 and Figure 144. show the active site of PHM, where the two copper ions, 

CuA and CuB are shown separated by a water filled cleft, Figure 143. CuA coordinates three 

histidine residues in a ‘T-shape’ geometry (square pyramidal with two unoccupied 

positions). CuB forms a distorted tetrahedral geometry, binding two histidines, a methionine 

and a water molecule. The methionine ligand has been linked to increased catalytic activity 

and overall structural integrity of the protein.282  
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Figure 144 Active site of PHM from Rattus norvegicus, showing the two copper ions 10.59 Å 
apart. CuA on the right interacts with three histidine residues whereas CuB binds to two 
histidines and a methionine (a water molecule is also thought to bind tbut this is not shown). An 
oxygen molecule is also shown in the ligand sphere around the CuB ion, thought to bind in an 
end-on manner. Image produced in CCP4mg55 from PDB file 1SDW. 

Both copper sites are reduced to CuI prior to catalysis via interactions with two molecules of 

ascorbate. Physical and computational studies have suggested the formation of a cupric 

superoxo (CuII-O2·-) reactive species by end-on coordination of molecular oxygen to CuB in a 

tetrahedral geometry, Figure 144 . It has been suggested that the large cleft separating both 

sites prevents peroxide formation, allowing formation of the more active superoxo complex. 

Formation of the oxy-PHM adduct combined with binding of a nearby substrate is thought to 

initiate electron transport from the decoupled CuA ion to the awaiting CuB ion. This results in 

a C-H activation reaction via hydrogen abstraction.279-281, 283  

Several studies have looked at producing stable superoxo CuB mimics. Several exhibit limited 

reactivity or form different Cu-active species, but examples involving stabilised superoxo 

species exhibits enhanced reactivity.284 This is thought to arise due to coordination with a 

thioether, which imitates the methionine ligand, producing what is thought to be the first 

real biomimetic of the PHM CuB site. This is an important step in furthering the 

understanding of other potential copper intermediates thought to be involved in PHM C-H 

activation.284-286
 

Interestingly, sequence analysis of the Shipworm protein (S-PHM) against a variety of PHM 

homologues from various organisms predicts presence of only the C-terminal domain (CuB). 

A previous study has looked at the two copper active sites using PHM mutants containing 

either deactivated CuA or CuB to gain independent measurements for the catalytic activity of 



 

335 
 

each site; the close proximity of the copper ions often causes overlap of spectral signals 

during analysis. It was noted that both mutants were devoid of catalytic activity.287 The 

presence of this single ‘copper monooxygenase domain’ in the Shipworm, which is similar to 

the oxygen binding CuB site, could therefore indicate a new protein with a different function. 

The shipworm could potentially utilise this ‘copper monooxygenase domain’ in the 

degradation of cellulosic material within its hindgut. 

This work aims express S-PHM homologues using an E. coli expression system. The majority 

of PHM studies use mammalian cell lines. Production of soluble homologues may prove 

troublesome, as previous studies have observed only insoluble protein expression when 

using E. coli.288 Several molecular cloning strategies and expression systems shall therefore 

be employed with the aims of finding a suitable system.  

A1.3 Aims 

Three PHM homologues from different organisms were chosen based on their size and 

similarity to Shipworm PHM (S-PHM); Sorangium cellulosum, a soil dwelling gram negative 

bacteria; Crassostrea gigas, a Pacific Oyster and Nasonia vitirpennis, a type of wasp. These 

three S-PHM homologues shall be expressed in E. coli through a variety of molecular cloning 

strategies. Once a suitable expression system is found, characterisation and analysis of the S-

PHM homologues will ensue. 
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S.cellulosum  

 

Blue – Residues 179-294 N-Terminal Domain 

Green – Residues 310 to 454 C-Terminal Domain 

C.gigas 

 

Blue – Residues 18-83 N-Terminal Domain 

Green – Residues 109 to 254 C-Terminal Domain 

N.vitripennis 

 

Blue – Residues 38-86 N-Terminal Domain 

Green – Residues 102 to 245 C-Terminal Domain 

Figure 145 Three homologues of Shipworm PHM, showing expected copper monooxygenase 
domains as classified in BLAST searches113 
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A1.4 Methods 

A1.4.1 Shipworm PHM Homologues 

Plasmids purchased from Genscript of PHM homologues from Sorangium cellulosum, 

Crassostrea gigas and Nasonia vitripennis were transformed into Top10 cells and grown in 

LB Agar containing the appropriate antibiotic at 37 °C overnight. Fresh LB (5 ml plus 

Kanamycin 30 mg mL-1 or Ampicillin 100 mg mL-1) was inoculated with individual colonies 

and grown at 37 °C, 180 rpm, overnight. Cultures were centrifuged and plasmids extracted 

using the Q1 Aprep Spin Miniprep kit. Plasmids were then transformed into Bl21* 

competent cells and grown in LB Agar containing either Kanamycin or Ampicillin. Liquid 

cultures were subcultured and OD monitored during growth at 37 °C, 180 rpm. At OD600, 

uninduced samples were taken and cultures cooled to 16 °C before inoculation with IPTG (1 

mM). Conditions for the expression tests are shown in table 3. Soluble and insoluble protein 

was extracted using Bugbuster cell lysis solution of 1 mL culture samples. Samples were 

mixed with SDS loading dye and analysed by SDS PAGE (12%, 50 mins, 200 mV). All gels were 

stained with Magic dye. 
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Table 27 Summary of construct expression conditions 

Construct 

Cell 

Strain 

Growth 

Temp. 

(°C) 

IPTG 

(mM) 

Expression 

Temp. 

(°C) 

Expression Time and other 
information 

Lysis Solution 

CgPHM, 

NvPHM, ScPHM 

BL21* 37 1 16 18 Bugbuster 

CgPHM, 

NvPHM, ScPHM 

BL21* 37 1 16 18 Tris (pH8), 

Imidazole (30 

mM), NaCl (0-

750 mM) 

CgPHM, 

NvPHM, ScPHM 

T7 

SHuffle 

37 1 16 18 Bugbuster 

NvPHM TUNER 37 1 16 18 Bugbuster 

CgPHM, 

NvPHM, ScPHM 

BL21* 37 1 16 1.5-18 
Cultures centrifuged after 1.5 

and 3 hr and pellets 
resuspended in LB containing 
chloroamphenicol and grown 

further at 28 °C 

Bugbuster 

ScPHM, CgPHM Bl21* 37 1, 0.5, 

0.1 

16 18 Bugbuster 

ScPHM, CgPHM Bl21* 37 1 30 18 Bugbuster 

ScPHM,CgPHM Bl21* 37 1 37 18 Bugbuster 

ScPHM, CgPHM Bl21* 37 0.5 16 18, Cells harvested at OD = 0.4 Bugbuster 

CgPHM, NvPHM BL21* 37 0.1 10 5 Bugbuster 

CgPHM LEMO 37 1 16 18 
Cultures were tested for 

expression at 30 °C using an 
increasing concentration of L-
rhamnose (0-0.25,0.5,1 mM) 

and a set concentration of IPTG 
(400 µM). 

Bugbuster 

 

 

A1.4.2 Production of other PHM Constructs 

Eight truncated variants were designed and specific primers procured. CgPHM, NvPHM and 

ScPHM were made through various PCR reaction and subsequently re-circulised using the 

Gibson Assembly master mix (in a 1:1 reaction, 50 °C, 15 minutes). Plasmids were 

transformed into NEW ENGLAND BIOLABS 5-Alpha competent cells and prepped colonies 

sequenced (GATC, Sanger sequencing). Correctly sequenced plasmids were used to 

inoculated BL21* competent cells. Expression tests were carried out under standard 

expression conditions and by using a low temperature expression test (10 °C, 0.1 mM IPTG, 

5 hr). 
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Inserts for CgPHM and NvPHM variants were incorporated into the Champion SUMO pET 

vector using New England Biolabs Hifi Assembly and colonies prepped and sequenced 

(GATC, Sanger sequencing). Expression tests on CgPHM SUMO, CgPHM 79 SUMO, NvPHM 

65 SUMO and NvPHM 103 SUMO were performed under three different conditions in Bl21*: 

37 °C, 1 mM IPTG, 16 °C; 37 °C, 0.5 mM IPTG, 16 °C; 37 °C, 1 mM IPTG, 37 °C. SUMO 

CgPHMO was also tested in T7 Shuffle. A larger scale purificiation of Cg PHM SUMO was 

attempted using Ni affinity chromatography. Cell pellets were resuspended in buffer 

containing 20 mM Tris (pH 8), 500 mM NaCl, 30 mM imidazole, 1 mM DTT and 5% glycerol, 

but nothing was observed eluting from the column under high imidazole concentrations. 

A construct for expression in the periplasm was created using NEW ENGLAND BIOLABS HiFi 

method by inserting NvPHM into a pET11a vector containing a pelB leader peptide and 

transformed into BL21* competent cells. Expression was tested as normal (37 °C, 1 mM 

IPTG, 16 °C). 

A1.4.3 On-Column Refolding of Cg PHM SUMO 

E. coli containing plasmids of CgPHM-SUMO were grown as usual (37°C, induction with IPTG, 

incubation overnight at 16°C), harvested and the pellet resuspended in buffer 1 (30 ml, 20 

mM Tris (pH 8), 500 mM NaCl, 30 mM imidazole). The suspension was sonicated and lysed 

cells centrifuged at 15 g. The supernatant was discarded and pellet resuspended in buffer 2 

(20 ml, 20 mM Tris (pH 8), 500 mM NaCl, 30 mM imidazole, 1% Triton X-100). The sample 

was sonicated further and pelleted by centrifugation. The supernatant was again 

discard and the pellet resupended in buffer 3 (20 ml, 20 mM Tris (pH 8), 500 mM 

NaCl, 30 mM imidazole, 8 M Urea) and left stiring at room temperature for 20 

minutes until fully dissolved. The sample was loaded on a pre-equilibrated Ni HisTrap FF 

Crude column before a gradient of buffer 3 to buffer 1 was applied. Elution with buffer 4 (20 

mM Tris (pH 8), 500 mM NaCl, 500 mM imidazole) saw no protein elution peaks. In an 

attempt to improve protein recovery, several alterations were made to the procedure;Pellet 

was left stiring in buffer 2 for 1hr before centrifugation; Buffer 3 was changed to include 

only 4 M Urea and the pellet left stiring for 2 hrs in this solution. This was also centrifuged 

and the supernatant only, loaded onto a Ni HisTrap FF Crude column; the concentration of 

urea was reduced from 4 M to 0 M over an hour and elution with imidazole over 30 minutes. 

However, none of the changes resulted in protein binding or eluting from the column. 
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A1.4.4 Buffer Screening of Cg PHM SUMO 

Cells were grown as usual, harvested and the pellet frozen. Pellet was resupended in the 

resuspension buffer before being separated into 30, 1 ml aliquots. These were then 

centrifuged and each pellet resuspended in the different buffers as quoted by Lindwall.289 

Suspensions were loaded onto a 24 well plate and sonicated (60 sec – pulse 1 s ec, off 1 sec) 

Lysed cells were centrifuged and the supernatant removed to a clean tube. The insoluble 

material was resuspended in the same buffers and each fraction mixed with SDS loading dye. 

Samples were analysed by SDS PAGE. Nine samples were then analysed by Western Blott. 

Large scale purification of one of the buffer conditions (100 mM Tris, pH 7.6, 10% Glycerol) 

was done a few times without replicable results. Nothing significant was observed eluting 

during Ni affinity chromatrography. 
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A1.5 Results 

A1.5.1 Expression of bacterial and eukaryotic S-PHM 

homologues  

Native S. cellulosum PHM (ScPHM), C. gigas PHM (CgPHM), N. vitirpennis PHM (NvPHM) 

proteins produced no soluble expression in the BL21*, T7 SHuffle or TUNER strains of E. Coli. 

Different conditions such as temperature, IPTG concentrations, culture growth levels and 

buffer conditions were explored but none were favourable, Figure 146. All three proteins 

expressed well in the insoluble fraction of purification in the majority of conditions. However 

the BL21* strain exhibited the highest levels of insoluble expression. 

 

Figure 146 SDS PAGE analysis of expression tests of S-PHM homologues under different 
conditions. All lead to insoluble expression. 
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A1.5.2 Bioinformatic anaylsis of Hydrophobicity 

To access whether the insolubiliy of CgPHM was due to a high level of hydrophobic surface 

residues, bioinfomatical analysis was performed, Figure 147. A web tool was used to 

produce a Kyle-Doolittle Scale or hydrophobicity plot. The plots shows no high degree of 

hydrophobic surface residues as observed by the lack of positive peaks. 

 

Figure 147 Kyle-Doolittle plot of hydrophobicity . Scores above zero relate to hydrophobic 
regions. Produced using an online tool at 
http://www.vivo.colostate.edu/molkit/hydropathy/index.html. 

 

A1.5.3 Expression of truncated S-PHM homologues in E. coli 

Protein sequence alignments with S-PHM and its suggested domain boundaries were used 

to determine potential truncation positions for the PHM homologues, Figure 148. Sequence 

alignments with the S-PHM and each homologue yielded several possible truncations based 

around the N and C-terminal domains. Three truncations were designed See Table 1. First, 

the amino acid sequence prior to the predicted N-terminus was removed. Second, the whole 

N-terminal domain was removed, leaving only the predicted C-terminal domain. Third, 

alignments with S-PHM saw an optimum alignment starting position, any sequence prior to 

this was removed. Table 28 shows the expected protein weights upon completion of the 

described mutations. 

http://www.vivo.colostate.edu/molkit/hydropathy/index.html.
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Figure 148 Sequence alignment of Shipworm PHM, N.vitripennis PHM and C.gigas PHM using Clustal 
Omega. Residues highlighted in green show high sequence similarity. Yellow highlight and bold underline 
is the position of optimum sequence alignment as identified by BLAST for each alignment pair. 

 

 

Shipworm ENNLDRTVYIGSTQNDEMCNFY MMYYTDGDEIMPNSYCFSQGPPSYYWVDDRKVNHY-LQ 

N.vitripennis KSERDKWTYVGTTNNDEMCNFY LMYYVTDDEPLYDKFCFSMGPPRYYWRKDGLINIPDSE 

C.gigas KNDESRTIQIGATQNDEMCNFY IMYFVDGTRTAVNHNCFTAGPPYYYWDNSPLKHKMNLK 

:.: .: :*:*:********:**:. . : **: *** *** .. . : 

Shipworm  --------------------------------- MEV-LLFVVLCIGV -------- SLAAPSGEVKDVS 

N.vitripennis -METKK--VFDLFLYNAWSIIYAWARDAPALILPDGVGFKVGKGSLLKYLVLQVHYAHID 

C.gigas MSHTTEEYSTAGVCGSGSQIVYAWAMDAPSLTLPKDVGFKVGGDSDIKYLVLQVHYKNVD 

:. * : :*. . . . . .:. 

ITMTVTNKPQKRSAGVYLMGTGGQIGPHTVTYMETACPYNLDFPVHP 

ITLHITKQPLTKLAGVYVLGTGGGIPPNSIENMESSCKISENKTLYP 

C.gigas NFLPPKNEKDSSGVTLLTTSTPMPRS 

* *.**:*: *. * : ****::**** * *.:: **::* : ::* 

AGVYLLGTGGSIPPKSVEYMETACELREDIVMHP 

* * : * . * : * :  * : * . : * *  * : :  : *  * : * :  *  . * * * * * *  .  *  :  * *  * . * * * * *  

Shipworm NMPDSVSLVPGEKKPMKQTAE--SGLYQGDDDSAYDKDNFFDIKGADMNTNLQNFDAFEL 

N.vitripennis ASTL* 

C.gigas DAPQTASLIPDKNVYLKISSPSHPGISQKD---------------VTLDENL---QDRRL 

Shipworm DKLFEYFRRRGPRDYREDAYY---- 

C.gigas ARLLDYLNN----AYGDPDYYPPL* 

Shipworm TFLPPTNGHDSSG 

N.vitripennis QFKDG--STDDSG 

FAFRTHAHSLGKVTSGYRIRNGQWTEIGRQTPQKPQMFYNSTTPGMLIESGDTLVARCTM 

FAYRVHTHSLGKVVSGYIIKNNEWIELGKRDPLTPQMFYNINYNGT-ITYGDRLAARCTM 

FAFRTHAHTHGEVTAGYRIRDGKWTEIGRMSPHKPQMFYNVTSPGIEVRQGDILAARCTM 

Shipworm 

N.vitripennis 

C.gigas 
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Figure 149 Diagram showing truncation positions relative to the N-terminal and C-terminal 
domains and to the best alignment against S-PHM. Numbers indicate amino acids. 

Table 28 Expected protein weights in KDa after truncations. 

Protein Weight 

K/da 

Protein Weight 

K/da 

Protein Weight 

 K/da 

C.gigas 36.06 N.vitripennis 29.45 S.cellulosum 48.95 

C.gigas 110 26.81 N.vitripennis 65 22.22 S.cellulosum 180 35.27 

C.gigas 79 30.06 N.vitripennis 39 27.57 S.cellulosum 311 21.36 

  N.vitripennis 103 20.6 S.cellulosum 296 22.85 
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Expression test results on the truncated proteins were varied. ScPHM constructs showed 

neither soluble nor insoluble expression in BL21*. The truncated versions of CgPHM and 

NvPHM however retained their insoluble expression, Figure 150. 

 

Figure 150 SDS PAGE showing soluble and insoluble fractions of the truncated constructs for 
CgPHM and NvPHM. A high degree of insoluble expression in BL21* under standard expression 
conditions is observed (growth at 37°C, induction with 1 mM IPTG and expression at 16°C). 

Handa et al, successfully expressed the catalytic core of human PHM in E. coli by coupling a 

thioredoxin fusion system with low temperature (10 °C) and low IPTG concentration (0.1 

mM conditions).41 Expression tests on CgPHM and NvPHM constructs in different cell 

strains, with and without truncations were subjected to the same low temperature 

expression conditions. Cells were harvested after 5 hours but the only difference resulted in 

the amount of insoluble expression observed. These truncated S-PHM homologues lack a 

fusion system which can often improve protein folding and solubility. This may have helped 

achieve the notoriously difficult soluble protein expression of PHM by Handa. 
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Figure 151 SDS PAGE of soluble and insoluble fractions of CgPHM SUMO and CgPHM 79 SUMO 
under three different expression conditions. A) Growth at 37°C, induction with 1 mM IPTG and 
expression at 16°C. B) Growth at 37°C, induction with 0.1 mM IPTG and expression at 37°C. C) ) 
Growth at 37°C, induction with 0.5 mM IPTG and expression at 16°C. 

A fusion system is required that can be easily removed, leaving behind an active form of 

PHM. Thioredoxin can be removed but will leave left over sequence prior to the start of 

PHM. Addition of a SUMO tag may improve solubility, protein folding and allow efficient 

removal of non-native protein sequence. Figure 151 shows the SDS PAGE results of 

expression tests for CgPHM SUMO and CgPHM 79 SUMO. The difference in weight observed 

between the two constructs can be clearly seen on the gel as well as the occurrence of only 

strong insoluble expression. The same result was obtained for NvPHM 65 SUMO and NvPHM 

103 SUMO. A larger scale purificiation of CgPHM SUMO was attempted using Ni affinity 

chromatography but nothing was observed eluting from the column. 

A1.5.4 Lemo21(DE3) and T7 SHuffle cells 

CgPHM was transformed into Lemo21(DE3) competent E. coli tuneable expression cells 

which have been shown to increase soluble protein production. Addition of small amounts 

of L-rhamnose controls expression of the target gene by encouraging the cells to produce 

lyzsoyme, an inhibitor of T7 RNA polymerase. Control using L-rhamnose did not improve 

soluble expression. A consistant expression level was observed for the insoluble protein 

despite addition of L-rhamnose suggesting the insolubility of the protein may naturally 

limit its expression. CgPHM SUMO was transformed into T7 SHuffle competent E. coli cells 

and tested for expression using an increasing concentration of IPTG (0.05, 0.1 ,1 mM) . The 
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S-PHM constructs do contain disulfide bonds which should be favoured within the reducing 

environment of T7 SHuffle cells however, only insoluble expression was observed. 

A1.5.5 Periplasmic Expression 

A periplasmic construct for NvPHM in plasmid pET11a using a pelB signal peptide was 

designed. Expression was tested using standard conditions but neither insoluble or soluble 

protein was observed at the expected weight. 

A1.5.6 On- Column Refolding of CgPHM SUMO 

Purification of insoluble proteins can sometimes be achieved through a process of refolding. 

The insoluble protein is unfolded under denaturing conditions such as a high concentration 

of urea. These conditions are gradually reversed in the hope that the protein will correctly 

fold. On-column refolding utilises a protein’s His tag and reduces the need for excessive 

amounts of buffer normally required during dialysis, Figure 152. The denatured protein can 

still bind to the column due to the sequential repetition of histidine residues. The high 

concentration of urea is gradually removed. In principle the bound protein can refold during 

the process and be eluted from the column using an increasing concentration of imidazole. 

42 

 

Figure 152 Simple schematic explaining on-column refolding 

Some success has been observed through the use of this method. However its use of 

proteins with no known function makes the method harder due to the lack of any available 

assay to test for successful refolding. One such recent example is a hypothetical protein 

found in the genome of S.degradans purified using this method. The authors prepositioned 

that this protein, with an N-terminal CBM similar to a CBM 2 from T.turnerae and a C-

terminal domain with no observed similarity to any known carbohydrate active proteins may 

be of novel function. The protein was successfully purified using the on-column refolding 
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mechanism and a structured determined. However, assessment of function with regard to 

polysaccharide degradation produced no conclusive results and the function of the protein 

remains unknown. Hence, in principle refolding can produce soluble protein. However if the 

function is unknown there will be no known assay to assess whether the protein has 

refolded correctly, producing active protein. 

On-column refolding of CgPHM SUMO was attempted. It was thought that if soluble protein 

could be ilsolated and the SUMO tag cleaved off successfully through specific recognition of 

the C-terminal tertiary structure by the corresponding protease, then there may be a good 

chance of the protein refolding correctly. Unfortunately, the assay was not able to be 

investigated as the refolding stage was not successful. Some soluble protein was observed 

during suspension in a strong detergent containing buffer but unfortunately the protein, 

once denatured with urea failed to bind to the column. The His tag was present, as observed 

in the sequencing data during the cloning stage. Despite this the protein was only observed 

in the column flow through as shown in Figure 153. 

KDa 

97 

66 

45 

31 

21 

 

Figure 153  SDS PAGE of samples taken from the attempted on-column refolding of CgPHM 
SUMO. Lane1: Marker. Lane 2: reference sample taken from an insoluble fraction during a 
previous expression test. Lane 3: After cell lysis. Lane 4: Supernatant collected from re-
suspension in 1% Triton X100 buffer: Lane 5: Ni Column load after being denatured in 8M 
Urea. Lane 6: Column flow through. 

 

The use of detergent in the refolding protocol did form a small amount of soluble 

protein. It is possible that this relates to the faint band observed the last lane of the SDS 

PAGE. However, the use of strong detergents such as Triton X100 is not ideal for 

techniques further down the line. As such it was decided that a relatively large buffer 

screen containing 30 different buffer conditions would be tested.289
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A1.5.7 Buffer Screening for CgPHM SUMO 

A buffer screening protocol involving 30 buffers, as described by Lindwall et al, was tested. 

43 Small amounts of potentially soluble protein was observed and analysed further by 

western blot as shown in Figure 18. An antibody with specific binding towards his tags was 

used to evaluate the presence of soluble protein in the supernatant fractions of each 

buffer screen. Large scale purification of one of these conditions (100 mM Tris, pH 7.6, 

10% Glycerol) failed to produce any eluted, purified protein in replicable amounts. This 

lead to the conclusion that the protein is intrinsically misfolded and the His tag is 

potentially buried within the structure, making it inaccessible. 

 

Figure 154 Western Blot of 9 buffer conditions producing small amounts of soluble protein as 
shown by the top bands at approximately 47 kDa. 

A1.6 Conclusion 

Expression of S-PHM homologues has failed to produce soluble protein, despite testing 

under various different conditions. Truncations, addition of a SUMO tag and periplasmic 

expression has thus far not aided solubility. Insoluble protein expression was however quite 

high in the majority of cases. Refolding under denaturing conditions also failed due to 

insufficient protein binding to the Ni column. Soluble protein was observed during buffer 

screening but the small amounts were not successfully scaled up during larger scale 

purification. 
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Appendix 2:  

Methodology in  

Theory  

A2.1 Abstract 

In this work, several different experimental methods have been used to probe enzyme 

function and to analyse the structure of the 6 different target proteins. As such this 

Appendix presents information the reader may find helpful prior to reading the main results 

Chapters. Topics include cloning  methods, affinity chromatography, thermal shift analysis 

(TSA), thin layer chromatography (TLC), matrix assisted laser desorption-time of flight mass 

spectrometry (MALDI-TOF-MS), high performance anion exchange chromatography with 

pulsed amperometric dection (HPAEC-PAD), 3, 5-dinitrosalicyclic acid (DNSA) reducing sugar 

assay, protein crystallisation and x-ray structure determination and EPR.  
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A2.2 Cloning  

The polymerase chain reaction (PCR) is a technique used to produce many copies 

(amplification) of a target DNA sequence. Amplified plasmids for expression of a target 

protein generally consist of two types, the individual gene sequence for the protein of 

interest, and a vector DNA backbone. Separate PCRs are carried out to produce large 

amounts of vector DNA and target gene DNA (also called a DNA insert), which when 

annealed together through overlapping base pair ends (sticky ends), form plasmids which 

can be taken up by bacterial cells during the process of transformation.  Conditions during a 

PCR experiment rely on changes in termpature (thermal cycling) between several specific 

temperatures which cause the DNA to behave in a certain manor. At high temperature, 94 

°C, double stranded DNA is known to melt, or in other words the DNA double helix becomes 

separated. The temperature is then lowered to a temperature suitable for a certain length 

oligonucleotide (a primer) to bind to the single stranded DNA; temperature is dependent on 

the length of the primer and on its G/C base content and is between 50-70 °C. A primer is 

designed to bind to a specific portion of the DNA, this is typically used when designing 

expression constructs, to target certain regions of a gene or vector. Primers consist of a set 

of bases that are complimentary to the target gene base sequence and are always used in 

pairs. The first primer binds in the ‘forward’ direction where DNA polymerase works from 5’ 

to 3’. The forward primer is simple to design as it is merely the complimentary sequence to 

the N-terminal end of the target gene’s coding strand (sense DNA strand). The second 

primer, known as the reserve also requires DNA polymerase to work from the 5’ to 3’ 

direction, meaning that this second primer must be designed in ‘reverse’. The reserve 

primer is complementary to the C-terminus, but the oligosaccharide must be designed to be 

antiparallel. This allows DNA polymerase to work along from the reverse primer as if it were 

the same sense as a coding DNA strand.  Once the primers have annealed to their individual 

complimentary DNA sequence, on both separated DNA strands, the temperature is 

increased to 72 °C. A higher temperature allows a DNA polymerase to work efficiently and 

recognise the newly formed double stranded DNA segments produced by primer annealing. 

