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Abstract

The main purpose of this dissertation is to analyse the extent to which

algebraic weak factorisation systems provide models of Martin-Löf depen-

dent type theory. To this end, we develop the notion of a type-theoretic

awfs; this is a category equipped with an algebraic weak factorisation sys-

tem and some additional structure, such that after performing a splitting

procedure, a model of Martin-Löf dependent type theory is obtained. We

proceed to construct examples of such type-theoretic awfs’s; first in the

category of small groupoids, which produces the Hofmann and Streicher

groupoid model. Later we make use of the machinery of uniform fibrations

of Gambino and Sattler to produce type-theoretic awfs’s in Grothendieck

toposes equipped with an interval object satisfying some additional prop-

erties; from this we obtain concrete examples in the categories of simpli-

cial sets and cubical sets. We also study the notion of a normal uniform

fibration, a strengthening of the notion of a uniform fibration, which al-

lows us to address a question regarding the constructive nature of type-

theoretic awfs’s. In addition, we show that the procedure of constructing

type-theoretic awfs’s from uniform fibrations is functorial, thus providing a

method for comparing models of dependent type theory.
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Introduction

This primary goal of this dissertation is to investigate the extent to which algebraic

weak factorisations systems can be used to give models of Martin-Löf’s dependent type

theory.

Context and Motivation

A type theory is a formal system consisting of primitive objects called types and terms,

plus some rules for manipulating judgements involving these objects. The basic judge-

ment of any type theory is written as a : A and read as a is a term of type A. Informally

speaking, there are various possible interpretations of this judgement; for example we

could think of a as an element of a set A, or that A is a ‘space’ and a is a point of

this space. We could also think of A as a proposition and a as a code for a proof;

and computationally we may think of A as some data type (for example the natural

numbers, or the type of finite lists over some type), and a corresponds to an instance

of such data.

One of the most important examples of a type theory is the simply-typed lambda

calculus [Chu40] introduced by Church, which is a variant of the (untyped) lambda

calculus where types are introduced in order to provide good computational behaviour

to the system. In addition to the basic typing judgement, a new type constructor is

introduced for the type of functions: if A and B are types we can form the type A→ B

whose terms correspond to functions mapping terms of type A to terms of type B.

Alongside this formation rule, there are other rules to manipulate terms of A→ B. We

have an introduction rule that tell us how to build functions, if t : B is a term with

(possibly) a free variable of type A, then we can form the term λx.t : A → B. We

also have an elimination rule, this allow us to use functions as we would expect to: if

f : A → B and a : A then we can apply the function to the term fa : B. And finally

(but crucially for the computational interpretation) we need a computation rule (also

known as β-reduction), this rule is about equality thus allowing us to reduce new terms

constructed from the introduction and elimination rules, to previously known ones: if

t : B is a term with a free variable of type A and a : A then (λx.t)a = t[x/a] : B. Some

explanation is in order. First note that we have introduced a new judgement, one of

the kind b = b ′ : B this is known as a judgemental equality meaning that we identify

two (possibly syntactically different) terms as equal. Secondly, we have introduced a
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purely syntactical operation called substitution, the term t[x/a] is inductively defined by

substituting in t every free occurrence of the variable x by the term a. By construction,

this operation is strictly associative, meaning that it does not make a difference the

order in which a double substitution is realised.

A simply-typed lambda theory augments the simply-typed lambda calculus with a

collection of ground types and terms, and some axioms between them. Simply-typed

lambda theories have natural semantics in Cartesian closed categories (ccc’s for short)

[Sco82, LS88]. Types are interpreted as objects and terms as arrows, the type of func-

tions is then interpreted as the exponential or hom-object. Crucially, the substitution

operation is interpreted just as the composition of arrows and this soundly models the

type theory because composition of arrows is strictly (on-the-nose) associative, just

as the syntactic operation. There is, in fact, an equivalence between the category of

simply-typed lambda theories and the category of Cartesian closed categories.

One way to increase the expressivity of the simply-typed lambda calculus, is to allow

types to depend on free variables from other types. The class of systems that arise from

this strengthening are called dependent type theories. Along with dependent types, we

can introduce new type constructors such as the dependent products, dependent sums,

and identity types, a type theory with these constructors is called a Martin-Löf type

theory [ML75], see Appendix A. The syntactic substitution operation is extended to

dependent types: if B is a type depending on a free variable x of type A and a : A we

can substitute in B the free occurrences of x by a and have B[x/a].

A first attempt by Seely [See84] to extend the interpretation of the simply-typed

lambda calculus in ccc’s, leads to an interpretation of extensional Martin-Löf type theo-

ries (i.e. equipped with extensional identity types) in locally cartesian closed categories

(or lccc’s), here a dependent type B on A is interpreted as a arrow B→ A (i.e. an object

in the slice over A). This naturally leads to the interpretation of substitution of terms

into types as the pullback of the interpretation of the dependent type along the arrow

representing the term. We immediately observe that there is a problem: pullbacks are

(generally) only associative up to isomorphism, which implies that in general this inter-

pretation does not soundly model the operation of substitution. Moreover, dependent

products and dependent sums are interpreted using the right and left adjoints to the

substitution functor, which are part of the defining structure of an lccc. These adjoints

satisfy a coherence condition call the Beck-Chevalley condition which warranties that

the interpretations of dependent sums and products commutes with substitution, but

only up to isomorphism. We thus encounter a second problem: we cannot soundly

model these type constructors, since they commute strictly with substitution in the

syntax. These problems were first recognised and dealt with by Hofmann [Hof94]. The

crucial point was making use of a coherence theorem for lccc’s; that is, a method for

replacing, or splitting, an lccc with equivalent structured category where the operation

of substitution could be modelled soundly, and then carefully making sure that all the

structure and type constructors could be transported to this new setting.

2
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Things become more difficult when we try to reproduce the work of Seely and

Hofmann to produce models of intensional Martin-Löf type theories. It turns out that

the naive interpretation in lccc works only for the extensional identity types, indeed

any interpretation of identity types in lccc’s will necessarily be extensional. Non-the-

less, it is possible to define models where the interpretation of the identity types is not

trivial; one of the first models of intentional identity types was described by Hofmann

and Streicher in the category of groupoids [HS98]. Types in this model correspond to

small groupoids G, and dependent types correspond to (split) isofibrations H → G.

Crucially, the identity type of G corresponds to the discrete groupoid of isomorphisms

in G.

Inspired by the Hofmann-Streicher groupoid model, Awodey and Warren [AW09]

brought forward earlier ideas from [Car86] and [Tay86] in order to address the ques-

tion of extending the naive interpretation of extensional identity types in lccc’s to the

intensional ones. Instead of interpreting dependent types as arbitrary morphisms, they

restricted the class of morphisms that could model dependent types. Moreover, in order

to be able to model the additional structure of a Martin-Löf type theory (especially

intensional identity types), the class of morphisms that are allowed to model dependent

types, turned out to have most of the formal properties that classes of fibrations (in

groupoids, topological spaces, simplicial sets, and more generally in Quillen model cat-

egories) enjoy. The Hofmann-Streicher groupoid model is an example of this approach

where types are interpreted as isofibrations; more generally, any model that used this

naive types-as-fibrations interpretation became known as an homotopy-theoretic model

of Martin-Löf type theory. These models embodied the intuitive idea that types ought

to correspond to some kind of ‘spaces’ viewed from an homotopical perspective, i.e. as

homotopy types, in such a way that identity types correspond to path-spaces [KL12].

However, the problem of substitution being soundly modelled was still an issue;

in fact, in the presence of intensional identity types it became even more difficult.

Intuitively, the issue is the following; the syntactic rules for dependent sums, products

and extensional identities are mirrored in the semantical world by the use of universal

properties of some kind, for example for dependent sums and products, these universal

properties are the ones coming from the left and right adjoints to the pullback functor.

The proof that Hofmann used for adapting Seely’s interpretation, heavily relied on

these universal properties. However, the rules for intensional identity types are not

incarnated via any universal property, thus the methods developed by Hofmann cannot

be applied for intensional identities.

In his dissertation, Warren [War06] addressed the problem of adapting Hofmann’s

method for soundly modelling intensional identities. He identified the precise structure

that was needed for this, we refer to this structure by a pseudo-stable choice of identity

types. Unfortunately, a new problem arises; the common constructions of path-spaces in

the context of topological spaces or simplicial sets (or more generally, the construction

of path-objects in model categories) will not in general produce pseudo-stable choices

of identity types. The crux of the problem is the following: the path-space PX of a
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space X comes equipped with a map r : X→ PX that maps a point of X to the constant

path on it. This map has the left lifting property against fibrations; that is, for every

commutative square with r on the left and any fibration on the right, there exists a

filler. However, the definition of a pseudo-stable choice of identity types requires a

choice of fillers for such squares, which must be in addition suitably coherent with

each other. This need for additional structure, instead of just an existence property,

is a reflection of the syntactic construction of the terms in the identity type using the

elimination rule.

Various solutions to this problem were proposed, some of them involved using a

different coherence method from that used by Hofmann. For example, Voevodsky

[Voe15a] proposed the use of a universe for which a ‘generic’ identity type could be

constructed and which would represent all the specific instances of identity types; he

used this method for the construction of a model of intensional Martin-Löf’s type

theory with one univalent universe. It was van den Berg and Garner [dBG12] who

realised that it was still possible to adapt Hofmann’s method if the types-as-fibrations

interpretation was strengthened. They used a more structured, algebraic, notion of

fibrations where lifting problems come equipped with a specified choice of fillers, and

this choice is suitably coherent. However, there is a drawback in their approach, it is

still hard to find examples; for instance they introduced a, combinatorially complex,

notion of Moore path-space for simplicial sets which was needed to obtain pseudo-stable

choices of identity types. They also did not explain how their approach would interact

with the additional logical structure of dependent sums and products.

At the same time, Coquand et al. [BCH14, CCHM16], constructed a model of

Martin-Löf type theory (including a univalent universe) in the category of cubical sets

(with connections). Just as van den Berg and Garner, they also used a structured notion

of fibration to model type dependency; and moreover, as opposed to Voevodsky’s, their

model used only constructive arguments. One drawback of their approach is that the

identity types do not coincide precisely with the canonical path-objects obtained by

exponentiating by the interval object in the category of cubical sets.

Inspired by these ideas; Gambino and Sattler [GS17] developed a machinery for

constructing complex objects called algebraic weak factorisation systems out of some

general assumptions on a category. Using this data, they showed that the category of

right algebras, also called the category of uniform fibrations, could be used to model a

dependent type theory equipped with dependent sums and products. As an example

of their method, they constructed models of uniform fibrations on simplicial sets and

cubical sets, and such that the particular model of the Coquand group could also be

obtained as a specific example. They also showed that under some extra assumptions,

all of their arguments could be carried out constructively. Their approach however

lacked the description of identity types and (univalent) universes. A similar approach

was developed simultaneously by Orton and Pitts [OP16], who instead of working with

the (external) algebraic structure, they used the internal language of a topos to express

a list of axioms that would entail the existence of a model on the given topos.
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Summary

This dissertation is an effort to extend the understanding of the (functorial) categorical

semantics of Martin-Löf’s type theory, using the machinery of algebraic weak factori-

sation systems.

In Chapter 1, we give an overview of the categorical framework that is needed to

model type dependency and additional logical structure. Among the many categorical

doctrines available for this purpose, we choose to work with the structure of a split com-

prehension category ; the reason being that it fits perfectly with the notion of algebraic

weak factorisation system. After going through the basic theory of comprehension cat-

egories, we dive into the description of the structure needed to model additional logical

structure that the type theory might have. This process can be seen as a straightfor-

ward, ad-hoc, translation of the syntactic rules into the categorical framework.

Chapter 2 is dedicated to the subject of a well known procedure for splitting com-

prehension categories. This is a classical construction by Bénabou and Giraud [Gir66]

that we have decided to call the right adjoint splitting since it forms a 2-coreflection of

the inclusion of split comprehension categories into non-split ones. This method will

be the main tool for the purpose of splitting algebraic weak factorisation systems. We

will provide a detailed example of how to apply the coherence theorem for dependent

sums and products in the contexts of Joyal’s tribes [Joy17]. This example serves also as

motivation for moving to the algebraic setting. This is because, in the setting of tribes

the problem with the construction of pseudo-stable identity types becomes evident.

After dealing with the right adjoint splitting we provide, in Chapter 3, a brief

description of the splitting method developed by Voevodsky using a ‘universe’ (or

‘generic’) type. Our approach is slightly more general than the original one allowing

to perform the splitting procedure for arbitrary comprehension categories. The main

purpose for doing this is to establish a result comparing the two splitting methods.

In Chapter 4 we develop a general theory of type-theoretic algebraic weak factorisa-

tion systems, or type-theoretic awfs’s for short, these are algebraic weak factorisation

systems equipped with extra structure that makes them suitable to interpret Martin-

Löf dependent type theory, after performing the right adjoint splitting procedure. We

begin by describing the procedure used to obtain a comprehension category out of an

awfs, and identifying the additional structure that an awfs must have in order to pro-

duce pseudo-stable choices of dependent sums, products and intentional identity types;

we refer by a type-theoretic awfs to the data of an awfs equipped with this additional

structure. We move on to provide an example of a type-theoretic awfs in the cate-

gory of groupoids; we show that it is possible to construct such a type-theoretic awfs

by elementary methods, where the underlying awfs has the split isofibrations as right

algebras; and thus giving an alternative description of the Hofmann-Streicher original

model. The crucial ingredient needed to construct the type-theoretic awfs on groupoids

is the existence of a path-object which has a strictly associative and unital composition

operation of paths; this is consistent with the results of van den Berg and Garner where
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this was an indispensable requirement for their constructions. Unfortunately, it is often

difficult to encounter such well behaved path-objects in the intended examples.

For this reason, in Chapter 5, we decide to work with the theory of uniform fibrations

as developed by Gambino and Sattler [GS17] as a major source of examples of type-

theoretic awfs. In their work, Gambino and Sattler showed that the awfs of uniform

fibrations comes equipped with the necessary structure needed to obtain pseudo-stable

dependent sums and products. In this chapter, we show that under some additional

hypothesis, the requirements for obtaining pseudo-stable identity types are also met.

Additionally, we are able to adapt some of their results to obtain type-theoretic awfs

in Grothendieck toposes equipped with the structure of an interval object; for example

in this way we obtain type-theoretic awfs on simplicial and cubical sets.

We dedicate Chapter 6 to the study of the functorial aspects of the theory of uniform

fibrations. In detail, we show that the process of producing type-theoretic awfs of

uniform fibrations is just the object part of a functor between suitably defined categories

with additional structure. As an application of this result, we show that type-theoretic

awfs of uniform fibrations can be transported along the left adjoint of a geometric

embedding of toposes with the resulting model being connected to the original one via

a morphism of type-theoretic awfs’s.

It turns out that, from a constructive perspective, our results regarding the con-

struction of a type-theoretic awfs from the theory of uniform fibrations are not entirely

satisfactory. The reason is that, even-though the proof of our main theorem (Theo-

rem 5.1.1) uses only constructive arguments, it is not always possible to show construc-

tively that one of our additional hypothesis hold. For this reason, in Chapter 7, we

propose a method for addressing this issue by introducing a notion of normal uniform

fibrations, which is formally similar to that of normal isofibrations in groupoids.

For the convenience of the reader, we have included a chapter with background

material (Chapter 1) as well as three appendices.

Main Contributions

The main contributions of this thesis are aimed at providing a better of understanding

of the use of algebraic methods, especially of algebraic weak factorisation systems, in

the construction of models of dependent type theory. We proceed to list them for the

convenience of the reader.

1. Our first contribution is found in Chapter 2. Here we provide a detailed proof

of the coherence theorem for the right adjoint splitting; we do this by carefully

analysing the cases of Σ, Π, Id and universe types. We emphasise that the case

of universes has some technical difficulties and, to the best of our knowledge, had

not been dealt with before.

2. In Chapter 4 we introduce the notion of a type-theoretic awfs (Definition 4.4.1).

This definition is a synthesis of various concepts from the work of [dBG12] and

6
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[GS17]. We show that from a type-theoretic awfs it is possible to obtain a strict

model of dependent type theory with Σ, Π and intensional Id-types. We do this by

first extracting the data of a comprehension category equipped with pseudo-stable

choices of the relevant kinds of logical structure, and then using the coherence the-

orem for the right adjoint splitting of comprehension categories (Theorem 2.6.1).

3. We show, in Chapter 5, that a vast source of examples of type-theoretic awfs’s can

be obtained by applying and extending the theory of uniform fibrations developed

in [GS17]. In detail, our main contribution is Theorem 5.1.1 where we show that

the awfs of uniform fibrations can be equipped with the structure of a stable

functorial choice of path objects (Definition 4.3.1); and thus, in conjunction with

the results of [GS17], provides the necessary structure for a type-theoretic awfs’s.

4. Our next contribution can be found in Chapter 6. Here we show that the method

of uniform fibrations for constructing a type-theoretic awfs, is functorial. The

main motivation for doing this is to have a method for comparing different models

of dependent type theory obtained by applying the theory of uniform fibration.

The proofs in this chapter are rather technical and are achieved by developing

one-by-one the functorial part of the arguments found in [GS17]. The end result

is summarise in Theorem 6.6.4 and Theorem 6.6.5. Additionally, we show in

Theorem 6.7.1 that the process of obtaining a comprehension category from a

type-theoretic awfs is also functorial.

5. Our final main contribution is found in Chapter 7. Here we develop a strength-

ening of the notion of a uniform fibration, which we call normal uniform fibration

(Section 7.2). We show that a type-theoretic awfs of normal uniform fibrations

can be constructed by adapting the arguments of [GS17] and of Chapter 5. The

main results of this chapter are Theorem 7.5.5 and Theorem 7.6.6. Our motiva-

tion for developing this notion is to overcome an issue regarding the constructive

nature in the hypothesis of Theorem 5.1.1, as mentioned in Note 5.2.5.

7



CONTENTS

8



Chapter 1

Background

This dissertation is ultimately about categorical models of dependent type theory; as

such, it is important to establish with precision the setting that will be used. The

purpose of his first part is precisely that: to give a brief but thorough overview of the

categorical structures necessary to produce such models.

The subject of categorical semantics of dependent type theory is vast. There exists

a plethora of distinct flavours of structured categories (i.e. doctrines) that enables

the interpretation of the basic components of a type theory. Just to mention a few,

there are categories with families (CwF) [Dyb96], categories with attributes (CwA)

[Car86, Mog91], split comprehension categories [Jac93], contextual categories [Car86,

Str91], natural models [Awo16], etc. All of these are suitably equivalent to each other,

some of them are more closely related to the syntax in nature (for example contextual

categories) and some of them are closer to the semantics (for example comprehension

categories).

We choose to work with comprehension categories, the reason being that they fit

more naturally with the applications that we have in mind; that is, they streamline the

process of creating models of dependent type theory from (algebraic) weak factorisation

system.

We will begin with a review of the main aspects of the theory of comprehension

categories and of Grothendieck fibrations. Following this, we will explain how additional

type-theoretic logical structure is interpreted in a comprehension category. We make

no claim of originality for the content of this chapter, however some new notational

devices are introduced in the hope of easing the understanding of the more technically

difficult definitions and results. Our account on the subject follows [Jac99] and [Str18].

1.1 Grothendieck Fibrations

Let us fix a functor ρ : E → C. We say that an object A ∈ E (or an arrow f : B → A

in E) is over an object Γ ∈ C (or respectively over an arrow u : ∆ → Γ) if ρ(A) = Γ

9



1. BACKGROUND

(respectively ρ(f) = u). An arrow in E is vertical if it is over an identity. The category

C will be called the base category and E the total category of ρ.

Definition 1.1.1. An arrow f : B → A in E is said to be Cartesian with respect to
ρ (or ρ-Cartesian) over u : ∆ → Γ in C if it is over u and the following universal
property holds: for any g : C→ A and v : Θ→ Γ such that u ◦ v = ρ(g), there exists a
unique arrow h : C→ B over v such that f ◦ h = g.

This can be represented in a diagram as follows:

C

∃!h
��

g

&&
B

f // A E

ρ

��

Θ
v

��

ρ(g)

&&
∆

u // Γ C

(1.1)

Diagrammatically, we will denote a ρ-Cartesian arrow f over an arrow u as in the

following diagram:

B
f // A

∆
u
// Γ

This notation suggests that Cartesian arrows resemble in some way pullback squares,

the following proposition should evoke some similarities between the two notions. More-

over, as we will see in Example 1.1.5 bellow, there are cases where the two notions

coincide.

Proposition 1.1.2. Suppose that f, g, h are arrows in the total category of a functor
ρ such that f ◦ g = h. Then the following conditions hold:

1. If f and g are Cartesian then so is h.

2. If h and f are Cartesian then so is g.

Proof. Straightforward from the definition. If we suppose f, g and h are morphisms in
an arrow category C→ (i.e. squares) and replace Cartesian arrows for pullback squares,
then the above lemma takes the form of a well known result; the proofs of both results
are very similar.

10



1.1 Grothendieck Fibrations

Definition 1.1.3. The functor ρ is a fibration if for any arrow u : ∆ → Γ in C and
for any object A ∈ E over Γ , there exists a Cartesian arrow f : B→ A over u. Such an
arrow will be called a Cartesian lift of u at A.

The following proposition follows easily from the definition of Cartesian lift. The

analogous statement with pullbacks is the well known result (which follows from the

universal property) that pullback squares are unique up to unique isomorphism.

Proposition 1.1.4. Any two Cartesian lifts of the same arrow at the same object are
isomorphic via a unique vertical isomorphism.

Example 1.1.5. There are two canonical functors of signature C→ → C; the domain
and the codomain functors. For the domain functor Cartesian arrows are squares where
the bottom arrow is an isomorphism. For the codomain functor, Cartesian arrows are
pullback squares. The domain functor is always a fibration, however the codomain
functor is a fibration if and only if the base category has pullbacks.

Definition 1.1.6. A cleavage for a fibration ρ is a choice of Cartesian lifts, i.e. for
every u : ∆→ Γ and A over Γ a Cartesian lift, which we will denote by:

A[u]
uA // A

∆
u // Γ

A cloven fibration is a fibration equipped with a cleavage. A cloven fibration is
normal if the cleavage preserves identities, i.e. the lift of the identity of Γ at A is the
identity on A. A normal fibration is split if it the cleavage preserves composition; that
is, (u ◦ v)A = uA ◦ vA[u] for composable arrows u and v in C.

Assuming the axiom of choice we can always choose a cleavage for any given fi-

bration, moreover the choice can be made in such a way that the resulting cleavage is

normal. However it is not always possible to choose a cleavage that makes the fibration

split.

Given Γ ∈ C, the fibre of ρ over Γ denoted by E(Γ) is the subcategory of E whose

objects are over Γ and whose arrows are over idΓ (i.e. vertical arrows). Notice that the

Cartesian arrows in the fibres (i.e. the arrows which are both vertical and Cartesian)

are precisely the vertical isomorphism. The following lemma follows immediately from

this observation.

Lemma 1.1.7. Let ρ : E → C be a fibration and consider Ecart the wide (i.e. containing
all objects) subcategory of E spanned by the Cartesian arrows. Then the functor ρcart :
Ecart → C given by composing ρ with the inclusion, is a fibration. Moreover the fibres
of ρcart are groupoids.

11



1. BACKGROUND

Lemma 1.1.8. If ρ is a cloven fibration then every arrow u : ∆ → Γ in C induces a
functor

(−)[u] : E(Γ) → E(∆).

This is usually called the reindexing or substitution functor along u.

Proof. On objects it is defined by the cleavage. Given an arrow f : A ′ → A define f[u] :
A ′[u] → A[u] as the unique arrow over id∆ with uA◦f[u] = f◦uA ′ . Functoriality follows
because the arrows are defined canonically. In the following diagram, we illustrate how
the arrow f[u] is defined:

E

ρ

��

A ′[u]
uA ′ //

∃!f[u]
''

A ′

f

&&
A[u]

uA // A

C ∆
u //

id

((

Γ
id

&&
∆

u // Γ

Definition 1.1.9. Let ρ : E → C and q : D → C be Grothendieck fibrations. A functor
H : E → D is called fibred if the following diagram commutes

E H //

ρ
��

D

q
��

C

and H preserves Cartesian arrows. In the case that ρ and q are cloven fibrations, a
fibred functor H is said to preserve the cleavage if for any arrow u in C and A over
the codomain of u we have that H(uA) = uH(A).

For any two fibred functors H,K : ρ → q; a natural transformation η : H → K is
said to be fibred if its components are vertical, i.e. ηA : H(A) → K(A) is over idρ(A)
for each A in the total category of ρ.

A fibred functor H : ρ→ q is said to be a fibred equivalence if there exist a fibred
functor G : q→ ρ and fibred natural isomorphisms HG ∼= idq and GH ∼= idρ.

Notice that fibred functors and fibred natural transformations restrict to the fibres,

indeed, if H is a fibred functor as in the above definition, then for each Γ in the base

category, there is an induced functor

HΓ : E(Γ) → D(Γ)

12



1.1 Grothendieck Fibrations

and if η : H→ K is a fibred natural transformation then it induces

ηΓ : HΓ → KΓ

whose components are the same as the components of η (i.e. ηΓ,A = ηA).

The following results leading to Lemma 1.1.12 are elementary and well known. We

include the proofs in the spirit of completeness since we could not find detailed proofs

in the literature for some of them.

Lemma 1.1.10. A fibred functor H (as above) is full (respectively faithful) if and only
if for each Γ in the base, the restriction HΓ is full (respectively faithfull).

Proof. If H is full (faithful) it is clear that each HΓ is full (faithful). To prove the other
direction, let A and B be objects of E over Γ and ∆ respectively. Now suppose that
all restriction functors are full, and consider an arrow f : H(B) → H(A) lying over say
u : ∆ → Γ . Take u∗ : A∗ → A any ρ-Cartesian lift of A along u, since H is fibred we
know that H(u∗) is a q-Cartesian lift of H(A) over u and by the defining property of
Cartesian arrows we find a unique vertical h that factors f through H(u∗):

H(B)

h∃!
��

f

$$

H(A∗)
H(u∗)

// H(A)

∆
u // Γ

Since H∆ is full, there is a vertical g : B→ A∗ over ∆ such that H(g) = h and thus

H(u∗ ◦ g) = H(u∗) ◦H(g)
= H(u∗) ◦ h
= f

A similar argument go through for faithfulness.

Corollary 1.1.11. A fibred functor H is a fibred equivalence if and only if for each Γ
in the base, HΓ is an equivalence.

Proof. It is clear that if H is a fibred equivalence, then each HΓ will be an equivalence.
For the converse, we use the previous lemma to show that since all HΓ are full and
faithful functors, then H is also full and faithful. Now consider B in D over Γ , since HΓ
is surjective on objects there exists A in D over Γ and a vertical isomorphism

H(A) ∼= B

thus H is surjective on objects and therefore an equivalence. It can be proven from the
fact that the above isomorphism is vertical that H is moreover a fibred equivalence.

13



1. BACKGROUND

The fibrations over a common base C together with the fibred functors and fibred

natural transformations assemble into a 2-category Fib(C). The subcategory of Fib(C)
of split fibrations and cleavage preserving fibred functors will be denoted Sp(C). Let

us denote by Cat the category of locally small categories and by [Cop,Cat] the functor

category.

Lemma 1.1.12. Given a locally small category C, there is an equivalence:

Sp(C) ' [Cop,Cat]

Proof. Let us start by defining the following functor Θ : Sp(C) → [Cop,Cat] as follows.
Given a split fibration ρ : E → C, define Θ(ρ) : Cop → Cat on objects by taking
Θ(ρ)(Γ) := E(Γ) the fibre over Γ . The action of Θ(ρ) on arrows is given by reindexing
while functoriality will follow from the fact that ρ is split.

On arrows Θ is defined in the obvious way and naturality follows from the fact that
morphisms of split fibrations preserve cleavages. It is straightforward to observe that
Θ is full and faithful, we will only show that it is full. Let ρ : E → C and q : D → C
be split fibrations and let η : Θ(ρ) → Θ(q) be a natural transformation. We define a
functor H : E → D such that for each Γ it agrees with ηΓ , i.e. for A over Γ we have
H(A) := ηΓ (A) We now need to define H(f) for an arrow f : B→ A over u : ∆→ Γ ; for
this consider the following factorisation of f as a vertical arrow followed by a Cartesian
one:

B

h
��

f

!!

A[u]
uA // A

∆
u // Γ

notice that this factorisation is uniquely determined by the cleavage of ρ. We thus
define

H(f) := uηΓ (A) ◦ η∆(h)

it is clear that H is a well-defined, cleavage preserving, fibred functor. It is also clear
that Θ(H) = η.

Now we are left to show that Θ is surjective on objects, for this we make use of the
Grothendieck construction which we will briefly describe. From a functor F : Cop → Cat
we can construct a split fibration π :

∫
F→ C where the category

∫
F is defined as follows:

Objects: Pairs (Γ,A) where Γ is in C and A is an object of F(Γ).

Arrows: An arrow (∆,B) → (Γ,A) is given by a pair (u,α) where u : ∆→ Γ is an arrow in
C and α : B→ F(u)(A) is an arrow in F(∆).

14
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The functor π is the evident first projection. To show that π is a cloven fibration it is
sufficient to exhibit a cleavage, given u : ∆→ Γ and (Γ,A) over Γ we see that

(u, id) : (∆, F(u)(A)) → (Γ,A)

is a Cartesian arrow over u, thus π is a cloven fibration. The fact that π is split follows
from the functoriality of F which we will omit.

Finally we can see that Θ(π) ∼= F where the isomorphism is given by a natural
transformation λ with components λΓ : Θ(π)(Γ) → F(Γ) given by λΓ (Γ,A) = A.

We can ask ourselves what happens if we restrict the equivalence given by the

previous lemma to the category of presheaves [Cop, Set] instead of the functor category

[Cop,Cat].

Definition 1.1.13. A functor ρ : E → C is a discrete fibration if it has small fibres
(i.e. the fibres are small categories) and for any arrow u : ∆ → Γ in C and A over Γ ,
there is a unique arrow f : A∗ → A in E over u.

Remark 1.1.14. The requirement of small fibres is a technical one since we can always
consider a bigger set theoretic universe with respect to which the fibration has small
fibres.

Notice that every discrete fibration is in particular a split fibration such that every

arrow in the total category is Cartesian. Let dFib(C) denote the full subcategory of

Sp(C) consisting of discrete fibrations.

Corollary 1.1.15. Given a locally small category C there is an equivalence

dFib(C) ' [Cop, Set]

Proof. The proof is the same as the one from Lemma 1.1.12 but instead of the Grothendieck
construction we consider the category of elements construction and make the appropri-
ate modifications.

1.2 Comprehension Categories

Definition 1.2.1. Let C be a category equipped with a terminal object ∗ ∈ C. A
comprehension category on C consists of a strictly commutative diagram of the
form:

E
χ

//

ρ
��

C→
cod

}}

C

where:

• ρ is a Grothendieck fibration.

15
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• χ maps Cartesian arrows in E to pullback squares in C→.

The functor χ is called the comprehension functor and we will usually refer to a

comprehension category by (C, ρ, χ) consisting of the base category, the fibration and

the comprehension; alternatively when the category in question can be easily inferred

from the context we may denote the comprehension category by the pair (ρ, χ).

Note that the base category C is not required to have pullbacks for all diagrams; in

particular, the codomain functor may not be a Grothendieck fibration and in this case

χ is not precisely a fibred functor. However, it behaves exactly as one.

Given a comprehension category (C, ρ, χ) we say that it is:

• cloven if ρ is cloven.

• split if ρ is split.

• full if χ is full and faithful.

• discrete if ρ is a discrete fibration

For an object A ∈ E over Γ ∈ C we denote by

χA : Γ.A→ Γ

the arrow in C resulting from applying the comprehension functor χ to A. Similarly for

an arrow f : B → A over σ : ∆ → Γ , applying comprehension to f yields the following

square:

∆.B
f //

χB
��

Γ.A

χA
��

B
σ

// A

here we allow ourselves a mild abuse of notation by giving the same name to the arrows

in E and to the upper horizontal arrows in the resulting square after applying the

comprehension functor.

Example 1.2.2. For any category C with pullbacks, the pair (cod, idC) is a compre-
hension category. More generally, any full subcategory D of C→ closed under pullbacks
along arbitrary maps induces a comprehension category (cod, ι) as shown

D �
� ι //

cod
��

C→
cod

}}

C

this is an important class of examples of comprehension categories which are closely
related to display map categories.
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1.2 Comprehension Categories

The notation established for Grothendieck fibrations and for comprehension cat-

egories can become quickly overloaded and difficult to read; for this reason, we will

highlight some special cases where we will adopt a slightly different, more compact,

notation. Let us suppose that (C, ρ, χ) is a cloven comprehension category and let

σ : ∆ → Γ be an arrow in the base category. For any A over Γ we will alternatively

denote by σ∗ : A[σ] → A the Cartesian lift of σ at A given by the cleavage (which we

had previously denoted with σA) as shown in the following diagram:

∆.A[σ]
σ∗ //

χA[u]

��

Γ.A

χA
��

∆
σ

// Γ

This allows us to ease the notation when we wish to find a further lift of σ∗. For example,

let us suppose we have another element B of E but this time over Γ.A, following the

above convention, the Cartesian lift of B along σ∗ will be denoted σ∗∗ : A[σ] → B and

by applying comprehension to it we will get the pullback square:

∆.A[σ].B[σ]
σ∗∗ //

χB[σ]

��

Γ.A.B

χB

��

∆.A[σ]
σ∗

// Γ.A

There will be occasions where we will also consider Cartesian lifts of the comprehension

morphism of some object (this is the semantic counterpart of context weakening); for

example if A and B are above Γ we can consider the Cartesian lift of B along χA, we will

adopt a further abuse of notation and denote by χA,B : B → B such Cartesian lift (in-

stead of the more cumbersome (χA)B[χA] : B[χA] → B) and the resulting comprehension

by:

Γ.A.B
χA,B //

χB
��

Γ.B

χB
��

Γ.A
χA

// Γ

Definition 1.2.3. Given comprehension categories (ρ, χ) and (q, χ ′) over a category
C. A morphism of comprehension categories consist of a pair (H, η) where H is
a fibred functor between the underlying fibrations:

E H //

ρ
��

D

q
��

C

and η : χ→ χ ′◦H is a natural isomorphism such that the whiskering with the codomain
functor is the identity. If η is the identity, we will call the morphism strict.
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For instance, given (H, η) as in Definition 1.2.3 and an object A in ρ(Γ), the com-

ponent of η at A is a commutative diagram of the form

Γ.A
ηA

∼=
//

χA
##

Γ.H(A)

χ ′
H(A)

��

Γ

Comprehension categories over a fixed base C and strict morphisms between them

assemble into a category which we will denote with CCat(C). The subcategory of

split comprehension categories and strict cleavage preserving morphisms will be called

SpCCat(C).

1.3 Models of Dependent Type Theories

Let us start by considering a dependent type theory T0 with no additional logical

structure, that is we are only interested in the structural rules of substitution and

context extension (see Appendix A). We will show that it is possible to build out of

the syntax of T0 a split comprehension category (CT0 , ρ0, χ0) over the category CT0
of contexts and substitutions. Moreover it is possible to show (by induction on the

structure of T0) that (CT0 , ρ0, χ0) is initial (in an appropriate way) in the 2-category

the split comprehension categories. Therefore it is justified to consider the category

of split comprehension categories as the category of models of T0, in the same way as

Cartesian closed categories are models of simply-typed lambda theories.

Non-split comprehension categories arise more naturally in mathematics (for exam-

ple the comprehension categories of Example 1.2.2 are non-split in general) however,

these will not constitute sound models of the structural rules of dependent type theory.

The main reason is that we cannot soundly interpret the operation of substitution if

the underlying fibration is not split; for instance, syntactically substitution is strictly

associative in the sense that A[u][v] = A[u[v]] but we cannot hope to obtain this strict

equality in a general non-split comprehension category.

Moreover, the issue gets more complicated when we start to consider type theories

with additional logical structure; for example let TΠ be the extension of T0 with depen-

dent products. Suppose we have a comprehension category (C, ρ, χ) which models TΠ.

Since TΠ extends T0 it must be the case that (C, ρ, χ) is also a model of T0 and thus

it must be split. Moreover, because of its admissibility, substitution must commute

strictly with the formation of Π-types.

For the reasons explain above, we will need to work inside the category of split

comprehension categories in order to produce sound models of dependent type theory

with additional logical structure. In the following sections we will define the categorical

structure needed to model the most important type-formation operations, we will do

this for each type structure independently. There is (to the best of our knowledge) no

general result that can apply to all type formation operations at once, nevertheless we

18



1.3 Models of Dependent Type Theories

can give a general heuristic of how to interpret additional logical structure in a split

comprehension category. The pattern is the following:

1. We first translate the usual syntactic rules (formation, introduction, elimination

and computation) to specify a structured object representing the given logical

structure. This can be done in a general comprehension category because there

is no substitution operation involved. Notice that this is a choice of structure for

any given input data.

2. Second we add the appropriate coherence property or Beck-Chevalley condition.

This requires the choice of structure to cohere strictly with the cleavage. Intu-

itively, this means that ‘pulling back’ must preserve on-the-nose the choice of

structure. Note that this is merely an additional property of the choice made.

We will end this section by constructing a discrete comprehension category as-

sociated to the dependent type theory T0 consisting only of the structural rules for

substitution and context extension. In order to do this, let us consider CT0 the cate-

gory of contexts and substitutions of T0 [Pit01] and let ρ : Ty → CT0 be the discrete

fibration of types, i.e. Ty is the category that has:

Objects: Pairs (Γ,A) where Γ is a context (i.e. an object of CT0) and A is a type in context

Γ as shown:

Γ ` A : type

Arrows: An arrow (∆,B) → (Γ,A) of Ty consists of a context substitution u : ∆→ Γ (i.e.

a morphism of CT0) such that:

∆ ` B = A[u]

The identity morphism on (Γ,A) is given by the identity substitution and composition

is given by composition in CT0 . One can check that Ty is a well defined category.

The functor ρ is given by projecting into the first element (i.e. ρ(Γ,A) = Γ). To see

that ρ is a discrete Grothendieck fibration, notice that for u : ∆→ Γ and (Γ,A) over Γ

there is a unique lift arising from type substitution:

u : (∆,A[u]) → (Γ,A)

The comprehension functor is given by context extension: if (Γ,A) ∈ Ty the corre-

sponding arrow χ(Γ,A) in CT0 is the dependent projection

(Γ, x : A) → Γ

It is straightforward to see that this extends to a functor χ : Ty → C→
T0

and that χ

maps Cartesian arrows to pullback squares.
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The resulting discrete comprehension category:

Ty
χ

//

ρ
  

C→
T0

cod
}}

CT0

is called the syntactic comprehension category of T0.
For the sake of readability, we will identify an elements and arrows of Ty only by

their second entry (i.e. the object (Γ,A) will be represented by A). Note that for

substitutions v : Θ→ ∆, u : ∆→ Γ and for A in E over Γ the following lifts are equal:

A[u][v]
v // A[u]

u // A A[u ◦ v] u◦v // A

Θ
v

// ∆
u
// Γ Θ

u◦v
// Γ

Consider a type A over some context Γ and a section of the canonical projection

(which is also the comprehension of A). Notice that such section is necessarily of the

following form

(idΓ , t) : Γ → (Γ, x : A)

where Γ ` t : A. This gives a canonical bijection between the terms of the syntax and

sections of dependent projections.

1.4 Dependent Tuples

In this brief section we introduces a technical machinery that will be useful when

defining the structure needed to model additional logical structure in comprehension

categories.

Definition 1.4.1. Let (ρ, χ) be a comprehension category. For each n ∈ N we define
the category DTn(ρ, χ) of dependent tuples over (ρ, χ) as follows:

Objects: Tuples (Γ,A1, . . . , An) where Γ is an element in the base category, A1 is over Γ
and in general for i > 1

Ai ∈ E(Γ.A1. . . . .Ai−1)

Arrows: An arrow (∆,B1, . . . , Bn) → (Γ,A1, . . . , An) is a tuple of the form (u, f1, . . . , fn)
where f1 : B1 → A1 is over u : ∆→ Γ and for i > 1 we have

Bi
fi // Ai

∆.B1. . . . .Bi−1
fi−1

// Γ.A1. . . . .Ai−1
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Composition and identities are given component-wise by the structure of the fibration
ρ. When no confusion arises from we will denote this category of dependent tuples just
by DTn.

Note thatDT0 = C the base category andDT1 = E the total category of the fibration

ρ. Also note that for each n > 0 there is a canonical projection

ρn : DTn → DTn−1

given by ρn(Γ,A1, . . . , An) = (Γ,A1, . . . , An−1) and similarly on arrows. It is easy to see

that each ρn is a fibration (in particular notice that ρ1 = ρ), where a Cartesian arrow

with respect to ρn is precisely a tuple of ρ-Cartesian arrows. Moreover ρn is cloven

(respectively normal or split) whenever ρ is cloven (respectively normal or split). It

follows that every finite composition of these fibrations is again a fibration, in particular

we have that

ρ̂n := ρ1 ◦ ρ2 ◦ · · · ◦ ρn : DTn → C

is a fibration, which is cloven (normal or split) in accordance to ρ.

1.5 Modelling Σ-types

In this section we will describe the structure necessary to model Σ-types, or dependent

sums, in a split comprehension category. See Appendix A for the syntactic rules for

Σ-types.

The following definition makes sense in a general comprehension category and it

will be important to state it in its full generality.

Definition 1.5.1. Let (C, ρ, χ) be a comprehension category. A choice of Σ-types
consists of an operation that assigns to each dependent tuple (Γ,A, B) ∈ DT2(ρ, χ) a
tuple (ΣAB, pairA,B, spA,B) consisting of the following data:

1. ΣAB is an object of the total category E lying over Γ .

2. pairA,B is an arrow over χA as shown:

Γ.A.B
pairA,B //

χB
��

Γ.ΣAB

χΣAB

��

Γ.A
χA

// Γ

3. spA,B is an operation that takes a dependent tuple (Γ, ΣAB,C) ∈ DT2(χ, ρ) and a
section t of C over pairA,B, as in the following solid arrowed diagram:

Γ.ΣAB.C

��

Γ.A.B
pairA,B

//

t
66

Γ.ΣAB

spA,B(C,t)

ee
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to a section spA,B(C, t) of C, shown in the above diagram as the dotted arrow.

4. The above data must be subject to the following condition: for any section t of
C over pairA,B the following equality holds:

spA,B(C, t) ◦ pairA,B = t

that is, the triangle in the diagram of item (3) involving the dotted arrow, com-
mute.

We will denote a the choice of Σ-types by (Σ, pair, sp).

We will give a brief explanation of why the previous definition reflects the syntactic

definition of dependent sums. Consider terms a of A and b of B over a, then the

corresponding introduction term (a, b) of ΣAB is given by the composition (a, b) :=

pairA,B ◦ b.

Now given a type C, as in the elimination clause, and a term t of C over pairA,B,

we explain the computation rule with the help the following diagram:

Γ.ΣAB.C

��

Γ.A.B

��

pairA,B

//

t
66

Γ.ΣAB

��

spA,B(C,t)

ee

Γ
a
//

b

<<

Γ.A
χA

// Γ

what we observe is that the computation rule for Σ-types is expressed semantically by

the requirement that spA,B(C, t) ◦ (a, b) = t ◦ b.

Definition 1.5.2. Let (C, ρ, χ) be a split comprehension category. A choice of Σ-types
(Σ, pair, sp) is said to be strictly stable if for every morphism σ : ∆→ Γ in the base
category and for any dependent tuple (Γ,A, B) ∈ DT2(ρ, χ), the following conditions are
satisfied:

1. ΣA[σ]B[σ] = (ΣAB)[σ]

2. The following diagram commutes:

∆.A[σ].B[σ]
σ∗∗ //

pairA[σ],B[σ]

��

Γ.A.B

pairA,B
��

∆.ΣA[σ]B[σ] σ∗
// Γ.ΣAB

where the horizontal arrows are obtained by the split reindexing along σ.
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1.6 Modelling Π-types

3. For any dependent tuple (Γ, ΣAB,C) in DT2(ρ, χ), and any section t of C over
pairA,B there is a corresponding dependent tuple (∆,ΣA[σ]B[σ], C[σ]) and a section
t[σ] of C over pairA[σ],B[σ] obtained by reindexing. The following diagram is
required to commute:

∆.ΣA[σ]B[σ]
σ∗ //

sp(C[σ],t[σ])

��

Γ.ΣAB

sp(C,t)

��

∆.ΣA[σ]B[σ].C[σ] σ∗∗
// Γ.ΣAB.C

where the horizontal arrows are obtained by the split reindexing along σ.

Definition 1.5.3. A model of dependent type theory with Σ-types is given by
a split comprehension category (χ, ρ) equipped with a strictly stable choice of Σ-types
(Σ, pair, sp).

1.6 Modelling Π-types

In this section we describe the categorical counterpart in split comprehension categories

of the syntactic rules of Π-types (or dependent products) in an analogous manner as

we did for Σ-types. See Appendix A for the syntactic rules for Π-types.

Definition 1.6.1. Let (C, ρ, χ) be a comprehension category. A choice of Π-types
consists of an operation that assigns to each dependent tuple (Γ,A, B) ∈ DT2(ρ, χ) a
tuple (ΠAB, λA,B, appA,B) consisting of the following data:

1. ΠAB is on object of the total category E lying over Γ .

