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Abstract 

 

This thesis focuses on the performance of terrestrial communication systems that 

use channel assignment schemes to allocate base stations in a scenario that 

implements the coexistence of mixed terrestrial communication systems based on 

cognitive radio technology. Interaction and coexistence of different channel 

assignment schemes is investigated. Reinforcement learning is applied into 

multicast downlink transmission with power adjustment to develop the intelligence 

of cognitive radio. 

 

We focus on investigating channel assignment schemes that select channels based 

on optimizing the coverage area supported by a terrestrial network. Four channel 

assignment schemes are developed and compared individually followed by an 

interaction of mixed schemes. It was found that for mixed schemes, different 

combinations will affect performance, either delivering better coexistence or more 

interference. It is shown in this thesis that the dynamic channel assignment used in 

different situations can efficiently improve the performance of spectrum 

management. 

 

We investigate how channel assignment in multicast terrestrial communication 

systems with distributed channel occupancy detection can be improved using 

intelligence based on reinforcement learning and transmitter power adjustment. A 

weighting factor is used to determine the highest priority channels and help in 

controlling the performance of the system. It is shown how such schemes 

significantly reduce the number of reassignments and improve the dropping 

probability at the expense of increased blocking. It is found that using different 

minimum quality of service threshold percentages can partly control and improve 

performance in place of the more traditional SINR (Signal to Interference plus 

Noise Ratio) threshold levels. We also show how a power adjustment technique is 

developed, that significantly reduces the level of overlap between adjacent base 

stations and further reduces interference and transmitter power. 
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1.1 Overview 

With the rapid development of wireless communications in the 20th century, the 

rate of user and service growth continues to increase at a tremendous speed. 

Simultaneously, most of the usage is concentrated in some crowded frequency 

bands [1]. This means that the spectrum is often underutilized and inefficiently 

used. Studies by the FCC (Federal Communications Commission) show that 70% 

of the allocated spectrum is not utilized. Taking the usage of radio spectrum in the 

UK in Figure 1-1 as an example, we can see the frequency usage situations of 

different places in and around London for spectrum between 50 MHz and 1 GHz. 

The top frequency band shows the spectrum usage in a rural area, the middle one is 

near Heathrow airport and the bottom one is in central London. The area in blue is 

the frequency that is under used; part of the spectrum is yellow, red and even dark, 

which represents heavily used spectrum. There are plenty of spectrum opportunities, 

but they are not efficiently used in both space and time simultaneously, especially 

in rural areas. This discrepancy between allocation and use provides the motivation 

for opportunistic use of the spectrum. It then becomes more and more urgent to 

improve the spectrum utilization efficiency to meet the large bandwidth 

requirements of software and multimedia applications and the significant growth in 

the number of wireless users. To accomplish this, some related technology of radios 

need to be developed immediately that can sense the existing spectrum and identify 
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and use free frequency bands [2]. 

 

 

Figure 1-1  Usage of the radio spectrum in different areas of the UK (reproduced 

directly from [3]) 

 

In this case, the radio resource requires efficient reuse of the radio spectrum 

allocated to wireless communication systems in order to support the enhancement 

of applications within the limited radio resource [4, 5]. The reason for this 

inefficient usage of spectrum is that existing spectrum management techniques are 

not intelligent, or flexible enough to satisfy most of the requirements from users. If 

a radio is intelligent, it could learn about services available in locally accessible 

wireless networks, and could interact with those networks using their preferred 

signaling protocols. Additionally, it could use the frequencies and choose 

waveforms that minimize and avoid interference with existing radio 

communication systems [6]. An intelligent radio, which is called a cognitive radio, 

has the potential to realize the dynamic usage of frequency bands on an 

opportunistic basis, by identifying and using under-utilized spectrum [7], that is 
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enabling significant spectrum reuse. Intelligent techniques will let the user find free 

spectrum at that moment and quickly use it.  Thus, cognitive radio technology 

could be seemed as a very good solution for spectrum efficiency that is expected to 

lead to a revolution in the field of wireless communications. 

 

It is necessary to point out that dynamic channel assignment is the significant issue 

when we start to investigate the cognitive radio technology. In radio systems and 

wireless networks, channel assignment schemes are required to assign channels to 

base stations and access points and to avoid co-channel interference among nearby 

cells. A number of approaches have been tried to assign bandwidth to users in an 

efficient manner while minimizing interference to other users using dynamic 

spectrum management. The number of research activities related to cognitive radio 

is steadily increasing. Most of their earlier research work of cognitive radio is from 

dynamic channel assignment and software-defined radio. We study the dynamic 

channel assignment first, and based on that, we develop our original schemes and 

their own characteristics to be compared and analysed. We give more detailed on 

the latest work carried out by others in Chapter 2 and show the connections 

between their work and ours. It is very novel to use mixed channel assignment 

schemes to allocate base stations in a more realistic scenario with different 

considerations. The interaction exists when the schemes are combined, causing 

positive and negative reactions with different combinations. 

 

Multicasting could be used in many different areas. It is also a very important 

technique for cognitive radio to use. Most of its usage from the work of other 

researcher is concerned with the multi-hop cognitive radio networks or multicast 

routing, which could also enhance spectrum utilization. What is particularly 

interesting here for our work is the multicast communications applied to terrestrial 

http://en.wikipedia.org/wiki/Bandwidth_(signal_processing)
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communications directly, and the idea that multicast groups would help to 

minimize the energy cost and be more efficient in satisfying the requirements of 

cognitive users. Considering these connections, the novel idea for using dynamic 

channel assignment in this thesis is that we focus more on the multicasting scenario. 

When cognitive radio is combined with multicasting, it could determine the 

spectrum that satisfies a group of users, while not seriously affecting other groups 

of multicast users sharing the pooled spectrum. 

 

Dynamic channel assignment cannot satisfy the intelligent perspective of cognitive 

radio. Based on dynamic channel assignment, we assume that the schemes can 

learn the information from the previous iterations and give feedback to their 

respective systems. Reinforcement learning is motivated as a way of potentially 

reducing the requirements of spectrum sensing by alternatively enabling cognitive 

radio users to exploit the preferred resources based on historical experience. 

Applying reinforcement learning into the distributed channel assignment schemes 

is aimed at improving the performance of more conventional schemes by using 

previously obtained knowledge to aid future decisions, in order to further improve 

the assignment stability and general performance of the cognitive radio system. By 

utilizing the reinforcement learning approach, users are able to discover the best 

available resources autonomously, which could result in significantly improved 

performance, while reducing the requirements for spectrum. One distinguishing 

feature of cognitive radio is the ability to incorporate learning [8, 9]. Based on 

dynamic channel assignment, we assume that the schemes can learn the 

information from the previous iterations and give feedback to their respective 

systems.  

 

Many people have approached the learning research of the cognitive radio system 
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with game theory or other learning schemes. We chose reinforcement learning 

because it has more novelty; our complex channel assignment schemes and the 

flexibility of the channel assignment schemes were also considered. Reinforcement 

learning was chosen in this thesis as a very new improvement for cognitive radio. 

Unlike to other learning strategies, reinforcement learning uses the weighting factor 

which could indicate the importance of the resources of cognitive radio users and 

be updated in each communication process. Its emphasis on the learning of each 

individual user from direct interference with the environment make it perfectly 

suited to our distributed occupancy scenario. 

 

The main problem we want to solve is how to improve the spectrum utilization 

efficiency by using cognitive radio technology. In order to satisfy this, we will need 

to investigate channel assignment schemes that select channels based on optimizing 

the coverage area supported by a terrestrial network. We will also need to figure out 

how channel assignment in multicast terrestrial communication systems with 

distributed channel occupancy detection can be improved using intelligence based 

on reinforcement learning and transmitter power adjustment. 

 

1.2 Purpose 

The purpose of this investigation is to understand the implications of using 

cognitive radio with systems of different transmission range. We also aim to 

compare the performance of terrestrial communication systems that use different 

channel assignment schemes to allocate base stations in a scenario that implements 

the coexistence of mixed terrestrial communication systems based on cognitive 

radio technology. To demonstrate this, the interaction and coexistence of different 

channel assignment schemes should be analyzed. Artificial intelligence techniques 

like distributed reinforcement based learning should be developed to ensure that 
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spectrum usage is maximized.  

 

1.3 System Scenario 

The coexisting scenario as shown in Figure 1-2 is initially based on three channels 

with 10 terrestrial base stations in random locations [10], in order to suitably model 

the behaviours of the channel assignment schemes in a multicast cellular system. 

The number of base stations and channels will be changed as required by the 

system and scenario later. The scenario here, unlike other familiar terrestrial 

downlink models that pay attention to the individual user, focuses instead on 

simultaneously delivering good coverage to many users in a coverage area. 

 

 

Figure 1-2 The coexisting scenario model with 3 channels and 10 base stations 

 

Some specific groups of users and general requirements of services will also be 

considered later in this thesis with a multicast scenario. Multicasting technology 

can simultaneously transmit signals to multiple services to satisfy different 
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requirements, which can save radio resources. Applying multicasting in cognitive 

radio and developing a multicast scenario with coexistence situations is a novel 

aspect of this thesis, and we will further investigate more applicable developments 

of this in spectrum usage. To do this we simulate a more realistic system which is 

described below. In general, customers use different mobile networks, so different 

base stations belong to different mobile companies and control their transmit power 

to best serve their own users in their coverage area.  

 

Figure 1-3 shows the multicast scenario that is implemented by different operators. 

The dotted lines show the uplink. Heterogeneous multicast systems here can belong 

to different operators, each using CR-based channel assignment to satisfy users. 

The schemes select a channel based on the highest percentile of SINR across the 

coverage area. In this thesis, all the channel assignment schemes look at the SINR 

at multiple points within the coverage area, enabling multicast transmissions. These 

schemes are discussed throughout the thesis. There are many potential applications 

for our techniques; for example, our scenario is sufficiently similar to time division 

multiple access (TDMA). The TDMA technique allows several users to share the 

same frequency channel by dividing the signal into different time slots, which is a 

type of time-division multiplexing, where instead of having one transmitter 

connected to one receiver, there are multiple transmitters. In our multicast scenario, 

customers can use different mobile networks, so different base stations like 

multiple transmitters belong to different mobile companies and control their 

transmit power to best serve their own users in their coverage area. 
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Figure 1-3 Heterogeneous multicast system scenario 

 

Furthermore, we analyse the effect on performance of different user populations 

based on distributed occupancy. Figure 1-4 shows the distributed detection scenario, 

which including three different base stations with multiple users. The users in red, 

yellow and blue are the users for each individual base station. The users in black 

can be assigned to more than one base station. The users in white are unable to 

connect to any base station. Distributed detection is helpful for solving shadowing 

and “hidden node” problems [11]. Also, by considering the different user 

population, it is more scalable and provides systems with a lower complexity which 

is helpful in the implementation of cognitive radio. 

 

Figure 1-4 Distributed detection scenario 
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1.4 Thesis Structure 

This thesis consists of eight further chapters, the contents of which are outlined in 

this section. 

 

Chapter 2  

Background knowledge relating to the research work will be given in this chapter. 

The history and development of Software-Defined-Radio and Cognitive Radio 

technology will be shown firstly. Next, spectrum management will be introduced, 

especially relating to spectrum etiquettes, spectrum pooling and spectrum pricing. 

Then different propagation and antenna information will be shown. Channel 

assignment for fixed, dynamic and hybrid strategies and further related research 

work of channel assignment are presented, followed by the introduction of 

multicasting then the reinforcement learning.  

 

Chapter 3  

The purpose of this chapter is to give a brief introduction to simulation techniques 

and performance evaluation. Firstly, a description of the system scenario model and 

related knowledge of modeling are shown. Then the appropriate measure and 

performance verification are presented, and then the simulation tools that have 

been used to generate the results shown in this thesis, to generate the results shown 

in this thesis, and then a description of the system scenario model and related 

knowledge of modeling are shown. Then the appropriate measures and 

performance verification are presented. Finally, the performance evaluation and 

parameters are also discussed.  

 

Chapter 4 

This chapter will describe the model of the coexisting scenario with related 
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simulation parameters, followed by the equations for evaluating the performance of 

the system and the benefits of using multiple channels. 4 different channel 

assignments will be introduced. Then the different scheme comparisons will be 

discussed in the context of channels and base stations plots. After that, the scheme 

with best performance will be found. As an addition, the different requirements of 

users will be satisfied.  

 

Chapter 5 

The purpose of this chapter is to present the interaction and coexistence of mixed 

channel assignment schemes. The four schemes that were introduced in Chapter 4 

will be combined two by two, within one scenario and the effect of scheme 

interaction observed. Firstly, the detailed scenario will be shown. Then the 

performance of different types of mixed scheme will be evaluated, followed by the 

same type of mixed schemes. After that, the optimal scheme for each combination 

will be found after considering interaction and coexistence, followed by the 

discussions of the results of mixed schemes.  

 

Chapter 6  

This chapter briefly overviews the model of the multicast scenario and distributed 

detection. This is followed by the introduction of two different distributed channel 

assignment schemes and their characteristics, and then the reinforcement learning 

rules. The performance and improvement of distributed reinforcement schemes will 

be then analyzed and discussed.  

 

Chapter 7  

This chapter describes the user population analysis of the distributed occupancy 

detection model. The results arising from different user populations influencing the 
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distributed reinforcement learning schemes will be then analyzed and discussed, 

followed by the power adjustment applied in the system.  

 

Chapter 8 

This chapter provides a detailed description of potential further work, based on the 

work in this thesis. 

 

Chapter 9 

Summary and conclusions of this thesis and research work will be shown, followed 

by the highlights of novel contributions and originality of the research work. 
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2.1 Introduction 

Cognitive radio has been suggested as a new way to implement efficient reuse of 

the pooled radio spectrum assigned to multiple wireless communication systems, 

by exploiting a wide variety of intelligent behaviour [12]. Cognitive radio detects 

the unused portion of the spectrum, and selects the unused spectrum holes by 

taking suitable steps to avoid interference with future licensed users [13]. Radios 
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can monitor the spectrum and choose frequencies that minimize interference to 

existing communication activity in order to optimize the usage, especially the reuse 

of spectrum [14]. In order to satisfy multi-users’ requirements for cognitive radio, 

multicasting will be applied to the system. Multicasting, especially on the downlink, 

will be an important feature of future pooled spectrum systems instead of 

unicasting because it is more efficient and can serve different groups of user 

simultaneously. As a starting point of investigating cognitive radio technology, 

channel assignment schemes will be studied here. Channel assignment can be 

divided into fixed channel assignment (FCA); dynamic channel assignment (DCA), 

which is often used for cognitive radio; and hybrid channel assignment (HCA) [15]. 

For making radio more intelligent, reinforcement learning is a method to describe 

the behaviour of an agent that learns through trial-and-error interactions with a 

dynamic environment so as to maximize some notion of long-term reward [16], 

which could be used for the learning part of cognitive radio. The agent receives and 

learns the information based on the external environment and previous states, 

which then influences the current activation [12].  

 

The object of this chapter is to provide the background knowledge related to 

cognitive radio, channel assignment techniques and reinforcement learning. The 

history and development of software-defined-radio and cognitive radio technology 

is shown firstly. Next, spectrum management will be introduced, especially relating 

to spectrum etiquettes, spectrum pooling and spectrum pricing, and then, different 

propagation and antenna information will be shown. Channel assignment for fixed, 

dynamic and hybrid strategies will be introduced and further related research work 

of channel assignments are represented. This is followed by the introduction of 

multicasting and the knowledge of reinforcement learning.  
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2.2 Cognitive Radio 

2.2.1 Spectrum Usage 

The radio spectrum is an important natural resource. It is currently divided into 

bands that obey appropriate spectrum etiquettes by regulators and are licensed to 

operators, or left unlicensed for specific devices to use. This approach means that 

spectrum is often underutilized and inefficiently used. The figure shown below is 

the United States frequency allocations, which can be used to show the 

underutilized radio spectrum. The radio spectrum is generally considered to occupy 

the range from 3 kHz to 300 GHz. There are many different ways that 

organizations or companies can use the radio. The bands from 30 MHz to 3 GHz is 

where cognitive radio is likely to be applied because of its excellent propagation 

characteristic, but studies have shown that despite these bands still remains 

relatively unoccupied at less than 13% [17]. However, they may not be 

simultaneously used in the same geographic area or at the same time. It is worthy 

to note that frequency bands in general have been allocated multiple times. 

Obviously, the spectrum is scarce in some specific bands, but overall actual 

measurement shows that more than 70% of the spectrum is unused [18]. Thus, it is 

necessary and important to consider efficient spectrum usage. 
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Figure 2-1 The United States frequency allocations (reproduced directly from [17]) 
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Frequency Allocation 

Frequency allocation is also known as spectrum allocation. It is defined as a 

discrete band of the radio spectrum that has been determined by a regulator. The 

frequency assignment is the frequency or frequencies on which a particular user is 

allowed to operate within a given frequency allocation [17]. It can represent the 

spectrum usage and development of radio resource management. According to the 

traditional spectrum sharing policy, the spectrum is licensed to the authorized users 

by the regulators, as shown in Figure 2-1 shown. In the UK, Ofcom also mentioned 

the details of frequency allocation in their report describing the usage of various 

frequency bands in the UK and which bodies are responsible for planning and 

managing them, including making frequency assignment to individual users or 

installation at particular locations. The entire spectrum allocation needs to be 

agreed on by the International Telecommunication Union [19].  

 

Normally, the users rely on allocation of frequencies for efficient use of different 

objects, like cellular, broadcasting, emergency services, satellite, business radio 

frequency and so on, which shows the distribution of radio spectrum usage. In the 

communication aspects, GSM networks operate in a number of different carrier 

frequency ranges, which include the frequency ranges for 2G and UMTS frequency 

bands for 3G, with most 2G GSM networks operating in the 900MHz or 1800MHz 

bands. Most 3G networks in Europe operate in the 2100 MHz frequency bands. 

The competitor, W-CDMA transmits on a pair of 5 MHz-wide radio channels, 

while CDMA2000 transmits on one or several pairs of 1.25 MHz radio 

channels [20]. 

 

For WiMAX, the original 802.16a standard specified transmissions in the range 10 

- 66 GHz, but 802.16d allowed lower frequencies in the range 2 to 11 GHz. The 
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lower frequencies used in the later specifications means that the signals suffer less 

from attenuation and therefore they provide improved range and better coverage 

within buildings. This brings many benefits to those using these data links within 

buildings and means that external antennas are not required. Different bands are 

available for WiMAX applications in different parts of the world. The frequencies 

commonly used are 3.5 and 5.8 GHz for 802.16d and 2.3, 2.5 and 3.5 GHz for 

802.16e but the use depends upon the countries [21, 22].   

 

LTE devices operate in either of two modes: TDD (time domain duplex) or FDD 

(frequency domain duplex). In FDD transmission and reception takes place at 

different frequencies whereas in TDD transmission and reception takes place at the 

same frequency but different time slots. They are separate frequency allocations for 

these two modes but some bands are common between the two modes. The LTE 

standard can be used with many different frequency bands. In North America, 700/ 

800 and 1700/ 1900 MHz are planned to be used; 800, 1800, 2600 MHz in Europe; 

1800 and 2600 MHz in Asia; and 1800 MHz in Australia.  As a result, phones from 

one country may not work in other countries. Users will need a multi-band capable 

phone for roaming internationally. S-E Elayoubi and B Fourestie develop an 

analytical model for collisions in 3G LTE OFDMA system for an arbitrary number 

of users in the different cells, and calculate the capacity of the system applying this 

Markov model to compare different frequency allocation schemes [23-25]. P Lee 

and T Lee propose an interference management scheme in the LTE femtocell 

systems using Fractional Frequency Reuse and show that proposed scheme 

enhances total/edge throughputs and reduces the outage probability in overall 

network, especially for the cell edge users [26]. 

 

Underutilised spectrum can be described as a spectrum hole in a cognitive radio 
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system. A spectrum hole can be defined as a band of frequencies assigned to a 

primary user, but, at a particular time and specific geographic location, the band is 

not being utilized by that user [27]. There are many spectrum holes existing in 

Figure 2-1. The reason for this inefficient usage of spectrum is that the existing 

spectrum management techniques are not flexible enough to always satisfy the 

primary users and secondary users simultaneously; that is, the radio is not 

intelligent enough to dynamically control its usage of spectrum. If a radio is 

intelligent, it could learn about services available in locally accessible wireless 

networks, and could interact with those networks using their preferred signaling 

protocols. Additionally, it could use the frequencies to minimize and avoid 

interference with existing radio communication systems [28]. At the same time, 

however, it must be recognized that such an intelligent radio may also have 

drawbacks. For example, it has the possibility of reducing the benefits of primary 

users, if the cognitive radio system shares the licensed bands with the wrong 

spectrum etiquette, or even worse if they were to break the rules of communication.  

 

2.2.2 Research and Development of Cognitive Radio 

Cognitive radio is a very hot topic that is expected to lead to a revolution in the 

wireless communications. A number of research activities about related to cognitive 

radio are steadily increasing. A summary of related research work are shown below: 

 

 CR came to prominence with the publication of the doctoral thesis by Joseph 

Mitola III in 2000. He defined the cognitive radio as a way of incorporating 

machine-based learning into software-defined radio [29]. He is based at 

Stevens Institute of Technology and his team work on topics that are expected 

to have a broad impact on wireless networking and spectrum policy making. 

Joseph Mitola III’s papers now focus more on the cognitive radio architecture 
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evolution [30]. 

 

 In 2002, the FCC showed that the unlicensed frequency devices had the ability 

to identify the unused frequency bands. It established a “spectrum policy task 

force” to investigate CR as a means of improving spectrum efficiency. In 2003, 

the FCC developed the workshop on cognitive radio technologies and has 

made several contributions to CR [31]. 

 

 In the USA, under the funding from Defense Advanced Research Projects 

Agency (DARPA) [32], there have been a number of research activities: The 

NeXt Generation (XG) group was established in 2003, which showed how XG 

communications could not only make a significant impact on spectrum 

efficiency of defence communications, but also significantly reduce the 

complexity of defining the spectrum allocation for each defense user [33]. 

CWT, the Center for Wireless Telecommunications for Virginia Tech is funded 

by the National Science Foundation (NSF) and has also developed cognitive 

radio technologies [34].  Berkeley Wireless Research Center (BWRC) built the 

CORVUS system, researching the unlicensed frequency system and paid most 

attention to physical layer, analogue and multi-user issues in cognitive radios 

[35].  

 

 The Office of Communications (Ofcom) is the communication regulator for 

the UK. Their work includes releasing and reallocating spectrum for new uses 

as well as developing policies to ensure that the spectrum is used efficiently. 

They monitor the airways 24-hours a day to identify cases of interference and 

take action against illegal broadcasters and the use of unauthorized wireless 

devices [19]. Their research work in cognitive radio includes the CR 
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terminology, technologies, potential development timescales, user scenario and 

regulators. 

 

 In the University of York, UK, the Cognitive Radio Lab is expanding rapidly. 

The Communications Research Group has one of the largest academic teams in 

the UK dedicated to Cognitive Radio (CR) and Cognitive Networking (CN). 

The field requires 'cross-layer' thinking to maximize the utility of the radio 

spectrum and can be applied to several layers of the protocol stack. In 2008, 

the lab was supported by a UK Ministry of Defense Competition of Ideas 

Project 'Cognitive Routing for Tactical Ad Hoc Networks', which also involves 

members of the Intelligent Systems Research Group [36].   

 

 Beyond Next Generation Networks (BuNGee) [37] is a 30 months research 

project funded by the European Union under their Framework Seven research 

initiative, which is active until June 2012. The BuNGee project aims to design 

a new architecture for next generation (beyond 4G) systems that can achieve 

maximum data rate densities up to 1 2// kmsGbit , and forms the basis of a 

fifth-generation of mobile communication networks. The University of York is 

contributing to MIMO techniques and interference cancellation (including 

contribution to channel modeling), and cognitive radio and distributed 

intelligent resource management. 