The activity of DNA polymerase is initiated by it’s own binding to the double stranded 

segments, causing it to process along the two template single stranded DNA strands, adding 

complimentary free nucleotides in a process known as extenstion. Eventually, two 

completely new double stranded DNA fragments are produced. The PCR machine cycler 

then begins the thermal cycle again, melting the newly formed DNA fragments apart. There 
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are now four single stranded fragments to which the primers can anneal to. After annealing 

and extention, the number of fragments will double. Continuation of thermal cycling means 

the number of DNA fragemtns will increase exponentially, until millions of double stranded 

DNA fragments are formed.  

To make a full circular plasmid, the primers can be designed so that they have overhangs – 

sections at the start or end of the primer that do not anneal to the DNA sequence present in 

the PCR, but are instead complimentary to a second DNA fragment not used in the PCR. In 

order to expose the overhanging primers as single stranded DNA regions once again, an 

exonuclease can be used which removes up to 15 bases from either the 5’ or 3’ end of the 

sequence dependent on type. Once overhangs (also called sticky ends) have been formed, 

the annealing can take place between a target protein sequence and its intended vector 

backbone, by overlap of the two complimentary single stranded DNA overhangs. Any gaps 

are filled in by DNA polymerase before a ligase enzyme seals the nicks in the DNA backbone. 

A circular plasmid is formed if both ends of the insert and vector sequence are designs to 

join together.  

A2.3 Affinity Chromatography 

Protein production relies heavily on the use of affinity chromatography. If a gene construct 

expresses well in the chosen host system, cells can be grown to over express the target 

protein. Once harvested, the target protein is subjected to a variable series of 

chromatography steps to ensure that the final product is pure. Analysis using impure protein 

may lead to erroneous results due to contamination or degradation which can hinder 

progress on understanding the function of the target. One typical method used by 

researchers, is to use a gene construct containing a tag – a region of the protein that is able 

to interact with the solid phase of a specific affinity chromatography column. In this work, 

GHs were designed to contained be purified using Ni affinity chromatography, whereas the 

final LPMO construct was purified using streptavidin affinity chromatography. Ni affinity 

chromatography relies on columns packed with a matrix of agarose beads, attached to 

which are coordinated Ni ions. This technique is often called immobilised metal affinity 

chromatography, as the metal (which can be changed to other divalent metals such as 

cobalt) is held within the resin and the sample is flowed through the column. Metal 

chelatation to histidine residues was a known to occur in aqueous solutions and had been 

tipped as a method for protein fractionation the 1970’s.290  in 1987 Hochuli et al designed a 
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matrix system that is now extensively used in the preparation of biological molecules, were 

insoluble agarose beads are linked with nitrilotriacetic acid (NTA), which coordinates to a Ni 

ion through three oxygen atoms whilst the two remaining coordination sites are reversibly 

taken up by water.291 A year later, Hochuli et al presented the first purification of a protein 

engineered to contain 6 consecutive histidine residues, a tag which interacted with this new 

NTA-Ni bound resin.292 During the design stage of a gene construct it is now commonplace 

to incorporate such a tag at the N or C-terminal end of the protein sequence. The histidine 

side chain has a high binding affinity for Ni and is able to displace the water ligands around 

the NTA-Ni coordination site. The consecutive histidine repeats give a high likelihood of the 

protein becoming trapped within the column as the histidine residues interact with the 

immobilised Ni ion. Other non-tagged proteins and small molecule impurities will flow 

through the column with little interaction. During the chromatography procedure, one can 

use absorbance at 280 nm to monitor the amount of protein eluting from the column and 

once this reaches a baseline level during loading of the sample, it can be assumed that only 

the target protein (and potential other contaminants if they contain regions of surface 

histidine residues) remains within the column matrix. To collect the purified tagged protein, 

the column is washed with imidazole at either a specific concentration (if the preparation 

has been carried out previously) or using an increasing gradient. At a certain imidazole 

concentration that is very specific for the target protein, the histidine tag will be displaced 

from its coordination with the Ni ions in favour of the imidazole molecules, which have a 

greater binding affinity.293 

 

Figure 155 Ni affinity chromatography using agarose beads linked with nitrilotriacetic acid 
(NTA). A single Ni coordination site can interact with two histidine residues.294 
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Streptavidin is a robust protein from Streptomyces avidinii known to exhibit extremely high 

affinity for a small molecule known as biotin (also known as vitamin B7). Purification 

strategies that use columns containing specifically engineered streptavidin (Strep-Tactin) use 

the same principle, in that the target protein contains a tag able to interact with the column 

matrix. In this case, the tag is known as a strep tag and consists of the specific amino acid 

sequence: Trp-Ser-His-Pro-Gln-Phe-Glu-Lys. The strep tag protein remains bound to the 

Strep-Tactin column whilst other contaminants are removed. The tagged protein is displaced 

with desthiobiotin, a derivative of biotin which has a strong binding affinity for the Strep-

Tactin. The column is washed with a low concentration of desthiobiotin which elutes the 

protein typically with very high peak resolution.295-296 

 

Figure 156 Size exclusion chromatography showing a diagram of the agarose bead resin 
containing small pores in which small impurities move through.294 

Affinity chromatography often preludes size exclusion chromatography, where the latter 

often used to ‘polish’ the purity of the final sample. Size exclusion chromatography uses a 

matrix containing a preparation of agarose beads known as Sepharose. The beads contain 

pores in which molecules can move into which efficiently causes size separation as 

molecules of different sizes interact with the pores to different extents. Smaller molecules 

are more prone to interaction with the bead pores and thus take longer to diffuse through 

the column matrix.  Larger molecules are quick to proceed through the column as they 

bypass the pores and move between the packed beads. Size exclusion chromatography will 

often produce high separation resolution and is an excellent method to remove 
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contaminants or degradation products that have been retained during previous 

chromatography steps.297 

A2.4 Thermal Shift Analysis 

The primary amino acid sequence of a protein defines its secondary structure, producing α-

helices, β-sheets and loop regions, which in turn define its tertiary structure (the overall 

shape). Proteins require a well defined structure to be able to carry out very specific 

functions. Proteins also evolve to work in a specific environment and any changes away from 

the preferred environmental conditions may affect the stability and homogeneity of the 

protein; the point at which the defined structure begins to turn towards disorder. 

Environmental changes in temperature, pH, salt concentration, and buffer conditions can 

cause alterations in the stability of the protein. In a discussion on the ‘induced fit theory’ of 

enzymatic action, Koshland notes that the “flexible nature of portions, if not all, of the 

protein chain is adduced from many sources, and these changes can be caused by small 

molecules, charged or uncharged”.298 The ‘ligand-induced conformational stabilisation’ of 

proteins by various chemical agents, such as substrates, co-factors, inhibitors, metal ions 

and other proteins, is a well known and an experimentally observed occurrence.299   

Koshland goes on to postulate the importance of the precise orientation of the amino acids 

involved in the catalysis of a reaction and how, upon binding the correct substrate, the 

residues will move into their optimum catalytic position. Small movements in the position of 

a catalytic acid or base will affect the coordination of other residues or disrupt the hydrogen 

bonding network of water normally found within a binding pocket; this is commonly 

observed when one tries to design protein-mutants to assess the importance of particular 

residues, where changes in one residue can cause a protein miss fold or disrupt function 

Protein stability can move in three ‘directions’; improvement, tolerance or disruption. A 

positive shift in protein stability improves the temperature range in which a protein normally 

remains stable and more often than not, active form. A negative change in the stability of a 

protein is usually in response to unfavourable conditions such as high temperatures, 

changes in pH or non-specific binding events. Certain protein are more able to tolerate 

changes in environment that other, for example, proteins evolved to work in specifically 

difficult living environments such as hydrothermal vents.    

The thermal shift assay relies on the concept of protein disorder and as the name suggests, 

uses changes in temperature to denature a protein.  This is a simple and cost effective 
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method of protein analysis, with the experiment being carried out in a standard qPCR 

machine. SYPRO orange is a fluorophore that is quenched in water, but is able to fluoresce 

when binding occurs to a hydrophobic surface such as an aromatic side chain.300 SYPRO 

orange, is mixed with a protein and the fluorescence of the dye monitored, as  this parallels 

the stability of the protein as the temperature is increased. The hydrophobic nature of 

aromatic amino acid side chains mean they are typically held buried within a proteins 

structure, away from the solvent assessable surface. As such, introducing SYPRO orange to a 

protein in a preferable set of conditions will yield a low level of background fluorescence 

when tested. Changing the conditions away from the optimal will result in a negative effect 

on protein stability, leading towards the exposure of aromatic side chains normally buried 

within the protein structure as it denatures.   

 

Figure 157 Representation of a thermal shift experiment where curve A is ‘apo’ protein and 
curve B is protein with a ligand. The curve shows the change in protein state as the temperature 
increases the protein denatures, allowing the interaction of the dye molecule with aromatic 
residues Causing fluorescence. The protein melting temperature is the midpoint of the 
sigmoidal curve and can be mathematically calculated.  

Normally, a protein is first tested for its ‘apo’ melting temperature (TM), this gives an 

excellent indication of its inherent stability and environmental working preference. For 

instance, a protein produced by bacteria living within hydrothermal vents will display a 

drastically different thermal profile to an enzyme produced by an organism living in the 

arctic tundra.  To cover the wide range of potential thermal activity, the protein is mixed 

with the dye and the temperature is increased in incremental amounts from 20°C to 91° in 

increments of 1 °C over 71 cycles. During this time the fluorescence of the dye is monitored 

(usually in a qPRC machine) at the wavelengths for excitation and emission, 490 nm and 580 
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nm, respectively. All proteins will denature with increasing temperature, but the 

temperature at which they start to denature is specific for individual proteins. As the 

temperature starts to increase, the amount of fluorescence will move away from the base 

line. As unfolding begins more aromatic residues become exposed, increasing the 

fluorescence. Once the protein is completely denatured and all tertiary structure lost, the 

level of fluorescence will plateau (and/or drop due to protein aggregation). In an ideal 

experiment, in which a protein at low temperature is completely folded with no hydrophobic 

residues exposed, a classic sigmoidal curve can be plotted as fluorescence against 

temperature. The midpoint of the sigmoidal curve is defined as the apparent protein melting 

temperature.301 A non-ideal result is observed when there is a lack of the classic sigmoidal 

shape; for example, there may instead be a straight line with a decreasing gradient, 

indicating the protein is already in an unfolded state and aggregation is starting (and 

possibly an indication of insufficient storage conditions) or there may be a high fluorescence 

baseline, due to surface exposed hydrophobic residues or an interaction of the dye with the 

buffer or any additives being tested, Figure 158, for generic examples.301 Careful 

consideration is needed in non-ideal experiments and analysis can continue even if curves 

become complex; for example, proteins have been known to display multiple melting 

events. If one can pinpoint the start of a melting curve despite a high background signal, the 

curve can still be analysed by applying a fitting procedure such as the Boltzmann model, 

Figure 158, curve B. The key is carrying out all the necessary controls to determine why 

there is a move away from the idea shape; principally controls focusing on whether the 

buffer or ligand affects the fluorescent signal. 
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Figure 158 Representation of three typically observed curve types during TSA experiments. 
Curve A represents the ideal sigmoidal shape, in which there is little background fluorescence at 
the start at the experiment, peaking as the protein unfolds, followed by a plateau. Curve B 
represents an experiment where there is a significant background fluorescence before the 
protein begins unfolding. Curve C shows no increase in fluorescence with temperature, 
indicating that the protein of interest is already in an unfolded state.  

Once the melting temperature of the ‘apo’ protein has been defined, alterations can be 

made to see how the protein tolerates changes in conditions. Experiments such as this are 

important in finding out the optimal working conditions for a protein of interest. Industrial 

enzymes are normally famed for their ability to work at certain temperatures. One excellent 

example is the use of biological washing powders – the enzymes are more efficient at 30 °C. 

Creating industrial enzyme cocktails for biomass degradation requires efficiency of all the 

component enzymes. There is little point in producing an enzyme for this type of work, if 

when combined with the typical enzymatic mixture, it is unable to work efficiently in the 

pre-set conditions.  Information gained during these experiments can ascertain whether a 

new protein could work in the same conditions as others and as such whether it is worth 

investing both time and cost producing it.  

The use of thermal shift assay experiments in this work has mostly centred on the 

identification of protein-substrate interactions. Introduction of a substrate to a protein can 

lead to a change in protein melting temperature if a binding event occurs. Binding of a 

substrate within an active site is generally favourable; otherwise this would not lead towards 

a protein successfully carrying out its intended function. A change in protein melting 

temperature is considered significant if there is a shift of 1 °C in either a positive or negative 

direction away from the melting temperature of the ‘apo’ protein and this is consistent with 

experiment repetition.  However, the assay is not able to discriminate between the changes 

in melting temperature which can occur from specific and non-specific binding events. 



 

359 
 

Therefore, the technique can often produce false positive results. Despite this, in the 

majority of cases, thermal shift assays can be extremely helpful in identifying potential 

substrates for an enzyme with an as of yet uncharacterised function.  

A2.5 Thin Layer Chromatography 

Thin layer chromatography is an analytical technique capable of separating out the 

components of a mixture and in this work has been used to identify the reaction products of 

the enzymatic hydrolysis of polysaccharides.  

 

Figure 159 Diagram showing general set up of a TLC experiment. The stationary phase plate is 
placed in a tank that has been pre-equilibrated with the mobile phase, meaning the air within 
the tank is saturated with solvent vapour. Samples spotted onto the plate are above the level of 
the mobile phase, and solvent moves up the plate over time. On the right is an example of a 
typical plate after visualisation, where three samples have moved at different rates through the 
stationary phase as carried by the mobile phase. This is related to the properties of the 
components and in the case of this work is more often than not due to size. The green spot 
represents a small carbohydrate molecule, whereas the orange spot is a larger carbohydrate 
that has not travelled far up the plate.  

The principles of TLC are not dissimilar to many other forms of chromatography used within 

protein production or other analytic techniques. A typical experimental set up is shown in 

Figure 159, where a plate, coated in what is known as the stationary phase (often alumina) is 

placed in a tank containing a solvent mixture, the mobile phase. The diffusion of the solvent 

up the plate carries the components of the sample, however, the rates at which they are 

carried depends on the properties of the specific component. For the analysis of 

carbohydrates, the most important factor is size. The plate is either coated with silica gel or 

alumina, where the exposed surface has a layer of hydroxyl groups, creating a polar 

environment. Larger oligosaccharides have a higher adsorption affinity for the plate surface 
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as they have more functional groups capable of forming hydrogen bonds with the OH groups 

on the stationary phase surface. As such a larger oligosaccharide will not move very far up 

the plate, whereas a smaller single sugar unit will move a lot further, providing good 

separation between the two components. Separation of components also depends on their 

solubility in the mobile phase. Careful consideration is required in the first instance to 

ensure the correct mobile phase is used.  Carbohydrates are polar molecules and as such 

can be run on the TLC in their native form without alteration, but they do require a polar 

solvent for efficient dissolution. All TLC experiments in this work were carried out using a 

solvent system containing butanol, acetic acid and water in a ratio of 2:1:1. Plate set up 

requires precision; in the analysis of oligosaccharide products it is often the case that the 

product concentration is not very high, so multiple applications of a sample to the same spot 

is often required. The samples must also be spotted on a straight line, and the plate placed 

into the solvent completely parallel to the solvent surface to ensure there is no skewed 

movement of solvent up the plate. The samples must be spotted so they sit above the level 

of the solvent within the tank, otherwise dissolution into the mobile phase of the sample 

from the plate will most likely occur. Despite these requirements, TLC is a quick and simple 

method of checking the activity of a protein on a substrate.302 Staining of the plate is 

required in order to visualise the product bands that have moved up the plate. For 

carbohydrate analysis, a mixture of sulphuric acid, ethanol and orcinol is sprayed onto the 

plate, before it is dried of excess solution and heated to around 100 °C. Once developed, 

bands often take on a purple hue and can be photographed before the colour fades. 
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A2.6 MALDI-TOF Mass spectrometry 

Matrix assisted laser desorption/ionisation time of flight mass spectrometry is the ideal 

method for carbohydrate analysis. MALDI-TOF-MS is a ‘soft ionisation’ technique and is able 

to analyse complex mixtures of carbohydrates at both low and high degrees of 

polymerisation with little effect on the analyte structure. Combination of a sample with a 

matrix is thought to improve desorption of non-volatile compounds, such as carbohydrates, 

when the spot is irradiated by the laser and enhance the observable signal of the 

components with little compromise on the signal to noise ratio.303 

 

Figure 160 Diagram of MALDI-TOF mass spectrometry. Sample is held within a dried matrix 
spot and upon irradiation with a laser, vaporisation of matrix and sample occurs, producing 
ions. The ions are charged (positive) and then separated by their mass to charge ratio (m/z) 
during their progress through the time of flight chamber, before being detected. 

 Carbohydrate samples are mixed with the matrix, often 2,5-Dihydroxybenzoic acid (DHB), 

spotted onto a specialised plate and left to dry. Solvent evaporation causes the matrix to 

crystallise, trapping the carbohydrate molecules in place. DHB normally crystallises from the 

edges of the plate spot, where long needle shaped crystals can be seen pointing towards to 

the centre of the spot.  The efficiency of matrix crystallisation can often leave regions of the 

spot with little signal from the desired sample. Issues can occur in which crystallisation does 

not occur and the spot is classed as ‘glassy’, in which the laser simply bounces off. Often is 

the case that the amount of products within a sample is unknown and changing the ratio of 

matrix to sample can alleviate issues with poor crystallisation; it is worth testing both low 

and high ratios of matrix to sample to obtain the best spectra.  The user can also move the 

laser around the spot to target matrix crystals by eye, and collect spectra in localised regions 

of the spot. Considering these limitations and biases caused by human interpretation of the 

spot, the signal strength observed for a component can vary significantly from spectra to 
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spectra. However, if several spectra are taken, averaging produces a spectrum that provides 

a good indication on the ratio of molecules in the sample. The major ion peak is consistently 

[M + Na]+, unless there is an abundance of other metals such as potassium. Little 

fragmentation of carbohydrate structures is observed and the spectra can analyse a wide 

range of molecular weights. Generally speaking, there is a loss of sensitivity below 1 kDa and 

at high molecular weights, above 3000 kDa. MALDI-TOF-MS is generally very tolerant of 

contaminating agents, and does not suffer from the same issues as other MS techniques in 

the use of buffers. Hence, a sample can be taken straight from an enzymatic reaction with 

little need to prepare the sample in any way. In a review by Harvey, he notes an excellent 

example of this; a study was carried out in which a shop bought gummy bear was simply 

dissolved in water and filtered, before being mixed with matrix, led to the spectra showing 

maltose oligomers up to 35 units in length! Whilst the power of MALDI-TOF-MS is self 

evident in the analysis of carbohydrates, it does have its limitations. For example, 

carbohydrates of a certain mass can be due to several different isomeric configurations and 

peaks can often indicate a molecular weight, but not the configuration. It can be hard to 

identify these isomer patterns from MALDI-TOF-MS alone.304  However, this is a small caveat 

and MALDI-TOF has been used throughout this work in the analysis of soluble reaction 

products resulting from enzymatic degradation of many different polysaccharides, providing 

key evidence for substrate specificity of a target enzyme.  
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A2.7 High-performance anion-exchange 

chromatography with pulsed amperometric 

detection  

High-performance anion-exchange chromatography with pulsed amperometric detection 

(HPAEC-PAD) has been used in this work to analyse the kinetic efficiency and range of 

hydrolysis products formed during enzymatic substrate degradation. This versatile technique 

can be used to separate out the different sugar products obtained from an enzymatic 

reaction, and assist in the identification of the observed products through comparison with 

external standards. The HPAEC-PAD system is simple in overview; samples are injected onto 

a specific anion-exchange column (CARBOPAC), flowed over the column using a buffer 

gradient and finally detected electrochemically upon exiting the column. In much the same 

way as TLC, the rate of movement of particular sugars through the column matrix is 

dependent on several factors; such as size, structure and conformation.  The running buffer 

(or mobile phase) contains sodium hydroxide at a high pH which causes the sugars in the 

sample to become oxyanions. The oxyanion-sugars are then able to bind to the column by 

interacting with the polystyrene-divinylbenzene beads (or stationary phase). Once a sample 

has been injected onto the column, a sodium acetate gradient is applied as the mobile 

phase. Movement of the sugars through the stationary phase matrix occurs over time and is 

controlled by the increasing gradient of acetate ions. Weakly interacting sugars are easily 

outcompeted by a low concentration of acetate ions, whereas larger sugars will remain 

bound for a longer period of time before elution.  Subtle differences in carbohydrate 

structure and differences in pKa can change the relative affinity of the sugars for the column 

stationary phase. As such, even extremely similar sugars, or those moieties with the same 

molecular weight will have different retention times, as shown in Figure 161.   

After separation on the column, the sugars are detected using pulsed amperometric 

electrochemistry. The carbohydrates released from the column are immediately oxidised on 

a gold electrode using a series of potentials known as a wave-form, Figure 162. A 

carbohydrate will be oxidised by the electrode at potential E1, after which there is a slight 

delay before the current is measure; the current is integrated over the time delay which 

yields charge, hence the signal response is measured in coulombs. Very sharp narrow peaks 

are often observed as the sugar is detected and is due to the quick transition between 

potentials. The series of wave-form potentials used during detection also acts as a self 
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cleaning mechanism of the electrode surface. This extremely quick method of self 

maintenance ensures smooth detection during separation.305-306 

 

Figure 161 HPAEC-PAD spectra showing the retention times of five xylooligosaccharides. The 
component sugars were injected into the anion-exchange column as a combined mixture, and as 
size increases so does retention time of the sugar on the column. 

 

 

Figure 162 The waveform used during electrochemical detection of carbohydrates eluting from 
the anion-exchange column. Three potentials are used; binding and measurement of the 
carbohydrate occurs at E1, removal of the carbohydrate is performed at a more positive 
potential E2, and finally the surface is reset to a less positive potential, E3. 

HPAEC-PAD can be used to evaluate certain kinetic parameters of an enzyme reaction with a 

substrate. A general equation for an enzymatic reaction is shown below, where E is enzyme, 
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S is substrate, ES is the enzyme-substrate complex and P is the resulting product of the 

reaction.  

                                         

                

                       

In any reaction we only known the concentration values of E and S, but not the amount of ES 

present. However, we do know that the rate of the reaction, Vo is related to the 

concentration of ES through a rate constant known as kcat.   

             

(Equation 1) 

Where, kcat is the turnover number, or how many substrate molecules are converted into 

products by a single enzyme active site per second. Under steady state conditions, the rate 

of formation of the enzyme-substrate complex, k1 is equivalent to the rate of dissociation of 

the enzyme-substrate complex, k-1. As such we can describe the overall rate of reaction as 

follows; 

                           

(Equation 2) 

which rearranges to; 

         
  

  
      

    
 

(Equation 3) 

 The left hand term in equation 3 can be simplified as KM and is a ratio of how much free 

enzyme and substrate exists against those in a complex. It is therefore a measure of the 

substrate binding affinity for the enzyme active site. A high value of KM indicates that the 

substrate exhibits poor binding affinity for the enzyme active site (more free 

enzyme/substrate), whereas a lower value suggests good binding affinity (more enzyme-

substrate complex and a higher value of k1). As such,   
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(Equation 4)   

which rearranges to give a term for [ES];  

     
      

  
 

(Equation 5)  

The term for [ES] can be substituted into our original rate of reaction equation (equation 1) 

as follows; 

        
      

  
 

(Equation 6)  

 

The catalytic efficiency of an enzyme on a particular substrate is described by kcat/Km. Using 

HPAEC-PAD and a method known as substrate depletion kinetics, the value of kcat/Km for a 

particular enzyme/substrate combination can be calculated. The value of this rate term is 

always limited by the rate of formation of the enzyme-substrate complex and as such the 

highest value this can ever be is k1. Enzymatic hydrolysis is monitored overtime by evaluating 

the decrease in the peak area of the substrate as determined experimentally by HPAEC-PAD.  

Several initial runs may be required to find suitable concentrations of enzyme and substrate 

that yield usable linear results. The substrate concentration used in the evaluation of kcat/Km  

must be lower than the value of Km for the particular enzyme/substrate combination being 

tested; high amounts of substrate lead to saturation of enzyme binding pockets, even if the 

natural affinity of the substrate for the enzyme binding site is low, skewing the kinetic 

analysis of the results.  

To provide enough data (rate of change, compared with the detection response) reactions 

must be slow enough that only 80% of the substrate is hydrolysed within the time frame of 

the reaction.  Enzymatic hydrolysis reactions are set up containing a known concentration of 

substrate at the start of the reaction and aliquots removed at regular time intervals and 

enzyme inactivated. All samples taken from a reaction are mixed with a known 

concentration of an internal standard, commonly fucose. Fucose is a small sugar moiety and 

under specific experimental conditions, displays a quick retention time, meaning it is eluted 

first and does not interfere by overlapping with any other sugar peaks.  The depletion of 

substrate during the reaction over time can be related to kcat/Km through the following 

equation; 
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where     
    

  
     , t = time and S0 and St are the substrate peak area at time 0 

and t, respectively. Before each set of HPAEC-PAD reaction aliquots are analysed, a 

fucose external standard is tested to check the performance of the machine. Due to 

the mechanistic limitations of the instrument, signal loss over the course of several 

runs can be a commonly encountered issue. To combat this, normalising the signal 

of the peak area of interest to both an internal and external standard (run at the 

start of the HPAEC-PAD analysis) removes the ambiguity created by any loss of signal 

during the subsequent runs.  The peak areas observed in the HPAEC-PAD traces can 

be normalised against the fucose internal standard and external standard as follows;

  

                              

 
                   

                                  

                                     

The normalised peak areas can then be manipulated into the form of ln(S0/St) and 

plotted against time. A positive gradient is produced as the change in substrate peak 

area will always increase from 0;  at time point 0, S0/St is equal to 1, and ln(1) is equal 

to 0. From the above equation, plotting ln(SO/St) against time gives a gradient of k.  

