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Abstract

Research on the brain has received considerable attention over the last two decades.

Non-randomness of the information flow is widely reported in the study of the brain.

Statistical Signal Processing methods have been applied to analyse the dependencies

between neuronal recordings. From one side, this makes a great contribution towards

further understanding of the brain. On the other side, due the the progress of exper-

imental technology, analysing experimental data becomes a more and more difficult

task and hence requires advanced approaches to be developed. Evidence of higher

order interactions and nonlinear interactions has been reported in recent experimental

findings. This project develops two approaches for statistical signal processing to anal-

yse Multielectrode Array (MEA) data. The first one is a Unified framework of Third

Order time and frequency domain analysis (UTO) and the second one is a Mutual In-

formation Function (MIF). These two approaches are described and applied to single

unit spike trains to interpret the interactions and dependencies between the spiking

neurons. The presence of dependencies are successfully estimated by each approach.

In simulations where a modelled neuronal network with 100 neurons, UTO is applied

to investigate third order dependencies according to a centre-surrounded pattern of

connectivities in the network. The correct pattern of excitatory and inhibitory con-

nections are detected using UTO. Significant values of cumulant estimates are present

when third order interactions are present. MIF analysis is also conducted on the sim-

ulations. The proposed method computes the Mutual Information (MI) as a function

of time lags, along with a Monte-Carlo based calibration method using 100 trials of

Poisson spike trains. Significant departure of MI value from the baseline are shown

when the dependence exists. UTO and MIF are applied to an experimental MEA spike

train data collected from a study of connectivity in a model of kainic acid (KA) in-

duced epileptiform activity for mesial temporal lobe epilepsy (mTLE) in rat. UTO and

MIF both successfully highlight the short latency and long latency dependencies exist-

ing in the dataset. Therefore, UTO and MIF provide complementary tools to capture

dependencies between spike train signals.
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1.1 Motivation

Neurons in the nervous system interact with each other every single moment. When-

ever we fold our arms, play a violin, run on the treadmill or think of a complicated

mathematical problem, the neurons in different parts of our nervous system trans-

fer and process information (see figure 1.1) (Gazzaniga, 2004; Kandel et al., 1995).

Hence, knowledge of how information is transferred, processed and stored in the ner-

vous system is essential for understanding the nervous system. Statistical signal pro-

cessing and computational neuroscience pave a way for quantitatively studying these

problems, trying to uncover the principle of the working theory of nervous system

and advance our understanding of the brain. Studies can be focused from different

viewpoints, or in the context of different biological levels. Since a series of record-

ing techniques has been invented and improved, studying the nervous system through

different kinds of electrical or magnetic activities gives higher reliability. A particu-

lar scientific area is the detection of interactions and dependencies between neurons,

which is also known as functional connectivity detecting or sychronisation (Rubinov

and Sporns, 2010). This project is interested in using statistical signal processing

methods to studying the functional connectivity, because of several reasons:

1. There are requirements in this scientific area due to the universality of interactions

in the nervous system. Neurons communicate and interact with each other no matter
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Figure 1.1: This figure illustrate the functions of different parts in motor cortex. This
figure indicates that the more complex and more precise the behaviour is, the larger
parts of motor cortex are involved (for example, the hand and face). On the other hand,
less complex movements, like walking or swallowing, need less area of motor cortex
involved. Figure from (Gazzaniga, 2004)
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whether we do physical exercise or think about things silently.

2. Although the interaction between neurons involves complicated nonlinear phenom-

ena, many works succeed in reliably detecting interactions between neurons by esti-

mates of linear measures. The classical and widespread techniques are second order,

for instance, cross-correlation (Gevins and Schaffer, 1979; Brazier and Casby, 1952;

Perkel et al., 1967), coherence (Carter et al., 1973; Brillinger, 1981; Rosenberg et al.,

1989) and Granger Causality (Granger, 1969; Geweke, 1982; Sameshima and Baccalá,

1999). Not much work has been done in addressing the detection of nonlinear interac-

tions.

A natural question is what makes the existing methods less applicable to nonlinear

problems. The difficulty is primarily because of the nonlinearity and lack of good

estimators. The nonlinear problem is familiar to people who carry out research in a

wide range of disciplines. In this case, the entire nervous system can be regarded as a

dynamic nonlinear system. However, most of the widely applied methods are not ca-

pable of revealing information about the nonlinearity. Whenever nonlinear phenomena

are present, intuitive thinking is to extend the linear measures. For example, nonlinear

Ganger causality has been derived (Freiwald et al., 1999), the correlation coefficients

also has its nonlinear version (da Silva et al., 1989; Pijn et al., 1990). However, they

are not easily applicable in neuroscience context, the former just suitable for electroen-

cephalogram (often referred as EEG) signals, while the latter depends on selection of

statistical model for charactering the dynamic property of the signals (Pereda et al.,

2005).

The second issue is lack of good estimators. There are mature techniques such as

mutual information (Shannon and Weaver, 1949), which potentially can deal with any

nonlinearity. However, reliably estimating the measure from finite size of samples

can be difficult. Some well-designed estimators have been developed (Kraskov et al.,

2004; Darbellay et al., 1999; Shlens et al., 2007), these solutions solve the problem to

some extent, but at the same time, they all have their specific drawbacks. Driven by
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these reasons, new techniques which can overcome these drawbacks are studied in this

project.

From a computational neuroscience viewpoint, the electrical signals recorded from

neurons can be regarded as time series, which is mathematical model depict function

value against recording time (Priestley, 1981), or point process, which is a type of

random process for which any one realisation consists of a set of isolated points in

time (Brillinger, 1975c). Hence, statistical elements and signal processing techniques

can be introduced to analyse these neuronal signals. Therefore, functional interaction

studies in computational neuroscience can be mathematically modelled using statisti-

cal signal processing methods to analyse recorded data, trying to obtain some measure-

ment which can be convincingly inferred in a statistical way to illustrate the interaction

between neurons. The methods which are developed in this project should be sensitive

to nonlinearity, easily calculated, reliably estimated and firmly tested.

1.2 Hypothesis

The hypothesis of this project is:

Higher order statistics and information theory related methods could provide ev-

idence of dependencies between neurons and should be able to reveal interaction

patterns beyond the linear cases.

It should be worthwhile to develop new techniques based on higher order statistics and

information theory related methods to reveal the interaction pattern which is difficult

to detect using second order analysis. This could potentially be helpful to further our

understanding of nonlinear dynamical properties in the nervous system. This could

also be a feasible framework for point process data to investigate the associations be-

tween them.
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One way to achieve a higher order statistical method is to consider a unified frame-

work of time and frequency domain, because from the experience of second order

time-frequency domain methods, finding the frequency domian equivalent not only

gives a new estimator, but also sometimes can provide a quicker way combining with

inverse Fourier transform to calculate estimates in the time domain.

For information theory related methods, a possible way is to develop an approach

to reliably estimate the distribution function of point processes from finite size sam-

pled data. The gap between utilisation of information theory related methods and the

data type involving in this project is the difficulty to apply density function estimation

methods to point processes (spike trains).

1.3 Thesis Structure

This thesis has six chapters. This section will outline the rest of this thesis.

Chapter 2 provides an introduction to background knowledge of the nervous system,

human brain and neurons in general, including reviews on some theoretical back-

ground concepts and principals related to this project from two viewpoints: biological

background perspective and computational neuroscience perspective.

Chapter 3 surveys existing second order statistical signal processing methods in detail.

This survey contains descriptions of definitions, algorithms and common applications,

including correlation, spectra, coherence, Granger causality. It also provides a review

of probability and information theory, including descriptions of concepts, definitions

and necessary deriviations.

Chapter 4 presents a Unified framework of Third Order time and frequency domain

(UTO) analysis for neural system. Results obtained by applying this framework are

presented in this chapter demonstrating the advantages of this unified framework. This
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chapter also includes a brief description of the simulated dataset using cortical network

model. The UTO analysis is conducted on the simulated dataset by investigating some

spike train combinations with gradually increased spatial separation. The results are

consistent with centre-surrounded connectivity pattern in the simulated network. The

UTO analysis is then applied to the experimental data by investigating the ”CA3 -

CA1” triplet combinations. The results highlight that the UTO analysis is capable of

capturing the third order interactions.

Chapter 5 proposes a mutual information function (MIF) estimator using kth nearest

neighbour statistics. Results obtained by applying this algorithm to datasets are also

presented in the same way as chapter 4. The proposed approach is presented along

with a description of constructing the baseline indicating independence using a pair of

Poisson spike trains. MIF analysis is then conducted on the simulated data discussed

in chapter 4. The results imply that the MIF is useful to detect connectivities between

neurons. Application of MIF on the experimental data discussed in chapter 4 is con-

ducted by investigating the ”CA3 - CA1” information flow pattern in hippocampus.

The results shows that MIF is a useful to evaluate the dependencies between spike

trains.

Chapter 6 draws the final conclusions of this thesis and proposes future work. A gen-

eral summary of the proposed techniques and results is first provided, followed by

more detailed summaries chapter by chapter. Future work is discussed at the end of

this thesis.
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2.1 Introduction

Nervous system provides a wide range of areas to investigate (Shepard, 1988; Gaz-

zaniga, 2000). Different researchers studied range of topics (Ashburner and Friston,

2000; Woolrich et al., 2001; Rubinov and Sporns, 2010; Izhikevich, 2007). In recent
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years, increased knowledge about the nervous system and how it works has been accu-

mulated. With all the progress, it was realised that the key issue to improve understand-

ing of the nervous system is to reveal the mechanisms how information is processed,

stored and transferred in it. Complex activities can be done only under control of the

brain via coordinating different parts of the brain itself and processing different kinds

of processes. Taking playing a violin as an example, the brain must integrate regions

corresponding to vision, auditory sense and motor control to achieve this task. Visual

information on the bow, strings and music score, along with the auditory feedback of

the music and movement of fingers, arms and neck have to be handled at the same time

to produce a piece of music.

The different parts of the brain consisting of large number of neurons which are spe-

cialised in processing particular inputs are known as brain regions (Kandel et al., 2000;

Gazzaniga, 2000). Aiming at deepening the understanding of the communication and

information processing mechanisms in the nervous system, a systematic review of bi-

ological background of anatomical and physiological knowledge is discussed in this

chapter.

The elementary and functional cells in the brain are neurons which are significant in

information communication procedures (Nicholls et al., 2001). The prototype sig-

nals of information communication in the brain is known as action potential, or spike

(Dayan and Abbott, 2001). Hence, it is possible to study the information processing

between neurons, networks and brain regions by measuring the association between

spikes. Modern electrical recording and spike sorting techniques (see section are able

to provide signals on which further analyses can be conducted (Karkare et al., 2013;

Quiroga et al., 2004).

This chapter discusses background knowledge in three areas. The first part including

section 2.2 - 2.6 will provide biological background information, giving a brief intro-

duction to the nervous system, the brain and neurons. Neurons as the basic signalling

units, their chemical and electrical properties are discussed in this chapter, fellow by a
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detailed discussion of the action potential (spike). The second part is from the view-

point of Computational neuroscience. Spiking neuron models are presented in detail in

section 2.7. The last part (section 2.8) will mention the Multielectrode Array (MEA)

recording technique and will briefly describe the spike sorting techniques since spike

trains are the signal in which this project is interested.

2.2 Central Nervous System and Brain

The nervous system exists in most multicellular animals but varies in its complexity.

It transmits information to and from different parts of body so that both voluntary and

involuntary actions of the body are coordinated by the nervous system (Trappenberg,

2010). In vertebrate species, nervous system is subdivided into two major parts: The

central nervous system (CNS) and the peripheral nervous system (PNS). The central

nervous system is composed of the brain and spinal cord, and it functions to process

information, send signals from one cell to others and receive feedbacks. It acts like an

integrative and control centre for the whole body (Kandel et al., 1995). The peripheral

nervous system acts like communication channels between the central nervous system

and the rest of the body (Shepard, 1988).

The central nervous system is divided into several parts, namely spinal cord, medulla,

pons, cerebellum, midbrain, diencephalon and cerebral hemispheres. Apart from the

spinal cord, these construct the brain. Figure 2.1 shows their approximate position in-

side the human body. The diencephalon and cerebral hemispheres are worthy of high-

lighting here because they are involved deeply in information processing. Hence, much

attention has been paid to these two parts (Alexander and Crutcher, 1990; Alexander

et al., 1986; Freund and Buzsáki, 1996). The diencephalon has two important struc-

tures, the thalamus and the hypothalamus, the former processes most of the informa-

tion arriving at the cerebral cortex from other parts across central nervous system,

while the latter regulates autonomic, endocrine and visceral functions. The cerebral

hemispheres contain the cerebral cortex, basal ganglia, hippocampus and amygdaloid.

The basal ganglia is largely related with motor performance, the hippocampus plays an
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Figure 2.1: The central nervous system consists eight main parts: spinal cord, Medulla,
pons, cerebellum, midbrain, diencephalon, Corpus callosum and cerebral hemispheres.
Figure from (Kandel et al., 2000)

essential roly in memory storage and the amygdaloid is invloved in emotional states.

Overlying both hemispheres is the the heavily wrinkled layer of cerebral cortex subdi-

vided into four lobes: the frontal lobe, parietal lobe, temporal lobe and occipital lobe

(Kandel et al., 2000). Information is transferred and processed inside or across these

different regions in the brain.

The levels of organisation in nervous system differ hugely in spatial scale, from molec-

ular size level of 10−10 m to the whole nervous system level of 10 m. All these levels

have their own working theories, which contributes to brain function. Figure 2.2 vi-

sualises the organisations at different level in nervous system. This project mainly

focused on the neurons level.

A reasonable way to view these levels is looking down though the brain. The brain is

believed to be the most complicated organ in animals and is the core part of the central

nervous system. The brain consists of two hemispheres. As Figure 2.3 illustrates, Four

lobes are divided longitudinally across each hemisphere. Functionally, the frontal lobe

is the motor controller, parietal lobe contains the sensory systems, temporal lobe is

related to audition, learning and memory, and occipital lobe controls vision. Down-
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wards, the four lobes can be divided into smaller scaled and more specific sub regions

called map. One of the famous division is the Brodmann’s area consisting of fifty two

subregions (Gazzaniga, 2000) (see figure 2.4). Comparing to lobes, these subregions

are more functionally and cellular morphologically specialised (Gentner et al., 2001).

Organisation at the level of maps is composed of smaller scale organisation called

network, which is a few of interconnected cells (Trappenberg, 2010). A particular

organisation at map level called hippocampus is important in this project since the ex-

perimental data was recorded from it. Hence, It is worthy of introducing hippocampus

in more details.

2.3 Hippocampus

The hippocampus may be the most studied brain structure. It is part of the limbic

system (see figure 2.6) and is essential for memory consolidation and spatial naviga-

tion(El-Gaby et al., 2015; Suárez et al., 2014; Moser and Moser, 1998; O’keefe and

Nadel, 1978). The hippocampus is found to be a major component of brain in verte-

brates. It is named due to its resemblance to the marine animal seahorse. There are

two hippocampuses found in mammals, located in each side of the brain. As figure 2.5

shows, in human beings, the hippocampus is located in the medial temporal lobe and

beneath the cerebral cortex.
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Figure 2.3: Four lobes in two hemispheres of the brain. Figure from http://csls-db.c.u-
tokyo.ac.jp/
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Figure 2.4: Brodmann’s areas, a way to divide the brain according celllular morphol-
ogy and organisation. Figure edited from Gazzaniga et al.(1998)

Figure 2.5: The figure shows the location of hippocampus in human brain. The
front view is on the left and the side view is on the right. Figures from
https://www.fil.ion.ucl.ac.uk/memo/brain.html
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Figure 2.6: The figure shows the hippocampus of human in the limbic system. The
frontal lobe is on the left, the occipital lobe at the right, and the temporal and parietal
lobes have largely been removed to reveal the hippocampus (the two pink ”U” shaped
parts) underneath. Figure from https://commons.wikimedia.org

This section will introduce the basic anatomy and biological background of the hip-

pocampus, followed by the brief description of the information processing mecha-

nisms inside the hippocampus.

2.3.1 Structure of The Mammalian Hippocampus

The hippocampus in mammals mainly consists of one basic cell type and its interneu-

rones. These basic neurons are packed to form a layer. As shown in figure 2.7, the

hippocampus itself is divided into two major ”U” shaped interlocking sections: the

fascia dentata (area dentata, dentata gyrus) and the hippocampus proper(cornu ammo-

nis). The fascia dentata comprises a buried blade and an exposed blade. The hip-

pocampus proper can be further divided in a regio superior and a regio inferior. The

regio supperior has a double row of medium-sized pyramidal neurons whose main

apical dendrite gives off only small side branches and does not divide for several hun-

dred microns. The regio inferior is the semi-circle close to the fascia dentata having

large-sized pyramidal neurons whose dendrites bifurcate after leaving the soma. This

type of large-sized pyramidal neuron contacts with mossy fibres of the dentate granule

cells. The hippcampus proper is also divided into four fields, CA1-4, where CA is the

shorthand for CornuAmmonis. The CA1 field almost coincides with the regio superior

while the CA2 and CA3 can be seen as parts of the regio inferior. The existence of
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Figure 2.7: The figure shows the schematic diagram of the hippocampus structure in
human brain. Its shows the divisions of the hippocampus: fasica dentata and hip-
pocampus proper, regio superior and regio inferior, CA1 and CA3. It also has the
schematic drawing of the basic neurons (medium-sized and large-sized pyramidal neu-
rons) and its major interneurones(Basket cell). Figure from (O’keefe and Nadel, 1978)

CA2 field as a separate area has been challenged since there is no difference found in

terms of connections or histo-chemical staining properties compared with CA3. CA4

is next to or even blurs into the fascia dentata.(O’keefe and Nadel, 1978)

The basic organisation in the CA1 and CA3 fields is the same: large neurons are or-

dered like a sheet with their cell bodies being packed together in a layer and their

dendrites running away in the same direction. The large neurons in CA3 are giant

pyramidal neurons while in CA1 are comparably smaller.

An important type of interneurones is the basket cell. It can be differentiated from the

pyramidal neurons in several ways. The basket cells do not have thorn shaped spines

on their dendrites and thus do not contact with the mossy fibres. The basket cells just

send their axons within the local areas while the pyramidal neurons send theirs out

of this area. The cell body of the basket cell is mainly located in the principal cell

layer, sometimes slightly below. Its axon goes through the cell layer and reaches a
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considerable distance. These layers are important and worth brief description.

2.3.2 Layering in the Hippocampus

The fascia dentata and hippocampus proper differ in cell layers in their structure (see

figure 2.8 (b)). The fascia dentata is made of three layers (summarised in table 2.1).

The cell bodies of granule cell are densely packet to form the granule layer. Their

dendrites and afferents form the molecular layer. The axons of granule cells gathering

to form the mossy fibre bundle, together with some non-granule cells, form the third

layer, the polymorph layer.

Figure 2.8: The figure shows the detailed schematic diagram of the hippocampal cells.
The top panel (a) depicts examples of pyramidal neurons in CA1 and CA3. The bottom
panel (b) illustrates the examples of dentate granule cells and a basket cell. Figures
from (O’keefe and Nadel, 1978)
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The hippocampus proper is further divided into more layers (see figure 2.8 (a), sum-

marised in table 2.2). The alveus layer is formed by the axons of the pyramidal neu-

rons. The stratum oriens layer is between the alveus and the pyramidal cell bodies and

is formed mainly by the basal dendrites of the pyramidal cells and some basket cells.

The pyramidal layer, as the name indicated itself, is dominated by the cell bodies of

pyramidal cells. The radiatum layer and the moleculare(lacunosum) layer are essen-

tially segments of dendritic tree. A particular layer, stratum lucidum. is recognised

only in CA3 field, which is interposed between the pyramidal layer and the radiatum

layer, contacting with the mossy fibres from the dentate granule cells in dentata area.

These layering structures are important in signalling and communication in the hip-

pocampus.

Layer Index Layer Name Component(s)

1 Molecular Dendrites and afferents of the granule cell

2 Granule Cell bodies of the granule cell

3 Polymorph Mossy fibre bundle(Axons of the granule cells), Non-granule cells

Table 2.1: Layers in the fascia dentata.

Layer Index Layer Name Component(s)

1 Alveus Axons of the pyramidal neurons

2 Stratum oriens Basal dendrites of the pyramidal cells, basket cells

3 Pyramidal Cell bodies of pyramidal cells

4 Stratum radiatum The proximal segments of the apical dendritic tree

5 Stratum moleculare The distal segments of the apical dendritic tree

6 Stratum lucidum Mossy fibre (only in found CA3)

Table 2.2: Layers in the hippocampus proper.

