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ABSTRACT .. 

Various aspects of the behaviour of fixed bed reactors 
supporting highly exothermic reactions, relevant to stable 

-optimal 
design and control, have been studied using detailed 

mathematical models. 

In order to establish the form of the simplest.. basic 

structure, two methods of describing radial heat transfer in 
two dimensional packed beds have been examined. It is shown 
that a lumped parameter single phase heat transfer model 
which implicitly incorporates the heterogeneous structure can 
account not only for the radial heat flux associated with 
both the fluid and solid phases but is also the more approp- 
riate formulation since it allows the important reaction 

rate limitations due to intraparticle mass transfer to be 

properly estimated. Using this two dimensional, heterogen- 

eous dynamic model of the reactor it has. been possible to 

evaluate a simpler one dimensional formulation. It is shown. 
that the latter gives an adequate-description of the dynamic 

behaviour of the system, provided that the overall heat trans- 

fer coefficient between the fluid and the coolant is suitably 
defined, and may, therefore, be used for general studies of 

reactor performance. 

Consideration has been-given to the response of the 

reactor to sinusoidal perturbations of the inlet conditions. 
It has been found that at certain frequencies of oscillation 
temperature runaway may-develop before a safe quasi-stationary 
state is reached. A detailed examination of this behavloiur 

has shown that in addition to the non-linear effects the 

difference in the speeds of propagation of the concentration 
and temperature waves along the reactor as a result of the 
heterogeneity of the system is also very significant. 

The effect of bbth cocurrent and countercurrent cooling 
of a single reactor tube has been examined. The behaviour 
for perturbations in coolant temperature is similar to that 
for inlet temperature and indicates potential difficulties 
in the design of control systems. 

A mathematical model of a multitubular reactor with 
crossflovr. cooling. has been developed and used to identify some 
of the problems-. which may arise in these systems. In 
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particular, considerable interaction between the individual 

reactor tubes occurs when significant conversion of the re- 
actant takes place. This causes tubes in different parts 
of the bundle to exhibit different behaviour and with counter- 
current cooling this may give rise to multiple steady states 
due to the feedback of heat within the system. 

A technique has been developed for predicting regions 

of parametric sensitivity and temperature runaway in hetero- 

geneous fixed bed reactors. The-relationship between this 

form of instability and that due to multiple states of the 

catalyst pellet has been demonstrated. Application of this 

method to both the design and control of a reactor is dis- 

cussed and it is shown that it provides an insight as to the 

behaviour of the system since it makes possible the establish- 

ment of a relationship between local and global reactor stab- 
ility and the operating variables. 
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cHAPTI R11 

INTRODUCTION 

Whilst-the basic principles of most unit operations 
were developed as many as forty or more years ago, it is 

only comparatively recently that systematic methods have 
been applied to the study of chemical processes in general 
and chemical reactor engineering in particular. The 

central feature of this approach has been the formulation 

and use of mathematical models in an attempt to simulate 
the chemical and physical processes which occur within 
these systems. The stimulus for this development has 

been provided by two factors. Firstly, economic pressures 
have brought about the need to design larger and more 

efficient plants and also to improve the efficiency of 

existing plants. This has meant that more reliable design 

methods have been required and more understanding of system 

performance has been needed in order that better control 

of these systems may be effected. The second factor has 

been the parallel development of low-cost high speed computers 

and improved numerical and mathematical techniques which 
have enabled engineers to tackle increasingly complex problems. 

It has long been recognised that information obtained 
from pilot plant studies, although in many respects very 

useful, generally gives no real insight into the behaviour 

of a particular process. Without this understanding the 

wrong conclusions may often be drawn from a particular 

experiment or insufficient information may be obtained be- 

cause the experimental measurements do not tell the whole 

Story. This is particularly true of complex distributed 

parameter systems typified by the fixed bed catalytic reactor 
in which serious disturbances may occur with no immediately 

apparent effect on the measureable variables. Besides 

facilitating a deeper understanding of the behaviour of the 

system, mathematical modelling also has other more easily 

recognised advantages over an extensive program of experi- 

mentation. These are that it is relatively cheap and it 

permits the study of the system performance over a whole range 

of conditions in a comparatively short time. 

Simulation may also be used to indicate undesirable or 
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dangerous modes of operation and so avoid damage to expensive 
equipment. In fixed bed reactors supporting highly ex- 
othermic reactions apparently safe perturbations of the 
system can cause very unsafe behaviour due to the complex 
way in which the physical and chemical processes occurring 
within the reactor interact and because of the very large 

amount of heat which is generated. This may result in damage 
to the reactor itself as well as the catalyst and can put the 
operating personnel at risk if any of the reactants or products 
are explosive. For these reasons extensive study of this 
and many other similar systems by simulation using a mathe- 
matical model offers considerable benefits. 

This does not mean, however, that mathematical modelling 
removes the need for experimentation. On the contrary, this 
is always necessary especially to measure those parameters 
in the model which cannot be estimated by other means. Also 
since any mathematical model can only be regarded as an 
approximation of the physical and chemical processes within 
the system, its predictions must at some stage be checked 
against experimentally determined results. In this respect 
the role of the model is that of a tool to aid the experi- 
mentalist in the interpretation of his results and to pre- 
determine undesirable operating conditions so that they may 
either be avoided or approached with care. 

A further application of mathematical modelling is in 
the design and implementation of computer control schemes. 
An optimal control policy may be easily determined using 
suitable mcthematical models of the system. Also in modern 
control strategies the control action must be rapidly det- 

ermined frcm as few measurements as possible and to do this 

without viclating the various system constraints is only 
possible by the use of a model which reliably predicts the 

system behaviour. 

Because of its very complex behaviour, the fixed bed 

reactor is particularly well suited to mathematical modelling. 
As has been indicated above, the nature of the interactions 
between the various physical and chemical processes within 
the system cannot be easily understood and therefore may not 
be reliably predicted without simulation. r'ixed bed reactors 
are widely used industrially for performing a variety of 
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chemical reactions. The application of interest in this 
thesis is that of carrying out strongly exothermic reactions 
between gaseous reactants on the active surface of catalyst 
pellets. Such reactions are typified by the partial air 
oxidation of hydrocarbons using a transition metal catalyst 
on a high temperature support. Because of the large amounts 
of heat generated and the exponential dependence of the 

reaction rate on temperature this class of reactions poses 
some very difficult problems both in the design of the reactor 
and in its subsequent control. 

Puch of the basic work in the identification of the 
important phenomena which occur in the packed bed reactor 
and the formulation of suitable mathematical modols to describe 
this system has been carried out by Cresswell13 and Thorntonl2. 
However, although considerable information exists on the 

steady state performance of a single reactor tube, no real 
attempt has been made to study either its dynamic behaviour 

or the effect of the external environment (i. e. the coolant) 
taking into account all the significant physical and chemical 

processes which occur within the reactor. Consideration 

of the effect of the cooling medium is particularly important 

in large industrial scale reactors which usually consist of 

many individual reaction units interactively connected by 

the flow of a coolant. 

One of the aims of this work is to examine the pattern 

of dynamic behaviour of a single tube fixed bed reactor in 

which a strongly exothermic reaction takes place, principally 
in terms of the important thermal effects which may occur. 
This study is carried out in perfectly general terms using 

a simple reaction scheme and data which, although it refers 
to no particular process, is typical of that found with many 

reactions of industrial importance (e. g. the partial oxi- 
dation of hydrocarbons) and well illustrates the problems 

associated with these systems. Consideration is given to 

reactor instability, particularly that associated with 

parametric sensitivity, to determine under what conditions 
this phenomenon occurs and to examine its effect on reactor 

performance and control. 

It is also intended to pay some attention to the develop- 

ment of a mathematical model of a multitubular reactor in 
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order to investigate the nature of the interaction of the 
individual reactor tubes. Because o1 the complexities of 
this system, this study necessarily takes the fora of a 

preliminary investigation of steady state behaviour. Never- 

theless it should still be possible to identify some of the 

important problems encountered in both the mathematical 
description and the operation of these systems. 

By examination of the general pattern of behaviour of 
the fixed bed reactor in this manner, the essential charac- 
teristics of the system which must be taken into account in 

the design of a control strategy may be determined. 
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CHAPTER 2 

PREVIOUS YJORK AND DEVELOPMiNT OF THE. MODELS 

2.1 Introduction 

The interest in chemical reaction engineering has in- 

creased so rapidly in recent years that a voluminous amount 
of literature about reactor design and heterogeneous catalysis 
is now available. Amongst the useful textbooks dealing with 
the well-founded aspects of the subject are those by Arisl 

2-3 Petersen, Levenspiel, Denbigh and Turner; Thomas and Thomas, 
Coulson and Richardson, and Perlmutter? Several "state of 
the art" reviews have also appeared, the notable recent ones 
being those by Proment; '9 Hlavacekl° and Ray! ' Thornton 12 

has also given an excellent critical review. 

1. Iuch of the recently published literature has tended to 
deal either with rather simple models of little practical 
application or else with complex models which are not pertinent 
to the reactor configurations of interest here. For example, 

stability analyses using quasi-homogeneous models and axial 
dispersion in adiabatic reactors have lately received con- 
siderable attention. Whilst such analyses have involved some 

elegant mathematical techniques and are indeed, in themselves, 

very interesting, the results can usually only be applied to 

certain specific systems and have little or no general appli- 

cation to industrial reactors. For this reason, it is not 
intended here to survey all the recent literature concerning 
catalysis and fixed bed reactors and in any case this would 

only tend to duplicate the efforts of the reviewers mentioned 

above. Instead, what is attempted in this chapter is to show 
how the basic reactor and catalyst pellet models used in this 
thesis have been developed and thereby set them in perspective. 
Some consideration is also given to the use of various models 
in the study of reactor stability. 

2.2 The Catalyst Pellet 

Consideration of the catalyst pellets in a packed bed 

reactor is necessary for two important reasons. The first 

reason, although perhaps obvious, is that the presence of the 

pellets significantly affects the flow distribution. inside 
the reactor and therefore influences the dissipation of both 
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heat and mass. The second is that the catalyst pellets 
provide the surface on which the reaction takes place. 
Generally the pellets have an irregular porous structure so 
that the surface area available to the reacting gases may be 
very large. In order to reach the catalytic surface, however, 
the reactant gas molecules must overcome certain resistances 
to both mass and heat transport within the system. The effect 
of these resistances is generally to cause conditions within 
the catalyst pellets (i. e. reactant concentration and temp-- 
erature) to differ from those in the surrounding gas phase 
and thereby inhibit, or enhance, the rate of reaction. Thiele16 
and Zieldowitseh17 were the first to recognise and mathemat- 
ically formulate the effect on the reaction rate due to react- 
ant diffusion within the pores of the catalyst pellet. Their 
work on isothermal catalysts was extended by Wheeler 18 

and 
? ýeisz and corrorkers19,20,21 mainly in an attempt to quantify 
the regions in which the reaction rate limitations due to pore 
diffusion were less than a specified amount. Jheeler22 and 
Prater23 demonstrated that when heat was generated by reaction 
-ýhroughout the catalyst pellet the heat transfer resistance 
provided by the pellet caused a temperature gradient which 
also affected the rate of reaction. Carberry24 was the first 
to consider the finite rates of mass and heat transfer between 
the catalyst pellet and the surrounding gas phase and their 

effects on the reaction rate in a mathematical description 

of the catalyst pellet. 

The transport resistances within the system are now 
generally identified 12tl3as: 

(1) A mass transfer resistance within the 

catalyst pellet pores. 
(2) A nass transfer resistance at the exterior 

pellet surface between it and the gas phase. 
(3) A heat transfer resistance due to the 

structure of the pellet. 
(4) A heat transfer resistance between the 

catalyst pellet and the surrounding gas. 
All of these resistances affect the transport of heat and mass 
to and from the interior surface of the pellet and therefore 
influence the rate of reaction on that surface. 

A general mathematical description of the catalyst 
pellet in the steady state which includes these four resistances, 
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as well as the reaction rate and heat generation rate ex- 
pressions, results in a pair of non-linear, simultaneous, 
second order, ordinary differential equations describing the 
variation in reactant concentration and temperature with 
position inside the pellet. These equations are given in 
Appendix(l). The intraparticle heat and mass transfer resist- 
ances are described respectively by Fourier and Fickian type 

expressions and the interphase resistances form the boundary 

conditions of the resulting equations. Inevitably, to solve 
these equations a numerical method is necessary13 flithin 

a mathematical model of the reactor, the object of solving the 

equations describing the catalyst pellet is not, however, to 

compute the concentration and temperature distribution within 
each pellet since this information is generally of little use 
by itself, even if it can be obtained accurately. Uhat is 

required is an estimate of how the transport resistances 
affect the reaction rate and heat generation rate relative to 
the gas phase conditions which can be measured. That is to 

say, a knowledge of the effectiveness factor, ] 
, is required 

so that the actual rate of reaction in each catalyst pellet 
may be expressed in terms of the gas phase conditions around 
the pellet. The effectiveness factor is defined as: 

Actual reaction rate at pellet conditions 
Reaction rate at fluid conditions. 

Once xnown at each point in the bed, t may then be used 
in the equations describing the gas phase concentration and 
temperature throughout the bed to "correct" the reaction rate 
expression. Although the effectiveness factor is a very 
powerful concept, in non-isothermal reactors it varies with 
position in the bed since it is a function of concentration 
and temperature and this usually means that the pellet con- 
ditions must be computed at each point in order to evaluate it. 

As mentioned above, solution of the general catalyst 
pellet model which includes a description of all the transport 

resistances is complex and tends, therefore, to be too time 

consuming to be included in a_two dimensional or dynamic model 
of the reactor 

12 The relatively recent development of ortho- 
gonal collocation methods for solving differential equations 
indicatesl4'26'27that the use of the general pellet model for 
these purposes is at least feasible with a very powerful modern 
computer. However, the tendency in the past has been to attempt 
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to simplify the catalyst pellet model thereby making its 
solution on small inexpensive computers more tractable. 
Since computing costs are usually directly related to the -size 
of the computer this is probably a more acceptable approach 
and the use of the sophisticated pellet model need only be 
employed in cases where the validity of approximate models is 
in doubt. Also, the approximate form may be used for a survey 
of feasible operating conditions which may subsequently be 

examined in more detail with the complex model. 

Most published work appears to deal with systems in 

which either both interphase resistances (i. e. resistances 
(2) and (4)) or both intraphase resistances (i. e. resistances 
(1) and (3)) have been neglected without any attempt at just- 
ification. The intraphase resistances may, of course, be 
ignored without question when the catalyst pellets are non- 

porous and the reaction, therefore, only occurs at their 

exterior surface. If pore diffusion does occur, however, then 

its limiting effect on the rate of reaction can be substantial 

so that neglecting it will lead to completely wrong conclusions 
12,35 This point is demonstrated in the next chapter. 
The interphase mass transfer resistance is relatively small 

compared with the other transport resistances and can often 
be ignored without serious loss of accuracy25 The interphase 

heat transfer resistance, however, is quite large in most 

practical cases and it therefore has a significant effect on 
the pellet temperature. 

Several methods of approximation have been proposed 

either to simplify the solution of : he catalyst pellet equation: 

or to enable direct computation of the effectiveness factor 

given the fluid conditions. Beek 29 
expressed the reaction rate 

as a linear function of temperature and a somewhat similar 
technique was employed by Gunn 32 These methods are of limited 

use since in most highly exothermic reactions the reaction rate 
is an extremely non-linear function of temperature. Rester 

and Aris36 have shown how upper and lower bounds on the 

effectiveness factor may be predicted by variational techniques 

in the absence of both heat transport resistances. Their 

technique is potentially useful to the experimentalist who is 

interested in obtaining absolute values of the kinetic para- 
meters for a particular reaction and it is applied to the case 
of a spatially non-constant internal mass transfer resistance 
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due to a non-uniform pore structure. Petersen30,31,2 
developed what is known as the asymptotic method of estimating 
effectiveness factors. This assumes that the reaction is 
confined to a thin layer of the catalyst under conditions of 
strong intraparticle mass transport resistance, and negligible 
interphase resistances. More recently Patterson and Cresswell33 
have used the similar concept of an effective reaction zone 
but including both the interphase and intraphase transport 

resistances to reduce the effectiveness factor calculation to 
the solution of a single algebraic equation. They have shown 
that for highly exothermic reactions, where the reactant is 
rapidly consumed before it can diffuse very far into the cat- 
alyst pellet,. the approximation is very good. In some respects, 
however, this method lacks generality since it has only been 
developed for the steady state and the case of a single irre- 

versible reaction. Similar criticisms can be made of the 

method of Jouven and Aris34 by which effectiveness factors 

are estimated to within 5 and 10o accuracy using a best fitting 
interpolation formula. 

Beek29 noted that the principle factors affecting the 

reaction rate were the intraparticle mass transport resistance 
and the interphase heat transport resistance. The results 

, 
of Hutchings and Carberry25 showed that the ratio of the 

pellet Sherwood and Dusselt numbers is typically of the order 

of 1: 1000 which therefore confirmed Beek's29 observation. 
Computations performed by Cresswell13 for a single irreversible 

reaction and later by Thornton12 for a complex reaction scheme 
involving both consecutive and parallel reactions showed that 
in the case of gaseous reactants the pellet is essentially 
isothermal over the whole range of practical operating con- 
ditions and thermal conductivities. On the basis of these 

results Cresswe1113 developed the lumped parameter catalyst 
pellet model given in Appendix (1). In this model the cata- 
lyst pellet is assumed to be isothermal but at a temperature 
different from the surrounding gas due to the interphase heat 

transport resistance (i. e. the intraparticle heat transport 

resistance is neglected). In the case of first order react- 
ions this assursption allows analytic solution of the equation 
describing mass transport to and within the catalyst particle 
and so the peilet model is reduced to a single non-linear 
algebraic equation in temperature. This allows very rapid 
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evaluation of the catalyst performance. Thornton12 showed 
that the same simplification may be applied in the case of 
competing parallel and consecutive reactions as well as in 
the case of non-first order reactions with the use of a pseudo- 
first order rate expression. The use of pseudo-first order 
rate expressions in the isothermal pellet model has been 

studied in some detail by Rawlings37Hlavacek and Kubicek38'39 
have further shown that the isothermal pellet model gives an 
accurate estimate of the steady state effectiveness factor 

over the whole industrially important range of parameters. 
They also proposed an algorithm to facilitate its solution 
in the case of non-first order or non-Arrhenius reaction rate 
expressions.. 

Several investigators 40,41,42,43,44 have experimentally 
studied the single catalyst particle in the steady state 

and demonstrated the existInce of large temperature differ- el 

ences between the particle surface and the. surrounding fluid. 

In particular, Irving and Butt43 have shown that this inter- 

phase temperature rise is generally much greater than the 

ntraparticle temperature rise. Hughes and Koh44 measured 

steady and unsteady state temperature profiles within single 

pellets for the benzene hydrogenation reaction. They also 
found that the intraparticie temperature rise was quite small 
in comparison with the interphase rise and not sufficient by 

itself to affect the overall effectiveness factor to any 
large extent. 

Only recently have single catalyst particles in the un- 

steady state received much attenticn, and most of this has 

been concerned with stability rather than an examination of 
the model structure. "1. cGuire and Lapidus4.5 used a dynamic 

model of the catalyst pellet which ignored the interphase 

transport resistances. This type of nodal has been shown to 

be inappropriate for the steady state description of exo- 
thermi. c reactions and it is, therefore, unsatisfactory in the 

unsteady state. Feick and Quon46 examined three different 

dynamic moaels of the catalyst pellet in a study of the tran- 

sient behaviour of a fixed bed reactor. These models were 

of increasing complexity; the first ignored all of the trans- 

port resistances, the second considered only the interphase 

resistances and the third took account of all the resistances. 
The results showed that the predicted transient behaviour of 



12. 

made to establish the lack of importance of the heat transfer 
effects within the system. Also, because the system was 
designed to operate isothermally, the perturbations were 
applied to both the reactor inlet and the coolant so that the 

effect was distributed throughout the system. Perhaps the 

most important point about this work is that virtually all of 
the concentration disturbance occurred during the temperature 

perturbations and not subsequent to them and to infer from 
this that the concentration changes are "driving" the response 
is not possible. There is no evidence that this is the 

case with the highly exothermic reactions of interest here. 
Indeed, the experimental results of Kehoe and Butt48 and 
Horak and Jiracek49 show that the mass capacitance of the 

catalyst pellet is much less than the thermal capacitance so 
that the concentration changes within the pellet occur faster 

than the temperature changes. In these circumstances the 

concentration profiles within the pellets may be treated as 
if they pass through a series of pseudo-steady states which 

are determined by the changing temperature profiles. 

By applying an analysis similar to that used in the 

steady state, Thornton12 demonstrated that the catalyst pellet 

also remains essentially isothermal'in the unsteady state. 
Although a slight intraparticle temperature gradient was 

evident at the beginning of the transient response the profile 

rapidly flattened indicating isothermality. The effective- 

ness factors predicted by both the fully distributed catalyst 

pellet model and the isothermal model were in excellent agree- 

ment throughout the transient response. This is not sur- 

prising since the magnitudes of the transport resistances 
inside and outside of the pellet are the same in both the stead; 

and unsteady state. Kehoe and Butt48 measured temperature 

profiles in catalyst particles subject to perturbations in 

the surrounding gas. They found that in certain cases the 

intraparticle temperature rise was oignificant and in pellets 

of relatively high thermal conductivity isothermality was 

obtained throughout the transient period. This is to be 

expected since, as they point out, the reaction approximated 
to the special case of zero order kinetics in most of their 

experiments, and Paterson and Cresswell33 have shown that 

under these circumstances appreciable intraparticle temperature 

gradients can exist since the heat balance is independent of 
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the mass balance. Hughes and Koh44 have demonstrated 

experimentally only a small intraparticle temperature rise 
during the transient response of a catalyst particle; most 
of this occurred near the surface and the bulk of the profile 
was flat. As mentioned above, these authors found that the 
interphase heat transfer resistance is far more important and 
during the transient response the intraparticle temperature 

gradient has very little effect on the effectiveness factor. 
In this respect the approximation of isothermality of the 

pellet is as good in the unsteady state as it is in the steady 
state. 

Lumping the heat transfer resistance at the pellet sur- 
face and therefore treating the pellet as isothermal allows 
the mass transport equation to be solved analytically., As 

shown in Appendix (i), the dynamic model of the catalyst 

pellet then becomes a single first order, ordinary differen- 

tial equation describing the change of pellet temperature 

with time. The advantages of this formulation are clearly 

evident; the model gives an accurate estimate of the reaction 

rate limitations imposed by the catalyst pellet and may be 

solved sufficiently rapidly to be included in a dynamic model 

of the reactor suitable for an extensive study of its un- 

steady state behaviour. 

2.3 The Tubular -3eactor 

Having discussed the catalyst particles in isolation, 

attention is now directed at the mathematical description of 
their assembly in a reactor tube. 

Broadly speaking, reactor models may be divided into two 

categories; quasi-homogeneous models in which no allowance is 

made for the difference between the fluid and pellet conditions 
(i. e. temperature and reactant concentration) and hetero- 

geneous models where the reaction rate limitations due to the 

transport resistances in and around the catalyst pellets are 

explicitly described. In the heterogeneous models, these 

rate expressions are modified by an effectiveness factor which 
is obtained by solution of the catalyst pellet model. In 

the quasi-homogeneous models the presence of the catalyst 
pellets is acknowledged only by their effect on the mass and 
heat dispersion throughout the bed. For the reasons given 
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previously, it is often necessary to take account of the 
reaction rate limitations imposed by the catalyst pellets and 
several workers$'12,13,46,53 have shown that with many highly 
exothermic reactions of industrial importance a heterogeneous 
model is essential to adequately describe the system. 

The single tube reactor is essentially a length of pipe 
into which catalyst pellets are packed. In most cases with 
exothermic reactions this tube is immersed in some form of 
cooling medium. The reaction gases enter at one end and 
leave with the products at the other. There is, therefore, 
a bulk movement of gas in one direction. The processes of 
reaction and heat generation due to reaction cause temperature 

and concentration gradients along the tube parallel to this 
bulk movement of fluid and heat removal by the coolant through 
the walls of the tube causes temperature, and therefore con- 
centration gradients, perpendicular to the bulk flow (i. e. 
radially). In some circumstances a diffusive heat and mass 
flux may also occur in the axial direction, parallel to the 
bulk flow. Although this diffusive axial flux has received 
considerable attention, especially from the point of view of 
determining reactor stability conditions, several investigatorE 
have shown 

14,53,54 that for the flow velocities used in 
industrial practice axial dispersion of heat and mass has a 
negligible effect upon conversion when the bed length exceeds 
approximately one hundred catalyst particle diameters. Since 
this is usually the case, a description of axial heat and mass 
dispersion is not included in the reactor models used here. 

To describe the spatial variations of temperature and 
reactant concentration within a reactor tube therefore require: 

a model which in some way accounts for both axial and radial 
gradients. In adiabatic reactors, which is not the case of 
interest here, there will, of course, be no need to consider 
radial gradients since heat is not removed or supplied through 
the tube walls. 

Although the pellet distribution throughout the bed is 

random and the bed is discrete in nature, the problem of 
measuring transport coefficients and other bed properties, sucr 
as voidage, is best tackled by treating the bed as a continuum 
for the purposes of gas flow. This means that only average 
bed properties need be measured for use in the reactor model 
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p 
and so reproducability of these values in other systems is 
then possible. The transport of heat and mass by the fluid 
in the bed may then be described in terms of differential 

equations making use of averaged or effective transport para- 
meters, In some cases the local patterns of concentration and 
temperature may differ significantly from those obtained by 
the solution of differential equations and a better des- 

cription may then be obtained by regarding the bed as a coll- 
ection of individual void. opaces containing catalyst pellets- 
and connected to each other by small channels. 

55 This type 

of finite-stage or mixing-cell model was first proposed by 
Deans and lapidus56 and has been used by several other workers 
45,57 

In 'these models the interconnected void spaces are 
described as stirred tanks containing a catalyst particle. 
This type of formulation has certain mathematical advantages 
and has been exploited in fixed-bed reactor optimisation studiEs 
59 

Generally, however, the finite stage models lead to 

rather unrealistic discontinuous profiles, especially in the 

radial direction55unless a large number of mixing cells is 

considered. In this case the computational effort required 
for solution of the model is greatly increased and as Feick 58 

has shown it then corresponds to the finite difference rep-' 
resentation of the differential equations used in the continuum 
model. r? or these reasons the reactor models used in this work 
are of the continuum type. The radial heat transport is des- 

cribed by a courier type expression using an effective radial 
thermal conductivity referred to the gas phase and the radial 
mass transport by a Fickian type expression using an effective 
radial diffusivity, in a manner analogous to that used in the 

catalyst pellet model. It has recently been suggested60 that 
this formulation is inappropriate for the description of radial 
beat transport in the packed bed. Since this has very imp- 
ortant implications on the reactor model structure and on the 
identification and subsequent description of the important 
physical processes, radial heat transport in packed beds and 
its description are examined in detail in the next chapter. 
Specifically it is shown that the continuum model which employs 
an effective radial thermal conductivity referred to the gas 
phase is, for several reasons, a more useful formulation of the 
heterogeneous reactor model. 

It is worth examining some of the other assumptions implicit 
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in the formulation of reactor models. In all the models, 
axial symmetry of the concentration and temperature profiles 
is assumed. In single tube reactors this is usually the 

case since the coolant conditions do not vary around the tube 

circumference. In the larger industrial units where the 

coolant may flow perpendicular to the tube axes, the results 
of chapter 8 show that large temperature gradients may, under 
some circumstances, occur in the coolant flow direction. 

There will also, of course, be variations in the coolant 
velocity around the tubes. The difficulties of describing these 

variations are very great and to obtain an accurate descrip- 
tion the temperatures and heat transfer coefficients around 

all the tubes would have to be measured or estimated. Even 
if sufficient data existed to estimate these variations to 

any degree of reliability the results would certainly not be 

reproducable in other systems or even in the same system. 

Similar reasoning may be applied to conditions inside 

the tube so that it is generally assumed that within the bed 

every point on the surface of each catalyst particle is in 

contact with gas of uniform concentration and temperature and 
is also equally accessible for the purposes of heat and mass 
transport. This further implies that the rates of reaction 

and heat generation at each point in the bed may be calculated 

as if a catalyst particle is acting at that point. 

For the purposes of the work described in this thesis 

the catalyst pellets are assumed spherical and of uniform size 

and activity. Other pellet shapes may be considered without 

much difficulty by defining an appropriate characteristic 

radius? The effect of varying the pellet size throughout the 

bed, in an attempt to optimise the reactor performance, has 

been investigated by ; iaim 14 
and Brasset et al? 

3 Calderbank 

and coworkers61 and Stewart and Sdrensen72 have modelled 

reactors in which the packing is diluted with inert spheres, 

and Shadman-Yazdi and Petersen62 have considered the effect of 

varying the catalyst activity within individual pellets in 

order to obtain better yields in cases where the product can 
be consumed. Catalysts are usually subject to deactivation 

with time and more importantly with temperature; little is 
known, however, about the exact mechanism of catalyst deact- 
ivation except that a rapid increase in temperature will usually 
enhance it. In most studies of the dynamic behaviour of 
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reactors the perturbations last for a relatively short period 
compared with the time needed to cause significant deactivation. 
Over longer periods deactivation may need to be considered 
and studies have been made of long term performance where it 
is the principle factor59,70kihen temperature runaway occurs 
deactivation can take place so that the kinetic model is no 
longer applicable. Since one of the purposes of reactor mod- 
elling is to identify regions of operation where such undesir- 
able behaviour occurs, inclusion of catalyst deactivation eff- 
ects in the models used here is not really necessary. 

A common assumption employed in reactor modelling is that 

all of the physical and chemical parameters in the system are 
independent-of position, concentration and temperature. 
Clearly this is not the case in practice, but usually the in- 

crease in computational effort required to solve a model which 
includes such variations (even when they are known) is not just- 
ified by the increase in accuracy which is obtained 

12 This is 

especially true in, for example, the case of heat transfer co- 
efficients which can usually only be estimated to about 10f 

V. ceüracy in any case. Perhaps the most doubtful of assump- 

-tion is that of plug flow of the gas through the reactor which 
is related to the assumption of uniform bed voidage. The 

voidage of a packed bed is not uniform, being greatest near 
the tube wa11 

3 
since the gas will tend to take the path of 

least resistance through the bed, its velocity profile will 
therefore be deformed. This in turn will also cause a vari- 

ation in the values of the mass and heat transport parameters. 
Thornton12 has shown that the performance of a reactor can be 

significantly affected by small variations in even a uniform 
value of voidage. Valstar55 found similar disagreement between 

the predictions of a reactor model which contained a velocity 

profile expression and one in which plug flow was assumed. 
More recently Stanek and Szekely65 have suggested that signi- 
ficant gas flow maldistribution may occur not only due to local 

variations in bed voidage but also because of the variation in 

properties caused by the radial temperature gradients. These 

results appear to some extent to conflict with those of 
Hoiberg et a164 who found that the steady state and transient 

response predicted by a plug flow model was no different from 
that predicted by a model which included an arbitrarily spec- 
ified velocity profile with a large peak near the tube wall. 
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They concluded that in their system, at least, the radial heat 
and mass transfer occurred rapidly enough to counteract the 

effects of the higher local velocities. Clearly, then, more 
investigation of this problem is required. As Valstar55 and 
Hoiberg et a164 have shown, inclusion of a velocity profile 
in the reactor model is not difficult, however, the validity 
and applicability of both the model and its predictions is 

uncertain. The distribution of voidage within the bed, and 
therefore the form of the velocity profile, is very system 
dependent. 63 Since one of the aims of this work is to contri- 
bute towards a general picture of reactor behaviour, there 

seems to be little alternative to using the assumption of plug 
flow, at least until more is known about the fluid dynamics 

of packed beds. 

As a result of these concepts and assumptions the reactor 

model becomes a set of simultaneous, non-linear partial diff- 

erential equations describing the spatial variation of temp- 

erature and concentration within the bed. One equation con- 

sists of a heat balance over the reactor and the others are 

mass balances on each reactant. These equations are coupled 

with the catalyst pellet model and because of their high non- 
linearity ü numerical method of solution is necessary13 

Various numerical methods of increasing sophistication have 

been used; for example the alternating direction explicit 

method46 and the recently developed orthogonal collocation pro- 

cedures. 
14'47'66'72 The most generally applicable method, 

however, is the Crank liicolson finite difference represent- 

ation of the differential equations. This is not only reliable 

and easy to program but is also the method against which the 

approximate solutions are checked14 In the solution of the 

reactor equations, at each point in the bed where the gas con- 

centration and temperature are calculated the catalyst pellet 

model must also be solved to obtain the reaction rate and heat 

generation rate. This increases the computational effort 

considerably and can make the model quite unsui-cable for a 

comprehensive study of reactor behaviour. (Note: In quasi- 
homogeneous models this is not necessary since the pellet con- 

ditions are assumed to be the same as those in the fluid and 
the-solution is therefore greatly simplified). For this 

reason several methods have been developed to simplify the sol- 

ution by reducing the number of pellet calculations which need 
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to be performed. Since it is the axial concentration and temp- 

erature profiles which are of principle interest, the obvious 
method is to eliminate the radial derivatives in the model. 
Simply to ignore the radial gradients is, however, inapprop- 

riate in many systems because the radial temperature profile 
especially significantly influences the reactor performance by 

determining the rate of heat removal from the bed 12P64 The 

preferred approach, therefore, is to reduce the reactor model 
to a one dimensional form which incorporates some allowance for 

the effects of radial variations and from which it is possible 
to regenerate the radial profiles when these are required. 

Turner7l used a semi-empirical method of model reduction 
based on the use of pseudo-parameters to approximate the radial 

profiles and Naim14 has recently extended this method to the 

unsteady state. Thornton12 developed a one dimensional model 
based on the assumption of a parabolic radial temperature 

profile which results in a modified wall heat transfer co- 

efficient. He showed that this formulation gives good agree- 

ment with the steady state predictions of the two dimensional 

model and proposed its application to the unsteady state. This 

model, which is described in Appendix (2), is particularly 

attractive for an extensive study of reactor performance be- 

cause of the small amount of computational effort which it re- 

quires. It has, therefore, been evaluated in the dynamic form 

and used extensively in this thesis. 

2.4 Stability 

If very small changes in the inlet conditions of a reactor- 

can cause vary large changes to occur within the bed, then 

the reactor rMay be described as unstable in operation. Such 

instability may be due solely to parametric sensitivity, in fi 

which case removal of the disturbance will generally restore 
the original state, or to parametric sensitivity accompanied 
by the bed to exhibiting multiple states. In the latter case 

simply remoiring the disturbance will not always cause the 

reactor to return to its original state unless certain condit- 
ions are fulfilled 12 

In either case, the consequences of the instability are 
similar; rapid reaction ignition or "blowout" may occur. Both 

of these phenomena are undesirable, more especially ignition 

since- temperature runaway develops and this causes catalyst 
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deactivation and sintering, poor product selectivity and even 
damage to the coolant. A prior knowledge of the regions of 
potential instability is therefore desirable for the satis- 
factory and safe operation of the reactor. 

The problem of instability in fixed bed reactors has been 
the subject of much of the recent literature and Rayllgives a 
good review of this work. Although, at an operational level 
instability is essentially a dynamic problem steady state in- 
formation can be used to indicate regions of instability. ror 
example, if for given inlet conditions a reactor may have two 
steady states then it may be possible with small perturbations, 
or even no perturbation at all, to cause it to switch rapidly 
from one to the other. If the parameter regions over which 
the two simultaneous steady states occur can be identified, then 
this behaviour may be avoided. 

The catalyst pellets themselves may exhibit multiple steady 
states in which case the reactor will also show corresponding 
multiplicity. ahen the effects of axial heat and mass dis- 
persion are included in the reactor model, examination of the 

equations shows that three steady state profiles are possible for 
identical feed conditions, even in quasi-homogeneous systems? 

3 

due to the backmixing of the fluid. Multiplicities of this kin(. 
have been well discussed by Perlmutter? As Froment9 has pointed 
out, however, the degree of fluid backmixing which has been 
found74'75 to produce multiple steady states does not occur in 
industrial fixed bed reactors. Transport of heat from the re- 
actor exit back to the entrance can occur external to the re- 
actor due to either a recycle stream, in which case material is 
also transported backwards, or countercurrent cooling. Multi- 

plicities caused by recycle have been studied both theoretically 
and experimentally 

76'77'78 the reactors of interest here, however, 
dc not include a recycle stream. The occurrence of multiple 
steady states due to countercurrent cooling has been demonstrated 
experimentally by Luss and 1ledellin117 with an unpacked, liquid 
phase single tube reactor; the possibility of this phenomenon 
with gaseous catalytic fixed bed reactors is examined in Chapters 
7 and 8 of this thesis. 

A large amount of the work reported in the literature con- 
cerns the development of stability criteria and the identifica- 
tion of regions of multiplicity for catalyst pellets without 
either the interphase or the intraparticle heat and mass-transport 
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resistances. As was discussed in section 2 of this chapter, 
the only transport resistance which does not significantly affect 
the pellet performance over a wide range of parameters is the 
internal heat transfer resistance. Since, therefore, the sta- 
bility criteria developed in the absence of interphase resist- 
ances cannot be extended to allow for them12such criteria are of 
no practical use. Rayll has also shown that for a number of 
reactions the regions of multiplicity predicted for catalyst 
pellets with no interphase resistances are very unlikely to be 

attained in industrial reactors. 

The stability criteria which have been proposed for cata- 
lyst pellets with no internal resistances38'79are a little more 
useful since they may, at least, be applied to non-porous par- 
ticles and catalytic wires. 

When all the transport resistances are included in the 

catalyst pellet model three steady states are possible for a 
given set of fluid conditions. Hatfield and Aris80,81 have 

reported the possibility of five steady states, however this 

only seems to be possible outside the practical range of para- 

meters (e. g. for low Sh/Nu ratios). In the case of three steady 

states of the catalyst pellet, the middle one is metastable. 
Cresswe1113'82 has derived necessary and sufficient conditions 
for multiplicity using a lumped parameter model of the catalyst 

pellet for single first order reactions. Thornton12 and NcGreavy 

and Thornton83 have re-examined this problem and developed a 

method for predicting the region of multiple steady states of the 

pellet for both simple and complex reaction schemes. This me- 
thod is particularly useful since the region of multiplicity may 
be plotted on a single phase diagram as a function of the fluid 

conditions for each reaction system. Reactor trajectories may 
be plotted or the same diagram thereby giving an immediate indi- 

cation of potential instability and operating conditions. 
Essentially, the region of multiple steady states is charact- 
erised by an upper and lower bound of fluid temperature at a 
given fluid concentration. To attain the upper steady state the 

pellet must be perturbed across the upper bound and subsequent 
movement to the lower steaay state is only possible by crossing 
the lower bound. In this way, the catalyst pellet exhibits 
hysteresis in the region of multiple steady states and does not 
actually attain the middle, metastable state. This behaviour 
has been demonstrated experimentally with a sin,,, -le catalyst 
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pellet, in which the ethylene hydrogenation reaction occurred, 
by Furusawa and Y"unii84 and Ray11 reports that similar behaviour 
has been observed by Horak and Jiracek! 9 Thornton 12 

and 
McGreavy and Soliman85 have also investigated the dynamic behav- 
iour of single catalyst particles in the region of multiplicity 
and the latter were able to determine the amplitude and freq- 

uency of fluid perturbations which cause the pellet to remain in 
the upper state. 

The phenomenon of parametric sensitivity outside of the 
region of multiplicity has received little attention: the 

analyses which have been performed have been concerned only with 
quasi-homogeneous systems67,68,69Thornton'812 results indicate 
that parametric sensitivity near regions of multiplicity is likely 
to be a more serious problem than the multiplicity itself. This 

point is examined in Chapter 4 of this thesis. 

2.5 Concluding Remarks 

In contrast to the considerable effort devoted to simpli- 
fying the reactor models some investigators have formulated more 
complex models. For example, catalyst pellets in non-uniform 

concentration and temperature fields have been studied from the 

point of view of stability; 
86'87'88 

other workers have considered 
the existence of asymmetric intraparticle profiles in catalyst 
slabs and pellets in a symmetric environment 

8999ot9l 
and an 

interesting paper by Luss92 shows that severe heating of individ- 

ual active sites may occur whilst the catalyst support remains 
relatively cool. Experimental verification of these models, and 
results, is virtually impossible and their use, at present, in 

viable reactor models is out of the question. 

By and large, the problem of the formulation of tractable 

models which sufficiently describe the reactor seems to have 
been overcome. This has been due mainly to the identification 

of the important physical and chemical processes which occur 
in these highly complex systems. I, iuch work on simplified or 
very specific systems has been done but still very little in- 
formation is available on the general behaviour of industrially 

orientated systems. Now that most of the mathematical tools 

are available such a study is possible. 
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CHAPTER 3 

HEAT TRANSFER IN PACKED BEDS 

3.1 Introduction 

The rate of reaction, and therefore the rate of heat 

generation for exothermic reactions i. extremely dependent 

on temperature, usually in a non-lim. r` manner. It is, 

therefore, essential that a mathematical model of a packed 
bed reactor should contain an adequate description of the 

heat transfer processes occurring within the bed. Not to do 

so, at the design stage, could lead to either a very conserv- 

ative design or disastrous situations during operation of the 

reactor caused by, for example, temperature runaway. However, 

which heat transfer processes to include in the model and how 

to describe them must be decided. Consideration of these 

factors is not only relevant to the basic structure of the 

reactor models used in this thesis but also raises some funda- 

mental questions concerning the whole philosphy of system 

modelling. 

In the synthesis of any system model, the first require- 

ment is to establish the criteria which must be met by the 

model. For the extremely complex system represented by the 

fixed bed reactor this is of considerable importance since to 

attempt to describe all chemical and physical processes 

occurring within the bed would clearly lead to an intractable 

model. To avoid this, the following factors must be 

considered: 

1. In what context will the model be used? 
2. /hat level of detail and complexity are 

needed to provide a quantitative description 

of performance for use in a criterion function? 

3. Can measurements be made of the parameters 

which appear in the model? 