2. λA,B is an operation that takes a section t : Γ.A → Γ.A.B of χB to a section
λA,B(t) : Γ → ΠAB of χΠAB, as shown in the following diagram:

Γ.A.B

��

Γ.ΠAB

��

Γ.A

t

;;

Γ.A

7→
Γ

λA,B(t)
<<

Γ

3. appA,B is an arrow in the slice over Γ.A, as shown:

Γ.A.ΠAB
appA,B //

χΠAB

��

Γ.A.B

χB
��

Γ.A Γ.A

where Γ.A.ΠAB is (the comprehension of) any reindexing of ΠAB along χA. Notice
that the choice of appA,B determines uniquely any other choice with respect to
a different Cartesian reindexing of ΠAB, this follow by the universal property of
Cartesian arrows.
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4. This data must be subject to the following property: for any section t : Γ.A →
Γ.A.B of χB the following equality holds:

appA,B ◦ (λ(t)[χA]) = t

where λ(t)[χA] is the result of reindexing λ(t) along χA.

We will denote such a the choice of Π-types by (Π, λ, app).

Some explanation is in order. Suppose we have a term f of ΠAB and a term a of A.

According to the syntactic elimination rule, we would like to obtain a term f[a] of B[a]

obtained by applying f to a. Let us denote by appA,B(f, a) the following composite:

Γ
a // Γ.A

f[χA]
// Γ.A.ΠAB

appA,B // Γ.A.B

and notice that:

Γ.A.B

χB
��

Γ
a
//

appA,B(f,a)
<<

Γ.A

and thus we get that appA,B(f, a) is the semantical counterpart of f[a].

Definition 1.6.2. Let (C, ρ, χ) be a split comprehension category. A choice of Π-types
(Π, λ, app) is said to be strictly stable if for every morphism σ : ∆ → Γ in the base
category and for any dependent tuple (Γ,A, B) ∈ DT2(ρ, χ), the following conditions are
satisfied:

1. ΠA[σ]B[σ] = (ΠAB)[σ]

2. For any section t of χB there is a corresponding section t[σ] of χB[σ] obtained
by reindexing. This two sections must be related by the following commutative
diagram:

∆
σ //

λA[σ],B[σ](t[σ])

��

Γ

λA,B(t)

��

∆.ΠA[σ]B[σ] σ∗
// Γ.ΠAB

where the lower horizontal arrow is obtained by the split reindexing along σ.

3. The following diagram commutes:

∆.A[σ].ΠA[σ]B[σ]
σ∗∗ //

appA[σ],B[σ]

��

Γ.A.ΠAB

appA,B

��

∆.A[σ].B[σ]
σ∗∗

// Γ.A.B

where the horizontal arrows are obtained by split reindexing along σ.
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1.7 Modelling Id-types

Definition 1.6.3. A model of dependent type theory with Π-types consists of a
split comprehension category (C, ρ, χ) equipped with a strictly stable choice of Π-types
(Π, λ, app).

1.7 Modelling Id-types

In this section we turn our attention to identity types. We are interested only in the

intensional version of these. See Appendix A.

Definition 1.7.1. Let (C, ρ, χ) be a comprehension category. A choice of Id-types
consists of an operation that assigns to each dependent tuple (Γ,A) ∈ DT2(ρ, χ), a tuple
(IdA, rA, jA) where:

1. IdA is an object of E over Γ.A.A.

2. rA is a section of IdA over the diagonal morphism δA, i.e. a factorisation of δA:

Γ.A.A.IdA

χIdA
��

Γ.A
δA

//

rA
66

Γ.A.A

3. jA is an operation that takes a dependent tuple (Γ,A,A, IdA, C) ∈ DT4(ρ, χ) and
a section t of C over rA, as in the following solid arrowed diagram:

Γ.A

rA
��

t // Γ.A.A.IdA.C

χC
��

Γ.A.A.IdA

jA(C,t)

55

Γ.A.A.IdA

to a section jA(C, t) of C, and such that both triangles commute.

We will refer to a choice of Id-types by (Id, r, j).

Both the elimination and the computation rules for Id-types are packed together

in the third bullet of the previous definition: the elimination rule is modelled by the

section jA(C, t) of C (i.e. that the lower triangle commutes) and the computation rule

is given by the equation jA(C, t) ◦ rA = t.

Definition 1.7.2. Let (C, ρ, χ) be a split comprehension category. A choice of Id-
types (Id, r, j) is said to be strictly stable if for every morphism σ : ∆→ Γ in the base
category, and for every dependent tuple (Γ,A), the following conditions are satisfied:

1. IdA[σ] = IdA[σ]
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2. The following diagram commutes:

∆.A[σ]
σ∗ //

rA[σ]

��

Γ.A

rA

��

∆.A[σ].A[σ].IdA[σ] σ∗∗∗
// Γ.A.A.IdA

where the horizontal arrows are given by split reindexing along σ.

3. For any (C, t) as in (3) of Definition 1.7.1, there is an object C[σ] and a section
c[σ] of C[σ] obtained by reindexing along σ. We require following diagram to
commute:

∆.A[σ].A[σ].IdA[σ]

jA[σ](c[σ])

��

σ∗∗∗ // Γ.A.A.IdA

jA(c)

��

∆.A[σ].A[σ].IdA[σ].C[σ] σ∗∗∗∗
// Γ.A.A.IdA.C

where the horizontal arrows are given by split reindexing along σ.

Definition 1.7.3. A model of dependent type theory with Id-types consists
of a split comprehension category equipped with a strictly stable choice of Id-types
(Id, r, j).

1.8 Modelling Universe Types

In this section we will explain what a universe in a comprehension category is, and

what does it mean for a universe to be closed under some relevant choice of logical

structure.

Definition 1.8.1. Let (C, ρ, χ) be a split comprehension category. A universe is a
dependent tuple (∗, U, Ũ) ∈ DT2(ρ, χ), where ∗ denotes the terminal object of C. We
will denote a universe by (U, Ũ).

We can verify that this is the right notion of universe for a split comprehension

category: the syntactic comprehension category admits a universe in the above sense,

if and only if, the underlying type theory has a type-theoretic universe à la Tarski (see

Appendix A). Reindexing of Ũ correspond the interpretation operation taking a term

of the universe to its corresponding type.

Next, we will explain what it means for a universe to be closed under Id-types. We

will leave to the reader the task of translating this definition for other choices of logical

structure.
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1.8 Modelling Universe Types

Definition 1.8.2. Assume (C, ρ, χ) is a split comprehension category with a strictly
stable choice of Id-types (Id, r, j) and with a universe (U, Ũ). We say that U is closed
under Id-types if there is an operation that takes a map a : Γ → U to a map
ia : Γ.Ũ[a].Ũ[a] → U such that:

1. The choice is coherent; i.e. for every σ : ∆→ Γ we have that ia◦σ = ia ◦ σ∗∗:

∆.Ũ[a ◦ σ].Ũ[a ◦ σ] σ∗∗ //

ia◦σ
''

Γ.Ũ[a].Ũ[a]

ia
zz

U

where σ∗∗ is obtained by split reindexing along σ.

2. Reindexing preserves the choices on-the-nose, i.e. we have Ũ[ia] = IdŨ[a] for all
a : Γ → U.

We see that if a split comprehension category (C, ρ, χ) has a strictly stable choice

Id-types and universe (U, Ũ) closed under Id-types, then we will be able to model a

dependent type theory with a Id-types and a universe.

Definition 1.8.3. A model of dependent type theory with Id-types and a
universe consists of a split comprehension category equipped with a strictly stable
choice of Id-types (Id, r, j) and a universe (U, Ũ) closed under Id-types.

With this we conclude this chapter dedicated to examining categorical models of

dependent type theory with additional logical structure making use of the notion of

split comprehension categories as a foundation.
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Chapter 2

Models via the Right Adjoint
Splitting

The main objective of this chapter is to review a splitting or strictification procedure

that acts by replacing an ordinary comprehension category with an equivalent but

split one. This procedure will be of main interest for the remainder of this work; it

is based on a classical and well known construction, originally introduced by Bénabou

and Giraud [Gir66] (but see also [Str18]), which is characterised by the following 2-

categorical universal property: it is the right 2-adjoint to the inclusion of split fibrations

into fibrations

Sp(C) ↪→ Fib(C).

We will show that this construction can be extended in order to apply also to

comprehension categories, and such that the universal property will still hold in this

setting. We will call this construction the right adjoint splitting of a comprehension

category.

After this, we will investigate the appropriate notion of coherence that a choice of

logical structure, in a given comprehension category, needs to have in order to become

a split choice after applying the right adjoint splitting. These result is a coherence

theorem for comprehension categories, which we will prove in detail.

As an example of how to apply the right adjoint splitting and the respective coher-

ence theorem, we will use the notion of tribe developed by Joyal [Joy17]. A tribe is a

full subcategory of arrows with some closure properties. We will see that a tribe has

an associated comprehension category with enough structure, such that after applying

the right adjoint splitting it produces a model of dependent type theory with Π and Σ

types.

However, we will not be able to obtain a model of identity types using the right

adjoint splitting in the setting of tribes; the reason is that tribes lack the necessary

structure to coherently model the elimination terms. This is one of the main motivation

for working with algebraic versions of these notions.
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2. MODELS VIA THE RIGHT ADJOINT SPLITTING

The coherence theorem for Σ and Π types is folklore knowledge, never the less we

will develop all the proofs with detail. The coherence theorem for Id-types is due to

Warren in his dissertation [War06], however, his proof is very technical and difficult to

follow. We include a refined version in this chapter which is hopefully easier to digest.

The case of universes has not been dealt with before (to the best of our knowledge);

it is more complicated than the other cases and requires manipulating the choices of

logical structure in appropriate ways.

2.1 Overview of the Right Adjoint Splitting Construction

We will begin by reviewing the classical Bénabou-Giraud construction following Stre-

icher’s account [Str18]. We will adopt a different notation which will hopefully ease the

statements and proofs of the coherence theorem for each kind of logical structure.

Definition 2.1.1. Let (C, ρ, χ) be a comprehension category and A ∈ E over Γ ∈ C. A
local cleavage for A consists of an operation A[−] that assigns to each map σ : ∆→ Γ

a Cartesian arrow:

A[σ]
σ∗ // A

∆
σ
// Γ

We say that a local cleavage A[−] is normal if when applied to the identity id : Γ → Γ

it outputs the identity Cartesian arrow, i.e. A[id] = A and id∗Γ = idA.

For a fibration ρ : E → C let us define the category ER as follows; its objects are

pairs (A,A[−]) where A is an object of E, and A[−] is a normal local cleavage for A.

An arrow f : (B,B[−]) → (A,A[−]) is just an arrow f : B → A in E. It is clear that

identities and the composition operator are just those of E. Notice that there is a

functor ρR : ER → C given on objects by ρR(A,A[−]) = ρ(A).

Lemma 2.1.2. The functor ρR : ER → C is a split fibration.

Proof. Consider σ : ∆→ Γ and an object (A,A[−]) over Γ . Consider the Cartesian lift
given by σ∗ : (A[σ], A[σ][−]) → (A,A[−]) where A[σ] is obtained by applying the local
cleavage of A and A[σ][−] is the normal local cleavage of A[σ] defined in the following
way; it assigns to each τ : Θ→ ∆ the Cartesian arrow τ∗ : A[σ ◦ τ] → A[σ] given as the
unique arrow making the upper triangle in the following diagram commute:

A[σ ◦ τ] τ∗

∃!
//

(σ◦τ)∗

""

A[σ]
σ∗ // A

Θ
τ

// ∆
σ
// Γ
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2.1 Overview of the Right Adjoint Splitting Construction

It is straightforward to verify that this choice of cleavage is split.

Consider a fibred functor:

E

ρ
��

H // D

η
��

C

this induces a split fibred functor HR : ρR → ηR defined on objects as follows; we let

HR(A,A[−]) := (HA,HA[−]) where HA[σ] := H(A[σ]), since H preserves Cartesian

arrows then HR(A,A[−]) is a well-defined element of DR.

This induces a 2-functor (−)R : Fib(C) → Sp(C). Notice moreover that there is a

fibred functor that forgets the local cleavage:

ερ : ρ
R → ρ

given by ερ(A,A[−]) := A which is clearly (fibrewise) full and faithful. If we assume

the axiom of choice, then it is also surjective on objects an thus a fibred equivalence.

The following is a well known result establishing the universal property of the foregoing

construction.

Lemma 2.1.3. The functor (−)R is a right 2-adjoint to the inclusion Sp(C) ↪→ Fib(C)
with ερ as the counit.

Proof. Given ρ : E → C a fibration and η : D → C a split fibration, we can describe the
equivalence of categories:

HomFib(C)(η, ρ) ∼= HomSp(C)(η, ρ
R)

For a split functor K : η → ρR, we just compose with ερ : ρR → ρ to obtain the
corresponding functor in Fib(C). In the other direction, consider a fibred functor
H : η→ ρ, we then define Ĥ : η→ ρR to be the functor given on an object A ∈ E by:

Ĥ(A) := (HA,HA[−])

where HA[−] is the the result of applying H to the split cleavage of η.

The same construction can be used to give a right 2-adjoint of the inclusion of split

comprehension categories into comprehension categories:

SpCCat(C) ↪→ CCat(C)

Given a comprehension category (ρ, χ) over C we define the split comprehension cate-

gory (ρR, χR) by letting ρR be the right adjoint splitting of the fibration ρ and we define

χR to be the functor given by the following composite:

ER

ρR ��

ερ
// E

ρ

��

χ
// C→

cod
~~

C
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2. MODELS VIA THE RIGHT ADJOINT SPLITTING

Now, suppose we have a morphism of comprehension categories (F, η) : (ρ, χ) →
(ρ ′, χ ′). Then this will functorially induce a morphism the corresponding split compre-

hension categories:

(ρR, χR)
(FR,ηR)

// (ρ ′R, χ ′R)

where FR is obtain by applying the right adjoint splitting of fibrations to F, and the

component of ηR associated to (A,A[−]) is given by ηR(A,A[−]) = ηA.

This action on morphism gives a functor:

CCat(C) R // SpCCat(C)

which is a right adjoint to the inclusion of split comprehension categories into compre-

hension categories. The counit of R is given by ε(ρ,χ) := (ερ, idχR) which is moreover,

an equivalences of comprehension categories (assuming axiom of choice).

2.2 Coherence for Σ-types

We describe in this section the structure that a comprehension category that guarantees

its right adjoint splitting to be equipped with a strictly-stable choice of Σ-types.

Definition 2.2.1. Let (C, ρ, χ) be a comprehension category. A choice of Σ-types
(Σ, pair, sp) (see Definition 1.5.1) is said to be pseudo-stable if for every Cartesian
arrow (σ, f, g) : (∆,A ′, B ′) → (Γ,A, B) of dependent tuples, the following conditions are
satisfied:

1. There is a Cartesian arrow Σfg : ΣA ′B
′ → ΣAB over σ and the assignment:

(σ, f, g) 7→ (σ, Σfg)

is functorial, i.e. ΣidAidB = idΣAB and Σ(f ′◦f)(g
′ ◦ g) = Σf ′g ′ ◦ Σfg.

2. The following diagram commutes:

∆.A ′.B ′
g

//

pairA ′,B ′
��

Γ.A.B

pairA,B
��

∆.ΣA ′B
′

Σfg
// Γ.ΣAB

3. For any Cartesian arrow h : C ′ → C above Σfg : ΣA ′B
′ → ΣAB and for any

section t of C over pairA,B there is a corresponding section t ′ of C ′ over pairA ′,B ′

obtained by reindexing. The following diagram is required to commute:

∆.ΣA ′ .B
′ Σfg //

sp(C ′,t ′)
��

Γ.ΣAB

sp(C,t)

��

∆.ΣA ′B
′.C ′

h
// Γ.ΣAB.C
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2.3 Coherence for Π-types

Theorem 2.2.2 (Coherence for Σ-types). Let (C, ρ, χ) be a comprehension category
equipped with a pseudo-stable choice of Σ-types. Then (ρR, χR) has a strictly stable
choice of Σ-types. Moreover, the counit ερ : (ρR, χR) → (ρ, χ) preserves strictly the
choices of Σ-types.

Proof. We construct a choice of Σ-types for (ρR, χR) as follows: consider a dependent
tuple (Γ, (A,A[−]), (B,B[−])) of (ρR, χR); the Σ-type associated to this tuple has the
following form:

(ΣAB, ΣAB[−])

where ΣAB is the Σ-type given by the psuedo-stable choice of (ρ, χ) applied to (Γ,A, B).
Now, the component at σ : ∆→ Γ of the local cleavage ΣAB[−] is given using the action
on morphisms of the pseudo-stable choice of Σ-types to define:

ΣAB[σ] := ΣA[σ]B[σ]
σ∗:=Σf∗g

∗
// ΠAB

∆
σ

// Γ

where the Cartesian morphism (σ, f∗, g∗) : (∆,A[σ], B[σ]) → (Γ,A, B) is constructed
using the local cleavages A[−] and B[−].

2.3 Coherence for Π-types

We now proceed to state and proof the coherence result for dependent sums, or Π-types.

That the definition of pseudo-stability is similar to that of dependent sums.

Definition 2.3.1. Let (C, ρ, χ) be a comprehension category. A choice of Π-types
(Π, λ, app) (see Definition 1.6.1) is said to be pseudo-stable if for every Cartesian
arrow (σ, f, g) : (∆,A ′, B ′) → (Γ,A, B) of dependent tuples, the following conditions are
satisfied:

1. There is a Cartesian arrow Πfg : ΠA ′B
′ → ΠAB over σ and the assignment:

(σ, f, g) 7→ (σ,Πfg)

is functorial, i.e. ΠidAidB = idΠAB and Π(f ′◦f)(g
′ ◦ g) = Πf ′g ′ ◦ Πfg.

2. For any section t : Γ.A→ Γ.A.B of B there is a corresponding section t ′ : ∆.A ′ →
∆.A ′.B ′ of B ′ obtained by reindexing along f : ∆.A ′ → Γ.A. Then, the following
diagram commutes:

∆
σ //

λA ′,B ′ (t
′)
��

Γ

λA,B(t)
��

∆.ΠA ′B
′

Πfg
// Γ.ΠAB
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2. MODELS VIA THE RIGHT ADJOINT SPLITTING

3. The following diagram commutes:

∆.A ′.ΠA ′B
′ Πfg //

appA ′,B ′
��

Γ.A.ΠAB

appA,B
��

∆.A ′.B ′
g

// Γ.A.B

Theorem 2.3.2 (Coherence for Π-types). Let (C, ρ, χ) be a comprehension category
equipped with a pseudo-stable choice of Π-types. Then (ρR, χR) has a strictly stable
choice of Π-types. Moreover, the counit ερ : (ρR, χR) → (ρ, χ) preserves strictly the
choices of Π-types.

Proof. We start by constructing a choice of Π-types for (ρR, χR). So consider a depen-
dent tuple (Γ, (A,A[−]), (B,B[−])) of (ρR, χR); the Π-type associated to this tuple has
the following form:

(ΠAB,ΠAB[−])

where ΠAB is the Π-type given by the psuedo-stable choice of (ρ, χ) applied to (Γ,A, B).
Now, the component at σ : ∆→ Γ of the local cleavage ΠAB[−] is given as follows: we
first use the local cleavages A[−] and B[−] to construct a Cartesian arrow of dependent
tuples (σ, f∗, g∗) : (∆,A[σ], B[σ]) → (Γ,A, B) and then we use the action on morphisms
of the pseudo-stable choice of Π-types to define:

ΠAB[σ] := ΠA[σ]B[σ]
σ∗:=Πf∗g

∗
// ΠAB

∆
σ

// Γ

notice that the local cleavage defined this way is normal because the pseudo-stable is
functorial, and in particular maps identities to identities.

We must now show that this choice is strictly stable. By definition we have for each
σ : ∆→ Γ the following:

(ΠAB,ΠAB[−])[σ] = ((ΠAB)[σ], (ΠAB)[σ][−]) (defn of the cleavage of (ρR, χR))

= (ΠA[σ]B[σ], (ΠAB)[σ][−]) (defn of ΠAB[−])

and thus we must only show that the local cleavages (ΠAB)[σ][−] and (ΠA[σ]B[σ])[−]
coincide. But this follows immediately from the functoriality of the pseudo-stable choice
of Π-types in (ρ, χ).

2.4 Coherence for Id-types

We turn our attention now to Id-types. The definition of pseudo-stability will be very

similar to that of dependent sums and products; however, the proof of coherence is not
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as straightforward as before. The coherence theorem for intentional Id-types was first

proven by Warren in his dissertation [War06, Theorem 2.48]; unfortunately the proof he

gave is technically very involved. Here we aim to present a revised and simpler version

of the theorem; the simplification is made possible due to the use of more compact

notation and to the alternative description of the right adjoint splitting construction in

terms of normal local cleavages. We make use of a classical meta-theory in the proof

of the coherence theorem, the reason for this is explained on Remark 2.4.3.

Definition 2.4.1. Let (C, ρ, χ) be a comprehension category. A choice of Id-types (Id,
r, j) is said to be pseudo-stable if for any Cartesian arrow f : B→ A over σ : ∆→ Γ ,
the following conditions are satisfied:

1. There is a Cartesian arrow Idf : IdB → IdA over δf (induced by the universal
property of pullbacks), and the assignment:

B
f // A IdB

Idf // IdA

∆
σ
// Γ

7→
∆.B.B

δf

// Γ.A.A

is functorial, i.e. IdidA = idIdA and Idf◦g = Idf ◦ Idg.

2. The following diagram commutes:

∆.B
f //

rB
��

Γ.A

rA
��

∆.B.B.IdB
Idf

// Γ.A.A.IdA

3. For any (C, t) as in (3) of Definition 1.7.1 and for any Cartesian h : C ′ → C over
Idf, there is an arrow t ′ obtained by reindexing along the appropriate Cartesian
arrow. The following diagram commutes:

∆.B.B.IdB

jB(C
′,t ′)
��

Idf // Γ.A.A.IdA

jA(C,t)

��

∆.B.B.IdB.C
′

h
// Γ.A.A.IdA.C

where the lower horizontal arrow is the (comprehension of the) Cartesian arrow
h : C ′ → C.

Theorem 2.4.2 (Coherence of Id-types). Let (ρ, χ) be a comprehension category equipped
with a pseudo stable choice of Id-types. Then (ρR, χR) has a strictly stable choice of
Id-types. Moreover, the counit ερ : (ρR, χR) → (ρ, χ) preserves the choices of logical
structure strictly.
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Proof. We will describe how the choice of Id-types in (ρR, χR) is made. Let (A,A[−]) be
an object of ER over some Γ . We need to construct an object (Id(A,A[−]), Id(A,A[−])[−])

in ER over Γ.A.A.

We will abuse notation and let Id(A,A[−]) := IdA and Id(A,A[−])[−]) = IdA[−]. With
this, we define IdA using the pseudo-stable choice of Id-types in (ρ, χ) applied to A.
For the normal local cleavage IdA[−], consider an arrow (σ, a, b) : ∆ → Γ.A.A (where
σ : ∆ → Γ , a : ∆ → Γ.A and b : ∆ → Γ.A.A, each being a section over of the previous
one). First we use the normal local cleavage A[−] as shown:

A[σ]
σ∗ // A

∆
σ
// Γ

we then apply the stable functorial choice of Id-types of (ρ, χ) in order to obtain the
following Cartesian arrow:

IdA[σ]
Idσ∗ // IdA

∆.A[σ].A[σ]
σ.σ∗.σ∗

// Γ.A.A

Notice that the morphism (σ, a, b) factors uniquely through σ.σ∗.σ∗ as one of the form
(id∆, a[σ], b[σ]) : ∆ → ∆.A[σ].A[σ]. We let IdA[(σ, a, b)] be an arbitrary reindexing of
IdA[σ] along (id∆, a[σ], b[σ]); and crucially, making sure that whenever (id∆, a[σ], b[σ])
is the identity morphism, then the reindexing is also the identity. In detail, this means
that if (σ, a, b) = σ.σ∗.σ∗ then IdA[(σ, a, b)] = IdA[σ].

Let us verify that this choice is strictly stable. Consider σ : ∆→ Γ , we must verify
that

(IdA[σ], IdA[σ][−]) = (IdA[σ], IdA[σ][−])

notice that IdA[σ] is by definition given by the normal local cleavage IdA[−] just defined,
applied to the arrow σ.σ∗.σ∗ which by definition is just IdA[σ]. That the local cleavages
coincide follows from the functoriality of the pseudo-stable choice of Id-types.

Remark 2.4.3. Notice that in the proof above, one can choose an arbitrary identity
preserving reindexing of IdA[σ] along (id∆, a[σ], b[σ]), In other words, there is one degree
of freedom for the choice of normal local cleavage IdA[−]. This will be important when
modelling universes in the following section, especially in the proof of Proposition 2.5.4.
Moreover, notice that in order for the choice of reindexing to preserve identities, we
requre a classical meta-theory in order to decide whether a given morphism is the
identity or not.
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2.5 Coherence for Universe Types

We now turn our attention to the case of splitting type-theoretic universes. Here we

encounter an extra difficulty; in order for universes to be of interest, they need to be

closed under the logical structure that the type theory might have. Semantically, in the

non-split setting, one needs to be careful to define the correct notion of a universe closed

under the appropriate kind of logical structure. Some of the proofs of these section use

a case distinction on whether a given input object is equal, or not, to another one. For

this reason, as in the previous section, we will require a classical meta-theory.

Definition 2.5.1. Let (C, ρ, χ) be a comprehension category. An pseudo-stable uni-
verse is a tuple (U, Ũ, El[−]) where (∗, U, Ũ) ∈ DT2(ρ, χ) is a dependent tuple over the
terminal object, and El[−] is a normal local cleavage of Ũ (see Definition 2.1.1).

Proposition 2.5.2. A pseudo-stable universe (U, Ũ, El[−]) in (ρ, χ) determines a uni-
verse (UR, ElR[−]) in the right adjoint splitting (ρR, χR) of (ρ, χ).

Proof. We construct a dependent tuple (∗, UR, ŨR) in DT2(ρ
R, χR). We let UR =

(U,U[−]) where U[−] is an arbitrary choice of reindexing for U. We now define
UR = (Ũ, El[−]) which, by definition of pseudo-stable universe, turns out to be a type
in ER over U.

Now we establish the property of a pseudo-stable universe to be closed under a

specified type constructor. We will use Id-types as our running example.

Definition 2.5.3. Let (ρ, χ) be a comprehension category with a pseudo-stable choice
of Id-types (Id, r, j) and with a pseudo-stable universe (U, Ũ, El[−]). We say that
(U, Ũ, El[−]) is strictly-closed under Id-types if there is an operation that takes a
map a : Γ → U to a map ia : Γ.El[a].El[a] → U such that:

1. The choice is coherent; i.e. for every σ : ∆→ Γ we have that ia◦σ = ia ◦ (σ∗∗).

2. The choice of reindexing El[−] preserves the choices of Id-types on-the-nose, i.e.
we have El[ia] = IdEl[a] for all a : Γ → U.

Proposition 2.5.4. Let (ρ, χ) be a comprehension category with an pseudo-stable
choice of Id-types (Id, r, j) and with an pseudo-stable universe (U, Ũ, El[−]) strictly
closed under Id-types. Then the universe (UR, ŨR) is closed under the strictly-stable
choice of Id-types induced by (Id, r, j) in (ρR, χR).

Proof. Mostly the proof is a routine verification except for a small detail, we need to take
advantage of the ‘degree of freedom’ (as mentioned in Note 2.4.3) in the construction
of the strictly stable choice of Id-type in (ρR, χR).

Let us describe here the appropriate modifications. In the proof of Theorem 2.4.2
we constructed a strictly stable choice of Id-types:

(A,A[−]) 7→ (IdA, IdA[−])

in the presence of a pseudo-stable universe, we need to modify the choice slightly. We
will need to do a case distinction:

37



2. MODELS VIA THE RIGHT ADJOINT SPLITTING

Case 1: If the type (A,A[−]) is not of the form (El[a], El[a][−]) for some a : Γ → U then
we keep the original choice.

Case 2: If (A,A[−]) is equal to some (El[a], El[a][−]) for a given a : Γ → U then we
modify the choice of reindexing IdEl[a][−] as follows: given σ : ∆ → Γ.El[a].El[a]
we define IdEl[a][σ] := El[iaσ] as shown in the following diagram:

IdEl[a][σ] := El[iaσ] ∃!
// IdEl[aσ]

Idσ∗ // IdEl[a]
i∗a // Ũ

∆ //

σ

44
∆.El[aσ].El[aσ]

σ∗∗
// Γ.El[a].El[a]

ia
// U

where the Cartesian square in the middle of the diagram is given by the pseudo-
stable choice of Id-types.

With this modification in place, we can now verify the rest of the proposition. We
need to check that the reindexing of ŨR = (Ũ, El[−]) preserves the choices of Id-types
on-the-nose. So consider a : Γ → U, since (U, Ũ, El[−]) is strictly closed under Id-
types we have that El[ia] = IdEl[a], thus we only need to make sure that the choice of
reindexing IdEl[a][−] described above coincide with the choice El[ia][−] canonically given
by the right adjoint splitting. This is now immediate: consider σ : ∆ → Γ.El[a].El[a]
then:

El[ia][σ] = El[iaσ] (by definition of El[ia][−])

= IdEl[a][σ] (by the modification made above).

Remark 2.5.5. The modification made to the choice of the type constructor in the
proof of the previous proposition is only needed for Id-types. When dealing with Π or
Σ one can stick with the original choice.

In practice, it is hard to encounter a pseudo-stable universe strictly-closed under Id-

types. The difficulty lies in the requirement of El[−] to preserve the choices on-the-nose.

A more natural notion is the following.

Definition 2.5.6. Let (ρ, χ) be a comprehension category with an pseudo-stable choice
of Id-types (Id, r, j) and with an pseudo-stable universe (U, Ũ, El[−]). We say that
(U, Ũ, El[−]) is pseudo-closed under Id-types if there is an operation that takes a
map a : Γ → U to a map ia : Γ.El[a].El[a] → U such that:

1. The choice is coherent; i.e. for every σ : ∆→ Γ we have that ia◦σ = ia ◦ (σ∗∗).

2. The choice of reindexing El[−] preserves the choices of Id-types up to natural
vertical isomorphism, i.e. we have vertical isomorphisms θa : El[ia] ∼= IdEl[a] over
Γ.El[a].El[a] for all a : Γ → U, natural in the slice over U.
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Remark 2.5.7. In the presence of item (1), an alternative requirement for (2) in
Definition 2.5.6 is the following:

(2’) For each a : Γ → U, exhibit a Cartesian arrow i∗a : IdEl[a] → Ũ over ia :
Γ.El[a].El[a] → U.

It is clear that in the presence of (1), both (2) and (2 ′) are equivalent, the vertical
natural isomorphisms being the comparison isomorphisms between two Cartesian lifts
of the same arrow.

Luckily we can do a trick to force an pseudo-stable universe pseudo-closed under

Id-types to be strictly closed. The cost we have to pay is that we have to modify the

pseudo-stable choice of Id-types to a new but isomorphic one.

Proposition 2.5.8. Let (ρ, χ) be a comprehension category with an pseudo-stable
choice of Id-types (Id, r, j) and with a pseudo-stable universe (U, Ũ, El[−]) pseudo-closed
under Id-types. Then there exists a new pseudo-stable choice of Id-types (Id ′, r ′, j ′),
which is pointwise isomorphic to (Id, r, j) (i.e. IdA ∼= Id ′A) and with respect to which
(U, Ũ, El[−]) is strictly closed.

Proof. We will do a case distinction to define (Id ′, r ′, j ′), for this we will need to de-
cide for each A ∈ E whether A = El[a] for some a : Γ → U or not. For clarity of
exposition we will avoid writing all explicit contexts, for example instead of writing
Γ.El[a].El[a].IdEl[a] we will just write IdEl[a] trusting the reader to distinguish between
the different meanings.

Given A ∈ E we define Id ′A, r ′A and j ′ as follows:

Case 1: If A is not of the form El[a] for some a : Γ → U. Then we keep the original
choice, i.e. Id ′A = IdA, r ′A = rA and j ′ = j.

Case 2: If A = El[a] for some a : Γ → U. Then we define

Id ′El[a] := El[ia]

since the original Id choice was functorial the new choice Id will still also be
functorial. The action on morphisms will be given by factoring in the vertical
isomorphism θ (or its inverse) where needed.

We define r ′El[a] using θa as shown:

Γ.El[a]

rEl[a]

��

r ′
El[a]

$$

IdEl[a]
∼=

θa
// El[ia]

Finally, we define j ′ as follows. Given C ′ over El[ia] and t ′ : El[a] → C ′ in the
slice over El[ia] we need to define j ′El[a](t

′, C ′). To do this, we construct C over
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IdEl[a] and t : El[a] → C as follows: We let θ∗a : C ′ ∼= C be any Cartesian lift
of θa and we define t ′ := θ∗a ◦ t. With this in place, we define j ′El[a](t

′, C ′) from

jEl[a](t, C) as indicated in the following commutative diagram:

IdEl[a]

∼=θa
��

jEl[a](t,C)
// C

El[ia]
j ′
El[a]

(t ′,C ′)
// C ′

∼= θ∗a

OO

It is straightforward to verify that j ′ is a coherent choice, this follows essentially
from coherence of j and naturality of θ.

It is now evident that (U, Ũ, El[−]) is strictly closed under the new choice of Id-types.

If the base category C of a comprehension category (ρ, χ) has enough structure to

represent the categorical premises of the formation rule of some type of logical structure,

then it is possible to give a simpler criterion for verifying if an pseudo-stable universe

(U, Ũ, El[−]) is pseudo-closed under the logical structure. The extra requirements on

(ρ, χ) is called the (LF) condition in [LW15] (standing for Logical Framework). This is

a slightly weaker requirement than that of being locally cartesian closed.

Definition 2.5.9. A comprehension category (C, ρ, χ) satisfies the (LF) condition if
C has finite limits and every comprehension map χA : Γ.A → Γ is exponentiable, i.e.
the categorical exponential (χA)∗g exists for every map g : X→ Γ.A.

For example, using the (LF) condition, and a pseudo-stable universe (U, Ũ, El[−]),

we can construct an object representing the premises for the formation rule of Π-types,

we will call this object UΠ and it is defined (using the internal language) as:

UΠ := ΠX:UU
X

This object has the following universal property: maps into UΠ of the form (a, b) : Γ →
UΠ are in bijection with pairs of maps of the form a : Γ → U and b : Γ.El[a] → U. Notice

that this last pair of maps represent the premises of the formation rule for Π-types.

In particular, the identity id : UΠ → UΠ corresponds to two ‘generic’ types ag :

UΠ → U and bg : UΠ.El[ag] → U, making it possible to construct the Π-type ΠEl[ag]El[bg]

(assuming there is a choice of Π-types). We will call the type ΠEl[ag]El[bg] the U-

generic Π-type. Analogous definitions are made for the other types logical structure.

The case of Id-types is particularly simple, we have that UId = U. This is because

the formation rule of Id-types only requires one type a : Γ → U. Thus the U-generic

Id-type is IdŨ; that is, the Id-type of Ũ in context U.
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Definition 2.5.10. Let (C, ρ, χ) be a comprehension category that satisfies the (LF)
condition. Suppose (ρ, χ) has a pseudo-stable universe (U, Ũ, El[−]) and a pseudo-stable
choice of Id-types. We say that (U, Ũ, El[−]) reflects Id-types if we can exhibit the
U-generic Id-type as a reindexing of Ũ; that is if we can find a Cartesian diagram:

IdŨ
Id∗ // Ũ

Ũ×U Ũ
Id
// U

Proposition 2.5.11. Let (ρ, χ) be a comprehension category that satisfies the (LF)
condition. Suppose (ρ, χ) has a pseudo-stable universe (U, Ũ, El[−]) and a pseudo-
stable choice of Id-types. If (U, Ũ, El[−]) reflects Id-types, then U is pseudo-closed
under Id-types.

Proof. We first need to provide a coherent choice of arrows ia : Γ.El[a].El[a] → U for
each a : Γ → U, we do this as follows. Each arrow a : Γ → U induces a unique
a∗∗ : Γ.El[a].El[a] → Ũ×U Ũ by universal properties. We define ia as the composite:

Γ.El[a].El[a]
a∗∗ // Ũ×U Ũ

Id // U

this choice is coherent because it is defined by universal property and composition. We
will use Note 2.5.7 and exhibit an arrow i∗a : IdEl[a] → Ũ Cartesian over ia. The arrow
i∗a is defined as follows:

IdEl[a]
Ida // IdŨ

Id∗ // Ũ

Γ.El[a].El[a]
a∗∗

// Ũ×U Ũ
Id
// U

where Ida : IdEl[a] → IdŨ is the Cartesian arrow supplied by the pseudo-stable choice
of Id-types.

2.6 Main Coherence Theorem

Throughout this chapter we have seen that given a comprehension category (C, ρ, χ), if a

choice of dependent products, dependent sums, or identity types satisfies the condition

for being pseudo-stable then in the right adjoint splitting (C, ρR, χR) we obtain a strictly-

stable choice of the logical structure. We have also explored the concept of a universe

in the non-split setting and under which conditions this can produce a model of a

type-theoretic universe in the resulting split comprehension category. In this section

we will collect the individual instances of the coherence theorem for each kind of logical

structure into a main one.
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Theorem 2.6.1 (Coherence Theorem). Let (C, ρ, χ) be a comprehension category equipped
with pseudo-stable choices of Σ, Π and Id types. Then the right adjoint splitting
(C, ρR, χR) is equipped with strictly-stable choices of Σ, Π and Id; and the counit ερ :
(ρR, χR) → (ρ, χ) preserves each choice of logical structure strictly. Moreover, if (C, ρ, χ)
has a pseudo-stable universe, strictly-closed under each kind of logical structure, then
(C, ρR, χR) is equipped with a universe, closed under each kind of logical structure.

Proof. The theorem follows immediately from Theorem 2.2.2, Theorem 2.3.2, Theo-
rem 2.4.2 and Proposition 2.5.4.

To conclude this section, we will provide a strong indication that the pseudo-stability

condition on the logical structure is actually a necessary condition to produce strictly

stable models after applying the right adjoint splitting. The main result in this direction

is that a strictly-stable choice of some type of logical structure in a split comprehension

category is necessarily also pseudo-stable.

For this, we first prove a small lemma. The proof of this will be type-theoretic in

nature given that we have already seen that split comprehension categories are sound

models of for type theory, we can use the internal language.

Lemma 2.6.2. Let (ρ, χ) be a split comprehension category over C. Suppose that (ρ, χ)
has choices of Σ, Π-types and Id-types. Then vertical isomorphisms of dependent tuples
induce vertical isomorphisms of the corresponding Σ, Π-types and Id-types, moreover
the resulting isomorphisms are coherent with the defining structure of the respective
choice of type.

Let us explain what the above lemma says, we will use Π-types as our running

example, the corresponding result for Σ-types and Id-types is analogous. Suppose we

have a split comprehension category (ρ, χ) equipped with a strictly-stable choice of

Π-types. The first assertion is that a vertical isomorphism of dependent tuples:

(idΓ , f, g) : (Γ,A, B)
∼=−→ (Γ,A ′, B ′)

induces a vertical isomorphism between the resulting Π-types:

(idΓ , Πfg) : (Γ, ΠAB)
∼=−→ (Γ, ΠA ′B

′)

The second assertion is that this resulting isomorphism Πfg commutes with the Π-type

structure, what we mean by this is the following:

1. First Πfg is coherent with the introduction terms. This means that for every

section t of B the following diagram commutes:

Γ.ΠAB
Πfg // Γ.ΠA ′B

′

Γ

λ(t[g])

OO

Γ

λ(t)

OO

(2.1)

where t[g] is the section of B obtained by reindexing.
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2. Second Πfg must be coherent with respect to the elimination terms, this means

that the following diagram commutes:

Γ.A.ΠAB
Πfg //

app

��

Γ.A ′.ΠA ′B
′

app

��

Γ.A.B
g

// Γ.A ′.B ′

(2.2)

Proof of Lemma 2.6.2. We will produce a proof only for Π-types, for the other kind of
logical structure, the proof follows the same heuristic. Given that we are working in a
split comprehension category, we can reason using the internal dependent type theory
with dependent products. First we will translate the hypothesis of the lemma, i.e. what
it means in the internal language to have an isomorphism of tuples:

(idΓ , f, g) : (Γ,A, B)
∼=−→ (Γ,A ′, B ′)

this means that we have judgements of the form:

Γ, x : A ` fx : A ′ Γ, x : A ` f−1x : A
Γ, x : A,y : Bx ` g(x, y) : B ′(fx) Γ, x : A ′, y : B ′x ` g−1(x, y) : B(f−1x)

subject to the following equations:

Γ, x : A ` f−1fx = x : A ′ Γ, x : A ` ff−1x = x : A
Γ, x : A,y : Bx ` g(f−1x, g−1(x, y)) = y : B ′x Γ, x : A ′, y : B ′x ` g−1(fx, g(x, y)) = y : Bx

Given this data, we can produce an isomorphism Πfg : ΠAB → ΠA ′B
′ over the

identity of Γ represented by the term:

Γ, q : ΠAB ` Πfg(q) = λ(x : A ′).g(f−1x, q(f−1x)) : ΠA ′B ′

which is well-typed because for each term a : A ′ we have

Πfg(q)(a) = g(f
−1a, q(f−1a)) : B ′(f−1fa) = B ′(a)

The inverse of this arrow can be defined in a completely symmetric matter, indeed we
have that:

(Πfg)
−1(q) = λ(x : A).g−1(fx, q(fx)) : ΠAB

we quickly verify that as defined, these two terms are inverses of each other, thus for
q : ΠA ′B

′ and x : A ′ we have the following (we use η-reduction here):

Πfg(Πfg
−1(q))(x) =g(f−1x, (Πfg)

−1(q)(f−1x))

=g(f−1x, g−1(ff−1x, q(ff−1x)))

=g(f−1x, g(x, q(x)))

=q(x)
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the last equation follows because g is an isomorphism (and by what this means in the
internal language). The other direction is completely dual.

We must now check the coherence conditions. Let us do first the coherence with
respect of the elimination, i.e. we must prove that the diagram in Eq. (2.1) commutes.
Take t a section of B, that is a term:

Γ, x : A ′ ` tx : B ′x

Using the fact that g is an isomorphism, we see that the section t[g] of B can be
equivalently described as t[g] = g−1 ◦ t ◦ f. Thus in the internal language we have

Γ, x : A ` t[g](x) = g−1(fx, t(fx)) : Bx

and thus with this we can verify that the diagram in Eq. (2.1) commutes, that is, we
verify the following equality:

Γ ` Πfg(λ(x : A).t[g](x)) = λ(x : A ′).tx : ΠA ′B ′

We compute:

Πfg(λ(x : A).t[g](x)) =λ(x : A
′).g(f−1x, t[g](f−1))

=λ(x : A ′).g(f−1x, g−1(ff−1x, t(ff−1x)))

=λ(x : A ′).g(f−1x, g(x, t(x)))

=λ(x : A ′).tx

Finally we verify that Πfg is coherent with respect to the elimination terms, i.e. we
verify that the diagram in Eq. (2.2) commutes. The commutation of the diagram is
equivalent to the following equation:

Γ, x : A,q : ΠAB ` app(fx, Πfg(q)) = g(x, app(x, q)) : B ′(fx)

We compute:

app(fx, Πfg(q)) =Πfg(fx)

=g(f−1fx, q(f−1fx))

=g(x, q(x))

=g(x, app(x, q))

With the help of this lemma, we can now easily prove the following result.

Proposition 2.6.3. Let (C, ρ, χ) be a split comprehension category with a strictly-stable
choice of Σ, Id and Π-types. Then these choices are also pseudo-stable.
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Proof. We will produce a proof only for Π-types, for the other kind of logical structure,
the proof is analogous. Consider a Cartesian morphism of dependent tuples:

(u, f, g) : (∆,A ′, B ′) −→ (Γ,A, B)

using the cleavage we can factor f and g via an isomorphism in the fibres and a morphism
in the cleavage as follows:

A ′

f̃∃!∼=
��

f

!!

A[u]
uA // A

∆
u
// Γ

similarly for g:
B ′

g̃∃!∼=
��

g

##
B[uA]

uA.B // B

∆.A[u]
uA

// Γ.A

This means that in terms of dependent tuples we have a factorisation of (u, f, g) as a
vertical isomorphism followed by a canonical Cartesian morphism in the cleavage:

(∆,A ′, B ′)

(id∆,f̃,g̃)

∼=

((

(u,f,g)
// (Γ,A, B)

(∆,A[u], B[uA])

(u,uA,uA.B)

77

Using Lemma 2.6.2 we obtain a vertical isomorphism over ∆ commuting with the struc-
ture of dependent products:

Πf̃g̃ : ΠA ′B
′ → ΠA[u]B[uA]

moreover, the canoncial cleavage will give us a Cartesian arrow over u:

uΠAB : ΠAB[u] → ΠAB.

By strict stability we have that ΠAB[u] = ΠA[u]B[uA], and we also have that uΠAB cohere
with the structure of dependent products (this is because reindexing the additional
structure associated of ΠAB along u matches strictly that of ΠA[u]B[uA]). Thus we can
compose this morphisms to obtain:

Πfg = uΠAB ◦ Πf̃g̃ : ΠA ′B
′ → ΠAB
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over u. Notice that Πfg is Cartesian since it is the composite of an isomorphism and a
Cartesian arrow, it also cohere with the structure of dependent products since both of
it’s composites cohere with it.

We strongly believe that the condition of pseudo-stability is indeed necessary to

produce strictly-stable models after splitting. A proof of this conjecture would go in

the following direction. We would first need to prove that pseudo-stability is invariant

under equivalences; that is, if (C, χ, ρ) ∼= (C, χ ′, ρ) is an equivalence of comprehension

categories and (C, χ, ρ) is equipped with a pseudo-stable choice of a given kind of logical

structure, then (C, χ ′, ρ) is also equipped with a pseudo-stable choice of the same kind,

obtained by transporting the original one along the equivalence.

With this result, we could argue in the following way. Suppose that the right

adjoint splitting (C, χR, ρR) of a given comprehension category (C, χ, ρ) is equipped with

a strictly-stable choice of a given kind of logical structure; by Proposition 2.6.3 this

choice would also be pseudo-stable. Moreover given that the counit of the right adjoint

splitting adjunction induces an equivalence (C, χR, ρR) ∼= (C, χ, ρ), we could transport

the pseudo-stable choice along this equivalence to obtain a pseudo-stable choice in the

original comprhension category (C, χ, ρ).

