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Abstract

We aim to make it easier for programmers to write correct concurrent programs and
to demonstrate that concurrency testing techniques, typically described in the context
of simple core languages, can be successfully applied to languages with more complex
concurrency. In pursuit of these goals, we develop three lines of work:

Testing concurrent Haskell We develop a library for testing concurrent Haskell pro-
grams using a typeclass abstraction of concurrency, which we give a formal semantics.
Our tool implements systematic concurrency testing, a family of techniques for determinis-
tically testing concurrent programs. Along the way we also tackle how to soundly handle
daemon threads, and how to usefully present complex execution traces to a user. We not
only obtain a useful tool for Haskell programs, but we also show that these techniques
work well in languages with rich concurrency abstractions.

Randomised concurrency testing We propose a new algorithm for randomly testing
concurrent programs. This approach is fundamentally incomplete, but can be suitable in
caseswhere systematic concurrency testing is not. We show that our algorithmperforms
as well as a pre-existing popular algorithm for a standard set of benchmarks. This pre-
existing algorithm requires the use of program-specific parameters, but our algorithm
does not. We argue that this makes use and implementation of our algorithm simpler.

Finding properties of programs We develop a tool for finding properties of sets of
concurrency functions operating on some shared state, such as the API for a concurrent
data type. Our tool enumerates Haskell expressions and discovers properties by com-
paring execution results for a variety of inputs. Unlike other property discovery tools,
we support side effects. We do so by building on our tool for testing concurrent Haskell
programs. We argue that this approach can lead to greater understanding of concurrency
functions.
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Chapter 1

Introduction

There is a tension between theory and practice in software engineering. Whenever one
programmer suggests some sophisticated technique or formalism, another will question
its applicability to the real world, a nebulous and under-specified place. For example, a
common argument against techniques such as model checking is that they do not scale
to real-world problems, whatever those are, and that testing is good enough. Testing,
aided by dynamic analyses like Clang’s ThreadSanitizer (Serebryany and Iskhodzhanov
2009) or Go’s data race detector (TheGoDevelopers 2017a), is often effective at finding
flaws, and is familiar tomost programmers. However, unlike testing,model checking can
prove the absence of bugs, though it can be difficult or resource-intensive to use.

In this thesis, we are interested in the testing of concurrent programs. In this setting,
testing falls down when considering questions like:

– How do we ensure that we’re covering a variety of schedules?
– How do we know a that bug has been fixed?
– How much testing is enough?

We try to follow a middle path between the familiarity of testing and the power of
model checking. By using systematic concurrency testing, we enable programmers to test
their concurrent programs deterministically, and confidently.

A concern in academia is the tension between theoretical novelty and practical utility.
Too often programs written during research are abandoned as unpolished prototypes.
This practice harms the spread of ideas from theory into practice, which is particularly
regrettable when the ideas are intended to make programmers’ jobs easier. We adopt a
stance more in favour of practical utility than is perhaps typical. By producing polished
and featureful tools, we enable programmers to benefit immediately from our work.
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Chapter 1. Introduction

WeuseHaskell as the implementation language, and the source of the concurrency ab-
straction we target, in this thesis. However, our work is not tied to Haskell. Appendix A
gives a brief introduction to Haskell for the reader already somewhat familiar with func-
tional programming in other languages.

1.1. Parallelism vs Concurrency

The terms parallelism and concurrency are broadly, but not quite, synonymous. Following
the lead of Peyton Jones, Gordon, and Finne 1996, we use them to refer to different but
related concepts:

Parallelism A parallel program uses a multiplicity of hardware to compute different
aspects of a result simultaneously. The goal is to arrive at the overall result more quickly.
For example, the x86 assembly instruction PMULHUW computes the element-wise multi-
plication of two vectors, performing each multiplication simultaneously: it enables par-
allelism.

Concurrency A concurrent program uses multiple threads of control to structure the
program. These threads conceptually execute independently and at the same time. But
whether threads do execute simultaneously is an implementation detail. A concurrent
program can execute on a single-core machine through interleaved sequential execution
just as it can execute on a multi-core machine in parallel. A concurrency abstraction
can guarantee parallelism (given suitable hardware), for example by having the ability to
restrict the execution of individual threads to given processor cores.

It is tempting to think of parallelism as being semantically invisible: not changing the
result of a program, merely making it faster. However, on modern processors, paral-
lelism is semantically visible. This thesis is mostly concerned with concurrency, but the
relaxed memory behaviour of modern processors, an artefact of parallelism, appears in
Chapter 5.

1.2. Goals and Contributions of this Thesis

The overall motivation of this research has been to develop tools whichmake it easier for
programmers to write correct concurrent programs. Our primary goal is to demonstrate
that concurrency testing techniques, typically described in the context of a simple core
language, can be successfully applied to languages with rich concurrency abstractions.
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1.2. Goals and Contributions of this Thesis

Specifically, we want a concurrency testing tool which simultaneously supports mul-
tiple aspects of concurrency which are traditionally considered difficult: such as relaxed
memory, software transactional memory, and inter-thread signals. Furthermore, we
want to show that supporting these features does not render a tool too expensive, in
time or space, to be of practical value.

To meet and demonstrate our objectives, we develop libraries and tools for testing
Concurrent Haskell programs, and evaluate their effectiveness on sample applications.

Our major contributions are:

– A library for effectively testing Concurrent Haskell programs, in Chapter 5. We
demonstrate its effectivenesswith case studies of three concurrency-usingHaskell
libraries.
There are no sound and complete concurrency testing tools for Haskell. Our tool
fills this niche.

– Anewscheduling algorithm for randomised testing to allow testing programswhere
complete testing does not scale, in Chapter 6. We evaluate its bug-finding ability
on a standard set of benchmarks.
Randomised testing can be both fast and effective, but existing algorithms such
as PCT (Burckhardt et al. 2010) require difficult-to-obtain information about the
program under test. Ours does not.

– A tool for discovering properties ofHaskell functions operating on sharedmutable
state in the presence of concurrent interference, inChapter 7. Wegive case studies
of three concurrent data structures.
Tools such as QuickSpec (Smallbone et al. 2017) and Speculate (Braquehais and
Runciman 2017b) can discover properties of pure functions. Our approach ex-
tends this to nondeterministic and concurrent program fragments.

In achieving these major contributions, we also achieve smaller ones along the way:

– An abstraction over the GHCHaskell concurrency API, in Section 5.2.
We use a typeclass abstraction permitting multiple possible implementations.

– An operational semantics for Concurrent Haskell, in Section 5.5.
Our semantics is similar in spirit to Vollmer et al. 2017, however wemodel a much
larger set of operations, and support more memory models.

– A method for soundly incorporating daemon threads into a concurrency testing
setting, in Section 5.6.
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Chapter 1. Introduction

Daemon threads are threads which automatically terminate when the main thread
terminates. They are typically omitted from concurrency testing algorithms, and
a straightforward implementation is too inefficient to be practical.

– An algorithm for semantics-preserving simplification of execution traces, in Sec-
tion 5.7.
These simplified traces are easier for a programmer to follow than a trace which
may contain unnecessary details and scheduling decisions.

– Case studies of applying concurrency testing to three Haskell libraries, in Sec-
tion 5.9.
Through these case studies we demonstrate that our tools are of practical use to
programmers.

– A method for generating program fragments containing lambda terms, in a re-
stricted setting, in Section 7.3.1.
Lambda terms are essential in generating complex monadic expressions.

1.3. Roadmap

Part I We present the context and background of the work. Chapter 2 gives an intro-
duction to concurrency inHaskell. Chapter 3 discusses the theory behind testing concur-
rent programs. Finally, Chapter 4 gives an introduction to property testing in Haskell.

Part II We present our contributions. Chapter 5 gives an account of the Déjà Fu tool
for testing concurrent Haskell programs. Chapter 6 discusses an alternative scheduling
algorithm for testing concurrent programs. Finally, Chapter 7 gives an account of the
CoCo tool for discovering properties of concurrent Haskell programs, and shows how it
connects to Déjà Fu. These chapters build on each other:

– Déjà Fu, in Chapter 5, allows exploring the behaviours of a concurrent program,
and on top of this foundation we build an equivalence checker.

– Swarm scheduling, in Chapter 6, is an alternative scheduling algorithmwhich can
be plugged into Déjà Fu.

– CoCo, in Chapter 7, builds on the equivalence checker in Déjà Fu, by generating
and testing candidate equivalences from programmer-supplied primitives.

Part III We present our overall conclusions in Chapter 8 and suggest possible future
work in Chapter 9.
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1.4. Source Code

The Déjà Fu and CoCo tools we develp in Part II are available on GitHub:

– https://github.com/barrucadu/dejafu
– https://github.com/barrucadu/coco

Déjà Fu and its related libraries are also available on Hackage:

– https://hackage.haskell.org/package/concurrency
– https://hackage.haskell.org/package/dejafu
– https://hackage.haskell.org/package/hunit-dejafu
– https://hackage.haskell.org/package/tasty-dejafu
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Chapter 2

Concurrent Haskell

In this chapter we discuss the concurrency model of interest (§2.1), and then give an
overview of Concurrent Haskell (Peyton Jones 2002; Peyton Jones, Gordon, and Finne
1996). We use Haskell as the implementation language in this thesis. Concurrency is
not in the Haskell standard, the operations we discuss are available in GHC and may
not be in other compilers. We cover the basic use of concurrency (§2.2), the memory
model (§2.3), software transactional memory (§2.4), and exceptions (§2.5). We then
walk through the development of a small example program (§2.6).

2.1. The Concurrency Model

Threads, locks, and shared variables are the bread and butter of concurrent program-
ming. We are interested inmodels of concurrencymore complex than this. In this thesis
we focus on the model of Concurrent Haskell, which introduces a number of additional
features:

– Relaxed memory, where operations on shared variables may appear to happen out-
of-order.

– Software transactional memory, where groups of shared variables can be operated
on together atomically.

– Synchronous exceptions, where an error in a thread can interrupt its flow of control.
– Asynchronous exceptions, where one thread can asynchronously interrupt the flow

of control of another thread.

Concurrency testing algorithms are typically presented in the setting of a simple core
concurrent language of just reads and writes. We choose Concurrent Haskell, and the
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forkIO :: IO () -> IO ThreadId
myThreadId :: IO ThreadId

Listing 1: Basic threading operations in Haskell.

/* forkIO */
Runnable runnable = /* action */;
Thread thread = new Thread(runnable);
thread.start();

/* myThreadId */
Thread me = Thread.currentThread();

Listing 2: Basic threading operations in Java.

features it provides, because it cannot be decomposed into this simple case.
These features are not unique to Haskell. Throughout, we compare with the con-

currency abstractions of Java (Lea 1996) and Rust (The Rust Developers 2011). The
overlap of functionality is not perfect—in some cases Haskell is more expressive, in oth-
ers these languages are more expressive—but we hope to show that, although we use
Haskell, there is nothing Haskell-specific in our results or methods.

2.2. Multithreading

Threads let a program domultiple things at once. Every program has at least one thread,
which runs the main action of the program. A thread is the basic unit of concurrency.

Haskell’s basic threading functions are shown in Listing 1. A thread can be started
using the forkIO function, which starts executing its argument in a separate thread and
also gives us back a ThreadId value, which can be used to kill the thread. A thread can
get its own ThreadId using myThreadId.

In Java (Lea 1996), threads are created from classes implementing the Runnable in-
terface, as shown in Listing 2. The Thread constructor creates a new thread object from
a Runnable, but it does not start until Thread.start is called. The thread object itself
fulfils the role of the Haskell ThreadId type. A thread can get a reference to itself with
the Thread.currentThread static method.

Rust (The Rust Developers 2011) supports both the Haskell and Java thread creation
styles, as shown in Listing 3. The Haskell-style thread::spawn function takes a clo-
sure to execute, creates and immediately begins executing a thread, and returns an iden-
tifier. The alternative Java-style thread::Builder interface allows creating a thread
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2.2. Multithreading

/* Haskell style */
let thread = thread::spawn(/* closure */);

/* Java style */
let thread = thread::Builder::new().spawn(/* closure */);

/* myThreadId */
let me = thread::current();

Listing 3: Basic threading operations in Rust.

forkOn :: Int -> IO () -> IO ThreadId

getNumCapabilities :: IO Int
setNumCapabilities :: Int -> IO ()

Listing 4: Operating system threads in Haskell.

without starting it. Rust enforces an ownership type system. The compiler gives an er-
ror if a thread closure captures a variable from its outer scope which is used later in the
outer scope. Preventing variables from being used across scopes is the source of much
of Rust’s memory safety.

Capabilities In a real machine, there are multiple processors and cores. It may be that
a particular application of concurrency is only a net gain if each thread is operating on a
separate core, so that threads are not interrupting each other. GHCuses a green threading
model, where Haskell threads are multiplexed onto a much smaller number of operat-
ing system threads (Marlow, Peyton Jones, and Singh 2009). The number of operating
system threads is referred to as the number of capabilities or Haskell execution contexts
(HECs) (Marlow, Peyton Jones, and Singh 2009). Only operating system threads have
the possibility of executing truly in parallel.

We can fork a thread to run on a particular capability with the forkOn function, which
takes a number identifying the capability to use. This capability number is interpreted
modulo the total number of capabilities, which can be queried and set. Listing 4 shows
the capability functions.

Neither Java nor Rust provide green threading. Java does not specify how its threads
aremapped toOS threads but, on Linux, each Java thread is anOS thread. Rust specifies
that its threads are OS threads.
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yield :: IO ()
threadDelay :: Int -> IO ()

Listing 5: Controlling thread scheduling in Haskell.

Thread thread = /* ... */;
thread.setPriority(/* new priority */);

Listing 6: Thread priority in Java.

Scheduling TheGHCscheduler is necessarily general-purpose. However, sometimes
we have domain knowledge which lets us do better.

Listing 5 shows the two ways to influence how threads are scheduled: (1) we can yield
control to another thread, or (2) we can delay the current thread for a period of time.

In Java, we can use the Thread.yield and Thread.sleepmethods, shown in List-
ing 6, to affect scheduling. We can also adjust the priority of a thread, where the initial
priority is inherited from its creator. Threads with higher priority are executed in prefer-
ence to threads with lower priority. Haskell threads have no notion of priority. However,
GHC uses a round-robin scheduler, so no one thread can starve another.

thread::park() /* execution stops now */

/* from another thread */
reference_to_thread::unpark();

Listing 7: Thread parking and unparking in Rust.

Rust has three ways to control scheduling. In addition to yielding and delaying, it
can also park the current thread, shown in Listing 7. When parked, a thread will not
execute until it is unparked by another thread. There is a variant of thread::parkwith
a timeout, which provides a delay-unless-woken construct.

Haskell threads have no notion of parking. However, parking is not an essential primi-
tive. It can be implemented by associating an MVar (§2.3) with each thread. Parking cor-
responds to takeMVar. Unparking corresponds to tryPutMVar. Parkingwith a timeout
can be implemented by forking a thread to unpark after a delay.

Termination Both Java and Rust can use a thread handle to block until that thread
terminates. This is called joining. Haskell provides no join operation, but one can be
implementedusing by associating anMVarwith each thread, like parking. Before a thread
terminates it will execute a putMVar, and joining corresponds to readMVar.
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2.3. Shared State and the Memory Model

newIORef :: a -> IO (IORef a)
readIORef :: IORef a -> IO a
writeIORef :: IORef a -> a -> IO ()

Listing 8: Shared mutable references in Haskell.

let ptr = &mut /* initial value */;
let shared = Arc::new(AtomicPtr::new(ptr));

let shared_clone = shared.clone();
let thread = thread::spawn(move|| {
shared_clone.store(/* new value */, Ordering::SeqCst);

});

Listing 9: Shared mutable references in Rust.

2.3. Shared State and the Memory Model

Concurrent Haskell uses a shared-memory model for communication between threads.
There are two main types of shared variable, with different semantics.

Shared mutable references An IORef is a mutable location in memory holding a
Haskell value. The API is shown in Listing 8.

Java is an impure language with no restriction on sharing, so it has no need for a type
like IORef. Any thread can mutate any reference that is in scope.

Rust does impose restrictions on mutability and sharing, and provides a few different
shared variable types. The closest to IORef is a reference-counting box containing an
atomically modifiable pointer, shown in Listing 9. Threads can modify the pointer by
cloning the shared Arc value, extracting the inner AtomicPtr, and updating the value
inside. All mutation operations take as a parameter the type of memory consistency to
enforce, which we shall discuss shortly.

Shared references undermutual exclusion AnMVar is amutable location inmemory
with two possible states: full, holding a Haskell value, and empty, holding no value. An
MVar can be created in either state. The API is shown in Listing 10.

Writing to a full MVar blocks until it is empty, and reading or taking from an empty
MVar blocks until it is full. There are also non-blocking functions which return an indica-
tion of success. The blocking behaviour of MVars means that computations can become
deadlocked. For example, deadlock occurs if every thread tries to take from the same
MVar, with no threads writing to it.

27



Chapter 2. Concurrent Haskell

newMVar :: a -> IO (MVar a)
newEmptyMVar :: IO (MVar a)

putMVar :: MVar a -> a -> IO ()
readMVar :: MVar a -> IO a
takeMVar :: MVar a -> IO a

tryPutMVar :: MVar a -> a -> IO Bool
tryReadMVar :: MVar a -> IO (Maybe a)
tryTakeMVar :: MVar a -> IO (Maybe a)

Listing 10: Mutual exclusion in Haskell.

Semaphore sem = new Semaphore(/* initial quantity */);

/* from another thread */
sem.acquire(/* quantity */);
/* ... */
sem.release(/* quantity */);

Listing 11: Mutual exclusion in Java.

Java does not provide an exact analogue of MVar, but it does provide semaphores (Di-
jkstra 1965), shown inListing 11, which can be used to control access to a shared resource.
Furthermore, every Java object has an associated lock, which can be used to enforcemu-
tual exclusion.

The Rust Mutex type, shown in Listing 12, is more like the Haskell MVar type. It does
not merely function as a lock but also guards a reference. Locks are released when the
unlocked value falls out of scope, ensuring that a thread cannot lock a mutex and ter-
minate without unlocking it. There is also a non-blocking Mutex::try_lock function.
There is no way to explicitly lock an unlocked mutex.

Memory model IORef operations may appear to be re-ordered, depending on the
memory model of the underlying processor. The documentation has this to say:

let shared = Arc::new(Mutex::new(/* initial value */));

let shared_clone = shared.clone();
let thread = thread::spawn(move|| {
let mut unlocked = shared_clone.lock();
/* ... */

});

Listing 12: Mutual exclusion in Rust.
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atomicWriteIORef :: IORef a -> a -> IO ()
atomicModifyIORef :: IORef a -> (a -> (a, b)) -> IO b

Listing 13: Atomic operations in Haskell.

public volatile int sequentiallyConsistent = 0;

Listing 14: Atomic operations in Java.

In a concurrent program, IORef operations may appear out-of-order to an-
other thread, depending on the memory model of the underlying processor
architecture. For example, on x86, loads can move ahead of stores.
The implementation is required to ensure that reordering of memory op-
erations cannot cause type-correct code to go wrong. In particular, when
inspecting the value read from an IORef, the memory writes that created
that value must have occurred from the point of view of the current thread.
(The GHC Developers 2017b)

Many non-IORef operations are synchronised, and act as a barrier to re-ordering. Such
operations include reading from or writing to an MVar, executing a software transac-
tion (§2.4), and throwing an asynchronous exception (§2.5). There are also synchro-
nised IORef operations, shown in Listing 13. In our work, we support the Total Store
Order (TSO) (Owens, Sarkar, and Sewell 2009) and Partial Store Order (PSO) (SPARC
International 1992) models (§5.4).

Java allows specifying how individual variables should be synchronised. Listing 14
shows a volatile integer. Operations on normal variables may appear out-of-order to
different threads, however any operations on a volatile variable will be in-order.

Aswe saw on page 27, Rust operationswhichmutate atomic values specify the desired
memory consistency. The weakest is Relaxed, which imposes no constraints, and the
strongest is SeqCst, which imposes sequential consistency.

Sequential consistency While relaxed memory models are used for performance, re-
search suggests that in languageswhich statically distinguish between shared and thread-
local state such as Haskell, sequential consistency can be imposed for all shared state
with little overhead (Vollmer et al. 2017). If implemented in Haskell, this policy would
greatly simplify correct use of IORefs.
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readForCAS :: IORef a -> IO (Ticket a)
peekTicket :: Ticket a -> a
casIORef :: IORef a -> Ticket a -> a -> IO (Bool, Ticket a)

Listing 15: Compare-and-swap in Haskell.

private AtomicInteger count = new AtomicInteger(0);

public void increment() {
count.incrementAndGet();

}

Listing 16: Compare-and-swap in Java.

Compare-and-swap Modern processor architectures provide an atomic compare-and-
swap instruction, which is typically used in implementing lock-free algorithms (Dice,
Hendler, andMirsky 2013). The atomic-primops package (R. R. Newton 2017) provides
a model of this instruction.

Listing 15 shows compare-and-swap in Haskell. A Ticket is a proof that a value has
been observed inside an IORef at some prior point. Given this proof, the programmer
can efficiently and atomically change the value inside the IORef later if it has not been
modified. The casIORef function is partially synchronised, acting as a barrier to re-
ordering of operations on that particular IORef, but not constraining other operations.

Java provides an “atomic” variant of each primitive type. These atomic types support
compare-and-swap. Listing 16 shows the AtomicInteger type, an atomically modifi-
able 32-bit signed integer.

The Rust atomic types provide compare-exchange, shown in Listing 17, in addition
to compare-and-swap. Compare-exchange differs from compare-and-swap in that the
programmer specifies the desired memory consistency on failure. Specifying a weaker
memory consistency on failure may improve performance in some cases, as synchroni-
sation is expensive.

ptr.compare_and_swap(other, another, Ordering::SeqCst);
ptr.compare_exchange(other, another, Ordering::SeqCst, Ordering::Relaxed);

Listing 17: Compare-and-swap in Rust.
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newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()

Listing 18: Transactional variables in Haskell.

retry :: STM a
orElse :: STM a -> STM a -> STM a

Listing 19: Aborting and retrying transactions in Haskell.

2.4. Software Transactional Memory

Shared variables are nice, until we need more than one. As we can only claim one MVar
atomically (or write to one IORef atomically), it seems we need to introduce additional
synchronisation. This is unwieldy and prone to bugs. Software transactional memory
(STM) (Harris et al. 2005; Shavit and Touitou 1995) is the solution. STM is based on
the idea of atomic transactions. A transaction consists of one or more operations over a
collection of transaction variables, where a transaction may be aborted part-way through,
with all its effects rolled back. Arbitrary effects are not permitted, which Haskell en-
forces by having a distinct type for STM actions.

Neither Java nor Rust provide an STM implementation in their standard libraries,
but there are third-party implementations. However, as Java and Rust are impure, these
libraries cannot prevent the programmer fromperforming arbitrary effects inside a trans-
action. These STM library implementations provide atomic transactions for specified
operations, but they cannot provide the same guarantees as STM in Haskell.

Transactional variables The TVar type is yet another type of shared variable, but
with the difference that operating on them has a transactional effect. The API is shown
in Listing 18.

Transactions are atomic, so all reads will see a consistent state and, in the presence of
writes, intermediate states cannot be observed by another thread.

Aborting and retrying If we read a TVar and do not like the value it has, the transac-
tion can be aborted. The thread will then block until any of the referenced TVars have
beenmutated. We can also try executing a transaction, and do something else if it retries,
as shown in Listing 19.
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atomically :: STM a -> IO a

Listing 20: Executing transactions in Haskell.

catch :: Exception e => IO a -> (e -> IO a) -> IO a
throw :: Exception e => e -> IO a

Listing 21: Exceptions in Haskell.

Executing transactions Transactions compose. We can take small transactions and
build bigger transactions from them, and the whole is still executed atomically, as shown
in Listing 20.

This means we can do complex state operations involving multiple shared variables
without worrying about atomicity. However, using STM requires the program to be
structured in a way which separates state modifications from other IO operations. Fur-
thermore, due to how transactions are aborted and restartedwhen a conflict occurs, large
transactions can be slow (Le and Fluet 2015).

2.5. Exceptions

Exceptions are a way to bail out of a computation early. Exceptions can be explicitly
thrown within a single thread, these are synchronous exceptions, or thrown from one
thread to another, these are asynchronous exceptions.

Throwing and catching The basic functions for dealing with exceptions are throwing
and catching. The API is shown in Listing 21.

Throwing an exception causes the computation to jump back to the nearest enclosing
suitable exception handler. If there is none, the thread terminates. Haskell exceptions
belong to a typeclass, rather than having a specific type, so different catch functions can
be nested, to handle different types of exception.

In addition toHaskell-style exceptions, Java supports checked exceptions, shown inList-

public void createFile(String path, String text) throws IOException {
FileWriter writer = new FileWriter(path, true);
writer.write(text);
writer.close();

}

Listing 22: Checked exceptions in Java.
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let result = panic::catch_unwind(|| {
panic!("oh no!");

});

Listing 23: Panics in Rust.

throwTo :: Exception e => ThreadId -> e -> IO ()
killThread :: ThreadId -> IO ()

Listing 24: Asynchronous exceptions in Haskell.

ing 22. If a method can throw (or propagate) a checked exception, this appears in the
type signature. Checked exceptions statically enforce exception handling, but are often
regarded as cumbersome. The Haskell type system has no equivalent of checked excep-
tions. If a Haskell programmer wants something like a checked exception, they use a
type such as Either to indicate success or failure.

Rust does not really have exceptions. The panic function, shown in Listing 23, raises
an error which, if uncaught, kills the current thread. The catch_unwind function can
be used to execute a closure and recover from a panic, but it is not guaranteed to catch
all panics (The Rust Developers 2018), making panics unsuitable as a general control-
flow mechanism. The typical Rust approach is, like Haskell, to return a type indicating
success or failure.

In addition to synchronous exceptions, Haskell has asynchronous exceptions, shown in
Listing 24, which can be thrown to another thread. These functions block until the target
thread is in an appropriate state to receive the exception. Asynchronous exceptions can
be caught with catch, just like synchronous exceptions thrown with throw.

The Java Thread.stop method is similar to killThread, but is considered a bad
idea and deprecated, as it causes the target thread to immediately release any locks it
holds (Oracle 2017). The preferred approach is the Thread.interruptmethod, which
will either throw an exception or set a flag, depending on what the target thread is doing.
For example, if the target thread is blocked inside a Thread.sleep call, it will receive an
InterruptedException. Rust does not provide any way to tell a thread to terminate.

Masking A thread has a masking state, which can be used to block asynchronous ex-
ceptions thrown from other threads. There are three masking states: (1) unmasked, in
which a thread can have exceptions thrown to it; (2) interruptible, in which a thread can
only have exceptions thrown to it if it is blocked; and (3) uninterruptible, inwhich a thread
cannot have exceptions thrown to it.
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forkIOWithUnmask :: ((forall a. IO a -> IO a) -> IO ()) -> IO ThreadId
forkOnWithUnmask :: Int -> ((forall a. IO a -> IO a) -> IO ()) -> IO ThreadId

mask :: ((forall a. IO a -> IO a) -> IO b) -> IO b
uninterruptibleMask :: ((forall a. IO a -> IO a) -> IO b) -> IO b

Listing 25: Masking exceptions in Haskell.

throwSTM :: Exception e => e -> STM a
catchSTM :: Exception e => STM a -> (e -> STM a) -> STM a

Listing 26: STM exceptions in Haskell.

There are two functions to set the masking state. These each execute a computation
in the new state, and pass it a function to run a subcomputation with the original mask-
ing state. When a thread is started, it inherits the masking state of its parent. As the
parent may be masked, we can fork a thread with a function to run a subcomputation
with exceptions unmasked. The API is shown in Listing 25.

Software transactional memory STM can also use exceptions, as shown in List-
ing 26. If an exception propagates uncaught to the top of a transaction, that transaction
is aborted. The orElse function does not catch exceptions, and the catchSTM function
does not catch retries.

import Control.Concurrent
import Control.Monad

main :: IO ()
main = forever $ do

putStr "Enter a number of seconds: "
s <- getLine -- 1
forkIO (setReminder (read s)) -- 2

setReminder :: Int -> IO ()
setReminder s = do

putStrLn ("Starting a " ++ show s ++ " second timer.")
threadDelay (10^6 * s) -- 3
putStrLn "Time is up!\BEL" -- 4

Listing 27: A simple alarm program. Adapted fromMarlow 2013.
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main :: IO ()
main = loop where
loop = do
putStr "Enter a number of seconds, or \"exit\": "
s <- getLine
if s == "exit"
then pure ()
else do

forkIO (setReminder (read s))
loop

Listing 28: A simple alarm program, with an exit instruction.

2.6. Example Program

Listing 27 shows a simple program which prompts the user for a number of seconds and
prints amessage, as well as ringing the terminal bell, after that time. This is a concurrent
program. The user can keep entering new delays before old ones have elapsed. Execu-
tion proceeds as follows:

1. Get a number of seconds from the user.
2. Fork a thread to execute the setReminder function, and return to the prompt.
3. The new thread delays for the given number of seconds.
4. The new thread prints a message and sound the bell.

We can extend this program to allow the user to type “exit” to quit. Listing 28 shows
the new main function. This program is similar to the original but, rather than using
forever, we use a custom recursive function; we also only loop in the case where the
input is not “exit.”

This program now demonstrates an important property of Haskell threading. The
user can quit even if there are reminder threads still running. All Haskell threads ter-
minate when the main thread does, regardless of what they are doing. Haskell provides
the simplest behaviour, leaving it to libraries to implement higher-level behaviour using
these building blocks.

Shared state We can modify our program to only quit when every reminder is done.
To achieve this, we need to know if there are any reminders outstanding. One way to do
this is to give every reminder thread an MVar, which we write to when done. Listing 29
shows the new main function.
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main :: IO ()
main = loop [] where
loop vars = do
putStr "Enter a number of seconds, or \"exit\": "
s <- getLine
if s == "exit"

then mapM_ readMVar vars
else do
var <- newEmptyMVar
forkIO $ do
setReminder (read s)
putMVar var ()

loop (var:vars)

Listing 29: A simple alarm program, keeping a list of alarms.

main :: IO ()
main = loop =<< newMVar 0 where
loop var = do
putStr "Enter a number of seconds, or \"exit\": "
s <- getLine
if s == "exit"

then wait var
else do
modifyMVar_ var (+1)
forkIO $ do
setReminder (read s)
modifyMVar_ var (-1)

loop var
wait var =
c <- readMVar var
if c == 0 then pure () else wait var

Listing 30: A simple alarm program, keeping a counter of alarms.