Clearly, if certain effects are found to be unimportant 

over a particular parameter range, then their inclusion in a 

model intended for use in that range unnecessarily complicates 
the model and wastes computation time. Also there is little 

point in studying a system model which contains parameters 
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that cannot be measured or estimated since no reliability can 
be attached to its predictions. 

Implicitly, in the approach adopted here, an attempt is 

made to identify the basic structural features, developing the 

model in terms of the physical or chemical processes consid- 

ered to be rate limiting. In so doing it is necessary to 

use only average values for the bed. For example, it is not 
feasible to consider variations due to the shape of the parti- 

cles, or the change in some coefficients around the pellets, 

since these could not be measured and could certainly not be 

predicted in other situations. or is it likely to be feasible 

to consider anything other than average bed properties, even 
though there will, in fact, be local variations. I: oreover, 
there is the question concerning coefficients which are ob- 
tained from simple experimental measurements and their use in 

more complex situations. In a reacting system with heat 

generation it may be inappropriate to use the same effective 
heat transfer coefficients as obtained from a non-reacting 

system. 

In a non-isothermal, non-adiabatic reactor heat, and mass, 

transfer may occur both axially and radially. (Here it 

should be noted that the axial transport referred to is not 

that due to the bulk movement of the reacting gases, but 

rather that due to dispersion processes). Reactor models 

which include a description of axial heat transfer have rec- 

eived considerable attention since they predict the possib- 

ility of more than one steady state occurring within the bed. 3 

Clearly when synthesising models for use in the conditions 

under which this phenomenon may occur then it is essential 

that the mechanism of axial heat transfer is included. However, 

Carberry and '. iendel53 have shown that axial heat dispersion 

has no effect on the reactor profiles when the bed depth ex- 

ceeds 50 particle diameters. I: iore recently, Karenth and 

Hughes54 and Naim i5 have confirmed this result. Ioreover 

it has been shown74'9 that for highly exothermic partial oxi- 

dation reactions the parameter range over which axial heat 

transfer is important lies considerably outside that used in 

practice in industrial units. The length of industrial fixed 

beds removes the need for reactor models to include axial 

diffusion and the risks involved with multiple steady states 
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due to this phenomenon, except perhapa, _for very shallow beds74 
The reactor models developed and studied in this thesis are 
intended for use with industrial units and so with regard to 
points (1) and (2) above, axial mixing effects are not incl- 
uded in their formulation. 

Radial heat transfer in non-adiabatic packed beds is a 
far more important process since this is the means by which 
the bed exchanges heat with its surroundings. Recently the 

method of describing radial heat transfer in a mathematical 
model of the packed bed reactor has become a point of conjec- 
tvrel0,94 Specifically the point at issue has been that radial 
heat transport due to the presence of the solid phase must be 

accounted for by a two phase heat transfer modelCO since it 

may not be adequately described by the single phase model95 
which makes use of effective heat transport coefficients. 
This is not, in fact, the case; as will be shown later in 
this chapter, although the contribution to radial heat transfer 
due to the presence of the solid may need to be considered, it 

can be taken care of in the existing lumped parameter models95 
if the effective radial thermal conductivity is properly defined. 
11oreover, the advantage of the single phase model over the two 

phase description is that it can automatically account for 

what is perhaps the most significant phenomenon, namely mass 
transfer limitations in the solid. It will be shown that all 
the features predicted by the complex two phase model are re- 
produced using the simpler representation. 

3.2 The Mechanisms of Radial Heat Transfer 

The separate conductivities of the solid and fluid have 
been the subject of considerable study, although, regrettably, 
most of the work appears to have been confined to the exam- 
ination of packed bed heat exchangers. The solid conductivity 
has been investigated by Kunii and Smith96 in the absence of 
forced-convection and reaction, and by Krupiczka97at low temp- 

eratures, to avoid radiation effects, and by Nakao and Kato98 

who considered only solid-solid contact and radiation. Other. 
ý 

workers 
28'g9'1 have studied flow and radial dispersion in 

packed beds in order to quantiýr the effect of radial fluid 
flow on the conductivity. Singer and r? ilheln101 were the 
first to study the contributions of each phase to a single 
overall effective conductivity, and much work on this problem 
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102,1039104,105996 has followed The more important mechanism] 
of radial heat transfer have been shown to be: 1019103 

(a) Thermal conduction through the solid. 
(b) Thermal conduction through the contact 

surfaces of two adjacent particles of 
packing. 

(c) Radiation between the surfaces of two 

-particles. 
(d) Thermal conduction through the gas film 

around the contact surfaces of two particles. 
(e) Radiation between neighbouring gas pockets 

(in the voids between particles). 
(f) "J+iolecular thermal conduction of the gas. 

" (g) Heat transfer by lateral mixing of the gas. 

Both in evaluating experimental values and in using them 
for design calculations, it should be remembered that the 

effective coefficients are strictly only defined when the area 
and temperature profiles are specified so that the heat flux 

can be determined. In particular, the areas for transfer of 
some of the fluxes are not the same. It is common practice 
to refer them to a common area and this must necessarily 
redefine the effective coefficient. It is essential to make 
sure which coefficient is used. Where heat flux through the 

solid is considered to be by conduction, the point contact area 
severely limits the net flux, and when the coefficient is re- 
expressed in terms of the mean cross-sectional area of the 

pellet, the numerical value is correspondingly very much 
smaller than the intrinsic value. Many values quoted in the 
literature are often obscure on this point and can be mis- 
leading. 

Mechanisms (a) to (d) have usually been taken to con- 
tribute to the effective conductivity of the solid 

101t103and 

mechanisms (e) to (g) contribute to the gas conductivity. 
To ascertain their relative importance, it is convenient to 
discuss each separately, although, in some cases, the mechan- 
isms are related. 
(a) Thermal Conduction through the solid 

Most worlkers60,101,102,103 when assessing the contributioy. 
of this mechanism to the radial transfer of heat have assumed 
that heat is conducted through the pellet from the hotter 
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surface, nearer the centre of the bed, to the cooler one 
nearest the tube wall, parallel to the direction of heat flow 
in the gas, i. e. they have assumed the temperature gradient, 
within the pellet, in the radial direction to be smooth. This 
assumption is best illustrated by the expressions used by 
De Wasch and Froment60 and Argo and Smith102 for the effective 
radial conductivity of the solid. no account has been taken 
of the effect of heat generation within the particle, on this 
assumption since most of the theory has been developed for 
packed bed heat exchangers. When a gaseous reactant diffuses 
into a catalyst particle, -it is adsorbed at various sites, 
where it reacts. In the case of an exothermic reaction, this 

causes heat generation throughout the particle which is there- 
fore at a higher temperature than the surrounding gas. In 
these circumstances, assuming a uniform external fluid field, 
the heat flow within the particle would be radially outwards 
from its centre. Even in the case of a non-uniform external 
field88 the temperature within the particle will be higher 
than that at the surface. Only when severe external gradients 
exist will the heat flow, with chemical reaction inside the 

catalyst particle, be parallel to the heat flow in the external 
fluid. Usually, in packed bed reactors, such severe external 
gradients will only occur in a narrow region near the tube 

wall. 

(b) Thermal conduction through the contact surfaces of two. 

adjacent particles of packing. 

Heat conduction through contact points depends upon the 

conductivity of the solid and upon the contact areas between 

particles. Surface coating of the particles, if any, will 

also contribute. Little is known about contact conductivity, 

although if the particles are forced together the contact 
resistance will certainly be less than if the bed is loosely 

packed. Singer and Wilhelm101 found that for high conduct- 
ivity packing materials, such as metals, differences in con- 
tact conductivities contribute little to the effective con- 
ductivity of the solid, and with low conductivity materials, 
such as those used for catalyst supports, conduction through 

contact is of negligible importance. 

Even if it were possible to measure the contact con- 
ductivities accurately enough, there still remains the problem 
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of determining the area of contact between adjacent particles 
of packing. This is the reason why gas fillet conduction has 
usually been lumped with contact conduction. The area of 
contact will clearly depend on the shape of the packing surface. 
+Vakao and Kato98 have found that when the inter-particular 

radiation is significant then the effective conductivity of 
the packing is insensitive to the contact area. In the case 
of spherically shaped catalyst particles, only point contact 
between particles is possible. With cylindrical packing it 
is possible that some flat end surfaces will be in contact, 
but mostly there will be only point or line contact between 

particles. Clearly then, in either case, the contact area 
between particles will be extremely small, making the amount of 
conduction through the solid by contact negligible when com- 
pared with the other mechanisms, for example, turbulent mixing 
in the gas. 

(c) Radiation between the surfaces of two adjacent particles 

Radiative heat transfer does not become important until 
a temperature of approximately 600 K is reached. $ven then, 

although the emissivity of a catalyst particle is close to 

unity, because of its irregular surface, the amount of radia- 
tion from particle to particle is small compared with the 

radial heat flux due To the other modes of radial heat transfer. 

(d) Thermal conduction through the gas film around the contact 
surface of two particles 

The assumptions made by most workers100,101,102 have been 
that there is a linear radial temperature gradient through the 
solid, and that around the point of contact of two solid par-. 
ticles there exists a stagnant fillet of gas at a temperature 
intermediate between that of the twn particles. It was then 

assumed that heat is conducted through this fillet from the 
hotter to the cooler particle. The problem encountered has 
been to determine ä suitable "average thickness" of the gas 
fillet. Yagi and KuniiX03 have used the data of previous work- 
ers, for non-reacting systems, to obtain a correlation for this 
thickness, assuming that it is independent of Reynolds number. 
Clearly, this will give rise to error since at high Reynolds 
numbers the gas fillet will be smaller than at low values. 
This is relevant to the point raised earlier regarding the use 
of average values for the bed coefficients and the feasibility 
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of measuring them. 

No data exists for reacting systems. In estimating the 
effect of this mode of heat transfer, similar arguments to 
those used above apply. Because of the effect of reaction, 
the radial temperature gradient is not a smooth function and 
the temperatures of two adjacent solid surfaces will probably 
be higher than that of the gas film between them. Both sur- 
faces will, therefore, be discharging heat to the fillet. 

It appears then that this mode of heat transfer through 
the solid will contribute. little, if any, to the total radial 
effect. 

(e) Radiation between neighbouring gas pockets in the voids 
between particles. 

The same reasoning used for radiation between adjacent 
particles applies here. The radiation between neighbouring 
gas pockets will be less than that between adjacent particles 

since they are at a higher temperature than the gas in reacting 
systems. In any event, this contribution to radial heat tran- 

sfer will be negligible compared with that due to eddy diffusion 

of the gas. 

(f) Molecular thermal conduction of the gas 

If the Reynolds number based on a particle diameter ex- 

ceeds approximately 40, as is the case in industrial units, 
then molecular thermal conduction in the gas is negligible com- 

pared with radial heat transfer by lateral mixing 
106 

(g) Heat transfer by turbulent mixing 

This is by far the most significant contributor to radial 
heat transfer in packed bed reactors. It is perhaps the most 

studied and best understood mechanism. Lateral mixing of the 

gas controls the radial heat flux in the bed103 

Having examined the seven possible modes of radial heat 

transfer, their contributions to an effective radial conduct- 
ivity, or to separate effective conauctivities for each phase, 

may be discussed. 

3.3 Composite Effective Thermal Conductivities 

Uoing the reasoning put forward above, the solid conduct- 
ivity may be expected to be small compared with that of a gas 
in a reacting system. The gas conductivity will almost be 



3C, . 

solely dependent on turbulent lateral mixing. Indeed, the 
solid adds little to the value of the effective overall thermal 
conductivity referred to the gas phase. The actual heat flux 
through the solid can be expected to be extremely small, and 
it is rather the effects due to the presence of the solid which 
increase the radial heat transfer. For example, radiation 
from particle to particle. Other far more important factors 

contribute much more to the radial heat flux. This would 
appear to be supported by the results of the extensive study by 

Singer and Wilhe1m101 who found that for most ceramic packings 
the radial thermal conductivity of the solid is negligible 

compared with that of the gas. 

The two phase heat transfer model, however, attempts to 

sum up these various thermal transport processes which occur 
due to the presence of the solid and describes them as a radial 
heat flux within the solid as if it were a continuous phase. 
This is not only an apparently false interpretation of the phy- 

sical situation but it also gives rise to several problems. 
In order to solve the equations which constitute the model, 
the parameters must be measurable or at least capable of being 

accurately estimated. The separate effective conductivities 

of the solid and the gas in packed bed reactors cannot be 

reliably measured. moreover, the same problem arises with the 

heat transfer coefficients at the tube wall; separate values 

of these are required for the solid and the gas if a two phase 

description of radial heat transfer is used. The experimental 

results for heat transfer parameters are usually correlated 

as a single effective overall radial thermal conductivity and 

a single effective overall wall heat transfer coefficient with- 

out distinguishing between the solid and the fluid 104,107 
since 

these are the only values which can be simply measured. 

I; icKeon107 has found that because of the necessity of obtaining 

average bed values of the heat transfer parameters, for use in 

a mathematical model of the bed, it is difficult to accurately 

predict even lumped values of these parameters. Splitting 

these measured overall values into separate solid and fluid 

values would, therefore, probably introduce further errors since 

the equations governing the two separate conductivities arise 

from mostly conceptual rather than practical considerations. 
Any errors introduced in this way are further compounded in 

estimating the solid to wall and gas to wall heat transfer co- 
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efficients. Yagi and Kuniil°8 have proposed an equation for 
the solid to wall value but, as De Wasch and Froment60 point 
out, it contains a parameter for which no data is available. 
De Wasch and Froment60 circumvented this problem by assuming 
that at the tube wall the gas and solid temperatures are equal. 
This enabled them to split the measured value of the overall 
effective wall heat transfer coefficient into separate solid 
and gas values by comparing the two fluxes at the wall. 
However, the validity of the values obtained in this way de- 

pends on the validity of the calculated values of effective 
conductivity, which, as pointed out above, are subject to some 
uncertainty.. Perhaps the greatest deficiency of the two phase 
approach is that it fails to recognise the importance of diff- 

usion in the solid. In the two phase heat transfer model the 

solid, as well as the gas, is treated as a continuum which fills 

the whole volume of the reactor tube, for the purposes of heat 
transfer due to the presence of the solid. In order to main- 
tain-consistency in the model, mass diffusion within the solid 
must be described in the same way. However, unlike heat tran- 

sport, mass transport within the solid is essentially a local 

phenomenon; within the solid there is not a radial mass flux 

from the centre of the reactor to the tube wall, and so to 

describe one in this manner is not very meaningful. In quasi- 
homogeneous systems this is not a problem since diffusion of 

mass within the solid is not a rate limiting process. In 

heterogeneous systems, however, it is necessary to be able to 

calculate the effectiveness factor, which is a measure of the 

reaction rate limitation caused by diffusion, as the calculatioi: 

proceeds to obtain accurate results. The importance of this 

is illustrated by figure 3.1. This shows axial profiles of rad- 
ial mean temperature predicted by the reactor model both with 

and without an effectiveness factor calculation. As can be 

seen, assuming an effectiveness factor of unity leads to temp- 

erature runaway, whereas accounting for internal solid mass 
transfer predicts a perfectly safe profile since the effective- 

ness factor is much less than unity. With the two phase heat 
transfer model the effectiveness factor must be specified a 

r_iori for a logically consistent representation and this is 

usually only possible when the system is known to be quasi- 
homogeneous, in which case it is unity. 
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Furthermore the use of the model in transient studies 
must also be considered. It is difficult to see how the 
capacitance of the catalyst pellets may be described in the 
two phase approach since again this is a local solid property. 

The use of a single overall effective thermal conductivity, 
as measured, in the heat transfer model is therefore a better 

approach, particularly in heterogeneous systems and this would 
appear to be supported by the results of Olbrich94 

3.4 The Lumped Parameter Model for Radial Heat Transfer 

The equations of the single phase (lumped parameter) and 
two phase models are given in dimensionless form below, for 

a simple A -4 B reaction scheme. In both models the form of 
the fluid field equations is essentially the same. The diff- 

erence lies in the manner in which heat transfer due to the 

presence of the solid is described and the ease with which local 
intraparticle concentration gradients can be accounted for. 

Model I (single phase) 

Fluid 

02 
2A +1 

223A 
-S 

8CA 
- S2 1, R' =0 (3.1) 

är rör öz 

a2T +1 aT 
-S 

aT +s (t - T) =0 (3.2) 
8rz rar 3az 4 

with boundary conditions: 
CA = CAO 

at z=0,0< r< 1 
T= T0 

CA 
=n = 0, at r=0,0 <z<1 

ar ar 
acA 

=0 
C') r at r= 1,0< z1 
aTý Nuw(T0 - T) 
ar 

Solid 

S5(CA - 0pAs) ý xe, (3.3) 

S6(CA - CpAs) -- t+T=0 (3.4) 

where: 

S_ 
R211 S= ßl 

1 LDA 2 
DfA 
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s3 _ 
R2us pcs 3R2h(1 -e) 

LK fs bKf 
s 

s5 3kgA g6 = 
(-A H C0RgkgA 

b hE 

Nuw = 
RU 

Kfs 

Model II (two phase) 

Fluid 
2 2A 

+1 
CA 

- Fl CA 
- F2 R' =0 (3.5) 

E) r rar Oz 

2 
.+1 

OT 
- F3 aT D 

+ P4(t - T) =0 (3.6) 
ar rar az 

with boundary conditions: 
OA OAO 

T_1 at z=0, 0 r< 1 
0 

BOA 
= 

OT 
=0 at r=0, 1 0< z 

Or Or 
8 CA 

=0 
0r 

T) OT 
=N (T 

atr=1, 0<zc 1 

o- uß 
Or 

Solid 

F5(CA - CpAs) =G RI (3.7) 

a2I 
+1 

Ot 
- F6(t - T) + F7tR' =0 (3. £i) 

Or r ED r 
with boundary conditions: 

at 
=0 atr=0,0<z1 

8r 
at 

= Nus(Tc -t) at r=1,0<z<1 
Or 

where: 
Fl = S1 F2 = S2 

F R2us P cp F= 3R2hc 1- 
3 Ltf 4 kfb 

F5 ` g5 F6 = 
3R2hc 1-e 

k3b 
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R2(1 - e) (- t1H)RgCO 
7-ksE 

Nuf = 
u-f Nus - 

RUs 
kwk fs 

The finite difference form of the two dimensional reactor 
equations is given in Appendix (3). Solution may be accom- 
plished by a marching technique proceeding from the reactor 
inlet to the outlet. 

In order to be able to compare the two models, the data 

of De Nasch and Froment60-; vhich is given in Table 3.1, has been 

used. For this data, the reaction rate is expressed in terms 

of the solid conditions for a first order, irreversible reac- 
tion with Arrhenius kinetics. Thus in equations (3.1), (3.3), 

(3.5), (3.7) and (3.8), R' is given by: 

R' = A0 exp(-1/t)CpAs 

In both models the temperatures have been made dimensionless 

with respect to the activation energy and the gas constant. 

Yodel I employs the isothermal pellet model discussed in 

the previous chapter. Thus the concentration of the reactant 

at the catalyst pellet surface, CpAs, may be expressed as a 
function of the solid temperature, t, by solving the equation 
describing diffusion within the solid (see Appendix (1)), and 

so the effectiveness factor, t 
, may be evaluated at each point 

in the bed during the calculation. It can be seen from equa- 
tions (3.5) to (3.8) that, as has been mentioned above, this 

is not possible in Model II, since the solid is described as a 

continuum by equation (3.8). Consequently, the effectiveness 
factor must be predicted, or specified, in some manner before 

the calculation begins. Indeed, De Wasch and Fronent60speci- 

fied /=1 so that only a surface reaction was considered. 
except where stated, this simplification has been retained here 

for both reactor models so that they may be compared for the 

same system. 

In model II, the two parallel heat transfer paths are 
described explicitly, the one in the solid and the other in the 

fluid. Model I, on the other hand, accounts for the radial 
heat transfer which occurs due to the presence of the solid by 

means of the effective overall radial thermal conductivity 



TIM 3.1 Data used in Chapter 3 for comparison of the heat transfer models. 

A0. 2.72 x 109 sect S11 0.521 

b 0.15 cm S2 0.134 

0p 0.237 cal gml'K1 S3 0.262 

D fA 7.2.3 cm sec-1 S1, 105.5 

a 0.38 S5 300.0 

E 27.0 x 103 cal gnole 
1 S6 57.5 x 10-4 

h 5.15x103 c¬c1 cm2sec1K1 NuW 2.3 
e 

4.33x10 ld-- cal *J2 sec-' K-1 
P 
hr 0.537 x 10-3 cal cri 

2 
See-' X-' Fl 0.521 

Kf 1.84x103 calcmisec1K' F2 0.134 
s 

kf 1.12x10 cal cm1 sec K1 F3 0.4303 

kg p 15.0 cm sect F4 89.1 

r k 1.039 x 10- cal cm 
1 

sec K F5 300.0 
9 

k 2.6 x 10-3 cal cz sec 
1 Y. 1 F6 138.6 

p 
kr 0.32 x 10-3 cal cm 

l 
sec-' y, -' F7 51.7 x 10-4 

k 0.72 x 10-3 cal cm71 sec-1 X-1 Nuf 2.3 
, 

2.73x103 cal aril sec 
1K1 Nuw 2.3 P 

L 100.0 cm 

p 1.0 

Ft 1.25 Qn 
us 241 cm sec 

1 

(_A H) 307 x 103 cal gmolci 

uf 2.06 x 10-3 cal cm 
2 

sec-1 K-1 

U 1.33 x 10-3 cal em -2 See -1 K1 " 

n 
U 3.39 x 1073 cal = ; -2 sec-1 K-1 

e 0.54x10+3 gncm3 1.0 1 

C 1.7 x 10-7 gnole cm 
3 CAO 1.0 

o 
T8 IT 643 K T, T 0.04733 

0c 0c 
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referred to the gas, the effective gas-to-wall heat transfer 
coefficient and the solid-to-gas heat transfer coefficient. 
It is important, therefore, that when significant radial heat 
transfer due to the presence of the solid occurs the appropriate 
values of these parameters are used. The overall effective 
thermal conductivity and gas-to-wall heat transfer coefficient 
present no problems since as measured experimentally they auto- 
matically include the effects of the solid. The pellet-to-gas 
heat transfer coefficient, however, is somewhat different since 
the measured value is generally only the convective value. 
In model I, a heat balance on each pellet is required in order 
to compute the pellet temperature at each point in the bed. 
The heat removal from each pellet is described solely by the 

surface heat transfer coefficient, h. Since the total heat 

removal from each pellet must be accounted for in this balance 
it is, therefore, necessary to include interparticular radiation 
and conduction, when these are significant, in the parameter 
h, as well as convection, since these are all processes by which 
heat is removed from each pellet. Clearly this is not nec- 

essary in model II since interparticular radiation and cond- 

uction are accounted for in the effective conductivity of the 

solid and so the value of h is only that due to convection, hc. 

º'lhen radial heat transfer due to the presence of the solid 
is significant, an estimate of the effective surface heat trans- 

fer coefficient, which includes the heat loss from each pellet 
due to interparticular radiation and conduction, for use in 

model I may be obtained in the following manner. 

Let the effective surface heat transfer coefficient, h, 
be the sum of the coefficients for convection and radiation 

and contact between the particles. Thus: 

h= he + hp + hr (3.9) 

The convective coefficient, hc, may be evaluated in the 

usual way, for example by the Handley and Heggs'09 correlation. 
The radiation and point contact coefficients, hr and hp , may 
be deduced as follows. Consider two adjacent spherical par- 
ticles of packing. The heat transferred from particle 1 to 

particle 2 is: 

by radiation = kr r2 (t1 t2) 
4dP 



and by contact = kp (t1 - t2) 
4d 

p 
where the area. for heat transfer is the projected cross-sect- 
ional area of the pellets and the thermal conductivities, kr 
and kp, are defined accordingly. The temperatures tland t2 
are the surface temperatures of pellets 1 and 2 respectively 
and are assumed to be uniform. Now, if this heat is transferred- 
to the gas by means of the surface heat transfer coefficients, 
hr and hp, then heat transferred from the surface of pellet '1 
to the gas is: 
by radiation = hr n dP (t1 - T) 

2 

and by contact = hp Trdp (t1 - T) 

2 
Therefore we may write: 

hr (tl - T) = kr (ti - t2) 

2dp 

and hp (t1 - T) = kp (t1 - t2) 

2dp 

If it is further assumed that t2 T then 
hr = kr and hp = kp (3.10) 

2dp 2dp 

Clearly particle 2 will not be at the same temperature as the 

gas surrounding particle 1. However, in most cases the diff- 

erence will not be too large and the assumption is reasonable. 

Here, it is worth noting that Argo and Smith102 proposed 
expressions for hr and hp, in a similar type of analysis, which 
are inconsistent since hr is given as: 

hr = 2kr + krh 
dp Kp 

so that if kr > Fop then hr> h which is not possible since 

h= hc+ hp +hr 

In equation (3.10) Damkoehler's110 simplified expression 
for radiation may be used to obtain ki,, viz: 

-kr = 4dpP/(2 - P) x 1.234 x 10-4 x T3/1004 x E2/( C2 + e3) 

l: 
p may be obtained in a manner similar to that used by Beveridge 

ill and Haughey, viz: 
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kp = Kp e 31( £2+C 3) + kg e 2/( E2+e3) 

with the appropriate area corrections. 

Thus kp and kr obtained from these expressions may be 
substituted into equations (3.10) to give hp and hr. These 
values are then used together with the appropriate value of he 
in equation (3.9) to give the effective heat transfer coeffic- 
ient, h. 

Using the data given in Table 3.1 and the above equations 
to compute h, model I was solved for the same conditions as 
model II. Figure 3.2 shows how close the agreement is between 
the predicted axial profiles of the centre-line temperatures 

and the radial mean temperatures of both models when the value 
of h used in model I is evaluated in this way. This agreement 
is confirmed by the typical radial temperature profiles shown in 
figure 3.3. Per practical purposes the difference is indistin- 

guishable. 

. Also shown in figure 3.2 are the axial profiles of radial 
mean temperature and centre-line temperature predicted by model 
I when the effectiveness factor is not unity but is computed 
as the calculation proceeds. It can be seen that in this case 
the predicted temperature profiles are considerably different 
from those when t=1, and this serves to further emphasise the 
importance of being able to calculate the reaction rate limit- 

ations due to intraparticle mass transfer as the computation 
proceeds. 

Figure 3.4 shows axial profiles of radial mean temperature- 

predicted by both models when the value of h used in both of 
them is that due only to convection. As can be seen the diff- 

erence in the profiles predicted by the two models is not great, 
the maximum value being approximately 0.0004 in di-mensionless 
form, which corresponds to 5.5K for the activation energy given 
in Table 3.1. Model I predicts a slightly higher temperature 
than model TI since in this case the effects of interparticle 

radiation and conduction have not been included in h. Thus 
the pellets are slightly hotter and so the rate of reaction and 
therefore the rate of heat generation is greater than that pre- 
dicted by model II. Hence, it is important to incorporate 

all significant mechanismu and this is achieved by identifying 
the general structure of the system as reflected in the com- 
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posite representation of the overall coefficient. 

3.5 Concluding; Remarks 

Axial diffusion of heat in industrial sized fixed bed 

catalytic reactors is far less important than radial heat tran- 

sfer. The general problem of representing radial heat tran- 

sfer in these reactors has been discussed and in particular the 

importance of the radial heat flux due to the presence of the 

solid has been examined. Two models of packed bed reactors 
which describe this heat flux in different ways have been con-' 
pared. One model explicitly accounts for heat transfer due 

to the solid using separate effective radial thermal conduct- 
ivities and wall heat transfer coefficients for the gas and 
solid whilst the other makes use of lumped values of these para- 

meters referred to the gas phase. It has been shown that even 

when the radial heat flux due to the presence of the solid is 

significant the latter model automatically includes all the 

-effects of the more complex representation provided that the 

appropriate expression for the solid-to-gas surface heat tran- 

sfer coefficient is used. When radial heat transfer due to 

the presence of the solid is important then this parameter 

should contain an allowance for the heat lost from each particle 
due to radiation to and contact with adjacent particles as well 

as the usual solid to gas losses. A method of estimating this 

parameter has been proposed. 

The particular advantage of the single phase heat transfer 

model is that it offers the possibility of accounting for mass 
transfer effects within the solid, which, under certain circum- 

stances, are of considerable importance, by enabling the comp- 

utation of an effectiveness factor as the calculation proceeds. 
This cannot be consistently incorporated into the two phase 

model because the solid is described for heat transfer purposes 

as a continuum. Since the diffusion equations in the solid 

should be formulated in the same way as the solid heat balance, 

this would : jean describing mass transfer within the solid as a 

radial flux within the bed, whereas it is a purely local pheno- 

menon. Consequently the mass transfer limitations within the 

solid must be estimated before the calculation begins in the 

two phase model and the effectiveness factor must be specified. 
This is not usually possible except in the case of isothermal 

process or a quasi-homoeneous system where no diffusion with- CA 
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in the solid occurs and so the effectiveness factor is unity. 
In truly heterogeneous systems where heat effects are signif- 
icant this is clearly an unsatisfactory approach and so the 

single phase heat transfer model is-far more useful. 
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CHAPTER 4 

PARALLETRTC SENSITIVITY AND 
TLIPERATURE HUNA: YAY 

4.1 Introduction 

Despite the appreciable effort that has been expended on 
analysing the stability of fixed bed catalytic reactors, it has 
mainly been directed at one particular aspect of the problem, 
namely that associated with multiple steady state solutions. 
No really definitive discussion has been given which in partic- 
ular takes account of the heterogeneity of the system and the 
relation between catalyst particle and reactor stability. Much 
of the work reported on quasi-homogeneous systems is inapprop- 
riate 

68'6 '6 since the distinction between solid and fluid 
properties has been ignored. An adequate representation of 
highly exothermic reactions demands the use of a heterogeneous 

model, and in particular, Thornton12 has shown that temperature 

runaway may occur within a catalyst pellet without the surround- 
ing fluid conditions apparently reflecting such changes. 

It is important to appreciate that potential problems of 
control may arise from a number of different sources, of which 
the possibility of multiple steady state solutions of the cata- 
lyst particle is but one. In particular, difficulties can arise 
from operating in regions which exhibit parametric sensitivity. 
Here, small changes in the control variables can cause very large 

changes in some of the process state variables, equivalent to 
temperature runaway. An example of this is shown in figure 4.1 

where steady state axial profiles of radial mean temperature are 
plotted at two coolant temperatures differing by the equivalent 
of only 5 K. At the slightly higher coolant temperature, temp- 

erature runaway has clearly occurred, and yet the reactor tra- 
jectory is outside of the region of multiple steady states. 

Thorntoii12 has shown that it is probable that parametric 

sensitivity causes instability when a packed bed 
ject to perturbations in the inlet conditions. 
changes in the inlet conditions of a reactor can 
changes further down the bed, then the reactor m; 
as unstable in operation. Such instability may 
to parametric sensitivity or to a combination of 

reactor is sub- 
If very small 

cause very large 

iy be described 

be due solely 

parametric sen- 
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sitivity and `the bed to 
exhibiting multiple states. In either 

case the consequences are much the same, namely a tendency for 

undesirable temperatures to develop which can result in deter- 
ioration of the catalyst. 

The analysis described here deals with establishing criteriE. 
for limits of reactor stability arising from the region of par- 

ametric sensitivity as a consequence of the heterogeneity of 
the system, and methods of employing these criteria in reactor 
design or control studies are also discussed. Although dev- 

eloped for a single first order A-->B reaction scheme, the method 
can easily be extended to more complex cases as is shown in 
Appendix (4). 

4.2 Calculation of the Limits of the Runaway Region 

Using the isothermal pellet assumption, for the single 
first order A -ý B reaction, the heat balance on the catalyst 

pellet reduces to: 

t=T+ BShA(r - g)/(sg + r) 

where 

(4.1) 

r= Oexp(-1/2t) 

g= tanh(r) 

s= ShA/2 -1 

Equation (4.1) may be solved for t by any of the normal 

root finding techniques. Figure 4.2 shows a plot of fluid 

temperature (T) versus pellet temperature (t) for three sets of 

reaction parameters. r'rom figure 4.2 it can be seen that in- 

creasing B, the thermal load factor, at constant ShA and 8 

leads to multiple solutions of equation (4.1) as shown by curve 
(3). McGreavy and Thornto? 1'2 defined this non-unique region in 

terms of the pellet temperature and the thermal load factor by 

setting the derivative dt 
= 0. This made it possible to plot 

the non-unique region for any pair of values of ShA and 0 on a 
T vs. B phase diagram. Although this analysis is adequate for 

defining the region of multiple solutions of the catalyst pellet 

model, it does not identify the regions where the catalyst temp- 

erature is very sensitive to its surrounding fluid conditions. 
Curve (2) in figure 4.2, for example, shows a region, XY, where 
the pellet temperature is very sensitive to small changes in the 
fluid temperature but multiplicity of solutions does not occur. 
Yet, clearly, teviperatur. e runaway will occur under such conditions. 
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Here it should be noted that the isothermal catalyst pellet 
model, employed in this analysis, displays only a single trif- 
urcation point; i. e. only a single region of the type XY on 
curve (2)of figure 4.2, whereas other investigators33 have dem- 
onstrated the existence of two such regions when using a fully 
distributed model of the catalyst pellet model in special cases 
such as with zero order reactions. One region, at low values 
of Thiele modulus, is due to intraparticle thermal resistance 
and is consequently not identified by the isothermal pellet model, 
whilst the other region, occurring at higher values of Thiele 
tiLodulus corresponds to that identified by the isothermal pellet 
model, due to interphase thermal resistance. Clearly, if con- 
ditions are met-where the intraparticle thermal resistance is 

significant then the isothermal pellet model is not applicable 
and so a different analysis of parametric sensitivity is necess- 
ary. 

Curve (A) of figure 4.3 corresponds to curve (2) of figure 
4.2. Curve (B) of figure 4.3 is a plot of the difference be- 
tween the pellet and fluid temperatures, (t - T) against the 

pellet temperature. ' As would be expected curve (B) shows that 
this interphase temperature difference becomes significant when 
the pellet temperature becomes very sensitive to the fluid temp- 

erature. This is precisely at the point when temperature run- 
away occurs. 

To quantify the limits of this runaway region, i. e. the 
domain of pellet temperature sensitivity, there are three imm- 

ediately obvious methods. Firstly, a single pellet temperature 

might be defined as the "safest" maximum pellet temperature for 

which temperature runaway may be avoided. This method is, 
however, not very useful since a good deal of computation would 
be necessary to make sure that this arbitrarily defined cata- 
lyst temperature applied for all sets of operating conditions. 
Secondly, a limit right be defined by setting the derivative 
dT 

equal to some arbitrary value, say oc; or thirdly adopting 

equal to some a modification of the latter by setting 
d(tdt T) 

value, W. Although all of these methods are attractive since 
they involve the minimum of analysis they present the problem 

Ö I,: oreover, of determining satisfactory values for M and 
both of these gradients depend on B, ShA and e, so that num- 
erical investigation would again be necessary to determine safe, 
but not too conservative, valuee for all ranges of parameters. 
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Perhaps the main advantage of these methods is that the defi- 

nition of temperature runaway is left entirely to the invest- 
igator, or designer, in his choice of values of oc and 
However, all of these approaches are unsatisfactory because of 
their lack of generality. A better approach to the problem is 

one in which the sensitive, or runaway, region may be determined 

from the properties of the system and not by arbitrarily def- 

ined numerical values of temperature or temperature gradients. 

A general method whereby the significant change of grad- 
ient of the (t - T) vs. t curve could be adequately predicted 
is needed. Examination of the (t - T) vs. t curves for a range 

of parameters show that these curves have a point of inflexion 

which lies beyond the point at which the gradient becomes sig- 

nificant. A tangent to this curve through the point of in- 

flexion crosses the pellet temperature axis at the value of t at 

which the interphase temperature difference, (t - T), begins to 

increase in importance, i. e. at the beginning of the runaway 

region (see broken line in figure 4.3). It can now be considered 
how the temperature. runaway limit defined in this way may be 

determined non-graphically. 

Let the pellet temperature at the point of inflexion of 
the (t - T) vs. t curve be ti. The value of ti can be deter- 

mined by setting the derivative, d2(t - T), equal to zero. 
dt2 

From equation (1): 

ds t- T) 
_ 

BSh2r (rg2 -r+ (4.2) 
dt 4t2(sg + r)2 

hence: 1 
d2 t- T) 

_ 
BShÄ 

x 
dt1 4 (sg + r)4t4 

ý2(sg 
+ r)2r(r(1 - g2) (2rg - 1) + g) 

- r(rg2 -r+ g)(r(sg + r)(s(1 - g2) + 1) 

+2t(sg + r)? )ý (4.3) 

setting this equal to zero and rearranging gives: 

ri(1 - gi)(2rigi - i) + gi 
ti 

4(gi - r1(l - g1)) 

- 
ri(s(1 - g2 i) + 1) 

(4.4) 
2(sgi + ri)- 

. L: 
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where 

ri =e exp(- 1/2ti) and gi = tanh(ri) 

Hence ti is a function of ShA and 0 only but not B. i. e. 
for any pair of values of ShA and 0', ti is constant for all B. 

Equation (4.4) may be solved for ti by any of the usual 
root finding techniques, although the Reguli Falsi method is 
perhaps preferable since it does not require the somewhat ted- 
ious evaluation of the derivative of equation (4.4). The dis- 
advantage of this method of solution is that an initial search 
must be made to find two suitable starting values. However, 
since ShA and e are usually constant in any given system, 
equation (4.4) has only to be solved once for any system and so 
a rapid method of solution is not essential. 

The gradient of the (t - T) vs. t curve at the point of 
inflexion, ti, is given by setting t- ti in equation (4.2). 

Thus, the-point on the pellet temperature axis where the tangent 
through the point of inflexion meets this axis, ts, is given 
by :-r 

(rig` -ri+ gi) 
BSh 

(rl - gl) 
BSh2 

ri 1 (4.5) 
A(Sg 

+ ri)(ti - ts) A 4ti(sgi + ri)2 

Rearrangement of equation (5) gives: 

it- 
4ti(ri - gi)(sgi + ri) (4.6) 

s ShAri(rig2 _ ri + gi) i 
Equation (4.6) shows that is is also a function of only 

ShA and 0. 

Therefol"e, is is the pellet temperature at the limit of s 
the runaway region. For a given pair of values of ShA and 0 

ti may be calculated from equation (4.4) and then used to find 

is from equation (4.6). This value of is may be substituted 
into the pellet heat balance equation, (4.1), to find pairs of 
values of the fluid temperature, T, and dimensionless thermal 
load factor, B, which may be plotted on aT vs. B phase diagram. 
Figure 4.4 shows such a plot. Note that equation (4.1) gives 
a straight line for T vs. B since is is constant for all T and 
B. however the B scale in figure (4.4) is logarithmic and so a 
curve is obtained. Points above the line on this diagram are 
in the runaway region and points below it are in the "safe" 

region. 
t' 

ý' 
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TJ'BLE 4.1 The influence of B on the interphase temperature 

difference. 

ShA 500 ,8- 104 , is u 0.07599 

B T t -- T (t_T)/ 

10-5 0.07575 0.00024 0.32 

3x 10 5 0.07526 0. Q0073 0.97 

5x 10`5 0.07477 0.00122 1.63 

7x 10`5 0.07428 0.00171 2.80 

10-4 0.07354 0.00245 3.33 

2x 10`4 0.07109 0.00490 6.89 

4x 10 "4 0.06619 0.00980 14.80 

5x 10-4 0.06374 0.01225 19.22 

10-3 0.05149 0.02450 47.58 

TAKE 4.2 Data of Van Welsenaere and Frornent5$ used for 

the comparison with the quasi-hom eneous 

runaw, criterion. 

G2 0.0254 

G3 0.697 

G4 92.25 

% 0.274 x 10 

0 1.01 x 105 

Iw 2.67 

ShA 621.4. 

Na 13.15 

T(inlet) 0.0518 

T 0.0518 
G 
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4.3 Evaluation and Refinement of the Method 

Table 4.1 shows the effect of increasing B on the differ- 
ence in temperature between fluid and catalyst, for typical 
values of ShA and 0 

. As can be seen, the predicted runaway limit is excellent 
for medium and low values of B. As B becomes less than 10-5 
the gradient at the point of inflexion of the (t - T) vs. t 
curve decreases and so is tends to become what may be consid- 
ered a conservative, although no less valid, limit of runaway. 
At low values of B, temperature runaway tends to be less of a 
problem since this represents a low thermal load factor. From 
figure 4.2 it can be seen that as B decreases, then the region 
XY tends to decrease so that, for the parameter values used in 
this figure, it might be assumed that for B< 10-5 parametric 
sensitivity does not exist. Indeed in terms of the dimension- 
less temperatures used in this study, t is not apparently very 
sensitive to T for B< 10-5. However, the temperatures t and 
T have been made dimensionless with respect to the activation 
energy of the reaction, E, and so a small value of (t -T) may 
represent a significant temperature difference at a high temp- 
erature level depending on the magnitude of E. Even as B tends 
to zero so that t and T become equal then although t8 does not 
mark the onset of parametric sensitivity, it is useful since it 
sets a value for temperature runaway derived consistently with 
that when parametric sensitivity occurs. It should be noted 
that the practical range of B is approximately 10-5 to 5x 10-2. 