2.7 Example: tribes

In this section we will see how we can obtain pseudo-stable choices of Π and Σ types

in a special setting, that of Joyal’s tribes [Joy17]. We begin by briefly going through

some definitions. Let us fix for the remainder of this section a category C equipped

with terminal object ∗.

Definition 2.7.1. A tribe structure consist of a class of maps R ⊆ C→ such that:

• R is closed under composition and contains all isomorphisms.

• For every map f : X → B in R and for any σ : A → B, the pullback of f along σ
exists and belongs to R.

A tribe is a pair (C,R) consisting of a category and a tribe structure on it. The maps
in R are called fibrations.

Given a tribe (C,R) and an object A ∈ C, we denote by R/A the full subcategory of

the slice C/A whose objects are fibrations. We call R/A the local tribe at A, notice

that (C/A,R/A) is canonically a tribe whose properties are inherited from (C,R).

Proposition 2.7.2. A tribe (C,R) has a canonical full comprehension category struc-
ture associated to it.
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Proof. Let us consider R as the full subcategory of C→ of fibrations. The following
diagram

R
� � //

cod
��

C→
cod

}}

C

is a comprehension category. The Cartesian morphisms (and their comprehension) are
pullback squares between fibrations and the fibres are given by the local tribes.

By definition, any map f : B→ A induces a functor

f∗ : R/A→ R/B

defined by pullback along f. Note that when f is a fibration, the pullback functor has

a left adjoint

Σf : R/B→ R/A

defined by composition with f. Consider a square:

C
h //

g

��

A

f
��

D
k
// B

where g and f are fibrations, then there is a canonical natural transformation

BC : Σgh
∗ → k∗Σf

given by the following pasting diagram

R/A
h∗ //

∼=⇓
R/C

Σg
//

ε ⇓ R/D

R/A

id
<<

Σf

// R/B

f∗

OO

k∗
//

η ⇓
R/D

g∗

OO

id

;;

where η and ε are the unit and counit of the adjunction, and the middle isomorphism

λ is canonically given. This natural transformation satisfies an important coherence

property:

Proposition 2.7.3 (Beck-Chevalley). For any pullback diagram

C
h //

g

��

A

f
��

D
k
// B

the corresponding arrow BC : Σgh
∗ → k∗Σf is an isomorphism.
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In general though, the pullback functor will not have a right adjoint, such a right ad-

joint would have the properties of an exponential of fibrations. The following definition

addresses this problem.

Definition 2.7.4. A π-tribe is given by a tribe (C,R) where for each fibration f : B→
A the pullback functor f∗ has a right adjoint

Πf : R/B→ R/A

Just as with the left adjoint Σf, given fibrations g, f and square (h, k) : g→ f, there

is an induced natural transformation

BC : k∗Πf → Πgh
∗

the definition of this natural transformation is dual of that for Σ.

It is not so obvious that when the square (h, k) is a pullback square, then this

transformation is an isomorphism. Nevertheless, this follows from an abstract, but well

known argument, involving mates pairs of adjoint functors; and by the fact that the

dual Beck-Chevalley condition holds for the left adjoint Σ to pullback (see for example

[KS74]).

Proposition 2.7.5 (Beck-Chevalley). For a pullback diagram with f, k ∈ R:

B ′
h //

g
��

B

f
��

A ′
k
// A

the corresponding arrow BC : k∗Πf → Πgh
∗ is an isomorphism.

In the next proposition we see that the Beck-Chevalley natural transformation for

the right adjoint Π satisfies a coherence condition with respect to the composition of

pullback squares in the arrow category.

Proposition 2.7.6. Given pullback squares (l,m) : g ′ → g and (h, k) : g → f the
following diagram commutes:

(km)∗Πf
BC //

∼=(Πf)

��

Πg(hl)
∗

Πg(∼=)

��

m∗k∗Πf

m∗BC
&&

Πgl
∗h∗

m∗Πgh
∗

BCh∗

99
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Every tribe when regarded as a comprehension category admits a pseudo-stable

choice of Σ-types, in fact, the explicit definition of the left adjoint ΣA of A∗, as given

by composition, allows the interpretation of dependent sums to be straightforward.

Lemma 2.7.7. Suppose (C,R) is a tribe, then the associated comprehension category
admits a pseudo-stable choice of Σ-types.

Proof. Let (Γ,A, B) be a dependent tuple. Since A is a fibration, the functor ΣA :
R/Γ.A → R/Γ (given by composing any fibration over Γ.A (the domain of A) with A)
is left adjoint to the chosen pullback A∗.

The formation rule is given by applying ΣA to B, using the explicit definition of ΣA
we have that:

ΣAB := ΣA(B) = A ◦ B
For the introduction rule, we are required to provide an arrow pairA,B : B→ ΣAB over
A, this means a square:

·pairA,B//

B
��

·
ΣAB

��
·

A
// ·

we take pair = idΓ.A.B = idΓ.ΣAB which is well typed by definition of ΣA. Similarly for
the elimination rule, we define for each C over ΣAB and for each section t of C over
pairA,B,

spA,B(C, t) = t

The computation (and the corresponding η-rule) are trivially validated by the data
defined above, thus giving rise to a choice of Σ-types for each tuple (Γ,A, B). Stable
functoriality and coherence of elimination terms are also trivially satisfied by definition.

The situation with Π-types is formally similar to the previous one for Σ-types, but

somewhat more involved given the fact that we do not have an explicit description of

the right adjoint functor Π.

Lemma 2.7.8. Let (C,R) be a π-tribe, then the associated comprehension category
admits a pseudo-stable choice of Π-types.

Proof. We will first build a Π-type over a dependent tuple (Γ,A, B). In the context of
tribes, types are fibrations and thus, a tuple as the one just mentioned is given by a
pair of fibrations one on top of the other, which we will denote as follows:

Γ.A.B

B
��

Γ.A

A
��

Γ
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Since A is a fibration, there is a functor ΠA : R/Γ.A → R/Γ which is right adjoint to
pulling-back along A. We have that B ∈ R/Γ.A and thus we can apply ΠA to obtain a
fibration over Γ :

ΠAB : Γ.ΠAB→ Γ

thus applying ΠA correspond to the formation rule for Π-types.
For the introduction rule we need to define the operation λ. Notice that a section

t of B is given by an arrow t : idΓ.A → B in the local tribe R/Γ.A, we can identify
naturally A∗(idΓ ) ∼= idΓ.A. Thus we have that a section t of B is the same thing as an
arrow

t : A∗(idΓ ) → B

and taking the transpose yields an arrow:

λ(t) : idΓ → ΠAB

Similarly, for the elimination rule we are required to provide an arrow appA,B :
A∗(ΠAB) → B, we can take appA,B to be the counit of the adjunction

appA,B := εB : A∗(ΠAB) → B

The computation rule as well as the corresponding uniqueness rule follow from the
bijection between hom-sets:

R/Γ.A[idΓ.A, B] ∼= R/Γ [idΓ , ΠAB]

given in one direction by λ.
We now proceed to show the assignment

(Γ,A, B) 7→ (ΠAB, λ, app)

is pseudo-stable (see Definition 2.3.1). Let us first define the action on arrows carefully,
given a Cartesian arrow (u, f, g) : (∆,A ′, B ′) → (Γ,A, B), i.e. a diagram of pullback
squares

∆.A ′.B ′

B ′

��

g
// Γ.A.B

B
��

∆.A ′

A ′

��

f // Γ.A

A
��

∆
u

// Γ

we must define a Cartesian arrow (u, FΠ(u, f, g)) : (∆,ΠA ′B
′) → (Γ, ΠAB), i.e. a pullback

square

∆.ΠA ′B
′ FΠ(u,f,g)

//

ΠA ′B
′

��

Γ.ΠAB

ΠAB
��

∆
u

// Γ
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The definition is given by composing the following squares.

∆.ΠA ′B
′ ΠA ′ (g̃)

∼=
//

ΠA ′B
′

��

∆.ΠA ′(f
∗B)

ΠA ′ (f
∗B)
��

BC−1

∼=
// ∆.u∗(ΠAB)

u∗(ΠAB)
��

uΠAB // Γ.ΠAB

ΠAB

��

∆
id

// ∆
id

// ∆
u

// Γ

the rightmost square is the pullback square given by the functor u∗, the middle one is
the component at B of the inverse of the Beck-Chevalley arrow (we need this to be an
isomorphism, it follows from Proposition 2.7.5 since the square defined by (f, u) is a
pullback square) and the leftmost square is the result of applying the functor ΠA ′ to
the unique isomorphism g̃ : B ′ ∼= f∗B in R/∆.A ′ that exists since both B ′ and f∗B are
pullbacks of B along f.

Note that FΠ(u, f, g) = uΠAB ◦ BC−1 ◦ ΠA ′(g̃) is Cartesian since it is the composite
of a Cartesian and two isomorphisms. The proof that FΠ is functorial reduces (after
factoring out a number of natrurality and functorial diagrams) to Proposition 2.7.6.

We now have to verify that the following diagram commutes:

∆.A ′.(ΠA ′B
′)

FΠ(u,f,g)
//

ε ′
B ′
��

Γ.A.(ΠAB)

εB
��

∆.A ′.B ′
g

// Γ.A.B

By definition of FΠ(u, f, g) we can factor out a naturality diagram of ε ′, this means
that it is sufficient to show that:

∆.A ′.(ΠA ′f
∗B)

(uΠAB◦BC
−1)
//

ε ′
f∗B
��

Γ.A.(ΠAB)

εB
��

∆.A ′.f∗B
fB

// Γ.A.B

commutes. The above diagram unwinds to the following one (by reversing the direction
of the Beck-Chevalley arrow):

A ′∗u∗(ΠAB)

u+ΠAB
��

A ′∗(BC)
// A ′∗(ΠA ′f

∗B)

ε ′
f∗B
��

A∗(ΠAB) εB
// B f∗B

fB

oo

we can fill the interior of this diagram with an intermediate one which is easily seen to
commute:

A ′∗u∗(ΠAB)
∼= //

u+ΠAB ''

f∗A∗(ΠAB)

fA∗(ΠAB)
��

f∗εB // f∗B

fB
��

A∗(ΠAB) εB
// B
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and thus it is sufficient to verify that

A ′∗u∗(ΠAB)
A ′∗(BC)

//

∼=
��

A ′∗(ΠA ′f
∗B)

ε ′
f∗B
��

f∗A∗(ΠAB)
f∗εB

// f∗B

commutes. This diagram always commutes [Koc09, Proposition 8.4.1].

Finally, we must show that the choice of introduction terms (i.e. the lambda terms)
is coherent, this means that we must verify that for every section t of B the following
diagram commutes:

ΠA ′B
′ FΠ(u,f,g)

// ΠAB

id∆

λ ′(t ′)

OO

u
// idΓ

λ(t)

OO

Recall that the operation λ was given by transposing the term t, in other words, it
was given as the composition λ(t) = ΠA(t)◦ηidΓ and similarly for λ ′. Using this, notice
that functoriality of ΠA ′ and naturality of η ′ allows us to factor out a square on the
leftmost side, leaving us with the task of verifying the commutativity of the square:

ΠA ′f
∗B

uΠAB◦BC
−1

// ΠAB

id∆

λ ′(f∗t)

OO

u
// idΓ

λ(t)

OO

And to verify this we will split the problem into two parts. We will assume that
identities are pullback stable (as mentioned before), otherwise we will have to insert
extra naturality squares at some places.

1. For the first part we will show the appropriate commutation with the units η and
η ′, for this consider:

ΠA ′(A
′∗(id∆))

ΠA ′ (
∼=)
// ΠA ′f

∗A∗(idΓ )
BC−1

// u∗ΠAA
∗(idΓ )

u(−)
// ΠAA

∗(idΓ )

id∆
id

//

η ′id∆
hh

id∆ u
//

u∗ηidΓ

OO

idΓ

ηidΓ

OO

the left diagram always commutes [Koc09, Proposition 8.4.1], the right diagram
is just the pullback square defined by applying u∗ to ηidΓ , thus in particular it is
commutative.
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2. The second part correspond to the appropriate commutation with the arrows
ΠA ′f

∗t and ΠAt. Consider the diagram:

ΠA ′f
∗B

BC−1
// u∗ΠAB

uΠAB // ΠAB

ΠA ′f
∗A∗(idΓ )

BC−1
//

ΠA ′f
∗t

OO

u∗ΠAA
∗(idΓ )

u∗ΠAt

OO

u(−)
// ΠAA

∗(idΓ )

ΠAt

OO

the left diagram commutes by naturality of BC and the right one is once again
just the pullback diagram defined by the functor u∗ applied to ΠAt.

Pasting the diagram from item (2) on top of the diagram from item (1) gives the
desired property, i.e. the commutation with the introduction terms.

Remark 2.7.9. We can observe in the proof of the previous proposition, that pseudo-
stability of Π-types follows from the following three properties:

• A choice of pullback of fibrations, in the case of tribes, this is implicitly assumed
when working with pullback functors.

• Comparison isomorphisms, in this case given by Beck-Chevalley.

• Isomorphism in the fibres, in this case given by functoriality of ΠA for each type
A.

Example 2.7.10. The following are examples of Π-tribes:

• Every locally cartesian closed category is a π-tribe where every arrow is a fibra-
tion.

• The category of small groupoids is a π-tribe, where a fibration is an isofibration.

• The category of Kan complexes is a π-tribe, where a fibration is a Kan fibration.

Remark 2.7.11. We strongly emphasise that the case of Id-types for tribes is much
more delicate. Although in some cases it will be possible to give a functorial and
stable factorisation of the diagonal (giving the formation and introduction rules for
Id-types), it will be very difficult in general to give a coherent choice of elimination
terms, and therefore to be able to interpret intentional identity types in the resulting
split comprehension category obtained by applying the right adjoint splitting. The
main reason for this, is that in the vast majority of examples, the elimination terms
are obtained by a non-unique lifting property and in this case, coherence is impossible
to obtain. This is one of the main motivations for us to work in an algebraic setting.
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Chapter 3

The Voevodsky Splitting for
Comprehension Categories

In this chapter we will discuss an alternative to the right adjoint splitting of a compre-

hension category. This is a slight generalisation of Voevodsky’s work [Voe15b, Voe15a].

He considers conditions on a universe in a category that ensure that, after applying

this new splitting, it produces a contextual category supporting the various type con-

structors. Here, we consider a comprehension category equipped with a type classifier

and instead of a contextual category we consider a split comprehension category.

The key motivation for doing this is to have Voevodsky’s ideas in the same setting

as ours in order to compare the two approaches.

3.1 Overview of the Construction

Definition 3.1.1. Let ρ : E → C be fibration. A type classifier on ρ consists of a
tuple (U, Ũ, El[−])) where U ∈ C, Ũ ∈ E is over U; and El[−] is a normal local cleavage
for Ũ in the sense of Definition 2.1.1.

Remark 3.1.2. The definition of a type classifier is essentially the same as that of
a pseudo-stable universe (Definition 2.5.1). There is one subtle difference, in a type
classifier the object U need not be (the comprehension of) an object in E, i.e. U need
not be ‘fibrant’. The main reason we introduce this new concept is the following: a
type classifier is used for splitting, and a pseudo-stable universe is used to model a type
theoretic universe.

The data of a type classifier (U, Ũ, El[−]) determines a new split fibration which

will be denote by ρU : EU → C.

The objects of EU are arrows of the form a : Γ → U, and a morphisms f : a→ b is

a map f : El[a] → El[b] in E. The functor ρU is given on objects by taking the domain

of the arrow into U and on morphisms by applying ρ. The split choice of reindexing

for ρU is given by composition.
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Notice that there is a fibred functor El : ρU → ρ which maps an object a ∈ EU to

El[a]:

EU

ρU   

El // E

ρ
��

C

If we start with a comprehension category (ρ, χ) we obtain a split comprehension cat-

egory (ρU, χU) where the comprehension functor χU is given by the composition:

EU

ρU   

El // E

ρ

��

χ
// C→

cod
~~

C

We will call the resulting comprehension category (ρU, χU) the Voevodsky splitting

of (ρ, χ).

Remark 3.1.3. The fibred functor El : ρU → ρ is not an equivalence in general.

3.2 Condition for Π and Σ types

We will review here the necessary structure in (C, ρ, χ) to produce a strictly-stable

choice of Π-types and Σ-types in (C, ρU, χU). For ease of presentation, we will assume

that the base categories of the comprehension categories used in this section are locally

cartesian closed (although it is sufficient for the base category to satisfy the (LF) con-

dition of Definition 2.5.9). We will make liberal use the internal language of locally

cartesian closed categories.

Definition 3.2.1. Let (ρ, χ) be a comprehension category with a type classifier (U, Ũ, El[−]).
Let UΠ = ΠX:UU

X (in the internal language of C) the object representing the premises
for the formation rules for Π-types. A Π-structure for (ρ, χ) consists of a pair of
arrows (Π, Π̃) making the following diagram a pullback square:

Σ(a,b):UΠΠEl[a]El[b]
Π̃ //

��

U.Ũ

χŨ

��

UΠ
Π

// U

Remark 3.2.2. The definition of a Π-structure is the same in spirit as that of reflecting
Π-types (Definition 2.5.10). We are essentially reflecting inside of U the dependent
products of the locally cartesian closed category C. One main difference is that we
will work in the level of C→ instead of working in E (i.e. the diagram in the previous
definition is a pullback diagram instead of a Cartesian lift).
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Proposition 3.2.3. Let (ρ, χ) be a comprehension category with a type classifier (U, Ũ, El[−])
and a Π-structure (Π, Π̃). Then the Voevodsky splitting (ρU, χU) has a strictly-stable
choice of Π-types.

Proof. Let us first construct a choice of Π-types (Π, λ, app) in (ρU, χU). Consider
a dependent tuple (Γ, a, b) ∈ DT2(ρU, χU) (recall Definition 1.4.1), by the universal
property of UΠ this is precisely the same as an arrow (a, b) : Γ → UΠ. We let Πab :=
Π ◦ (a, b), it is immediate that this choice is strictly stable.

We turn our attention to the λ operation. Let t : Γ.El[a] → Γ.El[a].El[b] be a section
of χU(b). In the slice over Γ.El[a] this is an arrow t : idχU(a) → χU(b) which transpose

to an arrow λ(t) : idΓ → ΠχU(a)χ
U(b). This arrow fits in the following diagram:

Γ.El[Πab] //

��

Σ(a,b):UΠΠEl[a]El[b]
Π̃ //

��

U.Ũ

χŨ

��

Γ

λ(t)
;;

Γ
(a,b)

// UΠ
Π

// U

The arrow appa,b : Γ.El[a].El[Πab] → Γ.El[a].El[b] correspond to the counit of the
dependent product adjunction in C. The computation rule follows from the universal
properties of this adjunction.

Moreover it is clear that these choices are strictly stable, this follows because of the
uniqueness of the universal properties involved.

The case of Σ-types is entirely analogous; that is, we ‘reflect’ inside the type classifier

the dependent sums of the locally cartesian closed category C . We will only state

without a proof the corresponding coherence condition.

Definition 3.2.4. Let (ρ, χ) be a comprehension category with a type classifier (U, Ũ, El[−]).
Let UΣ = ΠX:UU

X (in the internal language of C) the object representing the premises
for the formation rules for Σ-types. A Σ-structure for (ρ, χ) consists of a pair of arrows
(Σ, Σ̃) making the following diagram a pullback square:

Σ(a,b):UΣΣEl[a]El[b]
Σ̃ //

��

U.Ũ

χŨ

��

UΣ
Σ

// U

Proposition 3.2.5. Let (ρ, χ) be a comprehension category with a type classifier (U, Ũ, El[−])
and a Σ-structure (Σ, Σ̃). Then the Voevodsky splitting (ρU, χU) has a strictly-stable
choice of Σ-types.
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3.3 Condition on Id-types

The condition on Id-types are more involved. Intuitively, the reason is that there is a

priory no pseudo-stable choice of Id-types in the base category C that we can reflect

inside the type classifier.

We will need some preliminary notions, first of all for simplicity we will refer to the

comprehension χŨ : U.Ũ→ U just as p : Ũ→ U.

For any map q : E→ B in C, define the functor Iq : C → C/B given on objects by:

Iq : X 7→ (
∑
x:B

XE(x) → B)

by the universal properties of the constructions involved, maps (A,q) : Γ → Iq(V)

correspond bijectively with pairs consisting of A : Γ → B and q : Γ ×B E → V. Note

that Iq(X) is not only functorial on X but also (contravariantly) on q, that is given a

diagram:

E ′
α //

q ′ ��

E

q
��

B

there is a natural transformation Iα : Iq → Iq ′ . For details, we refer the reader to

[Voe15b].

Definition 3.3.1. Let (ρ, χ) be a comprehension category with a type classifier (U, Ũ, El[−]).
A partial Id-structure on U consists of a pair (Id, r) of maps making the following
diagram commute:

Ũ
r //

δŨ
��

Ũ

p

��

Ũ×U Ũ
Id

// U

where δŨ : Ũ→ Ũ×U Ũ is the diagonal map.

Given a partial Id-structure, consider Eq to be the pullback of p along Id and

denote by pEq the composite

Eq→ Ũ×U Ũ→ Ũ→ U

the canonical induced map Ũ→ Eq will be denoted by w. Thus we have a situation:

Ũ

p
��

w // Eq

pEq
��

U
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which induces a natural transformation Iw : IpEq → Ip, and applying naturality to

p : Ũ→ U we obtain the following diagram:

IpEq(Ũ)
Iw(Ũ)

//

IpEq (p)

��

Ip(Ũ)

Ip(p)

��

IpEq(U) Iw(U)
// Ip(U)

This in turn induces a canonical map to the pullback:

Ielim : IpEq(Ũ) → IpEq(U)×Ip(U) Ip(Ũ)

We can explain the action of Ielim representably as follows. Consider a generalised

element of the domain of Ielim, that is a map of the form (A,C, c) : Γ → IpEq(Ũ), this

corresponds to an arrow A : Γ → U and a diagram

Ũ

p

��

Γ.A.A.IdA

c

66

C
// U

where Γ.A.A.IdA denotes the pullback of Eq along A : Γ → U. The arrow Ielim maps

(A,C, c) to the pair [(A,C), (A,C ◦ rA, c ◦ rA)], where rA is the pullback of w along

A : Γ → U.

Definition 3.3.2. Let (C, ρ, χ) be a comprehension category with a type classifier
(U, Ũ, El[−]) and a partial Id-structure (Id, r) on it. An Id-structure on the previous
data consists of a section

j : IpEq(U)×Ip(U) Ip(Ũ) → IpEq(Ũ)

of Ielim.

The following theorem is a rephrasing in the language of comprehension categories

and type classifiers of constructions in section 2 of [Voe15b].

Theorem 3.3.3. Let (C, ρ, χ) be a comprehension category with a type classifier (U, Ũ, El[−])
and an Id-structure (Id, r, j) on it. Then (ρU, χU) has a choice of strictly-stable Id-types.

Proof. Consider an object A : Γ → U of EU, we need an Id-type structure on it. For
this we let IdA : Γ.A.A→ U be the composite

Γ.A.A
A∗−−→ Ũ×U Ũ

Id−→ U.
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The reflexivity map rA : Γ.A→ Γ.A.A.IdA is the result of pulling back w along A. Now,
for the elimination consider a pair (C, d) of maps making the diagram

Γ.A

rA
��

d // Ũ

p

��

Γ.A.A.IdA
C

// U

commute. Transposing, this is the same as an arrow

[(A,C), (A,C ◦ rA, d)] : Γ → IpEq(U)×Ip(U) Ip(Ũ)

thus composing with the section j, gives an arrow (A,C, j(d)) : Γ → IpEq(Ũ), which
computes the elimination term required. Strict stability follows by the strict naturality
of the constructions involved.

3.4 Condition for Universe Types

Definition 3.4.1. Let (C, ρ, χ) be a comprehension category with a type classifier
(U, Ũ, El[−]). A U-universe corresponds to the following structure:

1. A map v : ∗→ U in C.

2. A map i : El(v) → U in C.

We will denote V := El(v) and Ṽ := El(i), and refer to the structure by (V, Ṽ).

Given a U-universe (V, Ṽ), we obtain a Cartesian arrow over i as shown in the

following diagram:

Ṽ
i∗ // Ũ

V
i
// U

Moreover, (V, Ṽ) inherits the choice of reindexing El of (U, Ũ), thus giving rise to a

pseudo-stable universe (V, Ṽ, El[−]) in (ρ, χ).

Definition 3.4.2. Let (C, ρ, χ) be a comprehension category with a type classifier
(U, Ũ, El[−]), a U-universe (V, Ṽ) and an Id-structure (Id, r, j) on U. We say that V is
U-closed under Id-types if there is an arrow IdV : V.Ṽ.Ṽ → V making the following
diagram commute:

V.Ṽ.Ṽ
i∗∗ //

IdV

��

Ũ×U Ũ

Id
��

V
i

// U
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Theorem 3.4.3. Let (C, ρ, χ) be a comprehension category with a type classifier (U, Ũ, El[−])
and a U-universe (V, Ṽ) U-closed under Id-types. The (ρU, χU) has a universe closed
under Id-types.

Proof. Notice that the data for a U-universe (V, Ṽ) in (ρ, χ) corresponds precisely to
that of a universe in (ρU, χU).

We are required to provide a coherent choice of maps into V representing the identity
types, this is given by composing with IdV . The preservation of choices on-the-nose, is
precisely the commutativity of the diagram in Definition 3.4.2.

3.5 Comparison between the two Splittings

We will now investigate how the right adjoint splitting and the Voevodsky splitting are

related. Let us fix for the remainder of this section a comprehension category (C, ρ, χ)
where C is locally cartesian closed, and equipped with a type classifier (U, Ũ, El[−]).

We observe that, by the universal property of the right adjoint splitting, we ob-

tain a unique dotted functor as in the following diagram, factoring the morphism of

comprehension categories El : (ρU, χU) → (ρ, χ):

EU Ẽl //

El

  

ρR !!

ER

ρR

��

ε // E

ρ
��

C

Explicitly this morphism Ẽl : (ρU, χU) → (ρR, χR) is given on objects by:

Ẽl(a : Γ → U) := (El[a], El[a][−])

where El[a][−] is the canonical normal local cleavage on El[a] induced by El[−] as in

the proof of Lemma 2.1.2.

Proposition 3.5.1. The functor Ẽl is fully faithful and thus constitutes an embedding
of split comprehension categories.

We now want to see how this embedding Ẽl interacts with the additional logical

structure. We will investigate only the case of Id-types and leave the rest to the reader.

Let us suppose that (C, ρ, χ) is equipped with a pseudo-stable choice of Id-types.

Just as we did for pseudo-stable universe in Definition 2.5.10, we will require that the

type classifier ‘reflects’ the choice of Id-types.
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Definition 3.5.2. We say that (U, Ũ, El[−]) reflects Id-types if we can exhibit the
U-generic Id-type as a reindexing of Ũ; that is if we can find a Cartesian diagram:

IdŨ
Id∗ // Ũ

Ũ×U Ũ
Id

// U

Proposition 3.5.3. Let (C, ρ, χ) be a comprehension category with locally cartesian
closed base and equipped with a pseudo-stable choice of Id-types. If (U, Ũ, El[−]) reflects
Id-types, then there is a canonical Id-structure (Id ′, r ′, j ′) on U.

Proof. The partial Id-structure (Id ′, r ′) is given by applying comprehension to the
diagram in Definition 3.5.2 and using the factorisation of the diagonal given by r:

Ũ

r ′

##r //

δŨ ""

IdŨ
Id∗ //

��

Ũ

��

Ũ×U Ũ
Id ′:=Id

// U

We now are required to define a section:

j ′ : IpEq(U)×Ip(U) Ip(Ũ) → IpEq(Ũ)

for this, we consider an arrow [(A,C), (A,C ◦ rA, d)] : Γ → IpEq(U)×Ip(U) Ip(Ũ), repre-
senting a diagram:

Γ.A

rA
��

d // Ũ

p

��

Γ.A.A.IdA
C

//

j

66

U

this has a filler j (as shown) induced in a canonical way by the pseudo-stable choice of
Id-types, which in turn induces an arrow j ′[(A,C), (A,C ◦ rA, d)] : Γ → IpEq(Ũ). This
whole process in natural in Γ precisely because the choice of fillers is coherent, thus
giving the arrow j ′ by Yoneda.

Following what we did in Section 2.5, if (U, Ũ, El[−]) reflects Id-types, then U will be

pseudo-closed under Id-types. Furthermore, we can modify the pseudo-stable choice of

Id-types in order to make U strictly-closed under the new choice, i.e. for each a : Γ → U

we have:

El[Id ′ ◦ a∗∗] = IdEl[a]
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Proposition 3.5.4. Let us consider (Id ′, r ′, j ′) the Id-structure on U induced by the
pseudo-stable choice of Id-types (Id, r, j) as in Proposition 3.5.3, for which we can
assume that U is strictly closed. Then the embedding Ẽl : (ρU, χU) → (ρR, χR) preserves
the corresponding strictly-stable choice of Id-types on-the-nose.

Proof. Lets consider an object a : Γ → U in EU, the Id-type that corresponds to a is
Ida := Id ′ ◦a∗∗ : Γ.El[a].El[a] → U. Now, Ẽl maps Ida to (El[Ida], El[Ida][−]) which by
the previous paragraph is just (IdEl[a], IdEl[a][−]).

We summarise the results of this section as follows. Let us suppose are given a

comprehension category equipped with a pseudo-stable choice of Id-types and with

a type classifier which is ‘big enough’ that it can ‘reflect’ the choice of Id-types as

in Definition 3.5.2. Then, after manipulating the pseudo-stable choice of Id-types as

we did in Section 2.5 to obtain an isomorphic strictly-stable choice of Id-types; the

embedding of split comprehension categories from the Voevodsky splitting to the right

adjoint splitting, will preserve the choices of Id-types on-the-nose by Proposition 3.5.4.

Applying this same heuristic ideas to the other types of logical structure, we obtain

the following theorem which we state without a proof.

Theorem 3.5.5. Let (C, ρ, χ) be a comprehension category over a locally Cartesian
closed base, equipped with pseudo-stable choices of Σ, Π and Id-types; and a type classi-
fier (U, Ũ, El[−]) which reflects the appropriate choice in the sense of Definition 3.5.2.
Then U has canonical choices of Σ, Π and Id structures. Moreover, after modifying the
relevant pseudo-stable choices of logical structure (as done in Section 2.5), the embed-
ding of comprehension categories Ẽl : (ρU, χU) → (ρR, χR) preserves the corresponding
strictly-stable choice of logical structure on-the-nose.

This theorem makes precise the idea that the Voevodsky splitting gives an embed-

ding of models of Martin-Löf dependent type theory preserving strictly all the logical

structure.
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Chapter 4

Type-Theoretic Algebraic Weak
Factorisation Systems

In section Section 2.7, we saw that by working with the notion of tribe (or, for that

matter, with any similar non-algebraic framework) we were able to obtain pseudo-stable

choices of Π and Σ types. In summary, we do this by using the right and left adjoints,

respectively, to the pullback functor between the corresponding local tribes. Coherence

follows essentially from the universal properties of the adjoint functors.

In some settings we could also obtain a choice of Id-types by looking at path-object

factorisations of the diagonal morphism, satisfying some lifting conditions. For example,

we can work in a model category and take our tribe to be the class of fibrations. With

some extra work we could even get the choice of be suitably functorial and stable.

However, we will hardly obtain a coherent choice of elimination terms. Briefly, the

situation is the following. In the setting of weak factorisation systems and model

categories, the classes of (acyclic) fibrations and (acyclic) cofibrations are defined as

classes of maps satisfying some lifting properties, therefore when applying this to model

Id-types, the elimination terms will be only required to exist, and there is no reason to

expect that a given choice will satisfy the extra coherence properties needed.

A very neat way to fix this problem was proposed in [dBG12]. The solutions is to

categorify the notion of lifting properties to that of lifting structure, and in this way,

instead of a class of fibrations, we obtain a category of structured fibrations. We may

apply this to the problem of finding pseudo-stable choices of Id-types, and in this case,

the coherence problem of the elimination terms will be an instance of functoriality in

this category.

In this chapter of the dissertation we will develop a framework for doing exactly

this, making use the theory of algebraic weak factorisation systems (a review of which

can be found in Appendix B, but see [BG16a, BG16b]) in order to construct models of

Martin-Löf type theory.

In order to obtain a wide range of examples, we will work with the theory of

Uniform Fibrations developed in [GS17] based on ideas from [CCHM16], a brief review
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is available in Appendix C.

4.1 From AWFS to Comprehension Categories

Recall from Section 2.7 that tribes naturally give rise to comprehension categories.

Analogously any algebraic weak factorisation systems (or awfs for short) also has an

associated comprehension category with the difference is that the comprehension func-

tor will no longer be full. We will examine in this section how this is done.

We will begin this section with an observation. Consider an awfs (L, R) on a category

C; there are two categories of arrows that we might want to consider as generalising the

class of fibrations in a Tribe. We may consider R-Map (i.e. the category of algebras

for the pointed endofunctor R) or alternatively R-Alg (i.e. the category of algebras

of R). We choose to work with R-Map; the main reason being that this category is

better behaved with respect to lifting structures (see Proposition B.4.3). However,

let us point out that, in the case of algebraically-free awfs, it is possible to use both

categories of arrows, this follows because we have functors back and forth between them

(see Proposition B.4.6).

Lemma 4.1.1. Let (L, R) be an awfs over C. The functor R-Map → C mapping an
R-map (f, s) to cod(f) is a Grothendieck fibration. Moreover, the Cartesian arrows are
the morphisms of R-maps whose underlying square is a pullback square.

Proof. Let us first see that a morphism (h, q) : (f ′, s ′) → (f, s) of R-maps such that
U(h, q) is a pullback square (i.e. forgetting the algebraic structure), is Cartesian. For
this consider (u, v) : (g, t) → (f, s) any R-map morphism and an arrow b : cod(g) →
cod(f ′) making the obvious diagram commute. Since U(h, q) is a pullback square, we
obtain a unique arrow a : dom(g) → dom(f ′) as shown:

·
u

))

a
��

g

��

· h //

f ′

��

·

f

��

·

v
))

b
��
·

q
// ·

we need to show that the square (a, b) : (g, t) → (f ′, s ′) is a morhpism of R-maps. More
precisely, we need to show that:

a ◦ t = s ′ ◦ P(a, b)

where P is the underlying functorial factorisation. But this follows by the universal
property of the pullback square (h, q) using that the other two squares are morphisms
of R-maps.
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We now proceed to show that R-Map → C is a Grothendieck fibration. For this
let q : A → B be an arrow in C and (f, s) : X → B an R-map. Let f ′ : · → A be the
pullback of f along q, by Lemma B.2.4 there is a unique R-map structure on f ′ making
the pullback square into a morphisms of R-maps, i.e. into a Cartesian arrow.

With this lemma in place, it is now easy to verify the following proposition.

Proposition 4.1.2. For a given awfs (L, R) on a category C the following commutative
diagram is a comprehension category:

R-Map
U //

##

C→
cod

~~

C

where the horizontal functor is the forgetful one.

Proof. By the previous lemma, the functor R-Map → C is a Grothendieck fibration.
Moreover, by the characterisation of the Cartesian arrows, we see thatUmaps Cartesian
arrows to pullback squares.

Remark 4.1.3. The comprehension category induced by an awfs is not in general
split and also not in general full. This is a crucial difference with the comprehension
category associated to a tribe.

We will now proceed to investigate additional structure on an awfs (L, R) such that

the comprehension category given by Proposition 4.1.2 has pseudo-stable choices of the

required logical structure.

The first thing we notice is that the category of R-Map has a canonical vertical

composition (Proposition B.2.2). This implies that for each map (f, s) : B → A in

R-Map there is a lift of the functor Σf as can be seen in the diagram:

R-Map/B
Σf //

��

R-Map/A

��

C/B
Σf

// C/A

here the slice category R-Map/A (or analogously R-Map/B) is defined as the pullback

of U : R-Map → C→ along the inclusion C/A→ C→; that is, objects are R-maps of the

form f : X→ A and arrows are morphisms of R-maps over the identity on A.

We can prove directly by inspection that the adjunction Σf ` f∗ also lifts to the

categories of R-Map, i.e. as in the following diagram:

R-Map/A
⊥
f∗

// R-Map/B

Σf
tt
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Using this fact, we can follow the same ideas as we did in Section 2.7 (specifically in

Lemma 2.7.7), in order to prove the following result:

Proposition 4.1.4. Let (L, R) be an awfs. The comprehension category associated to
(L, R) has a canonical pseudo-stable choice of Σ-types.

4.2 Functorial Frobenius Structure

The case of Π-types is more complicated. First of all, throughout this section we

will assume that the base category of an awfs (L, R) satisfies the (LF) condition (see

Definition 2.5.9) with respect to the comprehension category induced by (L, R); this is

needed in order for the pullback functor relative to a right map f, to posses a right

adjoint, which we denote by Πf. We have the following:

Proposition 4.2.1. Let (L, R) an awfs satisfying the (LF) condition and equipped with
a functorial Frobenius structure (Definition B.6.1). Then the comprehension category
associated to (L, R) has a pseudo-stable choice of Π-types.

Proof. First we construct a choice of Π-types (Π, λ, app). Using Proposition B.6.4,
we obtain a generalised Frobenius structure on (L-Map, R-Map,� (L-Map�)) and by
Proposition B.6.7 (using that (−)� commutes with slicing [GS17, Proposition 5.3] and
that there are functors back-and-forth R-Map ↔ L-Map� by Proposition B.4.3), we
have that for each (f, s) : A→ Γ , there is a lift of the pushforward functor as shown:

R-Map/A
Πf−→ R-Map/Γ

we can use this to construct the choice Πfg. To see that this choice is functorial, we
proceed just as in the case of tribes (Lemma 2.7.8), and for this we also need the Beck-
Chevalley isomorphism to lift to the category of R-Map which is also guaranteed by
the functorial Frobenious structure (Proposition B.6.7). Finally, for the choices of λ
and app, we proceed exactly as we did in Lemma 2.7.8.

Remark 4.2.2. Even-though there are lifts of the pushforward functor Πf to the cate-
gory of R-Map, it is not in general the case that the adjunction f∗ ` Πf lifts to R-Map.
For this we need a further strengthening of the functorial Frobenius structure, as we
show in the following proposition. We emphasis that this extra assumption on the
functorial Frobenius is not necessary for the purpose of modelling dependent products.

Proposition 4.2.3. Let (L, R) be an awfs satisfying the (LF) condition and equipped
with a strong functorial Frobenius structure (Definition B.6.2). Then for every (f, s) :
B→ A in R-Map there is a lift of the adjunction f∗ ` Πf as shown:

R-Map/A ⊥
f∗ // R-Map/B

Πf

jj
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Proof. The idea is to use Proposition B.4.9 to lift the unit and counit of the cor-
responding adjunction to the category of R-Map, to do this it will be necessary to
slightly generalise the statement. Let’s fix for the reminder of the proof an R-map
(f, s) : B→ A.

Consider the category of arrows u : L-Map/B → (C/B)→ given on objects as
follows:

(X
g−→ B) 7→ (X

g−→ B
idB−−→ B)

the action on morphisms is defined similarly. Notice that the arrow category (C/B)→
has as objects composable pairs of arrows such that the second arrow has codomain B.
In a completely similar manner, we define v : R-Map/B→ (C/B)→.

We now fix some notation. We define the adjunctions F1 ` U1 and F2 ` U2 as given
by the following functors:

F1 = U1 := idC/B : C/B→ C/B

and

F2 := f
∗Σf : C/B→ C/B U2 := f

∗Πf : C/B→ C/B.

Next, we define the following natural transformations forming mates, respectively as
the unit and the counit of the previous adjunctions, that is:

n := ε : f∗Πf → id m := η : id→ f∗Σf

With this definitions in place, we may instantiating Proposition B.4.9. The conclusion
tells us that we can find a lift the unit of Σf ` f∗ if and only if we can find a lift the
counit of f∗ ` Πf as shown:

L-Map/B

id
--

f∗Σf
11�� η
�(R-Map/B) R-Map/B

f∗Πf --

id
11�� ε (L-Map/B)�

Given that the functor Σf is defined explicitly by composition with f, it will be easier
to show that η : id→ f∗Σf lifts, and this can be seen directly for each component.

For this consider (g, λ) : X → B a L-map and (h, t) : Z → B an R-map. Let us
first notice that the component ηg : u(g, λ) → f∗Σg is given as the left rectangle in the
following diagram:

X

g

��

ηg
//

id

''
X ′

g ′

��

f ′′
// X

g

��

B
δf // B ′

f ′

��

f ′ // B

f
��

B B
f
// A
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We will now describe what it mean for f∗Σfg = Σf ′g
′ to be an object of the category

�(R-Map/B). Following our definitions, let’s consider a morphism (α, f ′) : Σf ′g
′ →

v(h, t) in (C/B)→ with (h, t) ∈ R-Map/B, i.e. a diagram as the following one with
solid arrows:

X ′

g ′

��

α // Z

h
��

B ′

f ′

��

θ

??

f ′ // B

B B

then Σf ′g
′ is in �(R-Map/B) if there is a coherent choice of lifts θ as shown above.

This coherent choice of functors clearly exists by the functorial Frobenius structure.
Now let us consider the diagram that results from pasting (ηg, id) : u(g, λ) → Σf ′g

′

to the left of the previous diagram while also inserting the defining pullback squares of
f ′ and g ′:

X

g

��

ηg
//

ηg
// X ′

g ′

��

α

''

f ′′
// X

g

��

αηg
// Z

h
��

B
δf // B ′

f ′

��

f ′ // B

f
��

B

B B
f //

id

77A B

What we must show now is that the given lift l : B→ Z of g against h is equal to the
composite of the diagonal δf with the given lift m : B ′ → Z of g ′ against h.

Using the strong functorial Frobenius condition, we have that g ′ → g is a morphism
of L-maps, this means that l ◦ f ′ = m and composing both sides with the diagonal we
obtain that l = m ◦ δf, which is what we wanted.

By Proposition B.4.9 we obtain that ε : f∗Πf → id : R-Map/B → (L-Map/B)�

lifts. Finally using that (−)� commutes with slicing [GS17, Proposition 5.3] and that
there are back-and-forth functors R-Map ↔ L-Map� by Proposition B.4.3, we obtain
the following back-and-forth maps over the slice C/B:

(L-Map/B)� ∼= L-Map�/B↔ R-Map/B

which implies that the counit of f∗ ` Π lifts to R-Map/B.
It remains to show that the unit of f∗ ` Πf lifts, for this we instantiate Proposi-

tion B.4.9 in the dual manner, in order to obtain a lift of η : id → Πff
∗ from a lift of

ε : Σff
∗ → id (and viceversa) as described in the following diagram:

L-Map/A

Σff
∗
--

id
11�� ε
�(R-Map/A) R-Map/A

id
--

Πff
∗
11�� η (L-Map/A)�
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As before, we prove that ε : Σff
∗ → id lifts using the explicit description of Σf.

First let’s describe first what the component εg : Σff
∗g→ g looks like for some L-map

(g, λ) : X→ A as a morphism in (C/A)→:

X ′

g ′

��

εg
// X

g

��

B
f
//

f
��

A

A A

That this is a map in �(R-Map/A) will again follow from the strong functorial Frobe-
nius condition. We thus obtain a lift of η : id → Πff

∗ : R-Map/A → R-Map/A as
desired.

4.3 Stable Functorial Choice of Path Objects

In this section we will explore sufficient conditions on an awfs, in order, for the com-

prehension category associated to it, to posses a pseudo-stable choice of Id-types. The

idea of using algebraic structure to construct models of Id-types was first introduced

in [dBG12].

Definition 4.3.1. Let (L, R) be an awfs. A stable functorial choice of path objects
(or sfpo for conciseness), consists of a functor

P : R-Map → L-Map×C R-Map

that lifts a functorial and stable choice of factorisation of the diagonal morphism.

Let us explain the previous definition in detail. We require first a choice of path

objects, that is, for every R-map f : X → Y, a factorisation of the diagonal morphism

as given in the following diagram:

X
rf−→ PX

ρf−→ X×Y X

together with an L-map structure on rf and an R-map structure on ρf. This choice is

functorial if for any morphism of R-maps (h, k) : (f ′, s ′) → (f, s), there a diagram as

shown:

X ′
h //

rf ′
��

X

h
��

PX ′
P(h,k)

//

ρf ′
��

PX

ρf
��

X ′ ×Y ′ X ′
h×kh

// X×Y X
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such that the upper square is a morphism of L-maps and the lower square is a morphism

of R-maps. Stability means that if (h, k) underlies a pullback square (i.e. if it is a

Cartesian morphism of R-maps), then the bottom square of the previous diagram must

be a pullback too.

We will denote an sfpo either with the notation P as in the definition or by its

components 〈r, ρ〉 where r is the first leg and ρ is the second leg of the factorisation.

Proposition 4.3.2. Let (L, R) be an awfs equipped with a sfpo of the form P = 〈r, ρ〉.
Then (L, R) is equipped with the structure of a pseudo-stable choice of Id-types

Proof. We need to construct a choice (Id, r, j) of Id-types. The choices for Id and r are
canonically given by the stable functorial choice of path objects. It is straightforward
to verify that these choices are pseudo-stable.