It is these different cells in layers of the hippocampus that enable the hippocampus to

play an important role in spatial navigation, memory solidification and so on. Accord-

ing to figure 2.2, at the spatial level of cells, neurons are specialised cells capable of
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electrical signalling (Nicholls et al., 2001). They are capable of transmitting informa-

tion to other neurons. The information processing ability of neuron results from its

subcellular mechanism. Hence, neuron, as the basic signalling component in central

nervous system, is worthwhile of detailed investigating to assist understanding func-

tional connection in the brain.

2.4 Nerve Cells: Neurons

The central nervous system consists of two categories of cells, neurons and glial cells.

Normally, glial cells are thought of mainly providing supporting action (Charles et al.,

1991; Parpura et al., 2012). On the other hand, Neurons are highly-specialised cells

being able to processing information in central nervous system (Dayan and Abbott,

2001). It is the signalling property of a single neuron that provides the cornerstone of

more sophisticated and specific information processing abilities of higher level organi-

sations like network, system and brain. From this essence, Studying the mechanism of

electric signalling and biochemical processing in detail is necessary. This section first

introduces the structure of neurons briefly. Afterwards, the information-processing

mechanism of single neuron and synaptic mechanisms will be outlined.

2.4.1 Neuronal Structure

Neurons have a common cellular structure like other biological cells. As figure 2.9

illustrated, neurons varying morphologically. However, all neurons have typical cellu-

lar components. Specifically, a neuron has a nucleus, a cell body named soma, soma

root-like extensions. According to the different directions in signal transmission, these

extensions are further divided into two categories named axons and dendrites and they

both are related to information processing. Synapses are the specialised junctions

between neurons (Kandel et al., 1995). Dendrites receive external inputs from presy-
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Figure 2.9: (A) Schematic neuron structure with outlined components widely ex-
ist in different neuron types.(B)Pyramidal neuron, being found in the motor cortex,
(C)Granule cell, being found in the olfactory bulb of a mouse, (D)Spiny neuron, being
found in the caudate necleus, (E) Golgi-stained purkinje neuron, being found in the
cerebellum. Figure form Trappenberg(2010)

naptic neurons and forward the electric signals to soma to be integrated. Axons send

the signals which have been integrated and processed in soma along the axons outward

to root-like ends (Trappenberg, 2010).

2.4.2 Signalling within Neurons

The membrane potential is defined as the difference in electric potential between inside

and outside the neuron. The difference in potential results from the different concen-

trations of ions on the two sides of membrane. The variance of ionic concentrations

causes movements of ions, which form ionic currents through the membrane. These

ionic currents are essential to the neurons’ signalling ability. The cellular membrane

is permeable to specific ions using a special protein called an ion channel, which is
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embedded in the membrane. Ion channels let specific ions flow in or out the cell, for

example sodium (Na+), potassium (K+), calcium (Ca2+) and chloride (Cl−). For

this project, only leakage channel, voltage-gated channel and ion pump are taken into

account. Leakage channels allow Na+ and K+ to flow across the membrane from

high concentration side to lower concentration side. Voltage-gated channels are a type

of transmembrane proteins which form ion channel activated by variations of the elec-

trical membrane potential near the channel (Gazzaniga, 2004; Kandel et al., 2000). As

figure 2.10 illustrates, the leakage channel drives the resting potential of neurons and

it is treated as always open. The on-or-off state of voltage-gated ion channels relies

on the membrane potential while the ion pump functions to balance the efforts of ion

channels by pumping the ion against the ionic concentration(Hille et al., 2001; Gouaux

and MacKinnon, 2005).

2.5 Synaptic signalling mechanism

Dendrites and axons enable neurons receiving and sending signals from and to other

neurons. The specialised site where the sending neuron contacts with the receiving

neuron is called a synapse. Information transferring from the presynaptic neurons

to the postsynaptic neuron is based on sophisticated electro-chemical mechanisms.

Generic features exist in information processing in synapses (see figure 2.11). Thus

the signals from the presynaptic neurons have effects on the local membrane potential

of the postsynaptic neurons, which contributes to the generation of action potentials

(spikes) in the postsynaptic neurons.

Synaptic signalling describes how presynaptic and postsynaptic neurons communicate

with each other. Neurotransmitters play important role in synaptic signalling proce-

dure. As figure 2.11 shows, An action potential arriving at the axon terminal opens the

voltage-gated ion channel of calcium Ca2+, and then results in the flow of Ca2+ in-

wards to the presynaptic neuron. With the concentration of Ca2+ increasing inside the

presynaptic axon terminal, the synaptic vesicles in which the neurotransmitters group
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Figure 2.10: Schematic illustrations of different types of ion channels. (A) Leakage
channels open all the time. (B) Voltage-gated ion channels open or close based on
the membrane potential. (C) Ion pumps transmit ions against the ionic concentrations.
(D and E) Details of neurotransmitter-gated ion channels and they are approximately
regarded as Voltage-gated ion channels. Figure from (Trappenberg, 2010)
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Figure 2.11: Schematic illustration of the synaptic signalling procedure. Figure from
(Trappenberg, 2010)

and store bind with receptors and then merge together with the presynaptic membrane

to release neurotransmitters. These released neurotransmitters drift across the gap be-

tween the axon and postsynaptic dendrites and bind with the corresponding receptors

embedded in the postsynaptic membrane to activate or inactivate ion channels (Kandel

et al., 2000).

Ion channels open or close after the neurotransmitter binds with receptors. These ions

can flow through open channels to charge or discharge the postsynaptic membrane.

Therefore, the variation of electric potential of the postsynaptic membrane is gener-

ated, which is described as postsynaptic potential (PSP). PSPs can be distinguished

into excitatory postsynaptic potentials (EPSPs) and inhibitory postsynaptic potentials

(IPSPs). The former increased the probability of neuron firing, while the latter effects

reversely to decrease the firing probability. The generation of an action potential in

the soma of the postsynaptic neuron is then the integrated effect of EPSPs and IPSPs.

(Kandel et al., 1995; Trappenberg, 2010)
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Figure 2.12: A prototypical form of an action potential. It apparently shows the rest-
ing potential and two phases: depolarisation and hyperpolarisation. sodium channels
opening results in depolarisation. and potassium channels opening causes the voltage
going down to a level lower than resting potential. Then both channels closed and the
potential goes back to resting level. Figure from (Trappenberg, 2010)

2.6 Action Potentials (Spikes)

Action Potentials, also known as spikes, enable neurons to transmit signals along over

long distance because they do not attenuate after moving away from the initial point

(Kandel et al., 2000). This property enriches the research value of action potentials.

Figure 2.12 shows a schematic drawing of an action potential. Two voltage-dependent

ion channels for potassium K+ and sodium Na+ respectively and leakage channel are

considered (see figure 2.13). As figure 2.12 shows, the left part is the resting potential

which is related to the static leakage channel. Leakage channel is selectively perme-

able to K+ and the concentration of K+ presents higher inside the neuron. Hence,

the K+ diffuse outward the cell and the diffusion of K+ results in the inside mem-

brane being negatively charged while the outside membrane being positive charged.

The different charging on two sides of membrane then form the difference in potential

across the membrane and this potential difference effects against the K+ diffusion. At

a certain point, the force due to the potential difference balances chemical force due
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to ionic diffusion caused by the ionic concentration gradient. Then the equilibrium

potential of K+ is achieved. The resting potential, which according to figure 2.12 is

around −45mV , is determined by the potassium equilibrium potential (Kandel et al.,

2000; Dayan and Abbott, 2001).

The rapidly rising phase after resting potential is called depolarisation. Neurotransmitters-

gated channels depolarises the neuron sufficiently to open the voltage-gated sodium

(Na+) ion channel. Since the concentration of Na+ outside neuron is higher, Na+

will flow inwards through the membrane to reduce the intracellular negativity. The

inward Na+ exceeding outward K+ immediately increases the potential inside the

neuron and reaches the firing threshold. Afterwards, within a very shot time, the mem-

brane potential peaks at about 40mV .

The inactivation of the voltage-gated sodium ion (Na+) channel happens at the peak

voltage moment when the voltage-gated potassium ion (K+) channel open. The out-

flow ofK+ through both the leakage channel and voltage-gatedK+ channel drives the

membrane potential downward past the resting level and undershooting to the lowest

point about 65mV . Afterwards, the resting potential is recovered at the end of the

refractory period. Refractory period is a short duration in which the action potential

complete the initial process before initiation of the next action potential (Trappenberg,

2010).

The mechanism of action potential generation described in this section achieves a good

balance between the biological details and the simplicity of each stages, which is help-

ful to build computational spiking neuron models accordingly.
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Figure 2.13: Schematic depiction of mechanism to generate spikes. During the resting
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berg, 2010)
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2.7 Models of spiking neuron

Multiple mechanisms coexist in the procedure of information transferring between

sending end (presynaptic neuron) and the receiving end (postsynaptic neuron). They

share the generic information transferring feature of synapses that the signals from a

presynaptic neuron can trigger the change of state a postsynaptic neuron to generate an

electric pulse on the postsynaptic neuron. Hence, how the change of electric potential

invokes generation of the pulse is essential.

During the last a few decades, different computational models has been developed to

illustrate the generating process quantitatively. They all played very important roles

in improving the understanding of information processing mechanisms in the brain.

They are useful tools to generate simulated neural spike train signals on which eval-

uations of algorithms can be conducted to prove the usefulness of the algorithms. In

this section, Four spiking neuron models are briefly discussed. The Hodgkin-Huxley

model focuses mainly on quantifying the ion channel dynamics to depict the prop-

erties of voltage-dependent meambrane conductances in action potential generation

(Hodgkin and Huxley, 1952b). The Leaky Integrate-and-fire model mimics the dy-

namic responses to the integration of presynaptic inputs (Dayan and Abbott, 2001;

Burkitt, 2006). The Izhikevich model is computationally efficient, which is conve-

nient to generate large population of spike train signals (Izhikevich, 2007). The point

cortical neuron model is useful to simulate neuronal network which serve as the sur-

rogate data to evaluate the proposed the approaches (Troyer and Miller, 1997)

2.7.1 Hodgkin-Huxley Model

The three phase procedure described in section 2.6 is mathematically described by

Hodgkin-Huxley model using a four-equations set (Hodgkin and Huxley, 1952b; Dayan

and Abbott, 2001). Hodgkin-Huxley model represents the membrane potential as an
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Figure 2.14: Representation of an equivalent circuit for Hodgkin-Huxley model in-
cluding a capacitor, two variable resistors and a static resistor. The two variable resis-
tors approximate voltage-dependent conductances. The static resistor represents small
leakage current. Each resistor has a corresponding battery. Figure from (Trappenberg,
2010)

electric circuit model. As figure 2.14 shows, This circuit is constructed by a capaci-

tor, two variable resistors and one static resistor in parallel. The three resistors with

their corresponding batteries model the ion channels while the capacitor maintains the

electric potential difference across the ion channels on which the membrane potential

can be measured. Such a circuit model is capable of directly inspiring the mathemati-

cal description of a generation of action potential by considering the potential-current

(V − I) relationship on a capacitor (capacity C):

C
dV (t)

dt
= I(t) (2.1)

where C denotes the capacity of the capacitor. Specifically under the context of

Hodgkin-Huxley model, the first step is to split the membrane current into two parts,

namely capacitive current and ionic currents. Thus based on Kirchhoff’s law:

I(t) = C
dV

dt
+ Ii (2.2)

where I is the membrane current density (inward current positive), Ii is the ionic cur-

rent density (inward current positive); V is the displacement of the membrane potential

from its resting value (depolarisation negative), C is the membrane capacity and t is

time.

The ionic current can be further subdivided into three different components repre-
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senting the movement of different ions. The components carried by sodium ions,

potassium ions and other ions through leakage channel are denoted as INa, IK and

Il respectively. The ionic current is the sum of these three currents:

Ii = INa + IK + Il (2.3)

Since the permeability of the membrane can be measured in terms of conductance

(Hodgkin and Huxley, 1952a; Hille et al., 2001), a variable conductance gi can be

used to model the ion channel dynamics. Using Ohm’s law, the relationship between

the electric potential, the current and the conductance is formed as:

Ii = gi(E − Ei) (2.4)

where Ei is the equilibrium potential for the ion channel which results from the con-

centrations within and outside the neuron. Each individual ionic current with their

corresponding ionic conductances gNa, gK , gl are:

INa = gNa(E − ENa) (2.5)

IK = gK(E − EK) (2.6)

Il = gl(E − El) (2.7)

where ENa and EK are the equilibrium potential for the sodium and potassium ions,

and El is equilibrium potential for leakage channel. In order to express the electric po-

tential directly in terms of the displacements from resting potential, denoted as V , VNa,

VK and Vl, an absolute value of resting potential, denoted as Er, should be removed

from every potential terms in equations (2.4) to (2.7), thus:

V = E − Er (2.8)

VNa = ENa − Er (2.9)

VK = Ek − Er (2.10)
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Vl = El − Er (2.11)

Then the equations for the individual ionic currents can be written in the form:

INa = gNa(V − VNa) (2.12)

IK = gK(V − VK) (2.13)

Il = gl(V − Vl) (2.14)

In the theory of action potential generating, the sodium and potassium channels are

voltage and time dependent. This fact is reflected in the dynamical property of the

membrane conductance in Hodgkin-Huxley model. Three dynamical variables have

been introduced: the variable n indicates the activation of the potassium channels,

and the variables m and h indicate the activation and inactivation of sodium channels,

respectively (Hodgkin and Huxley, 1952a). The dynamics of the conductances are

represented by a product of constant conductance, denoted by a subscript 0, with a set

of time and voltage dependent variables n(V, t),m(V, t) and h(V, t). For the potassium

channel, the conductance is represented as:

gK(V, t) = gK0n(V, t)4 (2.15)

It has been pointed out that the biological principle of this equation is that the potas-

sium ion can flow across the membrane only when four similar particles occupy a

certain region of the membrane (Hodgkin and Huxley, 1952b). This has been mod-

elled as four independent events n.

Similarly, the equation expressing the dynamics of sodium channels can be constructed

as:

gNa(V, t) = gNa0m(V, t)3h(V, t) (2.16)

This equation is based on the principle that the sodium conductance is activated when

three activating molecules synchronously occupy sites inside the membrane while an-

other site is not occupied by an inactivating molecule. They are represented by in-
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dependent events m and h where m infers that the one activating molecule is on

the correct site, while h indicates that one inactivating molecule is not blocking the

site(Hodgkin and Huxley, 1952b).

The conductance modelling the leakage channel is static, so the conductance value can

be regarded as a constant:

gl = gl0 (2.17)

These three dynamical variables are modelled using first order differential equations:

dn

dt
= αn(1− n)− βnn (2.18)

dm

dt
= αm(1−m)− βmm (2.19)

dh

dt
= αh(1− h)− βhh (2.20)

where the parameters α with specific subscripts are transfer rates from outside to in-

side while the parameters β with specific subscripts are transfer rate in the opposite

direction.

An alternative form to describe the time voltage dependence of these three variables

are:
dn

dt
= − 1

τn(V )
[n− n0(V )] (2.21)

dm

dt
= − 1

τm(V )
[m−m0(V )] (2.22)

dh

dt
= − 1

τh(V )
[h− h0(V )] (2.23)

Figure 2.15(A) shows the voltage-dependent property of these variables. The resting

potential is set as 0 here and the X0 value quantifies the probabilities of occurrence

of the events described by the specific variables. At the resting potential level, the

variable n0 (potassium channel) has activation probability 0.4, while the other two

variables representing sodium channel vary significantly. with m0 close to zero value
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indicating a small activation chance and the variable h0 higher at probability 0.6. As

the depolarisation begins, n0 and m0 increase. In contrast, h0, the variable for inacti-

vation of sodium channel, approaches zero.

Figure 2.15(B) plots the time constants of the three variables (in msec) against the

membrane potential (in mV). Time constants imply the duration for these variables, n,

m and h to approach their equilibrium values n0, m0 and h0 at a voltage value.

According to equation (2.3), the entire ionic current then can be expressed as:

Ii = gK0n
4(V − VK) + gNa0m

3h(V − VNa) + gl0(V − Vl) (2.24)

The standard four differential equation form is constituted by substituting equation

(2.24) into equation (2.17) along with the first order differential equations of the three

dynamical variables:

CM
dV

dt
= I(t)− gK0n

4(V − VK)− gNa0m
3h(V − VNa)− gl0(V − Vl) (2.25)

τn(V )
dn

dt
= −[n− n0(V )] (2.26)

τm(V )
dm

dt
= −[m−m0(V )] (2.27)

τh(V )
dh

dt
= −[h− h0(V )] (2.28)

2.7.2 The Leaky Integrate-and-Fire Neuron Model

The Hodgkin-Huxley model provides a detailed description of the basic principle of

action potential generation. However, its four differential equation form is compu-

tationally consuming when investigating a large scale population behaviours or net-

worked neurons. Hence, simpler spiking neuron models are also used. The Leaky

Integrate-and-Fire model makes effort on ignoring the sophisticated detail of ion chan-



62 Chapter 2. Literature Review

nel dynamics and focusing on the dynamic integration of synaptic input, spike timing

(Trappenberg, 2010).

Figure 2.16 gives a schematic description of the Leaky Integrate-and Fire (LIF) model.

The equivalent circuit is in the dashed circle on the right hand side consisting of a

capacitance C in parallel with a resistor R. The input current can be divided into two

components:

I(t) = IC(t) + IR(t) (2.29)

where I(t) is the total input current. Since they are connected in parallel, the voltage

across the resistor and capacitance are the same, denoted as V (t). The input current

can be expressed as:

I(t) =
V (t)

R
+ C

dV (t)

dt
(2.30)

In order to introduce the time constant τm = RC, Equation (2.30) can be multiplied

by the resistance value R and the product RC can be substituted as time constant τm:

τm
dV (t)

dt
= −V (t) +RI(t) (2.31)

This equation shows that non-linear voltage dependent dynamics are neglected. In-

stead, the subthreshold dynamical feature of the membrane potential is described us-

ing a first order linear differential equation.

A typical way to approximate the input current I(t) is to treat it as the sum of synaptic

currents from firings of presynaptic neurons. This sum is a linear combination with

different weight values representing synaptic efficiency. under the assumption that

these presynaptic neurons do not interact with each other, the total input current to the

postsynaptic neuron is quantified as:

I(t) =
n∑
j=1

tfn∑
tfj =tf1

wjα(t− tfj ) (2.32)

where the variable tfj indicates the firing time of presynaptic neuron j with the su-
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Figure 2.16: The basic circuit of Leaky Integrate-and-Fire model. The left part inside
the dash square represents generation of an input current. The right part inside the dash
circle is the main part of LIF model: the voltage across the capacitance C is compared
with a threshold voltage V to decide whether generates a output pulse or not. Figure
from (Dayan and Abbott, 2001)

perscript f meaning it firing, n indicates the number of the presynaptic neurons, and

the α-function represents the time course of postsynaptic current. The choice of α-

function varies. The simplest one is a Dirac δ function α(t) = δ(t). More realistic

choices may involve a finite duration of postsynaptic current, for example, an expo-

nential decay (Gerstner and Kistler, 2002).

Since the capacitance C is charged by the input current I(t), the electric potential

V (t) across it increases. When V (t) reaches a threshold voltage, Vthr, an output action

potential is generated. The output action potential is parameterised by its timing. In

contrast to the firing time variable representing the presynaptic neuron’s firing time, the

firing time of the postsynaptic neuron in LIF model is denoted as tf without subscript.

An output spike occurs when the membrane potential V (t) satisfies the relation:

V (tf ) ≥ Vthr (2.33)

A short duration δ after a spike at tf , the potential is reset to the resting potential Vres
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Figure 2.17: A schematic description of a leak Integrate-and-Fire model, which is
often used in networked neurons simulation. This neuron integrates external inputs to
yield a input current I(t) weighted summation of different postsynaptic currents with
corresponding weight values wj . This input current drives the membrane potential to
reach a threshold resulting in a output spike. Figure from Trappenberg (2010)

where Vres < Vthr:

lim
δ→0

V (tf + δ) = Vres (2.34)

LIF is simpler compared with Hodgkin-Huxley model. It captures the spiking dynam-

ics by depicting the integration of presynaptic inputs and comparing the integration

to a threshold. It is computationally efficiency, but some subthreshold dynamics are

neglected, which is not suitable to model sophisticated firing patterns.

2.7.3 Izhikevich Model

Computational Modelling is always inevitably a trade off between abstraction and real-

ity, or computational efficiency and detail-richness. The Hodgkin-Huxley model pro-

vides accurate insight to analyse the dynamical properties of ion channels in individual

neurons. However, it is too computationally demanding to be applied on analysis of

large scale networked neurons (Hodgkin and Huxley, 1952b). On the other hand, the

LIF model is computationally efficient because of the linearity in membrane potential

V (t), but it is not detailed enough to catch a wide range of subthreshold dynamics in
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individual neurons, so it is not capable of modelling any sophisticated firing patterns

(Gerstner and Kistler, 2002). As both the scale of a network and the firing patterns of

neurons inside the network are becoming more sophisticated, a model which is able to

replicate different firing patterns while consuming reasonable calculation resources is

required. The Izhikevich Model proposes a way using two coupled differential equa-

tions to achieve a balance between computational efficiency and the ability of captur-

ing variety of firing pattern in neurons (Izhikevich et al., 2003).