When, at the higher values of B, the runaway line moves 
into the non-unique region, the meaning of the limit and its 

-interaction with non-uniqueness needs to be examined in detail. 
In the cusp of the non-unique region, on the T vs. B phase 
diagram, tl, the pellet temperature at the upper hound of the 
non-unique region, is greater than the runaway pellet tempera- 
ture, ts. This situation is shown schematically in figure 4.5, 
where tsl corresponds to a value of is in the cusp of the non- 
unique region. In this case, the line SP then represents the 
interphase temperature difference, (t - T). As B increases, 
tI decreases and approaches is until is = t10 At this point, 
the temperature difference (t- T) is represented by the line 
WX of figure 4.5, and on the T vs. B diagram the runaway line 
is tangential to the upper bound of the non-unique region (see 
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figure 4.4). A further increase in B. from this point, causes 
is to become greater than tl. This is represented by tß, 2 in 

s2 
figure 4.5. Here the interphase temperature difference is 
large line RQ of figure 4.5. However, the point Q rep- 
resents an unattainable state in the non-unique region; as the 
fluid temperature around the pellet, T, increases the pellet 
temperature gradually rises until it reaches ti s. nd then it 
'jumps' from point X of figure 4.5 to point Y. Similarly, 

when T is decreasing, the pellet follows the curve YZ and then 
'jumps' from point Z to point M. Thus the curve XZ is never 
followed. (This behaviour is described in detail in reference 
112). For this reason, is > tl has no meaning since in this 

case is lies on the curve XZ. For the parameters used in Table 
4.1, the runaway line is tangential to the upper bound of the 

non-unique region at B=4.7 x 10-4 and T=0.06472. In 
Table'4. l, therefore, B=5x 10-4 and 10-3 correspond to 
is > t,, and so that value of (t - T) appears large and is, 
in fact, equivalent to the line RQ of figure 4.5. Thus, ref- 
erring to figure 4.4, the runaway line to the right of B= Bi,. 

where the line is tangential to the upper bound of the non- 
unique region has no significance, and from this point for in- 

creasing B the upper bound of the non-unique region is the run- 
away limit. 

Figures 4.6 and 4.7 show the effect on the runaway line 

of varyizig the parameters 0 and ShA respectively. The broken 

lines in these figures are the loci of the points at which the 

runaway lines are tangential to the upper bound of the non- 
unique region. As may be seen, increasing 8 at constant ShA 

causes this point of tangency to move to the right of the T2 

vs. B diagram, i. e. the value of B at the tangent point increases. 

Increasing ShA at constant 6 causes this point to move in the 

opposite direction so that as ShA tends to infinity the pro- 

posed runaway line becomes less useful over the realistic range 

of B, and the upper bound of the non-unique region at ShA =Co 
becomes an adequate limit to the runaway region over this range 

of B. This is particularly true at high values of e where 

when ShA = co the point of coincidence of the two lines is less 

than B= 10-5 

It is interesting to note that in the cusp of the multiple 

solutions region of the T vs. B diagram, the runaway line is 

at lower temperatures than the upper bound of the non-unique 
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region. This clearly shows that in this region parametric 
sensitivity causes the transition to the upper steady state 
and the runaway, line is therefore a more important limit than 
the upper bound of the non-unique region in this area. 

4.4 The Use of the Method in the Design and Control of 
a Reactor 

A plot of the fluid temperature, T, against the dimens- 
ionless thermal load factor, B, which is directly proportional 
to the reactant concentration is characteristic of a set of 
operating conditions and on such a graph the runaway limit, 
together with the region of multiple solutions, can be drawn 
for a given system, as shown in figure 4.4. By solving the 
equations describing the heterogeneous reactor it is possible 
to plot longitudinal trajectories for particular radial posit- 
ions on the same chart. If any of these curves cross the run- 
away line then temperature runaway has occurred at some point 
in the bed and the reactor may be described as unstable. Even 
if a particular trajectory only just crosses the runaway line 
but does not go very far past it then this indicates potential 
instability and therefore problems of control since the traj- 

ectory passes into a region of parametric sensitivity and high 
temperatures may develop during any perturbations from this 

state. Indeed, it is in indicating trajectories of this nat- 
ure that the runaway criterion is particularly useful since 
although high fluid temperatures are not apparent, the poten- 
tial instability of the state is easily observed. 

Some typical trajectories of radial mean conditions are 
plotted in figure 4.8 showing the influence of the coolant 
temperature in relation to the runaway limit at two values of 
inlet concentration. The data used in these simulations is 

given in Table 5.1. Figure 4.9 shows longitudinal traject- 

ories at various radial positions with a coolant temperature 

of 0.03742 and inlet concentration 1.0. It is apparent from 
this graph that it may often be necessary to use the axial 
temperature rather than the radial mean values when attempt- 
ing to choose operating conditions which avoid temperature 

runaway. 

The preceding analysis has given a criterion for temp- 

erature runaway in heterogeneous reactors which is based on 
the intrinsic properties of the system. It is useful to ex- 
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amine how this criterion might be effectively used firstly in 
the design and subsequently in the control of such systems. 

Generally, the reactor designer is confronted with a 
fixed set of parameters and he must make the best design with- 
in the degrees of freedom left available to him. The fixed 

conditions are the reaction rate parameters and thermodynamic 

properties, the type of catalyst to be used and the maximum 
allowable pressure drop across the bed'. Thus the degrees of 
freedom which are left are the-inlet conditions, including the 

coolant temperature and the dimensions of the reactor tube. 
However, total freedom in the choice of values for these para- 
meters is never the case. For the class of problems specif- 
ically considered in this thesis the choice of gas flow rate 
is confined to a very narrow range; the upper constraint being 
that which produces the maximum allowable pressure drop, which 
is, of course, related to the tube and catalyst particle dim- 

ensions and the lower constraint is determined by the minimum 
allowable gas to tube wall heat transfer coefficient and gas 
to-pellet mass transfer coefficient. Generally, since heat 

removal from the bed to the coolant is the most important pro- 

cess the design will be based on the maximum available gas 
flow rate. In most situations the tube diameter is determined 

primarily by the related factors of cost and availability, the 

most commonly used values being either 1" or 0.75", and is, 

therefore, not a true design variable. Thus, in general, 
for a given system most parameters are fixed at the outset, 

or at best confined to very narrow limits, and only the inlet 

conditions and the tube length, below a certain maximum, remain 

as freely manipulable design variables. Values of these par- 

ameters must then be chosen which give an economically satis- 
factory sate design, avoiding temperature runaway or regions of 

instability. 

In the discussion which follows attention is mainly con- 
fined to the case of equal coolant and gas inlet temperatures 

since this is the situation usually encountered in practice. 
In any case it probably represents the worst case for exo- 
thermic reactions since with these reactions heat removal is 

the greatest problem and so it would not be realistic to use 

a coolant temperature higher than the gas inlet value. ETever- 

theless, the analysis could easily be extended to the case of 
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differing coolant and inlet temperatures and even adiabatic 
operation, so this does not represent a limitation on the 
development. 

Rigorous determination of critical reactor operating con- 
ditions, i. e. conditions which cause the reactor trajectory 
on the T vs. B phase diagram to reach the runaway line but not 
cross it, obviously requires numerical integration of the re- 
actor equations. It is useful, therefore, to limit the amount 
of computation which needs to be performed by determining the 
range of operating conditions which have to be considered, 
and yet still give a feel for the relationship between the 
significant variables. 

Clearly, a trivial, but necessarily stated upper limit to 
the inlet temperature of the gas at any inlet concentration 
is provided by the runaway line on the T vs. B diagram. How- 
ever, the lower limit of the inlet temperature, and also the 
coolant temperature, often depends on the length of the rea- 
ctor as well'as the inlet concentration, although a value may 
be determined as is shown later. For any given inlet and 
coolant temperature the range of inlet concentration which 
need be considered is easily determined. This range is more 
conveniently expressed in terms of the inlet value of the 
thermal load factor, Bi, which is directly proportional to 

reactant concentration. 

The upper limit on Bi is based on the assumption that 
the designer will wish to avoid reactor operation in the non- 
unique as well as the runaway region. This is usually the 

case, due to the inherent problems of reactor control when op- 
erating in this region. Consider the point where the run- 
away line crosses the lower bound of the non-unique region on 
the T vs. B diagram. If the adiabatic trajectory through this 

point meets the line T= TC at a value of B outside of the 

non-unique region, then this value of B represents the maxi- 
mum permissible inlet value to avoid operation in the non- 
unique region under adiabatic conditions. This is generally 
the case since the slope of the adiabatic trajectory is usu- 
ally much greater than that of the lower bound of the non- 
unique region. If this value of B lies inside the non-unique 
region, then the maximum value of Bi is given by the value of 
B where the line T= TC crosses the lower bound of the non- 
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unique region. let the value of B in either case be Biu' 
Since reactor trajectories on the T vs. B diagram start with 
an adiabatic slope for T0 = Tc and then bend under this line 
due to heat exchange between the bed and the coolant, then 
Biu represents an approximate upper limit on Bi to avoid the 

non-unique region under non-adiabatic conditions. Clearly it 

will be less than the actual upper limit for non-adiabatic op- 
eration, but because of this it guarantees that if temperature 

runaway is avoided then, for Bi < Biu, operation in the non- 
unique region is also avoided. It is, therefore, the best 

obtainable upper limit on Bi at any inlet temperature without 
extensive computation. Biu may be easily determined either 
graphically or computationally using the equations for the non- 
unique region and the runaway line. 

The lower limit on Bi, Bil, which need be considered is 

also easily determined. For the one dimensional heterogeneous 

reactor model described in Appendix (2) the equations are: 
d-A 

=- G2 klCA (4.7) 
dz 

and 
aT 

=G (t - T) - 
2Nuw(T 

-T) (4.8) 
dz 4 G3 c 

where t=T+ BShA(r - g)/(sg + r) 

kl =© 
2exp(-l/T) 

and = 1.5ShA(r - g)/kl(sg + r) 

From equations (4.7) and (4.8) the gradient of the reactor 
trajectory on the T vs. B diagram is given by: 

dT G (t - T) 2Nu T" T 
cl 

dB G2 ý k1B G2G3t k1B 

When the reactor trajectory passes through a maximum, 
dZ_0. 
uB (A maximum in the phase trajectory corresponds to. 

a maximum in the axial temperature profile). Hence the locus 

of this maximum on the T vs. B diagram is given by: 

_ 
GqLtm - Tm l+ 2TTuýýTm, -ý , Tc1 

=0 
GA k1Bm G2Gý ' k1Bm 

which on rearrangement becomes: 

G4 (tm -T m) ý 
2T, Tuw (gym - i. ) (4-10) 

G3 

The subscript m denotes the value at the maximum. The 
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pellet temperature, tm, is given by equation (4.1): 

tm = Tm + BmShA(rm. - gm)/(sgm + rm) 

The only operating variable in equation (4.10) is the 
coolant temperature, Tc. The loci given by equation (4.10) 
on the T vs. B diagram are shown in figure 4.10 for various 
values of Tc. Thus for a given value of coolant temperature 
the locus of the maximum of the reactor trajectories may be 
plotted. It is interesting to note that one of the criterion 
for temperature runaway given by Van Welsenaere and Proment68 
for quasi-homogeneous reactors is based on the fact that the 
locus of the reactor trajectory maxima passes through a maximum 
and appears to have been derived empirically by cbservation of 
computed reactor trajectories. Examination of the equations 
of the quasi-homogeneous system has shown that there is, in 
fact, a fundamental reason why this criterion applies for that 
system and this is demonstrated in Appendix (5). As is demo- 
nstrated later in this chapter, however, the results for quasi- 
homogeneous systems cannot be applied to a heterogeneous reac- 
tor because of their conservatism. The actual position of the 
maximum on this locus depends on the inlet reactant concent- 
ration and temperature when T0 t To. A critical trajectory 
will be one where the maximum occurs at the runaway line, that 
is the locus of the maximum given by equation (4.10) which 
crosses the runaway line, since increasing the value of Bi 
from the critical. value will cause -, ', he maximum of the traject- 
ory to occur above the runaway line; decreasing Bi will. en- 
sure that the maximum occurs below this line. At the maximum 
of the critical trajectory, coordinates (Ber, Ter) on the 
T vs. B diagram, the pellet temperature is given by ts. Thus 

substituting tm = is in equation (4.10) and solving this 

;: quation simultaneously with the pellet equation gives the max- 
imum of the critical trajectory for any value of T. 

The slope of the adiabatic line on the phase diagram is 
given by: 

dT G4 

dB 1.5G2 

(4.11) 

Therefore the value of Bi, Bil, for the adiabatic line through 
the maximum of the critical trajectory is given by: 
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Bil = Bcr + 1.5G2(Tcr - T0)/G4 (4.12) 

Since reactor trajectories on the T vs. B diagram start 
with an adiabatic slope for TD = T. and then bend under the 
adiabatic line, Bil is the minimum value of Bi which need be 

, considered for a given inlet and coolant temperature. For 
Bi < Bil at T0 = Tc the maximum temperature in the reactor 
will always occur below the runaway line. This lower limit 

on Bi tends to be slightly conservative, the actual value being 

a little larger. However, it represnts the best estimate 
which may be obtained. A method of extrapolation proposed by 

other workers68 for quasi-homogeneous reactors. cannot be used 
to obtain a less conservative estimate in the heterogeneous 

case because of the difference of the shape of the reactor tra- 
jectories in this case. Nevertheless, Bil represents a very 
useful limit since safe operation for Bi < "Bil, at a given 
coolant and inlet temperature, can be guaranteed. At low 

values of inlet and coolant temperature the situation which is 
illustrated schematically in figure 4.11 may arise. Clearly, 
the value of Bil determined by the above method, as shown in 
this figure, will be very conservative in such situations. A 
better estimate of Bil may be obtained by drawing the adiabatic 
trajectory through the maximum value of B on the curve giving 
the locus of the trajectory maxima, i. e. through the point 
marked X in figure 4.11. Computationally this requires find- 

ing the coordinates of point X on the T vs. B diagram. From 

equation (4.10) and the pellet equation the locus of the traj- 

ectory maxima may be expressed as: 

m= 2NU: (Tm - TC)(sgm + rm)/G3G4ShA(rm - gm) -(4.13) 

The point X may then be found by differentiating equation (4.13) 

with respect to Tm and setting this derivative equal to zero. 
Let the coordinates of the point X, evaluä. ted in this way be 
(na, Ta). If Bil determined from the adiabatic line through 

the point where the locus of the trajectory maxima crosses the 

runaway line, as described above, is less than Ba then the sit- 
uation illustrated in figure 4.11 will arise. In this case a 
better estimate of Bil may then be obtained by replacing Bci, 

and Tcr in equation (4.12) by Ba and Ta. 

Prom figure 4.10 it can be seen that as Tc is decreased, 
the point marked X in figure 4.11 approaches the non-unique 
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region as does the point at which the locus of the trajectory 
maxima crosses the runaway line. This may be used to calcul- 
ate the theoretical minimum coolant and inlet temperature which 
need be considered for any system if operation in the non- 
unique region is to be avoided. Biu is the maximum value of 
Bi which avoids operation in the non-unique region at a given 
boolant and inlet temperature as discussed previously. Thus 
the minimum value of inlet temperature for To = Tc is that 
at which Bil determined from equation (4.12) is greater than 

or equal to Biu if Bi1 is greater than Ba, or that at which B. 
is greater than or equal to Biu if Bi1 (from equation (4.12)) 
is less than Ba. This minimum value of TC, for TC = Tc,. LP 
fairly easily found by computation although graphically the 
task may be somewhat arduous. It must be remembered that this 

minimum value of-T0 applies only for T0 = Tc and for operat- 
ion outside of the non-unique region. For any value of To 
less than that determined in this way safe operation is guaran- 
teed for Bi < Biu' In most cases this value of T0 results in 

virtually no reaction occurring within the bed because of the 

very low initial rates. However, its evaluation is useful in 

cases where no information exists on the sort of temperature 

which must be used for a particular system. When this is the 

case, it precludes the necessity of trial and error integration 

of the reactor equations to find a minimum working value. 
Consequently, for any inlet and coolant temperature the range of 
inlet concentration, or thermal load factor, which will produce 
temperature runaway depending on the length of the reactor may 
be rapidly determined. Here it should be noted that for a 
given inlet and coolant temperature, the range of inlet concen- 
tration described by Bil and Biu, for any system, is a working 
range. Temperature runaway may occur at any value of Bi with- 
in this range and the remaining parameter which determines this 
is the reactor length. The calculation of this range is simpl3 
a means of saving unnecessary work in, for example, the solut- 
ion of the bed equations. The uppcr limit on B, Biu, is some- 
what different in nature from the lower limit, Bil. At a giver 
inlet and coolant temperature with the inlet value of B less 
than B2u the steady state reactor trajectory will not pass 
through the non-unique region provided that the length of the 

reactor is such that it does not cross the runaway line. The 
lower limit on the inlet value of B, Bil, is, however, a global 
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limit for the given inlet and coolant temperature. For all 
inlet values of B less than Bil at the inlet and coolant temp- 
erature for which Bil is determined, the reactor trajectory 
will never cross the runaway line whatever the length of the 
reactor. This could, of course, be ueed as an upper limit on 
the value of Bi so that safe operation is always guaranteed for 
any reactor length. However, this tends to lead to-rather con- 
servative reactor designs due to the low rates of reaction at 
low values of Bi and very long reactors would be necessary to 
achieve a given conversion. In some circumstances using Bil 
as an upper limit may be acceptable particu. Larly when the pre- 
ssure dropsin the bed and therefore the length of the reactor 
is not a serious constraint or when there is very great un- 
certainty in, for example, the heat transfer parameters. 

Figure 4.12 shows schematically the limits on Bi and their 
relation to other regions on the T vs. B phase diagram. 

Once the'range of Bi has been determined at a chosen in- 
let and coolant temperature what remains to be done is to find 
some value of Bi within that range for which temperature run- 
away will not occur for a particular reactor length. If the 
reactor length is chosen first then trial and error solution of 
the bed equations is necessary to find a suitable value of Bi 
at each value of the inlet and coolant temperatures. Like all 
trial and error processes this can be a wasteful and time con- 
suming process. Also this method would fail to give a total 

picture-of the situation since information about only a single 
reactor length is obtained. A better approach is to integrate. 
the bed equations for various values of Bi in the range B11 to 
Biu for different values of inlet and coolant temperature and 
determine the critical length of the reactor in each case. 
This is not a particularly time consuming process with a one 
dimensional model of the reactor, especially since the runaway 
line in the form of the pellet temperature at runaway, ts, can 
be used to stop the integration at each value of Bi as soon as 
the reactor trajectory reaches the runaway limit. Furthermore 
the range of coolant temperatures which need be considered may 
often be limited by the nature of the cooling medium; for high- 
ly exothermic reactions a molten salt coolant is usually emplo- 
yed and so the minimum coolant temperature is determined by the 
viscosity decrease with temperature. This can result in a min- 
imum value greater than that determined by the previously 
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described method. The upper limit on the coolant temperature 

may be less than that described by the runaway line, for 
T0 = Tc, since above a certain temperature charring and de- 

composition of the salt or exacerbation of its corrosion rate 
on the reactor tube may occur. 

The length of the reactor determined at each set of in- 

'let conditions is then the critical or maximum value for which 
temperature runaway can be avoided in the steady state at 
those conditions. By this method, charts of critical length 

versus inlet concentration, or thermal load factor, at various 
inlet and coolant temperatures, may be drawn for the system. 
Figure 4.13 shows such a chart for the data given in Table 5.1. 
The critical length in figure 4.13 is expressed as a dimension- 
less value for convenience, although this is not essential and 
actual length could be used. Figures 4.14 and 4.15 show how 
the parameters e, Nur and Shn respectively affect these charts. 
Usually only one chart is requirodfor a particular system since 
these parameters are constant for previously stated reasons. 
The advantage of this approach is that the chart conveys at a 

glance the critical inlet conditions for any reactor length or 

conversely the critical length for any inlet conditions, and so 
the task of the designer is considerably simplified. A scale 

of pressure drop could also be added to the charts and during 

their preparation similar graphs of reactor outlet conditions, 

or reactant conversion at various lengths could also be drawn. 

Perhaps the greatest advantage of this approach to the 

design problem is the information which these charts give con-. 

cerning the control of the reactor and the way this may be used 
in the design of control systems. For example, using figure 

4.13, graphs of the form of figure 4.16 can be constructed. 
This figure shows a plot of critical inlet temperature against 

critical inlet thermal load factor as a function of-reactor 
length. Thus, for a particular reactor length, this graph 

shows how, if one of the inlet conditions is varied, the other 

should be adjusted to prevent temperature runaway occurring 
in the new steady state. This information has to be related 
to the dynamic changes but can be very easily included in a 

computer control algorithm for a particular reactor. When a 

reactor is operating in the steady state at critical or sub- 

critical conditions and a perturbation of one of the inlet 
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variables occurs, then such a control algorithm indicates the 

adjustment in the other inlet conditions to compensate for this 

perturbation. However, it is essential that this adjustment 
does not lead to temperature runaway in the new steady state 
and so some form of check or constraint on the control action 
is required. One method of providing this check is to inte- 

grate the bed equations at the new values of the inlet condit- 
ions. Unfortunately, this would be a lengthy process for a 
control algorithm and undesirable behaviour could occur before 
the control action takes place, especially when the reactor is 

operating close to the critical conditions. What is required, 
therefore, is a much more rapid check on the proposed control 
action, and this can be provided by graphs of the form of 
figure 4.16. For a particular reactor length, the plot of 
critical inlet temperature against critical inlet thermal load 
factor, or concentration, can be fitted to a simple algebraic 
function. For example, the line for the reactor length corres- 
ponding to z=1.0 in figure 4.16 can be fitted to a function 

of the form: 

T0 - Pexp(-B1)(1 + Bi)/Bi +Q (4.14) 

where P and Q are constants which can be determined by a simple 

regression analysis. Clearly, since the curves of figure 4.16 

form a family, a similar relationship between T0 and Bi may be 

used for other reactor lengths by appropriate adjustment of 
P and Q. This functional relationship between the critical 
inlet conditions for the reactor may be included in the con- 
trol algorithm. Thus, once the new values of the inlet vari- 
ables have been selected by the controller, equation (4.14) may 
be used to check extremely rapidly whether or not they will lead 

to a safe operating state. For example, if at the new value 

of inlet concentration the value of TO computed by equation 
(4.14) is less than the selected value of inlet temperature 
then the new steady state will lead to temperature runaway and 

so a smaller value of inlet temperature is required. 

This procedure will clearly be much quicker than any 

attempt at solving the bed equations and by providing more in- 

sight into the general behaviour will, therefore, lead to far 

better and more effective reactor control. Also since the 

global : stability of the reactor is essentially expressed by 

equation (4.14) as a function of the inlet conditions, it may 
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not be essential to monitor the conditions in other parts of 
the reactor although this will depend on the tightness of 
the control and the type of perturbations which are likely to 

occur. 

4.5 Comparison with Previous Methods 

Only two criteria have been proposed previously for temp- 

erature runaway, by Barkelew67 and Van Welsenaere and Froment68 

Both of these criteria lead to the-same result although the 

latter is simpler to use. However, -as mentioned previously 
these criteria only apply to quasi-homogeneous systems. 

. It is, perhaps, instructive to compare the runaway crit- 

erion proposed in section 4.3 of this chapter with that of Van 

VTelsenaere and Froment68 Although it is suggested by these 

authors that their method applies to fixed bed reactors in gen- 

eral, it was, in fact, developed on the basis of a one dimen- 

sional quasi-homogeneous model. In this the effectiveness 
factor is taken as unity and therefore the reaction rate limit"- 

ation by the solid catalyst is ignored. In the heterogeneous 

case where the solid and fluid conditions differ, the effective- 

ness factor must be calculated at each point in the bed, esp- 

ecially in the region of temperature runaway, and is usually 

quite different from unity. 

For Van lelsenaere and Froment's data, given in Table 4.2, 

their criterion gives an upper limit of dimensionless concen= 

tration to avoid temperature runaway as 2.. 035. It should be 

noted that this represents the maximum concentration which can 
be used to avoid runaway with any reactor length and, therefore, 

must be-expected to be conservative. Figure 4.17 shows the 

axial temperature profiles predicted by both the quasi-homo- 

geneous and heterogeneous models using this criteria, and 
figure 4.16 shows the corresponding trajectories on the T vs.. 

B phase diagram. 

Clearly, whilst Van Welsenaere and Froment's criteria . 
are very good for quasi-homogeneous systems they are not use- 
ful in the heterogeneous case since they then give far too 

conservative limits on the inlet conditions. Also if the 

reactor conditions are such that effectiveness factors greater 
than unity occur, then the criteria for the quasi-homogeneous 

system would not give safe operating conditions. 

Obviously, the runaway criteria for a quasi-homogeneous 
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system cannot be expected to apply in the heterogeneous case. 
The source of the parametric sensitivity which leads to temp- 
erature runaway is different in each system. In the quasi- 
homogeneous case it is due to the exponential term in the re- 
action rate expression, whilst in the heterogeneous case it is 
due to the heterogeneity of the system and the way in which 
rate terms interact inside the pellet. 

6. Concluding Remarks 

A method of identifying regions of temperature runaway in 
fixed bed catalytic reactors has been proposed, which is not 
dependent on arbitrarily defined numerical values of temperature 
but which is determined from the intrinsic properties of het- 

erogeneous systems. The relationship between instabilities 

which arise as a consequence of parametric sensitivity and those 

which are due to multiple steady states has also been examined. 

The way'in which this method may be used in the design and 
control of reactors has also been discussed. It has been 

shown how simple charts giving information about the inlet con- 
ditions ana reactor dimensions which lead to critical situat- 
ations may be constructed in order to facilitate a full evalu- 
ation of the various reactor operating conditions. These 

charts may also be used in the dever. opment and implementation 

of computer control strategies for the reactor. The method 
suggested for this can also be applied when other system con- 
straints exist; for example, a maximum reactor outlet temp- 

erature, even when these constraints do not coincide with the 

runaway criterion. However, because of the instability which. 
arises due to parametric sensitivity it is unlikely that reac- 
tor operation will be desired above the runaway limit. 

Although the proposed criterion for temperature runaway 
has been developed for the steady state operation of the re- 
actor, it may be used to give an insight into the dynamic be- 
haviour since it identifies qualitatively a region of param- 
etric sensitivity in state variable space. Its use in anal- 
ysing the dynamic effects of fixed bed reactors is demonstrated 
in subsequent chapters.. 
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CHAPTER, 5 

THE DYNAMIC MODEL OP THE REACTOR 

5.1 Introduction 

Whilst digital simulation has provided a very powerful 
tool in the study of chemical reactors, because of the consid- 
erable computational effort required attention has been mostly 
confined to an examination of the steady state behaviour. As 
pointed out in chapter 2, most investigators have tried to 
overcome this problem by formulating simple models which neglect 
certain phenomena associated with either the fluid or solid 
phases. The applicatiotl of these models is, therefore, limit- 

ed to specific systems, at least until their use in more com- 
plex situations has been justified. 

The most comprehensive dynamic models of the fixed bed 

reactor which have been reported in the literature are those 

of Peick and Quon46 and Stewart and Sýrensen72 Both of these 
formulations employ fully distributed models of the catalyst 
pellet and describe axial as well as radial diffusion within 
the reactor. In the former case, the computation time req- 
uirea to solve the model was so great that no more than an 
extremely limited study or the reactor oehaviour could be per- 
formed. This was mainly due to the effort required to solve 
the catalyst pellet model. Stewart and Sprensen12 appear to 
have overccme this problem to -a certain extent by using an or- 
thogonal collocation method to solve the system equations. 
However, since they were mainly concerned with the mathematical 
aspects of the solution, no attempt was made to study the re- 
actor behaviour in any detail. 

The essential requirements of any system model are that 
it should provide an adequate description or the system with 
the minimum of computational effort. This is especially true 
for a dynamic model of the fixed bed reactor where usually the 

equivalent of a steady state solution must be generated very 
many times in order to descrioeýthe reactor behaviour over a 
period of time. It is essential, therefore, that such a model 
contains a description of only the important pnysical and chem- 
ical processes within the system.. 

The factor which most affects the computational load in a 
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heterogeneous reactor model is the level of complexity adopted 
in the formulation of the catalyst pellet model. As has been 
discussed in chapter 2, the lumped thermal resistance model of 
the catalyst pellet (Appendix (1)) has been shown to give an 
accurate estimate of the pellet performance over a wide range 
of parameters and also requires relatively little computational 
effort for solution. It is, therefore, very suitable for in- 

elusion in a dynamic model of the reactor. 

A reduction in the dimensionality of the reactor model 
will also reduce the computational load. However, 'as with any 
approximate method of solution; the predictions-of a one dim- 
ensional model must be compared with those of a two dimension- 

al formulation in order to establish the validity and, therefore, 
the usefulness of the model. Once this has been done, the 

simpler model may then be used more efficiently to study the 

effects of various factors on the reactor performance. 

In chapter 3 the suitability of two methods of describing 

-radial heat transfer in packed bed reactors was examined. It 

was shown that the single phase approach was the more approp- 
riate since it allowed a consistent description of the import- 

ant reaction rate limiting effects within the catalyst pellets. 
In this chapter, this approach is adopted in the formulation 

of a two dimensional dynamic model of the reactor which is 

used to evaluate a simpler one dimensional model. Also, in 

order to establish what are the important dynamic elements in 

the reactor, consideration is given to the inclusion of a des- 

cription of the reactor tube wall in the reactor model. Since. 
this has a finite thermal capacitance the conditions under 
which it may significantly affect the dynamic behaviour of the 

reactor are examined with the use of the one dimensional model. 

5.2 The Two Dimensional Dynamic Telode1 

5.2.1 Formulation and Solution of the Equations 

The reaction scheme considered is the simple, first- 

order, irreversible A &B reaction with Arrhenius kinetics. 

Attention is confined to a long cylindrical reactor tube 

packed with spherical catalyst pellets, with the outside of the 
tube surrounded by a coolant at a constant temperature. The 
fluid stream is assumed to pass through the bed in plug flow 

and the bed is sufficiently long that the effects of axial 
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dispersion may be neglected. 

The equations representing-the heat and mass balances on 
the reactor may be written in dimensionless form as follows: 

2 

a r2A 
+ -- A- G18 CA 

_ GiG2 ý kiCA = G5ý -A (5.1) 
r ar E) z @'tý 

a2T+ 
2 

1 OT 
- G3ýT + G3G4(t - T) = G60T (5.2) 

E) r r Cr Cz 0 
with boundary conditions: 

ac A= ýT= 0 at r=0, z> 0, T0 
Cr Cr 

2-2A 
= 0 

Cr 
atr=1, z> 0, 't 0 

PT 
= Iiu (T - T) 

Or w c 

and initial conditio ns: 

CA = CA(r, 'C) , T= T0 (r, lý) at z=0, le > 0, 0<r<l 

CA _ CA(r, z), T= TO(r, z) , at 'C= 0, z 0, 0<r<1 

where : 

G_ 1 
R2u G 

(1 - e)LDpA 
2 LD fA 

2 b ue 

G= 3 
R? u cP G= 4 

3hL(l - e) 
K fL bu e cpe 

G5 ü G6 ý3* 
U 

IT% = RU/K fe kl = e2 exp (-l/T) 

Equations (5.1) and (5.2) are coupled with the dynamic 

model of the catalyst pellet given in Appendix (1) through the 

variables "l and t. 

Solution of the equations may be accomplished by a marching 
technique starting at the reactor entrance and working through 

to the exit at each time step, using the finite difference 

formulation described in Appendix (3). At each radial node 
the unknowns are CA, T, t and % at the axial and time node 

under consideration, and the solution may be obtained as 
follows: 

'. 
ý, xý 
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(1) Assume radial profiles of CA and T at the 

first axial position where they are unknown 
for the current time position. 

(2) Using the assumed values of CA and T from 

step (1) solve the catalyst pellet model 

over the time step to give values of t and 
t at each radial node at the current time. 

(3) Calculate the radial profiles of CA and T 

at the current time using the values of t 

and '7 obtained from step (2) and compare them 

with the profiles assumed in step (1). If 

agreement is satisfactory, continue to step 
(4), otherwise repeat from step (2). 

(4) Repeat from step (1) while z <_ 1 (i. e. until 
the reactor exit is reached). 

(5) Repeat the whole computation for the next 

position in time and continue for as long as 

necessary. 

The initial steady state conditions are conveniently de- 

fined by setting the time derivatives in equations (5.1) and 
(5.2) equal to zero and solving the equations using the finite 

difference approximation given in Appendix (3). 

5.2.2 Reduction of the Model to Pseudo-Steady State Form 

Values of the system parameters used in the simulations 

are given in Table 5.1. When programmed in Fortran on an IBM 

1130 computer with floating point hardvrare, solution of the 

model represented by equations (5.1) and (5.2) was found to re- 

quire between twenty and thirty minutes per time step. The 

time required for solution over each time interval is a function 

of the number of nodes in the finite difference representation 

of the spatial coordinates. For the data given in Table 5.1, 

the number cf nodes required for a convergent solution within 

each time interval is of the order of 20 in the radial direction 

and 200 in the axial direction. A reduction in these values 
leads to a saving in computation time in two ways; namely a 
direct saving in the amount of calculation to be carried out, 

since the number of solutions of the catalyst pellet model is 

reduced, and a further saving in backing storage access time. 

Generally, on small computers, the use of backing storage for 

jJ 
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this type of calculation is essential because of the large 
amount of information which must be retained between successive 
spatial and time increments. Against any reduction in com- 
putation time caused by using larger spatial increments must be 
weighed the reduction in accuracy and numerical stability which 
is likely to occur. These problems have been discussed in 
detail by Cresswell'3 and Thornton12 In genera, with highly 
non-linear systems of equations of this type it is essential 
that the truncation errors are kept to a minimum, and this is 
achieved by using a fine grid. Clearly, more sophisticated 
numerical techniques may be used to circumvent this proble o 15 

The finite difference scheme used here is both simple to pro- 
gram and accurate and may be used as the basis for checking the 

solutions obtained by the more approximate methods. 

Since the spatial increments used in the solution of eq- 
uations (5.1) and (5.2) must be fairly small, one way of att- 
empting to decrease the time required for solution is to use 
as large a time increment as possible. However, with 
G5 G6 = 0.84 it has been found that to obtain a converged 
solution when step changes occur in the reactor inlet conditions, 
a time interval of the order of 0.01 seconds is required. 
Clearly, with time steps of this size the use of the model is 

severely limited. As Thornton12 has pointed out, the thermal 

capacity of the catalyst pellets is much greater than the cap- 

acity of the surrounding fluid to absorb heat and mass and 
therefore the transient response of the reactor will be slow 
compared with the residence time. This means that the dynamic 
behaviour of the fluid may be approximated to a series of pseudo- 
steady states. Figure 5.1 shows the effect of applying this 

approximation, by setting G5 - G6 - 0, on the computed res- 

ponse of tha reactor to a step decrease in inlet temperature. 
The model incorporating the fluid capacitances predicts a 

slightly slower response due to these capacitances, but the 

differences between the profiles is negligible compared with the 

magnitudes of the changes which are occurring and considering 
the severity of the conditions. Treating the fluid as being 

at a pseudo-steady state allows the use of a time interval of 

one to two seconds to obtain a converged solution, and so 

clearly the reduction in computational effort required to follow 

the whole response is considerable. One further advantage of 
r 
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the pseudo-steady state formulation is that the solution over 
each time interval requires approximately half as much comp- 
utation time as the model incorporating the fluid capacitances. 
This is due to a reduction in both the amount of computation 
and the backing storage access time, since less information has 
to be retained between successive time steps. Clearly, this 

saving will not be so great on a large computer where the use 
of backing storage is not necessary. 

5.2.3 Comparison with the One Dimensional Model 

Before comparing the. transient responses of the reactor 
predicted by the one and two dimensional models it is first 

necessary to examine the limitations of the one dimensional 
formulation in the steady state. This is especially true if, 

as is usually the case, the steady state version of the models 
are used to give initial conditions for the dynamic model since 
any discrepancies between them in the steady state will also 
appear in the unsteady state. 

In a simple one dimensional model the state variables 
(concentration and temperature) are assumed constant across the 

tube radius and the parameters have the same values as those 

used in the two dimensional model. Unless the heat removal 
through the tube wall is very small, for example in near adia- 
batic reactors or in reactors where the fluid temperature is 

not very different from the coolant temperature along the whole 
length of the tube, so that the radial temperature profiles 
are very flat, then the predictions of such a model will sig- 
nificantly differ from those of a two dimensional model of the' 

same system. In most cases, and especially in the region of 
the hot spot, the radial temperature profile will be far from 

flat due to the radial removal of heat. Thornton12 observed 
that the radial temperature profile is essentially parabolic 
in shape and this enabled him to express the fluid temperature 

at any point across the tube radius in terms of its radial mean 
value. Also, the wall heat transfer coefficient expressed as 
the wall Fusselt number may be modified so that at each axial 
position in the bed, the heat removal by the coolant may be 

expressed in terms of the radial mean temperature, T, rather 
than the value at the tube wall, TIr 1. Thus the modified 
wall ! dusselt number, Nuw , is defined by: 

Nuw(T - Tc) = Nuw(Tlr_i - Tc). 

ýý 
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Assuming a parabolic form for the radial-temperature profile 
enables Nuw to be expressed in terms of Nuw only. Thus 

ITuw = 4Nuw/ (4 + Nu, ) 

It can be sfeen from this that Nu* < NuW so that the greater 
temperature driving force for heat removal, (T - Tc), is com- 
pensated. Using this corrected wall dusselt number allows 
the formulation of a one dimensional model in terms of the radical 

mean state variables and reaction rate terms. A problem arisef3, 
however, in the evaluation of these reaction rate terms. 
Specifically, since the kinetic rate expressions are highly 

non-linear functions of temperature, the reaction rate evaluated 
at the mean conditions is less than the true mean value. Thus 

within the main reaction zone of the reactor where the radial 
variations of temperature and concentration are more pronounced, 
the one dimensional model predicts lower temperatures than the 

two dimensional model. For most conditions this means simply 
that the temperature at the hot spot is not so great, although 

as P'IcGreavy and Adderley113 have demonstrated, if the steady 

state exhibits temperature runaway then the one dimensional 

model can predict a hot spot further down the bed than the two 

dimensional model. Clearly, although in the steady state the 

quantitative features of the temperature profile are still to 

some extent retained, this may result in incorrect prediction 

of the transient response of the reactor. 

In the one dimensional model since the radial temperature 

profile is assumed parabolic it may be generated once the radial 

mean temperature is known. No similar generation of the radiafl 

concentration and effectiveness factor profiles is possible, 
however, and so to evaluate the radial mean reaction rate at 

each axial position necessitates that these remain constant, 

at their mean values, across the tube radius. When the mean re- 

action rate is evaluated in this way it will obviously be over- 

estimated since both the concentration and effectiveness factor 

decrease across the tube radius towards the centre, especially 
in the region of the hot spot. Consequently, the axial temp- 

erature profiles predicted in this way by the one dimensional 

model will be higher than those obtained from the two dim-arm: ion-- 

al model. 

Thornton12 showed that agreement can be obtained between 

j 
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the steady state axial profiles of radial mean concentration 
and temperature by appropriate choice of the wall Nusselt 
number for the one dimen. sional model. This entails calcula- 
ting the axial profile of radial mean temperature using the two 
dimensional model and then trying successive values of the wall 
Nusselt number in the one dimensional model until a good fit is 
obtained. The result of this trial and error approach is 
shown in figure 5.2. It can be seen that using a value of 
NuW = 1.75 in the one dimensional model gives good agreement 
between the two models for the data given in Table 5.1. Equally 
good agreement is also obtained between the axial profiles of 
radial mean concentration using this value of the wall Nusselt 
number. 

Figure 5.3 shows steady state radial teiaperature profiles 
predicted by both the two dimensional model (solid line) and 
the one dimensional model (broken line) with TNuw = 1.75. In 
the region of the hot spot the profiles- generated by the one 
dimensional model are flatter than those obtained from the two 
dimensional model so that although the mean values agree very 
well there is a discrepancy at, for example, the tube axis 
(r = 0). The extent of this difference in centre-line temp- 

eratures along the reactor is shown in figure 5.4 and it can 
be seen that the one dimensional model underestimates the centr. E-A 
line temperature especially in the region of the hot spot des- 

pite the agreement between the radial mean values. For the 

purposes of reactor control it is probably more important to 

accurately predict the centre-line temperature in the reactor 
since this is where temperature runaway is first likely to 

occur. For the purposes of obtaining a general picture of the 
dynamic behaviour of the reactor the mean values of the state 
variables in the radial direction are sufficient. 

Figure 5.5 shows axial profiles of radial mean temperature 

predicted by both the one and two dimensional models in respons¬ 
to a step decrease in the reactor inlet temperature. As can 

-be seen, the agreement between the two models is excellent. 
The one dimensional model agrees with the two dimensional form- 

ulation not only qualitatively *but almost quantitatively as well. 
As might be expected when the temperature profiles are in such 
close agreement the concentration profiles are also very sim- 
ilar. The agreement between the radial temperature profiles 
predicted by both models is not quite so good, particularly in 
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the region of the hot spot and this might be anticipated from 
the results of the steady state comparison. Radial profiles 
of both temperature and concentration at z=0.8, which is 

approximately the position of the initial steady state temper- 

ature peak, are shown at various times during the response in 
figure 5.6. The-centre-line temperature predicted by the para- 
bolic profile from the one dimensional model is lower than that 

predicted by the two dimensional model in each case. The gen- 
eral forms of the two profiles are, nevertheless, similar. . 
There is, of course, no similarity in the radial concentration 
profiles predicted by the-two models since no allowance for a 
radially varying concentration is made in the one dimensional 

model, although the mean values are in close agreement through- 

out the response. 

Axial profiles of radial mean temperature predicted by both 

models in response to a step increase in inlet temperature are 

shown in figure 5.7. Again, the agreement between the two 

models is very good. The slightly faster formation of the new 
hot spot predicted by the one dimensional model is due to the 
fact that it tends to underestimate the rate of increase of the 

centre-line temperature. As this new temperature peak forms, 

the two dimensional model shows that most of the change first 

occurs at the hotter regions near the centre of the tube and so 
the radial mean temperature does not increase quite as fast as 
the one dimensional model suggests. Nevertheless, the extent 

of the discreparrey between the mean profiles predicted by both 

models is very small and is never more than one per cent. 

. 
The agreement between the two models when ramp changes in 

inlet temperature and step and ramp changes in concentration 

occur has been found to be as good as that for the very severe 

perturbations shown here. This suggests that the one dimens-" 

ional model is eminently suitable for carrying out an extensive 

study of the reactor dynamics. Such circumstances are indeed 

fortunate since the use of the two dimensional model would be 

out of the question because of its large computational demands. 

5.3 The Effect of the Tube Wal]. 

5I--. 3.1 Formulation and Solution of the Equations 

The transient response of the reactor appears to be mainly 
determined by the transfer of heat at finite rates between the 
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stationary thermal capacitances; that is to say, between the 

fluid and the catalyst pellets. In the previous studies the 

coolant has been assumed to be at a constant temperature which 
is unaffected by the transfer of heat from the tubeside fluid. 