For each reminder, we create an empty MVar. A reminder thread fills its MVar when
done. On exit, each MVar is read from, which will block if the MVar is still empty.

So now themain threadwill block until every reminder is done, however this approach
is not satisfactory. Our MVar list gains one element each time we set a reminder, so our
program has linear space usage. We can instead use a shared counter, and wait for the
count to be zero before terminating. Listing 30 shows the new main function.

So now, rather than have a constantly growing list, we just have a single MVar. When
a new reminder is created the value in the MVar is incremented. When a reminder ter-
minates the value in the MVar is decremented. However, this program has two flaws.
Firstly, modifyMVar_ is not atomic: if two threads are updating the counter at the same
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main :: IO ()
main = loop =<< newTVarIO 0 where
loop var = do
putStr "Enter a number of seconds, or \"exit\": "
s <- getLine
if s == "exit"
then wait var
else do

atomically (modifyTVar var (+1))
forkIO $ do
setReminder (read s)
atomically (modifyTVar var (-1))

loop var
wait var = atomically $ do
c <- readTVar var
if c == 0 then pure () else retry

Listing 31: A simple alarm program, keeping an atomic counter of alarms.

time, one may undo the other’s effect. Secondly, we wait for all reminder threads to be
done by looping until a condition holds, which is inefficient.

Software transactionalmemory Wecan solve the twoproblemswith theMVar-counter
approach using STM instead. Transactions are atomic, so we can modify the counter
atomically. When aborted, a transaction blocks until any referenced variables are up-
dated, which is more efficient than repeatedly checking. Listing 31 shows the new main
function.

Itmay not be obviouswhy reading aTVar and aborting the transaction ismore efficient
than reading an MVar and looping. But consider the scheduling behaviour. The TVar
approach will block until another thread writes to it. However, the MVar approach will
not block at all. So in the MVar case, the thread could be scheduled multiple times in a
row, even though this is a waste of time.

This is the final version of our program.
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2.7. Summary

Going forward, the reader should keep in mind:

– GHC uses a green threading model. Multiple Haskell threads are multiplexed
onto a smaller number of operating system threads. Two Haskell threads can ex-
ecute in parallel if they are mapped to different operating system threads (§2.2).

– Haskell threadsmay explicitly yield control to another thread, or block themselves
until some delay has elapsed (§2.2).

– AnIORef is amutable reference, used for communication between threads. IORef
operations come in two kinds: synchronised and unsynchronised. Depending on
the memory model of the processor the program is running on, unsynchronised
operations may appear to happen out-of-order (§2.3).

– An MVar is another kind of mutable reference, but only has synchronised oper-
ations. An MVar may be full or empty: attempting to write to a full MVar, or
attempting to read from an empty MVar, blocks. MVars are used to implement
mutual exclusion (§2.3).

– A TVar is yet another kind of mutable reference, used to implement software
transactional memory. Unlike IORef and MVar operations, TVar operations can
be composed, and the whole executed atomically. Transactions do not permit ar-
bitrary effects, only effects on TVars (§2.4).

– Haskell has exceptions. Like Java, arbitrary exception types can be created. When
an exception is thrown, control jumps back to the nearest enclosing suitable ex-
ception handler. If there is no such handler, the thread is terminated (§2.5).

– So-called asynchronous exceptions can be thrown between threads. An asyn-
chronous exception is raised in the target thread like a normal exception: control
jumps back to a suitable exception handler, or kills the thread (§2.5).

– A thread can prevent the delivery of asynchronous exceptions by changing its
masking state. There are three states: (1) unmasked, allowing asynchronous ex-
ceptions to be delivered; (2) masked interruptible, only allowing an asynchronous
exception to be delivered when the thread is blocked; and (3) masked uninter-
ruptible, not allowing asynchronous exceptions at all. Throwing an asynchronous
exception to a thread not in a suitable state to receive it blocks (§2.5).

We assume familiarity with Concurrent Haskell throughout the rest of the thesis.
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Chapter 3

Concurrency Testing by Controlled Scheduling

Testing concurrent programs cannot be done with conventional techniques. The non-
determinism of scheduling means that a test may produce different results in different
executions. In this chapter we give an introduction to concurrency testing through con-
trolled scheduling, which addresses this problem. Controlled scheduling is the foundation
upon which we build our work. We first give a high-level overview (§3.1), then discuss
specific implementation approaches, both complete (§3.2) and incomplete (§3.3). We
then discuss two tools for concurrency testing in functional languages (§3.4).

This chapter is presented in a different style to Chapter 2. We are now discussing
ideas and approaches, rather than the specifics of particular programming languages.

3.1. Controlled Scheduling

With a controlled scheduling technique, execution of a program is serialised and the
controlling scheduler drives the program. Program schedules are either explored system-
atically (Flanagan and Godefroid 2005; Madanlal Musuvathi and Qadeer 2007) (often
called ‘systematic concurrency testing’ or ‘SCT’) or randomly (Thomson, Donaldson,
and Betts 2016). Non-controlled methods do not provide their own scheduler, and in-
stead use delays and priorities to affect execution (Yu et al. 2012). Controlled scheduling
techniques are attractive because of their ability to record and replay programexecutions.

Controlled scheduling can be implemented by overriding the concurrency primitives
of the language (Walker and Runciman 2015); by instrumenting the source program
(Claessen, Palka, et al. 2009); or by instrumenting the compiled program (MadanMusu-
vathi and Qadeer 2007; Yu et al. 2012). Systematic techniques may be complete: able to
find all distinct results of a program. Random techniques typically cannot ensure that all
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distinct results are found—cannot be complete—and are usually run for some predeter-
mined number of program executions.

Typically we require that all possible executions are terminating: leading to successful
completion or a failure state such as deadlock after a finite number of scheduling deci-
sions. Another common requirement is that the number of possible executions is finite:
forbidding finite but arbitrarily long executions, as can be created with constructs such
as spinlocks (Siberschatz and Galvin 1993). We can sacrifice completeness to do away
with these requirements, as we shall see in Section 3.3.

3.2. Dynamic Partial-order Reduction

Dynamic partial-order reduction (DPOR) (Flanagan and Godefroid 2005; Godefroid
1996) is a complete approach to SCT. It is based on the insight that, when construct-
ing schedules, we only need to consider different orderings of a pair of actions if the
order in which they are performed could affect the result of the program. We call this
relation between actions the dependency relation.

Definition (Dependency Relation (Flanagan and Godefroid 2005))
Let T be the set of transitions in a concurrent system. A binary, reflexive,
and symmetric relationD ⊆ T ×T is a valid dependency relation iff, for all
t1, t2 ∈ T , (t1, t2) /∈ D (t1 and t2 are independent) the following properties
hold for all program states s:

1. if t1 is enabled in s and s t1−→ s′, then t2 is enabled in s iff t2 is enabled
in s′; and

2. if t1 and t2 are enabled in s, then there is a unique state s′ such that
s

t1t2−−→ s′ and s
t2t1−−→ s′. ■

In other words, independent transitions cannot enable (unblock) or disable (block)
each other, and enabled independent transitions commute. When implementingDPOR,
we typically identify a sufficient and easy-to-compute condition for dependency, rather
than work with this semantics-based definition directly.

Typically, the presentation of algorithms assumes a simple core concurrent language
of just reads and writes. This gives rise to a relation such as: x and y are dependent if
and only if they are actions in the same thread, or they are actions involving the same
variable where at least one is a write. We can express this dependency relation like so:
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s0

s1

s2

s4

s3

s5

t1

t2

t3

t3

t3 t1

t2

Thread 1
t1 read x

t2 read y

Thread 2
t3 write y

Figure 1: How DPOR prunes the space of schedules. Transition t3 is pruned in state s0
because it is independent with transition t1. Adapted from Coons, Madan Musuvathi,
and McKinley 2013.

x ↮ y ⇐⇒ thread_id(x) = thread_id(y) ∨

(variable(x) = variable(y) ∧ (is_write(x) ∨ is_write(y)))

The notation x ↮ y is read as “x and y are dependent.” This choice of notation
would suggest↔ for independence, but that does not seem to be in common use.

Figure 1 shows an example of DPOR in action. There are two threads: thread 1 per-
forms reads from two variables x and y, and thread 2 writes to y. As read x is indepen-
dent from write y, DPOR prunes one ordering of those actions.

Our dependency relation for Haskell (§5.6) is rather more complex, as there are more
actions than just reads and writes. Additionally, a Haskell program terminates when the
main thread terminates, which complicates matters further. A naïve implementation of
this, imposing a dependency between the final action of the main thread and everything
else, leads to too many executions being tried to be of practical use. We discuss these
issues further in Section 5.6.

3.2.1. Total and Partial Orders

Characterising the execution of a concurrent program by the ordering of its dependent
actions gives us a partial order over the actions in the entire program. An execution trace
is just one possible total order, a refinement of the constraining partial order. We call the
equivalence class of total orders corresponding to the same partial order a Mazurkiewicz
trace (Mazurkiewicz 1986). The goal of partial-order reduction, then, is to only try one
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total order for each distinct Mazurkiewicz trace, by intelligently making scheduling de-
cisions to permute the order of dependent actions.

DPOR is so called because it gathers information about the dependencies between
threads dynamically at run-time, to avoid the imprecision of static analyses (Flanagan
and Godefroid 2005). It works by executing the program until completion, making arbi-
trary choices to resolve scheduling nondeterminism, dynamically collecting information
about how threads have behaved during this specific execution. This execution trace
is then examined to identify places where alternative scheduling decisions need to be
explored because they might lead to other executions which correspond to a different
partial-order. The algorithm repeats until all such alternatives have been explored and
no new ones are found. So DPOR only works if all executions are terminating and the
number of distinct executions is finite. DPOR is complete. When it terminates, all dis-
tinct states of the program will have been explored.

3.2.2. Relaxed Memory Models

In the name of performance, modern processors implement memory models that are
weaker than sequential consistency (Lamport 1979) by using optimisations such as spec-
ulative execution, buffering, and caching. Unlike sequential consistency, where a con-
current program behaves as a simple interleaving of atomic thread actions, relaxedmem-
ory models can be more complex, making program analysis and debugging difficult. For
example, under Total Store Order (TSO), which x86 processors use (Owens, Sarkar,
and Sewell 2009), a read and a write in the same thread to different memory locations
may be re-ordered. Under Partial Store Order (PSO), a relaxation of TSO (SPARC In-
ternational 1992), two writes in the same thread, but to different memory locations, may
also be reordered.

SCT techniques assume that there is only one source of nondeterminism: the sched-
uler. If a second source is added, such as when writes become visible, adapting existing
algorithms is difficult. We can reconcile relaxedmemory nondeterminism and scheduler
nondeterminism using a simple buffering technique (Zhang, Kusano, and Wang 2015):

– Under TSO, each thread has a queue of buffered writes.
– Under PSO, each thread has a queue of buffered writes for each shared variable.

When reading, a thread reads itsmost recently bufferedwrite. If a thread has nowrites
buffered to that variable, it reads the most recent globally visible write. A buffered write
is only visible to the thread which made it. Buffered writes are committed to the globally
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visible memory nondeterministically. To model this, we can introduce one additional
phantom thread for each nonempty buffer. When scheduled, a phantom thread commits
the oldest write from its buffer. By using phantom threads, the two sources of nondeter-
minism are unified, and existing algorithms just work (Zhang, Kusano, andWang 2015).

3.2.3. Maximal Causality Reduction

Maximal causality reduction (MCR) (J. Huang 2015; S. Huang and J. Huang 2017) is an
alternative toDPORwhich explores a provablyminimal number of executions. Consider
these three threads:

p: write x q: write x r: read x

All pairs of actions are dependent, and so DPOR would explore all six interleavings:
pqr, prq, qpr, qrp, rpq, rqp. However, if we consider which write is read by thread r,
many of these interleavings are equivalent. For example, pqr results in the same value
being read as qrp. In fact we only need to explore half of the interleavings to find all the
distinct values read. Program execution is driven by what values different threads read.
An unread write changes nothing. So ideally we would only try a schedule if it leads to
at least one distinct value being read.

TheMCRalgorithm is similar in outline toDPOR. It performs an execution, resolving
scheduling nondeterminism arbitrarily, and gathers a trace including information about
the thread communication. It then uses this trace to compute new schedule prefixes.
The difference from DPOR is that these schedule prefixes ensure that at least one read
produces a previously unseen value. MCRuses the trace to compute amodel of program
behaviour as a set of quantifier-free first-order logical formulae. These formulae can then
be augmented with a state-change requirement and given to an SMT solver (De Moura
and Bjørner 2011), such as z3 (De Moura and Bjørner 2008), to produce new schedule
prefixes. When executed on benchmark programs, MCR outperforms DPOR by orders
of magnitude (S. Huang and J. Huang 2017).

MCR imposes one additional restriction which makes it tricky for Haskell. MCR re-
quires a concurrency model to be locally deterministic (J. Huang 2015). Only the previ-
ous actions of a thread and values read from shared variables, and not actions of other
threads, determine the next action of the thread. This is not the case for Haskell, where
one thread may kill another by throwing an exception to it. However, it may be possible
to encode Haskell exceptions in an MCR-friendly way by giving each thread an excep-
tion variable, and inserting reads to this variable before every normal action. Even after
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this modification some difficulty remains, as even blocked threads may be interrupted
by exceptions in Haskell.

Like DPOR, MCR can be extended to support the relaxed memory models TSO and
PSO (S. Huang and J. Huang 2016).

3.3. Schedule Bounding

Schedule bounding (Emmi,Qadeer, andRakamarić 2011;MadanlalMusuvathi andQadeer
2008; Madanlal Musuvathi and Qadeer 2007) is an incomplete approach to concurrency
testing. A bound function is defined which associates a sequence of scheduling decisions
with some value of a type that has a total order, such as the integers. This function
is monotonically increasing: if some sequence has an associated value of n, all its pre-
fixes will have an associated value of at most n. This value n is limited by some pre-
determined bound. Testing proceeds by executing all schedules within the bound.

A common schedule bounding approach is pre-emption bounding (MadanlalMusuvathi
and Qadeer 2007), which limits the number of pre-emptive context switches. Empirical
evidence shows that small bounds, and small numbers of threads, are effective for finding
many real-world bugs (Thomson, Donaldson, and Betts 2014).

Another common approach is fair bounding (Madanlal Musuvathi and Qadeer 2008),
which bounds the difference between how many times any two threads may explicitly
yield. This prevents infinitely long executions when using constructs such as spinlocks,
which loop until some condition holds, yielding on every iteration it does not.

Bound functions can be combined, where a sequence of scheduling decisions is out-
side the combined bound if it is outside any of the constituent bounds.

Schedule bounding traditionally refers to trying only those schedules with a bound
value equal to a fixed parameter. A variant is iterative bounding, where the parameter is
gradually increased (Madanlal Musuvathi and Qadeer 2007). Another variant is where
an inequality, rather than an equality, is used. This variant explores the same schedules
as iterative bounding, but does not impose the same ordering.

3.3.1. Integration with DPOR

Schedule bounding can be combined with DPOR to produce a technique which is com-
plete within its bound. The naïve way to integrate these techniques would be to first
use partial-order techniques to prune the search space, and then to additionally filter
things out with schedule bounding. However, this is unsound. As Figure 2 shows, this
approach misses parts of the search space reachable within the bound. This is because
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s5

t1

t2

t3

t3

t3 t1

t2

Thread 1
t1 read x

t2 read y

Thread 2
t3 write y

Figure 2: The naïve, unsound, way to combine DPOR with schedule bounding. Tran-
sition t3 is pruned in state s0 because it is independent with transition t1. Transition
t3 may be pruned in state s1 because it causes a pre-emption. If it is, the unique states
s3 and s5 are never reached, despite being reachable within the bound from state s0.
Adapted from Coons, Madan Musuvathi, and McKinley 2013.

the introduction of the bound creates new dependencies between actions, which cannot
be determined a priori (Coons, Madan Musuvathi, and McKinley 2013).

The solution is to add conservative backtracking points to account for the bound in
addition to any normal backtracking points that are identified. Where to insert these
depends on the bound function. In the case of pre-emption bounding, it is sufficient to
try all possibilities at the last context switch before a normal backtracking point (Coons,
MadanMusuvathi, andMcKinley 2013). This is because context switches influence the
number of pre-emptions needed to reach a given program state, depending on which
thread gets scheduled. So in Figure 2, the transition t3 in state s0 would be added as a
conservative backtracking point, undoing the work of DPOR in that case. In practice the
addition of backtracking points in this way tends not to greatly increase the search space
(Coons, Madan Musuvathi, and McKinley 2013).

Listing 32 gives the boundedDPORalgorithm (Coons,MadanMusuvathi, andMcKin-
ley 2013). TheExplore function is common to all bound functions: it takes a sequence
of scheduling decisions, which is empty at first, and systematically explores states reach-
able from it. The Backtrack and Initialise functions are specific to the bound
function: Backtrack adds scheduling decisions to the backtrack set for a state and
introduces the necessary conservative backtracking points, and Initialise seeds the
backtrack set with at least one scheduling decision. When execution of Explore(∅)

terminates, all unique states reachable within the bound will have been explored.
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function Explore(S)
s← final(S)
# add backtrack points
for u← Tid do

for v ← Tid, u ̸= v do
# find most recent dependent transition
if ∃i = max({i ∈ dom S | Si ↮ next(s, u) ∧ Si.tid = v}) then

Backtrack(S, i, u)
# continue the search by exploring successor states
Initialise(S)
visited← ∅
while ∃u ∈ (enabled(s) ∩ backtrack(s) \ visited) do

add u to visited
if Bv(S.next(s, u)) ≤ c then

Explore(S.next(s, u))

Listing 32: The bounded DPOR algorithm. S is a sequence of scheduling decisions.
TheExplore and Initialise functions are specific to each bound function. TheBv
function computes the bound value of a state. Adapted fromCoons, MadanMusuvathi,
and McKinley 2013.

3.4. In Functional Languages

In Erlang Pulse (Claessen, Palka, et al. 2009) is a controlled scheduler for Erlang
programs which implements co-operative multi-tasking. An instrumentation process
automatically modifies existing programs to call out to this scheduler. Pulse works by
only allowing one of the concurrent processes to operate at a time, and makes schedul-
ing decisions around effectful actions: such as a process receiving a message. It also
allows interaction with uninstrumented functions, which are treated as atomic, allowing
tested subsystems to be composedwithout exploring interleavingswithin the subsystem.
Pulse scheduling decisions are made randomly, using a given seed, and a complete ex-
ecution trace is returned. The trace can be rendered into a graphical form showing the
interactions between threads to aid debugging. The authors report that the graphical
traces often suggest potential race conditions not otherwise apparent to a human reader.

Procrastination (Sen 2008) is used to improvedetection of bugs. FirstPulse is used to
produce an execution trace, which is then examined to find pairs of dependent actions, as
in DPOR. Then, for each pair, execution proceeds with a random scheduler. When one
of the actions in an identified dependent pair is encountered, the thread is instead paused
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until another thread is about to resolve the other action. The race is then randomly
resolved and execution continues. Rather than exploring all partial orders, this approach
is a probabilistic one, but it is guaranteed to explore only racing partial orders. This
approach has an advantage in programs which havemany non-racy partial orders, where
randomly choosing between them does not reliably produce a bug. The authors report
that improvements can result in new bugs being found, although in the cases where the
procrastination was not necessary to find the bug, performance degrades (Arts, Hughes,
Norell, et al. 2011) as one test with procrastination corresponds to multiple executions
with different schedules.

Concuerror (Christakis, Gotovos, and Sagonas 2013) is another concurrency testing
tool for Erlang. LikePulse, Concuerror uses source instrumentation to insert calls to a
scheduler process in the program under test. UnlikePulse, Concuerror systematically
explores the space of schedules by using iterative pre-emption bounding. Concuerror
also uses blocking avoidance to prune redundant schedules. The insight here is that, if
scheduling a thread will cause it to immediately block without updating any shared state,
then there is no point in scheduling it. Concuerror does not use DPOR.

In Haskell The Concurrent Haskell Debugger (CHD) (Böttcher and Huch 2002) is a
GUI-based controlled scheduler for Haskell programs. Like Pulse, CHD works by in-
serting blocking communication operations around concurrency actions to call out to the
controlling scheduler. Unlike Pulse, this process is not automatic. The programmer
must import the concurrencymodule provided by the CHD library, rather than the stan-
dard library. CHD does not implement its own scheduler. Rather, it presents a GUI to
the user, allowing them to drive execution by clicking representations of threads. Fur-
thermore, it allows the user to specify cases which should be automatically allowed to
execute. CHD does not function with any GHC newer than version 5 (released between
2001 and 2003).

3.5. Summary

Going forward, the reader should keep in mind:

– Controlled scheduling techniques use a user-level scheduler to drive the execution
of concurrent program. This can bedone by overriding the concurrencyprimitives
of the source language; instrumenting the program source code; or instrumenting
the compiled program (§3.1).
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– Systematic concurrency testing (SCT) is an umbrella term for a collection of tech-
niques for exploring the behaviours of concurrent programs, through controlled
scheduling (§3.1).

– Dynamic partial-order reduction (DPOR), which falls under the SCT umbrella,
is a technique to discover all distinct states of a concurrent program. DPOR takes
advantage of mutually commuting operations to reduce the space of schedules to
explore (§3.2).

– Schedule bounding is a technique to reduce the space of schedules to explore by
simply discarding any which exceed some chosen bound, such as the number of
pre-emptive context switches. Schedule bounding will not, in general, find all
distinct states of a concurrent program (§3.3).

We revisit DPOR and schedule bounding in Chapter 5, where we discuss our tool for
testing concurrent Haskell programs. We revisit controlled scheduling more generally
in Chapter 6, where we propose a new scheduling algorithm for exposing concurrency
bugs.
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Chapter 4

Property-based Testing

Acommon approach to testing inHaskell is to give properties about the code. Properties
are functions with boolean results, expected to be true for all argument values. Property
testing tools are used to generate input values and check that these properties hold, or
display a counterexample if they do not. The popularity of property testing stems from
the difficulty of writing good tests. In this chapter we give an overview of using property
testing tools. We build on this background in Chapter 7, where we discuss a tool to
generate properties for concurrency functions operating over shared state. We first give
a general introduction to specifying and using properties as tests (§4.1), then discuss
specific tools (§4.2). Finally, we summarise tools for generating properties (§4.3).

4.1. Properties as Tests

Property-based testing (Claessen and Hughes 2000), sometimes called parameterised
unit testing, is an approach to testing where the programmer gives general laws (or prop-
erties) which should hold for all input values. For example, the property in Listing 33
says that a sort function should preserve length. Property-testing is unlike typical unit
testing, which can be thought of as checking specific pairs of input–output values.

Often we do not want to check a property for arbitrary input values. Perhaps we know
something about how the functions we are testing are expected to be used, or we are only
interested in how they behave in a certain case. A simple way to enforce a precondition
is to use logical implication. Implication is typically provided as part of the property

prop_sort_len xs = length xs == length (sort xs)

Listing 33: A property asserting that sorting preserves length.
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prop_ord_insert1 x xs = ordered xs ==> ordered (insert x xs)
prop_ord_insert2 x = forAll orderedList (\xs -> ordered (insert x xs))

Listing 34: Enforcing a precondition for a property.

language of a tool, rather than being a normal boolean function. This allows the tool to
ensure that a desired number of generated inputs pass the precondition.

While implication is a useful technique, it can skew the input distribution. For ex-
ample, in a property which uses implication to restrict the inputs to sorted lists, a naïve
implementation would test more singleton lists than two-element lists: all singleton lists
are ordered, but only 50% of two-element lists are. An alternative approach is to use a cus-
tom value generator. By only generating input values which satisfy the precondition, we
can avoid skewing the distribution, and improve our confidence that the property does
hold in general. Listing 34 shows the implication and generator function approaches.

In the absence of a programmer-supplied generator function, input values are gener-
ated in a type-directed process. A tool will usually provide a typeclass for generating
values. This typeclass will have instances for most common types, but if a programmer
wishes to have input values of other types, they will need to supply a suitable instance.

4.2. Property-based Testing Tools

Property-based testing toolsmainly differ along two axes: the expressiveness of the prop-
erty DSL, and the strategy for generating input values. Table 1 summarises the dif-
ferences between five different tools for Haskell. Unlike our work in Chapter 7, none
of these tools directly support concurrency. They may support properties with side-
effects, but as they have no knowledge of concurrency, their ability to describe concur-
rency errors to the user is limited. We discuss them here to give an overview of property-
based testing to the unfamiliar reader.

Input value generation Inputs can either be generated randomly or enumerated. Al-
though simple, randomisation tends to work well in practice. QuickCheck (Claessen
and Hughes 2000) is an example of a tool using random value generation. Alternatively,
we may assume that there is some enumeration likely to expose useful counterexam-
ples. SmallCheck (Runciman, Naylor, and Lindblad 2008) and LeanCheck (Braquehais
2017a) enumerate values in size order, on the assumption that most bugs are exhibited
by simple counterexamples.
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Input value generation
random   # # #
enumerative # #    
Property DSL
existential # #    
higher order      
Output
generalised counterexamples #  # G# G#

Legend:  Yes/Good. #No/Poor. G# Partial/Median.

Table 1: Summary of differences between property-based testing tools for Haskell.
Adapted from Braquehais 2017b.

prop_gt_5 = exists (\x -> x > 5)

Listing 35: Using existential quantification in a property.

Simple counterexamples are more useful to the programmer than large ones, so ran-
dom approaches must have an additional shrinking step, to try to reduce a counterexam-
ple to a local minimum. We use this idea of shrinking in Section 5.7 to simplify execution
traces generated by randomised scheduling techniques such as PCT.

PropertyDSL Amore expressive property language complicates implementation, but
allows the programmer to say more. Two important types of property are existential
properties and higher-order properties.

Existential properties, such as in Listing 35, allow the programmer to assert that some
input exists for which the property holds. Existential properties are seemingly incom-
patible with a randomised tool, such as QuickCheck, because a random test value is un-
likely to be a witness for a specific existential property. Existential properties are more
commonly supported by enumerative tools.

Higher-order properties, such as inListing 36, are propertieswhere someof the inputs
are functions. To test such a property requires the tool to be able to generate functions.
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prop_map_fuse xs f g = map g (map f xs) == map (g . f) xs

Listing 36: Using higher-order functions in a property.

> check $ \xs -> nub xs == (xs::[Int])
*** Failed! Falsifiable (after 3 tests):
[0,0]

Generalization:
x:x:_

Listing 37: A generalised counterexample of an incorrect property.

Higher-order properties are invaluable in the testing of higher-order functions.
In the context of concurrency, another way in which a property could be higher-order

is by taking an explicit schedule as an argument. A list of scheduling decisions cannot be
generated up front, as the property-testing tool cannot knowwhich threads are runnable.
So insteadwe can generate a scheduler function, as inAnkuzik 2014. This is one possible
way to implement random testing of concurrent programs.

Output How a tool presents its output is of great importance. Randomly generated
counterexamples, such as those found by QuickCheck (Claessen and Hughes 2000),
are often not minimal. Searching for a local minimum by shrinking randomly gener-
ated counterexamples before displaying them is a common approach. However, shrink-
ing and enumeration are not the only ways to produce small counterexamples. Both
SmartCheck (Pike 2014) and Lazy SmallCheck (Runciman, Naylor, and Lindblad 2008)
can generalise counterexamples. LeanCheck (Braquehais 2017a) can generalise coun-
terexamples when used with the Extrapolate (Braquehais and Runciman 2017a) tool.
Generalising counterexamples directly can be more efficient than a shrinking process as
in QuickCheck (Pike 2014). Furthermore, it is often possible to produce a generalisation
which is simpler than any concrete counterexample. Listing 37 shows such a generalised
counterexample. The property here fails for lists which contain duplicates, the concrete
value is unimportant.

None of the tools in this section support concurrency directly, so even if they can be
used to test concurrency properties, their ability to give useful output is limited.

BeyondHaskell Although this is a thesis using Haskell, a language particularly suited
for property-based testing, the interest in property-based testing has spread to other lan-
guages. Property-based testing tools are available for at least Erlang (Arts, Hughes, Jo-
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hansson, et al. 2006), Go (TheGoDevelopers 2017b), Java (The JUnit Developers 2017;
Holser 2018), .NET (TheNUnit Developers 2017a; TheNUnit Developers 2017b), and
Python (HypothesisWorks 2018).

Although QuickCheck was arguably the first tool to popularise this style of testing,
and did so in Haskell, it is increasingly gaining recognition by programmers of other
languages as a goodway to overcome the pitfalls and difficulties of traditional unit testing
techniques.

4.3. Searching for Properties

Properties can be used as expressive anddeclarative test cases. However, coming upwith
properties can be difficult. To help the programmer, tools exist to discover properties.
These tools are based on testing of examples, and so any properties found are merely
conjectures supported by a finite amount of evidence. Despite that, such properties
are surprisingly accurate in practice, and often lead to a deeper understanding of the
program under test.

Testing QuickSpec (Claessen, Smallbone, and Hughes 2010; Smallbone et al. 2017)
and Speculate (Braquehais and Runciman 2017b) are tools for Haskell which automati-
cally discover equational laws of pure functions. Both are based on generating and testing
candidate expressions. Speculate, unlike QuickSpec, can discover inequalities and con-
ditional equations. Neither supports functions with effects or generating lambda-terms.
We build on this approach in Chapter 7, to build a tool which discovers concurrency
properties through generating and testing program fragments.

Listing 38 shows the properties Speculate finds when provided with the integers 0
and 1 and the functions id, abs, and +. QuickSpec discovers similar properties to List-
ing 38a, but not the inequalities and conditional equations in Listing 38b.