 

 There are now many projects related to cognitive radio in the European 

Commission (EC) 7
th

 Framework Programme (FP7) [38]. E.g. Cognitive Radio 

Experimentation World (CREW), Spectrum and energy efficiency through 

multi-band cognitive radio (SACRA) and Cognitive Radio Oriented Wireless 

Networks (CROWN) projects. These show an increasing number of academic 

and industrial organizations in EU now consider it important to investigate 
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cognitive radio technology and solving the spectrum efficiency problems. They 

have been published some related papers recently [39, 40]. 

 

 The Worldwide Universities Network Cognitive Communications Consortium 

(WUN-COGCOM) led by the University of York was established at the end of 

2008. The Consortium aims to promises to revolutionize the way wireless 

communication devices and networks behave through ‘intelligent’ assignment 

of resources and operation [41]. 

 

 The IEEE Standards Coordinating Committee 41 (SCC41) focuses on 

researching Dynamic Spectrum Access Networks, which include Cognitive 

radio. It was formerly the IEEE 1900 standards Committee, and the work of 

the IEEE 1900.x Working Groups continues under SCC41. SCC41 is seeking 

proposals for standards projects in the areas of dynamic spectrum access, 

cognitive radio, interference management, coordination of wireless systems, 

advanced spectrum management, and policy languages for next generation 

radio systems [42, 43]. 

 

 IEEE 802.22 represents the Wireless Regional Area Networks (WRAN). It is 

developing a standard for a cognitive radio-based PHY/MAC/air-interface for 

use by license-exempt devices on a non-interfering basis in spectrum that is 

allocated to the TV Broadcast service [44].  

 

2.2.3 Cognitive Radio Architecture 

Cognitive radio is a paradigm for wireless communication in which either a 

network or a wireless node changes its transmission or reception parameters to 

communicate efficiently avoiding interference with licensed or unlicensed users 
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[45]. This alteration of parameters is based on the active monitoring of several 

factors in the external and internal radio environment, such as radio frequency 

spectrum, user behaviour and network state. First of all, the meaning of cognition 

has three-point computational view as ‘Haykin’ wrote [6]:  

1) Mental states and processes intervene between input stimuli and output 

responses. 

2) The mental states and processes are described by algorithms. 

3) The mental states and processes lend themselves to scientific investigations. 

There are six key words which to describe cognitive capability: awareness, 

intelligence, learning, adaptively, reliability, and efficiency [46].  

 

Mitola defined five complementary perspectives of cognitive architecture (CRA), 

called CRA I through CRA V, which defines the functional components, 

perspective, examines the flow of inference through the cognition cycle, the related 

levels of abstraction for aware, adaptive and cognitive radios (AACR) and the 

mathematical structure of this architecture. In this thesis, we pay more attention to 

the cognition cycle which is in CRA II. The figure below shows the cognition cycle, 

which can be called Observe-Orient-Decide-Act (OODA) loop. It is a complex 

system that at the core of it is a radio that “knows”. The radio knows where to 

observe, how to orient, when to decide and finally act. When the conditions of the 

outside world change, the radio needs to do corresponding changes based on the 

loop [12].  
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Figure 2-2 Cognition cycle of Cognitive radio (directly reproduced from [46]) 

 

From Figure 2-2, it is found that the cognitive radio is able to observe messages 

from outside world and taking information as an input. Through orienting and 

planning steps, the radio decides the further options and making the possible 

actions that the cognitive radio can perform. Learning is a significant middle step; 

it allows information exchange from different steps and enhance the whole 

performance of the CR system. Intelligence is one of key features of cognitive 

radio systems and it can be enhanced through learning [47].  The learning could 

come from either from the environment or from other cognitive radio systems, or 

the previous behaviors. The figure below is the cognition cycle directly from [48], 

which simplifying OODA loop.   
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Figure 2-3  Modified Cognition cycle (reproduced directly from [48]) 

 

Between different cognitive radios, environment calls can exchange inferred 

information. Cognitive radios interacting with their environment give rise to 

intelligence. Inside the cognitive radio, objectives are set that are supported by a 

number of possible actions. We can see that in the learning loop, intelligence can be 

exploited to help the cognitive radio to adapt intelligently in response to the 

environment. 

 

Cognitive radio networks are a logical generalization of cognitive radios. They are 

based on Cognitive Access Points (CAPs) and fixed Cognitive Relay Nodes (CRNs) 

in the scenario. A cognitive radio network is an intelligent multi-user wireless 

communication system that embodies the following list of primary tasks [49]: 

 To perceive the radio environment by enhancing the receiver of each user to 

sense the environment on a continues time basis 
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 To learn from the environment and adapt the performance of each transmitter 

to statistical variations 

 To control the communication processes among competing users through the 

available proper allocation  

 To facilitate the communication between multi-users through cooperation in a 

self-organized manner 

 To create intension and self-awareness process 

 

A cognitive radio has the potential to enable significant spectrum reuse. Intelligent 

techniques will improve the ability of the user to find the free spectrum at that 

moment and quickly use it. However, there are two major challenges for Cognitive 

Radio research:  

 Protection of the incumbents 

 Coexistence (Spectrum Etiquettes) 

When people consider cognitive radio technology, they often consider two kinds of 

users. One is primary users, which means the users or services with more important 

usage. They have the right to accept or reject subsequent users and their benefits 

need to be protected, e.g. military use or paid for bands assigned to mobile 

companies. The other group is secondary users, which represents the users which 

have the secondary right to use the spectrum. The combined interference caused by 

all secondary users in geographical area at specific time on existing primary users 

should be below a specified threshold. CR based systems aim to sense and exploit 

the opportunities of spectrum which are not being used by the primary users as 

secondary systems, which can result in a dramatic increase in spectrum utilization 

efficiency. How to protect the performance of primary users of the spectrum is the 

main problem, because socially important services may deserve priority in a band 

and legacy systems may not be able to change [50]. After protecting the benefits of 
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primary users, CR should allow the secondary users to operate in otherwise unused 

bands. Primary users of the band usage may vary in time and the secondary users 

may have to coordinate with other secondary users.  

 

Coexistence is based on the interaction at different levels (primary users and 

secondary users) or the same level (between different secondary users) of users. 

Interaction may present itself as an increase or reduction in interference in different 

wireless communication systems. How to avoid or reduce the interference, at the 

same time as increasing the usage of spectrum is the main object of coexistence for 

cognitive radio. Efficient and reasonable spectrum management will help to 

improve coexistence situations. Channel assignment is one of the specific ways to 

obtain the benefits of coexistence which is investigated in this thesis. 

 

Software Defined Radio (SDR) 

The forerunner of Cognitive radio (CR) is based on Software Defined Radio (SDR) 

[14]. SDR is a radio that can control a significant range of RF bands and air 

interface modes through software [51]. A SDR system is a radio communication 

system which can potentially tune to any frequency band and receive any 

modulation across a large range of the frequency spectrum by means of as little 

hardware as possible and processing the signals through software. SDR is a 

developing technology that can offer users many advantages, such as allowing 

them to move seamlessly between different types of network to optimize their 

quality of service or minimize the cost of using the service. Its current usage 

includes the Joint Tactical Radio System and Amateur or home use. Joint Tactical 

Radio System is a program of the US military to produce radios that provide 

flexible and interoperable communications [52, 53]. If SDR technology is properly 

used, it could provide a path towards the realization of concepts such as 

http://en.wikipedia.org/wiki/Radio
http://en.wikipedia.org/wiki/Telecommunications
http://en.wikipedia.org/wiki/Frequency_band
http://en.wikipedia.org/wiki/Modulation
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reconfigurability, run time reconfiguration, and eventually a self-governed learning 

radio which could be considered as a cognitive radio. These technologies could be 

very helpful for enabling new applications, e.g. dynamic handling of the spectrum 

and radio resource. 

 

Compared with software defined radio, cognitive radio could reach the level where 

each radio can conceivably perform beneficial tasks that help the users, help the 

network, while helping to minimize the spectral congestion. Radios are already 

demonstrating one or more of these capabilities in limited ways [54]. Cognitive 

radio enhances the control process by adding some additional aspects over and 

above software defined radio: intelligence, autonomous control of the radio, an 

ability to sense the environment, the processes for learning about environmental 

parameters, awareness of capabilities of the radio [55].  

 

This section described the current spectrum problem and introduced the 

background knowledge of cognitive radio, which will help us to understand the 

cognitive radio technology, especially the cognition cycle.  

 

2.3 Spectrum and Channel Management 

2.3.1 Spectrum Management 

Inefficient spectrum usage is the reason why cognitive radio technology should be 

developed, so how to implement efficient spectrum management for existing radio 

resources is especially attention-grabbing. With the advent of a new generation of 

telecommunication technology, new techniques must be developed for the 

intelligent management of spectrum among the radio access technologies (RATs) 

forming a heterogeneous infrastructure [1]. Flexible spectrum management is 

needed for wireless devices that operate in either the licensed or the unlicensed 
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bands, or both, as illustrated in Figure 2-4. Cognitive radio will provide the 

technical means to determine, in real time, the most suitable band to provide the 

services desired by the user at any time. 

 

Spectrum etiquettes 

In communication systems, the radio spectrum is divided into different frequency 

bands, and then the license for the usage of each of the frequency bands are 

provided to different operators or systems. A radio system represents a group of 

communication services, like the WLAN, WPAN and WMAN. A spectrum 

etiquette is a set of rules for radio resource management to be followed by all the 

radio systems that operate in the same unlicensed band [56]. Spectrum etiquettes 

could help the system to identify a reasonable way to allocate spectrum to the radio 

more efficiently in the radio resource management system. Different situations and 

people will have different etiquettes in communication systems. What interests us 

in this area is to understand and try to find an etiquette for the coexistence of 

networks in licensed and unlicensed frequency bands [15]. 

 

Spectrum pooling 

Spectrum pooling is an innovative strategy to enhance the spectrum efficiency. It 

enables public access to the already licensed frequency bands [15]. The pooling can 

be described as the way users obtain access to spectral ranges they have not yet 

been allowed to use, and the actual licensed owners can tap the new sources of 

revenue. Orthogonal frequency division multiplexing (OFDM) modulation scheme 

could provide a useful modulation scheme for use with spectrum pooling. The 

basic idea of OFDM based spectrum pooling is to match the bandwidth available to 

a sub-band of the licensed system with an integer multiple of the carrier spacing 

frequency used in the cognitive system [57] , which aims to enable public access to 
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these spectral ranges without sacrificing the transmission quality of the actual 

licensed owners. For both the economics and engineering aspects, spectrum 

pooling also needs to find the balance.  

 

Spectrum pricing 

The approach to spectrum management currently used in the UK and most other 

countries does not work well in this environment, in the sense that it is likely to 

result in economically and technically inefficient use of spectrum. This is not 

surprising given that no account is taken of the value of spectrum in different uses 

and users have few economic incentives to change their behavior in response to 

increased demand from others. When we consider the spectrum management, 

engineering and economics should be considered together for many realistic 

reasons that they are highly interconnected. For example, the tremendous growth of 

the wireless users, will increase the bandwidth requirements of multimedia traffic, 

and also require efficient reuse of the scant radio spectrum allocated to the wireless 

communication systems.  

 

Efficient use of radio spectrum is also very important from a cost of service point 

of view, where the number of base stations required to service a given geographical 

area is an important factor. If there is a reduction in the number of base stations, 

while considering the cost of service, more efficient reuse of the radio spectrum can 

be achieved when other factors are the same. The costs and benefits analysis of 

spectrum pricing are difficult to quantify, because there is little evidence of how 

much efficiency could be improved by changing existing allocations and 

assignments of spectrum [58].  

 

Engineering and economics need to be balanced when we consider the spectrum 
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pricing with the development of cognitive radio. Whether incumbent wireless 

carriers or new entrants will get benefits of spectrum management is not decided. 

For new entrants and small players, many applications in small areas would be 

enabled. At the same time, the development of the new technology will cut costs, 

and then have further economic benefits. For incumbent ones, carriers are 

consumers of spectrum, not merely holders, so they could use cognitive radio to 

deploy new services on an experimental basis and using cheap devices only 

sublicense bands are needed [59].  

 

2.3.2 Channel Assignment 

Flexible spectrum usage is an essential aspect of the cognitive radio paradigm. It 

impacts regulation, especially in the context of spectrum sharing [47]. Based on the 

limited frequency spectrum, coupled with the inefficient use and an increasing 

demand for cellular communication services, the problem of channel assignment 

becomes increasingly serious. The objective of assigning channels is to implement 

and develop a spectrum-efficient and conflict-free allocation of channels among the 

cells in the wireless communication systems [60]. Spectrum-efficient here means to 

allocate the base stations into different channels by using the spectrum efficiently, 

to allocate more base stations. Conflict-free means that the interference between 

each service will be reduced or avoided. This issue is commonly referred to as 

frequency assignment or channel assignment. We use different channel assignment 

schemes to satisfy the performance of users’ shares in either a single channel or 

different channels.  

 

The basic prohibiting factor in radio spectrum reuse is the interference caused by 

the environment or other mobiles or services. There are many ways to help us 

reduce the interference; for example, deployment of efficient modulation schemes 
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can be used to suppress interference with the chosen suitable code rate [61]. 

However, the main constraining factor that is caused by frequency reuse is the co-

channel interference, and the main idea behind channel assignment algorithms is to 

exploit the radio propagation path loss characteristics in order to minimize 

interference and hence increase the radio spectrum reuse efficiency. In Figure 2-4 

[62], T is the main transmitter and R is the user, and there are five other base 

stations in the area that can affect the performance of the users. The distances 

between the five different base stations are not the same, so the transmitters will 

give the user R different levels of interferences. Generally speaking, if the signal 

powers of the five base stations are the same, the shorter the distance, the more 

interference they will give to the requested user which is based on the calculations 

and analysis shown in section 2.4. 
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Figure 2-4 Base station and service users with interference consideration 
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Channel assignment schemes can be classified into: fixed channel assignment 

(FCA), dynamic channel assignment (DCA) and hybrid channel assignment (HCA). 

HCA is sometimes called flexible channel assignment. In fixed channel assignment, 

each cell is given a predetermined set of channels. Any user can only connect via 

an unused channel. If all the channels are occupied then a call is blocked in this 

system. With dynamic channel assignment, channels are not assigned to a cell or 

system permanently. The channel is assigned following an algorithm that accounts 

for the likelihood of future blocking within the cell. Hybrid channel assignment 

was designed by combining FCA and DCA [63]. The different channel assignment 

schemes that exist today are based on the basic meaning of the FCA, DCA and 

HCA. They are commonly used in wireless communication systems. The 

characteristics of the different channel assignment schemes will be introduced 

below:  

 In FCA, channels are permanently allocated to each cell for exclusive use. 

FCA schemes are very simple; however, they cannot follow the requirements 

of users and the changing traffic conditions [61]. So the simple FCA strategy is 

not been used for main stream wireless communications since GSM because it 

is manually assigned by the network operator [62]. 

 

 Due to the short-term temporal and spatial variation of traffic in cellular 

systems, FCA schemes are not able to provide high channel efficiency. In DCA, 

channels are all available in every cell, and can be allocated with the requests 

dynamically. This means there is no fixed relationship between channels and 

cells in DCA. DCA schemes can be divided into centralized DCA, distributed 

DCA and can extend to SINR measurement based DCA schemes. Most of the 

time DCA has better performance than FCA except under heavy traffic load 

conditions [64]. CR is mostly based on DCA. 



Chapter 2 Literature Review 

- 49 - 

 HCA is a combination of FCA and DCA. In HCA, the total number of 

channels that are available for services is divided into fixed and dynamic sets. 

The working principle of it is: The fixed set contains a number of nominal 

channels that are assigned to cells as in the FCA schemes that base stations 

prefer to use in their respective cells in all the cases. The other set of channels 

is shared by all users in the systems to increase flexibility. When a call requires 

service from a cell and all of its nominal channels are busy, a channel from the 

dynamic set is assigned to the cell.  

 

From the results of comparison in Table 2-1, in a homogeneous environment, DCA 

has many advantages compared to FCA in different practical transmitting situations. 

DCA is more complex than FCA and can be used in much wider fields. Some of the 

relative comparison results are shown in Table 2-1. FCA works better under heavy 

traffic because normally it is implemented by the controller and not flexible. In 

heavy traffic there is not enough time or space for other flexible channel 

assignments, so FCA is more suitable than DCA. Combine with the introduction of 

FCA and DCA and the comparisons in Table 2-1, we found that because of the 

different algorithms, DCA is relatively complex but more flexible, it could also be 

used in centralized or distributed systems, a feature we will use later. HCA 

combines the two together. The channel assignment schemes simulated in this 

thesis are based on dynamic channel assignment, which is the basis of cognitive 

radio technology. Dynamic spectrum management is the primary problem that 

needs to be solved. The details of the schemes including the channels to be 

allocated, the performance analysis and further discussion will be presented in 

Chapter 4.  
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FCA DCA 

Performance better under heavy traffic Performs better under light/moderate traffic 

Low flexibility in channel assignment Flexible allocation of channels 

Maximum channel reusability Not always maximum channel reusability 

Sensitive to time and spatial changes Insensitive time and spatial changes 

Low implementation complexity 

 

Moderate to high implementation 

complexity 

Low signaling load Moderate to high signaling load 

Centralized control 

 

Centralized, decentralized, distributed 

control depending on the scheme 

Suitable for large cell environment  Suitable for micro-cellular environment  

Low flexibility High flexibility 

 

Table 2-1 FCA and DCA comparison in Homogeneous environment 

 

The studies of DCA and related research work 

There are several academic studies examining different aspects of DCA, we 

introduce the most important aspects of the research here: 

 Based on the other researcher’s previous work on channel assignment schemes, 

Katzela and Naghshineh presented a comprehensive survey of the detailed 

channel allocation schemes of wireless communication in 1996 [62]. This 

provides a very good guide and is significant for understanding how the 

different schemes work. It provides a large number of published papers in the 

area of FCA, DCA HCA, and also discusses them in different aspects, e.g. 

reuse partitioning schemes, the effect of handoffs and the prioritization 

schemes. In DCA, they discuss the centralized DCA, distributed DCA, CIR 
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measurement DCA and one dimensional DCA schemes. Some of the common 

channel assignment schemes are reviewed here, e.g. first available, least 

interfered, channel reuse optimization and channel segregation schemes. Based 

on this paper, we studied the other related previous papers and also extend to 

more new papers of DCA and CR. 

 

 Prior to Katzela and Naghshineh, there were other important papers which 

provide related knowledge and strategies of DCA, i.e. S. Tekinay and B. Jabbri 

which present the handover and channel assignment in mobile cellular 

networks in 1991 [64], T. Kanai discussed the DCA in cellular radio in 1992 

[65], J.Chuang discusses the performance issues and algorithms for DCA in 

1993 [66] and K. Ishii paper of 1994 showed the dynamic channel allocation 

algorithm with transmitter power control [67]. 

 

 In the last 10 years, cognitive radio technology has been developed, and more 

people investigated the related DCA work. i.e. O. Lazaro and D. Girma built a 

computational model with hopfiled neural network with DCA and obtain the 

performance in terms of call blocking probability in 2000 [68]. A. Lozano and 

D.C. Cox discuss the Distributed DCA in TDMA mobile communication 

systems in 2002 [69].  In 2006, K. B. Letaief and Y. J. Zhang focus on the 

dynamic multi-user resource allocation for MIMO and OFDM systems [70]. P. 

Also in 2006, K. Chowdhury and W. Ivancic discuss the channel assignment 

and handover schemes in satellite networks [71]. Back in 2007, H. Skalli and S. 

Ghosh investigated the issues and solution of channel assignment strategies of 

multiradio wireless mesh networks [72]. M. Y. Elnainary, D. H. Friend 

formulated the channel allocation and power control for dynamic spectrum 

cognitive networks in 2008 [73]. There are also some recent radio resource 
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management strategies: R Skehill, M Barry and W Kend introduce the 

common RRM approach to admission control for converged heterogeneous 

wireless networks [74]. C Han and S Armour discuss the energy efficient radio 

resource management strategies for green radio and the scheduling algorithm is 

applied to an LTE downlink simulator and its performance is evaluated for 

various traffic load conditions [75].   

 

Four main different channel assignments are implemented in this thesis. They are 

Least Interference, Channel Priority, Maximal Sum and Maximal Difference 

schemes, which will be described in detail in Chapter 4. Our original idea of 

channel assignment schemes is based on Katzela and Naghshineh’s paper. In DCA, 

we combine the minimum interference scheme using SINR with the common ‘least 

interfered (centralized)’, and finally obtain our first scheme in the project – the 

Least Interference scheme. The Channel Priority scheme is based on the ‘system 

dimensioning procedures for prioritized channel assignment’ [62], which decides 

the minimum number of guard channels required in each cell in order to satisfy the 

quality of service. We apply this idea into our Channel Priority scheme and 

consider this as a relatively simple scheme when applying reinforcement learning 

into the system. The Maximal Sum and Maximal Difference schemes have been 

developed as part of our research and can be considered original. 

 

There is some recent research work in Fractional frequency reuse. In WiMAX, 

subchannel management allows the dynamic bandwidth allocation among cells or 

sectors according to the interference conditions. Users at the cell or sector edge are 

able to exploit the fractional of the total bandwidth and have to reduce their peak 

rates. The global reuse factor of the system assumes a fractional value and this kind 

of scheme is called Fractional frequency reuse (FFR) [76]. R Giuliano and C Monti 
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analyze the FFR scheme in the rural areas evaluating the increase of the overall 

system capacity and they found that this can provide extra capacity, slightly 

penalizing the users at the cell edge [77]. P Lee and T Lee proposed an interference 

management scheme in the LTE femto-cell systems using FFR and the results show 

that the proposed scheme enhances total throughputs and reduces the outage 

probability in overall network, especially for the cell edge users [26]. S.H. Ali and 

V.C.M. Leung propose a dynamic fractional frequency reused cell architecture and 

show how the dynamic frequency allocation in fractional frequency reuse improves 

the OFDMA networks [78]. 

 

Section 2.3 focuses on the spectrum management, especially the channel 

assignment, which will be the significant part of our project: every subsequent 

chapter will use the knowledge of this section. 

 

2.4 Propagation and Related Technologies 

In this section, suitable measures like bandwidth efficiency, SNR/SINR values for 

different modulations need to be obtained. Under different propagation conditions, 

the same cognitive radio networks may obtain extremely different results. So not 

only for cognitive radio networks, but also for channel assignment, all the schemes 

need to adapt to different situations and real communication environments. Some 

propagation models are discussed here for different usage situations. Three 

propagation models are discussed in the following section, the free space 

propagation model, Okumura-Hata and COST231-Hata propagation models. 

Shadowing and multipath are then discussed [79]. They will all be used in our 

simulation. 
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2.4.1 Free space Propagation Model 

Figure 2-5 shows the path loss is the ratio of the transmitted power to the received 

power in detail. It includes all of the possible elements of loss associated with 

interactions between the propagating wave and any objects between the transmit 

and receive antennas. 

 

 

 

Figure 2-5 Basic transmitter and receiver of path loss 

 

The free space model is used predict received signal strength when the transmitter 

and receiver have a clear, unobstructed line of sight path between them. S  is the 

power density which could be calculated as shown below: 

24 r

GP
S tt


                                                               (2.1) 

where tG  is the maximum gain of the transmitter’s directional antenna [80]. r is 

the distance between transmitter and receiver, Applying equation (2.1), the received 

power for user, rP , is the significant factor for obtaining SINR (in next chapter). It 

has the relationship with transmitted power tP  as follows: 
2

4










r
GGPP rttr




                                              (2.2) 

Where Gt and Gr are the gains of the terminal antennas, r is the distance between 



Chapter 2 Literature Review 

- 55 - 

the antennas and   is the wavelength. The antenna applied is isotropic, which 

radiates power equally in all directions that means no angle and boresight effects. 

This expression defines FL , the free space loss, as rP  here. Expressing the free 

space loss in decibels, with frequency in megahertz and distance R in kilometers, 

we obtain 

MHzdBF fRL log20log204.32)(                    (2.3) 

From the equation, the free space loss increases by 20dB per decade in either 

frequency or distance. 