Even when this is the case, the tube wall which has a finite 

thermal capacitance is interposed between the coolant and the 

tubeside fluid and so its effect, if any, on the dynamic be- 

haviour of the reactor needs to be examined. Having established 
the suitability of the one dimensional dynamic model for des- 

cribing the unsteady state behaviour of the reactor, it may, 
therefore, be used at least for a qualitative study of this 

effect. 

Assuming 

wall and that 
its outside, 
the tube wall 

(a) in the 

hf(TAI 
y= 

that there is no conduction of heat in the tube 

the coolant is at a constant temperature along 

at each point along the reactor a heat balance on 

gives: 

steady state: 

1-Tyy. 
)= hc(T, -Tc ) (5.3) 

where the wall to coolant heat transfer coefficient, h., is 

based on the inside area of the tube. 

and 
(b) in the unsteady state: 

11 

pwcpN(R2 - R2)/2R1d2i = hf(T'J 
=R- 

T') 
dV 

+ hC(TI -w 
(5.4) 

with the initial condition T. 1 = T''0 at T=0. 

If in the. reactor model (Appendix (2)) Tc is replaced by 

TIV and the gall Nusselt number is defined in terms of the fluid 

-co wall heat transfer coefficient, h f, then Nu`, f = Rlh f/K fe 
The effective wall Nusselt number is then defined by: 

Nu, f(T - TW) = NuIV , 
(T Jr 

_1- 
lc 

For a parabolic radial temperature profile in the reactor, 
* is given12 by: Nu`INuwf 

=4 Nuw f/ 
(4 + Nuw f) 

Rearranging equations (5.3) and (5.4) and expressing them in 

dimensionless form gives: 

i 
,ý 
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Nuwf(T - Tw) - NuWO(Tw - Tc) (5.5) 

and 
Ký 

fdTw/d 
't - Nuw f (T - Tw) + Nuw0 (To - Tw) (5.6) 

with initial condition: 

Tw = Two at 'tý =0 

where 
NuwO = R1 he/Kfe and Kw =e wepw(R2 - R2)/2Kfe 

Both equations now contain the radial mean temperature of 
the reactor, T, which is used in the one dimensional model. 
Equation (5.5) which gives the temperature of the tube wall at 
each axial position in the steady state may be used to obtain 
the initial condition for equation (5.6). It should be noted, 
however, that the presence of the tube wall does not affect the 

steady state of the reactor. 

In the unsteady state, equation (5.6) must be solved simult- 
aneously with the reactor and pellet equations at each axial 
position. This may be conveniently accomplished using the 
Runge-Kutta-bierson Alogrithm used for the solution of the cat- 

alyst pellet equation. The method of solution of the whole 

set of equations is then very similar to that described in App- 

endix (2) for the reactor with no wall capacitance; each time 

the catalyst pellet equation is solved so is equation (5.6) to 

give Tw. 

5.3.2 Discussion of the Results 

In order to obtain an indication of the effect of the tube 

wall without extensive simulation of all types of response, 
only step changes in reactor inlet temperature have been simu- 
lated. As mentioned previously, this represents the most 

severe disturbance to which the reactor is likely to be subjec- 
ted and in general most other perturbations can be expressed i. ~ 
terms of a series of step changes. 

Any effect which the tube wall capacitance is likely to 

have on the transient response of the reactor will depend on 
both its value and the relative rates of heat transfer to and 
from it, that is on the material of the tube and its thickness 

and on the ratio of the inside and outside heat transfer co- 

efficients. In general in industrial reactors the tubes are 

made from mild or stainless steel and their thickness is un- 
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likely to exceed approximately 0.4 cm. This value of tube 
thickness and the properties of stainless steel have been used 
in this study since these give an upper limit on the tube wall 
capacitance and therefore represent a worst case. Three values 
of the ratio of the inside and outside heat transfer coeffic- 
ients have been used with a constant value of the overall coe- 
fficient between the tubeside fluid and the coolant so that 
the initial steady state of the reactor is the same in each case. 
These values of hf: h0 are 1: 1,1: 4 and 1: 10. In industrial 

reactors most control can be exercised over the value of the 

outside coefficient, hc, and with highly exothermic reactions 

where the maximum amount of heat removal is necessary, it is 

usually arranged that h is much greater than h so that the 

ratio of 1: 10 represents the realistic situation. 
14 The data 

used for the simulations is given in Table5.1. 

Figures 5.8,5.9 and 5.10 show axial profiles of radial 

mean temperature at three times during the response of the 

reactor to a step decrease in inlet temperature for each of the 

hf: hc ratios. It can be seen that only when the wall to coo- 

lant heat transfer coefficient is less than ten times the value 

of the inside wall to fluid coefficient does the presence of 

the tube wall have any significant effect on the response of 

the reactor. Even at the hf: hc ratio of 1: 4 the effect is not 

great. As might be expected, the tube wall capacitance tends 

to slow down, the response of the reactor. In the case of 

equal inside and outside heat transfer coefficients this causes 

the initial steady state temperature peak to increase and move 

out of the bed more slowly when a step decrease in the inlet 

temperature occurs. This is due to the slower cooling which 

occurs at the front of the bed, which, therefore, slows the in- 

erease in reactant concentration reaching the hot spot. The 

slower cooling of the front end of the bed occurs because the 

tube wall is able to heat up. As the hf: h0 ratio increases 

then the rate at which heat is removed from the tube wall to 

the coolant, relative to the rate at which it reaches the wall 

from the fluid, increases. Thus, at low values of the hf: hc 

ratio, although heat is transferred to the wall at a greater 

rate it is removed at much slower rate and so this effect tonds 

to slow the overall rate of cooling of the bed. Thus, when 

cooling is occurring within the bed it is heat transfer between 

,ý 
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the wall and the coolant which is. iniportant; the higher this 

rate of heat transfer, then the less effect the tube wall has 

on the overall reactor response. 

Figures 5.11,5.12 and 5.13 show axial profiles of mean 
temperature at various times following a step increase in re- 
actor inlet temperature for the three hf: hc ratios. Again, 
the effect of the tube wall is only significant for hf: h0 < 
1: 10. At the front of the bed, heating occurs when the inlet 
temperature is increased and this is due both to the higher 
temperature of the gases entering the bed and the increase in 
the rate of reaction and, ' therefore, heat generation caused by 
this higher temperature. The effect of the tube wall is still 
to slow the response of the reactor and is again greatest at 

the lower values of hf: hc. In this case, however, it is due 
to the relative rates of heat transfer from the fluid to the 
tube wall. Heat is transferred from the fluid to the tube wall 
more easily at the lower values of hf: hc and so the wall heats 

up more. However, this heating of the tube wall has less 

effect on the rate of heat generation within the reactor than 
that due to the higher temperatures caused by a lower rate of 
heat removal to the wall. Consequently, the rate of heating 

at the front of the bed is slower "for the lower values of hf: hc. 

This,. in turn, slows the decrease in concentration reaching the 

initial steady state temperature peak which, therefore, decays 

more slowly. The slower decay of this peak is also caused by 

a slower rate of heat removal to the coolant at the low hf: hc 

ratios in the same way that slower cooling of the front of the 

bed occurs in response to a step decrease in inlet temperature. ' 

In general, the higher the ratio of the inside to outside 
heat transfer coefficients the less the tube wall is heated 

and so it has less: effect on the transient response of the re- 

actor. For cases where the wall to coolant heat transfer co- 

efficient is more than ten times greater than the inside fluid 

to wall value the effect of the tube wall on the dynamic be- 

haviour is negligible. It should be noted that a similar con- 

elusion was reached when the inside coefficient was held con- 

stant and the outside value increased, although these results, 

which are not shown here, are not strictly comparable since the 

initial and final steady states are necessarily different for 

each value of the outside coefficient. 

k 
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Axial conduction within the tube wall is also justifiably 

neglected in the realistic case of a large outside wall to coo- 
lant heat transfer coefficient since little heating of the tube 

wall occurs and it remains essentially isothermal due to the 
high rate of heat removal to the coolant. Even at the lower 

values of this coefficient when heating of the viall does occur 
the results indicate that the radial heat flux towards the 

coolant would tend to be much larger than that possible axially 
within the tube wall so that the latter may be neglected in 
this case. This is largely due to the much smaller area for 
heat transfer associated with the axial flux and also because 

although heating of the wall above the coolant temperature does 

occur the gradients within it are not particularly large. 

5.4 Concluding Remarks 

A two dimensional dynamic model of the fixed bed reactor 
has been formulated and used to evaluate a simpler one dimen- 

sional model. It has been shown that with appropriate corr- 
ection of the wall heat transfer coefficient the simple model 
gives an accurate qualitative description of the transient re- 

sponse of the reactor, although, as might be anticipated from 

the results of steady state studies12it tends to predict some- 

what flatter radial temperature profiles than are obtained from 

the two dimensional model. The axial profiles of the radial 

mean state variables are, however, in good agreement with those 

predicted by the two dimensional model throughout the transient 

response. Because it predicts flatter radial temperature 

profiles, the one dimensional model tends to underestimate the. 

centre -line temperature in the reactor. This might, at first, 

be thought to be due to overestimation of the rate of heat re- 

-moval through the tube wall. However, the temperature at the 

axis of the reactor, predicted by the one dimens-Jonal model, 
is rather insensitive to the value of the wall heat transfer 

coefficient and this suggests that the problem is mainly due to 

underestimation of the reaction rate at the higher temperatures. 

Since the reaction rate is a highly non-linear function of 
temperature the radial temperature profile becomes distorted 

near the centre of the tube at the higher temperature levels 

and, therefore, does not retain the parabolic form which is ass- 
umed for it in the one dimensional model. Turner71 has dev- 

eloped a method for compensating for this distortion in the 

steady state by-applying a radial correction to the reaction 
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rate expression in the one dimensional model. He has also 

shown that correction of the wall heat transfer coefficient 

without prior reference to the steady state solution of a two 

dimensional model is possible. The application of these 

methods to the unsteady state problem is currently under dev- 

elopment15 and it appears that it is possible to apply them succ- 

essfully in this case also. 

At present, however, the one dimensional model examined 
in this chapter appears suitable for-an extensive study of the 

general pattern of the dynamic behaviour of the reactor since 
it can give good agreement both quantitatively and qualitatively 

with the more complex two dimensional model in terms of the 

mean values of the radial profiles. The two dimensional model 

is wholly unsuitable for this purpose because of its large 

computational load, whereas the one dimensional model requires 

approximately only one fifteenth of the computation time. The 

preferred approach is, therefore, to use the one dimensional 

model for a general study of reactor performance and then sub- 

sequently, if necessary, to investigate particular aspects of 

behaviour using the two dimensional model. 

In order to establish whether a description of the reactor 

tube wall is necessary in a dynamic model of the reactor, its 

effect on the transient response has been studied using the one 

dimensional model. It has been found that the importance of 

the tube wall is determined by the relative magnitudes of the 

heat transfer coefficients on its inside and outside. Specifi- 

cally, if the outside, coolant to wall, heat transfer coeff- 

icient is an order of magnitude, or more, greater than the 

inside, wall to fluid, value, then the effect of the tube wall 

capacitance on the system is negligible. In industrial fixed 

bed reactors supporting highly exothermic reactions where the 

outside heat transfer coefficient is commonly ten to twenty 

times greater than the inside value, 
114 the tube wall does not 

represent a significant dynamic element in the system and, 

therefore, need not be included in the reactor model. 



74. 

CHAPTER-6 

THE RESPONSE OF THE REACTOR TO 
SINUSOIDAL PERTURBATION OF THE 
INLET CONDITIONS 

6.1 Introduction 

Temperature and concentration disturbances propagate 
through fixed bed catalytic reactors in a wavelike manner. 
Whilst a knowledge of the interactions between such travelling 

waves is essential to the design of an adequate control system 
for the reactor, there appears to have been only limited in- 

vestigation of such phenomena. 

Foss and his co-workers have studied the effect of sinus- 
soidal perturbations of the inlet concentration and temperat- 

ure on both a homogeneous liquid system115 and a heterogeneous 

gaseous system64,116 In the liquid system the reactor tube was 
packed with inert glass spheres which acted merely as a heat 

sink causing a time delay. In the gaseous reactors, attent- 
ion was confined to the development of a suitable linearised 

model of the system and study of the quasi-stationary state. 
Denis and Kabel 51,128 ' have investigated the propagation of both 

saw-tooth and square waves in an heterogeneous reactor where 
the rate of adsorption 'of the reactant on to the catalyst sur- 
face is assumed to be the significant dynamic effect. Hansen9 
has considered oscillatory inlet conditions on an adiabatic 
fixed bed reactor. However, he too has mainly confined his 

attention to the applicability of the model and the quasi- 
stationary state behaviour. None of these workers appear to 
have considered the problems of stability which may occur as 

a consequence of*oscillatory inlet conditions of such reactors. 

McGreavy and Thornton83 have studied the response of a 

single catalyst particle to oscillations in both the tempera- 

ture and concentration of the fluid surrounding it. They 

showed that it was possible for a particle to pass transiently 

into a region which, in the steady state, would correspond to 

temperature runaway, and then return to the initial steady state. 
McGreavy and Soliman85 have recently given a criterion which 

relates the permissible amplitude and frequency of the oscill- 
ations which will cause a catalyst pellet to behave in this way. 

J 
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Both of these studies, however, concerned single catalyst pell- 
ets in the region of multiple solutions. A brief examination 
of the response of a whole bed to oscillating inlet conditions, 
with reference to stability, has been reported by 171cGreavy and 
Adderley113 They were able to draw only general conclusions 
from the results, however, because the initial state from which 
the reactor was perturbed exhibited temperature runaway. 

This chapter concerns the extension of the single pellet 
studies to the investigation of the behaviour of a fixed beds 
reactor undergoing sinusoidal perturbations of the inlet teinp- 
erature and concentration. The high non-linearity of the sys- 
tem makes conventional frequency response analysis inapprop- 
riate. 

The reaction scheme considered is the simple, irreversible, 
first order A--+B reaction with Arrhenius kinetics. The re- 
actor model used is one dimensional, with an assumed parabolic 
temperature profile, as described in Appendix (2). This is 
coupled with the isothermal catalyst pellet model given in 
Appendix (1). For the reasons given in chapter 5 the mass end 
heat capacitances of the fluid and the heat capacitance of the 
tube wall are neglected in the reactor model, and in the cat- 
alyst pellet model, only the heat capacitance of the pellet is 
considered. The data used for the simulations is given in 
Table 5.1. 

Since temperature runaway may occur as a consequence of 
either parametric sensitivity or multiple solutions, two initial 
steady states have been considered. One of these lies ent- 
irely in the region of unique solutions with the inlet condit- 
ions adjusted so that temperature runaway occurs solely as , 
consequence of parametric sensitivity, and the other has been 
chosen so that it lies entirely in the region of multiple sol- 
utions. 

The form of the inlet perturbations applied to the rea,, tor 
is: 

f0i +A sin(2x ca T) 

where: 
fi('r) = value of inlet variable at time T 

fOi = value of inlet variable at time zero 

A= Amplitude of the oscillation 

E 
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0= frequency of, the oscillation 

The sign of A can have a profound effect on the response 
of the reactor since it determines the initial direction of the 

perturbation. For this reason, both positive and negative 
sinusoidal oscillations have been studied. 

The response of the reactor to sinusoidal inlet conditions 
has been divided into two distinct stages; the initial trans- 
ient, which occurs as the first cycle. of the perturbation 
passes through the 'bed, and the quasi-stationary state which 
occurs after the initial transient has died away and in which 
the reactor merely oscillates about a fixed mean. The length 

of the initial transier. t is determined by the heat capacitance 
of the pellets since this regulates the speed of the temperature 

waves through the bed. . 
Because of the complex nature of the phenomena which occur 

during sinusoidal perturbations of the inlet variables, some 
typical responses have been described in detail to illustrate 
the important, general features of the behaviour. 

6.2 Temperature Forcing 

6.2.1 The Unique Region 

Pigure 6.1a shows the axial profiles of radial mean temp- 

erature of the initial steady state and also of the steady 

state which would occur at the maximum and minimum values of a 

sinusoidal inlet temperature oscillation of amplitude 0.00056. 
(This represents approximately 7.5 K for the activation energy 
given in Table 5.1). The phase trajectories of these three 

states are shown in figure 6.1b. All three lie entirely in 
the region of uniq»e solutions and in the steady state at the 

maximum of the oscillation temperature runaway occurs, the re- 

actor trajectory crossing the runaway line on the phase dia- 

gram. 

At the amplitude of 0.00056 the initial transient gives 
rise to temperature. runaway for all frequencies below approx- 
imately 0.125 Hz. Only at frequencies below approximately 
0.0345 Hz is this temperature runaway condition maintained in 
the quasi-stationary state; at frequencies above this value 
the safe low temperature region is. regaine ; by the bed and the 

quasi-stationary state is confined there, the-reactor traject- 

ories of the quasi-stationary state remaining entirely below the 
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runaway line on the phase diagram. 

At the same amplitude but with a negative sine wave, the 
behaviour is somewhat different. At no frequency does the 
bed pass transiently into the region of temperature runaway. 
Below a frequency of approximately 0.0345 Hz temperature run- 
away occurs in the initial transient and is maintained in the 
quasi-stationary state, however, above this frequency tempera- 
ture runaway does not occur at all. 

Increasing the amplitude of the inlet temperature osci"- 
Ilation causes these "threshold" frequencies to increase. For 
example, with an inlet temperature amplitude of +0.00112 temp- 
erature runaway does not occur above a frequent; of approximat- 
ely 0.2 Hz, and below 0.067 Hz temperature runaway is maint- 
ained in the quasi-stationary state. Conversely, decreasing 
the amplitude of the inlet temperature oscillation brings about 
a decrease in the value of these frequencies until the ampli- 
tude of the oscillation is such that temperature runaway does 
not occur at all. This happens when the steady state which 
would occur at the maximum of the inlet oscillation does not ex- 
hibit temperature runaway. 

In order to understand this behaviour the initial transient 
response of the reactor must be"examined in detail. This has 
been accomplished by studying axial profiles of the magnitudes 
of deviations of the concentration and temperature from the 
initial steady state. These deviations are defined by: 

rdf = Cr) (f- fo)lf0 
. 

where: 
f(ý )- value of concentration or temperature 

at point z and time `ý 

f0 = value of concen'-ration or temperature 

at point z and time zero. 

Thus the initial steady state of the reactor is represented by 
the abscissa (rlf = 0) when axial profiles . of M. are plotted. 
6.2.1(a) Positive Sine Waves 

Consider first the inlet temperature amplitude of 0.00056 
at a frequency of 0.04 Hz. Since the sine wave is positive, 
the inlet temperature initially rises and 6. t this frequency 
temperature runaway occurs before the bed settles down to a 
quasi-stationary state entirely in the low temperature region 

-__j 
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(below the runaway line on the phase diagram). This is illus- 
trated by the axial profiles of radial mean temperature shown 
in figures 6.2 and 6.3. A runaway. temperature peak is at first 
induced near . 

the exit of the bed (figure 6.2) which settles 
down to a quasi-stationary state in the low temperature region 
(figure 6.3) when this peak has passed out of the bed. Figure 
6.4 shows axial profiles of the magnitudes of the deviations, 

of the radial mean concentration and temperature, from the 
initial steady state at various times'during the initial trans- 
ient. The quasi-stationary state profiles of these deviations 

are shown in figure 6.5. 

The effect of the initial cycle of the inlet temrerature 
is shown in figures 6.4a to 6.4e. The initially rising inlet 
temperature causes the-temperature in the latter half of the 
bed to fall, at first, below the steady state value. This is 
the so-called "wrong-way" transient which has been observed 
both experimentally and theoretically by several workers during 

step changes in the inlet temperature (e. g. references 64 and12). 
The increased inlet temperature causes a higher rate of re- 
action near the entrance to the bed which causes greater con- 
sumption of the reactant in this region. Consequently, less 

reactant is available further down the bed and so the rate of 
heat generation there falls off. Figures. 6.4a' afid 6.4b clearly 
show that the decrease in reactant concentration throughout the 
bed is felt immediately whereas the temperature in most of the 
bed does not change for some time. This is due to the thermal 

capacitance of the catalyst pellets. In the absence of app- 
reciable reactant adsorption at the catalyst surface, as is the 

case here, the mass capacitance of the pellets is negligible and 
so the concentration wave tends to travel at the velocity of the 
fluid which is, of course, much greater than the velocity of 
the temperature wave. 

After one cycle of the inlet temperature,. the initial tem- 

perature crest has advanced into the bed followed by a trough. 
Due to this temperature trough the reaction-rate falls off at 
the bed entrance and so induces a concentration crest. Thus, 
for a while, increased concentration is reaching the leading 
temperature crest &nd so more reaction takes place there prey-- 
enting the attenuation of this crest which would occur due to 
the heat removal processes (figures 6.4d and 6.4e). The rapidly 
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moving fluid carries material of lower reactant concentration 
through the slowly advancing temperature crest into the regions 
in front of it. It does not, however, carry heat with it be- 
cause of its very low thermal capacity. Thus, in front of the 
temperature wave, the concentration and, therefore, the rate of 
heat generation falls off lowering the temperature there even 
further. 

During the second cycle of the inlet temperature, the 

magnitude of the deviation from the steady state of the leading 
temperature crest is increased whilst that of the subsequent 
crest decreases. These two effects are related. The second 
temperature trough induces an increase in concentration through- 
out the bed which might be expected to amplify both temperature 
crests in the bed. This does not happen, however, because 
of the effect of the thermal capacitance of the catalyst pell- 
etc. The induced wave of increased concentration passes 
through the second temperature crest before its reaction rate 
begins to change. By, this time a third temperature crest has 

entered the bed (figure 6.4h) inducing a concentration decrease 

which attenuates the second crest. The higher temperature of 
the leading crest is met by an increase in concentration of 
reactant which causes even more heat generation. Amplification 

of the leading, but not of subsequent temperature crests, occurs 
because when the leading temperature crest passes down the 
first half of the bed it is heating the pellets from their st- 
eady state temperature whereas when subsequent temperature 

crests move along this region they are heating pellets from be- 
low the steady state temperature because of the passage of tem- 

perature troughs into the bed. Since the reaction rate, and 
therefore r. lie heat generation rate, increase non-linearly with 
temperature the leading temperature crest, there ore, reaches 
much higher temperatures than subsequent ones. The heat cap- 
acitance of'the pellets prevents them cooling quickly and so 
prevents the reaction rate changing rapidly. This effect is 

more damaging at high temperatures since it causes the catalyst 

pellets to remain hot during an. induced decrease in concentra- 
tion so that rapid reaction ensues when the concentration in- 

creases again. 

Temperature runaway is, therefore, prevented from occurring: 
in the quasi-stationary state because of the relative velocities 
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of the temperature and concentration ; saves. This is such 
that temperature crests are unable to interact constructively 
with the concentration crests at any point in the bed. The 
thermal capacitance of the catalyst pellets slows down the 
temperature waves so that, at any point in the bed, before a 
pellet is heated to a temperature high enough to cause runaway, 
it is met by a decrease in concentration which faces the temp- 

erature in the other direction. In other words, the frequency 

of the inlet temperature oscillation prevents any point in the 
bed remaining at a high temperature and concentration sufficie- 
ntly long enough to cause runaway to develop. The quasi- 

stationary state is discussed further in section 6.2.3 of this 

chapter. 

Decreasing the frequency to, say, 0.02 Hz at the -inlet 
temperature amplitude of 0.00056 gives rise to an initial trans- 
ient qualitatively similar to that described above. The imp- 

ortant differences are, however, that the magnitudes of the 

deviations from the initial steady state are greater, and also 
that the temperature runaway occurring near the exit of the bed 

during the initial transient persists in the quasi-stationary 
state (figures 6.6a to 6.6j). The leading temperature crest 
develops runaway for reasons similar to those described above 
for a higher frequency. At this low inlet temperature freq- 

uency, the induced concentration increases exist long enough to 

allow sufficient heat generation to take place to heat the 

catalyst particles to higher temperatures. The thermal capa- 

citance of the pellets then prevents them from cooling very 

much when the concentration falls and so they remain hot enough 
to cause rapid reaction when the concentration rises again. 
For this reason the temperature near the end of the bed is un- 

able to fall below the runaway region, as is the case at the 

higher frequencies, and so the quasi-stationary state exhibits 
temperature runaway. 

When the frequency is increased above 0.125 Hz with an 
inlet temperature amplitude of 0.00056 temperature runaway 

occurs neither during the initial transient response nor in the 

quasi-stationary state. In the light of the previous comments, 
the reason for this is quite clear. The -eading temperature 

crest, and also the subsequent ones, is prevented from rising 
to a high temperature and approaching the parametrically 
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sensitive region near the runaway line on the phase diagram. 
This is because the induced concentration increases do not 
remain in the bed long enough to cause the increase in reaction 
rate necessary to overcome both the thermal capacitance effect 
of the pellets and the heat removal processes. This reduces 
the amplitude of the oscillations throughout the bed, both in 
the initial transient and the quasi-stationary state. 

6.2.1 (b) Negative Sine Waves 

When the inlet temperature sine wave is negative so that 
the inlet temperature initially decreases, the behaviour of the 
initial transient is somewhat different from that found with a 
positive amplitude, in the unique region. 

At, for example, an inlet temperature amplitude of 0.00056 

and a frequency of 0.04 Hz the reactor moves to a low temp- 

erature quasi-stationary state without passing transiently into 
the temperature runaway region, as is the case with a positive 

sine wave of amplitude 0.00056 at this frequency. 

Figure 6.7 shows axial profiles of radial mean temperature 

at various times for an inlet temperature amplitude of 0.00056 

and frequency of 0.04 Hz. Axial profiles of radial mean con- 

centration and temperature deviations from the initial steady 

state are shown at various times during this perturbation in 

figure 6.8. The initial "wrong-way" transient is again evid- 

ent (figures 6.8a to 6.8e), but since the inlet temperature 

is at first decreasing the whole bed is initially subject to an 
increase in concentration of reactant causing the temperature 

in the latter regions to increase. The first temperature 

trough into the bed at first decreases in depth (i. e. temperature 

increases) since it encounters the higher than steady state re- 

actant concentration. As the first temperature crest entc: s 
the bed behind this trough it induces a fall in concentration 
throughout the bed. This causes the reaction rate to drop and 

so the temperature rise in the rest of the bed is arrested. 
The temperature does not fall immediately, however, because of 
the thermal capacitance of the pellets. During the next cycle 

of the inlet temperature (figures 6.8f and 6.8g) the leading 

trough advances down the bed increasing in amplitude (i. e. 
temperature decreasing). This. is despite the entrance into the 

bed of a second temperature trough which induces an increase in 

reactant concentration. The reason for this is that the 
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temperature at the base of the leading trough is so much lower 

than the steady state value that even though it receives a 

concentration of reactant higher than the steady state value it 

is not high enough (due to the previous temperature crest where 

some has been consumed) nor does it remain long enough (due tq 

the frequency of the inlet perturbation) to cause sufficient 
heat generation to overcome both the heat removal process and 
the thermal capacitance effect of the catalyst pellets and so 

cause the temperature to rise. This effect is repeated as the 

trough moves further down the bed and so it increases in depth. 
During this time the regions of the bed behind the leading 

temperature trough settle down to quasi-stationary state osel- 
llations and the whole bed maintains this state when the leadinE_ 
trough leaves it. The temperature crests in the quasi-station- 
ary state do not run away at this frequency, for the same reason: 

as those given for a positive sine wave at this amplitude and 
frequency, namely that the frequency of the forcing temperature 

oscillation does not allow the induced concentration increases 
to remain long enough for the reaction rate to overcome the heat 

removal and thermal capacitance effects. 

When the frequency of the inlet temperature oscillation 
is decreased below 0.0345 Hz for an amplitude of 0.. 00056 the, 

quasi-stationary state exhibits temperature runaway. Although 

the leading temperature trough moves through the bed increasing 

in depth, the subsequent temperature crests which enter the bed 

are amplified and run away. This is for exactly the came reasons 

which cause temperature runaway in the quasi-stationary state 

with a positive inlet temperature sine wave. Because of the 

frequency of the forcing temperature oscillation, the induced 

concentration increases persist long enough to interact con.. 

structively with the temperature crests. 

6.2.1 (c) The Effect of the Amplitude 

Changing the amplitude of the inlet temperature oscillations 
in the unique region merely causes a shift in position of the 

previously described 'threshold' frequencies for each type of 
behaviour. At higher values of the inlet temperature ampli- 
tude, temperature runaway, either temporarily in the initial 
transient or permanently in the quasi-stationary state, occurs 
at higher frequencies. Lowering the amplitude means that these 

'threshold' frequencies are raised. This is because of the 

__, _ýý_ý 
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way in which temperature runaway is propagated. In order that 

the temperature at any point in the bed can rise to a high 

value, the rate of heat generation at that'point must be suff- 

icient to overcome both the heät removal by the coolant and 
the thermal capacitance effect of the pellets. This may be 

accomplished either by a point in the bed receiving very large 

concentration increases for a short time or smaller concent- 

ration increases for a long time. When the amplitude of the 

forcing temperature perturbation is increased then the induced 

concentration increases are larger. and so the time for which 
they must remain to cause temperature runaway is less, and so 

P. higher frequency will cause temperature runaway. 

At high inlet temperature. amplitudes the differences in 

the propagation of temperature runaway, when it occurs in the 

quasi-stationary state for both positive and negative sine waves, 

is more obvious. Figures 6.9 and 6.10 show, as an example, 

axial profiles of radial mean temperature at various times 

during the initial transient for an inlet temperature frequency 

of 0.04 Hz and amplitude of 0.00112 for positive and negative 

sine waves respectively. Not only does the initial transient 

last longer with the positive sine wave, but temperature run-- 

away is initiated at a point nearer the bed entrance. With 

the negative sine wave, runaway is not caused by the leading 

temperature trough, for previously given reasons, but by the 

crest which enters the bed during the second half-cycle. 

Because of the large amount of cooling caused by the leading 

trough as it passes down the bed, this temperature crest is not 

amplified sufficiently to enter the runaway region until it 

reaches the end of the bed. When the inlet temperature sine 

wave is positive a temperature crest enters the bed during the 

first half-cycle and it is this crest which causAs runaway. 
The cooling effect in the latter regions of the bed caused by 

the 'wrong-way' transient is not as great as that caused by the 

leading trough which occurs with the negative sine wave. Con- 

sequently temperature runaway starts earlier in the bed. This 

leading runaway temperature crest moves very slowly because it 

consumes reactant at such a rate that very little reaches the 

part of the bed in front of it. Thus, here, the bed heats up 

more slowly and the hot spot moves to its quasi-stationary state 

position near the end of the bed more slowly. 

tiN_S 
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6.2.2 The Non-Unique Region 

When the initial steady state of the reactor lies inside 

the region of multiple solutions, its response to sinusoidal 

perturbations of the inlet conditions is different from that 

when the initial state lies in the region of unique solutions. 

In the multiple solution region temperature runaway occurs 

when all, or part, of the phase trajectory crosses the upper 
bound of the non-unique region 

12 McGreavy and Thornton83have 

demonstrated that, at least for a single pellet, small excur- 

sions across the upper bound of the non-unique region will not 

always result in temperature runaway if the time --pent there is 

short. Nevertheless, when temperature runaway has occurred 
in this manner, the lower temperature state can only be re- 

gained when the phase trajectory of that part of the reactor 

which has runaway subsequently crosses the lower bound of the 

non-unique region. 

Thus, when the inlet temperature of a reactor is perturbed 

sinusoidally from a steady state lying within the non-unique 

region, if temperature runaway occurs during the initial tran- 

sient, a necessary, but not sufficient, condition for the sub- 

sequent quasi-steady state to be in the low temperature region, 

is that at the steady state which would occur at the minimum 

value of the oscillation, that part of the reactor trajectory 

which is in the runaway state must cross the lower bound of the 

non-unique region. Unless this condition is fulfilled, then, 

the temperature runaway which occurs in the initial transient 

will persist in the quasi-steady state. It is this requirement 

which makes the overall response of the reactor in the region 

of multiple solutions different from that which occurs in the 

unique solution region. 

To illustrate this consider the following example. Figure 

6.11 shows both the axial profiles of radial mean temperature 

and the phase trajectories for*an initial steady state lying in 

the non-unique-region and the steady states which would occur- 

at the maximum and minimum values of an inlet temperature per- 
turbation of 0.00056. The initial state and that at the mini- 

mium of the oscillation are clearly within the low temperature 

region, both of them being entirely in the non-unique region 

with neither trajectory crossing the lower bound of this region. 
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The steady state at the maximum value of this oscillation is 

in the runaway state. With this magnitude of oscillation, 
therefore, once temperature runaway-occurs in the initial tran- 

sient, it persists in the quasi-steady state since the runaway 

portion of the trajectory cannot be forced below the lower bound. 

of the non-unique region. With a positive sine wave of inlet 

temperature, of amplitude 0.00056, so that the inlet temperature 

initially increases, permanent temperature runaway occurs at all 

frequencies below approximately 0.1 Hz. At frequencies above 

this, temperature runaway does not'occur at all. With a neg- 

ative sine wave of the same amplitude, the inlet temperature 

is initially decreasing and temperature runaway occurs at all 

frequencies below 0.04 Hz, but is not evident above this value. 

The difference between this behaviour and that observed in the 

region of unique solutions, namely that here no transient temp- 

erature runaway occurs, illustrates quite clearly the effect of 

the multiple solution region. In the range of frequencies of 

-approximately 0.04 Hz. to 0.1 Hz temperature runaway occurs 

with a positive sine wave because of the effect of the initial 

transient caused by the first temperature crest to enter the 

bed, in the same way that transient temperature runaway occurs 

in the unique solution region. Because the subsequent response 

of the bed is-such that the runaway portion of the bed cannot 

fall below the lower bound of the non-unique region, the high 

temperatures of the runaway state are maintained in the quasi- 

stationary state. At frequencies below approximately 0.04 

Hz temperature runaway occurs in the quasi-stationary state due 

to the length of time which various points in the bed spend at 

conditions of high temperature and concentration. This is 

exactly analogous to the occurrence of permanent temperature 

runaway in the non-unique region. '', 

Increasing the amplitude of the inlet temperature oscill-- 

ation to 0.00112 causes temperature runaway to occur at higher 

frequencies; below 0.25 Hz for a positive sine wave and below 

0.05 Hz for a negative sine wave. 

With the initial steady state used in this study and the 

parameters given in Table 5.1, a realistic inlet temperature 

amplitude which would cause the phase trajectory of the steady 

state at its minimum value to cross the lower bound of the non- 

unique region, and that at the maximum value of the oscillation 

,, _: ý 
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to cross the upper bound of the non-unique region, could not be 
found. For this reason, transient temperature runaway with 
temperature forcing in the non-unique region was not observed. 
In the case of concentration oscillations at the inlet, however, 
because of the shape of the non-unique region on the phase 
diagram, the reactor trajectories are more mobile for oscilla- 
tions of moderate amplitude. This is described in section 6.3.2 

of this chapter. 

6.2.3 The Quasi-Stationary State 

The quasi-stationary state oscillations in both the unique 
and non-unique regions are similar. Figure 6.12 shows the 

quasi-stationary state fluid temperature oscillations at various 
points along the bed for a positive sine wave of amplitude 
0.00056 and frequency 0.04 Hz, in the unique region of solutione. 
This behaviour is typical of all quasi-stationary states in 

which temperature runaway does not occur. The oscillations 
are attenuated as they progress down the bed until a region near 
the exit (z = 1.0) is'reached where they show a slight increase 

in amplitude. The reason for this is that in most of the bed, 

the temperature and, therefore, the reaction rate is low and 

so heat removal through the reactor wall, by the coolant, tends 

to predominate. The exit region of the bed, in this quasi- 

stationary state, is the hottest part and so the reaction rate 
is greater there causing the larger amplitude. Because the ex- 

cursions about the mean are very small at all points in the bed, 

the phase difference of the oscillations along the bed is not 

very great. Also since the reaction rate is very low through-- 

out the bed there is no distortion of the wave form. 

Figures 6.13 and 6.14 show radial mean fluid temperature 

oscillations at various points along the bed for a typical quasi- 

stationary state exhibiting temperature runaway. Here, the 

oscillations increase in amplitude down the bed until the 

region of temperature runaway (at z=0.8 in this example). In 

this region and subsequent parts of the bed the oscillations 
tend to decrease in amplitude. The oscillations tend to in- 

crease along the bed as it gets hotter and so the heat gener- 

ation rate becomes greater than the heat removal rate. At the 

runaway region, the amplitude decreases because less reactant 
is reaching this part of the bed, and also because at very high 

temperatures the reaction rate is less sensitive to concent- 
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ration fluctuations. Near the exit of the bed, after the hot 

spot, there is virtually no reaction at all since most of the 

reactant is consumed before this point is reached. Consequently, 
here, the bed is acting primarily as a heat exchanger and the 

amplitude of the oscillations decreases. The very large temp- 

erature fluctuations just before temperature runaway occurs 
(z = 0.6) are due to this part of the bed passing into a region 
of parametric sensitivity near the runaway line. This is 

also the reason for the distortion of the temperature waveform 
at this point. At the low temperatures at the troughs of the 

waves, very little reaction takes place and so the troughs are 
flattened. As the temperature rises, the reaction rate in- 

creases and so more heat is generated which tends to. increase 
the gradient of the temperature wave and force this part of the 
bed into a region of parametric sensitivity close to the run- 
away line. This causes greater sensitivity of the reaction rate 
to both concentration and temperature and so the crests of the 

wave are very sharp. Such reasoning is confirmed by the re- 

versal of the shape of the wave distortion which occurs in the 

runaway region (z = 0.8). Here the troughs of the waves 

approach the parametrically sensitive region close to the run- 

away line and so they are sharpened. This quasi-stationary 
state behaviour is in very good agreement with that observed 

experimentally by Hoiberg, Lyche and Foss 64 They studied the 

behaviour of a fixed bed reactor, supporting an exothermic gas- 

eous reaction, towards sinusoidal perturbations of inlet temp- 

erature. At high frequencies they found that the temperature 

wave decreased in amplitude throughout the bed, and at low 

frequencies the non linear effects were more apparent. Of 

particular interest is their observation of the sharpening of 
the temperature crests änd flattening of the troughs in the 

region of the bed before the hot spot occurs and the reversal 

of this distortion at the hot spot. Clearly, this experimen- 
tally. determined behaviour is in exact agreement with that 

predicted by the reactor model used here. Although Hoiberg, 

Ayche and Foss64 were unable to determine the reasons for this 

behaviour, the analysis presented above suggests that it is due 

to the influence of a region of parametric sensitivity around 
the runaway line. Hoiberg, Lyche and Foss64 found that a one 
dimensional reactor model, very similar in structure to the one 

used in the work described here, gave excellent agreement with 
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their experimental results, although, they only attempted model 

fitting at high frequencies and in the quasi-stationary state. 

Only when the quasi-stationary state passes through the 

non-unique region of solutions does the initial direction of 

the sine wave cause a difference in the two quasi-stationary 

states. When the initial steady state and the subsequent quasi- 

stationary states are in the unique region of solutions the 

effect of the direction of the sine wave is merely to create a 

phase difference of half a cycle between the quasi-stationary 

states obtained with positive and negative sine waves, at a 

given frequency, even after temperature runaway has occurred 
during; the initial transient with a positive sine wave. This 

is as would be expected purely from the equations; if the 

quasi-stationary state is unique then only one state can be 

reached after a disturbance from a given state no matter which 

path is taken to get there. 

When the initial steady state and the quasi-stationary 

state are in the region of non-unique solutions, then quite 

clearly, different quasi-stationary states may be obtained with 

forcing oscillations differing only in sign. The actual quasi- 

stationary state obtained depends on the path taken. This- is 

clearly shown by the fact that over a range of frequencies of 

the inlet temperature oscillation temperature runaway occurs 

in the quasi-stationary state with a positive sine wave whilst 

with a negative one no temperature runaway occurs. As ex- 

plained previously, this is because the portion of the bed which 

crossed the upper bound of the non-unique region, and therefore 

runaway, does not experience changes in fluid conditions suff- 

icient to subsequently force it to cross the lower bound of the 

non-unique region. What is, perhaps, not quite so obvious is 

;; hat even when temperature runaway occurs in the quasi-station- 

ary state with both a positive and negative sine wave of inlet 

temperature, the two quasi-stationary states will usually differ 

in more than just the phase angle. This is illustrated by 

figure 6.15 where radial mean fluid temperature is plotted 

against time for one cycle of inlet temperature at three points 

in the bed during the quasi-stationary state which occurs in 

the non-unique region at an amplitude of 0«00056 and frequency 

of 0.02 Hz. In the relatively cool portion of the bed (e. g. 

at z 0.6) the two oscillations differ only in phase angle; 
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this part of the bed was not forced across the upper bound at 

either amplitude. A great difference in the two oscillations 
occurs at z=0.8; with a positive sine wave this point is 

clearly in the temperature runaway region, but not with a neg- 
ative one. This is because during the initial transient this 

point in the bed is forced above the upper bound of the non- 

unique region, with a positive wave, and is not able to return, 
due to the amplification of the first temperature crest to 

enter the bed. This behaviour is a further illustration of the 

action of the region of non-unique-solutions in that the final 

state reached is dependent upon the path taken to get there 

and, therefore, upon the initial direction of the perturbation. 

6.3 Concentration Forcing 

6.3.1 The Unique Region 

In ordsr to investigate the effect of oscillating inlet 

concentration the same initial steady states as those used for 

temperature oscillations have been employed. Figure 6.16 

shows axial profiles of radial mean temperature and phase tra- 

jectories of the initial steady state in the unique region of 

solutions. Also shown are the steady states which would occur 

at the maximum and minimum values of a concentration oscillation 

of amplitude 0.1 (i.. e. 10% of the inlet value). 

The general effects of sinusoidally perturbed inlet con- 

centration are similar to those observed for sinusoidal inlet 

temperature perturbations. In the unique region of solutions 
the phenomenon of transient temperature runaway occurs with a 
positive forcing sine wave. For an inlet concentration a_upli-- 
tude of 0.1, temperature runaway occurs in the quasi-stationary 
state at frequencies below 0.02 Hz. In the frequency range of 
0.02 Hz to approximately 0.036 Hz temperature rui, away occurs 
during the initial transient, but not in the subsequent, quasi- 
stationary state, and above 0.04 Hz temperature runaway does not 
occur at all. With a negative sine wave of the same amplitude 
the quasi-stationary state exhibits temperature runaway only at 
frequencies below approximately 0.018 Hz. 