Machine learning The Daikon (Ernst et al. 2007) tool discovers likely invariants of
C, C++, Java, and Perl programs. It observes variables in memory during the execu-
tion of a program, and applies machine learning techniques to discover properties that
seem to hold. These properties may include: pre- and post-conditions of statements,
and equational relationships between variables at a given program point and functions
from a library. Daikon does not synthesise and test program terms, however. Daikon is
provided with a grammar describing patterns of invariants, and reports which of these
are observed to hold as the program executes. Properties found byDaikon correspond to
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id x == x
x + 0 == x

abs (abs x) == abs x
x + y == y + x

abs (x + x) == abs x + abs x
abs (x + abs x) == x + abs x
abs (1 + abs x) == 1 + abs x

(x + y) + z == x + (y + z)

(a) Equational laws.

x <= abs x
0 <= abs x
x <= x + 1
x <= x + abs y
x <= abs (x + x)
x <= 1 + abs x
0 <= x + abs x

x + y <= x + abs y
abs (x + 1) <= 1 + abs x

x <= y ==> x <= abs y
abs x <= y ==> x <= y
abs x < y ==> x < y

x <= 0 ==> x <= abs y
abs x <= y ==> 0 <= y
abs x < y ==> 1 <= y

x == 1 ==> 1 == abs x
x < 0 ==> 1 <= abs x

y <= x ==> abs (x + abs y) == x + abs y
x <= 0 ==> x + abs x == 0

abs x <= y ==> abs (x + y) == x + y
abs y <= x ==> abs (x + y) == x + y

(b) Inequalities and conditional equations.

Listing 38: Properties of arithmetic, discovered by Speculate.
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/* Thread 1 */
p = &A
if (p != NULL) {

p->x += 10;
}

/* Thread 2 */
p = NULL;

Listing 39: Two threads using a shared pointer.

assertions which could be inserted into the program, whereas the other tools described
here discover properties based on the program API.

Concurrency testing A variant of the Daikon tool discovers likely invariants of con-
current C and C++ programs using code instrumentation and systematic concurrency
testing techniques (Kusano, Chattopadhyay, and Wang 2015). The invariants it finds
are so-called transition invariants that capture the relations amongstmutable state shared
between threads.

Listing 39 shows two threads using a shared pointer. If Thread 2 executes p = NULL
afterThread 1 checks thatp != NULL but before it executes the assigmentp->x += 10,
then an error will occur. Correct executions of the program will produce the invariant
p == orig(p) for that if-statement, meaning that p is unchanged. Buggy executions
will not. The authors argue that examining discrepancies between invariants can lead to
greater understanding of the software under test and diagnosis of errors.

The Determin tool (Burnim and Sen 2010) infers deterministic specifications for
procedures whichmake use of internal parallelism. A programmay havemany such pro-
cedures. These specifications are in the form of a precondition and a postcondition over
program states. If we use P (s, σ) to denote the resulting program state after executing
procedure P in an initial state s with a schedule σ, then specifications are of the form,

∀s, s′, σ, σ′. Pre
(
s, s′

)
⇒ Post

(
P (s, σ) , P

(
s′, σ′))

For example, if the precondition is s = s′ and the postcondition is v = v′, where v

is some variable assigned to by P , then the overall specification can be read as “for all
schedules σ from state s, the variable v gets the same value (if execution terminates).”

Example-drivenpropertydiscovery TheBach (Smith, Ferns, andAlbarghouthi 2017)
tool uses a database of examples of input/output values from functions to synthesise
properties using a Datalog-based oracle. As it is based on examples, it is not tied to any
particular programming language. Bach could even be used to discover properties of
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hardware components! Properties are of the form G ⇒ P , where both G and P are
conjunctions of equalities f(x) = y, where f is some function in the database, and x

and ymay be constants or variables. It uses a notion of evidence to decide whether an in-
ferred property holds: negative evidence consists of counterexamples; positive evidence
consists of witnesses.

Bach is unsuitable for discovering properties of concurrent or other nondeterministic
programs, however. Its notion of negative evidence requires functions in its database to
have at most one output for each distinct input

4.4. Summary

Going forward, the reader should keep in mind:

– Property-based testing, also called parameterised unit testing, is a style of testing
which uses universally quantified predicates as test cases (§4.1).

– There are two approaches to generating parameter values for properties: random,
and enumerative. Random value generation requires an additional shrinking step,
to reduce counterexamples to a local minimum, whereas enumerative approaches
will always discover the smallest counterexample (§4.2).

– The programmer does not necessarily need to come up with properties them-
selves. Property discovery tools take a program API and search for properties.
These generated properties can be used to further program understanding (§4.3).

We briefly revisit property-based testing in Chapter 5 in a case study. We discuss
property discovery more significantly in Chapter 7, where we present a tool to discover
properties about the effects of concurrency functions.
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Chapter 5

Déjà Fu: Haskell Concurrency Testing

[Déjà Fu is] A martial art in which the user’s limbs move in time as well as
space, […] It is best described as “the feeling that you have been kicked in
the head this way before.” (Pratchett 2001)

Specialised tools are necessary to test concurrent programs. In this chapter we present
and evaluateDéjàFu, our library for testing concurrency inHaskell. We give an overview
of the tool (§5.1), including the scope of bugs we aim to detect, and present our abstrac-
tion over the GHCHaskell concurrency functionality (§5.2). We then show an example
of a small logic puzzle which we can represent as a concurrent program (§5.3). We ex-
plain how programs using our abstraction are executed (§5.4), and give our semantic
rules (§5.5). We explain how we test programs (§5.6) and how we present execution
traces to the user (§5.7). We then argue the correctness of our approach (§5.8). We
present three case studies (§5.9), and finally evaluate our results (§5.10).

This chapter is derived fromour previousworkWalker andRunciman 2015 andWalker
2016.

5.1. What is Déjà Fu?

Déjà Fu is a tool for testing concurrent Haskell programs. It works by providing a type-
class abstraction over the concurrency operations of interest, called MonadConc, and
using an implementation of this class based on inspectable continuations to explore the
nondeterministic behaviours of a program under test.

Listing 40 gives the type signature of the function at the heart of Déjà Fu. The first
parameter is configuration, controlling how Déjà Fu explores the space of executions.
The second is the concurrent program to test: ConcT m is Déjà Fu’s implementation
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runSCTWithSettings :: MonadConc m
=> Settings m a
-> ConcT m a
-> m [(Either Failure a, Trace)]

Listing 40: The core API of Déjà Fu.

of MonadConc, it is parameterised by some monad m which is used to provide mutable
variables. Typically this m will be IO. The function returns a collection of tuples.

The outputswhichDéjà Fu produces are pairs, where the first component is the result
of the program and the second is the execution trace which led to it. A program may
not complete successfully: for example, it may deadlock. If the program does complete
successfully, the first component of the tuple will be a Right containing the actual value
produced, otherwise it will be a Left and the Failure valuewill showwhatwentwrong.
A Trace is a list of scheduling decisions, with a summary of what the chosen thread did
in that step of execution.

In outline, runSCTWithSettings works like so:

1. Repeat until there are no more executions:

(a) Set up the initial state, where only the main thread exists
(b) While the main thread exists, and there are runnable threads:

i. Choose a thread
ii. Run the next action in that thread

(c) Add the result pair to the output

We produce different schedules by making step (b) stateful. Déjà Fu supports three
ways to explore the behaviours of a concurrent program:

Randomly
Threads are chosen using a uniform random distribution. Exploration terminates
after a fixed number of executions.

Swarm
Threads are chosen using aweighted randomdistribution. Exploration terminates
after a fixed number of executions. We discuss this algorithm further in Chapter 6.

DPOR
Uses a notion of “to-do sets,” where each scheduling point has an associated set
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of threads to try in future executions. Execution terminates when all such sets are
empty.
During execution, at each scheduling point, if the previously chosen thread is still
runnable, choose that; otherwise, take all runnable threads, choose one arbitrarily,
and record the others in the to-do set for this scheduling point.
After execution, the trace is examined to find pairs of dependent actions: for each
thread T , for each action in thread T , find the most recent dependent action (if
one exists) in a different thread, and add T to the to-do set corresponding to that
scheduling point if T is runnable; otherwise add all runnable threads.
There are some subtleties and additional optimisations, which we discuss further
in Section 5.6.

5.1.1. What sort of bugs can Déjà Fu detect?

Déjà Fu produces a list of (Either Failure a, Trace) values, where the a is the
result of a successful execution. Déjà Fu supports “online” filtering, removing uninter-
esting result pairs or execution traces as they are found. Configuration for this online
filtering is passed to runSCTWithSettings via the Settings value. Déjà Fu tests use
predicates on the final, filtered, list of pairs: these predicates can check anything, for
example all results being Rights and equal. If an execution yields a Left value, we say
that it has failed. Déjà Fu can detect two different types of failure:

Deadlocks
Every thread is blocked.

Uncaught exceptions
The main thread is killed by an exception.

There are two types of failure which Déjà Fu itself may raise:

Aborts
All scheduling decisions are forbidden by schedule bounding.

Internal errors
An internal invariant is broken. This indicates a bug in Déjà Fu.

Finally, there are two types of failurewhich can arise through improper use ofDéjà Fu,
due to weaknesses in the current API design.

For an example of a Déjà Fu predicate, see Listing 41. The gives predicate is used
to check that a program produces exactly the desired set of results, failing if unexpected
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gives :: (Eq a, Show a) => [Either Failure a] -> Predicate a
gives expected = ProPredicate

{ pdiscard = \r -> if r `elem` expected then Just DiscardTrace else Nothing
, peval = \xs -> go expected [] xs (defaultFail xs)
}

where
go waitingFor alreadySeen ((x, _):xs) res
-- If it's a result we're waiting for, move it to the
-- @alreadySeen@ list and continue.
| x `elem` waitingFor = go (filter (/=x) waitingFor) (x:alreadySeen) xs res
-- If it's a result we've already seen, continue.
| x `elem` alreadySeen = go waitingFor alreadySeen xs res
-- If it's not a result we expected, fail.
| otherwise = res

go [] _ [] res =
res { _pass = True }

go es _ [] res =
res { _failureMsg = unlines (map (\e -> "Expected: " ++ show e) es) }

defaultFail xs = Result
{ _pass = False
, _failures = filter (\(r, _) -> r `notElem` expected) xs
, _failureMsg = ""
}

Listing 41: The gives predicate. The pdiscard component is used for online filtering,
removing uninteresting traces as they are found. The peval component takes the final
list of pairs and determines if the test passes or fails.

62



5.1. What is Déjà Fu?

evalSigWithSeed :: (MonadConc m, Ord o)
=> (x -> ConcT m s) -- ^ Create a new instance of the state.
-> (s -> x -> ConcT m o) -- ^ The observation to make.
-> (s -> x -> ConcT m ()) -- ^ Perform some concurrent interference.
-> (s -> ConcT m ()) -- ^ The expression to evaluate.
-> x -- ^ Pure value used to initialise the state.
-> m (Set (Maybe Failure, o))

Listing 42: The evalSigWithSeed function. Runs a concurrent program and returns a
set of observations and possible failures.

results are present or expected results are not. The predicate reduces memory usage by
using online filtering to discard the execution traces of expected results, as we are only
interested in execution traces which yield unexpected results. There is nothing special
about gives, it is just a normal function written using the Déjà Fu API. It is provided as
an example of the sort of thing that Déjà Fu can be used to check.

Equivalence testing Déjà Fu supports testing the observational equivalence of two
concurrent programs. Observational equivalence here means that the observable effects
of the program on a distinguished piece of shared state, using some observation function
provided by the programmer, are equal for both programs.

Listing 42 shows the heart of the equivalence testing. It is built on top of the usual
runSCTWithSettings function, but encapsulates some concerns relevant to equiv-
alence testing. In particular, evalSigWithSeed introduces concurrent interference,
which is necessary to distinguish atomic from non-atomic operations in some cases. Ev-
ery execution, including failing executions, yields an observation value. This is neces-
sary because a failing execution may nevertheless modify the state before it fails. We
build on top of this function a tool to generate a number of initial states and compare
two programs for all of them. Two programs are observationally equivalent, up to the
given interference and observation functions, if each initial state yields the same sets
observations.

We build upon this further in Chapter 7 where we also discuss refinement, and how
to discover rather than just test these properties.

Invariant testing A feature which Déjà Fu does not currently have, but which makes
sense, is invariant testing. A function could be provided to register an arbitrary concur-
rency action as an invariant. As Déjà Fu drives the execution of the program under test,
these invariants can be checked atomically. This would be similar to, but more general
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than, the GHC Haskell function always :: STM Bool -> STM (), which registers
an invariant to be checked at the end of STM transactions.

5.1.2. Scope

Weaim to supportmost of the functionality of GHC’s concurrencyAPI.However, some
operations are more trouble than they’re worth: for example, operations which intro-
duce additional sources of nondeterminism, or which unavoidably require support from
the runtime system. In particular, we do not support:

– Operations to block a thread until a file descriptor becomes available, as this in-
troduces an additional source of nondeterminism.

– Operations to query which capability (OS thread) a Haskell thread is running on,
as this also introduces an additional source of nondeterminism.

– Automatically detecting if a thread is deadlocked on anMVar orTVar and throwing
an exception to it, as we cannot detect this situation in general without support
from the garbage collector.

We also do not yet support bound threads: a Haskell thread which will always run on
the same, unique, OS thread. Bound threads are essential for using the foreign func-
tion interface (FFI) to call C libraries which use thread-local state, to ensure the Haskell
thread always sees its state and never the state of another thread. We have a prototype
implementation, which is planned to be included in the next major release of Déjà Fu1.

Semantic departures In the functionality we do support, wemodel behaviour as close
as reasonably possible toGHC.Wemake a few departures from the traditional semantics
where there is good reason to do so:

– Runtime errors, such as pattern match failures, can be caught as exceptions inside
IO. As there is no non-IO way to do the same, Déjà Fu cannot catch these errors.

– We do not model threads delaying, and implement any delays as yields. It is not
clear how to incorporate time into the testing model.

Embedded IO actions Déjà Fu supports testing computations with embedded IO ac-
tions provided that the programmer ensures that the action is atomic; that it is deter-
ministic when executed with a fixed schedule; and that it does not block on the action of
another thread. Failing to meet any of these conditions may lead to incomplete testing.
1 https://github.com/barrucadu/dejafu/issues/126
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class (Monad m, {- other constraints omitted -}) => MonadConc m where
type MVar m :: * -> *
-- other types omitted

newEmptyMVar :: m (MVar m a)
newEmptyMVar = newEmptyMVarN ""

newEmptyMVarN :: String -> m (MVar m a)
newEmptyMVarN _ = newEmptyMVar

putMVar :: MVar m a -> a -> m ()
readMVar :: MVar m a -> m a
takeMVar :: MVar m a -> m a
-- other operations omitted

Listing 43: A fragment of the MonadConc typeclass.

instance Monad n => MonadConc (ConcT m) where
type MVar (ConcT m) = ModelMVar m
-- other types omitted

newEmptyMVarN n = toConc (ANewMVar n)

putMVar var a = toConc (\c -> APutMVar var a (c ()))
readMVar var = toConc (AReadMVar var)
takeMVar var = toConc (ATakeMVar var)
-- other operations omitted

Listing 44: A fragment of the MonadConc testing implementation.

5.2. Abstracting over Concurrency

There are three ways of implementing a concurrency testing tool: overriding the con-
currency primitives of the language; instrumenting the source program; or instrument-
ing the compiled program. We adopt the first approach in Déjà Fu. Haskell’s typeclass
machinery lets us specify an interface for concurrency, and to provide different concrete
implementations. There is one implementation using the IO type and the standard func-
tions; there is another using our own type, which we can inspect.

We call our typeclass MonadConc: monads which do concurrency. Listing 43 shows a
fragment. Todefine an instance, the programmer supplies concrete types for the abstract
types and implementations of all undefined operations. Some operations have default
definitions: for example, there are two ways of constructing an empty MVar. One way
takes a name, which is displayed in debugging information, the other does not. Each has
a default definition in terms of the other, so the programmer must supply at least one.
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Implementation The type for our testing implementation is called ConcT m, which
is a monad that has access to mutable references provided by some monad m, which
will typically be IO. Listing 44 shows a fragment of the instance of MonadConc for this
type. Each concurrency operation is of the same form: we take the arguments and wrap
them up inside a data structure whose final argument is a continuation, which is then
converted into a ConcT value.

We represent a concurrent computation as a large value. We can inspect each step
of the computation by looking at the data constructor used. We call these constructors
primitive actions. With these actions we express the operations in the MonadConc class.

5.3. The n Prisoners Problem

There are n prisoners in solitary cells. There’s a central living room with
one light bulb. No prisoner can see the light bulb from their own cell. Ev-
ery day, the warden picks a prisoner equally at random, and that prisoner
visits the living room. While there, the prisoner may toggle the bulb. The
prisoner also has the option of asserting that all n prisoners have been to
the living room. If this assertion is false, all n prisoners are shot. However,
if true, all prisoners are set free. Thus, the assertion should only be made
if the prisoner is 100% certain of its validity. The prisoners are allowed to
get together one night in the courtyard, to discuss a plan. What plan should
they agree on, so that eventually, someone will make a correct assertion?

We can express this puzzle as a concurrency problem: the warden is the scheduler,
each prisoner is a thread, and when the program terminates every prisoner should have
visited the living room. So if every thread (prisoner) is scheduled (taken to the room),
the prisoners are successful. Déjà Fu can give us execution traces. So, given some way
of setting up the prison, we can use Déjà Fu to execute it and then examine the returned
traces to discover if the prisoners are successful.

5.3.1. The Probabilistic Solution

One school of thought says to just wait for 10n days, because by then it’s unlikely that
any prisoner has not visited the room. The chance that any one prisoner will have been
consistently missed is

(
1− 1

n

)10n, which converges to 1
e10

.
Listing 45a shows an implementation of this strategy, and Table 2 shows how the pris-

oners fare over 100 random executions. We see that the number of room visits grows a
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Prisoners 1 2 3 4 5 6 7 8
Successes 100 100 100 100 100 100 100 100
Failures 0 0 0 0 0 0 0 0
Avg. Room Visits 2 18.35 31.92 43.52 55.88 67.37 77.05 90.40

Table 2: The behaviour of the probabilistic solution.

little faster than ten for each additional prisoner, this is because of a quirk of our imple-
mentation. We have nominated one prisoner to be the leader, who is the only prisoner
able to declare that all have visited the room. So our implementation ends up waiting
10(n− 1) days for the non-leaders to visit, and then however many days it takes for the
leader to visit after that.

5.3.2. The Perfect Solution

Perhaps our prisoners are more cautious, and even a small chance of death is too much.
They want to be certain of their success. A slow but simple strategy is for the prisoners,
like in our probabiistic solution, to nominate a leader. Only the leader can declare to the
warden that everyone has visited the room. Whenever a prisoner other than the leader
visits the room, if this is their first time in the room with the light off, they turn it on,
otherwise they do nothing. Whenever the leader enters the room, they turn the light off.
When the leader has turned the light off n− 1 times, they tell the warden that everyone
has visited. Listing 45b shows an implementation of these behaviours.

We can satisfy ourselves that this solution works for all cases by using Déjà Fu’s sys-
tematic concurrency testing functionality, which is a combination of dynamic partial-
order reduction and schedule bounding. Table 3a shows how the number of schedules
explored and average number of room visits grows as the number of prisoners increases.
It does not scale well.

This algorithm is something of a worst-case for DPOR. Every thread is modifying
the same shared state, so DPOR has to try every interleaving. Taking another look at
our prisoners, we can see two things which a human would use to decide whether some
schedules are redundant or not:

1. If we adopt any schedule other than alternating leader / non-leader, threads will
block without doing anything. So we should alternate.

2. When a non-leader has completed their task, they will always yield. So we should
never schedule a prisoner who will yield.

67



Chapter 5. Déjà Fu: Haskell Concurrency Testing

leader :: MonadConc m => Int -> TVar (STM m) Int -> m ()
leader numPrisoners days = atomically $ do

numDays <- readTVar days
when (numDays < (numPrisoners - 1) * 10) retry

notLeader :: MonadConc m => TVar (STM m) Int -> m ()
notLeader days = forever $ atomically (modifyTVar days (+1))

prison :: MonadConc m => Int -> m ()
prison numPrisoners = do

days <- atomically (newTVar 0)
for_ [1..numPrisoners-1] (\_ -> fork (notLeader days))
leader numPrisoners days

(a) The probabilistic solution: just wait a long time and gamble.

data Light = IsOn | IsOff

leader :: MonadConc m => Int -> TVar (STM m) Light -> m ()
leader numPrisoners light = go 0 where
go counter = do

counter' <- atomically $ do
state <- readTVar light
case state of
IsOn -> do
writeTVar light IsOff
pure (counter + 1)

IsOff -> retry
when (counter' < prisoners - 1)
(go counter')

notLeader :: MonadConc m => TVar (STM m) Light -> m ()
notLeader light = do
atomically $ do

state <- readTVar light
case state of
IsOn -> retry
IsOff -> writeTVar light IsOn

forever yield

prison :: MonadConc m => Int -> m ()
prison numPrisoners = do
light <- atomically (newTVar IsOff)
for_ [1..numPrisoners-1] (\_ -> fork (notLeader light))
leader numPrisoners light

(b) The perfect solution: nominate a leader, who waits until they are certain that everyone has
been in the room.

Listing 45: Two solutions for the n prisoners problem.
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Prisoners 1 2 3
Schedules 1 5 2035
Avg. Room Visits 2 7 133

(a) Using Déjà Fu’s default schedule bounds.

Prisoners 1 2 3 4 5 6
Schedules 1 1 4 48 1536 122880
Avg. Room Visits 2 4 7.5 11.5 16 21

(b) Using a custom fair bound to prevent yields.

Table 3: How the number of schedules grows with increasing prisoner numbers.

Déjà Fu cannot make use of (1). It would be possible to implement this optimisation
if Déjà Fu were able to compare values inside TVars, as we would be able to check if any
TVar read during a blocked transaction has a different value: if none do, the transaction
will just block again. This would require a new primitive action, as we cannot do that
without putting an Eq constraint on writeTVar. We get part of theway there, though. If
a thread is blocked in a transaction, Déjà Fu only tries executing it againwhen at least one
of the TVars it reads from has been written to, which is similar to the version numbering
scheme commonly used in STM implementations (Shavit and Touitou 1995).

Déjà Fu canmake use of (2). Déjà Fu already bounds themaximum number of times a
thread can yield, so that it can test constructs like spinlocks. This is called fair bounding.
The default bound is five, but if we set it to zero Déjà Fu will never schedule a thread
which is going to yield. Table 3b shows how the number of schedules explored and av-
erage number of room visits grow with this change.

This is better, but still scales poorly. The program is still a bad case for DPOR. This
is probably as good as we can do without adding some extra primitives to Déjà Fu to
optimise the case where we have an Eq instance available, or by using an alternative sys-
tematic testing algorithm. InChapter 6wewill discuss an alternative incomplete approach
to this, and other, concurrency problems.

It’s not the end for DPOR, however. Empirical studies (Thomson, Donaldson, and
Betts 2014) have found that many concurrency bugs can be exhibited with only two or
three threads. Furthermore, most real-world concurrent programs do not have every
single thread operating on the same bit of shared state. So in practice, we will tend not
to see this exponential growth in schedules tried.
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newtype ConcT n a = M { runM :: (a -> Action n) -> Action n }

instance Functor (ConcT n) where
fmap f m = M (\c -> runM m (c . f))

instance Applicative (ConcT n) where
pure x = M (\c -> AReturn (c x))
f <*> v = M (\c -> runM f (\g -> runM v (c . g)))

instance Monad (ConcT n) where
return = pure
m >>= k = M (\c -> runM m (\x -> runM (k x) c))

instance MonadFail (ConcT n) where
fail e = M (\_ -> AThrow (MonadFailException e))

Listing 46: The Déjà Fu continuation monad.

pure id <*> v
= M (\c -> AReturn (c id)) <*> v
= M (\c -> runM (M (\c -> AReturn (c id))) (\g -> runM v (c . g)))
= M (\c -> (\c -> AReturn (c id)) (\g -> runM v (c . g)))
= M (\c -> AReturn ((\g -> runM v (c . g)) id))
= M (\c -> AReturn (runM v (c . id)))
= M (\c -> AReturn (runM v c))
/= v

Listing 47: Expansion of the Applicative identity law.

5.4. Modelling Concurrent Programs

We represent operations in the MonadConc typeclass by an Action type, which we give
in full in Section 5.5. Each action describes some effect and contains a continuation.
A concurrent computation is a sequence of these action values. Each thread is termi-
nated by a distinguished stop primitive, which has no continuation. Listing 46 gives the
definition and typeclass instances of the Déjà Fu continuation monad2.

Nonterminating executions Déjà Fu is only able to make scheduling decisions at the
level of primitive actions, which means that if evaluating a primitive action does not ter-
minate, Déjà Fuwill hang. As Listing 47 shows, we deliberately break the Applicative
identity law, that pure id <*> v = v for all v, to make some programs more defined
than they otherwise would be.

2 Déjà Fu aims to support the latest three major releases of GHC, so in the real implementation we use
conditional compilation.
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test = forever (pure "loop") where
forever mx = mx >> forever mx

Listing 48: A simple non-terminating program.

newtype Scheduler state = Scheduler
{ scheduleThread
:: Maybe (ThreadId, ThreadAction)
-> NonEmpty (ThreadId, Lookahead)
-> state
-> (Maybe ThreadId, state)

}

Listing 49: The Déjà Fu Scheduler type.

Listing 48 shows a program which is made more defined by breaking the law. Neither
>> nor forever correspond to primitive actions, so they cannot be pre-empted. If pure
did not correspond to a primitive action either, then that expressionwould causeDéjà Fu
to loop forever as it tries to compute the continuation. This is an unhelpful result. By
breaking the laws and introducing a way to interrupt the forever computation, Déjà Fu
can instead report that trying to test this program exceeds the execution length limit3.

Scheduling The choice of which thread to execute is made by a scheduler function.
The scheduler is called even if there is only one runnable thread, to keep things simple.
A scheduler has the type declared in Listing 49. It is a stateful functionwhich is given the
previous action and the runnable threads, which possibly returns a thread to run. If no
thread is returned, the computation is aborted. Aborting is used in the implementation
of schedule bounding. The state is used in the implementation of DPOR and random
scheduling: in the former, the state is a list of scheduling decisions still to make; in the
latter, the state is a random number generator.

Success and failure When testing concurrent computations, we are interested in both
success and failure. If a computation succeeds and returns a value, we want to know
that; if it enters a failure state such as deadlock, we also want to know that. As we have
seen earlier, we achieve this by reporting failure: the result of a single execution of the
program is a value of type (Either Failure result, Trace).

3 https://github.com/barrucadu/dejafu/issues/27 and issues/113
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5.4.1. Software Transactional Memory

Transactions allow the atomic execution of a sequence of operations involving TVars,
transactional variables. Unlike operations on IORefs or MVars, transactions are com-
posable and the whole remains atomic. We express transactions in a similar way to con-
current programs: as a monad of continuations over a primitive action type. As Déjà Fu
drives the execution of a concurrent program, it is possible to have arbitrarily complex
effects which appear atomic to the program under test.

A transaction evaluates to some success value, an uncaught exception, or an abort.
If successful, it may also mutate some transactional variables as a effect; otherwise it
does not. If it evaluates to an uncaught exception, we raise the exception in the thread
performing the transaction. If it evaluates to an abort, we block the thread performing the
transaction until at least one TVar read in the transaction is mutated by another thread.

5.4.2. Relaxed Memory

There are three memory models supported in Déjà Fu:

Sequential Consistency
This model is the most intuitive. A program behaves as a simple interleaving of
the actions in different threads. When an IORef is written to, that write is imme-
diately visible to all threads.

Total Store Order (TSO)
Each thread has a write buffer. A thread sees its writes immediately, but other
threads will only see writes when they are committed, which may happen later.
Writes by the same thread are committed in program order.

Partial Store Order (PSO)
A relaxation of TSO where each thread has a write buffer for each IORef. Writes
to different IORefs by the same thread may not be committed in program order.

The default memory model for testing is TSO, as that most accurately models the
behaviour of modern x86 processors (Owens, Sarkar, and Sewell 2009). The use of a
relaxed memory model can require a much larger number of schedules when IORefs
are shared between threads.

Write buffering We model relaxed memory by introducing buffers for thread writes.
When a thread writes to an IORef, the write is appended to its buffer. When a thread
reads from an IORef, it reads the value of the newest write in its buffer, or the most
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Figure 3: Example of write buffering for two threads and two IORefs.

recently committed value if the buffer is empty. After a write is committed, it is removed
from its buffer. Any non-empty buffer may have a write committed, but only the oldest
write in a buffer may be committed. Figure 3 shows the arrangement of buffers for the
three memory models in a system with two threads and two IORefs.

We divide operations into three categories: synchronised operations impose a mem-
ory barrier, committing all writes; partially synchronised operations commit one or more
writes to the same IORef; and unsynchronised operations never cause a commit.

Phantom threads For each write buffer, we introduce a phantom thread. When ex-
ecuted, a phantom thread commits the oldest write from its corresponding buffer. So
when using sequentially consistency, the set of runnable threads is exactly the set of
threads created by forking which are not blocked, but when using a relaxed memory
model, this is not the case. This may seem like an odd approach: why create new threads
to model relaxed memory? By using phantom threads, relaxed memory nondetermin-
ism becomes just another aspect of scheduling nondeterminism. We take this approach
from Zhang, Kusano, and Wang 2015.

5.5. Operational Semantics

Fundamental toDéjà Fu is an operational semantics forHaskell concurrency, in the form
of a step function onprimitive actions. Given the current state, whichwe call the context,
we select a thread to execute and either indicate a failure condition, or produce a new
context. We also produce an execution trace for the user. Our semantics is similar in
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tid, tid2 ∈ Thread Identifier
id ∈ Heap Identifier
a ∈ Value
c ∈ Action Value
e ∈ Exception Value

i, n ∈ N1

Execution Context X ::= ⟨C, B, H, T⟩
Capabilities C ::= n
Buffer (TSO) B ::= tid ↪→ [⟨id, a⟩]
Buffer (PSO) B ::= ⟨tid, id⟩ ↪→ [a]
Heap H ::= id ↪→ a
Thread Map T ::= tid ↪→ ⟨K, E, M⟩

Actions K ::= c
Exception Handlers E ::= [λe→ c]
Exception Mask M ::= Unmasked | Interruptible | Uninterruptible

Figure 4: The syntax of values and execution contexts. Listing 50 gives the definition of
action values.

spirit to Vollmer et al. 2017, however we model a much larger set of operations, and
support partial store order as well as total store order.