A recovery variable, u(t) has been introduced in Izhikevich model to indicate the in-

activation of sodium channel and hyperpolarising potassium channels. This enable

the two coupled differential equations to model typical spike patterns of real neurons.

Another feature of this model is that, like Hodgkin-Huxley, the Izhikevich model does

not have a constant threshold. The model is:

dV (t)

dt
= 0.04V 2(t) + 5V (t) + 140− u(t) + I(t) (2.35)

du(t)

dt
= a(bV (t)− u(t)) (2.36)

with the reset conditions when V (t) = 30, then:

V (t) = c (2.37)

u(t) = u(t)− d (2.38)

where V (t) is membrane potential, and four parameters a, b, c and d function differ-

ently to generate diverse firing patterns. The parameter a controls the time scale of the

recovery variable u(t) with higher values indicating quicker recovery. The parameter

b controls the sensitivity of u(t) to the fluctuation of the membrane potential V (t).

The reset value of membrane potential V (t) after spiking is described by parameter c,

which is typically set as c = −65 mV . The reset value of the recovery variable u(t) is

described by parameter d. As shown in figure 2.18 , the combination of different a, b,

c and d values simulates different firing behaviours.
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Figure 2.19: Simulation of a network of 1000 randomly coupled spiking neurons.
Top: spike raster shows episodes of alpha and gamma band rhythms (vertical lines).
Bottom: typical spiking activity of an excitatory neuron. All spikes were equalized at
+30mV by resetting v1 first to +30mV and then to c. Figure from (Izhikevich et al.,
2003)

The lower computational demands makes the Izhikevich model capable of simulating

networked neurons. Figure 2.19 illustrates where the model was tested to run a simula-

tion of 10000 spiking cortical neurons with 1000000 synaptic connections using only

a 1GHz desktop PC and C++. The model is able to replicate known types of cortical

states like alpha and gamma oscillations. Other known oscillations of the cortex, like

sleep oscillations or spindle waves can be produced by changing the synaptic strength

and the thalamic drive of the model (Izhikevich et al., 2003; Izhikevich and Edelman,

2008).

Izhikevich model uses only two differential equations with its reset conditions to sim-
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ulate spiking neurons. Four parameters are used to generate different firing patterns.

Despite a nonlinear term V 2(t) in equtaion (2.35), the computational efficiency is not

demanding, which makes it a valuable model to replicate the large scale of neurons’

behaviour to exhibit the oscillations and rhythms of neuronal population.

2.7.4 Cortical network model

A simulated spike train dataset used in this project was generated using a network

of simulated cortical neurons based on the point-neuron model taking into account a

conductance formulation used in neural model descriptions (Troyer and Miller, 1997).

The cortical neuronal network model is a reduced Hodgkin-Huxley model which in-

cludes simplified conductance based synaptic inputs instead of the dynamical ionic

currents. It is also can be seen as a conductance-based LIF model since the synaptic

inputs are related with variation of the conductance.

In the point cortical neuron model, the intracellular membrane potential for each cell

is given as (Halliday, 2005):

Cm
dVm
dt

= −Ileak(Vm)−
n∑
j=1

Ijsyn(Vm, t) (2.39)

in conjunction with a partial reset mechanism, where Vm denotes the membrane po-

tential at time t and Cm denotes the cell capacitance.

Ileak represents the passive leakage current and Ijsyn(Vm, t) the synaptic inputs due to

the jth presynaptic spike. n. The summation is conducted over the total number of

presynaptic spike, n. The leakage current Ileak is given as:

Ileak(Vm) = (Vm − Vr)/Rm (2.40)
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where Vr is the cell resting potential and Rm is the cell input resistance. According to

(Troyer and Miller, 1997), The values of these parameters are set as: Rm = 40MΩ,

C = 0.5pF , and Vr = −74mV (Halliday, 2005).

The partial reset mechanism associated with point cortical neuron model is governed

by two parameters, namely Vthresh and Vreset, with Vthresh denoting a fixed firing

threshold and Vreset denoting a fixed reset value. The partial reset mechanism sug-

gests that the cell will fire a output spike when Vm exceeds Vthresh, after which the

membrane potential Vm will reset to Vreset immediately. The values of these parame-

ters are Vthresh = −54mV and Vreset = −60mV (Halliday, 2005).

Time-dependent conductance, gsyn(t) and the equilibrium potential for the ionic cur-

rent, Vsyn are the two parameters used to specify the synaptic current Isyn(Vm, t). The

conductance gsyn(t) is related to the opening of ionic channels follow neurotransmitter

release, modelled as:

gsyn(t) = Gsyn/τsynexp(−t/τsyn) (2.41)

.

where Gsyn is the conductance scaling factor and τsyn is the time constant. For excita-

tory inputs and inhibitory inputs, the correspondingGsyn and τsyn are usually different.

The synaptic current due to a single presynaptic spike at t = 0 is given as:

Isyn(Vm, t) = gsyn(t)(Vm − Vsyn) (2.42)

.

with each presynaptic input contributes one term in the summation
∑n

j=1 I
j
syn(Vm, t)

of equation (2.39), which lasts for the duration of the gsyn(t) for that input.
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2.8 Multielectrode Array Signal and Spike Sorting

Multielectrode array (MEA) is a device with multiple electrodes serving as an inter-

face connecting neurons to electronic circuity. It allows neuronal signals of multiple

neurons being recorded simultaneously. It measures the electric potentials around each

electrodes and signalises them.

Raw MEA signals consist of action potentials (spikes) and local field potential (LFP)

signals. LFP is mainly due to synaptic mechanisms and has slower time course (Buzsáki

et al., 2012). Spikes are a sharp peak significantly deviating from the mean waveform

and therefore have a faster time course. Hence, LFPs have lower frequency compo-

nents compared to spikes. They can thus be separated by lowpass filter and highpass

filter. LFP signals are usually composed of frequency components lower than 1kHz

while the frequency of spiking signals vary upto around 10 kHz (Quiroga et al., 2004).

The filtered spiking sequences may contain spikes generated by different neurons.

Therefore, assigning spikes to the correct firing neurons is a concern. Spikes may

differ in their temporal patterns. For example, Figure 2.20 shows three different types

of spiking pattern: fast spiking, regular spiking and bursting. These temporal patterns

may be the characteristics on which different spike trains can be distinguished.

Spike sorting refers to the grouping of spikes based on the similarity of their shapes

given that each neuron generates spikes in an exclusive shape(Quiroga et al., 2004).

Recent progress in unsupervised learning and clustering has led to development of

higher performance spike sorting algorithms (Karkare et al., 2013; Kamboh and Ma-

son, 2013). Figure 2.21 illustrates the typical steps in a spike sorting procedure (Rey

et al., 2015). The raw signals are filtered to remove interference of LFPs prior to spike

detection based on some amplitude threshold. After the spikes are detected, feature

extraction procedures are conducted to reduce the dimensionality in the feature space.

This step can improve the computational efficiency of the following steps and get rid
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Figure 2.20: Different temporal patterns found in spiking sequences. Left panel: fast
spiking; middle panel: regular spiking; right panel: bursting. Figure from (Trappen-
berg, 2010)

of dimensions which are dominated by noise. The next step is clustering which deter-

mines which spikes belong to which neuron. The spike sorting processing is essential

to provide high quality spike train signals on which reliable analysis can be conducted.

2.9 Summary

Neurons in the central nervous system communicate with each other by receiving, gen-

erating and sending signals. This chapter briefly reviewed physiological and biological

background of the central nervous system, especially at the levels of organisation and

single cell. The signalling mechanism of neurons and between neurons have been de-

scribed in detail. Spiking neuron models play an important role in understanding the

dynamics of spike generating. They also provide tools to simulate the activities of

real neurons and to generate simulated signals. Spiking neuron models have been re-

viewed in detail, including the Hodgkin-Huxley model, LIF model, Izhikevich model

and point cortical model. The importance and the typical process of spike sorting

have been discussed. Since the spike is the prototypic way in which neurons interact

with each other, computational measurements to detect these interactions are impor-

tant. The next chapter will discuss several techniques which can be applied to analyse

neuronal interactions.
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Figure 2.21: Step by step illustration of a typical spike sorting process. Figure from
(Rey et al., 2015)
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3.1 Introduction

The statistical dependencies carry important information on interactions between neu-

rons. Hence, detecting the dependent pattern plays an essential role in understand-

ing the functional connectivity in nervous system (Rubinov and Sporns, 2010; Biswal

et al., 1995; Greicius et al., 2003). The solution to detect the dependencies requires a

reliable measure to quantify the interaction between these neurons and ability to dis-

tinguish the moment when an interaction occurs. In neurophysiology, a wide range of

experiments are carried out recording two or more signals simultaneously (Carracedo

et al., 2013; Senik et al., 2013; Halliday et al., 1995). These records form continuous

time series or point processes to which analysis techniques then can be applied to as-

sess interdependence between signals.

This chapter first reviews techniques for the linear analysis between signals and dis-

cusses their advantages and disadvantages in sections 3.2 and 3.3. Afterwards, two
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candidates, higher-order statistical methods and mutual information, which are poten-

tially capable of revealing nonlinear interactions between signals will be explained in

detail in sections 3.4 and 3.5.

3.2 The Correlation Function and Related Time Do-

main Techniques

The correlation function is one of the most classical methods of detecting interdepen-

dencies between two signals. This is a method relying on linear features. It measures

the statistical dependency between two signals as a function of time.

General correlation is defined in classical statistical text (Wasserman, 2013; Neter

et al., 1996; Metcalfe and Cowpertwait, 2009; Shumway and Stoffer, 2011). If X

and Y are two random variables, how strong the linear relationship is can be measured

by covariance and correlation betweenX and Y . The covariance is defined as a second

order product moment, denoted as Cov(X, Y ):

Cov(X, Y ) = E{(X − µX)(Y − µY )} (3.1)

where X and Y are two random variables with means µX and µY and standard de-

viations σX and σY . The correlation coefficient, denoted as r(X, Y ), is defined as

the covariance of the two random variables divided by the product of their standard

deviations:

r(X, Y ) =
Cov(X, Y )

δXδY
=
E{(X − µX)(Y − µY )}

δXδY
(3.2)

so that the value of r(X, Y ) lies in the interval [−1, 1].

Equation (3.1) can be expanded in a form:
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Cov(X, Y ) = E{XY } − E{X}E{Y } (3.3)

and equation (3.3) shows that the covariance is quantified by the difference between

the expectation of the product of these two random variables,E{XY }, and the product

of expectations of these two random variables, E{X}E{Y }. If two random variables

X and Y are not linearly related, E{XY } = E{X}E{Y } holds, and the covariance

Cov(X, Y ) is zero.

A time series can be treated as a collection of random variables indexed regarding the

order they occurred. Therefore the correlation can be naturally introduced to operate

on time series. If time series Xtk and Ysj have means µXt and µYs , the covariance

function of these two time series can be defined as:

Cov(Xt, Ys) = E{(Xtk − µXt)(Ysj − µYs)} (3.4)

where set tk is a representation of the orderly recorded time points with k = 1, 2, ...

and the definition of set sj is similar.

Under the assumption that time series are wide-sense stationary, the means, µXt and

µYs are constants, denoted as µX and µY respectively, and the the covariance depends

only on the time difference between t and s rather than t and s themselves:

CovXY (τ) = E{(Xt+τ − µX)(Yt − µY )} (3.5)

where τ is the time difference between the two time series. This measure can be

estimated by:

ˆCovXY (τ) =
1

N − τ

N−τ∑
k=1

X(k + τ)Y (k) (3.6)

where N is the size of the observation dataset.



76 Chapter 3. A Survey of Some Statistical Signal Processing Methods

Since the cross correlation function is just the covariance normalised over the product

of the standard deviations:

rXY (τ) =
E{(Xt+τ − µX)(Yt − µY )}

σXσY
(3.7)

and given that the auto-covariance, CovXX(τ) or CovY Y (τ), which is covariance in

time series itself, will be simplified down to the variance of the time series when the

time delay τ = 0. Thus:

σX =
√
CovXX(0) (3.8)

and

σY =
√
CovY Y (0) (3.9)

Hence, the cross correlation function can be estimated by taking equations (3.6), (3.7),

(3.8) and (3.9) into account:

r̂XY (τ) =
ˆCovXY (τ)√

ˆCovXX(0) ˆCovY Y (0)
(3.10)

The cross correlation function shows zero value if the two time series under consid-

eration are not linearly correlated. On the other hand, if the absolute value of cross

correlation function is 1, the two signals are entirely linearly related for the given time

lag τ . The significant values of cross correlation function can be examined with the

corresponding confidence interval. It suggests that the two signals taken into account

have linear interaction when the significant values of cross correlation function are be-
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yond the corresponding statistical confidence.

The spike train can be regarded as a realisation of stochastic point process, denoted

by N . For this process N , the counts of events occurring within time interval (0, t] is

represented as N(t). The differential increment is defined as dN(t) = N(t, t + dt],

which is the counts of events in a duration (t, t + dt]. In case of spike train, the value

of each time point is either 1 or 0 depending on the occurrence of a spike or not. In

the following text, different spike trains are represented by different subscripts, for in-

stance, N1 and N2.

For spike train data, a suitable time domain measure similar to cross correlation func-

tion is the second order cumulant density (Bartlett, 1963; Conway et al., 1993), de-

noted as q12(u). In the case of point process Nn, its mean intensity, Pn, is defined

as:

Pn = lim
dt→0

Prob{An event in Nn in (t, t+ dt]}/dt (3.11)

and could be interpreted in the form:

E{dNn(t)} = Pndt (3.12)

due to its orderliness, where E{} denotes the expectation operator.

In the case that two point processes, N1 and N2, are recorded simultaneously, the

second order cross product density is defined at a specific temporal delay µ as:

P12(u) = lim
du,dt→0

Prob(An event in N1 in (t+ u, t+ u+ du]

and an event in N2 in (t, t+ dt]/dudt

(3.13)
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and like the individual process case, the expectation form expresses the equation (3.13)

in a way as:

E{dN1(t+ µ)dN2(t)} = P12(u)dudt. (3.14)

The second order cumulant density, q12(u), is then defined as:

q12(u) = P12(u)− P1P2 (3.15)

Equation (3.15) infers that the second order cumulant density of pairwise point pro-

cesses can be calculated as two independent processes’s contribution being subtracted

from the cross product density of these two processes.

3.3 Correlation in Frequency Domain: Coherence

Cross correlation function reveals linear correlation between two signals as a func-

tion of temporal lag in time domain. After the development of fast Fourier transform

algorithm (Cooley and Tukey, 1965), it sheds light on the calculation of frequency do-

main measures for linear dependency detection. Coherence, as the frequency domain

equivalent method of cross correlation, is also a widely used measure on dependency

analysis (Benignus et al., 1969; Carter et al., 1973; Carter, 1987; Womelsdorf et al.,

2007). In order to perform the coherence analysis, the spectral estimate techniques

should be taken into account. This subsection will review the spectral and coherence

estimation techniques.

Estimating the coherence requires spectral estimates being done in first place. From

a statistical signal processing viewpoint, spectra can be treated as frequency parame-

ters which have been systematically discussed in cases of time series data (Brillinger,

1981), point process data (Rosenberg et al., 1989; Bartlett, 1963) and hybrid data (Hal-
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liday et al., 1995). In this subsection, the context of point process data will be high-

lighted.

Stationarity of point processes is assumed and both processes satisfy the mixing condi-

tion (Brillinger, 1981). A disjoint section method for the point processes can be found

in some literatures. This method simplifies the expressions of confidence intervals for

parameter estimates (Rosenberg et al., 1989; Halliday et al., 1995). The whole record,

denoted by R, is subdivided into L non-overlapping disjoint epochs of equal length T ,

R = LT . Then finite Fourier transform can be applied to each segments. The finite

Fourier transform of the lth section l = 1, 2, ..., L is defined as (Brillinger, 1972):

dTN(λ, l) =

∫ lT

(l−1)T

e−iλtdN(t) ≈
∑

(l−1)T≤τj<lT

e−iλτj (3.16)

The approximately equal relationship in equation (3.16) is based on the spike train

model, whose value is either 1 when a spike occurs or 0 when it is silent.

In the frequency domain, not only an informative measure is the cross spectrum itself,

but it also is an essential intermediary parameter to coherence analysis. Cross spec-

trum is the Fourier transform of the second order cumulant density q12(u) (see section

3.2). Successively, the cross spectrum, denoted as f12(λ), between pairwise processes

at frequency λ is the Fourier transform of its corresponding second order cumulant

density, q12(u) (Bartlett, 1963):

f12(λ) =
1

2π

∫ +∞

−∞
q12(u)e−iλudu (3.17)

An alternative definition of cross spectrum uses empirical Fourier transform:

f12(λ) = lim
T→∞

E{dTN1
(λ)dTN2

(λ)} (3.18)

whereas the auto spectrum of a individual point process can be defined by using the

same subscript:
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f11(λ) = lim
T→∞

E{dTN1
(λ)dTN1

(λ)} (3.19)

where dTNi
(λ) is the empirical Fourier transform of point process Ni and the overline

represents complex conjugate. Equations (3.18) and (3.19) can be combined with the

disjoint section method. The estimates of cross spectrum and auto spectrum straight-

forwardly approximate the limits of expectation by averaging over L subsection as:

f̂12(λ) =
1

2πLT

L∑
l=1

dTN1
(λ)dTN2

(λ) (3.20)

f̂11(λ) =
1

2πLT

L∑
l=1

dTN1
(λ)dTN1

(λ) (3.21)

The coherence, a frequency domain measure of linear dependency between two point

process N1 and N2, is then defined as:

|R12(λ)|2 = lim
T→∞

|r12{dTN1
(λ), dTN2

(λ)}|2 (3.22)

where r12 denotes the cross correlation (see section 3.2) between N1 and N2. This

definition shows that coherence is the magnitude squared of cross correlation between

finite Fourier transforms of N1 and N2. The cross correlation is scaled covariance,

which means that the covariance is divided by the product of standard deviations of

each point process:

r12{dTN1
(λ), dTN2

(λ)} =
Cov{dTN1

(λ), dTN2
(λ)}

σN1σN2

(3.23)

This leads to the definition of coherence as:

|R12(λ)|2 =
|f12(λ)|2

f11(λ)f22(λ)
(3.24)

which can be estimated by directly substituting the corresponding spectra estimators

as:
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|R̂12(λ)|2 =
|f̂12(λ)|2

f̂11(λ)f̂22(λ)
(3.25)

Because it is magnitude squared of cross correlation, coherence provide a quantity

range within [0, 1] to indicate the linear relationship, with 0 showing independence

and 1 inferring entirely linear interaction (Rosenberg et al., 1989).

With the null hypothesis that the two point processes under examination are indepen-

dent from each other, a upper boundary of significant interval of desired level α is

given as (Brillinger, 1981; Rosenberg et al., 1989; Halliday et al., 1995):

CIupper = 1− (1− α)1/(L−1) (3.26)

For example, the 95% confidence interval is computed by substituting α = 0.95 into

the calculation. If two point processes taken into account have coherence within the

range [0, CIupper], the null hypothesis is not rejected, they would be considered as

linearly uncorrelated.

3.4 Higher Order Statistics

Although second order techniques reviewed in sections 3.2 and 3.3 are widely used,

they may not be able to reveal dependencies and interactions beyond linearity.

Cross-correlation ( and its variant, cross-correlation histogram (Perkel et al., 1967))

provides useful tools to detect the linear interactions and temporal delay between sig-

nals, however, they assume that both signals are Gaussian and they are not sensitive

to nonlinear relationship. Additionally, they maybe loose information when applied to

some small EPSPs with gently rise time (Searsl and Stagg, 1976). That is to say mono-

synaptic connections are not necessarily showed as a clear peak in cross-correlation

because of the underestimation.
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In order to deal with the potential non-linearity and increase the sensitivity of the weak

synaptic interactions, a series of high order measurements have been developed in the

past several decades. For example, joint peristimulus time scatter diagram (Gerstein

and Perkel, 1972), normalised version of joint peristimulus time scatter diagram (Aert-

sen et al., 1989) and third order product density (Rosenberg et al., 1982).

Among these materials associated with different high order methods, a number of them

introduced cumulants and discussed its properties (Brillinger, 1965).

For k random variables (x1, x2, ..., xk), the k-th order cumulant is defined in terms

of its joint moments of order up to k. For the general purpose, it is denoted as

cum(x1, x2, ..., xk) in this section, and is defined as (Brillinger, 1981; Mendel, 1991):

cum(x1, x2, ..., xk) =
∑

(−1)p−1(p− 1)!(E(
∏
j∈I1

xj))...(E(
∏
j∈Ip

xj)) (3.27)

where the summation is done over all partitions (I1, I2, ..., Ip), p = 1, 2..., k and E( )

denotes the expectation operator (mean).