It is instructive to examine in some detail the initial 
transient response of the reactor to oscillating inlet concen- 
tration since this differs somewhat from that which occurs with. 
oscillating inlet temperature, although the ultimate effect is 
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the same. Figure 6.17 shows axial profiles-of the magnitudes 

of deviations of the radial mean concentration and temperature 

from the initial steady state, shown in figure 6.16, at various 
times during a positive concentration oscillation of amplitude 
0.1 and frequency 0.02 Hz. 

Since the sine wave is positive the concentration first 

rises above its mean value causing an immediate concentration 
increase throughout the bed (figures 6.17a and 6.17b). This, 

of course, causes an increase in reaction rate and so the temp- 

erature also rises throughout the bed. The largest temperature 

rise occurs near the end of the bed since the temperature there 

was initially highest. Note that the phenomenon of the 'wrong- 

way' transient response does not occur, for obvious reasons. 
During the second half-cycle the inlet concentration falls below 

its steady state value and induces a temperature trough near 
the entrance of the bed, the temperature near the exit of the 

bed, however, does not fall very much and remains well above 
its. steady state value. This is because near the entrance of 
the bed the reaction rate is very low because the temperature 

there is low and so it is more sensitive to concentration changes. 

. In the hotter exit region of the bed the thermal capacitance of 

the pellets prevents them from cooling so much, and so the rate 

of reaction is not reduced so much. Thus, when the inlet con- 

centration rises during the second cycle rapid reaction takes 

place immediately near the end of the bed, the temperature and 

concentration there being much higher than the steady state 

values, and so the temperature there becomes higher and this 

part of the bed is forced into the runaway region. This effect 

is exacerbated by the induced temperature troughs which have 

entered the bed causing more reactant to reach the hot region. 

These effects are repeated during subsequent cycles and temp- 

erature runaway occurs near the exit. It is the thermal cap- 

acitance of the catalyst pellets, coupled with the non-linear 

dependence of the reaction rate on temperature, which causes 

runaway to develop. The thermal capacitance of the pellets actE', 

of course, both at high and low temperatures. However, the 

rate of heat generation at low temperatures is less sensitive to 

temperature and more sensitive to concentration than at high 

temperatures. At high temperatures the bed cools more slowly 

when the concentration decreases, and therefore remains hot so 

ý- -- 
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that when the concentration increasesrapid reaction ensues. 
By this process, repeated during oscillations of concentration, 
the temperature of the hotter regions is raised further. 

Temperature runaway does not occur during the quasi- 
stationary state-because the region of the bed which ran away 
initially is cooled by the induced temperature troughs. Thus, 

when the. concentration rises again this region of the bed has 
to be heated from a temperature lower than the initial steady, 
state and the thermal capacitance of the catalyst pellet acts it 
the opposite direction. That is to say, it causes the pellets 
to remain longer at the lower temperature. This quasi- 
stationary state behaviour is exactly the same as that described 

previously for inlet temperature oscillations. 

When the inlet concentration sine wave is negative, the 

concentration throughout the bed initially decreases causing the 

rate of reaction and, therefore, the temperature everywhere to 

decrease. This is shown by figure 6.18 where axial profiles of 
the magnitudes of deviations of the radial mean concentration 
and temperature from the initial steady state are plotted at 

various times during the response of the bed to a negative sine 

wave of inlet concentration of amplitude 0.1 and frequency 0.02 

Hz. When the rate of reaction begins to fall near the end of 
the bed, heat removal by the coolant tends to become greater 
than heat generation by the reaction and so the temperature falls 

even further. When the inlet concentration rises, the thermal 

capacitance of the pellets slows down the temperature rise so 
that when the concentration falls again the temperature falls 

even further. Thus, temperature runaway does not develop at 
this frequency with a negative amplitude, because of the initial 

cooling of the bed. Eventually the greatly cooled exit region 

of the bed is heated up by the induced temperature crests. 
Temperature runaway is prevented from occurring because of the 

combined effects of the forcing frequency of the inlet concen- 
tration and the thermal capacitance of the pellets, as des- 

cribed previously. 

. At lower frequencies temperature runaway occurs during the 

quasi-stationary state for both positive and negative sine waves 
for reasons similar to those described previously. In the 

case of positive sine waves the concentration increase exists 
long enough to cause tha induced temperature crests to be 
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amplified into the non-unique region. With negative sine : graver, 
the lour frequencies cause a similar amplification of the in- 
duced temperature crests and so the much cooled exit region of 
the bed is heated up to runaway temperatures. 

At high frequencies, temperature runaway does not occur 
with a positive sine wave because the exit, or hot, region of 
the bed is not able to remain at a high concentration long en- 

ough to run away. 

6.3.2 The Non-Unique Region 

The response of the bed to oscillating inlet concentration 
in the region of multiple solutions is exactly analogous to that 
for oscillating inlet temperature. 

" Figure 6.19 shows the initial steady state used in this 

study, and those which would occur at the maximum and minimum 

. values of an inlet oscillation of amplitude 0.1. With a pos- 
itive sine wave of this amplitude temperature runaway does not 

occur at frequencies above approximately 0.018 Hz. Below this 

value, however, the quasi-stationary state exhibits runaway. 
When the wave is negative, at this amplitude runaway occurs at 
frequencies below 0.0111 Hz. 

It is interesting that transient temperature runaway does 

not occur at this amplitude despite the fact that the trajectory 

of the steady state which would occur at the minimum of the 

oscillation crosses the lower bound of the non-unique region, 

as shown in figure 6.19b. Even with an inlet concentration 
amplitude of 0.143 which has a steady state at the minimum of 
the oscillation entirely outside tho non-unique region, below 

the lower bound, transient temperature runeway does not occur. 

It would appear that once runaway has occurred due to the 

reactor trajectory crossing the upper bound of the non-unique 

region, the temperatures reached in the runaway portion of the 

bed are so high that the thermal capacitance of the pellets 
helps prevent them cooling sufficiently, during a decrease in 

concentration, to bring this region of the bed below the lower 

bound of the non-unique region. 

The way in which temperature runaway develops at low fre- 

quencies is exactly the same as that described in the previous 

section, as is the way it is prevented at high frequencies. 
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6.3.3 The Quasi-Stationary State 

The quasi-stationary state behaviour of the reactor with 

concentration forcing is very similar to that described in 

section 6.2.3 for temperature forcing. For this reason it is 

only dealt with briefly here. 

The main difference is the greater amplitude of the temp- 

erature oscillations, at all points in the bed, due to the 

greater concentration disturbances experienced. This feature 

allowed the observation of some points in the bed oscillating 

across the runaway line, between high and low temperature 

states, when the quasi-stationary state was entirely the unique 

regions of solutions. When this occurs, subsequent points in 

the bed remain entirely in the runaway region. With the para- 

meter values used in the work reported here, similar behaviour 

is not observed in the non-unique region, although IMcGreavy and 
Adderley113 have reported results showing parts of a bed osc- 
illating through the cusp of the non-unique region, between high 

and low temperature states, with subsequent regions of the bed 

remaining entirely in the runaway state. These observations 

suggest that once temperature runaway occurs in the quasi- 

stationary state, provided that it occurs before the bed exit, 
the runaway state will persist, unless the forcing amplitude 
is extremely large. The reason for this is probably the rel- 

ative insensitivity of the reaction rate to concentration at 
high temperatures. 

6.4 Concluding Remarks 

This study of disturbance propagation has revealed one as- 

pect of dynamical behaviour which appears to have been ignored 

by previous investigations. This is the importance of the 

initial transient response of the reactor, and therefore, the 

initial direction of the perturbation, before quasi-stationary 
state oscillation occurs. 

In the non-unique region of solutions, over a range of 
frequencies the action of the initial transient determines 

whether temperature runaway occurs in the quasi-stationary state. 
In the unique region of solutions, although the quasi-stationary 
state is unaffected by the initial transient, temperature run- 
away may occur before a safe quasi-stationary state is achieved. 
Clearly, this behaviour is of importance in the design of a 
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control system. 

The occurrence of such phenomena depends upon several 
factors besides the amplitude and frequency of the inlet osc- 
illation. The role of the thermal capacitance of the catalyst 
pellets has been clearly demonstrated. This is to slow down 
the propagation of the temperature disturbance through the 
bed, and thereby either promote or prevent temperature runaway. 
This is accomplished on the one hand, by causing the pellet 
temperature to remain at a high value during a decrease in re- 
actant concentration so that rapid reaction ensues when the 

concentration rises again, and on the other, by preventing the 
temperature from rising too high during an increase in concen- 
tration. The relative importance and dominationi of these two 

effects depends on the spatial variation of the competing effects 
of heat generation by reaction, and heat removal by the coolant. 
This, in turn, is a function of the temperature level at any 
point in the bed and, therefore, depends on the initial steady 

state. Although only two initial states have been used in 

this study each amply demonstrates the general features of the 

reactor behaviour in unique and non-unique regions of operation. 

The effect of sinusoidally varying the reactor inlet con- 
ditions has been shown, to be generally similar to the results 

of previous single pellet studies, although in these,, one of 
the fluid state variables was assumed to be held constant whilst 
the other was perturbed. This is not, of course, how the dis- 

turbances would appear for pellets in the reactor. Here both 

fluid variables are continually changing at each point and the 

disturbances experienced at each point depend on the behaviour 

of the previous pellets in the bed. Because of this, global 

stability of the reactor is related to local stability and 
the general features described here indicate how these factors 

are related. 

The ability of the reactor model used here to predict 

quasi-stationary state behaviour of similar general form and 

also showing the same unusual features as that observed ex- 

perimentally indicates that it correctly identifies and des- 

cribes the important physical processes in the system. More- 

over, its usefulness in the interpretation of unusual experi- 

mental results has also been demonstrated. 
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Clearly, further investigation is required using a more 
detailed 'two dimensional model of the reactor, such as that 
developed in chapter 5. This would enable the determination 

of the important factors in the radial variations of concent- 
ration and temperature within the bed. 

It would also be desirable to obtain a relationship between 

the forcing amplitude and frequency of the oscillation to en- 

able the a priori prediction of temperature runaway, both tran- 

sient and permanent. Such a relationship has been determined 
for a single pellet85 However, the results described here 

clearly demonstrate the highly non-linear nature of the reactor, 

and the complexity of the interactions between the important 

phenomena. It seems likely that this may preclude a general 

approach to the determination of critical parameters if an 
accurate description of the system is to be preserved. 

! Fdý 
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CHAPTER 7. 

THE EFFECT OF THE COOLANT 

7.1 Introduction 

The results of steady state studies of heterogeneous fixed 
bed reactors supporting pporting highly exothermic reactions 
suggest that perturbations in the coolant conditions may be a 
source of potential operating difficulties caused, for example, 
by parametric sensitivity. Whilst heat transfer between the 

coolant and reactor tube has received considerable attention, 
surprisingly little work has been reported on t'ie effects of 
coolant heating and flow direction in the steady state, and on 
the effects of perturbations arising in the coolant on the tran- 

sient response of the reactor. The somewhat extensive studies 

of reactor performance and stability have been almost totally 

confined to adiabatic reactor operation or the use of a constant 
temperature coolant, such as a boiling liquid, surrounding the 

reactor tube. Although such modes of operation are widely 

used in industrial plants, many processes are encountered where 
it is not possible, and even not desirable, to operate reactors 
in this manner1149118 

Paris and Stevensl19have shown that by appropriate cooling 
jacket design the hot spot in the reactor may be controlled. 
Banchero and Smith118 have attempted to optimise the product 

yield in a shell and tube reactor containing a liquid homo- 

geneous reaction by appropriate choice of the coolant flow rate 

and inlet temperature. The behaviour of autothermal ammonia 

synthesis converters, in which the feed gages are preheated by 

flowing countercurrently along the outside of the reactor tubes, 

: las been examined by Van Heerden124 using a very simple quasi- 
homogeneous reactor model. Luss and Medellin117 have investi- 

gated steady state multiplicity in an unpacked liquid reactor 

with a countercurrent coolant flow. In each of these studies 

attention was confined to the steady state, probably because of 
both experimental and computational difficulties encountered 

with the unsteady state. 

There appears to be no information on either the steady 

state performance or the dynamics of gaseous fixed bed hetero- 

p; eneous reactors associated with coolant flow or temperature 
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distribution. That such a study is necessary is indicated by 
the results of previous investigators 1211181119 Also the info- 

rmation obtained could be used in the development of mathemat- 
ical models o-f multitubular reactors as discussed in the next 
chapter. The work reported here is intended to identify the 

main features of reactor behaviour associated with a flowing 

coolant. 

The models used are of a single,, catalyst packed tubular 

reactor surrounded by an annular jacket through which the coolant 
flows cocurrently or countercurrently to the reacting gases. 
A few assumptions are necessary to facilitate the mathematical 
description of the system. Firstly, it is assumed that the 

reactor tube wall offers no resistance to heat flow and has a 

negligible thermal capacitance. This, of course, does not 
affect the steady state description of the system but greatly 

simplifies the dynamic model. Also, the assumption of negli- 

gible therrual capacitance of the tube wall is justified by the 

results presented in chapter 5. (It is interesting to note that 
these results suggest'that a dynamic model of an autothermal 
system would need to take account of the tube wall since the 

heat transfer coefficients on each side of it are of comparable 

magnitude in such a system). Axial conduction of heat in 

both the tube walls and the coolant has been neglected and the 

coolant is assumed to be in plug flow. One further assumption 
is that there are no heat losses from the outside of the annular 

cooling jacket. 

The reaction considered is the simple, first order, irr- 

eversible, gaseous A --*B scheme with Arrhenius kinetics. The 

reactor model is the one dimensional formulation with an assumed 

parabolic radial temperature profile described in Appendix (2), 

and this is coupled with the lumped thermal resistance model 

of the catalyst pellet. 

7.2 The Steady State Cocurrent Model 

7.2.1 Formulation and Solution of the Equations 

For the system, described above with cocurrent coolant flows 

a heat balance on the coolant gives: 

Ido e PC -d-l-e' -- 2. -x RU (1 tIY=R-1c)=0.: 
,(7.1) dz 

_; ý4 

-- ---- -- -- - -- --- -'s'' 
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with the boundary condition: 

Tc = Tc0 at z' =0 

T'Iy^R is the, temperature of the tubeside gases at the tube wall. 

Making equation (7.1)dimensionless and expressing the tube- 

side gas temperature in terms of its radial mean value gives: 

dzc 
2Guw(T 

- Tc) -0 
(7.2) 

cc 

with the boundary condition Tc = Tc0 at z=0 

where 
Go 

c= 
rr: 

c cp, / -x LK fe 

and the other symbols are as previously defined. 

Equation (7.2) is coupled with the tubeside equations given 

in Appendix (2), through T and Tc, and must, therefore, be solved 

simultaneously with them. The most convenient method of sol- 

ution has been found to be the finite difference procedure, usecc 

for the tubeside equations, described in Appendix (2) since the 

existing subroutines could be used. The only difference in the 

method of solution of the set of equations from that described 

in Appendix (2) is that at each axial position along the reactor, 

the value of Tc must be first assumed and then subsequently cal- 

'culated in the same manner as the reactor state variables, CA 

and T. 

7.2.2 Discussion of the Results 

The basic set of data used for the simulations is given in 

Table 5.1. The value of the dimensionless group Gcc is prop- 

ortional to both the mass flow rate of the coolant and its spe- 

cific heat. The other parameters which consititute Gcc appear 

in dimensionless groups in the tubeside equations. Thus, vari- 

ations in the size of Gcc alone reflect changes in the size of 

the annular cooling jacket, the velocity of the coolant or its 

physical properties. Molten inorganic salts are usually used 

as the cooling medium at the high temperatures of interest here. 

That little data is available on the heat transfer properties 

of molten salts120,121 suggests that the coolant to wall heat 

transfer coefficient is not a strong function of temperature and 

varies with 40'8 where N is the mass flow rate per unit cross- 

--- - 
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sectional area of the tube. (It'should be noted that this is 

for flow inside a cylindrical tube, although it appears that 

the relationship also holds for flow of the salt through an 

annulus 
121 In the simulations discussed in this chapter, the 

value of this heat transfer coefficient is assumed to be con- 

stant. For reactors of this type, it is usually arranged that 

the inside gas to wall heat transfer coefficient is smaller 
than the outside wall to coolant coefficient by at least an 

order of magnitude and so variations in the outside value have 

but little effect on the overall value. This point is discussed 

in more detail in the next chapter. For this reason no rel- 

ation between the overall heat transfer coefficient and the cool- 

ant flow rate, or value of Gcc, need be considered in the models, 

although for the basic data set a value of Gcc (approximately 

600) has been computed which is consistent with the overall 
heat transfer coefficient used, for a ratio of 1: 10 between 

the gas to wall and wall to coolant coefficients. 

Figure 7.1 shows axial profiles of both the radial mean 
tubeside gas temperature and the coolant temperature predicted 
by the model described above compared with those predicted by 

the constant coolant temperature model. Clearly, for the data 

and coolant flow rate which have been used here the difference 
between the two models is extremely small. The coolant is 

flowing fast enough to avoid being significantly heated. At 

lower coolant flow rates much more heating takes place. This 

effect is demonstrated by figure 7.2 which shows the two temp- 

erature profiles at various values of Gcc. The effect of Gcc 

on these profiles is non-linear. This is because. a lower cool- 

ant flow rate causes greater heating of the coolant which, therE. - 
fore, maintains the latter regions of the bed at a higher temp- 

erature. This, in turn, causes a greater rate of reaction and, 
therefore, heat generation and the rate of reaction is non- 
linearly dependent on temperature. This causes greater heatin¬, 

of the coolant, and so on. It is apparent from both figures 
7.1 and 7.2 that except at very low values of Gcc(i. e. low valuES" 
of coolant flow rate or heat capacity) very little coolant 
heating occurs. 

The effect of the coolant inlet temperature on the axial 
temperature profiles within the bed at two extreme values of 
Gccis shown in figure 7.3. As would be expected from previous 
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results, -the cystem shows the same sensitivity to inlet coolant 
temperature as is displayed with constant temperature coolants. 
This further emphasises the need for an investigation of the 

effect of coolant perturbations on the reactor. 

The steady state performance of the reactor is not signi- 
ficantly affected when the coolant and gas streams flow co- 
currently; so, at least for the data used here, the assumption 

of a constant temperature coolant appears to be a reasonable 
approximation in the steady state. This, of course, means 
that the steady state stability criteria developed for constant 
coolant temperature reactors may also be applied in the case of 
a co-currently flowing coolant. However, since the extra 
computational effort required by the flowing coolant model is 

very small it is particularly convenient for defining accurately 
the initial conditions for the dynamic model which is discussed 
in section 7.4.2 of this chapter. 

7.3 The Staady State Countercurrent Model 

7.3.1 Formulation and Solution of the Equations 

For coolant flow countercurrent to that of the gases in the 

system described in section 7.1 a heat balance on the coolant 

gives, in dimensionless form: 

dTc 
+ 

21Juw (T - Tc) =0 (7-3) 
dz Gcc 

with the boundary condition 

C= 
Tc0 at z=1 

Equation (7.3) is, of course, coupled with the tubeside 

equations given in Appendix (2). The model of the whole system 
is now a split boundary value problem since the coolant boundary 

condition i3 given at z=1 and that of the tubeside fluid at 

z=0. Solution of the model has been accomplished by the fin- 

ite difference method as described for the cocurrent model in 

section 7.2.1. An iteration process is necessary to meet the 

boundary condition of equation (7.3) at the reactor exit. The 

method of solution is as follows: 

(1) Assume a value for Tc at z=0 
(2) Solve the fluid equations simultaneously 

with equation (7.3) for the whole bed from 

z=0 to z=1 and so obtain a value of Tc 

atz=1. 
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(3) Compare the value of. T. at z=1 
from step (2) with the actual(given) 
value. If convergence to within a 
prespecified limit is obtained then the 

solution is complete. If not, adjust 
the value of Tc at z=0 accordingly 
and repeat from step (2). 

A very simple method of convergence has been used to obtair_ 
the correct value of Tc at z=0; if a linear relationship 
between TcJz 

=0 and Tclz 
=l 

does not give sufficient accuracy 
then a quadratic fit is attempted. Failing this a cubic re- 
lationship is employed. At high values of Gcc the linear 

relationship usually proves adequate and so convergence occurs 
' after only three iterations. As the value of Gee decreases 

a parabolic or cubic fit becomes necessary depending on the 

accuracy of the first guess. Even with Gcc as low as 10.0, 
the cubic fit gives sufficient accuracy and so only five iter- 

ations are required. Since each iteration requires only 
approximately fifteen seconds computation when programmed in 

Fortran on an IBM 1130 computer, this rather crude method of 

obtaining convergence of the solution is quite tolerable. 
. 

7.3.2 Discussion of the Results 

Figure 7.4 shows axial profiles of the tubeside gas temp- 

erature and coolant temperature at two quite different values 

of Gec and with the coolant inlet temperature for both co- 

current and countercurrent cooling equal to the gas inlet temp- 

erature in each case. At the higher value of Gee the counter- 

currently cooled bed is heated to a slightly higher temperature 

but there is very little difference between the two profiles. 
At the lower value of Gcc, however, countercurrent cooling 

produces a much greater temperature rise in the bed with the 

hot spot nearer the inlet of the reactor than . in the cocurrently 

cooled case. This difference in the tubeside gas temperature 

profiles is also reflected by the coolant temperature profiles. 
Clearly, the reactor is much more sensitive to the coolant flow 

rate (or the value of Gec) with countercurrent cooling. 

Figure 7.5 shows plots of coolant inlet temperature 
(TcI 

1) versus coolant outlet temperature (Tc(u 
G) at 

various values of Gcc. Where a hump occurs in these curves, 
multiple solutions exist over a range of coolant temperatures. 
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It should be noted that this multiplicity is not due to multi- 
plicity of the catalyst pellet solutions since the inlet value 
of the thermal load factor, BO, lies well to the left of the 

cusp of the pellet non-unique region on the T vs. B phase 
diagram, and so the reactor trajectories cannot pass through 
this non-unique region. 

Similar behaviour to that shown here has been observed 

experimentally by Luss and Medellin 117 
with an unpacked liquid. 

reactor and also in countercurrent liquid-liquid extractionl2^, 
123 

It can be seen from figure 7.5 that these multiple states only 
occur at low values of Goo, that is at low values of coolant 
flow rate or heat capacity. For the data used here, Gcc= 10.0 

represents the critical value below which multiple states occur. 
When the heat of reaction is increased then the critical value 

of Gcc also increases; for example with (-A H) = 400 kcal/gmole 
the critical value of Gcc is 20.0 for the system considered 
here. Increasing the heat of reaction also lowers the coolant 
inlet temperature below which the multiple states occur for a 
given value of Gcc. This shows that the multiple states arise 
because of the amount of coolant heating and, therefore, the 

amount of heat feedback which can take place. 

Figure 7.6 shows the three steady states predicted for a 

value of Gcc of 5.0 and a coolant inlet temperature of 0.0355. 

In the high temperature steady state temperature runaway occurs 

and the latter half of the reactor acts merely as a coolant pre- 
heater. The hot coolant reaching the first half of the bets 

causes a high rate of reaction there and so the heat generation 
is sufficient to cause temperature runaway. At the low te,; ip- 
erature steady state, heat removal by the coolant is greater 
than heat generation by reaction in the second half of the bed 

and so this region is cooled. However, the coolant reaching 
the first half of the bed is not hot enough to heat the in- 

coming gases and so it removes most of the heat generated there. 

Thus, heat removal by the coolant dominates the heat generated 
by reaction throughout the bed. The intermediate steady state 

arises as a balance of these two effects; heat generation 

competes with heat removal at an even rate throughout the bed. 

Which steady state is attained in any given situation will 
clearly depend on the past history of the system, or, for 

example, the way the reactor is started up or shut down. 
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Referring to the schematic diagram of coolant inlet temperature 

versus outlet temperature shown in figure 7.7, it can be seen 
that for a given value of Gee with which multiple states are 

possible, the region of multiple states is bounded by an upper 

and a lower value of coolant inlet temperature. Multiple states 
do not occur at coolant inlet temperatures below Tel because 

here the inlet coolant temperature is so low that no significant 
heating of the coolant can occur; the coolant inlet temperature 

is so far below the reactor inlet temperature that heat removal 
by the coolant dominates throughout the bed and prevents any 

reaction taking place. At coolant inlet temperatures above 
Tehl the maximum amount of heat generation always takes place 
because the coolant temperature is so much greater than the in- 

let gas temperature and so only one steady state is possible. 
It can also be seen from figure 7.7 that a hysteresis effect is 

caused by this multiple states region. If the coolant inlet 

temperature is slowly raised from some point below the multiple 

states region for a fixed value of Gee, say point A in figure 

7.7, then the coolant outlet temperature will also increase and 
follow the curve AB. Raising the coolant inlet temperature 
from Tchwill then cause the outlet value to jump from Tc02 to 

TcO4 and with subsequent increase of outlet temperature the 

system will follow the curve CF. Slowly lowering the inlet temp- 

erature from, say, point F of figure 7.7 will cause the outlet 

coolant temperature to fall following the curve FD. Then 

decreasing the inlet temperature from Tel will cause the outlet 
temperature to jump from Tc03 to Tc01 and then follow the curve 
EA. This shows why it is undesirable to operate the system in 

the region of multiple solutions, since severe changes in the 

system performance can occur if perturbations arise in the cool- 

ant inlet temperature, due to this hysteresis effect. 

It is worth noting that for the data used here, the critical 
value of Gcc corresponds to an extremely low value of the cool- 
ant flow rate. However, several points must be borne in mind. 
Numerical simulations have shown that the critical value of Gcc 

increases with the length of the reactor, the overall coolant 
to fluid heat transfer coefficient and the thermal load factor 

at the reactor inlet, B. Luss and Medellinll7 found that in 

their system the occurrence of multiple states was fairly sen- 

sitive to the reactor length. Clearly, the reason for this is 
that the longer the reactor the more the coolant can be heated; 
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lengthening the reactor is, in this respect, equivalent to 
decreasing the, -coolant flow rate. Since the inlet value of 
the thermal load factor, B0, is a function of both the inlet 

reactant concentration and the heat of reaction, in some re- 
action systems the critical value of Gccmay become quite large. 
Also because the existence of multiple solutions has been iden- 
tified with the occurrence of significant coolant heating, it 

provides a useful insight into the possible behaviour of large 

multitubular reactors where considerable coolant heating can 
occur. In the next chapter, a model of a countercurrently 
cooled multitubular reactor is developed which predicts the 

occurrence of similar multiplicity due to heating of the back- 

ward flowing coolant at moderate coolant flow rates. 

"A final point which must be considered is the effect of 
the rate limiting processes due to the transport resistances 
associated with the catalyst pellets. In the system considered 
here a heterogeneous model of the reactor has been used and 

so these reaction rate limiting processes have been taken into 

account. If a quasi-homogeneous reactor model had been used 
then it would have predicted this type of multiplicity at much 
higher values of Gcc for the same inlet conditions. This is 

because the quasi-homogeneous model does not take into account 
the reaction rate limitations associated with the catalyst 

pellets and, therefore, predicts a greater rate of reaction and 
heat generation for the same conditions. Clearly, then, any 

operating conditions determined by a quasi-homogeneous reactor 

model to avoid this type of multiplicity would tend to be 

rather conservative and this is a further illustration of the 

need to use a heterogeneous model for heterogeneous systems. 

7.4 Dynamic Models 

7.4.1 Introduction 

To investigate the response of the reactor to perturbation. 

arising in the coolant, as with the study of any dynamical. 

system, it is desirable to use a model which can be rapidly 

solved and yet is reasonably accurate. This is especially so 
in the case of a reactor with countercurrent cooling where an 
iterative type of solution is necessary because of the split 
boundary conditions. The one dimensional model is, therefore 

immediately more attractive than the two dimensional descriptior 

for the reasons given in chapter 5. However, perturbations in 

ý, 
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coolant temperature may affect the shape of the radial temp- 

erature profiles to such an extent that the one dimensional 

model, which gives radial mean temperatures based on the ass- 
umption of retention of the parabolic form of these profiles, 
does not give an adequate description of the dynamic charact- 
eristics of the reactor. For example, a sudden increase in 

coolant temperature above that of the gas near the tube wall 

will tend to invert the radial temperature profile in the bed 
in the manner shown schematically-in figure 7.8. 

Such distortions might occur transiently due to the non- 
linear dependence of the reaction rate on temperature. The 

one dimensional model will not be able to describe this behaviour 

which could, of course, affect the performance of the rest of 
the bed. 

However, because the one dimensional model is so much 

more computationally attractive, several factors must be con- 

sidered, including the use to which it is put. Firstly, in 

reactors supporting highly exothermic reactions, it is unlikely 
that the coolant would be used at a temperature very much, if 

at all, higher than the gas and so the heat of reaction would 
tend to keep the gas temperature much higher than the coolant, 

and therefore, lessen the possibility of such behaviour. 
Secondly, the steady state simulations indicate that only at 

extremely low coolant flow rates is there any significant in- 

crease in coolant temperature, and even then the gases within 
the tube are at a much higher temperature than the coolant in 

the region where heating occurs. Thirdly, the relatively large 
thermal capacitance of the coolant suggests that it would tend 

to slow down the temperature change of the coolant and so enable 
the whole radial temperature profile and, therefore, the mean 

value to follow it more closely. 

In order to gauge some of the inherent shortcomings of the 

one dimensional model, it has been compared with the two dim- 

ensional description under what may be regarded as the most 

severe form of coolant perturbation. Using the constant cool- 
ant temperature models, described in chapter 5, the steady state 
axial profiles of radial mean temperature predicted by both 

models have been made to agree as closely as possible by appro- 
priate adjustment of the overall effective wall Nusselt number, 
xtu1, as shown in that chapter. The transient response predicted 
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by both models was then computed for a step increase in coolant 
temperature along the whole length of the reactor. Figure 7.9 

shows axial profiles of radial mean temperature predicted by 
both models during this response. As can be seen, the agree- 
ment between the two models is good and certainly no worse than 
that obtained during perturbations of the bed inlet conditions 
(see chapter 5). The two dimensional model does, in fact, shoe 

some inversion of the radial temperature profiles near the en- 
trance to the bed since the coolant temperature is higher than 

the gas inlet temperature. Since the gas temperature, and 
therefore the rate of reaction, is relatively low in this region 
the radial profiles are comparatively flat and so the radial 

mean temperatures predicted by both models are almost identical. 

Such behaviour occurs in the steady state when the coolant 71 
temperature is higher than the gas inlet temperature and Turner 
has suggested a method of obtaining greater accuracy with a one 
dimensional model in such cases. In the greater part of the 
bed the gas temperature is so much higher than that of the cool- 

ant that the radial profiles tend to retain their parabolic 
shape. 

Thus, the one dimensional model of the reactor would . 
appear to be as useful for investigating the transient response 

of the reactor to coolant perturbations as it is for perturb- 

ations of the inlet gas concentration and temperature. This it 

especially so since it requires only one fifteenth of the com- 

putation time of the two dimensiona] model. As was emphasised 
in chapter 5, however, the usefulness of the one dimensional 

model is in obtaining an understanding of the general dynamic 

characteristics of the. reactor and in identifying the important 

qualitative rather than quantitative features of behaviour. 

7.4.2 Cocurrent Cooling; Formulation and Solution 

of the. Equations 

The results presented in chapter 5 show that the thermal 

capacitance of the tube wall has no significant effect on the 

dynamic response of industrial reactors; for this reason the 

effect of the tube wall is neglected in the formulation of the 
dynamic equations for a flowing coolant, and the concept of an 

overall heat transfer coefficient between the coolant and the 
tubeside gases is employed. 

For cocurrent cooling, a heat balance on the coolant rives: 
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aTc 
+ 

2Nuw(T 
- T) + 

ý'c "aTC 0 (7.4) 
az Gcc c 

with boundary conditions: 
Tc = To() atz =0, '6 y0 

Tc = Tc0(z) at 'C 0, z >0 

where KC = L/uc and the other symbols are as previously 
defined. 

Equation (7.4) is coupled, through the dependent variable 
Tc, with the dynamic reactor equations given in Appendix (2), 

and must be solved simultaneously with them. 

Numerical studies have indicated that when equation (7.4) 

is solved using an implicit finite difference scheme, a very 
small time step of the order of 0.01 seconds is necessary to 

obtain a converged solution when step changes occur in the inlet 

coolant temperature. However, using the method of lines to 

solve equation (7.4), time steps of 0.1 to 0.5 seconds have beer. 
found to be adequate. This further emphasises the importance 

of the one dimensional model; at this size of time step use 

of the two dimensional model proposed in chapter 5 would be im- 

practical. 

Appendix (6) shows the application of the method of lines 
to equation (7.4). The method of solution of the model is 

similar to that described for the reactor with a constant temp- 

erature coolant in Appendix (2) except that at each axial pos- 
ition equation (7.4) must be. solved, together with the bed equ- 
ations. 

7.4.3 Cocurrent Cooling; Discussion of the Results 

It is not possible to investigate 

actor to all possible perturbations of 
A more practical approach is study the 

particular forms of disturbance and so 
or general features which will characti 
be taken into account when designing a 
control system. 

the response of the re- 
the coolant temperature. 

kind of response for 

try to find some pattern 

Brise the system and must 

reactor or its associated 

The dangers inherent in attempting to control the reactor 
by manipulation of the coolant temperature alone are well 
demonstrated by figure 7.10 which shows the response of the 

reactor following a step decrease in the inlet coolant temperature. 
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This induces a transient response which is in the opposite dir- 
ection to the perturbation; i. e. the temperature peak increases 
in magnitude and runs away before the whole bed is cooled to 
the new low temperature state. The reasons for this behaviour 
are somewhat similar to those which. cause similar responses 
when changes occur in the gas inlet temperature. The lower 

coolant temperature at the reactor entrance cools the gas and 
thereby lowers the rate of reaction there. This enables more 
reactant to reach the high temperature region near the end of 
the bed where rapid reaction ensues raising the temperature. 
Eventually, the heat removal by the lower temperature coolant 
is sufficient to force the runaway peak out of the bed and 
cool the whole bed. The important aspect of this behaviour is 
that'the temperature rise shown by the hot spot is not due to 
the occurrence of a large temperature gradient in the coolant. 
At the mass flow rate given in Table 5.1 the coolant takes some. 
16 seconds to travel the whole length of the reactor. It 

might, therefore, be expected that the initial increase in 

reaction rate at the hot spot, caused by cooling at the inlet 

region, would be rapidly quenched by the lower temperature 

coolant reaching that part of the reactor. As figure 7.10 

shows, this is not the case. Thic is due to spatial variation 
in the balance between heat removal and heat generation. Heat 

removal by the coolant predominates in the low temperature 

regions of the bed so that when the coolant temperature changes 
there it fairly rapidly changes the gas temperature. At the 

hot spot, heat generation is the dominant process and the in- 

crease in the rate of reaction caused by a higher concentration 
of reactant reaching this region causes heat to be generated 
faster than it can be removed even though the coolant temper- 

ature is lowered. 

This type of response is an excellent demonstration of the 

distributed parameter effect and of how an apparently safe 

action, i. e. reduction of the coolant temperature, may give 

rise to temperature runaway with its associated undesirable 

effects. 

Figure 7.11 shows the response of the reactor following a 

step increase in coolant temperature. Again the response is 

: similar to that which occurs after a step increase in the gas 
inlet temperature. The original steady state peak decays as 
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a new one forms nearer the reactor entrance. In the light of 
the above comments this is the behaviour which would be expected. 

The response of the reactor, to ramp changes in the coolant 
temperature is less severe than that to step changes. Figure 
7.12 shows the effect of applying a ramp decrease in the cool- 
ant inlet temperature for 40 seconds and then holding it at its 

final value. A wave of temperature of increasing amplitude 

passes from the initial steady state hot spot and out of the 
bed as the reit of the bed cools. The peak temperature does 

not reach as high a value as in the case of a. step change of 
the same magnitude because the changes are occurring more slowly 
and the system has effectively more time to settle down after 
each change. Applying a ramp increase in coolant temperature 
for a limited period causes a response qualitatively similar 
to a step increase of the same total magnitude. This is to 
be expected since most of the response does not occur until 
after the coolant temperature has reached its final steady state. 

These results further demonstrate the dangers of relying 

on intuitive considerations when planning a control strategy 
for the reactor. Although the sensitivity of the reactor to 

coolant temperature shown by the steady state studies indicates 

the coolant temperature as an attractive control variable, 

particularly near regions of temperature runaway, because of 
the distributed parameter effect of the system, considerable 
care must be used in its manipulation. 

7.4.4 Countercurrent Cooling; Formulation and Solution 

of the Equations 

For countercurrent cooling, the heat balance on the 

coolant, in dimensionless form, becomes: 

aT 
c- 

2Nuw(T, 
.- T) - 

Fc 
-2c -- 0 (7.5) 

8z Gcc C@ 

with boundavy conditions: 
TC = TCO (1) at z=1, ýý0 

1C TCO( 7, ) at ti =01 z>ý-0 

As in the case of cocurrent cooling, equation (7.5) has 

been solved by the method of lines simultaneously with the dyn- 

amic reactor equations. The method of solution of the whole 

model is, however, slightly different since an iterative pro- 
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cedure is required at each time step because of the split 
boundary conditions. 

7.4.5 Countercurrent Cooling; Discussion of the Results 

It might reasonably be expected that perturbations in 

coolant temperature during countercurrent cooling cause a some- 

what different response than with cocurrent cooling. However, 

as was demonstrated in the cocurrent case, the form of the 

response is determined by relative rates of the two main procesE; es 

occurring within the bed; namely heat generation and heat re- 

moval. It is the interaction between these phenomena which 

makes purely intuitive reasoning unreliable. 

Figure 7.13 shows the response of the reactor following 

a step decrease in coolant inlet temperature. Since the lower 

temperature coolant takes a finite time to travel backwards 

along the bed, the initial movement of the hot spot in the 

opposite direction to the perturbation observed with cocurrent 

cooling does not, at first, occur. Initially, the hot spot 

is experiencing a cooler environment than the inlet region of 

the bed and so the temperature there falls. As the lower 

temperature coolant moves further down the bed towards the 

entrance it causes more cooling to take place so that after 20 

seconds the whole bed is at a lower temperature than it was in 

the initial steady state. However, the cooling of the entrance 

regions of the bed allows more reactant to reach the hot spot 

and so raise the rate of heat generation there. This increased 

rate of heat generation gradually overcomes the heat removal 

rate near the end of the bed and so the temperature rises. 

Eventually, as the bed cools down the hot spot is forced out of 

the exit. Thus, after an initial safe response, unsafe 

behaviour occurs. Since the hot spot experiences a lower 

coolant temperature before the rest of the bed, heat removal 

overcomes heat generation and cooling occurs there. The sub- 

sequent increase in reactant concentration reaching the hot 

spot, due to cooling of the entrance regions of the bed increases 

the rate of reaction sufficiently for heat generation to over- 

corre heat removal. This illustrates the problems which can 

arise if only the hot spot temperature is monitored; both the 

direction of the coolant perturbation and the initial response 

of the reactor are apparently safe and yet unsafe behaviour 

still occurs. 
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Similar behaviour is evident. following a step increase 
in the coolant inlet temperature, as shown in figure 7.14. 
The hot spot region near the bed exit (coolant entrance) init- 

ially rises in temperature before it cools, and the response 
is then very similar to that which occurs following the same 

perturbation but. with cocurrent cooling. 

The response to ramp changes in coolant temperature is 

shown in figures 7.15 and 7.16. Although generally the 

behaviour is similar to that when step changes in coolant temp- 

erature are applied, because the coolant perturbation is far 

less severe the initial movement of the peak temperature in the 

same direction as that of the coolant is not so great. Clearly, 

this depends on both the actual change in the coolant temperature 

and the coolant flow rate. The faster the movement of the cool- 

ant, then the more the response will resemble that occurring 

with cocurrent cooling. 

7.5 Concluding Remarks 

The steady state simulations of both cocurrent and counter- 

current cooling applied to the single tube reactor show that 

in the practical range of coolant flow rates little heating of 
the coolant occurs and so the behaviour in each case is very 

much the same. However, the amount of heating experienced by 
the coolant obviously depends on other factors besides the cool- 

ant flow rate; the specific heat of the coolant, the heat of 

reaction and the overall heat transfer coefficient between the 

tubeside gases and the coolant are also important parameters, 
and so generalisation in this respect may be inappropriate. 

When coolant heating does occur along the outside of the 

reactor tube then the differences in reactor behaviour caused 
by the coolant flow direction become more apparent. In order 
to retain a consistent set of reactor data for purposes of 
comparison, heating of the coolant has been simulated by de- 

creasing its flow rate. This has shown that at low coolant 
flow rates multiple steady states may occur during counter- 
current cooling. This phenomenon is due to the feedback of 
heat by the coolant along the reactor tube. Thus, it is symp- 
tomatic of coolant heating of which a low flow rate is just one 
possible cause. Indeed, other workers'17 have observed similar 
behaviour as a function of tube length. Olearly, in a large 
industrial system, such as a multitubular reactor considerable 
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coolant heating may occur at even moderate coolant flow rates, 
and this point is investigated in the next chapter. 

The results from the dynamic simulations clearly indicate 
the dangers which may arise by attempting to control the reactor 
by manipulation of the coolant temperature. Since the be- 
haviour of the reactor is regulated by a balance between the 

competing effects of heat removal and heat generation, which 

can vary with time and position in the bed, the response to 

coolant perturbations cannot easily be predicted without simu- 
lation. This brief study has identified the important and 
unusual features to be expected. 

The need for a more extensive study of the effect of cool- 
ant perturbations is clearly indicated and this should include 

a two dimensional description of the bed so that radial effects 
may be examined. It is hoped that improved numerical techniques 

currently under development15 will make this possible. 