Since the maps rf are equipped with an L-map structure, there are given lifts against
R-maps and thus we get a choice of canonical elimination terms (i.e. j-terms). We are
left to verify that this choice is coherent. For this, it is sufficient to show the following:
given a Cartesian morphism of R-maps (h, k) : f ′ → f, an R-map q : C → PX, and a
commutative diagram:

X

rf
��

d // C

q

��

PX PX

then, the following diagram commutes:

C∗
P(h,k)∗

// C

PX ′
P(h,k)

//

j(d∗)

OO

PX

j(d)

OO

where C∗ is defined as a pullback of q along P(h, k), the arrows denoted by j are the
canonical choices of lifts. We notice that the arrow d∗ is the pullback of the map d
along P(h, k), i.e. it is defined to be the unique arrow d∗ : X ′ → C∗ such that:

q∗ ◦ d∗ = rf ′ and P(h, k)∗ ◦ d∗ = d ◦ h. (4.1)

We will split the problem into two parts. First consider the following canoncial lifts:

X ′
d∗ //

rf ′
��

C∗

q∗

��

P(h,k)∗
// C

q

��

PX ′

j(d∗)

==
j

66

PX
P(h,k)

// PX

note that by Proposition B.1.2 we obtain that j = P(h, k)∗ ◦ j(d∗).
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Now for the second part, consider the following lifting problem

X ′
h //

rf ′
��

X

rf
��

d // C

q

��

PX ′
P(h,k)

//

j ′

66

PX

j(d)

==

PX

once more, by Proposition B.1.2 we obtain that j ′ = j(d) ◦ P(h, k). Finally we notice
that Eq. (4.1) tells us that the outer squares of the two previous diagrams are the same,
implying that they have the same lift j = j ′; thus P(h, k)∗ ◦ j(d∗) = j(d) ◦ P(h, k) as
needed.

4.4 Type-Theoretic Algebraic Weak Factorisation Systems

In this section we summarise the results we had obtain on this chapter so far. We will

do this by stating a general definition accompanied by a general theorem about awfs.

Definition 4.4.1. A type-theoretic algebraic weak factorisation system consists
of the following data:

1. A category C equipped with an awfs (L, R) and satisfying the (LF) condition with
respect to the comprehension category associated to (L, R) (see Definition 2.5.9).

2. A functorial Frobenius structure on (L, R).

3. A stable functorial choice of path objects for (L, R).

We will use the abbreviation of type-theoretic awfs for conciseness.

The proof of the following theorem follows immediately from the results of this

chapter.

Theorem 4.4.2. Let (L, R) be an awfs on C with the structure of an type-theoretic
awfs. Then the comprehension category associated to (L, R) has pseudo-stable choices
of Σ, Π and Id-types.

We can apply the techniques from Chapter 2 as follows. Given an type-theoretic

awfs, we can perform the right adjoint splitting to the comprehension category associ-

ated to it, and by Theorem 2.6.1, we obtain a split model of of Martin Löf type theory

equipped with dependent sums and products, and intensional identity types. Yet the

problem arrises as to how one obtains a type-theoretic awfs. It is to this problem that

we turn our attention next.
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4.5 Example: Groupoids

One of the first models of dependent type theory with intensional identity types was

constructed by Hofmann and Streicher using groupoids as closed types [HS98]. In this

paper, they constructed, from the category of groupoids, a category with families (CwF)

which is a closely related structure to that of a split comprehension category; the ad-

vantage of doing things this way is that there is no need to develop a general framework

for splitting as we did; i.e. they bypassed the need to apply any splitting procedure.

However, the downside of their construction is that it is much more complex from the

beginning and it obscures the important intuition of the interpretation of dependent

type theory in groupoids where dependent types are modelled as isofibrations.

Here we will revisit their model using the theory we have exposed so far. We

will construct an algebraic weak factorisation system (Cf, F) on the category Grd of

groupoids and functors. We will show explicitly how to construct a functorial Frobe-

nious structure and a stable functorial choice of path objects.

We will denote by Grd the category of groupoids and functors. Given a groupoid G,

we refer to its objects and morphisms by points and path respectively, this is justified

by thinking of a groupoid as an homotopy 1-type.

As first shown in [And78] the category Grd has a Quillen model structure, known as

the canonical model structure. Here we list some basic facts about this model structure

for future reference:

• The fibrations are the isofibrations; these are the maps that have the right lifting

property against the endpoint inclusion δ0 : 0 → 1 where 0 is the groupoid that

has a single point and 1 has two distinct objects and a single path between them.

• The cofibration are the functors that are injective on objects.

• The weak equivalences are the categorical equivalences; these are fully-faithful

and essentially surjective functors.

There are (at least) three different notions of structured isofibrations which arise as

a natural categorification of the property of being an isofibration. To describe these,

let us fix a functor of groupoids f : G→ H.

• A cloven isofibration structure on f consists of an operation θ that given any

commutative square as the one below:

0

δ0

��

a // G

f
��

1
p
//

θ(a,p)

??

H

produces a lift, shown as the dotted arrow. In other words, given as input an

object a ∈ G and a path p : b f(a) in H, then θ outputs a path θ(a, p) : b∗  a

in H which lies over p. We refer to the operation θ as a cleavage.
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• A normal isofibration structure of f consists of a cleavage θ which has the

additional property that identities lift to identities. Precisely, this means that

given any a ∈ G, then θ(a, idf(a)) = ida. This is a compatibility condition

between the constant paths and the lifting structure.

• A split isofibration structure of f consists of a normal cleavage θ which has

the additional property of being compatible with composition. This means that

given a ∈ G and two paths p : b f(a) and q : c b, then θ(p ·q, a) = θ(p, a) ·
θ(q, b∗). Here, we demand the further compatibility of the lifting structure with

the composition of paths operation.

Remark 4.5.1. Isofibrations are precisely Grothendieck fibrations between groupoids.
The notions of cloven and split isofibrations also coincide with the analogous definitions
for Grothendieck fibrations.

Notice that if a functor f : G→ H has the structure θ of either a cloven, normal or

split isofibration; then by forgetting the algebraic structure, the functor f retains the

property of being a classical isofibration.

There is a natural notion of morphism between structured isofibrations. In order

to describe this, let us consider (f, θ) and (f ′, θ ′) a pair of cloven isofibrations, and a

morphism in the arrow category (l,m) : f→ f ′ between the underlying maps, that is a

commutative square as shown:

G

f
��

l // G ′

f ′

��

H
m
// H ′

We say that (l,m) is cleavage preserving if for every a ∈ G and p : b f(a) in H we

have that l · θ(a, p) = θ ′(l(a),m(p)). Diagrammatically, this means that the triangle

created by the respective lifts commute:

0

δ0

��

a // G

f

��

l // G ′

f ′

��

1
p
//

θ

??

θ ′
77

H
m
// H ′

We will denote the categories of arrows (Definition B.4.1) of cloven, normal, and

split isofibrations respectively as shown in the following diagram:

ClFib NrmFib SpFib

Grd→
We will now proceed to construct an awfs on the Grd and an type-theoretic awfs

structure on top of it. We first recall the following well-known construction. Let
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4. TYPE-THEORETIC AWFSS

f : X→ Y be a functor between groupoids, the comma category of f denoted by ↓ f

has:

Objects: Triples (a, b, p) with a ∈ X, b ∈ Y and p : b→ fa.

Arrows: (α,β) : (a, b, p) → (a ′, b ′, p ′) where:

b
β
//

p

��

b ′

p ′

��

fa
Fα
// fa ′

Identities and composition are component-wise those of G and H respectively.

Note that the the comma category ↓ f is again a groupoid, and moreover the con-

struction is functorial, thus giving rise to a functor ↓ (−) : Grd→ → Grd. This will be

the middle functor of a functorial factorisation assigning to f : X→ Y:

X
Ctf // ↓ f

Ff // Y

where Ctf(a) = (a, fa, idfa) on points and Ctf(p) = (p, p) on paths. And Ff is the

projection on the second coordinate, i.e. Ff(a, b, p) = b and similarly on paths.

Let us examine the categories of Ct-maps and F-maps. Let’s start with F-Map, we

know that an F-map structure on a map f : X→ Y is a lift s as shown:

X

Ctf
��

X

f
��↓ f

Ff
//

s

>>

Y

a closer analysis will show that s gives f : X → Y precisely the structure of a normal

isofibration, and that morphisms of F-maps correspond to cleavage preserving maps.

Let us now examine the category L-Map. An L-map structure on a map g : A→ B,

is given by a lift λ as shown:

A

g

��

Ctg
// ↓ g

Fg
��

B

λ

>>

B

If we examine the structure obtained from the lift λ, we observe that it corresponds to

the data of a retraction λ1 : B→ A of g, and a natural transformation (homotopy) λ2 :

idB → g ◦ λ1 constant on the image of f. This data is given by λ(b) = (λ1(b), b, λ2(b)).

In other words, a Ct-map (g, λ1, λ2) is the same thing as a strong deformation

retraction.
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Proposition 4.5.2. The functorial factorisation (↓ (−), Ct, F) is an algebraic weak
factorisation system on Grd.

Proof. We have to give the corresponding structures of a comonad and a monad to Ct
and F respectively, we will only provide a brief description and leave the details to the
reader.

We first define a comultiplication δf : ↓ f → ↓ Ctf for Ct as follows:

(a, b, p) 7→ (a, (a, b, p), (1a, p) : (a, b, p) → (a, Fa, 1fa))

Similarly we have that the endofunctor F has a multiplication µf : ↓ Ff → ↓ f given
by:

((a, b, p), b̃, p̃ : b̃→ b) 7→ (a, b̃, p ◦ p̃)

Remark 4.5.3. Notice that in the definition of the multiplication µf : ↓ Ff → ↓ f for
F, the fact that paths can be composed is used. Moreover, the fact that the composition
is strictly associativity and unital is crucial in proving the monad axioms.

A close analysis of the category of F-algebras, reveals that these are precisely the

split isofibrations. In summary we have the following correspondence; the algebras for

the pointed endofunctor (F, η) correspond to normal isofibrations and the algebras for

the monad (F, η, µ) correspond to the split isofibrations.

We now proceed to show that the awfs (Ct, F) in Grd has a functorial Frobenius

structure. This is done by elementary methods whose details we will omit.

Proposition 4.5.4. The awfs (Ct, F) satisfies the strong functorial Frobenius condition.

Proof. We need to show that pulling back a Ct-map along an F-map is uniformly a
Ct-map. Consider (g, λ) : A→ Y a Ct-map and (f, s) : X→ Y an F-map. Consider the
following pullback square:

A×Y X
f ′ //

g ′

��

A

g

��

X
f

// Y

we will define a Ct-map structure λ ′ on g ′ which by the discussion above corresponds
to a strong deformation retraction (g ′, λ ′1, λ

′
2). Using that the F-map structure s on f

correspond to a normal isofibration, we can find for each point x ∈ X a point x ′ ∈ X
and a lift λ ′2(x) as shown:

x
λ ′2(x) // x ′

fx
λ2(fx)

// gλ1fx
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and we define λ ′1(x) = (λ1fx, x
′). The homotopy λ ′ : 1 → g ′ ◦ λ ′1 is defined using the

top arrow in the previous diagram.
Finally, we need to verify that (f ′, f) : g ′ → f is a morphism of Ct-maps (i.e.

the strong Frobenius condition). By spelling out the details, we must show that the
following diagram commutes:

↓ g ′
↓(f ′,f )

// ↓ g

X
f

//

λ ′

OO

Y

λ

OO

so let x ∈ X, and notice that:

↓ (f ′, f)(λ ′(x)) = ↓ (f ′, f)(λ ′1(x), x, λ
′
2(x))

= ↓ (f ′, f)((λ1fx, x
′), x, λ ′2(x))

= (λ1fx, fx, fλ
′
2(x))

= (λ1fx, fx, λ2(fx))

= λ(fx)

We turn our attention to identity types. We start by noticing that the category Grd

has an interval object 1 given by the groupoid with two points 0 and 1 and only one

non-trivial path 0 → 1. The endpoint inclusions are the only two possible maps from

the terminal groupoid into 1. It is straightforward to verify that interval path-object

factorisation (Appendix C.3) of a map f : X→ Y is given by:

X
rf // Pwf

ρf // X×Y X

where the points of Pwf are:

Pwf = {(a, a ′, p)|a, a ′ ∈ X, p : a→ a ′ such that fa = fa ′ and fp = idfa}

an map in Pwf from (a, a ′, p) to (b, b ′, q) is given by a pair (α,β) such that α : a→ b,

β : a ′ → b ′ and the following diagram commutes:

a

p
��

α // b

q
��

a ′
β
// b ′

The map rf is given by a 7→ (a, a, ida) and the map ρf is given by (a, b, p) 7→ (a, b).

Proposition 4.5.5. In the category Grd, the interval path-object factorisation lifts to
a stable functorial choice of path objects with respect to the awfs (Ct, F).
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Proof. Suppose we have an F-map (f, s) : X → Y, we need to uniformly provide a
Ct-map structure to rf and an F-map structure to ρf.

A Ct-map structure on rf is the same thing as the data for a strong deformation
retract, take λ1 := tf : Pwf → X the canonical target map. We define the natural
transformation λ2 : idPwf → rf ◦ tf as:

λ2(a, a
′, p) := (p, ida ′) : (a, a

′, p) → (a ′, a ′, id ′a)

Now, a F-map structure on ρf corresponds to the data of a split isofibration. Con-
sider a lifting situation:

(a, a ′, p) Pwf

ρf

��

(b, b ′)
(α,β)

// (a, a ′) X×Y X

we let q := β ◦ p ◦ α−1 : b → b ′ and thus (α,β) : (b, b ′, q) → (a, a ′, p) is the desired
lift.

Using the two previous propositions we see that the awfs (Ct, F) on the category Grd

is equipped with a functorial Frobenius structure and with a stable functorial choice of

path objects. From this, the following theorem follows immediately.

Theorem 4.5.6. The category Grd is equipped with the structure of a type-theoretic
awfs (Definition 4.4.1).

Applying Theorem 4.4.2 we obtain a model of dependent type theory with Π, Σ and

Id-types. This is essentially the same model as the Hofmann-Streicher one.
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Chapter 5

Type-Theoretic AWFS from
Uniform Fibrations

In this chapter we will investigate how to obtain type-theoretic awfs in the setting of

uniform fibrations of [GS17].

We will work with an awfs (Ct, F) of uniform fibrations (Appendix C.4) where the

base category C is closed symmetric monoidal and is equipped with an interval object

(I, δ0, δ1) with contractions and connections.

One of the main theorem of [GS17] is that the awfs of uniform fibrations (Ct, F) has

a functorial Frobenius structure (Theorem C.4.3). In this chapter we will show how to

obtain an type-theoretic awfs by constructing a stable functorial choice of path objects.

Given an interval object, there is a natural choice of path objects, the interval

path-object factorisation PI as explained in Appendix C.3. Let us briefly recall the

construction here for the convenience of the reader. For a morphism f : B → A,

consider the following factorisation of the diagonal morphism δf : X→ X×Y X:

B
rf // Pwf

ρf // B×A B

where the morphism rf : B→ Pwf is given by the universal property of pullback squares

as shown in the following diagram:

B Bε

��

f

$$

rp

  

Pwf //

��

BI

fI

��

A
Aε
// AI

(5.1)

and ρf : Pwf → B ×A B is given again by the universal property of the pullback of f

along itself applied to the canonical source and target maps sf, tf : Pwf→ B.
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We will give an alternative construction of this factorisation making evident some

intermediate steps and using the adjunction −⊗̂i ` ^hom(i,−) given by the Leibniz

construction (or pushout-product) explicitly (see Appendix C.1). First of all, we define

an arrow i : ∂I→ I corresponding to the boundary inclusion of the interval object, this

is given by taking the coproduct ∂I := ⊥+⊥ and using the universal property:

⊥ ι0 //

δ0
  

∂I

i
��

⊥

δ1
~~

ι1oo

I

Consider the following diagram that expands the above diagram Eq. (5.1), i.e. the

exterior part of the following diagram is exactly the foregoing one.

B
Bε

''

rf

##

∆f

��
idB

��

f

""

Pwf //

ρf

��

BI

^hom(i,f)
��

^hom(δ1,f)

{{
fI

uu

B×A B

π2

��

〈αf,λf〉 // AI ×A∂I B∂I

id×Aι1B
ι1

��

B 〈βf,idB〉 //

f
��

AI ×A B

��

A
Aε

// AI

(5.2)

This diagram will be used a couple of times in the next section.

The two middle horizontal arrows are defined as follows. First, the arrow 〈αf, λf〉 is

given by the universal property of pullbacks using two intermediate arrows λf and αf
defined as follows:

B×A B

λf %%

〈π1,π2〉
// B× B

∼=
��

B×A B

αf
((

π1 // B
f // A

Aε

��

B∂I AI

then we let 〈αf, λf〉 : B×A B→ AI ×A∂I B∂I. For the second horizontal arrow 〈βf, idB〉,
we define βf as follows:

B
f //

βf ��

A

Aε
��

AI

and we let 〈βf, idB〉 : B→ AI ×A B.
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5.1 Id-types in Uniform Fibrations

With the help of the machinery of uniform fibrations, we are now able to state and

prove the following theorem.

Theorem 5.1.1. Let (C, Ft) be a suitable awfs (Definition C.4.1) on C. Suppose that
the following additional hypothesis hold:

1. Taking the Leibniz product to the boundary inclusion of the interval i : ∂I → I

uniformly preserves C-maps as shown:

C-Map
i⊗̂−

//

��

C-Map

��

C→
i⊗̂−

// C→

2. The reflexivity r : C→ → C→ functor, of the interval path-object factorisation PI,
uniformly lifts to the category of C-maps:

C-Map

��

C→
r

66

r
// C→

Then the factorisation PI from Appendix C.3 lifts to a stable functorial choice of path
objects, as shown:

F-Map
P̃I //

��

Ct-Map×C F-Map

��

C→
PI

// C→ ×C C→
Proof. We will divide the proof into two parts.

Claim 5.1.1.1. The functor ρ : C→ → C→ lifts to a functor ρ : F-Map → F-Map.

Proof of Claim 5.1.1.1. Since (C, Ft) is suitable, we have that δk⊗̂− lifts to C-Map and
by Lemma C.5.4 we have that δk⊗̂− also factors though the category Sk of k-oriented
homotopy equivalences. Combining this two facts, we obtain a lift of δk⊗̂− as shown:

C-Map
δk⊗̂−

//

��

C-Map×C→ Sk
��

C→
δk⊗̂−

// C→
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By Lemma C.5.4 again, we have a functor C-Map×C→ Sk → Ct-Map over C→, com-
posing with the one above, we get a lift of δk⊗̂− as shown:

C-Map
δk⊗̂−

//

��

Ct-Map

��

C→
δk⊗̂−

// C→
Using the hypothesis that i⊗̂− lifts to C-Map and that (C, Ft) is algebraically-free on
a category of arrows u : I → C→ we obtain:

I
η
//

u
##

C-Map
i⊗̂−
//

��

C-Map
δk⊗̂−

//

��

Ct-Map

��

C→
i⊗̂−

// C→
δk⊗̂−

// C→
Since the monoidal structure on C is symmetric, the lifted monoidal structure on the
category of arrows by the Leibniz construction is also symmetric, this means in partic-
ular that following diagram commutes up-to-iso:

C→
∼=

i⊗̂−
//

δk⊗̂−
��

C→
δk⊗̂−
��

C→
i⊗̂−
// C→

It is easy to see that we can transfer the algebraic structure along this natural isomor-
phism, this means that we obtain from the last two diagrams, the following lift:

I

u

��

//

δk⊗̂u

""

Ct-Map

��

C→
δk⊗̂−

// C→
i⊗̂−

// C→
now combining the above lifts for k = 0, 1, and using the definition of u⊗ : I⊗ → C→
we obtain a lift of i⊗̂− as shown:

I⊗

u⊗
��

i⊗̂−
// Ct-Map

��

C→
i⊗̂−

// C→
For the following we will require some results of the previous chapter. First recall

that by the Leibniz construction, there is an adjunction adjunction between i⊗̂− and
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^hom(i,−) in the category of arrows. Now, using the nice interplay between adjunctions
and lifting structure (Proposition C.1.6) and noticing that Ct-Map ∼=� F-Alg by
Proposition B.4.3, we obtain the following lift of ^hom(i,−):

F-Alg
^hom(i,−)

//

��

(I⊗)
�

(u⊗)�

��

C→
^hom(i,−)

// C→
Finally we use that (Ct, F) is algebraically-free on the category of arrows u⊗ : I⊗ → C→
we obtain an equivalence over C→ between (I⊗)

� and F-Alg thus composing with what
we had before, we obtain a lift of ^hom(i,−) to the category of F-algebras:

F-Alg
^hom(i,−)

//

��

(I⊗)
�

(u⊗)�

��

∼= // F-Alg

zz

C→
^hom(i,−)

// C→
If we look at the top pullback square of Eq. (5.2) we see that the morphism ρf :

PwB→ B×A B is obtained by the following two steps:

f 7→ ^hom(i, f) 7→ 〈αf, λf〉∗ ^hom(i, f) = ρf

i.e. by first applying ^hom(i,−) and then pulling back along 〈αf, λf〉. Thus since we
have lifts of ^hom and of the pullback functor to the category of F-algebras, we obtain
a lift of ρ as shown:

F-Alg

ρ

))

^hom(i,−)

//

��

F-Alg
PB(−,〈α,λ〉)

// F-Alg

��

C→
ρ

// C→
Now, since we are working in an algebraically-free awfs, we have lifts back-and-forth

between R-Alg and R-Map over C→ (Proposition B.4.6). Composing with this lifts we
obtain the desired lift of ρ.

Claim 5.1.1.2. The functor r : C→ → C→ lifts to a functor r : F-Map → Ct-Map.

Proof of Claim 5.1.1.2. We will first show that r : C→ → C→ lifts to a functor r :
F-Map → S0 where S0 is the category of 0-oriented strong left homotopy equivalence
(see Definition C.5.1).

For this we will make use of the fact that the functor that maps f to the target map
tf lifts to a functor from F-Map to Ft-Map, the proof of this will require us to recreate
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some arguments from Claim 5.1.1.1. Using that we have a lift δ1⊗̂− : C-Map →
Ct-Map as shown in the previous claim, we can transpose using Proposition C.1.6 to
obtain a lift:

F-Alg
^hom(δ1,−)

//

��

Ft-Alg

��

C→
^hom(δ1,−)

// C→
Looking at Eq. (5.2) we see that tf : Pwf → B is obtained by applying ^hom(δ1,−)

to f and then pulling back along 〈βf, idB〉, thus the functor mapping f 7→ tf lifts as
shown:

F-Alg

t(−)

**

^hom(δ1,−)

//

��

Ft-Alg
PB(−,〈β,id〉)

// Ft-Alg

��

C→
t(−)

// C→
(5.3)

since the awfs are algebraically-free we can apply Proposition B.4.6 to obtain the desired
lift.

Now let’s return to our task of finding a lift of the functor r as shown in the following
diagram:

F-Map

��

r // S0

��

C→
r
// C→

for this, we will first show that for each uniform fibration f : B → A the target map
tf : Pwf→ B is an strong homotopy retraction of rf : B→ Pwf.

Looking again at Eq. (5.2) it is clear that tf ◦ rf = idB. Thus we are left with the
task of constructing an homotopy H : rf ◦ tf ∼ idPwf, for this consider the following
diagram:

Pwf
〈rf◦tf,idPwf〉 //

Bε◦tf
��

Pwf
∂I

t∂If
��

BI
Bi

// B∂I

where the top horizontal arrow is given by the universal product of the product Pwf
∂I ∼=

Pwf× Pwf. This diagram commutes, as shown in the following calculation:

t∂If ◦ 〈rf ◦ tf, id〉 = t× t ◦ 〈rf ◦ tf, id〉 = 〈tf ◦ rf ◦ tf, t〉
= 〈t, t〉 = ∆f ◦ t = Bi ◦ Bε ◦ t
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5.1 Id-types in Uniform Fibrations

This gives us (by universal property) an arrow into the pullback:

H̃ : Pwf→ BI ×B∂I Pwf∂I.

Now, we already have a lift of the target map t(−) : F-Map → Ft-Map. And notice
that by hypothesis, i⊗̂− lifts to C-Map, then using Proposition C.1.6 we find a lift
of ^hom(i,−) to Ft-Map. Composing this two lifts, we find that ^hom(i, t(−)) lifts to a
functor:

F-Map

��

^hom(i,t(−))
// Ft-Map

��

C→
^hom(i,t(−))

// C→

let’s apply this to f to obtain a uniform trivial fibration ^hom(i, tf).

We now have that, since (C, Ft) is suitable, every object is uniformly cofibrant, thus
we obtain the desired morphism H as a lift in the following diagram:

0

��

// Pwf
I

^hom(i,tf)
��

Pwf
H̃

//

H

66

BI ×B∂I Pwf∂I

In order to verify that this H is actually an homotopy from rf ◦ tf to idPwB, consider
the following diagram:

Pwf
rf◦tf

xx

〈rf◦tf,id〉
��

H
��

〈rf◦tf,id〉
��

idPwf

&&

Pwf Pwf
∂IPwf

ι0
oo Pwf

I

Pwfδ
0

gg

Pwfioo
Pwfi //

Pwfδ
1

77
Pwf

∂I Pwf
ι1

// Pwf

This shows that tf is a deformation retract of rf, but every deformation retraction
is in particular an homotopy equivalence, in this case the object of S0 that gives the
strong homotopy equivalence is the tuple (rf, tf, B

ε, H) (it is straightforward to verify
that this homotopy equivalence is strong).

So far we have given the action on objects of the desired lift r : F-Map → S0. Now
we have to show that this construction is functorial on f. For this, consider a square
(h, k) : f ′ → f in F-Map, using the fact that the interval path-object factorisation is
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5. TYPE-THEORETIC AWFS FROM UNIFORM FIBRATIONS

functorial, we obtain the following:

B ′
h //

rf ′
��

B

rf
��

Pwf
′ Pw(h,k) //

tf ′
��

Pwf

tf
��

B ′
h

// B

Note that the bottom square is a morphism of Ft-Map since it is the result of applying
the lift of t(−) of Eq. (5.3) to the square (h, k).

Let us prove that (h, Pw(h, k)) : (rf ′ , tf ′ , B
′ε, H̃ ′) → (rf, tf, B

ε, H̃) is a morphism of
strong 0-oriented homotopy equivalences. Looking at the Definition C.5.1, we observe
that the only thing we need to prove is that the following diagram commutes:

Pwf
′ Pw(h,k)

//

H ′

��

Pwf

H
��

Pwf
′I

Pw(h,k)I
// Pwf

I

We make use of the naturality of the filling operations, consider the following two
diagrams:

0

��

// 0

��

// Pwf
I

^hom(i,tf)
��

Pwf
′

Pw(h,k)
//

L

33

Pwf

H

66

H̃

// fI ×B∂I PwfI

0

��

// Pwf
′I

^hom(i,tf ′ )
��

Pw(h,k)I
// Pwf

I

^hom(i,tf)
��

Pwf
′

H̃ ′
//

L

22

H ′

55

f ′I ×B ′∂I Pwf ′I
hI×

h∂I
Pw(h,k)∂I

// fI ×B∂I PwfI

The left square of the top diagram is a morphism of C-maps by the requirement that
every object is uniformly cofibrant. The right square of the bottom diagram is a
morphism of Ft-maps since it is the result of applying the lift ^hom(i, t(−)) : F-Map →
Ft-Map to (h, k) that is a morphism of F-maps. Thus the corresponding lifts cohere.

Finally, since the construction of the maps H̃ and H̃ ′ is functorial (given by a
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5.2 Type-Theoretic AWFS in Toposes

universal property), we have that the following diagram commutes:

Pwf
′ Pw(h,k)

//

H̃ ′
��

Pwf

H̃
��

B ′I ×B ′∂I Pwf ′I
hI×

h∂I
Pw(h,k)∂I

// BI ×B∂I PwfI

this means that that the composition of the bottom horizontal arrows in the previous
two lifting diagrams coincide, this makes the lift L in both diagrams the same morphism,
and thus we have:

H ◦ Pw(h, k) = L = Pw(h, k)
I ◦H ′

as required.
Given that we have a lift r : F-Map → S0 and that by hypothesis we also have a

lift r : C→ → C-Map; we can combining these two lifts and applying Lemma C.5.4 in
order to obtain a lift of r as shown:

F-Map //

��

C-Map×C→ S0 //

��

Ct-Map

vv
C→

r
// C→

Putting together Claim 5.1.1.1 and Claim 5.1.1.2 we obtain a lift of the interval
path-object factorisation PI to a stable functorial choice of path objects.

5.2 Type-Theoretic AWFS in Toposes

In this section, we will show that there are a large number of examples where the

hypothesis of Theorem 5.1.1 hold. We will fix a category E, and we will make the

following two assumptions on it:

1. E is a Grothendieck topos where we identify the monoidal structure ⊗ with the

canonical Cartesian one.

2. E is equipped with an interval object with connections (Appendix C.2). Notice

that because the unit object is the terminal one, the interval will trivially have

contractions.

we will show that, under these assumptions, it is possible to equip E with a type-

theoretic awfs of uniform fibrations. For this, we will follow [GS17, Section 9].

First of all, let us denote by Mall the subcategory of E→ whose objects are monomor-

phisms and whose arrows are Cartesian squares. We can apply Theorem C.6.3 in order

to obtain a suitable awfs (C, Ft) algebraically-free on Mall.
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5. TYPE-THEORETIC AWFS FROM UNIFORM FIBRATIONS

We will proceed to show that the hypothesis of Theorem 5.1.1 are satisfied for

(C, Ft). As a first step, we prove the following statement.

Proposition 5.2.1. The objects of Mall are closed under taking Leibniz product with
the boundary inclusion i : ∂I→ I.

Proof. It follows since i : ∂I → I is a monomorphism and pushout-product with i

preserve monomorphisms and Cartesian squares by Lemma C.1.5.

In other words, we obtain a lift of i⊗̂(−) : E→ → E→ to the category Mall as shown

in the following diagram:

Mall
i⊗̂(−)

//

��

Mall

��

E→
i⊗̂(−)

// E→
This is, in fact, enough to find a lift of i⊗̂(−) to the category of C-maps as we

will show using some orthogonality arguments. The unit of the adjunction of the

orthogonality functors is an arrow over E→:

ηMall
: Mall →� (M�

all)

Thus by composing with the lift of i⊗̂(−) to Mall from the proposition, we obtain the

following lift:

Mall
i⊗̂(−)

//

��

�(M�
all)

��

E→
i⊗̂(−)

// E→
Now, using the adjunction i⊗̂(−) ` ^hom(i,−), and Proposition C.1.6 we are able to

transpose the previous lift to the following one:

M�
all

^hom(i,−)
//

��

M�
all

��

E→
^hom(i,−)

// E→
we know that (C, Ft) is algebraically-free on Mall (i.e. we have that Ft-Alg ∼= M�

all

over E→). Using this and composing with the counit of the adjunction between the

ortogonality functors εFt-Alg : Ft-Alg → (�Ft-Alg)� we obtain a lift:

�Ft-Alg
^hom(i,−)

//

��

(�Ft-Alg)�

��

E→
^hom(i,−)

// E→
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5.2 Type-Theoretic AWFS in Toposes

finally, using that C-Map ∼=� Ft-Alg and transposing the lift again with respect to

the same adjunction, we obtain the lift:

C-Map
i⊗̂(−)

//

��

C-Map

��

E→
i⊗̂(−)

// E→
which shows the first hypothesis of Theorem 5.1.1.

For the second hypothesis, we require the reflexivity functor r(−) : E→ → E→ to

lift to the category of C-maps. We can easily see that for each f : X → Y, rf is

a monomorphism (since it has a rectract tf ◦ rf = idX). Moreover, r(−) preserves

pullbacks, because the interval path-object factorisation is stable. Thus we obtain a

lift as follows:

Mall

��

E→
r(−)

//

r(−)
<<

E→
again, composing with the unit ηMall

: Mall →� (M�
all) and using that (C, Ft) is

algebraically-free on Mall we obtain a lift:

C-Map

��

E→
r(−)

//

r(−)
::

E→
and by composing with the forgetful functor from F-Map, we obtain the required lift,

showing that the second hypothesis of Theorem 5.1.1 holds. We summarise this in the

following theorem.

Theorem 5.2.2. Let (C, Ft) be the suitable awfs on E obtained by Theorem C.6.3,
and let (Ct, F) be the resulting awfs of Uniform Fibrations. Then (Ct, F) has a stable
functorial choice of path objects that lifts the interval path-object factorisation from
Appendix C.3.

We can combine this theorem with [GS17, Theorem 8.8] which says that the awfs of

Uniform Fibrations has a functorial Frobenius structure, in order to obtain the following

one.

Theorem 5.2.3. The awfs of uniform fibrations (Ct, F) on E has the structure of an
type-theoretic awfs.

Let us describe some specific applications of this theorem.
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5. TYPE-THEORETIC AWFS FROM UNIFORM FIBRATIONS

Example 5.2.4. We can instantiate the result on the presheaf toposes of simplicial
sets sSet and of cubical sets cSet equipped with the obvious choices of interval objects
given by the representable 1-simplex and 1-cube respectively. We thus obtain type-
theoretic awfs on sSet and cSet; moreover, using [GS17, Theorem 9.9] we observe
that the underlying morphisms of Uniform Fibrations, on either example, corresponds
exactly to Kan fibrations.

We conclude this section with the following observation. Although the proof of

Theorem 5.2.3 uses only constructive arguments; it has been pointed out, for exam-

ple in [OP16], that in order to construct a univalent universe á la Hofmann-Streicher

in a constructive setting, it is necessary to restrict the category Mall of generating

monomorphisms to that of decidable ones. A mononomorphism i : A → B in sSet

or cSet (or more generally in any presheaf category) is decidable if each level-wise

inclusion of sets has decidable image.

Remark 5.2.5. It turns out that the arguments in this section will not apply if we take
Mdec as the category of generating monomorphisms, where Mdec is the subcategory of
Mall on decidable monomorphisms (for either sSet or cSet). The issue lies on verifying
that the first leg of the interval path-object factorisation r(−) : C→ → C→ lifts to the
category Mdec; intuitively, for a given f : X → Y, the morphism rf : X → Pwf maps an
object of x of X to the degenerate path on x, this morphism is not decidable because,
in general, it is not posible to decide degeneracies [BC15].
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Chapter 6

Functoriality of Uniform
Fibrations

In this chapter we observe that the results of [GS17] admit a functorial description. In

detail, we show that there are functors, as follows:

Toposes with
stable class of monos

(Theorem C.6.3)−−−−−−−−−−→ Suitable
AWFS

(Theorem C.4.3)−−−−−−−−−−→ Type-Theoretic
AWFS

whose action on objects is given by the theorem referenced in the label of the arrows

in the diagram.

The motivation for doing this is to produce morphisms of type-theoretic awfs, thus

ultimately giving a natural way for comparing different models of dependent type the-

ories that arise in this way. As an example, we are able to produce a morphism of

type-theoretic awfss from the category of homotopy n-types (modelled as n+1 coskele-

tal simplicial sets) to the category of simplicial sets.

Because we need some minimum level of generality in order to find meaningful

examples, we will require the base of the awfs to vary, and we will relate the bases of

different awfs by a special kind of adjunctions which we will describe in the first section.

6.1 GF and GFI Adjunctions

Let us first establish some notation. Consider a functor G : C → D, we will denote

by D �GC the category whose objects are commutative triangles in D of the following

form:

X
g

//

!!

Y

~~

GC

an whose morphism are triangular prisms with an obvious edge of the form Gf : GC→
GC ′ with f : C→ C ′ in C. We omit G from the notation if it is the identity functor. It
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6. FUNCTORIALITY OF UNIFORM FIBRATIONS

is clear that any given adjunction C
G
//D

Too
_ , induces a second adjunction:

C � C
G�C

//D �GC
T�C
oo
_

where G � C is given by applying G to a diagram and T � C is given by transposition,

that is:

X
g

//

!!

Y

~~

7→
TX

Tg
//

  

TY

~~

GC C

If we fix an object C ∈ C, we denote C � C for the arrow category of the slice over

C. As before, an adjunction C
G
//D

Too
_ also induces an adjunction of the form:

C � C
G�C

//D �GC
T�C
oo
_

which is defined analogously as the foregoing one.

Given a category of arrows v : J → C→, we denote by J � C the category whose

objects are tuples (C, i, a, b) where i ∈ J, C ∈ C and a, b are arrows in C making the

following diagram commute.

· ui //

a
��

·

b��

C

and whose morphisms are commutative triangular prisms. If we fix C ∈ C we denote

J�C the category whose objects are triangles as in the previous diagram but with the

base object fixed. There are obvious forgetful functors:

J � C → C � C and J � C→ C � C

We refer the reader to Appendix B.6 for more information.

Remark 6.1.1. We adopt the double-slash notation (i.e. C � C) to distinguish these
categories from the slice categories. For example in Section 4.1, we used the notation
R-Map/C to refer to the category whose objects are R-maps over C; in contrast, the
objects of R-Map � C are commutative triangles between R-Map with codomain C.

Definition 6.1.2. A Generalised Frobenius Adjunction, or GF-adjunction for
short, is an adjunction between locally cartesian closed categories:

C
G
//D

Too
_
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such that:

1. T preserves Cartesian squares

2. The counit ε : TG→ 1 is equifibred, i.e. all naturality squares are Cartesian.

Remark 6.1.3. If G ` T is a GF-adjuction and if T moreover preserves the terminal
object (and hence all finite limits), then the counit ε is in fact a natural isomorphism, as
can be seen by observing the naturality square associated to each of the unique arrows
into the terminal object. In particular, any geometric embedding between toposes is a
GF-adjunction.

Proposition 6.1.4. Let C
G
//D

Too
_ be a GF-adjunction. Then for any arrow f : X→ Y

in C, the following diagram commutes up to isomorphism:

D �GY
(Gf)∗

//

T�Y
��

D �GX

T�X
��

C � Y
f∗

// C � X

Proof. Consider an arrow g : A→ B over GY, that is an object of D �GY. The result
follows by observing the following diagram:

T(Gf)∗A

��

T(Gf)∗g

&&

// TA

��

Tg

!!

T(Gf)∗B //

xx

TB

}}

TGX
TGf //

εX
��

TGY

εY
��

X
f

// Y

Corollary 6.1.5. Let C
G
//D

Too
_ be a GF-adjunction. Then for any arrow f : X→ Y in

C, the following diagram commutes up to isomorphism:

D �GY D �GX
ΠGfoo

C � Y

G�Y

OO

C � X

G�X

OO

Πf

oo
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Proof. This is an easy consequence of the previous theorem using the facts that adjoints
are unique up-to-isomorphism.

Remark 6.1.6. The definition of a GF-adjunction is precisely what is needed for a
right adjoint functor to preserve dependent products.

We can also prove that the right adjoint of a GF-adjunction preserves the Beck-

Chevalley natural transformation as we shall see. For this we are going to need some

intermediate results. To avoid confusion, we will denote with η̂ and ε̂ the unit and the

counit of the adjunction f∗ ` Πf, respectively.

In the following lemmas we will make use of the following notation. We will say

that a cylinder diagram of categories of the form:

· %%
99��

��

·

��
· %%

99�� ·

is commutative if the following equality of pasting diagrams holds:

· %%
99��

��

·

��

=

· //

��

·

��
· // · · %%

99�� ·

Lemma 6.1.7. Let C
G
//D

Too
_ be a GF-adjunction. Then for every arrow f : X→ Y in

C, the following diagram commutes:

C � Y
id

++

Πff
∗
33�� η̂

G�Y
��

C � Y

G�Y
��

D �GY
id

,,

Π(Gf)(Gf)
∗
22�� η̂ D �GY

Proof. For a given arrow h : A → B in C over Y, the arrow η̂Gh : Gh → ΠGf(Gf)
∗h

(over GY) has the universal property of transposing to the identity. We will verify
that the arrow Gη̂h : Gh → G(Πff

∗h) has the same universal property (modulo the
isomorphism in Corollary 6.1.5).

Transposing Gη̂h twice (using a triangular identity) we obtain f∗εh : f∗TGh→ f∗h
and using that both G and T commute with pullbacks and that ε is equifibred, we
obtain εf∗h : TGf∗h→ f∗h. The result follows since εf∗h transposes to the identity.
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Lemma 6.1.8. Let C
G
//D

Too
_ be a GF-adjunction. Then for every arrow f : X→ Y in

C, the following diagram commutes:

C � X
f∗Πf

++

id

33�� ε̂

G�X
��

C � X

G�X
��

D �GX
(Gf)∗ΠGf ,,

id
22�� ε̂ D �GX

Proof. The proof is similar to the one of the previous lemma. We need to verify that
Gε̂h : G(f∗Πfh) → Gh has the same universal property to ε̂Gh : (Gf)∗ΠGfGh → Gh.
We leave the details to the reader.

Given a square τ = (u, v) : g→ f in C→, we will denote by BCτ : v
∗Πf → Πgu

∗ the

Beck-Chevalley natural transformation and by BChτ the component at a given arrow h.

Proposition 6.1.9. Let C
G
//D

Too
_ be a GF-adjunction. And let τ = (u, v) : g→ f be a

square in C→ as shown:

X ′
u //

g
��

X

f
��

Y ′
v
// Y

Then the following diagram commutes:

C � X
v∗Πf

++

Πgu∗
33�� BCτ

G�X
��

C � Y ′

G�Y ′

��

D �GX
(Gv)∗(Πf)

,,

Π(Gg)(Gu)
∗
22�� BCGτ D �GY ′

Proof. Let h : A→ B be a morphism over X. We must show that G(BChτ ) = BC
Gh
Gτ . In

order to do this, we recall the definition of the Beck-Chevalley natural transformation,
BChτ is given by the following composite:

v∗Πfh
η̂v∗Πfh // Πgg

∗v∗Πfh
ΠgλΠfh

∼=
// Πgu

∗f∗Πfh
Πgu∗ε̂h

// Πgu
∗h

where λ : g∗v∗ → u∗f∗ is the canonical isomorphism. Applying G to the above com-
posite and using the previous lemmas we reach the desired conclusion.
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Let us suppose that C and D are equipped with an interval object with contrac-

tion and connections. We will need that the interval objects are suitably related by

adjunctions. For this we introduce the following definitions.

Definition 6.1.10. Let C and D be symmetric closed monoidal categories equipped

with interval objects. We say that C
G
//D

Too
_ is:

• an I-adjunction if T is strong monoidal and it preserves the interval objects,
including endpoints, contractions and connections.

• an GFI-adjunction if it is both a GF-adjunction and a I-adjunction.

6.2 Morphisms of suitable AWFS

In this section we will assume that our categories are locally cartesian closed and

symmetric closed monoidal equipped with an interval object with contraction and con-

nections. Recall the definitions of adjunction of awfs and the change of base theorem

from Appendix B.5.

Definition 6.2.1. Let (C, Ft) and (C ′, F ′t) be suitable awfs’s (see Definition C.4.1) on
C and D algebraically-free on I and I ′ respectively. A morphism of suitable awfs
denoted by:

(C, Ft)
(T,G,θ)

// (C ′, F ′t)

C
G

//⊥ D
Too

consists of the following data:

1. A GFI-adjunction T ` G

2. A lift of T the the generating categories of arrows:

I

��

I ′
θoo

��

C→ D→
T

oo

subject to the condition that the lift of T to the category of coalgebras (Theorem B.5.3)
induced by θ cohere with the structure of suitable awfs; that is, that the following
diagrams commute:

C-Map C ′-Map
Too C-Map

δk⊗̂(−)
��

C ′-Map

δk⊗̂(−)
��

Too

C

⊥

OO

D
T

oo

⊥

OO

C-Map C ′-Map
T

oo
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and that for each arrow h : D→ C in C, the following diagram commutes:

C-Map � C h∗ // C-Map �D

C ′-Map �GC
(Gh)∗

//

T�C

OO

C ′-Map �GD

T�D

OO

We will denote by sAWFS/(−)radj the category whose objects are suitable awfs

with a chosen category of arrows on which it is algebraically free, i.e. the objects of

sAWFS/(−)radj are tuples (C, (C, Ft), I) where (C, Ft) is suitable on C and algebraically

free on I. The morphisms are the ones given by the previous definition.

6.3 Morphisms of GF-Structures

Recall from Definition B.6.3 the definition of a Generalized Frobenius structure or GF-

structure for short. For categories of arrows u, v,w : I, J,K → C→ we will denote by

(I, J,K, P̃B) a GF-structure on C where P̃B is a lift of the pullback functor; we will

also denote the structure just by the tuple (I, J,K) whenever the GF-structure P̃B is

implicit.

Definition 6.3.1. A morphism of GF-structures denoted by:

(I, J,K, P̃B)
(a,b,c)

// (I ′, J ′,K ′, P̃B
′
)

C
G

//⊥ D
Too

consists of:

1. A GF-adjunction (or GFI-adjunction depending on the situation) T ` G.

2. Lifts a, b, c of T and G as shown:

I

��

I ′
aoo

��

J
b //

��

J ′

��

K

��

K ′
coo

��

C→ D→
T
oo C→

G
// D→ C→ D→

T
oo

such that for each j ∈ J over an arrow vj : Dj → Cj, the following diagram commutes:

I � Cj
v∗j

// K �Dj

I ′ �GCj
(vbj)

∗
//

a�j

OO

K ′ �GDj

c�j

OO
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where a � j and c � j are the obvious lifts of T � Cj and T � Dj induced by a and c
respectively.

Definition 6.3.2. Categories equipped with GF-structures and morphisms of GF-
structures define in a natural way a category which we will denote by GF/(−)radj.

We will proceed to prove an alternative characterisation of morphisms of GF-

structures using the lifts of the pushforward functors instead of the pullback ones

(Proposition B.6.7). This will be a straightforward consequence of the following lemma

extending Proposition B.4.8.

Lemma 6.3.3. Let u : I → C→ and v : J → D→ be category of arrows and C
G
//D

Too
_

be an adjunction. Then the bijection between lifts of G and T from Proposition B.4.8
is natural in the following sense:

Given u ′ : I ′ → C ′→ and v ′ : J ′ → D ′→, an adjunction C ′
G ′
//D ′

T ′oo
_ , and lifts as

shown:

I

��

y
//

��

I ′

��

J

��

J ′

��

woo

C→
Y
//⊥ C ′→Xoo

D→
Z
//⊥ D ′→Woo

such that TW ∼= XT ′ (or equivalently ZG ∼= G ′Y). Then one of the following diagrams
commutes if, and only if, the other one also commutes.