 

Although the free space model is an idealized and simple model for system, it is 

chosen for the first step of the simulation model in this thesis because what we 

want focus is on to how to assign base stations and users in a coverage area to the 

most suitable channels, not the absolute performance of the system. The Okumura- 

Hata model is more accurate for small city and rural areas. The Cost-231-Hata 

model improves the accuracy of transmitter and receiver in different cities. 

 

2.4.2 Okumura- Hata Model Propagation 

This model is entirely based upon many different extensive measurements around 

Tokyo city between 200MHz and 2GHz. It is built by Okumura and improved by 

Hata [80]. This method divides the prediction area into open, suburban and urban 

area. 

Urban areas            logdBL A B R E               (2.4) 

Suburban areas      logdBL A B R C                (2.5) 

Open areas            logdBL A B R D                (2.6) 

Where 

69.55 26.16log 13.82logc bA f  h    

   44.9 6.55log bB h   
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   22(log( / 28)) 5.4cC f   

   24.78(log ) 18.33log 40.94c cD f f    

   23.2(log(11.75 )) 4.97mE h                 for large cities, 300MHzcf   

28.29(log(1.54 )) 1.1mE h                     for large cities, 300MHzcf   

(1.11log 0.7) (1.56log 0.8)c m cE f h f        for medium to small cities 

 

bh : base station antenna height above local terrain height [m] 

cf : carrier frequency [MHz] 

mh : mobile station antenna height above local terrain height [m], often take as 

1.5m 

 

The model is normally applicable for 30m 200mbh  , 1m 10mmh   and R > 

1km. The path loss exponent is given by B/10, which is a little smaller than 4, and 

decreases with increasing base station antenna height [41].  

 

2.4.3 Cost 231-Hata Propagation Model 

The Okumura-Hata model is used for small or medium cities. The frequency bands 

of it have been extended to cover the band 1500MHz 2000MHzcf   [80]. 

logdBL F B R E G                                         (2.7) 

Where 

46.3 33.9log 13.82logc bF f h    

E is as defined for small or medium cities and then 

0dB        medium-sized cities and suburban

3dB                                metropolitan areas
G


 


 

Other parameters are defined as same as Okumura-Hata model defined. 
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There are some other models which are not used in this project, including the Lee 

or Clutter Factor and other models [80], which are not described in detail. They are 

suitable for the usage with different frequency bands or in more complex situations. 

For the coexistence, which is the main point of the project, we pay more attention 

to the channel assignments in order to ensure more base stations can be allocated to 

the most suitable channels, and due to this, to find the optimal schemes for channel 

assignment. At the same time, many iterations of statistical simulation need to be 

performed, if we choose the even more accuracy and complex models, this may 

delay the simulation time and does not help to see the performance of DCA 

schemes. So normally we choose the Okumura-Hata model as the main model for 

cognitive radio system. The COST231-Hata model is used in some situations when 

we use them to determine more realistic behaviors.  

 

2.4.4 Shadowing 

There are also some other general propagation attenuation mechanisms. The total 

path gain can be identified by the distance, shadowing and multipath effects.  

Total Gain=GainDistance GainShadowing GainMultipath   (2.8) 

GainDistance is the gain related to the distance from user to the base station 

GainShadowing is related to the shadowing by obstacles in the path, which is constant 

and is characterized by a log-normal variable: 

)(dBGainShadowing  

Where   is a log normal distributed random variable with zero mean [81]. ‘Log-

normal’ is means that the received power is expressed in logarithmic values, such 

as dB, has a normal (i.e., Gaussian) distribution.  The amplitude change caused by 

shadowing is often modeled using a log-normal distribution with a standard 

deviation. 
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GainMultipath is the gain related to the multipath interference, which is the variation 

in path loss of users within a few wavelengths. Multipath interference can often be 

averaged out to a large extent, since it changes so fast.  

 

If we include a log-normal distribution to represent shadowing loss into the system 

scenario, the performance of the base station will be changed, improved or 

impaired. For example, when the log normal distribution is used with the 

Okumura-Hata propagation model, it will contribute a gain in some situations, i.e. 

the gain has the possibility to be bigger than 1, which will mean better performance 

could be obtained than with the Free-space propagation model in a small number of 

cases. Otherwise, when the gain is smaller than 1, they may obtain even worse 

performance will be realized than the average path loss at that point. Shadowing is 

the only extra factor we include in our work in addition to affect the propagation 

model. More factors will be considered and discussed in future work. 

 

Antennas 

The system in this project is based on terrestrial communications, and the antennas 

used here are not considered for special angular and altitude conditions. An 

isotropic antenna is chosen which means it is a hypothetical antenna radiating 

power equally in all directions. Other antennas may replace the basic one 

depending on the different situations. 

 

2.4.5 Multicasting 

Fixed spectrum usage that is applied in traditional communication systems uses the 

radio resource inefficiently. New ways of flexible spectrum usage have appeared in 

recent years, e.g. cognitive radio technology, which uses dynamic spectrum 

assignment to implement efficient utilization of the radio spectrum. The further 
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step of flexible spectrum usage is its application to broadcasting, multicasting, such 

as DVB-H [82]. Unlike unicast, multicast is the delivery of information to a group 

of destinations. For a wireless communication system, multicasting is a more 

efficient mode to supporting different, specific groups of users when compared 

unicasting, as it consumes fewer radio resources. The motivation for using 

multicast here is because in heterogeneous terrestrial communication system, multi 

operators and multi users need to be connected and worked correctly and efficiently. 

When combining cognitive radio with multicasting it is important to determine the 

spectrum which satisfies a group of users, while not seriously affecting other 

groups of multicast users sharing the pooled spectrum. Multicast is also a very 

important technique for CR to use and the idea of multicast groups would help to 

minimize the energy cost and be more efficient to satisfy the requirements of 

cognitive users. TDMA uses the multicast technique. The multicast mobility 

(multimob) working group that provides guidance for supporting multicast in a 

mobile environment [83]. It could also be used for IP multicast and VideoLAN. In 

this thesis, all the channel assignment schemes look at the SINR at multiple points 

within the coverage area, enabling multicast transmissions. These schemes are used 

throughout the thesis. 

 

Multicasting is not a new topic, and it has even been considered for use with 

dynamic channel assignment, like in [83, 84]. In this thesis combining multicasting 

with cognitive radio technology requires that the SINR be simultaneously satisfied 

for a high proportion of users within a group. In this case, users will choose the 

nearest transmitter as the SINR is most likely to be highest, after taking into 

account environmental conditions. Channels are chosen based on the overall 

performance at multiple points in the service area, rather than the performance at 

one specific location. Novel aspects in this thesis apply multicasting to a cognitive 
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radio system with learning and also investigate the interaction between different 

channel assignment schemes. In this thesis, all the channel assignment schemes 

look at the SINR at multiple points within the coverage area, enabling multicast 

transmissions. These schemes are throughout the thesis. Further examples of 

multicasting will be shown later. 

 

The knowledge in Section 2.4 is very important and useful. All of them will be 

directly used in the simulation and each result part. 

 

2.5 Reinforcement Learning 

2.5.1 Introduction to Reinforcement Learning 

Reinforcement learning will be another important feature for our project, which 

shows the learning factor in our cognitive radio system. The history of 

reinforcement learning has two main threads to be considered, which were pursued 

separately before combining in modern reinforcement learning. Learning by trial 

and error was firstly implemented as one thread that was original from the 

psychology of animal learning. The other thread concentrates on the problem of 

optimal control and the solution by using value functions and dynamic 

programming.  

 

Reinforcement learning is a sub-area of machine learning concerned with how an 

agent ought to take actions in an environment so as to maximize some notion of 

long-term reward [9]. In recent years, it has attracted rapidly increasing interest in 

the machine learning and artificial intelligence communities [85]. Reinforcement 

learning is learning what to do--how to map situations to actions--so as to 

maximize a numerical reward signal. The learner is not told which actions to take, 

as in most forms of machine learning, but instead must discover which actions 
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yield the most reward by trying them. In the most interesting and challenging cases, 

actions may affect not only the immediate reward but also the next situation and, 

through that, all subsequent rewards. These two characteristics--trial-and-error 

search and delayed reward--are the two most important distinguishing features of 

reinforcement learning [86, 87]. 

 

2.5.2 Reinforcement Learning Model 

In the standard reinforcement learning model, an agent is connected to its 

environment via perception and action, as depicted in Figure 2-6. On each step, the 

agent has an input i , current state s  of the environment, an input function I, which 

determines how the agent views the environment state and then the agent choose an 

action a  to have an output. The agent changes the state of the environment, and the 

value of this state transition is communicated to the agent through a reinforcement 

scalar signal r . The agent’s behavior, B , should choose the actions that tend to 

increase the long-run sum of values of the reinforcement signal. 

 

 

 

Figure 2-6 standard reinforcement learning model (directly from [8]) 
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The model includes 3 main factors: 

 A set of environment states S  

 A set of actions A  

 A set of scalar reinforcement signal, which is as known as numerical rewards 

R  

 

The agent here is the learner, and its job is to find a policy  , mapping state to 

actions, and then maximize the long term measurement of the reinforcement 

learning. Reinforcement learning is different from supervised learning. Supervised 

learning is learning from examples provided by a knowledgeable external 

supervisor. Reinforcement learning is an important kind of learning, but alone it is 

not adequate for learning from interaction. In interactive problems it is often 

impractical to obtain examples of desired behavior that are both correct and 

representative of all the situations in which the agent has to act. In uncharted 

territory, an agent must be able to earn from its own experience where one would 

expect learning to be most beneficial [85]. 

 

Reinforcement learning has been applied successfully to many problems, including 

robot control, elevator scheduling, telecommunications, backgammon and chess. 

One of the challenges of reinforcement learning is the trade-off between 

exploration and exploitation. To obtain a reward, the agent must prefer actions that 

have been tried in the past and found to be effective in producing reward. However, 

to discover this kind of actions, it has to try actions which has not selected before. 

The agent has to exploit what it already knows in order to obtain reward, but it has 

to explore in order to make better action selections in the future. The dilemma is 

that neither exploration nor exploitation can be pursued exclusively without failing 

at the task. 

http://en.wikipedia.org/wiki/Robot_control
http://en.wikipedia.org/wiki/Telecommunications
http://en.wikipedia.org/wiki/Backgammon
http://en.wikipedia.org/wiki/Chess
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The studies of RL and other artificial intelligence methods with DCA 

From DCA to cognitive radio, learning is the most important factor for making 

radio ‘intelligence’. In our project, we choose artificial intelligence as the method 

to implementing learning. Artificial intelligence is commonly used in computer 

science, which is represented as machine learning in application, including 

reinforcement learning (sometimes Q-learning), game theory, and artificial neural 

networks. There are some academic studies examining different aspects of artificial 

intelligence with DCA, and we introduce the important aspects of the research here: 

 Channel segregation (CS) is one important technique used in distributed 

channel assignment. The basic idea of CS introduces the memory of preferred 

channels after the training, when the interference sensing enables the base 

stations to determine potential interference before choosing a given channel 

[88, 89]. It is also known as ‘DCA with weighted orderings’, which could 

adapt faster than original DCA to network changes [90]. Channel segregation 

is the closest DCA scheme to cognitive radio. We obtained the idea from CS 

and apply the learning method in this work. 

 

 S. Haykin and J. Nie discussed Q-learning based DCA for mobile 

communication systems and also use Q-learning in conjunction with neural 

network representation for DCA [91]. N. Nie used game theory as an adaptive 

channel allocation spectrum etiquette for cognitive radio networks. This shows 

how a cooperation based spectrum sharing game improves the overall network 

performance while satisfying an increased overhead required for information 

exchange [92].  

 

 S.M. Senouci and G. Pajolle solve the Semi-Markov decision process problem 

by using an approach based on reinforcement learning applied in DCA at 2003 
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[93]. N. Lilith and K. Dogancay investigated the dynamic channel allocation 

for mobile cellular traffic using reduced-state reinforcement learning in 2004 

[94]. Recently, M. Bublin discussed the distributed spectrum sharing by 

reinforcement and game theory [95]. T. Jiang et al discussed reinforcement 

learning based cognitive radio with exploitation and exploration control [8]. P 

Zhou, Y Chang and J.A. Copeland discuss the reinforcement learning for 

repeated power control game in cognitive radio networks. The performance of 

the learning based power control algorithm they developed is thoroughly 

investigated with simulation results, which demonstrate the effectiveness of the 

proposed algorithm in solving variety of practical CR network problems for 

real world applications [96]. 

 

Compared to the dynamic channel assignment schemes we introduced before, 

reinforcement learning based schemes will also detect the unoccupied frequency 

first, and then consider the historical information of successful or unsuccessful 

channel usage with the current interference level. Furthermore, the information 

obtained from the previous step will help the service make a current or future 

decision on which resource to use in order to maximize the probability of success.  

 

In our work, reinforcement learning is used as a way to implement the learning 

engine for a cognitive radio and channel assignment. Applying intelligence into 

cognitive radio systems is a very new topic, and this thesis investigates how to 

apply different learning techniques to cognitive radio [97, 98]. We start from a 

simplified distributed reinforcement learning algorithm to see how it works in a 

multicasting cognitive radio system, focus on the reward and punishment parts of 

reinforcement learning, and will use the weighting factor to define and record these 

aspects. Finally, we will make the decision of preferred channel set to help us 
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figure out the optimal option of channel assignment, especially for distributed 

schemes. Compared to others’ work, we aim to further improve the performance of 

DCA schemes in the aspect of intelligent, reducing the probability of reassignment, 

blocking and dropping by considering different user population. The knowledge of 

reinforcement learning will be used in Chapter 6 and 7. 

 

2.6 Conclusion 

This chapter has introduced the background knowledge relating to this research 

work. From the background reviews, we understand the principle of cognitive radio 

and how it works, and the research work and development of cognitive radio 

around the world. We use dynamic channel assignment to implementing the 

flexible spectrum assignment that cognitive radio requires. Propagation models 

with the required parameters will depend on the communication environments they 

will operate in. Multicasting is potentially very useful for delivering point-to-

multipoint traffic in cognitive networks. Reinforcement learning models are 

introduced as a very useful way to implement the learning and cognition part of a 

cognitive radio system.  
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3.1  Introduction 

In engineering research, it is necessary to develop quick and cost efficient 

approaches to characterize systems. The development of simulation-based models 

is an approach that is widely used in modern engineering activities [99]. Simulation 

can be used to show the eventual real effects of alternative conditions and courses 

of action [81]. Simulation can also be used to build complex models and to show 

the results obtained quickly, allowing for flexible situation changes.  

 

The purpose of this chapter is to briefly introduce simulation techniques and to 

conduct a performance evaluation of modeling. Firstly, we provide a description of 

the system scenario model and related information on modeling. Then, the 

appropriate measures and performance verification are presented, and the 

simulation tools are used to generate the results shown in this thesis. Finally, the 

performance evaluation, and parameters are discussed.  
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3.2 Simulation Modeling Technique 

The simulation method used for channel assignment, which will be introduced in 

Chapters 4 and 5, is based on a widely used statistical simulation technology —the 

Monte Carlo simulation. The Monte Carlo simulation method is suited to 

calculation using a computer, and is used with computer modeling techniques 

because of its repetitive nature and the large number of calculations involved. It is 

nondeterministic and use random numbers (in practice, pseudo-random numbers) 

to vary one or more parameters to explore system behaviour, as opposed to 

deterministic algorithms [100-102].  

 

Typically, in this work, 1000 sets (random locations with random activation orders) 

of users’ location are considered as an adequate number of trials for obtaining 

statistically accurate results. The simulation is based on a coexistence scenario that 

is applied in a terrestrial communication system.  Unlike other familiar terrestrial 

downlink models that pay attention to the individual user, this method focuses on 

many users in a coverage area. In this case, the area as a whole will be considered. 

 

Figure 3-1 shows the area of interest, which is a square coverage with sides of 8 km. 

In this square area, all of the user locations are located on a 100m grid, so in this 

simulation process, there are 8181 different potential user positions. A selection 

of these will be used at random and the resulting system performance evaluated. 

The transmitters (i.e. the base stations) are represented as a circle and a point in 

Figure 3-1.  

 

 

 

http://en.wikipedia.org/wiki/Nondeterministic
http://en.wikipedia.org/wiki/Random_number
http://en.wikipedia.org/wiki/Pseudorandomness
http://en.wikipedia.org/wiki/Deterministic_algorithm
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Figure 3-1 User location and coverage area situation 

 

In Figure 3-2, the system originally used here models a coexistence scenario with 

10 different base stations. In this scenario, the locations of base stations are always 

randomly located in the coverage area, in order to get statistical representation of 

behavior. Due to the random base station locations, the area of influence of each 

base station is not fixed. All the evaluation of performance will be done for all the 

base stations.  

 

 

 

 

 



Chapter 3 Simulation and Performance Evaluation Methodologies 

- 69 - 

 

Figure 3-2 Basic Scenario of terrestrial communication system 

 

We consider two ways of grouping users in this thesis. The first method is into a 

single user group with the same operator. The other is into more than one group of 

users each associated with a different operator. We measure performance in the 

multicasting scenarios based on the performance of these groups.  

 

In Chapters 4 and 5, we focus on the characteristics of four channel assignment 

schemes and combined schemes based on the average reward. A large number of 

simulation events are required to identify the performance of various channel 

assignment schemes. Normally, the more simulation runs, the more accurate the 

result obtained. However, due to the complexity of the schemes, we used 1000 

iterations to provide an adequate number of trials for obtaining statistically accurate 

results. In order to make the radio more ‘cognitive’, a second set of simulations 

was used in this thesis based on reinforcement learning. Previously we stated that 

reinforcement learning is concerned with how an agent ought to take actions in an 

environment so as in order to maximize some notion of long-term reward [98]. The 

learning based simulation is similar to Monte Carlo, but is not a true Monte Carlo 
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simulation as the learning takes the place of only the repeated calculation. Using 

the weighting factor, reward and punishment function instead of the no learning 

system, we will obtain the reinforcement results. Figure 3-3 shows the performance 

applying reinforcement learning to the system; this will be explained more fully in 

Chapter 6. Here, the performance of schemes is based on a cumulative process as 

the current weight value used is based on the previous value, and increases or 

decreases after each activation. Reinforcement learning has memory, as the 

learning process never stops. In these circumstances most of the results are shown 

from zero to 1000 iterations. This is considered sufficient to illustrate the learning 

behaviour. 

 

 

Figure 3-3 Average proportion of reassignments, probability of dropping and 

blocking for Channel Priority and Random Picking schemes 

 

All the experiments have been conducted for the same load. In order to make sure 
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that the simulation results are correct, we undertook to verify and validate the 

simulation process: Firstly, after obtaining the system performance, the related 

variable equations can be used to verify the simulation results, taking into account 

different related variables. Different representations of the results figures are also 

helpful. Secondly, simulating an adequate number of trials is important to ensure 

statistically accurate results. They are used when we analyze the performance of 

different schemes with or without of reinforcement learning. Error bars are used to 

indicate the degree of confidence one can achieve from a particular number of 

simulation trials. Finally independent verification and validation have been 

performed. Theory and reference from other independent works have been used for 

comparison. 

 

3.3 Simulation Tools 

There are many programming tools for developing simulations in engineering 

research activities. The MATLAB and C languages are widely used in this kind of 

simulation work. The main drawback of MATLAB is that it has a slower execution 

speed than that of the C language. C is compiled into the assembly language 

(machine language), which operates faster than interpreted MATLAB code. 

However compared to C, MATLAB is more suitable for our research work for the 

following reasons: 

 

1. MATLAB is based on dealing with matrices and arithmetic; it offers matrix 

based computation that allows users to perform numerical computation more 

easily than does C [103]. 

 

2. It has many different kinds of graphical display capabilities to satisfy the 

different requirements of development and modeling algorithmic behaviours. 
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3. MATLAB has many professional toolboxes and predefined functions, which 

are very helpful in reducing programming time and in performing simulations, 

for example, the communication tool box is used. 

 

Due to the reasons above, MATLAB can fulfill the system level oriented simulation 

tasks required for our work. The figure below shows the steps of the MATLAB 

simulation work. Figure 3-4 shows the basic process of channel assignment when 

using MATLAB. After using the reinforcement learning methods in the system to 

improve the performance, this iterative loop will be modified in the real simulation 

process. The iteration number is also initialized and a variable is used to record its 

process. 
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Figure 3-4 Matlab simulation process of base channel assignment scheme 

 

Blocking probability and dropping probability are two main factors that will be 

used in the simulation of our DCA schemes, especially with reinforcement learning 

in Chapter 6 and 7. Normally, blocking probability is used to measure the 

probability that a call will fail during the set up phase. In this thesis, when an 

arrival cannot be assigned to a channel, the request will be blocked. The blocking 

probability represents the ratio of the number of blocked connection requests to the 

total numbers of connections. Dropping probability can be used to provide the 
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measure for a call that fails when it is in progress. The dropping probability here 

provides a measure for the number of calls interrupted by new activations. 

Compared to blocking, dropped calls are significantly worse in terms of customer 

perception [99].  

 

Figure 3-5 shows a more detailed flowchart illustrating the different situations of 

reassignment, blocking and dropping when reinforcement learning applied, to show 

how the simulation is executed to obtain the desired results in Chapter 6. In this 

flowchart, i and j are current base station and current channel.  

 

Figure 3-5 Flowchart for a single iteration of distributed channel assignment 
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3.4 Parameters and Performance Evaluation 

There are interactions that always exist in a terrestrial communication system. For 

channel assignment, the positive or negative interactions are an important issue. 

Interaction will just affect interference and correspondingly the SINR. So when we 

perform a simulation resulting performance will appear included in the results. In 

this chapter, the interaction will be considered from two aspects: when the users are 

on the same channel or on the different channels. 

 

Same channel 

Basically, the performance of an individual user can be calculated by using Signal- 

to-Noise ratio (SNR). However, if we assume that more than one user is on the 

same channel, the evidence of interaction here is the interference, which exists 

between users. To determine the performance of the system, it is necessary to 

determine the Signal-to-Interference-plus-Noise Ratio (SINR). SNR and SINR will 

be shown in more detail in the Performance parameter section. 

 

Different channels 

Normally, the base stations, which are assigned on to different channels, will not 

influence the SINR value at the other base stations, i.e. we assume that the adjacent 

channel interference is negligible. In a coverage area, the coexistence of radio 

systems within multiple frequency bands can result in a more efficient reuse of the 

radio spectrum. In this case, multiple channels can give additional benefits to users 

by giving them greater choice, hence improving the SINR and providing higher 

user capacity. For example, if 3 channels are available in the coverage area, the 10 

base stations can distribute in these 3 channels, will allow us to select three 

different SINR values for each user providing an indication of the best channel 

available to each user from the maximum of these three values. 
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SNR and SINR are the main measures we used to evaluate the performance of the 

system. The parameters to calculate SNR and SINR will be shown in this section. 

Due to the overall performance in the coverage area, at the same time we need to 

obtain the value of the statistics of SINR, so the Cumulative Distribution Function 

(CDF) is used here. The statistical performance of SINR will be applied in the 

channel assignment schemes to select the most appropriate channels. A CDF is 

used to derive their collective behaviors. In this section we will discuss Capacity 

variation and Bandwidth Efficiency. Finally, the use of Error bars will be presented 

in the last part of this section, which can be used to determine how statistically 

meaningful the simulation results are. Appropriate performance measures are 

required to verify these dynamic channel assignment schemes employed by our 

cognitive radio systems. 

 

3.4.1 Performance Parameters 

Signal-to-Noise Ratio (SNR) and Signal-to-Interference-plus-Noise Ratio (SINR) 

Signal-to-noise ratio (often abbreviated SNR or S/N) is an electronic engineering 

concept defined as the ratio of a signal power to the noise power corrupting the 

signal [61]. It is always used to identify the performance of the users when ignoring 

the interference from other users. According to the signal power equation we 

introduced in Chapter 2, the equation can also be calculated as below: 

n
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                                              (3.1) 

Where sP  is the base station transmitted power. It is calculated as rP  in equation 

2.2. nP  is the noise power which will be shown later. 