Take k = 3 as an example. For three random variables x1, x2 and x3, table 3.1 illus-

trates the calculation of each moment term involved in the summation on the right-hand

side of equation (3.27).
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I1 I2 I3 p Moments Term

1 2 3 3 (−1)(3−1)(3− 1)!E(x1)E(x2)E(x3)

1, 2 3 2 (−1)(2−1)(2− 1)!E(x1x2)E(x3)

1, 3 2 2 (−1)(2−1)(2− 1)!E(x1x3)E(x2)

2, 3 1 2 (−1)(2−1)(2− 1)!E(x1)E(x2x3)

1, 2, 3 1 (−1)(1−1)(1− 1)!E(x1x2x3)

Table 3.1: Moments terms of the cumulant when k = 3.

Hence, the third order cumulant of random variable x1, x2 and x3 is simplified as:

cum(x1, x2, x3) =E(x1x2x3)− E(x1x2)E(x3)− E(x1x3)E(x2)

− E(x2x3)E(x1) + 2E(x1)E(x2)E(x3)
(3.28)

Other order of cumulant can be calculated likewise.

Let x1(t), x2(t),..., xk(t) denote k stationary random processes, the cumulant of k-th

order of the k processes,Ck(µ1, µ2, ..., µk−1) , is defined as the joint k-th order cumu-

lant of the random variables x1(t), x2(t+ µ1),...,xk(t+ µk−1):

Ck(µ1, µ2, ..., µk−1) = cum(x1(t), x2(t+ µ1), ..., xk(t+ µk−1)) (3.29)

Due to the stationariness of the random processes, the k-th order cumulant of the pro-

cesses is a function of k-1 lags: µ1, µ2,..., µk−1. For the case k = 3, the third order

cumulant C3(µ1, µ2) is given as:

C3(µ1, µ2) =E(x1(t)x2(t+ µ1)x3(t+ µ2))− E(x1(t)x2(t+ µ1))E(x3(t+ µ2))

− E(x1(t)x3(t+ µ2))E(x2(t+ µ1))− E(x2(t+ µ1)x3(t+ µ2))E(x1(t))

+ 2E(x1(t))E(x2(t+ µ1))E(x3(t+ µ2))

(3.30)
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The cumulants have been applied on the case of ordinary time series and, especially,

point process (Brillinger, 1972, 1975c, 1978). Some articles collected and reviewed

several higher order statistics which are discussed in different papers associated with

different topics. They highlighted the cumulant based methods’ practical advantages

comparing with moments statistics, and the enhancement of signal-to-noise ratio (Nikias

and Raghuveer, 1987). The ability of coping with nonlinear processes was mentioned

in these materials as well (Mendel, 1991).

3.5 Information Theory and Its Related Methods

The concept of information theory was introduced at the end of the 1940s (Shannon

and Weaver, 1949). The concept of entropy, which has been originally seen in the

literatures and materials about thermodynamics, was proposed in communication sys-

tem by Claude Shannon, aiming at quantifying the amount of information in sources

and channels. The synchronisation or interaction detecting between neurons can be

regarded as a problem that needs a solution to establish the existence of common infor-

mation between signals which are simultaneously recorded from neurons. Therefore,

the inspiration of using information theory based methods is straightforwardly reason-

able. Apart from that, neurons are nonlinear and adaptive, so the interactions between

neurons intrinsically contain nonlinear components. Information theory based method

is capable of detecting nonlinear interactions since it does not draw any assumptions of

linearity on the signals and systems involved. Therefore, it has a promising potential

coping with nonlinear correlations between signals comparing to coherence function

of cross-spectral analysis. This subsection will discuss the information theory related

measurements.

Information theory is closely related to the probability measure. Hence, it is of worth

to review some concepts in probability theory. A discrete probability space Ω :

(Ω, (pω)ω∈Ω) is an countable set Ω whose elements ω ∈ Ω will be referred to as out-

comes, associated with a non-negative real number pω assigned to each outcome ω

such that
∑

ω∈Ω pω = 1. pω is referred as the probability of the outcome ω. Then event
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x is modelled by subsets xΩ of the sample space Ω. The probability p(x) of an event

x is defined to be the quantity in the interval [0, 1]:

p(x) =
∑
ω∈xΩ

pω (3.31)

The joint probability p(x, y) of x and y considers a joint event ensemble, xy, in which

each outcome is an ordered pair x, y with x ∈ xΩ and y ∈ yΩ. The marginal probability

p(x) from the joint probability p(x, y) is obtained by summation:

p(x) =
∑
y∈yΩ

p(x, y) (3.32)

Similarly, the marginal probability of y is:

p(y) =
∑
x∈xΩ

p(x, y) (3.33)

The entropy is defined as a measurement of uncertainty. It is an average length of code

in need to encode a random variable X whose sample space has M possible outcomes

Xi, where i = 1, 2, ..M , and the probability of corresponding outcome is pi. Based on

this set of notation, the Shannon entropy of this random variable X is calculated as:

H(X) = −
M∑
i=1

pi log pi (3.34)

The unit of H(X) depends on the base of logarithm, for example, if the base is 2, the

unit of the entropy is bit (Shannon and Weaver, 1949). In the case of the continuous

random variable, the concept is the same other than slight differences in format, inte-

gration over all possibleX instead of sum up and probability density function, denoted

as µ(x), instead of probability:

H(X) = −
∫
x∈X

dxµ(x) log µ(x) (3.35)
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According to the equations (3.34) and (3.35), a straightforward attempt is to estimate

the probability of each possible value, pi or the probability density function, µ(x). A

direct estimate of the probability is based on the normalised counts of each Xi (Strong

et al., 1998; Kennel et al., 2005). The estimation begins by setting a window of length

W . For the spike data whose resolution (or bin size) is ∆τ , a “word” has W/∆τ

symbols. Let the count of ith “word” is denoted by ci, so the normalised count of this

“word”, by the notation p̂i is the count divided by the number of “words” the spike

train contains, denoted by M . Then the estimator of the entropy, Ĥ(X), is:

Ĥ(X) = −
M∑
i=1

p̂i log p̂i (3.36)

The concept of mutual information is defined as an extension of Shannon entropy by

considering a pair of random variables X and Y . The mutual information quantifies

how much information about one random variable is obtained by knowing the outcome

of the other random variable. Therefore, in some materials, mutual information is also

referred as “transinformation” (Eckhorn and Pöpel, 1974) or as “redundancy” (Panzeri

et al., 1999). The mutual information between the two discrete random variables is

calculated as:

I(X, Y ) =

MX∑
i=1

MY∑
j=1

pij log
pij
pipj

(3.37)

where pij is the joint probability of X = Xi and Y = Yj and pi is the probability of

X = Xi where i = 1, 2, ...,MX and, likewise, pj is the probability of Y = Yj where

j = 1, 2, ...,MY .

For two continuous variables X and Y , the mutual information between them is a

quantity as:

I(X, Y ) =

∫ ∫
x∈X,y∈Y

dxdyµ(x, y) log
µ(x, y)

µ(x)µ(y)
(3.38)
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where µ(x, y) is the joint probability density of X and Y . The marginal densities of

X and Y are respectively:

µx(x) =

∫
y∈Y

dyµ(x, y) (3.39)

and

µy(y) =

∫
x∈X

dxµ(x, y) (3.40)

An alternative to define mutual information usually can be found in references talking

about detecting interaction between a input (stimulus) and output (response) (Borst

and Theunissen, 1999; London et al., 2002; Kennel et al., 2005; Shlens et al., 2007). If

X is regarded as the input (stimulus) and Y is regarded as response, Y ’s information

entropy would be H(Y ), whereas H(Y |X) would be the conditional entropy of Y

given X . The mutual information would then be the reduced part of the uncertainty of

the output because of the information of the input, which is literally in coincidence of

its name ”redundancy”:

I(X, Y ) = H(Y )−H(Y |X) (3.41)

Mutual information shows value zero when the two random variables are independent,

which can be easily derived from equation (3.37) or (3.38) because pij = pipj or

µ(x, y) = µ(x)µ(y) makes the logarithm in these equations equal to zero. If there

is a dependence between the two random variables, the mutual information will be

a positive value. In an extreme case, this measure will achieve its maximum value,

H(X)(= H(Y )), if the two signals are identical. Apart from that property, mutual

information is a symmetric measurement (see figure 3.1), so it also can be achieved as:
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Figure 3.1: A Venn diagram shows various information measures associated with cor-
related variables X and Y . The area contained by both circles is the joint entropy
H(X, Y ). The circle on the left (red and violet) is the individual entropy H(X), with
the red being the conditional entropyH(X|Y ). The circle on the right (blue and violet)
is H(Y ), with the blue being H(Y |X). The violet is the mutual information I(X, Y ).
(figure from https : //en.wikipedia.org/wiki/Mutual information)



Chapter 3. A Survey of Some Statistical Signal Processing Methods 89

I(Y,X) = H(X)−H(X|Y ) = I(X, Y ) = H(Y )−H(Y |X) (3.42)

Hence it provide no information about the direction.

The mutual information is a straightforward measure. However, the estimation of it

can be a difficult problem. Similar to the case of estimation Shannon entropy, a direct

estimator of the probability is the histogram-based method, thus, every probability can

be obtained by a partition of the corresponding variable, and a finite sum is used to

approximate equations (3.37) and (3.38).

Î(X, Y ) =
∑
ij

p̂ij log
p̂ij
p̂ip̂j

(3.43)

where

p̂i =

∫
i

dxµx(x) (3.44)

p̂j =

∫
j

dyµy(y) (3.45)

and

p̂ij =

∫
i

∫
j

dxdyµ(x, y) (3.46)

and
∫
i

means the integral over bin i. If nx(i) is the count of points falling into the ith

bin of X , similarly ny(j) is the count of points falling into the jth bin of Y , and n(i, j)

is the number of points in their intersection, the integrals (3.44), (3.45) and (3.46) can

be respectively estimated by p̂i ≈ nx(i)/N , p̂j ≈ ny(j)/N , and p̂ij ≈ n(i, j)/N with

N indicating the number of all the samples.

This method suffers from the requirement of large number of samples and suitably
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chosen size of bin width (Strong et al., 1998; Quiroga et al., 2002; Reinagel and Reid,

2000). Furthermore, sometimes under a chosen bin size, none of sample points would

fall into the square unit of X = Xi and Y = Yj . However, some sample points might

fall into the rest part of stripe of X = Xi and Y = Yj , which makes the joint probabil-

ity pij happen to be value 0, while the marginal probability of pi and pj are not, which

results in an underestimate of mutual information (Kraskov et al., 2004).

In order to overcome the problem of null joint probability, some modified estimator

improved by introducing adaptive bin size (Darbellay et al., 1999). However, this sort

of method is not capable of reducing the system error caused by approximating prob-

ability via finite frequency ratio, even introducing the correction terms (Grassberger,

1988; Steuer et al., 2002). Another measure is inspired by the k-th nearest neigh-

bour distance estimator (Silverman, 1986; Kraskov et al., 2004) (see section 3.5). This

measure vastly reduces the systematic error compared with previous estimator. It also

provides a more accurate result when the dataset is small. Apart from those measures

above, the kernel density method is also applied to estimate mutual information. In

contrast of histogram based methods, it has advantages in a better mean square error

of convergence to the real underlying density, in addition to that, the kernel shapes are

not only rectangular (Moon et al., 1995a; Schraudolph, 2004).

Some other literatures shed light on a way using Bayesian method to estimate the in-

formation entropy of spike trains (Wolpert and Wolf, 1995; Kennel et al., 2005). A

remarkable virtue of this estimator is that it avoids model selection problem, thus, it

needs no heuristic decisions and free parameters. Sequentially, this estimator is used

to estimate mutual information. Moreover, it provides a Bayesian confidence inter-

val about this estimate using a numerical Monte Carlo method (Shlens et al., 2007)

(Gamerman and Lopes, 2006).
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3.5.1 Mutual Information based on k-th nearest neighbour statis-

tics.

Suppose that there are two random variables X , Y and each one has n observations,

denoted as xi, i = 1, 2, ..., n and yi, i = 1, 2, ..., n. Let Z = (X, Y ) and hence zi =

(xi, yi). Let the distance between xi and xj be defined as the norm: dxi,j = ||xi− xj||.

In this thesis, the second order norm, which is Euclidean distance, is used:

dxi,j = 2

√
(xi − xj)2 = |xi − xj| (3.47)

and similar definition can be drawn on Y :

dyi,j = 2

√
(y2
i − yj)2 = |yi − yj| (3.48)

and zi,j is defined as the bigger one of these two distances:

dzi,j = max{dxi,j , dyi,j} (3.49)

where max{ } means the biggest value in the curly bracket.

For each point zi = (xi, yi), the distances from it to other points could be sorted as-

cendantly: dzi,j1
≤ dzi,j2

≤ ... ≤ dzi,jn . Similar sorting can be conducted to dxi,j and

dyi,j . Let ε(i)
2

denote the distance from zi to its kth neighbour, εx(i)
2

and εy(i)

2
denote the

distances ε(i)
2

projected onto X and Y axes. According to the definition of dzi,j (see

equation (3.49)), ε(i) = max{εx(i), εy(i)} (see the illustration in figure 3.2).
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Figure 3.2: Representations of ε(i), εx(i) and εy(i), and the way to count the numbers
nx(i) and ny(i). Plot (a) shows the determination of ε(i) when k = 1. Plots (b) and (c)
show the determination of εx(i), εy(i), nx(i) and ny(i) when k = 2. The difference is
that in case (b), εx(i) and εy(i) is determined by the same point, while in case (c), they
are determined by different points. In both cases, nx(i) = 5, and ny(i) = 3. Figure
from (Kraskov et al., 2004).

nx(i) denotes the number of points which have distances from the point xi less than or

equal to εx(i)
2

(see figure 3.2 for the illustration):

nx(i) = counts{dxi,j ≤
εx(i)

2
} (3.50)

and similarly for ny(i):

ny(i) = counts{dyi,j ≤
εy(i)

2
} (3.51)

Then the estimator of MI is (Kraskov et al., 2004):

Î(X, Y ) = ψ(k)− 1

k
− 1

n

n∑
i=1

(ψ(nx(i)) + ψ(ny(i))) + ψ(n) (3.52)
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where ψ(x) is the digamma function that satisfies the recursion (Abramowitz and Ste-

gun, 1965):

ψ(x+ 1) = ψ(x) +
1

x
(3.53)

with the initial condition ψ(1) = −C, where C = 0.57721... is the Euler-Mascheroni

constant.

To sum up, information theory based method is a suitable candidate for detecting in-

teractions between neural spike trains. The problem to be solve for practical usage is

finding a reliable estimator.

3.6 Summary

This chapter reviews several widely used statistical signal processing methods. The

review starts with the most classical correlation coefficient and correlation function in

time domain, followed by a description of the disjoint Fourier Transform, the estima-

tion of spectra and the computation of coherence. The higher order statistics are also

briefly discussed in this chapter, especially the calculation of higher order cumulants.

The final part of this chapter covers Information theory and mutual information used

in signal processing area. A mutual information estimation algorithm using k-th near-

est neighbour statistics is discussed in detail. The techniques reviewed in this chapter

lays the foundation of the development and implementation of the novel techniques

proposed in future chapters.
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4.1 Introduction

This chapter aims at proposing a combined time and frequency domain framework and

applying it to surrogate and experimental signals. It is important that measurements in

both domains could be estimated independently and the transform from one domain to

the other could be conducted.

An experimental dataset is used in this project. Hence, a brief description of the ex-

periment which produces the data will be introduced in section 4.2. Then the Unified
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framework of Third Order time and frequency domain analysis (UTO) for spike trains

will be presented in section 4.3. Some results for artificial data and spike trains from

a simulated neuronal network using point-cortical spiking model will be reported in

section 4.4, along with a brief description of the configuration of this simulated net-

work. Results for the analyses of experimental spike train signals will be discussed

afterwards in section 4.5.

4.2 An Experimental Dataset of Spike Trains from Hip-

pocampal recordings

An important dataset to which the techniques developed in this thesis will be applied

is experimental hippocampal recordings from rat. The experiment studies the connec-

tivity in a model of kainic acid (KA) induced epileptiform activity for mesial temporal

lobe epilepsy (mTLE) in rat (Coomber et al., 2008; Senik et al., 2013). A multielec-

trode array (MEA) recording has been generated, following which the recording has

been filtered and spike-sorted to form single unit spike trains signals. It is helpful to

briefly review the experiment and provide an overview of the spike train dataset before

undertaking detailed analyses.

4.2.1 A Brief Description of the Experiment

The time line of the experiment is divided into 3 phases. At the beginning, there was

a period of 10 mins of basal recording which served as the baseline. Then Saline was

injected intravenously in phase 2 10 mins after the basal recording. The third phase

involved injection of 1mMol of KA after 30 min. Data of all three phases was recorded

in a single recording with overall duration of 210 mins (Senik et al., 2013).
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Phase Experimental Protocol Time t (min)

1 Basal Recording (Baseline) [0, 10)

2 Saline Injection [20, 30)

3 KA Injection and KA Effect [30, 210] (KA injected at 30 min)

Table 4.1: The procedure of the experiment protocol.

The single unit signals were recorded using 50 µm diameter stainless-steel electrodes

as described in (Coomber et al., 2008). The recorded signals were then fed to Mul-

tichannel Acquisition Processor (MAP) system (Obeid et al., 2003) which is an inte-

grated system with programmable signal amplification, filtering and real-time spike

sorting of multichannel signals.

Figure 4.1: Schematic diagram of the electrode attached with cannula. There are 8
electrodes in two bundles of 4 to record from different regions. Figure from (Senik
et al., 2013)

All procedures in this experiment were conducted in accordance with the animals (Sci-
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entific Procedures) Act 1986, UK. In the experiment, isoflurane anaesthetised Lister-

hooded rats (weight: 300 − 400 g; n = 24, where n is the number of experimental

subjects) had MEA electrodes (see figure 4.1) positioned in the left and right hip-

pocampus to simultaneous record multiple single-units and local field potentials. The

electrode array used in the left hippocampus was attached by a cannula for the lo-

cal injection of saline or kainic acid (see figure 4.2). Figure 4.3 shows an example

of histological verification. Histological verification on the hippocampus revealed the

electrodes positions via the Prussian Blue reaction generating blue dye marks (Taxidis

et al., 2010). It is important to validate that recordings were made from the intended

brain region (Senik et al., 2013).

Figure 4.2: Schematic drawing of the electrode set-up position in the left and right
hippocampus region. Figure from (Senik et al., 2013)
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Figure 4.3: An example of histological verification revealing the electrodes positions
by the visible blue dye marks. Figure from (Senik et al., 2013)

After the 210mins analogue multichannel signals were filtered to separate the spiking

signals from the local field potentials, spikes sorting based on the similar neuronal

spiking patterns was conducted off-line using off-line Sorter v3.23; Plexon Inc. The

sorted signals consist of spike trains which are the recordings of the firing moments

of each neuron. In the next subsection, the dataset used in this project will be briefly

investigated through some basic statistics.

4.2.2 The Dataset

The experimental procedure is presented in section 4.2.1. Spike sorting generated the

spike train signals. The signals used in this project are the first 5 minutes of the 210

minutes from the baseline phase of the experiment.

The data is record from four subregions in hippocampus of both hemisphere, namely

left CA3, left CA1, right CA3 and right CA1. There are 18 channels of spike trains.

The sample rate is 1 ms. Each spike train is of duration 300 seconds with different

numbers of spikes. The information of subregions, recording nodes, signal indices,
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signal names and Number of spikes are summarised in Tables 4.2 and 4.3.