Syntax We express our semantics as transitions on execution contexts. Figure 4 gives
the syntax for these contexts. A context has a number of capabilities (C), a relaxed-
memory buffer (B), a heap (H), and a collection of threads (T). The representation of
B depends on the memory model: it is a finite mapping, either from thread identifiers to
a list of heap identifier and value pairs, or from thread and heap identifier pairs to a list
of values; see Section 5.5.2. H is a finite mapping from identifiers to values. T is a finite
mapping from identifiers to threads. A thread has a next operation to perform (K), a list
of exception handlers (E), and a masking state (M).

For some rules we include side-conditions or local definitions. We use Haskell syntax
for these.

Primitive actions Listing 50 gives the primitive actions for concurrency. Execution
happens in the context of an underlying monad, the n parameter to the Action type.
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data Action n
-- Basic multithreading
= AFork String ((forall b. ConcT n b -> ConcT n b) -> Action n)

(ThreadId -> Action n)
| AGetNumCapabilities (Int -> Action n)
| ASetNumCapabilities Int (Action n)
| AMyTId (ThreadId -> Action n)
| ALift (n a) (a -> Action n)
| AYield (Action n)
| ADelay (Action n)
| AReturn (Action n)
| AStop

-- IORefs and relaxed memory
| forall a. ANewIORef String a (ModelIORef n a -> Action n)
| forall a. AReadIORef (ModelIORef n a) (a -> Action n)
| forall a. AReadIORefCas (ModelIORef n a) (ModelTicket a -> Action n)
| forall a. AWriteIORef (ModelIORef n a) a (Action n)
| forall a b. AModIORef (ModelIORef n a) (a -> (a, b)) (b -> Action n)
| forall a b. AModIORefCas (ModelIORef n a) (a -> (a, b)) (b -> Action n)
| forall a. ACasIORef (ModelIORef n a) (ModelTicket a) a

((Bool, ModelTicket a) -> Action n)
| ACommit ThreadId IORefId

-- MVars
| forall a. ANewMVar String (ModelMVar n a -> Action n)
| forall a. APutMVar (ModelMVar n a) a (Action n)
| forall a. ATakeMVar (ModelMVar n a) (a -> Action n)
| forall a. AReadMVar (ModelMVar n a) (a -> Action n)
| forall a. ATryPutMVar (ModelMVar n a) a (Bool -> Action n)
| forall a. ATryTakeMVar (ModelMVar n a) (Maybe a -> Action n)
| forall a. ATryReadMVar (ModelMVar n a) (Maybe a -> Action n)

-- Exceptions
| forall e. Exception e => AThrow e
| forall e. Exception e => AThrowTo ThreadId e (Action n)
| forall a e. Exception e => ACatching (e -> ConcT n a) (ConcT n a)

(a -> Action n)
| forall a. AMasking MaskingState

((forall b. ConcT n b -> ConcT n b) -> ConcT n a) (a -> Action n)
| AResetMask MaskingState (Action n)
| APopCatching (Action n)

-- STM
| forall a. AAtom (ModelSTM n a) (a -> Action n)

Listing 50: The primitive concurrency actions.
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⟨C, B, H, T[tid7→⟨AFork _ act c,E,m0⟩]⟩ → ⟨C, B, H, T[tid7→⟨c tid2,E,m0⟩; tid2 7→new]⟩
where tid2 is not in the domain of T

reset m' = \k -> AResetMask m' k
umask mb = reset Unmasked >> mb >> \b -> reset m0 >> pure b
new = ⟨act umask, [], m0⟩

⟨C, B, H, T[tid7→⟨AGetNumCapabilities c,E,M⟩]⟩ → ⟨C, B, H, T[tid7→⟨c C,E,M⟩]⟩
⟨C, B, H, T[tid7→⟨ASetNumCapabilities i c,E,M⟩]⟩ → ⟨i, B, H, T[tid7→⟨c,E,M⟩]⟩

⟨C, B, H, T[tid7→⟨AMyTId c,E,M⟩]⟩ → ⟨C, B, H, T[tid7→⟨c tid,E,M⟩]⟩
⟨C, B, H, T[tid7→⟨AYield c,E,M⟩]⟩ → ⟨C, B, H, T[tid7→⟨c,E,M⟩]⟩
⟨C, B, H, T[tid7→⟨ADelay c,E,M⟩]⟩ → ⟨C, B, H, T[tid7→⟨c,E,M⟩]⟩
⟨C, B, H, T[tid7→⟨AReturn c,E,M⟩]⟩ → ⟨C, B, H, T[tid7→⟨c,E,M⟩]⟩
⟨C, B, H, T[tid7→⟨ALift na c,E,M⟩]⟩ → ⟨C, B, H, T[tid7→⟨na >>= c,E,M⟩]⟩
⟨C, B, H, T[tid 7→⟨AStop,E,M⟩]⟩ → ⟨C, B, H, T[tid7→∅]⟩

Figure 5: Transition semantics of basic multithreading actions.

This monad is usually IO, but can be any MonadConc. In these semantics we only use
this monad for the ALift action. Déjà Fu communicates the result of the computation
back to the caller by inserting an ALift action which writes the result of the main thread
to a mutable reference just before termination.

Our implementation of model execution is more similar to cooperative multitasking
than pre-emptive multitasking: if evaluating a primitive action fails to terminate, the
entire computation locks up.

Simplifications and omissions The semantic rules we present are for the small-step
behaviour. They are tied together by a scheduling loop which we do not present here.
This scheduling loop picks a thread to step, steps it, and continues until every thread is
blocked or the main thread terminates.

For presentation purposes, we omit some of the complexities of the implementation.
We omit building the execution trace, and we omit the definition of helper functions,
but explain them when first used. Furthermore, while we present the heap here as a
heterogeneous map, in practice we implement it using real mutable references.

5.5.1. Basic Concurrency

Figure 5 shows the semantics for the basic multithreading operations. These rules do
not involve memory, so they leave the relaxed-memory buffer and heap untouched. We
write M[k7→v] to denote a new map which maps the key k to the value v.
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Rather than have one primitive action for each of the fork-like functions, we only pro-
vide AFork, which implements forkWithUnmask for named threads, and implement
the others in terms of this. We do not model which capability a thread is executing on,
so we do not also need an “AForkOn” action.

The ALift and AStop actions are a little unlike the others. ALift causes a Haskell-
level effect to occur by executing some action in the underlying monad. AStop has no
continuation, we use T[tid7→∅] to mean that the thread is deleted.

IORef operations Figure 6 shows the semantics for the IORef operations. We repre-
sent a IORef as reference to a pair of a number of commits and a latest value. We present
the rules for writing to and committing to an IORef, which depends on the memory
model, in Section 5.5.2

We use H⊕B tomean a new heapwith all bufferedwrites committed, nondeterministi-
cally, in some order permitted by the memory model. This is a memory barrier. We use
H⊕ B[tid] to mean that only the buffered writes from thread tid are committed. Under
sequential consistency there are no buffered writes, so H⊕ _ = H.

MVar operations Figure 7 shows the semantics for the MVar operations. We represent
an MVar as a reference to a Maybe value. These operations enforce a memory barrier,
and some may cause the thread to block. An action can enforce a memory barrier even
if it blocks. We model blocking by not changing the continuation for the chosen thread.

Exceptions andmasking Figure 8 shows the semantics for the exception andmasking
operations. The raise function pops from a stack of exception handlers until it finds
a handler for the given exception. The interruptible function checks if the given
thread can be interrupted with an exception. A thread can be interrupted if its masking
state is “unmasked”, or if its masking state is “interruptible” and it is blocked.

The AMasking action is similar to AFork: it runs an action after passing an argument
to change the masking state. However, unlike AFork, AMasking runs the action in the
current thread rather than creating a new one.

5.5.2. The Memory Model

To avoid giving all of our semantic rules which read from memory three times, we have
used the⊕ operator, to denote synchronising any buffered writes to the global memory
in a nondeterministic fashion. The behaviour of this operator depends on the memory
model used.
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⟨C, B, H, T[tid7→⟨ANewIORef _ a c,E,M⟩]⟩ → ⟨C, B, H[id 7→(0, a)], T[tid 7→⟨c id,E,M⟩]⟩
where id is not in the domain of H

⟨C, B, H, T[tid7→⟨AReadIORef id c,E,M⟩]⟩ → ⟨C, B, H, T[tid 7→⟨c x,E,M⟩]⟩
where (_, x) = (H⊕ B[tid])[id]

⟨C, B, H, T[tid7→⟨AReadIORefCAS id c,E,M⟩]⟩ → ⟨C, B, H, T[tid 7→⟨c (Ticket id n x),E,M⟩]⟩
where (n, x) = (H⊕ B[tid])[id]

⟨C, B, H, T[tid7→⟨AModIORef id f c,E,M⟩]⟩ →
⟨C,∅, (H⊕ B)[id7→(n+1, f a)], T[tid 7→⟨c,E,M⟩]⟩

where (n, a) = H⊕ B[tid]

⟨C, B, H, T[tid7→⟨AModIORefCAS id f c,E,M⟩]⟩ →
⟨C,∅, (H⊕ B)[id7→(n+1, f a)], T[tid 7→⟨c,E,M⟩]⟩

where (n, a) = (H⊕ B)[id]

⟨C, B, H, T[tid7→⟨ACasIORef id (Ticket id n _) a,E,M⟩]⟩ →
⟨C,∅, (H⊕ B)[id7→(n+1, a)], T[tid7→⟨c (True, Ticket id (n+1) a),E,M⟩]⟩

if n = n0
where (n0, _) = (H⊕ B)[id]

⟨C, B, H, T[tid7→⟨ACasIORef id (Ticket id n _) _,E,M⟩]⟩ →
⟨C,∅, H⊕ B, T[tid 7→⟨c (False, Ticket id n0 a0),E,M⟩]⟩

if n ̸= n0
where (n0, a0) = (H⊕ B)[id]

Figure 6: Transition semantics of IORef actions.
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⟨C, B, H, T[tid7→⟨ANewMVar _ c,E,M⟩]⟩ → ⟨C, B, H[id 7→Nothing], T[tid 7→⟨c id,E,M⟩]⟩
where id is not in the domain of H

⟨C, B, H[id7→Just _], T[tid7→⟨APutMVar id _ _,E,M⟩]⟩ → ⟨C,∅, H⊕ B, T⟩

⟨C, B, H[id7→Nothing], T[tid7→⟨APutMVar id a c,E,M⟩]⟩ →
⟨C,∅, H[id 7→Just a] ⊕ B, T[tid7→⟨c,E,M⟩]⟩

⟨C, B, H[id7→Just x], T[tid7→⟨ATakeMVar id c,E,M⟩]⟩ →
⟨C,∅, H[id7→Nothing] ⊕ B, T[tid7→⟨c x,E,M⟩]⟩

⟨C, B, H[id7→Nothing], T[tid7→⟨ATakeMVar id _ _,E,M⟩]⟩ → ⟨C,∅, H⊕ B, T⟩

⟨C, B, H[id 7→Just x], T[tid 7→⟨AReadMVar id c,E,M⟩]⟩ → ⟨C,∅, H⊕ B, T[tid7→⟨c x,E,M⟩]⟩

⟨C, B, H[id7→Nothing], T[tid 7→⟨AReadMVar id _ _,E,M⟩]⟩ → ⟨C,∅, H⊕ B, T⟩

⟨C, B, H[id7→Just _], T[tid7→⟨ATryPutMVar id c,E,M⟩]⟩ →
⟨C,∅, H⊕ B, T[tid7→⟨c False,E,M⟩]⟩

⟨C, B, H[id7→Nothing], T[tid 7→⟨ATryPutMVar id a c,E,M⟩]⟩→
⟨C,∅, H[id7→Just a] ⊕ B, T[tid 7→⟨c True,E,M⟩]⟩

⟨C, B, H[id7→Just x], T[tid7→⟨ATryTakeMVar id c,E,M⟩]⟩ →
⟨C,∅, H[id7→Nothing] ⊕ B, T[tid7→⟨c (Just x),E,M⟩]⟩

⟨C, B, H[id7→Nothing], T[tid 7→⟨ATryTakeMVar id c,E,M⟩]⟩ →
⟨C,∅, H⊕ B, T[tid7→⟨c Nothing,E,M⟩]⟩

⟨C, B, H[id7→x], T[tid 7→⟨ATryReadMVar id c,E,M⟩]⟩ → ⟨C,∅, H⊕ B, T[tid7→⟨c x,E,M⟩]⟩

Figure 7: Transition semantics of MVar actions.
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⟨C, B, H, T[tid 7→⟨AThrow e,hs,M⟩]⟩ → ⟨C, B, H, T[tid7→∅]⟩
if null (raise hs e)

⟨C, B, H, T[tid 7→⟨AThrow e,hs,M⟩]⟩ → ⟨C, B, H, T[tid7→⟨h e,hs,M⟩]⟩
if not (null (raise hs e))
where (h:hs) = raise hs e

⟨C, B, H, T[tid 7→⟨AThrowTo id e c,E,M⟩]⟩ →
⟨C,∅, H⊕ B, T[tid7→⟨c,E,M⟩; id7→⟨AThrow e,E',M'⟩]⟩

if interruptible id
where ⟨_, E', M'⟩ = T[id]

⟨C, B, H, T[tid 7→⟨AThrowTo id _ _,E,M⟩]⟩ → ⟨C,∅, H⊕ B, T⟩
if not (interruptible id)

⟨C, B, H, T[tid7→⟨ACatching i inner c,hs,M⟩]⟩ →
⟨C, B, H, T[tid7→⟨inner (APopCatching . c),h:hs,M⟩]⟩

⟨C, B, H, T[tid 7→⟨APopCatching c,_:hs,M⟩]⟩ → ⟨C, B, H, T[tid7→⟨c,hs,M⟩]⟩

⟨C, B, H, T[tid 7→⟨AMasking m act c,E,m0⟩]⟩ →
⟨C, B, H, T[tid7→⟨act umask (AResetMask m0 . c),E,m⟩]⟩

where m0 = T[tid.M]
reset m' = \k -> AResetMask m' (k)
umask mb = reset m0 >> mb >> \b -> reset m >> pure b

⟨C, B, H, T[tid7→⟨AResetMask m c,E,M⟩]⟩ → ⟨C, B, H, T[tid7→⟨c,E,m⟩]⟩

Figure 8: Transition semantics of exception actions.
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⟨C, B, H, T[tid7→⟨AWriteIORef id a c,E,M⟩]⟩ → ⟨C, B, H[id7→(0, a)], T[tid 7→⟨c,E,M⟩]⟩
if using sequential consistency

⟨C, B[tid 7→buf], H, T[tid7→⟨AWriteIORef id a c,E,M⟩]⟩ →
⟨C, B[tid 7→(buf ++ (id, a))], H, T[tid 7→⟨c,E,M⟩]⟩

if using total store order

⟨C, B[(tid, id) 7→buf], H, T[tid7→⟨AWriteIORef id a c,E,M⟩]⟩ →
⟨C, B[(tid, id) 7→(buf ++ a)], H, T[tid7→⟨c,E,M⟩]⟩

if using partial store order

Figure 9: Transition semantics of writing to IORefs.

⟨C, B[tid 7→((id, a):buf)], H[id7→(n, _)], T⟩ → ⟨C, B[tid7→buf], H[id 7→(n+1, a)], T⟩
if using total store order
⟨C, B[(tid, id)7→(a:buf)], H[id7→(n, _)], T⟩ → ⟨C, B[(tid, id) 7→buf], H[id 7→(n+1, a)], T⟩
if using partial store order

Figure 10: Transition semantics of committing IORef writes.

– Under sequential consistency, there are no buffered writes, so H⊕ _ = H.
– Under total store order, we give each thread a buffer, so B is a map from thread

identifiers to sequences of writes. Here H⊕B selects a thread with buffered writes
nondeterministically, and pops and performs the oldest write from its buffer. This
process is repeated until there are no remaining buffered writes.

– Under partial store order, there is a buffer for each (thread, IORef) pair, but the
process is otherwise the same as for TSO.

Writing to an IORef Figure 9 gives the semantic rules for writing to an IORef. There
is one rule for each memory model, corresponding to the buffering strategy used. Un-
der sequential consistency, the write goes straight to the heap; under TSO, the write is
appended to the buffer for the chosen thread; and under PSO the write is appended to
the buffer for the chosen (thread, IORef) pair.

Committingbufferedwrites Figure 10 gives the semantic rules for committing buffered
IORefwrites. There is no rule for sequential consistency, as there are no buffered writes
in that case. Another way to think of the⊕ operator is that it performs all possible com-
mit actions.
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5.5.3. Software Transactional Memory

Here we only give the semantics of the AAtom action, a full operational semantics of
STM is given in Harris et al. 2005. The STM semantics are small-step reductions of the
form M ; Θ,∆ ⇒ N ; Θ′,∆′, where M and N are Haskell expressions, Θ is the heap,
and ∆ is the set of TVar variables which have been accessed. We use ∗=⇒ to denote a
sequence of multiple small-step reductions.

stm; H⊕ B,∅ ∗=⇒ return x; H', _
⟨C, B, H, T[tid7→⟨AAtom stm c,E,M⟩]⟩ → ⟨C,∅, H', T[tid7→⟨c x,E,M⟩]⟩

stm; H⊕ B,∅ ∗=⇒ throw x; H', _
⟨C, B, H, T[tid 7→⟨AAtom stm _,E,M⟩]⟩ → ⟨C,∅, H', T[tid7→⟨AThrow x,E,M⟩]⟩

stm; H⊕ B,∅ ∗=⇒ retry; _, _
⟨C, B, H, T[tid7→⟨AAtom stm _,E,M⟩]⟩ → ⟨C,∅, H⊕ B, T⟩

Figure 11: Transition semantics for AAtom.

Figure 11 gives the semantics of executing transactions. Executing an STM transac-
tion enforces amemory barrier, andwrites inside the transaction are synchronised. If the
transaction reduces to a throw expression, the exception is re-thrown in the thread. As
in the MVar and exception semantics, a transaction which blocks still imposes a memory
barrier.

5.6. Testing Concurrent Programs

Déjà Fu uses a combination of DPOR and schedule bounding to test programs by de-
fault. Controlled random scheduling using a fixed number of executions is also available.
The testing algorithm to use, and its configuration, is controlled with the Settings
value (§5.1).

Dependency relation DPOR uses a dependency relation between pairs of actions.
Two actions are dependent if the order in which they are performed matters. This re-
lation may have false positives, but cannot have false negatives. False positives lead to
exploring redundant executions, false negatives lead to missing distinct ones.
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atomicModifyIORef r _↮ x if x uses r
atomically x↮ atomically y if x writes to a TVar which y accesses
casIORef r _↮ x if x uses r

commit _↮ b if b enforces a memory barrier
commit r↮ writeIORef r if r has no buffered writes
commit r↮ x if x uses r and is not a writeIORef r

crefRead r↮ b if b enforces a memory barrier and r has buffered writes
crefRead r↮ x if x uses r and is not a crefRead r
liftIO _↮ liftIO _

modifyIORefCAS r _↮ x if x uses r
mvarRead v↮ mvarRead v if v is full
mvarRead v↮ mvarWrite v
mvarWrite v↮ mvarWrite v if v is empty

setNumCapabilities _↮ getNumCapabilities
setNumCapabilities _↮ setNumCapabilities _

throwTo tgt↮ x if x is on thread tgt and can be interrupted
writeIORef r _↮ x if x uses r and is not a commit r

x↮ y if y↮ x

Figure 12: The Déjà Fu dependency relation. A commit commits one buffered write
to a IORef. A crefRead is a readIORef or a readForCAS. An mvarWrite is a
putMVar or a tryPutMVar. An mvarRead is a takeMVar, tryTakeMVar, readMVar,
or tryReadMVar.

For ease of explanation, DPOR algorithms in the literature are presented for small
languages. A paper will typically start with a sentence like “we assume a core concur-
rent language of reads andwrites to shared variables, and locks.” For example, in Coons,
Madan Musuvathi, and McKinley 2013 two actions are said to be dependent if they are
actions of the same thread, or they are both actions on the same shared variable and at
least one is a write. The Haskell concurrency API is richer than this, and subtle depen-
dencies (such as which actions impose a memory barrier) are not documented.

Figure 12 shows the dependency relation we use in Déjà Fu. We use a conditional
dependency relation (Godefroid and Pirottin 1993). Whether two actions are depen-
dent depends on an approximation of the current state: we record which IORefs have
buffered writes, whether each MVar is full or empty, and what the masking state of every
thread is. A conditional dependency relation allows more precise decisions.

Sleep sets The sleep set optimisation (Godefroid 1996) is a complementary approach
to DPOR which we use to further reduce schedules explored. We were able to re-use
this algorithm without difficulty. The intuition is as follows: if we are in a state s0 and
have a choice of two scheduling decisions, t1 and t2, after trying out t1 there is no point
in making the sequence of decisions t2t1 from s0, unless t1 ↮ t2. All states reachable
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s0

s1

s2

t1 t2

t1 t3

t1

Dependencies: t1 ↔ t2 t1 ↮ t3

Figure 13: The sleep set optimisation. Transition t1 may be pruned in state s1 but not
in state s2. The transition has been explored from state s0 and there is no dependent
transition between states s0 and s1, but there is between states s0 and s2. Adapted from
Coons, Madan Musuvathi, and McKinley 2013.

from t1 have already been explored, so the only way a new state could arise is if t1 had
a different effect, which will only be the case if a dependent transition has been taken.
Figure 13 shows this graphically.

Formally, we augment each state s with a sleep set, containing transitions enabled in
s but which we will not make. The initial state has an empty sleep set. Let T be the
transitions that have been selected to be explored from s. We proceed as follows: take
a transition t1 out of T . The sleep set associated with the state reached after executing
t1 from s is the sleep set associated with s, minus all transitions that are dependent with
t1. Let t2 be a second transition taken out of T . The sleep set associated with the state
reached after executing t2 from s is the sleep set associated with s augmented with t1,
minus all transitions that are dependent with t2. We continue until all transitions in T

have been explored, at each step adding the previously taken transitions to the sleep set
of the new state, and removing the dependent transitions.

Blocking avoidance Déjà Fu avoids trying schedules which would immediately cause
a thread to block without updating any shared state. As a context switch will occur im-
mediately after the thread blocks, there is no point in scheduling it. This is the same
insight as in Concuerror (Christakis, Gotovos, and Sagonas 2013), but was discovered
independently.
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main = do
v <- newEmptyMVar
fork (myThreadId >> putMVar v "hello world")
tryReadMVar v

Listing 51: A program with a race condition.

main = do
v <- newEmptyMVar
fork (myThreadId >> myThreadId >> putMVar v "hello world")
tryReadMVar v

Listing 52: Another program with a race condition.

Schedule bounding Déjà Fu supports pre-emption bounding (Madanlal Musuvathi
and Qadeer 2007); fair bounding (Madanlal Musuvathi and Qadeer 2008); and depth,
or length, bounding (Russell and Norvig 2002). We use a variant of the bounded partial-
order reduction algorithm (BPOR) (Coons, Madan Musuvathi, and McKinley 2013),
augmented with support for relaxed memory (Zhang, Kusano, and Wang 2015), as our
core testing algorithm. All three bounds are enabled by default.

Daemon threads A daemon thread is a thread which is automatically killed after the
last non-daemon thread terminates. In Haskell, every thread other than the main thread
is a daemon thread, so as soon as the main thread terminates the whole program termi-
nates. This is a problem forDPOR, as itmakes the last action of the execution dependent
with everything else in the program!

Listing 51 gives a small concurrent program with two possible results: Nothing, and
Just "hello world". If the scheduler favours themain threadweonly see theNothing
case, as there is no dependency between myThreadId and tryReadMVar. Introducing a
dependency between the last action of the execution (the tryReadMVar v in this case)
and everything else solves this problem.

However, these new dependencies also present a difficulty. In Listing 52, the forked
thread now performs myThreadId twice. If the tryReadMVar happens after the second
of these, we get the same result as if it happens after the first. Normally, DPOR would
recognise this and prune the redundant decision, as myThreadId and tryReadMVar are
independent. However, by introducing a dependency between the final action and ev-
erything else, we have said that it is not redundant! In general, introducing a dependency
like this will lead to many redundant executions which we would otherwise avoid.

The solution we adopt is to change the scheduler. If the scheduler has a choice of
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S0-----P1--P0-P1-S0-P2--C-S0---P2-P3-P2--S3-P0-P3-P0---S3-P0-P3-S0-
S0----P1-P0-----P2--P0--P2-P0-S2--S3-P1-P0---S1-S3----S0--
S0--------P2-P0--P3-P2-P0-P3-P2-C-S0-S3---S2--S1-C-S1-P0----

(a) Original

S0----------P1---S2-----S0----S3-----S0--
S0----------P1-P2-----S0--S1--S0---S3-----S0--
S0----------P2--P3-----S0--S2---S1--P0----

(b) Simplified

Listing 53: Three execution traces produced by random scheduling and their simplified
counterparts.

actions, where one or more will cause the main thread to terminate, it records each de-
cision as a backtracking point. By ensuring that every decision is tried at least once, we
do not need to introduce an additional dependency between the final action of the main
thread and everything else, and can just let DPOR do its job as usual.

By executing every thread to completion in at least one execution, we do see some
redundant schedules. For example, if a thread does not communicate with any other
thread, then an executionwhich schedules it could in principle bemodified to not sched-
ule the thread, or perhaps even pruned entirely.

5.7. Execution Traces

Execution traces are not the easiest of things to read, especially if there aremany context
switches. Traces generated by randomscheduling are particularly difficult to read, which
is unfortunate, as random testing with a fixed number of executions can be effective for
finding bugs and is much faster than DPOR.

Déjà Fu contains a trace simplifier, which attempts to rewrite traces into a shorter
form. Unlike the shrinking done in tools like QuickCheck (Claessen and Hughes 2000),
Déjà Fu’s trace simplification is semantics-preserving. An execution trace can be rewritten
into a simpler formwhich is guaranteed to produce the same result, and there is no need
to run the program again to verify this. We achieve this by only re-ordering independent
actions, using the dependency relation.

Listing 53 shows three execution traces generated by random scheduling, from one of
the tests in the Déjà Fu testsuite. These traces are displayed in a pretty-printed form
which gives just the essence of the scheduling decisions:
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– Sn: indicates that thread n started executing after the previously executing thread
blocked or terminated.

– Pn: indicates that thread n started executing by pre-empting the previously exe-
cuting thread.

– pn: indicates that thread n started executing after the previously executing thread
yielded or delayed.

– C: indicates the execution of a relaxed memory commit.
– -: indicates the execution of one primitive action.

The three original traces involve many context switches and relaxed memory commit
actions. They are long and hard to follow. In contrast, the three simplified traces are
much shorter, involve far fewer context switches, and have no relaxed memory commit
actions at all. The simplified traces are much more useful for program comprehension.

Our trace simplification algorithm has four steps:

1. Rewrite the trace into lexicographic normal form.
2. Prune redundant relaxed memory commit actions.
3. Reduce context switching by pulling actions backwards.
4. Reduce context switching by pushing actions forwards.

We repeat steps (3) and (4) until a fixed point is reached, or a fixed number of iterations
has elapsed. Listing 54 gives the full algorithm in pseudocode.

Rewrite the trace into lexicographic normal form The problem of sorting sequences
where only some items can be permuted is studied in Anisimov andKnuth 1979. For the
case of execution traces, this corresponds to sorting by thread identifier, only re-ordering
independent actions. We implement this in much the same way as bubble sort.

Recall that a Haskell program terminates when the main thread does. So by moving
actions of the main thread, thread 0, towards the beginning we can then delete a suffix
of the trace. This is the main way in which we can produce shorter traces.

Prune redundant relaxedmemory commit actions If a commit action is followed by
a memory barrier, possibly with some independent actions in between, the commit can
be removed if there are no other buffered writes for that IORef. The barrier will commit
the single write anyway.
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Reduce context switching by pulling actions backwards We now walk through the
trace from beginning to end, looking for opportunities to pull actions backwards. If we
have the trace [(t1, X), (t2, Y), (t1, Z)], where Y and Z are independent, this
transformation re-orders the trace to [(t1, X), (t1, Z), (t2, Y)]. We allow any
number of independent actions before the action being pulled backwards.

Reduce context switching by pushing actions forwards This is much like the “pull
back” transformation. We walk the trace, looking for cases where actions can be pushed
forward. If we have the trace [(t1, X), (t2, Y), (t1, Z)], where X and Y are in-
dependent, this transformation re-orders the trace to[(t2, Y), (t1, X), (t1, Z)].

Having both the “pull back” and “push forward” transformations is not redundant.
If we have three actions—X, Y, and Z—it may be that X is independent with Y but Z is
not, or vice versa.

5.8. Soundness and Completeness

Correctness for Déjà Fu comes down to two core issues: (1) is the set of results which
are possible under normal execution the same as the set of results which are possible
under Déjà Fu; and (2) will Déjà Fu discover all these possible results? These questions
highlight a natural separation in the theory: the relation between Déjà Fu’s concurrency
semantics andGHC’s, and the correctness of themachinery to discover new executions.

We do not attempt to formally verify the Déjà Fu implementation, but we do have an
extensive test suite. Most of our tests consist of nondeterministic programs, where we
verify that Déjà Fu finds precisely the behaviours we expect.

Property tests Déjà Fu is not one monolithic implementation. It has components
which can be specified and tested in isolation. For example, the dependency relation
must be commutative. We use Hedgehog (Stanley 2018), a randomised property-testing
library, to check these properties of the implementation.