The value of kcat/Km (M-1 min-1) is then simply determined by dividing the gradient by 

the enzyme concentration.307-309 

A2.8 DNSA reducing sugar assay 

The activity of an enzyme on polysaccharides can be investigated using the 3, 5-

dinitrosalicyclic acid (DNSA) reducing sugar assay. The DNSA assays enables quantification of 

enzyme activity on insoluble substrates. For every chain of a polysaccharide, there are two 

chain ends, but due to the directional nature of glycosidic linkages there can only be one 

reducing end per chain. The reducing sugar is classed as the moiety at the end of a chain in 

which the anomeric carbon in the C1 position is free to ring open, exposing an aldehyde 

functional group, Figure 163. It is this aldehyde at the anomeric carbon that reacts with the 

DNSA reagent; upon heating, the 3-nitro group on DNSA is reduced to an amino group, 

whilst the aldehyde on the sugar is oxidised to carboxylic acid, Figure 164 
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Figure 163 Schematic showing the spontaneous ring opening mechanism of chain end xylose, 
where R represents the xylan chain. Ring opening and closing in solution is shown by action of 
an acid and a base, H2O and OH-, respectively. The xylose chain end is also depicted in the insert 
box as a Fischer projection.  

 

Figure 164 Schematic of DNSA reaction with reducing end xylose, where R is representative of 
the rest of the polysaccharide (xylan). Upon heating, the 3-nitro group is reduced to an amino 
group, whilst the xylose aldehyde is oxidised to a carboxylic acid. This is accompanied by a 
colour change of the DNSA agent from yellow to brown.  

 The DNSA agent reacts with the reducing ends of polysaccharide chains in a one to one 

ratio, leading to a colour change of the DNSA from yellow to brown, measurable at 575 nm. 

As such, monitoring a hydrolysis reaction with the DNSA assay allows the rate of enzymatic 

activity to be tracked by spectrophotometry. Aliquots removed from the enzymatic 

hydrolysis reaction are mixed with DNSA agent (1 % (w/v) DNSA, 0.2 % (v/v) phenol, 1 % 

(w/v) NaOH, 0.002 % glucose, 0.05 % (w/v) NaSO3) at set time points. Phenol can be used to 

improve the intensity of the colour whilst NaSO3 is used to stabilise the colour. Mixing the 

removed reaction aliquots with the DNSA agent is efficient in stopping the enzyme reaction 
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due to the drastic change in pH (alkaline), which usually caused the enzyme to degrade. 

Development of colour is caused by heating the reaction aliquots at 90 °C. A standard curve 

of a single sugar substrate, such as glucose, is used to quantify the released reducing sugar 

chain ends. The polysaccharide is added as well create a baseline of the amount of reducing 

sugar present in the substrate – as each chain end will account for a potential reaction with 

the DNSA agent. The standard curves were used to quantify the amount of reducing sugar 

present to the measured absorbance at 575 nm of each reaction aliquot.  

   
                    

           
 

(Equation 7)   

where 

    
    
  

           

Equation 7 is simply a rearrangement of equation 6 presented earlier and thus can be 

written as follows, 

   
                    

           
    

  
   

      
   

  
 

where the amount of reducing sugar over time is a measure of the rate of reaction, V0. 

Reaction rates are obtained from linear regression of the calculated amount of reducing 

sugar against time. Plotting the observed gradients against the substrate concentration at 

which the reaction was carried out, gives kcat. The gradient divided by the enzyme 

concentration gives kcat/Km (mg-1 ml min-1) for the reaction of the enzyme on a particular 

polysaccharide substrate (which is often measured in mg ml-1 due to the insoluble nature of 

many substrates).310 
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A2.9 3D structure determination 

The 3D structure of a protein is a vital tool in understanding the complex nature of proteins, 

and can provide many biochemical insights into the function and activity of a protein. The 3D 

structure of a protein can be determined using X-ray crystallography if a protein can be 

successfully crystallised. Crystallisation of a protein means formation of repeating structure, 

in which there is a common unit cell. The unit cell varies for each protein but always 

contains at least one copy of the protein within it. A crystal is made up of a repeating 

network of unit cells, which pack together in a mostly uniform way – although natural 

inefficiencies in the packing of protein molecules do occur. It is the repetition of the unit cell 

that allows the structure of proteins to be elucidated using X-ray crystallography.  

Crystallisation of proteins in this work was carried out using vapour diffusion. The plates 

containing either 96 wells for screening, or 24 wells for optimisation can be set up using 

various conditions. Commercial crystallisation screens are normally used in the first attempts 

of protein crystallisation, and there are wide range of screens to choose from. Individual 

screens contain 96 different, or varying conditions containing mixtures of buffers, 

precipitants, additives at different concentrations and pH. Other factors such as protein 

concentration (starting concentrations of stock protein work best above 10 mg-1 mL) and 

temperature of plate incubation can be altered to assist crystal growth. Commercial screens 

generally rely on using a sparse matrix approach, whereby the conditions contained within 

the screen are those conditions which commonly led to successful crystallisation of other 

proteins. Several screens can be used at once, in a sort of ‘shot gun’ method which subjects 

the protein to a large number of possible conditions at the same time – however, this can be 

an expensive method and as such particular screens may be favoured for first attempts. If 

hits are found, the crystals grown in the screening plates are often too small for practical use 

due to the low volumes used during plate preparation (drop volumes are typically 0.3 nL) 

but sometimes crystals are large enough that can be removed and used directly for 

crystallography. Similarly small crystals can be taken and used for seed stocks, in which the 

crystals are crushed and diluted to provide new drops, containing larger amounts of protein 

concentration, nucleation points from which new crystals can grow. Optimisation of a hit 

condition is normally required for production of crystals for diffraction experiments. This 

involves setting up 24 well plates using the hit condition, with graduated changes across a 

couple of the conditions variables; for example, the pH of the buffer could be changes so 

that there are a selection of wells with pH above and below that of the original condition; 
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the concentration of other components such as precipitant can also be varied in small 

increments around that of the original value. These small changes can often yield more 

favourable conditions for crystal growth. Optimisation plates also provide larger crystals due 

to their use of larger drop volumes. In the hanging drop method, as used throughout this 

thesis, the well is filled with 1 mL of ‘mother liquor’ and suspended above is a drop held 

onto a glass slide by surface tension.  The drop contains a mixture of the mother liquor and 

the protein sample, typically in a 1:1 ratio. This drop ratio can be changed to increase or 

decrease the protein concentration relative to the mother liquor. Once the well is sealed, 

vapour diffusion occurs overtime whereby water leaves the suspended drop as vapour as 

equilibrium forms; the concentration of components in the mother liquor is lower than that 

of the well solution due to the addition of protein sample. Vapour diffusion causes the 

protein sample in the drop to become supersaturated, a condition which is often required 

for crystallisation.  311 

Once a protein crystal has reached an appropriate size and it can be removed from the drop 

and tested for diffraction. Crystals may need to be broken apart before they can be 

removed, especially for certain crystal morphologies such as needles, which tend to cluster 

together. Crystals should always be collected as individuals, as groups of overlapping crystals 

will provide difficult data sets. Crystal removal is carried out using very small nylon loops. 

The loops can be chosen based on the crystal size and are small enough that they can be 

used to scoop up an individual crystal. The crystal is maintained in the loop by surface 

tension, and suspension in the loop with the mother liquor keeps a crystal from drying out 

or dissolving. Loops containing the crystals must be frozen quickly in liquid nitrogen; if the 

well condition doesn’t already contain what is known as a cryo-protectant, the loop must 

first be dipped into a solution of mother liquor containing an appropriate additive such as 

glycerol or ethylene glycol. Whilst flash freezing in liquid nitrogen vitrifies the water 

contained in the loop/crystal, ice crystals can still be formed when the process is carried out 

by inefficient hands. Adding a cryo-protectant can limit formation of ice crystals around the 

protein crystal, and thus provide better diffraction; ice crystals often interfere with collected 

diffraction patterns of proteins, as observed by dark ring structures on the diffraction 

pattern. These ice rings can hinder structure solution by masking reflections from the 

protein atoms.  

Crystals are then tested for diffraction using either a home x-ray source, or through 

beamline time at facilities such as the Diamond Light Source. The loops containing the 

crystals are mounted in the path of an x-ray beam and often kept under a flow of liquid 
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nitrogen to keep them from thawing. X-rays pass through the crystal and diffract based on 

their interaction with the positions of the atoms within the protein. A diffraction pattern, as 

shown in Figure 165 consists of a series of spots, or reflections. The position of the spots is 

related to the unit cell within the crystal, whilst the intensity of the reflections related to the 

distribution of atoms within the unit cell. As such, each reflection contains information 

about all the atoms within a protein. A single diffraction image taken from one angel of the 

protein is one of many thousands taken during an experiment. Crystals are rotated 180 °C 

with respect to the X-ray beam as this allows all possible reflections to be collected – missing 

reflections means information about atoms within the protein is lost and can lead to 

incomplete data sets. The need to take so many diffractions images mean crystals can be 

exposed to X-rays for a relatively long timeframe, in which they can undergo damage and 

loose resolution (data quality). X-rays can damage proteins by dislodging electrons, which 

can start chain reactions which degrades the protein crystal.  

A data set therefore contains a large amount of information relating to the intensities of 

individual reflections. Inidividual reflections are unique, but can be measured multiple times 

during data collection which leads to higher redundancy within the data set. The greater the 

redundancy, the more information there is from which the intensities from all the images be 

averaged, giving a single intensity value for each reflection.  
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Figure 165 Diagram depicting X-ray crystallography of protein crystals. 
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A2.10 EPR 

 

Figure 166 Energy level splitting due to the Zeeman effect of electron spin moments in an 
applied magnetic field with strength B0. Image taken from www.wikicommons.org  

Electron paramagnetic resonance is a spectroscopy technique used for studying materials 

containing unpaired electrons, such a copper complexes. The experiment is able to analyse 

the magnetic environment of an unpaired electron, which is affected by the environment of 

the electron; i.e. coordinating ligands to a metal occur through overlap in molecular orbitals, 

which affects the magnetic moment of an unpaired electron. EPR excites the spin of 

electrons, causing a splitting effect as shown in Figure 164; whereby the magnetic moment 

of an electron pairs parallel or antiparallel to the applied external magnetic field. An 

unpaired electron can move between these two levels, by adsorption or emission of a 

photon. The experiment subjects a sample to a fixed microwave frequency, as the magnetic 

field (B0) is scanned. The microwaves energy can induce transitions in the unpaired electron 

between the two spin states shown in Figure 166 and as the magnetic field is scanned, 

different transitions occur. The equation, Δ =   0=ℎ  describes the change in energy 

between the two spin states. Β is a constant and the magnitude of the magnetic field is 

known, as well as the frequency of the microwave energy. Thus the g-factor can be 

calculated and is it this that is often compared. The g-factor gives information about the 

amount of spin-orbit coupling to the unpaired electron, through overlap of molecular 

orbitals. Changes in the environment (such as different ligands) can affect the spin-orbit 

coupling and alter the value of g. The g values described in this thesis were denoted with 

directionality in terms of x,y and z. These frames are axes from which the effect of different 

electronic orbitals (D for copper) constitute to the value of g. A second parameter, known as 

the A tensor represents coupling of the unpaired electron with atomic nuclei. The g value 

and A tensor are coupled in an antiparallel fashion, whereby as g goes up, the A value goes 

down. Plots of g values against the A tensor yields what is known as a Peisach-Blumberg 

http://www.wikicommons.org/
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plot, from which it can be seen that splitting into groups appears for copper containing 

complexes; known as type 1 and type 2 copper for example. 216, 312 
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Appendix 3:  

Protein Sequences, Vector 

Sequences and Plasmid Maps 

A3.1 Protein Sequences 

All GH sequences start with CC to move insert into correct reading frame in pET28a. TAA is 
added as stop codon at the end, which translates as a *. 

A3.1.1 TtGH5_2 

Codon optimised sequence:  

CCATGGGCAGCAGCCATCATCATCATCATCACAGCAGCGGCCTGGAAGTTCTGTTCCAGGGACCAGCAGATGT
GCCGCCGCTGACCGTTAGCGGTAACCAGGTGCTGAGCGGTGGCGAGGCGAAGAGCTTTGCGGGCAACAGCTT
CTTTTGGAGCAACACCGGTTGGGGCCAAGAGCGTTTTTATAACGCGGAAACCGTTCGTTGGCTGAAAGACGAT
TGGAACGCGACCATTGTTCGTGCGGCGATGGGTGTGGACTTCGATGGCAGCTACATCCCGGAGCACGAAGAC
GCGGATCCGGAGGGTAACGTTGCGCGTGTTCGTGCGCTGGTTGACGCGGCGATTGCGGAGGATATGTATGTG
ATCATTGACTTTCACACCCACCACGCGGAAGACTACCAGGCGGAGAGCATCGAATTCTTTGAGGAAATGGCGA
CCCTGTACGGTGGCTATGATAACGTGATCTACGAGATTTATAACGAACCGCTGCAAATTAGCTGGGACAACGTT
ATCAAGCCGTATGCGGAGAGCGTGATCGGTGCGATTCGTGCGATCGACCCGGATAACCTGATCATTGTTGGCA
CCCCGACCTGGAGCCAAGATGTGGATGCGGCGGCGCGTAACCCGATTACCAGCTACAGCAACATCGCGTATAC
CCTGCACTTTTATGCGGGTACCCACGGCAGCTGGCTGCGTGATAAAGCGCGTAACGCGATGAACAGCGGTATT
GCGCTGTTTGTTACCGAGTGGGGTACCGTGAACGCGGATGGTGATGGTGCGCCGGCGGTTAACGAAACCCAG
CAATGGATGGATTTCCTGAAGCAGAACAACATCAGCCACCTGAACTGGAGCGTTAGCGACAAACTGGAAGGTG
CGAGCATTGTGCAACCGGGTACCCCGATCAGCGGTTGGAACGCGAGCGACCTGACCGCGAGCGGTACCCTGG
TGAAGAACATTGTTAGCAACTGGGGTACCACCATCGGCTAA 

Protein sequence:  
M G S S H H H H H H S S G L E V L F Q G P A D V P P L T V S G N Q V L S G G E A K S F A G N S F F W S N T G W G Q E R F Y N A E T V R W L K 
D D W N A T I V R A A M G V D F D G S Y I P E H E D A D P E G N V A R V R A L V D A A I A E D M Y V I I D F H T H H A E D Y Q A E S I E F F E E 
M A T L Y G G Y D N V I Y E I Y N E P L Q I S W D N V I K P Y A E S V I G A I R A I D P D N L I I V G T P T W S Q D V D A A A R N P I T S Y S N I A Y T L 
H F Y A G T H G S W L R D K A R N A M N S G I A L F V T E W G T V N A D G D G A P A V N E T Q Q W M D F L K Q N N I S H L N W S V S D K L 
E G A S I V Q P G T P I S G W N A S D L T A S G T L V K N I V S N W G T T I G* 
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A3.1.2 TtGH5_4 

Codon optimised sequence:  
CCATGGGCAGCAGCCATCATCATCATCATCACAGCAGCGGCCTGGAAGTTCTGTTCCAGGGACCAGCAGACAT
GACCGGTATGGAGGCGGATGCGGTGACCCTGGCGAGCCGTATCAGCCTGGGTTGGAACATTGGCAACACCCT
GGAGGCGATCGGTGGCGAAACCGCGTGGGGTAACCCGATGATCACCAACCAGCTGATTGAGCTGGTGAAGCA
AAGCGGCTTCGACGCGATCCGTATTCCGGCGAGCTGGGATCAGTACGCGAACCAAACCACCGCGGAAATTGAC
GATGCGTGGCTGGCGCGTGTTAAAGACGTGGTTCAGCTGTGCATCGACAACGATATGCCGGTGGTTCTGAACA
TTCACTGGGATGGTGGCTGGCTGGAGAACAACATCACCCCGGAAATGCAGGCGGCGAACAACGCGAAGCAAC
GTGCGTTCTGGCAGCAAATTGCGACCGAGATGCGTGACTTCGATGGTCGTCTGATGTTTGCGAGCGCGAACGA
GCCGAACGTGGACAGCGCGGAACAGATGGCGGTTCTGATGAGCTACCACCAAACCTTTGTGGATGCGGTTCGT
GAAACCGGTGGCCGTAACGCGTACCGTGTGCTGGTTATCCAGGGCCCGAACACCGACATTGAGCGTACCTATG
AACTGATGAGCAGCATGCCGAGCGATACCGTGGCGGGTCGTCTGATGGCGGAAGTGCACTTCTACACCCCGTA
TCAGTTTACCCTGATGGGCGAAGACGCGGGTTGGGGCAACCAATTCTTTTATTGGGGTGCGGGTAACCACAGC
GCGACCGATACCGCGCACAACCCGACCTGGGGTGAGGAAAGCTTCGTGGACGACCTGTTCGCGATGATGCAG
AGCCAATTCGTTGACAACGGTATCCCGGTGGTTCTGGGCGAGTTTAGCGCGATGCGTCGTACCGACCAGCTGA
GCGGCGATAACCTGCAGCTGCACCTGCAAAGCCGTGCGTACTGGCACAAATATGTTACCCAAAGCGCGATCGA
ACACGGTCTGATGCCGTTTTATTGGGACGCGGGTGGCCTGAACAACCACAGCAGCGGCATTTTCGACCGTAAC
AGCAACACCGTGTTTGATACCCAGACCATGAACGCGCTGAACGACGGTGTTGATGCGGCGCAATAA 
 

Protein sequence: 
MGSSHHHHHHSSGLEVLFQGPADMTGMEADAVTLASRISLGWNIGNTLEAIGGETAWGNPMITNQLIELVKQS
GFDAIRIPASWDQYANQTTAEIDDAWLARVKDVVQLCIDNDMPVVLNIHWDGGWLENNITPEMQAANNAKQR
AFWQQIATEMRDFDGRLMFASANEPNVDSAEQMAVLMSYHQTFVDAVRETGGRNAYRVLVIQGPNTDIERTYE
LMSSMPSDTVAGRLMAEVHFYTPYQFTLMGEDAGWGNQFFYWGAGNHSATDTAHNPTWGEESFVDDLFAM
MQSQFVDNGIPVVLGEFSAMRRTDQLSGDNLQLHLQSRAYWHKYVTQSAIEHGLMPFYWDAGGLNNHSSGIFD
RNSNTVFDTQTMNALNDGVDAAQ* 

A3.1.3 TtGH5_un 

Codon optimised sequence:  
CCATGGGCAGCAGCCATCATCATCATCATCACAGCAGCGGCCTGGAAGTTCTGTTCCAGGGACCAGCAGGTCC
GCTGTTCCAGTTTCATCATGCGCAAGGTACCGCGATTGCGGACGAGAAGAACCAGCCGGTGTTCCTGCGTGGT
GTTAGCTTTGGCAACCGTGTGTGGGTTAACGACCGTATTCCGGTGACCCACCACAGCGCGGAAGATTACAGCC
GTGTGCGTGCGATGGGTATGAACCTGGTTCGTTTCTACCTGAACTATCAGACCCTGGAGCTGGATGCGGCGCC
GTTTGAATACCAGGCGGACGGTTGGCAATGGCTGGATACCAACATTGCGTGGGCGCGTGCGGCGGGCGTGTA
TCTGATTCTGAACGTGCACGTTCCGCAAGGTGGCTTCCAGAGCCAGGGTAACGGCCGTAAGCTGTGGCAGGAC
GTTGATCTGCAAAAACGTTTCATCGCGATGTGGCGTGCGATTGCGGAGCGTTACCGTGACGAACCGGTGGTTT
TTGGTTATGATCTGCTGAACGAGCCGGGCGTTACCCGTGCGAAACAGCAATGGCAGCGTCTGGCGCAACGTAC
CGTGGACGCGATCCGTCTGGTTGATAAGAAACACCCGATCATTGTGGAGCGTGTTAACAGCATTAACCGTCGTT
GGGAAAACGACGCGGATATGAACTTCGTGACCGTTGACGGTAACAACATCATTTACACCTTCCACAGCTATGCG
CCGTACTTTTATAGCCACCAGGGCATCCCGTGGGATGCGAGCATGAAGAACCGTGATGGTGGCGTGTGGCCG
GATCCGAGCCGTCAGCACACCCGTGCGTTTCTGGCGCGTACCATTGACCAATACCTGGCGTGGGGCAAGGCGC
ACAACGTTCCGCTGTACTTCGGCGAGTGGGGCACCTATAAAGCGAACTTTGAAGCGGACCGTGGTGGCCTGAA
CTATCTGCGTGATATGCTGAGCGTGCTGGAGGAACGTAAACTGACCAACACCTTCCACGTTTACCACGAGGAA
AGCTTTGGCATCTATCGTGGTGACGGTCCGCTGGATCCGGCGAACGTGAACCAACCGGTTATTGATATGTTTAC
CACCTACCTGAAGCCGAAACACAACGAAAGCTAA 
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Protein sequence: 

MGSSHHHHHHSSGLEVLFQGPAGPLFQFHHAQGTAIADEKNQPVFLRGVSFGNRVWVNDRIPVTHHSAEDYSRV
RAMGMNLVRFYLNYQTLELDAAPFEYQADGWQWLDTNIAWARAAGVYLILNVHVPQGGFQSQGNGRKLWQDV
DLQKRFIAMWRAIAERYRDEPVVFGYDLLNEPGVTRAKQQWQRLAQRTVDAIRLVDKKHPIIVERVNSINRRWEND
ADMNFVTVDGNNIIYTFHSYAPYFYSHQGIPWDASMKNRDGGVWPDPSRQHTRAFLARTIDQYLAWGKAHNVPL
YFGEWGTYKANFEADRGGLNYLRDMLSVLEERKLTNTFHVYHEESFGIYRGDGPLDPANVNQPVIDMFTTYLKPKH
NES* 

A3.1.4 TtGH12 

Codon optimised sequence:  
CCATGGGCAGCAGCCATCATCATCATCATCACAGCAGCGGCCTGGAAGTTCTGTTCCAGGGACCAGCAGCGAA
CACCGTTCTGAGCTGCGATGCGTTTGCGAGCCACCCGACCCCGATTGGTACCCTGGTGAACAACGTTTGGAAC
CAACAAGCGGCGGGCAAGGCGCGTTGGGAGCAGTGCCTGCTGCAACGTGATGGTCCGAACGGCCCGGAATA
CGGTTGGCGTTGGCGTTGGCCGGCGACCCCGCGTGTGGTTTTTGCGCAGCCGCAAATTACCCACGGCAACACC
CCGTGGACCAGCCACCCGACCCCGCAGAGCGGTTTTCCGATTCCGCTGACCGGTCTGGACCACCTGACCATTA
GCTATGCGGTGACCACCACCGGTGATGCGGATTTCAACCTGGCGACCACCTTTTGGCTGACCGACCTGGATCA
GGTGCCGCCGCAAGCGGACATCAACAGCATTCGTGCGGAGTTCATGGTTTGGAGCTATGCGAGCGATAACTTC
TTTAGCACCCCGGCGGGTCGTAAGCGTGCGACCGTTGAGATCAACGGCATTGAGTGGGAAGTGTGGGTTGAA
CGTCGTTGGCACGACACCAGCGGCACCAACGATAACCGTTGGATCTACATTGCGTTCCGTAGCACCAAAAACTA
CCTGGACATCACCTATAACGCGGCGGAGCTGGTGCACTATGCGCTGCAACGTGGTTTTCTGGACAGCGAATGG
AGCATCGCGGATATTGAGCTGGGCAACGAAGTTATGCGTGGTACCGGCGAAACCTGGGTGCACAAATTTCGTG
TTAGCACCCCGGCGCTGAACACCGATAACATTTAA 

 

Protein sequence:  
MGSSHHHHHHSSGLEVLFQGPAANTVLSCDAFASHPTPIGTLVNNVWNQQAAGKARWEQCLLQRDGPNGPEYG
WRWRWPATPRVVFAQPQITHGNTPWTSHPTPQSGFPIPLTGLDHLTISYAVTTTGDADFNLATTFWLTDLDQVPP
QADINSIRAEFMVWSYASDNFFSTPAGRKRATVEINGIEWEVWVERRWHDTSGTNDNRWIYIAFRSTKNYLDITYN
AAELVHYALQRGFLDSEWSIADIELGNEVMRGTGETWVHKFRVSTPALNTDNI* 

A3.1.5 TtGH8 

Codon optimised sequence:  
CCATGGGCAGCAGCCATCATCATCATCATCACAGCAGCGGCCTGGAAGTTCTGTTCCAGGGACCAGCAGCGGG
TGCGGTGGCGACCGGTGAATACCGTAACCTGTTCGCGGAGATTGGCAAGAGCGAAATCGACATTCAACGTAAA
ATCGATGAAGCGTTCCAGCACCTGTTTTATGGCGACGCGAAGGATGCGGCGGTTTACTATCAAGCGGGTGGCA
ACGAGAACGGTCCGCTGGCGTACGTGTATGACGTTAACAGCAACGATGTGCGTAGCGAGGGTATGAGCTACG
GCATGATGATTACCGTTCAAATGGACAAGAAAGCGGAATTTGATGCGATCTGGAACTGGGCGAAAACCTACAT
GTATCAAGACAGCCCGACCCACCCGGCGTTCGGTTATTTTGCGTGGAGCATGCGTCGTGATGGTGTGGCGAAC
GATGATATGCCGGCGCCGGATGGCGAGGAATACTTCGTTACCGCGCTGTATTTTGCGGCGGCGCGTTGGGGT
AACGGCGAGGGTATCTTCAACTACCAGCAAGAAGCGGATACCATTCTGAGCCGTATGCGTCACCGTCAAGTGA
TCACCGGTCCGACCAACCGTGGCGTTATGACCGCGACCAACCTGTTCCACCCGGAGGAAGCGCAAGTGCGTTT
TACCCCGGACATTAACAACGCGGACCACACCGATGCGAGCTACCACCTGCCGAGCTTTTATGAGATCTGGGCG
CGTGTTGCGCCGCAGGAAGATCGTGCGTTTTGGGCGAAGGCGGCGGATGTGAGCCGTGATTACTTTGCGAAG
GCGGCGCACCCGGTTACCGCGCTGACCCCGGACTATGGTAACTTCGATGGTACCCCGTGGGCGGCGAGCTGG
CGTCCGGAGAGCGTGGACTTTCGTTACGATGCGTGGCGTAGCGTTATGAACTGGAGCATGGACTATGCGTGGT
GGGGTAAAGATAGCGGTGCGCCGGCGCGTAGCGACAAACTGCTGGCGTTCTTTGAGACCCAAGAAGGTAAAA
TGAACCACCTGTACAGCCTGGACGGTAAGCCGCTGGGTGGCGGTCCGACCCTGGGTCTGATTAGCATGAACGC
GACCGCGGCGATGGCGGCGACCGACCCGCGTTGGCACAACTTCGTGGAAAAGCTGTGGCAGCAACAGCCGCC
GACCGGCCAGTACCGTTACTATGACGGCGTTCTGTATCTGATGGCGCTGCTGCACTGCGCGGGCGAGTACAAA
GCGTGGATCCCGGATGGCGAATAA 
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Protein sequence:  
MGSSHHHHHHSSGLEVLFQGPAAGAVATGEYRNLFAEIGKSEIDIQRKIDEAFQHLFYGDAKDAAVYYQAGGNENG
PLAYVYDVNSNDVRSEGMSYGMMITVQMDKKAEFDAIWNWAKTYMYQDSPTHPAFGYFAWSMRRDGVANDD
MPAPDGEEYFVTALYFAAARWGNGEGIFNYQQEADTILSRMRHRQVITGPTNRGVMTATNLFHPEEAQVRFTPDI
NNADHTDASYHLPSFYEIWARVAPQEDRAFWAKAADVSRDYFAKAAHPVTALTPDYGNFDGTPWAASWRPESVD
FRYDAWRSVMNWSMDYAWWGKDSGAPARSDKLLAFFETQEGKMNHLYSLDGKPLGGGPTLGLISMNATAAMA
ATDPRWHNFVEKLWQQQPPTGQYRYYDGVLYLMALLHCAGEYKAWIPDGE* 