 

Noise power 

Normally, the major noise that contributes to a communication system will usually 

come from the receiver itself, although external noise contributions may also be 

http://en.wikipedia.org/wiki/Electrical_engineering
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significant in systems. The total noise associated with the communication system 

can be calculated by assuming that the system consists of a single input and a 

single output. The network is characterized by a gain nG , being the ratio of the 

signal power at the output to the signal power at the input, and by a noise factor F . 

The noise factor is the ratio between the output noise power of the element, divided 

by nG  and the input noise [80].  

 

The noise power is available at the input of the network from a resistor with an 

absolute temperature of T kelvin is kTBPn  . The noise power is another important 

factor in the determination of SINR, at the same time adding the noise factor 

F which depends on the design of device. T his can be expressed by: 

)log(10 FkTBPn                                                  (3.2) 

where k  is the Boltzmann’s constant -23101.379  [WHz
-1

K
-1

], and B is the 

effective noise bandwidth of the system.  

 

In our work, these parameters for calculating noise power are all constant, so the 

noise power is a constant [105]. After calculation, the noise power is equal to -

102.7dBm in this simulation. 

 

If we consider the interference between base stations, the Signal-to-Interference-

plus-Noise Ratio (SINR) will be used here for the simulation in most of the time.  




in

s

PP

P
SINR                                                 (3.3) 

The interference is caused by the base stations in the same frequency band, i.e. the 

same channel. The shorter the distance between two base stations, the more 

interference they will receive.  iP  is the interference between the base stations. If 

we assume sP  here is the signal power of the first base station, iP  can be calculated 

by: 
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               (3.4) 

Where j is the total number of interfering base stations, N is the total number of 

base stations. The power that the current user receives from other base station will 

be the interference power.  

 

Figure 3-6 is an example to show the interference between two base stations using 

the same channel by using a contour plot [106]. 

 

 

 

Figure 3-6 Contour plot for two base stations when subject to mutual interference 

 

Each contour line represents a 1dB reduction from the highest contour value. If we 

assume that the SINR values of the users that are below 2.3dB (from Table 3-1) are 

not shown in the contour plot, then the white space between the two base stations 

illustrates the existence of harmful interference. With the relative length of the 
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signal and interference paths, the shorter the distance between the two base stations, 

the more interference they receive. Contour plots that are more complex will be 

shown in later chapters to represent the interaction between base stations when 

different schemes are used. 

 

Cumulative distribution function (CDF) 

In probability theory, the cumulative distribution function (CDF) is the integral of 

the probability distribution function [107]. The Cumulative Distribution Function 

(CDF) of SINR (presented as SINR cdf later) across the coverage area on each 

channel is calculated and a certain percentile is used in order to obtain a measure of 

SINR on the channel. The percentile threshold is used to take into account the 

different number of base stations in the system because this number will affect the 

coverage area of each base station. 

 

Figure 3-7 shows a comparison between single and multi-channel Cumulative 

Distribution Function (CDF) and the benefits of multiple channels. In a coverage 

area, the coexistence of radio systems within multiple frequency bands can result in 

a more efficient reuse of the radio spectrum. In this case, multiple channels can 

give additional benefits to users by giving them greater choice, hence improving 

the SINR. In Figure 4-2, a CDF of three single channels is shown based on all the 

users over the entire service area when the threshold value is 2.3dB. X is the SINR 

value. For example we see from the ‘channel together’ curve, which is derived 

from the highest SINR on all of the 3 channels when 10 base stations are assigned 

in the system, that 90% of the coverage area has a SINR below 15.2dB compared 

with 7.6dB, 12.1dB and 13.4dB in the single channel cases. Chapter 4 will explain 

in detail how to use this in the real system with SINR.  

http://en.wikipedia.org/wiki/Probability_theory
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Figure 3-7   Single and multi-channel CDF comparison 

 

3.4.2 Capacity Variation and Bandwidth Efficiency 

Capacity variation and bandwidth efficiency are other two important elements that 

will be considered for evaluating the system performance. These are based on the 

SNR and SINR explained previously. The Shannon equation [108] is the equation 

that combines these two elements to characterize the performance: 

 )}12 SNRBLogC                                           (3.5) 


B

C
BWef  )}12 SNRLog                                (3.6) 

The SINR can be used instead of SNR assuming interference is Gaussian. Where 

C  is the capacity of the channel, B  is the bandwidth, efBW  is the bandwidth 

efficiency. The Shannon equation is theoretical and is used to obtain the ideal 

channel capacity for a particular level SINR and channel bandwidth. In practice, 

the bandwidth efficiency is affected by the modulation and coding schemes used. 
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The table below shows the code rate, bandwidth efficiency, example bit rate, Eb/No 

and SNR values for different modulations for different modulation schemes that we 

will use quantify the performance later. We assume the GMSK modulation scheme 

is used which has a minimum threshold of 2.3dB for a 10
-3 

bit error rate. 

 

 64-QAM 64-QAM 16-QAM GMSK 

Code rate 1.0 0.69 0.69 0.69 

BW efficiency (bits/s/Hz) 4.8 3.3 2.2 0.9 

Example bit rate (Mbit/s) 36 25 17 7 

Eb/No (dB) 18.7 10.4 6.7 2.7 

SNR (dB)
2 

25.5 15.6 10.1 2.3 

 

2
RF bandwidth = 3MHz (we use roll-off factor = 0.25, therefore max symbol rate = 

2.4Msymbol/sec) 

 

Table 3-1 The parameters for different modulation schemes [109] 

 

3.4.3 Error Bars 

Error bars are used on graphs in the experimental sciences, to indicate the range of 

deviation in experimental measurement.  Error bars can be used to visually 

compare two quantities, to determine whether differences are statistically 

significant. They can also show how good a statistical fit the data has to a given 

function [104].  

 

There are two common ways we can statistically describe uncertainty in the 

measurements. One is with the standard deviation with respect to single 

measurement (often just called the standard deviation) and the other is with the 

http://en.wikipedia.org/w/index.php?title=Experimental_measurement&action=edit
http://en.wikipedia.org/wiki/Statistically_significant
http://en.wikipedia.org/wiki/Statistically_significant
http://en.wikipedia.org/w/index.php?title=Statistical_fit&action=edit
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standard deviation with respect to the mean, often called the standard error. The 

standard error is the appropriate measurement to use to calculate the error bars 

when use the mean [110].  

 

In this thesis, error bars are used to indicate the degree of data fluctuation that is 

caused through randomness in parameter values used in Monte Carlo simulation 

iterations. The error bars we used here is an error in the sampled mean. The size of 

error bar is used as [104], the upper error and lower error bar are defined as: 

N
ze c


                                                     (3.7) 

where   is the sample mean,   is the standard deviation, N is the number of trials, 

and cz  is related to the confidence interval as explained below.  The confidence 

interval (size of error bar) is affected by the number of trials (or iterations of the 

simulation). In this thesis, the number of trials, N , is normally set to 1000, and the 

confidence interval is taken from the normal distribution. For a 99% confidence 

interval, cz corresponds to 2.56, i.e. the area is assumed to be within 2.56 standard 

derivations of the mean. So here error bars will be used to show how the SINR 

varies around the sample mean value. Error bars are important for result measures 

and performance evaluation because they help to show how accurate a 

measurement is, or how far from the reported value its true value might be [109].  

Further example applications of using error bars will be shown in Chapter 4 and 5, 

Figure 4-7, Figure 5-4 and Figure 5-9. In this thesis, symmetrical error bar are used. 

 

3.5 Conclusions 

In this chapter, the simulation techniques that are used in this thesis are described. 

Using the MATLAB tool, we have explained how a system can be modeled using a 

Monte-Carlo simulation and reinforcement learning. The base stations in the same 
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or different channels are used to evaluate the simulation result. SNR and SINR 

statistics and the associated CDFs are used to determine performance, e.g. noise 

power has already been included. Error bars have been briefly introduced. Some 

simple examples are given here for better understanding. All of the simulation 

elements will be used in later chapters. 
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4. Coexistence Performance and Channel Assignment 
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4.1 Introduction 

Channel assignment schemes can be divided into fixed channel assignment (FCA), 

dynamic channel assignment (DCA), and hybrid channel assignment (HCA) as 

mentioned in Chapter 2. Here we use an area based optimization method to 

determine the most suitable channels to use. This method uses the statistics of the 

SINR obtained from users in the coverage area to select the most suitable channel 

base station combinations. The schemes that are implemented in this chapter select 

a channel based on a specific percentile of SINR across the coverage area. The 

performance of each scheme is affected by the number of base stations and 

channels in the system.  

 

This chapter describes the coexistence scenario with related simulation parameters, 

followed by the equations for evaluating the performance of the system and the 

benefits of using multiple channels. Then, the scheme comparisons are discussed in 

the context of channels and base station plots. After this, the scheme with the best 

performance is determined. Additionally, the different requirements of users are 
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considered satisfied. Finally, conclusions are presented. 

 

4.2 Coexistence Scenario and Performance Parameters 

Unlike other familiar terrestrial downlink models that pay attention to the 

individual user, the schemes developed in this thesis focus on simultaneous 

delivery to many users in a coverage area [112, 113]. In our scenario, the area as a 

whole is considered. To simplify the multicast scenario, the coexistence scenario in 

this chapter is based on three channels with 10 terrestrial base stations situated in 

random locations. Due to the random base station locations, the coverage area of 

each base station is variable. These three channels simulate a multi-channel 

terrestrial communication system, with the findings generally applicable to a 

number of frequency bands below 6 GHz which is based on the current 

communication system.  

 

In later chapters, the number of base stations and channels is changed to 30 

channels and 100 base stations as required by the system and scenario. Figure 4-1 

shows an example of the coexistence scenario model. After using the channel 

assignment scheme, we assume that BS1, BS6 and BS9 are assigned to channel 1, 

BS2, BS7 and BS8 are assigned to channel 2 and BS3, BS5 and BS 10 are assigned 

to channel 3. BS 4 is not assigned to any channels because it causes a lot of 

interference to the other base stations. 
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Figure 4-1 The coexistence scenario model with 3 channels and 10 base stations 

 

The parameters of the terrestrial system are shown in Table 4-1. The transmitted 

power is 21dBm, which is a typical transmitter power for mobile stations [114]. In 

order to ensure a sufficiently high SINR value, a threshold is used as a way of 

controlling the appropriate interference between each user and to determine the 

performance. Here 2.3 dB will be used, which corresponds to the use of GMSK 

modulation [109]. Coexistence means the multiple users in the same system can be 

served in the same coverage area together and could be worked well with less 

interference. We focus on simultaneously delivering good coverage to many users 

in a coverage area. 
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Parameter Value  

Service Area 8 km x 8km 

Transmitter Height 100 m 

Transmit Power 21 dBm 

BS Antenna gain 10 dB 

User Antenna Height 1.5 m 

User Antenna Gain 1 dB 

Antenna Efficiency 100% 

Bandwidth 3MHz 

Frequency 900 MHz 

Noise Power -102.7dBm 

 

Table 4-1   System parameters 

 

The benefits of multiple channels 

In a coverage area, the coexistence of radio systems within multiple frequency 

bands can result in a more efficient reuse of the radio spectrum. In this case, 

multiple channels can give additional benefits to users by giving them greater 

choice, hence improving the SINR. In Figure 4-2, a Cumulative Distribution 

Function (CDF) of three single channels is shown based on all the users over the 

entire service area.  
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Figure 4-2   Single and multi-channel CDF comparison 

 

4.3 Channel Assignment Schemes and Comparison 

According to the basic channel assignment schemes presented before (FCA, DCA 

and HCA) and all the parameters introduced, four different channel assignment 

schemes that determine the system performance are analyzed in this part. They are 

the Least Interference, Channel Priority, Maximal Sum and Maximal Difference 

schemes. As we mentioned in Chapter 2, the Least Interference and Channel 

Priority schemes are reproduced from the previous DCA schemes, also with our 

own consideration of characteristics. The main different point between the previous 

DCA schemes and ours are the results of CDF and the service area. The Maximal 

Sum and Maximal Difference schemes are all new schemes. 

 

Least Interference  

The Least Interference scheme is a relatively simple model used by existing 
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channel assignment schemes [15]. This scheme aims to find the least interference 

channel for users quickly. The allocation process with the model is as follows: 

1. Number BS (base stations) from 1 to 10 

2. For BS(i), check the SINR of all the users in the coverage area on channel 1, 

channel 2 and channel 3 

3. Determine the mean SINR over user locations for each channel 

4. Select the channel with the highest SINR and allocate it to BS(i) 

5. Repeat for the next BS in the list, BS(i+1) 

6. Finish the process after BS10 is allocated 

channelSINRmeanSINRmeanSINRmean iBSiBSiBS ))(),(),(max( 3)(2)(1)( BS(i) 

The pseudo code of the Least Interference scheme are shown below: 

Set max-BS, max-channel 

for (BS(i)=1:max-BS) 

for (channel(j)=1:max-channel) 

    Obtain the mean SINR value 

end 

    choose the channel with the highest SINR 

    allocate current BS into this channel 

end 

 

end 

 

Scheme advantages: All base stations are allocated channels. It is a simple 

algorithm that can assign the channels to the base stations directly and quickly, e.g. 

in wireless mesh networks 

 

Scheme disadvantages: Coverage is relatively poor and a CDF is not applied with 

SINR value 

 

The first graph in Figure 4-3 uses a contour plot to show the gradual changes of the 

SINR of users from the corresponding base stations. The white space is used to 

highlight the area of users whose SINR value is below the 2.3dB threshold and so 
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cannot be covered by any base station. Different colors in the channel plot (the left-

hand plot in Figure 4-3) and the BS plot (the right-hand plot) show the area that is 

controlled by each base station and the channel in use respectively. For example, 

the area with dark red in the channel plots represents the coverage area that uses 

channel 1. The area with the yellow colour, which is the largest area of colour in 

the BS plot represents the area that is covered by BS 6. The stars indicate the base 

station locations.  

 

Figure 4-3 Least Interference scheme with contour, channel and base station plots 

 

Like the scheme shown above, existing distributed channel assignment schemes 

have some common drawbacks: 
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 They often pay more attention to the performance of the individual user; rarely 

do they consider the area as a whole with multiple channels. One reason for this 

is that it is difficult to obtain spatial information directly. 

 Frequency bands are often used inefficiently. There can be unequal numbers of 

base stations assigned in each channel. 

 

Due to the drawbacks of existing channel assignment schemes, several new 

channel assignment schemes are introduced in this chapter. The purpose of the new 

channel assignment schemes is to try and use a base station to cover as much of the 

coverage area as possible with the highest SINR. We calculate the Cumulative 

Distribution Function (CDF) of SINR (presented as SINR cdf later) across the 

coverage area on each channel and then select a certain percentile threshold in 

order to obtain a measure of SINR on the channel. The percentile threshold is used 

to take into account the different number of base stations in the system. If we have 

ten BSs, we would like each to cover on average 10% of the coverage area.  

 

Hence we define the Percentile Threshold as   %100/11  N , where N is the 

number of BSs. The CDF of SINR across the coverage area at a particular 

percentile threshold is very helpful for measuring the performance and identifying 

the service level when serving a different group of users. For example, in Figure 4-

2, by using the percentile threshold with 10 base stations, we set the Percentile 

Threshold as 90%, so we can see that the SINR value of the curve for channel 2 is 

about 7dB, which means 10% of the coverage area gets at least 7dB, with 90% 

below this value.  It is hoped that the other BSs are suitably located to cover area 

below 7dB. The schemes using this CDF Performance Threshold are presented next. 

They are Channel Priority, Maximal Sum and Maximal Difference schemes. 
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Channel Priority 

The Channel Priority scheme compares the Percentile Threshold SINR value with 

the 2.3dB threshold, selecting the channels in a specific priority order as required 

(in this chapter, increasing order, that is, 1, 2, 3…). In this case, base stations 

remain unassigned if they do not reach this threshold after testing on all the 

channels. The model works as follows: 

1. Number BS from 1 to 10  

2. Allocate BS(i) in channel 1, calculate its SINR cdf 

3. Compare the SINR cdf value from step 2 with the 2.3dB threshold 

4. If the SINR cdf value determined at the Percentile Threshold is bigger than 

2.3dB, allocate BS(i) in channel 1. Then repeat for the next BS, until the value 

from step 2 is smaller than the 2.3dB threshold 

5. Allocate BS(i) in channel 2. Then BS(i) is also tested and be compared with 

2.3dB in channel 2 

6. Repeat step 2 to 5 using channel 2, until channel 2 cannot accommodate any 

more BSs, then allocate the remaining BS to channel 3 

7. Finish when channel 3 cannot allocate any more of the remaining BSs 

The pseudo code of the Channel Priority scheme are shown below: 

 

Set current-channel to 1 

Set max-BS, max-channel 

Set SINR-thres 

for (BS(i)=1:max-BS) 

    record SINR cdf value of BS(i) in current-channel 

    if SINR cdf of BS(i) > SINR-thres 

        allocate BS(i) into current-channel 

else 

    current-channel++ 

    if (current-channel > max-channel) 

        return 

    else 

        continue the operation on BS(i) 

        end 

    end 

end   
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Scheme advantages: The SINR cdf replaces the SINR mean values  

 

Scheme disadvantages: Selecting channels in order priority as required sometimes 

means that base stations are not allocated on the optimal channel 

 

Maximal Sum 

The Maximal Sum scheme aims to allocate base stations on the optimal channel by 

comparing the linear sum. The linear sum of a statistical SINR value is calculated 

from the users served by each base station allocated on each channel. This sum 

tends to increase initially as the number of base stations on a channel is low, but 

then it stabilizes as the number of bases stations increases within the service area.  

Channels do not have any priority in this scheme. The model of the scheme works 

as follows: 

1. Number BS from 1 to 10 

2. Allocate BS(i) in channel 1, record every SINR cdf of all the BSs (including 

BS(i)) that are allocated in channel 1 respectively and add together the SINR 

cdf values collected at each base station. This sum is recorded as )1(isum  

3. Repeat step 2 for channel 2 and 3, recorded as )2(isum  and )3(isum  

4. Choose channel with the maximum SINR sum from )1(isum ,  )2(isum  and 

)3(isum , then calculate SINR cdf of BS(i) in this channel, if it exceeds the 

2.3dB threshold then allocate BS(i) to this channel, otherwise do not assign. 

5. Repeat for BS(i+1)  

6. Finish when all the channels cannot accommodate any more remaining BSs 

 

This scheme has very good performance, but the problem is that it in order to gain 

the maximal sum, the scheme focuses less on the efficiency of each base station. 

The pseudo code of the Maximal Sum is shown below: 
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Set max-BS, max-channel 

Set SINR-thres 

for (BS(i)=1:max-BS) 

for (channel(j)=1:max-channel) 

    sum(j) = 0 

    foreach BS(k) in channel(j) 

        sum(j) += SINR cdf of BS(k) 

    end 

    end 

    choose channel(j) with the maximum sum(j) 

    if SINR cdf of BS(i) in channel(j) > SINR-thres 

        allocate BS(i) into channel(j) 

    else 

        do not assign 

    end 

end 

 

Scheme advantages: More flexible than the previous schemes in choosing 

appropriate channels because it focuses on all served users, and users receive better 

performance.  

 

Scheme disadvantages: Relatively complex and computationally intensive 

 

Maximal Difference 

This scheme aims to further reduce the influence of base stations on the same 

channel by obtaining the adjacent tested sum values first, then calculating the 

difference between the sum values that are compared and selecting the one that 

performs best. It obtains better performance and increases system stability. In this 

scheme, a new BS is tested on each channel. The SINR cdf values of all BSs on a 

channel are added together, before and after the new BS is tested on the channel. 

The channel delivering the maximum before-and-after difference is used to assign 

the new BS. The model of the scheme as follows: 

1. Number BS from 1 to 10 
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2. Record the SINR cdfs of all the existing BSs that have already been allocated to 

channel 1 respectively and add the SINR cdf Percentile Threshold values 

together, recorded as )1(1isum . Repeat for channel 2 and channel 3, obtain 

)2(1isum  and )3(1isum  

3. Try to allocate a new BS(i) on channel 1. Record every SINR value of all the 

BSs (including BS(i)) on channel 1 respectively and add once again the SINR 

Percentile Threshold values together. The sum is recorded as )1(isum . Repeat 

the work process for channel 2 and 3, recorded as )2(isum , )3(isum  

4. Obtain the difference between )1(isum  and )1(1isum , and repeat the process for 

channel 2 and channel 3 

5. Compare the differences from step 4 and choose the channel with maximum 

difference in the SINR values and then allocate it to BS(i), providing the 

Percentile Threshold exceeds 2.3dB (as described previously) 

6. Repeat for BS(i+1)  

7. Finish when all the channels cannot accommodate any further BSs 

The pseudo code of the Maximal Difference is shown below: 

Set max-BS, max-channel 

Set SINR-thres 

for (BS(i)=1:max-BS) 

for (channel(j)=1:max-channel) 

    sum(j) = 0 

    foreach BS(k) in channel(j) 

        sum(j) += SINR cdf of BS(k) 

    end 

end 

 

for (channel(j)=1:max-channel) 

    assume allocate BS(i) into channel(j) 

    sum’(j) = 0 

    foreach BS(k) in channel(j) 

        sum’(j) += SINR cdf of BS(k) 

    end 

        diff(j)=sum(j)-sum’(j) 
end 

 

choose channel(j) with the maximum diff(j) 
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    if SINR cdf of BS(i) in channel(j) > SINR-thres 

        allocate BS(i) into channel(j) 

    else 

        do not assign 

    end 

end 

 

Figure 4-4 shows how the Maximal Difference scheme works. The current base 

station which needs to be assigned is BS 7. It is assumed that BS1, BS2, BS3, BS4, 

BS5 and BS6 have already been assigned to Channel 1, Channel 2 or Channel 3 as 

shown. The sum values are calculated as described, before and after BS7 is 

assigned to each channel. The differences between the sum values are obtained, in 

order to determine the channel that should be chosen. Finally Channel 1 is  

assigned to BS7. We use 6 and 7, not i-1 and i because it is a clear direct example. 

Now, i is equal to 7. 
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Figure 4-4 Example of the Maximal Difference scheme 

 

Scheme advantages: Better channel performance with better coverage. The number 

of BSs on each channel is better balanced 

 

Scheme disadvantages: Complex and computationally intensive 

 

In order to best compare the schemes the base stations are kept at the same random 

locations within the service area for each scheme. The points with a dot (not a star) 

showed in Figure 4-5 represent the unallocated BSs. By comparing Figure 4-3 and 
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Figure 4-5, obviously, the Least Interference scheme assigns all base stations, while 

the Maximal Difference scheme assigns only seven base stations, in this example. 

The base stations which are assigned by the Maximal Difference scheme are used 

more efficiently. The two contour plots for the Least Interference and Maximal 

Difference schemes illustrate the main features of behavior. The other two schemes 

are similar. 

 

 

Figure 4-5 Maximal difference scheme with contour, channel and base station plots 

 

Some empty spaces exist in the contour plot, for the same reason as given earlier. 

For the same geographical and frequency situation, Least Interference has a larger 

area that is not covered. In the Maximal Difference scheme, nearly all the area is 
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covered despite having base stations in exactly the same locations. Using only the 

specific layout of base stations given above, the number of base stations assigned 

in this example cannot be used to describe the performance of the schemes in 

general. There is only one aspect of comparison. The service area covered and the 

SINR value of users are the two crucial factors used to determine the performance 

of channel assignment. From this perspective, the Maximal Difference scheme is 

much better than the Least Interference scheme. In the comparison between 

different schemes here, the Maximal Difference scheme always delivers better 

performance than do the other schemes because it has a bigger coverage area and a 

higher SINR value, but it does not mean that this scheme should be used in all 

circumstances. For practical implementations, different channel assignment 

schemes could prove to be better depending on the requirements of users. For 

example, the Least Interference scheme can be applied when we want to use all the 

base stations, if the coverage area is more important in this simple scheme. The 

Channel Priority scheme can be used if it is important to give some channels 

greater preference, because some of the channels sometimes need to be kept 

relatively free for high data rates. For example, changing to a higher data rate or a 

different transmission range will help to improve the Maximal Difference scheme 

given all base stations. In this situation, the Maximal Difference will improve the 

performance of users and will use more base stations than will other schemes. 