Integration tests Most of the tests are integration tests, consisting of a small concur-
rent program and a property to check. A failure in such a test could in principle be any-
where in Déjà Fu, but in practice failures in different components tend to manifest dif-
ferently. A failure in the DPOR implementation tends to manifest as invalid schedules
being generated; whereas a failure in the concurrency implementation tends to manifest
as incorrect results of individual executions.
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function Simplify(T )
# rewrite in lexicographic normal form
r ← true
while r do

r ← false
for i← 0 . . .Length(T )− 2 do

if tid(Ti) > tid(Ti+1) ∧ Ti ↔ Ti+1 then
Swap(T, i, i+ 1)
r ← true

# prune redundant commits
i← 0
while i < Length(T )− 1 do

if IsCommit(Ti) then
if Ti ↔ Ti+1 then

Swap(T, i, i+ 1)
else if IsBarrier(Ti+1)∧ ioref(Ti) has only this buffered write then

Delete(T, i)
continue

i← i+ 1

# reduce context switching
r ← true
while r ∧ ¬ iteration limit is reached do

r ← false
# pull actions backwards
for i← 0 . . .Length(T )− 2 do

if tid(Ti) ̸= tid(Ti+1) then
if j ← Find(T, i+ 1, λj.tid(Ti) = tid(Tj)) then

Move(T, j, i+ 1)
r ← true

# push actions forwards
i← 0
while i < Length(T )− 1 do

if tid(Ti) ̸= tid(Ti+1) then
if j ← Find(T, i+ 1, λj.tid(Ti) = tid(Tj), Ti) then

Move(T, i, j − 1)
r ← true
continue

i← i+ 1

Listing 54: The trace simplification algorithm. Swap swaps two entries by index.
Movemoves an element to a new index, shifting all other elements. Delete removes
an element by index. Find(T, i, λ . . .) finds the first element, starting from index i,
whichmeets the predicate, and returns its index if it is independent with all the interven-
ing elements. Find(T, i, λ . . . , a) finds the first element, starting from index i, which
meets the predicate, and returns its index if a is independent with all the intervening
elements.
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Our integration tests fall into the following classes:

– Single threaded tests for the MonadConc primitives, ensuring that only the single
correct behaviour is observed.

– Multi-threaded tests for the MonadConc primitives, ensuring that the expected
nondeterminism is observed.

– So-called litmus tests for the relaxed memory implementation, ensuring that all
expected relaxed behaviours are observed.

– Acopy of the async library’s (Marlow 2017) test suite, for our MonadConc version.
– A collection of refinement tests from CoCo, which we shall discuss in Chapter 7.
– Finally, a collection of regression tests for previous bugs.

Example programs Finally, we have a collection of larger integration testswhich serve
also as example usages of Déjà Fu, three of which we discuss in Section 5.9: the monad-
par library (Marlow and R. R. Newton 2016; Marlow, R. Newton, and Peyton Jones
2011), the auto-update library (Snoyman 2016), and the async library (Marlow 2017).

5.8.1. Correct Execution

Correctness of execution asks: can the result of an arbitrary execution of Déjà Fu’s test-
ing implementation can be obtained in reality? Furthermore, do all real-world executions
correspond to a possible execution under Déjà Fu?

Program behaviour There is no standard for concurrent Haskell. There is only what
GHC provides. The behaviour of many operations is clear, but for some it is not. IORef
operations are particularly complicated, as their behaviour depends on the underlying
memory model, which is unspecified. We chose TSO, and assume that the GHC opti-
miser or code generator does not affect the memory model.

There are some intentional semantic differences for practical reasons. For example,
GHC can sometimes detect deadlocks involving only a subset of the threads. We cannot
do this. Although the behaviour of Déjà Fu is not correct with respect toGHC-compiled
behaviour in all cases, we claim it is close enough to be useful.

Possible executions Our stepwise execution of concurrent programs allows a schedul-
ing decision to be made between each primitive action, which does not correspond to
how GHC handles scheduling:

GHC implements pre-emptive multitasking: the execution of threads are
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bottom = do
fork (last [1..])
pure ()

Listing 55: A program that does not halt under Déjà Fu but does under GHC.

interleaved in a random fashion. More specifically, a thread may be pre-
empted whenever it allocates some memory, which unfortunately means
that tight loops which do no allocation tend to lock out other threads (this
only seems to happen with pathological benchmark-style code, however).
(The GHC Developers 2017a)

So there are executions involving the pre-emption of the evaluation of non-terminating
expressions which are possible under GHC but not under Déjà Fu. However, Déjà Fu
is even worse than this with bottom values. The program in Listing 55 will fail to termi-
nate, even if the thread with the infinite computation is never scheduled, as Déjà Fu will
hang trying to compute the continuation so it can call the scheduler.

5.8.2. Correct Testing

Correctness of testing asks: are the schedule prefixes generated by theDPORmachinery
valid? Furthermore, are there any possible results for which no schedule will be gener-
ated? This is different to the testing framework generating every schedule, as that is
precisely what DPOR tries to avoid.

Prefix validity Executions are stored internally as a stack, shown in Listing 56. The
sequence of thread IDs corresponding to this stack represents a complete execution of
the program. There is a unique initial state, where only the initial thread is runnable and
nothing has been done. We have some well-formedness properties:

1. Every thread in the to-do set is runnable.
2. Every thread in the done set is runnable.
3. The taken set is a subset of the done set.
4. The done and to-do sets are disjoint.
5. The next-taken thread, if there is one, is in the done set.

These properties should hold inductively over the whole state. We check these in-
variants everywhere a DPOR value is constructed, and abort if the state is invalid. In the
Déjà Fu testsuite, the execution time overhead of this checking is 3%.
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data DPOR = DPOR
{ dporRunnable :: Set ThreadId
-- ^ What threads are runnable at this step.
, dporTodo :: Map ThreadId Bool
-- ^ Follow-on decisions still to make, and whether that decision
-- was added conservatively due to the bound.
, dporNext :: Maybe (ThreadId, DPOR)
-- ^ The next decision made.
, dporDone :: Set ThreadId
-- ^ All transitions which have been taken from this point,
-- including conservatively-added ones.
, dporSleep :: Map ThreadId ThreadAction
-- ^ Transitions to ignore until a dependent transition happens.
, dporTaken :: Map ThreadId ThreadAction
-- ^ Transitions which have been taken, excluding
-- conservatively-added ones.
} deriving (Eq, Show)

Listing 56: The DPOR state is a stack of scheduling decisions.

The prefixes we generate are sequences of taken decisions followed by a single to-do
decision. Bymaximising the length of prefixes, we obtain a depth-first search of the space
of schedules. Provided the well-formedness properties hold, and the runnable sets are
correctly recorded during execution, then a generated schedule prefix will be valid.

Schedule completeness The DPORmachinery should eventually find every possible
result of a given program. However, as schedule bounding is involved, some results may
not be reached. So instead we require that, for all sets of bounds, all results possible
subject to those bounds show up under testing with the same bounds. Our core testing
algorithm satisfies this property (Coons, Madan Musuvathi, and McKinley 2013).

5.9. Case Studies

We now discuss the process and results of applying Déjà Fu to three Haskell libraries:

1. We identify and fix a deadlock in themonad-par library (Marlow andR. R.Newton
2016; Marlow, R. Newton, and Peyton Jones 2011).

2. We reproduce a known deadlock in the auto-update library (Snoyman 2016).
3. Weuse property-based testing to reproduce a knownbug in the async library (Mar-

low 2017).

Wechose these libraries because each is by proficientHaskell programmerswell versed
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with concurrency, and yet they all contain unintentional bugs. This shows that even
those familiarwith the standard pitfalls of concurrent programming encounter problems.

None of these libraries is written using the MonadConc abstraction, so we had tomod-
ify the existing code before we could test them with Déjà Fu.

5.9.1. monad-par

The monad-par library (Marlow and R. R. Newton 2016; Marlow, R. Newton, and Pey-
ton Jones 2011) provides a traditional-looking concurrency abstraction, giving the pro-
grammer threads and mutable state, however it is deterministic. Determinism is en-
forced by restricting shared state: it is an error to write more than once to the same mu-
table variable, and read operations block until a value has beenwritten. Programswritten
using the library will either give a deterministic result, or terminate with amultiple-write
error. These shared variables, called IVars, implement futures (Marlow, R. Newton,
and Peyton Jones 2011). Despite its limitations, the library can be effective in speeding
up pure code (Marlow, R. Newton, and Peyton Jones 2011).

The library provides six different schedulers. We ported the “direct” scheduler, a
work-stealing scheduler, to the MonadConc typeclass. This was a straightforward and
compiler-driven refactoring. Changing function types to use MonadConc rather than IO
led to compiler errors showing where the next changes needed to be made. We iterated
this process of fixing errors and recompiling until the library successfully compiled once
more. Changes were needed in two of the source files.

Some simplifications were made in the conversion process:

– The scheduler creates a pseudorandom number generator for each worker thread.
As systematic testing requires that the scheduler be the only source of nondeter-
minism, we fixed the random seeds: the first worker thread gets the seed zero, the
second gets the seed one, and so on.

– The scheduler uses the C pre-processor to choose between different implemen-
tations of some of its functionality. There are nine flags, each of which are inde-
pendent. We only ported and tested the default configuration.

– The scheduler includes some debugging code for detecting and reporting errors.
We removed it.

Listing 61 on page 99 shows the original and converted versions of the scheduler ini-
tialisation code. As can be seen, they are similar, even though this is a core component of
a rather sophisticated library, where the types have been changed. Table 4 breaks down
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Direct.hs DirectInternal.hs

Language extensions 1 0
Module imports 6 1
Type definitions 7 13
Type signatures 32 7
Function renames 2 0
Logic changes 16 0

Total 75 26

Table 4: Breakdown of changes to port the monad-par “direct” scheduler.

parfilter :: (MonadConc m, NFData a) => (a -> Bool) -> [a] -> Par m [a]
parfilter _ [] = pure []
parfilter f [x] = pure (if f x then [x] else [])
parfilter f xs = do

let (as, bs) = halve xs
v1 <- Par.spawn (parfilter f as)
v2 <- Par.spawn (parfilter f bs)
left <- Par.get v1
right <- Par.get v2
pure (left ++ right)

where
halve xs = splitAt (length xs `div` 2) xs

Listing 57: An example usage of the monad-par library.

the changes across both files. Code changes are broken down into “renames,” where the
concurrency library simply provides a different name for a function, and “logic,” where
that was not the case. The logic changes were either: (1) places where a call to liftIO
or lift was now necessary; or (2) inserting uses of getNumCapabilities.

Listing 57 shows an example usage of the library. This parfilter function filters a
list in parallel, using a divide-and-conquer approach. If the list is not empty or a single-
ton, it is split in half and a new thread created to filter each half. The results of each new
thread are combined to produce the overall result. The library requires all shared state
have an instance of the NFData typeclass, which provides an operation to evaluate data
to normal form. The library gains its speed by evaluating data in separate threads.

Finding a deadlock Listing 58 shows a test case for parfilter. A parallel filter
should produce the same result as a normal filter. Table 5 shows performance mea-
surements for our test case, with the input list [0..5], in six different configurations.
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test_parmonad :: (MonadConc m, MonadIO m) => [Int] -> m Bool
test_parmonad xs = do

let p x = x `mod` 2 == 0
s <- runPar (parfilter p xs)
pure (s == filter p xs)

Listing 58: A test case comparing a parallel filter to a normal filter.

Schedules Deadlocks Time (s) Max Residency (MB)

Bounded DPOR 6140 0 35.1 339
Unbounded DPOR ≥ 16GiB
Swarm 100 2 0.17 21

(a) Keeping all execution traces in memory.

Schedules Deadlocks Time (s) Max Residency (kB)

Bounded DPOR 6140 0 27.9 842
Unbounded DPOR ≥ 48hrs
Swarm 100 2 0.14 1600

(b) Only keeping buggy execution traces in memory.

Table 5: Performance of the monad-par case study with three different exploration tac-
tics. UnboundedDPORwas aborted in both cases, after consuming toomany resources.

The numbers do not look so good for DPOR. Swarm managed to find two deadlocking
executions out of 100, whereas bounded DPOR found none in 6140. Unbounded DPOR
did not complete at all: it rapidly consumed all the memory of the host system when
keeping traces in memory, and was still running after two days while discarding traces.

When we inspect one of the execution traces leading to deadlock, we gain two clues
for why DPOR performs poorly: (1) the trace is 793 entries long, but the length bound
for DPOR is 250; and (2) there are 473 calls to liftIO, Déjà Fu considers all IO actions
dependent and so tries every possible interleaving of these.

Following the code by eye as we read a 793-entry trace is not realistic. So instead, let’s
look at the last few entries in the trace, shown in Listing 59. Each trace entry is a tuple
consisting of the scheduling decision made, the alternative decisions possible, and what
the thread did. As this is right before deadlock, it is not surprising that there are no other
threads which could be scheduled. There are only four calls to getNumCapabilities
in the code we ported. We can look at each, to find the code which matches the trace.
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(Continue,[],LiftIO)
(Continue,[],LiftIO)
(Continue,[],LiftIO)
(Continue,[],ReadIORef 2)
(Continue,[],LiftIO)
(Continue,[],NewMVar 7)
(Continue,[],ModIORef 4)
(Continue,[],GetNumCapabilities 2)
(Continue,[],BlockedTakeMVar 7)

Listing 59: The final ten entries of the deadlocking monad-par trace.

go 0 _ | _IDLING_ON =
do m <- newEmptyMVar

r <- modifyHotVar idle (\is -> (m:is, is))
numCapabilities <- getNumCapabilities
if length r == numCapabilities - 1
then do
mapM_ (\vr -> putMVar vr True) r

else do
done <- takeMVar m
if done

then do
return ()

else do
i <- getnext (-1::Int)
go (maxtries numCapabilities) i

Listing 60: The source of the deadlock in the monad-par library. In the “then” branch
of the conditional, the idle list is not emptied when waking every blocked thread.
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Listing 60 is our match. When a thread is unable to steal work, it creates an empty
MVarwhich it adds to a shared list, called idle; if that list already has an entry for every
other thread, they are woken by writing a value to their MVar; otherwise, the thread
blocks by calling takeMVar on its new, empty, MVar. The final fragment of our execution
trace corresponds to this code where length r == numCapabilities - 1 is false.
But how can that be false? The list is never emptied! Think about what happens if every
thread reaches this logic twice:

1. n - 1 threads add themselves to the list, and block.
2. The final thread adds itself to the list, and wakes up the other threads.
3. The list is not emptied, even though every thread is woken.
4. n - 1 threads add themselves to the list, again, and block.
5. Thefinal thread adds itself to the list. It does not trigger thewake-up logic, because

the list is not the right length, and so it also blocks.
6. Every thread is now blocked.

We can confirm our suspicion by checking the trace. Each thread does exhibit that
pattern twice, so our deduction is correct. This problem is solved by writing [] to idle
before waking the threads. The write must happen before, otherwise there is a new race
condition: one of the woken threads could add itself to the list again, and then its MVar
be lost when the list is cleared.

Handling an exception When running our test case in a loop using IO, to verify that
we really had fixed the problem, another issue arose which Déjà Fu did not find. After
a while, the main thread would be killed by a BlockedIndefinitelyOnMVar excep-
tion. Such exceptions are out of scope (§5.1.2), so Déjà Fu could never find this new
problem. There is always a gap between the real system and the model. Déjà Fu is just
one component of the Haskell programmer’s toolbox, it is not the be-all and end-all for
concurrency testing. However, for the class of bugs which Déjà Fu can find, it is much
more effective than simply running the program in IOmany times.

By turning on the library’s debugging output, and adding some more of our own, we
were able to track the problem down to the same logic as before, Listing 60. A thread
was still getting blocked here, despite our fix for the deadlock. How can a thread get
blocked indefinitely there if we make sure the last thread wakes up the others? The num-
ber of workers is assumed to be equal to the number of capabilities! If even a single worker
terminates, all the others will block.
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Fortunately, the relevant source code is not extensive. We were able to quickly as-
certain that the library divides its workers into two categories: there is a single main
worker, which communicates the result of the computation back to its caller and termi-
nates when done; and there are all the other workers. The other workers do check if the
computation is complete, but only in certain places. So this was happening:

1. A non-main worker checks if the computation is complete, and sees that it is not.
2. The same worker blocks itself as usual.
3. The computation finishes, and the main worker terminates.
4. The GHC runtime delivers an exception to the blocked worker.

It is harmless for the worker to be blocked at this point, as the overall computation
is long-complete, and the result communicated back to the user. However, each worker
thread is given an exception handler which throws any received exception to its creator.
In this case, the creator was the main thread, so the whole program is terminated. The
solution is to check if the computation has terminated before blocking.

5.9.2. auto-update

The auto-update library (Snoyman 2016) runs tasks periodically, but only if needed. For
example, a web server may handle each request in a new thread, and log the time that
the request arrives. Rather than have every such new thread check the time, one thread
could be created to update a single shared IORef every second. However, if the request
frequency is less than once per second, this is wasted work. The library allows defining
a periodic action which only runs when needed.

The implementation, excluding comments and imports, is reproduced in Listing 64.
The library defines a function, mkAutoUpdate, which forks a worker thread to perform
the action when required. The function returns an IO action to read the current result,
if necessary blocking until there is one. The transformation to the MonadConc typeclass
is straightforward, and we omit it here.

Listing 62 shows an example usage of the MonadConc version of the library. The
defaultUpdateSettings value describes an auto-updater which runs every second,
producing the value (). An MVar is used to communicate to the thread that the updater
should run. Inside the worker, a delay is used to ensure that the action is not computed
too frequently: this is what gives the rate limiting. So we create an auto-updater which
produces (), and immediately demand the value.
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makeScheds :: Int -> IO [Sched]
makeScheds main = do

workpools <- replicateM numCapabilities $ R.newQ
rngs <- replicateM numCapabilities $ Random.create >>= newHotVar
idle <- newHotVar []
sessionFinished <- newHotVar False
sessionStacks <- mapM newHotVar
(replicate numCapabilities [Session baseSessionID sessionFinished])

activeSessions <- newHotVar S.empty
sessionCounter <- newHotVar (baseSessionID + 1)
let allscheds = [ Sched { no=x, idle, isMain=(x==main), workpool=wp,

scheds=allscheds, rng=rng, sessions=stck
sessionCounter, activeSessions

}
| x <- [0 .. numCapabilities-1]
| wp <- workpools
| rng <- rngs
| stck <- sessionStacks
]

pure allscheds

(a) Original

makeScheds :: (MonadConc m, MonadIO m) => Int -> m [Sched m]
makeScheds main = do

numCapabilities <- getNumCapabilities
workpools <- replicateM numCapabilities $ liftIO R.newQ
let rng i = liftIO (Random.initialize (V.singleton $ fromIntegral i))
rngs <- mapM (\i -> rng i >>= newHotVar) [0..numCapabilities]
idle <- newHotVar []
sessionFinished <- newHotVar False
sessionStacks <- mapM newHotVar
(replicate numCapabilities [Session baseSessionID sessionFinished])

activeSessions <- newHotVar S.empty
sessionCounter <- newHotVar (baseSessionID + 1)
let allscheds = [ Sched { no=x, idle, isMain=(x==main), workpool=wp,

scheds=allscheds, rng=rng, sessions=stck
sessionCounter, activeSessions

}
| x <- [0 .. numCapabilities-1]
| wp <- workpools
| rng <- rngs
| stck <- sessionStacks
]

pure allscheds

(b) Déjà Fu

Listing 61: The monad-par “direct” scheduler initialisation.
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test_autoupdate :: MonadConc m => m ()
test_autoupdate = do
auto <- mkAutoUpdate defaultUpdateSettings
auto

Listing 62: An example usage of the auto-update library.

> autocheck test_autoupdate

[fail] Never Deadlocks
[deadlock] S0--------S1-----------S0-

[pass] No Exceptions
[fail] Consistent Result

() S0--------S1--------p0--

[deadlock] S0--------S1-----------S0-

Listing 63: UsingDéjà Fu to run a collection of standard tests. The autocheck function
looks for deadlocks, uncaught exceptions in themain thread, and nondeterminism. Each
result is displayed with a simplified view of a representative execution trace.

Testing with Déjà Fu Listing 63 shows one way in which we can use Déjà Fu to ex-
plore the behaviour of our small example. The autocheck function looks for some com-
mon concurrency errors. In this example, Déjà Fu discovers a deadlock. Each result is
displayed with a simplified view of a representative execution trace. More detailed exe-
cution traces are also available, which contain a summary of the primitive actions which
occurred and the alternative scheduling decisions available.

We can see from the trace of the deadlock result that thread 0 executed for a while,
then thread 1, then thread 0 again. As these are all S points, each thread executed until
it blocked. So we can look at the source code in Listing 62 and Listing 64 to see what
Following the execution by eye, we see this sequence of concurrency events:

1. Thread 0:

(a) Line 16: currRef <- newIORef Nothing
(b) Line 17: needsRunning <- newEmptyMVar
(c) Line 18: lastValue <- newEmptyMVar
(d) Line 20: void $ forkIO $ ...
(e) Line 35: mval <- readIORef currRef
(f ) Line 39: void $ tryPutMVar needsRunning ()
(g) Line 40: readMVar lastValue
(h) Thread 0 is now blocked, as lastValue is empty.
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2. Thread 1:

(a) Line 21: takeMVar needsRunning
(b) Line 25: writeIORef currRef $ Just a
(c) Line 26: void $ tryTakeMVar lastValue
(d) Line 27: putMVar lastValue a
(e) Thread 0 is now unblocked, as lastValue is full.
(f ) Line 29: threadDelay $ updateFreq us
(g) Line 31: writeIORef currRef Nothing
(h) Line 32: void $ takeMVar lastValue
(i) Thread 0 is still unblocked, even though lastValue is now empty again.
(j) Thread 1 now loops.
(k) Line 21: takeMVar needsRunning
(l) Thread 1 is now blocked, as needsRunning is empty.

3. Thread 0:

(a) Line 40: readMVar lastValue
(b) Thread 0 is now blocked, as lastValue is empty.

Both threads are blocked, so the computation is deadlocked. The other result shown
in Listing 63 occurs if thread 0 starts executing after thread 1 delays. So the root cause
of this deadlock is clear: deadlock may occur if the call to threadDelay on line 29 com-
pletes before the other thread resumes execution. Despite this bug being rather simple,
not requiring any pre-emptions at all to trigger, it arose in practice. How easy it is to
make mistakes when implementing concurrent programs!

Performance of testing Table 6 shows performance measurements for our test case
in six different configurations. Both the library itself and our test case are small, so it is
perhaps no surprise to see that in all configurations, execution only takes a fraction of a
second. We can see the effect of the schedule bounding: when the bounds are disabled,
the number of schedules tried almost doubles, and two new deadlocking executions are
found.

To reduce memory usage, Déjà Fu is able to discard results or execution traces which
the user considers uninteresting in some way. Table 6b shows the impact of this change,
where we have designated non-deadlocking traces as uninteresting. The effect is par-
ticularly significant in the Swarm case, suggesting that Swarm may tend to find longer
execution traces than DPOR.
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1 data UpdateSettings a = UpdateSettings
2 { updateFreq :: Int
3 , updateSpawnThreshold :: Int
4 , updateAction :: IO a
5 }
6

7 defaultUpdateSettings :: UpdateSettings ()
8 defaultUpdateSettings = UpdateSettings
9 { updateFreq = 1000000
10 , updateSpawnThreshold = 3
11 , updateAction = return ()
12 }
13

14 mkAutoUpdate :: UpdateSettings a -> IO (IO a)
15 mkAutoUpdate us = do
16 currRef <- newIORef Nothing
17 needsRunning <- newEmptyMVar
18 lastValue <- newEmptyMVar
19

20 void $ forkIO $ forever $ do
21 takeMVar needsRunning
22

23 a <- catchSome $ updateAction us
24

25 writeIORef currRef $ Just a
26 void $ tryTakeMVar lastValue
27 putMVar lastValue a
28

29 threadDelay $ updateFreq us
30

31 writeIORef currRef Nothing
32 void $ takeMVar lastValue
33

34 pure $ do
35 mval <- readIORef currRef
36 case mval of
37 Just val -> return val
38 Nothing -> do
39 void $ tryPutMVar needsRunning ()
40 readMVar lastValue
41

42 catchSome :: IO a -> IO a
43 catchSome act = catch act $
44 \e -> pure $ throw (e :: SomeException)

Listing 64: The implementation of the auto-update package.
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Schedules Deadlocks Time (s) Max Residency (kB)

Bounded DPOR 49 18 0.006 119
Unbounded DPOR 80 20 0.008 124
Swarm 100 20 0.008 1297

(a) Keeping all execution traces in memory.

Schedules Deadlocks Time (s) Max Residency (kB)

Bounded DPOR 49 18 0.006 71
Unbounded DPOR 80 20 0.006 63
Swarm 100 20 0.006 108

(b) Only keeping buggy execution traces in memory.

Table 6: Performance of the auto-update case study with three different exploration tac-
tics.

5.9.3. async

The async library (Marlow 2017) allows programmers to write asynchronous code with-
out needing toworry about details such as threads, shared state, or exceptions. Listing 65
shows a typical usage of the library. The async function begins executing an IO action
in a new thread. The wait function blocks until the action is done and returns the re-
sult. If the action throws an exception, wait also throws the exception. There is a third
basic operation: cancel, which terminates the thread associated with an asynchronous
action.

Using these three building blocks of async, wait, and cancel, the library provides
a collection of higher-level abstractions which are widely used in the Haskell ecosys-
tem. One of these higher-level abstractions is the Concurrently type, a simple wrap-

downloadBoth :: URL -> URL -> IO (String, String)
downloadBoth url1 url2 = do
a1 <- async (download url1)
a2 <- async (download url2)
page1 <- wait a1
page2 <- wait a2
pure (page1, page2)

Listing 65: A typical usage of the async library. BothURLs are downloaded concurrently
in separate threads.
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ap :: Monad m => m (a -> b) -> m a -> m b
ap f a = do
f' <- f
a' <- a
pure (f' a')

Listing 66: The ap function.

per around IO, which allows concurrently composing actions with the Applicative
<*> operator. The two arguments to <*> are computed concurrently in separate threads,
and then combined. Listing 71 on page 108 gives the implementation of Concurrently.

In Haskell, we like our typeclasses to have laws specifying how instances should be-
have. Without such a specification, it is impossible to write typeclass-polymorphic func-
tions with any reasonable expectation of what will happen. These laws are not checked
by the compiler: GHC is no theorem prover. Rather, it is up to the author of a type-
class instance to ensure that they follow all appropriate laws. Failure by a library author
to follow the laws can lead to unexpected behaviour for users. As Applicative is a
superclass of Monad, it should come as no surprise that there is a law relating the two:
specifically, that <*> = ap. The definition of ap is given in Listing 66.

The ap law does not hold for the Concurrently monad4! With the benefit of hind-
sight, the cause is clear: <*> runs its arguments concurrently, whereas ap has no choice
but to run its arguments sequentially. If the two arguments can concurrently interfere
with each other, then <*> exhibits more nondeterminism than ap.

Property-testing typeclass laws Could Déjà Fu have helped here? We believe so. By
changing the Concurrently type to be polymorphic over the underlying monad, we
can substitute in any MonadConc. We can then test the laws. We used QuickCheck
(Claessen and Hughes 2000) for this, but any property-testing tool which can generate
functions and check monadic properties would do.

Listing 67 shows a passing property. There is no concurrent interference between the
two arguments to <*> and ap, so the bug does not manifest. For the reader unfamiliar
with QuickCheck: Fun a b represents a function of type a -> b. The property runs
both concurrent actions with Déjà Fu, and compares the sets of results. The property
passes if and only if the sets of results are equal. This is one way in which two concurrent
programs can be equivalent, we discuss this idea further in Chapter 7 where we extend
our notion of equivalence to stateful computations.

4 https://github.com/simonmar/async/pull/26
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prop_monad_ap1 :: Ord b => Fun a b -> a -> Property
prop_monad_ap1 (apply -> f) a = (pure f <*> pure a) `eq` (pure f `ap` pure a)

eq :: Ord a => Concurrently ConcIO a -> Concurrently ConcIO a -> Property
eq (Concurrently left) (Concurrently right) = monadicIO $ do

l <- resultsSet defaultWay defaultMemType left
r <- resultsSet defaultWay defaultMemType right
assert (l == r)

Listing 67: The <*> = ap law, with no concurrent interference.

prop_monad_ap2 :: Ord b => Fun a b -> Fun a b -> a -> Property
prop_monad_ap2 (apply -> f) (apply -> g) a = go (<*>) `eq` go ap where
go combine = do
flagvar <- newEmptyMVar
let cf = do { flag <- tryPutMVar flagvar (); pure (if flag then f else g) }
let ca = do { tryPutMVar flagvar (); pure a }
pure (Concurrently cf `combine` Concurrently ca)

Listing 68: The <*> = ap law, with concurrent interference.

Our prop_monad_ap1 property is uninteresting in a sense because it is clearly free
from concurrency errors: the very errors which we want to detect! It is free of them
because the arguments to <*> and ap are pure values, so there can be no concurrent
interference between them. To observe the law being broken, we must create a race
condition.

Listing 68 contains a race condition. Wenowgenerate two functionswithQuickCheck.
When executing the concurrent action, we use an MVar to decide which function to use.
If the MVar is emptywe use the first function, if it is full we use the second. If the combin-
ing function, <*> or ap, executes its arguments concurrently we will see both functions
tried; if it executes its arguments sequentially, wewill only see the first function. Indeed,
we do see the bug. Listing 69 gives the QuickCheck and Déjà Fu outputs.

Performance of testing Table 7 shows performancemeasurements for a variant of our
test case. We cannot give the property itself to Déjà Fu, so we extract the MonadConc
computation and hard-code the parameters generated by QuickCheck, shown in List-
ing 70. As in the auto-update case study, this is a small test case, so it is perhaps unsur-
prising that it is fast and requires little memory. Once again, we see that Swarm requires
more memory than DPOR, even taking the increased number of schedules tried into
account.
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> quickCheck prop_monad_ap2
*** Failed! Falsifiable (after 3 tests and 8 shrinks):
{_->""}
{_->"a"}
0

(a) The QuickCheck output.

> resultSet defaultWay defaultMemType (go (<*>) (\_ -> "") (\_ -> "a") 0)
fromList [Right "",Right "a"]

> resultSet defaultWay defaultMemType (go ap (\_ -> "") (\_ -> "a") 0)
fromList [Right "a"]

(b) The Déjà Fu output.

Listing 69: The result of the failing <*> = ap property.

The benefit of hindsight We have the benefit of knowing about the bug, leading us
to the correct test. Is it unrealistic to expect a user to have the foresight to write a test
like this in the beginning? We think not. When implementing functions for combining
concurrent actions, it is no great leap to wonder what happens if there are races between
these actions. The property may appear contrived, but it is a natural way to investigate
the effect of a race condition in the <*> = ap law.

Schedules Failures Time (s) Max Residency (kB)

Bounded DPOR 17 2 0.002 131
Unbounded DPOR 30 3 0.004 135
Swarm 100 37 0.012 1360

(a) Keeping all execution traces in memory.