A3.1.6 TtAA10  

Catalytic domain:  
CATGGCTATATTGAATCGCCGCCGTCCCGTCAGCAGCATTGTGGTGCCGAACAGAAACCGGATAACCCGAGC
AGCGCAAAATGTGATGAAGCATTTGCTAATTATCGTGCGGCCGGCGGTCAGAATAGTCATTGGTACAACTTCA
TGTCCGTGGTTGCGCATCACGAAGGCCGCAAAGTCGTGAAAGGTACCGAACACGTTTGCGGCTTTGATGGTG
AAACGTGGAACCCGGCTCCGTATGACACCCCGGCGAATTGGCCGGTCACGAGTTTTAACTCCGGCCAGCAAA
CCTTCGTGTGGGATATTAGCTATGGTCCGCATTTTTCTGACACCGAAGAACTGGTCTTCTACATCACGAAACCG
GGCTTTAGCTTCGATCCGACCCGTGAACTGACGTGGGCCGATTTTGAAGACCAACCGTTCTGCGATGAAAGCA
TTGTGCCGGGTGACTTTTCAACCAATTCGGCGGTTGAAGCCGATATGGCAAACTCTCATATTAATGTTACGTGT
AACGTCCCGAGCCGTTCTGGCCGCCACGTGATCTTCGCAGAATGGGGTCGCAATGAACATACCTACGAACGCT
TCTTCTCCTGTGTGGACGTGGACTTTGGT 
 
Protein sequence:  
H G Y I E S P P S R Q Q H C G A E Q K P D N P S S A K C D E A F A N Y R A A G G Q N S H W Y N F M S V V A H H E G R K V V K G T E H V C G 
F D G E T W N P A P Y D T P A N W P V T S F N S G Q Q T F V W D I S Y G P H F S D T E E L V F Y I T K P G F S F D P T R E L T W A D F E D Q P F 
C D E S I V P G D F S T N S A V E A D M A N S H I N V T C N V P S R S G R H V I F A E W G R N E H T Y E R F F S C V D V D F G 
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A3.2 Vector Sequences 

A3.2.1 pET11a 

TGGCGAATGGGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCT
AGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTC
CGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGC
CCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATA
AGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTTTACAATT
TCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAATTAATTCTT
AGAAAAACTCATCGAGCATCAAATGAAACTGCAATTTATTCATATCAGGATTATCAATACCATATTTTTGAAAAAGCCGTTTCTGTAATGAAGG
AGAAAACTCACCGAGGCAGTTCCATAGGATGGCAAGATCCTGGTATCGGTCTGCGATTCCGACTCGTCCAACATCAATACAACCTATTAATTT
CCCCTCGTCAAAAATAAGGTTATCAAGTGAGAAATCACCATGAGTGACGACTGAATCCGGTGAGAATGGCAAAAGTTTATGCATTTCTTTCCA
GACTTGTTCAACAGGCCAGCCATTACGCTCGTCATCAAAATCACTCGCATCAACCAAACCGTTATTCATTCGTGATTGCGCCTGAGCGAGACG
AAATACGCGATCGCTGTTAAAAGGACAATTACAAACAGGAATCGAATGCAACCGGCGCAGGAACACTGCCAGCGCATCAACAATATTTTCAC
CTGAATCAGGATATTCTTCTAATACCTGGAATGCTGTTTTCCCGGGGATCGCAGTGGTGAGTAACCATGCATCATCAGGAGTACGGATAAAA
TGCTTGATGGTCGGAAGAGGCATAAATTCCGTCAGCCAGTTTAGTCTGACCATCTCATCTGTAACATCATTGGCAACGCTACCTTTGCCATGT
TTCAGAAACAACTCTGGCGCATCGGGCTTCCCATACAATCGATAGATTGTCGCACCTGATTGCCCGACATTATCGCGAGCCCATTTATACCCA
TATAAATCAGCATCCATGTTGGAATTTAATCGCGGCCTAGAGCAAGACGTTTCCCGTTGAATATGGCTCATAACACCCCTTGTATTACTGTTTA
TGTAAGCAGACAGTTTTATTGTTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGA
TCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAG
CTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTC
AAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTG
GACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTAC
ACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGG
GTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGC
GTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCT
TTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAA
CGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCG
CATATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGTATACACTCCGCTATCGCTACGTGACTGGGTCATGGCTG
CGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGG
AGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGGCAGCTGCGGTAAAGCTCATCAGCGTGGTCGTGAAGCGATTCAC
AGATGTCTGCCTGTTCATCCGCGTCCAGCTCGTTGAGTTTCTCCAGAAGCGTTAATGTCTGGCTTCTGATAAAGCGGGCCATGTTAAGGGCG
GTTTTTTCCTGTTTGGTCACTGATGCCTCCGTGTAAGGGGGATTTCTGTTCATGGGGGTAATGATACCGATGAAACGAGAGAGGATGCTCAC
GATACGGGTTACTGATGATGAACATGCCCGGTTACTGGAACGTTGTGAGGGTAAACAACTGGCGGTATGGATGCGGCGGGACCAGAGAAA
AATCACTCAGGGTCAATGCCAGCGCTTCGTTAATACAGATGTAGGTGTTCCACAGGGTAGCCAGCAGCATCCTGCGATGCAGATCCGGAACA
TAATGGTGCAGGGCGCTGACTTCCGCGTTTCCAGACTTTACGAAACACGGAAACCGAAGACCATTCATGTTGTTGCTCAGGTCGCAGACGTT
TTGCAGCAGCAGTCGCTTCACGTTCGCTCGCGTATCGGTGATTCATTCTGCTAACCAGTAAGGCAACCCCGCCAGCCTAGCCGGGTCCTCAAC
GACAGGAGCACGATCATGCGCACCCGTGGGGCCGCCATGCCGGCGATAATGGCCTGCTTCTCGCCGAAACGTTTGGTGGCGGGACCAGTG
ACGAAGGCTTGAGCGAGGGCGTGCAAGATTCCGAATACCGCAAGCGACAGGCCGATCATCGTCGCGCTCCAGCGAAAGCGGTCCTCGCCG
AAAATGACCCAGAGCGCTGCCGGCACCTGTCCTACGAGTTGCATGATAAAGAAGACAGTCATAAGTGCGGCGACGATAGTCATGCCCCGCG
CCCACCGGAAGGAGCTGACTGGGTTGAAGGCTCTCAAGGGCATCGGTCGAGATCCCGGTGCCTAATGAGTGAGCTAACTTACATTAATTGC
GTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGT
ATTGGGCGCCAGGGTGGTTTTTCTTTTCACCAGTGAGACGGGCAACAGCTGATTGCCCTTCACCGCCTGGCCCTGAGAGAGTTGCAGCAAGC
GGTCCACGCTGGTTTGCCCCAGCAGGCGAAAATCCTGTTTGATGGTGGTTAACGGCGGGATATAACATGAGCTGTCTTCGGTATCGTCGTAT
CCCACTACCGAGATATCCGCACCAACGCGCAGCCCGGACTCGGTAATGGCGCGCATTGCGCCCAGCGCCATCTGATCGTTGGCAACCAGCAT
CGCAGTGGGAACGATGCCCTCATTCAGCATTTGCATGGTTTGTTGAAAACCGGACATGGCACTCCAGTCGCCTTCCCGTTCCGCTATCGGCTG
AATTTGATTGCGAGTGAGATATTTATGCCAGCCAGCCAGACGCAGACGCGCCGAGACAGAACTTAATGGGCCCGCTAACAGCGCGATTTGC
TGGTGACCCAATGCGACCAGATGCTCCACGCCCAGTCGCGTACCGTCTTCATGGGAGAAAATAATACTGTTGATGGGTGTCTGGTCAGAGAC
ATCAAGAAATAACGCCGGAACATTAGTGCAGGCAGCTTCCACAGCAATGGCATCCTGGTCATCCAGCGGATAGTTAATGATCAGCCCACTGA
CGCGTTGCGCGAGAAGATTGTGCACCGCCGCTTTACAGGCTTCGACGCCGCTTCGTTCTACCATCGACACCACCACGCTGGCACCCAGTTGA
TCGGCGCGAGATTTAATCGCCGCGACAATTTGCGACGGCGCGTGCAGGGCCAGACTGGAGGTGGCAACGCCAATCAGCAACGACTGTTTGC
CCGCCAGTTGTTGTGCCACGCGGTTGGGAATGTAATTCAGCTCCGCCATCGCCGCTTCCACTTTTTCCCGCGTTTTCGCAGAAACGTGGCTGG
CCTGGTTCACCACGCGGGAAACGGTCTGATAAGAGACACCGGCATACTCTGCGACATCGTATAACGTTACTGGTTTCACATTCACCACCCTGA
ATTGACTCTCTTCCGGGCGCTATCATGCCATACCGCGAAAGGTTTTGCGCCATTCGATGGTGTCCGGGATCTCGACGCTCTCCCTTATGCGAC
TCCTGCATTAGGAAGCAGCCCAGTAGTAGGTTGAGGCCGTTGAGCACCGCCGCCGCAAGGAATGGTGCATGCAAGGAGATGGCGCCCAAC
AGTCCCCCGGCCACGGGGCCTGCCACCATACCCACGCCGAAACAAGCGCTCATGAGCCCGAAGTGGCGAGCCCGATCTTCCCCATCGGTGA
TGTCGGCGATATAGGCGCCAGCAACCGCACCTGTGGCGCCGGTGATGCCGGCCACGATGCGTCCGGCGTAGAGGATCGAGATCTCGATCCC
GCGAAATTAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATAC
CATGGGCAGCAGCCATCATCATCATCATCACAGCAGCGGCCTGGTGCCGCGCGGCAGCCATATGGCTAGCATGACTGGTGGACAGCAAATG
GGTCGCGGATCCGAATTCGAGCTCCGTCGACAAGCTTGCGGCCGCACTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAA
GCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTT
GCTGAAAGGAGGAACTATATCCGGAT 
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A3.2.2 pNT-TrxT 

CTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACATATGCACCATCATCATCATCATTCTTCTGGTATGAGCGATAAAATTATTCACCT
GACTGACGACAGTTTTGACACGGATGTACTCAAAGCGGACGGGGCGATCCTCGTCGATTTCTGGGCAGAGTGGTGCGGTCCGTGCAAAATG
ATCGCCCCGATTCTGGATGAAATCGCTGACGAATATCAGGGCAAACTGACCGTTGCAAAACTGAACATCGATCAAAACCCTGGCACTGCGCC
GAAATATGGCATCCGTGGTATCCCGACTCTGCTGCTGTTCAAAAACGGTGAAGTGGCGGCAACCAAAGTGGGCGCACTGTCTAAAGGTCAG
TTGAAAGAGTTCCTCGACGCTAACCTGGCCGGTACCGAGAACTTGTACTTCCAATCCATGGAGACCGACGTCCACATATACCTGCCGTTCACT
ATTATTTAGTGAAATGAGATATTATGATATTTTCTGAATTGTGATTAAAAAGGCAACTTTATGCCCATGCAACAGAAACTATAAAAAATACAGA
GAATGAAAAGAAACAGATAGATTTTTTAGTTCTTTAGGCCCGTAGTCTGCAAATCCTTTTATGATTTTCTATCAAACAAAAGAGGAAAATAGA
CCAGTTGCAATCCAAACGAGAGTCTAATAGAATGAGGTCGAAAAGTAAATCGCGCGGGTTTGTTACTGATAAAGCAGGCAAGACCTAAAAT
GTGTAAAGGGCAAAGTGTATACTTTGGCGTCACCCCTTACATATTTTAGGTCTTTTTTTATTGTGCGTAACTAACTTGCCATCTTCAAACAGGA
GGGCTGGAAGAAGCAGACCGCTAACACAGTACATAAAAAAGGAGACATGAACGATGAACATCAAAAAGTTTGCAAAACAAGCAACAGTATT
AACCTTTACTACCGCACTGCTGGCAGGAGGCGCAACTCAAGCGTTTGCGAAAGAAACGAACCAAAAGCCATATAAGGAAACATACGGCATTT
CCCATATTACACGCCATGATATGCTGCAAATCCCTGAACAGCAAAAAAATGAAAAATATAAAGTTCCTGAGTTCGATTCGTCCACAATTAAAA
ATATCTCTTCTGCAAAAGGCCTGGACGTTTGGGACAGCTGGCCATTACAAAACACTGACGGCACTGTCGCAAACTATCACGGCTACCACATC
GTCTTTGCATTAGCCGGAGATCCTAAAAATGCGGATGACACATCGATTTACATGTTCTATCAAAAAGTCGGCGAAACTTCTATTGACAGCTGG
AAAAACGCTGGCCGCGTCTTTAAAGACAGCGACAAATTCGATGCAAATGATTCTATCCTAAAAGACCAAACACAAGAATGGTCAGGTTCAGC
CACATTTACATCTGACGGAAAAATCCGTTTATTCTACACTGATTTCTCCGGTAAACATTACGGCAAACAAACACTGACAACTGCACAAGTTAAC
GTATCAGCATCAGACAGCTCTTTGAACATCAACGGTGTAGAGGATTATAAATCAATCTTTGACGGTGACGGAAAAACGTATCAAAATGTACA
GCAGTTCATCGATGAAGGCAACTACAGCTCAGGCGACAACCATACGCTGAGAGATCCTCACTACGTAGAAGATAAAGGCCACAAATACTTAG
TATTTGAAGCAAACACTGGAACTGAAGATGGCTACCAAGGCGAAGAATCTTTATTTAACAAAGCATACTATGGCAAAAGCACATCATTCTTCC
GTCAAGAAAGTCAAAAACTTCTGCAAAGCGATAAAAAACGCACGGCTGAGTTAGCAAACGGCGCTCTCGGTATGATTGAGCTAAACGATGA
TTACACACTGAAAAAAGTGATGAAACCGCTGATTGCATCTAACACAGTAACAGATGAAATTGAACGCGCGAACGTCTTTAAAATGAACGGCA
AATGGTACCTGTTCACTGACTCCCGCGGATCAAAAATGACGATTGACGGCATTACGTCTAACGATATTTACATGCTTGGTTATGTTTCTAATTC
TTTAACTGGCCCATACAAGCCGCTGAACAAAACTGGCCTTGTGTTAAAAATGGATCTTGATCCTAACGATGTAACCTTTACTTACTCACACTTC
GCTGTACCTCAAGCGAAAGGAAACAATGTCGTGATTACAAGCTATATGACAAACAGAGGATTCTACGCAGACAAACAATCAACGTTTGCGCC
TAGCTTCCTGCTGAACATCAAAGGCAAGAAAACATCTGTTGTCAAAGACAGCATCCTTGAACAAGGACAATTAACAGTTAACAAATAAAAAC
GCAAAAGAAAATGCCGATATCCTATTGGCATTGACGGTCTCCAGTAAAGGTGGATACGGATCCGAATTCGAGCTCCGTCGACAAGCTTGCG
GCCGCACTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGC
AATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGATTGGCGAATGGGAC
GCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTT
TCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTA
CGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGA
GTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTGCCGA
TTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTTTACAATTTCAGGTGGCACTTT
TCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAATTAATTCTTAGAAAAACTCATC
GAGCATCAAATGAAACTGCAATTTATTCATATCAGGATTATCAATACCATATTTTTGAAAAAGCCGTTTCTGTAATGAAGGAGAAAACTCACC
GAGGCAGTTCCATAGGATGGCAAGATCCTGGTATCGGTCTGCGATTCCGACTCGTCCAACATCAATACAACCTATTAATTTCCCCTCGTCAAA
AATAAGGTTATCAAGTGAGAAATCACCATGAGTGACGACTGAATCCGGTGAGAATGGCAAAAGTTTATGCATTTCTTTCCAGACTTGTTCAAC
AGGCCAGCCATTACGCTCGTCATCAAAATCACTCGCATCAACCAAACCGTTATTCATTCGTGATTGCGCCTGAGCGAGACGAAATACGCGATC
GCTGTTAAAAGGACAATTACAAACAGGAATCGAATGCAACCGGCGCAGGAACACTGCCAGCGCATCAACAATATTTTCACCTGAATCAGGAT
ATTCTTCTAATACCTGGAATGCTGTTTTCCCGGGGATCGCAGTGGTGAGTAACCATGCATCATCAGGAGTACGGATAAAATGCTTGATGGTC
GGAAGAGGCATAAATTCCGTCAGCCAGTTTAGTCTGACCATCTCATCTGTAACATCATTGGCAACGCTACCTTTGCCATGTTTCAGAAACAAC
TCTGGCGCATCGGGCTTCCCATACAATCGATAGATTGTCGCACCTGATTGCCCGACATTATCGCGAGCCCATTTATACCCATATAAATCAGCA
TCCATGTTGGAATTTAATCGCGGCCTAGAGCAAGACGTTTCCCGTTGAATATGGCTCATAACACCCCTTGTATTACTGTTTATGTAAGCAGAC
AGTTTTATTGTTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGAT
CCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTT
TTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAG
CACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGAT
AGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGAT
ACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGA
GAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTG
ATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGT
TCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCA
GCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATATATGGTGCA
CTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGTATACACTCCGCTATCGCTACGTGACTGGGTCATGGCTGCGCCCCGACACCC
GCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTC
AGAGGTTTTCACCGTCATCACCGAAACGCGCGAGGCAGCTGCGGTAAAGCTCATCAGCGTGGTCGTGAAGCGATTCACAGATGTCTGCCTG
TTCATCCGCGTCCAGCTCGTTGAGTTTCTCCAGAAGCGTTAATGTCTGGCTTCTGATAAAGCGGGCCATGTTAAGGGCGGTTTTTTCCTGTTT
GGTCACTGATGCCTCCGTGTAAGGGGGATTTCTGTTCATGGGGGTAATGATACCGATGAAACGAGAGAGGATGCTCACGATACGGGTTACT
GATGATGAACATGCCCGGTTACTGGAACGTTGTGAGGGTAAACAACTGGCGGTATGGATGCGGCGGGACCAGAGAAAAATCACTCAGGGT
CAATGCCAGCGCTTCGTTAATACAGATGTAGGTGTTCCACAGGGTAGCCAGCAGCATCCTGCGATGCAGATCCGGAACATAATGGTGCAGG
GCGCTGACTTCCGCGTTTCCAGACTTTACGAAACACGGAAACCGAAGACCATTCATGTTGTTGCTCAGGTCGCAGACGTTTTGCAGCAGCAG
TCGCTTCACGTTCGCTCGCGTATCGGTGATTCATTCTGCTAACCAGTAAGGCAACCCCGCCAGCCTAGCCGGGTCCTCAACGACAGGAGCAC
GATCATGCGCACCCGTGGGGCCGCCATGCCGGCGATAATGGCCTGCTTCTCGCCGAAACGTTTGGTGGCGGGACCAGTGACGAAGGCTTGA
GCGAGGGCGTGCAAGATTCCGAATACCGCAAGCGACAGGCCGATCATCGTCGCGCTCCAGCGAAAGCGGTCCTCGCCGAAAATGACCCAG
AGCGCTGCCGGCACCTGTCCTACGAGTTGCATGATAAAGAAGACAGTCATAAGTGCGGCGACGATAGTCATGCCCCGCGCCCACCGGAAGG
AGCTGACTGGGTTGAAGGCTCTCAAGGGCATCGGTCGAGATCCCGGTGCCTAATGAGTGAGCTAACTTACATTAATTGCGTTGCGCTCACTG
CCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCCAGG
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GTGGTTTTTCTTTTCACCAGTGAGACGGGCAACAGCTGATTGCCCTTCACCGCCTGGCCCTGAGAGAGTTGCAGCAAGCGGTCCACGCTGGT
TTGCCCCAGCAGGCGAAAATCCTGTTTGATGGTGGTTAACGGCGGGATATAACATGAGCTGTCTTCGGTATCGTCGTATCCCACTACCGAGA
TATCCGCACCAACGCGCAGCCCGGACTCGGTAATGGCGCGCATTGCGCCCAGCGCCATCTGATCGTTGGCAACCAGCATCGCAGTGGGAAC
GATGCCCTCATTCAGCATTTGCATGGTTTGTTGAAAACCGGACATGGCACTCCAGTCGCCTTCCCGTTCCGCTATCGGCTGAATTTGATTGCG
AGTGAGATATTTATGCCAGCCAGCCAGACGCAGACGCGCCGAGACAGAACTTAATGGGCCCGCTAACAGCGCGATTTGCTGGTGACCCAAT
GCGACCAGATGCTCCACGCCCAGTCGCGTACCGTCTTCATGGGAGAAAATAATACTGTTGATGGGTGTCTGGTCAGAGACATCAAGAAATAA
CGCCGGAACATTAGTGCAGGCAGCTTCCACAGCAATGGCATCCTGGTCATCCAGCGGATAGTTAATGATCAGCCCACTGACGCGTTGCGCGA
GAAGATTGTGCACCGCCGCTTTACAGGCTTCGACGCCGCTTCGTTCTACCATCGACACCACCACGCTGGCACCCAGTTGATCGGCGCGAGAT
TTAATCGCCGCGACAATTTGCGACGGCGCGTGCAGGGCCAGACTGGAGGTGGCAACGCCAATCAGCAACGACTGTTTGCCCGCCAGTTGTT
GTGCCACGCGGTTGGGAATGTAATTCAGCTCCGCCATCGCCGCTTCCACTTTTTCCCGCGTTTTCGCAGAAACGTGGCTGGCCTGGTTCACCA
CGCGGGAAACGGTCTGATAAGAGACACCGGCATACTCTGCGACATCGTATAACGTTACTGGTTTCACATTCACCACCCTGAATTGACTCTCTT
CCGGGCGCTATCATGCCATACCGCGAAAGGTTTTGCGCCATTCGATGGTGTCCGGGATCTCGACGCTCTCCCTTATGCGACTCCTGCATTAG
GAAGCAGCCCAGTAGTAGGTTGAGGCCGTTGAGCACCGCCGCCGCAAGGAATGGTGCATGCAAGGAGATGGCGCCCAACAGTCCCCCGGC
CACGGGGCCTGCCACCATACCCACGCCGAAACAAGCGCTCATGAGCCCGAAGTGGCGAGCCCGATCTTCCCCATCGGTGATGTCGGCGATA
TAGGCGCCAGCAACCGCACCTGTGGCGCCGGTGATGCCGGCCACGATGCGTCCGGCGTAGAGGATCGAGATCTCGATCCCGCGAAATTAAT
ACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCT 