J
T // �I I

y

��

G // J�

w�

��

J ′

w

OO

T ′
// �I ′

�y

OO

I ′
G ′
// J ′�

Proof. This is a straightforward diagram chase making use of the definitions involved.
For example, supposing that the diagram in the left commutes let us show that the one
on the right commutes.

Let i ∈ I, the object G(i) = (Gui, θ) where theta is the right J-lifting structure
given object-wise by transposing the lifting structures given by the lift T : J →� I,
now w�(Gui, θ) = (ZGui, wθ) where wθ is the lifting structure given object-wise by
transposing and using the lift w : J ′ → J.

On the other hand G ′yi = (G ′Yui, θ
′) where θ ′ is given by transposing and using

the lift of T ′. We must know verify that modulo the isomorphism ZG ∼= G ′Y, the lifts
wθ and θ ′ coincide. But by plugging in a specific lifting problem and transposing twice
we reduce the problem to the commutativity of the square on the left.
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Proposition 6.3.4. Let C
G
//D

Too
_ be a GF-adjunction and let

(I, J,� (K�), P̃B) and (I ′, J ′,� (K ′�), P̃B
′
)

be GF-structures on C and D respectively. Consider lifts of G and T as follows:

I

��

I ′
aoo

��

J
b //

��

J ′

��

K

��

K ′
coo

��

C→ D→
T
oo C→

G
// D→ C→ D→

T
oo

Then the following are equivalent:

1. (a, b,� (c�)) is a morphism of GF-structures.

2. For each j ∈ J over vj : Dj → Cj, the following diagram commutes:

K� �Dj
Πvj

//

c��j
��

I� � Cj

a��j
��

K ′� �GDj
Πvbj

// I ′� �GCj

Proof. We instantiate Lemma 6.3.3 as follows:

• For the adjuctions T ` G and T ′ ` G ′ we plug in: (vj)
∗ ` Πvj and (vbj)

∗ ` Πvbj .

• For the adjunctions X ` Y and W ` Z we plug in: T �Dj ` G �Dj and T � Cj `
G � Cj.

• For the category of arrows u : I → C→ and v : J → D→ we plug in: K� �Dj →
C �Dj and I � Cj → C � Cj.

• For the category of arrows u ′ : I ′ → C ′→ and v ′ : J ′ → D ′→ we plug in: K ′� �
GDj → C �GDj and I ′ �GCj → C �GCj.

• For the lifts y : I → I ′ and w : J ′ → J we plug in: c� � j : K� �Dj → K ′� �GDj
and a � j : I ′ �GCj → I � Cj.

With this in place, the diagram of the left of the conclusion of Lemma 6.3.3 commutes
if, and only if, (a, b,� (c�)) is a morphism of GF-structure while the diagram on the
right correspond to the second part of this proposition.

Proposition 6.3.5. Let (I, J,� (K�), P̃B)
(a,b,�(c�))

// (I ′, J ′,� (K ′�), P̃B
′
) be a mor-

phism of GF-structures over T ` G. Then there is a lift of the Beck-Chevalley natural
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transformation as follows: for each τ = (l,m) : j → k in J the following diagram
commutes:

K� �Dk
m∗Πvk

,,

Πvj l
∗

22�� BCτ

c��k
��

K� � Cj

c��j
��

K ′� �GDk
(Gm)∗(Πvk ) --

Π(Gvj)
(Gl)∗

11�� BCGτ K ′� �GCj

Proof. This follows by faithfulness of the functor K ′� � GCj → D � GCj, and by the
fact that the underlying diagram commutes by Proposition 6.1.9.

6.4 From Suitable AWFS to GF-structure: Functoriality

In the main result of this section we will show that the assignment of a GF-structure

(Ct-Map, F-Alg, Ct-Map) from a suitable awfs (C, Ft) of Gambino and Sattler can be

extended to a functor:

sAWFS/(−)radj // GF/(−)radj

In order to prove this, we will need to go step-by-step through the proof of [GS17,

Theorem 8.8]. To aid the reader through this section, we will list here the main steps

in the proof. Let (C, Ft) be a suitable awfs on C:

1. Start from the fact that (C-Map,C→, C-Map) has a GF-structure.

2. Construct a GF-structure on (C-Map, F-Alg, C-Map) using [GS17, Proposi-

tion 6.3].

3. Construct a GF-structure on (S, F-Alg, S) using [GS17, Lemma 8.7]. Here S is

the category of strong homotopy equivalences (Appendix C.5).

4. Construct a GF-structure on (C-Map ×C S, F-Alg, C-Map ×C S) from items 2

and 3 using [GS17, Proposition 6.10].

5. Construct a GF-structure on (I⊗, F-Alg, Ct-Map) by [GS17, Lemma 8.5] using

[GS17, Proposition 6.3].

6. Construct a GF-structure on (Ct-Map, F-Alg, Ct-Map) by [GS17, Proposition 6.8].

We will now state and prove a series of results which will give the functorial action

to each of the intermediate steps. Each lemma will refer to the result from [GS17]

of which it is an extension. These extension lemas turn out to be rather technically

complicated, the most difficult lemma is Lemma 6.4.9 because of the delicate issues

regarding the coherence of some of the lifting structure.
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6.4 From Suitable AWFS to GF-structure: Functoriality

Lemma 6.4.1 (Proposition 6.3). Consider category of arrows ut, vt, zt : It, Jt,Kt →
C→ for t ∈ {1, 2} and functors over C→:

I1 I2
loo J1 J2

moo K1
n // K2

then, a GF-structure (I1, J1,K1, PB1) induces a GF-structure (I2, J2,K2, PB2).
Moreover, if in addition we have u ′t, v

′
t, z
′
t : I

′
t, J
′
t,K

′
t → D→ for t ∈ {1, 2}, functors

over D→:

I ′1 I ′2
l ′oo J ′1 J ′2

m ′oo K ′1
n ′ // K ′2

a morphism of GF-structures (I1, J1,K1, PB1)
(a1,b1,c1)

// (I ′1, J
′
1,K

′
1, PB

′
1) and func-

tors a2, b2, c2 as shown, making the following diagram commute:

I1 I2
loo J1

b1
��

J2

b2
��

moo K1
n // K2

I ′1

a1

OO

I ′2l ′
oo

a2

OO

J ′1 J ′2m ′
oo K ′1

c1

OO

n ′
// K ′2

c2

OO

Then (a2, b2, c2) is a morphism of the induced GF-structures:

(I2, J2,K2, PB2)
(a2,b2,c2)

// (I ′2, J
′
2,K

′
2, PB

′
2)

Proof. Given category of arrows ut, vt, zt for t ∈ {1, 2}, functors l,m,n and a GF-
structure (I1, J1,K1, PB1), we define the GF-structure PB2 for (I2, J2,K2) as the dotted
arrow in the following diagram:

I1 � C×C J1
PB1 // K1 � C

n�C
��

I2 � C×C J2

〈l�C,m〉

OO

PB2

// K2 � C

Now, given a morphism of GF-structures (I1, J1,K1, PB1)
(a1,b1,c1)

// (I ′1, J
′
1,K

′
1, PB

′
1)

over a GF-adjunction T ` G, and functors (a2, b2, c2) as in the hypothesis, we must
show that (a2, b2, c2) is a morphism of GF-structures. By definition, this means show-
ing that for each j ∈ J2 over an arrow v2,j : Dj → Cj, the following diagram commutes:

I2 � Cj
v∗2,j

// K2 �Dj

I ′2 �GCj
(v ′2,b2j

)∗
//

a2�j

OO

K ′2 �GDj

c2�j

OO
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this is an easy diagram chase: let h ∈ I ′2 � GCj, by definition of PB2 and PB ′2 we have
the following:

c2(v
′
2,b2j

)∗(h) = c2(n
′(v ′1,m ′b2j)

∗l ′)(h)

= n(c1(v
′
1,b1mj

)∗l ′)(h)

= n((v1,mj)
∗a1l

′)(h)

= n((v1,mj)
∗la2)(h)

= ((v2,j)
∗a2)(h)

Lemma 6.4.2 (Proposition 6.8). Let u, v : I, J → C→ be categories of arrows. Then
(I, J,� (I�)) has a GF-structure if, and only if, (�(I�), J,� (I�)) has a GF-structure.

Moreover, given a GF-adjunction T ` G, lifts u ′, v ′ : I ′, J ′ → D→ and lifts of T and
G as follows:

I

u

��

I ′
aoo

u ′

��

J
b //

v

��

J ′

v ′

��

C→ D→
T
oo C→

G
// D→

Then:

(I, J,� (I�))
(a,b,�(a�))

// (I ′, J ′,� (I ′�))

is a morphism of GF-structures if, and only if:

(�(I�), J,� (I�))
(�(a�),b,�(a�))

// (�(I ′�), J ′,� (I ′�))

is a morphism of GF-structures.

Proof. For objects the result follows from the characterisation of GF-structures given
by Proposition B.6.5 and Proposition B.6.7 by composing respectively with the unit
and counit of the adjunction of the orthogonality functors.

To prove the result with respect to morphisms we will split the problem into the
following two claims.

Claim 6.4.2.1. Let b : J → J ′ be a lift of G. Then the counit of (−)� `� (−) commutes
with b as shown in the following diagram:

J ′
εJ ′

// (�J ′)�

J

b

OO

εJ
// (�J)�

(�b)�

OO
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Proof. Let j ∈ J over vj : Dj → Cj in C. By definition we have that εJ(j) = (vj, εj) where
εj is the left-�J lifting structure given by εj(l,m, (g,ψ)) = ψ(l,m, j); here (g,ψ) ∈� J

and (l,m) : g→ vj is a square in C.
Let us also recall the action of �b :� J ′ →� J. This is given by �b(f, θ) = (Tf, bθ)

where bθ(l,m, j) = θ̂(̂l, m̂, bj) and ^(−) denotes the transpose with respect to the ad-
junction T ` G. The definition of a� is dual.

With this in mind we have:

(�b)�(εJ(j)) = (�b)�(vj, εj) εJ ′(bj) = (v ′bj, ε
′
bj)

= (Gvj,
� bεj)

we have that Gvj = v ′bj thus we only need to check that �bεj = ε ′bj for this, consider

(f, θ) ∈� J ′ and notice:

�bεj(l,m, (f, θ)) = ε̂j(̂l, m̂,
� b(f, θ))

= ε̂j(̂l, m̂, (Tf, bθ))

= b̂θ(̂l, m̂, j)

= ^̂θ(̂̂l, ^̂m,bj)

= θ(l,m, bj) = ε ′bj(l,m, (f, θ))

Claim 6.4.2.2. Let a : I ′ → I be a lift of T . Then the unit of (−)� `� (−) commutes
with a as shown in the following diagram:

I ′
ηI ′ //

a

��

�(I ′�)

�(a�)
��

I
ηI

// �(I�)

Proof. Dual to the prove of the previous claim.

We proceed to prove the proposition. Let us first suppose that (�(a�), b,� (a�)) is
a morphism of GF-structures, and let j ∈ J over vj : Di → Ci. Consider the following
diagram:

I � Cj
ηI�Cj

//

a�j
��

�(I�) � Cj
�(a�)�j
��

v∗j
// �(I�) �Dj

�(a�)�j
��

I ′ �GCj
η ′
I
�GCj

// �(I ′�) �GCj
(v ′bj)

∗
// �(I ′�) �GDj

the left square commutes by Claim 6.4.2.2 and the fact that orthogonality commutes
with slicing [GS17, Proposition 5.3]. The right square commutes by definition of mor-
phism of GF-structures. Thus (a, b,� (a�)) is a morphism of GF-structures.
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Let us now suppose that (a, b,� (a�)) is a morphism of GF-structures, let j ∈ J and
consider the following diagram:

I� �Dj
Πvj

//

a��j
��

I� � Cj

a��j
��

ε
I��Cj

// (�(I�))� � Cj

(�(a�))��j
��

I ′� �GDj
Πv ′
bj

// I ′� �GCj
ε
I ′��GCj

// (�(I ′�))� �GCj

the left square commutes by Proposition 6.3.4 because (a, b,� (a�)) is a morphism of
GF-strucutes and the right square commutes by Claim 6.4.2.1. Using Proposition 6.3.4
again, we see that (�(a�), b,� (a�)) is a morphism of GF-structures.

Lemma 6.4.3 (Proposition 6.10). Let ut, zt : It,Kt → C→ for t ∈ {1, 2} and v : J → C→
be category of arrows. Suppose (I1, J,K1, PB1) and (I2, J,K2, PB2) are GF-structures.
These induce GF-structures:

(I1 ×C→ I2, J,K1 ×C→ K2, PB×) (I1 +C→ I2, J,K1 +C→ K2, PB+)

Moreover, given u ′t, z
′
t : I ′t,K

′
t → D→ for t ∈ {1, 2} and v ′ : J ′ → D→, GF-

structures (I ′1, J
′,K ′1, PB

′
1) and (I ′2, J

′,K ′2, PB
′
2) and morphisms of GF-structures over a

GF-adjunction T ` G:

(I1, J,K1, PB1)
(a1,b,c1)

// (I ′1, J
′,K ′1, PB

′
1)

(I2, J,K2, PB2)
(a2,b,c2)

// (I ′2, J
′,K ′2, PB

′
2)

they induce morphisms of GF-structures over T ` G:

(I1 ×C→ I2, J,K1 ×C→ K2, PB×)
(a1×a2,b,c1×c2)

// (I ′1 ×D→ I ′2, J
′,K ′1 ×D→ K ′2, PB

′
×)

(I1 +C→ I2, J,K1 +C→ K2, PB+)
(a1+a2,b,c1+c2)

// (I ′1 +D→ I ′2, J
′,K ′1 +D→ K ′2, PB

′
+)

Proof. We focus first on the pullback case. For this, let us consider an object (X, i1, i2, a, b) ∈
(I1×C→I2)�C, that is it ∈ It for t ∈ {1, 2} and the morphism u1(i1) = u2(i2) = l : A→ B

is in the slice over X via the maps a : A → X and b : B → X. Now given j ∈ J over
vj : Y → X, we can use both the GF-structures PB1 and PB2 to pullback (X, i1, i2, a, b)
along vj to an object (Y, PB1(i1), PB2(i2), v

∗
j (a), v

∗
j (b)) ∈ (K1 ×C→ K2) � C. It is clear

that this operation can be done functorially thus giving the desired GF-structure PB×.
The coproduct case is similar. An object of I1+C→ I2 is a pair (t, i) where t ∈ {1, 2}

and i ∈ It, this is a category of arrows via the map (t, i) 7→ ut(i). Now consider an
object (X, (t, i), a, b) ∈ (I1 +C→ I2) � C, that is ut(i) is in the slice over X via a and
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b. Given j ∈ J over vj : Y → X, we can pullback (X, (t, i), a, b) along vj by using
either PB1 if t = 1 or PB2 if t = 2, either way we obtain (Y, (t, PBt(i)), v

∗
j (a), v

∗
j (b)) ∈

(K1 +C→ K2) � C. This can be done functorially, giving PB+.

Let us focus now on the functorial part for the pullback case. Following the defini-
tion of morphism of GF-structures, we need to show that for j ∈ J over vj : Dj → Cj
the following diagram commutes:

(I1 ×C→ I2) � Cj
v∗j

//

(a1×a2)�j
��

(K1 ×C→ K2) �Dj

(c1×c2)�j
��

(I ′1 ×D→ I ′2) �GCj
(vbj)

∗
// (K ′1 ×D→ K ′2) �GDj

it is clear that by construction this follows from the fact that (at, b, ct) are morphisms
of GF-structures for t ∈ {1, 2}. A dual argument shows that (a1 + a2, b, c1 + c2) is a
morphism of GF-structures.

We will now proceed to generalise some results from section 8 of [GS17]. Recall

from Lemma C.5.3 that the structure of a k-strong homotopy equivalence for a map

f : X→ Y can be equivalently described as that of a retract of the square θ⊗̂f; that is

a square ρf : δk⊗̂f→ f such that ρf ◦ θ⊗̂f = idf.

Proposition 6.4.4. Let C
G
//D

Too
_ be an I-adjunction. Then for k ∈ {1, 2} there is a

lift of T to the categories of k-oriented strong homotopy equivalences as shown:

Sk

��

Sk

��

Too

C→ D→
T
oo

Proof. We know that T preserves colimits, the monoidal strucuture and the interval
object. Thus we have that T(δk⊗̂(−)) = δk⊗̂T(−) and T(θk⊗̂(−)) = θk⊗̂T(−). The
result follows since functors preserve retractions.

Lemma 6.4.5 (Lemma 8.4). There is a lift of δk⊗̂(−) : C→ → C→ to the category of
k-oriented strong homotopy equivalences Sk as shown:

Sk

��

C→
δk⊗̂(−)

//

δk⊗̂(−)

88

Sk
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Moreover, if C
G
//D

Too
_ be an I-adjunction, then this lift cohere with the lift of T as

shown:

C→
δk⊗̂(−)

��

D→
δk⊗̂(−)
��

Too

Sk Sk
T

oo

Proof. We will need to prove a claim first.

Claim 6.4.5.1 (Remark 8.3). There is a lift of δk⊗ (−) : C → C→ to Sk and these lifts
cohere with T as shown:

C

δk⊗(−)
��

DToo

δk⊗(−)
��

Sk Sk
T
oo

Proof. This follows since for each X ∈ C, the arrow δk⊗ (−) : X→ I⊗X is a k-oriented
strong deformation retract (in particular an homotopy equivalence) with the retraction
given by the contraction ε⊗X : I⊗X→ X and the homotopy between (δk⊗X)◦ (ε⊗X)
and idI⊗X is given by the connection ck ⊗ X : I ⊗ I ⊗ X → I ⊗ X. It is clear that the
previous diagram commutes, since T preserves all the structure of the interval I.

To prove the lemma we will use some formal manipulations of the Leibniz con-
struction. Consider the category End(C) of endofunctors of C, notice that the functor
δk⊗(−) : C → C→ can be seen as an object of End(C)→ i.e. as a natural transformation
from idC to I ⊗ (−). Similarly, the transformation θk ⊗ (−) : ⊥ → δk ⊗ (−) may be
regarded as a morphism in End(C)→ (i.e. as a square of natural transformation); where
⊥ : 0 → idC is the natural transformation whose component at X ∈ C is the unique
arrow from the initial object to X. To avoid overloading the notation, we will denote
δk ⊗ (−) and θk ⊗ (−) by δk and θk respectively; trusting the reader to distinguish
between the two different meanings.

Let’s denote app : End(C) × C → C the application functor (i.e. app(F, X) = FX),
and consider it’s Leibniz construction ^app : End(C)→ × C→ → C→, notice that:

^app(δk, f) = δk⊗̂f and ^app(θk, f) = θk⊗̂f

Now let’s denote by − ◦− : End(C)× End(C) → End(C) the composition functor.
For any fixed X ∈ C we have that the following diagram commutes:

End(C)× C
app

// C

End(C)× End(C)
−◦−

//

〈id,app(−,X)〉

OO

End(C)

app(−,X)

OO

108



6.4 From Suitable AWFS to GF-structure: Functoriality

Applying the Leibniz construction (and using that app(−, X) preserves pullbacks) we
obtain the following commutative square:

End(C)→ × C→ ^app
// C→

End(C)→ × End(C)→
−◦̂−

//

〈id,app(−,X)〉

OO

End(C)→
app(−,X)

OO

which implies that:

δk⊗̂(δk ⊗ X) = δk⊗̂(app(δk, X))
= ^app(δk, app(δk, X))

= (δk◦̂δk)(X)

We thus have that δk⊗̂(δk ⊗ (−)) = δk◦̂δk since both are natural transformation with
the same components. Similarly, we can show that,

θk⊗̂(δk ⊗ (−)) = θk◦̂δk : δk → δk◦̂δk

.

By Claim 6.4.5.1 and the alternative characterisation of homotopy equivalences as
retracts of θk⊗̂(−), we have that θk⊗̂(δk ⊗ X) has a retract ρX for each X, it can be
seen by the description of the retractions that ρX is natural in X, this gives, by Yoneda,
a retract of ρ of θk◦̂δk : δk → δk◦̂δk.

Denote by c : C → End(C) the functor that sends an object X to the constant
endofunctor c(X) : C → C. Notice that:

End(C)× C
app

//

〈id,c〉
��

C

c

��

End(C)× End(C)
−◦−

// End(C)

applying the Leibniz construction, using that c preserves pullbacks, we get:

End(C)→ × C→ ^app
//

〈id,c〉
��

C→
c

��

End(C)→ × End(C)→
−◦̂−

// End(C)→
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chasing the diagram we get for some f ∈ C→:

c(δk⊗̂(δk⊗̂f)) = c( ^app(δk, δk⊗̂f))
= δk◦̂c(δk⊗̂f)
= δk◦̂(δk◦̂c(f))
= (δk◦̂δk)◦̂c(f)
= c( ^app(δk◦̂δk, f)) = c((δk◦̂δk)⊗̂f)

and thus in particular, we have that δk⊗̂(δk⊗̂f) = (δk◦̂δk)⊗̂f). Similarly we obtain that
θk⊗̂(δk⊗̂f) = (θk◦̂δk)⊗̂f.

Our first goal is to show that δk⊗̂f is an k-oriented strong homotopy equivalence,
i.e. that there is a retract of θk⊗̂(δk⊗̂f) = (θk◦̂δk)⊗̂f functorially on f, but since the
functor (any functor) (−)⊗̂f preserves section-retraction pairs, and as we saw, ρ is a
retract of θk◦̂δk, we have that ρ⊗̂f is a retract of the desired map. This is clearly
functorial in f.

We now proceed to show the functorial action, that is, the coherence with the lift
of T . For this let g ∈ D→ and apply the lifted functor δk⊗̂(−), as we saw, this maps
g to the pair (g, ρ⊗̂g). Now applying the lift of T to this object, we obtain that
g 7→ Tg and ρ⊗̂g 7→ Tρ⊗̂Tg. Observe that the retraction ρ of θk◦̂δk in D is mapped
by T to the retraction ρ of θk◦̂δk in C; this follows easily from the construction of ρ
and the functorial part of Claim 6.4.5.1. Thus we obtain that T maps (g, ρ⊗̂g) 7→
(Tg, ρ⊗̂Tg).

Before proving the generalised version of [GS17, Lemma 8.5], we need some obser-

vations and some results. Consider (T,G, θ) : (C, Ft) → (C ′, F ′t) a morphism of suitable

awfs over a GFI-adjunction C
G
//D

Too
_ where θ : I ′ → I is a lift of T to the categories of

arrows generating the suitable awfs’s. Notice that by Theorem B.5.3, the lift θ : I ′ → I

of T induces lifts of T and G respectively to both the categories of (co)algebras for

the (co)monads and for the (co)pointed endofunctors making the following diagrams

commute:

C-Coalg

��

C ′-Coalg
Too

��

Ft-Alg

��

G // F ′t-Alg

��

C-Map

��

C ′-Map
Too

��

Ft-Map

��

G // F ′t-Map

��

C→ D→
T

oo C→
G

// D→
Furthermore, since T preserves the monoidal structure and the interval objects we

110



6.4 From Suitable AWFS to GF-structure: Functoriality

obtain a canonically induced lift as shown:

I⊗

��

I ′⊗

��

θ⊗
oo

C→ D→
T

oo

defined in the obvious way as θ⊗ = θ + θ using the universal property of Iθ = I + I

(and similarly for I ′). The diagram commutes since T(δk⊗̂u ′i) = δk⊗̂T(u ′i) = δk⊗̂uθi.
The lift θ⊗ : I ′⊗ → I⊗ in turn induces (again by Theorem B.5.3) lifts of T and G

respectively:

Ct-Coalg

��

C ′t-Coalg
Too

��

F-Alg

��

G // F ′-Alg

��

Ct-Map

��

C ′t-Map
Too

��

F-Map

��

G // F ′-Map

��

C→ D→
T

oo C→
G

// D→
Apart from the above observation, we will also make use of the algebraic counterpart

of the classical fact that classes of left (or right) maps in a weak factorisation system are

closed under retracts. For a category of arrows u : I → C→ we denote by ū : Ī → C→
the category of arrows where the objects of Ī are tuples (i, e, σ, ρ) where i ∈ I, e ∈ C→
and σ : e→ ui and ρ : ui → e are arrows such that ρ ◦ σ = ide. A morphism in Ī is of

the form (θ, κ) : (i, e, σ, ρ) → (i ′, e ′, σ ′, ρ ′) where θ : i → i ′ in I and κ : e → e in C→
making the obvious two squares commute. The map ū is given by (i, e, σ, ρ) 7→ e (see

the discussion before [GS17, Proposition 5.2]).

If we have an adjunction C
G
//D

Too
_ , categories of arrows u : I → C and u ′ : I ′ → D

and a lift a : I → I ′ of G we obtain ā : Ī → Ī ′ given by (i, e, σ, ρ) 7→ (a(i), Ge,Gσ,Gρ).

Similarly for lift of T .

Lemma 6.4.6 (Proposition 5.2). For every u : I → C→, we have back and forth
functors over C→ as shown:

Ī� oo // I� �̄I oo // �I

Moreover, if C
G
//D

Too
_ is an adjunction and u : I → C, u ′ : I ′ → D are categories of

arrows and we have a lift b : I → I ′ of G and a lift a : I ′ → I of T , then the following

111



6. FUNCTORIALITY OF UNIFORM FIBRATIONS

diagrams commute.

Ī�
OO

��

ā�
// ¯I ′�OO

��

Ī�
OO

��

¯I ′�
b̄�
oo

OO

��

I�
a�
// I ′� I� I ′�

b�
oo

Proof. We will give a sketch of the proof leaving the details for the reader. For any
category of arrows, we always obtain a functor I → Ī by mapping i 7→ (i, ui, id, id).
This obviously commutes with adjunctions. Thus we only need to construct the function
Ī� → I�.

We define the functor on objects as follows ((f, θ), e, σ, ρ) 7→ (e, θ̄) where θ̄ is the
right-I lifting structure defined as follows: consider a square (l,m) : ui → e, then:

·
ui

��

l // · σ1 //

e

��

·
f
��

ρ1 // ·
e

��
·

m
//

θ

77

·
σ2
// ·

ρ2
// ·

so we define θ̄(l,m, i) = ρ1θ(σ1l, σ2m, i). There is an obvious way to extend this
operation to a functor.

Now we proceed to observe that this definition commutes with adjunctions on the
base category. Let us consider a situation as in the statement of the lemma; we will
prove that the left diagram with the arrows pointing downwards commute. For this
let ((f, θ), e, σ, ρ) ∈ Ī� and let us denote by R : Ī� → I� the functor which was just
defined. We obtain the following:

Rā�((f, θ), e, σ, ρ) = R((Gf, aθ), Ge,Gσ,Gρ) = (Ge, ¯(aθ))

and

a�R((f, θ), e, σ, ρ) = a�(e, θ̄) = (Ge, aθ̄)

thus we have to verify that the two lifting structures aθ̄ and ¯(aθ) are equal. So let
i ∈ I ′ and (l,m) : u ′i → Ge. We have that:

¯(aθ)(l,m, i) = Gρ1 ◦ (aθ(G(σ1)l, G(σ2)m, i))
= Gρ1 ◦ θ̂( ^(G(σ1)l, ^G(σ2)m,ai))

= Gρ1 ◦ θ̂(σ1l̂, σ2m̂, ai)
= trps((ρ1 ◦ θ(σ1l̂, σ2m̂, ai)))
= trps(θ̄(̂l, m̂, ai))

= aθ̄(l,m, i)

where trps denotes the operation of transposing along G ` T .
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6.4 From Suitable AWFS to GF-structure: Functoriality

Lemma 6.4.7 (Corollary 7.7). Let (C, Ft) be a suitable awfs, then there is a lift of
δk⊗̂(−) as shown:

C-Map
δk⊗̂(−)

//

��

Ct-Map

��

C→
δk⊗̂(−)

// C→
Moreover, if (T,G, θ) : (C, Ft) → (C ′, F ′t) is a morphism of suitable awfs, then the
following diagram commutes:

C-Map

δk⊗̂(−)

��

C ′-Map

δk⊗̂(−)
��

Too

Ct-Map C ′t-Map
T

oo

Proof. We will make repeated use of Lemma 6.3.3. First note that by definition of I⊗,
there is a lift I → I⊗ (given by the k-th inclusion) of δk⊗̂(−), and composing with the
unit of the orthogonality adjunction, we get a lift I →� (I�

⊗) of the same functor. By

orthogonality (i.e. Lemma 6.3.3) we get a lift I�
⊗ → I� of ^exp(δk,−) or equivalently a

lift F-Alg → Ft-Alg by algebraic freeness. Composing with the counit this time, we
obtain a lift F-Alg → (�Ft-Alg)� = C-Map� and by orthogonality again we get a lift
C-Map →� F-Alg = Ct-Map of δk⊗̂(−) as desired.

To verify the functoriality, let (T,G, θ) : (C, Ft) → (C ′, F ′t) be a morphism of suitable
awfs, following the appropriate definitions, we see that there is a commutative square:

I

��

I ′
θoo

��

I⊗ I ′⊗θ⊗
oo

where the vertical arrows are the functors over δk⊗̂(−). The rest follows from the func-
toriality of Lemma 6.3.3 and the coherence of the unit and counit of the orthogonality
adjunction (Claim 6.4.2.2 and Claim 6.4.2.1).

With these results in place, we can now prove the desired extension of [GS17,

Lemma 8.5].

Lemma 6.4.8 (Lemma 8.5). Let (C, Ft) be a suitable awfs on C algebraically free on
I and denote by S the category of strong homotopy equivalences. There are functors in
the slice over C→ as shown:

I⊗
L1 // C-Map×C→ S L2 // Ct-Map
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Moreover, if (T,G, θ) : (C, Ft) → (C ′, F ′t) is a morphism of suitable awfs, then the
following diagrams commute where the horizontal arrows are lifts of T to the respective
categories of arrows:

I⊗

L1
��

I ′⊗
θ⊗

oo

L ′1
��

C-Map×C→ S
L2
��

C ′-Map×D→ S ′T×T Too

L ′2
��

Ct-Map C ′t-Map
T

oo

Proof. We define L1 as follows. First we build functors as shown:

I

δk⊗̂u   

M1k // C-Map

zz

I

δk⊗̂u   

M2k // Sk

}}

C→ C→
We construct M1

k as the follow composite:

I

u

��

η
// C-Map

��

δk⊗̂(−)
// C-Map

��

C→ C→
δk⊗(−)

// C→
the first square is the unit of the orthogonality adjunction and the second square is the
lift given by one of the hypothesis of suitable awfs. The second functor M2

k is given
by Lemma 6.4.5 by first composing with the forgetful functor. Using the universal
properties of coproducts, we obtain functors over C→:

I⊗
M1// C-Map I⊗

M2 // S

and using the universal property of pullbacks we obtain L1.

To show the functoriality of L1, it is enough to show the functoriality of Mt
k for

k, t ∈ {1, 2}. So let’s consider a morphism of suitable awfs (T,G, θ) : (C, Ft) → (C ′, F ′t),
by definition and by Claim 6.4.2.2 we obtain that M1

k commutes with the lift of T . By
Lemma 6.4.5 we have that M2

k commutes with the lift of T .

We now proceed to construct L2 : C-Map ×C→ S → Ct-Map. We will construct
this functor using the following composite of functors over C for k ∈ {1, 2}:

C-Map×C→ Sk Nk // ¯Ct-Map
H // Ct-Map
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the map Nk is given as follows. Consider an object ((g, λ), ρ) ∈ C-Map×C→ Sk where
(g, λ) ∈ C-Map and ρ : δk⊗̂g → g is a retract of θk⊗̂g exhibiting g as a k-oriented
strong homotopy equivalence. Then we have that δk⊗̂g ∈ Ct-Map by Lemma 6.4.7
and thus we define Nk as:

((g, λ), ρ) 7→ (δk⊗̂g, g, θk⊗̂g, ρ)

The functor H is given by Lemma 6.4.6 since Ct-Map =� F-Alg. The functorial
part follows from the functorial parts of Lemma 6.4.7 and Lemma 6.4.6.

The last result for which for which we need to develop the functorial extension is

[GS17, Lemma 8.7]. This lemma contains one of the crucial arguments needed in order

to obtain the functorial Frobenius structure in [GS17].

Lemma 6.4.9 (Lemma 8.7). Let (C, Ft) be a suitable awfs on a category C. Then
the tuple (S, F-Map, S) has a GF-structure. Moreover, if (T,G, θ) : (C, Ft) → (C ′F ′t) is

a morphism of suitable awfs over a GFI-adjunction C
G
//D

Too
_ , then the following is a

morphism of GF-structures:

(S, F-Alg, S)
(T,G,T)

// (S ′, F ′-Alg, S ′)

Proof. We will briefly recall the proof that (S, F-Alg, S) has a GF-structure. The main
point of the argument is to construct a lift of the pullback functor as in the following
diagram:

Sk ×C F-Alg

��

PB // Sk

��

C→ ×C C→
PB

// C→
On objects, the lift is given as follows. Let (g, f) ∈ Sk ×C F-Map and consider the
pullback square σ = (h, f) : ḡ→ g:

A ′
h //

ḡ
��

A

g

��

X ′
f
// X

we need to show that ḡ ∈ Sk. Since g ∈ Sk, there is a retract ρ : δk⊗̂g → g of
θk⊗̂g : g→ δk⊗̂g. We construct a retract ρ̄ of θk⊗̂ḡ fitting in the following diagram:

ḡ
θk⊗̂ḡ //

σ

��

δk⊗̂ḡ

δk⊗̂σ
��

ρ̄
// ḡ

σ

��
g

θk⊗̂g
// δk⊗̂g ρ

// g
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and since σ is a Cartesian square, it is enough to find a retract in the above diagram
when restricted to the codomains:

X ′
δ1−k⊗̂X ′

//

f
��

I⊗ X ′

I⊗f
��

cod(ρ̄)
// X ′

σ

��

X
δ1−k⊗̂X

// I⊗ X
cod(ρ)

// X

which is equivalent to a lift in the following diagram:

X ′

δ1−k⊗X ′
��

X ′

f
��

I⊗ X ′
I⊗f

//

cod(ρ̄)

33

I⊗ X
cod(ρ)

// X

and this is immediate since f ∈ F-Alg and δ1−k ⊗ X = δ1−k⊗̂⊥X and ⊥X ∈ C-Map
by hypothesis of suitable awfs. The action on morphisms is a consequence of the
coherence of lifts in an awfs. We can combine the cases k = 1, 2 to obtain a lift
PB : S×C F-Alg → S.

Now, in order to obtain the GF-structure we argue as follows; we need a lift of the
pullback functor to:

S � C×C F-Alg
P̄B // S � C

to define this functor consider an object ((g, X), f) ∈ S�C×C F-Alg, this is represented
by the following diagram:

A

��

g

��

B
l

��

X
f
// Y

first we pullback f along l to obtain a Cartesian square τ : f ′ → f and by Lemma B.2.4
there is a unique F-Alg structure on f ′. We then obtain the object P̄B((g, X), f)) by
applying the lift PB : S×C F-Alg → S to f ′ and g. A similar argument applies for the
morphism part.

Now we examine the functorial part. Let (T,G, θ) : (C, Ft) → (C ′, F ′t) be a morphism

of suitable awfs over a GFI adjunction C
G
//D

Too
_ and notice that in order to obtain a

morphism of GF-structures (S, F-Alg, S)
(T,G,T)

// (S ′, F ′-Alg, S ′) we need to verify that
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for each f : X→ Y in F-Alg, the following diagram commutes:

S � Y
P̄B(−,f)

// S � X

S ′ �GY
P̄B(−,Gf)

//

T�Y

OO

S ′ �GX

T�X

OO

For this, let’s consider g ′ : A ′ → B ′ an object of S ′ in the slice over GY. We will first
chase the diagram from the lower-right part, thus we first apply P̄B(−, Gf) which by
the construction explained above, produces the following diagram:

A
ḡ ′

  

//

��

Di

��

u ′i

!!

B

~~

f ′ // B ′

}}

GX
Gf

// GY

where ḡ ′ has the structure of a strong homotopy equivalence given by a retract ρ̄ ′ :
δk⊗̂ḡ ′ → ḡ ′ of θk⊗̂ḡ ′ whose codomain is given by the lift cod(ρ̄ ′) as shown:

B

δ1−k⊗B
��

B

f ′

��

// GX

Gf
��

I⊗ B
I⊗f

//

cod(ρ̄ ′)

33

l

22

I⊗ B ′
cod(ρ)

// B ′ // GY

Notice that there is a further lift l as shown, such that both lifts in the diagram cohere
since f ′ → Gf is a morphism of F-Alg. The lift of T to the categories of strong homotopy
equivalences is given by applying T to the retract ρ̄ ′, which restricted to the codomain
looks as follows (applying T to the whole diagram):

TB

δ1−k⊗TB
��

TB

Tf ′

��

// TGX

TGf
��

εX // X

f
��

I⊗ TB
I⊗Tf

//

cod(Tρ̄ ′)

22

Tl

22

I⊗ TB ′
cod(Tρ)

// TB ′ // TGY
εY

// Y

we furthermore attach the counit diagram to the right of the diagram for future refer-
ence. The resulting strong homotopy equivalence structure of Tḡ ′ over X is given by
Tρ̄ ′ which is uniquely induced by the lift cod(Tρ̄ ′) shown above.

We now chase the diagram through the left-upper part. So we first apply T and
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then pullback using ¯PB(−, f). We thus obtain the following diagram:

TA
Tḡ ′

""

//

��

TDi

��

Tu ′i

""

TB

||

Tf ′ // TB ′

||

TGX

εX
��

TGf
// TGY

εY
��

X
f

// Y

Now, the strong homotopy equivalence structure on Tḡ ′ is given by some retract ν of
θk⊗̂Tḡ ′ which is induced by the homotopy equivalence structure Tρ of Tu ′i and by the
unique F-Alg structure on Tf ′ induced by the Cartesian square Tf ′ → f shown. This is
captured in the following diagram:

TB

δ1−k⊗TB
��

TB

Tf ′

��

// TGX

TGf
��

εX // X

f
��

I⊗ TB
I⊗Tf

//

cod(ν)

22

m

11

I⊗ TB ′
cod(Tρ)

// TB ′ // TGY
εY

// Y

here m is the canonical lift given by the structure of F-algebra of f against the Ct-
coalgebra δ1−k ⊗ TB. Thus the proof is reduced to showing that the lifts cod(v) and
cod(Tρ̄ ′) are the same. And in turn this reduces to proving that the lifts m and
cod(Tρ̄ ′) cohere (since both squares on the right are Cartesian). As we already show,
cod(Tρ̄ ′) and Tl cohere, thus we need only show that Tl and m cohere.

First notice that the Ct-map structure on T(δ1−k ⊗ B) and δ1−k ⊗ TB is the same,
this follows by one defining property of a morphism of suitable awfs (mainly that T
preserves the C-map structure on the maps ⊥X : 0 → X) and by the functorial part of
Lemma 6.4.7.

With this in place, the fact that the lifts Tl and m cohere follows from the way that
the lifting structure of Gf is defined from that of f: given a lifting problem with Gf
on the right, we first transpose the square (i.e. apply T and compose with the counit),
then we solve the problem (in this case the solution is m) and then we transpose the
solution, which means that m = εX ◦ Tl which is exactly what we need.

We now have all the pieces that we need in order to prove the main result of this

section.

Theorem 6.4.10. There is a functor:

sAWFS/(−)radj // GF/(−)radj

which on objects is given by [GS17, Theorem 8.8]:

(C, (C, Ft), I) 7→ (C, (Ct-Map, F-Alg, Ct-Map, PB))
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Proof. Consider a morphism of suitable awfs (T,G, θ) : (C, Ft) → (C ′, F ′t) over a GFI-

adjunction C
G
//D

Too
_ .

The definition of morphism of suitable awfs implies that that the following is a
morphism of GF-structures:

(C-Map,C→, C-Map)
(T,G,T)

// (C ′-Map,D→, C ′-Map)

we use the functorial part of Lemma 6.4.1 to verify that the following is also a morphism
of GF-strucutures

(C-Map, F-Alg, C-Map)
(T,G,T)

// (C ′-Map, F ′-Alg, C ′-Map)

Using Lemma 6.4.9 we also have a morphism of GF-structures

(S, F-Alg, S)
(T,G,T)

// (S ′, F ′-Alg, S ′)

By Lemma 6.4.3 we can combine this two previous morphisms of GF-structures, in
order to obtain a morphism of GF-structures:

(C-Map×C S, F-Alg, C-Map×C S)
(T,G,T)

// (C ′-Map×D S
′, F ′-Alg, C ′-Map×D S

′)

Now using this last morphism, by Lemma 6.4.1 and by the functorial part of Lemma 6.4.8
we obtain that the following is a morphism of GF-structures:

(I⊗, F-Alg, Ct-Map)
(θ⊗,G,T)

// (I ′⊗, F
′-Alg, C ′t-Map)

And finally, we apply the functorial part of Lemma 6.4.2 to obtain the desired morphism
of GF-structures:

(Ct-Map, F-Alg, Ct-Map)
(T,G,T)

// (C ′t-Map, F-Alg, C ′t-Map)

Finally we just mention that it this correspondence does satisfy the functor laws;
i.e. it preserves composition and identities. This can be verified at each step of the
proof.

6.5 Suitable AWFS in Toposes: Functoriality

Let us examine the second main contribution from [GS17]. They described a way

for obtaining suitable awfs in presheaf categories, equipped with a distinguished class

of monomorphisms, closed under some operations. In the appendix we gave a slight

generalisation of this result to include more generally Grothendieck toposes (see The-

orem C.6.3).

In this section we will show that this construction admits a functorial description

as well. We will use this to build examples of morphisms of type-theoretic awfs. We

start by defining the category which will be the domain of this functor.
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Definition 6.5.1. Denote by sTopos/(−)radj the category of suitable toposes con-
sisting of:

• Objects: These are tuples (C,A,M) where C is a Grothendieck topos equipped
with a closed symmetric monoidal structure and with an interval object with con-
tractions and connections. A is a dense subcategory of C and M is a subcategory
of C→ that satisfies the axioms of Theorem C.6.3.

• Morphisms: A morphism of suitable toposes, denoted by:

(C,A,M)
(T,G)

// (D,B,M ′)

consists of a GFI-adjunction C
G
//D

Too
_ such that:

1. T restricts to the dense subcategories, i.e. B T // A .

2. T preserves the categories of monomorphisms, i.e. Ti ∈M for every i ∈M ′.

With this definition in place, we can now state and prove the main theorem of this

section.

Theorem 6.5.2. There is a functor:

sTopos/(−)radj // sAWFS/(−)radj

whose action on objects is given by Theorem C.6.3.

Proof. We briefly review the action on objects since we will need it later. We start
with (C,A,M) an object of sTopos/(−)radj. Define I = {i ∈ M|cod(i) ∈ A} and let us
consider it as a full subcategory of M. By Garner’s small object argument, we obtain
an algebraically-free awfs (C, Ft) on I, which is also algebraically free on M as shown
in the proof of Theorem C.6.3. We have to verify that (C, Ft) is suitable in the sense
of Definition C.4.1, by construction we have that (C, Ft) is algebraically-free on I, thus
we need to show that every object is uniformly cofibrant and that C-Map is uniformly
closed under pullback and Leibniz product with the endpoint inclusions of the interval.

We first show that every object is uniformly cofibrant. For this, we notice that we
can lift the functor ⊥ : C → C→ mapping X 7→ ⊥X : 0 → X to the subcategory M as
shown:

M

��

C
⊥
//

⊥
==

C→
this follows easily from the requirement of M to contain all arrows ⊥X : 0→ X and from
the fact that any square ⊥f : ⊥X → ⊥Y induced by an arrow f : X → Y is Cartesian.
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Now, composing with the counit of the orthogonality adjunction, we obtain:

M

��

ε // �(M�) = C-Map

ww
C

⊥
//

⊥
>>

C→
Now, to show that C-Map is uniformly closed under pullbacks, we first notice

that by definition (M,C→,M) has a GF-structure. By Lemma 6.4.1, using the counit
ε : M → C-Map, we obtain that (M,C→, C-Map) has a GF-structure. But them by
Lemma 6.4.2 we obtain that (C-Map,C→, C-Map) has a GF-structure.

Lastly, we show that C-Map is uniformly closed under Leibniz product with end-
point inclusion. By the hypothesis on M and since δk⊗̂(−) : C→ → C→ preserves
Cartesian squares, we get a lift of δk⊗̂(−) to the category M:

M
δk⊗̂(−)

//M

composing to the right with ε : M → C-Map and transposing we obtain:

Ft-Alg
^exp(δk,−)

// Ft-Alg

transposing again we get:

C-Map
δk⊗̂(−)

// C-Map

We now verify the functoriality of the construction. Let us consider a morphism of

suitable toposes (C,A,M)
(T,G)
// (D,B,M ′) . Let I = {i ∈ M|cod(i) ∈ A} and I ′ = {i ∈

M ′|cod(i) ∈ B}. Notice that we have a lift of T as shown:

I

��

I ′
θoo

��

C→ D→
T
oo

this follows since if i ∈ I ′ in particular i ∈ M ′ and by hypothesis, Ti ∈ M but also
cod(Ti) = Tcod(i) ∈ A since T restricts to the corresponding dense subcategories; thus
θ(i) := Ti ∈ I.