The Interspike Intervals (ISI) is the time between subsequent spikes (Dayan and Ab-

bott, 2001). Let the spike times of a spike train be denoted as t(n), n = 1, 2, ..., N

where N is the total number of spikes in this spike train. Hence, ISI, denoted as ∆t(n)

is:

∆t(n) = t(n+ 1)− t(n) (4.1)

where n = 1, 2, ..., N − 1. The distributions of the ISI of each spike train are illus-

trated by non-normalised histogram in figure 4.4, 4.5 and 4.6. Almost all the 18 spike

trains exhibit exponentially decaying interspike interval distributions, which means

there tends to be more short waiting time between two spiking pulses (see section

4.4.1). These plots provide insights of intervals present in spike trains. The interspike

interval distribution also plays an important role when artificial Poisson spike trains

(see sections 4.4.1 and 5.2) are used as the example of independence between spike

trains.
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Subregion Electrode Signal Index Signal Name Number of Spikes

Left CA3 1 sig001a sp1 5240

Left CA3 1 sig001b sp2 1799

Left CA3 3 sig003a sp3 1297

Left CA3 3 sig003b sp4 521

Left CA3 4 sig004a sp5 3333

Left CA3 5 sig005a sp6 6900

Left CA3 5 sig005b sp7 4626

Left CA1 6 sig006a sp8 1898

Left CA1 7 sig007a sp9 846

Left CA1 8 sig008a sp10 6324

Left CA1 8 sig008b sp11 1023

Left CA1 9 sig009a sp12 658

Left CA1 10 sig010a sp13 757

Right CA3 11 sig011a sp14 2830

Right CA3 14 sig014a sp15 138

Right CA3 14 sig014b sp16 2279

Right CA1 15 sig015a sp17 2689

Right CA1 16 sig016a sp18 95

Table 4.2: Four different subregions of hippocampus with the corresponding nodes
identification, signal indices, signal names and numbers of spikes being captured dur-
ing the 5 minutes duration. (Simple statistical analysis in Table 4.3)
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Figure 4.4: The Interspike Interval distributions of all spike trains in the hippocampal
dataset. This figure illustrates the Interspike Interval distributions of sp1 − 6 by the
non-normalised histograms (counts in each bin) for each spike trains.
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Figure 4.5: The Interspike Interval distributions of all spike trains in the hippocampal
dataset. This figure illustrates the Interspike Interval distributions of sp7 − 12 by the
non-normalised histograms (counts in each bin) for each spike trains.
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Figure 4.6: The Interspike Interval distributions of all spike trains in the hippocampal
dataset. This figure illustrates the Interspike Interval distributions of sp13 − 18 by the
non-normalised histograms (counts in each bin) for each spike trains.
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Subregion Signal Firing Rate (spikes/s) Mean ISI (ms) STD ISI COV

Left CA3 sp1 17.47 57.21 58.44 0.98

Left CA3 sp2 6.00 166.40 158.79 1.05

Left CA3 sp3 4.32 231.46 237.57 0.97

Left CA3 sp4 1.74 575.37 596.88 0.96

Left CA3 sp5 11.11 90.01 86.36 1.04

Left CA3 sp6 23.00 43.48 42.59 1.02

Left CA3 sp7 15.42 64.84 55.94 1.16

Left CA1 sp8 6.33 158.13 157.90 1.00

Left CA1 sp9 2.82 354.37 355.53 1.00

Left CA1 sp10 21.08 47.43 43.45 1.09

Left CA1 sp11 3.41 293.44 259.05 1.13

Left CA1 sp12 2.19 456.38 389.44 1.17

Left CA1 sp13 2.52 396.47 283.40 1.40

Right CA3 sp14 9.43 106.01 88.64 1.20

Right CA3 sp15 0.46 2170.06 2345.52 0.93

Right CA3 sp16 7.60 131.69 118.01 1.12

Right CA1 sp17 8.96 111.57 102.85 1.08

Right CA1 sp18 0.32 3154.85 2551.17 1.24

Table 4.3: Basic statistics of spike trains in hippocampal dataset, the columns represent
the estimated firing rates, the ISI mean, the standard deviations of ISI and COV values.

The expectations and the standard deviations of the ISI are the first and second order

statistics of the ISI: the ISI expectation (mean, µISI) is the average of the time between

two neighbour pulses in each spike trains and the ISI deviation (σISI) is the extent to

which the intervals fluctuates from its mean value:

µISI =
1

N − 1

N−1∑
n=1

∆t(n) =
R

N − 1
(4.2)

σISI =
1

N − 1

N−1∑
n=1

(∆t(n)− µISI)2 (4.3)
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where R is the duration of the spike train.

The Coefficient Of Variation (COV) of a spike train is defined as the ratio of the ISI

standard deviation to ISI mean:

COV =
σISI
µISI

(4.4)

The firing rate of a spike train, rT , is estimated by averaging the total number of spikes

N over the entire duration R:

rT =
N

R
(4.5)

Table 4.3 summarises the firing rate and basic statistics of the ISI of each spike trains.

The firing rates of spike trains varies from less than 1 spikes/s to above 20 spikes/s,

as a consequence of the variation in the mean ISI from about 50 ms to over 3000 ms.

Each spike train has a standard deviation of ISI to its mean, thus, all the signals in

this dataset have COV close to 1. This characteristic is approximately consistent with

Poisson spike trains whose ISI have an exponential distribution (detailed discussion of

Poisson spike trains seeing section 4.4.1). Some signals with few spikes have COV

values different from 1, for example, sp13 and sp18. This feature provides the pos-

sibility that the artificially generated Poisson spike trains (see section 4.4.1) with the

identical firing rates to the experimental spiking signals could potentially be used as

the baseline when we calibrate the proposed methods.

4.3 The Unified Framework of Third Order Time and

Frequency Domain Analysis

The cross-bispectrum, f012(λ, µ) among three different spike trains N0, N1 and N2 is

defined as Brillinger (1975a):
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f012(λ, µ) = lim
T→∞

1

(2π)2T
E{dTN0

(λ)dTN1
(µ)dTN2

(λ+ µ)} (4.6)

Where dTNn
(λ), n = 0, 1, 2 is the finite Fourier transform. This definition considers

averaging the product of triplets of finite Fourier transforms at each frequency. Based

on this consideration, the disjoint section method can be taken into account using an

average over all segments. Hence, an estimate of cross bispectrum is calculated as:

f̂012(λ, µ) =
1

(2π)2LT

L∑
l=1

dTN0
(λ, l)dTN1

(µ, l)dTN2
(λ+ µ, l) (4.7)

where T denotes the length of each disjoint segment, L denotes the number of seg-

ments, l indicates the index of segment, overbar represents complex conjugate and

dTN(λ, l) represents the finite Fourier transform of the disjoint segment l.

The equation (4.7) gives a direct way to interpret the sense of bispectrum. The third

order cross spectrum quantifies the dependency among spike train N0 at λ frequency,

spike train N1 at µ frequency and spike train N2 at (λ+µ) frequency, since these three

frequencies are required to sum up 0 (mod 2π) (Brillinger, 1975a).

As being presented in section 3.2, a spike train is essentially a recording of spikes’ oc-

currence time in order. Under common circumstance, to form this kind of recording, it

requires an appropriately small enough resolution (sample interval) to make sure that

only one single spike can occur within a certain interval’s length. That is to say, if

the differential notation is introduced and let N1(t) indicate events existing over du-

ration (0, t] from spike train N1, either 1 or 0 would be the value of dN1(t), where

dN1(t) = N1(t+ dt)−N1(t), according to the occurrence or not of a single spike.

In order to apply the third order cumulant density to the spike train datasets, there are

two necessary assumptions which must be made. Firstly, the processes taken into ac-

count should be of second-order stationary. Apart from that, the mixing condition must

hold (Brillinger, 1981). Furthermore, the orderliness discussed above ensure that the
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expectation operation and probabilities interpretation can be applied to the calculation.

Suppose random processesN0, N1 and N2 have mean rates P0, P1 and P2 respectively.

The third-order cumulant density is analytically defined as (Conway et al., 1993):

q012(u, v)dudvdt = E{(dN0(t+ u)− P0du)(dN1(t+ v)− P1dv)(dN2(t)− P2dt)}

(4.8)

Figure 4.7: Schematic representation of the time convention used to represent the time
intervals (lags) between spike trains.

This equation (4.8) can be expanded according to the expectation operator. Based on

the definitions of product densities (Rosenberg et al., 1989), the third order product

density of three spike trains is defined as:

P012(u, v) =Prob(An event in N0 in (t+ u, t+ u+ du]

and an event in N1 in (t+ v, t+ v + dv]

and an event in N2 in (t, t+ dt])/dudvdt

(4.9)
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The expectation version of this measure is:

P012(u, v)dudvdt = E{dN0(t+ u)dN1(t+ v)dN2(t)} (4.10)

Similarly, the second order product densities alike is defined as:

Pab(α) =Prob(An event in Na in (t+ α, t+ α + dα]

and an event in Nb in (t, t+ dt])/dtdα
(4.11)

where α is the distance between the two spikes investigated.

Expanding the terms in the expectation operator in equation (4.8) and applying the

second- and third- order product densities defined above gives:

q012(u, v) = P012(u, v)− P01(u− v)P2 − P02(u)P1 − P12(v)P0 + 2P0P1P2 (4.12)

.

The form of equation (4.12) indicates a way to interpret the third order cumulant den-

sity measurement. Specifically, under a situation of specific distances u and v between

three spikes, the first term on the right side of equation (4.12) is the third order product

density. Then the contributions provided by pairwise linear interaction between two

spike trains and a third independent one, which are represented by the second, third

and forth terms on the right side, are subtracted. Afterwards, among these abandoned

contributions, there is one scenario that this contribution could possibly result from

three independent spike trains. From the equation (4.12), this sort of contribution has

been redundantly removed two more times, so two times of this contribution, which

is exactly the last term on the right, should be compensated back to the third order

cumulant density measurement (Conway et al., 1993).
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Since the expression of third order cumulant density has been achieved, the estima-

tion can be obtained based on equation (4.12). The product density can be estimated

by taking cross-correlation histogram as an intermediary (Brillinger, 1976; Brillinger

et al., 1976; Melssen and Epping, 1987). Let a set {ri} represent the spike times of

spike train N0, where i = 1, 2, ..., N0(R). Similarly, sets {sj} and {tk} are defined for

spike trains N1 and N2, for j = 1, 2, ..., N1(R) and k = 1, 2, ..., N2(R), respectively.

R is the duration of the spike train signal.

The cross-correlation histogram of pairwise spike trains, for example, N1 and N2 may

be expressed as:

JR12(v) = counts{(sj, tk), v −
b

2
< sj − tk < v +

b

2
holds} (4.13)

where counts{S} suggests the number of events in set S and b is the width of a bin

centralised at lag v.

The second order product estimation is built upon the cross-correlation estimate (Brillinger,

1975b) as:

P̂12(v) =
JR12(v)

bR
(4.14)

where b is the bin width.

This procedure can also be extended to the third order scenario. The third order corre-

lation histogram is obtained as:

JR012(u, u− v) =counts{(ri, sj, tk), u−
b

2
< ri − tk < u+

b

2
and

u− v − b

2
< ri − sj < u− v +

b

2
hold}

(4.15)

Successively, the unbiased third order product density estimate is as:
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P̂012(u, u− v) =
JR012(u, u− v)

b2R
(4.16)

where b is defined as the same as the second order case.

Finally, the mean rate of a spike train, for example, for N0 can be estimated straight-

forwardly as:

P̂0 = N0(R)/R (4.17)

Throughout this procedure, all the terms on the right side of equation (4.12) are esti-

mated, then the third order cumulant density estimator can be computed by substituting

these terms into equation (4.12).

A reasonable 95% confidence interval has been derived as:

ˆV ar[q̂012] = P̂0P̂1P̂2/Rb
2 (4.18)

Then under the null hypothesis of independence, the 95% confident interval can be

constructed as:

[0− 1.96(P̂0P̂1P̂2/Rb
2)1/2, 0 + 1.96(P̂0P̂1P̂2/Rb

2)1/2] (4.19)

(Rigas, 1983; Halliday, 2005).

The term forward transform refers to transform from temporal cumulant density q012

to cross-bispectrum f012 and the term backward transform refers to transform from

cross-bispectrum f012 to temporal cumulant density q012. These transforms need two

dimensional Fourier transform and Inverse Fourier transform. The Forward-Backward
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transform is summarised here (Yang and Halliday, 2018):

2π2f012(λ, µ) =

∫ +∞

−∞

∫ +∞

−∞
e−i(λu+µv)q012(u, v)dudv (4.20)

q012(u, v) =

∫ 2π

0

∫ 2π

0

ei(uλ+vµ)f012(λ, µ)dλdµ (4.21)

Equations (4.20) and (4.21) can be combined with frequency and time domain esti-

mates described by equations (4.7) and (4.12), respectively, to construct the whole

framework proposed together.

By contrasting equation (4.21) to equation (4.12) and all equations associated to (4.12),

e.g. equations (4.13) - (4.17), the simplicity and conciseness of this combined frame-

work have been achieved, which is the novelty we highlighted in this project. All

calculation requirement of the lower order terms can be avoided due to the flexibility

provided by this framework.

4.4 Third Order Analyses on Surrogate Data

The UTO analysis framework has been presented in section 4.3. The estimation meth-

ods proposed with the framework provide us tools to investigate associations and de-

pendencies between spike train signals in third order, which is able to offer new in-

sights into the relationships between spike trains.

The UTO analysis framework will be applied to surrogate data in this section: It will

be applied to artificially generated spike trains in section 4.4.1. In section 4.4.2, it will

be further used to analyse a simulated neural network using the point cortical model.
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4.4.1 Third Order Analysis of Artificial Data

The data in this subsection were generated using different InterSpike Interval (ISI)

distributions. The first case is three Poisson spike train. When the distribution of

ISI has an exponentially decayed tail, this feature can be captured by the exponential

distribution with the probability density function p(x;λ) with a parameter λ:

p(x;λ) = λe−λx (4.22)

.

where the parameter λ = 1
µPoi

= 1
σPoi

, with µPoi and σPoi denoting the mean and stan-

dard deviation of the exponentially distributed random variable. With the time between

spikes exponentially distributed, the number of events n in time increment is given by

the Poisson distribution with the probability density function p(n;λ) (Trappenberg,

2010):

p(n = i;λ) = λi
e−λ

i!
(4.23)

and hence the spike trains are generated by using Poisson process (see figure 4.8).

In numerical computation, random numbers with an exponential distribution can be

generated by taking the negative logarithm of uniformly distributed random numbers

and then multiplying by a factor (the firing rate is used as this factor here) (Press et al.,

1989). The firing rate used here is 22.46 spikes/s, which is randomly generated from

the range of firing rates in the experimental dataset (see table 4.3). The three spike

trains are generated in two configurations. The first configuration is three independent

spike trains and the second configuration is three dependent spike trains with fixed

delays between them.

The result of UTO analysis for the three independent Poisson spike trains are shown in

figure 4.9. The estimates are obtained using the unified third order time-frequency do-
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Normalised histogram and exponential distribution

Figure 4.8: The distribution of interspike intervals. The firing rate is 22.46 spikes/s.
The figure shows the normalised histogram along with the probability density function
of the exponential distribution (solid black curve) using the firing rate as the parameter
λ , see equation (4.22).

main analysis framework (equations (4.7), (4.12), (4.18) - (4.21)). All the estimates il-

lustrated as measures in frequency domain have been constructed using segment length

T = 1024 and number of segments L = 292, and all the estimates illustrated as mea-

sures in time domain with the range of time lags [0, 50] ms since the information

transmission between neurons is usually with short latency.

In figure 4.9, logarithm auto spectra estimates are illustrated as a function of frequency

inHz, log10f̂00(λ), log10f̂11(λ) and log10f̂22(λ) respectively. All three auto spectra are

bounded within the confidence intervals and oscillate randomly. There are no domi-

nant features and all the values beyond the confidence limits are at single frequency

components, which indicates that these outlying values are most likely beyond the

confidence interval by chance. Due to the high COV value (COV = 1) of Poisson

distributed interspike intervals, the auto spectra of all the three spike trains are lack of

harmonic components in figure 4.9 (a), (b) and (c).
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Figure 4.9: The top panel is the estimated log10 auto-spectrum of spike trains N0,
N1 and N2, respectively, (a) log10f̂00(λ), (b) log10f̂11(λ) and (c) log10f̂22(λ). The
two solid lines represent upper and lower 95% confidence limits and the dashed line
represents the mean. The middle panel (d) is the pixel image of estimated third order
cumulant density, q012(u, u−v) with the colour bar on its right indicating the strengths
of different colour. The bottom panel is plots of third order cumulant density at fixed
time lags u− v = 6 ms: q012(u, 6) and u = 9 ms: q012(9, u− v) with the confidence
limits.
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In figure 4.9 (d), (e) and (f) are shown third order cumulant density estimates using

UTO analysis, plotted over time lag range for 0 to 50ms. The colour-coded graph (d)

shows that the cumulants over all the lag pairs behave randomly. There are no areas of

high cumulant values. Only scattered single pixels at the corresponding time lag pairs,

which are formed by chance rather than indicating any dependence. This suggests the

three spike trains under inspection are highly likely independent. The two sections of

third order cumulant density at fixed time lags u − v = 6 ms (see figure 4.9 (e)) and

u = 9 ms (see figure 4.9 (f)) further indicate the independence. Plot (e) is the third

order cumulant density section through the lag u− v = 6 ms along u axis: q012(u, 6)

and plot (f) is the third order cumulant density section through the lag u = 9 ms along

u− v axis: q012(9, u− v). These two plots are with confidence limits bounding almost

all the estimated cumulant values within, which indicates the independence of the three

Poisson spike trains. The confidence limits are constructed using the equations (4.18)

and (4.19) based on the assumption that three Possion spike trains are independent.

The result for three delayed Poisson spike trains are shown in fig 4.10. The N2 is gen-

erated as Poisson spike train with the firing rate 22.46 spikes/second. N1 is generated

by delaying N2 by 18ms. N0 is generated by delaying N2 by 40ms. According to the

time convention between spikes shown in figure 4.7, in this case, a single sharp peak

is expected at the (u, u− v) = (40, 40− 18) = (40, 22) ms.

In figure 4.10, logarithm auto spectra estimates of the three spike trains are illustrated

on the top panel (see figure 4.10 (a), (b) and (c)). All these three spectral estimates

fluctuates randomly without dominant features. Since N0 and N1 are obtained by just

delay N2, the shape of the three logarithm auto spectra are similar. In figure 4.10 (d),

(e) and (f) are shown third order cumulant density estimates plotted over time lag range

from 0 to 50 ms. The colour-coded graph (d) shows a significant pixel at the coordi-

nate pair (u, u−v) = (40, 22)ms, which is consistent with the delaying configuration.

The two sections of third order cumulants density at fixed time lags u − v = 22 ms

(e) and u = 40 ms (f) illustrate a large sharp peak at (40, 22) ms, which successfully

detects the dependencies and the delays.
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Figure 4.10: The top panel is plots of estimated log10 auto-spectrum of spike trains
N0, N1 and N2, respectively, (a) log10f̂00(λ), (b) log10f̂11(λ) and (c) log10f̂22(λ). The
two solid lines represent upper and lower 95% confidence limits, dash line represents
the mean. The middle panel (d) is the pixel image of estimated third order cumulant
density, q012(u, u − v) with the colour bar on its right indicating the strengths of dif-
ferent colour. The bottom panel is plots of third order cumulant density at fixed time
lags u− v = 22 ms: q012(u, 22) and u = 40 ms: q012(40, u− v).
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(b) Normalised histogram and Gaussian distribution

Figure 4.11: The distribution of interspike intervals. The firing rate is 10.30
spikes/second. The figure shows the normalised histogram along with the Gaussian
distribution function (solid black curve).

Some spike trains recorded in experiments are found that their ISI are likely to be

Gaussian distributed, for example, the motor unit recording in (Halliday et al., 1995).

It is worth studying the dependence between Gaussian spike trains using UTO since the

Gaussian model is able to represent the characteristics of some spike trains recorded

in experiments. Figure 4.11 shows an example of artificial generated spike train with

Gaussian distributed interspike intervals. The firing rate is 10.30 spikes/s which is

identical to the second motor unit spike train in (Halliday et al., 1995). The mean of

ISI is about 100 ms and the standard deviation of ISI is 10.
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Figure 4.12: The top panel is plots of estimated log10 auto-spectrum of spike trainsN0,
N1 and N2, respectively, (a) log10f̂00(λ), (b) log10f̂11(λ) and (c) log10f̂22(λ). The two
solid lines represent upper and lower 95% confidence limits, dashed line represents
the asymptotic value. The middle panel (d) is the pixel image of estimated third order
cumulant density, q012(u, u−v) with the colour bar on its right indicating the strengths
of different colour. The bottom panel is plots of third order cumulant density at fixed
time lags u − v = 10 ms (e) and u = 20 ms (f) with the confidence limits and the
asymptotic value.
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The UTO analysis result for the three independent Gaussian spike trains with the same

firing rate 10.30 spikes/s are shown in fig 4.12. Spike train N0 has COV = 0.1 and

N1 and N2 have COV = 0.2. All the estimates in frequency domain have been con-

structed using segment length T = 1024 and number of segments L = 292, and all

the estimates illustrated as measures in time domain have used the range of time lags

[0, 50] ms.