 

Useful comparative results are shown in this section. However, due to the random 

locations of the base stations, it is likely that the results may differ for a different 

set of base station locations. That is the reason for measuring performance in many 

sets of randomly located base stations in the next section.  
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4.4 Statistical Performance of the Channel Assignment 

Schemes 

Large numbers of simulation events are required to identify the performance of 

channel assignment. The more events in the simulation, the more accurate the 

resulting SINR performance that is obtained. Due to the complexity of each 

channel assignment scheme, one thousand sets of base locations are considered as 

an adequate number of trials for obtaining correspondingly statistically accurate 

results. Now we choose to vary the number of base stations between 6 and 15 and 

then to see how the SINR changes.  

 

Before comparing different schemes, the crucial factors should first be explained. 

SINR and area of coverage are two significant factors that jointly decide the 

performance of a system. Their relative importance depends on whether the 

requirement of the system is for high data rates, meaning that this normally 

requires a higher SINR for the same bandwidth. If the requirement is to ensure that 

as many users as possible are covered, but without much emphasis on received 

quality, maximizing the coverage area is preferred. There are no specific 

requirements here, so a balance between these two factors will be found. Different 

comparisons will be shown in the following sections. 

 

SINR (performance) comparison for different numbers of BSs 

Figure 4-6 shows a situation in which the number of base stations changes from 6 

to 15 (6, 8, 10, 12 and 15). There are two main factors affecting the Y axis. One is 

the number of base stations — more base stations may need more channels in order 

to be allocated. The other is the change in the SINR Percentile Threshold value. 

When the number of base stations increases, the percentile threshold value will be 

affected, i.e. each base station is required to cover proportionally less of the service 
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area. 
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Figure 4-6   Different schemes comparison with different numbers of BSs 

 

In the figure, all the curves decreases from 6 to 12 base stations, and then they tend 

to be stable beyond the 12 base stations situation. For example, when the number 

of base stations is six, the interference between them is correspondingly small, so 

the SINR value is larger. However, when there are 15 base stations, the Percentile 

Threshold is about 0.933, which is higher than the 0.833 for 6 base stations. In this 

case, each base station needs to serve a lower percentage of the service area, so the 

SINR cdf value stops decreasing. For the Maximal Sum and Maximal Difference 

schemes, the curves tend towards 9dB and the Channel priority tends towards 4dB. 

 

Different modulation schemes have different thresholds. A higher or lower 

threshold will directly affect the performance of each scheme. We will analyze the 
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results with other modulation schemes instead of with GMSK (2.3dB SINR 

threshold) in later chapters. Figure 4-7 shows the error bar on each of the four 

curves with 1000 trials. It is found that the error is relatively small. Therefore, we 

only show one error bar for these results. 

 

 

Figure 4-7 Error bar of different schemes comparison with different numbers of 

BSs 

 

Coverage area and capacity for different numbers of BS 

Two factors determine the degree of coverage situation for the different schemes. 

The first is coverage area and the other is the percentage of BSs that are allocated 

to each channels.  These two composite parameters are the measure of capacity of 

the service area, as each base station can serve a given number of users. We first 

present results that show these two factors separately and then use them to obtain 
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the final coverage results in the service area.  

 

Figure 4-8 shows the percentage of the coverage area, which has a SINR level 

higher than 2.3dB for different numbers of base stations changes. Again, as the 

number of base stations deployed increases, the SINR decreases. More BSs 

produce more interference so they cover a smaller area than before. The maximal 

sum and Maximal Difference schemes obtain better results by comparison.  
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Figure 4-8   Percentage of coverage area with SINR greater than 2.3dB with 

different numbers of BSs 

 

In Figure 4-9, the Least Interference scheme stays at 1 because it does not consider 

the acceptance threshold, so the base stations are all allocated, irrespective of the 

resulting SINR level. The other three schemes obtain similar results. 
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Figure 4-9   Percentage of BSs that are allocated for different schemes with 

different numbers of BSs 

 

The result of combining these two figures above is presented in Figure 4-10. The 

coverage and capacity are represented by a combined parameter which is equal to 

the product of the Percentage of coverage area with an SINR greater than 2.3dB 

and Percentage of BSs that are allocated, i.e.:  

caco CO CO BS BSC K P K P                                            (4.1) 

If we assume the capacity factor is COK  and the coverage area factor is BSK , these 

two factors both affect the product of capacity coverage parameter. COP  and BSP  

are obtained by the results which have been shown in Figure 4-8 and Figure 4-9. 

The Least Interference scheme has the best result in this case. However, it is not an 

effective channel assignment method because it obtains a poor SINR value. For 

other schemes, Channel Priority has the worst composite performance with 

Maximal Sum and Maximal Difference again having similar results. 
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Figure 4-10  Capacity and coverage comparison 

 

For the further work, different weights of these two factors could be combined. For 

example, if combined 75% COK  and 25% BSK  are combined together, then this 

gives capacity more attention in cognitive networks. Further capacity variations 

will be discussed in Chapter 5. 

 

Different schemes for different numbers of Channels 

In Figure 4-11, the number of channels is changed from 2 to 5 with a fixed number 

(10) of base stations. There are two affected factors which will affect the results. 

One is the increasing number of channels. Apparently, more channels, will allow 

base stations to be assigned more flexibly since they will receive less interference. 

The other factor is the percentile threshold calculation, which has the same 

meaning to that discussed before. In this statistically based threshold, all the SINR 

values are considered acceptable which exceed a 2.3dB threshold.  
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Figure 4-11 Different schemes for different numbers of Channel 

 

The comparisons of SINR performance and coverage situations for different 

schemes are presented above. Good channel assignment schemes should satisfy 

both these factors. From the statistics, the Maximal Difference scheme has the best 

performance and the Channel Priority scheme has the worst. The last two schemes 

have similar results in most the aspects, since they only have very few analyzed 

differences; however, the Maximal Difference scheme is more flexible. 

 

4.5 Discussion 

After considering the SINR performance and total area covered the Maximal 

Difference scheme obtains better performance results. This scheme has an SINR 

value of 9dB (when measured at the Percentile Threshold), and at the same time, a 

larger coverage area to support users. The Channel Priority scheme has the worst 

performance, with only 4dB SINR at the chosen percentile of performance; it also 
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covers less area. The Maximal Sum has similar results to the Maximal Difference 

scheme. The Least Interference scheme has the benefit of assigning all the base 

stations, but the area covered tends to be much lower; however, it is a simple 

scheme to implement. 

 

Each scheme has its advantages and disadvantages. Using them depends on the 

specific circumstances and system requirements. For example, if there is one 

licensed band and one unlicensed band in the system to serve the users, it is better 

to allocate base stations in the unlicensed bands in order to protect the benefits of 

primary users. The Channel Priority scheme could be chosen in this situation, since 

the unlicensed band could be given a higher assignment priority than is the licensed 

band. The Maximal Difference scheme could be implemented in circumstances 

where best performance is needed and the device could satisfy its relatively 

complex process. The Least Interference will work in situations where it is 

necessary to assign all the base stations no matter what SINR values are obtained at 

the percentile threshold.  

 

4.6 Specific Improvements for Channel Assignment  

After considering the performance of different channel assignment schemes to 

assign the base stations in a more realistic scenario, we focus on the situation in 

which channels are chosen based on the overall performance at multiple points in 

the service area, not for one specific location or one group of users. In this case, 

based on multicasting technology, we can develop a simulation that focuses more 

on satisfying the different requirements of users or on changing specific features of 

the transmitter, as in a real communication system.  
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Multiple operator systems 

To do this we simulate a more realistic system which is described as below. In 

general, customers use different mobile networks, so different base stations belong 

to different mobile companies and control their transmit power to best serve their 

own users in their coverage area. Figure 4-12 shows the multicast scenario which is 

implemented by different operators. 

 

Figure 4-12 Multicast scenario 

 

Heterogeneous multicast systems here can belong to different operators, each using 

CR based channel assignment to satisfy users. The schemes select a channel based 

on the highest percentile of SINR across the coverage area. There is one user and 

10 base stations controlled by two different operators in Figure 4-13. The blue 

circles represent base stations controlled by one operator and the red points 

represent the base stations controlled by another operator, in an 88 km coverage 

area. The black point is the user that has its requirements, and we set the rule that 

this user must be controlled by the blue base station. The location of base stations 

with different operators is shown below. Although the nearest base station for the 

user is a red point base station, BS7, the user chooses the blue circle base station, 
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BS8. Obviously, in this case, this user does not obtain the best performance because 

the nearest base station is controlled by the red point company. Figure 4-13 shows  

random numbers of different operators for the terrestrial coexistence systems, 2, 5, 

6, 7, 9 are the base stations belonging to the red point service and 1, 3, 4, 8, 10 are 

the base stations belonging to the blue circle service. 
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Figure 4-13 Base stations with different operators  

 

Figure 4-14 shows that the area is divided into 10 parts, which refer to the area 

covered by 10 base stations based on the base stations locations shown in Figure 4-

13. There are at least two base stations in each part to transmit power to the users in 

their coverage area. The different colors show the coexistence of different base 

stations controlled by different operators. It is found that the SINR in this figure is 

all above the threshold and all the 88 km area is completely covered. Compared 

to the schemes we introduced in this chapter and the contour plots, base stations 

with different operators could serve the entire area, which means that the delivery 
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in Figure 4-14 has a better area of coverage, which means in this simple example, 

therefore, multicasting improves the performance from the user’s perspective. At 

the same time, the other parameters can be changed in the future for multicasting 

usage that is more complex.  
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Figure 4-14 Different coverage area for specific groups of users 

 

4.7 Conclusions 

This chapter has focused on investigating channel assignment schemes that select 

channels based on optimizing the coverage area supported by a terrestrial network. 

The coexistence scenario here is based on different base stations in the same 

service area, with performance assessed in terms of the area of coverage and 

available link SINR. Channels are chosen based on the overall performance at 

multiple points in the service area, rather than the performance at one specific 

location. It is found that best overall performance is achieved by choosing schemes 
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that aim to maximize the number of base stations on a channel while still meeting a 

required minimum SINR threshold value.  

 

To conclude, the Least Interference scheme maximizes the number of base stations 

on a channel but not all base station locations will be able to necessarily satisfy the 

SINR threshold value well. The Channel Priority scheme cannot maximize the 

number of base stations on every channel but only the high priority channel(s). It is 

found that best overall performance is achieved by choosing schemes that aim to 

maximize the number of base stations on a channel while still meeting a required 

minimum SINR threshold value, The Maximal Sum and Maximal Difference 

schemes can deliver the best overall performance level. The channel assignment 

schemes discussed in this chapter are all centralized schemes. The distributed 

occupancy detection will be extended and will be considered with further user 

perspectives in Chapter 6. 
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5. Interaction and Coexistence of Mixed Channel Assignment 

Schemes 
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5.5 CONCLUSION ...................................................................................................................... 134 

 

5.1 Introduction 

The coexistence discussed in Chapter 4 showed how different channel assignment 

schemes selected channels to optimize the coverage area supported by a terrestrial 

network. The performance of each individual scheme was presented and compared 

from different aspects. Instead of using or developing more complex channel 

assignment schemes, it is more helpful to find the connection between the schemes 

and figure out their interaction when investigating cognitive radio systems. 

Coexistence and interaction between schemes are interesting and novel ideas. This 

chapter will extend these ideas by using mixed channel assignment schemes to 

allocate base stations in a more realistic scenario with different considerations. 

Interaction exists when the different schemes are combined and such interaction 

includes the positive and negative interactions with different combinations. In 

future cognitive radio scenarios it is highly likely that different user groups in each 

geographical area will operate different channel assignment schemes, as white 

space spectrum can be used by any user, in principle (subject to regulatory 

constraints). The purpose of this work is to show how such groups interact. Using 
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mixed assignment schemes could potentially improve the performance (SINR, 

blocking and dropping) of individual users and reduce spectrum underutilization. 

 

The four schemes that were introduced in Chapter 4 will be combined two-by-two, 

in one scenario, and the effect of scheme interaction will be observed. Firstly, the 

detailed scenario will be shown with similar system parameters. Then the 

performance of different types of mixed scheme will be evaluated. After this, the 

optimal scheme for each combination will be found after considering interaction 

and coexistence, followed by a discussion of the results of mixed schemes. Finally, 

conclusions will be provided. 

 

5.2 Coexistence Scenario  

The scenario here shows that the channel assignment scheme in a cognitive radio 

system requires that the SINR be simultaneously satisfied for a high proportion of 

users. Unlike the coexistence scenario introduced in Chapter 4, which was based on 

three channels with 10 terrestrial base stations in random locations, larger numbers 

of base stations and channels are used here to represent a more realistic terrestrial 

environment. The main model assumes 30 channels with 100 terrestrial base 

stations. This more complex scenario will help us to understand how the schemes 

react with each other and why the interaction appears more frequently. More details 

will be shown in the results section of this chapter. 
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Figure 5-1 Coexistence Scenario 

 

The signal power, noise power, propagation models and other system parameters 

are all the same as in section 3.4 and Table 4-1. 

 

5.3 Mixed Schemes 

Meaning of mix 

In this stage, mix refers to mixing two schemes selected from among four different 

schemes mentioned in Chapter 4. This means that part of the base stations will use 

one scheme for assignment while the others will use a second scheme. In this 

chapter, the locations of base stations are still random, and at the same time, the 

assignment order of base stations and choice of scheme to be assigned are also 

random in order to obtain more realistic statistical data.  In this chapter, the 

simulation implemented is still Monte- Carlo. 

 

Different Ratio 

We use the term ‘ratio’ to represent the proportion of base stations using each 
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scheme. Ten different ratios for regulating the component elements of the mixed 

schemes are selected: 

10:0, 9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, 1:9, 0:10 

The number before the colon represents the proportion of base stations using the 

first scheme in the mixed scheme, and the number after the colon in each ratio 

represents the proportion of base stations using the second scheme. The 10:0 and 

0:1 ratio results are the same as those shown in Chapter 4 when using individual 

channel assignment schemes. 

 

The following flowchart describes how the mixed scheme is simulated. Firstly, the 

two channel assignment schemes are defined: either the Least Interference and 

Channel Priority schemes, or the Channel Priority and Maximal Difference 

schemes. Secondly, the ratio for the mixed scheme is defined and a random order of 

base stations is given for each individual scheme. Following the order of base 

stations, according to the channel assignment schemes, the corresponding base 

stations are allocated to the channels and the results of the SINR cdf are recorded 

from the users served by each base station. At this stage, the simulation process is 

completed for one ratio. The same process is repeated for the next ratio. After all 

the different ratios of mixed schemes are completed, the results are recorded. The 

result for each individual scheme and the mixed scheme are recorded separately. 
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Figure 5-2 The simulation steps for the schemes in combination 
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Random order of base stations  

In each iteration, we set the base stations using each scheme randomly to obtain the 

statistical results evaluating the performance. The order of activation of the base 

stations is chosen randomly. 

 

How two schemes are combined  

One scheme assigns the current base station to the channel using its own algorithm, 

after that, the other scheme recalculates the SINR cdf values of the existing base 

stations on each channel, and then uses its algorithm to allocate the next base 

station. Since each scheme has its own advantages and disadvantages, when 

combined together, the scheme which has the higher SINR value may be adversely 

affected by a scheme that has a worse SINR value, so the overall result may worse 

than with a single scheme. However the other scheme may cover more area or 

assign more base stations.  

 

The reason for choosing these two combinations of mixed schemes  

The four different schemes that have been shown in Chapter 4 include two different 

types of channel assignment schemes. In this chapter, for comparison, we choose 

two typical examples of mixed scheme combinations, rather than all combinations 

of the schemes, in order to supply enough information to investigate overall 

performance. One of the combinations used is Least Interference and Channel 

Priority, while the other is Channel Priority and Maximal Difference. The Least 

Interference scheme is different from the three other schemes. Therefore, it needs 

to be chosen with another CDF scheme to figure out the connections. The reason 

for not choosing the Maximal Sum scheme is because it is similar to the Maximal 

Difference scheme. From these two mixed schemes, interaction and coexistence 

will be obtained for the different proportions of base station of each scheme. When 
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we perform the comparison between the different mixed schemes, all the results are 

obtained using the same overall traffic load with the locations of base stations 

remaining unchanged to allow a more accurate direct comparison. 

 

Least Interference and Channel Priority combined 

We combine the Least Interference and Channel Priority schemes because they do 

not use the same method to obtain performance: one uses SINR directly while the 

other uses SINR cdf. We want to see how different types of schemes can be 

combined. As shown in Chapter 4, the Least Interference scheme has the 

characteristics of maximizing coverage area (without consideration of the SINR), 

with all the base stations assigned. The Channel Priority scheme forces the base 

stations into the earlier ranked channels. When these two schemes are combined, 

the assigned situation should be changed and more results should be found. We 

analyze and compare the performance of the combined schemes and compare them 

with each individual scheme’s performance. The SINR cdf value is a crucial factor 

in this thesis, and the percentile threshold median value of SINR is used to compare 

performance. Another two factors that will be considered are the probability of 

channel usage and the capacity variation of two schemes when they are mixed. 

 

Figure 5-3 shows the median SINR value for the mixed schemes for different ratios. 

The x axis shows the ratio between two schemes, from 10:0 to 0:10. The Y axis 

shows the median SINR value of the different schemes. The result of the mixed 

schemes is a relatively smooth curve with a stable trend that decreases slowly from 

about 18dB to 7dB. The combined schemes obtain worse performance when the 

proportion of the Channel Priority scheme decreases. As discussed in the last 

section, the Least Interference scheme does not use a SINR threshold value, and the 

Channel Priority scheme uses a 2.3dB SINR minimum at the Percentile Threshold. 

Due to the relatively large number of channels used here, the SINR cdf values are 

much higher than 2.3dB. In the case of the Channel Priority scheme, more base 

stations are assigned to the channels earlier in the sequence, resulting in tighter 
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packing.  

 

 

 

Figure 5-3 Median SINR value for mixed scheme 

 

From Figure 5-3, it can be seen that when the proportion of the Channel Priority 

scheme is small, the Least Interference scheme will avoid assigning channels 

earlier in the sequence helping the Channel Priority scheme, which is forced to 

assign channels in sequence order. This also benefits the Least Interfered scheme as 

there is a lower probability that some of the channels will be occupied. However, 

when the proportion of base stations using the Channel Priority scheme is high, 

meaning that relatively few base stations will use the Least Interference scheme for 

channel assignment, base stations will be concentrated in the channels earlier in the 

sequence, causing the combined line to decrease.  From the simulation results, 

when the ratio of Least Interference and Channel Priority schemes is higher than 

3:7, all 30 channels are used. When the ratio is lower than 3:7, fewer base stations 
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are assigned by the Least Interference scheme. Since when more channels are used, 

less interference is obtained, capacity peaks at 3:7. In other words, these results are 

of the largest overall capacity. Since the SINR values of mixed schemes are the 

main determinants of performance, from Figure 5-4 to 5-7, we analyze the error 

bars. Unassigned base stations and probability of channel usage are shown as the 

complementary explanation and justification of the performance shown in Figure 

5-3. Figure 5-4 shows the error bars on each of these three curves from ratio 9:1 to 

1:9 of the 1000 trials. 

 

 

Figure 5-4 Error bars for two schemes mixed together 

 

Figure 5-5 shows the percentage of unassigned base stations with each scheme and 

the two schemes combined. The result of the Least Interference scheme always 

remains zero because the Least Interference scheme does not have a threshold, 
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which means all the base stations using this scheme must be assigned to the 

channels. For the Channel Priority scheme, as the ratio of the base stations 

increases, the two schemes assign more base stations. The reason for this is when 

the ratio of base stations using Least Interference decreases, it cannot help Channel 

Priority to assign more base stations into any channels without a threshold, so it 

causes the unassigned proportion to increase. However, we cannot say that Channel 

Priority is a bad scheme for a high ratio of base stations, because if we consider the 

SINR figure and unassigned figure together, we find that even if the curve of the 

unassigned proportion decreases when the ratio of Channel Priority increases, the 

SINR value of it is increasing. This means that when the Channel Priority scheme 

is used in a combined way, although it assigns fewer base stations, it obtains better 

performance. The result of the mixed schemes lies somewhere between the two 

individual schemes. It also has an increasing trend. 
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Figure 5-5 Unassigned base stations for two mixed schemes 

 

Figure 5-6 below shows the Probability of Channel Usage for the mixed schemes 

when the ratio is 5:5. As discussed earlier, the characteristic of the Least 

Interference scheme is to assign the current base station in the channel that has 

least interference. Generally, the current base station will be assigned to the 

channels that have the smallest number of base stations because they cause less 

interference. This will mean that channels earlier in the sequence are avoided as 

they tend to be used by the Channel Priority scheme.  So the Least Interference 

scheme in the Figure 5-6 tends to 1 after channel 11. When more than 25 channels 

are used, the line will decrease, because the system is not fully loaded. Conversely, 

the channels in the Channel Priority scheme are concentrated on 1, 2 and 3, since 

they are able to accommodate the base stations, while still maintaining the 

minimum SINR threshold.  
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Figure 5-6  Probability of Channel usage in 5:5 ratio 

 

These results show that it is beneficial to combine the two schemes together, since 

they obtain more benefits in total. From a complementary perspective, if we put the 

channel usage efficiency as the primary consideration, then the Channel Priority 

scheme obtains better performance than the Least Interference scheme for this 

proportion. 

 

All the base stations are assigned with both schemes at this traffic level, but if we 

increase the number of base stations, or change the minimum modulation scheme 

threshold for a higher one, there are likely to be some unassigned base stations that 

cannot be assigned by the Channel Priority scheme. It is because the channels 

earlier in the sequence have more chance to be overloaded and affected by more 

interference. 

 

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930
0

0.2

0.4

0.6

0.8

1

Channel Number

P
ro

b
a
b
ili

ty
 o

f 
C

h
a
n
n
e
l 
u
s
a
g
e

 

 

Least Interference

Channel Priority

Combined



Chapter 5 Interaction and Coexistence for Mixed Channel Assignment Schemes 

- 124 - 

Figure 5-7 shows the capacity variation of two individual schemes mixed in 

different ratios. This is calculated by translating the SINR into an upper bound of 

capacity using the Shannon equation (shown in Chapter 3).  The equation to define 

the capacity variation can be shown as: 

)(/))()(()( 





C
i

C
i

iCiC percentagea  , 0       (5.1) 

Where aC  is the final capacity variation, C(i) is the current capacity  supplied,   is 

the maximum number of base stations operating in the scheme of interest which is 

equal to 10 here. /i  is the current ratio. Schemes operating individually are 

assumed by definition to have no capacity variation. When combining the two 

schemes together, with the increasing ratio of each scheme, in both cases it is seen 

that mixing the schemes delivers the higher capacity compared with the schemes 

operating individually. That shows the capacity is increased for each individual 

scheme when they are operated together. 

 

 

Figure 5-7 Capacity variation of the Channel Priority and Maximal Difference 

schemes when operating in the same spectrum 
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Channel Priority & Maximal Difference  

The Channel Priority and Maximal Difference schemes are mixed. The Maximal 

Sum is not used here because it is similar to the Maximal Difference behavior as 

shown in Chapter 4. In Figure 5-8， the ratio between Channel Priority and 

Maximal Difference schemes ranges from 10:0 to 0:10 on the x axis. The bottom 

5% of the SINR value is shown on the y axis for the two schemes and the combined 

performance. The combined curve is relatively smooth and has a stable trend that 

increases from about 8dB to 24dB. The schemes here still use a 2.3dB SINR 

minimum value at the Percentile Threshold. Every base station should cover on 

average 1% of the service area. Since the system has 100 base stations allocated in 

30 channels, so the SINR cdf value is much larger than the 2.3dB threshold, as 

channel occupancy can be quite low. The reason that the bottom 5% value is 

chosen here instead of median value is because it is often sufficient to provide 

adequate maximum performance to all but the bottom 5% of users, which is a usual 

quality of service threshold. 