ý°_ 
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CHAPTER 8 

MULTITUBUI, AR REACTORS 

8.1 Introduction 

8.1.1 General Comments 

There has been virtually no published work on the mod- 

elling of multitubular fixed bed catalytic reactors. Wanka 

and Gütlhuber 114 have-given an excellent general account of 
the design factors of such reactors. Banchero and Smith 118 

and Norton and Smith 125 have also described mathematical models 
of 'multitubular' reactors, although they have not considered 
the tube bundle in detail, but rather as a single tube with 
increased heating of the coolant. 

The important features of the tubeside behaviour are now 
fairly well established for a single reactor tube. Since in 

a multitubular reactor each tube experiences a different en- 
vironment which may also vary along the length of the tube, 
the interactions between individual tubes and how these affect 
the behaviour of the tube bundle as a whole need to be examined. 
The non-linear nature of the behaviour of a single tube suggests 
that these interactive effects are not purely additive, so that 

it may not be valid to predict the performance of a tube bundle 

solely by extrapolation of the behaviour shown by a single 
tube. Nevertheless, since a model of the tube bundle must 
necessarily contain a description of a single tube, it is ess. - 
ential to know how the single unit will behave under various 
conditions and this is why information from single tube studies 
is required. The work described here is intended as a pre- 
liminary study of the type of model which might be used in the 

design of multitubular reactors and an examination of the be- 
haviour and problems associated with them. 

It is appropriate to start with a description of the main 
types of multitubular reactors and their relative advantages 

and disadvantages. 

Basically, a multitubular reactor is the parallel arrange- 
ment of many individual reaction units or tubes. Wank and 
Gutihuber ll4have 

reported the construction of reactors con- 
sisting of up to 30,000 tubes. Cooling of the tubes, in the 
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case of an exothermic reaction, is effected externally by a 
flowing coolant. In the case of extremely exothermic rea- 

ctions at, or, above 500 C-a molten salt is usually used as 
the cooling medium. Referring to the flow direction of the 

coolant around the tubes, the reactors may be divided into 
two broad classes; parallel flow and crossflow reactors. 
There are also other variations on these two main types; for 

example the radial flow reactor, but these will not be dealt 

with here. 

8.1.2 Parallel Flow Reactors 

Figure 8.1 shows schematically the coolant flow direction 

in this type of unit. The coolant flows through the tube 

bundle parallel to the tubes, either cocurrently or counter- 

currently to the direction of flow of the gases within the 

tubes. The advantage of this construction lies mainly in an 
extremely uniform temperature distribution in the horizontal 

plane of the coolant, across the tube bundle. Also, coolant 

pumping costs are reduced since the pressure drop in the cool- 
ant, as it flows through the bundle, is relatively low. The 

disadvantage of this type of reactor, however, is that the 

achievable heat transfer coefficient between the tubes and the 

coolant is small compared with other-types of reactor, and this; 

can be a problem in extremely exothermic reactions where there 

is a high heat load. 

As in the case of erossflow reactors, heat losses from 

the shell are minimised by insulation. Thus, if the reactant 

concentrations and temperature at the inlet of all the tubes 
is uniform, as is usually the case, and the coolant enters the 

tube bundle at a uniform temperature, there will be virtually 

no radial temperature gradients in the coolant. Some heating 

of the coolant will occur, but this will be almost solely in 

the axial direction and can be controlled fairly easily. 
114 

The effects of axial heating of the coolant have been studied 
in the previous chapter. Thus, the behaviour of each tube in 

the bundle will be very similar in the steady state. A pre- 
liminary continuum-type model of this type of reactor has con- 
firmed that this is indeed the case, even with the maximum re- 

alisable heat transfer coefficient at the tube wall. For this 

reason, this type of reactor will not be considered any further 
here. 
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Figure 8.1 Schematic diagram of a parallel flow multitubular 
reactor. 
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Figure 8.2 Schematic diagram of a cross flow multitubular 

reactor. 
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8.1.3 Crossflow Reactors 

. This type of reactor, shown schematically in figure 8.2, 
is separated into-several sections by means of baffle plates 

which are installed crosswise throughout the tube bundle and 

which have openings at alternate sides. The coolant, there- 

fore, travels in several passes through the tube bundle. The 
-overall direction of the coolant may be either cocurrent or 

countercurrent to the direction of flow of the reactant gases. 

The advantage of this type of reactor lies in the high 

rate of heat transfer which may be achieved between the cool- 
ant and the tubes. However, there are several disadvantages, 

namely a large pressure drop in the coolant and heating up of 
the coolant as it flows across the tube bundle. This latter 
factor means that a uniform temperature gradient in the hori- 

zontal plane of the tube bundle cannot be guaranteed and so 
tubes on opposite sides of the bundle may exhibit different 
behaviour.. A further disadvantage of this type of reactor 
is the coolant leakage which can occur via the gaps between the 
tubes and the baffle plates. This can lead to "dead-spots, " 

along the tubes, which are not being cooled very effectively. 
For these reasons, crossflow cooling is usually restricted to 

small diameter tube bundles. 

The method of modelling both the cocurrent and counter- 

current crossflow reactor is basically the same, although the 

performance of each type is somewhat different. For this 

reason the two types are dealt with separately. 

Two conceptual representations of the system present 
themselves; the continuum model and the discrete mixing cell. 
The continuum model allows for an easier study of such things 

as-mixing of the coolant, whilst the merits of the mixing cell 

model lie in its faster numerical solution. For these reasons) 
both types of model of the tube bundle have been considered and 

compared in the cocurrent case. In the countercurrent coolant 
flow arrangement only the mixing cell model has been examined 
because of both the prohibitively large amount of computation 
time of the continuum model and the results of comparison of 
the two models in the cocurrent case. 
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8.2 The Tubeside Model 

A reaction of industrial importance and representative of 
those carried out, in multitubular fixed bed catalytic reactors 
is the partial air-oxidation of benzene-to maleic anhydride 
which has the following reaction scheme: 

C6H6 + 402 ---º C4H203 + CO + CO 2- + 2H20 

204H203 + 502 ---P. 6002 + 200 + H2O 

2C6H6 + 1302 ----" 8002 + 4C0 + 61120 

These reactions are all highly exothermic and are usually 
carried out in the presence of a large excess of air. Because 

of this the rate of each reaction can be treated as a function 

of the concentration of benzene or naleic anhydride only and 
the reaction scheme may be regarded as follows: 

A -º B --ý C 
ýD 

This reaction has been studied experimentally by Dave126 

and Mcgeon, l°7and Thornton12 investigated the development of a 

suitable mathematical model of the system. 

The reaction presents some difficult control problems 
since high conversion to maleic anhydride is desired but over- 

oxidation of this product, to carbon oxides and water, must be 

avoided. For the purposes of this study the three reaction 

steps are considered to be first order, irreversible Arrhenius- 

type reactions. The preheated air is usually greatly in 

excess of the benzene and so the oxygen concentration does not 
appear in the rate expressions. 

Because there is so very little heat transfer and hydraulic 

data available it is sufficient to use a one dimensional model 

of each reactor tube. This is the model given in Appendix (2) 

with an assumed parabolic radial temperature profile and 

coupled with the isothermal catalyst pellet model given in 

Appendix (1). 

8.3 The Crossflow Co-Current Continuum Model 

8.3.1 Assumptions 

For a complete and accurate description of the crossflow 

reactor, a momentum balance as well as a heat balance is nec-essary-on 
the coolant. For design purposes it is desirable 
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that the velocity and, hence, the pressure drop of the coolant 
at all points in the tube bundle are known. For this, the 
amount of coolant leakage across the baffle plates must be 
known. Without the knowledge of hydrodynamic data, an attempt 
to produce such a complex model of the tube bundle would serve 
little purpose. Wanka and Gutlhuberll4 have found that such 
a model, although sometimes necessary for complete design of 
the reactor, must be backed up by an experimental study on a 
pilot reactor in order that all the parameters might be de- 
termined. Here, however, such a pilot reactor is not available, 
indeed the models described in this chapter might serve as a 
guide as to which experiments would be necessary on a pilot 
rig, so a simple model is proposed embodying specific assump- 
tions about the coolant flow. By examining the resulting be- 
haviour the important criteria for making assumptions can be 

. determined. 

Firstly, it is assumed that-the coolant velocity is con- 
stant and unidirectional across the tube bundle. Clearly, 
this will not be the case in practice. The coolant will flow 
in one general direction across the tube bundle, but it will 

swirl around the tubes and vary in speed. However, since no 
data is available at present, this assumption is necessary 
here. The variations in coolant velocity will affect the 

heat transfer coefficient between the tubes and the coolant. 
However, it is the overall heat transfer coefficient, from 

the coolant to the inside of the tube wall, which is important. 

The external, tube-coolant, heat transfer coefficient is usually 
ten to twenty times greater than the inside one 

114 
and so 

large variations in the external coefficient tend to be damped 

down by the internal one in the evaluation of the overall co- 

efficient. This may be illustrated by the following example. 
For the data given in Table 8.1, a typical value of the in- 

ternal coefficient is 6x 10-3 cal cm 
2 k-1 sec. -1 Wanka and 

Gütlhuber114 give a typical value of the external coefficient 

as 6x 10-2cal cm -2 k_1 sec71 Neglecting the heat transfer 

resistance of the tube wall, the overall coefficient would be 

5.45 x 10-3 cal cm -2 k-1 sec: 
l On doubling the external value 

to 12 x 10-2 cal cm 
2 k-1 sec; 

lthe 
overall coefficient becomes 

5.7 x 10-3 cal cm -2 k-1 sec. *' Thus, a change of 100% in the 

value of the external coefficient has produced only a 5ö change 



TABL 8.1 Data used in the rmiltitubulcr reactor models. 
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L' 

K 
P 

u 

3.62 x 109 
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367 x103 
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0.21 
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sec7l 
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cal gmole 
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cal gmole 
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cal gmole 

cal. gnole-1 

cal gmolc-1 

cm sec -1 
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Cal csc2see-'K-1 

Cm 

Cm 

cal cm 
1 

sec-' K-1 

crosecl 

01 2.09 x 105 

02 3.10 x 10' 

63 1.39 x103 
B 5.01 x 10-5 
0 

H2 0.695 

H3 1.695 

ShA 500 

ShB 500 

Nu 1.0 

1.0 

Cý 1.0 

G2 0.152 

G3 0.525 

G4 123.0 

N 14.6 
W 

1 aw 3.1J. 

R 

U 

e 

C 
P 

Co 

0 
T 
Co 

C C 
e C 

r K 
C 

U C 
ýC 

Qc 

c pc 

0.2 

0.13 

6.4 x10 
2 

5.0 

450 

1.715 

0.373 

cm 

Cal crä2sec1K-1 

c. 1 &. 
1K1 

g=le cm 73 

K 

K 

cal cd-1 soc-1 K-1 

cm sec-1 

CAO 1.0 

CBo 0.0 

T0 0.0! x. 08# 

TCo 0.0408 

Al 128.0 

A2 16.8 

Gc 1 95.0 

gm sec-1 

gm c3 

Cal vi -l Kam' 



TABLE 8.1 (Continued) 

PD 5.25 cm 

1 451 Cm 6 
1$ 50 an 

1T 1.05 cm 

Number of coolant passes :4 

Number of tubes across bundle diameter : 50 
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in the value of the overall coefficient. This illustrates 

that it is the internal heat transfer coefficient which is 
limiting and so fluctuations in the external value may be 

neglected. The -effect of variations in the inside coefficient 
will obviously be important. Since we'are concerned with the 

structure of the extra-tubular model this effect has not been 

examined here but some results are available from Naim 15 
who 

has investigated this problem. 

An important assumption is that although a coolant temp- 

erature profile mar develop along the outside of each tube there 

is no heat or mass transfer across the baffle plates between 

adjacent coolant paths. Relaxation of the assumption of no 

coolant leakage across the baffle plates would necessitate a 
detailed mass balance on the coolant in each baffled section 

of the tube bundle. Of course, coolant leakage does occur 

around the tubes as they pass through the baffle plate. The 

assumption of no heat transfer across the baffle plates is 

necessary to avoid a very time consuming iterative calculation. 
The effect of this assumption is discussed later. 

The baffle plates are assumed to be of negligible thick- 

ness. This assumption is. necessary in the light of the pre- 

vious one of no heat transfer across the baffle plates. Re- 

laxing this assumption would require the calculation of a 
baffle plate temperature or temperature profile. Since this 

would add greatly to the amount of computation to be performed, 
the greater sophistication is not considered worthwhile at 
this elementary stage., 

Because of the type of model used fob the tube-bide con- 
ditions, the coolant temperature around the circumference of 

each tube is assumed constant. Temperature variations around 
the tubes will probably occur but they will be small and in 

any case they could not be measured sufficiently accurately 
for their inclusion in the model to be meaningful. 

One further assumption is that the row of tubes across 
the diameter of the tube bundle is characteristic of those in 

other parts of the bundle. This assumption is related to 

that of constant velocity of the coolant. The coolant velocity 

will, of course, he greatest at the diameter of the tube bundle 

and will decrease away from the diameter where the length of 
the coolant path decreases. To relax this assumption would 
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mean considering every row of tubes in the bundle, and at 
this preliminary stage this is not considered to be necessary. 

Mixing. of the coolant in the direction perpendicular to 
flow is described in the continuum model presented here, but 

no allowance is made for mixing of the coolant along the dire- 

ction of flow. 

The geometric configuration considered is that of a tube 
bundle with the tubes arranged on a triagular pitch with a 
pitch circle. diameter of 1.25 times the tube diameter. 

8.3.2 Formulation and Solution of the Equations 

Applying the above assumptions, the following differential 
heat balance on the coolant may be derived for each coolant 
pass. 

2 
K'ec ä2Tc2 

- ucencpc ec-c + UA' (T' `y^R - Tc) =0 (8.1) 

with boundary conditions: 

Tf= Tc0 at x' = 09 0< z'' < 1B 

aTc =0 at z" = o, 0, x', lc 
az'ý �7't=1 

where: 
KL = Thermal conductivity of the coolant in the directicn 

perpendicular to the coolant flow. 

ec = voidage of the tube bundle in the direction 

perpendicular to the coolant flow. 

cc = voidage of the tube bundle in the direction of 
the coolant flow. 

A' = surface area of the tubes per unit volume of the 
tube bundle. 

x' = co-ordinate in the direction of the coolant flow. 

z" = co-ordinate perpendicular to the coolant flow. 

lB = distance between the baffle plates. 

lc = diameter of the tube. bundle. 

The other symbols have the; iueanings-used previously. 

Rearrangement of equation in dimensionless form gives: 
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a2T 
az2c 

A . 
DTc 

+ A2NU*(T - Tc) =0 
cX 

with boundary conditions.: 

Tc = Tc0 at x_= 0,0 < zc <1 

OTC 
=0 at zc= 0,0 <x 

eze 
zC= 1 

where: 

C 1$ 1C 

(8.2) 

(8.3) 

2,2 
A= uc-- c Spc £CA=AK ff -1B 1 Kelcec 2 KcecR 

Equation (8.2) coupled with the boundary conditions (8.3) 

may be expressed in finite difference form as shown in Appendix 
(7). 

" Solution of the finite difference equations may be acc- 
omplished by marching across the tube bundle from the coolant 
inlet to the outlet in each coolant pass. as follows: 

(1) Assume a coolant temperature profile 

perpendicular to the direction of coolant 
flow at the first (i. e. inlet) or next 

position along the direction of flow. 

(2) Using this temperature profile solve the 

tubeside model for the length of tube in 

the pass under consideration. 

(3) Using the tubeside temperature profile 
from step (2) solve the coolant finite 

difference equations in the direction 

perpendicular to coolant flow to obtain 

a new coolant temperature profile in this 

direction. 

(4) Check whether the coolant temperature profile 

calculated at step (3) agrees with the 

assumed one from step (1). If not, using 
the profile from step (3), repeat the cal- 
culation from step (2). If convergence is 

obtained and x< 1 (i. e. the outlet of the 
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(4) coolant from the pass is not reached) 
go on to the next position in the direction 

of coolant flow and repeat from step (1). 

If x=1 (i. e. the outlet from the coolant 

pass is reached), go on to'the next coolant 

pass and repeat from step (1). 

At the end of each coolant pass, where the flow reverses 
direction for the'next pass, it is assumed that complete 
mixing of the coolant occurs so that"it enters each pass at a 
uniform temperature in the direction perpendicular to flow. 

Since the coolant temperature gradient in both directions 
has been found to be relatively small, no problems of conver- 

gence with grid size have been encountered. It is convenient 
to use tht same grid spacing in the direction perpendicular to 

coolant flow, as used in the solution of the tube side model 
(i. e.. 200 increments along the whole length of each tube). 
To obtain convergence in the direction perpendicular to the 

. coolant flow, approximately 100 increments are required across 
the tube bundle in each pass. When programmed in Fortran on 
an I. C. Z. 1906A computer, solution time is approximately 12 

minutes with these grid sizes and the data given in Table 8.1. 

8.3.3 Discussion of the Results 

No data is available for the thermal conductivity of the 

coolant- perpendicular to its direction of flow. It has, there- 

fore, been estimated that this value might be two or three 

orders of magnitude greater than the molecular value of the 

thermal conductivity of the coolant. Several computations 
have been carried out using different values of this parameter 

and it has been found that the coolant and, therefore, the 

tubeside gas temperature profiles are very insensitive to the 

size of the coolant conductivity. Figure 8.3 s''ows coolant 
temperature profiles at the exit of each pass of a four pass 
tube bundle with 50 tubes across its diameter for two thermal 

conductivities; one is the molecular value and the other is 

1000 times greater than this. As can be seen the difference 
between the two profiles is very small. There is also corres- 

pondingly little difference between the tubeside temperature 

profiles although -these are not shown here. The reason for 
this insensitivity to K. is that the coolant temperature grad- 

11 
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ients in the direction perpendicular to coolant flow are very 

small since little heating of the coolant occurs in this dire- 

ction. These rather flat coolant temperature profiles suggest 
that it might be reasonable to assume that there is no temp- 

erature gradient in the coolant in this direction and, there- 
fore, use'a mixing cell type of model for the tube bundle. 

This is examined in the next section of this chapter. 

For purposes of identification, the first tube encountered 
by the coolant in its first pass across the bundle is referred 
to as tube 1, and the tube at the exit of the coolant from the 
first pass is referred to as tube N when there are N tubes 

across the diameter of the bundle. 

Figure 8.4 shows the effect of the coolant velocity, uc, 
on the tubeside temperature profiles on opposite sides of the 
bundle. Clearly, the slower the coolant flows across the bundle, 
the more it is heated and so the greater the difference between 

the coolant temperature profiles on opposite sides of the bundle 

in each pass. This means that the tubes at the coolant inlet 

and outlet of each pass are experiencing quite different en- 

vironments and, therefore, show correspondingly different be- 

haviour. The non-linear effect of the coolant flow rate on 
the tubeside temperature profiles is also evident'from figure 

8.4. At the higher values of flow rate a 100% change in the 

flow rate has little effect on the tubeside temperature profileb, 

whereas at the lower values such a change has a marked effect 

and causes tubes on opposite sides of the bundle to exhibit 

quite different behaviour. 

Perhaps the most striking feature of the tubeside temp- 

erature profiles shown in figure 8.4 is the occurrences of 
discontinuities in their slopes especially at the lower coolant 
flow rates. This arises as a consequence of the assumption of 

no heat transfer across the baffle plates. This assumption 

causes sharp changes in coolant temperature along the tubes 

from pass to pass. Paris and Stev 

abrupt changes of slope in tubeside 
from sudden changes in both coolant 
heat transfer coefficient, in their 

special cooling jacket for a single 
they appear to have made no comment 
to eliminate 'it. 

ens119 describe similar 
temperature profiles, arisir. _g 
temperature and tube wall 

approach to the design of a 

reactor tube. However, 

on the occurrence or attempt 
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It is highly unlikely that such abrupt changes in the 

coolant temperature, and therefore, such sharp changes in the 

slope of the tubeside gas temperature profiles occur in pra- 
ctice since there is transport of both heat and mass between 

adjacent coolant passes at the baffle plates. The coolant 
can leak'through the gap between the tubes and the baffle plate, 
and indeed this is sometimes encouraged114 so that 'dead spots' 
receiving no coolant are eliminated and also to give a 
smoother temperature distribution in the coolant. Figure 8.4 

shows that the changes in slope of the temperature profiles 
become less marked and may disappear if the coolant is pre- 
vented from heating up tco much as it flows across. the tube 
bundle, by keeping the flow rate high. This causes less 

sudden changes-in the coolant temperature at the baffle plates 
and so reduces the discontinuity of slope in the tubeside 

profiles. Even though the continuum model allows for a coolant 
temperature profile. along the outside of the tubes in each 
baffled section, abrupt changes of slope in the tubeside temp- 

erature profile still occur. 

In examining these discontinuities of slope of the 

temperature profiles, the distorted scale of the graphs must 
be borne in mind. The length of the reactor tubes is two 

metres and a change in dimensionless temperature of 0.001 re- 

presents approximately 15 K for the activation energy given in 

Table 8.1. Thus, at the third baffle plate (z=0.75) in 

figure 8.4, the change in slope which occurs in tube 1 for the 

coolant velocity of tic is actually a drop in temperature of 

approximately 4K over 10 cm. (from z=0.7 to 0.75) followed 
by an increase of 9K over the next 10 cm. (z = 0.75 to 0.8). 

In both the continuum model of the tube bundle and the 

mixing cell model presented in the next section, to allow gor 

heat transfer across the baffle plates would result in an 

extremely time consuming, nested-iterative calculation. 
Although this would probably eliminate, or at least reduce, 
the changes in slope of the tubeside temperature profiles, it 

is arguable that the accuracy of the models as a whole pre- 

cludes the need for this calculation at the present stage. 

Because of the relatively large amount of computation 
time necessary for the solution of this continuum model of 
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the multitubular reactor, it is perhaps of limited use for 

preliminary design purposes. The relatively flat coolant 
temperature profiles in the direction perpendicular to cool- 
ant flow suggest that no great loss of accuracy will occur if 
the coolant'"temperature in this direction is assumed to be 

uniform. For these reasons a second type of model of the 
tube bundle which is only slightly simpler than the continuum 
model, but which can be solved more rapidly, has been investi- 

gated and compared with the continuum model. This is des- 

cribed in the next section. 

8.4 The Crossflow Cocurrent Mixing Cell Model 

8.4.1 Assumptions 

The assumptions for the mixing cell model of the tube 
bundle proposed here are basically the same as those for the 

continuum model. The main difference is that the coolant 
temperature is assumed to be constant along the outside of 

each tube in each baffled section. This allows°the tube 

bundle to be divided up into mixing cells, each cell having a 
length equal to that of the baffled section. The layout of 
the cells in each pass is shown in figure 8.5. The coolant 
is assumed to be perfectly mixed in each cell. 

8.4.2 Formulation and Solution of the Equations 

Referring to figure 8.5, the coolant flows from cell i 

to cell i+1 and so on across the row of tubes. As in the 

continuum model described previously, flow of the coolant in 

any direction other than horizontally is not explicitly acc- 

ounted for. From the point of view of heat generation there 

are effectively two tubes in each cell. A heat balance on 

cell i gives: 
Z' 

Zt(T'Iy=R(Tc(i)'z`) 
- Tc(i))dz` mccpcTc(i-1) +4r RU 

2 

mccpc c(i) 

where: 
me = uc e c1B1T 

zi and z2 are the limits of the length of the 

(8.4) 

baffled section 
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1= z2 - zi 

T is the minimum distance between adjacent tubes 

(see figure 8.5) = PD - 2b 

Rearrangement and making equation (8.4) dimensionless gives: 
z2 

Tc(j-1) + 
LUW (Tlr=l - Tc(i))dz = Tc(i) (8.5) 

c zl 

where: G0^ mcRpc- 

.4 xKfeL 

The tubeside model used here gives directly the radial 
mean tubeside temperature making use of the effective wall 
Nusselt number, Num. Therefore, equation (8.5) may be 

rewritten: 
z2 

Tc(i) - Tc(i-1) + 
NG 

w (T - Tc(i))dz (8.6) 
Go 

z1 

It should be noted that in equation (8.6), T is a function 

of Tc(i). 

Thus, for a bundle with N tubes. across the diameter 

there are N equations of the form of--equation (8.6) coupled 

with the tubeside equations (Appendix (2)) for each coolant 

pass. The coolant flow across the tube bundle is shown 

schematically in figure 8.6. 

The method of-solution of the model is as follows: 

(1) Assume a_value of Tc at the first or 

next cell. 

(2) Solve the tubeside equations for the 

length of the cell using this value of Tc. 

(3) Using the tubeside temperature profile 
from step (2) evaluate the integral term 

in equation (8.6). 

(4) Solve equation (8.6) using the value 

obtained from step (3) to give a new value 

of Tc. 
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(5) Compare the value of Tc. from step (4) 

with that assumed at step (1). If 

the two values are converged to within 

predetermined limits move on to the 

next cell and repeat from step (1). 

If the values are not converged use 

the value of Tc from step (4) and repeat 

from step (2). 

This procedure is repeated in each pass until the exit cell 

is reached, when solution is complete. 

8.4.3 Simplification of the Model 

For a reactor of 49 cells (i. e. 50 tubes) across its 

diameter and-four equal length coolant passes, solution of the 

model for the data given in Table 8.1, when programmed in 

Fortran on an I. C. L. 1906A computer, takes' approximately six 

minutes. Although at first sight this may not seem an ex- 

cessive time, two points must be borne in mind; firstly the 

I. C. L. 1906A computer is a very powerful machine and secondly, 

if larger tube bundles are considered the computation time 

will increase proportionately. Preliminary calculations have 

shown that provided that the coolant flow rate is not too 

small, a very effective simplifying assumption can be made; 

namely that the heat gained by the cdolant in each cell is 

approximately constant over a certain number of cells. This 

is best illustrated by the following equations. From equation 

(8.6): 

Tc(i) = Tc(1 1) + 
IduG 

w F(i) (8.7) 

c 
where: rz2 

F(1) _ (T - Tc(i))dz 

Zl 

Similarly, for cell (i+l): 

Nu* (8.8) 
Tc(i+l) = Tc(i) +Gw 

c 

Substituting for Tc(j) in equation (8.8) from equation (8.7) 

gives: 

Tc(i+l) Te(i-1) + Nuw (F(i) + ý, (i+l)) 



127. 

Thus for cell (i + n): n 
Nu g. 

Tc(i+n) = Tc(i-1) +GW F(i+k) (9 

c k=0 

Nov, if F(i) (i+l) F(i+2) _ ". ". "... (i+n) 

then equation (8.9) becomes: 

Tc(i+n) - Tc(i-1) + 
Guw (n + 1)F(i) (a. 10) 

c 

Table 8.2 shows values of F(i) for each mixing cell in 

a 49 cell diameter bundle with four equal coolant passes. 

As can be seen, if n is not too large then the approximation 

will be valid and so equation (8.10) will hold. 

Figures 8.7,8.8 and 8.9 show the effect of this approxi- 

mation with n= 24 on the temperature and concentration 

profiles of tubes on opposite sides of a 50 tube diameter 

bundle. As may be seen, the differences between the detailed 

and the simplified mixing cell models are not very large. 

The largest discrepancies occur in the hottest part of the 

bundle since at higher temperatures the tubeside gas temp- 

erature is more sensitive to the coolant temperature. The 

reduction in computing time is very great for this small sac- 

rifice in accuracy with n= 24. when programmed in Fortran 

solution of the simplified model requires only approximately 

24 seconds compared with the previously quoted figure of 6 

minutes for the detailed model. In other words a reduction 

by a factor of about 15. If more accuracy is required, for 

example at lower values of coolant flow rate, then a smaller 

value of n may be used. It is interesting to note that the 

simplified model predicts higher temperatures than the detailed 

model. It may, therefore, be regarded as a safe approxi- 

mation since any operating conditions decided on the basis 

of predictions of the simplified model would tend to be 

conservative. 

It seems, therefore, that this simplification is satis- 

factory for preliminary studies provided that the value of n 

is chosen with some care. 
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Figure 8.7 Comparison of axial profiles of radial mean temperature in tubes 

on opposite sides of the bundle predicted by the detailed and 
the sinplifial cocurrent coolant mixing cell models. ( Data as 

given in Trxblo 5.1 ) 
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8.4.4 Comparison with the Continuum Model 

Figure 8.10 shows the comparison of the radial mean tube- 

sidetemperature profiles in tubes on opposite sides of the 
tube bundle predicted by the continuum and the mixing cell 
model. As can be seen, the agreement between the two models 
is very good. The slight differences which do occur are due 
to small coolant temperature gradients perpendicular to the 

coolant flow, predicted by the continuum model. Similar agree- 
ment is obtained between the concentration profiles predicted 
by the two models, although these are not shown here. At 
higher coolant flow rates the agreement between the two models 
is even better since much less- heating of the coolant occurs. 
At the lower flow rates the discrepancies between the two 

models become slightly greater since significant coolant heat- 
ing occurs and so the coolant temperature gradients become 

more pronounced. Even-so, the agreement has still been found 
to be very good. 

The mixing cell model, in its simplified form, requires 

much less computation (a factor of 30 less) and yet agrees 

very well with the continuum model, as figure 8.10 shows. 
It, therefore, appears very suitable for a preliminary exam- 
ination of the behaviour of multitubular reactors especially 
in the absence of more reliable data. or a pilot plant. 

8.4.5 The Influence of the Model Parameters 

From equation (8.6) it can be seen that a change in the 

value of the group Nuw/Gc may be interpreted as a change in 

the coolant flow rate with the accompanying change in the value 
of Nuu, But note that the value of Nu. is required explicitly 
for the solution of the tubeside model. For this reason, 
in the absence of any reliably accurate heat transfer data 

giving the dependence of the coolant-side wall heat transfer 

coefficient on coolant flow rate, the effect of both the cool- 
ant flow rate and the wall heat transfer coefficient has been 

simulated by varying Gc at constant Nu 
Y1 and Nuw at constant 

Gc., 

In studying the effect of some of the parameters of the 

model, only temperature and concentration profiles within tubes 

on opposite sides of the bundle have been presented, since 
these represent two extremes within the bundle. The other 
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tubes in the bundle exhibit a gradual change in profiles 
between these two extremes on passing across the bundle in 
the direction of the coolant in each baffled section. 

Figures 8.11,8.12 and 8.13 show the effect of-coolant 
flow-rate at constant Nuw on the temperature and concentration 
profiles in a tube bundle with 49 cells across its diameter 

and with four equal coolant passes. At the high coolant flow 

rates (high values of Gc) there is very little difference be- 

tween tubes on opposite sides of the'bundle. Although the 
fairly high wall Nusselt number causes a large amount of heat 
to be removed from the tubes, the coolant does not heat up 
very much because of its high flow rate. Consequently, tubes 

on opposite sides of the tube bundle are receiving coolant at 

similar temperatures in each pass, and therefore, exhibit sim- 
ilar behaviour. 

As a consequence of the coolant remaining relatively cool 
near the gas inlet, at these high coolant flow rates, the 

reaction gases are prevented from becoming hot and thereby 

generating more heat to further increase the reaction rate. 
Although this may be desirable in the case of a very temperatuie 

sensitive catalyst, it causes a low conversion of the reactant. H 

Figures 8.12 and 8.13 show that at the high coolant flow rates 

used to produce the profiles labelled (1) and (2), approxi- 

mately half of the reactant (species A) remains unconsumed 

at the reactor exit. Operation under conditions similar to 

these would, therefore, necessitate a large recycle of the 

reactor exit gases, with accompanying separation plant, as well 

as high pumping power requirements for the pumping of the 

coolant through the reactor. An alternative to the recycle 

would be a much longer reactor. This would further increase 

the coolant pumping costs and also increase the capital cost 

of the reactor. 

At low coolant flow rates the coolant heats up much more 

rapidly as it flows across the tube bundle, and so tubes on 

opposite sides of the bundle experience coolant at quite diff- 

erent temperatures. This produces large differences in the 

temperature and concentration profiles within them (see profiles 
labelled (3) and (4) in figures 8.11,8.12 and 8.13). 
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The non-linear effect of the coolant flow rate on the 

shapes of the tubeside temperature profiles is also evident. 
The tubeside profiles are much more sensitive to the coolant 
flow rate at the low flow rates than at the high ones as has 
been demonstrated with the continuum model. This is due to 
the way in which heat is generated and dissipated within the 
tube bundle; the lower the coolant flow rate, then the more 

rapidly the coolant heats up. However, the higher coolant 
temperatures allow greater reaction rates, within the tubes, 

and therefore greater heat generation causing even more heat- 
ing of the coolant. This effect is propagated throughout the 
tube bundle. The undesirability of a low coolant flow rate is 

shown by the profiles labelled (4) in figures 8.11,8.12 and 
8.13. Here the very low flow rate enables the coolant to 
heat up by quite a large amount in each pass and this"leads 
to quite different conditions within tubes on opposite sides 
of the bundle, at all points along the tubes. It is also 
evident that a high temperature peak and even temperature run- 
away might occur twice within the same tube. In figures 
8.12 and 8.13 the consequences of allowing the coolant temp- 

erature to become too high are evident from the fall off in 

concentration of product B near the reactor exit. This is 
because species B is being consumed faster than it is formed 
from A. 

Another reason for preventing the coolant temperature 
from becoming too high is that the coolant might decompose or 

exacerbate corrosion of the shell and tubes at high temp- 

eratures. In the case of molten salts, charring as well as 
decomposition of the salt can occur at high temperatures and 
this can cause fouling of the coolant flow paths and a fall- 

off in the coolant-side wall heat transfer coefficient. 

Figures 8.14 and 8.15 show the effect of varying the 

wall Nusselt number at a constant coolant flow rate. (Note. 

Only the concentration profiles in tube 1 are shown in figure 

8.15 for clarity. The effect of Nuw, on the concentration 

profiles in tube 50 is very similar). A high wall Nusselt 

number causes good heat transfer between the tubes and the 

coolant and provided that the coolant flow rate is not too 

high, preventing the coolant from heating up, this appears to 

lead to a fairly even temperature profile within the tubes and 
moderate conversions of reactant. Too low a wall Nusselt 

iýl:.: 
i 
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number means that bad heat transfer occurs between the tubes 

and the coolant and so the tubeside gas temperature becomes 

high. This may lead to poor selectivity if uncontrolled and 

so as shown in figure 8.15 the concentration of product B 

decreases near the exit. A low wall Nüsselt number also gives 
rise to a lack of sensitivity to the-coolant temperature. 

As mentioned previously, the wall Nusselt number is usu- 

ally controlled by the tubeside heat transfer coefficient 

and can, therefore, be held more or less constant or at least 

prevented from varying over a very wide range. 

The effect of changing the number of coolant passes across 
the tube bundle is shown in figures 8.16 to 8.19. In these 

figures the effect of four, five and six coolant passes at 

a constant coolant velocity is shown. It should be noted 
that although the coolant velocity is constant, since the 

length of the baffled sections changes with the number of cool- 
ant passes., the coolant mass flow rate across the tube bundle 

also changes and this is reflected in the value of Gc. 

-Increasing the number of coolant passes by decreasing the 

length of each baffled section might, at first, be thought: to 

lead to lower and more even tubeside gas temperature profiles. 
As figures 8.16 to 8.19 show, this is not always the case. 
Increasing the number of coolant passes, whilst keeping the 

coolant velocity constant, in fact causes an increase in the 

tubeside temperature in the latter half of the reactor for the 

data used here. The reason for this is the way the heat is 

generated and passed to the coolant throughout the reactor. 
Consider, for example, a change from four to five coolant 

passes across the same tube bundle. The increase in the number 

of passes results in a decrease in the length of each baffled 

section. In the first coolant pass the tubeside gases heat 

up as the reaction gets going, leaving this pass at a higher 
temperature than when they entered. Thus, more heat is trans- 
ferred from the tubes to the coolant near the exit of the tubes 
from this pass than near the reactor entrance. Therefore, 

on shortening the length of the tubes in this pass by increasing 
the number of passes, the amount of heat which can be trans- 
ferred to the coolant decreases and so the coolant does not 
heat up so much as it flows across the bundle. This is 

despite the'decrease in mass flow rate of the coolant across 
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this pass. Consequently,, the tubeside gases do not become 

so hot, in the first pass, with five passes as with four. 

In the second and subsequent passes more reaction takes place 
in the case of five passes, since less reactant has been con- 
sumed in the first pass. This causes greater heat generation 

and, therefore, greater heating of the coolant. The hotter 

coolant experienced by the tubes in turn causes more reaction 
to take place causing even more heat generation. The process 
is somewhat exacerbated by the lower mass flow rates caused 
by shortening the baffled sections at constant coolant 
velocity. 

More than six coolarlt passes are not usually used in 

multitubular reactors because of the increase in pressure drop 

of the coolant and consequently increased pumping costs. 

8.5 The Crossflow Countercurrent Mixing Cell Model 

8.5.1 Assumptions 

The assumptions upon which this model is based are ident- 
ical to those employed in the cocurrent mixing cell model 
described in section 8.4. The only difference is the direction 

of flow of the coolant. relative to the direction of flow of 
the gases. This is shown schematically in figure 8.21, 

together with the tube labelling system. 

8.5.2 Formulation and Solution of the Equations 

Figure 8.20 shows the mixing cell arrangement. Using 
the same nomenclature as in section 8.4, a heat balance on 
cell i gives: 

J 
Z2 

Tc(i+l). - TC(i) - 
jG 

w (T Tc(i))dz (8.11) 

C Z1 

Note that T is a function of T0(1) in equation (8.11). 

For a tube bundle of N tubes across the diameter there 

will be N equations of the form of equation (8.11), coupled with 
the tubeside equations, for each coolant pass across the tube 
bundle. 

Figure 8.21 shows that the coolant enters the tube bundle 

at the baffled section from which the reaction gases leave. 
The tubeside equations must be solved from the point where the 

gases enter'the tubes and because usually only the coolant 
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inlet temperature is specified, its value at this point is not 
known. This. necessitates an iterative solution on the cool- 
ant. The coolant exit temperature is assumed and the eq- 
uations are solved marching across the tube bundle in the 
direction opposite that of the coolant flow to calculate the 

coolant inlet temperature. This may then be compared with 
the actual inlet temperature. If the two values do not agree, 
a new coolant exit temperature is assumed and the calculation 
is repeated. 

From equation (8.11) it can be seen that since T is a 
function of TCM and not Tc(i 

+ 1) the latter may be computed 
directly without the nee for iteration on the individual cell 
equations. The method of solution is as follows: 

(1) Assume a value for T. at the cell at 
the coolant exit from the bundle. 

(2) Solve the tubeside equations using this 

value. 

(3) Compute the value of Tc in the next cell 

across the bundle from-equation (8.11). 

(4) Check whether the'last cell in the bundle 
(i. e. at the coolant entrance) has been 

reached. If not, repeat from step (2) 

using the value of Tc from step (3). If 

the last cell has been reached go on to 

step (5). 

(5) Compare the computed value of the coolant 
inlet temperature from step (3)1with the 

actual value. If the values are the same, 
then the solution is complete. If not, 

repeat from step (1). 

A quadratic convergence technique appears to be sufficient 
in most cases to obtain convergence of the coolant inlet temp- 

erature with four iterations. More iterations are usually 

required in the region of multiple solutions discussed in 

section 8.5.4. 

8.5.3 Simplification of the Model 

For a tube bundle with 50 tubes across the diameter and 

with the data given in Table 8.1, one iteration on the tube 
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bundle requires approximately 3-minutes computation when pro- 

grammed in Fortran on an I. C. Z. 1906 A computer. This is 

faster than the cocurrent model because no iteration is needed 

on the individual cell equations. If three or four iterationE 

on the bundle are needed to obtain convergence of the inlet 

coolant temperature, then the computation time becomes pro- 

hibitive for a detailed investigation of the reactor. 

For this reason, the approximation described in section 

8.4.3 of this chapter has been tested on this model, namely 

that the heat gained by the coolant in each cell is approx- 

imately the same over a number of cells. 
Z2 2 

Putting: P(i) _ (T - Tc-(1))dz 

zl 
then from equation (8.11): 

= Tc(i) GW P(i) LIE 
W 

Go 

Similarly: 

Tc(i+2) = Tc(i+l) u 
- 

NG 
w F( i+1) 

c 
Therefore from equation (8.12): 

Tc(i+2) Tc(i) u 2U (FCi) + F(i+l)) 

c 
Thus n-1 

T 

P r 
Tc(i+n) = Tc(i) (i+k) 

Gw - 
c k=O 

Now, if F(i) F(i+l) F(i+2)':.. 

then equation (8.13) bec omes: 

Tc(i+n) = Tc(i) - 
Nu 

w nF. (i) 
G 

c 

(8.12) 

(8.13) 

F(i+n-1) 

(8.14) 

Figure 8.22 shows the effect of this approximation on 

the temperature profiles within tubes on opposite sides of a 

49 cell diameter bundle with four equal coolant passes and 

n=6. As might be anticipated from the results of the co- 

current mixing cell model, the difference between the detailed 

and the simplified models, increases with temperature. Because 

of. the higher coolant temperatures near the reactor entrance, 
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more heat is generated there in the countercurrent than in 
the cocurrent case with the data used here. Consequently, 

a smaller value of n is necessary to obtain good agreement 
between the simplified and the detailed models. Even so, the 
reduction in computing time makes the approximation worth- 
while. To construct figure 8.22 with n=6 one iteration on 
the tube bundle requires approximately 35 seconds computing 
time on the I. C. L. 1906A computer. Because of this saving 
in computation time, the simplified model can probably be use- 
ful especially when the other assumptions inherent in the 

model are considered. In critical cases a smaller value of 
n may be used to obtain greater accuracy. 

Abrupt changes in the slopes of the temperature profiles 
similar to those predicted by the cocurrent model are also 
evident in the countercurrent case. They appear less severe 
than those discussed previously since they involve mostly a 
change in only the magnitude of the temperature gradients and 
not the sign. 

8.5.4 Multiple Steady States 

In chapter 7 the. existence of multiple steady states in 

a countercurrently cooled single tube reactor was discussed. 