A3.2.3 pETFPP2-His-MBP 

CTGCCACCATACCCACGCCGAAACAAGCGCTCATGAGCCCGAAGTGGCGAGCCCGATCTTCCCCATCGGTGATGTCGGCGATATAGGCGCC
AGCAACCGCACCTGTGGCGCCGGTGATGCCGGCCACGATGCGTCCGGCGTAGAGGATCGAGATCTCGATCCCGCGAAATTAATACGACTCA
CTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATGGGCAGCAGCCATCAT
CATCATCATCACAGCAGCATGAAAATCGAAGAAGGTAAACTGGTAATCTGGATTAACGGCGATAAAGGCTATAACGGTCTCGCTGAAGTCG
GTAAGAAATTCGAGAAAGATACCGGAATTAAAGTCACCGTTGAGCATCCGGATAAACTGGAAGAGAAATTCCCACAGGTTGCGGCAACTGG
CGATGGCCCTGACATTATCTTCTGGGCACACGACCGCTTTGGTGGCTACGCTCAATCTGGCCTGTTGGCTGAAATCACCCCGGACAAAGCGT
TCCAGGACAAGCTGTATCCGTTTACCTGGGATGCCGTACGTTACAACGGCAAGCTGATTGCTTACCCGATCGCTGTTGAAGCGTTATCGCTG
ATTTATAACAAAGATCTGCTGCCGAACCCGCCAAAAACCTGGGAAGAGATCCCGGCGCTGGATAAAGAACTGAAAGCGAAAGGTAAGAGCG
CGCTGATGTTCAACCTGCAAGAACCGTACTTCACCTGGCCGCTGATTGCTGCTGACGGGGGTTATGCGTTCAAGTATGAAAACGGCAAGTAC
GACATTAAAGACGTGGGCGTGGATAACGCTGGCGCGAAAGCGGGTCTGACCTTCCTGGTTGACCTGATTAAAAACAAACACATGAATGCAG
ACACCGATTACTCCATCGCAGAAGCTGCCTTTAATAAAGGCGAAACAGCGATGACCATCAACGGCCCGTGGGCATGGTCCAACATCGACACC
AGCAAAGTGAATTATGGTGTAACGGTACTGCCGACCTTCAAGGGTCAACCATCCAAACCGTTCGTTGGCGTGCTGAGCGCAGGTATTAACGC
CGCCAGTCCGAACAAAGAGCTGGCGAAAGAGTTCCTCGAAAACTATCTGCTGACTGATGAAGGTCTGGAAGCGGTTAATAAAGACAAACCG
CTGGGTGCCGTAGCGCTGAAGTCTTACGAGGAAGAGTTGGCGAAAGATCCACGTATTGCCGCCACCATGGAAAACGCCCAGAAAGGTGAA
ATCATGCCGAACATCCCGCAGATGTCCGCTTTCTGGTATGCCGTGCGTACTGCGGTGATCAACGCCGCCAGCGGTCGTCAGACTGTCGATGA
AGCCCTGAAAGACGCGCAGACTCGTATCACCAAGGGCCTGGAAGTTCTGTTCCAGGGACCAGCAAGGCGCGCCTTCTCCTCACATATGGCTA
GCATGACTGGTGGACAGCAAATGGGTCGCGGATCCGAATTCGAGCTCCGTCGACAAGCTTGCGGCCGCACTCGAGCACCACCACCACCACC
ACTGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTC
TAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGATTGGCGAATGGGACGCGCCCTGTAGCGGCGCATTAAGCGCGG
CGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGT
TCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATT
AGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGT
TCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCT
GATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTTTACAATTTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTAT
TTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAATTAATTCTTAGAAAAACTCATCGAGCATCAAATGAAACTGCAATTTATTC
ATATCAGGATTATCAATACCATATTTTTGAAAAAGCCGTTTCTGTAATGAAGGAGAAAACTCACCGAGGCAGTTCCATAGGATGGCAAGATCC
TGGTATCGGTCTGCGATTCCGACTCGTCCAACATCAATACAACCTATTAATTTCCCCTCGTCAAAAATAAGGTTATCAAGTGAGAAATCACCAT
GAGTGACGACTGAATCCGGTGAGAATGGCAAAAGTTTATGCATTTCTTTCCAGACTTGTTCAACAGGCCAGCCATTACGCTCGTCATCAAAAT
CACTCGCATCAACCAAACCGTTATTCATTCGTGATTGCGCCTGAGCGAGACGAAATACGCGATCGCTGTTAAAAGGACAATTACAAACAGGA
ATCGAATGCAACCGGCGCAGGAACACTGCCAGCGCATCAACAATATTTTCACCTGAATCAGGATATTCTTCTAATACCTGGAATGCTGTTTTC
CCGGGGATCGCAGTGGTGAGTAACCATGCATCATCAGGAGTACGGATAAAATGCTTGATGGTCGGAAGAGGCATAAATTCCGTCAGCCAGT
TTAGTCTGACCATCTCATCTGTAACATCATTGGCAACGCTACCTTTGCCATGTTTCAGAAACAACTCTGGCGCATCGGGCTTCCCATACAATCG
ATAGATTGTCGCACCTGATTGCCCGACATTATCGCGAGCCCATTTATACCCATATAAATCAGCATCCATGTTGGAATTTAATCGCGGCCTAGA
GCAAGACGTTTCCCGTTGAATATGGCTCATAACACCCCTTGTATTACTGTTTATGTAAGCAGACAGTTTTATTGTTCATGACCAAAATCCCTTA
ACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTG
CAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGC
GCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATC
CTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGG
GCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCG
CCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGG
AAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTAT
GGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGT
GGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGA
AGAGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATATATGGTGCACTCTCAGTACAATCTGCTCTGATGCC
GCATAGTTAAGCCAGTATACACTCCGCTATCGCTACGTGACTGGGTCATGGCTGCGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGA
CGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAA
ACGCGCGAGGCAGCTGCGGTAAAGCTCATCAGCGTGGTCGTGAAGCGATTCACAGATGTCTGCCTGTTCATCCGCGTCCAGCTCGTTGAGTT
TCTCCAGAAGCGTTAATGTCTGGCTTCTGATAAAGCGGGCCATGTTAAGGGCGGTTTTTTCCTGTTTGGTCACTGATGCCTCCGTGTAAGGG
GGATTTCTGTTCATGGGGGTAATGATACCGATGAAACGAGAGAGGATGCTCACGATACGGGTTACTGATGATGAACATGCCCGGTTACTGG
AACGTTGTGAGGGTAAACAACTGGCGGTATGGATGCGGCGGGACCAGAGAAAAATCACTCAGGGTCAATGCCAGCGCTTCGTTAATACAGA
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TGTAGGTGTTCCACAGGGTAGCCAGCAGCATCCTGCGATGCAGATCCGGAACATAATGGTGCAGGGCGCTGACTTCCGCGTTTCCAGACTTT
ACGAAACACGGAAACCGAAGACCATTCATGTTGTTGCTCAGGTCGCAGACGTTTTGCAGCAGCAGTCGCTTCACGTTCGCTCGCGTATCGGT
GATTCATTCTGCTAACCAGTAAGGCAACCCCGCCAGCCTAGCCGGGTCCTCAACGACAGGAGCACGATCATGCGCACCCGTGGGGCCGCCA
TGCCGGCGATAATGGCCTGCTTCTCGCCGAAACGTTTGGTGGCGGGACCAGTGACGAAGGCTTGAGCGAGGGCGTGCAAGATTCCGAATA
CCGCAAGCGACAGGCCGATCATCGTCGCGCTCCAGCGAAAGCGGTCCTCGCCGAAAATGACCCAGAGCGCTGCCGGCACCTGTCCTACGAG
TTGCATGATAAAGAAGACAGTCATAAGTGCGGCGACGATAGTCATGCCCCGCGCCCACCGGAAGGAGCTGACTGGGTTGAAGGCTCTCAAG
GGCATCGGTCGAGATCCCGGTGCCTAATGAGTGAGCTAACTTACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTC
GTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCCAGGGTGGTTTTTCTTTTCACCAGTGAGAC
GGGCAACAGCTGATTGCCCTTCACCGCCTGGCCCTGAGAGAGTTGCAGCAAGCGGTCCACGCTGGTTTGCCCCAGCAGGCGAAAATCCTGT
TTGATGGTGGTTAACGGCGGGATATAACATGAGCTGTCTTCGGTATCGTCGTATCCCACTACCGAGATATCCGCACCAACGCGCAGCCCGGA
CTCGGTAATGGCGCGCATTGCGCCCAGCGCCATCTGATCGTTGGCAACCAGCATCGCAGTGGGAACGATGCCCTCATTCAGCATTTGCATGG
TTTGTTGAAAACCGGACATGGCACTCCAGTCGCCTTCCCGTTCCGCTATCGGCTGAATTTGATTGCGAGTGAGATATTTATGCCAGCCAGCCA
GACGCAGACGCGCCGAGACAGAACTTAATGGGCCCGCTAACAGCGCGATTTGCTGGTGACCCAATGCGACCAGATGCTCCACGCCCAGTCG
CGTACCGTCTTCATGGGAGAAAATAATACTGTTGATGGGTGTCTGGTCAGAGACATCAAGAAATAACGCCGGAACATTAGTGCAGGCAGCTT
CCACAGCAATGGCATCCTGGTCATCCAGCGGATAGTTAATGATCAGCCCACTGACGCGTTGCGCGAGAAGATTGTGCACCGCCGCTTTACAG
GCTTCGACGCCGCTTCGTTCTACCATCGACACCACCACGCTGGCACCCAGTTGATCGGCGCGAGATTTAATCGCCGCGACAATTTGCGACGG
CGCGTGCAGGGCCAGACTGGAGGTGGCAACGCCAATCAGCAACGACTGTTTGCCCGCCAGTTGTTGTGCCACGCGGTTGGGAATGTAATTC
AGCTCCGCCATCGCCGCTTCCACTTTTTCCCGCGTTTTCGCAGAAACGTGGCTGGCCTGGTTCACCACGCGGGAAACGGTCTGATAAGAGAC
ACCGGCATACTCTGCGACATCGTATAACGTTACTGGTTTCACATTCACCACCCTGAATTGACTCTCTTCCGGGCGCTATCATGCCATACCGCGA
AAGGTTTTGCGCCATTCGATGGTGTCCGGGATCTCGACGCTCTCCCTTATGCGACTCCTGCATTAGGAAGCAGCCCAGTAGTAGGTTGAGGC
CGTTGAGCACCGCCGCCGCAAGGAATGGTGCATGCAAGGAGATGGCGCCCAACAGTCCCCCGGCCACGGGGC 

A3.2.4 pET28 YSBL–His-3C-LIC313 

TGGCGAATGGGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCT
AGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTC
CGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGC
CCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATA
AGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTTTACAATT
TCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAATTAATTCTT
AGAAAAACTCATCGAGCATCAAATGAAACTGCAATTTATTCATATCAGGATTATCAATACCATATTTTTGAAAAAGCCGTTTCTGTAATGAAGG
AGAAAACTCACCGAGGCAGTTCCATAGGATGGCAAGATCCTGGTATCGGTCTGCGATTCCGACTCGTCCAACATCAATACAACCTATTAATTT
CCCCTCGTCAAAAATAAGGTTATCAAGTGAGAAATCACCATGAGTGACGACTGAATCCGGTGAGAATGGCAAAAGTTTATGCATTTCTTTCCA
GACTTGTTCAACAGGCCAGCCATTACGCTCGTCATCAAAATCACTCGCATCAACCAAACCGTTATTCATTCGTGATTGCGCCTGAGCGAGACG
AAATACGCGATCGCTGTTAAAAGGACAATTACAAACAGGAATCGAATGCAACCGGCGCAGGAACACTGCCAGCGCATCAACAATATTTTCAC
CTGAATCAGGATATTCTTCTAATACCTGGAATGCTGTTTTCCCGGGGATCGCAGTGGTGAGTAACCATGCATCATCAGGAGTACGGATAAAA
TGCTTGATGGTCGGAAGAGGCATAAATTCCGTCAGCCAGTTTAGTCTGACCATCTCATCTGTAACATCATTGGCAACGCTACCTTTGCCATGT
TTCAGAAACAACTCTGGCGCATCGGGCTTCCCATACAATCGATAGATTGTCGCACCTGATTGCCCGACATTATCGCGAGCCCATTTATACCCA
TATAAATCAGCATCCATGTTGGAATTTAATCGCGGCCTAGAGCAAGACGTTTCCCGTTGAATATGGCTCATAACACCCCTTGTATTACTGTTTA
TGTAAGCAGACAGTTTTATTGTTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGA
TCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAG
CTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTC
AAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTG
GACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTAC
ACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGG
GTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGC
GTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCT
TTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAA
CGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCG
CATATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGTATACACTCCGCTATCGCTACGTGACTGGGTCATGGCTG
CGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGG
AGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGGCAGCTGCGGTAAAGCTCATCAGCGTGGTCGTGAAGCGATTCAC
AGATGTCTGCCTGTTCATCCGCGTCCAGCTCGTTGAGTTTCTCCAGAAGCGTTAATGTCTGGCTTCTGATAAAGCGGGCCATGTTAAGGGCG
GTTTTTTCCTGTTTGGTCACTGATGCCTCCGTGTAAGGGGGATTTCTGTTCATGGGGGTAATGATACCGATGAAACGAGAGAGGATGCTCAC
GATACGGGTTACTGATGATGAACATGCCCGGTTACTGGAACGTTGTGAGGGTAAACAACTGGCGGTATGGATGCGGCGGGACCAGAGAAA
AATCACTCAGGGTCAATGCCAGCGCTTCGTTAATACAGATGTAGGTGTTCCACAGGGTAGCCAGCAGCATCCTGCGATGCAGATCCGGAACA
TAATGGTGCAGGGCGCTGACTTCCGCGTTTCCAGACTTTACGAAACACGGAAACCGAAGACCATTCATGTTGTTGCTCAGGTCGCAGACGTT
TTGCAGCAGCAGTCGCTTCACGTTCGCTCGCGTATCGGTGATTCATTCTGCTAACCAGTAAGGCAACCCCGCCAGCCTAGCCGGGTCCTCAAC
GACAGGAGCACGATCATGCGCACCCGTGGGGCCGCCATGCCGGCGATAATGGCCTGCTTCTCGCCGAAACGTTTGGTGGCGGGACCAGTG
ACGAAGGCTTGAGCGAGGGCGTGCAAGATTCCGAATACCGCAAGCGACAGGCCGATCATCGTCGCGCTCCAGCGAAAGCGGTCCTCGCCG
AAAATGACCCAGAGCGCTGCCGGCACCTGTCCTACGAGTTGCATGATAAAGAAGACAGTCATAAGTGCGGCGACGATAGTCATGCCCCGCG
CCCACCGGAAGGAGCTGACTGGGTTGAAGGCTCTCAAGGGCATCGGTCGAGATCCCGGTGCCTAATGAGTGAGCTAACTTACATTAATTGC
GTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGT
ATTGGGCGCCAGGGTGGTTTTTCTTTTCACCAGTGAGACGGGCAACAGCTGATTGCCCTTCACCGCCTGGCCCTGAGAGAGTTGCAGCAAGC
GGTCCACGCTGGTTTGCCCCAGCAGGCGAAAATCCTGTTTGATGGTGGTTAACGGCGGGATATAACATGAGCTGTCTTCGGTATCGTCGTAT
CCCACTACCGAGATATCCGCACCAACGCGCAGCCCGGACTCGGTAATGGCGCGCATTGCGCCCAGCGCCATCTGATCGTTGGCAACCAGCAT
CGCAGTGGGAACGATGCCCTCATTCAGCATTTGCATGGTTTGTTGAAAACCGGACATGGCACTCCAGTCGCCTTCCCGTTCCGCTATCGGCTG
AATTTGATTGCGAGTGAGATATTTATGCCAGCCAGCCAGACGCAGACGCGCCGAGACAGAACTTAATGGGCCCGCTAACAGCGCGATTTGC
TGGTGACCCAATGCGACCAGATGCTCCACGCCCAGTCGCGTACCGTCTTCATGGGAGAAAATAATACTGTTGATGGGTGTCTGGTCAGAGAC



 

384 
 

ATCAAGAAATAACGCCGGAACATTAGTGCAGGCAGCTTCCACAGCAATGGCATCCTGGTCATCCAGCGGATAGTTAATGATCAGCCCACTGA
CGCGTTGCGCGAGAAGATTGTGCACCGCCGCTTTACAGGCTTCGACGCCGCTTCGTTCTACCATCGACACCACCACGCTGGCACCCAGTTGA
TCGGCGCGAGATTTAATCGCCGCGACAATTTGCGACGGCGCGTGCAGGGCCAGACTGGAGGTGGCAACGCCAATCAGCAACGACTGTTTGC
CCGCCAGTTGTTGTGCCACGCGGTTGGGAATGTAATTCAGCTCCGCCATCGCCGCTTCCACTTTTTCCCGCGTTTTCGCAGAAACGTGGCTGG
CCTGGTTCACCACGCGGGAAACGGTCTGATAAGAGACACCGGCATACTCTGCGACATCGTATAACGTTACTGGTTTCACATTCACCACCCTGA
ATTGACTCTCTTCCGGGCGCTATCATGCCATACCGCGAAAGGTTTTGCGCCATTCGATGGTGTCCGGGATCTCGACGCTCTCCCTTATGCGAC
TCCTGCATTAGGAAGCAGCCCAGTAGTAGGTTGAGGCCGTTGAGCACCGCCGCCGCAAGGAATGGTGCATGCAAGGAGATGGCGCCCAAC
AGTCCCCCGGCCACGGGGCCTGCCACCATACCCACGCCGAAACAAGCGCTCATGAGCCCGAAGTGGCGAGCCCGATCTTCCCCATCGGTGA
TGTCGGCGATATAGGCGCCAGCAACCGCACCTGTGGCGCCGGTGATGCCGGCCACGATGCGTCCGGCGTAGAGGATCGAGATCTCGATCCC
GCGAAATTAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATAC
CATGGGCAGCAGCCATCATCATCATCATCACAGCAGCGGCCTGGAAGTTCTGTTCCAGGGACCAGCAAGGCGCGCCTTCTCCTCACATATGG
CTAGCATGACTGGTGGACAGCAAATGGGTCGCGGATCCGAATTCGAGCTCCGTCGACAAGCTTGCGGCCGCACTCGAGCACCACCACCACC
ACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGC
CTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT 

A3.2.5 pSF 1477 BdSUMO-MBP122 

CTCGAGAAATCATAAAAAATTTATTTGCTTTGTGAGCGGATAACAATTATAATAGATTCAATTGTGAGCGGATAACAATTTCACACAGAATTCA
TTAAAGAGGAGAAATTAACCATGAGCAAGCATCACCATCATTCAGGCCATCACCATACCGGACACCACCATCATTCAGGCAGTCATCACCATT
CCGGATCTGCTGCGGGTGGCGAAGAAGATAAGAAACCGGCAGGTGGCGAAGGTGGCGGTGCCCATATCAACCTGAAAGTGAAAGGTCAA
GACGGCAACGAAGTCTTTTTCCGCATCAAACGTTCTACCCAGCTGAAAAAGCTGATGAACGCATACTGTGACCGTCAGTCTGTAGACATGAC
CGCAATTGCTTTCCTGTTTGATGGTCGTCGCCTGCGTGCGGAACAGACCCCGGATGAACTGGAGATGGAAGATGGCGACGAAATCGACGCA
ATGCTGCACCAGACTGGTGGCGCCGGTACCAAAACTGAAGAAGGTAAACTGGTAATCTGGATTAACGGCGATAAAGGCTATAACGGTCTCG
CTGAAGTCGGTAAGAAATTCGAGAAAGATACCGGAATTAAAGTCACCGTTGAGCATCCGGATAAACTGGAAGAGAAATTCCCACAGGTTGC
GGCAACTGGCGATGGCCCTGACATTATCTTCTGGGCACACGACCGCTTTGGTGGCTACGCTCAATCTGGCCTGTTGGCTGAAATCACCCCGG
ACAAAGCGTTCCAGGACAAGCTGTATCCGTTTACCTGGGATGCCGTACGTTACAACGGCAAGCTGATTGCTTACCCGATCGCTGTTGAAGCG
TTATCGCTGATTTATAACAAAGATCTGCTGCCGAACCCGCCAAAAACCTGGGAAGAGATCCCGGCGCTGGATAAAGAACTGAAAGCGAAAG
GTAAGAGCGCGCTGATGTTCAACCTGCAAGAACCGTACTTCACCTGGCCGCTGATTGCTGCTGACGGGGGTTATGCGTTCAAGTATGAAAAC
GGCAAGTACGACATTAAAGACGTGGGCGTGGATAACGCTGGCGCGAAAGCGGGTCTGACCTTCCTGGTTGACCTGATTAAAAACAAACACA
TGAATGCAGACACCGATTACTCCATCGCAGAAGCTGCCTTTAATAAAGGCGAAACAGCGATGACCATCAACGGCCCGTGGGCATGGTCCAAC
ATCGACACCAGCAAAGTGAATTATGGTGTAACGGTACTGCCGACCTTCAAGGGTCAACCATCCAAACCGTTCGTTGGCGTGCTGAGCGCAG
GTATTAACGCCGCCAGTCCGAACAAAGAGCTGGCAAAAGAGTTCCTCGAAAACTATCTGCTGACTGATGAAGGTCTGGAAGCGGTTAATAA
AGACAAACCGCTGGGTGCCGTAGCGCTGAAGTCTTACGAGGAAGAGTTGGCGAAAGATCCACGTATTGCCGCCACCATGGAAAACGCCCAG
AAAGGTGAAATCATGCCGAACATCCCGCAGATGTCCGCTTTCTGGTATGCCGTGCGTACTGCGGTGATCAACGCCGCCAGCGGTCGTCAGAC
TGTCGATGAAGCCCTGAAAGACGCGCAGACTAATGGCACCGGTTGTTAAGGATCTCATCACCATCACCATCACTAAGCTTAATTAGCTGAGC
TTGGACTCCTGTTGATAGATCCAGTAATGACCTCAGAACTCCATCTGGATTTGTTCAGAACGCTCGGTTGCCGCCGGGCGTTTTTTATTGGTG
AGAATCCAAGCTAGCCATGAAAATAAACTGTCTGCTTACATAAACAGTAATACAAGGGGTGTTATGAGCCATATTCAACGGGAAACGTCTTG
CTCTAGGCCGCGATTAAATTCCAACATGGATGCTGATTTATATGGGTATAAATGGGCTCGCGATAATGTCGGGCAATCAGGTGCGACAATCT
ATCGATTGTATGGGAAGCCCGATGCGCCAGAGTTGTTTCTGAAACATGGCAAAGGTAGCGTTGCCAATGATGTTACAGATGAGATGGTCAG
ACTAAACTGGCTGACGGAATTTATGCCTCTTCCGACCATCAAGCATTTTATCCGTACTCCTGATGATGCTTGGTTACTCACGACTGCGATCCCC
GGCAAAACAGCATTCCAGGTATTAGAAGAATATCCTGATTCAGGTGAAAATATTGTTGATGCGCTGGCAGTGTTCCTGCGCCGGTTGCATTC
GATTCCTGTTTGTAATTGTCCTTTTAACAGCGATCGCGTATTTCGTCTCGCTCAGGCGCAATCACGAATGAATAACGGTTTGGTTGATGCGAG
TGATTTTGATGACGAGCGTAATGGCTGGCCTGTTGAACAAGTCTGGAAAGAAATGCACAAACTTTTGCCATTCTCACCGGATTCAGTCGTCAC
TCATGGTGATTTCTCACTTGATAACCTTATTTTTGACGAGGGGAAATTAATAGGTTGTATTGATGTTGGACGAGTCGGAATCGCAGACCGATA
CCAGGATCTTGCCATCCTATGGAACTGCCTCGGTGAGTTTTCTCCTTCATTACAGAAACGGCTTTTTCAAAAATATGGTATTGATAATCCTGAT
ATGAATAAATTGCAGTTTCATTTGATGCTCGATGAGTTTTTCTAAGAATTAATTCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGAT
GCCGCTGGCGATTCAGGTTCATCATGCCGTTTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGC
AGGGCGGGGCGTAATTTTTTTAAGGCAGTTATTGGTGCCCTTAAACGCCTGGGGTAATGACTCTCTAGCTTGAGGCATCAAATAAAACGAAA
GGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCCTGAGTAGGACAAATCCGCCGCTCTAGATTACGTG
CAGTCGATGATAAGCTGTCAAACATGAGAATTGTGCCTAATGAGTGAGCTAACTTACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTC
GGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGGGCCAGGGTGGTTTTTCTTTT
CACCAGTGAGACGGGCAACAGCTGATTGCCCTTCACCGCCTGGCCCTGAGAGAGTTGCAGCAAGCGGTCCACGCTGGTTTGCCCCAGCAGG
CGAAAATCCTGTTTGATGGTGGTTAACGGCGGGATATAACATGAGCTGTCTTCGGTATCGTCGTATCCCACTACCGAGATATCCGCACCAAC
GCGCAGCCCGGACTCGGTAATGGCGCGCATTGCGCCCAGCGCCATCTGATCGTTGGCAACCAGCATCGCAGTGGGAACGATGCCCTCATTC
AGCATTTGCATGGTTTGTTGAAAACCGGACATGGCACTCCAGTCGCCTTCCCGTTCCGCTATCGGCTGAATTTGATTGCGAGTGAGATATTTA
TGCCAGCCAGCCAGACGCAGACGCGCCGAGACAGAACTTAATGGGCCCGCTAACAGCGCGATTTGCTGGTGACCCAATGCGACCAGATGCT
CCACGCCCAGTCGCGTACCGTCTTCATGGGAGAAAATAATACTGTTGATGGGTGTCTGGTCAGAGACATCAAGAAATAACGCCGGAACATTA
GTGCAGGCAGCTTCCACAGCAATGGCATCCTGGTCATCCAGCGGATAGTTAATGATCAGCCCACTGACGCGTTGCGCGAGAAGATTGTGCA
CCGCCGCTTTACAGGCTTCGACGCCGCTTCGTTCTACCATCGACACCACCACGCTGGCACCCAGTTGATCGGCGCGAGATTTAATCGCCGCG
ACAATTTGCGACGGCGCGTGCAGGGCCAGACTGGAGGTGGCAACGCCAATCAGCAACGACTGTTTGCCCGCCAGTTGTTGTGCCACGCGGT
TGGGAATGTAATTCAGCTCCGCCATCGCCGCTTCCACTTTTTCCCGCGTTTTCGCAGAAACGTGGCTGGCCTGGTTCACCACGCGGGAAACG
GTCTGATAAGAGACACCGGCATACTCTGCGACATCGTATAACGTTACTGGTTTCACATTCACCACCCTGAATTGACTCTCTTCCGGGCGCTAT
CATGCCATACCGCGAAAGGTTTTGCACCATTCGATGGTGTCGGAATTTCGGGCAGCGTTGGGTCCTGGCCACGGGTGCGCATGATCTAGAG
CTGCCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGG
AGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCGCAGCCATGACCCAGTCACGTAGCGATAGCGGAGTGTA
TACTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAAT
ACCGCATCAGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCG
GTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCC
GCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACT
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ATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCT
TCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACC
CCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCAC
TGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTA
TTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGG
TTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAA
CGAAAACTCACGTTAAGGGATTTTGGTCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTTCAC 