 

Figure 5-8 Bottom 5% SINR value for mixed schemes 
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From the introduction and the features in Chapter 4, the Maximal Difference 

scheme has better performance, because it can further reduce the influence between 

the BSs on the same channel, while also being able to choose ‘the best channel’ for 

assignment. When the proportion of the Channel Priority scheme is small, the 

Maximal Difference scheme can avoid allocating channels earlier in the sequence 

to help the Channel Priority scheme which is forced to assign channels in sequence 

order.  However, when the proportion of the Channel Priority scheme is large, the 

Maximal Difference scheme will be used for relatively fewer base stations, so more 

BSs will concentrate in the channels earlier in the sequence, causing the combined 

performance to be worse.  

 

From the simulation results, when the ratio of the Channel Priority and Maximal 

Difference is 7:3, there is a peak point in the Maximal Difference curve. The reason 

for this is as the proportion of Maximal Difference base stations increase, all 

channels will become used, and since the more channels that are used, the less 

interference that is obtained. In other words, this ratio results in the largest overall 

capacity. The error bars on each of these three curves from ratio 9:1 to 1:9 are all 

shown in Figure 5-9, based on 1000 trials and a confidential interval of 99%. 
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Figure 5-9 Error bar for mixed scheme 

 

In Figure 5-10, the probability of channel usage for each of the two individual and 

mixed schemes is shown when the ratio is 7:3, which is the peak point we obtained 

from Figure 5-8. One of the advantages of the Maximal Difference scheme is the 

balance between the number of base stations on each channel. So in the simulation, 

the current base station will generally be assigned in the channels that have the 

smallest number of base stations, regarding in the maximum change in SINR 

caused by a new user activation on the channel, i.e. where occupancy is low 

because in this situation they will cause less interference. This feature of the 

Maximal Difference scheme will cause the channels earlier in the sequence to be 

avoided as they tend to be used by the Channel Priority scheme. So that explains 

why the Maximal Difference curve increases from channel 1 to channel 10, and 

then when the channel number is after 25, the curve decreases, because the capacity 
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is not fully used. From the simulation, when the ratio of Maximal Difference is 

lower than 7:3, the channels later in the sequence have a lower probability of use. 

So the curve in Figure 5-8 is increases from ratios 10:0 to 7:3.  In the case of the 

Channel Priority scheme, it will assign the channels that are concentrated on 1, 2, 3 

in the earlier part of the sequence, because with the 2.3dB threshold here, they are 

able to maintain the performance for the base stations.  

 

Figure 5-10 Probability of channel usage in ratio 7:3 and 3:7 of two schemes 

 

As we mentioned in relation to Figure 5-8, the Maximal Difference scheme can 

avoid allocating channels earlier in the sequence to help the Channel Priority 

scheme. Comparing results with the ratio 7:3 with the channel usage ratio 3:7, the 

system is more fully loaded and fewer earlier sequence channels are allocated by 

the Channel Priority scheme. It is for this reason that the combined performance 
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keeps increasing in Figure 5-8, since Maximal Difference is the better assignment 

scheme. So these results above show that it could be beneficial to combine the 

individual schemes together, since they obtain more benefits in total. By way of 

complementarily, if we put the channel usage efficiency as the primary 

consideration, the Channel Priority scheme obtains better performance. 

 

Figure 5-11 shows when we keep using the GMSK threshold 2.3dB, the BSs in 

each scheme are able to use different transmission rates (here in this example for 

ratio 7:3), as the SINR values obtained are significantly higher than the threshold. 

In Figure 5-11, 100% of the BSs assigned by both schemes have SINR above 

2.3dB. About 95% of the BS assigned by Maximal Difference and 10% of the BSs 

assigned by Channel Priority scheme, can reach 16-QAM. For the 64-QAM 

transmission rate, the percentages are even lower, only 35% and 4% respectively. 

So when different transmission rates are applied in each scheme, the overall 

interaction still remains positive. 
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Figure 5-11  Percentage of BSs operating at different transmission rates 

 

We set the SINR threshold higher to 15.6dB corresponding to the high performance 

required by a high transmission rate modulation scheme, i.e. a minimum of 64-

QAM modulation is required for Channel Priority scheme. It is found that, in 

Figure 5-12, the SINR values of Channel Priority can be forced to be much higher 

than that in Figure 5-8 which used 2.3dB SINR threshold. Channel Priority now 

uses additional channels, instead of just using the channel set from before. In other 

words, the Channel Priority scheme sets the level of congestion on each channel 

according to the SINR threshold required. The combined performance also is 

enhanced. The only negative aspect here is that compared to the results shown in 

Figure 5-8 the schemes are not actually increasing, because the Channel Priority 

component when the schemes are mixed does not have a positive trend. 
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Figure 5-12 Percentage of used channels with different transmission rate 

requirements 

 

5.4 Discussion 

Comparing Figure 5-3 with Figure 5-8 shows the relative performance of the Least 

Interference and Channel Priority schemes, although one uses the median SINR 

value, while the other operates in the bottom 5%. The combination of the Channel 

Priority and Maximal Difference schemes is much better and more stable than that 

of the Least Interference and Channel Priority schemes. The reasons for this are:  

 The Maximal Difference scheme and Channel Priority use a similar 

assignment principle and threshold, whereas the Least Interference uses a 

difference principle. For this reason, the Maximal Difference and Channel 

Priority schemes can combine better than the Least Interference and Channel 
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Priority schemes can.  

 

 The Maximal Difference scheme could be considered as the best scheme after 

we compared the four schemes in Chapter 4. Therefore, the scheme that is 

combined with the Maximal Difference scheme delivers better performance 

than that scheme without the Maximal Difference scheme because the 

combination with the Maximal Difference scheme exploits the advantages of 

the Maximal Difference scheme to help other schemes and provide better 

performance.  

 

 Regarding the coexistence, the Maximal Difference curve in Figure 5-8 has an 

increasing-decreasing-increasing trend. In this situation, the Maximal 

Difference part is more able to fill the empty space that is left by the Channel 

Priority scheme when these schemes assign channels. 

 

The rules below provide some explanation of behaviour when we mix the different 

schemes: 

 

 The discussions in Chapter 4 show that every scheme has its own advantages 

and disadvantages; which scheme is the best depends on the specific 

circumstances and system requirements. In this chapter, the advantages and 

disadvantages of the combined schemes are also shown.  

 

 Different transmission rates will be important for future cognitive radio 

systems. In a cognitive radio system, different operators have different roles 

based on differing requirements, and are likely to operate in the same spectral 

bands and at the same time. For example, the result shown in Figure 5-3 is 
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suitable for a situation in which secondary users work with relatively low 

power. This is because by using the Least Interference scheme, the base 

stations are maximally assigned. The result in Figure 5-12 shows how 

differential modulation levels will help cognitive radio operators to work with 

high or differential SINR conditions. Operators can obtain good combined 

performance over the full range of ratios of the mixed schemes and are able to 

satisfy the expected transmission rate requirements. 

 

 Schemes should be combined taking into account the different circumstances 

of the operator. Channel Priority and Maximal Difference, when mixed, have 

better performance, but are more complex and needs more steps for assignment. 

The mixed schemes have the characteristics of both individual schemes, but 

because of the negative interaction, they sometimes give rise to unpredictable 

situations. We have tried to determine when these situations are likely to occur, 

and have established some rules, e.g. the analysis of the peak point of 

operation. The aim is for the combined schemes to exploit the best features of 

each individual scheme. 

 

We use 1000 iterations for the simulations in Chapters 4 and 5. When combining 

the schemes, the rules are fixed so that the results of the schemes do not include 

any learning process but are statistically significant when we increase the number 

of iterations of the simulation. In this process, the advantages and disadvantages of 

each individual scheme and combined scheme are obtained. This enables the 

features of combined schemes to be observed, but it is more focused on the 

dynamic channel assignment aspect than on the more cognitive perspective. The 

results of each of the 1000 iterations separated. There is no learning applied or any 

memory or enhancement between different iterations. Therefore, in the next step, 
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we assume that the schemes can learn from previous iterations and provide 

feedback to their respective systems. In this case, it is likely that when increased 

awareness and intelligence is added into the system, the performance of channel 

assignment will be greatly improved. The application of learning to channel 

assignment will be the subject of later chapters. 

 

5.5 Conclusion 

In this chapter, the combinations of different channel assignment schemes are 

considered and discussed. For the Least Interference and Channel Priority mixed 

schemes, the results show that it is good to combine them together because they 

can exploit the benefits from each individual scheme, particularly relating to the 

way the individual channels are allocated. The Least Interference scheme avoids 

channels used by the Channel Priority scheme, improving its performance. The 

performance of the Least Interference scheme is improved because the base 

stations assigned using the Channel Priority scheme are packed together, making 

the density of channel usage more suitable in those channels used by the Least 

Interference scheme. For the Channel Priority and Maximal Difference mixed 

schemes, the results show how it is also good to combine them together. It is found 

that the schemes interact favorably even when each scheme operates with different 

modulation rates, thereby allowing differential transmission rates. It is shown that 

the Channel Priority scheme in such circumstances can be forced to use extra 

channels to cope with the increased SINR threshold required for a high rate 

modulation scheme. 
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6 Reinforcement Learning Applied to Multicast Downlink 

Transmission  

 

6.1 INTRODUCTION .................................................................................................................. 135 

6.2 DISTRIBUTED OCCUPANCY DETECTION.............................................................................. 136 

6.3 DISTRIBUTED CHANNEL ASSIGNMENT SCHEMES WITH REINFORCEMENT .......................... 137 

6.4 RESULTS AND DISCUSSIONS ............................................................................................... 145 

6.4.1 Performance Analysis .............................................................................................. 145 

6.4.2 Distributed Occupancy Detection Analysis ............................................................. 153 

6.5 CONCLUSIONS .................................................................................................................... 159 

 

6.1 Introduction 

In Chapters 4 and 5, we introduced four different centralized channel assignment 

schemes and discussed their individual and combined performance. We started this 

project from the channel assignment perspective, but will now develop the system 

from a more cognitive perspective. There is a learning state in the cognition cycle 

shown in Chapter 2. In order to make cognitive radio more intelligent, we apply 

artificial intelligence to the system. There are many different types of artificial 

intelligence, e.g. game theory, reinforcement learning and neural networks. Our 

project uses the idea of reinforcement learning to improve the performance of 

reassignment, blocking and dropping. We focus less on environmental factors or on 

optimizing the convergence rate than on the original reinforcement learning model, 

so we implement a simplified reinforcement learning scheme in our system. 

 

This chapter will show how channel assignment in heterogeneous multicast 
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terrestrial communication systems can be improved using intelligence based on 

reinforcement learning. The purpose is to determine the possible benefits of 

applying reinforcement learning to the channel assignment process of multicast 

terrestrial communication systems that implement distributed spectrum sensing. 

This is achieved by adjusting the weighting factors based on the success and/or 

failure of each activation. Two novel distributed channel assignment schemes with 

reinforcement learning applied are shown. These are designed to efficiently 

improve the speed and quality of channel assignment by limiting the reassignments, 

blocking and dropping rates. A weighting factor is used in this chapter to determine 

the highest priority channels and to help control the performance of the system.  

 

This chapter is organized as follows: Firstly, the model of the multicast scenario 

and distributed detection are briefly overviewed. This is followed by the 

introduction of two different distributed channel assignment schemes, their 

characteristics and the reinforcement learning rules. The performance and 

improvement of distributed reinforcement schemes are then analyzed and discussed. 

Finally, conclusions are presented. 

 

6.2 Distributed Occupancy Detection 

In this chapter, we analyze the effect on performance of different user populations. 

In Figure 6-1, there are 3 different base stations with multiple users. The users in 

red, yellow and blue are the users for each individual base station. The users in 

black are can be assigned to more than one base station. The users in white are 

unable to connect to any base station. If the density of the users is increased, some 

users can connect to more than one base station and be assigned, but sometimes 

also the increased density will cause more interference. 
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Figure 6-1 Distributed detection scenario 

 

There are five channels with 30 base stations used for the channel assignment in 

this chapter, which is based on considering the complexity of schemes and the 

weights update iteration. 

 

6.3 Distributed Channel Assignment Schemes with 

Reinforcement 

Compared to the centralized schemes developed in the previous chapters, 

distributed schemes do not need a central controller. They infer information from 

the environment or users instead of exchanging information between BSs. 

Although the distributed schemes that infer information from power, SINR levels 

and channel occupancy may be more vulnerable to shadowing and hidden node 

problems [115]. They are more scaleable and they provide systems with lower 

complexity which is helpful in the implementation of cognitive radio. There are 

two distributed schemes presented here: the channel priority distributed scheme 

and the random picking distributed scheme. They both apply reinforcement 

learning to the scheme, which will be explained in detail later.  
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Reinforcement learning is the problem faced by an agent that learns behavior 

through trial-and-error interactions with a dynamic environment so as to maximize 

some notion of long-term reward [98]. It is a mathematical method used here for 

the learning state in the cognition cycle, which will learn the information based on 

the external environment and previous states, and then is used to influence the 

current activation [116]. The weight is used to show the influences from the 

previous users or the factors based on circumstance, which will be updated on each 

activation. In this chapter, we implement this computational method by using 

weights associated with each channel at each base station to provide positive or 

negative feedback about the suitability on each channel.  

 

Incorporating reinforcement learning into the distributed channel assignment 

schemes is aimed at improving the performance of more conventional schemes by 

using previously obtained knowledge to aid future decisions, in order to further 

improve the assignment stability and general performance of the cognitive radio 

system.  

 

The following briefly describes the basic rules of reinforcement learning used here 

and shown in Figure 6-2: Initially, the values of all the weights associated with 

each channel of each base station are the same, but after each activation (iteration), 

the weights are updated for a channel according to the conditions shown in Table 6-

1. Assigning channels successfully or unsuccessfully will result in different positive 

or negative changes of the weights respectively. That means that the weights are 

increased or reduced at each activation. On the next activation, the BSs will choose 

the channel from a preferred channel set (which will be explained when we 

describe the two different channel assignment schemes) for a channel assignment 

attempt. The weights are changed here using weighting factors that depend on the 
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different state of the base stations based on Table 6-1. We initialize a variable for 

the iterations. When all the iterations are finished, the learning process ends. Then, 

reinforcement learning will help the base stations to assign channels that maximally 

reduce interference and significantly avoid collisions. 

 

 

Figure 6-2 Flowchart for channel assignment with reinforcement learning 

 

The update of the weighting factor can be represented by Equation 6.1, based on 

[115, 117].  
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1 1i i fW FW W                                    (6.1) 

where 
iW  is the weight of the current iteration after the updating of the information 

from the previous weight 1iW  . fW  is the weighting factor that estimates the weight 

values from the operation of current system and channel assignments, as shown in 

Table 6-1, and can be considered a reward factor for the reinforcement learning 

model shown in Chapter 2. 1F  is set to 1 and the parameters that are used to adjust 

the proportion of the weights, which will be considered later, are set as 1 here. Here, 

environment states are not investigated. Therefore, Equation 6.1 can be simplified 

as: 

fii WWW  1                                                      (6.2) 

 

In Table 6-1, based on different base station conditions, we define the weighting 

factors for different thresholds. If we apply five channels in a 30 BSs system using 

a centralized channel priority scheme, the typical SINR acceptance threshold to 

deliver good performance is about 4.3dB [13]. This value is used in the table as a 

reasonable acceptance threshold level for all new entrants. A 2.3 dB threshold is 

required for GMSK modulation for it to be demodulated with an adequate bit error 

rate. There are three different types of assignment conditions.  If a base station is 

newly accepted on a channel the weight associated with that channel is increased 

by 2 (a reward), or 0 if it fails (no punishment) as shown in Table 6-1. If an existing 

base station is forced off its existing assignment, we use -1 as a punishment for 

requiring reassignment, and -2 if reassignment fails five times and dropping occurs. 

For a successful reassignment, we increase the weight by +1, because although it is 

not as important as a new base station’s initial assignment, it still needs to be 

rewarded for successful assignment.  

 

These values have been chosen arbitrarily, based on the threshold levels. We start 
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with the simplest values: 0, +1 and -1 for the basic successful or unsuccessful 

assignment, and a bonus +2 or punishment -2 for extra reward or strict punishment. 

Further work is needed to choose optimal values. 

 

 

Table 6-1 State of BS and weighting factors 

 

The flowchart below shows how base stations work in distributed channel 

assignment schemes with the reassignment, blocking and dropping phases. As a 

start, the channel assignment schemes used here are either the Channel Priority or 

the Random Picking schemes. When applying reinforcement learning into the 

system, these simple schemes will help us to see how learning factor works and 

how it affects the performance.  

 

 

 

 

 

 

 

State of BS Threshold Levels Weights 

(
fW ) 

New (newly accepted 

on a channel) 

Acceptance SINR > 4.3dB  +2 

No acceptance SINR  <= 4.3dB 0 

Existing Reassignment 2.3dB=< SINR <= 3dB -1 

Dropping SINR  < 2.3dB -2 

Reassignment New acceptance SINR  > 4.3dB +1 
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Figure 6-3 Flowchart for reassignment, blocking and dropping situation of 

distributed channel assignment 

 

The simulation steps of each scheme with reinforcement learning are briefly 

described  below:  

 Step 1: Initial step 

Number all the base stations and channels from 1 onwards.  Retain the best 3 

channels for each BS (the best three channel set is obtained by selecting the three 

highest weights for each testing BS, corresponding to each channel; the initial best 

three channel is chosen randomly from all the base stations). 
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 Step 2: Channel assignment 

Use the Channel Priority (CP) or Random Picking (RP) schemes to assign the BSs 

to suitable channels by each algorithm. In this step, we will explain the differences 

between the two schemes: 

 

Channel priority distributed scheme:  

 Initial activation: All the weights are the same. This scheme will assume that 

channels 1, 2 and 3 make up the best three channel set for every BS. Three 

channels are chosen for the preferred channel set because this should greatly 

reduce the time spent on finding a suitable channel for each base station. 

 Subsequent activation: The best three channel set is used at each BS.  If these 

channels fail, the remaining channels are tested in numerical order, starting 

with the next highest channel on the list after the third best channel.  

 

Random picking scheme:  

 Initial activation: All the weights are the same. This scheme selects three 

random channels for each base station as the best three channels to start with. 

 Subsequent activation: The best three channel set is used for each BS. A 

random channel from the best channel set is chosen, with the remaining 

channels from the best channel set chosen randomly if the channel(s) fail.  

Once the best channel set has been exhausted, the remaining channels from the 

pool are selected randomly.   

 

With both schemes, the SINR cdf levels used to assign, reassign, block or drop for 

the channels are the same, as shown in the flowchart. For each scheme, the initial 

assignment and reassignment will stop after five channels have been tried. 

 

 Step 3: Weight setting 
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The weights are changed and recorded after each activation using the values in 

Table 1, which means the best three channel sets may also change after each 

activation. From step 1 to step 3, there is a full activation. 

 

Compared to the Random Picking scheme, the channel set selection of the Channel 

Priority scheme is better because it is strictly ordered by the weighting values from 

highest to lowest. The channel set of the Random Picking scheme, however, can 

still be used to analyze the totally random situation. 

 

The pseudo code of the Channel Priority scheme are shown as below: 

 

Best k channel set exist 

initial: channel 1-k are best k channels 

Set current-channel to 1 

Set max-BS, max-channel 

 

for (BS(i)=1:max-BS) 

    record SINR cdf value of BS(i) in current-channel 

    if SINR cdf of BS(i) > 2.3dB 

        allocate BS(i) into current-channel 

else 

    current-channel++ 

    if (current-channel > max-channel) 

        return 

    else 

        continue the operation on BS(i) 

        end 

    end 

end   

 

update weight for every channel 

 

for (j=1:k) 

max-weight-channel = channel(j) 

for(m=j:max-channel) 

    if(weight of channel(m) > max-weight-channel) 

        max-weight-channel = channel(m) 

    end 

swap channel(j) and max-weight-channel 

end 
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The pseudo code of the Random Picking scheme are shown as below: 

Best k channel set are existed 

initial: randomly select k channels as best k channels, 

put them in channel(1) to channel(k) 

Set max-BS, max-channel 

 

for (BS(i)=1:max-BS) 

for (j=1:max-channel) 

    if(j <= k) 

        current-channel = randomly select one from 

channel(1) to channel(k) (not selected before) 

    else 

        current-channel = randomly select one from 

channel(k+1) to channel(max-channel) (not selected 

before) 

    end 

 

        record SINR cdf value of BS(i) in current-

channel 

        if SINR cdf of BS(i) > 2.3dB 

            allocate BS(i) into current-channel 

    else 

        continue the operation on BS(i) 

    end 

    end 

end   

 

update weight for every channel 

 

for (j=1:k) 

max-weight-channel = channel(j) 

for(m=j:max-channel) 

    if(weight of channel(m) > max-weight-channel) 

        max-weight-channel = channel(m) 

    end 

swap channel(j) and max-weight-channel 

end 

 

6.4 Results and Discussions 

6.4.1 Performance Analysis 

In this section, we compare the two new distributed channel assignment schemes 

with the previous centralized schemes, from no weights to using weights after 

different numbers of weight update iterations.  In this way the performance of the 

reinforcement learning can be quantified when applied to distributed channel 
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assignment schemes in CR systems. Base stations are assigned in random order, 

and many sets of base station locations are used in order to provide an adequate 

number of trials for obtaining statistically accurate results. 

 

Balancing the tradeoff between exploration and exploitation is a particular 

challenge existing in reinforcement learning [118, 119]. They may have a great bias 

on learning time and the quality of learned policies. Here exploration could be 

reduced because we use the preferred channel set. 

 

The comparison between the centralized scheme without reinforcement learning 

and the distributed schemes with reinforcement learning is shown in every figure 

with weight update iterations. On the X axis, the starting value of each curve at the 

0 weight update iteration are the results we simulated for the centralized schemes, 

allowing the distributed schemes to be compared with the centralized schemes. 

 

In Figure 6-4, the performance with respect to the number of weight update 

iterations at each base station is shown. It means that the system is tested from no 

reinforcement learning applied in the distributed schemes (iteration 0), to weights 

obtained after 1000 iterations. We include the average proportion of reassignments, 

the probability of dropping and blocking in one figure in order to see the proportion 

they contribute and also for obtaining the whole trend.  

 

The weight derivation is a cumulative process that is increased or reduced after 

each activation, with the results affected by the previous results. The learning 

process never stops. So as shown in the figure, all the curves have an improving 

trend. It shows the reassignment, dropping and blocking for two different channel 

assignment schemes respectively. 
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Figure 6-4 Average proportion of reassignments, probability of dropping and 

blocking for two distributed channel assignment schemes 

From the figure, comparing dropping and blocking, it is shown how the 

reinforcement learning plays an important role in improving the performance, 

particularly in reducing the need for reassignment. The proportion of reassignments 

of both schemes is significantly reduced after a large number of iterations have 

been used to set the channel weights.  The reassignment probability reduces from a 

value close to 1, without the weights, to about 0.14 after 1000 iterations with the 

CP scheme, and from about 0.46 without weights to 0.15 for 1000 iterations for the 

RP scheme. The average proportion of reassignments for CP is twice that of the RP 

one, and this is mostly due to the characteristics of CP scheme since it concentrates 

base station assignments into relatively concentrated channels. In other words, it is 

not good to use it for a decentralized channel assignment unless reinforcement 

learning is applied. For the random picking scheme, the loading of base stations on 
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each channel is lower. However, the scheme even with reinforcement learning still 

tends to overload the channels (resulting in slightly higher dropping than is 

normally desirable). For example in a 5 channel system, there are only two 

channels left outside of the best channel set, and this causes the BSs to have 

insufficient assignment options. So we may need to improve the system by 

increasing the number of channels in order to change the channel loading. 

 

The behavior of reassignments for the two distributed channel assignment schemes 

can be divided into three periods as shown in Figure 6-4:  

 The first period is from 0 iterations to 100 iterations, where the rate of 

reassignment decreases by more than 40%. This is an investigation period, 

exploration mostly takes place. It just starts to learn but does not have many 

previous states to imitate and these results in reinforcement learning having a 

relatively small influence at this stage.  