Schedules Failures Time (s) Max Residency (kB)

Bounded DPOR 17 2 0.004 92
Unbounded DPOR 30 3 0.009 85
Swarm 100 37 0.011 648

(b) Only keeping buggy execution traces in memory.

Table 7: Performance of the <*> = ap test case with three different exploration tactics.
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test_concurrently :: MonadConc m => m Bool
test_concurrently = do

l <- go (<*>)
r <- go ap
pure (l == r)

where
go combine = runConcurrently $ do

flagvar <- newEmptyMVar
let cf = do { flag <- tryPutMVar flagvar (); pure (if flag then f else g) }
let ca = do { tryPutMVar flagvar (); pure a }
pure (Concurrently cf `combine` Concurrently ca)

f = \_ -> ""
g = \_ -> "a"
a = 0

Listing 70: The <*> = ap test case, with the generated functions hard-coded.
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newtype Concurrently a = Concurrently { runConcurrently :: IO a }

instance Functor Concurrently where
fmap f (Concurrently a) = Concurrently (fmap f a)

instance Applicative Concurrently where
pure = Concurrently . pure

Concurrently fs <*> Concurrently as =
Concurrently (fmap (\(f, a) -> f a) (concurrently fs as))

instance Monad Concurrently where
return = pure

Concurrently a >>= f =
Concurrently (a >>= runConcurrently . f)

concurrently :: IO a -> IO b -> IO (a, b)
concurrently left right = concurrently' left right (collect []) where
collect [Left a, Right b] _ = pure (a, b)
collect [Right b, Left a] _ = pure (a, b)
collect xs m = do
e <- takeMVar m
case e of
Left ex -> throw ex
Right r -> collect (r:xs) m

concurrently'
:: IO a
-> IO b
-> (MVar (Either SomeException (Either a b)) -> IO r)
-> IO r

concurrently' left right collect = do
done <- newEmptyMVar
mask $ \restore -> do
let run a r = restore (a >>= putMVar done . Right . r)

`catch` (putMVar done . Left)
lid <- fork (run left Left)
rid <- fork (run right Right)
let stop = killThread rid >> killThread lid
r <- restore (collect done) `onException` stop
stop
pure r

Listing 71: The implementation of the Concurrently type.
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5.10. Evaluation

A tool is effectively useless if it is too difficult to use. The main obstacle to the use
of Déjà Fu is existing libraries which use IO; a programmer cannot simply use liftIO
everywhere, without sacrificing completeness in all but simple cases. Ideally, existing
libraries would be modified to support the MonadConc abstraction. However, this does
not seem a likely short-term goal, and so a more promising way to approach the problem
is to provide alternatives to existing libraries. As adapting code to MonadConc is often
straightforward, as seen in the monad-par case study (§5.9.1), this is a viable solution.

Users Although Déjà Fu is a small one-man project, it does have some users and con-
tributors. Ten users have opened issues on theGitHub issue tracker; a further three have
asked me for help over IRC and email; and ten have made small contributions. Two fea-
tures came directly from user requests, motivated by performance concerns in large test
cases: (1) random scheduling, which we discuss further in Chapter 6; and (2) the ability
to discard uninteresting results or execution traces as they are discovered, before evalu-
ating the predicate at the end. This second feature can have a significant impact. If you
are interested in a particular failure, it is much better to discard those results which do
not exhibit the failure as they are discovered, rather than keep them around in memory
until the end. Figure 14 shows the effect of this on a simple test of MVar contention.

Tweag I/O5, a research and development company based in Paris, are usingDéjà Fu as
part of their work on a distributed system for the SAGE project6, which is investigating
storage systems for future supercomputers. They cannot share details of their work for
commercial reasons, but one developer had this to say (emphasis mine):

Regarding the test case: we have an implementation of a distributed stor-
age cluster, with possibly many nodes and parallel requests. The storage
system itself is composed of several layers, which can be stacked on top of
one another. There is a lot of asynchronicity involved. As per the tests
themselves, I am testing parallel requests over different objects, etc.
I’d like to add that dejafu tests are by far the most reliable tests in our suite, in
my experience - I am yet to see a concurrency bug that they didn’t spot, while some
other tests missed them! (Tweag I/O developer 2017)

5 http://www.tweag.io/
6 http://www.sagestorage.eu/
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(a) Keeping all results and traces in memory. (b) Discarding all traces, just keeping results.

Figure 14: Heap profiles of a test case for MVar contention. Note the dramatic difference:
250Mwithout discarding vs 60kwith. These plots are intended to be viewedwith colour.

5.10.1. Richness of the Abstraction

As we noted in Section 5.1.2, there are some areas which we do not currently aim to
support with Déjà Fu:

– Blocking a thread until a file descriptor becomes available, as this introduces an
additional source of nondeterminism.

– Throwing an exception to a thread if it becomes deadlocked, as we cannot reli-
ably detect deadlock involving only a subset of threads without support from the
garbage collector.

– Querying which capability (OS thread) a Haskell thread is running on, as this in-
troduces an additional source of nondeterminism.

These three areas are out of scope because we believe that the desire for this function-
ality does not outweigh the implementation cost. We will look for a way, if that belief
changes.

Introducing additional sources of nondeterminism into an SCT model is difficult.
Simply introducing additional threads to model the nondeterminism can cause an ex-
plosion of schedules tested, which is unsatisfactory. MonadConc will always be limited
to what Déjà Fu can reasonably support.
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instance MonadLogger (LoggerT STM) where -- ...
instance MonadLogger (LoggerT IO) where -- ...

Listing 72: Concrete instances for a typeclass-based logging abstraction.

instance MonadSTM m => MonadLogger (LoggerT m) where -- ...
instance MonadConc m => MonadLogger (LoggerT m) where -- ...

Listing 73: Overlapping instances for a typeclass-based logging abstraction.

However we can still push back the boundaries of what Déjà Fu supports. Bound
threads, Haskell threads which always run on the same unique OS thread, were once
out of scope as well. This made it impossible to use some C libraries with MonadConc.
Now we have a prototype implementation7 which shows promise, and which we intend
to release.

5.10.2. Writing and Porting Class-polymorphic Code

We saw in the Par monad example that porting complex code to the MonadConc ab-
straction is not necessarily a difficult process. However, this is not always the case. Re-
cently a user tried to port a logging abstraction they made to MonadConc. Expressing
this with MonadConc and MonadSTM is not straightforward, as constraints do not factor
into instance selection. So the instances in Listing 73 overlap, and are illegal in standard
Haskell.

After some work, we introduced new IsSTM and IsConc types to disambiguate be-
tween the two cases, and ended up with Listing 74. The amount of effort required to ar-
rive at this solution led to the user questioning whether classes like their MonadLogger
were even a useful abstraction at all8! This is a good topic to think about, but it should
not be prompted by the effort of trying to use Déjà Fu.

So while porting code to the MonadConc typeclass is often simple when dealing with
datatype and function definitions, it can be more complicated when dealing with type-
classes. It is not clear what can be done to improve this matter.
7 https://github.com/barrucadu/dejafu/issues/126
8 https://www.reddit.com/r/haskell/comments/7b1fbk/do_mtlstyle_effect_classes_
really_pull_their/

instance MonadSTM m => MonadLogger (LoggerT (IsSTM m)) where -- ...
instance MonadConc m => MonadLogger (LoggerT (IsConc m)) where -- ...

Listing 74: Polymorphic instances for a typeclass-based logging abstraction.
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5.10.3. Library Alternatives

There are popularHaskell libraries specifically for concurrency. One of these is the async
library (Marlow 2017), part of which we looked at as a case study (§5.9.3), for expressing
asynchronous computations. This library is intended to be a higher-level and saferway of
expressing asynchronous computations with guaranteed cleanup than using threading,
mutable state, and asynchronous exceptions directly.

Our concurrency library, which provides MonadConc, includes an alternative to async
using MonadConc. There is a test suite using Déjà Fu. The test suite for async itself just
runs most tests a single time, although one of them is run 1000 times. Using Déjà Fu
here to automatically seek out interesting schedules is a muchmore principled approach
then repetition and hope. Not all features of async are supported, however. As we do
not currently support bound threads, functions that use them have been omitted.

This is just one library, and providing an alternative library that people will have
to switch to is far from optimal. However, until library authors start to use Déjà Fu
and MonadConc directly, such alternatives will be needed to answer the question ‘Why
should I use this if I cannot use it with anything I use already?’

5.10.4. Tool Integration

There are two popular libraries for unit testing inHaskell, HUnit (Herington andHengel
2017) and Tasty (Cheplyaka 2018). From the perspective of the user, the libraries are
similar, but from the perspective of the implementer, they have different approaches to
integration. The hunit-dejafu (Walker 2018a) and tasty-dejafu (Walker 2018b) packages
provide integration with both.

These packages provide analogues of the Déjà Fu functions, but using the interface of
the testing frameworks, rather than computing and printing results directly. The test-
framework (Bolingbroke 2017) library is also in common use, however it supports inte-
gration with HUnit, and so needs no special support of its own.

The Tasty library is more featureful than HUnit, supporting progress reporting, giv-
ing a message on success as well as failure, and command-line arguments. The tasty-
dejafu package is similar to the hunit-dejafu package and does not make use of these
additional features.
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5.11. Summary

In this chapter we presented Déjà Fu, our tool for testing concurrent Haskell programs:

– We provide a typeclass abstraction over concurrency. Such an abstraction allows
IO to be swapped out and replaced with another implementation (§5.2).

– We implemented a model of Haskell concurrency (§5.4), with an empirically de-
rived operational semantics (§5.5), so that we can simulate the behaviour of GHC.
Our model includes most of the Control.Concurrent library module, although
some operations are out of scope, or have their behaviour changed (§5.1.2).

– We use bounded partial-order reduction (Coons, MadanMusuvathi, andMcKin-
ley 2013) with relaxed memory (Zhang, Kusano, andWang 2015) as the core test-
ing algorithm for Déjà Fu, but also support a controlled random scheduling ap-
proach (§5.6).

– Wehave not attempted a formal proof of correctness of Déjà Fu, but havemade an
informal correctness argument, noting the limits of how correct Déjà Fu can be.
We do have a comprehensive test suite, and check what correctness conditions we
can (§5.8).

– We have discussed three case studies, all of which involved applying Déjà Fu to
pre-existing code. Such code must be modified to use the Déjà Fu typeclass ab-
straction, but we have found this to be a straightforward and type-directed process
in most cases (§5.9).

Although a commonly reported experience amongst Haskell programmers is that “if
it compiles, it works,” there are times when it does not work. Concurrency is a partic-
ularly difficult area to get right, as everyone who has had to move outside the realm of
guaranteed determinism will know. By developing Déjà Fu, we hope that concurrency
in Haskell will become a little easier to get right.

Context Déjà Fu does not stand alone, it is related to our other contributions:

– Chapter 6 discusses a new random scheduling algorithm for incomplete concur-
rency testing. The chapter does not directly build on Déjà Fu, but Déjà Fu imple-
ments the algorithm.

– Chapter 7 discusses a new property-discovery tool for functions operating on mu-
table state. The tool directly builds on Déjà Fu in two ways: (1) to discover these
properties, and (2) by providing an interface for Déjà Fu to check them.
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Chapter 6

Scheduling Algorithms

We have seen that the complete-within-a-bound approach of DPOR is not suitable for
some programs. Programs with large state-spaces, or with sources of nondeterminism
other than the scheduler, pose a problem. One way to address this is to sacrifice com-
pleteness, and instead explore the space of schedules randomly. Wemay not find all bugs.
However we still want to findmost of them. Benchmarks show that some scheduling algo-
rithms tend to be better at this than others; not all algorithms are created equal. In this
chapter we discuss two different randomised scheduling algorithms (§6.1) and then pro-
pose a new one based on a weighted random selection of threads (§6.2). We show that
our proposed algorithm performs favourably in a comparison of standard benchmark
programs (§6.3), and evaluate the approach (§6.4).

6.1. Concurrency Testing with Randomised Scheduling

Concurrency testing using randomised scheduling works by repeatedly executing a con-
current program, exploring a particular schedule on each execution. Unlike systematic
testing, these algorithms are incomplete in general, and little effort ismade to avoid repe-
tition of schedules. In this sectionwe present two approaches to randomised scheduling.

Controlled randomscheduling Acontrolled randomscheduler uses a pseudorandom
number generator to choose threads to execute. At each scheduling point, a runnable
thread is selected at random. This thread is then executed until the next scheduling
point. Like any controlled scheduling technique, the executed schedule can be recorded
and replayed. Additionally, a controlled random scheduler can be used on programs
that exhibit nondeterminism beyond scheduler nondeterminism, although in this case
schedule replay will be unreliable (Thomson, Donaldson, and Betts 2016).
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Probabilistic concurrency testing The PCT algorithm (Burckhardt et al. 2010) is a
randomised algorithm with a probabilistic guarantee of finding bugs. Key to its design
is a notion of the depth of a bug: the minimum number of scheduling decisions required
to exhibit it. The intuition behind PCT is that most concurrency bugs can be exhibited
with just a few scheduling decisions being made in the correct places, or the incorrect
places depending on your point of view. If PCTmakes those decisions correctly, it finds
the bug regardless of what any other scheduling decisions were.

On each execution, PCT focuses on finding bugs of a particular depth d. PCT uses a
priority-based scheduler where the highest-priority runnable thread is scheduled at each
point. d priority change points are distributed randomly through the execution, which
is why we must know the length, k, of the program. When execution reaches a change
point, the priority of the currently executing thread is changed to a low value.

The algorithm proceeds as follows; given a program with at most n threads and at
most k steps, choose a depth d, then:

1. Randomly assign eachof then threads a distinct priority value from{d, d+1, . . . , d+

n}. The lower priority values {1, . . . , d−1} are reserved for change points.
2. Randomly pick integers c1, . . . , cd−1 from {1, . . . , k}. These will be the priority

change points.
3. Schedule threads strictly according to their priorities: never schedule a thread if

a higher priority thread is runnable. After executing the ci-th step (1 ≤ i < d),
change the priority of the thread that executed the step to i.

In a single run of a program with n threads and k steps, PCT finds a bug of depth d

with probability at least 1/nkd−1.

Dynamic partial-order reduction The algorithmswe discuss in this chapter are alter-
natives to DPOR. They are useful when the program is too big for a complete approach,
even with schedule bounding, and so exploring a representative sample of executions is
all we have left.

There is another approach: combining randomisationwithDPOR. Sen 2007 proposes
the RAPOS algorithm, which uses DPOR to prune the search space, and then explores
a random subset of the partial orders discovered. They show that this approach samples
different partial orders more uniformly than a simple randomised scheduler, and so it is
likely to discover faulty executions more reliably.
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6.2. Weighted Random Scheduling and Swarm Testing

We now present swarm scheduling, our new algorithm for finding concurrency bugs with
controlled scheduling. The algorithm is inspired by swarm testing (Groce et al. 2012), an
approach to finding bugs using random testing more effectively. Swarm testing makes
the observation that, in a random testing tool with many available choices, a uniform
distribution is unlikely to discover bugs which correspond to an unfair result:

As a simple example, consider testing an implementation of a stack ADT
that provides two operations, push and pop. […] To make this example
more interesting, imagine the stack implementation has a capacity bug, and
will crashwhenever the stack is required to holdmore than 32 items. (Groce
et al. 2012)

The authors then argue that tests generated by randomly interleaving push and pop
operations are unlikely to produce a stack with more than 32 items, as items would tend
to be popped as quickly as they are pushed. The proposed alternative is, rather than hav-
ing a single distribution for all tests, generate multiple distributions to encourage greater
variety.

We transfer this idea to the context of scheduling algorithms by observing that con-
trolled random scheduling is much like using a single distribution to generate random
tests. So instead, we assign a randomly chosen weight to each new thread as it is created,
and schedule threads with a weighted random selection. This approach is similar to
PCT, but less deterministic: PCT will always schedule the highest-weighted runnable
thread, whereas our approach is most likely to, but may not. We can also introduce
change points, as in PCT, where we assign the currently executing thread a new weight.

With weight change points included, the algorithm is as follows: given a programwith
at most k steps, choose a range of weights [wmin, wmax] and a bound d, then:

1. Assign the initial thread a weight from [wmin, wmax].
2. Randomly pick integers c1, . . . , cd−1 from {1, . . . , k}. These will be the weight

change points.
3. Schedule threads by aweighted randomselection: at each scheduling point use the

weights of the enabled threads to construct a nonuniform distribution and pick a
thread to run until the next scheduling point. As new threads are created, assign a
weight from [wmin, wmax]. After executing the ci-th step (1 ≤ i < d), change the
weight of the thread that executed the step to a random value from [wmin, wmax].
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Déjà Fu has a Haskell implementation of swarm scheduling and of controlled random
scheduling using a uniform distribution, where the latter is treated as a special case of
swarm scheduling where wmin = wmax.

6.3. Comparing Bug-finding Ability

We shall now see how swarm scheduling compares with PCT in terms of bug-finding
ability. We use a published collection of benchmark programs, SCTBench (Thomson,
Donaldson, and Betts 2016; Thomson, Donaldson, and Betts 2014), and a modified ver-
sion of the Maple tool (Yu et al. 2012). Maple is a tool for testing Linux programs which
use POSIX threads (IEEE 1995). We useMaple because the prior work using SCTBench
also does. We want any difference in algorithm performance to be due to the algorithms
themselves, not because of any difference in how the host tool works.

Maple comes with a PCT implementation using Linux real-time thread priorities, but
we use the modified version from Thomson, Donaldson, and Betts 2016 instead. This
modified version differs from the standard PCT algorithm slightly. PCT does not di-
rectly handle yielding threads: if the highest-priority runnable thread is in a busy-wait
loop, it may yield until some condition holds. Immediately scheduling the thread again
after it yields would lead to a nonterminating execution. The original PCT implemen-
tation uses heuristics to determine if a thread is not making progress, and to lower its
priority (Burckhardt et al. 2010). In the implementation we use, the priority of a yield-
ing thread is changed to the lowest priority.

6.3.1. Benchmark Collection

SCTBench (Thomson, Donaldson, and Betts 2016; Thomson, Donaldson, and Betts
2014) is a collection of pthread programs amenable to concurrency testing by controlled
scheduling. All the programs are deterministic, other than scheduler nondeterminism.
In total there are 49 benchmark programs. SCTBench is assembled from several other
sets of benchmarks, so there is some variety in the programs:

– Buggy versions of aget (a file downloader) and pbzip2 (a compression program).
– A set of test cases for a work-stealing queue.
– Examples used to test the ESBMC tool (Cordeiro and Fischer 2011), an SMT-

based model checker for concurrency.
– Examples used to test the INSPECT tool (Y. Yang, Chen, and Gopalakrishnan

2008), a concurrency testing tool for instrumented C programs.
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– A buggy lock-free stack implementation.
– A test case exposing a bug in the ctrace (McPherson 2004) concurrency debugging

library.
– Buggy versions of a content similarity search tool and online clustering tool.
– Three benchmarks exposing bugs in Mozilla SpiderMonkey (Eich and Mozilla

Foundation 1996) and the Mozilla Netscape Portable Runtime Thread Package
(Mozilla Foundation 1996).

– The SPLASH-2 programs (Woo et al. 1995).

6.3.2. Experimental Method

We aim to compare swarm scheduling, using a variety of parameters, with PCT and
controlled random scheduling. We do not consider the other algorithms used in the
prior SCTBench work, or PCT with a bound other than d = 3, as setting d = 3 was
found to give the best results in terms of bug-finding ability (Thomson, Donaldson, and
Betts 2016).

In total, we try 5 algorithm-parameter variants:

– Controlled random scheduling.
– PCT with d = 3.
– Swarm scheduling with d ∈ {1, 2, 3}.

For each variant, we run each benchmark with a limit of 10,000 executions. We use
a schedule limit rather than a time limit, as many factors can influence timing results,
and they are not readily comparable or reproducible. Number of executions required,
however, is an intrinsic property of the benchmark program, the testing algorithm, and
any parameters.

Wewere fortunate enough to have access to the scripts used byThomson, Donaldson,
and Betts 2016 to run the benchmarks, which greatly simplified experimentation. Each
benchmark goes through each of the following phases of testing:

Data race detection phase It is sound to only consider scheduling points before syn-
chronisation operations as long as execution aborts with an error as soon as a data race
is detected (Madanlal Musuvathi and Qadeer 2008). This greatly reduces the number
of schedules that need to be considered. However, the benchmark programs contain
many benign data races (Thomson, Donaldson, and Betts 2016), so this condition is too
strict. As in prior work (Thomson, Donaldson, and Betts 2016; Thomson, Donaldson,
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and Betts 2014; Yu et al. 2012) we address this problem by performing dynamic data race
detection first, to identify a subset of load and store operations which are known to be
racey, which are then treated as visible synchronisation operations during testing. This
process is nondeterministic, so we run it ten times for each benchmark.

Controlled random scheduling phase We run each benchmark 10,000 times using
Maple’s controlled random scheduler. Although this approach was found to be inferior
to PCT (Thomson, Donaldson, andBetts 2016), we include it sowe have a naïve baseline
for evaluation purposes.

PCT testing phase PCT requires parameters n, the maximum number of threads; k,
the maximum number of steps in the execution; and d, the bug depth. We fix d = 3,
and use estimates for n and k found by Thomson, Donaldson, and Betts 2016. These
estimates were obtained by making an initial estimate and then executing PCTwith d =

3, on the assumption that thiswould increase interleaving, and counting steps fromwhen
the first thread launches the second. We run each benchmark 10,000 times using its
estimated n and k values.

Swarm scheduling phase Swarm scheduling requires parameters wmin, the mini-
mum weight; wmax, the maximum weight; k, the maximum number of steps in the ex-
ecution; and d, the number of weight change points to include. We want to encourage
executions with very unequal thread weights, and so pick wmin = 1 and wmax = 50,
giving significantly more weights than most benchmarks have threads. We use the same
k values as in PCT. We then perform multiple runs of swarm scheduling: we perform
10,000 executions of each benchmark program for each d, using its estimated k value.

Noteon randomness For a given benchmark, we canuse the average number of sched-
ules needed to expose a bug (10,000÷ the number of buggy schedules) to compare tech-
niques. The exact value is dependent on the initial seed, but we would expect it to be-
come stable as the number of executions is increased (Thomson, Donaldson, and Betts
2016).
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Figure 15: Overlap of bugs found by each scheduling algorithm.

6.3.3. Experimental Results

We conducted our experiments using an Ubuntu 12.04 virtual machine, and a modi-
fied version of Maple based on the last commit from 20121. Listing 96 in Appendix B
shows the core of our C++ swarm scheduling implementation. Other than the addition
of swarm scheduling, the code is unchanged.

The Venn diagrams in Figure 15 show the relative bug-finding ability of each algo-
rithm. Figure 15a summarises the bugs found by controlled random scheduling, PCT
d = 3, and swarm scheduling d = 0 (which we now call “Swarm” for brevity). Swarm
performs comparablywithPCT.Figure 15b shows the effect of introducingweight change
points, which seems to harm performance.

As the techniques we have considered are nondeterministic, it is interesting to con-
sider their average-case behaviour. Figure 16 shows the aggregate behaviour of the algo-
rithms across all benchmarks as the number of executions increases. Swarmoutperforms
PCT at first, but PCT catches up as the number of executions increases.

The plots in Figure 17 show the average number of executions to find a bug across
all benchmarks; as expected, the average number of executions to find any bug rapidly
converges, however the average number of schedules to find a unique bug does not. This
is due to two factors: (1) the number of bugs is finite; and (2) some bugs may be out
of reach of a particular algorithm. Table 8 shows the final values. We can see that PCT
and Swarm are almost identical, and both significantly improve upon random scheduling
when it comes to finding unique bugs.

1 The same environment as Thomson, Donaldson, and Betts 2016, available at https://github.com/
mc-imperial/sctbench
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Figure 16: The number of bugs found by each algorithm across all benchmarks. This
plot is intended to be viewed with colour.
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Figure 17: The average number of executions to expose a bug across all benchmarks.
These plots are intended to be viewed with colour.
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Algorithm Any Bug A Unique Bug

Random 0.071 312.5
PCT 0.077 270.3
Swarm 0.078 270.3

Table 8: Average number of executions needed to find a bug.

6.4. Evaluation

Testing concurrent programs by using a swarm of randomly generated weighted distri-
butions appears to work well in practice. The simplest variant, which we simply call
Swarm, uses no weight change points. So for Swarm, the k and d parameters are irrele-
vant, whichmeans the user does not need to know themaximum length of their program
execution in advance. Although it is disappointing that Swarm does not improve upon
PCT, in terms of bug-finding it does perform comparably.

A significant advantage of the Swarm method over PCT is that it does not require
the programmer to first determine the maximum length of an execution, which can be
difficult to estimate.

Randomised stride Another algorithm with a similar motivation is the randomised
stride algorithm (Abdelrasoul 2017), which outperforms PCT (and so our Swarm algo-
rithm). This is a recent algorithmwhich was not yet publishedwhenwe began this work.
Like PCT, randomised stride derives its power from knowledge of the underlying pro-
gram: in this case, an estimate of the length of each thread. Although Swarm performs
worse than randomised stride, we believe it still has a place in the concurrency testing
arsenal as an effective algorithm which does not require first estimating or measuring
some parameter of the program under test.

Whyareweight changes bad? Figure 15b shows that, althoughusing oneweight change
point results in finding an additional bug, bug-finding ability rapidly degrades as more
points are introduced. We suspect that this is because frequent weight changes compro-
mise the intuition for why weighted random testing is effective at all. We believe that
weighted random testing is effective because unfair scheduling causes threads to make
progress at different rates, leading to interleavings which the programmer is unlikely to
have considered. However, by changing weights, a thread which was previously mak-
ing rapid progress may suddenly slow down, allowing other threads to catch up. In the
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extreme, if we introduce a weight change after every scheduling point, we have simply
produced a complicated version of uniform random scheduling.

6.5. Summary

In this chapter we presented swarm scheduling, our scheduling algorithm for finding
faults in concurrent programs:

– We propose that unfair schedules are likely to reveal concurrency bugs more ef-
fectively than fair schedules. Unfair schedules cause different threads to make
progress at different rates, resulting in interleavings the programmer is unlikely to
have considered (§6.4).

– Swarm scheduling usesweighted randomscheduling, with optionalweight change
points. However, frequently changing the weights causes weighted scheduling to
degrade to an effectively uniform scheduling (§6.2).

– We find that one parameterisation of the swarm scheduling algorithm performs
as well as PCT (Burckhardt et al. 2010), despite not knowing anything about the
program under test. We argue that this makes swarm scheduling easier to use,
while giving just as good results (§6.3).

The complete systematic approach to testing is not necessarily suitable for all pro-
grams. Programs with large state-spaces, or programs which have sources of nondeter-
minism other than the scheduler, cannot readily be tested with such techniques. For
such programs, random testing is commonly used. By introducing swarm scheduling,
we hope that effective random testing of concurrent programs will become simpler.

Context Swarm does not stand alone, it is related to our other contributions:

– Chapter 5 uses swarm scheduling to provide its random testing mode. Complete
testing is the default. Swarm schedulingwas added for caseswhere the state-space
is too large to systematically explore.
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Chapter 7

CoCo: Discovering Properties Automatically

In this chapter we present and evaluate CoCo, our tool for finding properties of equiv-
alence and refinement between concurrent Haskell expressions with shared state. We
first discuss what properties for concurrency even are (§7.1), and then demonstrate the
use of the tool with an illustrative example (§7.2). We explain how properties are dis-
covered (§7.3) and argue the correctness of our approach (§7.4). We then present two
further examples (§7.5). Next we discuss how CoCo properties can be incorporated
into a Déjà Fu test suite (§7.6). Finally, we present conclusions and evaluate the ap-
proach (§7.7).

This chapter is derived fromour previousworkWalker andRunciman 2017 andWalker
and Runciman 2018.

7.1. Concurrency Properties

CoCo works by generating program fragments and then comparing their effects. Unlike
tools for discovering properties of sequential programs, such asQuickSpec (Smallbone et
al. 2017) andSpeculate (Braquehais andRunciman 2017b), CoCo cannot simply compare
the results of single executions. In general, concurrent programs are nondeterministic,
sowemust consider all possible behaviourswhendetermining if two terms are equivalent
in some sense.

Properties Weformulate our properties in termsof observational refinement (He,Hoare,
and Sanders 1986). In general, one term is an observational refinement of another if the
visible effects of the first term are a subset of those of the second term. The properties that
we report are of the form A === B, meaning that A and B are observationally equivalent;
and A ->- B, meaning that A is a strict observational refinement of B.
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evalSigWithSeed :: (MonadConc m, Ord o)
=> (x -> ConcT m s) -- ^ Create a new instance of the state.
-> (s -> x -> ConcT m o) -- ^ The observation to make.
-> (s -> x -> ConcT m ()) -- ^ Perform some concurrent interference.
-> (s -> ConcT m ()) -- ^ The expression to evaluate.
-> x -- ^ Pure value used to initialise the state.
-> m (Set (Maybe Failure, o))

Listing 75: The evalSigWithSeed function, repeated from Section 5.1.1. Runs a con-
current program and returns a set of observations and possible failures.

CoCo uses Déjà Fu to find the results of generated program fragments, and then tests
these relations. Déjà Fu provides support for testing if two programs are observationally
equivalent (§5.1.1), CoCo extends this to also support observational refinement.

Visible effects CoCo does not consider all possible effects, we require the program-
mer to provide an observation function for a nominated piece of shared state. It is the
observations produced by this function which we compare to determine if one term is a
refinement of another.

Concurrent interference If CoCo reports that two program fragments are equivalent,
then they should be interchangeable. However, if we did not consider concurrent inter-
ference, they may not be. In addition to the observation function, CoCo requires the
programmer to supply an effectful interference function, which is executed concurrently
during testing. By supplying different sorts of interference, the programmer can see how
the functions under test behave in different concurrent contexts.

What a propertymeans ACoCo property stating A === B can be read as “when exe-
cuted concurrently with a user-specified interference function I, and followed by a user-
specified observation function O, the result of O for both terms is the same.” This is a
weaker requirement than howobservational equivalence is usually used, whereA === B
means that you can replace A with B anywhere. The weaker claim of CoCo is due to the
tool being based on testing, rather than proof.