It was found that multiple solutions could occur when the 

coolant was able to heat up appreciably - either at low cool- 

ant flow rates or in long tubes. Since the coolant in a 

multitubular reactor can be heated considerably even at mod- 

erate coolant flow rates, it seems reasonable to expect mul- 
tiple solutions to occur in countercurrent flow. This, indeed, 

can be demonstrated using the mixing cell model. Figure 

8.23 shows coolant inlet temperature plotted against coolant 

outlet temperature at various values of the parameter G. for 

a four pass, 50 tube diameter bundle with the data given in 

Table 8.1. As the value of Gc is decreased a region develops 

where the coolant outlet temperature becomes very sensitive 
to the inlet value. A further decrease of Gc leads to the 

occurrence of multiple steady states. For a given coolant, 
decreasing Gc represents a decrease in the coolant mass flow 

rate or velocity across the tube bundle. Although for the 

data used here, the multiple steady states occur at apparently 
low values of coolant flow rate, with larger tube bundles much 

more heating of the coolant will occur and so higher values of 
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the flow rate will be necessary to avoid this phenomenon. 

Figure 8.24 shows temperature profiles within tubes on 
opposite sides of the bundle for the three steady states which 
can occur with Gc = 63: 1 and the coolant inlet temperature of 
0.03790. There exists a high temperature steady state (H1TSS), 

a moderate temperature steady state (MTSS) and a low temperature 

steady state (LTSS). For this value of GC the HTSS and h, TSS 

are close together. However, as figure 8.23 shows, a 
further decrease in Gc leads to greater separation of these 
two. In examining what is occurring in these three steady 
states and explaining their existence, it is perhaps easiest 
to start at the coolant exit (reactor entrance, coolant pass 
four). Nevertheless, what is happening to the coolant further 

along the reactor must also be borne in mind in each case. 
To this end, figure 8.25 has been constructed, which shows 
the coolant temperature at equispaced intervals in each of 
the steady states. 

In the fourth coolant pass, where the coolant meets tube 
50 first, as it flows across the tube bundle, the temperature 

changes by different amounts in each of the steady states. 
It enters this pass at the highest temperature in the HTSS and 
at the lowest temperature in the LTSS. In the HTSS, since 
the coolant is very hot it causes a large amount of reaction 
to take place, generating a lot of heat and thereby becoming 

hotter itself. As it flows across the tube bundle it, there- 
fore, tends to generate even more heat within the tubes. Near 

the exit from this pass, the much greater rate of reaction 
causes very high tubeside temperatures and, therefore, a large 

amount of reactant consumption. This process is similar in 

the LTSS, but since the coolant enters this pass at a much 
lower temperature than in the HTSS, less reaction takes place, 
generating less heat and so neither. the tubeside temperatures 

nor the coolant temperature become so high as in the HTSS. 
Also, of course, lass reactant is consumed. The behaviour 
in the MTSS in this pass lies between-that of the HTSS and 
the LTSS. 

In the third coolant pass (second from the reactor ent- 
rance) the coolant flow direction is reversed. It flows from 
tube one across the bundle to leave at tube 50. In this 

pass the coolant entrance temperature in the MTSS is greatest, 
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and least in the LTSS. - But as described above on leaving 

this pass to enter the fourth pass it is greatest in the HTSS 

and least in the LTSS. In the HTSS the tubeside gases entering 
this pass are hottest and leanest in reactant near the coolant 

entrance (tube 1). This is also true of the LTSS and the r+7TSS,, 
but for the reasons explained above in the fourth pass, the 

levels of temperature and reactant concentration are greatest 
in HTSS in this pass. In the HTSS the heat removed by the 

coolant in the first half of this pass is mainly the excess 
heat of the tubeside gases, since the temperature difference 
between tube and coolant is very large here. Consequently, 

relatively little reaction takes place in the first half of 
this pass. Also it must be remembered that here the tubeside 

gases are very lean in reactant because of consumption in the 
fourth pass and so any reaction which takes place reduces the 

reactant concentration to a very low value. In the second 
half of this pass in the HTSS the-situation is somewhat diff- 

erent. A hotter coolant is reaching cooler tubes with greater 
reactant concentration than in the first half of the pass. 
This causes more reaction to take place generating more heat. 
This heat cannot be removed so easily since the coolant is be- 

coming hotter and so the gases leaving this half of the pass 
are at a higher temperature than those leaving the first half. 
The reactant concentration is also higher here than in the 
first half of the pass. 

At the coolant entrance to the third pass in the LTSS 
the entering tubeside gases are much cooler and richer in re- 
actant than in the HTSS (tube 1) and they are experiencing on 
lower temperature coolant than in the HTSS. In the first part 
of the pass, the entering gas temperature is high enough to 

cause a fair amount of reaction to take place despite the low 

coolant temperature. Because of the low coolant temperature 
the reaction heat is easily removed by the coolant, which, 
therefore, becomes hotter as it flows across the tube bundle. 
In the last part of the pass the gases-entering the tubes are 
at a lower temperature than in the first part, and the increased 

temperature of the coolant in this part is sufficient to main- 
rain the reaction rate, but still low enough to remove the 

generated heat. Consequently, the gases leaving this coolant 
pass increase in temperature in the direction of coolant flow, 

p Vii.. 
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but contain approximately the same amount of reactant through 

out the pass. Because of the lower tubeside temperatures and 

reaction rates in this pass. in the LTSS the coolant is not 
heated so much as in the HTSS. 

The situation in the 2,: TSS in this pass is very similar 
to that in the HTSS, but because the tubeside temperatures are 
lower, not so much heating of the coolant occurs as in the HTSS. 

At the second coolant pass (third from the reactor ent- 

rance) the coolant entering in the LTSS is at the highest 

temperature and that of the HTSS is lowest. At the coolant 
exit from this pass, however, the MTSS coolant temperature is 
highest and that of the ZTSS is lowest. In this pass the 

coolant flows across the bundle from tube 50 to tube 1. In 
the HTSS, the tubeside gases entering this pass are hottest 

and richest in reactant at the coolant entrance (tube 50) but 

cool and very lean in reactant near the coolant exit (tube 1). 
Thus, in the first part of this pass the coolant heats up by 

removing the excess heat of the gases since it is much cooler 
and so prevents much reaction taking place. less heating of 
the coolant occurs in the second part of this pass in the HTSS 

since the gases here are much cooler than in the first part. 
Also since the tubeside gases are much leaner in reactant near 
the coolant exit from this pass, less reaction takes place 
than in the first part despite the higher coolant temperature. 

In the HTSS in this pass, the coolant is heated mainly by the 

excess heat of the gases rather than by removal of generated 

reaction heat. 

In the LTSS the heat removed by the coolant is mostly 

generated reaction heat since the tubeside gases are fairly 

cool. Although the amount of heat generated is much greater 
than in the HTSS the coolant does not become as hot as in the 

HTSS because of the very large amount of excess heat removed 
in the HTSS. 

In the MTSS the situation is similar to the HTSS in this 

pass. However, since the gases are richer in reactant than in 

the HTSS, more reaction takes place and so the coolant becomes 

hotter than both the HTSS and the ZTSS. 

The coolant enters the fourth pass at the same temperature 
in each steady state. In the LTSS the gases are richer in 
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reactant than the HTSS. and. so more reaction takes place, thereby 

heating the coolant more than in the HTSS. In the HTSS very 
little reaction occurs in the first part of this pass since 
the gases are very lean in reactant. In the second part of 
this pass, however, more reaction takes place but the entering 
tubeside gases are cooler. Again, the behaviour of the D: TSS 
is-similar to that of the HTSS, but being richer in reactant 
than the HTSS, more reaction takes place and so the coolant 
becomes slightly hotter. 

It can be seen that the existence of the multiple states 
is due to the feed-back of heat through the tube bundle by the 

coolant. Clearly, if the coolant is prevented from heating up 
very much by, for example, operating the reactor at'high 
coolant flow rate then the feed-back of heat cannot occur and 
the possibility of multiple states is avoided. The necessary 
coolant flow rate depends on several factors including the 
heat of reaction, the number of tubes in the bundle and the over- 

all heat transfer coefficient between the gases and the cool- 
ant. Too high a coolant flow rate may cause quenching of the 

reaction, but this can be avoided by using a higher coolant in- 

let temperature. Sometimes the situation may arise when cross- 
flow cooling is essential to achieve the correct amount of 
heat transfer, but only low flow rates are possible because of 

pumping costs. In which case cooling of the coolant between 

passes by, for example, using it to raise steam may be nec- 
essary if the possibility of multiple states is to be avoided. 

8.5.5 The Influence of the Model Parameters 

Figures 8.26 and 8.27 show the effect of coolant flow- 

rate, in terms of Gc, on the tubeside temperature and concen- 
tration profiles outside the region of multiple solutions (Note. 

Only the concentration profiles in tube 1 are shown since those 

in tube 50 are similar). The effect is similar to that found 

in the cocurrent case; increasing the coolant flow rate leads 
to lower tubeside temperatures due to the smaller amount of 
heating experienced by the coolant. The countercurrent 
reactor shows greater sensitivity to GC than the cocurrent one 
(c. f. figure 8.11) even at high values. This is because the 

entrance regions of the tubes, which are the parts richest in 

reactant, experience higher coolant temperatures in the counter- 

current case, and so more reaction takes place there. For 
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the data used here, temperature runaway occurs at a much 

lower value of Gc in the countercurrent reactor than in the 

cocurrent. From figure 8.27, it appears that the last 605 

to 70% of the reactor length serves only to preheat the cool- 

ant for the first part of the reactor, most of reactant A 

having been consumed before the last section is reached and 

mainly product B being consumed there. Clearly, this be- 

haviour is undesirable. 

It appears that the countercurrent reactor must be op- 

erated at higher coolant flow rates than the cocurrent. 

The effect of increasing the number of coolant passes 

at a constant total coolant mass flow rate (i. e. constant Gc) 

is shown in figures 8.28 and 8.29. Increasing the number of 

coolant passes from four to six whilst keeping the mass flow 

rate constant has little effect on either the tubeside temp- 

erature profiles, or the coolant outlet temperature. Indeed, 

if graphs similar to figure 8.23, where the coolant inlet 

temperature is plotted against its outlet value, are constructed 
for the case of five and six coolant passes, then in the region 

of multiple solutions the differences between them are ex- 
tremely small. 

For a given coolant flow rate it-is possible to divide 
the coolant inlet and outlet temperatures into two regions. 
Referring to figure 8.23 these two regions are roughly a low 

outlet temperature region from 0.035 to 0.40 where the coolant 
inlet temperature is correspondingly low, and a high outlet 
temperature region from 0.040 onwards. With this division, 
the insensitivity of the reactor to the number of coolant passes 
is more easily examined. 

In the low coolant outlet temperature zone, the coolant 
temperature throughout the tube bundle is very low. Consequently, 

at all points in the reactor the rate of reaction and, there- 
fore, the rate of heat generation is very small. This means 
that the amount of heat to be removed by the coolant is so 
small that changing the number of coolant passes has no effect. 
In the higher coolant outlet temperature zone, the situation is 

somewhat different. Because the coolant outlet temperatures 

are high in the first part of the tube bundle, a large amount 
, of reaction takes place consuming most of the reactant. In 
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this part of the reactor the heat generation within the tubes 
is the dominant process. In the second part of-the reactor, 
near the coolant inlet, very little reaction takes place and 
'heat transfer from the tubes to the coolant is the dominant 
process. This can be for two reasons. It is either that 
so much reactant has been, consumed in the first part of the 
tubes that there is insufficient to cause much reaction in 
the second part, or that the coolant temperatures in this part 
of the reactor (near the inlet) are low enough to quench the 
reaction. Consequently, this part of the reactor is acting 
essentially as a heat exchanger, and since the gases entering 
it are at approximately the same temperature whether the 

number of passes is four, five or six, and the coolant mass 
flow rate is the same in each case, they are cooled by similar 
amounts and the coolant is heated by similar amounts. In 
the first half of the reactor, heat is being generated much 
faster than it can be removed and so the tubeside temperatures 
tend to be similar whatever the number of coolant passes. 
Thus, there is a similar amount of heat available to the cool- 
ant in each case so that although the amount of coolant heating., 
in each pass varies with the length of the tubes, the total 

coolant heating in this part of the reactor is similar in each 
case and it therefore leaves the reactor at very similar 
temperatures. 

Fron this it may be concluded that, at least for the 
data used here, increasing the number of coolant passes beyond 
four gains no specific advantage. 

8.6 Comparison of Reactor Performance with Single 
Tube Predictions 

The usefulness of the simple multitubular models may be 
demonstrated by comparing their predictions with those of a 
single tube model. The single tube model used for this pur- 
pose is that described in chapter 7, with the coolant flowing 

parallel to the tube axis. The two models are not strictly 
comparable because of differences of achievable coolant to 
tube heat transfer coefficient in the crossflow and parallel 
flow case. For this reason two cases of the single tube model 
have been considered. All parameters, including the coolant 
mass flow rate, are the same as used in the nultitubular model 
in each. casewith the exception of the overall tube-coolant 
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heat transfer coefficient. 'k 
In one case the same value as 

that used with the multitubular model has been used, and in 

the other a lower value computed from Chechetkin'sl2l data 

for parallel flow has been used. For the coolant mass flow 

rate used this gives a value'of 9.0 for the wall Nusselt number. 

Figure 8.30 shows the axial profiles of radial mean 
temperature predicted by both models for cocurrent coolant 
flow. Obviously, the predictions of the single tube model 

are quite different from those of the multitubular model. 
Neither of the single tube predictions appear typical of the 

multitubular behaviour. This is to be expected since the 

coolant in the multitubular case is heated by other tubes in 

the bundle, and there is no allowance for this in the single 
tube model. A multitubular reactor designed on the basis of 
the single tube predictions would obviously not function in 

the manner intended. 

This is further emphasised by the countercurrent coolant 

models. The temperature profiles labelled (1) in figure 8.31 

were predicted by the single tube model with countercurrent 
cooling at the same parameter values and coolant inlet temp- 

erature as the profiles labelled (1) in figure 8.26 which were 
obtained with the multitubular model. This suggests that 

an apparently safe design based on the single tube model would, 
in fact, give rise to temperature runaway. The profiles 
labelled (2) in figure 8.31 are comparable with the multi- 
tubular prediction shown in figure 8.22. Again both models 
predict quite different behaviour. 

8.7 Concluding Remarks 

Two very simple models of a multitubular reactor have 
been formulated and used for a preliminary study of the 
performance of these systems. Both consist essentially of 
aheat balance on the coolant within the tube bundle, a mom- 
entum. balance being precluded by several simplifying assumptions. 

The continuum model which, as its-name implies, describes 
the tube bundle as a continuum in a manner analogous to the 

single tube reactor models, has shown that the temperature 

gradients in the coolant perpendicular to the coolant flow are 

relatively small. This model has been compared with another 
in which the tube bundle is divided into a series of connected 
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mixing cells with the coolant temperature assumed uniform, ' 

in the direction perpendicular to flow, in each cell. Both 

models show very good agreement as might be expected from the 

results of the continuum study. However, the advantage of 

the mixing cell model is its much faster computation time. 

It has been shown that provided that the coolant is not heated 

too rapidly as it flows across the bundle, the mixing cell model 

can be further simplified so that it requireo approximately 

one thirtieth of the computation time of the continuum model. 

It seems probable that because of the assumptions em- 

bodied in both models, they tend to predict higher coolant 

temperatures than actually occur, at all but the Highest flow 

rates. This problem might be overcome by the inclusion of 

a more detailed heat and mass balance on the coolant, although 

this would seriously affect the computation time. Despite 

this shortcoming, the mixing cell model appears to be particu- 

larly useful for determining a suitable experimental research 

programme on tube bundles and in indicating the important 

aspects in multitubular reactor design. 

Using the mixing cell model, both cocurrent and counter- 

current reactor configurations have been simulated. It has 

been shown that even at moderate coolant flow rates, tubes 

in different parts of the bundle can'show significantly diff- 

erent behaviour. This means that with highly exothermic 

reactions such as those considered here it is necessary to 

monitor several tubes in the bundle. However, it must be 

emphasised that this does not imply that the information ob- 

tained from the study of single tube reactors is of little use 
in the design of multitubular systems. Since the single tube 

models form the building blocks of a multitubular model, a 

knowledge of their behaviour as individual units is required. 

Pilot plant studies for gaining data, especially about the tubeside 

behaviour of the system, are more conveniently carried out 

using a single tube. Although the non-linear effect of the 

environment, in multitubular reactors, "on individual tubes 

prevents a single tube from being totally representative of 
the whole bundle, the general features of behaviour are the 

same whether the tube is in a bundle or on its own. Moreover, 

in parallel flow reactors radial coolant temperature gtadients 

are small and so a single tube-is representative of the bundle. 
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In countercurrently cooled reactors,. the possibility of 
the occurrence of multiple steady states has been demonstrated, 

together with the existence'of regions of great sensitivity 
to the coolant inlet temperature. Such regions of operation 

may be avoided by using a high enough coolant flow rate or 

some form of inter-pass heat exchange of the coolant. 

For the data used in this study, it appears that a co- 

currently cooled reactor is preferable to countercurrent cooling 

since greater conversions of the reactant at high coolant flow 

rates are obtained in this case. If the coolant must be pre- 
vented from becoming too hot, the cocurrent configuration is 

still more attractive since for a given tubeside temperature 

rise, and reactant conversion, a lower coolant flow rate is 

acceptable, which, therefore, means that pumping costs are 
reduced. However, since for the data given in Table 8.1, at 
most coolant flow rates the second half of the countercurrently 
cooled reactor acts essentially as a coolant preheater, a 
shorter reactor could be used with a separate heat exchanger. 
This would probably give great savings in the capital cost of 
the reactor. 

Further work is necessary to formulate a more detailed 

model of a multitubular reactor taking into account the fluid 
dynamics of the coolant as well as heat and mass transfer 
between adjacent coolant passes. This should, preferably, 
be done in conjunction with experimentation on a suitable 

reactor in order to establish the validity of the model structure 
and to investigate the possibility of obtaining reliable values 
of the parameters. 



CHAPTER 9 

FINAL COMMENTS 

9.1 Summary of the Present Work 

145. 
{ 

Consideration has been given to various aspects of the 
dynamic behaviour of fixed bed reactors supporting highly 

exothermic reactions and to the development of a mathematical 
model suitable for describing the steady state behaviour of 
a multitubular reactor. A method'has been proposed for pre- 
dicting the onset of parametric sensitivity and its applic- 
ation in the design and control of a heterogeneous fixed bed 

reactor has been discussed. This work has clearly identified 
the important features of behaviour of these systems. 

In order to establish the structure of a two dimensional 

model of the reactor, two methods of describing radial heat 
transfer in fixed bed reactors have been compared and the 

significance of the various mechanisms contributing to the 

radial heat flux has been discussed. Under most conditions 
the radial heat flux due to the presence of the catalyst 

pellets is likely to be small compared with that caused by. 

lateral mixing of the gas. Even when it is significant, it 

can be automatically accounted for in a single phase heat 

transfer model, which refers radial heat transport to the gas 

phase, by appropriate estimation of its effect on the pellet 
to gas surface heat transfer coefficient and a method : has been 

proposed for this. Furthermore, the single phase heat trans- 
fer model is a more appropriate formulation since it allows 
the very important reaction rate limiting effects due to mass 
transport resistances within the catalyst pellet to be deter- 

mined as the calculation of the reactor behaviour proceeds. 
This is not possible in the two phase heat transfer model for 

conceptual reasons and so the effectiveness factor must some- 
how be estimated a priori. . 

The single phase heat transfer model has been used in the 

formulation of a two dimensional dynamic model of the hetero- 

geneous fixed bed reactor which has been used to evaluate a 

simpler one dimensional model incorporating the assumption of 
a parabolic radial temperature profile. Although the simpler 
formulation can be made to give' good agreement with the two 
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dimensional model in terms of the radial mean state variables, 
it tends to underestimate the. centre line temperature in the 

reactor. Nevertheless, it is very suitable for a qualitative 
study of the dynamic behaviour and has, therefore, been used 
extensively in this thesis. The computational effort de- 

manded by the two dimensional model precludes its use in a 
comprehensive study of reactor dynamics. It must, however, 

be used in those circumstances where the simpler model is 

unsuitable; for example where the axial rather than the radial 

mean temperature must be accurately predicted and where ser- 
ious distortion of the radial temperature profiles is likely 
to-. occur. 

The effect of the tube wall on the transient response of 
the reactor has been examined and found to be negligible when 
the heat transfer resistance between the wall and the coolant 
is much less than that on the inside of the tube. Since in 

most industrial reactors this is usually the case the tube 

wall does not appear to be a significant dynamic element and, 
therefore, need not be included in a dynamic model of these 

systems. 

When the reactor is controlled by manipulation of the in- 

let conditions some oscillation of these variables is likely 

to occur. For this reason the behaviour of the reactor to- 

wards sinusoidally varying inlet temperature and concentration 
has been examined. The response of the reactor to this type 

of perturbation may be divided into two distinct stages; an 
initial transient period during which the greatest disturbances 

occur and a subsequent quasi-stationary state in which regu- 
lar oscillation of the whole bed is established. As might 
be anticipated, outside of the region of multiple states of 
the catalyst pellets the amplitude and frequency of the forcing 

oscillation determine whether or not the quasi-stationary state 
exhibits temperature runaway. Depending on the initial dir- 

ection of the perturbation, temperature runaway may occur 
during the initial transient period even though the subsequent 
quasi-stationary state is safe. The reasons for this be- 
haviour have been examined in detail and it appears to be due 
to the relative speeds of propagation of temperature and con- 
centration waves within the bed coupled with the effect of 
parametric sensitivity. The thermal capacitance of the 
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catalyst pellets slows down the initial temperature wave so 
that at certain amplitudes and frequencies of the forcing osc- 
illation it may interact constructively with the crests of the 
fast moving induced concentration waves.. This causes high 
temperatures to develop which remain until the initial temp- 

erature wave leaves the bed. 

This behaviour has not been observed when the reactor 
trajectories lie in the non-unique region of solutions. In 

this case once temperature runaway occurs during the initial 
transient period it is sustained in the quasi-stationary state 
unless the amplitude of the forcing oscillation iý sufficient 
tp regain the lower temperature state. 

. In both the unique and non-unique regions of operation, 
a safe quasi-stationary state may occur even though the ampli- 
tude of the inlet perturbation is sufficient to cause temp- 

erature runaway under non-oscillating conditions. Similar 
behaviour has been observed in previous single pellet studies85 
and is determined by the frequency of the oscillation. 

This behaviour of the reactor towards oscillating inlet 

conditions has important implications on the control Strategie: 
which may be adopted. It also serves to illustrate the com- 

plex way in which the various physical and chemical processes 
within the system can interact to give quite unexpected be- 
haviour making an intuitive analysis unreliable. 

The nature and importance of the effect of a flowing 

coolant on the behaviour of a single tube reactor has been 

examined for both cocurrent and countercurrent flow. An 

analysis of the cause of multiple states during countercurrent 
operation has shown that although this phenomenon will probably 

not cause difficulties with single tube reactors it may be a 
problem in multitubular systems. The dynamic studies of. the 

effect of perturbations of the coolant temperature, although 
somewhat limited, have clearly shown that control of the 

reactor by manipulation of this variable may be as difficult 

as with the inlet temperature of the reaction gases. Indeed, 
the response of the reactor to changes in the coolant temp- 

erature shows exactly the same features as that to changes in 
the gas inlet temperature; namely a rise in the hot spot 
temperature before the bed cools when the coolant temperature 
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is reduced and a fall in the hot spot temperature before a 

new peak develops when the coolant temperature is raised. 
This behaviour, which is due to the distributed nature of the 

system, occurs with both cocurrent'and countercurrent cooling 

although in the latter case the temperature profiles within 
the bed do show some initial tendency to move in the same 
direction as the disturbance so that the subsequent response 
is slower and less severe. 

The effect of the cooling environment has been further 

studied by the formulation of a steady state model of a multi- 
tubular reactor. Although the proposed model represents the 

minimum level of detail which may be adopted in the mathematictil 
description of these complex systems, it has nevertheless amply 
demonstrated some of the problems which may arise in their 

operation. In particular, there is considerable interaction 

not only between different tubes in the bundle but also between 
different parts of the same tube due to the transport of heat 
through the bundle by the coolant. In countercurrently cooles: 
crossflow reactors the backward movement of heat in the coolant 
may cause multiple states to develop at low coolant flow rates. 
This undesirable phenomenon is more likely to occur in multi- 
tubular than in single tube systems because of the larger 

amounts of heat which are generated and the limitations which 
may be imposed on the coolant flow rate by pumping costs. 
The problems associated with heat removal in multitubular 
reactors are very great. Too high a coolant flow rate can 
cause too, much cooling and, therefore, poor reactant conversion 
whereas too high a value leads to severe coolant heating and 
very high tubeside temperatures which may also cause bad selec- 
tivity of the desired product. Even at moderate coolant flow 

rates the nature of heat dissipation is such that tubes in diff- 

erent parts of the same bundle may exhibit quite different be- 
haviour so that no single tube is representative of the whole. 
This means that design and control based on only a single tube 

could be inappropriate and the use of even a simple multitubular- 
model for these purposes is essential. 

The stability problem associated with parametric sensitivity 
in heterogeneous reactors has been examined and a method for 

predicting parametric sensitivity has been proposed. This 

method, which is based on the inherent properties of heterogeneous 
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systems rather than arbitrarily defined temperature levels or 
gradients, enables regions of parametric sensitivity to be 

plotted on a simple phase diagram for any set of system para- 
meters. Reactor trajectories may be plotted on the same di- 

agram so that potential operating difficulties due to temp- 

erature runaway are immediately apparent. The use of this 

parametric sensitivity criterion in the design and control of 
heterogeneous reactors has been discussed and it has been showr 
that simple charts may be prepared which show the relationship 
between local and global stability of the reactor. The anal- 
ysis has further emphasised the importance of considering all 
of the essential transport resistances within the catalyst 

pellet. This form of paramotric sensitivity arises due to 

the heterogeneity of the system and is, therefore, quite dis- 
tinct from that observed in quasi-homogeneous systems which is 

only a manifestation of the non-linear dependence of the re- 

action rate on temperature., This makes sensitivity and stability 
criteria derived for quasi-homogeneous systems inappropriate 

for application to heterogeneous reactors. 

9.2 Suggestions for Further Work 

Much remains to be done. Since this work has been con- 

cerned mainly with establishing a qualitative picture of 

reactor behaviour, further investigation in quantitative terms 

is necessary using a more detailed reactor model. In part- 
icular, since for control purposes the centre-line temperature 

in the reactor is the most critical it must be more accurately 

studied. ' The results of a parallel study15 have already 
shown that the computational load of the two dimensional model 

can be greatly reduced by the use of a more efficient method 
of solution and a one dimensional dynamic model which more 

accurately describes the radial temperature profiles is now 

availablel5 Both of these should be used to re-examine the im- 

portant features of reactor behaviour which have been revealed 
in this work. 

It is necessary to establish the relationship between 

amplitude and frequency of the inlet oscillations which pro- 
duce temperature runaway in both the initial transient response 
and the quasi-stationary state. The results of a similar 
study on a single catalyst pellet85 suggest that this will 
require a semi-empirical rather than wholly analytical approach. 



150. 

The effect of both pulsed and noisy inlet disturbances 

on the reactor behaviour must also be examined since these 

may have similar effects to the oscillatory disturbance. 

The study of the effects due to the coolant is by no 
means complete. No attempt has been made to investigate 

either oscillating coolant inlet temperatures or changing cool- 

ant flow rates. For this work a two dimensional model of the 

reactor will be essential because of the distortion of the 

radial temperature profiles which is'likely to occur. It 

may be possible to take advantage of the distributed nature of 
the system and control the reactor by sequential or parallel 
manipulation of both the coolant temperature and one of the 
inlet variables so that the effects of one disturbance are 
used to oppose those of the other. Clearly, there are a wholE 
range of such combinations but it should be possible to est- 
ablish some general rules suitable for use in the design of a 
control system. This study could be combined with further 
investigation of the stability problem. Although the work 
reported here has shown that it is possible to predict the 

change necessary in each of the inlet variables when the other 
is disturbed if-safe operation is to be maintained, no infor- 

mätion has been obtained on how these changes should be made. 
This is particularly important since temperature runaway must 
be avoided in the transient period as well as the steady state. 

The problems investigated with multitubular reactors 

merit much more study. A more detailed model must be form- 

ulated to include more tubes and a momentum balance on the 

coolant. This would then enable the study of the effects of 
the variation of the coolant velocity across- the bundle and 
also facilitate a more judicious. investigation of suitable 
coolant flow rates. The results obtained in the present work 

. 
leave little doubt that the dynamic behaviour of multitubular 
reactors requires study. It seems probable, however, that 
the computational effort required in such an investigation 

might preclude more than a limited study. It may be possible 
to obtain some indication of the dynamic behaviour of these 

systems using a quasi-homogeneous model for the reactor tubes 

since this will greatly reduce the computational burden. 

However, the results obtained would obviously not be applicable 
in a heterogeneöus. situation and should, therefore, be treated 

'with, " caution. 



151. 
.t 

Finally, experimental work with both single tube and 

multitubular reactors is necessary. The theoretical studies 
have shown what information is required and the pitfalls to be 

avoided in obtaining it. Experimentation should be directed 

at checking out some of the assumptions embodied in the models 

as well as obtaining more physical data for specific systems. 
In this way the mathematical models may be more widely applied 

so that the advantages of improved reactor design and control 
through their use may be realised. . 
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APPENDIX 1 

THE CATALYST PELLET i, 11OD ALS 

Al. l The Fully Distributed Catalyst Pellet, Model 

A1.1.1 The Steady State 

For a spherical catalyst pellet in which the n th order 
A-B reaction with Arrhenius kinetics occurs, a mass balance 

on species A gives: 

12DPAd [2; 
A1 _ A0exp(-E/R T )C'Ä =0 (Al. 1) 

S dS dS gpp 

Similarly, a heat balance gives: 

12Kpd2 dTp 
J+ 

(- d H)A0exp(-E/RgTp)CPÄ =0 (A1.2) 
S dS d5 

Equations (A1.1) and (Al. 2) are subject to the boundary 

conditions: 

-A 
dTp at S=0 (A1.3 ) 

dS dS 

DpAdCPA 
_ kgA(CIA _ CPA) 

dS 
at S*= b (A1.4) 

Kp! 
p h(T ---T p 

These equatio ns may be written in dimensionless: form as: 

d2C 
pA 

2 dCPA 
_ ()2 exp(-l/t )Cn = A 0 (Al-5) 

dy2 (1 - y)dy p 

d2t 
2 

2t+ 
ä BoNu e 2exp(-1/t)CPA 

= 0 (Al. 6) 
d y( 1 y) y 

with boundary conditions: 

dcpA 
= 

at 
=0 

dy dy 

dCpA 
= 

dYA 
(CpA - CA) 

Y 

dt 
= Nu(t - T) 

dy 2 

at y=1 (A1.7) 

at y=0 (A1. ß) 

e 
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where: 
CpA = 

CpA CA CZA t= RETp 
T= RgT 

00E 

y1- S/b 

e2_ b2A0 B __ -- AH pA20lig 0 DpA 2bhE 

ShA =_ 
2bkgA Nu = 

gbh 

DPA KP 

Equations (A1.5) and (Ai. 6) may be solved numerically to give 
the temperature and concentration profiles in the pellet. 
The effectiveness factor, , is given by: 

= 
4'xb 2 kgALfA - CpAt 

snbl 
4xb2Aoexp(-E/tRgT)C'n 
3 fA. 

which in dimensionless form becomes: 

1.5S2ACA -CA 
Iy=01 

8 exp(-1/TýCA 
(A1.9) 

A1.1.2 The Unsteady State 

The unsteady state mass balance on the pellet gives: 

2 DpA a 
-- pA -2- 

CpA 
- 

AO 
exp(-l/t)C A 

ý2e ay (1 - Y)ay e 

äýpA (Al. 10) 

Similarly the unsteady state heat balance gives: 

Z)22 Kpý a2t 
_2 

cat +D 
*i A, ng exp(-l/t) ý2 Z b FOY (1 - y) ay cE 

_ 
at (Al. 11) 
role 

with boundary conditions 

aCPA 
= 

at 
_o at y=1, '' >o 

Dy E)y 
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OCp 
_ 

bYgA (C - C) 
CO y DPA p 

aty=0, Z>0 
at bh (t-T) 
Oy Kp 

ttz=0 
at T=0,0> y>1 

CpA = CpA IT 
_0 

Rearranging equations (A1.10) and (A1.11) and using dimension- 
less groups, they become: 

2 2pA 2ä CpA 
- 02exp(-l/t)CýA 

Y{ Y) Y 

= Kccý-CCPA (A1.12) 

2 t12t+ B2du 82exp(-1/t)CPA 
a YC -Y)E)Y 

C 

=K 
at (A1.13 ) 

with the boundary conditions: 

0CpA 
=at0 at y=0, T>0 

YY 

CpA 
=2hA (CpA - CA) 

y 
at y=1,0 

at 
_ 

Hu (t _ T) 
ay 2 

t= t0 

at 2'= 0,0-> y >1 
0pA = CpAO 

where: 

K= b2e 
2 

KT = Pb 
cc Dh 

pA P 

Since Kcc < KT equation (Al. 12) may usually be replaced by 

its steady state form, (Al. 5) ?-+ 
-L 
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A1.2 The Lumped Thermal Resistance Model of the 

Catalyst Pellet 

A1.2.1 The Steady State 

(a) The A -B Reaction Scheme 

In this model the resistance to heat transfer within 
the catalyst pellet is assumed to be negligible and the pellet 
is, therefore, isothermal. Thus, the temperature, t, is 

constant throughout the pellet. The mass balance on the 

pellet is identical with that for the fully distributed model. 
However, since t is not a function of y, equation (Al-5) may 
be solved analytically for first order reactions (n = 1) to 

give the concentration profile in the pellet. For non-first 

order reactions a pseudo first order form of the rate expression 
may be used12and the parameter 8 is then redefined by: 

82 
_ 

b2AOC nA1 
P 

DpA 

Thus equation (A1.5) becomes: 

d22PA 2- 
pA - 

dy (1 - y)dy 
02exp(-1/t)CpA =0 (A1.14) 

with boundary conditions: 

dcpA 
=0 

dy 
aty=1 

aCPA 
= 

ShA (CPA - CA) 
dy 2 

y=0 at 

Solution of equation (A1.14) gives: 

c_0.5ShAsinh(r(1 - y))CA 
pA (r coth(r) + s)(1 - y)sinh(r) 

where: 

(A1.15) 

r= 6exp(-1/2t) s =. 0.5ShA -1 
A heat balance on the isothermal catalyst pellet gives, in 

dimensionless form: 

B0ShA(CA - CpAJ3r`0) -t+T=0 
(A1.16) 

cpAly^6 may be obtained from equation (A1.15) as: 
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0_0.5ShACA (A1.17) 
pAIy-O (r coth r+s 

Using (A1.17) in equation (A1.16) and rearranging gives;: 

t-T+ BShr- 
(sg + r) 

(A1.18) 

where B= BOCA and g= tanh(r). 

Equation (Al. 18), therefore, gives the pellet temperature 
directly and may be solved by any of the normal root finding 
techniques e. g. Newton-Raphson. 

Using. equations (A1.17) and (Al. 18) in the expression 
for the effectiveness factor, (Al. 9) enables ý to be expressed 
in terms of only t, CA and T. Thus: 

1-5(t - T) 
. ý. (A1.19 ) 

BC e 2exp (-1/. J CA 

(b) The A--B -C, A_D Reaction Scheme 

For this complex reaction scheme, used in Chapter 8 

an-additional mass balance within the catalyst pellet is 

required for species B. Also, the reaction rate expressions 

must take account of the A ---N D step. Therefore, assuming 
first order or pseudo-first order reaction rates, the diff- 

erential mass balances on species A and B become: 

d22pA 
-2 

dCpA 
dy (1 - y)dy 

d2OpB; 
-2 

dCn3 
dy (1 -y) dy 

- (kl + k3)CPA =0 

+9 k1 CpA -S k2 CpB 

subject to the boundary conditions: 

dCpA 
= 

dCpB 0 
dy dy 

dCpA 
= 

ShA (C- CA) 
dy 2 

dCpB= ShB (CpB - CB) 
dy 2 

y=l at 

yýo at 

(A1.20) 

=0 (A1.21) 

where: 
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ýci = 8iexp(-EVIEIt 3=1,2,3 

ShA = 
2bkgA ShB = 

2bkgB 
DpA DpB 

Subscripts A and B refer to species A and B respectively. 
Subscript 1 refers to the reaction step A B. 

Subscript 2 refers to the reaction step B----ºC. 

Subscript 3 refers to the reaction step AºD. 

Since the pellet is assumed isothermal, equations (Al-20) 

and (Al. 21) may be solved analytically. The solution gives 
the two concentration profiles within the pellet in terms 

of the unknown temperature t, which must be obtained by 

choosing a value to satisfy the heat balance on the pellet: 

ShAýCA - CpAsý(kl(1 + H2) + k, H3) - ShB(CpBs - CB)H2 

CA(kl + k3) 6 CA 

-t+T4 

C=0.5Sh 
CA (A1.23) 

As ý p As 
-1 +/k l+ k3 coth(1k1 + 

3) 

where CpAs = CpA' 
y=0 and CpBs = CpBI y=0' 

From the analytic solution cf equations (A1.20) and 
(Al. 21) CpAs and CpBs may be obtained as: 

ýpBs 
-= 

P2 p1 

where 

(A1.22) 

(Äl. 24) 

i 
1 

t 

i 

P 

Pl =* 
kl2pA 

s. 
k1+k3-Sk2 

p 0.5ShBCB + P1 O. 5ShB 1) + ký +k 
coth k1 +k 33 

(0.5Shß - 1) +6 c! oth 22 

when sk2 kl + k3 

and CpBs = Y4 ' P3 
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and p3 k1CpAs 

2k +k tanh(1*+kam) 1313. 

P_0. ShBCý + Pý 0.5Sh�D V kl + k, tanh kl + k3 J 
4 

(0.5ShB - 1) + kl + k3 coth( kl + k3 ) 

when S k2 = kl + k3 

These expressions for CpAs and 0pBs may be substituted 
into equation (A1.22) which can then be solved for t by any 
of the usual root-finding techniques as indicated above. 

A1.2.2 The Unsteady State 

As in the fully distributed dynamic model of the 

catalyst pellet, the concentration profiles may be assumed 
to be at a series of pseudo-steady states12 since the thermal 

capacitance of the catalyst pellet is much greater than the 

mass capacitance. Therefore, for the simple A--*B reaction 
scheme, the instantaneous concentration profile of species 
A-is given by equation (Al. 15)" An unsteady state heat 

.. balance on the isothermal catalyst pellet gives: 

2 Kl cIt _T-t+ BOShA(CA - CPAJ 
y_C) 

(Al. 25) 
3 Nu d2' 

where CpA1y_C is given by equation (A1.17).. 

Equation (A1.25) may be conveniently solved using the 

Runge-Kutta-: 'yerson algorithm. 

1 
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APPENDIX 2 

THE ONE DIMENSIONAL REACTOR MODEL 

A2.1 The Steady State Model 

For the A-ºB reaction scheme, differential heat and 

mass balances on the reactor give in dimensionless form: 

-A + G2 te exp(-1/T)CA =0 (A2.1) 
dz 

dT G (t - T) + 
2Nuw (T - TC) =o (A2.2) 

dz 4 G3 

with the boundary conditions: 

T=T Iz=O' OA = OA (z=0 

where: 

G1-e LDPA G_ R2u c, 
2 blue 3K 

fL 

G_ 3(1 -e hL 
4b Quecp 

Nu* - 
4Nuw ITU 

w= 
RU 

W (4 + Nuw) Kfe 

The axial coordinate in the reactor, z, is dimensionless 

so that z=0 at the inlet and z=1 at the outlet. 

It should be noted that the state variables occurring 
in equations (A2.1) and. (A2.2) are all radial mean values. 
The reaction rate expressions should also be radial mean 
values, however this causes problems of evaluation since the 

radial mean reaction rate is less than the rate at the radial 
mean conditions. This is discussed in detail in chapter 5. 

The radial temperature profile which is assumed to be 

parabolic is given by: 

T- Tm + 0.25Nu*(Tm - ic) - 0.5Nu*(Tm - TC)r2 (A2.3) 
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where Tm is the radial mean temperature obtained from 

equation (A2.2), and r is the dimensionless radial coordinate 
in the reactor such that r=0 at the tube centre and r=1 
at the wall. 

The overall effective Nusselt number, Nuw, is defined by: 

Nu: (Tm - Tc) = NuW(TIr 
=1 

Tc) (A2.4) 

Using this definition and assuming a parabolic temperature 

profile it may be shown that: 

N= 4NuW 
(4 + Nuw) 

The pellet temperature t and the effectiveness factor, 

are obtained from the catalyst pellet model described in 
Appendix 1. 

In the case of the complex reaction scheme: 
12 

A ----v' B -a-C 

D 

the mass balance equation (A2.1) must be altered to take 

account of the additional reaction rates and a mass balance on 

species B must be included. The heat balance equation 

remains unchanged. The mass balances are: 

2n dCA 
+ G2 ( 61exp(-1/T)CA1 

dz 

+e 3exp(-E3/ElT)CA3 =0 (A2.5) 

acB 
_ G2 hC elexp(_1/T)CÄ1 

dz G 

2 n3 
+ e3exp(-E3/E1T)CA =0 (A2.6) 

with boundary conditions: 

CA = CA I 
z=O and CB = CB 

I Z=0' 
where: 

1.5ShA(CA - CpAl 
y=O 

)_ 

G2 n1 2 n2 
( 61CA +0 3CA 

)exp(-1/T) 
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ShB(CpBIY=O CB) 

Sh, &ýCA CAly=O) 

Note that the dimensionless temperatures t, T and Tc 

are expressed - in terms of the activation energy of reaction 1. 
CpAly=O,. CpBly_O and the pellet temperature t are obtained 
from the catalyst pellet model for the complex reaction scheme 
which is given in Appendix 1. For the simple reaction scheme 
equations (A2.1) and (2.2) must be solved simultaneously with 
the catalyst pellet equations. Similarly, for the complex 
reaction 

. scheme' equations (A2.2), (A2.5) and (A2.6) must be 

solved simultaneously. The simplest method of solution is 
by finite. differences and this is outlined below. 