We now have to show that (C, Ft)
(T,G,θ)

// (C ′, F ′t) is a morphism of suitable awfs.
This follows essentially from the fact that on objects all the operations are functorial
by the lemmas of the previous section, let’s see how this works.

from the construction of the lift ⊥ : C → C-Map, by making use of Claim 6.4.2.1,
we obtain that T cohere with the C-map structure on the cofibrant objects.
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Now, the map of suitable toposes (C,A,M)
(T,G)
// (D,B,M ′) gives a morphism of

GF-structures (M,C→,M)
(T,G,T)

// (M ′,D→,M ′) , and by using the functorial part of
Lemma 6.4.1 and Lemma 6.4.2 we obtain a morphism of GF-structures

(C-Map,C→, C-Map)
(T,G,T)

// (C ′-Map,D→, C ′-Map)

which immediately implies one of the requirements of a morphism of GF-structures.
Finally, the coherence of T and the lifts δk⊗̂(−) follows from the construction of the

lift as explained above by evoking the functorial part of Lemma 6.3.3 twice.

6.6 Compatibility with Id-types

Putting together the results from this chapter, we have shown that the main results for

[GS17] admit the following functorial description:

sTopos/(−)radj // sAWFS/(−)radj // GF/(−)radj

In this section we will show that our results on Id-types from Chapter 5 can also

be lifted to the functorial setting. In order to do this it will be necessary to adapt the

categories of suitable toposes, suitable awfs and GF structures to include the additional

structure needed to accommodate Id-types.

Let us start by describing the additional structure we need to impose to sTopos/(−)radj.

Recall that an object of this category is a tuple (C,A,M) as explained in Definition 6.5.1.

Definition 6.6.1. The category sTopos+Id/(−)radj of suitable toposes compatible
with Id-types is defined as follows:

• Objects: The objects are objects (C,A,M) of sTopos/(−)radj such that the
subcategory of arrows M is closed under the following operations:

1. Taking Leibniz product with the inclusion of the interval boundary i : ∂I→ I.
That is if m ∈M, then i⊗̂m ∈M.

2. For each f : B → A in C→, the ‘reflexivity’ arrow rf : B → Pwf constructed
in Appendix C.3 is an object of M.

• Morphisms: The morphisms are exactly those of sTopos/(−)radj.

We now adapt the category of suitable awfs to be compatible with Id-types. But

first, we will need to make an observation. Recall the construction of the interval

path-object factorisation from Appendix C.3, and suppose that C
G
//D

Too
_ is a GFI-

adjunction. It is easy to see that G : C → D preserves the corresponding path objects,

i.e. if f : B→ A in C, then:

B
rf // Pwf

ρf // B×A B
G
7→ GB

rGf // PGf
ρGf // GB×GA GB
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this follows easily from the fact that G preserves limits, the interval object, and the

exponentiation operation.

Definition 6.6.2. The category sAWFS + Id/(−)radj of suitable awfs compatible
with Id-types is defined as follows:

• Objects: These are suitable awfs (C, Ft) over a category C, that satisfies the
additional hypothesis of Theorem 5.1.1.

• Morphisms: These are morphisms of suitable awfs (T,G, θ) : (C, Ft) → (C ′, F ′t)

over a GFI-adjunction C
G
//D

Too
_ such that the following diagram commute:

C-Map

i⊗̂(−)

��

C ′-Map
Too

i⊗̂(−)
��

C-Map C ′-Map
T

oo

where i : ∂I → I is the boundary inclusion on the interval (notice that Ti = i).
And for each f : B→ A in C the following naturality square

TGB

TrGf
��

εB // B

rf
��

TGPwf εPwf
// Pwf

is a morphism of C-maps.

We now proceed to adapt the category of GF-structures, whose objects we will more

generally refer to as type-theoretic awfs in virtu of Definition 4.4.1.

Definition 6.6.3. The category AM/(−)radj of type-theoretic awfs consists of:

• Objects: These are awfs (Ct, F) over a category C equipped with the following
structure:

1. A GF-structure (Definition B.6.3) on the tuple of arrow categories:

(Ct-Map, F-Map, Ct-Map)

2. A lift of the stable functorial choice of path objects constructed from the
interval of C (as described on Appendix C.3):

F-Map
〈r,ρ〉

// Ct-Map×C F-Map
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6. FUNCTORIALITY OF UNIFORM FIBRATIONS

• Morphisms: A morphism of type-theoretic awfs (T,G) : (Ct, F) → (C ′t, F
′)

consists of a morphism between the GF-structures of the objects:

(Ct-Map, F-Alg, Ct-Map)
(T,G,T)

// (C ′t-Map, F ′-Alg, C ′t-Map)

over a GFI-adjunction C
G
//D

Too
_ . Such that G ` T is coherent with the lifts of

the corresponding choices of path objects in the following sense: the following
diagram commutes:

F-Map

G
��

ρ
// F-Map

G
��

F ′-Map
ρ

// F ′-Map

and for each f : B→ A in R-Map, the following naturality square of the counit:

TGB

TrGf
��

εB // B

rf
��

TGPwf εPwf
// Pwf

is a morphism of Ct-maps.

With this in place, we will show that the functors described in the previous sections

cohere also with the identity type structure, thus lifting to the categories defined above:

sTopos+ Id/(−)radj // sAWFS+ Id/(−)radj // AM/(−)radj

Let us first focus on the leftmost functor, i.e. from suitable topos to suitable awfs

compatible with Id-types.

Theorem 6.6.4. There is a functor:

sTopos+ Id/(−)radj // sAWFS+ Id/(−)radj

which lifts the one from Theorem 6.5.2.

Proof. Consider (C,A,M) a suitable topos compatible with Id-types. We apply the
construction of Theorem 6.5.2 to obtain a suitable awfs (C, Ft) which is algebraically
free on I = {k ∈M|cod(k) ∈ A}.

We have to verify that it is compatible with Id-types, First, we compose with the
counit of the orthogonality adjunction and apply orthogonality arguments to construct
a lift:

C-Map
i⊗̂(−)

// C-Map
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6.6 Compatibility with Id-types

from the lift:

M
i⊗̂(−)

//M

given by hypothesis (notice that i⊗̂(−) preserves pullback squares). Now we have to
verify that the functor r : C→ → C→ given on objects by f 7→ rf lifts to r : C→ →
C-Map. To see this, we first notice that by hypothesis, we already have a functor
r : C→ → M, since r preserves pullback squares, and we obtain the desired lift by
composing with the counit of the orthogonality adjunction ε : M → C-Map, using
that (C, Ft) is algebraically free on M.

We now focus on the action of morphisms. Let (T,G) : (C,A,M) → (D,B,M ′) be a
morphism of suitable toposes compatible with Id-types. By Theorem 6.5.2 we already
have a morphism of suitable awfs (T,G) : (C, Ft) → (C ′, F ′t) we need to verify that is is
compatible with Id-types. We see that the lifts of i⊗̂(−) are compatible with the left
adjoint T by applying the functorial part of the Claim 6.4.2.1 and of Lemma 6.3.3.

We now have to verify that for a given map f : B→ A, the naturality square of the
counit of T ` G applied to the reflexivity map rf : B→ Pwf is a morphism of C-maps.
First, we notice that rf and TrGf are both objects of M and since T ` G is a GF-
adjunction, the naturality square ε : TrGf → rf is Cartesian, and thus it is a morphism
in M. But then applying the counit of the orthogonality adjunction M → C-Map will
produce a morphism of C-maps as required.

Now we proceed to show that the rightmost functor, i.e. from suitable awfs com-

patible with Id-types to type-theoretic awfs, also lifts.

Theorem 6.6.5. There is a functor:

sAWFS+ Id/(−)radj // AM/(−)radj

which lifts the one from Theorem 6.4.10.

Proof. The action on object is given by Theorem 5.1.1: given (C, Ft) a suitable awfs
compatible with Id-types, there is an type-theoretic awfs on the awfs (Ct, F) of uniform
fibrations.

Now, let’s consider a morphism of suitable awfs compatible with Id-types (T,G, θ) :

(C, Ft) → (C ′, F ′t) over a GFI-adjunction C
G
//D

Too
_ . We know, from Theorem 6.4.10,

that there is a morphism of GF-structures:

(Ct-Map, F-Alg, Ct-Map)
(T,G,T)

// (C ′t-Map, F ′-Alg, C ′t-Map)

as required. We need to show that the lifts of the adjunction T ` G cohere with the
lifts of the path objects.

First we show that G : F-Map → F ′-Map is compatible with the lifts of ρ to the
categories of F and F ′ maps. Making use of the definition of morphism of suitable awfs
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and of the Lemma 6.4.5, Lemma 6.4.8 and Claim 6.4.2.2, we obtain that the following
diagrams commute:

I
η
// C-Map

i⊗̂(−)
// C-Map

δk⊗̂(−)
// C-Map×C→ Sk L2 // Ct-Map

I ′
η
//

θ

OO

C ′-Map

T

OO

i⊗̂(−)
// C ′-Map

δk⊗̂(−)
//

T

OO

C ′-Map×C→ Sk
T×T

OO

L2

// C ′t-Map

T

OO

(6.1)

and this implies using the symmetry of the monoidal structure and combining the cases
k = 0 and k = 1 that:

I⊗
i⊗̂(−)

// Ct-Map

I ′⊗

θ⊗

OO

i⊗̂(−)
// C ′t-Map

T

OO

using the orthogonality Lemma 6.3.3 we obtain that the following diagram commutes:

F-Alg

G
��

^hom(i,−)
// F-Alg

G
��

F ′-Alg
^hom(i,−)

// F ′-Alg

We recall from Eq. (5.2) that for f : B → A in F-Alg, the map ρf : Pwf → B ×A B
arrises as the pullback of ^hom(i, f) : BI → AI×A∂IB∂I along the map 〈αf, λf〉 : B×AB→
AI×A∂I B∂I. Morally, the map 〈αf, λf〉 maps a pair of objects (b1, b2) of B (in the same
fibre over A) to the pair (reflfb1 , (b1, b2)) that consists of the constant loop reflfb1 ∈ AI
and the pair (b1, b2) ∈ B∂I. It is easy to verify that these morphisms are preserved by
the application of the functor G, that is G〈αf, λf〉 = 〈αGf, λGf〉; this follows by the fact
that G preserves pullbacks, products, the interval object and exponentiation.

Now, there are two ways to assign an F-Alg structure to the map ρGf. Either
by first pulling back ^hom(i, f) along 〈αf, λf〉 and then applying G or by first applying
G to obtain G ^hom(i, f) = ^hom(i, Gf) and then pullback along G〈αf, λf〉 = 〈αGf, λGf〉.
It follows easily from the previous diagram and from Lemma B.2.4 that these two F-
algebra structures are in fact the same one, this completes the proof that the desired
diagram commutes for objects. The result for morphisms of F-algebras follows from
faith-fullness of the forgetful functor F ′-Alg → D→.

We proceed to show that for each f : B→ A in F-Map the naturality εrf : TrGf → rf
square of the counit of T ` G is a morphism of Ct-maps. We know by hypotesis that
it is a morphism of C-maps, so it will be sufficient to show that it is a morphism of
strong homotopy equivalences (by Lemma 6.4.8).

Let’s recall from the proof of Theorem 5.1.1, that for an F-map f : B → A , the
target map tf : Pwf → B is a strong deformation retract of rf : B → Pwf where the
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homotopy Hf : Pwf→ Pwf
I from rf ◦ tf to idPwf is given as the following lift:

Pwf
I

^hom(i,tf)
��

Pwf
H̄f

//

Hf
66

BI ×B∂I Pwf∂I

and the map H̄f is morally given by taking a path p : b1  b2 ∈ Pwf to the pair
(reflb2 , (rftf(p), p)) ∈ BI ×B∂I Pwf∂I where relfb2 ∈ BI is the constant path and
(reflb2 , p) ∈ Pwf∂f is a pair of paths in Pwf.

Now to show that εrf : TrGf → rf is a morphism if strong homotopy equivalences
Definition C.5.1, it is enough to show that the following diagram commutes:

T(PGf)
εPwf //

THGf

��

Pwf

Hf

��

T(PGf)I
εIPwf

// Pwf
I

it is equally well to show that the transpose under T ` G commutes, but transposing
the counit gives the identity. Thus it will be sufficient to show that HGf ∼= GHf.

Notice first that GHf is the canonical lift that results from the lifting situation of
the (cofibrant) object G(Pwf) against G( ^hom(i, tf)), let’s explain why this follows; the
canonical lift we need is given by first transposing the lifting situation, then lifting,
and then transposing the lift back, and recall that in a suitable awfs, every object is
uniformly cofibrant, in particular any square between arrows from the terminal object
is a morphism of C-maps, thus the lifts in the following diagram cohere:

0

��

0

��

// ·
^hom(i,tf)

��
TG(Pwf)εPwf

//

55

Pwf

Hf

??

H̄f
// ·

so the canonical lift we need is the transpose of Hf ◦ εPwf which is just GHf.
Now, it is clear from the construction that G(H̄f) ∼= (H̄)Gf. Thus to show that the

lifts HGf and GHf are the same, it is sufficient to show that the two Ft-map structures
on G ^hom(i, tf) ∼= ^hom(i, tGf) are the same.

We first notice that by virtue of the orthogonality Lemma 6.3.3 and the hypothesis
that (T,G, θ) is a morphism of suitable awfs structures, the following square commutes:

Ft-Map
G //

^hom(i,−)

��

F ′t-Map

^hom(i,−)
��

Ft-Map
G
// F ′t-Map
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So we have reduced the problem to showing that the two possible Ft-map structures on
Gtf ∼= tGf are equal. By looking at Eq. (5.2) we see that tf is the pullback of ^hom(δ1, f)
along the map 〈βf, idB〉 where βf : B → AI is given by b 7→ reflfb. Thus we see that
G〈βf, idB〉 = 〈βGf, idGB〉; using Lemma B.2.4 this means that two show that the two
Ft-map structures on Gtf ∼= tGf coincide, it is sufficient to show that the following
diagram commutes:

F-Map

^hom(δk,−)
��

G // F ′-Map

^hom(δk,−)
��

Ft-Map
G
// F ′t-Map

By the orthogonality Lemma 6.3.3 it is sufficient to show that the following diagram
commutes:

C-Map

δk⊗̂(−)

��

C ′-Map
Too

δk⊗̂(−)
��

Ct-Map C ′t-Map
T
oo

but this commutes, as we can see by pasting the rightmost two squares in Eq. (6.1).

6.7 From Type-Theoretic AWFS to Comprehension Cat-
egories: Functoriality

The last piece we need to complete the functorial construction of models of Martin-Löf

type theory, is to explain how the process of converting an type-theoretic awfs to a

comprehension category equipped with pseudo-stable choices of Π, Σ and Id types; is

also functorial. That is, we need to construct a functor of the following form:

AM/(−)radj // CCatΣΠ,Id

which on object is the construction explained on Theorem 4.4.2. In order to achieve

this, we will first need to explain the category CCatΣΠ,Id, paying special attention to the

morphisms.

The objects of CCatΣΠ,Id are comprehension categories equipped with pseudo-stable

choices of Π,Σ and Id-types, as seen in Chapter 2. Given to objects of CCatΣΠ,Id
which we will denote (C, ρ, χ) and (D, ρ ′, χ ′) where C and D are the base categories. A

morphism between these two objects, consists of a strict morphism of comprehension
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categories (Definition 1.2.3):

E

ρ

��

χ

  

Ḡ // E ′

ρ ′

��

χ ′

!!

C→
��

// D→
��

C
G

// D

that preserves the psuedo-stable choices of Π, Σ and Id types up-to-isomorphism. We

will make precise what we mean by this only for Id-type, leaving the reader to state

the equivalent definitions for the other logical structures.

Let (Id, r, j) and (Id ′, r ′, j ′) be the pseudo-stable choices of Id-types associated to

(C, ρ, χ) and (D, ρ ′, χ ′) respectively. We say that the morphism (G, Ḡ) : (C, ρ, χ) →
(D, ρ ′, χ ′) preserve the choices of Id-types up-to-isomprphism if for each dependent

tuple (A, Γ) in (C, ρ, χ) there is a vertical isomorphism over GΓ :

ηA : ḠIdA ∼= Id ′ḠA

which is natural in the obvious way. It must cohere with the reflexivity term, in the

sense that ηA ◦ GrA = r ′
ḠA

; and with the elimination term in the following way: for

each pair (C, c) where C ∈ E is over IdA and c a section of C over rA, the diagonal

square (of pointed arrows) in the following diagram commutes:

GA
c ′ //

rḠA

��

C ′

��

∼=

$$

GA

GrA

��

Gc // GC

��

Id ′
ḠA

j ′(C ′,c ′)

88

ηA

∼=

##

Id ′
ḠA

ηA

∼=

##

GIdA

Gj(C,c)

88

GIdA

here C ′ is any reindexing of GC along ηA and c ′ is the only arrow making the upper

square commute.

Theorem 6.7.1. There is a functor:

AM/(−)radj // CCatΣΠ,Id

which on objects acts as described in Theorem 4.4.2.
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Proof. The action on objects has been already described. We focus on the action on
morphisms, for this, consider (T,G) : (Ct, F) → (C ′t, F

′) a morphism of type-theoretic

awfs over a GFI-adjunction C
G
//D

Too
_ . In particular we have a lift of the right adjoint

G : C → D to the categories of F-maps, giving a strict morphism of the induced
comprehension categories:

F-Map

��

U

$$

G // F ′-Map

��

U

$$

C→
��

// D→
��

C
G

// D

Note that G preserves Cartesian morphisms because they are just pullback squares and
G is right adjoint.

The first thing to notice is that the lift of G to the categories of F-maps is part
of an adjunction of awfs, in particular it is a functor of double categories, meaning
that it preserves the vertical composition structure of F-maps. This implies that G
preserves the pseudo-stable choices of Σ-types, this is immediate by the description of
such choices as seen in Proposition 4.1.4.

It is also easy to verify that G preserves the choices of Π-types. This follows by
the description of such choices as seen in Proposition 4.2.1, using Proposition 6.3.4 and
Proposition 6.3.5.

We will focus on the preservation of Id-types. Let us consider (Id, r, j) and (Id ′, r ′, j ′)
the pseudo-stable choices of Id-types induced on C and D by the respective type-
theoretic awfs as explained on the proof of Theorem 6.6.5. By construction, we have
a canonical comparison isomorphism (of F ′-maps) η : GId ∼= Id ′G, this follows by the
construction of interval path-object factorisation (Appendix C.3), using the relevant
property from the definition of morphisms of type-theoretic awfs (Definition 6.6.3). It
is also clear by construction that η cohere with the reflexivity maps r and r ′.

We now proceed to the difficult part which consists on showing that the isomorphism
η cohere with the choice of elimination terms j and j ′ in the precise sense that was
explained before. For this consider a pair (C, c) where C→ IdA is in F-Map over IdA
and c a section of C over rA. Consider the following diagram:

TGA

TrGA
��

εA // A
c //

rA
��

C

��

TIdGA εIdA

//

x

55

IdA

j(C,c)

<<

IdA

the lifts x and j(C, c) cohere because by hypothesis the square on the left is a morphism
of Ct-maps. Applying G to the whole diagram and composing with the unit of T ` G
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on the left we obtain the following:

GA

rGA
��

GA

GrA
��

Gc // GC

��

IdGA ηA

∼= //

j ′(GC,Gc)

55

GIdA

Gj(C,c)

::

GIdA

this follows because the lift x in the previous diagram is by definition the transpose of
the lift j ′(GC,Gc). Since C ′ → C is a morphism of F-Map, it follows immediately that
the lifts j ′(C ′, c ′) and Gj(C, c) cohere, as required.

6.8 Examples

In this section we will look at some applications of the functoriality aspects of the

theory of uniform fibrations, developed in this chapter.

Let us describe a general scenario. Consider a suitable topos compatible with Id-

types (D,B,M ′)(see Definition 6.6.1) where the symmetric monoidal structure is taken

as the Cartesian one. Consider C a second topos, and let

C
G
//D

Too
_

be a geometric embedding; that is, G is full and faithful and T preserves finite limits.

Notice that G ` T is a GF-adjunction, since the counit of G ` T is an isomorphism.

We will explain how to transfer the suitable topos strucutre on D to a suitable topos

structure on C. For this, let us define A := T(B), which is easily seen to be a dense

subcategory of C. It is also easy to verify that if

(I, δ0, δ1, ε, c0, c1)

is the interval object with contraction and connections in D, then by applying T to all

the structure, we obtain

(TI, Tδ0, Tδ1, Tε, Tc0, Tc1)

which is a new interval object with contraction and connections in C; moreover T will

trivially preserves such interval objects. Finally, we define M := T(M ′).

It is straightforward to verify that (C,A,M) is again a suitable topos compatible

with Id-types. And moreover, the following result follows easily from the foregoing

construction.

Theorem 6.8.1. Let C
G
//D

Too
_ be a geometric embedding of Grothendieck topos, such

that D is equipped with an interval object with contraction and connections. Suppose that
(D,B,M ′) is a structure of suitable topos compatible with Id-types and that (C,A,M)
is the induced structure on C described before. Then G ` T is a morphism of suitable
topos compatible with Id-types.
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Proof. By the above discussion, we have that G ` T is a GFI-adjunction. We have
that T preserves the dense subcategories by definition of A and finally we have that T
preserves the subcategories of monomorphism since it preserves finite limits.

This theorem provides a uniform way of transporting type-theoretic awfs from a

topos to a subtopos; and moreover connecting the resulting models via a morphism of

type-theoretic awfs.

Let us see a concrete example of this construction. Consider the presheaf topos sSet

of simplicial sets equipped with the suitable topos structure (sSet,Y∆,Mall) where Y∆ is

the dense subcategory of representables and Mall consists of all monomophisms. Now,

Theorem 6.8.1 allows us to transfer the structure along any embedding, in particular

we can consider, for each n ≥ 0, the following one:

Coskn+1 //sSet

tr(n+1)
oo
_

where Coskn+1 is the full subcategory of sSet on (n + 1)-coskeletal objects (see for

example [May92]); we thus obtain an type-theoretic awfs on type theory on Coskn+1
and a comparison morphism to the model on sSet.

It is well known that Kan (n + 1)-coskeletal complexes are models of homotopy

n-types, so intuitively what Theorem 6.8.1 is saying, is that we can coherently restrict

the model of dependent type theory from sSet, whose uniform fibrant objects model

homotopy types, to a model on Coskn+1, whose uniform fibrant objects model homotopy

n-types.
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Chapter 7

Type-Theoretic AWFS from
Normal Uniform Fibrations

Let us recall the statement of Theorem 5.1.1. We showed that for a given a suitable awfs

(C, Ft) on a category C, under some assumptions, the interval path-object factorisation

from Appendix C.3 lifted to a stable functorial choice of path objects. One of the main

requirements was that the first leg of the interval path-object factorisation r : C→ → C→
lifted to the the category of C-maps on its codomain. As pointed out in Note 5.2.5, it is

not possible to construct such a lift of r to the category of C-maps unless the category

of generating monomorphisms consists only of the decidable ones.

In this chapter we will address the question of whether there exists a natural

strengthening of the notion of a uniform fibration, such that we can prove a version of

Theorem 5.1.1 without the requirement that first leg of the interval path-object factori-

sation lifts to the category of C-maps; while still conserving the functorial Frobenius

structure. We achieve this by introducing the notion of normality to the theory of

uniform fibrations.

7.1 Cloven Isofibrations and Uniform Fibrations

We begin the chapter by comparing the categories of uniform fibrations in simplicial

sets and that of cloven isofibrations in the category of groupoids. This will serve as mo-

tivation for introducing a notion of normal uniform fibrations, which will appropriately

generalise the structure of a normal isofibration on groupoids.

For this section, we will work with the suitable topos (Definition 6.5.1) of simplicial

sets (sSet, ∆,Mall) where the category of generating monomorphisms Mall consists of all

monos, and the dense subcategory is that of representables. We will also use a slightly

differnet notation, we will denote by UniFib the category of Uniform fibrations, while

the category of cloven isofibrations will be denoted by ClFib.

In what follows, we will show that uniform fibrations are a generalisation of cloven

isofibrations. Specifically, this means that there is a pullback diagram of categories as
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the following one:

ClFib //

��

UniFib

��

Grd→
N
// sSet→

where the vertical arrows are the forgetful functors and the lower horizontal arrow is

the nerve functor lifted to the arrow categories. At a first glance, this might be slightly

surprising because the algebraic structure on uniform fibrations satisfy some coherence

conditions (i.e. that the lifting structures are coherent with respect to morphisms of

generating trivial cofibrations) while cloven isofibrations do not have any coherence.

Before proving this, we will first need to review some notions.

First of all, recall that there is a nerve-realisation adjunction between groupoids

and simplicial sets:

Grd
N
//⊥ sSet.

|−|
oo

It is induced by the cosimplicial object in Grd whose value at [n] ∈ ∆ is the groupoid

with n composable paths which we will denote by n. We describe with some detail the

action on objects of the realisation functor | − | : sSet → Grd; consider a simplicial set

X, then the groupoid |X| has:

Objects: The points (0-simplices) of X.

Arrows: These are freely generated from the paths (1-simplices) of X by taking composites

and inverses; subject to the relation naturally imposed by the 2-simplices of X. In

other words, an arrow in |X| can be represented by an equivalence class of zig-zags

of 1-simplices of X.

It follows easily from this construction that |− | : sSet → Grd preserves cofibrations,

that is, it maps monomorphism to functors injective on objects. Moreover, it is well

known that the nerve N : Grd → sSet preserves fibrations. In other words, we have

that N ` |− | is a Quillen pair.

Another way to construct |X| would be to first consider the realisation of X as a

category (i.e. in Cat) and then localise at all arrows. It is well known that both these

functors preserve finite products, thus we obtain the following folklore result.

Proposition 7.1.1. The realisation functor |− | : sSet → Grd preserves finite products.

If we apply the realisation functor to the interval object ∆1 of sSet, we obtain the

canonical interval object in Grd:

0
δ1
//

δ0 // 1
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Since the realisation functor is left adjoint, it also preserves colimits, in particular

it preserves pushouts. Using this together with the previous proposition, we can prove

the following:

Proposition 7.1.2. The realisation functor | − | : sSet → Grd preserves the pushout-
product (Appendix C.1) against the endpoint inclusions of the interval. That is, for any
monomorphism i : A� B we have:

|δk×̂i| = δk×̂|i| : n +|A| (1× |A|) → 1× n

Let us now establish some notational conventions for the rest of the section. For

each n ∈ N, the groupoid n consist of n composable arrows, we will denote the objects

and arrows of this groupoid as follows:

n = 0
p1 // 1

p2 // 2
p3 // · · ·

pn−1
// n− 1

pn
// n

the groupoid 1 × n can also be easily pictured in a similar way. It consists of n

composable squares, which we denote as follows:

1×n =

01
p11 // 11

p21 // 21
p31 // · · · pn1 // n1

00
p10
//

q0

OO

10
p20
//

q1

OO

20

q2

OO

p30
// · · ·

pn0
// n0

qn

OO

We have the tools we need to start proving the main result of this section. We start

with the following lemma.

Lemma 7.1.3. Consider a cloven isofibration (f, θ) : G→ H in Grd. Then there is a
uniform fibration structure on its nerve Nf : NG→ NH, which will be denoted by Nθ.

Proof. For simplicity, we will use the same names for an arrow a : X→ NG and for its
transpose a : |X| → G under the nerve-realisation adjunction N ` |− |.

Let (f, θ) : G→ H be a cloven isofibration. In order to define the uniform fibration
structure on the nerve of f, we fix i : A� ∆n a generating monomorphism of simplicial
sets. Consider a lifting problem as on the left of the following diagram:

∆n +A (∆1 ×A)

δ0×̂i
��

[b1,u]
// NG

Nf

��

n +|A| (1× |A|)

δ0×̂|i|
��

[b1,u]
// G

f

��

∆1 × ∆n
b

// NH 1× n
b

// H

transposing along the adjunction N ` | − | and using Proposition 7.1.2 we obtain a
lifting diagram as on the right. We proceed to define the lift Nθi([b0, u], b) : 1×n → G

(which we will refer to just as Nθi) by doing case analysis on the objects and arrows
of 1× n.

Nθi on objects: Recall that the objects of 1 × n are denoted by (kt) where
k ∈ {0, 1} and 0 ≤ t ≤ n. So let us consider an object (kt) ∈ 1 × n and define
Nθi(kt) ∈ G as follows:
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Case k = 1: We define Nθi(kt) := b1(t).

Case k = 0 and t ∈ |A|: We define Nθi(kt) := u(0, t).

Case k = 1 and t /∈ |A|: Consider the path H given by b(1×{t}) : b(0t) b(1t)
and notice that b1(t) is over b(1t). Thus we use the cleavage θ to obtain a path

θ(b1(t), b(1× {t})) : θ∗(1t) b1(t)

in G over b(1× {t}). We define Nθi(kt) := θ
∗(1t).

It is straightforward to verify that this definition of Nθi makes the relevant triangles
commute, on objects.

Nθi on arrows: We will use the notation for paths in 1× n explained previously
in this section. Let g be a path in 1× n and define the path Nθi(g) in G as follows:

Case g = qt for 0 ≤ t ≤ n and t ∈ |A|: We define Nθi(g) := u(1× {t}).

Case g = qt for 0 ≤ t ≤ n and t /∈ |A|: We define Nθi(g) = θ(b1(t), b(1× {t}))
the lift of b(1× {t}) at b1(t) given by the cleavage of f.

Case g = pt1 for 0 < t ≤ n: We define Nθi(g) := b1(pt).

Case g = pt0 for 0 < t ≤ n: We define Nθi(g) = Nθi(qt)
−1 · Nθi(pt1) ·

Nθi(qt−1).

It is easy to verify that this data gives rise to a well defined collection of functors
Nθi : 1×n → G which are lifts of Nf against δ0×̂i, for each generating monomorphism
i : A � ∆n. Dually, we can make the same definitions to obtain lifting structures of
Nf against δ1×̂i.

We now have to verify that this data defines a uniform fibration structure on Nf,
for this we have to check that the lifting structures are coherent with respect to the
morphisms of the arrow category u⊗ : I⊗ → sSet→. In order to do this, we consider a
morphism in the arrow category I → sSet→, that is a Cartesian square:

B
σ //

j
��

A

i
��

∆m
τ
// ∆n

we need to verify that in the following diagram, the triangle created by the lifting
structures commute (we will only deal with k = 0):

m +|B| (1× |B|)
|τ|+|σ|(1×|σ|)

//

δ0×̂|j|
��

n +|A| (1× |A|)
[b1,u]

//

δ0×̂|i|
��

G

f
��

1× m
1×|τ|

//

Nθj

22

1× n
b

//

Nθi

66

G

We will show that this triangle commutes by doing the same case analysis as before.
Let g be a path in 1× m and observe that:
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Case g = qt for 0 ≤ t ≤ m and t ∈ |B|: Then:

Nθj(g) = u · (1× |σ|)(1× {t}) = u(1× {|σ|(t)})

= Nθi(q|σ|(t)) = Nθi(q|τ|(t))

= Nθi · (1× |τ|)(g)

Case g = qt for 0 ≤ t ≤ m and t /∈ |B|: Notice that since the square (σ, τ) is
a pullback then the points of |B| are precisely those of |A| in the image of |τ|; in
particular, since t /∈ |B|, then |τ|(t) /∈ |A|. Then we have:

Nθj(g) = θ(b1(|τ|(t)), b(1× {|τ|(t)}))

= Nθi(q|τ|(t))

= Nθi · (1× |τ|)(g)

Case g = pt1 for 0 < t ≤ m: Then:

Nθj(g) = |τ| · b1(pt)
= Nθi · (1× |τ|)(g)

Case g = pt0 for 0 < t ≤ m: Then

Nθj(g) = Nθj(qt)
−1 ·Nθj(pt1) ·Nθj(qt−1)

= Nθi(1× |τ|)(qt)
−1 ·Nθi(1× |τ|)(pt1) ·Nθi(1× |τ|)(qt−1)

= Nθi(q|τ|(t))
−1 ·Nθi(|τ|(pt1)) ·Nθi(q|τ|(t−1))

= Nθi · (1× |τ|)(g)

We obtain that for all g ∈ 1 × m, the lifts cohere, Nθj(g) = Nθi · (1 × |τ|)(g). In this
way, the collection of lifting structures Nθi, for i : A� ∆n, define a uniform fibration
structure on Nf.

Lemma 7.1.4. The construction of Lemma 7.1.3 is the action on objects of a lift of
the nerve functor N : Grd → sSet as shown in the following diagram:

ClFib
Ñ //

��

UniFib

��

Grd→
N
// sSet→

Proof. The action on objects of the lift will be given by Lemma 7.1.3, that is, we define
Ñ(f, θ) := (Nf,Nθ). We have to verify that this operation is functorial, for this consider
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a mono i : A � ∆n, a morphism of cloven fibrations (l,m) : (f ′, θ ′) → (f, θ) and a
lifting problem of δ0×̂|i| against f ′ as in the following diagram:

n +|A| (1× |A|)
[b1,u]

//

δ0×̂|i|
��

G ′

f ′

��

l // G

f

��

1× n

Nθi

44

Nθ ′i

55

b
// H ′

m
// H

we need to show that the triangle created by the lifts cohere. We do a case analysis as
before. Let g be a path in 1× m and observe that:

Case g = qt for 0 ≤ t ≤ n and t ∈ |A|: Then:

Nθi(g) = (l · u)(1× {t})

= l ·Nθ ′i(g)

Case g = qt for 0 ≤ t ≤ n and t /∈ |A|: Here is the only clause where we make
use of the fact that (l,m) preserves cleavages. We have:

Nθi(g) = θ(l · b1(t),m · b(1× {t}))

= l · θ ′(b1(t), b(1× {t}))

= l ·Nθ ′i(g)

Case g = pt1 for 0 < t ≤ n: Then:

Nθi(g) = (l · b1)(pt)
= l ·Nθ ′i(g)

Case g = pt0 for 0 < t ≤ m: Then

Nθi(g) = Nθi(qt)
−1 ·Nθi(pt1) ·Nθi(qt−1)

= lNθ ′i(qt)
−1 · lNθ ′i(pt1) · lNθ ′i(qt−1)

= l · (Nθ ′i(qt)−1 ·Nθ ′i(pt1) ·Nθ ′i(qt−1))
= l ·Nθ ′i(g)

Thus, we see that the construction of Lemma 7.1.3 is functorial and produces a lift
Ñ : ClFib → UniFib of the nerve functor as desired.

Lemma 7.1.5. The functor given by the universal property of pullbacks applied to the
square of Lemma 7.1.4:

ClFib
P // Grp→ ×sSet→ UniFib

is an isomorphism.
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Proof. We can define an inverse explicitly:

Grp→ ×sSet→ UniFib
Q
// ClFib

given by (f, (Nf,φ)) 7→ (f, Cφ) where Cφ is the cleavage on the functor f : G → H

given as follows: a path p : b f(a) in H, induces the following diagram:

∗

δ0

��

a // G

f
��

1
p
//

φ(a,p)

??

H

recall that δ0 = δ0×̂|⊥∆0 | where ⊥∆0 : ∅ → ∆0 is the unique arrow from the initial
object. Thus, there is a lift given by the uniform fibration strucutre φ. We define

Cφ(a, p) := φ(a, p)

It is straightforward to see that this operation is functorial: a morphism between
uniform fibrations will in particular preserve these lifts.

We only have to show that P and Q are inverses. One direction is easy; let us show
that Q · P = id. For this consider (f, θ) ∈ ClFib, then Q(P(f, θ)) = (f, CNθ), we must
show that the lifting structures θ and CNθ coincide. So let p : a → f(a) be a path in
H, and consider a square (a, p) : δ0 → f as in the beginning of the proof. It is clear that
the unique arrow in the codomain of δ0 is of the form q0 (using our previous notation),
and clearly 0 is not in the domain of δ0, so using the definition of Nθ by case analysis
we see that:

CNθ(a, p) = Nθ(a, p) = θ(a, p)

The other direction is a bit more involved. In order show that P ◦ Q = id, let’s
consider (f, (Nf,φ)) in Grp→×sSet→ UniFib, we see that P(Q(f, (Nf,φ))) = P(f, Cφ) =
(f, (Nf,NCφ)), so we have to show that the uniform fibration structures φ and NCφ
coincide. For this consider a lifting problem as on the right square of the following
diagram:

∗
in0(t)
//

δ0

��

n +|A| (1× |A|)
[b1,u]

//

δ0×̂|i|

��

G

f
��

1
φ

33

1×{t}
// 1× n

φ

66

b
// H

Now let g be a path in 1×m, and let’s check that φ(g) = NCφ(g). As before, we prove
this by case analysis; there is only one non obvious case:

Case g = qt for 0 ≤ t ≤ n and t /∈ |A|: By definition of the uniform fibration
structure C we have that:

NCφ(g) = Cφ(b1(t), b(1× {t})) = φ(b1(t), b(1× {t})).
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Now consider the square on the left of the above diagram, by uniformity, the
triangle created by the lifts must commute, using this together with the fact that
g = gt = 1× {t} we have that:

NCφ(g) = φ(b1(t), b(1× {t})) = φ(g).

It is not necessary to check that P and Q are inverses on arrows. This is because P
and Q are functors between categories of arrows in the slice over Grd→ whose forgetful
functors are fully-faithful.

Remark 7.1.6. The previous lemmas can be proven constructively, if we restrict to
decidable monomorphisms. This is needed when doing case analysis, where one of the
cases depends on whether an object is in the image of a generating cofibration or not.

The following theorem is a summary of the results from this section and follows

immediately from Lemma 7.1.4 and Lemma 7.1.5.

Theorem 7.1.7. The following is a pullback square:

ClFib
Ñ //

��

UniFib

��

Grd→
N
// sSet→.

7.2 Normal Uniform Fibrations

In this section, we will develop the notion of normal uniform fibration in the general

context (C,A,M) of a suitable topos (Definition 6.5.1). We will denote the objects of A
with cursive letters to differentiate them from the objects of C; for example A,B,C ∈ A
and A,B,C ∈ C.

Recall from Appendix C.4 that the category of arrows of uniform fibrations was

constructed from the categories of arrows of generating cofibrations I and of generating

trivial cofibrations I⊗ over C. Recall that I was obtained as the full subcategory of M

whose object has codomain in A; that is

I := {i ∈M|cod(i) ∈ A}

We will define a new category of generating trivial cofibrations:

un⊗ : In⊗ → C→
in such a way that a right In⊗-map will be uniform fibration with an extra ‘normality’

property.
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Intuitively the idea is that un⊗ : In⊗ → C→ will be obtained from u⊗ : I⊗ → C→ by

adding for each generating monomorphism i : A� B and for k ∈ {0, 1} the coherence

square on the left of the following diagram:

B+A (I×A)

δk×̂i
��

sqk(i) // B A
i //

δk×A
��

B

δk×B
��

idB

��

I× B
ε×B

// B I×A //

ε×A ,,

B+A (I×A)

sqk(i)

%%
A

i
// B

where the map sqk(i) : B +A (I × A) → B is the universal map out of the pushout as

described on the right of the previous diagram. The arrows ε × B and ε × A are the

product of the identity map (on B or A respectively) with the terminal map ε : I→ ∗,
in other words, they are the projections from the second component of the product.

We will refer to the square on the left of the previous diagram as the k-squash

square of i : A� B and we will denote the whole square by

squashk(i) : δ
k×̂i→ idB.

The name follows the intuition of squashing the mapping cylinder in the direction of

the interval (i.e. the filling direction). The following technical result about squash

squares will be used in the following section.

Lemma 7.2.1. Let k ∈ {0, 1} and consider monomophisms i : A� B and j : C� D.
Then applying the Leibniz pushout-product functor (j×̂−) : C→ → C→ to the k-squash
square of i : A� B, produces the k-squash square of j×̂i; that is:

j×̂(squashk(i)) ∼= squashk(j×̂i) : δk×̂(j×̂i) → idD×B

Proof. If we apply (j×̂−) : C→ → C→ to the k-squash square of i : A� B, using that
the pushout-product is symmetric and associative, we will get the following square:

dom(δk×̂(j×̂i))

δk×̂(j×̂i)
��

Θ // D× B

I× (D× B)
ε×(D×B)

// D× B

where we only need to verify that the top horizontal arrow Θ is the squash morphism,
that is, we need to verify that Θ = sqk(j×̂i) : dom(δk×̂(j×̂i)) → D×B, but this follows
since the diagram above commutes.
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We now proceed to construct the arrow category un⊗ : In⊗ → C→ that will generate

the category of normal uniform fibrations. We do this a follows. First let us denote by

I the ‘walking arrow’, that is the poset with two objects 0 < 1 considered as a category,

this has the structure of an interval object in Cat and we denote the inclusions by:

∗
ι1
//

ι0 // I

Using this we construct for k ∈ {0, 1} the category of arrows un⊗ : In⊗ → C→ where we

define In⊗ := I× I⊗, and where I⊗ is the generating category of uniform fibrations. The

functor un⊗ is determined by the following two properties.

1. The following diagram commutes:

I⊗

u⊗
!!

In⊗
ρ0oo

un⊗
��

ρ1 // I⊗

εcod
}}

C→
where the map εcod : I⊗ → C→ sends an object i ∈ I⊗ to the identity arrow on

the codomain of i (where we recall that I⊗ = I+ I).

2. For k ∈ {0, 1} and for each i : A � ∆n in I, the functor un⊗ takes the arrow in

I × I⊗ of the form I × i : {0} × i → {1} × i, to the k-squash square of i, that is

un⊗(I× i) := squashk(i) : δ
k×̂i→ id∆n .

in other words, un⊗ is a natural transformation: un⊗ : u⊗ → εcod : I⊗ → C→ whose

components are the k-squash squares.

Just as we did for uniform fibrations before, we define NrmUniFib → C→ to be the

category of arrows of right In⊗-maps in C, and we call its objects normal uniform

fibrations. Using Garner’s small object argument [Gar09], we can easily obtain the

following result.

Theorem 7.2.2. There is an algebraically-free awfs on the category of arrows un⊗ :
u⊗ → C→, denoted by (NCt, NF), whose category of NF-algebras is that of normal
uniform fibrations.

Let us observe that the forgetful functor into C→ factors through the category of

uniform fibrations, i.e. we have a commutative diagram:

NrmUniFib
U //

&&

UniFib

zz

C→
moreover, we can prove the following lemma.
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Lemma 7.2.3. The forgetful functor U : NrmUniFib → UniFib is fully-faithful.

Proof. This follows intuitively by noticing that the structure of a normal uniform fi-
bration does not add any new lifting problems to that of a uniform fibrations; this is
because the only new vertical arrows we are adding are identities and every morphism
has a unique lift against them. Concretely, if (f, φ) ∈ NrmUniFib and if (f, θ) ∈ UniFib,
then both lifting structures φ and θ produce lifts against the exactly the same squares,
the difference is that φ may have additional coherence properties.

Indeed in the following proposition we characterise those uniform fibration struc-

tures that are normal. We will use the following notation: we say that a morphism

θ : I × B → X is degenerate in the lifting direction if it factors through the pro-

jection ρ1 : I × B → B via some arrow θ∗ : B → Y; we call θ∗ the lifting degeneracy

of b.

Proposition 7.2.4. Let (f, θ) ∈ UniFib then the following are equivalent:

1. (f, θ) is a normal uniform fibration.

2. For any generating monomorphism i : A� A in I (i.e. with A ∈ A) and for any
square:

A+A (I×A) a //

δk×̂i
��

X

f
��

I×A

θi(a,b)

66

b
// Y

if the square factors through the squash square of i as δk×̂i
squashk(i)// idA

(a∗,b∗)
// f ,

then the lift θi(a, b) is degenerate in the lifting direction with a∗ as lifting degen-
eracy.

3. For any generating monomorphism i : A� B in M and for any square:

B+A (I×A) a //

δk×̂i
��

X

f
��

I× B

θi(a,b)

66

b
// Y

if the square factors through the squash square of i as δk×̂i
squashk(i)// idB

(a∗,b∗)
// f , then

the lift θi(a, b) is degenerate in the lifting direction with a as lifting degeneracy.

Proof. Let us first assume that (f, θ) is a normal uniform fibration. It is easy to see
that item (2) holds, for this consider the diagram:

A+A (I×A)

δk×̂i
��

sqk(i) // A
a∗ // X

f
��

I×A
θ

44

ρ1
// A

a∗

88

b∗
// Y
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it is clear that the lifts cohere because the left square is by definition a morphism in
(the image of) un⊗ : In⊗ → C→.

It is also easy to see that (2) implies (1), this follows since the uniform fibration
structure θ already provides lifts against all lifting problems coming from In⊗, moreover,
the lifts will also cohere with all the squares coming from u⊗ : I⊗ → C→. So we only
need to verify that it coheres with the squash squares, but these squares are precisely
those as in the hypothesis of item (2).

It is clear that (3) implies (2). For the converse let us first observe, using that
colimits in C are universal, that any monomorphism i : A� B, is the colimit over the
generalised elements from the dense subcategory A; that is

i ∼= colimx:A→B
A∈A

x∗(i)

where for each x : A → B we denote by x∗(i) the pullback of i along x. Now, since
δk×̂− : C→ → C→ is cocontinuous, we have that:

colimx:A→B
A∈A

(δk×̂(x∗(i))) ∼= δk×̂colimx:A→B
A∈A

x∗(i) ∼= δk×̂i

Now let us suppose that (2) holds, and we have a diagram as in item (3). Then for
each generalised element x : A → B with A ∈ A, we have a square:

A+x∗(A) (I× x∗(A))

δk×̂x∗(i)
��

ιx // B+A (I×A) a //

δk×̂i

��

X

f

��

I×A
I×x

//

θx∗(i)

22

I× B

θi

66

b
// Y

where the left square is the colimit inclusion corresponding to x : A → B. The commu-
tation of the respective triangle is obtained by the universal property of the colimit.

Finally, if the right square (in the previous diagram) factors through a squash square
as

δk×̂i
squashk(i) // idB

(a∗,b∗)
// f

then (by naturality) the outer square also factor through a squash square and thus the
lift θx∗(i) is degenerate with a∗ιx as lifting degeneracy. This implies by the uniqueness
of the universal property, that also θi is degenerate with a∗ as lifting degeneracy.