A3.2.6 pSF 1478 BdNEDD8-AGT 

CTCGAGAAATCATAAAAAATTTATTTGCTTTGTGAGCGGATAACAATTATAATAGATTCAATTGTGAGCGGATAACAATTTCACACAGAATTCA
TTAAAGAGGAGAAATTAACCATGAGCAAGCATCACCATCATTCAGGCCATCACCATACCGGACACCACCATCATTCAGGCAGTCATCACCATT
CCGGAACCATGATTAAAGTAAAGACTCTGACCGGCAAGGAAATTGAGATCGACATCGAACCGACCGACACCATCGATCGTATCAAAGAACG
TGTGGAGGAAAAAGAAGGCATTCCTCCGGTTCAGCAGCGTCTCATTTACGCGGGTAAACAGCTTGCAGATGACAAAACCGCCAAAGATTAC
AATATCGAGGGCGGTAGCGTACTGCACCTTGTTCTGGCCCTGCGTGGTGGCGCCGGTACCAAAACTGAAGAAGGTAAACTGGTAATCTGGA
TTAACGGCGATAAAGGCTATAACGGTCTCGCTGAAGTCGGTAAGAAATTCGAGAAAGATACCGGAATTAAAGTCACCGTTGAGCATCCGGA
TAAACTGGAAGAGAAATTCCCACAGGTTGCGGCAACTGGCGATGGCCCTGACATTATCTTCTGGGCACACGACCGCTTTGGTGGCTACGCTC
AATCTGGCCTGTTGGCTGAAATCACCCCGGACAAAGCGTTCCAGGACAAGCTGTATCCGTTTACCTGGGATGCCGTACGTTACAACGGCAAG
CTGATTGCTTACCCGATCGCTGTTGAAGCGTTATCGCTGATTTATAACAAAGATCTGCTGCCGAACCCGCCAAAAACCTGGGAAGAGATCCC
GGCGCTGGATAAAGAACTGAAAGCGAAAGGTAAGAGCGCGCTGATGTTCAACCTGCAAGAACCGTACTTCACCTGGCCGCTGATTGCTGCT
GACGGGGGTTATGCGTTCAAGTATGAAAACGGCAAGTACGACATTAAAGACGTGGGCGTGGATAACGCTGGCGCGAAAGCGGGTCTGACC
TTCCTGGTTGACCTGATTAAAAACAAACACATGAATGCAGACACCGATTACTCCATCGCAGAAGCTGCCTTTAATAAAGGCGAAACAGCGAT
GACCATCAACGGCCCGTGGGCATGGTCCAACATCGACACCAGCAAAGTGAATTATGGTGTAACGGTACTGCCGACCTTCAAGGGTCAACCAT
CCAAACCGTTCGTTGGCGTGCTGAGCGCAGGTATTAACGCCGCCAGTCCGAACAAAGAGCTGGCAAAAGAGTTCCTCGAAAACTATCTGCTG
ACTGATGAAGGTCTGGAAGCGGTTAATAAAGACAAACCGCTGGGTGCCGTAGCGCTGAAGTCTTACGAGGAAGAGTTGGCGAAAGATCCA
CGTATTGCCGCCACCATGGAAAACGCCCAGAAAGGTGAAATCATGCCGAACATCCCGCAGATGTCCGCTTTCTGGTATGCCGTGCGTACTGC
GGTGATCAACGCCGCCAGCGGTCGTCAGACTGTCGATGAAGCCCTGAAAGACGCGCAGACTAATGGCACCGGTTGTTAAGGATCTCATCAC
CATCACCATCACTAAGCTTAATTAGCTGAGCTTGGACTCCTGTTGATAGATCCAGTAATGACCTCAGAACTCCATCTGGATTTGTTCAGAACGC
TCGGTTGCCGCCGGGCGTTTTTTATTGGTGAGAATCCAAGCTAGCCATGAAAATAAACTGTCTGCTTACATAAACAGTAATACAAGGGGTGTT
ATGAGCCATATTCAACGGGAAACGTCTTGCTCTAGGCCGCGATTAAATTCCAACATGGATGCTGATTTATATGGGTATAAATGGGCTCGCGA
TAATGTCGGGCAATCAGGTGCGACAATCTATCGATTGTATGGGAAGCCCGATGCGCCAGAGTTGTTTCTGAAACATGGCAAAGGTAGCGTT
GCCAATGATGTTACAGATGAGATGGTCAGACTAAACTGGCTGACGGAATTTATGCCTCTTCCGACCATCAAGCATTTTATCCGTACTCCTGAT
GATGCTTGGTTACTCACGACTGCGATCCCCGGCAAAACAGCATTCCAGGTATTAGAAGAATATCCTGATTCAGGTGAAAATATTGTTGATGC
GCTGGCAGTGTTCCTGCGCCGGTTGCATTCGATTCCTGTTTGTAATTGTCCTTTTAACAGCGATCGCGTATTTCGTCTCGCTCAGGCGCAATCA
CGAATGAATAACGGTTTGGTTGATGCGAGTGATTTTGATGACGAGCGTAATGGCTGGCCTGTTGAACAAGTCTGGAAAGAAATGCACAAAC
TTTTGCCATTCTCACCGGATTCAGTCGTCACTCATGGTGATTTCTCACTTGATAACCTTATTTTTGACGAGGGGAAATTAATAGGTTGTATTGA
TGTTGGACGAGTCGGAATCGCAGACCGATACCAGGATCTTGCCATCCTATGGAACTGCCTCGGTGAGTTTTCTCCTTCATTACAGAAACGGCT
TTTTCAAAAATATGGTATTGATAATCCTGATATGAATAAATTGCAGTTTCATTTGATGCTCGATGAGTTTTTCTAAGAATTAATTCATGGGCAA
ATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCAGGTTCATCATGCCGTTTGTGATGGCTTCCATGTCGGCAGAATGCTTA
ATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGGGCGTAATTTTTTTAAGGCAGTTATTGGTGCCCTTAAACGCCTGGGGTAATGACT
CTCTAGCTTGAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCCTGAG
TAGGACAAATCCGCCGCTCTAGATTACGTGCAGTCGATGATAAGCTGTCAAACATGAGAATTGTGCCTAATGAGTGAGCTAACTTACATTAAT
TGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTG
CGTATTGGGGGCCAGGGTGGTTTTTCTTTTCACCAGTGAGACGGGCAACAGCTGATTGCCCTTCACCGCCTGGCCCTGAGAGAGTTGCAGCA
AGCGGTCCACGCTGGTTTGCCCCAGCAGGCGAAAATCCTGTTTGATGGTGGTTAACGGCGGGATATAACATGAGCTGTCTTCGGTATCGTCG
TATCCCACTACCGAGATATCCGCACCAACGCGCAGCCCGGACTCGGTAATGGCGCGCATTGCGCCCAGCGCCATCTGATCGTTGGCAACCAG
CATCGCAGTGGGAACGATGCCCTCATTCAGCATTTGCATGGTTTGTTGAAAACCGGACATGGCACTCCAGTCGCCTTCCCGTTCCGCTATCGG
CTGAATTTGATTGCGAGTGAGATATTTATGCCAGCCAGCCAGACGCAGACGCGCCGAGACAGAACTTAATGGGCCCGCTAACAGCGCGATT
TGCTGGTGACCCAATGCGACCAGATGCTCCACGCCCAGTCGCGTACCGTCTTCATGGGAGAAAATAATACTGTTGATGGGTGTCTGGTCAGA
GACATCAAGAAATAACGCCGGAACATTAGTGCAGGCAGCTTCCACAGCAATGGCATCCTGGTCATCCAGCGGATAGTTAATGATCAGCCCAC
TGACGCGTTGCGCGAGAAGATTGTGCACCGCCGCTTTACAGGCTTCGACGCCGCTTCGTTCTACCATCGACACCACCACGCTGGCACCCAGT
TGATCGGCGCGAGATTTAATCGCCGCGACAATTTGCGACGGCGCGTGCAGGGCCAGACTGGAGGTGGCAACGCCAATCAGCAACGACTGTT
TGCCCGCCAGTTGTTGTGCCACGCGGTTGGGAATGTAATTCAGCTCCGCCATCGCCGCTTCCACTTTTTCCCGCGTTTTCGCAGAAACGTGGC
TGGCCTGGTTCACCACGCGGGAAACGGTCTGATAAGAGACACCGGCATACTCTGCGACATCGTATAACGTTACTGGTTTCACATTCACCACC
CTGAATTGACTCTCTTCCGGGCGCTATCATGCCATACCGCGAAAGGTTTTGCACCATTCGATGGTGTCGGAATTTCGGGCAGCGTTGGGTCCT
GGCCACGGGTGCGCATGATCTAGAGCTGCCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCAC
AGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCGCAGCCATGACCC
AGTCACGTAGCGATAGCGGAGTGTATACTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATA
CCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCG
AGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCA
AAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTC
AGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTT
ACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGC
TCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACA
CGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCT
AACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGG
CAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCT
TTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGACATTAACCTATAAAAATAGGCGTATCACGAGG
CCCTTTCGTCTTCAC 
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A3.2.7 pSF-1479 SsNEDD8-AGT 

CTCGAGAAATCATAAAAAATTTATTTGCTTTGTGAGCGGATAACAATTATAATAGATTCAATTGTGAGCGGATAACAATTTCACACAGAATTCA
TTAAAGAGGAGAAATTAACCATGAGCAAGCATCACCATCATTCAGGCCATCACCATACCGGACACCACCATCATTCAGGCAGTCATCACCATT
CCGGAATGCTGATTAAAGTTAAAACCCTGACTGGTAAGGAAATTGAGATTGACATCGAACCTACCGACAAGGTTGAACGTATTAAAGAACGT
GTGGAAGAAAAGGAAGGTATCCCGCCGCAGCAACAGCGTCTGATCTACTCTGGTAAACAGATGAACGACGAAAAGACTGCGGCTGACTATA
AAATCCAGGGTGGCTCCGTGCTGCACCTGGTACTGGCCCTGCGTGGTGGCGCCGGTACCAAAACTGAAGAAGGTAAACTGGTAATCTGGAT
TAACGGCGATAAAGGCTATAACGGTCTCGCTGAAGTCGGTAAGAAATTCGAGAAAGATACCGGAATTAAAGTCACCGTTGAGCATCCGGAT
AAACTGGAAGAGAAATTCCCACAGGTTGCGGCAACTGGCGATGGCCCTGACATTATCTTCTGGGCACACGACCGCTTTGGTGGCTACGCTCA
ATCTGGCCTGTTGGCTGAAATCACCCCGGACAAAGCGTTCCAGGACAAGCTGTATCCGTTTACCTGGGATGCCGTACGTTACAACGGCAAGC
TGATTGCTTACCCGATCGCTGTTGAAGCGTTATCGCTGATTTATAACAAAGATCTGCTGCCGAACCCGCCAAAAACCTGGGAAGAGATCCCG
GCGCTGGATAAAGAACTGAAAGCGAAAGGTAAGAGCGCGCTGATGTTCAACCTGCAAGAACCGTACTTCACCTGGCCGCTGATTGCTGCTG
ACGGGGGTTATGCGTTCAAGTATGAAAACGGCAAGTACGACATTAAAGACGTGGGCGTGGATAACGCTGGCGCGAAAGCGGGTCTGACCT
TCCTGGTTGACCTGATTAAAAACAAACACATGAATGCAGACACCGATTACTCCATCGCAGAAGCTGCCTTTAATAAAGGCGAAACAGCGATG
ACCATCAACGGCCCGTGGGCATGGTCCAACATCGACACCAGCAAAGTGAATTATGGTGTAACGGTACTGCCGACCTTCAAGGGTCAACCATC
CAAACCGTTCGTTGGCGTGCTGAGCGCAGGTATTAACGCCGCCAGTCCGAACAAAGAGCTGGCAAAAGAGTTCCTCGAAAACTATCTGCTG
ACTGATGAAGGTCTGGAAGCGGTTAATAAAGACAAACCGCTGGGTGCCGTAGCGCTGAAGTCTTACGAGGAAGAGTTGGCGAAAGATCCA
CGTATTGCCGCCACCATGGAAAACGCCCAGAAAGGTGAAATCATGCCGAACATCCCGCAGATGTCCGCTTTCTGGTATGCCGTGCGTACTGC
GGTGATCAACGCCGCCAGCGGTCGTCAGACTGTCGATGAAGCCCTGAAAGACGCGCAGACTAATGGCACCGGTTGTTAAGGATCTCATCAC
CATCACCATCACTAAGCTTAATTAGCTGAGCTTGGACTCCTGTTGATAGATCCAGTAATGACCTCAGAACTCCATCTGGATTTGTTCAGAACGC
TCGGTTGCCGCCGGGCGTTTTTTATTGGTGAGAATCCAAGCTAGCCATGAAAATAAACTGTCTGCTTACATAAACAGTAATACAAGGGGTGTT
ATGAGCCATATTCAACGGGAAACGTCTTGCTCTAGGCCGCGATTAAATTCCAACATGGATGCTGATTTATATGGGTATAAATGGGCTCGCGA
TAATGTCGGGCAATCAGGTGCGACAATCTATCGATTGTATGGGAAGCCCGATGCGCCAGAGTTGTTTCTGAAACATGGCAAAGGTAGCGTT
GCCAATGATGTTACAGATGAGATGGTCAGACTAAACTGGCTGACGGAATTTATGCCTCTTCCGACCATCAAGCATTTTATCCGTACTCCTGAT
GATGCTTGGTTACTCACGACTGCGATCCCCGGCAAAACAGCATTCCAGGTATTAGAAGAATATCCTGATTCAGGTGAAAATATTGTTGATGC
GCTGGCAGTGTTCCTGCGCCGGTTGCATTCGATTCCTGTTTGTAATTGTCCTTTTAACAGCGATCGCGTATTTCGTCTCGCTCAGGCGCAATCA
CGAATGAATAACGGTTTGGTTGATGCGAGTGATTTTGATGACGAGCGTAATGGCTGGCCTGTTGAACAAGTCTGGAAAGAAATGCACAAAC
TTTTGCCATTCTCACCGGATTCAGTCGTCACTCATGGTGATTTCTCACTTGATAACCTTATTTTTGACGAGGGGAAATTAATAGGTTGTATTGA
TGTTGGACGAGTCGGAATCGCAGACCGATACCAGGATCTTGCCATCCTATGGAACTGCCTCGGTGAGTTTTCTCCTTCATTACAGAAACGGCT
TTTTCAAAAATATGGTATTGATAATCCTGATATGAATAAATTGCAGTTTCATTTGATGCTCGATGAGTTTTTCTAAGAATTAATTCATGGGCAA
ATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCAGGTTCATCATGCCGTTTGTGATGGCTTCCATGTCGGCAGAATGCTTA
ATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGGGCGTAATTTTTTTAAGGCAGTTATTGGTGCCCTTAAACGCCTGGGGTAATGACT
CTCTAGCTTGAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCCTGAG
TAGGACAAATCCGCCGCTCTAGATTACGTGCAGTCGATGATAAGCTGTCAAACATGAGAATTGTGCCTAATGAGTGAGCTAACTTACATTAAT
TGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTG
CGTATTGGGGGCCAGGGTGGTTTTTCTTTTCACCAGTGAGACGGGCAACAGCTGATTGCCCTTCACCGCCTGGCCCTGAGAGAGTTGCAGCA
AGCGGTCCACGCTGGTTTGCCCCAGCAGGCGAAAATCCTGTTTGATGGTGGTTAACGGCGGGATATAACATGAGCTGTCTTCGGTATCGTCG
TATCCCACTACCGAGATATCCGCACCAACGCGCAGCCCGGACTCGGTAATGGCGCGCATTGCGCCCAGCGCCATCTGATCGTTGGCAACCAG
CATCGCAGTGGGAACGATGCCCTCATTCAGCATTTGCATGGTTTGTTGAAAACCGGACATGGCACTCCAGTCGCCTTCCCGTTCCGCTATCGG
CTGAATTTGATTGCGAGTGAGATATTTATGCCAGCCAGCCAGACGCAGACGCGCCGAGACAGAACTTAATGGGCCCGCTAACAGCGCGATT
TGCTGGTGACCCAATGCGACCAGATGCTCCACGCCCAGTCGCGTACCGTCTTCATGGGAGAAAATAATACTGTTGATGGGTGTCTGGTCAGA
GACATCAAGAAATAACGCCGGAACATTAGTGCAGGCAGCTTCCACAGCAATGGCATCCTGGTCATCCAGCGGATAGTTAATGATCAGCCCAC
TGACGCGTTGCGCGAGAAGATTGTGCACCGCCGCTTTACAGGCTTCGACGCCGCTTCGTTCTACCATCGACACCACCACGCTGGCACCCAGT
TGATCGGCGCGAGATTTAATCGCCGCGACAATTTGCGACGGCGCGTGCAGGGCCAGACTGGAGGTGGCAACGCCAATCAGCAACGACTGTT
TGCCCGCCAGTTGTTGTGCCACGCGGTTGGGAATGTAATTCAGCTCCGCCATCGCCGCTTCCACTTTTTCCCGCGTTTTCGCAGAAACGTGGC
TGGCCTGGTTCACCACGCGGGAAACGGTCTGATAAGAGACACCGGCATACTCTGCGACATCGTATAACGTTACTGGTTTCACATTCACCACC
CTGAATTGACTCTCTTCCGGGCGCTATCATGCCATACCGCGAAAGGTTTTGCACCATTCGATGGTGTCGGAATTTCGGGCAGCGTTGGGTCCT
GGCCACGGGTGCGCATGATCTAGAGCTGCCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCAC
AGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCGCAGCCATGACCC
AGTCACGTAGCGATAGCGGAGTGTATACTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATA
CCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCG
AGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCA
AAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTC
AGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTT
ACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGC
TCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACA
CGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCT
AACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGG
CAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCT
TTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGACATTAACCTATAAAAATAGGCGTATCACGAGG
CCCTTTCGTCTTCAC 
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A3.2.8 pelB pSF 1477 BdSUMO-MBP 

CTCGAGAAATCATAAAAAATTTATTTGCTTTGTGAGCGGATAACAATTATAATAGATTCAATTGTGAGCGGATAACAATTTCACACAGAATTCA
TTAAAGAGGAGAAATTAACCATGAAATACCTGCTGCCGACGGCTGCTGCTGGTCTGCTGCTGCTGGCTGCCCAACCGGCGATGGCGAGCAA
GCATCACCATCATTCAGGCCATCACCATACCGGACACCACCATCATTCAGGCAGTCATCACCATTCCGGATCTGCTGCGGGTGGCGAAGAAG
ATAAGAAACCGGCAGGTGGCGAAGGTGGCGGTGCCCATATCAACCTGAAAGTGAAAGGTCAAGACGGCAACGAAGTCTTTTTCCGCATCAA
ACGTTCTACCCAGCTGAAAAAGCTGATGAACGCATACTGTGACCGTCAGTCTGTAGACATGACCGCAATTGCTTTCCTGTTTGATGGTCGTCG
CCTGCGTGCGGAACAGACCCCGGATGAACTGGAGATGGAAGATGGCGACGAAATCGACGCAATGCTGCACCAGACTGGTGGCGCCGGTAC
CAAAACTGAAGAAGGTAAACTGGTAATCTGGATTAACGGCGATAAAGGCTATAACGGTCTCGCTGAAGTCGGTAAGAAATTCGAGAAAGAT
ACCGGAATTAAAGTCACCGTTGAGCATCCGGATAAACTGGAAGAGAAATTCCCACAGGTTGCGGCAACTGGCGATGGCCCTGACATTATCTT
CTGGGCACACGACCGCTTTGGTGGCTACGCTCAATCTGGCCTGTTGGCTGAAATCACCCCGGACAAAGCGTTCCAGGACAAGCTGTATCCGT
TTACCTGGGATGCCGTACGTTACAACGGCAAGCTGATTGCTTACCCGATCGCTGTTGAAGCGTTATCGCTGATTTATAACAAAGATCTGCTGC
CGAACCCGCCAAAAACCTGGGAAGAGATCCCGGCGCTGGATAAAGAACTGAAAGCGAAAGGTAAGAGCGCGCTGATGTTCAACCTGCAAG
AACCGTACTTCACCTGGCCGCTGATTGCTGCTGACGGGGGTTATGCGTTCAAGTATGAAAACGGCAAGTACGACATTAAAGACGTGGGCGT
GGATAACGCTGGCGCGAAAGCGGGTCTGACCTTCCTGGTTGACCTGATTAAAAACAAACACATGAATGCAGACACCGATTACTCCATCGCAG
AAGCTGCCTTTAATAAAGGCGAAACAGCGATGACCATCAACGGCCCGTGGGCATGGTCCAACATCGACACCAGCAAAGTGAATTATGGTGT
AACGGTACTGCCGACCTTCAAGGGTCAACCATCCAAACCGTTCGTTGGCGTGCTGAGCGCAGGTATTAACGCCGCCAGTCCGAACAAAGAG
CTGGCAAAAGAGTTCCTCGAAAACTATCTGCTGACTGATGAAGGTCTGGAAGCGGTTAATAAAGACAAACCGCTGGGTGCCGTAGCGCTGA
AGTCTTACGAGGAAGAGTTGGCGAAAGATCCACGTATTGCCGCCACCATGGAAAACGCCCAGAAAGGTGAAATCATGCCGAACATCCCGCA
GATGTCCGCTTTCTGGTATGCCGTGCGTACTGCGGTGATCAACGCCGCCAGCGGTCGTCAGACTGTCGATGAAGCCCTGAAAGACGCGCAG
ACTAATGGCACCGGTTGTTAAGGATCTCATCACCATCACCATCACTAAGCTTAATTAGCTGAGCTTGGACTCCTGTTGATAGATCCAGTAATG
ACCTCAGAACTCCATCTGGATTTGTTCAGAACGCTCGGTTGCCGCCGGGCGTTTTTTATTGGTGAGAATCCAAGCTAGCCATGAAAATAAACT
GTCTGCTTACATAAACAGTAATACAAGGGGTGTTATGAGCCATATTCAACGGGAAACGTCTTGCTCTAGGCCGCGATTAAATTCCAACATGG
ATGCTGATTTATATGGGTATAAATGGGCTCGCGATAATGTCGGGCAATCAGGTGCGACAATCTATCGATTGTATGGGAAGCCCGATGCGCCA
GAGTTGTTTCTGAAACATGGCAAAGGTAGCGTTGCCAATGATGTTACAGATGAGATGGTCAGACTAAACTGGCTGACGGAATTTATGCCTCT
TCCGACCATCAAGCATTTTATCCGTACTCCTGATGATGCTTGGTTACTCACGACTGCGATCCCCGGCAAAACAGCATTCCAGGTATTAGAAGA
ATATCCTGATTCAGGTGAAAATATTGTTGATGCGCTGGCAGTGTTCCTGCGCCGGTTGCATTCGATTCCTGTTTGTAATTGTCCTTTTAACAGC
GATCGCGTATTTCGTCTCGCTCAGGCGCAATCACGAATGAATAACGGTTTGGTTGATGCGAGTGATTTTGATGACGAGCGTAATGGCTGGCC
TGTTGAACAAGTCTGGAAAGAAATGCACAAACTTTTGCCATTCTCACCGGATTCAGTCGTCACTCATGGTGATTTCTCACTTGATAACCTTATT
TTTGACGAGGGGAAATTAATAGGTTGTATTGATGTTGGACGAGTCGGAATCGCAGACCGATACCAGGATCTTGCCATCCTATGGAACTGCCT
CGGTGAGTTTTCTCCTTCATTACAGAAACGGCTTTTTCAAAAATATGGTATTGATAATCCTGATATGAATAAATTGCAGTTTCATTTGATGCTC
GATGAGTTTTTCTAAGAATTAATTCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCAGGTTCATCATGCCG
TTTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGGGCGTAATTTTTTTAAGGCAGT
TATTGGTGCCCTTAAACGCCTGGGGTAATGACTCTCTAGCTTGAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTT
TTATCTGTTGTTTGTCGGTGAACGCTCTCCTGAGTAGGACAAATCCGCCGCTCTAGATTACGTGCAGTCGATGATAAGCTGTCAAACATGAGA
ATTGTGCCTAATGAGTGAGCTAACTTACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAAT
GAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGGGCCAGGGTGGTTTTTCTTTTCACCAGTGAGACGGGCAACAGCTGATTG
CCCTTCACCGCCTGGCCCTGAGAGAGTTGCAGCAAGCGGTCCACGCTGGTTTGCCCCAGCAGGCGAAAATCCTGTTTGATGGTGGTTAACG
GCGGGATATAACATGAGCTGTCTTCGGTATCGTCGTATCCCACTACCGAGATATCCGCACCAACGCGCAGCCCGGACTCGGTAATGGCGCGC
ATTGCGCCCAGCGCCATCTGATCGTTGGCAACCAGCATCGCAGTGGGAACGATGCCCTCATTCAGCATTTGCATGGTTTGTTGAAAACCGGA
CATGGCACTCCAGTCGCCTTCCCGTTCCGCTATCGGCTGAATTTGATTGCGAGTGAGATATTTATGCCAGCCAGCCAGACGCAGACGCGCCG
AGACAGAACTTAATGGGCCCGCTAACAGCGCGATTTGCTGGTGACCCAATGCGACCAGATGCTCCACGCCCAGTCGCGTACCGTCTTCATGG
GAGAAAATAATACTGTTGATGGGTGTCTGGTCAGAGACATCAAGAAATAACGCCGGAACATTAGTGCAGGCAGCTTCCACAGCAATGGCAT
CCTGGTCATCCAGCGGATAGTTAATGATCAGCCCACTGACGCGTTGCGCGAGAAGATTGTGCACCGCCGCTTTACAGGCTTCGACGCCGCTT
CGTTCTACCATCGACACCACCACGCTGGCACCCAGTTGATCGGCGCGAGATTTAATCGCCGCGACAATTTGCGACGGCGCGTGCAGGGCCA
GACTGGAGGTGGCAACGCCAATCAGCAACGACTGTTTGCCCGCCAGTTGTTGTGCCACGCGGTTGGGAATGTAATTCAGCTCCGCCATCGCC
GCTTCCACTTTTTCCCGCGTTTTCGCAGAAACGTGGCTGGCCTGGTTCACCACGCGGGAAACGGTCTGATAAGAGACACCGGCATACTCTGC
GACATCGTATAACGTTACTGGTTTCACATTCACCACCCTGAATTGACTCTCTTCCGGGCGCTATCATGCCATACCGCGAAAGGTTTTGCACCAT
TCGATGGTGTCGGAATTTCGGGCAGCGTTGGGTCCTGGCCACGGGTGCGCATGATCTAGAGCTGCCTCGCGCGTTTCGGTGATGACGGTGA
AAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGC
GGGTGTTGGCGGGTGTCGGGGCGCAGCCATGACCCAGTCACGTAGCGATAGCGGAGTGTATACTGGCTTAACTATGCGGCATCAGAGCAG
ATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGCTCTTCCGCTTCCTCGCT
CACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGAT
AACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGC
CCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAA
GCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTC
ACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTAT
CCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTAT
GTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGT
TACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGC
GCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTC
ATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTTCAC 
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A3.2.9 pelB pSF 1478 BdNEDD8-AGT 