 

 The second period, from iteration 100 to 300, the rate of reassignment 

decreases by 10-40%. It is an accumulation period with coexistence and 

interaction. In this period, the reinforcement learning has some kind of basis to 

be used; it is really in a learning situation. The main work for the system is to 

store enough experience, at the same time, while further reducing the negative 

interaction for the system, in order to support better learning for the later 

period. So the needs of reassignment are continuously reduced in a relatively 

obvious trend.  

 

 The third period, from iteration 300 to unlimited, the level of reassignment 

decreases by less than 10%, and is a mature period, when a stable equilibrium 

of coexistence has been obtained. In this period, base stations all have 
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relatively stable best channel sets, which in general change very little, and 

sudden interference is unlikely. It does not have a static value, as the learning 

experience still improves performance in this fixed random scenario.  

 

The result in Figure 6-4 also represents the convergence behavior of the schemes 

with reinforcement learning. From the 300 weight update iteration point, the users 

tend to find their preferred channel set, with reinforcement learning scheme 

converging to its relatively stable performance. This channel assignment scheme 

will reach equilibrium of assignment after all the base stations obtain their stable 

preferred channel set because the base stations are able to avoid the unsuitable 

channels by using their previous experience. 

 

Reinforcement learning significantly reduces the interference, and at the same time, 

avoids unnecessary retrying in order to improve performance.  Blocking and 

dropping both have a relatively gentle decreasing trends when the number of 

weight update iterations is increased. By choosing a suitable access threshold, the 

blocking curve is a little lower than dropping. This is mainly due to the overloading 

of the channels as we discussed before. Normally, 5% blocking probability and 

0.5% dropping probability are typical ones used by operators. Here dropping is a 

little higher because the threshold for dropping is more restricted. In the case of 

blocking, the SINR cdf value is always bigger than 4.3dB, so this threshold does 

not implement the blocking function properly. So the new acceptance threshold will 

be changed to see the performance next. The blocking cannot be reduced to zero 

because reassignment will still take place and the base stations have the chance to 

be assigned on relatively busy channels. 

 

Figure 6-5 shows the average proportion of reassignments, dropping and blocking 
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probability results after 1000 iterations when the new acceptance level changes. 

Compared to Figure 6-4, reassignment happens initially much more frequently than 

blocking, but in Figure 6-5 the blocking is increased and reassignment is decreased 

as a higher threshold is used, crossing at 7dB. The bottom two curves with circles 

show the dropping results, decreasing slightly for each scheme. They still illustrate 

the same problem as we discussed in Figure 6-4 about the channel loading. For the 

RP scheme, the decrease is more obvious, because compared to the CP scheme, the 

higher threshold will cause more channels to be tested and used, in order to reduce 

the loading of channels. 

 

When we increase the new acceptance threshold, it causes the loading of the 

channels to become less crowded as seen by the blocking curve. At the same time, 

the reassignments are reduced, but the dropping is only slightly reduced, as the 

reassignment is a very good alternative to blocking as way of controlling dropping. 

Changing the new acceptance threshold is good for improving and controlling the 

reassignment and blocking by reducing the channel loading, because it limits the 

probability of new base stations acquiring a channel in the system, in order to 

protect some benefits of existing users. However it is still insufficient to control 

dropping adequately at this stage. We need to increase the channel numbers in 

order to radically solve the loading problems.  
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Figure 6-5 Probability of reassignment, dropping, blocking after 1000 iterations 

with a changing New Acceptance Threshold 

 

In Figure 6-6, the effect of changing the number of channels is shown. As a whole, 

reassignment, blocking and dropping for both schemes are all improved by 

reducing channel loading. Compared to changing the new acceptance threshold, 

increasing the number of channels influences the probability of reassignment for 

the CP scheme, but has much more influence on the RP scheme for some random 

layouts. This show the limitations of the CP scheme, and the problems of channel 

loading still exists. This time, with the increase in number of channels, the blocking 

for both schemes is improved a little. Increasing the number of channels will 

provide the biggest improvement to the level of dropping, especially for the RP 

scheme. When the number of channels is above 8 for the 30 base stations used here, 

all the curves deliver a more suitable channel loading, meaning that the blocking 
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and dropping are at acceptable levels. Also we can see that a reduced channel 

loading results in the RP scheme having a higher performance than the CP scheme. 
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Figure 6-6 Probability of reassignment, dropping, blocking in 1000 iterations with 

changing the number of channels 

 

Figure 6-5 and Figure 6-6 implement two ways of changing the channel loading for 

both schemes. Compared to the result after 1000 iterations in Figure 6-4, a higher 

number of channels along with a higher acceptance threshold could greatly reduce 

the influence of channel loading. All the results show that operating distributed 

channel assignment schemes with reinforcement learning is a possible way of 

achieving implementing increased intelligence in channel assignment for a CR 

system and has better performance. 

 

From the results shown in this section, reinforcement learning can reduce the 
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probability of reassignment, blocking and dropping by considering different user 

populations. By utilizing the reinforcement learning approach, users are able to 

discover the best available resources autonomously, which could result in 

significantly improved performance, while reducing the requirements for spectrum. 

 

6.4.2 Distributed Occupancy Detection Analysis 

In this section, we examine the effect on performance of different user populations, 

using the random picking distributed channel assignment scheme, after a different 

number of weight update iterations. Base stations are assigned in random order, and 

many sets of base station locations are used in order to provide an adequate number 

of trials to obtain statistically accurate results. A model with 10 channels and 30 

base stations is used at this stage.  

 

Figure 6-7 shows the probability of reassignment, dropping and blocking after 

1000 iterations when the number of users per base station changes. Two 

percentages of users are compared here, serving 90% or 95% user population above 

the thresholds respectively. The 90% and 95% values represent two reasonable 

proportions that indicate the performance of users for each base station, which is 

good enough for the usual quality of service threshold. We focus more on the entire 

coverage area. If there is a 100% need access, for each individual user, the 

threshold may be higher. Our work deals with users being unable to get service due 

to coverage and capacity limits. Of mobile phone users in a cell, 100% cannot 

typically be served because of lack of adequate coverage due to shadowing and 

other fading. The X axis shows the numbers of users as 1, 10, 20, 30 and 50 per 

base station, i.e. from a single user to multiple users.  
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Figure 6-7 Reassignments, dropping and blocking in 1000 iterations 

 

Figure 6-7 shows that the increasing number of users plays an important role for 

improving the performance, particularly in reducing the need for reassignment, but 

also dropping.  They are at the expense of increased levels of blocking. The 

probability of reassignment reduces from a value about 0.29 with single user, to 

about 0.13 for 50 users for both of 90% and 95% threshold. A single user per base 

station is more vulnerable to the ‘hidden node’ problem in the system, so it means 

that the probability of reassignment is still relatively high even after 1000 iterations. 

When the number of users per base station increases, the benefits of distributed 

detection are enhanced [11], at the same time with the benefits from reinforcement 

learning, the probability of reassignment for user populations are improved for both 

90% and 95%. Due to the density of user locations in the same coverage area, more 

and more users will be commonly used for detection by the base stations. This 
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means for a fixed density of users the nominal coverage of each base station 

increases as more users connect to a base station.  It also increases the likelihood 

that a user can be connected to more than one base station, i.e. there is the potential 

for overlapping coverage.   

 

Dropping performance here improves as the size of multicast population increases. 

When the base station has only a single user, it more likely that this user will be 

hidden from others because it can only detect the information from one direction, 

which will cause more interference for itself and other base stations. With an 

increased number of users, the amount of dropping is greatly reduced because more 

hidden node situations can be prevented. In contrast for blocking, a single node per 

base station results in nearly zero blocking probability, because the low density 

user group can greatly reduce the interference and then avoid the blocking. 

However, reassignment is used more often to mitigate the negative effects, since 

‘hidden nodes’ are more likely to occur. 

 

From the Figure 6-7, there is no difference when the number of users varies 

between 1 to 10 per base station, as it has little impact on the user population 

requiring service. We do not examine performance when the number of users per 

base station increases above 50, since with coverage model used and the user 

density level means that the coverage per base station would be too great, with the 

user density selected. The result is that from 20 users the reassignment, blocking 

and dropping curve are relatively stable. We will use 20 users per base station to 

obtain better performance in later results. 

 

Figure 6-8 shows the probability of users with the ability to connect to a different 

number of base stations. The total number of users here is 20 per base station. More 
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than 90% of the users are shared by 2 base stations in different channels which 

show a high probability of overlap. Also, the users in the central area are more 

frequently used to test, which will cause the weights of them be influenced faster 

than others. The level of overlap is affected partly because of the random location 

of base stations and the density of users. 
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Figure 6-8 Probability a user is connected to one or more base stations 

 (20 users per BS) 

 

We update the original thresholds of Table 6-1 according to Table 6-2, which is a 

new attempt to better assign the user population, taking into account the 

reinforcement learning. Here we focus more of percentages of the user population 

served in each category rather than SINR thresholds adjustment. For most cases we 

select a common 4.3dB threshold based on the acceptance threshold [11]. Although 
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a 2.3dB threshold is the fundamental threshold of GMSK, the probability of 

dropping with 95% SINR coverage is still slightly higher than we expect. Instead, 

for dropping we set an 85% threshold at 2.3dB instead of 95%. This slightly 

relaxed condition provides a better balance between reassignment, dropping and at 

least keeping the vast majority of users active in the systems. 

 

 

Table 6-2 State of BS and modified weights 

 

In Figure 6-9, the performance with respect to the number of weight update 

iterations at each base station is shown. It means that the system is tested from 

distributed assignment with no reinforcement learning (iteration 0), to weights 

obtained by reinforcement learning after 1000 iterations with 20 users per base 

station. The weight derivation here is a cumulative process that is increased or 

reduced after each activation, with all the results obtained from the previous results. 

The learning process never stops. So as shown in the figure, the result of 

reassignment, blocking and dropping all have an improving trend.  

 

Comparing Figure 6-9 and the 1000 iterations result in Figure 6-7, we find that 

using the modified percentage threshold yields better performance and is a more 

flexible way of controlling behavior. We use two ways to identify the thresholds, 

State of BS Thresholds Levels Weights (
fW ) 

New Acceptance 95%SINR > 4.3dB  +2 

No acceptance 95% SINR  <= 4.3dB 0 

Existing Reassignment 95% SINR  <=4.3dB -1 

Dropping 85% SINR  < 2.3dB -2 

Reassignment New acceptance 95% SINR > 4.3dB +1 



Chapter 6 Reinforcement Learning Applied to Multicast Downlink Transmission 

- 158 - 

one is based on a fixed percentage of the user group and the other is the changeable 

percentage which is changed depending on the requirements. 
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Figure 6-9 Probability of reassignment, dropping and blocking with 20 users per 

base station 

 

In Figure 6-9, it is also worth considering the early performance of the system 

before the 1000 weight update iterations. When the weight update iterations 

increase, not only is the reassignment probability greatly reduced, but it also 

improves the rate at which base stations find suitable channels for assignment. This 

means that the base stations are much more likely to find a suitable channel, 

because the high weighted channels will help the users avoid the interference. 

Blocking and dropping performance are also improved after 1000 iterations; the 
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probability of dropping decreases to a very small value, which shows that 

reinforcement learning when used with a multicast user population helps the 

system avoid dropping. 

 

6.5 Conclusions 

This chapter has presented two distributed channel assignment schemes applied in 

a CR system using reinforcement learning and a weighting factor. The Channel 

Priority and Random Picking schemes are shown, and compared for different 

numbers of iterations used to derive the channel weighting factors. It is found that 

compared to the previous schemes without reinforcement learning, distributed 

channel assignment schemes with reinforcement learning can efficiently improve 

the reliability of channel assignment by limiting the reassignment, blocking and 

dropping. Moreover, determining the highest priority channels helps base stations 

to improve the performance of the system. The results show that the proportion of 

reassignments of both schemes is significantly reduced after a large number of 

weight update iterations are used, from a value close to 1 in with no learning to 

0.14 after 1000 learning iterations with the CP scheme, and from about 0.46 

without learning to 0.15 for 1000 iterations for the RP scheme.  

 

We have shown how it is possible to divide the learning process into three phases 

depending on the degree of accumulated knowledge. Performance improvements 

are achieved by learning about past successful/unsuccessful assignments, and also 

by increasing the new acceptance threshold or the number of channels, as the 

channels become less crowded. Dropping control using channel reassignment is a 

very good alternative to blocking of new activations. We have shown how the 

random picking distributed channel assignment scheme with a user population was 

capable of receiving multicast downlink transmissions. It is found that compared to 
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single user channel occupancy detection, multiple user detection helps solve the 

hidden node problem by greatly reducing the proportion of reassignments and 

improving the dropping probability. However this is at the expense of higher 

blocking because it is more difficult to find suitable free channels that can serve an 

increased coverage area per base station, occupied by the multiple users. The level 

of overlap is affected partly because of the random location of base stations and the 

density of users. More details of overlapping problem will be discussed in Chapter 

7.
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7.1 Introduction 

Cognitive radios have the capability to adjust their transmission parameters to 

achieve better performance [120]. The transmission parameters that may be 

adjusted to improve communication quality include: operating frequency, 

modulation scheme and transmit power [121]. To further improve the performance 

of a system with reinforcement learning applied, in this chapter, the transmit power 

will be adjusted to reduce overlap between neighboring base stations (which 

operate on different channels) thereby saving power and further reducing the 

interference.  

 

The main aim for this chapter is to apply reinforcement learning to the channel 

assignment process of multicast communication systems, which operate with 

downlink transmitter power adjustment at the base station. This will exploit 

information from randomly distributed users, providing distributed detection. The 

assignment will use a threshold based on a quality of service guarantee across 
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differing percentages of this user population. Work shown in previous chapters has 

adopted a SINR cdf to control the performance of a distributed channel assignment 

scheme with reinforcement learning. 

 

This chapter is organized as follows: Firstly, the user population analysis of the 

distributed occupancy detection model is shown, the results arising from different 

user populations influencing the distributed reinforcement learning schemes are 

then analyzed and discussed, followed by the power adjustment applied in the 

system. Finally conclusions are presented. 

 

7.2 Scenario and Distributed Detection 

We will discuss the effect on performance of different user populations applied in 

the random picking distributed channel assignment scheme, after a different 

number of weight update iterations. Base stations are assigned in random order, and 

1000 sets of user locations are used in order to provide an adequate number of trials 

for obtaining correspondingly statistically significant results. In the past, we used to 

select the model with 5 to 10 channels and 30 base stations, but due to loading 

quality of service dropped below that which is considered acceptable, so here a 

model with 10 channels and 50 base stations is used in this chapter to better 

illustrate the channel assignment as we mentioned before. 

 

From the results in Chapter 6, we know that the number of users per base station 

plays an important role in improving the performance, particularly in reducing the 

need for reassignment, but also in terms of dropping. In this situation, more hidden 

node situations can be prevented if the number of users per base station is large 

enough. The suitable number of users is approximately 15 in this scenario here 

instead of 20 users which are used in Chapter 6, because it is corresponding to a 
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95% level of coverage area when we use 15 users per base station to obtain the 

channel assignment results. It is important that there are sufficient users to help 

alleviate the ‘hidden node problem’. Unsuitable densities of users will result in the 

channel assignment performance being degraded. This number of users per base 

station is also linked to the power adjustment which will be discussed later. 

 

7.3 Performance Analysis and Overlapping Problem 

In Figure 7-1, the performance with respect to the number of weight update 

iterations at each base station is shown.  It is found that with dropping and blocking, 

the reinforcement learning plays an important role for improving the performance, 

particularly in reducing the need for reassignment. The proportion of reassignments 

is significantly reduced after a large number of iterations have been used to set the 

channel weights. When the weight update iterations increase, not only is the 

reassignment probability greatly reduced, but it also improves the rate at which 

base stations find suitable channels for assignment. This means that the base 

stations are much more likely to find a suitable channel, because the high weighted 

channels will help the users avoid the interference. Blocking and dropping 

performance are also improved after 1000 iterations; the probability of dropping 

decreases to a residual value, which shows that reinforcement learning when used 

with a multicast user population helps the system avoid dropping.  
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Figure 7-1 Probability of reassignments, dropping and blocking with 15 users per 

base station 

 

The behavior of the assignment process in distributed channel assignment schemes 

can be divided into three periods (investigation period, accumulation period and 

mature period) based on a selection of a percentage of users across the entire 

coverage area. The difference between Figure 6-9 and Figure 7-1 here is the 

decreasing rate of reassignment here is slightly lower, which is a result of using a 

limited user population, rather than obtaining performance from users regularly 

spaced over the coverage area. These groups of users are not able to cover all the 

area, which may result in less information exchange in the system than before.  

When the density of users increases, there are more changes of detection at each 

base station. The number per base station can be limited by defining a nominal 

service area, which is less than the actual coverage area (due to minimum SINR), 
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but coverage area overlap will still exist.   

 

Figure 7-2 shows the probability of users with the ability to connect to a different 

number of base stations, which is the overlapping problem we try to solve. The 

total number of users here is 15 per base station. In the scenario tested here, nearly 

90% of the users can potentially connect to 2 base stations on different channels, 

indicating that there is a high level of overlap. Also, the users in the central area are 

more frequently selected, which may cause the weights of the base stations to be 

influenced faster than others. The level of overlap is affected partly because of the 

random location of base stations and the density of users. This kind of situation 

needs to be avoided in the real communications system. Power adjustment will help 

to reduce the overlap and will be explained in the next section. 
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Figure 7-2 Probability a user is connected to one or more base stations (15 users 

per BS) 
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Overlapping cannot be avoided but only be reduced. At this stage, if we keep all the 

parameters and scenarios same, the only way for reduce overlapping is to decrease 

the chance of detection for each base station, which means reduce the number of 

users. However, it may cause the hidden node problem which we explained before. 

Non-overlapping case cannot be modeled here because with distributed detection, 

the overlapping always exist, but the power adjustment will greatly reduce the 

overlapping situation which we will explained in section 7.4. 

 

Now we investigate the effects of adjusting the channel assignment thresholds. We 

update the original thresholds in Chapter 6 as shown in Table 6-2 (7-1), previously 

the same percentage of minimum user population served was adopted for blocking, 

dropping and reassignment, so here we focus more maintaining specific percentage 

of the user population served in each category and less on the SINR thresholds. The 

4.3dB threshold is still based on the original acceptance threshold plus a 2dB 

margin, but now this is coupled with a minimum population percentage threshold. 

This margin is included to cope with small fluctuations in interference, e.g. as a 

result of new arrivals on the same channel in locations far from the coverage area, 

which would result in connections being reassigned or dropped. In practice, 

interference will also fluctuate due to other effects, such as multipath, change in 

transmission parameters etc.  However, if the margin is too large then connections 

are blocked unnecessarily, hence the margin of 2dB is a compromise figure. For 

dropping we set an 85% threshold at 2.3dB instead of 95%, as a minimum level. 

This slightly relaxed condition still keeps the vast majority of users active in the 

systems, and seems a better option rather than forcibly dropping otherwise active 

users in the system. An alternative strategy that is beyond the scope of this chapter 

is to keep all systems active providing some users are benefiting from service, and 

instead recording the connection as being disturbed (for a period). 
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Table 7-1 State of BS and modified weights 

  

Comparing Figure 7-3 and Figure 7-1, we find that using the modified percentage 

threshold yields better performance and is a more flexible way of controlling 

behavior. There are two ways to identify the thresholds, one is based on a fixed 

percentage of the user group and another is changing performance by selecting an 

appropriate percentage of the user population rather than adjust the SINR threshold 

value. The reassignment threshold in Table 6-2 is stricter than the range of SINR 

values in Table 6-1, so the base station will be reallocated more frequently and this 

helps dropping and blocking rate decrease. Dropping is also reduced due to the 

more relaxed threshold. 

 

State of BS Threshold Levels Weights (
fW ) 

New Acceptance 95%SINR > 4.3dB  +2 

No acceptance 95% SINR  <= 4.3dB 0 

Existing Reassignment 95% SINR  <=4.3dB -1 

Dropping 85% SINR  < 2.3dB -2 

Reassignment New acceptance 95% SINR > 4.3dB +1 
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Figure 7-3 Probability of reassignment, dropping and blocking with 15 users per 

base station of modified thresholds 

 

7.4 Power Adjustment 

7.4.1 System with Power Adjustment 

Reducing overlap is an important issue to consider further because it can result in 

high unwanted levels of interference. The following figure shows the spatial layout 

of adjacent base stations on different non-interfering channels. In order to solve the 

overlap problem in Figure 7-2, we will adjust the power over the coverage area, 

there are a number of users are connected to each BS, in order to minimize the 

overlap and further reduce the interference.  
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Figure 7-4 Base station nominal service area with power adjustment-All base 

stations are in different channels 

 

In the base station service area with power adjustment, as an example, we assume 

the ‘BS’ is the base station whose transmit power will be adjusted, BS1, BS2 and 

BS3 are three adjacent BSs. The dashed circles for each base station represent 

different service areas, which show that they could work for different modulation 

schemes as required. In the fixed transmitter power situation, the higher the SINR 

threshold required, the smaller service area that will be covered. Initially, the 

minimum percentile threshold is 2.3dB, but this will be varied later. Due to the 

different locations of users for each iteration, the service area for each BS changes, 

meaning that the transmit power also needs to be changed for each iteration. To 

find a suitable transmit power for each BS, we need to define a minimum receive 
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power for the users at the boundary between different BSs, which means inside this 

boundary, the users will belong to this specific BS, meaning that the overlap can be 

reduced. The position of BS, BS1, BS2 and BS3 are shown in Figure 7-4. If the 

service area of two base stations overlap, the users connected to each BS will 

decrease. Therefore, the equations for calculating the transmit power are: 

' min 1 min 2max( , ,...)TXL dB dBP S L S L  
                 (7.1) 

' max,
min( )TXL TXL

P P P
                                           (7.2) 

minS  can be calculated from the equation below:  

min
1010logT

S
S

I N


                                               (7.3) 

10
min 10 ( )

TS

S I N 
                                               (7.4) 

Where minS is the minimum received power at the edge of coverage area. iL  is the 

path loss to the ideal edge of cell boundary to prevent no overlap, which is the 

same as the path loss in the Okumura-Hata model we used in previous chapters. TS  

is the SINR threshold for different modulation schemes. We assume the INR is 

10dB as a typical value to estimate the interference level, the minimum SINR 

threshold is used 2.3dB. After this process, the transmit power for ‘BS’ is reset, and 

this is repeated at each BS, in order to obtain new transmit powers; all are limited 

by the maxP  constraint. 

 

Compared to the previous flowchart, we add one more step for power adjustment 

between the channel selection and assignment parts. The improvement here does 

not directly contribute to the weight itself, but greatly improves the user distributed 

occupancy detection and also is independent of the channel assignment scheme. 

The new flowchart is shown below. 
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Figure 7-5 Flowchart for channel selection and assignment with power adjustment 

in system 

 

7.4.2 Performance of Adjustment 

Figure 7-6 shows the cumulative probability of users with the ability to connect to 

a different number of base stations. The total number of users here again is 15 per 

base station and the minimum percentage threshold is 2.3dB. Compared with the 

no power adjustment case, about 30% for 100 iterations and 20% for 1000 

iterations of the users are shared by 2 base stations in different channels, i.e. the 

power adjustment reduces the level of overlap, and the overlap is further reduced 

by the reinforcement learning. Due to the random location of users it is only 

possible to reduce the overlap, not completely eliminate it. As is shown with BS 

and BS3 in Figure 7-4, if the service area boundaries intersect, there is still a small 

area of overlap, and users in this area can connect to two BSs. This is especially 

true for the users in the central area. 
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Figure 7-6 Multiple base station connection for individual users with power 

adjustment 

 

Figure 7-7 shows the percentage power reduction in transmit power for different 

reassignment thresholds. 2.3dB is used for GMSK as a minimum threshold for 

reassignment, other thresholds are increased by each 2dB margin as we explained 

earlier in weights part. When the threshold is 2.3dB, the new transmit power is 

lower on average by -10.8dB for 100 iterations, and -11dB for 1000 iterations 

compared with the original level. For both 100 and 1000 iterations, it is found that 

after power adjustment, the transmit power level has been reduced significantly but 

the users still satisfy the acceptance threshold. This significantly reduces the overall 

energy required in the communications system. Learning activation here is not that 

obvious for power adjustment from 100 to 1000 iterations, especially when the 

number of iterations is close to 1000. Compared to the no power adjustment case, 
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the learning process with power adjustment obtains enough information earlier, 

which means learning is more mature for this number of iterations, as service areas 

change little after this time.  