7.3 Normal Isofibrations and Normal Uniform Fibrations

In Section 7.1 we compared the categories of arrows of uniform fibrations on simplicial

sets and cloven isofibrations on groupoids, using the nerve functor. In this section

we will extend this analysis to the categories of normal uniform fibrations and normal

isofibrations. Thus, in this section we will again work on the suitable topos of simplicial

sets (sSet, ∆,Mall). We will denote by NrmFib the category of normal isofibrations in

groupoids.
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Lemma 7.3.1. The functor Ñ : ClFib → UniFib of Lemma 7.1.4 lifts to a functor:

NrmFib
Ñ //

��

NrmUniFib

��

ClFib
Ñ

// UniFib

Proof. Because the vertical forgetful functors are fully-faithful, we only need to show
the following: given a normal isofibration (f, θ), then (Nf,Nθ) is a normal uniform
fibration. This follows easily from the case analysis in the proof of Lemma 7.1.3 as we
proceed to show.

We will assume without loss of generality that k = 0. Consider a monomorphism
i : A � ∆n and let us suppose that the following lifting problem (a, b) : δ0×̂i → Nf

factors through a squash square. Next, we transposes the square to the category of
groupoids, to obtain the one shown as the outer square below:

n +|A| (1×A)

δ0×̂|i|
��

sq0(|i|) //

a

$$
n a∗ // G

f
��

1× n
ε×n

//

Nθi

55

b

::n
b∗
//

a∗

@@

H

which will factor through a squash square as shown. The property of factoring through
a squash square translates to the statement that both maps a and b are the identity
on all ‘vertical’ arrows in 1× n (i.e. the ones called qk).

Now, if we look at the procedure by case analysis for the construction of the lift Nθ,
we see that all vertical arrows lift to the identity because θ is normal, and this in turns
implies that Nθi is degenerate in the lifting direction with a∗ as lifting degeneracy.

Lemma 7.3.2. The following square produced by the lift of Lemma 7.3.1:

NrmFib
Ñ //

��

NrmUniFib

��

ClFib
Ñ

// UniFib

is a pullback square.

Proof. By fully-faithfulness of the vertical forgetful functors (Lemma 7.2.3), we only
need to show that the universal arrow from NrmFib to the pullback ClFib ×UniFib

NrmUniFib is surjective on objects. Let us consider an object of the pullback, that is a
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cloven isofibration (f, θ) such that (Nf,Nθ) is a normal uniform fibration, and consider
the square:

∗

δ0

��

a //// G

f
��

1
idf(a)

//

θ

??

H

we must show that (f, θ) is normal, i.e. that the lift θ is the identity on a. But this
follows directly from the normality property of Nθ using the squash square of the arrow
⊥∗ : ∅→ ∗.

The next result is the counterpart of Theorem 7.1.7 but in the context of normal

uniform fibrations in simplicial sets and normal isofibrations in groupoids.

Theorem 7.3.3. The following is a pullback square:

NrmFib
Ñ //

��

NrmUniFib

��

Grd→
N

// sSet→
Proof. This follows from Theorem 7.1.7 and Lemma 7.3.2 by vertically pasting together
the relevant pullback squares.

7.4 Normal Trivial Cofibrations and Strong Deformation
Retracts

We would like to have a way of characterising normal trivial cofibrations (i.e. the maps

uniformly equipped with a left lifting structure against normal uniform fibrations);

however a complete characterisation remains elusive. The next best thing we can have

is a general method for constructing normal trivial cofibrations, and this we can do.

We will work in the context of an arbitrary suitable topos (C,A,M).

Definition 7.4.1. The category of arrows of normal trivial cofibrations is defined
to be the category of NCt-maps with respect to the awfs of normal uniform fibra-
tions (Theorem 7.2.2). Alternatively, it is the left orthogonal category of arrows of
NrmUniFib. We will denote it by NrmTrivCof.

In this section, we will observe that every strong deformation retract has the struc-

ture of a normal trivial cofibration. That is, we will construct a functor over C→ from a

category of arrows of strong deformation retracts, which we define in Definition C.5.5,

to that of normal trivial cofibrations. Normality is an essential ingredient in the proof,

in particular, a similar result would not hold for uniform fibrations.
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Theorem 7.4.2. There is a functor from the category strong deformation retracts SDR
to that of normal trivial cofibrations NrmTrivCof as shown in the following diagram:

SDR
Ψ //

""

NrmTrivCof

xx

C→
Proof. First let us define the action of Ψ on objects. Let (g, r, h) ∈ SDR which, we
assume to be 0-oriented (the other case being analogous). We have to define Ψ(g, r, h) :=
(g,Ψh) with Ψh a left NrmUniFib-map; to do this, let’s consider a normal uniform
fibration (f, φ) and a square (a, b) : g→ f for which we will construct a lift Ψhf : B→ X

as shown:

A

g

��

a // X

f
��

B
b
//

Ψhf

??

Y

For this, we first consider the lift H : I × B → X, in the following square (which
commutes because the deformation retraction is 0-oriented), produced by the normal
uniform fibration structure of f:

B

δ0×B
��

r // A
a // X

f
��

I× B

H

66

h
// B

b
// Y

and we define Ψhf := H · (δ1 × B), that is, the lift Ψhf is defined to be H on restricted
to the top of the cylinder I× B.

We need to verify that the triangles created by the lift Ψhf commute. We first do
the bottom one, that is, we need to check that f ·Φhf = b:

f ·Φhf = f ·H · (δ1 × B) (by defn of Φhf)

= b · h · (δ1 × B) (by defn of H)

= b (by defn of h)

Notice that until now we have not used the normality assumption on (f, ψ). We
now need to verify that the top triangle commutes, i.e. we check that Ψhf · g = a, for
this we first observe the following diagram:

A
g

//

δ0×A
��

B
δ0×B

��

r // A
a // X

f
��

I×A
I×g
//

H0

33

I× B

H

66

h
// B

b
// Y

147



7. TYPE-THEORETIC AWFS FROM NORMAL UNIFORM
FIBRATIONS

here, the lift H0 is also defined by the uniform fibration structure of f, and moreover
the triangle created by the lifts commute, since the square on the left is a morphism of
left UniFib-maps.

We now use that rg = ida and the strength of the homotopy retraction tuple
(g, r, h), to replace the horizontal arrows in the previous diagram in order to obtain
the following:

A

δ0×A
��

A
a // X

f
��

I×A
ρ1

//
H0

44

A

a

77

g
// B

b
// Y

where now the lifts cohere by Proposition 7.2.4 using the squash square of the arrow
⊥A : ∅→ A. With this in place, we can compute the desired equation:

Ψhf · g = H · (δ1 × B) · g (by defn of Φhf)

= H · (I× g) · (δ1 ×A) (by naturality of δ1 ×−)

= H0 · (δ1 ×A) (by construction of H0)

= a · ρ1 · (δ1 ×A) (by normality of (f, φ))

= a

Moreover, if (l,m) : (f, φ) → (f ′, φ ′) is a morphism of normal uniform fibrations, then
we first define Φhf ′ relative to the square (la,mb) : g→ f ′ by creating the intermediate
homotopy H ′ : I×B→ X ′. But since (l,m) is a morphism of normal uniform fibrations,
we have that m ·H = H ′, and thus we have:

m · Ψhf = m ·H · (δ1 × B) (by defn of Φhf)

= H ′ · (δ1 × B) (since (l,m) is structure preserving)

= Ψhf ′ (by defn of Φhf ′)

and this shows that (g,Ψh) is a normal trivial cofibration.
We now have to show that the assignment Ψ : (g, r, h) 7→ (g,Ψh) is functorial.

For this let’s consider a morphism of (0-oriented) strong deformation retracts (s, t) :
(g ′, r ′, h ′) → (g, r, h) for which we need to verify that the underlying square (s, t) :
g ′ → g is a morphism of NrmTrivCof. So, let us consider a normal uniform fibration
(f, ψ) and a square (a, b) : g→ f, we have lifts as shown in the following diagram:

A ′
s //

g ′

��

A
g

��

a // X

f
��

B ′
t
//

Ψh ′f

77

B
b
//

Ψhf

??

Y

where Ψh ′f is the lifting structure defined relative to the square (as, bt) : g ′ → f via the
intermediate homotopy H ′ : I×B ′ → X. We need to verify that the triangle created by
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the lifts commute. For this, let’s first consider the diagram:

B ′
t //

δ0×A
��

B
δ0×B

��

r // A
a // X

f
��

I× B ′
I×t
//

H ′

33

I× B

H

66

h
// B

b
// Y

where we notice that the lifts cohere by uniformity, and also we observe that the leftmost
lift H ′ coincide with the intermediate homotopy used to define Ψh ′f. To see this, we use
the hypothesis that (s, t) is a morphism of strong deformation retracts, and thus we
have that r · t = s · r ′ and h · (I× t) = t ·h ′. We now can compute the desired equality:

Ψhf · t = H · (δ1 × B) · t (by defn of Ψhf)

= H · (I× t) · (δ1 × B ′) (by naturality of δ1 ×−)

= H ′ · (δ1 × B ′) (by uniformity of f)

= Ψh ′f (by defn of Ψh ′f)

7.5 Compatibility with Path Objects

We now proceed to show that stable functorial choice of path objects PI on Uniform

Fibrations from Theorem 5.1.1 is compatible with the category of arrows of normal

uniform fibrations. That is, we need to exhibit a lift of the interval path-object factori-

sation PI (Appendix C.3) as shown in the following diagram:

NrmUniFib

��

P̃I // NrmTrivCof×C NrmUniFib

��

C→
PI

// C→ ×C C→
The first thing to notice that we can split the problem in two. If we denote by r, ρ :

C→ → C→ the two legs of the sfpo (i.e. by composing PI with the two projections

from the pullback). Then it is sufficient to show that there are lifts of these functors

as shown below.

NrmUniFib

��

r̃ // NrmTrivCof

��

NrmUniFib

��

ρ̃
// NrmUniFib

��

C→
r

// C→ C→
ρ

// C→
To do this we are going to use some constructions and results from Section 5.1. In

fact we will only use the following lemmas whose proofs are found inlined in the proof

of Theorem 5.1.1.
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Lemma 7.5.1. There is a lift of the functor r : C→ → C→ to the category of strong
deformation retracts as shown:

SDR

��

C→
r
//

r̃
<<

C→
Lemma 7.5.2. There is a lift of the functor ρ : C→ → C→ to the category of uniform
fibrations as shown:

UniFib

��

ρ̃
// UniFib

��

C→
ρ

// C→
Using Lemma 7.5.1 and the results from the previous section, it is easy to see that

we obtain a lift of r : C→ → C→ as desired.

Lemma 7.5.3. There is a lift the functor r : C→ → C→ to the category of uniform
trivial cofibrations as shown:

NrmUniFib

��

r̃ // NrmTrivCof

��

C→
r

// C→
Proof. We construct the desired lift as the following composite:

NrmUniFib

��

// C→ r̃ // SDR

��

Ψ // NrmTrivCof

��

C→ C→
r
// C→ C→

where the lift in the leftmost square is the forgetful functor, that on the middle square
is that from Lemma 7.5.1 and the lift in the rightmost square is the one from Theo-
rem 7.4.2.

Unfortunately, the construction of the lift for the other functor ρ : C→ → C→ is not

quite as direct; we will have to recall the construction of the uniform fibration structure

produced by Lemma 7.5.2. For this let us consider a map f : X→ Y in C; recall (from

Eq. (5.2)) that the map ρf : Pwf→ X×Y X is alternatively obtained as in the following

pullback:

Pwf

ρf

��

// XI

^hom(j1,f)
��

X×Y X〈αf,λf〉
// YI ×Y∂I X∂I
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where the map j1 : ∂I→ I stands for the inclusion of the boundary of the interval.

Let us assume from now that (f, θ) is a uniform fibration. We know that right or-

thogonal categories of arrows are closed under pulbacks, thus to give a uniform fibration

structure to ρf it is sufficient to give one to ^hom(j1, f). Now, in order to construct a

uniform fibration structure for ^hom(j1, f), let us consider a lifting problem with respect

to the generating category of arrows I⊗ for uniform fibrations; i.e. a square of the form

(U,b) : δk×̂i→ ^hom(j1, f) where i : A� A is in I for which we show how to construct

a lift. This is shown in the left side of the following diagram.

A+A (I×A)

δk×̂i
��

U // XI

^hom(j1,f)
��

dom(j1×̂(δk×̂i))

j1×̂(δk×̂i)
��

Û // X

f

��

I×A
b
//

ρθi

77

YI ×Y∂I X∂I I× (I×A)
b̂

//

ρθi

88

X

Now, transposing along the adjunction (j1×̂−) ` ^hom(j1,−) we obtain a square as on

the right of the previous diagram. Next, we use that the pushout-product construction

is symmetric and associative, and in particular we obtain that j1×̂(δk×̂i) ∼= δk×̂(j1×̂i);
by the properties of the category of generating cofibrations M we see that j1 × i is a

generating monomorphism, thus we can find a lift denoted by ρθi, and by transposing

everything back we obtain the desired lift for the original square. This construction

produces a uniform fibration structure for ^hom(j1, f) which we denote by ρθ. This

finishes the description of the action on objects of the functor from Lemma 7.5.2.

With this in place we can now state and prove the following lemma. We will make

use of the explicit construction of the uniform fibration structure ρθ described above.

Lemma 7.5.4. There is a lift of the functor from Lemma 7.5.2 as shown:

NrmUniFib
ρ̃
//

��

NrmUniFib

��

UniFib
ρ̃

// UniFib

Proof. Fortunately, since the forgetful functor NrmUniFib → UniFib is fully faithful,
and using that right ortogonal categories are closed under pullbacks; it is sufficient
to prove that given (f, ψ) a normal uniform fibration, the uniform fibration structure
ρψ of ^hom(j1, f) described above, is also normal. Using the characterisation of normal
uniform fibrations from Proposition 7.2.4, we need to show that for any generating
monomorphism i : A� B the lifts in the following diagram on the left cohere:

B+A (I×A)

δk×̂i
��

sqk(i) // B
U∗ // XI

^hom(j1,f)
��

dom(δk×̂(j1×̂i))

δk×̂(j1×̂i)
��

sqk(j1×̂i)// I× B U∗ // X

f

��

I× B
ρθi

44

ε×B
// B

b∗
//

U∗

::

YI ×Y∂I X∂I I× (I× B)
ε×(I×B)

//

ρθi

44

I× B
b∗
//

U∗

>>

Y
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by transposing the whole diagram along (j1×̂−) ` ^hom(j1,−), and using the symmetry
and associativity of the pushout-product, we obtain the lifting problem as on the right
of the previous diagram, for which we need to show that the lifts cohere. Observe
that the lift ρθi on the left (on either diagram) is, by construction, the lift obtained
from the uniform fibration structure ρθ on ^hom(j1, f). The result follows by applying
Lemma 7.2.1.

In the following theorem is a synthesis of the results from the foregoing section.

Theorem 7.5.5. The stable functorial choice of path objects PI of Theorem 5.1.1 is
compatible with the category of arrows of normal uniform fibrations as shown in the
following diagram:

NrmUniFib

��

P̃I // NrmTrivCof×C NrmUniFib

��

C→
PI=〈r,ρ〉

// C→ ×C C→

Proof. This follows by applying Lemma 7.5.3 to lift the functor r : C→ → C→ and by
applying Lemma 7.5.2 and Lemma 7.5.4 to lift the functor ρ : C→ → C→.

7.6 Compatibility with Functorial Frobenius

In what follows, we will provide a proof that the category of arrows of normal uniform

fibrations has a functorial Frobenius structure. This will be given by adapting the

functorial Frobenius structure on uniform fibrations. Here we will work on an arbitrary

suitable topos (C,A,M).

In order to prove the main result of this section, we will need to use the explicit

construction of the functorial Frobenius structure on uniform fibrations. For the con-

venience of the reader, we will state the theorem here providing a sketch of the proof.

In what follows we will denote by TrivCof the category of arrows of trivial cofibrations,

the objects of which are arrows having a left lifting structure against uniform fibrations.

Theorem 7.6.1. [GS17, Theorem 8.8] The category of arrows of uniform fibrations
has a functorial Frobenius structure. That is, we have a lift of the pullback functor as
in the following diagram:

TrivCof×C UniFib

��

P̃B // TrivCof

��

C→ ×C C→
PB

// C→
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Sketch of proof: We will give a brief overview the object-wise construction of the lift
P̃B : TrivCof×C UniFib → TrivCof. We will start with the special case where the trivial
normal cofibration is of the form δk×̂i for some generating monomorphism i : A� B;
that is, we start by taking a Cartesian diagram:

A ′

g ′

��

// B+A (∆1 ×A)

δk×̂i
��

B ′
f
// ∆1 × B

where (f, θ) is a uniform fibration, and we show that g ′ : A ′ → B ′ is a trivial cofibra-
tion. By hypothesis the generating category of monomophism is closed under pushout-
product by the endpoint inclusion, it is also closed under pullback along any arrow;
this implies that g ′ : A ′ → B ′ is a generating monomorphism. We also know that
g ′ : A ′ → B ′ is a k-oriented strong homotopy equivalence, this follows from lemma
[GS17, Lemma 8.4] which shows that δk×̂i is a k-oriented strong homotopy equiva-
lence and by lemma [GS17, Lemma 8.7] which says that k-oriented strong homotopy
equivalences are closed under pullbacks along uniform fibrations.

Using the characterisation of k-oriented strong homotopy equivalences described in
Lemma C.5.3, we have that g ′ is a retract of δk×̂g ′, and this later morphism is a normal
trivial cofibration since g ′ is a generating monomorphism. Thus, g ′ is also a normal
trivial cofibration since these are closed under retracts. The general case follows by
[GS17, Proposition 6.8].

To show that the proof of this theorem can be adapted to the case of normal uniform

fibrations, we will first need a couple of lemmas.

Lemma 7.6.2. Let i : A� B be a monomorphism, then the following holds:

1. For any map f : X→ B, there is an isomorphism

δk×̂(f∗i) ∼= (I× f)∗(δk×̂i)

2. Pulling back the k-squash square of i along the square (I × f, f) produces the k-
squash square of f∗i; concretely, for k ∈ {0, 1}, there is an isomorphism:

squashk(f
∗i) ∼= (I× f, f)∗(squashk(i))

153



7. TYPE-THEORETIC AWFS FROM NORMAL UNIFORM
FIBRATIONS

Proof. To show item (1), let us first consider the following cube:

f∗A

δk×f∗A

��

f∗i

&&

π // A
i

$$
δk×A

��

X
f //

δk×X

��

B

δk×B

��

I× (f∗A)
I×π

//

I×f∗i
%%

I×A
I×i

$$

I× X
I×f

// I× B

here, the square on the top is the pullback of i along f. It is straightforward to verify
that all squares pointing from left to right are Cartesian, and notice that the squares
on the left and right are the outer squares used for defining the pushout-products
δk×̂(f∗i) and δk×̂i respectively. All of this implies that there is a comparison map
δk×̂(f∗i) → (I×f)∗(δk×̂i), which is an isomorphism because colimits in C are universal.
Item (2) follows directly from item (1).

The following lemma is a technical result about the squares θk×̂i : i → δk×̂i (see

Appendix C.5).

Lemma 7.6.3. For any morphism i : A→ B the square θk×̂i depicted bellow:

A

i
��

// B+A (I×A)

δk×̂i
��

B
δ1−k×B

// I× B

is Cartesian.

Proof. The proof uses once again the fact that colimits in C are universal. Let us
compute the pullback of δk×̂i along δ1−k × B; by universality of colimits, this is the
same as pulling back the diagram (defining B +A (I × A)) and then calculating the
colimit.

We can observe in the following picture, the result of first pulling back the defining
diagram of B+A (I×A) which appears as the upper span of the right-most square on
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the following cube:

∅

��

��

// A

i

$$
δk×A

��

∅

��

// B

δk×B

��

A
δ1−k×A

//

i
��

I×A
I×i

$$

B
δ1−k×B

// I× B

Let us notice that the pullback of δk×B (respectively δk×A) along δ1−k×B (respectively
δ1−k×A) is empty since the interval has disjoint endpoints. We conclude that the colimit
of the upper span of the left-most square on the cube must be equal to A and moreover,
the universal arrow down to B has to be i : A→ B.

Here is an important thing to notice. Consider a generating monomorphism i :

A� B and a uniform fibration f : X → B, then there are two possible trivial uniform

cofibration structures on the map δk×̂(f∗i): the first one is the canonical one, i.e. the

one given by the fact that f∗i is also a generating monomorphism. The second one is

the one provided by the functorial Frobenius structure on uniform fibrations using the

isomorphism δk×̂(f∗i) ∼= (I×f)∗(δk×̂i) of Lemma 7.6.2. Luckily, it turns out that these

two are actually the same structure as we proceed to show in the following lemma.

Lemma 7.6.4. Consider i : A � B be a monomorphism and f : X → B a uniform
fibration. Then the two possible trivial uniform cofibration structures on δk×̂(f∗i) co-
incide.

Proof. Let us denote by λ1 and λ2, respectively, the canonical trivial uniform cofibra-
tion structure on δk×̂(f∗i) and the one obtained by applying the functorial Frobenius
structure.

In order to prove they are the same, let us consider g : Z → Y a uniform fibration
and a square (a, b) : δk×̂(f∗i) → g. Without loss of generality, let’s denote by λ1 and
λ2 the two fillers of this square given by the uniform trivial cofibration structure with
the same name.

We have to show that λ1 = λ2. If we go over the proof of Theorem 7.6.1 (applied to
this situation), before concluding, we see that there is a retract diagram as in the two
left-most squares shown bellow:

·
δk×̂(f∗i)

��

// ·
δk×̂δk×̂(f∗i)

��

// ·
δk×̂(f∗i)
��

a // Z

f
��

·
t
// · // ·

b
// Y
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where the left-most square is θk×̂δk×̂(f∗i). Now, the square δk×̂δk×̂(f∗i) → f has a
lift which we denote by λ, notice that by definition, the lift λ2 is equal to λ · t where t
is the horizontal arrow on the lower left part of the diagram. Moreover, we have that
the lift of the outer square is λ1. Thus if we want to show that λ1 = λ2 it is sufficient
to show that the square θk×̂δk×̂(f∗i) is a morphism of trivial uniform cofibrations.

To show this, we use that the pushout-product is symmetric and associative, and
thus θk×̂δk×̂(f∗i) ∼= δk×̂θk×̂(f∗i). From this, we see that the square is a morphism of
trivial uniform cofibrations if the square θk×̂(f∗i) is a morphism of generating cofibra-
tions, i.e. if it is Cartesian, but this is precisely the statement of Lemma 7.6.3.

We now have enough tools to show that the functorial Frobenius structure on uni-

form fibrartion given by Theorem 7.6.1 can be extended to a functorial Frobenius

strucutre on normal uniform fibrations. We start with the following lemma.

Lemma 7.6.5. There is a lift of the pullback functor as shown:

In⊗ ×C UniFib

��

P̃B // NrmTrivCof

��

C→ ×C C→
PB

// C→
Proof. Object-wise, this follows directly from Theorem 7.6.1. To see this, we notice that
there are no more objects in In⊗ that in I⊗ thus we can apply the functorial Frobenius
structure for uniform fibrations. Then we use the functor TrivCof → NrmTrivCof,
obtain by functoriality of the left orthogonal functor �(−) applied to the forgetful
functor NrmUniFib → UniFib.

For the morphism case, we first notice that the only morphisms in In⊗ that we need
to consider are the squash squares. Thus let us consider a cospan of squares as in the
following diagram:

·
sqk(i)

""

δk×̂i

��

B

X ′
f ′ //

m
��

I× B

ε×B
""

X
f

// B

such that the vertical square is the squash square of a generating monomorphism i :
A� B and the horizontal square is a morphism of uniform fibrations (m,ε×B) : f ′ → f.
We need to verify that pulling back the squash square along the morphism of uniform
fibrations is a morphism of normal trivial cofibrations.
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7.6 Compatibility with Functorial Frobenius

The first thing we do is to split this cospan of squares into two, by factoring through
the pullback square of f along ε× B. That is we obtain the following:

·
sqk(i)

""

δk×̂i

��

·

δk×̂i

��

B ·

δk×̂i

��

I× X I×f
//

ε×X
""

I× B

ε×B
!!

X ′
f ′ //

m∗ ""

I× B

X
f

// B I× X
I×f

// I× B

where the dotted arrow m∗ : X ′ → (I × X) is obtain by the universal property of the
pullback. Notice that composing the two cospans of squares along their common face,
produces the original one. Notice also that the two horizontal squares are morphisms
of uniform fibrations.

Let us focus first on the cospan of the right. The identity morphism id : (δk×̂i) →
(δk×̂i) is a morphism of trivial uniform cofibrations, thus if we pull-back this along
the morphism of uniform fibrations (f ′, I × f) : m∗ → idδk×̂i we obtain a morphism
of trivial uniform cofibrations by Theorem 7.6.1 to which we can apply the functor
TrivCof → NrmTrivCof to obtain a morphism of normal trivial cofibrations.

With this we have reduced the situation to that of the cospan of squares on the
left of the previous diagram. But now, using item (2) of Lemma 7.6.2 we see that the
pullback of the squash square of i : A� B along the square (I× f, f) : ε×X→ ε×B is
the squash square of f∗i : f∗A� X. This square is a morphism in In⊗ provided that the
canonical trivial normal cofibration structure of δk×̂(f∗i) is the same as that obtained
from the functorial Frobenius structure; and this follows from Lemma 7.6.4.

We these lemmas in place, we are now ready to state and proof the main theorem

of this section.

Theorem 7.6.6. The category NrmUniFib has a functorial Frobenius structure which
is an extension of that of uniform fibrations UniFib.

Proof. Using the lift of Lemma 7.6.5 and the forgetful functor NrmUniFib → UniFib,
we find a lift of the pullback functor as the one shown below.

In⊗ ×C NrmUniFib

��

P̃B // NrmTrivCof

��

C→ ×C C→
PB

// C→
The fact that we can extend this structure from In⊗ to the whole category NrmTrivCofi
follows from [GS17, Proposition 6.8].
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7. TYPE-THEORETIC AWFS FROM NORMAL UNIFORM
FIBRATIONS

We conclude this chapter by pointing out that we can combine Theorem 7.6.6 and

Theorem 7.5.5 in order to obtain a type-theoretic awfs of normal uniform fibrations.
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Chapter 8

Conclusions

In this dissertation we have shown that by making use of algebraic techniques it is

possible to obtain sufficient structure to model a version of Martin-Löf’s dependent

type theory, equipped with dependent sums, products and intensional identity types. In

order to do so, we introduced the notion of a type-theoretic algebraic weak factorisation

system. There are two main reasons for the interest in this notion, as opposed to

its non-algebraic counterpart. First, the condition of pseudo-stability for intensional

identity types is extremely hard to come by in nature (for example in simplicial sets

and cubical sets), but in a type-theoretic awfs the extra algebraic structure makes it

possible to construct pseudo-stable identity types from the more natural notion of a

path-objects. Secondly, making use of the theory of uniform fibrations of Gambino

and Sattler, we have shown that type-theoretic awfs are abundant; in particular any

Grothendieck topos with an interval object (with connections) can be equipped with

a type-theoretic awfs. In addition, the original Hofmann-Streicher groupoid model is

also shown to be an example of a type-theoretic awfs whose right algebras correspond

to split isofibrations.

Moreover, we have shown that by adapting slightly the methodology of Gambino

and Sattler, we are able to produce a type-theoretic awfs of normal uniform fibrations.

This allows us to circumvent one of the requirements that the interval path-object

factorisation need to satisfy in order to produce a stable functorial choice of path

objects. With this we are able to carry out some arguments in a constructive meta-

theory instead of a classical one.

In a nutshell, we have shown that most of the type-theoretic properties that are

present in the non-algebraic approaches to the categorical semantics of type theory, have

a direct categorification in the language of awfs. We expect that this approach can be

extended to accommodate additional kinds of logical structure such as W-types and

universes. The payoff of working with the additional algebraic structure is that we are

able to apply the right adjoint splitting to obtain models, which in some contemporary

approaches to the semantics of dependent type theory has been abandoned in favour
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8. CONCLUSIONS

of other methods (such as the left adjoint splitting) due to the difficulty of satisfying

the pseudo-stability conditions.

Future work includes adapting the definition of type-theoretic awfs in order to in-

clude the relevant structure needed to produce models with additional logical structure.

Of particular interest is the case of universes. As the results from Section 2.5 show,

it is possible to apply the right adjoint splitting to model universes closed under the

relevant kinds of logical structure in the resulting split comprehension category. The

next step is to identify sufficient additional structure that a type-theoretic awfs should

posses in order to model these universes. Afterwards, we could ask if the methodology

of uniform fibrations can be adapted to produce such structure, the models based on

uniform fibrations in cubical sets would provide useful guidance to develop this theory.

Additionally we could investigate under which circumstances the universes produced

in this manner are univalent.
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Appendix A

Type Theory

In this section we will give a short but self-contained introduction to the type theory

we are interested with. We refer the reader to [NPS00] and to [Uni13] for additional

information.

A type theory is a formal theory consisting of syntactic judgements and of inference

rules that specify when a judgement is valid or well formed. Every type theory has

at least two common judgements, those specifying valid types and valid terms of an

already given valid type. Type theories also come equipped with an equality judgement,

called judgemental equality which specifies when two types and when two terms of the

same type must be considered equal.

A.1 Structural Rules

In this document we are interested in a class of type theories called dependent type

theories, these are characterise by the fact that both types and terms are allowed to

depend on variables of some specified types. The variables used in a judgement must be

declared beforehand in a context, thus a context is just a collection of typed variables

of the form:

Γ = (x1 : A1, x2, : A2, . . . , xn : An)

Thus for the class of type theories we will deal with have five kinds of judgements

which are displayed in Table A.1, the column to the right of each judgement specify

how to read them.

There is also a collection of structural inference rules which are present in any theory

under consideration. These rules are presented on Table A.2.

It is necessary to introduce rules specifying that the judgemental equality is a re-

flexive, symmetric and transitive relation; and that each of the structural rules preserve

equality. For example, we have the following rule for substitution

Γ ` a : A Γ, x : A,∆ ` b = c : B
Γ,∆[a/x] ` b[a/x] = c[a/x] : B[a/x]
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A. TYPE THEORY

Γ ctx Γ is a valid context

Γ ` A type A is a type on context Γ

Γ ` a : A a is a term of type A

Γ ` A = B type A and B are equal types

Γ ` a = b : A a and b are equal terms of type A

Table A.1: Judgements of dependent type theory

In order to bootstrap such a theory we may also need some ground types and ground

terms. We will call such a theory a structural dependent type theory.

A.2 Logical Structure

On top of our structural dependent type theory we can add various kinds of logical

structure; we do these by introducing new rules that specify how to create new types.

In this document we are considering a dependent type theory with four kinds of logical

structure: dependent products (or Π-types), dependent sums (or Σ-types), intensional

identities (or Id-types) and universe types. A dependent type theory together with

these rules is usually called a Martin-Löf intensional type theory.

There is a general pattern for introducing new types. This pattern consists of four

types of rules: formation, introduction, elimination and computation, there is also an

optional uniqueness principle that can be further assumed.

We will start by introducing Π-types (or dependent product types). In Table A.3

we lay out the various rules.

Here we are able to see the general pattern for introducing new types in action. The

formation rule tells us how to form the new type and the introduction rule specifies

how to form the ‘canonical’ terms of this new type, these canonical terms are also
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A.2 Logical Structure

· ctx Empty context

x1 : A, . . . , xn−1 : An−1 ` An type

(x1 : A, . . . , xn : An) ctx Context Extension

(x1 : A, . . . , xn : An) ctx

x1 : A, . . . , xn : An ` xi : Ai Variable Declaration

Γ ` a : A Γ, x : A,∆ ` b : B
Γ,∆[a/x] ` b[a/x] : B[a/x] Substitution

Γ ` A type Γ, ∆ ` b : B

Γ, x : A,∆ ` b : B Weakening

Table A.2: Structural Rules of dependent type theory

called constructors. The elimination rule tells us how to use terms of the new type and

the computation rule specify how to reduce constructors terms to already known ones.

Finally the optional uniqueness rule tells us that any term of the new type is actually

of the form of some constructor term.

Together with the rules in the previous table there must also be also rules that

guarantee that the new type in question is compatible with judgemental equality and

with the structural rule of substitution, for example we must have that:

x : C ` A type x1 : C, x2 : A ` B type ` t : C
` (

∏
x:A B)[t/x] =

∏
x:A[t/x] B[t/x] type

Next we will introduce Σ-types (or dependent sum types). As with dependent

products we will use the general pattern of rules, these are depicted in Table A.4.

Using the elimination rule for dependent sum types, it is possible to construct the

following two projection terms.

Γ, z :
∑
x:A

B ` π1 : A Γ, z :
∑
x:A

B ` π2 : B[π1/x]

The uniqueness rule for Σ-types is stated using the two previous projections, as can

be seen in Table A.5.
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A. TYPE THEORY

Γ ` A type Γ, x : A ` B type

Γ `
∏
x:A B type Formation

Γ, x : A ` t : B
Γ ` λx.t :

∏
x:A B Introduction

Γ ` a : A Γ ` f :
∏
x:A B

Γ ` f(a) : B[a/x] Elimination

Γ ` a : A Γ, x : A ` t : B
Γ ` λx.t(a) = t[a/x] : B[a/x] Computation

Γ ` f :
∏
x:A B

Γ ` f = λx.f(x) :
∏
x:A B Uniqueness

Table A.3: Rules for Dependent Product Types

As with dependent products, there is a further set of rules that specify the coherence

of the dependent sum types with judgemental equality and substitution.

The models of dependent type theory we are considering in this thesis will validate

the uniqueness rules for both dependent products and sums, this is a consequence of

this types being modelled using adjoint functors.

We turn our attention now to Id-types or identity types. Table A.6 contains the

corresponding rules.

As before, these rules must cohere with judgemental equality and substitution. We

will not assume the uniqueness principle for identity types; doing this will have the

effect of reducing all proofs of equality to the trivial reflexivity one. This is precisely

the difference between intensional identity types (without the uniqueness principle)

and extensional identity types (with the uniqueness principle).

Finally we lay out the rules for universes à la Tarski. Intuitively, a universe is a

type of ‘codes’ for types in the theory equipped with an interpretation operation that

takes a code into an actual type. Moreover, for it to be an interesting notion, a universe

most be suitably closed under all the previous types of logical structure. The rules for

universes don’t follow the usual pattern instead, in Table A.7, we describe the axioms

establishing the existence of the universe and the interpretation operation.
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A.2 Logical Structure

Γ ` A type Γ, x : A ` B type

Γ `
∑
x:A B type Formation

Γ ` a : A Γ ` b : B[a/x]

Γ ` (a, b) :
∑
x:A B Introduction

Γ, z :
∑
x:A B ` C type Γ, x : A,y : B ` d : C[(x, y)/z]

Γ ` p :
∑
x:A B

Γ ` sp(C, d, p) : C[p/z] Elimination

Γ, z :
∑
x:A B ` C type Γ, x : A,y : B ` d : C[(x, y)/z]

Γ ` a : A Γ ` b : B[a/x]

Γ ` sp(C, d, (a, b)) = d[a, b/x, y] : C[(a, b)/z] Computation

Table A.4: Rules for Dependent Sum Types

Γ ` p :
∑
x:A B

Γ ` p = (π1[p/z], π2[p/z]) :
∑
x:A B Uniqueness

Table A.5: Uniqueness Rule for Dependent Sum Types

We must also require additional rules to express that the universe is closed under

additional logical structure. We will only describe these rules for Id-types in Table A.8.
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A. TYPE THEORY

Γ ` A type

Γ, x, y : A ` IdA(x, y) type Formation

Γ ` a : A
Γ ` refla : IdA[a, a/x, y] Introduction

Γ, x, y : A, z : IdA(x, y) ` C type Γ, x : A,` d : C[x, x, reflx/x, y, z]
Γ, x, y : A ` p : IdA(x, y)

Γ, x, y : A ` j(C, d, p) : C[x, y, p/x, y, z] Elimination

Γ, x, y : A, z : IdA(x, y) ` C(x, y, z) type Γ, x : A,` d : C[x, x, reflx/x, y, z]

Γ, x : A ` j(C, d, reflx) = d : C[x, x, reflx/x, y, z] Computation

Table A.6: Rules for Identity Types

· ` U type

x : U ` El(x) type

Table A.7: Rules for Universes

Γ ` x : U Γ ` a, b : El(x)

Γ ` idx(a, b) : U

Γ ` x : U Γ ` a, b : El(x)

Γ ` El(idx(a, b)) = IdEl(x)(a, b)

Table A.8: Closure of U under Id-types
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Appendix B

Algebraic Weak Factorisation
Systems

In this appendix section we will recall the necessary notions and tools to categorify the

work done for tribes in Section 2.7. The idea is to replace the class of fibrations R of

a tribe, by a category of fibrations R-Map. The material in this section is built on top

of the machinery of algebraic weak factorisation systems developed by Bourke, Garner

and van den Berg [BG16a, BG16b, dBG12] and that of uniform fibrations by Gambino

and Sattler [GS17], also borrowing ideas from Riehl and Swan [Rie11, Swa15].

B.1 Functorial Factorisations

As a first step towards the definition of algebraic weak factorisation systems, we will

explore the concept of functorial factorisation together with the rich amount of structure

attached to it.

Definition B.1.1. A functorial factorisation (Q, L, R) on a category C consists of
an operation that assigns to each arrow f : X→ Y a factorisation of f:

X
Lf−→ Qf

Rf−→ Y

and to each square (h, k) : g→ f (with f as before and g : A→ B) a diagram:

A

Lg
��

h // X

Lf
��

Qg

Rg
��

Q(h,k)
// Qf

Rf
��

B
k
// Y

functorial in the obvious way.
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B. ALGEBRAIC WEAK FACTORISATION SYSTEMS

Abstractly, a functorial factorisation is a functor Q̂ : C2 → C3 between functor

categories where 2 and 3 are the shape categories

0→ 1 0→ 1→ 2

respectively, moreover Q̂ should satisfy that d1 ◦ Q = id where d1 : C3 → C2 is the

functor induced by composition.

Let (Q, L, R) be a functorial factorisation on a category C, we see from the definition

that L and R are in fact endofunctors on the arrow category C→, they are moreover

copointed and pointed respectively as we proceed to show:

The unit associated to R is given by the natural transformation η̂ : idC→ → R,

whose component at f is:

· Lf //

f
��

·
Rf
��

· ·
that is η̂f = (Lf, id). Dually, the counit for L is given by ε̂ : L→ idC→ , with component

at f is:

·
Lf
��

·
f
��

·
Rf
// ·

that is ε̂f = (id, Rf).

We will be mainly interested in arrows carrying an algebra, respectively coalgebra,

structure for the pointed endofunctor (R, η̂), respectively for the copointed endofunctor

(L, ε̂).

Let us examine carefully what it means for an arrow f to have an (R, η̂)-algebra

structure. By definition, such a structure corresponds to a morphism ŝ : Rf→ f in C→,

such that ŝ ◦ η̂f = idf, this means that the arrow ŝ is necessarily of the form ŝ = (s, id)

where s satisfies s ◦ Lf = id (i.e. a section of Lf) and f ◦ s = Rf. Dually, an (L, ε̂)-

coalgebra structure λ̂ : g → Lg on an arrow g is a morphism of the form λ̂ = (id, λ)

such that Rg ◦ λ = id and Lg = λ ◦ g.

We can easily and completely characterise such (co)algebra structures as diagonal

fillers in the squares corresponding to the unit and counit of the respective endofunctors:

A

g

��

Lg
// Qg

Rg

��

X

Lf
��

X

f
��

B

λ
>>

B Qf

s

??

Rf
// Y

A morphism (h, k) : (f ′, s ′) → (f, s) of (R, η̂)-algebras consists of a morphism on the

arrow category (h, k) : f ′ → f that preserves the structure in the sense that h ◦ s ′ =
s ◦ Q(h, k). Dually, a morphism (u, v) : (g ′, λ ′) → (g, λ) of (L, ε̂)-coalgebras is a
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B.1 Functorial Factorisations

morphism of the underlying arrows, such that Q(u, v) ◦ λ ′ = λ ◦ v. These definitions

are illustrated in the following diagrams:

Qg ′
Q(u,v)

// Qg X ′
h // X

B ′
v
//

λ ′

OO

B

λ

OO

Qf ′
Q(h,k)

//

s ′

OO

Qf

s

OO

We will denote the category of (R, η̂)-algebras and morphisms as R-Map; similarly

we’ll denote by L-Map the category of (L, ε̂)-coalgebras and morphisms. We will refer

to the objects R-Map by (f, s) and call them simply R-maps, dually the objects of

L-Map will be denote by (g, λ) and called L-maps. Notice that there is a pair of

faithful (but not full) forgetful functors down to the arrow category:

U : L-Map → C→ and V : R-Map → C→
As we mentioned before, L-maps and R-maps canonically lift against each other.

Let us record this fact in the following proposition.

Proposition B.1.2. Let (g, λ) : A → B be an L-map, (f, s) : X → Y be an R-map and
(h, k) : g → f be a square in the underlying category. Then there is a canonical filler
j : B→ X for the square (h, k) defined as:

j := s ◦Q(h, k) ◦ λ : B→ X

Proof. By functoriality of the factorisation Q and by the structure on the maps g and
f, we have the following diagram:

A

Lg
��

h // X

Lf
��

Qg

Rg
��

Q(h,k)
// Qf

Rf
��

s

]]

B
k //

λ

CC

Y

so letting j := p ◦Q(h, k) ◦ s. It follows from the characterisation of R-map and L-map
structures that j is indeed a filler for the square (h, k)

Another property that we will make use of is that the canonical lifts are natural with

respect to morphisms of L and R maps, this is made precise in the following proposition.

Proposition B.1.3. Let (g, λ) : A → B be an L-map, (f, s) : X → Y an R-map, and
(h, k) : g→ f a square between the underlying arrows. Suppose (l,m) : (f, s) → (f ′, s ′)
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B. ALGEBRAIC WEAK FACTORISATION SYSTEMS

is a morphism of R-maps; then the canonical lift associated to the square (l◦h,m◦k) is
equal to the canonical lift of (h, k) composed with l. This is illustrated by the diagram:

A
h //

g

��

X

f
��

l // X ′

f ′

��

B
k
//

?? 77

Y
m
// Y ′

where the dotted arrows are the canoncial lifts.

Proof. The proof follows immediately from the definitions of the canonical lifts and
from that of morphism of R-maps.

Of course, an analogous proposition holds if we take a morphism of L-maps pasted

to the left of the square (h, k). In other words, the canonical choice of lifts correspond

to a natural transformation:

j : C→(U−, V−) → C(codU−, domV−) : (L-Map)op × R-Map → Set.

There are a couple of properties that we would want the category of R-Map to

satisfy. For example, it is not true in general that the (vertical) composition of two

R-maps is again an R-map. We also don’t have in general R-map structures on maps of

the form Rf and L-map structures on maps Lf. In the following section we will address

these problems.

B.2 Algebraic Weak Factorisation Systems

The notion of algebraic weak factorisation systems was introduced by Grandis and

Tholen [GT06], and studied extensively by Bourke, Garner and Riehl [BG16a, BG16b,

Rie11]. It is a very succinct algebraic enhancement to a functorial factorisation, al-

though at first glance the connection with classic weak factorisation system is not

entirely obvious. We will study this notions here.

Definition B.2.1. An algebraic weak factorisation system or AWFS on a cate-
gory C consists of the following data:

• A functorial factorisation (Q, L, R).

• A monad (R, η̂, µ̂) over the pointed endofunctor (R, η̂).

• A comonad (L, ε̂, δ̂) over the copointed endofuctor (L, ε̂).

We will refer to the AWFS just as (L, R).
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Let us unwind this definition and examine some properties. First of all, let’s examine

the multiplication µ̂ : R2 → R associated to R; given any arrow f, by the monad axioms

we have (in particular) that µ̂f ◦ η̂Rf = idRf, this means that the top and bottom arrows

of the following diagram must be equal to the identities

· LRf //

Rf
��

·
R2f
��

µf // ·
Rf
��

· · // ·

thus we have a description for the component of the multiplication at f, mainly µ̂f =

(µf, id) where µf◦LRf = id. We thus see that µ̂ further induces a natural transformation

µ : QR→ Q : C→ → C, such that µ ◦ LR = id.

In a completely dual manner we find that the comultiplication δ̂ : L → L2 has

component at f given by δ̂f = (id, δf) such that RLf◦δf = id. Thus δ̂ induces a natural

transformation δ : Q→ QL such that LR ◦ δ = id.

Note that we can paste together the properties of µ and δ and give rise to a com-

mutative square

· δf //

LRf
��

·
RLf
��

·
µf
// ·

for each f (indeed the diagonal arrow is just the identity). This is the component of

a natural transformation ∆ : LR → RL. In Garner’s definition of AWFS [Gar09, Sec-

tion 2.18] this natural transformation is required to be a distributive law, this becomes

essential in the proof of the algebraic version of the small object argument.

We can now talk about (R, η̂, µ̂)-algebras; and observe that such algebras are objects

of R-Map with the additional property that they cohere with the multiplication µ̂ (but

have no additional structure). Thus, if we denote R-Alg the category of such algebras,

we find that we have a full and faithful functor:

R-Alg ↪→ R-Map

Dually, we denote by L-Coalg the category of coalgebras of (L, ε̂, δ̂) and we obtain

another full and faithful functor

L-Coalg ↪→ L-Map

We will refer to the objects of R-Alg and L-Coalg respectively as R-algebras and

L-coalgebras.

As with every (co)monad, we can consider the free (co)algebras; in this special

case, this tells us that for every arrow f of C we have a L-coalgebra and a R-algebra

respectively:

(Lf, δf) ∈ L-Coalg and (Rf, µf) ∈ R-Alg
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these free (co)algebras have a special universal property. For details, we refer the reader

to [BG16a] .

As we mentioned before, it is not obvious at first which (if any) is the underlying

weak factorisation system associated to an algebraic one. Let’s denote by R the class

of maps that admit an R-algebra structure (i.e. R is the image of the forgetful functor

R-Alg → C→). Similarly, we denote by L the class of maps that admit an L-coalgebra

structure.