In figure 4.12, logarithm auto spectra estimates of the three Gaussian spike trains are

illustrated on the top panel (see figure 4.12 (a), (b) and (c)). The asymptotic value

shown as a dash line and confidence limits shown as two solid lines in each plots

are estimated via assuming a random discharge with the same firing rates. All these

three auto spectral share a dominant feature which is a significant peak near 10Hz in

agreement with the firing rate of each spike trains, 10.30 spikes/s. Spike train N0 has

lower COV value (COV = 0.1) compared with N1 and N2 (COV = 0.2), therefore

the estimated auto spectrum log10f̂00(λ) shows a more clear peak and oscillates more

harmonically

In figure 4.12 (d), (e) and (f) are shown third order cumulant density estimates plotted

over time lag range for 0 to 50ms. The colour-coded graph (d) shows that the cumu-

lants over all the lag pairs behave randomly. There are no areas of cumulant values but

only scattered single pixels from random effects. The two sections of third order cu-

mulants density at fixed time lags u− v = 10 ms: q012(u, 10) (see figure 4.12(e)) and

u = 20 ms: q012(20, u− v) (see figure 4.12(f)) with confidence limits and asymptotic

values indicate the well bounded values. The results are in agreement of the indepen-

dence between the three Gaussian spike trains.

The UTO analysis framework has been verified by applying to some basic artificial

configurations. The results obtained have shown that it is able to capturing the depen-

dencies in these scenarios. This framework will be further applied to more complex

configurations. In the next subsection, the UTO analysis framework will be used to

analyse a simulated neural network using point cortical spiking neuron model (see
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section 2.7.4).

4.4.2 Third Order Analysis on Simulated Network

The UTO analysis framework proposed in section 4.3 showed the ability to capture

interactions between triplets of spikes in artificially generated spike trains in section

4.4.1. It is hence potentially a valuable tool to investigate dependencies in experimen-

tal spike train signals. The spiking neuron models discussed in section 2.7 simulate

real biological signalling process and dynamics of neurons. Therefore, signals gen-

erated by simulated spiking neuron models have more resemblance to real neuronal

signals compared with the generated ones based on the probability distributions in

section 4.4.1. Applicability to these simulated signals could provide further verifica-

tion of the proposed analysis framework.

This subsection presents the unified third order time-frequency domain analysis on the

simulated spike trains which were generated using a cortical network model (see sec-

tion 2.7.4). The simulated network and the signals will be briefly introduced, followed

by the UTO analysis on the simulated spike train signals.

The network was constructed using the point-cortical neural model as described in sec-

tion 2.7. The configuration was described in (Halliday, 2005) and the signals generated

using this configuration were outputs of a C program. These signals are spike trains

generated using a conductance-based synaptic integration model based on biophysical

representation of cortical neurons. This kind of point neuron has conductance based

formulation. Therefore, it will have nonlinear synaptic integration of inputs. Hence,

third order effects may be exhibited in the simulated network. The signals received

by each cell are from background inputs and from other cells in the same network.

The background inputs consist of 100 excitatory inputs and 25 inhibitory inputs. Each

input has an exponential interspike interval distribution triggered by a separate random

spike train firing at 40 spikes/s. Excitatory populations thus provide 4000 EPSPs/s

and Inhibitory populations provide 1000 IPSPs/s of background synaptic activation to
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each cell. EPSP and IPSP synaptic conductances are modelled as an alpha function

with the conductance scaling factor, Gsyn, and the time constant, τsyn (Rall, 1967;

Halliday, 2005) as the parameters of the cortical network model (see equation (4.24)):

gsyn(t) = Gsyn/τsynexp(−t/τsyn) (4.24)

.

There are 100 neurons in the network, arranged in a (10∗10) two dimensional grid (see

figure 4.13 (a)). The ratio of excitatory to inhibitory neurons is 3 / 1 which is chosen

to be consistent with the ratio reported in the cortex (Reeke et al., 2005). A centre-

surround pattern which is essential in visual system is adopted for the connectivities

within this network (see figure 4.13 (b) and (c)).The simulation generated 100 spike

trains with duration 100 seconds. The configuration of this network is summarised in

table 4.4.

Configurations Network

Number of neurons 100

Topological structure 10 ∗ 10

Excitatory neurons 75

Inhibitory neurons 25

E/I ration 3 / 1

Length of simulation 100 seconds

Connectivity pattern centre-surround

Table 4.4: Configuration summary of the simulated network.
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(a) Schematic plot of relative positions of excitatory neurons (red ”+”) and inhibitory neurons (blue ”-”).

(b) Excitatory connectivities (c) Inhibitory connectivities

Figure 4.13: The top panel (a) is the schematic plot of relative positions of excitatory
neurons (red ’+’) and inhibitory neurons (blue ’-’) in the 10∗10 2-D sheet. The bottom
panel is the schematic illustrations of centre-surround connectivities. In both subplots,
black ’O’ in the centre represents the presynaptic cell. In (b), red ’+’ illustrates post-
synaptic neurons which receive excitatory inputs from the presynaptic neuron ’O’. In
(c), blue ’-’ illustrates postsynaptic neurons which receive inhibitory inputs from the
presynaptic neuron ”O”. The black ’X’ in (b) and (c) represent the postsynaptic neu-
rons which receive nothing from presynaptic neuron ’O’.
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(a) Histogram of firing rate

(b) Histogram of COV

Figure 4.14: Histogram plots of firing rates and COVs. (a) Distribution of the
firing rates of the 100 spike trains, and firing rates range from 18.71 spike/s to
135.18 spikes/s. (b) Distribution of the COVs of the 100 spike trains, and COVs
range from 0.793 to 1.310.
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The basic statistics of the 100 spike trains are used to reveal the properties of the

spike train signals (see figure 4.14). The firing rates of the spike trains vary from

20 spikes/s to around 140 spikes/s, with most neurons firing between 30 spikes/s

to 80 spikes/s. The mean lengths of interspike intervals ranges from 7.397 ms to

53.462 ms, corresponding to the highest and the lowest firing rate, respectively. The

standard deviations of the interspike intervals of the 100 signals is between 6.405 to

58.685 ms. The COV values vary from 0.793 to 1.310, with the majority around 1,

indicating that the means and standard deviations of ISI of these spike trains are nu-

merically close, which indicates they have random, Poisson-like firing. The simulated

network is subject to the analyses presented in section 4.3.

There are 5 cases taken into account. Considering the centre-surround pattern adopted

in this simulated network (see figure 4.13 (b) and (c)), neurons separated in space are

likely to communicate with each other with lower probability. Therefore, spike trains

of spatially scattered neurons are highly likely to be uncorrelated. The first case in-

volves spike trains generated by neurons 33, 57 and 10. Their relative positions can be

indicated by figure 4.13 (a). The firing rates of these spike trains are 37.96 spikes/s,

44.16 spikes/s and 26.74 spikes/s, respectively and the corresponding COV values

are 0.879, 0.859 and 1.009. Figure 4.15 shows the analysis results. The spectra of the

three spike trains have a reduced magnitude below 160 Hz, while the first two spec-

tra (figure 4.15 (a) and (b)) are of spike trains having higher firing rates and show an

increase below 10 Hz. As may be expected, the estimated cumulants density behaves

randomly. There is no area indicating third order dependency between the three spike

trains. Two sections through the third order cumulant density at fixed u and u − v are

shown in figure 4.15 (e) and (f). The two sections indicate that the presynaptic neurons

spiking prior to an postsynaptic neuron has no facilitating effect on the output of the

postsynaptic neuron, which indicates no third order interaction occurs between these

three neurons in this network.
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(e) A section of third order cumulant density
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(f) A section of third order cumulant density

Figure 4.15: The top panel is plots of estimated log10 auto-spectrum of spike trains
N0, N1 and N2, respectively, (a) log10f̂00(λ), (b) log10f̂11(λ) and (c) log10f̂22(λ). The
two solid lines represent upper and lower 95% confidence limits, dash line represents
the asymptotic value. The middle panel (d) is the pixel image of estimated third order
cumulant density, q012(u, u−v) with the colour bar on its right indicating the strengths
of different colour. The bottom panel is plots of (e) and (f) third order cumulant density
at fixed time lags with the confidence limits and the asymptotic value.



Chapter 4. Third order Time-Frequency domain Analysis Framework 127

Figure 4.16 shows the analysis result of triplet neurons spatially close to each other.

The relative positions of neurons 55, 45 and 56 are as shown in figure 4.13 (a). Accord-

ing to the centre-surround pattern of excitatory connectivity (figure 4.13 (b)), neuron

55 as a postsynaptic neuron receives excitatory inputs from presynaptic neurons 45 and

56. Therefore, third order interaction may be expected in this triplet.Similar to spectral

in figure 4.15, a decrease in magnitude below 160 Hz can be found in all three spectra

shown in figure 4.16 (a), (b) and (c). The third order cumulant estimate in figure 4.16

(d) shows significant third order interactions between the three spike trains. Signifi-

cant values of the cumulant can be identified at the upper left corner of the pixel plot,

within a 10 ms ∗ 10 ms square. The highest positive value of the cumulant is located

at a lag pair of u = 2ms and u − v = 1ms. Two sections through the highest

cumulant point show the interaction pattern in more detail (see figure 4.16 (e) and (f)).

Significant values below 10ms lag can be interpreted as a third order interaction when

presynaptic spikes occur less than 10ms before an output spike of the postsynaptic

neuron. The highest cumulant at (u = 2ms, u − v = 1ms) indicates that two

closely grouped input spikes facilitates an output spike most likely. This result is con-

sistent with the centre-surround pattern of the excitatory connectivity adopted in this

simulated network.

Figure 4.17 shows the analysis result after increasing the distance between the two

presynaptic neurons and the postsynaptic neuron. The triplet consists of neurons 55,

35 and 57. The relative positions of these neurons are as shown in figure 4.13 (a).

These two presynaptic neurons still send excitatory inputs to neuron 55 according to

the centre-surround pattern of excitatory connectivity (figure 4.13 (b)). Therefore, sig-

nificant values of third order cumulant density are expected from this triplet. The third

order cumulant estimate in figure 4.17 (d) indicates the presence of third order interac-

tions as expected. Significant values of the cumulants density can be identified in the

similar upper left corner area, within an approximate the same 10 ms ∗ 10 ms square.

Compared with the results shown in figure 4.16, the maximal value of the cumulant

density corresponds slightly larger lags along both u and u − v axes, located at a lag

pair of u = 4ms and u − v = 2ms, which is consistent with the further relative

positions compared with the triplet considered in figure 4.16. Two sections through
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the maximum cumulant density show the third order interaction pattern in more detail

(see figure 4.17 (e) and (f)). Significant values below 12ms lag can be interpreted as a

third order interaction when presynaptic spikes occur less than 12ms prior to an out-

put spike. This result is consistent with the centre-surround pattern of the excitatory

connectivity and the relative positions in this simulated network.

Moving one of the presynaptics neuron by 1 unit further provides another combination

of spike trains. Neuron 25 is one unit further away from postsynaptic neuron 55 com-

pared to neuron 35 and is an inhibitory neuron. According to the interaction pattern

of the inhibitory connectivity in the network (see figure 4.13 (c)), neuron 55 receives

an inhibitory input from neuron 25. Figure 4.18 shows the analysis result of the triplet

containing neurons 55, 25 and 57. The third order cumulant estimate in figure 4.18 (d)

indicates the third order interactions are present but weaker compared with figure 4.17.

Cumulant values near the origin at the upper left corner are still significantly higher.

Compared with the results shown in figure 4.17, there is smaller area of significant

cumulant density values, and the maximal value of the cumulant is located at a lag

pair of u = 2ms and u − v = 7ms. Two sections through the highest cumulant

point show the third order interaction pattern in more detail (see figure 4.18 (e) and

(f)). Significant values have a narrow duration in these two plots. In figure 4.18 (e), a

section between 10 ms to 45 ms shows a smoother oscillation with almost continuous

section of negative value approaching the lower confidence limit. This is probably due

to the inhibitory effect of neuron 25 with slow time course.

Figure 4.19 shows the analysis result after further increasing the distance between the

two presynaptic neurons and the postsynaptic neuron. This triplet consists of neurons

55, 5 and 60. The relative positions of these neurons are as shown in figure 4.13 (a).

According to the centre-surround pattern shown in figure 4.13 (b) and (c), there are

not any excitatory or inhibitory connectivities between these three neurons in addition

to the increased spanning between them. The probability of showing any significant

values of third order cumulant density are hence likely to be low. As might be ex-

pected, figure 4.19 (d) indicates that the values of estimated cumulant does not show
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any dominant feature instead of fluctuating randomly. Two sections show the majority

of third order cumulant values are bounded with only single values outside the upper

and lower confidence limits (see figure 4.19 (e) and (f)). This suggests there are not

any third order interactions between the chosen neuronal triplet.

This section shows results from using the unified third order time-frequency domain

analysis network on a simulated cortical network. The results show that the proposed

framework is capable of capturing third order interactions in a spiking neuronal net-

work. This provides a strong evidence of the applicability of the framework. In the

next section, the UTO analysis framework will be applied to the hippocampal data

introduced in section 4.2.
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(d) Third order cumulant density
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(e) A section of third order cumulant density
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(f) A section of third order cumulant density

Figure 4.16: The top panel is plots of estimated log10 auto-spectrum of spike trains
N0, N1 and N2, respectively, (a) log10f̂00(λ), (b) log10f̂11(λ) and (c) log10f̂22(λ). The
two solid lines represent upper and lower 95% confidence limits, dash line represents
the asymptotic value. The middle panel (d) is the pixel image of estimated third order
cumulant density, q012(u, u−v) with the colour bar on its right indicating the strengths
of different colour. The bottom panel is plots of (e) and (f) third order cumulant density
at fixed time lags with the confidence limits and the asymptotic value.
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(e) A section of third order cumulant density
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(f) A section of third order cumulant density

Figure 4.17: The top panel is plots of estimated log10 auto-spectrum of spike trains
N0, N1 and N2, respectively, (a) log10f̂00(λ), (b) log10f̂11(λ) and (c) log10f̂22(λ). The
two solid lines represent upper and lower 95% confidence limits, dash line represents
the asymptotic value. The middle panel (d) is the pixel image of estimated third order
cumulant density, q012(u, u−v) with the colour bar on its right indicating the strengths
of different colour. The bottom panel is plots of (e) and (f) third order cumulant density
at fixed time lags with the confidence limits and the asymptotic value.
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(e) A section of third order cumulant density
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(f) A section of third order cumulant density

Figure 4.18: The top panel is plots of estimated log10 auto-spectrum of spike trains
N0, N1 and N2, respectively, (a) log10f̂00(λ), (b) log10f̂11(λ) and (c) log10f̂22(λ). The
two solid lines represent upper and lower 95% confidence limits, dash line represents
the asymptotic value. The middle panel (d) is the pixel image of estimated third order
cumulant density, q012(u, u−v) with the colour bar on its right indicating the strengths
of different colour. The bottom panel is plots of (e) and (f) third order cumulant density
at fixed time lags with the confidence limits and the asymptotic value.
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(d) Third order cumulant density
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(e) A section of third order cumulant density
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(f) A section of third order cumulant density

Figure 4.19: The top panel is plots of estimated log10 auto-spectrum of spike trains
N0, N1 and N2, respectively, (a) log10f̂00(λ), (b) log10f̂11(λ) and (c) log10f̂22(λ). The
two solid lines represent upper and lower 95% confidence limits, dash line represents
the asymptotic value. The middle panel (d) is the pixel image of estimated third order
cumulant density, q012(u, u−v) with the colour bar on its right indicating the strengths
of different colour. The bottom panel is plots of (e) and (f) third order cumulant density
at fixed time lags with the confidence limits and the asymptotic value.
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4.5 Third Order Analysis on Experimental Data

The UTO developed in section 4.3 has been applied to basic artificial generated triplet

spike trains configurations (see section 4.4.1) and to simulated neural network using

biophysical point neurone conductance model (see subsection 4.4.2). These verifica-

tions proved that the UTO analysis is applicable and able to capture the interactions

among three spike trains. It is going to be used to analyse a Multielectrode Array

(MEA) single unit dataset which has been discussed in section 4.2. This verification is

going to be the proof of the applicability of this framework to real experimental spike

trains. It also provides insight into the experimental data, revealing some third order

”CA3 - CA1” interaction patterns in the hippocampus.

This dataset consists of 18 spike train signals (see Table 4.3) and each spike train is

5 mins duration. The estimates are obtained applying the UTO analysis using equa-

tions (4.7), (4.12), (4.18) - (4.21) to these 5 mins duration signals. All the estimates

involving measures in frequency domain have been constructed using segment length

T = 1024 and number of segments L = 292 since each signal is 300 s duration, and

all the estimates illustrated as measures in time domain have used the range of time

lags [0, 50] ms.

The information flow in hippocampal region is reported generally from CA3 subregion

to CA1 subregion. Therefore, it is reasonable to take into account triplets consisting

of two CA3 spike trains and one CA1 spike train from the same hemisphere of the

brain, illustrated as figure 4.20. The analyses will first be conducted on four ”CA3 -

CA1” combinations in detail (see table 4.5, rows 1 - 4), since the spike trains in these

combinations capture the two main types of third order interaction: short latency and

longer latency. One non-”CA3 - CA1” combination is also shown in detail (see table

4.5, row 5). There is not any interactions expected as they are against the ”CA3 - CA1”

information flow pattern in the hippocampus.
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Figure 4.20: Schematic representation of the triplet of ”CA3 - CA1” considered in this
chapter. N1 and N2 are spike trains from the same CA3 subregion, N0 is a spike train
from the CA1 subregion.

N0 N1 N2 Entry

sp10 sp1 sp5 Figure 4.21

sp10 sp1 sp6 Figure 4.22

sp10 sp1 sp7 Figure 4.23

sp10 sp5 sp6 Figure 4.24

sp1 sp15 sp10 Figure 4.25

Table 4.5: Configurations of the left hippocampus
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(d) Third order cumulant density
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(e) A section of third order cumulant density
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(f) A section of third order cumulant density

Figure 4.21: The top panel is plots of estimated log10 auto-spectrum of spike trains
N0, N1 and N2, respectively, (a) log10f̂00(λ), (b) log10f̂11(λ) and (c) log10f̂22(λ). The
two solid lines represent upper and lower 95% confidence limits, dash line represents
the asymptotic value. The middle panel (d) is the pixel image of estimated third order
cumulant density, q012(u, u−v) with the colour bar on its right indicating the strengths
of different colour. The bottom panel is plots of (e) and (f) third order cumulant density
at fixed time lags with the confidence limits and the asymptotic value.
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(d) Third order cumulant density
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(e) A section of third order cumulant density
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(f) A section of third order cumulant density

Figure 4.22: The top panel is plots of estimated log10 auto-spectrum of spike trains
N0, N1 and N2, respectively, (a) log10f̂00(λ), (b) log10f̂11(λ) and (c) log10f̂22(λ). The
two solid lines represent upper and lower 95% confidence limits, dash line represents
the asymptotic value. The middle panel (d) is the pixel image of estimated third order
cumulant density, q012(u, u−v) with the colour bar on its right indicating the strengths
of different colour. The bottom panel is plots of (e) and (f) third order cumulant density
at fixed time lags with the confidence limits and the asymptotic value.
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(e) A section of third order cumulant density
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(f) A section of third order cumulant density

Figure 4.23: The top panel is plots of estimated log10 auto-spectrum of spike trains
N0, N1 and N2, respectively, (a) log10f̂00(λ), (b) log10f̂11(λ) and (c) log10f̂22(λ). The
two solid lines represent upper and lower 95% confidence limits, dash line represents
the asymptotic value. The middle panel (d) is the pixel image of estimated third order
cumulant density, q012(u, u−v) with the colour bar on its right indicating the strengths
of different colour. The bottom panel is plots of (e) and (f) third order cumulant density
at fixed time lags with the confidence limits and the asymptotic value.



Chapter 4. Third order Time-Frequency domain Analysis Framework 139

0 20 40 60 80 100 120 140 160 180 200

Frequency (Hz)

-2.65

-2.6

-2.55

-2.5

-2.45

-2.4

-2.35

-2.3

log
10

f
00

( )

(a) Log spectrum of N0

0 20 40 60 80 100 120 140 160 180 200

Frequency (Hz)

-3

-2.95

-2.9

-2.85

-2.8

-2.75

-2.7

-2.65

-2.6

-2.55

log
10

f
11

( )

(b) Log spectrum of N1

0 20 40 60 80 100 120 140 160 180 200

Frequency (Hz)

-2.55

-2.5

-2.45

-2.4

-2.35

-2.3

-2.25

-2.2

log
10

f
22

( )

(c) Log spectrum of N2

q
012

(u, u-v)

0 10 20 30 40 50
lag u (ms)

0

10

20

30

40

50

la
g 

u-
v 

(m
s)

-2

0

2

4

6

8

10

12

14
10-5
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(e) A section of third order cumulant density
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(f) A section of third order cumulant density

Figure 4.24: The top panel is plots of estimated log10 auto-spectrum of spike trains
N0, N1 and N2, respectively, (a) log10f̂00(λ), (b) log10f̂11(λ) and (c) log10f̂22(λ). The
two solid lines represent upper and lower 95% confidence limits, dash line represents
the asymptotic value. The middle panel (d) is the pixel image of estimated third order
cumulant density, q012(u, u−v) with the colour bar on its right indicating the strengths
of different colour. The bottom panel is plots of (e) and (f) third order cumulant density
at fixed time lags with the confidence limits and the asymptotic value.
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Figure 4.21 shows the estimated cumulant density q012(u, u − v) of the combination

(sp10, sp1, sp5) (see table 4.5, row 1). The timing convention is that lags u and (u-v)

in ms represent the time to previous input spikes from two CA3 neurons onto one CA1

neuron. Two regions where there are significant features can be identified in figure

4.21 (d). These are highlighted in the two sections at fixed u-v lag of 35 ms shown in

figure 4.21 (e) and at fixed u lag of 5 ms shown in figure 4.21 (f). These sections indi-

cate that significant third order interactions can occur when the third spike is between

5-10 ms prior to the CA1 spike and the second spike is between 5-10 ms or 35-45

ms prior to the CA1 spike. Figure 4.21 (a), (b) and (c) show auto-spectral estimates

for the CA1 spike and the two CA3 spikes. The dominant feature in each spectrum is

a peak around 25 Hz, representing corresponding mean rate of each spike (Yang and

Halliday, 2018).