Like Déjà Fu, CoCo does not reason about the terms it is given, it runs them and
examines the results. Listing 75 gives the function at the heart of CoCo, which we saw
in Section 5.1.1. Here the first three arguments—the function to initialise the state, the
observation function, and the interference function—are supplied by the programmer.
The expression to evaluate and the pure “seed” value are generated by CoCo.
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putMVar :: MVar Concurrency Int -> Int -> Concurrency ()
takeMVar :: MVar Concurrency Int -> Concurrency Int
readMVar :: MVar Concurrency Int -> Concurrency Int

Listing 76: Type signatures for MVar operations in CoCo.

Despite its limitations, we believe that CoCo properties can still provide a useful
glimpse into the behaviour of a concurrent program. We motivate this throughout the
chapter with examples.

7.2. An Illustrative Example

Let us now show an example use of CoCo for Haskell MVars. Recall that an MVar is a
mutablememory cell whichmay be full or empty. Wenowexamine three basic operations
over MVars: put, take, and read. To put is to block until the MVar is empty and then set
its value. To take is to block until the MVar is full, remove its value, and return the value.
To read is to take, but without emptying the MVar. Each function has a non-blocking try
variant, which returns an indicator of success.

Allowing shared values of type Int, we obtain the type signatures in Listing 76. Here
Concurrency is an implementation of the MonadConc typeclass from Chapter 5, pro-
vided by CoCo. The MVar type is an abstract type defined in MonadConc, with the con-
crete type determined by the monad used. In this case the concrete type is defined as
part of Déjà Fu.

Signatures When we use CoCo, we must provide four things: (1) the functions and
values whichmay appear in properties; (2) a way to initialise the state; (3) an observation
function; and (4) an interference function.

We call this collection of programmer-supplied definitions the signature. Listing 77
shows a signature for MVar operations. The initialisation function constructs an empty
or a full MVar. The interference function simply stores a new value. The observa-
tion function takes a snapshot of the state. The backToSeed function is used to check
whether the state has been changed: if the original and final seed values are the same,
the state is unchanged.

It is essential to provide an initialisation function which gives a representative collec-
tion of states, and an interference function which can disrupt the functions of interest.
If our initialisation function only produced a full MVar, we could find properties which
do not hold when the MVar is empty. Because our interference function only writes to
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type C = Concurrency

sig :: Sig (MVar C Int) (Maybe Int) (Maybe Int)
sig = Sig
{ initialise = maybe newEmptyMVar newMVar
, expressions =

[ -- example 1
lit "putMVar" (putMVar :: MVar C Int -> Int -> C ())

, lit "takeMVar" (takeMVar :: MVar C Int -> C Int)
, lit "readMVar" (readMVar :: MVar C Int -> C Int)
]

, backgroundExpressions =
[ -- example 2
lit "tryPutMVar" (tryPutMVar :: MVar C Int -> Int -> C Bool)

]
, interfere = \v _ -> putMVar v 42
, observe = \v _ -> tryReadMVar v
, backToSeed = \v _ -> tryReadMVar v
}

Listing 77: A CoCo signature for MVars holding Ints.

(1) readMVar @ === readMVar @ >> readMVar @
(2) readMVar @ ->- takeMVar @ >>= \x -> putMVar @ x
(3) takeMVar @ === readMVar @ >> takeMVar @
(4) putMVar @ x === putMVar @ x >> readMVar @

Listing 78: Some properties CoCo discovers about MVars.

the MVar, wemay find properties which do not hold when there aremultiple consumers.
Developing a fuller understanding of the functions under test may require examining the
different property-sets found under different execution conditions.

Discovering properties Listing 78 shows the properties which CoCo discovers given
the signatures in Listing 77. In this output, @ is the state argument, which is the MVar.
For convenience of reference, we have added numbers to the CoCo properties. These
numbers are not part of the normal output of the tool.

Property (1) shows that readMVar is idempotent; (2) shows that it is not merely a take
followed by a put, it is rather a distinct operation; (3) and (4) show that it does notmodify
the MVar, and that it does not block when the MVar is full. The terms in Properties (2)
and (4) do not have the same types, illustrating aweakness in howCoCo currentlyworks:
CoCo does not consider the results of the terms, only their effects.

We see the effect of the interference in (2): with no other producers, this would be an
equivalence; it is only when interference by another thread is introduced that the equiva-
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Term Seed Final State Deadlocks

Read Nothing Just 42 No
Just 0 Just 0 No

Take / Put Nothing Just 42 No
Just 0 Just 0 No

Just 42 Yes

Table 9: The behaviours of the terms in Property (2).

readMVar @ === readMVar @ >> tryPutMVar @ x
(5) readMVar @ === readMVar @ >>= \x -> tryPutMVar @ x

readMVar @ ->- takeMVar @ >>= \x -> tryPutMVar @ x
putMVar @ x === putMVar @ x >> tryPutMVar @ x1

Listing 79: Some more properties CoCo discovers about MVars.

lence breaks down and the distinction is revealed. Table 9 shows the possible behaviours
in Property (2). This property is a strict refinement because, while the behaviours for
the seed value Nothing are the same, the behaviours of the left term for the seed value
Just 0 are a strict subset of the behaviours of the right.

Background expressions Sometimes when expressing properties it is necessary to
call upon other expressions which are of secondary interest. Such expressions are com-
monly called background expressions. A property is only reported if each term includes
at least one non-background expression.

If we include tryPutMVar, a non-blocking version of putMVar, as a background ex-
pression, CoCo discovers the additional properties in Listing 79. Property (5) shows
how important the choice of interference function is. The left and right terms are not
equivalent: if the interference were to empty a full MVar then the right term could re-
store its original value. As our choice of interference function only produces, rather than
consumes, it will never alter the value in a full MVar.

The example in this section takes about 1.5 seconds to run, and the output displayed
here is the output of the tool, aside from the property numbers. We discuss further
performance results in Section 7.7.
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7.3. How CoCoWorks

A simplified version of our approach is to generate all terms up to some syntactic size
limit, compute and store their behaviours, and then find properties by comparing the
sets of behaviours of each pair of terms. This would be slow, however. Following the
lead of QuickSpec (Claessen, Smallbone, and Hughes 2010; Smallbone et al. 2017) we
make three key improvements:

1. We generate schemas with holes, rather than terms with variables.
2. We only compute the set of behaviours of the most general term of every schema.
3. We interleave property discovery with schema generation, and aggressively prune

redundant schemas.

Why not use QuickSpec’s term generator? The main difference between our ap-
proach and QuickSpec is how we handle monadic operations. We generate lambda-
terms in a restricted setting, but QuickSpec does not do so at all. Thismeans that Quick-
Spec is unable to generate larger monadic expressions out of smaller ones, unless the
user supplies in the signature functions representing all the ways in which they may be
combined. CoCo is able to generate the needed lambda functions used inmonadic binds.

7.3.1. Representing and Generating Expression Schemas

We can greatly reduce the number of expressions considered by not generating alpha-
equivalent ones. Instead of generating an expression like push @ x >> push @ y, we
will instead generate the expression push @ ? >> push @ ? where each ? is a hole
for a variable. These expressions-with-holes are called schemas. One schema can be
instantiated into many terms by assigning variable names to groups of holes. The push-
push schema has two semantically distinct term instances: the single-variable and the
two-variable cases.

Our expression representation is shown in Listing 80. The Expr type is parameterised
by a state type s and a hole type h. The state parameter ensures expressions that assume
different execution contexts cannot be inadvertently combined. The hole parameter al-
lows for a statically enforced distinction between schemas and terms. Each Expr con-
structor carries around a representation of its type (except the state, which is implicit).
In most of the implementation we hide the details of this representation and instead
provide smart constructor functions to ensure only well-typed expressions can be con-
structed.
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data Expr s h
= Lit String Dynamic
| Var TypeRep (Var h)
| Bind TypeRep (Expr s h) (Expr s h)
| Ap TypeRep (Expr s h) (Expr s h)
| State

data Var h = Hole h | Named String | Bound Int

type Schema s = Expr s ()
type Term s = Expr s Void

Listing 80: Representation of Haskell expressions.

Schema generation Generating new schemas is straightforward. We give expressions
a notion of size, corresponding roughly to the size of the Expr tree. Schemas are gener-
ated in size order. The needed expressions of size 1 are supplied in the user’s signature.
For larger sizes we combine appropriately sized subexpressions represented by already
generated schemas and keep the type-correct ones.

We interleave generation with evaluation and property discovery. In this way we can
partition schemas into equivalence classes and use only the smallest of known-equivalent
schemas when generating new ones. We do this for both pure and monadic schemas.

Monadic expressions The expressions of most interest to us aremonadic expressions.
Such expressions allow us to combine smaller effects to create larger ones. We simplify
this task by taking inspiration from Haskell’s do-notation, a syntactic sugar for express-
ing compound monadic operations in an imperative style, which has explicit variable
bindings and makes the sequencing of effects clear. Rather than generating lambda-
terms, we use a kind of first-class do-notation where the monadic bind operation binds
the result of evaluating the binder to holes in the body. Restricting ourselves to this case
allows us to avoid many of the complexities of generating lambda-terms directly.

For example, the generation of the schema pop @ >>= \x -> push @ x proceeds
as follows:

1. Combine pop and @ to produce pop @
2. Combine push and @ to produce push @
3. Combine push @ and ? to produce push @ ?
4. Combine pop @ and push @ ? to produce both pop @ >> push @ ?

and pop @ >>= \x -> push @ x.
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readMVar @ === takeMVar @ >>= \x -> putMVar @ x

Listing 81: A property that holds with no interference.

f (? :: Int) (? :: Bool) (? :: Bool) (? :: Int)

f (w :: Int) (x :: Bool) (y :: Bool) (z :: Int)
f (w :: Int) (x :: Bool) (y :: Bool) (w :: Int)
f (w :: Int) (x :: Bool) (x :: Bool) (z :: Int)
f (w :: Int) (x :: Bool) (x :: Bool) (w :: Int)

Listing 82: A schema and its term instances.

7.3.2. Evaluating Most General Terms

Time spent evaluating terms dominates the execution cost of CoCo. In the worst case
the number of executions needed for a term is exponential in the number of threads,
context switches, and blocking operations (Madanlal Musuvathi and Qadeer 2007).

What is more, our term evaluation always involves at least two threads: the term
thread executing the term itself, and an interference thread. The term thread may fork
additional threads. The interference thread is essential to distinguish refinement from
equality in some cases. For example, the equivalence in Listing 81 holds only when there
is no concurrent producer for the same MVar.

To avoid repeatedwork, we compute the behaviours of all the terms for a schemawhen
it is generated. We annotate each schema with some metadata, including its behaviour-
sets, and compare these cached behaviours later when discovering properties. Storing
this data is a space cost, but reduces the execution time of some of our test applications
from hours to minutes. We present performance measurements in Section 7.7.

Deriving terms from schemas One schema may have many term instances. List-
ing 82 shows an example of a schema with two holes of one type and two of another.
From this one schema, we can produce four semantically distinct terms. We can order
the terms by number of distinct variables. The term with the most variables is the most
general term.

We use a simple reduce-and-conquer algorithm to eliminate holes one type at a time:

1. Pick a type and find the set of all holes of that type.
2. For each partition of the hole-set make a distinct copy of the schema and in each

case assign to each subset in the partition a distinct variable name.
3. If there are remaining hole types, continue recursively from (1).
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4. Finally, sort the terms by number of distinct variables.

Evaluating terms To compute the behaviours of every term for a schema, we need
only consider the most general term. The behaviours of all less-general terms can be
derived from the most general by restricting to cases where the variables are equal. For
example, given the behaviours of the term f x y, we throw away those where x ̸= y to
obtain the behaviours of the term f x x.

Déjà Fu allows us to make an observation of the final state even if evaluation of the
term deadlocks. This is essential, as an operation which deadlocks may have altered the
state before blocking.

7.3.3. Property Discovery and Schema Pruning

Not only dowe interleave generationwith evaluation, we also interleave it with property-
discovery. After all schemas of a given size are generated and their most general terms
evaluated, we compare each such new schema against all smaller ones to discover equiv-
alences and refinements.

As one schema may correspond to many terms, we may discover many properties be-
tween a pair of schemas. In practice, most of these properties are consequences of more
general ones, so we solve this problem by pruning the generated properties. PropertyP2

is a consequence by property P1 if (1) both P1 and P2 are equivalences or both are strict
refinements; and (2) P1 has a more general allocation of variables to holes.

Smallest schemas To avoid discovering the same property multiple times, we main-
tain a set of smallest schemas. At first, all schemas are assumed to be smallest. If a syn-
tactically smaller schema is a refinement of a larger one, the larger is annotated as ‘not
smallest.’ When generating new monadic binds:

– A schema S >> T is only generated if both S and T are smallest schemas.
– A schema S >>= \x -> T[x] is only generated if T is a smallest schema.

We also only consider properties S === T or S ->- Twhere both S and T are small-
est schemas.

Neutral schemas A schema N is neutral if and only if, for all other schemas S, these
identities hold: N >> S === S === S >> N. For example, readMVar is not a neutral
MVar operation, as it may block, but the non-blocking alternative tryReadMVar is neu-
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tral. A sufficient condition for a schema to be neutral is if its most general term instance
is (1) always atomic; (2) never fails; and (3) never modifies the state.

We use a heuristic method based on execution traces to determine if a schema is
atomic, and use the seed values to determine if it modifies the state. If a schema is judged
to be neutral, we do not use it when constructing larger schemas. If a schema is, falsely,
judged to not be neutral then it will be incorporated into larger schemas: adding to the
execution cost of CoCo and generating new properties.

Projection to a common namespace We compute the behaviours of each term indi-
vidually, yet we construct properties from pairs of terms. This poses a difficulty when
discovering properties between terms which have free variables: we must decide which
free variables in one term to identify with free variables in the other term, if any. So we
project the two terms into a common namespace. Each variable in each term is either
given a unique name, or identified with a variable in the other term. There may be mul-
tiple ways to do this, and CoCo tries them all. We never reduce the number of distinct
variables in a term. To do so would only reproduce another term generated from the
same schema.

As a pair of terms may have many projections, we may discover many properties be-
tween them: at most one for each projection. In practice, most of these properties are
consequences of more general ones. We only keep the most general.

7.3.4. The CoCo Algorithm

The CoCo algorithm is similar to that of any other property-discovery tool. The key
difference is that we compare sets of behaviours, rather than equality of results. We
have some additional complication as we evaluate terms independently, but this is not
an inherent aspect of CoCo: one could implement a CoCo which does not cache term
results like we do, it would just be slow.

In outline, the CoCo algorithm is:

1. For all sizes 1 to the limit:

(a) Generate all well-typed schemas of this size.
(b) For each such schema:

i. Record the results of evaluating its most general term.
ii. Check if the schema is neutral and, if so, annotate it.
iii. For each smaller schema, which is considered ‘smallest’:
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A. Discover properties between the two.
B. Display any such properties to the user.

To implement step 1(b)iii we must keep track of all previously generated schemas.
Conveniently, this makes it simple to incorporate schemas provided in the user’s signa-
ture: we include them in the initial state and thereafter treat them like any other schema.

Property discovery Given two schemas S and T where S is larger than T, we discover
properties between the two like so:

1. For each term St of S and Tt of T:

(a) For each projection P between St and Tt:

i. Let Str be St renamed according to P.
ii. Let Ttr be Tt renamed according to P.
iii. Check if Str === Ttr, Ttr ->- Str, or Str ->- Ttr.
iv. In the first two cases, annotate S as ‘not smallest’.

2. Discard any properties made redundant by a more general one.
3. Return the remaining properties.

Our approachdiffers fromQuickSpec (Claessen, Smallbone, andHughes 2010; Small-
bone et al. 2017) in step 1(a)iii, where we compare sets of term behaviours rather than
term results.

7.4. Soundness and Completeness

Correctness forCoCo states that only true properties are reported, and that all true prop-
erties where the terms involved fit into the size bound are reported. As with Déjà Fu,
we do not attempt a proof of formal correctness for the CoCo implementation.

Soundness There are two potential sources of unsoundness in CoCo. Firstly, prop-
erties are only checked for a finite number of cases; and secondly Déjà Fu is used to find
the possible results of a term, which is incomplete by default.

We can increase confidence in the correctness of CoCo properties by increasing the
number of test cases, but the fundamental problem remains. CoCo is not amodel checker,
and it is always possible that the next input tried after we ceased testing would have been
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a counterexample. This problem is made worse by the need to achieve acceptable per-
formance. Evaluating terms takes time, so to improve performance we wish to minimise
the number of evaluations, and so the number of distinct inputs each term is tried with.
If a term takes a wide data type as a parameter, there may be constructors of this data
type which are simply not tested at all.

The incompleteness of Déjà Fu can be solved with additional time. Déjà Fu offers a
complete mode. CoCo does not use it because it is typically slower than the incomplete
testing, but as the terms we generate are small this may not be a problem in practice.
CoCo could be changed to use the complete testing, whichwould ensure that all possible
behaviours of a term, for each set of inputs considered, are found.

Completeness There are two potential sources of incompleteness in CoCo. Firstly,
some schemas are discarded when generating new ones; and secondly, properties are
thrown away which are judged to be consequences of another.

A property between two terms cannot be discovered if either term is simply not gen-
erated. When generating new schemas, CoCo tries all appropriately sized pairings of
previously generated schemas and keeps the type-correct ones. If our type checker is
incorrect, then valid schemas may be thrown away. We do not support class polymor-
phism at all, so terms which are only well-typed due to typeclass use will be discarded.

We do not require CoCo to report properties which are implied by another. As many
terms correspond to the same schema, andmany projections correspond to the samepair
of terms, in general there will be many such redundant properties. We use two syntactic
criteria to determine whether one property implies another, rather than attempting any
deeper logical analysis.

A property between terms A1 and B1 is made redundant by another property between
A2 and B2 if both properties are strict refinements or both are equivalences, and:

– If A1 and A2 are both renamings of the same term A (similarly for B1 and B2), and
the renaming which generates A2 and B2 is more general than the renaming which
generates A1 and B1.
For example, the propertyf x === g x y ismade redundant byf x === g y z,
as the latter has a more general renaming,

– If A1 and A2 are both terms generated from the same schema A (similarly for B1
and B2), and A2 is more general than A1, and B2 is more general than B1.
For example, the term f x x is less general than f x y, so f x x ->- g x x
is made redundant by f x y ->- g x y.
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newtype LockStack m a = LockStack (MVar m [a])

push :: MonadConc m => a -> LockStack m a -> m ()
push a (LockStack v) = modifyMVar v (\as -> pure (a:as, ()))

pop :: MonadConc m => LockStack m a -> m (Maybe a)
pop (LockStack v) = modifyMVar v (\as -> (drop 1 as, listToMaybe as))

peek :: MonadConc m => LockStack m a -> m (Maybe a)
peek (LockStack v) = fmap listToMaybe (readMVar v)

Listing 83: A lock-based mutable stack.

(6) peek @ ->- push x @ >> pop @
(7) peek @ ->- (push x @) ||| (pop @)
(8) peek @ ->- pop @ >>= \m -> whenJust push @ m

Listing 84: Some properties CoCo discovers about the MVar stack.

Sowe consider separately (1) the identification of variables between terms, and (2) the
mapping of holes to single variables.

7.5. Case Studies

We discuss the process and results of applying CoCo to two concurrent data structures:
mutable stacks and semaphores. We chose these as they are common primitives used in
the implementation of concurrent algorithms.

7.5.1. Concurrent Stacks

Lock-based stacks Mutable stacks are commonly used for synchronisation amongst
multiple threads, for example see Dodds, Haas, and Kirsch 2015. Listing 83 shows a
simple mutable stack is just an immutable list inside an MVar shared variable.

Listing 84 shows the properties that CoCo discovers with our definitions, where the
initialisation function constructs a stack from a list, the observation function converts
it back to a list, and the interference function sets the contents of the stack to a given
list. Here whenJust is defined as \f s -> maybe (pure ()) (`f` s) and ||| is
concurrent composition. Property (6) may seem surprising: the left term returns the
top of stack whereas the right term returns the value pushed. Remember that CoCo
does not consider equality of results when determining properties, only the effect on the
state. Property (7) is a consequence of (6). Property (8) is analogous to the readMVar
properties presented in Section 7.2, as we might expect given how the stack operations
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push2 x1 x @ ->- push x @ >> push x @

Listing 85: A property about an incorrect function.

peek @ ->- push x @ >> pop @
peek @ === pop @ >>= \m -> whenJust push @ m

push x @ === pop @ >> push x @
(9) push x1 @ === push2 x x1 @
(10) push x1 @ === push x @ >> push x1 @
whenJust push @ m === whenJust (push2 x) @ m

Listing 86: Changing the observation function to peek changes the properties discov-
ered.

are defined.

Buggy functions Suppose we add an incorrect push2 function, which is meant to push
two values atomically, but which only pushes the second value twice.

CoCo finds the property in Listing 85. As this is a strict refinement, we now know
that push2 is more deterministic in some way than two pushes. As we know that the
composition of two pushes is not atomic, this strongly suggests that push2 is. We can
also see the effect of push2 on the state, and that it is incorrect!

Choice of observation As CoCo uses a programmer-supplied observation function
in its property-discovery process, the programmer can supply different observations to
discover different properties. By changing the observation of our stack from list equality
to peek, we discover a new collection of properties, shown in Listing 86. Here we have
fixed the push2 function to behave correctly and also removed ||| from the signature.
Properties (9) and (10) show the power of supplying a custom observation function: in
the left and right terms, the stack states are not equal. In both (9) and (10) the left term
increases the stack depth by one, and the right by two. We now see that push2 leaves
its second argument on the top of the stack. We could not directly observe this before,
as a single push would leave the stack sizes out of balance. Throwing away unnecessary
details, in this case the tail of the stack, allows us to see more than we previously could.

It is important to bear in mind that there is no best observation to make, no best inter-
ference to consider, and no best set of properties to discover. Each choice of observation
and interference will reveal something about the functions under test. By considering
different cases, we can arrive at a fuller understanding of our code.
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newtype CASStack m a = CASStack (IORef m [a])

push :: MonadConc m => a -> CASStack m a -> m ()
push a (CASStack r) = modifyIORefCAS r (\as -> (a:as, ()))

pop :: MonadConc m => CASStack m a -> m (Maybe a)
pop (CASStack r) = modifyIORefCAS r (\as -> (drop 1 as, listToMaybe as))

peek :: MonadConc m => CASStack m a -> m (Maybe a)
peek (CASStack r) = fmap listToMaybe (readIORef r)

Listing 87: A lock-free mutable stack.

popM @ === popR @
peekM @ === peekR @

pushM x @ === pushR x @

Listing 88: Discovering properties between signatures.

Choice of implementation Due to their blocking behaviour, MVars can have poor per-
formance under contention. An alternative concurrency primitive is the IORef. An
atomic compare-and-swapoperation allows threads usingIORef values tomake progress
with little overhead, even with contention. Listing 87 shows our implementation, which
is similar to the MVar stack.

A feature of CoCo that differentiates it from other property-discovery tools is the abil-
ity to compare two different signatures which have compatible observation types. We
can compare the MVar and IORef stacks by simply supplying both signatures to the tool,
each of which contains push, pop, peek, whenJust, and |||. CoCo then reports 19
properties, including the three in Listing 88. Here we use the list observation again.
Functions with names ending M are for MVar stacks, functions with names ending R for
IORef stacks. These properties tell us what we want to know: the IORef stack is equiv-
alent to the MVar stack.

A common approach when first writing a program is to do everything in a simple
and clearly correct fashion. After checking correctness, we may gradually rewrite com-
ponents to meet performance requirements. Testing must establish that the rewritten
components still exhibit the original behaviour. The ability to determine observational
equivalence of different implementations of the same API is an alternative to the more-
common unit-testing for this task (He, Hoare, and Sanders 1986).
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type C = Concurrency

sig :: Sig (QSemN C) Int Int
sig = Sig
{ initialise = new . abs
, expressions =
[ lit "wait" (wait :: QSemN C -> Int -> C ())
, lit "signal" (signal :: QSemN C -> Int -> C ())
]

, backgroundExpressions =
[ commLit "|||" ((|||) :: C A -> C B -> C ())
, commLit "+" ((+) :: Int -> Int -> Int)
, lit "-" ((-) :: Int -> Int -> Int)
, lit "0" (0 :: Int)
, lit "1" (1 :: Int)
]

, observe = \q _ -> remaining q
, interfere = \q n -> let i = n `div` 2 in wait q i >> signal q i
, backToSeed = \q _ -> remaining q
}

Listing 89: A CoCo signature for the QSemN type.

7.5.2. Semaphores

A semaphore is a synchronisation primitive used to regulate access to some resource
(Dijkstra 1965). A semaphore can be thought of as a record of how many units of some
abstract resource are available, with operations to adjust the record in a race-free way.
Binary semaphores only have two states, and are used to implement locks. Counting
semaphores have an arbitrary number of states. An implementation of counting semaphores
is provided in the Control.Concurrent.QSemN library module. As with the MVar and
IORef, Déjà Fu provides a typeclass-generalised version which we use here.

Listing 89 shows the signature we provide to CoCo. CoCo supports polymorphic
function types, as can be seen in the type of |||, where A and B are types we use as type
variables. The commLit function indicates that the supplied binary function is commu-
tative, which is used to prune the generated schemas further. The new, wait, signal,
and remaining functions are provided by the QSemN library module. We construct a
new semaphore by allocating an arbitrary amount of resource; we observe by checking
how much resource remains; and we interfere by taking and then replacing half of the
resource. The interference thread is interleaved with the term thread, so it may cause
the term thread to block.

CoCo finds 57 properties in this example, so in the remainder of the subsection we
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(11) wait @ 0 === wait @ 0 >> wait @ 0
(12) signal @ 0 === wait @ 0 >> wait @ 0
(13) signal @ 1 === wait @ (0 - 1)
(14) signal @ (1 + 1) === wait @ (0 - (1 + 1))
(15) signal @ (abs x) === wait @ (negate (abs x))

Listing 90: Properties about semaphore waiting and signalling.

(16) signal @ 0 ->- signal @ x >> wait @ x
(17) signal @ (x + x1) ->- signal @ x >> signal @ x1
(18) signal @ (x + x1) ->- (signal @ x) ||| (signal @ x1)

Listing 91: Properties suggesting a lack of composability.

only discuss selected properties.

Waiting and signalling CoCo tells us in properties (11) and (12) that the effect of wait-
ing for zero resource and of signalling the availability of zero resource are the same —
neither affects the state of the semaphore. Property (11) shows that waiting for zero re-
source is not a neutral operation, as if it were CoCo would prune the property away.
This suggests that waitmay block.

CoCo also finds properties (13) and (14), revealing another implementation detail,
that the programmer can wait for a negative value instead of calling signal. We might
suspect that the more general property signal @ x === wait @ (-x) holds for all
positive x. CoCo finds this form, Property (15), if we extend our signature with abs and
negate.

A lack of composability CoCo reports some strict refinements involving signal and
wait, properties (16–18), where we might expect equivalences. We have just seen with
property (15) that funny things happenwith negative numbers, so it should be no surprise
that these refinements are only equivalences when x and x1 are non-negative.

Types Signalling or awaiting a negative quantity is a breach of the semaphore protocol.
Perhaps a better interface for semaphores would only allow nonnegative quantities. The
change might avoid accidental breakage in the future if the semantics of negative values
are unwittingly changed.

CoCo supports many types, but not all. If the programmer wishes to use types out-
side of the built-in collection, they must provide some information: a way to enumerate
values, an equality predicate, and a symbol to use in variable names. In this way, the
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signal @ 0 === signal @ n >> wait @ n
signal @ (n + n1) === signal @ n >> signal @ n1
signal @ (n + n1) === (signal @ n) ||| (signal @ n1)

Listing 92: Properties (16–18) restricted to natural numbers.

-- default, not valid Haskell
readMVar @ === readMVar @ >> readMVar @

-- dejafu
check $ sigL (\h0 -> readMVar h0) === sigL (\h0 -> readMVar h0 >> readMVar h0)

-- hunit/tasty
testProperty "name" $

sigL (\h0 -> readMVar h0) === sigL (\h0 -> readMVar h0 >> readMVar h0)

Listing 93: The different CoCo pretty-printing modes.

programmer can extend CoCo to work with arbitrary types, or alter the behaviour of
existing types.

If we alter the signature so that signal and wait use the type of natural numbers
rather than integers, properties (16–18) become equivalences, as shown in Listing 92

We could pursue this issue further by examining the terms with Déjà Fu when given a
negative quantity, or we could change the type of the function to forbid that case. Ideally,
illegal states should be unrepresentable.

7.6. Using CoCo Properties in Déjà Fu

By default, CoCo output is not syntactically valid Haskell. The symbol @ is not a legal
identifier, and the signatures are implicit. So properties cannot simply be copied into a
test suite.

Pretty-printing CoCoproperties are represented as a pair of expressions and the oper-
ator (equality or strict refinement) connecting them. The visual form of the operators is
hard-coded, but how the expressions are displayed is controlled by a pretty-printer. The
default pretty-printer, used throughout this chapter, favours a concise output. There
is also the option to produce Déjà Fu-compatible output, giving properties which can
be checked by Déjà Fu directly, or by the hunit-dejafu (Walker 2018a) and tasty-dejafu
(Walker 2018b) packages.

Listing 93 shows the three pretty-printing modes. The ‘dejafu’ and ‘hunit/tasty’
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modes are valid Haskell, and can be used as a regression test to ensure the property
holds (after supplying a signature). These two alternative views of properties are more
verbose, and so less convenient to read than the default output when examining a list
of properties. Furthermore, it is little work to transform a CoCo property into a form
checkable by Déjà Fu.

Signatures Déjà Fu has a notion of signatures, similar to CoCo signatures. A Déjà Fu
signature is a simplified form of a CoCo signature: it has an initialisation function, an
observation function, an interference function, and a single expression to evaluate. List-
ing 93 uses signature functions, which take the expression and produce a signature.
These functions are called sigL because the general form of a CoCo invocation pro-
vides two signatures to compare. Discovering properties of a single signature is a special
case. So these properties use sigL, the ‘left signature,’ if two signatures were being
compared, there would also be reference to a sigR (the ‘right signature’).

CoCoprovides a function, cocoToDejaFu, to convert aCoCo signature into aDéjàFu
signature function.