It makes sense to think that pair of classes (L,R) form a weak factorisation system,

indeed, we have that every arrow factors as a map in L followed by a map on R and

that L � R. However, it might not be true in general that these classes of maps are

closed under retracts. Thus we must instead consider (L,R) where the operation (−) is

that of retract closure. We indeed have that (L,R) forms a weak factorisation system

on C which we will refer to as the underlying wfs of (L, R). It can also be easily

checked that the classes L and R consist of exactly those arrows that admit and L-

map and respectively and R-map structure (as opposed to a L-coalgebra and R-algebra

structure).

With the additional structure of an AWFS, we have that the class R-Map is closed

under vertical composition, we will see this in the following proposition.

Proposition B.2.2. Composition lifts to a functor in the category R-Map as shown
in the following diagram:

R-Map×C R-Map
−◦−

//

��

R-Map

��

C→ ×C C→
−◦−

// C→
Proof. For this we will make use of the natural transformation δ : Q → QL obtained
from the comultiplication of L. Given R-maps (f, s) and (g, t) such that cod(f) =
dom(g), the composite gf has an R-map structure t ? s given by the composite

Q(gf)
δgf−−→ QL(gf)

Q(id,t◦Q(f,id))−−−−−−−−−→ Qf
s−→ dom(f)

it can be verified that this is indeed an R-map structure on gf and that it is moreover
compatible with the morphisms of R-maps.

It can be seen that the composition functor lifts further to the category R-Alg. In

fact, finding such a vertical composition operation gives an alternative definition of an

algebraic weak factorisation systems as stated in the following result.

Theorem B.2.3. [BR13, Theorem 4.15] Suppose R is a monad on C→ over cod :
C→ → C. Specifying a vertical composition operation on R-Alg is equivalent to speci-
fying an AWFS (L, R) on C.
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A monad (R, η̂, µ̂) on C→ is said to be over the codomain functor cod : C→ → C if

we have that cod ◦ R = cod, cod ◦ η̂ = idcod and cod ◦ µ̂ = idcod.

It is easy to show that isomorphisms admit a canonical R-algebra structures; indeed

if f is an isomorphism then Lf is too, thus (f, Lf−1) is an R-algebra structure on f. For

the property of closure under pullbacks, we have the following.

Lemma B.2.4. Given an R-algebra (f, s) and a pullback square (h, k) : f ′ → f, then
there is a unique R-algebra structure s ′ on f ′ making (h, k) a morphism of R-algebras.

Proof. Use the universal property of pullback squares to define an arrow s ′ as shown
in the following diagram:

Qf ′
Q(h,k)

//

s ′

!!

Qf ′

��

Qf

s

��

X ′
h //

f ′

��

X

f
��

Y ′
k

// Y

it is straightforward to verify that s ′ : Qf ′ → X ′ equipes f ′ with the structure of an
R-algebra.

In other words, the pullback functor lifts to the to the category of R-algebras as can

be seen from the following diagram:

R-Alg ×C C→ PB //

��

R-Alg

��

C→ ×C C→
PB

// C→
Remark B.2.5. The previous result also applies if we restrict to the case of R-Map,
that is of R-algebras for the pointed endofunctor (R, η) coming from the functorial
factorisation Q.

B.3 Morphisms of AWFS

In this section, we will describe a category AWFS(C) whose objects are algebraic weak

factorisation systems over some base category C. There will be a forgetful functor to

the slice category CAT/C→ of small categories over the arrow category C→:

AWFS(C) → CAT/C→
sending (L, R) to the forgetful functor from the category of L-coalgebras, L-Coalg →
C→.
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Definition B.3.1. Let (Q, L, R) and (Q ′, L ′, R ′) be two functorial factorisations over
C. A morphism of functorial factorisations from (Q, L, R) to (Q ′, L ′, R ′) consists
of a natural transformation φ : Q→ Q ′ making the following diagram commute:

dom

L

}}

L ′

""

Q
φ

//

R !!

Q ′

R ′||

cod

Given such a morphism φ we can define a pair of natural transformations between

the corresponding endofunctors

(1,φ) : L→ L ′ and (φ, 1) : R→ R ′

and the fact that φ makes both triangles of the above diagram commute, implies that

these two natural transformations preserve respectively the counit and the unit of the

endofunctors. This in turn implies that φ induces a pair of functors over C→
L-Map → L ′-Map and R ′-Map → R-Map

these are defined by respectively post and precomposing with the appropriate compo-

nents of φ.

Definition B.3.2. Let (L, R) and (L ′, R ′) be two AWFS over C. A morphism of
AWFS from (L, R) to (L ′, R ′) consists of a morphism of the underlying functorial
factorisations φ : (Q, L, R) → (Q ′, L ′, R ′) such that the following diagrams commute.

Q
φ

//

δ

��

Q ′

δ ′

��

QR
φR //

µ

��

Q ′R
Q ′(φ,1)

// Q ′R ′

µ ′

��

QL
φL

// Q ′L
Q ′(1,φ)

// Q ′L ′ Q
φ

// Q ′

We can characterise morphisms of AWFS in different ways. This is made precise in

the following proposition.

Proposition B.3.3. [Rie11, Lemma 6.9] Let (L, R) and (L ′, R ′) be two AWFS over C
and φ : Q→ Q ′ a natural transformation. The following are equivalent:

• φ : (L, R) → (L ′, R ′) is a morphism of AWFS.

• φ induces functors over C→:

L-Coalg → L ′-Coalg and R ′-Alg → R-Alg.

that preserve the vertical composition of (co)algebras.
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• (1,φ) : L→ L ′ is a comonad morphism and (φ, 1) : R→ R ′ is a monad morphism.

With these definitions in place, we can construct the category AWFS(C) and the

corresponding forgetful functor to CAT/C→ as was mentioned in the beginning of this

section.

B.4 Free and Algebraically-Free AWFS

In [Gar09] it is shown that, assuming some set theoretic conditions on C (it will be

enough to have C locally presentable), it is possible to construct a left adjoint to the

forgetful functor from AWFS(C) to CAT/C→ as illustrated in the following diagram.

AWFS(C) //
⊥

CAT/C→ww

This tells us that given any functor J → C→ it is possible to construct a free AWFS

(L, R) equipped with a functor η : J → L-Coalg over C→ with the following universal

property: for any other AWFS (L ′, R ′) and any other functor F : J → L-Coalg over C→,

there exists a unique morphism of AWFS φ : (L, R) → (L ′, R ′) such that the following

diagram commutes:

J
η
//

F

))

L-Coalg
φ̃

// L ′-Coalg

where φ̃ is the functor induced by φ.

In fact, the construction generates an AWFS with a stronger notion of freeness,

we call an AWFS generated this way over some category J → C→ algebraically-free on

J. In this section we will review this notion as well; but in order to do this, we will

first need to review a categorification of the classical Galois connection between the

orthogonality operations �(−) and (−)� in the poset of subsets of arrows of C.

Definition B.4.1. Let C be a category. By a category of arrows over C we mean
a functor u : J → C→ where J is a (possibly small) category, we denote by ui, uj and
by uσ, uτ the action of u on objects and arrows of J respectively. When we can infer
from the context the name of the functor u, we will denote the category of arrows just
by its domain category J.

Definition B.4.2. Consider a category of arrows u : J → C→. A right J-map consists
of a pair (f, θ) where f : X→ Y is an arrow or C and θ is a lifting structure against J:
that is θ assigns to each commutative square of the form (l,m) : ui → f, with i ∈ J, a
filler θ(i, l,m). These fillers, in addition, must be compatible with the arrows in J in
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the following way: if σ : i→ j is an arrow in J, then in the following diagram:

Di

ui

��

Dσ // Dj
uj

��

l // G

f

��

Ci
Cσ
//

θ(i)

77

Cj

θ(j)

??

m
// H

the triangle created by the lifts given by θ must commute.

Given a pair of right J-maps (f, θ) and (f ′, θ ′), a right J-map morphism consists
of a square (α,β) : f → f ′ such that for every i ∈ J we have that the triangle created
by the corresponding choices of diagonal fillers commute:

Di //

ui

��

X

f
��

α // X ′

f ′

��

Ci //

77??

Y
β
// Y ′

Let us consider a category of arrow u : J → C→, and from this we can define

a new category J� consisting of right J-maps (f, θ) together with the corresponding

morphisms; moreover there is a functor

u� : J� → C→
that forgets the lifting structure, which produces a new category of arrows. It can be

shown that this operation defines a contravariant functor:

(−)� : (CAT/C→)op → CAT/C→
In a completely analogous manner, we can define the concepts of left J-map and

left J-map morphism, and in this way we construct a dual contraviariant functor:

�(−) : CAT/C→ → (CAT/C→)op

It turns out that these two functors form an adjunction, which generalises the classical

Galois connection between orthogonal classes of maps:

CAT/C→ ⊥

�(−)

((

(CAT/C→)op
(−)�

oo

The relation between these lifting operations and algebraic weak factorisation sys-

tems can already be seen in Proposition B.1.2. Specifically, we have the following:
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Proposition B.4.3. Let (L, R) be an AWFS on C. There are lifting functors over C→
as shown in the following commutative diagram:

R-Alg
lift

//

��

(L-Coalg)�

R-Map

lift

'

55

oo

lift
// (L-Map)�

OO

All three functors are full and faithful and only the diagonal one is an equivalence.
Moreover, there is a functor (L-Map)� → R-Map; but it will not, in general, be an
inverse of the bottom horizontal functor.

Proof. The proof that the functors are full and faithful is the same one for each of
them, thus it is enough to show it for lift : R-Map → (L-Coalg)�. Let (f, s) be an
R-map, we define lift(f, s) = (f, θs), where θs((g, λ), h, k) = s ◦Q(h, k) ◦ λ for a given
L-coalgebra (g, λ). It follows from Proposition B.1.2 that this defines a functor.

We will show that all three functors are full and faithful. The first thing to notice
is that for any R-map (f, s) we have:

θs((Lf, δf), id, Rf) = s

using the comultiplication axioms of the comonad structure on L. Let’s show that lift is
full; for this consider (f, s), (f ′, s ′) two R-maps and a morphism of right L-Coalg-maps
(h, k) : (f, θs) → (f ′, θs ′). Consider the following lifting diagrams:

·
Lf
��

·

f��

h // ·
f ′

��

·
Lf
��

h // ·
Lf ′

��

·
f ′

��
·

Rf
//

s

@@
θ

77

·
k
// · ·

θ

77

Q(h,k)
// ·

s ′

@@

Rf ′
// ·

since the bottom composite of both diagrams agree, we have that h◦s = θ = s ′◦Q(h, k)
as required. Faithfulness is immediate.

We proceed show that the diagonal lifting functor is surjective on objects; for this
consider (f, θ) a right L-Coalg-map. We let

s := θ((Lf, δf), id, Rf)

this shows that (f, s) is an R-map. We also need to show that moreover θs = θ, for
this consider an L-coalgebra (g, λ) and a square (h, k) : (g, λ) → (f, θ), consider the
following derived diagram:

·
g

��

·
Lg

��

h // ·
Lf
��

·
f
��

·
λ
//

θ

55

·
Q(h,k)

// ·
Rf
//

s

@@

·
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we know (h,Θ(h, k)) is a morphism of L-Coalg in general, but (id, λ) : g → Lg is a
morphism of L-Coalg precisely because (g, λ) is an L-coalgebra (and not just an L-
map). Then since the lift cohere, we have desired property. If (g, λ) is only an L-map
we still obtain a functor (L-Map)� → R-Map but it will not form an equivalence.

Remark B.4.4. There is a dual result of the above proposition using �(−), instead of
(−)�, thus we obtain lifting functors as shown in the following diagram:

L-Coalg
lift //

��

�(R-Alg)

L-Map

lift
'

55

oo

lift
// �(R-Map)

OO

With these concepts in place, we can now introduce the definition of algebraically

free AWFS.

Definition B.4.5. Let u : J → C→ be a functor. We say that an AWFS (L, R) is
algebraically-free on J if there is a functor η : J → L-Coalg over C→, such that the
composition

R-Alg
lift // (L-Coalg)�

η�
// (J)�

is an isomorphism of categories.

We proceed to state a brief proposition regarding algebraically-free AWFS. This

proposition relates F-maps and F-algebras, we’ll offer a brief sketch of the proof.

Proposition B.4.6. If (L, R) is algebraically-free on some category of arrows J → C→,
then there are maps back-and-forth over C→:

R-Map oo //

$$

R-Alg

{{

C→
Sketch of proof. There is a ‘retract closure’ operation on categories of arrows (−) whose
underlying class of arrows is the usual retract closure . In general for an ordinary AWFS
we have that R-Alg ↔ R-Map over C→. Since we are in the algebraically-free case,
the category of R-algebras is the category of right-maps of J and it is automatically
closed under retracts, i.e. we have R-Alg ↔ R-Alg [GS17, Proposition 5.2].

We now proceed to state a version of Garner’s small object argument, the actual

result is more general.

Theorem B.4.7. [Gar09, Theorem 4.4] Let C be a locally presentable category and let
u : I → C→ be a small category of arrows over C. Then the free AWFS on I exists, and
it is algebraically-free on I.
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Garner also proved that algebraically-free AWFS implies free (which is not at all

trivial, in fact the converse is unknown). Notice that the notion of algebraically-free

AWFS generalises the non-algebraic concept of cofibrantly generated weak factorisation

systems (since we have an isomorphism of categories J� ∼= R-Alg). Moreover, the

construction of an algebraically-free AWFS from a category of arrows J generalises

Quillen’s small object argument for normal weak factorisation systems, because of this,

the method has been called Garner’s small object argument. Just as Quillen’s, Garner’s

small object arguments builds the AWFS (L, R) via a transfinite inductive process.

However, even if the category J is discrete, the constructions may not be equal. For

more on this see [Gar09, Rie11].

Finally we will state, without giving a proof, some propositions which are needed

in the thesis. These results are about relating lifting structures and adjoint functors,

they are generalisations of widely known results in the non-algebraic setting.

Proposition B.4.8. [GS17, Proposition 5.7] Consider an adjunction F : C // D : Uoo

and let u : J → C→ and v : I → D→ be categories of arrows. Then there is a bijection
between lifts of F→ and lifts of U→, as illustrated in the following diagram:

J
F→ //

u

��

�I

�v
��

I
U→

//

v

��

J�

u�

��

C→
F→ // D→ D→

U→ // C→
Proposition B.4.9. [GS17, Proposition 5.8] Consider functors u : J → C→ and
v : I → D→ and two adjunctions F1 : C // D : U1oo and F2 : C // D : U2oo . Let

m : F1 → F2 n : U2 → U1

be natural transformation forming mates. Then the transformation m can be lifted if
and only if the transformation n can be lifted as illustrated in the following diagram:

I

F→1
((

F→2
66�� m

u

��

�J

�v
��

J

U→
2
((

U→
1

66�� n

v

��

I�

u�

��

C→ F→1
))

F→2
55�� m D→ D→ U→

2
))

U→
1

55�� n C→

It is possible to generalise Proposition B.4.8 to the setting of adjunctions between

arrow categories induced by the Leibniz construction (instead of being induced by a

usual adjunction as in the previous cases).

For this, let us consider bifunctors F : C × D → E and G : Cop × E → D, such that

for every C ∈ C there is an adjunction

D
F(C,−)

//

⊥ E
G(C,−)

oo
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We can apply the Leibniz construction (Appendix C.1, but see also [RV14]) to these

bifunctors in order to obtain F̂ : C→ × D→ → E→ and Ĝ : (Cop)→ × E→ → D→. The

original family of adjuctions, will induce a new one of the form, for each h ∈ C→:

D→ F̂(h,−)
//

⊥ E→
Ĝ(h,−)

oo

Proposition B.4.10. [GS17, Proposition 5.9] Consider the situation described above
and let u : J → C→ and v : I → D→ be categories of arrows. Then for each h ∈ C→
there is a bijection between lifts of F̂(h,−) and lifts of Ĝ(h,−), as illustrated in the
following diagram:

J
F̂(h,−)

//

u

��

�I

�v
��

I
Ĝ(h,−)

//

v

��

J�

u�

��

D→
F̂(h,−)

// E→ E→
Ĝ(h,−)

// D→

B.5 Adjunction of AWFS and Change of Base

In [Rie11] Riehl pointed out that the universal property of free AWFS can be ex-

tended to a more powerful universal property where the base of the AWFS is allowed

to change, provided this change happens through an adjunction. We will explain the

basic reasoning here.

Definition B.5.1. Let (L, R) and (L ′, R ′) be AWFS over C and D respectively. An

adjunction of AWFS consists of an adjunction C
G
//D

Too
_ and a lift:

R-Alg
G̃ //

��

R ′-Alg

��

C→
G

// C→
such that G̃ preserves the vertical composition of algebras (i.e. the double categorical
structure).

Remark B.5.2. An equivalent definition of an adjunction of AWFS is that T lifts
to a functor T̃ : L-Coalg → L ′-Coalg that preserves the vertical composition [Rie11,
Lemma 6.12]. Thus an adjunction of AWFS gives automatically lifts of both G and T
that preserve the double categorical structure.

With this in place we now explain the generalised universal property of algebraically-

free AWFS. This is understood as a change of base of AWFS along adjunctions.
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Theorem B.5.3. [Rie11, Theorem 6.22] Consider an AWFS (L ′, R ′) which is algebraically-
free on u ′ : I ′ → D→, and consider an adjunction

C
G
//D

Too
_ .

Then, given any AWFS (L, R) on C and any functor f : I ′ → L-Coalg over T ; there
is a unique adjunction of AWFS between (L, R) and (L ′, R ′) over G ` T , such that the
following diagram commutes:

I ′

f

uu

η

��

L-Coalg L ′-Coalg
T̃

oo

where T̃ is the lift of the left adjoint to the categories of coalgebras.

B.6 Functorial Frobenius and Generalised Frobenius Struc-
ture

In this section we define two notions of Frobenius structures for categories of arrows.

Let us recall that in the non-algebraic setting, a weak factorisation system satisfies the

Frobenius property if the left class is stable under pullback along all arrows on the right

class. The material from this section is taken from [dBG12] and [GS17].

Definition B.6.1. Let (L, R) be an algebraic weak factorisation system on a category
C. A functorial Frobenius structure (or FF-structure) is given by a lift of the
pullback functor:

R-Map×C L-Map
P̃B //

��

L-Map

��

C→ ×C C→
PB

// C→
where PB(f, g) denotes the pullback of g along f.

There is a slightly stronger notion than that of a functorial Frobenius structure that

we will be interested in.

Definition B.6.2. Let (L, R) be an AWFS on a category C with a FF-structure P̃B,
we say that the structure is strong if for each (f, g) ∈ R-Map×C L-Map, the pullback
square:

·
f∗g

��

// ·
g

��
·

f
// ·

is a morphism of L-maps.
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We now provide an equivalent reformulation of the property of having a functorial

Frobenius structure. In order to do this, we first need some notation. Let u : I → C→
be a category of arrows over C, we denote by I�C the category whose objects are tuples

(X, i, a, b) where i ∈ I, X ∈ C and a, b are arrows in C making the following diagram

commute.

· ui //

a
��

·

b��
X

The arrows of I � C are commutative triangular prisms where the two triangular faces

are objects of I � C and the square face is (the image of) a morphism of I; that is,

a morphism (σ, f, g) : (X ′, i ′, a ′, b ′) → (X, i, a, b) in I � C can be pictured as in the

following diagram:

·
ui ′

  
a ′

��

f // ·

a

��

ui

��· g
//

b ′��

·

b��

X ′
σ

// X

The projection s : I � C → C maps an object (X, i, a, b) to X and a morphism (σ, f, g)

to σ.

Given a second category of arrows v : J → C, we can consider the following pullback

square:

I � C×C J //

��

J

cod◦v
��

I � C
s

// C

an object of I � C ×C J is an object (X, i, a, b) ∈ I � C and an object j ∈ J such that

cod(vj) = X. This can be illustrated as the following diagram:

·

a

��

ui

�� ·

b��
·

vj
// X

Notice that it is possible to pullback the arrow ui along vj in order to obtain an arrow

in the slice over the codomain of vj.
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Definition B.6.3. Consider category of arrows u : I → C→, v : J → C→ and z : Z →
C→. A generalised Frobenius structure (or GF-structure) for (I, J,Z) is given
by a lift of the pullback functor as follows:

I � C×C J
P̃B //

��

Z � C

��

C � C×C C→
PB

// C→
At a first glance, a GF-structure appears to be a more general notion than that of

a FF-structure. Nonetheless, we have the following proposition.

Proposition B.6.4. [GS17, Propositions 6.5 and 6.9] Let (L, R) be an AWFS on C.
Then, the following are equivalent:

1. A functorial Frobenius structures on (L, R).

2. A GF-structures on (L-Map, R-Map, L-Map).

3. A GF-structures on (L-Map, R-Map,� (L-Map�))

4. If (L, R) is algebraically-free on I → C→, a GF-structure on (I, I�,� (I�)).

The main reason to introduced generalised Frobenius structures is because these

admit an equivalent formulation in terms of pushforward functors. We proceed to

describe the reformulation.

Proposition B.6.5. [GS17, Proposition 6.6] Consider category of arrows u : I → C→,
v : J → C→ and z : Z → C→. Then (I, J,� (Z�)) has a GF-structure if and only if we
can provide the following data:

1. For each j ∈ J with vj : Dj → Cj a lift of the pullback functor to the slices:

I � Cj
v∗j

//

��

�(Z�) �Dj

��

C � Cj
v∗j

// C �Dj

2. For each morphism τ : j → k in J, the canonical Beck-Chevalley (Proposi-
tion 2.7.3) natural transformation:

BCτ : ΣDτv
∗
k → v∗jΣCτ : C � Cj → C �Dk

induced by the square vτ = (Dτ, Cτ) : vj → vk lifts to a natural tranformation as
shown:

BCτ : ΣDτv
∗
k → v∗jΣCτ : I � Cj →� (Z�) �Dk
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Remark B.6.6. Because �(z�) :� (Z�) → C→ is faithful, condition (2) is not extra
structure but only an extra property. Specifically, it is the property that for each j ∈ J

(with vj in the slice over Cj) the square BCτ(vj) is in the image under �(z�) of a
morphism in �(Z�).

Using the relationship between orthogonality and adjoints, we can reformulate the

previous proposition in terms of pushforward.

Proposition B.6.7. [GS17, Proposition 6.7] Consider category of arrows u : I → C→,
v : J → C→ and z : Z → C→. Then (I, J,� (Z�)) has a GF-structure if and only if we
can provide the following data:

1. For each j ∈ J with vj : Dj → Cj a lift of the pushforward functor to the slices:

Z� �Dj
Πvj

//

��

I� � Cj

��

C �Dj
Πvj

// C � Cj

2. For each morphism τ : j → k in J, the canonical Beck-Chevalley (Proposi-
tion 2.7.3) natural transformation:

BCτ : C
∗
τΠvk → ΠvjD

∗
τ : C �Dj → C � Cjk

induced by the square vτ = (Dτ, Cτ) : vj → vk lifts to a natural tranformation as
shown:

BCτ : C
∗
τΠvk → ΠvjD

∗
τ : Z

� �Dk → (I�) � Cj

Remark B.6.8. In the previous two propositions, if the morphism τ : j → k has an
underlying pullback square, then BCτ is a natural isomorphism.
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Appendix C

Theory of Uniform Fibrations

In this section we will give an overview of the theory of Uniform Fibrations developed

by Gambino and Sattler [GS17]. Among other things, they developed a machinery to

build, under some general assumptions, an algebraically-free AWFS that satisfies the

functorial Frobenious property. First, we need a brief review of the Leibniz construction

(also known as pushout-product) which we will provide in the next section.

C.1 Leibniz construction

The Leibniz construction, is a very useful tool for working with lifting problems and or-

thogonality. This constructions are crucial in the development of the theory of Uniform

fibrations and thus we will give a quick review of these.

Definition C.1.1. Let C,D and E be categories such that E has finite colimits and let
−⊗− : C× D → E be a bifunctor. The Leibniz construction or pushout-product
outputs from this data a bifunctor on the arrow categories

−⊗̂− : C→ × D→ → E→
whose action on a pair of arrows f : X→ Y in C and g : A→ B in D is given as in the
following pushout diagram in E:

X⊗A f⊗A
//

X⊗g
��

Y ⊗A

��
Y⊗g

��

X⊗ B //

f⊗B //

(Y ⊗A) +X⊗A (X⊗ B)

f⊗̂g
((

Y ⊗ B

There are some general results about this construction that we will state without

providing a proof.
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C. THEORY OF UNIFORM FIBRATIONS

Lemma C.1.2. [RV14, Lemma 4.8] Suppose that C (respectively D) and E are cocom-
plete and that − ⊗ − : C × D → E is cocontinuous in its first (respectively second)
variable. Then the resulting −⊗̂− : C→×D→ → E→ is cocontinuous in its first (respec-
tively second) variable.

Lemma C.1.3. [RV14, Lemma 4.10] Suppose that for each A ∈ D, the functor −⊗A
has a right adjoint homr(A,−), then −⊗̂f also has a right adjoint ^homr(f,−) for each
f ∈ C→. Moreover the bifunctor ^homr : D→ × (E→)op → (C→)op is given as in the
following pullback diagram:

homr(A, Y)

homr(A,f)

))

homr(g,Y)

++

^homr(f,g)
**

homr(A,X)×homr(A,Y) homr(B, Y)

��

// homr(B, Y)

homr(B,f)

��

homr(A,X)
homr(g,X)

// homr(B,X)

This construction is also known as pullback-exponential.

Lemma C.1.4. [RV14, Observation 4.12] Suppose (⊗,⊥) defines a (symmetric) monoidal
structure on C, then (⊗̂, id⊥) defines a (symmetric) monoidal structure on C→. More-
over, if (⊗, homr,⊥) is a closed monoidal structure, so is (⊗̂, ^homr, id⊥).

The following result is an easy application of the construction of the join or union

of subobjects in the context of elementary toposes.

Lemma C.1.5. Suppose C is an elementary topos equipped with a monoidal product −⊗
−, such that it preserves monomorphism in both variables. Consider a monomorphism
i : A → B such that i ⊗ − : (A ⊗ −) → (B ⊗ −) : C → C is an equifibred natural
transformation (i.e. all naturality squares are Cartesian). Then for any monomorphism
j ∈ C→, the morphism i⊗̂j is again a monomorphism.

Proof. Let j : X→ Y be a monomorphism in C. Then, the arrow i⊗̂j coincides with the
join (or union) of the subobjects i⊗ Y and B⊗ j.

The following proposition is the algebraic counterpart to the fact that the Leibniz

construction has a nice behaviour with respect to lifting problems. It is a special case

of Proposition B.4.10.

Proposition C.1.6. Consider C a category equipped with a closed symmetric monoidal
strucutre. Let u : J → C→ and v : I → C→ be categories of arrows and fix an arrow
i : A→ B in C.

Then there is a bijective correspondence between lifts of i⊗̂− and lifts of ^hom(i,−)
as illustrated in the following diagram:
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J
i⊗̂−

//

u

��

�I

�v
��

I
^hom(i,−)

//

v

��

J�

u�

��

C→
i⊗̂−
// C→ C→

^hom(i,−)

// C→

C.2 Interval Objects

An interval object in a category C corresponds to an abstraction of the closed interval

[0, 1] in the category of topological spaces (or some other ‘nice’ category of spaces).

The main motivation for introducing this kind of structure is to construct a path object

factorisation reminiscent of the classical one for a given topological space X

X→ X[0,1] → X× X

where the left-most map sends a point to the constant path (or loop) on that point,

and the right-most map sends a path to it’s source and target points.

We will start by assuming that C has a symmetric monoidal structure which is given

by a bifunctor:

−⊗− : C× C → C

which is associative and symmetric, and by a unit ⊥ ∈ C for ⊗. The associativity, sym-

metry and identity axioms are taken up to a coherent choice of natural isomorphisms.

We will also assume that C has an initial object ∅ ∈ C.

Definition C.2.1. An interval object in (C,⊗,⊥) consists a object I together with
two morphisms:

δ0, δ1 : ⊥→ I

respectively called the left and right endpoint inclusions which are disjoint, meaning
that the following is a Cartesian square:

∅ //

��

⊥

δ0

��

⊥
δ1
// I

We will denote the whole structure by (I, δ0, δ1).

It might be useful to require the interval object to have additional structure, other

than two disjoint points. In this thesis, we will assume that an interval objects comes

equipped with two additional structures.
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Definition C.2.2. A contraction for an interval object (I, δ0, δ1) is given by a mor-
phism

ε : I→ ⊥
which is a common retraction to both endpoint inclusions, i.e.

⊥ δ0 // I

ε
��

⊥δ1oo

⊥

Definition C.2.3. Consider an interval with contraction (I, δ0, δ1, ε). The connection
operations on I are given by two arrows

ck : I⊗ I→ I for k ∈ {0, 1}

making the following diagrams commute:

I
δk⊗I
//

ε
��

I⊗ I

ck

��

I
δ1−k⊗I

// I⊗ I

ck

��

I⊗ I ck //

ε⊗I
��

I

ε
��

⊥
δk

// I I I
ε
// ⊥

The contraction operations correspond to the two contraction of [0, 1] fixing each

endpoint. Meanwhile the connections correspond to special type of degeneracy maps

that can be pictured as two kinds of continuous deformations of the square [0, 1]× [0, 1]

into its diagonal, as illustrated in the following diagram:

0 ⇓ // 1 1 ⇒ 1

0

c0

@@

0

OO

⇐
0

c1

@@

//

OO

1

⇑
For the topological interval [0, 1], these maps are indeed given by c0(i, j) = min(i, j)

and c1(i, j) = max(i, j) respectively.

C.3 Path Objects from an Interval

In order to construct a path object such as X[0,1] for spaces, we will need to have an

appropriate notion of exponentiation. For this reason, we will further assume that the

monoidal structure on C is closed, this means that there is another bifunctor:

hom : Cop × C → C
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such that for each object A ∈ C, there is an adjunction between the following endo-

functors:

(−)⊗A : C // C : hom(A,−)oo

the objects hom(A,B) are usually known as hom-objects and we will adopt the following

notation:

hom(#1,#2) := (#2)#1 : Cop × C → C

From now on, we will consider a category C equipped with a closed symmetric

monoidal structure and an interval object with contraction and connections. With

this structure available, we are able to construct a factorisation of the diagonal map

δf : B→ B×A B for each f : B→ A in C of the following form:

B
rf //

δf ##

Pwf

ρf
��

B×A B

The object Pwf in the middle, is intended to be the object of paths in B contained in

the fibres of f. Formally, Pwf is constructed as the following pullback:

Pwf //

��

BI

fI

��

A
Aε
// AI

built using the structure of the interval and the closed monoidal structure on C. The

morphism rf : B→ Pwf will take an object of B to the constant path; it is induced by

the universal property to the pullback square as in the following diagram:

B Bε

��

f

$$

rp

  

Pwf //

��

BI

fI

��

A
Aε
// AI

The morphism ρf : Pwf → B ×A B takes a path and outputs its endpoints. To

construct it, first consider the canonical source and target arrows sf, tf : Pwf → BI

defined as follows:

Pwf
sf

~~
��

tf

  

B BI

Bδ
0

oo

Bδ
1
// B
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using the properties of the interval, we see that f◦ sf = f◦ tf and so we obtain an arrow

into the pullback of f along itself:

ρf : Pwf→ B×A B

it is immediate, by construction, that ρf ◦ rf = δf
It is an easy observation that the construction of rf and ρf are functorial; that is,

there are the action on objects of functors:

r, ρ : C→ → C→
the action on arrows is canonically given by the universal property of pullback squares,

in particular, if (h, k) : f ′ → f is a morphism in the arrow category, we obtain the

following commutative squares:

B ′

rf ′
��

h // B

rf

��

Pwf
′ Pw(h,k)

//

ρf ′
��

Pwf

ρf

��

Pwf
′
Pw(h,k)

// Pwf B ′ ×A ′ B ′
h×kh

// B×A B

Moreover, using some basic properties of pullback squares and the fact that (−)I

preserves limits (since it is a right adjoint) we obtain that the functor ρ preserves

Cartesian squares.

We have constructed a stable and functorial choice of factorisations of the diagonal

morphism; that is a functor which we will denote as follows:

PI := 〈r, ρ〉 : C→ → C→ ×C C→
we will refer to it by the name interval path-object factorisation.

Notice that if the monoidal unit coincide with the terminal object, and we apply

the above construction to an arrow of the form X→ ⊥, we obtain that PwX = XI, and

with this we confirm our initial intuition.

C.4 Uniform Fibrations

The following section follows the work done in [GS17], although we will work in a slightly

less general setting. The main idea is that using some general properties on a category

C equipped with a interval object and a sufficiently ‘nice’ AWFS (C, Ft), we will be able

to construct another AWFS (Ct, F) that will satisfy the functorial Frobenious property.

One is encourage to think of these two AWFS as those corresponding to the ones of

(trivial) cofibrations and (trivial) fibrations respectively, in a model category.

For the rest of this section we will work in a locally presentable C equipped with a

closed symmetric monoidal structure and an interval object (I, δ0, δ1) with contraction

and connections.
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C.4 Uniform Fibrations

Definition C.4.1. An AWFS (C, Ft) is said to be suitable if the following conditions
hold:

1. (C, Ft) is algebraically-free on a category of arrows u : I → C→.

2. Every object is uniformly cofibrant: i.e. the functor ⊥ : C → C→ mapping X ∈ C
to the unique arrow ⊥X : 0→ X factors through C-Map:

C ⊥ //

⊥ ##

C-Map

��

C→
3. C-Map is uniformly closed under pullback: i.e. there is a lift of the pullback

functor (here PB(f, g) means the pullback of g along f):

C→ ×C C-Map
PB //

��

C-Map

��

C→ ×C C→
PB

// C→
4. C-Map is uniformly closed under Leibniz product with endpoint inclusions: i.e.

there are lifts for k ∈ {0, 1} as shown:

C-Map
δk⊗̂−

//

��

C-Map

��

C→
δk⊗̂−

// C→
Remark C.4.2. Notice that for part 3 in the previous definition, it is equivalent to
have a GF-structure (Definition B.6.3) on the tuple (C-Map,C→, C-Map).

Let (C, Ft) be a suitable AWFS algebraically-free on u : I → C→. We define the

category of arrows u⊗ : I⊗ → C→ by letting I⊗ := I+I and u⊗ defined by the following

diagram:

I //

δ0⊗̂u   

I⊗

u⊗
��

Ioo

δ1⊗̂u~~

C→
where (δk⊗̂u)i := δk⊗̂ui for i ∈ I. Using Garner’s small object argument we generate

the algebraically-free AWFS on u⊗ : I⊗ → C→ which we denote (Ct, F). The objects of

F-Map are called uniform fibrations.

Theorem C.4.3. [GS17, Theorem 8.8] The AWFS (Ct, F) has a functorial Frobenious
structure.
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The proof of this theorem uses the crucial fact that homotopy equivalences can be

given algebraic structure and can be organised in a category of arrows; as we will see

in the following section.

Remark C.4.4. Notice that the uniform fibration construction has a non-algebraic
counterpart. Let us give a quick account of this. Let us consider a suitable weak
factorisation system (C, Ft); i.e. it is cofibrantly generated from a set I, all arrows
⊥ : 0 → X are in C, the class C is pullback stable and closed under Leibniz product
with endpoint inclusions. From this we can generate using the small object argument
a second weak factorisation system (Ct, F) generated by the set

{δk⊗̂u|k ∈ {0, 1} and u ∈ I}

We will obtain that (Ct, F) satisfies the Frobeinius condition.
As an example, let sSet be the category of simplicial sets, and take I to be the set

of boundary inclusion of representables. The resulting class F will turn out to coincide
with the class of Kan fibrations.

C.5 Homotopy Equivalences and Deformation Retracts

We will recall some basic facts about homotopy and homotopy equivalences in the

context of an interval object. We will see how some classical results lift to the algebraic

setting.

Definition C.5.1. Consider a category C be as before.

1. Let f, g : X→ Y be morphisms in C. An homotopy from f to g denoted θ : f ∼ g
consists of an arrow θ : I⊗ X→ Y such that the following diagram commutes:

X
δ0⊗X
//

f
""

I⊗ X

θ
��

X
δ1⊗X
oo

g
||

Y

2. We say that f : X → Y is an left (or 0-oriented) homotopy equivalence if
there is a map h : Y → X and homotopies θ : h◦f ∼ idX and ψ : f◦h ∼ idY . Dually,
f is a right (or 1-oriented) homotopy equivalence if there is h : Y → X and
homotopies θ : idX ∼ h ◦ f and ψ : idY ∼ f ◦ h.

3. A k-oriented homotopy equivalence (f, h, θ,ψ) is said to be strong if the following
diagram commutes:

I⊗ X

θ
��

I⊗f
// I⊗ Y

ψ
��

X
f

// Y
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4. A morphism of strong k-oriented homotopy equivalences (s, t) : (f, h, θ,ψ) →
(f ′, h ′, θ ′, ψ ′) consists of maps s : X → X ′ and t : Y → Y ′ making the following
diagrams commute:

X
s //

f
��

X ′

f ′

��

Y
t //

h
��

Y ′

h ′

��

I⊗ X I⊗s
//

θ
��

I⊗ X ′

θ ′

��

I⊗ Y I⊗t
//

ψ
��

I⊗ Y ′

ψ ′

��

Y
t
// Y ′ X

s
// X ′ X

s
// X ′ Y

t
// Y ′

We denote by Sk the category of strong k-oriented homotopy equivalences and

morphisms. Notice that projecting to the first component gives us a functor Sk → C→
making Sk a category of arrows. We define S := S0+S1 with the corresponding functor

S → C→ given by the universal property of the coproduct, we call S the category of

strong homotopy equivalences.

Remark C.5.2. Since we are working with closed monoidal category (C,⊗, hom,⊥)
using the adjuctions between − ⊗ − and hom(−,−), we can translate the definitions
from above using the internal-hom instead of the monoidal product. For example, an
homotopy from f to g consists of a morphism θ̃ : X→ YI (the transpose of θ : I⊗X→ Y)
such that the following diagram commutes:

X
g

��

f

��

θ̃
��

Y YI
(δ0)I
oo

(δ1)I
// Y

All the other concepts from can be translated in a similar fashion. The category of
strong homotopy equivalences defined using the internal-hom functor will turn out to
be equivalent over C→ to that of the foregoing definition, thus we can choose to work
with either one.

There is an alternative characterisation of the category of strong homotopy equiv-

alences which we proceed to describe. For k ∈ {0, 1}, we use the notation θk for the

following Cartesian square:

∅
⊥∗
��

// ∗
δk
��

∗
δ1−k

// I

For any map f : X→ Y, we can take the Leibniz pushout-product of θk with f in order

to obtain the square θk⊗̂f : f→ δk⊗̂f depicted below:

X
Lf //

f
��

Y +X (I⊗ X)

δk⊗̂f
��

Y
δ1−k⊗Y

// I⊗ Y
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Lemma C.5.3. [GS17, Lemma 8.1] For k ∈ {0, 1}, the category Sk of k-oriented strong
homotopy equivalences can be described as the category of arrows f ∈ C→ equipped with
a retraction ρ of θk⊗̂f. In detail, we have

Objects: Pairs (f, ρ) where f ∈ C→ and ρ : θk⊗̂f→ f such that ρ ◦ (θk⊗̂f) = idf.

Arrows: An arrow τ : (f, ρ) → (f ′, ρ ′) consists of a square τ : f→ f ′ such that the following
diagram commutes:

δk⊗̂f
ρ

��

δk⊗̂τ
// δk⊗̂f ′

ρ ′

��

f
τ

// f ′

We will now state without a proof some useful results that relate the AWFS (C, Ft)

and (Ct, F) with the categories of strong homotopy equivalences.

Lemma C.5.4. [GS17, 8.4, 8.5 and 8.7] Let (C, Ft) be a suitable AWFS. Then we
have the following lifts of functors:

1. The functor δk ⊗− : C → C→ lifts to Sk as shown:

C
δk⊗−

// Sk

��

C
δk⊗−

// C→

2. The functor δk⊗̂− : C→ → C→ lifts to Sk as shown:

C→ δk⊗̂−
// Sk

��

C→
δk⊗̂−

// C→
3. There is a functor over C→:

C-Map×C→ S

''

// Ct-Map

zz

C→
4. There is a functor over C→:

F-Map×C→ S

&&

// Ft-Map

zz

C→
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5. There are a lifts of the pullback functor for k ∈ {0, 1}:

Sk ×C F-Map
PB //

��

Sk

��

C→ ×C C→
PB

// C→
where PB(g, h) = h∗g the pullback of g along h.

A very similar, but more restrictive, notion to that of strong homotopy equivalence

is that of strong deformation retract.

Definition C.5.5. Let g : A→ B be a map in C. For k ∈ {0, 1}, a k-oriented strong
deformation retraction structure for g corresponds to the data of maps r : B→ A

and h : I× B→ B subject to the following conditions:

1. r is a retract of g, that is r · g = idA.

2. h is a k-oriented simplicial homotopy between g · r and idB. That is depending
on whether k = 0 or k = 1 we have that one of the following diagrams commutes:

B

k=0

δ0 //

g·r
""

I× B

h
��

B
δ1oo B

k=1

δ0 // I× B

h
��

B
δ1oo

g·r
||

B B

3. The retraction has a strength, which we express by requiring the following diagram
to commute:

I×A I×g
//

ρ1
��

I× B

h
��

A
g

// B

intuitively, we are requiring the homotopy h to be degenerate on the image of g.

We thus define a k-strong deformation retraction to be a tuple (g, r, h) where g :

A→ B is an arrow in C with a k-oriented strong deformation retraction structure given

by r and h. A morphism of k-strong deformation retractions

(s, t) : (g, r, h) → (g ′, r ′, h ′)

consists of maps s : A→ A ′ and t : B→ B ′ such that the following diagrams commute:

A
s //

g

��

A ′

g ′

��

B
t //

r

��

B ′

r ′

��

I× B I×t
//

h
��

I× B ′

h ′

��

B
t
// B ′ A

s
// A ′ B

t
// B ′
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We have that k-strong deformation retractions and morphisms of such form a cate-

gory of arrows, which we denote: SDRk → C→ by mapping (g, r, h) 7→ g. The category

of arrows of strong deformation retractions is defined as the coproduct in the slice over

C→ of SDR0 and SDR1, we denote this as:

SDR → C→
It is easy to verify that there is a functor over C→ form the category of strong

deformation retracts to that of strong homotopy equivalences as shown in the following

diagram:

SDR

""

// S

~~

C→
the action on objects is given by (g, r, h) 7→ (g, r, h, ε) where epsilon denotes the con-

stant homotopy.

C.6 Uniform Fibrations in Toposes

In this section we will describe a slightly more general result than [GS17, Theorem 9.1].

We will generalise from the setting of presheaves to that of a Grothendieck topos.

Definition C.6.1. A subcategory D of a category C is said to be dense if it is full,
small and every object of C is the canonical colimit over D, that is, for every C ∈ C,
we have:

colimD→C
D∈D

D ∼= C

Lemma C.6.2. [GS17, Lemma 5.15] Let E be a cocomplete category equipped with
universal colimits and a dense subcategory D ⊂ E. Let J be a full subcategory of C→

cart

closed under pullback along maps with domain in D. Denote by I the restriction of J

to arrows with codomain in D, that is

I := {i ∈ J|cod(i) ∈ D}

Then the inclusion J → C→ is the left Kan extension of v : I → C→ along q : I → J, as
shown in the diagram:

I
q

//

v
  

J

Lanqv~~

C→
Proof. Because C is cocomplete, the left Kan extension admits the following description
as a colimit:

Lanqv(j) =

∫ i∈I
J(i, j) · i
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that is, the colimit (in the arrow category) of the i ∈ I indexed by the pullback squares
of the form:

Af

i
��

f̂ // A

j
��

D
f
// C

with D ∈ D. Because J is closed under pullbacks along morphisms with domain in D,
we can write the colimit in question as:

Lanqv(j) ∼= colimf:D→C
D∈D

f∗j

Now, because D is dense, we have that colimf:D→C
D∈D

D ∼= C, and because colimits are uni-

versal, we have that colimf:D→C
D∈D

Af ∼= A. Finally, because colimits in C→ are computed

pointwise, we have:

j ∼= colimf:D→C
D∈D

(Af → D) ∼= colimf:D→C
D∈D

f∗j ∼= Lanqv(j)

Theorem C.6.3. [GS17, Theorem 9.1] Let E be a Grothendieck topos with a closed
symmetric monoidal structure, a dense subcategory D and with an interval object with
contractions and connections such that:

(C1) I⊗ (−) : E → E preserves pullbaks

(C2) δk ⊗ (−) : idE → I⊗ (−) is a Cartesian natural transformation for k ∈ {0, 1}.

Consider M a full subcategory of E→
cart satisfying:

(M1) the objects of M are monomorphisms

(M2) ⊥ : 0→ X is in M for every X ∈ E.

(M3) the objects of M are closed under pullbacks.

(M4) the elements of M are closed under Leibniz product with the endpoint inclusions.

Then there exists a suitable AWFS (C, Ft) and it is algebraically-free on M.

Proof. Consider the subcategory of M of arrows with codomain in D, that is I := {j ∈
M|cod(j) ∈ D}. By the previous lemma we have that:

I
q

//

v
  

M

Lanqv}}

C→
By Garner’s small object argument, there is an algebraically-free AWFS (C, Ft) on

I and by [GS17, Proposition 5.14] we have that M� = I� = F-Alg. The verification
that (C, Ft) is suitable is straightforward using orthogonality arguments.
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C. THEORY OF UNIFORM FIBRATIONS

Remark C.6.4. Notice that E, being a topos, is in particular a locally presentable
category and as such it can always be equipped with a dense subcategory (the full
subcategory of compact objects for a large enough cardinal).
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