 

 

Figure 7-7 Power reduction (dB) of original transmit power with different SINR 

thresholds after 100 iterations 

 

The power adjustment does not affect the weight in the reinforcement learning, but 

it reduces the level of overlap in the system we used. The overlap is further reduced 

by reinforcement learning. So the results obtained from Figure 7-8, it is found that 

compared to the no power adjustment scheme, the scheme with power adjustment 

starts with less reassignment. After a large number of iterations, the decreasing rate 

of reassignment is still higher than the scheme without power adjustment. When 

the power adjustment is based on the SINR boundary threshold of 2.3dB, the 

transmit power level is much lower than the original transmit power level. It shows 

that the reinforcement learning also works well for this scheme, as the performance 

is greatly improved. Due to the new transmit power being much lower than the 
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original case, base stations can be located in relatively random positions without 

explicitly considering the channel assignment. In the same random location 

situation, the scheme with power adjustment causes a lower level of interference 

than the scheme without power adjustment. This also explains why reassignment 

using a 10.3dB threshold is worse than a 2.3dB threshold. The three periods 

defined before for reinforcement learning process are still seen, only that the 

decreasing rate of reassignment here is smaller, because the initial channel 

assignment for the scheme with power adjustment is much better than the scheme 

without power adjustment. The improvement space is not as great as for the scheme 

without power adjustment. 

 

The blocking performance with power adjustment is worse than with the no 

adjustment cases. In the case of reduced power level situations, more base stations 

are being packed onto the same channel for the initial assignment, which will cause 

the blocking to increase. The decrease in dropping will also cause a further increase 

in the blocking as space is not freed up on the assigned channels. Dropping 

improves significantly because the reduced power means that overall there is less 

interference from other base stations on the same channel.  
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Figure 7-8 Performance of power adjustment for reassignments, dropping and 

blocking with 15 users per base station 

 

7.5 Conclusions 

This chapter has presented a random picking distributed channel assignment 

scheme applied to a cognitive radio system exploiting reinforcement learning with 

a user population receiving multicast downlink transmissions, with performance 

improved by power adjustment. It is found that distributed channel assignment 

schemes with reinforcement learning can efficiently improve the performance of 

channel assignment by limiting the reassignment, blocking and dropping rates. 

Moreover, adding power adjustment into the system helps base stations reduce their 

overlapping coverage areas and further reduces the interference from other BSs. 

The results show how the proportion of reassignments in the various schemes is 

greatly reduced after the weight update iterations are used. By using the multicast 
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architecture it is possible to exploit channels that utilize occupancy detection from 

multiple users, which helps solve the hidden node problem, resulting in a reduced 

proportion of reassignments and improving the dropping probability.  However, 

this is at the expense of higher blocking because it is more difficult to find suitable 

free channels because they are more likely to be occupied by the multiple users. 

Different minimum quality of service threshold percentages can be used to control 

and improve performance, in place of the more traditional SINR threshold levels. It 

is found that significantly reducing the levels of overlap between adjacent base 

stations improves the performance of reassignment, dropping and blocking, while 

also reducing interference and saving transmitter power.  
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In this thesis, the performance of channel assignment schemes using reinforcement 

learning has been analyzed in a coexistence scenario. Potential further areas of 

research work are to implement them in different situations with coexistence, and 

adjust the learning process. These adjustments to the learning process could include 

design and modification of the learning function, learning efficiency, consideration 

of the uplink and a more detailed user perspective, game theory and pricing with 

radio resource deployment, coexistence with other existing communication systems, 

etc. A number of suggestions for future work are given in this chapter. 

 

8.1 Design and Modification of the Learning System 

As we discussed in Chapter 6 and 7, applying reinforcement learning to cognitive 

radio systems can greatly improve the performance. The simplified algorithm was 

analyzed in Equation 6.1, which used the basic weight function [115, 117]: 

1 1 2i i e fW FW F W W                                           (8.1) 

iW , 1iW  , 1F  and fW  are explained in Chapter 6. eW  is the environment states 

which will affect the input of the current weight. 2F  is the environment parameter. 

In this thesis, we only consider learning from previous states and weighting factors. 
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In the future, the information exchanging from other cognitive radios and 

environment states will be investigated.  

 

The weight selection values for fW in Table 6-1 have been chosen arbitrarily. The 

arbitrary values can only satisfy the primary estimation for the improvement of 

learning, but cannot be the optimal values for building a modified learning system. 

In order to obtain relatively reasonable weighting factor, we plan to use the values 

of weights as linear or exponential. Compared to linear values, exponential increase 

or decrease of weights may help the system reduce the time of first learning period 

(investigation period as shown in Chapter 4). For example, if the weights are 

continually rewarded for more than 3 iterations, we could change fW  into an 

exponential factor to reward it. On the contrary, if the weights continually decrease 

for more than 3 iterations, which happens rarely based on the results from before, 

fW  could be set as the exponential damp as a strict punishment. Until now, we 

performed limited simulations but have not obtained the optimal ones for the 

weight values. Linear value, exponential value, or other kinds of values of 

weighting factors will greatly change the results of learning process. Nie [92] and 

Bublin [95] present the centralized Q-learning, game theory and reinforcement 

learning algorithm. Our algorithm is relatively simple since we pay more attention 

to dealing with multicasting and dynamic channel assignment. A whole weights 

system to define a more realistic and more stable system needs to be developed in 

the future. 

 

8.2 Learning Efficiency 

When we analyze the learning process, we focus on the overall performance of the 

system by using reinforcement learning. From the results we obtained so far, the 

learning process takes long time to obtain a relatively settled performance. The 
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convergence is quite slow; the reason for this problem may be the unnecessary 

attempts of learning events which means this part of learning is wasted, so we solve 

this by considering the learning efficiency. In the learning process, there is 

successful and unsuccessful learning. Learning efficiency means how much the 

role successful learning plays on the whole learning process. If we do not want so 

many iterations before obtaining a relatively stable, we need to learn why some 

learning events are unsuccessful and how to improve them. Most of the 

unsuccessful learning may be a result of unsuitable weight selection, or for some 

other reasons, i.e. the overlapping location of users of base stations, or the 

unbalanced density of group users. The convergence rate is another way to consider 

this kind of problem. It could be used as the potential way is to control the ratio of 

unsuccessful learning and successful learning, combined with changing the weight 

function and weight factors. 

 

8.3 Game Theory and Pricing with Radio Resource 

Deployment 

There are many intelligence methods that could be used for the intelligence aspect 

of cognitive radio. Reinforcement learning is a quick and relatively easy way to 

model for many users with single or a small quantity of operators. For the channel 

assignment aspect, especially coexistence and interaction, game theory is a good 

way to deal with interaction from different operators because game theory is a 

methodology of studying situations of interdependence, and can be used to analyze 

the best strategy between cooperation and conflict [122]. This point will 

significantly improve our interaction investigation between different channel 

assignment schemes. 

 

Compared with the modeling approach used in this thesis, game theory may open a 
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new methodology for spectrum management and be more flexible to deal with the 

interaction, compared with the current coexistence system [123]. Another 

interesting possible way to extend game theory is by using a Neural Network 

analysis method. For example, neural networks could undertake training for 

different positions, i.e. distance and combinations of base stations, so that they will 

find a ‘critical’ point (as the maximum performance point) for cognitive 

multicasting communication systems [124, 125].  

 

Pricing is another factor for dynamic allocation, and in the future pricing could be 

combined to consider together with the development of game theory. Markov 

decision processes, matrix games and stochastic games could be used with the 

mixed strategies to be considered in further work.  

 

8.4 Consideration of Primary Users 

There are two kinds of users in the cognitive radio system: primary users and 

cognitive users. All users considered in this thesis are cognitive users. If we 

incorporate primary users into the system, then they have highest priority to choose 

the channel to be assigned and this may cause loss of service to the existing 

cognitive users. We may need to add more flexible judgments to help secondary 

users which are below the thresholds to vacate the existing channel and find a new 

one, which means the channel assignment schemes need to be modified. For 

example, a kind of “window”, which can be closed when the primary users are 

assigned at a channel. During this time the existing cognitive users will be unable 

to be active on this channel by the closed state of “window”, in order to protect the 

performance of primary user. When the primary users stop using the channel, the 

“window” for secondary users will open again. 
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8.5 Uplink Consideration and User Perspective 

Most of the time, the downlink is considered in this thesis. Combining the study of 

the downlink and uplink together will help us to build and model a more integrated 

system and complement the necessary factors to support our future work. Power 

control is a significant issue for uplinks. One problem that needs to be mentioned is 

that increasing the power may cause extra adverse interference. The balance 

between high data rate and interference needs to be considered more when 

modeling the coexistence scenario.  

 

Due to the different conditions of users (investigated in Chapter 4 for a group of 

users and satisfying the basic requirements), there are more situations that need to 

be considered: different powers, different operator control, the characteristics of 

sets of users, and so on. To satisfy these requirements, and provide different quality 

of service levels for users, needs to be investigated in the future. 

 

8.6 Coexistence with Other Existing Communication 

Systems 

This thesis is focused on channel assignment for mixed terrestrial communication 

systems but pays less attention to the interaction between terrestrial and other 

systems when they use the same or adjacent frequency bands, e.g. satellites and 

high altitude platform [126]. Even for terrestrial systems, we performed a number 

of simulations with two operators which could be modeled as different 

communication systems in Chapter 4, but in other parts of the thesis, single 

operators were simulated. At the same time, in the same terrestrial communication 

system, there are also more factors that need to be considered and may also cause 

more coexistence problems, e.g. using variable transmitting power. For different 

systems the interaction will be a big problem, as it may include sharing the 
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resource, or even producing more interference, and will need to be modeled in the 

future. 
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9 Summary and Conclusions 

 

9.1 SUMMARY AND CONCLUSIONS ........................................................................................... 183 

9.2 SUMMARY OF ORIGINAL CONTRIBUTIONS .......................................................................... 188 

 

9.1 Summary and Conclusions 

This thesis presents the research work that was compiled during the period 2006 to 

2011 at the University of York. The early parts of the thesis present the related 

background knowledge, the simulation techniques and evaluation that include 

system parameter analysis. The main part is focused on the research work, which 

has investigated spectrum management, and the channel assignment schemes to 

assign base stations in a coexistence scenario in order to implement the coexistence 

of mixed terrestrial communication systems based on cognitive radio technology, 

where the base stations communicate to users in a multicast fashion. This is 

followed by two distributed channel assignment schemes applied in a CR system 

using reinforcement learning and a weighting factor. 

 

The summary and conclusions of the major chapters are listed as follows: 

 

After the general introduction of Chapter 1, Chapter 2 has introduced the 

background knowledge relating to this research work. Some of the knowledge here 

may not be used directly in the following work, but to know and understand the 

concept is very necessary and it may be used in future work. From the background 

reviews, we understand the principle of cognitive radio and how it works, and the 

research work and development of cognitive radio around the world.  We use 

dynamic channel assignment to implement the flexible spectrum assignment that 
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cognitive radio requires. Propagation models with the required parameters will 

depend on the communication environments they will operate in. Multicasting is 

potentially very useful for delivering point-to-multipoint traffic in cognitive 

networks. Reinforcement learning models are introduced as a very useful way to 

implement the learning and cognition part of a cognitive radio system. Related 

research work applying intelligence to cognitive radio systems is also introduced. 

 

Chapter 3 gives an overview of the simulation techniques and evaluation that is the 

crucial for our research work. Using the MATLAB tool, we have explained how a 

system can be modeled using a Monte-Carlo simulation and reinforcement learning. 

Base stations operating in the same or different channels are used to evaluate the 

simulation result. SNR and SINR statistics and the associated CDFs are used to 

determine performance, e.g. noise power has already been included. Error bars 

have been briefly introduced. Some simple examples are given here for better 

understanding. All of the simulation elements will be used in later chapters. 

 

Chapter 4 describes the detail of the coexistence scenario with mixed terrestrial 

systems. It focuses on investigating channel assignment schemes that select 

channels based on optimizing the coverage area supported by a terrestrial network. 

The coexisting scenario here is based on different base stations in the same service 

area, with performance assessed in terms of the area of coverage and available link 

SINR. Channels are chosen based on the overall performance at multiple points in 

the service area, rather than the performance at one specific location. It is found 

that best overall performance is achieved by choosing schemes that aim to 

maximize the number of base stations on a channel while still meeting a required 

minimum SINR threshold value.  
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To conclude, the Least Interference scheme maximizes the number of base stations 

on a channel but not all base station locations will be able to necessarily satisfy the 

SINR threshold value well. The Channel Priority scheme cannot maximize the 

number of base stations on every channel but only the high priority channel(s). It is 

found that best overall performance is achieved by choosing schemes that aim to 

maximize the number of base stations on a channel while still meeting a required 

minimum SINR threshold value, The Maximal Sum and Maximal Difference 

schemes can deliver the best overall performance level. The channel assignment 

schemes discussed in this chapter are all centralized schemes. The distributed 

occupancy detection will be extended and will be considered with further user 

perspectives in Chapter 6. 

 

Chapter 5 provides a deeper analysis of the combinations of different channel 

assignment schemes. For the Least Interference and Channel Priority mixed 

scheme, the results show that it is good to combine them together because they can 

exploit the benefits from each individual scheme, particularly relating to the way 

the individual channels are allocated. The Least Interference scheme avoids 

channels used by the Channel Priority scheme, improving its performance. The 

performance of the Least Interference scheme is improved because the base 

stations assigned using the Channel Priority scheme are packed together, making 

the density of channel usage more suitable in those channels used by the Least 

Interference scheme. For the Channel Priority and Maximal Difference mixed 

scheme, the results show how it is also good to combine them together. It is found 

that the schemes interact favorably even when each scheme operates with different 

modulation rates, thereby allowing differential transmission rates. It is shown that 

the Channel Priority scheme in such circumstances can be forced to use extra 

channels to cope with the increased SINR threshold required for a high rate 
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modulation scheme. 

 

Chapter 6 has presented two distributed channel assignment schemes applied in a 

CR system using reinforcement learning and a weighting factor. The Channel 

Priority and Random Picking schemes are shown, and compared for different 

numbers of iterations used to derive the channel weighting factors. It is found that 

compared to the previous schemes without reinforcement learning, distributed 

channel assignment schemes with reinforcement learning can efficiently improve 

the reliability of channel assignment by limiting the reassignment, blocking and 

dropping. Moreover, determining the highest priority channels helps base stations 

to improve the performance of the system. The results show that the proportion of 

reassignments of both schemes is significantly reduced after a large number of 

weight update iterations are used, from a value close to 1 in with no learning to 

0.14 after 1000 learning iterations with the CP scheme, and from about 0.46 

without weights to 0.15 for 1000 iterations for the RP scheme.  

 

We have shown how it is possible to divide the learning process into three phases 

depending on the degree of accumulated knowledge. Performance improvements 

are achieved by learning about past successful/unsuccessful assignments, and also 

by increasing the new acceptance threshold or the number of channels, as the 

channels become less crowded. Dropping control using channel reassignment is a 

very good alternative to blocking of new activations. We have shown how the 

random picking distributed channel assignment scheme with a user population was 

capable of receiving multicast downlink transmissions. It is found that compared to 

single user channel occupancy detection, multiple user detection helps solve the 

hidden node problem by greatly reducing the proportion of reassignments and also 

in terms of dropping probability. However this is at the expense of higher blocking 
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because it is more difficult to find suitable free channels that can serve an increased 

coverage area per base station, occupied by the multiple users. Different minimum 

quality of service threshold percentages can be used to control and improve 

performance, in place of the more traditional SINR threshold levels. 

 

Chapter 7 has presented a random picking distributed channel assignment scheme 

applied to a cognitive radio system exploiting reinforcement learning with a user 

population receiving multicast downlink transmissions, with performance 

improved by power adjustment. It is found that distributed channel assignment 

schemes with reinforcement learning can efficiently improve the performance of 

channel assignment by limiting the reassignment, blocking and dropping rates. 

Moreover, adding power adjustment to the system helps base stations reduce their 

overlapping coverage areas and further reduces the interference from other BSs. 

The results show how the proportion of reassignments in the various schemes is 

greatly reduced after the weight update iterations are used. By using the multicast 

architecture it is possible to exploit channels that utilize occupancy detection from 

multiple users, which helps solve the hidden node problem, resulting in a reduced 

proportion of reassignments and improving the dropping probability.  However, 

this is at the expense of higher blocking because it is more difficult to find suitable 

free channels because they are more likely to be occupied by the multiple users. 

Different minimum quality of service threshold percentages can be used to control 

and improve performance, in place of the more traditional SINR threshold levels. It 

is found that significantly reducing the levels of overlap between adjacent base 

stations improves the performance of reassignment, dropping and blocking, while 

also reducing interference and saving transmitter power.  
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9.2 Summary of Original Contributions 

This thesis has provided a better understanding way of channel assignment applied 

to heterogeneous multicasting communication systems, by considering the 

interaction of channels and using reinforcement learning. This section highlights 

the original contributions and originality of the research work in this thesis. Some 

of them have already been published. 

 

Dynamic channel assignment with cognition using a Cumulative Distributed 

Function of SINR applied to multicasting communication systems 

Dynamic channel assignment is not a very new topic, either for channel assignment 

or cognitive radio. It has been discussed in other literature such as [93, 94]. In this 

thesis we focus on the novel idea of applying the multicasting scenario to cognitive 

radio, in that we determine the spectrum which satisfies a group of users to allow 

simultaneous transmission, while not seriously affecting other groups of multicast 

users sharing the pooled spectrum.   

 

Moreover, this thesis focuses on investigating channel assignment schemes that 

select channels based on optimizing the coverage area supported by terrestrial 

network. The coexisting scenario here is based on different base stations in the 

same service area, with performance assessed in terms of the area of coverage and 

available link SINR. Channels are chosen based on the overall performance at 

multiple points in the service area, rather than the performance at one specific 

location. SINR CDF value to be used here is easier and quicker to obtain the 

overall performance over the coverage area. These contributions have been 

presented in the PGNET 2007, Liverpool, UK, June 2007. 
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Interaction and coexistence of schemes 

Interaction is one of the important aspects of cognitive radio concept, and many 

people have undertaken research work on channel assignment schemes to try to 

modify the schemes to improve the performance. However, no one has attempted to 

think about the relationship between different schemes. In this thesis we extend 

these ideas by using mixed channel assignment schemes to allocate base stations in 

a more realistic scenario with different considerations. The interaction exists when 

the schemes are combined and this causes positive and negative reactions with 

different combinations. 

 

We found that it is good to combine two systems together because a mixed set of 

schemes can exploit the benefits from each individual scheme, particularly relating 

to the way the individual channels are allocated and the schemes interact favorably 

even when each scheme operates with different modulation rates, thereby allowing 

differential transmission rates. These contributions have been presented in the 2008 

IET Seminar on, 18th, Sep, 2008 and COGCOM 2008, Hangzhou, China, Aug, 

2008 

 

Reinforcement Learning applied into system 

Reinforcement learning is one of the machine learning methods which has been 

applied successfully to many problems. Cognitive radio is a new technology, and 

very few people consider applying intelligence to the cognition cycle, especially 

reinforcement learning. Applying reinforcement learning in cognitive radio is a 

very new improvement for cognitive radio. By using this method, we modified the 

schemes, which efficiently improve the speed and quality of channel assignment by 

limiting the reassignments, blocking and dropping rates. A weighting factor is used 

in this thesis to reinforce the performance by identify the weights of reassignment, 
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blocking and dropping. This kind of weighting factor has not been investigated 

before, and implemented them in order to help to control the performance of the 

system.  

 

We found that distributed channel assignment schemes with reinforcement learning 

can efficiently improve the speed of channel assignment by limiting the 

reassignment, blocking and dropping rates. Moreover, determining the highest 

priority channels helps base stations to improve the performance of system. We 

have shown how it is possible to divide the learning process into three phases 

depending on the degree of accumulated knowledge. Performance improvements 

are achieved by learning about past successful/unsuccessful assignments, and also 

by increasing the new acceptance threshold or the number of channels, as the 

channels become less crowded.  Dropping control using channel reassignment is a 

very good alternative to blocking of new activations. Compared to detection by 

single users, detection by multiple users reduces the ‘hidden node’ problem. Using 

different minimum quality of service threshold percentages can partly control and 

improve the performance, in place of the more traditional SINR threshold levels. At 

the same time, with reinforcement leaning, the ability to find an optimal channel 

for users is significantly improved, because the channel weighting can help the 

users avoid interference. These contributions have been presented in the 

CROWNCOM 2009, Hannover, German, Jun, 2009 and COGCOM 2009, San 

Francisco, USA, Aug, 2009 

 

Cognitive Radio with reinforcement learning applied to multicast downlink 

transmission with power adjustment 

Another novel contribution as a result of this research work is to develop 

overlapping treatment and power adjustment for channel assignment in multicast 
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terrestrial communication systems with distributed channel occupancy detection 

based on reinforcement learning. Overlapping treatment and analysis is from the 

results which are obtained from distributed channel assignment with reinforcement 

learning as shown in Chapter 6, and it shows that the overlapping happens 

frequently. We presented a random picking distributed channel assignment scheme 

applied to a cognitive radio system exploiting reinforcement learning with a user 

population receiving multicast downlink transmissions, with performance 

improved by power adjustment. Power adjustment is not novel, but adding it into a 

multicasting cognitive radio system and combining it with reinforcement learning 

is very novel. It will help us to further control the reassignment, blocking and 

dropping of the system. Moreover, adding power adjustment into the multicasting 

cognitive system helps base stations reduce their overlapping coverage areas and 

further reduces the interference from other BSs.  

 

By using the multicast architecture it is possible to exploit channels that utilize 

occupancy detection from multiple users, which helps solve the hidden node 

problem, resulting in a reduced number of reassignments and improving the 

dropping probability.  However, this is at the expense of higher blocking because it 

is more difficult to find suitable free channels because they are more likely to be 

occupied by the multiple users. Different minimum quality of service threshold 

percentages can be used to control and improve performance, in place of the more 

traditional SINR threshold levels. It is found that significantly reducing the levels 

of overlap between adjacent base stations improves the performance of 

reassignment, dropping and blocking, while also reducing interference and saving 

transmitter power. These contributions have been published by Wireless Personal 

Communications -Special Issue on Cognitive Networks and Communications, 

Jan, 2011 
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Publications 

Journal 

 M. Yang and D. Grace, “Cognitive Radio with Reinforcement Learning 

Applied to Multicast Downlink Transmission with Power Adjustment”, 

Wireless Personal Communications-Special Issue on Cognitive Networks 

and Communications, Jan, 2011 

 

Conference 

 M. Yang and D. Grace, “Cognitive Radio with Reinforcement Learning 

Applied to Multicast Downlink Transmission and Distributed Occupancy 

Detection”, COGCOM 2009, San Francisco, USA, Aug, 2009 

 

 M. Yang and D. Grace, “Cognitive Radio with Reinforcement Learning 

Applied to Multicast Terrestrial Communication Systems”, CROWNCOM 

2009, Hannover, German, Jun, 2009 

 

 M. Yang and D. Grace, “Cognitive radio based spectrum assignment for 

heterogeneous multicast terrestrial communication systems with different 

transmission rate requirements”, Cognitive Radio and Software Defined 

Radios: Technologies and Techniques, 2008 IET Seminar on, 18th, Sep, 

2008 

 

 M. Yang and D. Grace, “Interaction and Coexistence of  Multicast Terrestrial 

Communication Systems with Area Optimized Channel Assignments”, 

COGCOM 2008, Hangzhou, China, Aug, 2008 
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