Figure 4.22 shows the estimated cumulant density q012(u, u−v) of another triplet spike

trains (sp10, sp1, sp6) (see table 4.5, row 2). A region at the upper-left corner of the

pixel diagram (see figures 4.22 (d) ) where there is a dominant feature can be iden-

tified. Compared with figure 4.21 (d), the second dominant area near the lower-left

corner clearly found in figure 4.21(d) is ambiguous in this case. According to the time

convention in figure 4.7, the area indicating the occurrence of third order interaction

is located with the range with u varying in [0, 8] and u − v varying in [2, 10]. Two

sections going through the maximum value of cumulants at (u, u− v) = (2, 3) ms are

highlighted at fixed u− v and u respectively in figure 4.22 (e) and (f). These sections

indicate that significant third order interactions may take place when one spike in N2

is between 0− 8 ms prior to the a spike in N0, combined with a similar priority that a

spike in N1 occurs to the spike in N0.

Figure 4.23 reveals the similar feature near the origin compared with figure 4.22. The

result is consistent with the expectation since the signals taken into account are almost

identical, with only the difference that theN2 is recorded by the same node at the same

single unit but spike-sorted out to be another spike trains, which can be expressed by

the different spectral(see figure 4.22 (c) and 4.23 (c)). Since they are from the same
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combination of single unites, the interaction features are hence similar.

Figure 4.24 shows the analysis result of another triplet neurons with the two inputs

neurons in CA3 being spatially closer to each other (sp10-sp5-sp6) (see table 4.5, row

4). According to the time convention in figure 4.7, a relatively smaller difference be-

tween the two lag indices u and u− v are expected since ideally it takes the two inputs

N1 and N2 almost the same time to arrive at the output neuron. The third order cumu-

lant estimate in figure 4.24 (d) can be taken as strong proof of the interactions between

the the three spike trains. Significant values of the cumulant can be identified at the

upper left corner of the pixel plot, located within a 10∗10 square. The highest positive

value of the cumulant is located at a lag pair of u = 4ms and u − v = 4ms. Two

sections through the highest cumulant point show the interaction pattern in more detail

(see figure 4.24 (e) and (f)). The ranges of lag u and u − v indicating the occurrence

are numerically close, which meets the expectation. Significant values below 10ms lag

can be interpreted that the third order interaction is presented when presynaptic spikes

precede less than 10ms to an output spike of the postsynaptic neuron. The highest

cumulant at (u = 4ms, u − v = 4ms) indicates that a pair of closely grouped input

spikes facilitates the output spike mostly.

Figure 4.25 shows the analysis result of another triplet signals (sp1-sp15-sp10). The

nodes recorded these three signals are comparatively more scattered. Hence, the spatial

distances between the single unites on which these spike trains are obtained are larger.

The probability of showing any significant values of third order cumulant density are

likely to be low. As might be expected, figure 4.25 (d) indicates that the values of

estimated cumulant does not show any dominant areas but just single peaks scattering

over the plane. Two sections show that almost all third order cumulant values are

bounded with single values deviate the expectation at the lag u − v = 0ms (see figure

4.25 (e) and (f)). This indicates there are not any third order interactions between the

chosen neuronal triplet.



142 Chapter 4. Third order Time-Frequency domain Analysis Framework

0 20 40 60 80 100 120 140 160 180 200

Frequency (Hz)

-2.65

-2.6

-2.55

-2.5

-2.45

-2.4
log

10
f
00

( )

(a) Log spectrum of N0

0 20 40 60 80 100 120 140 160 180 200

Frequency (Hz)

-4.18

-4.16

-4.14

-4.12

-4.1

-4.08

-4.06

-4.04

log
10

f
11

( )

(b) Log spectrum of N1

0 20 40 60 80 100 120 140 160 180 200

Frequency (Hz)

-2.65

-2.6

-2.55

-2.5

-2.45

-2.4

-2.35

-2.3

log
10

f
22

( )

(c) Log spectrum of N2

q
012

(u, u-v)

0 10 20 30 40 50
lag u (ms)

0

10

20

30

40

50

la
g 

u-
v 

(m
s)

-1

0

1

2

3

4

5

6

10-6

(d) Third order cumulant density

0 5 10 15 20 25 30 35 40 45 50

Lag u (ms)

-1.5

-1

-0.5

0

0.5

1

1.5

q
01

2

10-6

(e) A section of third order cumulant density
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(f) A section of third order cumulant density

Figure 4.25: The top panel is plots of estimated log10 auto-spectrum of spike trains
N0, N1 and N2, respectively, (a) log10f̂00(λ), (b) log10f̂11(λ) and (c) log10f̂22(λ). The
two solid lines represent upper and lower 95% confidence limits, dash line represents
the asymptotic value. The middle panel (d) is the pixel image of estimated third order
cumulant density, q012(u, u−v) with the colour bar on its right indicating the strengths
of different colour. The bottom panel is plots of (e) and (f) third order cumulant density
at fixed time lags with the confidence limits and the asymptotic value.
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N0 N1 N2 Entry

sp8 (Left CA1) sp1 (Left CA3) sp3 (Left CA3) Figure 4.26 (a)
sp8 (Left CA1) sp1 (Left CA3) sp5 (Left CA3) Figure 4.26 (b)
sp8 (Left CA1) sp1 (Left CA3) sp6 (Left CA3) Figure 4.26 (c)
sp8 (Left CA1) sp3 (Left CA3) sp5 (Left CA3) Figure 4.26 (d)
sp8 (Left CA1) sp3 (Left CA3) sp6 (Left CA3) Figure 4.26 (e)
sp8 (Left CA1) sp5 (Left CA3) sp6 (Left CA3) Figure 4.26 (f)
sp10 (Left CA1) sp1 (Left CA3) sp3 (Left CA3) Figure 4.27 (a)
sp10 (Left CA1) sp1 (Left CA3) sp5 (Left CA3) Figure 4.27 (b)
sp10 (Left CA1) sp1 (Left CA3) sp6 (Left CA3) Figure 4.27 (c)
sp10 (Left CA1) sp3 (Left CA3) sp5 (Left CA3) Figure 4.27 (d)
sp10 (Left CA1) sp3 (Left CA3) sp6 (Left CA3) Figure 4.27 (e)
sp10 (Left CA1) sp5 (Left CA3) sp6 (Left CA3) Figure 4.27 (f)
sp12 (Left CA1) sp1 (Left CA3) sp3 (Left CA3) Figure 4.28 (a)
sp12 (Left CA1) sp1 (Left CA3) sp5 (Left CA3) Figure 4.28 (b)
sp12 (Left CA1) sp1 (Left CA3) sp6 (Left CA3) Figure 4.28 (c)
sp12 (Left CA1) sp3 (Left CA3) sp5 (Left CA3) Figure 4.28 (d)
sp12 (Left CA1) sp3 (Left CA3) sp6 (Left CA3) Figure 4.28 (e)
sp12 (Left CA1) sp5 (Left CA3) sp6 (Left CA3) Figure 4.28 (f)
sp13 (Left CA1) sp1 (Left CA3) sp3 (Left CA3) Figure 4.29 (a)
sp13 (Left CA1) sp1 (Left CA3) sp5 (Left CA3) Figure 4.29 (b)
sp13 (Left CA1) sp1 (Left CA3) sp6 (Left CA3) Figure 4.29 (c)
sp13 (Left CA1) sp3 (Left CA3) sp5 (Left CA3) Figure 4.29 (d)
sp13 (Left CA1) sp3 (Left CA3) sp6 (Left CA3) Figure 4.29 (e)
sp13 (Left CA1) sp5 (Left CA3) sp6 (Left CA3) Figure 4.29 (f)

Table 4.6: Configurations of the left hippocampus

The analyses also are conducted on all this type of combinations to obtain a general

sense of the dependencies in this dataset. All the combinations in the left hippocampal

part are listed in table 4.6 and all the combinations in the right hippocampal part are

listed in table 4.7. At this systematic analysis stage, all the results are illustrated as

cumulant densities ploted as pixel diagrams with different colour representing differ-

ent strength of the cumulant densities. Each result can be retrieved in table 4.6 and 4.7

using the “Entry” columns.



144 Chapter 4. Third order Time-Frequency domain Analysis Framework

N0 N1 N2 Entry

sp17 (Right CA1) sp14 (Right CA3) sp15 (Right CA3) Figure 4.30 (a)

sp17 (Right CA1) sp14 (Right CA3) sp16 (Right CA3) Figure 4.30 (b)

sp18 (Right CA1) sp14 (Right CA3) sp16 (Right CA3) Figure 4.30 (c)

Table 4.7: Configurations of the right hippocampus

Figures 4.26, 4.27, 4.28 and 4.29 illustrate the systematic study of the left hippocampal

(CA1, CA3, CA3) spikes triplet listed in table 4.6. Across all these triplets combina-

tions, areas near the origins indicating short lags both along the u axis and u− v axis

can be identified with large cumulant densities values, which indicates that across the

dataset, short spike times for three spikes with one from each train exist broadly. High

cumulants in this types of region can imply that there is an increasing probability of

occurrence of a significant third order interaction if the two referenced CA3 spikes are

shortly prior to the CA1 spike.

In some cases where the signal sp1 involved, some features along the u − v axis and

with small u values can be identified (see figure 4.26 (a), (b) and (c), figure 4.27 (a),

(b) and (c), figure 4.28 (a), (b) and (c) and figure 4.29 (a), (b) and (c)). According the

time convention discussed in section 4.3, these significant areas with values of u − v

lying above the principal diagonal may indicates that a CA3 spontaneous spike in N1

precedes the evoked CA3 spike in N1 and there for the spontaneous one may be re-

garded as a conditioning contribution for investigating the contribution that the evoked

one has to the subsequent CA1 spikes.

Figures 4.30 illustrates the systematic study of the right hippocampal (CA1, CA3,

CA3) spikes triplet listed in table 4.7. Compared with the left hippocampus cases, the

interactions in the right hippocampus are quieter due to the lower firing rates. Similar

high cumulant densities area with short u and u− v values exist.
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(c) N0:sp8, N1:sp1, N2:sp6
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(d) N0:sp8, N1:sp3, N2:sp5
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(e) N0:sp8, N1:sp3, N2:sp6
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(f) N0:sp8, N1:sp5, N2:sp6

Figure 4.26: Third order cumulant density estimates of the hippocampal data (see
section 4.2).
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(a) N0:sp10, N1:sp1, N2:sp3
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(b) N0:sp10, N1:sp1, N2:sp5
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(c) N0:sp10, N1:sp1, N2:sp6
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(d) N0:sp10, N1:sp3, N2:sp5
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(e) N0:sp10, N1:sp3, N2:sp6
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(f) N0:sp10, N1:sp5, N2:sp6

Figure 4.27: Third order cumulant density estimates of the hippocampal data (see
section 4.2).
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(a) N0:sp12, N1:sp1, N2:sp3
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(b) N0:sp12, N1:sp1, N2:sp5
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(c) N0:sp12, N1:sp1, N2:sp6
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(d) N0:sp12, N1:sp3, N2:sp5
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(e) N0:sp12, N1:sp3, N2:sp6
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(f) N0:sp12, N1:sp5, N2:sp6

Figure 4.28: Third order cumulant density estimates of the hippocampal data (see
section 4.2).
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(a) N0:sp13, N1:sp1, N2:sp3
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(b) N0:sp13, N1:sp1, N2:sp5
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(c) N0:sp13, N1:sp1, N2:sp6
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Figure 4.29: Third order cumulant density estimates of the hippocampal data (see
section 4.2).



Chapter 4. Third order Time-Frequency domain Analysis Framework 149

q
012

(u, u-v)

0 10 20 30 40 50
lag u (ms)

0

10

20

30

40

50

la
g 

u-
v 

(m
s)

0

0.5

1

1.5

2

2.5

3

3.5

4

10-5

(a) N0:sp17, N1:sp14, N2:sp15
q

012
(u, u-v)

0 10 20 30 40 50
lag u (ms)

0

10

20

30

40

50

la
g 

u-
v 

(m
s)

0

2

4

6

8

10

12

14

16

18

10-5

(b) N0:sp17, N1:sp14, N2:sp16
q

012
(u, u-v)

0 10 20 30 40 50
lag u (ms)

0

10

20

30

40

50

la
g 

u-
v 

(m
s)

0

2

4

6

8

10

12

14

16

18

10-6

(c) N0:sp18, N1:sp14, N2:sp16

Figure 4.30: Third order cumulant density estimates of the hippocampal data (see
section 4.2).
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4.6 Conclusion

The UTO analysis framework for neural spike train signals is developed in this chapter.

This framework provides flexible access starting either from time domain or frequency

domain and avoids the calculation of the second order terms. The framework is ap-

plied to artificial generated dataset, simulated neuronal framework using point-cortical

spiking neuron model and experimental MEA spike trains. The dependencies in the

artificial data are successfully detected by the framework. In the spiking neuron model

case, the UTO proves useful to reveal the connectivities between presynaptic and post-

synaptic neurons. In the experimental data case, two main interaction patterns are

identified by using the proposed framework. One is significant third order interactions

with the short lags (about [0, 10] ms) on both u and u − v axes (for example, fig-

ure 4.24). The other is significant third order cumulants found on short lag u (about

[0, 10] ms) but existing on both short and large u − v lags (about [32, 48] ms) (for

example, figure 4.21). The results provide insights into the third order interaction pat-

terns based on the ”CA3-CA1” information flow mechanism in the hippocampus: the

first pattern is that two CA3 spikes are highly likely to facilitate the CA1 neuron firing

a short time aftewards, and the second pattern is that a short latency in conjunction

with a long latency between CA3 spikes and a CA1 spike can also enhance the firing

probability of CA1 neuron.
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5.1 Introduction

Given two time series {X(t)} = {x(t1), x(t2), x(t3), ..., x(tn)} and {Y (t)} =

{y(t1), y(t2), y(t3), ..., y(tn)}, their Mutual Information (MI) is a metric to quantify

the statistical dependence between the two series (Cover and Thomas, 2012). There

has been substantial developments of the theory and estimation techniques since it

was first proposed by Shannon (Shannon and Weaver, 1949) to measure the average

number of units of {X} which could be predicted by considering {Y } (see section

3.5) (Moon et al., 1995b; Fraser and Swinney, 1986; Darbellay et al., 1999; Walters-

Williams and Li, 2009). Since MI is a probability-based metric which does not require

the assumption of linearity, it is potentially capable of capturing universal dependen-

cies beyond linear measures. Nonlinear dependencies are often observed in nervous

system, which makes MI a suitable measurement.

In this chapter, a scheme of generating MI to be a function of time lag u will be

presented in section 5.2. The MI at every single lag is going to be estimated using
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the k-th nearest neighbour statistics method (Kraskov et al., 2004) combined with a

spike train preprocessing. Some results for MI analyses for simulated network data

(see section 4.4.2) and experimental data (see section4.2) will be discussed in section

5.3 and section 5.4 respectively.

5.2 Mutual Information Function

5.2.1 Mutual Information Function

Recall that MI I(X, Y ) between two random variable X and Y is mathematically

defined as equation (3.37) and equation (3.38) for the case when X and Y are both

discrete and both continuous, respectively. It is also defined as (Cover and Thomas,

2012):

I(X, Y ) = H(X) +H(Y )−H(X, Y ) (5.1)

where H(X), H(Y ) are entropies of X and Y and H(X, Y ) are joint entropy of these

two random variables (see equations (3.34) and (3.35)).

Time series are collections of random variables indexed in the order they occurred.

The concept of MI could be generalised to investigate the dependence between two

time series {X(t)} and {Y (t)} by introducing a lag variable u and measuring:

I(u) = I(X(t), Y (t+ u)) (5.2)

at each lag u (Cellucci et al., 2005; Guha, 2006).

Two spike trains which record spiking times will be considered. To conduct MI analy-

sis on these two series can suffer from several problems. Usually, the two series are of

different length, which makes alignment fail. However, if the two series are transferred
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to point processes with the same length, then direct methods based on measuring the

binary “words” distribution could be adopted (Strong et al., 1998). This estimator

needs large amounts of data. In this thesis, another way to estimate MI between spike

trains is proposed.

Let the spike train with lower number of spikes be denoted as Nl and the spike train

with higher number of spikes be denoted as Nh (see figure 5.1). X(n) is the series

recording the firing time of Nl, and Nl contains nl spikes, hence the duration of inter-

spike interval (ISI) of Nl is:

∆t(n) = X(n+ 1)−X(n) (5.3)

where n = 1, 2, ..., nl − 1 . Let r(n) be the local firing rate of Nh, defined as the

number of spikes of Nh during Nl ISI [X(n), X(n + 1)), c(n), normalised over the

corresponding ISI duration ∆t(n):

r(n) =
c(n)

∆t(n)
(5.4)

where n = 1, 2, ..., nl − 1 . In this way, the alignment of the two original series are

maintained in r(n) and ∆t(n), and the length of the two newly-obtained series are the

same.
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Figure 5.1: Schematic representation of the transformation of two spike trains to two
series with the same length.

The entropy terms in equation (5.1) are estimated from k-th nearest neighbour statis-

tics reviewed in section 3.5 using equations (3.47) to (3.53). For each lag u introduced,

the estimated MI is constructed using the entropy terms.

5.2.2 Baseline Construction associated with the Proposed MIF

The estimated MIF values need to be tested against the baseline which indicates no

dependent relationship existing between the two spike trains under investigation if the

estimated MIF values are below the baseline. The baseline is obtained using artificial

Poisson spike trains (see section 4.4.1). Two spike trains from spiking neuron model

or real experiment are taken into account, for the consistent fashion, denoted as Nl

and Nh. Suppose the numbers of spikes in Nl and in Nh are denoted as nl and nh

respectively. The firing rates are approximately estimated as:

Rl =
nl
R

(5.5)

Rh =
nh
R

(5.6)
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where R is the recording length of time. Two artificial Poisson spike trains with the

firing rates Rl and Rh are generated, denoted as Npl and Nph. Therefore, the artificial

Poisson spike trains and the two spike trains under investigation have the same firing

rates. After the two Poisson spike trains are generated, the proposed MIF of Npl and

Nph is calculated at the same lag interval.

Figure 5.2: Histogram of the MIF values of two Poisson spike trains on [0, 50] ms.
The histogram is obtained by 200 trials. The vertical red line indicates the 95% per-
centile of the MIF values. In this case, the 95% percentile is at 6.952. The firing
rates used in this case to generate two Poisson spike trains are 11.11 spikes/sec and
21.08 spikes/sec, which are identical to the estimated firing rates of sp5 and sp10 in
the experiment dataset (see section 4.2)

Calculating the baseline is a time consuming task because taking more trials of simu-

lations can increase the reliability of the estimated 95% percentile value. Considering

the trade-off between the computational efficiency and the reliability of the estimated

baseline value, the trial of calculating the MIF of two Poisson spike trains are repeated

200 times, after which the distribution of the MIF values of all trials is approximated

by a histogram.
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Figure 5.2 shows an example of the normalised histogram of the estimated MIF values

using 200 trials. The two Poisson spike trains used to construct this histogram have

firing rate 11.11 spikes/sec and 21.08 spikes/sec, which are identical to the sp5 and

sp10 respectively in the experimental dataset (see section 4.2, table 4.3). The Main

feature of this distribution is bimodal, at around 6.72 and 6.85. The overall shape is

not heavily skew. The tails on both sides are comparably converging, which makes

the estimated MIF values of the simulated Poisson spike trains well bounded. This is

a good property to calibrate the estimated MIF values of the real experimental spike

trains. The 95% percentile of this distribution is marked by the vertical red line at 6.952

bits which is used to construct the baseline. The baseline distinguishes that the MIF

values beneath this line is highly likely to indicate the independence of the two spike

trains, while the MIF values above it is a evidence of the dependence and interaction.