In" the case of non-first order reactions (n / 1) 8, @l, 

and 0 may be redefined to give a local pseudo first order 3 

. 
form12 The general form of equations (A2.1), (A2.2), (A2.5) 

and (A2.6)'then becomes: 

df+R, f+ R'' =0 
dz 

(A2.7) 

where f, R' and R'' are given in the following table: 

Equation f R' R '' 

A2.1 CA G2'ý 02exp(-1/T) 0 

A2.2 T G4 + 2Nuw/G3 - Got - 2NuWTo/G3 

A2.3 CA G2 (02 + 02)exp(-1/T) 0 

A2.4 
. 

CB: 0 - GA 4j (el + 63)exp(-1)CA 

In finite difference form equation (A2.7) becomes: 

f- xf +, - 
(1 - Q)xR'. xf + (1 - Q)xR' ' 

+ QR'f + QR'' -0 
(A2.8) 

where Q is a constant such that 0<Q<1 and the prefix 
'x' denotes the value of a variable at its previous axial 

position, i. e. it is known. j is the step length in the 

finite difference grid. 
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In equation (A2.7) the unknowns are f, r' and R': 
Solution is accomplished by working from the reactor inlet 
to the outlet as follows: 

(1) Assume values for f (i. e. CA T for the simple 

reaction scheme, CA, CB and T for the complex 
scheme) at the first or next axial position 

where they are unknown. 

(2) Use these values to solve the appropriate 

catalyst pellet model to obtain. t and 
(and also W for the complex reaction scheme) 

and hence evaluate R' and R. " 

{3) Calculate new values of f using equation 
(A2.8). 

(4) Test against the assumed values (from step 
(1)) for satisfactory convergence. If 

-unsatisfactory repear from step (2). 

(5) If satisfactory and z<1 repear from 

step (1). 

The initial assumed values for f used at step (1) may 
be obtained by extrapolation from the previous axial position. 
(Note: the same method of solution may be applied to equations 
(7.2) and (7.3)). 

A2.2 The Unsteady State Model 

For the A0B reaction scheme the unsteady state fluid 
field equations for the reactor are in dimensionless form: 

O2A 
+- G 82exp(-1/T)CÄ + G5 a CA 

=0 (A2.9) 
Oz20 

G1 
OT 

+ 
2Nuti(T 

- Tc) - G4(t - T) + 
aT 

0 (A2.10) 
z G3 G3 

with the initial conditions: 

CA = CA(2') T= T(V) at z=0, 'd>0 

CA = CA(z) ,T= T(z) at 't= 0, z >0 

Equations (A2.9) and A2.10) are coupled with the dynamic 

model of the catalyst pellet, equation (Al. 2). Thornton12 
has shown that the transient response of. the reactor predicted 
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by these equations is slow compared with the residence time 

-.,. so that the fluid equations may be solved as if they were at 

a pseudo-steady state. Thus, in equations (A2.9) and (A2.10) 

G5 = G6 ý0 and the steady state equations ((A2.1 and (A2.2)) 

. -result. - Solution may then be accomplished in a similar 

manner to the steady state equations (section A2.1). The 

essential differences are the when the bed exit (z = 1) is 

reached the time is updated and the procedure must be repeated 
from step (1). Also, in step (2) the dynamic model of the 

catalyst pellet must be solved (equation A1.25) to obtain t 

at the current time. This may be accomplished by the Runge- 
Kulta-Merson algorithm in which case the values of C and T 

must be supplied over the time interval. Since the time 

interval is small, it may be assumed that these vary linearly 

over the interval. 

-ý_ ; .ý. 
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APPENDIX 3 

THE FINITE DIFFERENCE FORM OF THE 'P JO DTMENSION_A. L T AC1 1\IO 7i3I, S 

A3.1 The Steady State 

The heat and mass balance equations for the two dimension- 

al steady state reactor models described in Chapters 3 and 5 

have the general form: 

r2f 
+1 

Pf 
+ K'af + R'f + R'' =0 (A3.1) 

art r ar E) z 

subject to the boundary conditions: 

of 
=0 at r=0, z>0 (A3.2) 

ar 

+ Kf + KKo =0 at r=1, z>0 (A3.3) 
Or 

and the initial condition: 

f= f(r) at z=0for0<r<1. 

Equation (A3.1), together with its boundary conditions, may be 

solved by a finite difference method. In the method described 

here the radial derivatives are replaced by their central 

difference approximations and the axial derivatives by a 

backward difference approximation. Thus the terms in equation 
(A3.1) may be written as follows: 

1 (Q lf i+l" - 2i' + fi-1 
c7-r2 h 

+ (1 - Q)(xfi+l - 2xfi + xfi-1)) 

1 crof = 
1. (Q(f. - fi_ )+ (1 - Q)(xfi. 

+l ý. - xf. 
--1) rar 2hr l+l 1 

" K'ýf = 
K' (fi - xfi) 

c ') zk 

R'f = QRifi + (1 - Q)xRixfi 
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X 
R" - QR + (1 - Q)Ri' 

The prefix 'x' indicates the value of a variable at 
the previous axial positioii. This is a known value since 
the equations are initial valued in the axial direction. 
Q is a constant such that 0< Q< 1. When Q=0.5 the equ- 
ations reduce to the Crank-Nicolson form. The parameters 
h and k are the step lengths in the radial and axial direct- 
ions respectively. 

Replacing the terms in equation (A3.1) by the expression: 
given above, and rearranging, gives: 

miff+l + piff + nifi-1 - ai (A3.4) 

where m. =g+Q 1 h2 2 hr 

t 
Pi - -ý + -' + QRi 

hk 

n-R-Q i h2 2hr 

ai =- xfi+l 
1 

h2 
+ 

(1 - 
h 2hr 

- xfi -21 -2 - 
l+ (1 - Q)xR! 

hk 

-Q) _ 
1-9 

- xfi-1 
h2 2hr 

- QR" '- (1 - Q)xR" 
11 

These expressions hold-for 1i< (N ---1) where N and 
0 are the numbers. of the finite difference nodes at the tube 

wall and centre respectively. 

At the tube centre 
Of 

=0 so 
1 of is. indeterminate. 

ör r Dr 
Applying 1'Hopital's rule, equation (A3.1) becomes 

2 
20 2+ K' af+ RI f+ R'' =0 

" ýr E)z 
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and since f_1 = fl, xf_1 = xfl, etc, the equation in finite 
difference form becomes: 

mýfl. + pOfp = a0 (A3.5 ) 

where mo 
h 

42 
p0 =-+-+ QRÖ 

hk 

a=- xf 
41 -- xf0 4(1- -K 01 h2 h2 k 

+ (1 - Q)xRO - QR Ö- (1 - Q)xR0 

At the wall (r=1, finite difference node N) the boundary 

condition (A3.3) may be expressed in finite difference form as: 

1 Q(fT - fhT_ )+ (1 - Q)(xfi1+1 - xfN-1) 
2h R+l 1 

+K 
[QfN 

+ (1 -Q )xfN + KK° =0 

This equation may be combined with equation (A3.4) 

expressed at point N to eliminate the hypothetical terms 

fN+1 and x-N+l giving: 

pNfN + nNf N-1 = aN (A3.6) 

where pik- +K+ QR*1 - 2Kh(ý + 
4-) 

hkh 2h 

2 
nrý _ 

-21-Q) _K' aN - xf N2+ 
(1 - Q) xRTf 

hk 

- 2Kh (- '+ 51-=-Q ) 
h 2h 

- xfN-1 2l Q) 
- QR'' 

h2 
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- (1 - Q)xRk' + h'Ko(h + 1) 

Equations (A3.4), (A3.5) and (A3.6) represent a system 
of simultaneous algebraic equations of the form: 

Af =a 

where the coefficient matrix, A, is given by: 

A= 

p0 m 
ý0 

N 

n1 pi . m1 
N\ 

IN 
%N` 

`nN `Pil 

(A3.7) 

-Since A is tridiagonal, the equations (A3.7) may be 

solved by computationally efficient algorithm credited to 
Thomas and described by Lapidus127. 

The non-linear terms R' and R'' which are involved in 
the elements of A and a are unknown and an iterative 

procedure must-be used. This is accomplished as follows: 

If the solution for f is assumed, R' and R'' may be calculated 

and after using these values to calculate A and aa new 
solution for f can be obtained. R' and R'' are again 
evaluated using the new f, and so on until the solution 
becomes constant. 

A3.2 The Unsteady State 

The general form of equations (5.1) and (5.2) is: 

2 f+1 Of 
+ K'af + R'f + R'' = K"Of (A3.8) 

art r Or ýz ýZ 

subject to boundary conditions: 

0f 
at r= . 

0, z> 0, ''>0 
Dr 
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ýf 
+ Kf + KK =0 at r=1, z>0, '2> 0 

r 

and the initial condition: 

f= f(r, 'V) atz=0, O rý1, 'ý0 

The derivatives in equation (A3.8) may be replaced by 
their finite difference approximations. Thus the terms in 
equation (A3.8) become: 

ä2f 
+1af _ ßr2 r Dr 

+ (f 
i+l - 2fi + fl-1) +. (fi+1 - fi-1) 

h2 
(xfi+l - 2xf1 + xfi_l) 

ti 

(1 ý 
+- 

2hr. 
(xfi+1 - xfi-1) 

+1 
h2 

(ofi+l - 2ofi + ofi_1) 

ýE 

+1- (of 
i+l - ofi-1 ) 

2hr 

+ 
S1 - Rh21 -R )(oxfi+l 

- 2oxfi + oxfi_1) 

+- 
Q) (1--- (oxfi+l - oxfi-1) 

2hr 

K'Q* (fi - xfi) + (ofi - oxf1) 
Dkk 

R'f = QQ*Rifi + Q(1 - Q*)oRiofi + Q*(1 - Q)xRixfi 

+ (1 - Q)(1 - Q*)oxHaxi 

R'' = QQ. Ri' + Q(l- -Q )oRj' +Q (1 - Q)xRj' 

+ (1 - Q? C1. - Q*}oxl 
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K"ýf =K (fi - ofi) "+ 
K,., (1 - Q)(xfi 

- oxf 
az ji 

where: the prefix 'x' indicates the value of, a.. variable 
at the previous axial position. 

the prefix 'o' indicates the value of a variable 

at the previous time position. 

the prefix 'ox' indicates the value of a variable 

at the time and axial positions. 

j is -the step size in the time (2') 
-direction 

k is the step size in the axial (z) direction 

h is the step size in the radial (r) direction 

Q and Q* are the weighting factors such that 
0< Q <1t 0<Ql1. 

Replacing the terms in equation (A3.8) by the express- 
ions given above, and rearranging, gives: 

miff+l + piff + nif i-1 = ai 

where: m. _+ 1 h2 2hr 

_ 
KQ 

- 
K''Q 

+ QQ*R' --Q Pi 
kjih 

n=- i h2 2hr 

(A3.9) 

ai =- xfi+l(S1ý2 
Q*+ ) 

h 2hr 

- xfi( - 
KQ*_ K "(l ---g) + Q*(1 - Q)xR! 

kj 

_21- z h 

- xfi-1{ {1 - )Q 
h 2hr 
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+ 
Qll- 

h 2hr 

- "fKK' +Q(1-Q )o-. R! 2Q(1-- 
2Q h 

+ 
K'(1 - Q#)) 

k 

1-1- 
- ofi-1 . h2 2hr 

- oxf ((l Q)21 - Q*) + 
(1 - Q)(_ýýQ )) 

1+l h 2hr 

- oxfi( - 
E4 

- Q*) + 
ký 

+ (1 - ß)(1 - Q*)oxRI 

_2(1-Q, 
)(1-Q*)) 

h2 

- oxf. ((1 - R)(1 - Q*) 
_ 

(1 - Q)(1 - Qmm)) 

i-1 h2 2hr 

" 

- QQ*Ri' -Q (l - Q*) ORiif 

- (1 - Q)Q*xRi' - (1 - Q)(1 - Q*)oxR'i 

As in the steady state formulation described in section 

A3.1 above, these expressions hold for l< i< (N - 1) where 0 

and N are the numbers of the finite difference nodes at the 

tube centre and tube wall respectively. - 

- Since 1 Of is indeterminate at r=0 (the tube centre) 

l'Hopital'sr 0r 
rule must be applied to equation (A3.8) 

giving: 

2 x22 
+ K' ýf+ R' f+ R'' 

är äz 

Applying the finite difference-approximations to this 

equation and noting that f_1 = f+l, xf_1 = +l' of. 
-l = of4-l, 
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etc. gives: 

IIipf Y+ p0f 0= a0 
(A3.10 ) 

where: 
4 

m0 = 
h2 

p=-+KIQ QQ*Rý - 
K, , 

h2 ka 

a- xf (4 1- *) 
_ xfo( -41 -2 )Q 

0 h2 h 

* (1 - Q) 
-+ Q*(1 - Q)xR6 

K 
- 

'f ) 
ki 

-. of l(4 
1)- of0( h2 h2 

+ 
K' 1- 

--Z + Q(1 - Q*)ORÖ + 
K'' Q) 

ki 

- oxf X4(1 - Q)(1 - Q*)) 
1h2 

- oxf ( -4(1-Q)(1-Q*) 0 hZ k 

"+ Q*)oxR V+ Ktý(1 - Q)) 

J 

- QQ *R0- Q(1 - Q*)oR0 - Q*(1 - Q)xRb' ý ý" 

-- (1 - Q) (1 - )oxRb' 

Expressing the boundary condition at the tube wall (r = 1) 

in finite difference form and using it together with equation 

(A3.9) to eliminate the terms at the hypothetical node (N + 1) 

leads to the following expression for the N th node: 

pNf N+N -1 
ý (A3.11) 
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where PTZ 
KK IQ-Kr+ QQ*Rj. -Q 

ký 

- 2hK(2+) 
2h 

njý Lhýý4 

aN =- xfN(- - 
K'' (1 - Q) 

+ Q* (i - Q)xRk 
k j. 

_ 
2(l -- 2hK( 1- + 

1- p)) 

h2 h2 2h 

K' 
+1- oR,! - 

2Q(l Q* ) 
ofN ( Q( Q) 

+ 
K' (1 -Q)- 2hK (Q1=2Q ) 

kh 

+1=)) ) 
2h 

- ofld-l(2Q(1 
h2 

- Q*)) 
xfid-1(2(1- 

h2 

*) 

oxfN( - 
KI (l - Q*) 

+ 
K" (1 --Q) 

kj 

2 +Q )oxRN-2(1-Q) 
ý1 -Q An 

h 

- 2hK((1 - Q)(i - Q*) 
+ 

(1 - Q)(1 - Q*))) 

h2 2h 

- oxfll-1(? 
Q) (1 - 

h 

- Q*) oR ' "- t1- Q) Q*xRN' 
- QQ*RN" -Qu 

oxR' +, QhR +l) 

K0K0( 
?+ 1) 
h 
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Equations (A3.9), (A3.10) and (A3.. 11) again represent 

a system of simultaneous algebraic equations of the form: 

Af=a 

The coefficient matrix A is tridiagonal and so the 

equations may be solved using the Thomasl2? method in the 

same way as the steady state equations described in section 
A3.1. 

In the pseudo-steady state two dimensional model the 

reactor equations have the same form as the steady state equ- 
ations. The essential difference is, however, that they are 
coupled with the dynamic model of the catalyst pellet. 
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APPENDIX 4 

DETERMINATION OF THE RUNAWAY LIMIT FOR A COMPLEX REACTION 

SCHEME . 

In chapter 4a method was developed 

the limit of temperature runaway for the 

action scheme. It was shown that for a 
limit is represented by a single line on 
diagram. For a more complex reaction s, 

represented by 

for determining 

simple A ----o-B re- 

given reaction this 

the T vs B phase 

theme such as that 

A- B -- -C 

D 

as used in chapter 8, a similar analysis may be applied but 

the heat balance on the catalyst pell et is mo re complicated. 

As shown in Appendi x 1, the 
. 
heat balance for the complex 

reaction scheme is given by equa tion (A1.22). This may be 

written more simply as: 

t -T= B(P(1 - fl)f2 - Q(f3 - 
§B)) (A4.1) 

where: P= ShA Q _ 
ShBii2 

s 
fl = 

2pAs 
CA 

f2 _. 
k1 

* (1 + H2) +. k3 
k1 + k3 k1 + k3 

f3 = 
2pBs 

CA 

For a*given system, the only variable in the functions 

fl and f2 is the pellet temperature t. 
`In 

the function f,, 

however, there are two variables: t and uB. 
A 

The effect of the ratio of 
CR 

at constant B on the T vs. 
t curves is shown in figure A4. l. A 

Differentiating equation (A4.1) with respect to t twice 

gives: 



T 
T 

Figure M. 1 Schematic diagram showing the effect of the 

ratio CA on the T vs. t curves at a 
constant value of B; 

Reactor trajectory 

\ Runaway line for CB/CA a 0.0 

T 
T 

Rion = 
Unique 

Region 
CB/C A=0 

- Unique 
Region 

CB/CA 

is 0.5 Reactor inlet 
CB 0 0.0 

GýC A-0.5 FFUnaway line 
for CB/CA . 0.5 

B ý--- > 
Figure A4.2 Schematic diagram showing how a reactor trajec- 

tort' may be examined for tc eraturo runaway 
with a complex reaction schare. 

t--> 
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dt-T B(P(l - Tl)df2 - Pf2dfl - 
Q3) (A4.2) 

dt dt dt dt -. 

d2ýt -, ý 
T) 

_ B(P(1 -f )d 2Pdfldf2 
dt2 1 dt 

dt dt 

- Pf2 d221 
- Qä--23) (A4.3) 

dt dt 

It can be seen that for a given system, d (t - T) and 
d2(t - T) are functions of t and CB. Thus dt for 

dt2 CA 

a particular value of CB, ti, the pellet temperature at the 

point of inflexion A of the (t - T) vs t curve is 

obtained by setting the right hand side of equation. (A4.3) 

equal to zero. The pellet temperature at which the tangent 

at the point of inflexion of the (t - T) vs t curve meets 
the line (t - T) =0 is given by: 

is = ti -dt-T 
It=ti (A4.4) 

dt 
rP lt=t 

i 

Thus, putting t= ti in equations (A4.1) and (A4.2)-enables 

is to be evaluated from equation (A4.4). It can be seen 
that is is a function of CB and, therefore, there is a diff- 

erent value of is for CA 
each value of CB. For a given 

system, at a particular value of CB the CA 
runaway line 

on the T vs B phase diagram may A be obtained from equation 
(A4.1) by putting t= ts. Thus a different runaway line is 

determined for each value'of CB The bounds on the region 

of non-unique solutions of 
CA the catalyst pellet may 

also be determined at various values of CB 
GA 

At each point in the reactor it is, -therefore, necessary 
to use the curves at the appropriate CB ratio in order to det- 

ermine whether the temperature CA 
runaway region has 

been entered. This is illustrated in figure A4.2. Although 

at the reactor inlet where CB = 0, the trajectory is below 

the appropriate runaway 
GA line, further down the reactor 

where CB = 0.5 this point on the trajectory is above the approp- 

riate 
CA 

runaway line and so temperature runaway occurs. It 

can be seen that an examination of the reactor stability in 
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this way may be further complicated by the movement of the non- 

unique region towards the.. left hand side of the phase diagram 

as the CB ratio increases. ',. 
CA 

Clearly, the procedure. is more laborious than that used 

for the simple reaction scheme when carried out graphically 

in this manner. However, once the algebraic expressions for 

ti and is as functions of CB have been determined, examination 

of each point on the CA 
reactor trajectory as it is 

computed is a simple computational matter. 



177. 

APPENDIX 5 

TEMPERATURE RUNAWAY CRITERIA FOR QUASI-HOTOGEI SOUS REACTORS 

In a recent paper by Van Welsenaere and Froment66 some 

criteria for temperature runaway in quasi-homogeneous reactors 

are given. One of these criteria appears to have been de- 

rived purely by observation of the-properties of computed re- 

actor trajectories on the phase diagram. However, it may 
be shown that the system equations can be used to demonstrate 

why this criterion is a fundamental property of quasi-homog- 

eneous reactors. 

Using a one dimensional reactor model, the trajectories 

of a quasi-homogeneous system on the T vs B phase diagram are 

given by: 

dT 
__ 

2G4 
+ 

2NuW T2- Te) 

dB 3G2 G2G3 6 exp(- i)B (A5.1) 

Equation (A5.1) may be written more simply as: 

dT P+1 To) 
)B (A5.2) dB exp(- 

T 

The locus of-the maxima of these trajectories, which Van 

Welsenaere and rroment68 call "maxima. curves" is given by 

setting the derivative in equation (A5.2) equal to zero. Thus, 

the maxima curve for a particular coolant temperature, Tc, 

is given by: 

Pexp(- T)Bm 
- Q(Tm -'TC) =0 (A5.3) 

where Bm and Tm are the thermal load factor and temperature 

respectively at the maximum on the reactor trajectory. As 

shown in chapter 4 for the heterogeneous reactor, a family of 

maxima curves fora particular wall heat transfer coefficient 

at various values of T. may be plotted on the T vs B phase 
diagram. The individual maxima curves also have a maximum, 

thus there is a value of Bm at which there is only one corres- 

ponding value of Tm for any Tc. At values of Bm less than 

this maximum there are two corresponding values of Tm for each 

Tc. Van Welsenaere and Froment 68 
observed that for quasi- 

homogeneous systems, reactor trajectories which would have 
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maxima at values of Tm greater than that at the maximum value 

of Bm would be subject to parametric sensitivity and temper- 

ature-runaway. They then derived the equation for the max- 
imum of the maxima curves by setting the derivative dB from 

----m 
equation (A5.3) equal to zero and called the dTm 

-trajectory through this point the critical one. Thus, their 

first runaway criterion was given as: "The trajectory going 

through the maximum of the maxima curve-is considered as crit- 

ical and, therefore, as locus of the critical inlet conditions 

for B and T corresponding to a given coolant temperature. " 

For quasi-homogeneous systems this is, indeed, the case. 
However, it is instructive to examine equation (A5.3) since the 

reason for the validity of the criterion then becomes apparent. 

Equation (A5.3) may be rearranged as: 

" Pexp(- 2)Bm 
= Q(T - To) 

or more simply as: 

fl(Bm9Tm) f2(Tm, Tc) (A5.4) 

The function fl is an exponential heat generation functioL 

which, it should . be noted, will not generally apply in hetero- 

geneous systems at temperature. runaway because the reaction 

rate tends to become limited by internal mass transfer in the 

catalyst pellet; f2 is a linear heat removal function. Thus, 

equation (A5.4) expresses the well known fact that at the maxi- 

mum of the reactor trajectory the rate of heat removal is equal 

to the rate of heat generation. f1 and f2 may be plotted 

. 
against Tm' for. a "'$iven value of T. at various values of Bm. 

The points at which the two functions intersect then give the 

points on the maxima curve for that value of Bm At the maxi- 

mum value of. Bm equation (A5.4) is only satisfied once, 

whereas for. values of Bm less than this the two functions int- 

ersect at least twice (in fact the shape of f2 is sigmoidal 
but the third point of intersection is outside the practical 

range of.. Bm and Tm). The value of Bm where the two points 
of intersection are coincident corresponds to the maximum of 
the maxima curve. If the values of Bm and Tm at this point 

1- then for a given value of Tc are BMM and".. - 
and Bm < BMM equation (A5.4) is satisfied at two points, once 
for -Tm < Tmm -and once for T. > TM. According to the runaway 



T 
f1I f2 

Figure A5.1 Schmatic diagr= of the heat generation (fl) 

and heat removal (f2) functions plotted against 
Ti. 

Tmm 
Tm-ý 
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criterion, at the points for which Tm > Tmm then temperature 

runaway (or parametric sensitivity) occurs, whereas for Tm < 
TmM the trajectories are "safe. "Reference to figure A5.1, 

where fl and f2 are plotted against Tm at a given Tc and Bm 
(< B=) shows why this is so. - 

The point X in figure A5.1, which corresponds to points 

on a maxima curve for Tm < T. (i. e. a "safe" maximum), may be 

described as "stable" since increasing Tm from this point 
leads to f2 > fl (i. e. heat removal becomes greater than heat 

generation). The point Y, however, which corresponds to a 
runaway maximum (i. e. Tm > T.. ) may be described as "metastable" 
because increasing Tm from Y causes fi > f2 (i. e. heat gener- 
ation becomes greater than heat removal - and therefore, temp- 

erature runaway occurs) and decreasing Tm from Y leads to f2 > 
fl(i. e. heat generation becomes less than heat removal). This, 

clearly, demonstrates why trajectories with Tm > Tmm are 
"unsafe" for the quasi-homogeneous system. It also gives some 
insight into how the hot spot of a particular trajectory will 
behave when the inlet conditions of the reactor are subject to 

perturbations. 

As is shown in chapter-4, the runaway criterion for 

quasi-homogeneous systems cannot be applied to the heterogeneous 

case since parametric sensitivity arises for different reasons. 

.q 
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APPENDIX 6 

APPLICATION OF THE METHOD OF LIVES IN THE SOLUTION OF THE 

UNSTEADY STATE COOLANT EQUATIONS FOR THE SINGLE TUBE REACTOR 

MODELS 

Equations (7.4) and (7.5) both have the general form: 

2f 
+ R'f + R" =. K'Zýf 

az 8'e 

(A6.1) 

The application of the method of lines; to this equation 
involves replacing one of the derivatives by a finite diff- 

erence approximation leaving an ordinary differential equation 

which may be solved by any of the standard integration techn--_ 
iques. Since equations (7.4) and (7.5) must be solved sim- 
ultaneously with the unsteady state catalyst pellet equation 
(equation A1.25), it is most convenient to replace the axial 
derivative by the finite difference approximation so that the 

remaining ordinary differential equation describing the change 
of coolant temperature with time may be solved using the same 
subroutine as used for equation (Al. 25).. 

In backward difference form, the axial derivative in 

equation (A6.1) may be written as: 

ýz 
= 

kiff 
- Xfi) (A6.2) 

where: k is the step length in the axial direction and prefix 
'x' indicates the value of the variable at the previous axial 
position. 

Therefore, substituting for Of from equation (A6.2) 

in equation (A6.1) and rearrangingaz gives: 

df 1 (t. (1 + R! )_ xh + R'. ' ) TT 
K' 1k1k1 

(A6.3) 

The ordinary differential equation represented by equation 
(A6.3) may be conveniently solved using the Runge-Kutta-PNlierson 

algorithm. For this, it is necessary to be able to specify 
xf, R' and R" at various points during the integration step 
other than the initial and final points. This may be done by 
assuming that they vary linearly over the small time interval 
as in the solution of the dynamic model of the catalyst pellet. 
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APPENDIX ? 

THE FINITE DIFFERENCE APPROXIMATION OP THE COOLANT EQUATION 

IN THE CONTINUUM MODEL OF THE MULTITUBULAR REACTOR 

Equation (8.2) may be written in general form as: 

2 f+ KM + R'f + R'' =0 (A7.1) 

a aX 
with the boundary conditions: 

f0. atx=0,0<z<1 

of 
_0 at z=o, o<x<1 

Dz lz=i 

In finite difference form, the terms in equation (A7«1) 

become: 

2 
- 

2iQ(f- 2f + fi-1) + ý1 - Q) (xf 
ßz2 i+1 i+l - 2xfi 

+ xfi-1) ) 

f=K(fi- xfi ) 
öx k 

R" f= QRi fi + (1 -Q )xR? xfi 

Rý _ QRi' + (1 - Q)xRi' 

where: 
the prefix 'x' indicates the value of a variable 

at the previous axial (z) position 

h is the step length in the axial direction 

k is the step length across the tube bundle (x 

direction) 

Q is a constant-such that 0< Q, 1. When Q'= 0.5 

the equations reduce to the Crank-Nicolson form. 

Replacing the terms in equation (A7.1) by the expressions 

given above, and rearranging, gives: 

nif ifl pif i+ nif i-1 = a. (A-7.2) 
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where: m. =2 
h 

9+K+ QRi 
bk 

h 

ai '" xfi+l 
h 2Q)) 

- xfi(-? 
(l - Q) 

- 
K+ (1-Q)xR ) 

" h? k 

ý1 -2 Q) 

QRi' - (1 - Q)xRi' 

These expressions hold for 1<i< (N - 1) where 0 and 11 

are the numbers of the finite difference nodes at each baffle 

plate (i. e. at z=0 and z= 1). 

Applying the boundary conditions at z=0 and z=1 

enables the elimination of the terms at the hypothetical 

nodes N+1 and - 1. This leads to the following express- 

ions at the zeroth node: 

m0f+l + p0f0 = a0 (A7.3) 

where: m0 _ h 

PO =- `Q +K+ QRÖ 
hk 

ao = _.. x fo (212 ,ý_K+ (1 - Q) xR6 ) 
hk 

- xf+l (2 1 -2 )- QR -. (1 -Q). xR ýÖ 
h 

.ý. 
and at the N th node: 

pNfN + nNfN-1 = aN W-4) 
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where : prl = -- +,, 
K+ QRY 

h2 k 

24 
h 

2(l - aN =- xfN-1( 
h2 

) 

- xfN( _21-Q)-K+ (1- Q)xR 1J) k 

- QR 1- (1 - Q)R N' 

Equations (A7.2), (A7.3) and (A7.. 4) represent a system 
of simultaneous algebraic equations of the form: 

Af=a: 

The coefficient matrix A is tridiagonal and so the equations 
may be solved using the Thomas127 method in the same way as 
the two dimensional reactor equations described in Appendix 3. 
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NOIrUMLATURE 

ai matrix element in the finite difference 

formulation of the differential equations 

A Amplitude of sinusoidal perturbations 

A'- Surface area of the reactor tubes per unit 

volume of the tube bundle 

A1, A2 Parameter groups defined and used in chapter 8 

A0 Arrhenius pre-exponential factor for the 

simple reaction scheme 

A01 Arrhenius pre-exponential factor for reaction 
i in the complex reaction scheme 

b Pellet radius 

B0 Dimensionless exothermicity factor 

_ (- A H)DPAýORg 

" 2bhE 

B Thermal load factor = B0 x CA 

Bi Value of B at the reactor inlet 

B Value of B at the maximum of a maxima curve 
a (defined in chapter 4) 

Bil Lower limit on Bi (defined in chapter 4) 

Biu Upper limit on Bi (defined in chapter 4) 

B Value of B at the maximum of a critical reactor 
cr 

trajectory (defined in chapter 4) 

B Value of B at the maximum value of T on a 
m 

reactor trajectory (defined in chapter 4) 

CA, CB Dimensionless concentration of reactants within 
the fluid =C fA and C f$ , respectively 

C C 0 O 

CAO CBO Values of CA and CB respectively at the reactor 
, inlet 

CpA, CpB Dimensionless concentration of reactants with- 

in the catalyst pellet = CPA and C' 
-dpB 

00 
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CpAs CpBs Surface values of CPA and CpB 

. 
CfA'C1B Reactant concentrations within the fluid 

C' C'$ Reactant concentrations within the catalyst 
pellet 

C0 Reference concentration of reactant A 

cp, cp, cpc, epw Specific heats of the fluid, catalyst pellet, 

coolant and tube wall respectively 

dp Diameter of the catalyst pellet 

DPA D.. Effective interstitial radial diffusivities 
in the fluid 

D A D B Effective radial diffusivities within the 
j p p 

catalyst pellet 

e, e Porosity of the fixed bed and catalyst pellet, 
respectively. 

eC Voidage of the tube bundle in the direction 

perpendicular to coolant flow 

E Activation energy for the simple reaction scheme 

Ei Activation energy of reaction i in the complex 

reaction scheme 

f Dependent variable in the general form of the 
differential equations 

f0 Value of fluid variable, CA or T, at time r' 

equals zero during a sinusoidal perturbation 

f0i Inlet value of fo 

f(2) Value of fluid variable, CA or T, at time ' 

during a sinusoidal perturbation 

Inlet value of f(%) 

fl to f3 Functions defined in Appendices 4 and 5 

F1 to F7 Parameter groups defined and used in chapter 3 

F(i) Function defined in chapter 8 

g tanh(r) 

gi tanh(ri) 

gin tanh (rm ) 
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G1 to G6 Parameter groups used in the models of the 

reactor tubes and defined in chapter 5 

cc'Gc Parameter groups defined and used in chapters 
7 and 8 respectively 

h Step length in a finite difference grid 

h Effective pellet to fluid surface heat transfer 

coefficient = he + hp + hr 

hf, hc Heat transfer coefficients on the fluid-side 

and coolant-side, respectively, of the reactor 
tube 

hc, hp, hr Pellet to fluid surface heat transfer co- 
efficients due to convection, point contact, 

and radiation respectively 

H2, H3 Ratios of heats 

reaction scheme 
respectively 

i Reaction number 
(1,2 and 3) 

i Number of a nods 

of reaction in the complex 

= (-AH2) and (-A H3) , 
(-A Hl) (- AHl) 

for the complex reaction scheme 

in a finite difference 'grid 

j Step length in a finite difference grid 

k Step length in a finite difference grid 

kf Effective radial conductivity of the gas phase 
in the two phase heat transfer model (referred 

to superficial area) 

k Dimensionless first order rate constant evalua- 
ted at the fluid temperature for the simple 

reaction scheme =e 
2exp(- 21 ) 

ki Dimensionless first order rate constant evalua- 
ted at the pellet temperature for reaction i 

in the complex reaction scheme =6i exp(- 
Ei ) 
Eft 

kgAkgB: Fluid to pellet mass transfer coefficients 

kg. Thermal conductivity of the fluid 

kp, kr Solid-solid thermal conductivities for point 
contact and radiation, respectively 



187. 

k Effective radial thermal conductivity of the so- s 
lid phase in the two phase heat transfer model 
(referred to the superficial area) 

K, K0 K, K" Parameters used in the. general formulations 

of the differential equations 

K Adsorption equilibrium constant (chapter 2 only) 

K Z (used in chapter 7) 
c 

uc 

Kc Effective interstitial thermal conductivity 
of the coolant in the direction perpendicular 
to coolant flow 

K "Capacitance" of the catalyst pellet to cc 
absorb mass = b2e* 

DpA 

;, Effective effective interstitial radial thermal con- 
ductivity of the fluid 

Kfs Effective superficial radial thermal con- 
ductivity of the fluid phase in the two phase 
heat transfer tiodel = kf + ks 

Kp Effective thermal conductivity of the catalyst 

pellet 

KT "Capacitance" of the catalyst pellet to 

absorb heat = bam, cp 

" 
Kp 

Kw Parameter group defined and used in chapter 5 

1B Distance between baffle plates in the multi- 
tubular reactor 

lc 'Diameter'of the tube bundle in the multitubular 

reactor 

lT Minimum distance between adjacent tubes in the 

multitubular reactor= PD - 2b 

Z Reactor tube length 

me Total mass flowrate of the coolant across the 

tube bundle in each coolant pass based on the 

"interstitial" coolant velocity = uc eclBlT 
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mi Element of the tridiagonal matrix in the 
finite difference formulation of the different- 
ial equations 

LIA Mass flowrate of the coolant along the out- 
side of the reactor tube (used in chapter 7 

only) 

f Iuagnitude of deviation of variable f (CA or T) 

from the initial steady state during a sinus- 
oidal perturbation = f(`') - f0 

f0 

n Number of tubes used in simplified version of 

. the mixing cell models of the-coolant in 

chapter 8 

ni Element of the tridiagonal matrix in the 
finite difference formulation of the differentit.. 1 

equations 

n, nl Order of the reaction in the simple reaction 
scheme and of reaction i in the complex scheme, 
respectively 

N Number of tubes in the tube bundle of-the 

multitubular reactor 

I1 Number of radial steps in the finite difference 

grid 

Nu Modified Busselt number for heat transfer be- 
tween the pellet and the fluid = 2bh 

KP 

Nuw Nusselt number for heat transfer between the 
fluid and the coolant = RU (= RU in chapter 3) 

Kfe Kfs 

Nuw Effective overall Nusselt number for heat 
transfer between the fluid and the coolant 
based on the radial mean fluid temperature. 
Used in the one dimensional model of the reactor 
tube 

NuWf Nuoselt number for heat transfer between the 
fluid and the tube wall = R1hf 

Kfe 
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lE 
NuuV f Effective overall Nusselt number for heat 

transfer between the fluid and the tube wall 

based on the radial mean fluid temperature. 
Used in the one dimensional model of the 

reactor tube in chapter 5. 

Nuwo Pseudo-iiusselt number for heat transfer be- 

tween the tube wall and the coolant =R1hc 
Used in chapter 5 Kfe 

NuW Nusselt number for heat transfer between the 

" 
fluid, and the coolant in the two phase heat 

transfer model = RU f 
kf 

Nuw Nusselt number for heat transfer between the 

solid and. the coolant in the two phase heat 
transfer model = RU 

s 
ks 

of. Value of f at the previous time step (i. e. known) 

oxf' Value of f at the previous time and axial step 
(i. e. known) 

Pi Element of the tridiagonal matrix in the finite 

difference formulation of the differential 

equations 

P Emissivity of the catalyst pellets 

PD Pitch circle diameter in multitubular reactor 

P1toP4 Functions defined in Appendix 1 

Q,. Q Weighting constants in the finite difference 

representation of the differential equations 

such that O< Q, Q<1 

r Dimensionless radial position in the reactor 
tube =y 

R 

r6 exp(- 
1) 

2t 

ri 8 exp (-l) 
2t 

r. 0exp(- 1) 

2tm 
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R Effective radius of the reactor tube 

R' Reaction rate used in chapter 3= A0exp(- 
t 

1)CpAs 

R', R" Non-linear terms in the general forms of the 
differential equations (Appendices 2,3,6 and 7) 

Rg 
. 

The gas constant 

R Inside radius of the reactor tube 

R2 Outside radius of the reactor tube 

s Sha -1 
2 

S Distance from the centre of the catalyst pellet 

S1to S6 Parameter groups defined and used in chapter 3 

ShA, ShB Modified Sherwood numbers = 2bkgA 2bkgB 

respectively 
DpA DpB 

t Dimensionless pellet temperature = RgZp 

for the simple reaction scheme and E 

RgTp in the complex reaction scheme 
E1 

ti Value of t at the point of inflexion of the 
(t - T) vs t curve 

tm Value of t at the maximum of a reactor traject- 

ory on the T vs 23 phase diagram 

is Value of t where the tangent at the point of 
inflexion of the (t - T) vs t curve meets the 
line (t - T) =0 

tsl Value of is in the non-unique region for 
ts< ti 

ts2 Value of is in the non-unique region for 
tg> ti 

ti Value of t on the upper bound of the non-unique 
region 

tl, t2 Temperatures at the surfaces of adjacent cat- 

alyst pellets (chapter. 3 only) 

T Dimensionless fluid temperature = RgT' for the 

simple reaction scheme and R 
, 

TI E in the 
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complex reaction scheme. In the one dimen- 

sional model of the reactor tube, T-is the radial 

mean value of the fluid temperature 

T' Temperature of the fluid 

TQ920 Value of T and T' respectively at the reactor 
inlet 

T Dimensionless coolant temperature =RT for the 
c1 gc 

simple reaction scheme and RgTc E for the 

complex reaction scheme El 

Tc Temperature of the coolant 

TcO'. TcO Values of Tcand Tc respectively at the coolant 
inlet 

Tc(i) Value of Tc in cell i in the mixing cell models 
of the multitubular reactor 

Tc(i) Value of Tc in cell i in the mixing cell models 
of the multitubular reactor 

Tcr Value of T at the ma ximum of the critical traj- 

ectory on the T vs B phase diagram 

Tm Value of T at-the maximum of a trajectory on the 
T vs B phase diagram 

Tp Temperature of the catalyst pellet 

T Dimensionles s tube f 
wall temperature =R T 

w 9 ' 
E 

T Temperature of the tube wall w 
Tw0'Tw0 Values of Tw and Tw respectively atV =0 

u Interstitial fluid velocity 

uc Interstitial coolant velocity across the tube 

bundle in the multitubular reactor model 

uc Velocity of the coolant along the outside of the 

reactor tube (used in chapter 7 only) 

us Superficial fluid velocity 

U Fluid to coolant overall heat transfer coe- 
fficient 

U, 1 Fluid to coolant heat transfer coefficient in the 

two phase heat transfer model 
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U$ Solid to coolant heat transfer coefficient in 
the two phase heat transfer model 

x Dimensionless coordinate across the tube bundle 
in the direction of coolant flow =x 

lc 

x Distance across the tube bundle in the direction 

of coolant flow 

xf The value of f at the previous axial step (i. e. 
known) 

y Distance from the reactor tube axis 

y Dimensionless pellet coordinate =1-S 
(Appendix 1) b 

z Dimensionless axial coordinate along the reactor 
tubes =z 

L 

z Axial distance along the reactor tube 

z" Axial distance along the reactor tubes in each 
coolant pass, measured between the baffle plates 
in the continuum model of the multitubular 

reactor 

zc Dimensionless coordinate along the reactor tubes 
in each coolant pass measured between the baffle 

plates =z 
1B 

zcr Dimensionless. axial position at which temperature 

runaway occurs 

z, z2 Values of z at the baffle plates in each cool- 

ant pass in the multitubular reactor 

zl, z2 Values of z at the baffle plates in each coolant 
r 

pass = zl z2 
ZZ 

Greek Symbols 

e2 

e3 

Projected fraction of pellet cross-sectional 

area not in contact with an adjacent pellet 

Projected fraction of pellet cross-sectional area 
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EC 

6 

A 

(-AH), (-EHi) 

k 

e, e1 

e' e, ec te yr 

0 

W 

in contact with an adjacent pellet 

Voidage of the tube bundle in the direction of 

coolant flow 

Ratio of diffusivities within the catalyst 

pellet =D 

DpB 

Ratio of diffusivities in the fluid =D fA 

DfB 

Heats of reaction for the simple reaction scheme 
and reaction i in the complex reaction respect- 
ively 

Effectiveness factor 

Reaction-diffusion modulus =b AD and b a0i 
Dp0 DPA 

respectively. In the case of a non-first order 
reaction of order n, 0 becomes b AO CÄn-1)/2 

DPA 

Densities of the fluid, catalyst pellet, coolant 
and reactor tube wall respectively 

Time (SECONDS) 

Constant defining the effective gas layer thick- 

ness between adjacent catalyst pellets 

Selectivity for species B in the complex re- 
action scheme 

Frequency of a sinusoidal perturbation 
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