Checking properties Déjà Fu can check properties, and also produce a list of coun-
terexamples for failing properties. Properties are evaluated in the same way as CoCo:
the behaviours of each term are found with Déjà Fu’s systematic concurrency testing
functionality, and then these sets of behaviours are compared to check if the property
holds. By default, properties are checked with more variable-assignments than CoCo,
to increase confidence in the result. The user can also specify the number of seed values
and variable-assignments to try, to have even more confidence.

In general it is faster for Déjà Fu to check a property than for CoCo to find it, as to
find a property with terms of size n andm, CoCo must first generate and evaluate many
expressions smaller than n and m. Déjà Fu just needs to evaluate the two terms in the
property.

Like property-testing tools such asQuickCheck (Claessen andHughes 2000), Déjà Fu
uses typeclass polymorphism to enable testing properties which take arguments. If f x
is testable, and x is of some type which can be enumerated by LeanCheck (Braquehais
2017a), then \x -> f x is testable.
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7.7. Evaluation

Our aim is to help programmers overcome the difficulty of testing concurrent programs.
Towork towards this, we have presented a new tool, CoCo, to discover behavioural prop-
erties of effectful functions operating on shared state.

Applicability beyondHaskell CoCo is tied toHaskell in twoways: it has some knowl-
edge of Haskell types, which is used when generating expressions; and it relies on the
Déjà Fu tool to find the results of executing an expression. However, it could be reim-
plemented for another language. For example, in Erlang the objects of interest are pro-
cesses. Initialisation is to create a process in a known state. Observation is to send a
request for information to a process. Interference is to send messages to a process to
change its internal state. The Pulse tool for systematically testing Erlang programs
(Claessen, Palka, et al. 2009) would play the part of Déjà Fu.

Value of reported properties Although only supported by a finite number of test
cases, the properties reported by CoCo appear accurate in practice. The number of test
cases to try is an integer variable in CoCo, so more extensive testing can be performed,
at the expense of time and space, by increasing it. These properties can provide helpful
insights into the behaviour of functions. As demonstrated in the semaphore case study,
surprising properties can suggest that implementations of some functions rely on un-
stated assumptions. Even without such implementation surprises, it can be difficult to
read concurrent source code and grasp all its consequences.

Wide data types CoCo can be made to go wrong. CoCo only performs a limited num-
ber of executions for each generated schema, so wide data types pose a problem. In the
MVar example in Section 7.2, we used maybe newEmptyMVar newMVar as our initiali-
sation function. We handle the two cases of Maybe differently: in the Nothing case, we
produce an empty MVar; in the Just case, we produce a full MVar. However, if we had
used a type which had more constructors than CoCo performs tests, then some of those
constructors would simply never be tested. If each constructor causes some different
behaviour, then we will not observe all the behaviours.

Ease of use Ideally, a testing tool should not force the programmer to structure their
code in a specific way. CoCo requires the use of the concurrency typeclass used by
Déjà Fu, which is not widespread in practice. However, it has been our experience that
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porting standard Haskell code to the necessary abstraction is a type-directed and me-
chanical process, requiring little insight.

Interference functions The choice of interference function has a great effect on the
discovered properties. Unless two terms are atomic, it is a little suspicious for them to
be equivalent. So, to get a fuller understanding of the behaviour of their concurrency
functions, the programmer must run CoCo with multiple interference functions. In our
experience, interference functions which do one type of interference, such as emptying
an MVar, tend to give more easily understandable results than interference functions
which perform multiple operations.

Automatic interference An alternative to user-supplied interference functions would
be for CoCo to generate interference automatically. This is possible, as the primitives
(IORefs, MVars, and TVars) are all modelled by Déjà Fu. However, it is difficult to
see how state with associated invariants can be automatically modified. The user would
need to supply predicates to check these invariants, or perhaps a collection of allowable
transformations, but is that any better than supplying the interference function?

Term results In its current form, CoCo does not consider term results at all. Only the
effects of terms on the distinguished share state are compared. This means that CoCo
reports as equivalent terms which could not be substituted for each other at all. It can
be useful to see that a complex term has the same effects as a much simpler one, but
it would be more useful to know that the more complex one could be replaced by the
simpler.

Scaling While a naïve CoCo would scale poorly, our optimisations greatly improve
matters in both execution time and maximum resident memory usage. Table 11 on page
148 shows how the three examples we have seen perform with the optimisations dis-
abled. All optimisations are on by default. The most significant improvement by far is
O4, caching of term behaviours, but the other optimisations all play their part as well.
Furthermore, Déjà Fu implements its own optimisations which reduce the time to dis-
cover all behaviours of a term.

OptimisationsO1 andO2 aim to remove uninteresting properties from the CoCo out-
put. Even though O1 was not motivated by performance, it reduces execution time in
the stack and semaphore examples. This is unsurprising, as eliminating terms reduces
the amount of evaluation work to be done. OptimisationsO3 andO4were motivated by
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Term size 1 2 3 4 5 6 7 8

Schemas 15 29 56 88 238 385 1689 2740
Properties 0 0 0 0 1 1 55 55
Time (s) 0.03 0.03 0.45 0.45 9.2 9.2 970 970

Time / schema2 1.3e-4 3.6e-5 1.4e-4 5.8e-5 1.6e-4 6.2e-5 3.4e-4 1.3e-4

Table 10: Scaling behaviour of the semaphore case study.

x == 0 ==> wait @ x === wait @ x >> wait @ x

Listing 94: A property with a precondition.

poor performance, and are clear wins here.
Despite these optimisations, the semaphore example still takes around 15 minutes to

run. Table 10 shows how the semaphore case study scales as the term size increases.
The execution time grows rapidly, but the time to compare each schema against each
other schema, as happens during property discovery, does not. So reducing the number
of schemas is the most effective way to reduce the execution time.

One such area for future improvement is in cases where one schema is an instance of
another. Such schemas may arise when the signature includes constants. For example,
the schema signal @ 1 is an instance of signal @ x. The ‘most general term’ rule
does not apply here, as these are different schemas. Constants in signatures are neces-
sary as CoCo does not synthesise preconditions. If it did, constants could be omitted,
as any properties which require a specific value for a parameter would be found as a pre-
condition. Property (11) in the semaphore example would instead become the property
in Listing 94.

Constants could be removed from the signature, indirectly solving the performance
problem. In addition, discovering preconditions would make CoCo able to find proper-
ties beyond its current reach (Braquehais and Runciman 2017b).

7.8. Summary

In this chapter we presented CoCo, our tool for automatically discovering properties of
functions operating on shared mutable state:

– The properties we discover are equivalences and refinements between the observ-
able effects of terms, in the presence of concurrent interference (§7.1).
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– We use an approach similar to QuickSpec (Smallbone et al. 2017) and Speculate
(Braquehais and Runciman 2017b), but instead consider sets of observations of
effects rather than equality of results. WeuseDéjà Fu to discover these sets (§7.3).

– CoCo properties are conjectures supported only by a finite number of test cases,
but appear accurate in practice. However, there are some weaknesses: for ex-
ample, data types with many constructors are a poor fit for the small number of
enumerative tests we perform to decide if a property holds or not. We have not
attempted a formal proof of correctness of CoCo (§7.4).

– CoCo is most suited to discovering properties about concurrent data structures.
We have demonstrated CoCo with three such examples: MVar operations (§7.2),
concurrent stacks (§7.5.1), and semaphores (§7.5.2). The semaphore example re-
vealed some surprising details about negative numbers, reinforcing our belief that
automatically discovered properties aid program understanding.

– Weprovide an integration betweenDéjà Fu and CoCo, so users can take the prop-
erties which CoCo discovers and ensure that such properties continue to hold in
the future (§7.6).

Property-based testing and property discovery tools have become very popular in the
Haskell community. However, these tools work best with pure functions, and only pro-
vide limited support for testing effects. AlthoughCoCo is a little rough around the edges,
and can be a little confusing to use and interpret, we are helping to extend the reach of
property-testing.

Context CoCo does not stand alone, it is related to our other contributions:

– Chapter 5 presents Déjà Fu, the underlying tool which CoCo builds on to test its
concurrent expressions. Déjà Fu supports testing CoCo properties, testing with
more parameter values than CoCo does, giving a greater degree of confidence.
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Time (s) Max Residency (kB) Properties

All On 1.58 3.710 8
O1Off 1.54 3.710 8
O2Off 1.57 3.792 9
O3Off 1.60 3.657 8
O4Off 26.62 2.114 8
All Off 26.21 8.027 9

(a) The MVar example (§7.2).

Time (s) Max Residency (MB) Properties

All On 118 22.30 7
O1Off 142 25.08 21
O2Off 111 25.26 12
O3Off 121 25.04 7
O4Off 32 341 22.71 7
All Off 54 352 57.31 29

(b) The stack example (§7.5).

Time (s) Max Residency (MB) Properties

All On 945 250.6 55
O1Off 965 250.6 55
O2Off 994 261.7 59
O3Off 983 254.3 55
O4Off 99 490 242.6 55
All Off 102 759 408.7 59

(c) The semaphore example (§7.5).

O1 is to exclude neutral schemas when generating larger schemas
O2 is to prune properties which are simple consequences of another
O3 is to only evaluate the most general term for each schema
O4 is to cache the behaviours of terms

Table 11: How optimisations alter CoCo’s scaling behaviour.
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Chapter 8

Conclusions

We set out to make it easier for programmers to write correct concurrent programs, but
have we achieved that? In this chapter we review our contributions and draw some over-
all conclusions. Recall our motivation from Section 1.2:

The overall motivation of this research has been to develop tools which
make it easier for programmers to write correct concurrent programs. Our
primary goal is to demonstrate that concurrency testing techniques, typi-
cally described in the context of a simple core language, can be successfully
applied to languages with rich concurrency abstractions.

Systematic concurrency testing with rich semantics Chapter 5 introducedDéjà Fu.
This is aHaskell tool for testingHaskell programs, but the underlying techniques are not
Haskell specific. Haskell has an unusually rich concurrency abstraction, whereas SCT
techniques are typically described in the literature for simple concurrency abstractions.
Even real programming languages tend to have simple concurrency abstractions. Maple
(Yu et al. 2012) is able to test arbitrary pthread programs by considering just 19 primitive
actions, whereas the expression of Haskell concurrency in Déjà Fu requires 34 just for
concurrency, and a further 9 for STM. The number of primitive actions a concurrency
testing tool must consider is only an indirect measure of the complexity of the concur-
rency model it supports, but such a large difference is suggestive.

In Haskell, there are many different operations with partially overlapping behaviour.
It is not clear that a typical SCT algorithm would work effectively in this context. Our
case studies in Section 5.9 provide a convincing demonstration that SCT can be applied
to languages with rich concurrency abstractions.
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Effective bug finding with randomised scheduling Chapter 6 introduced the swarm
scheduling algorithm for random testing of concurrent programs. Random testing is
useful because it can be both fast and effective, even in cases where complete testing
does not scale. Our benchmark results in Section 6.3 show that it performs as well as the
PCT algorithm (Burckhardt et al. 2010) in terms of bug-finding ability. Crucially, PCT
requires the user to supply parameters derived from the program under test, whereas
swarm scheduling does not. The freedom from any such requirement makes swarm
scheduling simpler to implement and use than PCT, yet it still finds bugs just as well.

Discovering properties of concurrent programs Chapter 7 introduced CoCo. By
synthesising program terms and performing property-based testing, CoCo can give the
programmer new insights into their code. Like Déjà Fu, this is a Haskell tool, but the
techniques are not Haskell specific. The underlying idea is that we can compare sets of
program behaviours to make meaningful claims about the relation between the compo-
nents which make up those programs. Our case studies in Section 7.5 show the sorts of
properties we can discover but, as we see in Section 7.7, CoCo has scaling difficulties.

The CoCo approach applies not just to concurrent programs, but to nondeterminis-
tic programs in general. If we have an efficient, but nondeterministic, algorithm for a
problem, wemay wish to be able to use it in place of a slow, but deterministic, algorithm.
The deterministic algorithm is a refinement of the nondeterministic algorithm, which
may introduce additional behaviours.

Drawbacks of refactoring A weakness of our Haskell work is the MonadConc type-
class. Requiring programmers to modify their code, even in a straightforward way, is
a barrier to entry that many will not wish to overcome. Furthermore, when typeclass-
polymorphic code is compiled, the definitions of typeclass member functions cannot be
inlined, as they are not known (Peyton Jones and Marlow 2002). The recent Backpack
work (E. Z. Yang 2017) offers an alternative here, lessening the code modification prob-
lem and solving the optimisation problem.

The inevitable exponentials Concurrent programs are nondeterministic, and this is
where the difficulty of writing correct concurrent programs comes from. Testing a con-
current program requires executing it multiple timeswith different schedules. Thismul-
tiplicity adds overhead compared to sequential tests, where a single execution suffices.
Evenworse, a concurrent programwithn threads which each execute for at most k steps
can have as many as (nk)!

(k!)n executions (Madanlal Musuvathi and Qadeer 2007)!
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DéjàFu implements schedule bounding (Emmi, Qadeer, andRakamarić 2011;Madan-
lal Musuvathi and Qadeer 2008; Madanlal Musuvathi and Qadeer 2007) and partial-
order reduction (Flanagan and Godefroid 2005; Godefroid 1996) to improve the aver-
age case, but the worst case remains a possibility. Empirical studies show that small
test cases with just two threads and two pre-emptive context switches suffice for finding
many real-world concurrency bugs (Thomson, Donaldson, and Betts 2014). There is a
small-scope hypothesis here: most concurrency bugs do not only arise in complicated test
cases; rather, we just need a handful of actions to happen in the wrong order. This is the
intuition behind PCT (Burckhardt et al. 2010). So there is a terrible asymptotic worst
case, but in practice test cases are often small. When test cases are too large for system-
atic testing to effectively explore the state-space, then we can use a random approach, as
we did in Chapter 6.

The difficulty of interpreting success It can be difficult to look at the result of a suc-
cessful concurrency test and know what it is telling us. We saw this with CoCo in Sec-
tion 7.2, where the programmer may need to run the tool with a variety of interference
functions to see the full picture. Properties found with one sort of concurrent interfer-
ence may not generalise to cases with different interference. Similarly, successful con-
currency tests in Déjà Fumay not generalise to cases where the concurrent environment
is different. This difficulty is related to the problem of judging the quality of a test suite,
which we will discuss in Chapter 9.

The difficulty of interpreting failure It can be difficult to look at a failing concur-
rency test and diagnose the problem. We saw this with Déjà Fu in Section 5.9.1, where
the resulting execution traces were large and difficult to follow. Traces are a low-level
construct: they may become invalid when library dependencies change, even if the key
scheduling decisions remain the same. Which information is truly important? It is not
obvious.

Overall conclusions Concurrency errors, sometimes called“Heisenbugs”due to their
unpredictable behaviour, can be among the most difficult to debug (Madanlal Musu-
vathi, Qadeer, et al. 2008). The ideas behind concurrency testing have been around for
some time now (Godefroid 1996), and yet concurrency testing tools are not widely used.
By contributing new tools and illustrating what they can do we hope to help address this
problem.
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Chapter 9

Future Directions

We have made our contributions, and even found some users. But Déjà Fu, and concur-
rency testing in general, is not done yet. We now discuss future directions for the tools
we have developed, and end with a hopeful vision for concurrency testing in the future.

Measuring the quality of test suites How do we come to believe that a test suite is
strong evidence for the correctness of some program? Any testing regimen is only as
good as its tests. For sequential programs, we can use the traditional metric of code
coverage. Code which is not covered at all usually has more bugs than code which is
covered by even low-quality tests (Ahmed et al. 2016). For concurrent programs, what
metric dowe use? If it is some notion of coverage, what is the space being covered? Here
are two candidates:

– Schedule-sensitive branches are often unintentional and erroneous points of syn-
chronisation between concurrent threads (J. Huang and Rauchwerger 2015). A
good concurrency test suite should try all cases in a schedule-sensitive branch.

– Unguarded shared state without a synchronisation mechanism can lead to invalid
or corrupt data. If we have functions which operate on some mutable state of the
same type, then a good concurrency test suite should check what happens when
that state is shared and the functions are executed concurrently.

Both statement coverage and mutation score have only a weak negative correlation
with bug fixes (Ahmed et al. 2016), but there is a statistically significant difference be-
tween uncovered code and code with some, even if low, coverage (Ahmed et al. 2016).
Being able to identify the uncovered gaps of a concurrency test suite could greatly help
with improving the overall quality of a piece of software.

155



Chapter 9. Future Directions

Maximal causality reduction for Déjà Fu The MCR algorithm (J. Huang 2015) ex-
plores a provably minimal number of schedules required for completeness. Typically
this is orders of magnitude fewer than the number of schedules constrained only by dy-
namic partial-order reduction. However, MCR is tricky to implement in Haskell as it
requires local determinism: the future actions of a thread are determined solely by the
prior actions of the same thread and shared variables it has read. Haskell breaks local
determinism with asynchronous exceptions, where one thread can kill another.

Itmay bepossible to implement aHaskell-MCRby translatingHaskell execution traces
into a simpler form suitable for MCR. For example, asynchronous exceptions can be
modelled by giving each thread an exception variable: throwing an exception to a thread
writes to its exception variable, and the thread checks its exception variable before each
action. This polling technique is similar to how an operating system can abstract over
hardware interrupts: when an interrupt arrives, its exception handler sets a flag and re-
turns control to the interrupted routine, which checks the flag at a convenient point.

Optimal DPOR for Déjà Fu The Optimal DPOR with Observers algorithm (Aronis
et al. 2018) is based on the same insight asMCR, that the order of writes to some shared
state only matters if there exists a read operation which observes the difference. As it
is a DPOR algorithm, it could be closer to what Déjà Fu currently does, and simpler to
implement. However, it is evenmore restrictive thanMCR’s requirement of local deter-
minism, forbidding threads from disabling each other entirely. This means that blocking
operations currently cannot be modelled with the Optimal DPOR with Observers algo-
rithm, so it is currently unsuitable for Déjà Fu.

Accuratelymodelling delays in Déjà Fu Some users have expressed interest in using
Déjà Fu to test systems where accurate timing is important1, such as distributed systems
with timeouts. However, Déjà Fu currently has no notion of time. A thread delaying is
treated just the same as a thread yielding. It has no further effect on how threads are
scheduled during testing.

Listing 95 shows an example of a program with a delay: an IORef is created holding
the value False, which is set to True by another thread after a one hour delay. Imme-
diately after forking the second thread, the IORef is read and its value returned. What
should a timing-awareDéjà Fu say about this program? Currently, both True and False
are reported as possible outcomes. In reality, however, getting True requires the main

1 https://github.com/barrucadu/dejafu/issues/130
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example :: MonadConc m => m Bool
example = do

r <- newIORef False
fork (threadDelay 1000000 >> writeIORef r True)
readIORef r

Listing 95: A program with a large delay.

thread to not be scheduled for the entire one hour delay, which is vanishingly unlikely.
So should the True case be forbidden? When there are multiple threads with delays
which are important relative to each other, the problem only becomes more confusing.

Invariant testing in Déjà Fu Temporal program logics (Pnueli 1977) allow defining
and checking complex specifications for how a program should behave over the course
of its entire execution. WhileDéjà Fu is not a temporal logic checking tool, it can get part
of the way there by allowing users to specify invariants which are checked continuously
while the program under test runs. As Déjà Fu drives the execution, these invariants
can be checked atomically. This would be similar to, but more general than, the GHC
Haskell function always :: STM Bool -> STM (), which registers an invariant to
be checked at the end of STM transactions.

Automatic interference for CoCo CoCo requires the user to provide the interference
functionswhich are necessary to distinguish between atomic andnon-atomic actions. An
alternative would be for CoCo to generate interference automatically. This is possible,
as the primitives (IORefs, MVars, and TVars) are all modelled byDéjà Fu. However, it is
difficult to see how state with associated invariants can be automatically modified. The
user would need to supply predicates to check these invariants, or perhaps a collection of
allowable transformations, but is that any better than supplying the interference function
directly?

Conditional properties in CoCo Speculate (Braquehais and Runciman 2017b) dis-
covers conditional equations and inequalities automatically, which greatly expands the
range of properties which can be found. Conditional properties are useful as we see
how our functions behave in different situations, rather than just in general. CoCo has
a limited form of conditional properties, involving preconditions on the generated seed
values. Such precondition functions must be supplied by the user. However, it would
be much more useful if CoCo could synthesise preconditions, as Speculate does, to dis-
cover interesting cases itself.
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Term rewriting for CoCo Both QuickSpec (Smallbone et al. 2017) and Speculate
(Braquehais and Runciman 2017b) use term rewriting to prune the discovered proper-
ties and to avoid testing many cases. Pruning by reducing to a normal form is difficult to
do with concurrency, as effects may be non-local. For example, consider with relaxed
memory where writes to shared variables may be delayed (Zhang, Kusano, and Wang
2015). Such behaviours make the effect of composing two terms far less predictable.
Even so, it may still be possible in some cases to use something like term rewriting to
prune properties.

The future Testing a concurrent program goes something like this: (1) write a small
concurrent program; (2) run it lots of timeswith your concurrency testing tool, recording
the results of each execution; (3) look at the collection of results. This approach is rather
different to how we test sequential programs.

Test cases for sequential programs are generally written in a three-part “given, when,
then” style (Fowler 2013). The “given” sets up the system under test, the “when”
exercises it in some way, and the “then” decides if the test passes or fails. But in a test
case for a concurrent program, we may never reach the “then”. If a test case has some
concurrency failure, such as deadlock, we do not see the full picture. Did the program
only deadlock, or did it also corrupt its state? There is a fundamental difference between
normal program errors and concurrency errors.

Things do not need to be this way. By controlling the concurrency, a testing tool can
ensure that even if the “when” component enters a failure state, the “then” component
is still executed. When a failure is reported, a simplified description of the execution of
the “when” component, containing just the key details, can be given to the user. Maybe
this is not a complete trace: the Concurrit (Elmas et al. 2013) tool offers an alter-
native approach, where executions are represented by a small collection of scheduling
constraints.

However, testing concurrent programs will always remain a little more difficult than
testing sequential programs. Concurrency bugs are fundamentally more complex than
other bugs, and there is only so much that tooling and abstraction can accomplish.
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Appendix A

Haskell Reference

This appendix gives a brief introduction to Haskell syntax. We assume familiarity with
functional programming, in particular: with currying, first-class functions, patternmatch-
ing, and parametric polymorphism. For a more gentle introduction to Haskell, see the
tutorials page on the Haskell wiki1.

– foo = bar binds a name to a value

five = 5

– Function definitions add argument names after the function name

increment n = n + 1

– Function calls have no parentheses

six = increment five

– Function calls are left associative

seven = increment (increment five)

– Function calls take precendence over operators

incAndAdd x y = increment x + increment y

– Anonymous functions are declared with \args -> expr

double = \x -> incAndAdd x x - 2

– Functions are curried, ‘multi-argument functions’ are syntactic sugar

incAndAdd x = \y -> increment x + increment y
1 https://wiki.haskell.org/Tutorials
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– Functions are first-class values

compose f g x = f (g x)

– Operators are just functions with symbolic names

f . g = compose f g

– The $ operator is right-associative function application

compose f g x = f $ g x

– We can use a let expression to introduce local definitions

sumOf3 x y z = let temp = x + y in temp + z

– Or a where clause

sumOf3 x y z = temp + z where
temp = x + y

– type gives an existing type a new alias

type Name = String

– We can annotate a definition or a value with a type using ::

name :: Name
name = "Michael Walker"

– data defines a new data type

data Colour
= RGB Int Int Int
| Grey Double

magenta :: Colour
magenta = RGB 255 0 255

– Records allow us to name the fields in a type

data RGB = RGB
{ red :: Int
, green :: Int
, blue :: Int
}

red :: RGB
red = RGB { red = 255, green = 0, blue = 0 }
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– -> denotes the type of a function

sum3 :: Int -> Int -> Int -> Int
sum3 x y z = x + y + z

– -> is right associative, these types are all equivalent

sum3 :: Int -> Int -> Int -> Int
sum3 :: Int -> Int -> (Int -> Int)
sum3 :: Int -> (Int -> Int -> Int)
sum3 :: Int -> (Int -> (Int -> Int))

– Names that start with an upper case letter in types are concrete types

intId :: Int -> Int
intId x = x

– Names that start with a lower case letter in types are type variables

id :: a -> a
id x = x

– We can use type variables when defining types

data Maybe a = Just a | Nothing
data Either a b = Left a | Right b

– List comprehensions give a concise syntax to construct new lists

[(a, b) | a <- [1,2], b <- ['x','y']] == [(1,'x'), (1,'y'), (2, 'x'), (2, 'y')]

– List comprehensions can contain guards

[(a, b) | a <- [1,2], b <- ['x','y'], a == 2] == [(2, 'x'), (2, 'y')]

– The list type constructors are : and []

-- sugar: not really a legal data definition!
data [a] = a : [a] | []

– There are also tuples, each size a different type

-- sugar: not really legal data definitions!
data (a, b) = (a, b)
data (a, b, c) = (a, b, c)
-- ...

– The ‘unit’ type looks like an empty tuple

-- sugar: not really a legal data definition!
data () = ()
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– case expressions let us pattern match on data constructors

fromMaybe :: a -> Maybe a -> a
fromMaybe def m = case m of
Just a -> a
Nothing -> def

– Function definitions can also pattern match on their arguments

maybe :: a -> (a -> b) -> Maybe a -> b
maybe def f (Just a) = f a
maybe def f Nothing = def

– The pattern _matches anything

ifThenElse :: Bool -> a -> a -> a
ifThenElse True t _ = t
ifThenElse _ _ f = f

– Typeclasses are used to group common behaviour, such as equality

class Eq a where
(==) :: a -> a -> Bool

instance Eq Bool where
True == True = True
False == False = True
_ == _ = False

– Typeclass constraints can appear in type signatures

eq3 :: Eq a => a -> a -> a -> Bool
eq3 a b c = a == b && b == c

– The Functor typeclass represents ‘contexts’ which can be mapped over

class Functor f where
fmap :: (a -> b) -> f a -> f b

– fmap is sometimes written <$>

(<$>) :: Functor f => (a -> b) -> f a -> f b
(<$>) = fmap

– The Applicative typeclass extends Functorwith the ability to wrap up a value

class Functor f => Applicative f where
pure :: a -> f a
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– …and to apply a value-in-a-context to a function-in-a-context

class Functor f => Applicative f where
(<*>) :: f (a -> b) -> f a -> f b
pure :: a -> f a

– The Monad typeclass extends Applicative with the ability to compose contexts

class Applicative m => Monad m where
(>>=) :: m a -> (a -> m b) -> m b

(>>) :: Monad m => m a -> m b -> m b
ma >> mb = ma >>= \_ -> mb

– do-notation is a syntactic sugar for sequencing monadic actions

main :: IO ()
main = do

putStrLn "hello"
putStrLn "world"

– <- is used to bind the result of a monadic action to a name in do-notation

main :: IO ()
main = do

putStrLn "What's your name?"
name <- getLine
putStrLn ("Hello " ++ name)

– let is used to bind an expression to a name in do-notation

main :: IO ()
main = do

let sum = sum3 1 10 100
print sum

Language extensions GHCprovides a rich collection of extensions to standardHaskell.
These are documented fully in the GHCmanual2.

– The ViewPatterns language extension allows pattern matching on a function
result

myFst :: (a, b) -> a
myFst (fst -> a) = a

2 http://downloads.haskell.org/~ghc/latest/docs/html/users_guide/lang.html
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– The RankNTypes language extension allows universally quantified type variables

pair :: (forall x. x -> x) -> a -> b -> (a, b)
pair f a b = (f a, f b)

– The TypeFamilies language extension allows types to be associated with a type-
class

class Tower a where
type Next a :: *
promote :: a -> Next a

instance Tower Word8 where
type Next Word8 = Word16
promote = fromIntegral
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Swarm Scheduling Algorithm

Listing 96 shows the core of the swarm scheduling algorithm from Chapter 6, as imple-
mented in C++ in Maple. There are four methods:

– Explore is called by Maple, and is what drives the execution of the program.
It picks a thread to run and calls Execute, which causes Maple to advance that
thread to the next scheduling point.

– AssignWeightsToNewThreads is called by Explore. It checks that every en-
abled thread has a weight in the weightsmap, assigning a weight if not. We only
consider enabled threads, so if a thread is blocked when it is created and never
becomes enabled, it will never receive a weight.

– AssignWeightTo is called byAssignWeightsToNewThreads for eachnew thread,
and by Explore when a weight change point is encountered. It assigns a new
weight in the range [wmin, wmax], which we have hard-coded here to be 1 and 50,
respectively.

– PickNextRandom is called by Explore, and is what chooses the thread. It pro-
duces a list of the weights of all enabled threads, and uses that list as a discrete
distribution. As this method is called after AssignWeightsToNewThreads, ev-
ery enabled thread will have a weight.
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void SwarmScheduler::Explore(State *init_state) {
State *state = init_state;
unsigned int steps = 0;

while (!state->IsTerminal()) {
AssignWeightsToNewThreads(state);

auto it = PickNextRandom(state);
for(unsigned int cpoint : changePoints) {

if(steps == cpoint) {
AssignWeightTo(it.first->uid());

}
}

state = Execute(state, it.second);
steps++;

}
}

void SwarmScheduler::AssignWeightsToNewThreads(State *state) {
auto enabled = state->enabled();
for(auto it = enabled->begin(); it != enabled->end(); it++) {
auto threadId = it->first->uid();
if(weights.find(threadId) == weights.end()) {

AssignWeightTo(threadId);
}

}
}

void SwarmScheduler::AssignWeightTo(uint32 threadId) {
std::uniform_int_distribution<uint8> weightDist(1, 50);
weights[threadId] = weightDist(random);

}

std::pair<systematic::Thread* const, systematic::Action*>
SwarmScheduler::PickNextRandom(State *state) {
auto enabled = state->enabled();

// get the enabled threads and their weights
std::list<uint8> e_ws;
for(auto it = enabled->begin(); it != enabled->end(); it++) {
e_ws.push_back(weights[it->first->uid()]);

}

// pick an enabled thread by a weighted random choice
auto it = enabled->begin();
std::discrete_distribution<int> dist(e_ws.begin(), e_ws.end());
std::advance(it, dist(random));
return *it;

}

Listing 96: The core of the C++ swarm scheduling algorithm, implemented in Maple.
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