CTCGAGAAATCATAAAAAATTTATTTGCTTTGTGAGCGGATAACAATTATAATAGATTCAATTGTGAGCGGATAACAATTTCACACAGAATTCA
TTAAAGAGGAGAAATTAACCATGAAATACCTGCTGCCGACGGCTGCTGCTGGTCTGCTGCTGCTGGCTGCCCAACCGGCGATGGCGAGCAA
GCATCACCATCATTCAGGCCATCACCATACCGGACACCACCATCATTCAGGCAGTCATCACCATTCCGGAACCATGATTAAAGTAAAGACTCT
GACCGGCAAGGAAATTGAGATCGACATCGAACCGACCGACACCATCGATCGTATCAAAGAACGTGTGGAGGAAAAAGAAGGCATTCCTCCG
GTTCAGCAGCGTCTCATTTACGCGGGTAAACAGCTTGCAGATGACAAAACCGCCAAAGATTACAATATCGAGGGCGGTAGCGTACTGCACCT
TGTTCTGGCCCTGCGTGGTGGCGCCGGTACCAAAACTGAAGAAGGTAAACTGGTAATCTGGATTAACGGCGATAAAGGCTATAACGGTCTC
GCTGAAGTCGGTAAGAAATTCGAGAAAGATACCGGAATTAAAGTCACCGTTGAGCATCCGGATAAACTGGAAGAGAAATTCCCACAGGTTG
CGGCAACTGGCGATGGCCCTGACATTATCTTCTGGGCACACGACCGCTTTGGTGGCTACGCTCAATCTGGCCTGTTGGCTGAAATCACCCCG
GACAAAGCGTTCCAGGACAAGCTGTATCCGTTTACCTGGGATGCCGTACGTTACAACGGCAAGCTGATTGCTTACCCGATCGCTGTTGAAGC
GTTATCGCTGATTTATAACAAAGATCTGCTGCCGAACCCGCCAAAAACCTGGGAAGAGATCCCGGCGCTGGATAAAGAACTGAAAGCGAAA
GGTAAGAGCGCGCTGATGTTCAACCTGCAAGAACCGTACTTCACCTGGCCGCTGATTGCTGCTGACGGGGGTTATGCGTTCAAGTATGAAAA
CGGCAAGTACGACATTAAAGACGTGGGCGTGGATAACGCTGGCGCGAAAGCGGGTCTGACCTTCCTGGTTGACCTGATTAAAAACAAACAC
ATGAATGCAGACACCGATTACTCCATCGCAGAAGCTGCCTTTAATAAAGGCGAAACAGCGATGACCATCAACGGCCCGTGGGCATGGTCCA
ACATCGACACCAGCAAAGTGAATTATGGTGTAACGGTACTGCCGACCTTCAAGGGTCAACCATCCAAACCGTTCGTTGGCGTGCTGAGCGCA
GGTATTAACGCCGCCAGTCCGAACAAAGAGCTGGCAAAAGAGTTCCTCGAAAACTATCTGCTGACTGATGAAGGTCTGGAAGCGGTTAATA
AAGACAAACCGCTGGGTGCCGTAGCGCTGAAGTCTTACGAGGAAGAGTTGGCGAAAGATCCACGTATTGCCGCCACCATGGAAAACGCCCA
GAAAGGTGAAATCATGCCGAACATCCCGCAGATGTCCGCTTTCTGGTATGCCGTGCGTACTGCGGTGATCAACGCCGCCAGCGGTCGTCAG
ACTGTCGATGAAGCCCTGAAAGACGCGCAGACTAATGGCACCGGTTGTTAAGGATCTCATCACCATCACCATCACTAAGCTTAATTAGCTGA
GCTTGGACTCCTGTTGATAGATCCAGTAATGACCTCAGAACTCCATCTGGATTTGTTCAGAACGCTCGGTTGCCGCCGGGCGTTTTTTATTGG
TGAGAATCCAAGCTAGCCATGAAAATAAACTGTCTGCTTACATAAACAGTAATACAAGGGGTGTTATGAGCCATATTCAACGGGAAACGTCT
TGCTCTAGGCCGCGATTAAATTCCAACATGGATGCTGATTTATATGGGTATAAATGGGCTCGCGATAATGTCGGGCAATCAGGTGCGACAAT
CTATCGATTGTATGGGAAGCCCGATGCGCCAGAGTTGTTTCTGAAACATGGCAAAGGTAGCGTTGCCAATGATGTTACAGATGAGATGGTCA
GACTAAACTGGCTGACGGAATTTATGCCTCTTCCGACCATCAAGCATTTTATCCGTACTCCTGATGATGCTTGGTTACTCACGACTGCGATCCC
CGGCAAAACAGCATTCCAGGTATTAGAAGAATATCCTGATTCAGGTGAAAATATTGTTGATGCGCTGGCAGTGTTCCTGCGCCGGTTGCATT
CGATTCCTGTTTGTAATTGTCCTTTTAACAGCGATCGCGTATTTCGTCTCGCTCAGGCGCAATCACGAATGAATAACGGTTTGGTTGATGCGA
GTGATTTTGATGACGAGCGTAATGGCTGGCCTGTTGAACAAGTCTGGAAAGAAATGCACAAACTTTTGCCATTCTCACCGGATTCAGTCGTC
ACTCATGGTGATTTCTCACTTGATAACCTTATTTTTGACGAGGGGAAATTAATAGGTTGTATTGATGTTGGACGAGTCGGAATCGCAGACCGA
TACCAGGATCTTGCCATCCTATGGAACTGCCTCGGTGAGTTTTCTCCTTCATTACAGAAACGGCTTTTTCAAAAATATGGTATTGATAATCCTG
ATATGAATAAATTGCAGTTTCATTTGATGCTCGATGAGTTTTTCTAAGAATTAATTCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTG
ATGCCGCTGGCGATTCAGGTTCATCATGCCGTTTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTG
GCAGGGCGGGGCGTAATTTTTTTAAGGCAGTTATTGGTGCCCTTAAACGCCTGGGGTAATGACTCTCTAGCTTGAGGCATCAAATAAAACGA
AAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCCTGAGTAGGACAAATCCGCCGCTCTAGATTACG
TGCAGTCGATGATAAGCTGTCAAACATGAGAATTGTGCCTAATGAGTGAGCTAACTTACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAG
TCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGGGCCAGGGTGGTTTTTCTT
TTCACCAGTGAGACGGGCAACAGCTGATTGCCCTTCACCGCCTGGCCCTGAGAGAGTTGCAGCAAGCGGTCCACGCTGGTTTGCCCCAGCA
GGCGAAAATCCTGTTTGATGGTGGTTAACGGCGGGATATAACATGAGCTGTCTTCGGTATCGTCGTATCCCACTACCGAGATATCCGCACCA
ACGCGCAGCCCGGACTCGGTAATGGCGCGCATTGCGCCCAGCGCCATCTGATCGTTGGCAACCAGCATCGCAGTGGGAACGATGCCCTCAT
TCAGCATTTGCATGGTTTGTTGAAAACCGGACATGGCACTCCAGTCGCCTTCCCGTTCCGCTATCGGCTGAATTTGATTGCGAGTGAGATATT
TATGCCAGCCAGCCAGACGCAGACGCGCCGAGACAGAACTTAATGGGCCCGCTAACAGCGCGATTTGCTGGTGACCCAATGCGACCAGATG
CTCCACGCCCAGTCGCGTACCGTCTTCATGGGAGAAAATAATACTGTTGATGGGTGTCTGGTCAGAGACATCAAGAAATAACGCCGGAACAT
TAGTGCAGGCAGCTTCCACAGCAATGGCATCCTGGTCATCCAGCGGATAGTTAATGATCAGCCCACTGACGCGTTGCGCGAGAAGATTGTGC
ACCGCCGCTTTACAGGCTTCGACGCCGCTTCGTTCTACCATCGACACCACCACGCTGGCACCCAGTTGATCGGCGCGAGATTTAATCGCCGC
GACAATTTGCGACGGCGCGTGCAGGGCCAGACTGGAGGTGGCAACGCCAATCAGCAACGACTGTTTGCCCGCCAGTTGTTGTGCCACGCG
GTTGGGAATGTAATTCAGCTCCGCCATCGCCGCTTCCACTTTTTCCCGCGTTTTCGCAGAAACGTGGCTGGCCTGGTTCACCACGCGGGAAAC
GGTCTGATAAGAGACACCGGCATACTCTGCGACATCGTATAACGTTACTGGTTTCACATTCACCACCCTGAATTGACTCTCTTCCGGGCGCTA
TCATGCCATACCGCGAAAGGTTTTGCACCATTCGATGGTGTCGGAATTTCGGGCAGCGTTGGGTCCTGGCCACGGGTGCGCATGATCTAGA
GCTGCCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGG
GAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCGCAGCCATGACCCAGTCACGTAGCGATAGCGGAGTGT
ATACTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAA
TACCGCATCAGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGC
GGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGC
CGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGA
CTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCC
CTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAA
CCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCC
ACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAG
TATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGT
GGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGG
AACGAAAACTCACGTTAAGGGATTTTGGTCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTTCAC 
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A3.2.10 pelB pSF-1479 SsNEDD8-AGT 

CTCGAGAAATCATAAAAAATTTATTTGCTTTGTGAGCGGATAACAATTATAATAGATTCAATTGTGAGCGGATAACAATTTCACACAGAATTCA
TTAAAGAGGAGAAATTAACCATGAAATACCTGCTGCCGACGGCTGCTGCTGGTCTGCTGCTGCTGGCTGCCCAACCGGCGATGGCGAGCAA
GCATCACCATCATTCAGGCCATCACCATACCGGACACCACCATCATTCAGGCAGTCATCACCATTCCGGAATGCTGATTAAAGTTAAAACCCT
GACTGGTAAGGAAATTGAGATTGACATCGAACCTACCGACAAGGTTGAACGTATTAAAGAACGTGTGGAAGAAAAGGAAGGTATCCCGCCG
CAGCAACAGCGTCTGATCTACTCTGGTAAACAGATGAACGACGAAAAGACTGCGGCTGACTATAAAATCCAGGGTGGCTCCGTGCTGCACCT
GGTACTGGCCCTGCGTGGTGGCGCCGGTACCAAAACTGAAGAAGGTAAACTGGTAATCTGGATTAACGGCGATAAAGGCTATAACGGTCTC
GCTGAAGTCGGTAAGAAATTCGAGAAAGATACCGGAATTAAAGTCACCGTTGAGCATCCGGATAAACTGGAAGAGAAATTCCCACAGGTTG
CGGCAACTGGCGATGGCCCTGACATTATCTTCTGGGCACACGACCGCTTTGGTGGCTACGCTCAATCTGGCCTGTTGGCTGAAATCACCCCG
GACAAAGCGTTCCAGGACAAGCTGTATCCGTTTACCTGGGATGCCGTACGTTACAACGGCAAGCTGATTGCTTACCCGATCGCTGTTGAAGC
GTTATCGCTGATTTATAACAAAGATCTGCTGCCGAACCCGCCAAAAACCTGGGAAGAGATCCCGGCGCTGGATAAAGAACTGAAAGCGAAA
GGTAAGAGCGCGCTGATGTTCAACCTGCAAGAACCGTACTTCACCTGGCCGCTGATTGCTGCTGACGGGGGTTATGCGTTCAAGTATGAAAA
CGGCAAGTACGACATTAAAGACGTGGGCGTGGATAACGCTGGCGCGAAAGCGGGTCTGACCTTCCTGGTTGACCTGATTAAAAACAAACAC
ATGAATGCAGACACCGATTACTCCATCGCAGAAGCTGCCTTTAATAAAGGCGAAACAGCGATGACCATCAACGGCCCGTGGGCATGGTCCA
ACATCGACACCAGCAAAGTGAATTATGGTGTAACGGTACTGCCGACCTTCAAGGGTCAACCATCCAAACCGTTCGTTGGCGTGCTGAGCGCA
GGTATTAACGCCGCCAGTCCGAACAAAGAGCTGGCAAAAGAGTTCCTCGAAAACTATCTGCTGACTGATGAAGGTCTGGAAGCGGTTAATA
AAGACAAACCGCTGGGTGCCGTAGCGCTGAAGTCTTACGAGGAAGAGTTGGCGAAAGATCCACGTATTGCCGCCACCATGGAAAACGCCCA
GAAAGGTGAAATCATGCCGAACATCCCGCAGATGTCCGCTTTCTGGTATGCCGTGCGTACTGCGGTGATCAACGCCGCCAGCGGTCGTCAG
ACTGTCGATGAAGCCCTGAAAGACGCGCAGACTAATGGCACCGGTTGTTAAGGATCTCATCACCATCACCATCACTAAGCTTAATTAGCTGA
GCTTGGACTCCTGTTGATAGATCCAGTAATGACCTCAGAACTCCATCTGGATTTGTTCAGAACGCTCGGTTGCCGCCGGGCGTTTTTTATTGG
TGAGAATCCAAGCTAGCCATGAAAATAAACTGTCTGCTTACATAAACAGTAATACAAGGGGTGTTATGAGCCATATTCAACGGGAAACGTCT
TGCTCTAGGCCGCGATTAAATTCCAACATGGATGCTGATTTATATGGGTATAAATGGGCTCGCGATAATGTCGGGCAATCAGGTGCGACAAT
CTATCGATTGTATGGGAAGCCCGATGCGCCAGAGTTGTTTCTGAAACATGGCAAAGGTAGCGTTGCCAATGATGTTACAGATGAGATGGTCA
GACTAAACTGGCTGACGGAATTTATGCCTCTTCCGACCATCAAGCATTTTATCCGTACTCCTGATGATGCTTGGTTACTCACGACTGCGATCCC
CGGCAAAACAGCATTCCAGGTATTAGAAGAATATCCTGATTCAGGTGAAAATATTGTTGATGCGCTGGCAGTGTTCCTGCGCCGGTTGCATT
CGATTCCTGTTTGTAATTGTCCTTTTAACAGCGATCGCGTATTTCGTCTCGCTCAGGCGCAATCACGAATGAATAACGGTTTGGTTGATGCGA
GTGATTTTGATGACGAGCGTAATGGCTGGCCTGTTGAACAAGTCTGGAAAGAAATGCACAAACTTTTGCCATTCTCACCGGATTCAGTCGTC
ACTCATGGTGATTTCTCACTTGATAACCTTATTTTTGACGAGGGGAAATTAATAGGTTGTATTGATGTTGGACGAGTCGGAATCGCAGACCGA
TACCAGGATCTTGCCATCCTATGGAACTGCCTCGGTGAGTTTTCTCCTTCATTACAGAAACGGCTTTTTCAAAAATATGGTATTGATAATCCTG
ATATGAATAAATTGCAGTTTCATTTGATGCTCGATGAGTTTTTCTAAGAATTAATTCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTG
ATGCCGCTGGCGATTCAGGTTCATCATGCCGTTTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTG
GCAGGGCGGGGCGTAATTTTTTTAAGGCAGTTATTGGTGCCCTTAAACGCCTGGGGTAATGACTCTCTAGCTTGAGGCATCAAATAAAACGA
AAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCCTGAGTAGGACAAATCCGCCGCTCTAGATTACG
TGCAGTCGATGATAAGCTGTCAAACATGAGAATTGTGCCTAATGAGTGAGCTAACTTACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAG
TCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGGGCCAGGGTGGTTTTTCTT
TTCACCAGTGAGACGGGCAACAGCTGATTGCCCTTCACCGCCTGGCCCTGAGAGAGTTGCAGCAAGCGGTCCACGCTGGTTTGCCCCAGCA
GGCGAAAATCCTGTTTGATGGTGGTTAACGGCGGGATATAACATGAGCTGTCTTCGGTATCGTCGTATCCCACTACCGAGATATCCGCACCA
ACGCGCAGCCCGGACTCGGTAATGGCGCGCATTGCGCCCAGCGCCATCTGATCGTTGGCAACCAGCATCGCAGTGGGAACGATGCCCTCAT
TCAGCATTTGCATGGTTTGTTGAAAACCGGACATGGCACTCCAGTCGCCTTCCCGTTCCGCTATCGGCTGAATTTGATTGCGAGTGAGATATT
TATGCCAGCCAGCCAGACGCAGACGCGCCGAGACAGAACTTAATGGGCCCGCTAACAGCGCGATTTGCTGGTGACCCAATGCGACCAGATG
CTCCACGCCCAGTCGCGTACCGTCTTCATGGGAGAAAATAATACTGTTGATGGGTGTCTGGTCAGAGACATCAAGAAATAACGCCGGAACAT
TAGTGCAGGCAGCTTCCACAGCAATGGCATCCTGGTCATCCAGCGGATAGTTAATGATCAGCCCACTGACGCGTTGCGCGAGAAGATTGTGC
ACCGCCGCTTTACAGGCTTCGACGCCGCTTCGTTCTACCATCGACACCACCACGCTGGCACCCAGTTGATCGGCGCGAGATTTAATCGCCGC
GACAATTTGCGACGGCGCGTGCAGGGCCAGACTGGAGGTGGCAACGCCAATCAGCAACGACTGTTTGCCCGCCAGTTGTTGTGCCACGCG
GTTGGGAATGTAATTCAGCTCCGCCATCGCCGCTTCCACTTTTTCCCGCGTTTTCGCAGAAACGTGGCTGGCCTGGTTCACCACGCGGGAAAC
GGTCTGATAAGAGACACCGGCATACTCTGCGACATCGTATAACGTTACTGGTTTCACATTCACCACCCTGAATTGACTCTCTTCCGGGCGCTA
TCATGCCATACCGCGAAAGGTTTTGCACCATTCGATGGTGTCGGAATTTCGGGCAGCGTTGGGTCCTGGCCACGGGTGCGCATGATCTAGA
GCTGCCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGG
GAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCGCAGCCATGACCCAGTCACGTAGCGATAGCGGAGTGT
ATACTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAA
TACCGCATCAGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGC
GGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGC
CGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGA
CTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCC
CTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAA
CCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCC
ACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAG
TATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGT
GGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGG
AACGAAAACTCACGTTAAGGGATTTTGGTCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTTCAC 
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A3.3 Example GH Plasmid Map - TtGH8 in pET28a 

 

 

Figure 167 pET28a plasmid map showing position of TtGH8 as an example. Map created in 
Snapgene viewer.
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A3.4 Original DNA source of TtAA10: Champion SUMO 

vector 

 

Figure 168 Plasmid map of SUMO-TtAA10 in Champion SUMO vector, made by Dr. G 
Hemsworth. Map created in Snapgene viewer 
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Appendix 4 : 

 Published Work 
Fowler, C. A., Hemsworth, G. R., Cuskin, F., Hart, S., Turkenburg, J., Gilbert, H. J., Walton, P. 

H. & Davies, G. J. (2018). Structure and function of a glycoside hydrolase family 8 

endoxylanase from Teredinibacter turnerae, Acta Cryst. D74, 946-955. 

https://doi.org/10.1107/S2059798318009737
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Appendix 5:  

T.turnerae Growth 

Experiment Proteomic 

Analysis  
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Table 29  Proteomic analysis of protein content of the cell pellet collected during growth of T.turnerae culture on sigmacell food source. Data collected by MS/MS 
Ion Search, after Trypsin digestion. Other contaminating proteins were observed in the proteomic analysis but have not been shown in the table below.  A potential 
description of each hit is taken from NCBI. Exponentially Modified Protein Abundance Index is abbreviated as EmPAI.  

T.turnerae Cell Pellet Proteomic Analysis 

Family Database Accession Score Mass Num. of 
significant 
matches 

Num. of 
significant 
sequences 

emPAI Mol
% 

Description 

9 NCBI_T_turnerae WP_018277997.1 693 125025 18 18 0.63 0.18 TonB-dependent receptor [Teredinibacter 
turnerae] 

12 NCBI_T_turnerae WP_018415904.1 567 59360 19 19 1.94 0.55 phosphoenolpyruvate carboxykinase (ATP) 
[Teredinibacter turnerae] 

19 NCBI_T_turnerae WP_018416100.1 438 49776 16 15 1.76 0.50 xylose isomerase [Teredinibacter turnerae] 

30 NCBI_T_turnerae WP_018275717.1 349 112337 11 11 0.39 0.11 TonB-dependent receptor [Teredinibacter 
turnerae] 

39 NCBI_T_turnerae ACR11039.1 277 106623 8 8 0.29 0.08 TonB-dependent receptor [Teredinibacter 
turnerae T7901] 

67 NCBI_T_turnerae WP_018416081.1 196 25464 6 6 1.19 0.34 membrane protein [Teredinibacter turnerae] 

77 NCBI_T_turnerae WP_018277703.1 182 75504 6 6 0.31 0.09 peptidase M13 [Teredinibacter turnerae] 

78 NCBI_T_turnerae WP_018277281.1 179 106885 6 6 0.21 0.06 hypothetical protein [Teredinibacter turnerae] 

80 NCBI_T_turnerae WP_018275583.1 178 49468 6 6 0.5 0.14 biopolymer transporter TonB [Teredinibacter 
turnerae] 

86 NCBI_T_turnerae ACR14237.1 173 29286 5 5 0.77 0.22 conserved hypothetical protein [Teredinibacter 
turnerae T7901] 

94 NCBI_T_turnerae WP_018275433.1 157 67503 3 3 0.16 0.05 TonB-dependent receptor [Teredinibacter 
turnerae] 

116 NCBI_T_turnerae ACR12978.1 131 52058 6 6 0.47 0.13 glutamine synthetase, type I [Teredinibacter 
turnerae T7901] 

118 NCBI_T_turnerae ACR11393.1 130 118086 4 3 0.12 0.03 ribonuclease E [Teredinibacter turnerae T7901] 

132 NCBI_T_turnerae WP_018276110.1 122 30019 2 2 0.25 0.07 DUF481 domain-containing protein 
[Teredinibacter turnerae] 

138 NCBI_T_turnerae WP_018416164.1 118 78948 4 4 0.19 0.05 hypothetical protein [Teredinibacter turnerae] 
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Family Database Accession Score Mass Num. of 
significant 
matches 

Num. of 
significant 
sequences 

emPAI Mol
% 

Description 

142 NCBI_T_turnerae ACR13988.1 116 27911 2 2 0.27 0.08 NADH:ubiquinone oxidoreductase, C subunit 
[Teredinibacter turnerae T7901] 

168 NCBI_T_turnerae ACR14788.1 102 24195 2 2 0.32 0.09 toluene-tolerance protein [Teredinibacter 
turnerae T7901] 

178 NCBI_T_turnerae ACR10904.1 98 49853 4 4 0.31 0.09 type I secretion outer membrane protein TolC 
[Teredinibacter turnerae T7901] 

191 Uniprot C5BU70 91 35398 3 3 0.33 0.09 Malate dehydrogenase OS=Teredinibacter 
turnerae (strain ATCC 39867 / T7901) GN=mdh 
PE=3 SV=1 

197 NCBI_T_turnerae ACR13466.1 87 60107 3 3 0.18 0.05 glucose-6-phosphate isomerase 
[Teredinibacter turnerae T7901] 

205 NCBI_T_turnerae WP_028885230.1 84 20925 2 2 0.37 0.10 DUF4136 domain-containing protein 
[Teredinibacter turnerae] 

212 NCBI_T_turnerae ACR14024.1 81 44770 1 1 0.08 0.02 D-3-phosphoglycerate dehydrogenase 
[Teredinibacter turnerae T7901] 

230 NCBI_T_turnerae ACR14800.1 75 50987 2 2 0.14 0.04 ribonucleoside-diphosphate reductase 
[Teredinibacter turnerae T7901] 

255 NCBI_T_turnerae ACR12999.1 68 49501 2 2 0.15 0.04 acetyl-CoA carboxylase, biotin carboxylase 
subunit [Teredinibacter turnerae T7901] 

273 Uniprot C5BTJ0 65 23725 2 2 0.32 0.09 ATP-dependent Clp protease proteolytic 
subunit OS=Teredinibacter turnerae (strain 
ATCC 39867 / T7901) GN=clpP PE=3 SV=1 

277 NCBI_T_turnerae WP_018277691.1 64 46788 2 2 0.15 0.04 M18 family aminopeptidase [Teredinibacter 
turnerae] 

279 Uniprot C5BLR8 64 34115 3 3 0.34 0.10 Transaldolase OS=Teredinibacter turnerae 
(strain ATCC 39867 / T7901) GN=tal PE=3 SV=1 

283 NCBI_T_turnerae ACR12600.1 63 22776 1 1 0.16 0.05 cytochrome c oxidase, Cbb3-type, subunit II 
[Teredinibacter turnerae T7901] 

304 NCBI_T_turnerae ACR11710.1 58 29433 1 1 0.12 0.03 fumarate reductase / succinate dehydrogenase 
family protein, iron-sulfur subunit 
[Teredinibacter turnerae T7901] 
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Family Database Accession Score Mass Num. of 
significant 
matches 

Num. of 
significant 
sequences 

emPAI Mol
% 

Description 

306 NCBI_T_turnerae ACR12856.1 58 19200 1 1 0.19 0.05 OmpA domain protein [Teredinibacter 
turnerae T7901] 

315 NCBI_T_turnerae ACR11317.1 55 90819 1 1 0.04 0.01 TonB-dependent receptor [Teredinibacter 
turnerae T7901] 

327 NCBI_T_turnerae ACR13350.1 54 107294 2 2 0.07 0.02 ribonucleoside-diphosphate reductase alpha 
subunit, class I [Teredinibacter turnerae T7901] 

331 NCBI_T_turnerae ACR12274.1 53 17541 1 1 0.21 0.06 Dps family protein [Teredinibacter turnerae 
T7901] 

343 NCBI_T_turnerae ACR13652.1 51 42713 1 1 0.08 0.02 membrane protease subunit HflK 
[Teredinibacter turnerae T7901] 

352 NCBI_T_turnerae ACR11583.1 50 31555 1 1 0.11 0.03 methylenetetrahydrofolate reductase 
[Teredinibacter turnerae T7901] 

362 NCBI_T_turnerae ACR14494.1 49 28145 1 1 0.13 0.04 putative secreted protein [Teredinibacter 
turnerae T7901] 

364 NCBI_T_turnerae ACR14059.1 49 21827 1 1 0.16 0.05 antioxidant, AhpC/Tsa family [Teredinibacter 
turnerae T7901] 

391 NCBI_T_turnerae ACR12797.1 44 84693 1 1 0.04 0.01 putative transcriptional accessory protein 
[Teredinibacter turnerae T7901] 

403 NCBI_T_turnerae ACR11324.1 43 78965 1 1 0.04 0.01 putative protein PilJ [Teredinibacter turnerae 
T7901] 

421 NCBI_T_turnerae WP_018277330.1 41 68167 2 2 0.1 0.03 protein translocase subunit SecD 
[Teredinibacter turnerae] 

424 NCBI_T_turnerae WP_018417194.1 40 33893 1 1 0.1 0.03 porin [Teredinibacter turnerae] 

427 NCBI_T_turnerae ACS93546.1 40 36170 1 1 0.1 0.03 HTH-type transcriptional regulator CysB 
[Teredinibacter turnerae T7901] 

456 NCBI_T_turnerae ACR10895.1 37 71039 1 1 0.05 0.01 ABC transporter domain containing protein 
[Teredinibacter turnerae T7901] 

470 NCBI_T_turnerae ACR11635.1 36 27159 1 1 0.13 0.04 putative membrane protein [Teredinibacter 
turnerae T7901] 

475 NCBI_T_turnerae WP_028886481.1 35 26949 1 1 0.13 0.04 YciK family oxidoreductase [Teredinibacter 
turnerae] 
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Family Database Accession Score Mass Num. of 
significant 
matches 

Num. of 
significant 
sequences 

emPAI Mol
% 

Description 

535 NCBI_T_turnerae ACR12398.1 31 21544 1 1 0.17 0.05 superoxide dismutase [Teredinibacter turnerae 
T7901] 

542 NCBI_T_turnerae ACR13413.1 30 27757 1 1 0.13 0.04 peptidyl-prolyl cis-trans isomerase, FKBP-type 
[Teredinibacter turnerae T7901] 

567 NCBI_T_turnerae ACR13432.1 28 115259 1 1 0.03 0.01 TonB-dependent receptor [Teredinibacter 
turnerae T7901] 

605 NCBI_T_turnerae ACR11760.1 24 44302 1 1 0.08 0.02 putative lipoprotein [Teredinibacter turnerae 
T7901] 

614 NCBI_T_turnerae ACR14393.1 23 26370 1 1 0.13 0.04 RNA polymerase sigma factor for flagellar 
operon [Teredinibacter turnerae T7901] 

615 NCBI_T_turnerae ACR12598.1 23 51732 1 1 0.07 0.02 dihydrolipoyl dehydrogenase [Teredinibacter 
turnerae T7901] 

643 NCBI_T_turnerae ACR10686.1 19 115649 1 1 0.03 0.01 glycoside hydrolase family 3 domain protein 
[Teredinibacter turnerae T7901] 

659 NCBI_T_turnerae ACR13392.1 18 65718 2 1 0.05 0.01 acyl-CoA dehydrogenase domain protein 
[Teredinibacter turnerae T7901] 

661 NCBI_T_turnerae ACR11634.1 17 32447 1 1 0.11 0.03 cytochrome c oxidase, Cbb3-type, subunit III 
[Teredinibacter turnerae T7901] 

663 NCBI_T_turnerae WP_018276910.1 17 65980 1 1 0.05 0.01 right-handed parallel beta-helix repeat-
containing protein [Teredinibacter turnerae] 

673 NCBI_T_turnerae ACR12620.1 16 49415 1 1 0.07 0.02 Carboxy-terminal-processing protease 
precursor [Teredinibacter turnerae T7901] 

683 NCBI_T_turnerae ACR12399.1 16 21391 1 1 0.17 0.05 yggt family protein [Teredinibacter turnerae 
T7901] 

703 NCBI_T_turnerae ACR13739.1 14 29354 1 1 0.12 0.03 ferredoxin--NADP reductase [Teredinibacter 
turnerae T7901] 

704 NCBI_T_turnerae ACR14254.1 13 8969 1 1 0.43 0.12 hypothetical protein TERTU_3630 
[Teredinibacter turnerae T7901] 
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Table 30 Proteomic analysis of protein content of the media collected during growth of T.turnerae culture on sigmacell food source.Data collected by MS/MS Ion 
Search, after Trypsin digestion.Other contaminating proteins were observed in the proteomic analysis but have not been shown in the table below.  A potential 
description of each hit is taken from NCBI. Exponentially Modified Protein Abundance Index is abbreviated as EmPAI.  

T.turnerae secreted proteins  

Family Database Accession Score Mass Num. of 
significant 
matches 

Num. of 
significant 
sequences 

emPAI Mol% Description 

1 NCBI_T_turnerae WP_018415904.1 718 59360 30 21 2.91 1.69 phosphoenolpyruvate carboxykinase (ATP) 
[Teredinibacter turnerae] 

5 NCBI_T_turnerae WP_018416100.1 597 49776 23 17 2.62 1.52 xylose isomerase [Teredinibacter turnerae] 

6 NCBI_T_turnerae WP_018277997.1 475 125025 24 23 0.87 0.51 TonB-dependent receptor [Teredinibacter turnerae] 

7 NCBI_T_turnerae WP_018276610.1 387 104109 15 14 0.63 0.37 TonB-dependent receptor [Teredinibacter turnerae] 

9 NCBI_T_turnerae WP_018416437.1 297 79536 13 12 0.74 0.43 dipeptidyl carboxypeptidase II [Teredinibacter turnerae] 

11 NCBI_T_turnerae WP_018016028.1 287 35368 10 7 1.58 0.92 malate dehydrogenase [Teredinibacter turnerae] 

12 NCBI_T_turnerae WP_018275935.1 274 313181 7 7 0.08 0.05 hypothetical protein [Teredinibacter turnerae] 

20 NCBI_T_turnerae WP_018277703.1 191 75504 7 7 0.37 0.22 peptidase M13 [Teredinibacter turnerae] 

21 NCBI_T_turnerae WP_019604011.1 188 51699 8 8 0.68 0.40 adenosylhomocysteinase [Teredinibacter turnerae] 

22 NCBI_T_turnerae WP_018275630.1 184 28401 8 7 1.56 0.91 methyltransferase [Teredinibacter turnerae] 

27 NCBI_T_turnerae ACR12978.1 165 52058 11 9 0.91 0.53 glutamine synthetase, type I [Teredinibacter turnerae 
T7901] 

28 NCBI_T_turnerae WP_018275363.1 161 70668 6 6 0.33 0.19 oligoendopeptidase F [Teredinibacter turnerae] 

29 NCBI_T_turnerae WP_018276415.1 157 37818 6 6 0.7 0.41 N-acetyl-gamma-glutamyl-phosphate reductase 
[Teredinibacter turnerae] 

32 NCBI_T_turnerae WP_018274079.1 146 53629 7 7 0.55 0.32 glucuronate isomerase [Teredinibacter turnerae] 

37 NCBI_T_turnerae WP_018275583.1 132 49468 4 4 0.31 0.18 biopolymer transporter TonB [Teredinibacter turnerae] 

38 NCBI_T_turnerae WP_018274710.1 131 100446 6 5 0.22 0.13 aminopeptidase N [Teredinibacter turnerae] 

43 NCBI_T_turnerae WP_018277281.1 124 106885 5 5 0.17 0.10 hypothetical protein [Teredinibacter turnerae] 
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Family Database Accession Score Mass Num. of 
significant 
matches 

Num. of 
significant 
sequences 

emPAI Mol% Description 

49 NCBI_T_turnerae ACR12598.1 118 51732 5 5 0.38 0.22 dihydrolipoyl dehydrogenase [Teredinibacter turnerae 
T7901] 

51 NCBI_T_turnerae WP_018416081.1 117 25464 5 5 0.92 0.54 membrane protein [Teredinibacter turnerae] 

52 NCBI_T_turnerae ACR10904.1 113 49853 5 5 0.4 0.23 type I secretion outer membrane protein TolC 
[Teredinibacter turnerae T7901] 

53 NCBI_T_turnerae ACR14059.1 112 21827 3 3 0.58 0.34 antioxidant, AhpC/Tsa family [Teredinibacter turnerae 
T7901] 

54 NCBI_T_turnerae WP_018274887.1 112 45483 3 3 0.25 0.15 serine hydroxymethyltransferase [Teredinibacter 
turnerae] 

59 NCBI_T_turnerae WP_018276110.1 107 30019 4 4 0.56 0.33 DUF481 domain-containing protein [Teredinibacter 
turnerae] 

67 NCBI_T_turnerae ACR11775.1 98 51404 5 4 0.39 0.23 peptidase, imelysin family [Teredinibacter turnerae 
T7901] 

69 Uniprot C5BLU3 97 58674 2 2 0.12 0.07 GMP synthase [glutamine-hydrolyzing] 
OS=Teredinibacter turnerae (strain ATCC 39867 / T7901) 
GN=guaA PE=3 SV=1 

74 NCBI_T_turnerae ACR12181.1 94 76142 2 2 0.09 0.05 methionine--tRNA ligase [Teredinibacter turnerae 
T7901] 

77 NCBI_T_turnerae ACR11014.1 92 51594 2 2 0.14 0.08 argininosuccinate lyase [Teredinibacter turnerae T7901] 

78 NCBI_T_turnerae ACR12454.1 91 29072 3 3 0.41 0.24 putative deoxyribonuclease Sll1786 [Teredinibacter 
turnerae T7901] 

79 NCBI_T_turnerae ACR12829.1 90 40132 3 3 0.28 0.16 oxidoreductase, NAD-binding Rossmann fold family 
[Teredinibacter turnerae T7901] 

80 NCBI_T_turnerae WP_018274037.1 90 60033 5 5 0.32 0.19 glucose-6-phosphate isomerase [Teredinibacter 
turnerae] 

82 NCBI_T_turnerae ACR10668.1 89 20611 1 1 0.17 0.10 putative acetyltransferase [Teredinibacter turnerae 
T7901] 

83 Uniprot C5BQZ6 88 36886 5 4 0.58 0.34 Ketol-acid reductoisomerase (NADP(+)) 
OS=Teredinibacter turnerae (strain ATCC 39867 / T7901) 
GN=ilvC PE=3 SV=1 

85 NCBI_T_turnerae ACR12856.1 88 19200 3 3 0.67 0.39 OmpA domain protein [Teredinibacter turnerae T7901] 
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Family Database Accession Score Mass Num. of 
significant 
matches 

Num. of 
significant 
sequences 

emPAI Mol% Description 

88 NCBI_T_turnerae WP_018274985.1 86 27772 3 3 0.43 0.25 membrane protein [Teredinibacter turnerae] 

89 NCBI_T_turnerae WP_018275433.1 86 67503 3 3 0.16 0.09 TonB-dependent receptor [Teredinibacter turnerae] 

91 NCBI_T_turnerae ACR10811.1 85 20253 3 3 0.63 0.37 inorganic diphosphatase [Teredinibacter turnerae 
T7901] 

94 NCBI_T_turnerae ACR10686.1 84 115649 4 4 0.12 0.07 glycoside hydrolase family 3 domain protein 
[Teredinibacter turnerae T7901] 

96 NCBI_T_turnerae ACR14788.1 82 24195 2 2 0.32 0.19 toluene-tolerance protein [Teredinibacter turnerae 
T7901] 

113 NCBI_T_turnerae ACR12980.1 77 31806 1 1 0.11 0.06 thioredoxin [Teredinibacter turnerae T7901] 

114 NCBI_T_turnerae ACR12150.1 77 19492 1 1 0.18 0.10 thiol-disulfide isomerase and thioredoxins/Thiol-
disulfide oxidoreductase resA [Teredinibacter turnerae 
T7901] 

120 NCBI_T_turnerae ACR12750.1 74 40035 5 5 0.52 0.30 aspartate-semialdehyde dehydrogenase [Teredinibacter 
turnerae T7901] 

128 NCBI_T_turnerae WP_018275795.1 69 63541 2 2 0.11 0.06 cellulase [Teredinibacter turnerae] 

129 Uniprot C5BQ72 69 11538 3 3 1.32 0.77 50S ribosomal protein L24 OS=Teredinibacter turnerae 
(strain ATCC 39867 / T7901) GN=rplX PE=3 SV=1 

131 NCBI_T_turnerae WP_018275181.1 69 118387 4 4 0.12 0.07 hypothetical protein [Teredinibacter turnerae] 

132 NCBI_T_turnerae WP_018275819.1 68 65896 2 2 0.11 0.06 hypothetical protein [Teredinibacter turnerae] 

136 NCBI_T_turnerae WP_018274172.1 68 91344 2 2 0.08 0.05 glycoside hydrolase [Teredinibacter turnerae] 

139 NCBI_T_turnerae ACR13760.1 66 26199 3 3 0.46 0.27 thiol:disulfide interchange protein DsbA precursor 
[Teredinibacter turnerae T7901] 

145 NCBI_T_turnerae ACR12074.1 65 11865 2 2 0.73 0.42 thioredoxin [Teredinibacter turnerae T7901] 

146 NCBI_T_turnerae WP_018274795.1 65 33798 1 1 0.1 0.06 DUF4340 domain-containing protein [Teredinibacter 
turnerae] 

152 NCBI_T_turnerae ACR11760.1 64 44302 1 1 0.08 0.05 putative lipoprotein [Teredinibacter turnerae T7901] 

158 NCBI_T_turnerae WP_018276910.1 64 65980 2 2 0.11 0.06 right-handed parallel beta-helix repeat-containing 
protein [Teredinibacter turnerae] 
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Family Database Accession Score Mass Num. of 
significant 
matches 

Num. of 
significant 
sequences 

emPAI Mol% Description 

160 NCBI_T_turnerae WP_019605879.1 63 38462 6 4 0.69 0.40 alpha-N-arabinofuranosidase [Teredinibacter turnerae] 

162 NCBI_T_turnerae ACR11505.1 63 46380 4 4 0.34 0.20 histidinol dehydrogenase [Teredinibacter turnerae 
T7901] 

164 NCBI_T_turnerae ACR14074.1 63 56780 5 5 0.35 0.20 glucose-6-phosphate dehydrogenase [Teredinibacter 
turnerae T7901] 

166 NCBI_T_turnerae ACR12398.1 61 21544 3 2 0.36 0.21 superoxide dismutase [Teredinibacter turnerae T7901] 

169 NCBI_T_turnerae WP_018277807.1 59 82476 3 3 0.13 0.08 alpha-glucuronidase [Teredinibacter turnerae] 

171 NCBI_T_turnerae ACR11620.1 58 47988 2 2 0.15 0.09 Tol-Pal system beta propeller repeat protein TolB 
[Teredinibacter turnerae T7901] 

172 NCBI_T_turnerae WP_018275650.1 58 41737 2 2 0.17 0.10 hypothetical protein [Teredinibacter turnerae] 

173 NCBI_T_turnerae ACR12004.2 57 72537 2 2 0.1 0.06 arginine 2-monooxygenase [Teredinibacter turnerae 
T7901] 

174 NCBI_T_turnerae ACR11317.1 57 90819 3 3 0.12 0.07 TonB-dependent receptor [Teredinibacter turnerae 
T7901] 

175 Uniprot C5BQ61 52 22798 2 2 0.34 0.20 50S ribosomal protein L3 OS=Teredinibacter turnerae 
(strain ATCC 39867 / T7901) GN=rplC PE=3 SV=1 

192 NCBI_T_turnerae WP_018276526.1 53 32025 2 2 0.23 0.13 putative selenate ABC transporter substrate-binding 
protein [Teredinibacter turnerae] 

196 Uniprot C5BTJ0 53 23725 1 1 0.15 0.09 ATP-dependent Clp protease proteolytic subunit 
OS=Teredinibacter turnerae (strain ATCC 39867 / T7901) 
GN=clpP PE=3 SV=1 

199 NCBI_T_turnerae ACR14100.1 53 35802 2 2 0.21 0.12 carbohydrate binding module family 33 and 10 domain 
protein [Teredinibacter turnerae T7901] 

200 NCBI_T_turnerae ACR13207.1 53 30460 2 2 0.25 0.15 nicotinate-nucleotide diphosphorylase [Teredinibacter 
turnerae T7901] 

202 NCBI_T_turnerae WP_018277031.1 52 77014 3 3 0.14 0.08 oligopeptidase A [Teredinibacter turnerae] 

207 NCBI_T_turnerae ACR12274.1 50 17541 2 2 0.46 0.27 Dps family protein [Teredinibacter turnerae T7901] 

210 NCBI_T_turnerae WP_018276818.1 50 20846 1 1 0.17 0.10 YceI family protein [Teredinibacter turnerae] 

212 NCBI_T_turnerae ACR11053.1 49 83036 2 2 0.08 0.05 conserved hypothetical protein Teredinibacter turnerae  
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Num. of 
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sequences 
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221 NCBI_T_turnerae ACR14237.1 48 29286 2 2 0.26 0.15 conserved hypothetical protein [Teredinibacter turnerae 
T7901] 

223 NCBI_T_turnerae ACR13496.1 47 60055 1 1 0.06 0.03 A-type flagellin [Teredinibacter turnerae T7901] 

230 Uniprot C5BQ71 45 13450 2 2 0.62 0.36 50S ribosomal protein L14 OS=Teredinibacter turnerae 
(strain ATCC 39867 / T7901) GN=rplN PE=3 SV=1 

231 NCBI_T_turnerae WP_018274899.1 44 95999 3 3 0.11 0.06 hypothetical protein [Teredinibacter turnerae] 

236 NCBI_T_turnerae WP_018416164.1 44 78948 3 3 0.14 0.08 hypothetical protein [Teredinibacter turnerae] 

238 NCBI_T_turnerae WP_018417194.1 44 33893 1 1 0.1 0.06 porin [Teredinibacter turnerae] 

242 NCBI_T_turnerae ACR10643.1 43 20926 2 2 0.37 0.22 peroxiredoxin [Teredinibacter turnerae T7901] 

249 NCBI_T_turnerae ACR13552.1 42 44338 2 2 0.16 0.09 xylanase [Teredinibacter turnerae T7901] 

258 Uniprot C5BQA1 41 19316 2 2 0.41 0.24 3-hydroxydecanoyl-[acyl-carrier-protein] dehydratase 
OS=Teredinibacter turnerae (strain ATCC 39867 / T7901) 
GN=fabA PE=3 SV=1 

265 Uniprot C5BQ62 38 22564 1 1 0.16 0.09 50S ribosomal protein L4 OS=Teredinibacter turnerae 
(strain ATCC 39867 / T7901) GN=rplD PE=3 SV=1 

266 NCBI_T_turnerae ACR14510.1 38 53067 1 1 0.07 0.04 glycoside hydrolase family 5 domain protein 
[Teredinibacter turnerae T7901] 

269 NCBI_T_turnerae WP_018277908.1 38 53258 2 2 0.13 0.08 leucyl aminopeptidase [Teredinibacter turnerae] 

277 NCBI_T_turnerae ACR10734.1 37 20026 1 1 0.18 0.10 intracellular protease, PfpI family [Teredinibacter 
turnerae T7901] 

282 NCBI_T_turnerae WP_018277691.1 36 46788 1 1 0.07 0.04 M18 family aminopeptidase [Teredinibacter turnerae] 

285 NCBI_T_turnerae ACR12076.1 36 18122 2 2 0.44 0.26 peptidoglycan-associated lipoprotein [Teredinibacter 
turnerae T7901] 

288 NCBI_T_turnerae ACR12798.1 36 31128 2 2 0.24 0.14 polysaccharide deacetylase family protein 
[Teredinibacter turnerae T7901] 

290 NCBI_T_turnerae ACR13430.1 35 45608 2 2 0.16 0.09 Starvation-sensing protein [Teredinibacter turnerae 
T7901] 

293 NCBI_T_turnerae ACR11839.1 35 35705 1 1 0.1 0.06 TonB domain protein [Teredinibacter turnerae T7901] 
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294 NCBI_T_turnerae WP_018274537.1 35 18473 3 3 0.71 0.41 molybdenum cofactor biosynthesis protein B 
[Teredinibacter turnerae] 

295 NCBI_T_turnerae WP_018276523.1 35 60727 2 2 0.12 0.07 hypothetical protein [Teredinibacter turnerae] 

297 NCBI_T_turnerae ACR12147.1 35 81294 1 1 0.04 0.02 conserved hypothetical protein [Teredinibacter turnerae 
T7901] 

301 NCBI_T_turnerae WP_018278098.1 35 38961 1 1 0.09 0.05 hypothetical protein [Teredinibacter turnerae] 

303 NCBI_T_turnerae ACR12431.1 34 66836 3 3 0.16 0.09 dihydrolipoyllysine-residue acetyltransferase E2 
component of pyruvate dehydrogenase complex 
[Teredinibacter turnerae T7901] 

308 Uniprot C5BR76 34 13443 2 2 0.62 0.36 50S ribosomal protein L19 OS=Teredinibacter turnerae 
(strain ATCC 39867 / T7901) GN=rplS PE=3 SV=1 

309 NCBI_T_turnerae ACR10990.1 34 43835 1 1 0.08 0.05 phosphoserine phosphatase [Teredinibacter turnerae 
T7901] 

310 NCBI_T_turnerae ACR14494.1 34 28145 1 1 0.13 0.08 putative secreted protein [Teredinibacter turnerae 
T7901] 

313 NCBI_T_turnerae ACR13899.1 33 37768 2 2 0.19 0.11 phosphate binding protein [Teredinibacter turnerae 
T7901] 

314 NCBI_T_turnerae ACR11046.1 33 39375 1 1 0.09 0.05 xylanase [Teredinibacter turnerae T7901] 

322 Uniprot C5BS85 32 16316 1 1 0.22 0.13 6,7-dimethyl-8-ribityllumazine synthase 
OS=Teredinibacter turnerae (strain ATCC 39867 / T7901) 
GN=ribH PE=3 SV=1 

325 NCBI_T_turnerae ACR11303.1 32 15645 1 1 0.23 0.13 ferric uptake regulation protein [Teredinibacter turnerae 
T7901] 

328 NCBI_T_turnerae ACR13510.1 32 31342 1 1 0.11 0.06 putative lipoprotein [Teredinibacter turnerae T7901] 

343 NCBI_T_turnerae ACR13775.1 30 20375 1 1 0.18 0.10 conserved hypothetical protein [Teredinibacter turnerae 
T7901] 

359 NCBI_T_turnerae WP_018277586.1 29 29319 1 1 0.12 0.07 VacJ lipoprotein [Teredinibacter turnerae] 

365 NCBI_T_turnerae ACR14029.1 28 20919 1 1 0.17 0.10 putative lipoprotein [Teredinibacter turnerae T7901] 

377 NCBI_T_turnerae ACR12260.1 27 42285 1 1 0.08 0.05 penicillin-binding protein 6 [Teredinibacter turnerae 
T7901] 
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380 NCBI_T_turnerae ACR13177.1 27 17479 1 1 0.21 0.12 phosphoribosylaminoimidazole carboxylase, catalytic 
subunit [Teredinibacter turnerae T7901] 

398 NCBI_T_turnerae ACR11959.1 26 28676 1 1 0.12 0.07 methionine aminopeptidase, type I [Teredinibacter 
turnerae T7901] 

402 NCBI_T_turnerae ACR11162.1 25 43894 1 1 0.08 0.05 xylanase [Teredinibacter turnerae T7901] 

405 NCBI_T_turnerae WP_018278008.1 25 43015 1 1 0.08 0.05 hypothetical protein [Teredinibacter turnerae] 

406 NCBI_T_turnerae ACR10809.1 25 14005 1 1 0.26 0.15 lactoylglutathione lyase [Teredinibacter turnerae 
T7901] 

411 NCBI_T_turnerae ACR12933.1 24 136609 1 1 0.03 0.02 type IV pilus biogenesis protein [Teredinibacter turnerae 
T7901] 

412 Uniprot C5BS66 24 15862 1 1 0.23 0.13 50S ribosomal protein L13 OS=Teredinibacter turnerae 
(strain ATCC 39867 / T7901) GN=rplM PE=3 SV=1 

415 NCBI_T_turnerae ACR14614.1 24 114111 1 1 0.03 0.02 TonB-dependent receptor [Teredinibacter turnerae 
T7901] 

420 NCBI_T_turnerae WP_018275493.1 24 31602 1 1 0.11 0.06 MBL fold metallo-hydrolase [Teredinibacter turnerae] 

430 NCBI_T_turnerae ACR13449.1 23 55851 1 1 0.06 0.03 2-isopropylmalate synthase [Teredinibacter turnerae 
T7901] 

438 NCBI_T_turnerae ACR13840.1 22 50038 1 1 0.07 0.04 putative peptidase [Teredinibacter turnerae T7901] 

443 NCBI_T_turnerae WP_018275187.1 22 100828 3 3 0.11 0.06 TonB-dependent receptor [Teredinibacter turnerae] 

447 NCBI_T_turnerae ACR14211.1 21 57658 1 1 0.06 0.03 glycoside hydrolase family 51 domain protein 
[Teredinibacter turnerae T7901] 

450 NCBI_T_turnerae ACR11193.1 21 60712 1 1 0.06 0.03 glycoside hydrolase family 43 domain protein 
[Teredinibacter turnerae T7901] 

452 NCBI_T_turnerae WP_018274151.1 21 99427 1 1 0.03 0.02 TonB-dependent receptor [Teredinibacter turnerae] 

456 NCBI_T_turnerae ACR12041.1 21 86959 2 2 0.08 0.05 TonB-dependent receptor [Teredinibacter turnerae 
T7901] 

470 Uniprot C5BSJ0 19 48593 1 1 0.07 0.04 5-methylthioadenosine/S-adenosylhomocysteine 
deaminase OS=Teredinibacter turnerae (strain ATCC 
39867 / T7901) GN=mtaD PE=3 SV=1 
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473 NCBI_T_turnerae ACR11840.1 19 17815 1 1 0.2 0.12 CheW domain protein [Teredinibacter turnerae T7901] 

475 Uniprot C5BU55 19 6847 1 1 0.57 0.33 50S ribosomal protein L32 OS=Teredinibacter turnerae 
(strain ATCC 39867 / T7901) GN=rpmF PE=3 SV=1 

487 NCBI_T_turnerae WP_018274421.1 18 67017 1 1 0.05 0.03 peptidyl-dipeptidase A [Teredinibacter turnerae] 

489 NCBI_T_turnerae WP_018277477.1 18 73696 1 1 0.05 0.03 TonB-dependent receptor [Teredinibacter turnerae] 

493 Uniprot C5BQ76 17 19068 1 1 0.19 0.11 50S ribosomal protein L6 OS=Teredinibacter turnerae 
(strain ATCC 39867 / T7901) GN=rplF PE=3 SV=1 

504 NCBI_T_turnerae WP_018277521.1 16 75175 1 1 0.05 0.03 DUF5011 domain-containing protein [Teredinibacter 
turnerae] 

507 NCBI_T_turnerae ACR14581.1 15 109213 1 1 0.03 0.02 conserved hypothetical protein [Teredinibacter turnerae 
T7901] 

512 NCBI_T_turnerae ACR11936.1 15 73305 1 1 0.05 0.03 ExsB [Teredinibacter turnerae T7901] 

520 NCBI_T_turnerae WP_018275946.1 14 98401 1 1 0.04 0.02 hypothetical protein [Teredinibacter turnerae] 

523 Uniprot C5BJ25 14 28299 1 1 0.13 0.08 2,3-bisphosphoglycerate-dependent phosphoglycerate 
mutase OS=Teredinibacter turnerae (strain ATCC 39867 / 
T7901) GN=gpmA PE=3 SV=1 
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Abbreviation List 

Abbreviation Full name 

AA (9-15)  Auxilary activity 

abs Absorbance 

BLAST Basic local alignment search tool 

bMLG Mixed linkage barley glucan 

bX Birchwood xylan 

C1 Carbon position 1, glucose ring 

C4 Carbon position 4, glucose ring 

cAX Corn arabinoxylan 

CAZy Carbohydrate active enzyme database 

CAZyme Carbohydrate active enzyme 

CBM Carbohydrate binding module 

Cu Copper 

DNSA 3,5-Dinitrosalicylic acid 

DP (followed by 

number) 

Degree of polymerisation 

EDTA Ethylenediaminetetraacetic acid 

CW-EPR Continuous wave electron paramagnetic resonance 

ESI-MS Electrospray ionisation mass spectrometry 

GH Glycoside hydrolase 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HPAEC-PAD High performance anion exchange with pulsed amperiometric 

detection 

IPTG Isopropyl β-D-1-thiogalactopyranoside 

ITC Isothermal titration calorimetry 
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LB Lysogeny broth 

LCMS Liquid chromatography mass spectrometry 

LPMO Lytic polysaccharide monooxygenase 

MALDI-TOF-MS Matrix assisted laser desorbtion-time of flight-mass spectrometry 

MLX Mixed linkage xylan 

OD Optical density 

PASC Phosphoric acid swollen cellulose 

PBS Phosphate-buffered saline 

PEG Polyethylene glycol 

rAX Rye arabinoxylan 

SDS PAGE Sodium dodecyl sulfate–polyacrylamide gel electrophoresis 

SEC Size exclusion chromatography 

SECMALS Size exclusion chromatography multi angle light scattering 

Strep Strep tag 

SUMO Small ubiquitin like modifier 

TLC Thin layer chromatography 

Tm Melting temperature 

TSA Thermal shift assay 

Tt Teredinibacter turnerae 

tXyG Taramarind xyloglucan 

wAX Wheat arabinoxylan 

X1 Xylose 

X2 Xylobiose 

X3 Xylotriose 

X4 Xylotetraose 

X5 Xylopentaose 

X6 Xylohexaose 
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