5.3 Mutual Information Function Analysis on Simu-

lated Network

The MIF using k-th nearest estimation approach is presented in section 5.2. In this

section, the evaluation of this approach is conducted by applying it to simulated neu-

ronal network spike trains from 100 spiking neuron network using a point-cortical

model (see section 2.7 and section 4.4.2). The centre-surrounded pattern adopted in

this simulated network is taken into account by considering the configurations that the

postsynaptic neuron is fixed, and the distances between the presynaptic and postsy-

naptic neuron are gradually increased. The MIF of the presynaptic and postsynaptic

neurons are investigated in each pair. As the relative distance between the presynaptic

and postsynaptica neurons increase, the dependency between the two spike trains is

likely dropping gradually, which is implied by the estimated MIF values and the areas

on which the MIF values depart from the baseline.

Figure 5.3 shows the result for MIF analysis of presynaptic and postsynaptic neurons
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which are spatially close to each other. The postsynaptic neuron is at position 55 while

the presynaptic neuron is at 45 (see figure 4.13) which has excitatory effect directly

onto neuron 55. The estimated MI at each lag u is plotted in figure 5.3. In each plot,

the dashed black line is the baseline indicating there is not any dependency between

the two spike trains under investigation (see section 5.2). This baseline is calculated

by 200 trials of applying the MIF to two Poisson spike trains (see section 4.4.1) whose

firing rates are identical to the two real spike trains. Plots 5.3 (a) and 5.3 (b) show

similar areas [0, 20] ms where the estimated MI values significantly depart from the

baseline. MI values over lags close to 0ms are significant, which agrees with the close

position of these two neurons. The peak of the estimated MIF occurs near u = 6 ms

in both plots. One interpretation is that postsynaptic neuron 55 could be predicted by

looking at the state of presynaptic neuron 45 from 0 to 22 ms preceding to neuron

55. The best prediction could be made by investigating the state of neuron 45 at 6 ms

before neuron 55. Considering the central-surrounded pattern and the direct excitatory

connectivity between neurons, the strong MI values over short duration are consistent

with this expectation. The two plots use different numbers k of nearest points. The

top panel (a) is estimated using k = 5 and the bottom panel (b) is estimated using

k = 10. It is noticed that the local maximals and minimals in each plot are sim-

ilar. However, the estimated curve in the bottom panel seems comparably smoother

because of more nearest points used.

Figure 5.4 shows the result for MIF analysis of presynaptic and postsynaptic neurons

with a bigger spatial separation. Neuron 55 remains the postsynaptic neuron and presy-

naptic neuron is at 35 (see figure 4.13). According to the center-surrounded pattern,

the excitatory connectivity between neuron 35 and 55 still exists. In this case, the inter-

vals of lag u indicating significant dependencies lay on [0, 12] in plot (a) and [0, 13]

in plot (b), which are shorter compared with figure 5.3. The significant MIF values

imply that inspecting the state of the presynaptic neuron 35 could be useful to reduce

the uncertainty of the state of postsynaptic neuron 55 about 0 to 12ms afterwards. The

shorter duration of significant values are reasonable due to the longer distance between

the two neurons. It is worth noticing that in this case, the values below the baseline in

plot (b) behave more consistently while the corresponding part in plot (a) fluctuates a
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bit more randomly.

Figure 5.5 is the results for another pair of neurons with longer distance and inhibitory

connectivity between them. In this case, the presynaptic neuron 25 has an inhibitory

effect on the postsynaptic neuron 55 based on the centre-surrounded pattern of the in-

hibitory connectivity (see figure 4.13 (c)). The intervals where MIF values are larger

than the baseline are divided in two sections, in which the MIF values are just above

the baseline value. The dominant features in both plots (a) and (b) are a double-peak

shape above the baseline. Each peak is of short duration. In addition to that the MIF

values are just above the baseline, It may suggest weak inhibitory effect from neuron

25 onto neuron 55.

Moving the presynaptic neuron by 2 units further provides the pair of neurons 5 and

55. Considering the relative positions and the center-surrounded patterns described in

section 4.4.2, there are not any excitatory or inhibitory connectivities between these

two neurons. The analysis results are showed in figure 5.6. Almost all the estimated

MIF values are below the baseline which indicating there are not any dependencies

found. The values of the MIF at all lags behave randomly in both plot 5.6 (a) and 5.6

(b). There are discrete time values where the MIF values are higher than baseline in

plot (a). However, their appearances are most likely by chance than indicating any

real dependencies. The results suggest that there are unlikely to be any dependencies

between spike trains from neuron 5 and from neuron 55. The uncertainty of one signal

can not be reduced by investigating the other signal by any means.

In this section, the proposed MIF are evaluated by applying it to the simulated network.

The results show the MIF is capable of measuring the interactions and dependencies

between simulated spike trains using point-cortical spiking neuron model. In the next

section, the approach will be further evaluated by applying it to the MEA spike trains.
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Figure 5.3: The results for MI analysis using the proposed methods (k-th nearest es-
timate). The top panel (a) is the estimated MI as a function I(u) against time lag u,
k = 5. The bottom panel (b) shows estimated MI of the same signal pair with k = 10
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Figure 5.4: The results for MI analysis using the proposed methods (k-th nearest es-
timate). The top panel (a) is the estimated MI as a function I(u) against time lag u,
k = 5. The bottom panel (b) shows estimated MI of the same signal pair with k = 10
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Figure 5.5: The results for MI analysis using the proposed methods (k-th nearest es-
timate). The top panel (a) is the estimated MI as a function I(u) against time lag u,
k = 5. The bottom panel (b) shows estimated MI of the same signal pair with k = 10
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Figure 5.6: The results for MI analysis using the proposed methods (k-th nearest es-
timate). The top panel (a) is the estimated MI as a function I(u) against time lag u,
k = 5. The bottom panel (b) shows estimated MI of the same signal pair with k = 10
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5.4 Mutual Information Function Analysis on Experi-

mental Data

The MIF using k-th nearest estimation approach is applied to simulated neuronal net-

work spike trains in section 5.3. The results for the simulated data successfully reveal

the connectivities between presynaptic and postsynaptic neurons. In this section, the

evaluation of this approach will be continued by using it to study dependencies be-

tween the MEA single unit spike trains (see section 4.2). Two detailed examples will

be illustrated first, followed by a systematic investigation of the experimental dataset

using MIF. Comparison between MIF and second- and third- order approaches will be

conducted.

Figure 5.7 shows the estimated MIF I(u) between sp1 and sp10 (see table 4.2). The

spike train sp1 is from left CA3 subregion with firing rate 17.47spikes/s. The spike

train sp10 is from left CA1 subregion with firing rate 21.08spikes/s. In each plot, the

dashed black line is the baseline indicating there is not any dependency between the

two spike trains under investigation. This baseline is calculated in the same way as

described in section 5.2. Plots 5.7 (a) and 5.7 (b) both show strong dependency over

the lag u interval [0, 15]. The peak of the estimated MIF occurs around u = 5 ms

in both plots. Some secondary features at large lag values can be identified in both

plots. The estimated MIF values in the some intervals between [30, 45] also depart

from the baseline in both plots. It could be argued that there is a causal relationship

between sp1 and sp10 with the former providing information to predict the state of the

latter [0, 15] ms afterwards. It is consistent with the ”CA3 - CA1” information flow

pattern in hippocampus. The two plots use different numbers k of nearest points. The

top panel (a) is estimated using k = 5 and the bottom panel (b) is estimated using

k = 10. It is noticed that the estimated MIF is sensitive to the choice of k value in

this case as the shapes of the two MIF curve are slightly different.

Figure 5.8 shows the result for the pair of sp5 and sp10. The spike train sp5 is from
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left CA3 subregion with firing rate 11.11 spikes/sec. The shape of the estimated MIF

in this case is similar to figure 5.7. The interval of significant MIF values is [0, 10] ms

which is shorter duration compared with figure 5.7. Plots (a) and (b) both show strong

dependency over the lag u interval [0, 10] ms. Clear secondary features on the lag u

interval [33, 40] ms and [43, 46] ms could be found in plot (a). The strong dependen-

cies in this case could also be explained by the ”CA3 - CA1” information mechanism.

In the plot (b), the second feature occurs on a continuous interval about [36, 44] ms,

which is slightly different to plot (a).

Figure 5.9 to 5.10 shows some MIF analysis results for the ”CA3 - CA1” pair spike

trains across this experimental data. Almost all the figures show a significant area on

short delays about [0, 10] ms. The maximum of the estimated MIF value are mostly

located at u < 5 ms, which are consistent with the results from TOF analysis. This

may suggest that the spike trains from CA3 subregion is highly likely to carry the in-

formation which is needed to predict the state of spiking neuron in CA1 subregion a

few milliseconds afterwards. It can be used as the proof of dependence between the

two spike trains. Some of the pairs have secondary feature found around [35, 45] ms

(for example, figure 5.9 (a) and (b)) or [20, 25] ms (for example, figure 5.10 (a)),

which indicates that there may be another interaction pattern existing in such ”CA3 -

CA1” pairs.

It is worthy of noticing that the estimated MIF shows a section of constant values in

some cases, for example, the flat section during [8, 31] ms in figure 5.9 (c) and the

flat section during [9, 26] ms in figure 5.9 (e). These flat sections may result from the

imbalance of firing times in the spike trains taken into account. According to figure

5.1 and equation (5.2), due to the imbalance of the spiking times of the spike trains,

there is possibility that for several continuous lags u, the number of spikes c(n) of Nh

located in the corresponding ISI ofNl remain the same, thus, the local firing rate, r(n),

for each ISI, ∆t(n), remain unchanged (see figure 5.1). That is to say the preprocess-

ing proposed in section 5.2 may generate two identical series ∆t(n) and c(n) for these

u, which leads to the constant values of the estimated MIF in those sections.
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Figure 5.7: The results for MI analysis using the proposed methods (k-th nearest es-
timate). The top panel (a) is the estimated MI as a function I(u) against time lag u,
k = 5. The bottom panel (b) shows estimated MI of the same signal pair with k = 10
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(a) MI in bits, k = 5.
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Figure 5.8: The results for MI analysis using the proposed methods (k-th nearest es-
timate). The top panel (a) is the estimated MI as a function I(u) against time lag u,
k = 5. The bottom panel (b) shows estimated MI of the same signal pair with k = 10
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(c) MIF analysis using sp3 and sp8
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0 5 10 15 20 25 30 35 40 45 50

Lag u (ms)

5.95

6

6.05

6.1

6.15

6.2

6.25

6.3

6.35

6.4

M
I (

bi
ts

)

MIF Analysis using sp5 and sp10, k=5

(f) MIF analysis using sp5 and sp10

Figure 5.9: MIF estimates of the hippocampal data (see section 4.2).
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(a) MIF analysis using sp6 and sp8
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(b) MIF analysis using sp6 and sp10
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(c) MIF analysis using sp7 and sp8
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(d) MIF analysis using sp7 and sp10

Figure 5.10: MIF estimates of the hippocampal data (see section 4.2).
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Figure 5.11 shows the comparison between the estimated MIF values and second order

cumulant density (see section 3.2) analyses for the ”CA3 - CA1” pair sp1 and sp8 (see

tables 4.2 and 4.3)on the same lag range [0, 50] ms. In this case, In addition to the

short latency interval [0, 12] ms, the second order cumulant density also captures

another interval [35, 45] ms with significant cumulant density values above the upper

confidence limit. Figure 5.11 (b) shows the estimated MIF over the same range of lags.

The double-peak feature is also captured, which is consistent with the second order

cumulant density. The long latency area indicating dependency in plot (b) is wider

compared with plot (a). The result may suggest that there are linear dependencies

between sp1 and sp8 in the both short ([0, 12] ms) and long latencies([35, 45] ms)

intervals. Nonlinear dependency may also exist in the long latency interval since the

secondary peak in plot (b) is wider (up to u = 50 ms) than in plot (a).
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Figure 5.11: The comparison of MIF and second order cumulant density of sp1 and
sp8. The top panel (a) shows the estimated second order cumulant density. The bottom
panel (b) is the estimated MI as a function I(u) against time lag u, k = 3 of the same
signals. Both plots show two areas of features: around [0, 12] ms and [35, 45] ms.
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(a) Estimated second order cumulant density of sp6 and sp8.
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(b) Estimated MIF of sp6 and sp8 .

Figure 5.12: The comparison of MIF and second order cumulant density of sp6 and
sp8. The top panel (a) shows the estimated second order cumulant density, which has
only short lags with [0, 5] ms indicating dependency between the spike trains. The
bottom panel (b) is the estimated MI as a function I(u) against time lag u, k = 3 of the
same signals, which shows two areas of features: around [0, 6] ms and [20, 26] ms.

Figure 5.12 shows another example of comparison between second order measurement

and MIF. In the case, sp6 and sp8 are taken into account (see tables 4.2 and 4.3). The
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estimated second order cumulant density shows a strong peak in the interval [0, 5]ms,

apart from that, in the rest range of lags, the cumulant density is almost bounded

with the confidence limits. In contrast, the MIF value reveals a secondary feature on

u = [21, 27] ms in addition to the similar short latency interval [0, 6] ms. Since

the second significant area is absent in the cumulant density. This may suggest that

there is nonlinear dependency between sp6 and sp8 corresponding to the interval u =

[21, 27] ms.

5.5 Conclusion

In this chapter, a novel approach using ISI and local firing rate to estimate the MI be-

tween two series is presented. This approach transfers the spiking times series with

different length to two series with the same length and keeps the alignment of the two

corresponding spike trains. Afterwards, the k-th nearest estimation is applied to these

series to estimate MI at each lag u. The proposed approach are applied to the simulated

neuronal network spike trains and the experimental spike trains. In the simulation case,

dependencies which could imply the excitatory or inhibitory connections are revealed

by the significant MIF values. In the experimental data case, strong dependencies

consistent with the ”CA3 - CA1” interaction pattern found in the subregions of hip-

pocampus are detected using the proposed MIF measurement. In addition to widely

found short latency interval which is around [0, 10]ms, some spike trains also shown a

second area of MIF values located at longer latency intervals, for example, [20, 25]ms

and [35, 50]ms, above the baseline. Comparisons between estimated second order cu-

mulant density and MIF may suggest that there are nonlinear dependencies between

signals. Hence, MIF, along with UTO analysis framework and second order measure-

ments provides a complementary tool to have insight into the dependent relationships

between spike train signals.
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6.1 General Summary

This project carries out research on applying signal processing approaches to neural

spike train data. Interaction detection and dependencies between neurons are the focus

of this project. The Unified framework of Third Order time and frequency Domain

analysis (UTO) and Mutual Information Function (MIF) are proposed and applied to

artificial and experimental spike train signals. The results obtained from the applica-

tions show that they are applicable and practical techniques.

This chapter will first generally summarise this project, and then make summaries and

conclusions chapter by chapter in more detail. Limitations and future work will be

discussed at last.

This thesis presents two approaches using spike train signals to detect the interactions

and dependencies at the neuronal level. The Unified framework of Third Order time

and frequency domain analysis (UTO) proves a reliable tool to quantify third order

( non-linear ) interactions and dependencies. This framework takes into account the

flexibility by providing analysis access starting from either time domain or frequency

domain. It also has well-established procedures to estimate confidence intervals, which

is useful in hypothesis testing in the neuronal analysis application. UTO analysis was
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applied to artificial generated data, simulated neuronal network data adopting central-

surrounded feature and experimental recordings including 30 channels of spike trains

from rat hippocampus.

Generalising Mutual Information (MI) to study the dependencies between spike trains

provides a tool to reveal general dependencies beyond the linearity. Problems in esti-

mating MI between spike trains are two fold. For one side, if the spiking times data is

considered, the two series may be of different length and the alignment of the two sig-

nals is lost; on the other hand, if the actual “0 1” processes are used, the probabilistic

estimation suffers from the requirement of large amounts of data. The proposed MIF

using k-th nearest estimator overcomes these problem by transferring the two series of

spiking times to an interspike interval (ISI) series and a local firing rate series. This

data processing method combined with the k-th nearest probability density estimation

approach provides a novel tool to view the dependency in a wider sense. The analyses

using the proposed MIF to study simulated neuronal network signals and MEA single

unit signals prove that MIF could facilitate the study of dependency in simultaneously

recorded signals.

The novel contributions in this project come from unifying the third order measures

in time domain and frequency domain, implementing a mutual information estima-

tor and using these techniques to explore the dependencies in spike trains beyond the

widely used linear measurements scope. Adopting third order analysis demonstrates

a triplet interaction pattern existing between some neurons. Despite separated time

and frequency domain methods, the unified framework provides flexible access and

computational efficiency without calculating all lower order terms. The Mutual in-

formation is based on probability metrics and hence it measures the dependencies in

universal sense without replying on the the assumption of linearity. Applying UTO

analysis and MIF can provide more insight beyond the linear relationships between

signals.
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6.2 Chapter Summaries and Conclusions

Chapter 2 adopts a top-down view to describe the biological background of the ner-

vous system. A brief description of the central nervous system and brain is presented.

Since this project focuses on the cell level, neurons as the basic cell in the nervous sys-

tem are described in detail. This chapter also reviews signalling properties in neurons

and in synapses. Action potentials, also known as spikes, as the prototype of neuronal

signalling are also reviewed. Since simulated neuronal networks play an important

role in the verification of the techniques in this project, some spiking neuron models

are presented in detail. Modelling of spiking neuronal network provides surrogate data

which are useful in the evaluation of the proposed techniques. The experimental data

used in this project are a 30 channel spike trains sorted from a Multielectrode Array

(MEA) recording. Therefore, MEA techniques and the spike sorting procedure are

discussed in this chapter as well.

Chapter 3 reviews several signal processing techniques which have applications in de-

pendence analysis. The review of the dependence between spike trains starts with the

most widely used correlation function in time domain. It is followed by a description

of the disjoint Fourier Transform, the estimation of spectra and the computation of

coherence. The final parts of this chapter review higher order statistics, information

theory and mutual information used in signal processing area. The review in this chap-

ter lays the foundation of the implementation of the proposed novel techniques in this

thesis.

Chapter 4 presents the Unified Framework of Third Order Time and Frequency Do-

main Analysis (UTO) and the results for the application of this framework. The chap-

ter begins with a brief description of the experimental data and the experiment which

produces the spike train signals used in this project. It is followed by a detailed de-

scription of UTO analysis with theoretical core equations and estimation procedures.

It is followed by the results for UTO analysis of simple artificial data, surrogate data

generated by a simulated neuronal network and the experimental data, which shows



176 Chapter 6. Conclusions and Future Work

successful applications. In each application, the proposed framework detects the de-

pendencies as expected. In the simulated neuronal network case, the framework yields

estimates of the interactions between triplet neurons, which are consistent with the

centre-surrounded pattern adopted in this network. In the experimental signal case,

UTO analysis reveals interactions with short time lags and illustrates the typical inter-

actions between CA3 neurons and CA1 neurons. The results also suggest that there are

two patterns of third order interactions in hippocampus. One is that two input spikes

with very short time difference from subregion CA3 facilitates the firing probability

of neurons in CA1 after 5 to 10 ms . The other is that a 35 to 45 ms long time dif-

ference between the two input spikes from CA3 also increases the firing probability of

neurons in CA1 subregion. These evaluations and findings prove the applicability of

the proposed framework.

Chapter 5 presents the Mutual Information Function (MIF) developed in this project

and reports the results for MIF analysis. The definition of the MIF and the correspond-

ing estimating procedure are presented first, followed by the analysis results organised

in the same way as in Chapter 4. In the simulated neuronal network case, the proposed

MIF detects the dependencies which represent the excitatory or inhibitory connectivi-

ties between neurons. In the experimental MEA single unit spike train case, the MIF

method indicates the dependencies which could be explained by the ”CA3 - CA1” in-

formation flow pattern in hippocampus. In majority of the ”CA3 - CA1” pairs, MIF

shows significant values departing from the baseline on short delay range of [0, 10]ms.

For some pairs, there are secondary features found in the interval [35, 45] ms. This

may suggest that in hippocampus, the state of a spiking neuron in CA3 is useful to

predicate the state of a spiking neuron in CA1.

6.3 Future Work

The goal of the study of neuronal dependencies is to deepen the understanding of the

interaction patterns and dependencies between neurons. The applicability of the pro-

posed third order framework and mutual information function is proved by the results
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for surrogate data and MEA spike train signals. The usage of these techniques paves

the way for a range of new points of research for exploration. The findings obtained by

applying the proposed techniques are promising, which could potentially be the foun-

dations for further development of more sophisticated and more robust estimators. The

following are the suggestions for the future work.

1. One possible way in near future is to extend the Unified Framework of Third Order

Time and Frequency Domain analysis (UTO) to suit the hybrid data (Halliday et al.,

1995) which contains both point processes, for example spike trains, and continuous

time series, for example EEG. The ability of handling hybrid data will enhance the

feasibility of the framework since a wide range of neuronal data are formed by simul-

taneously recorded spike trains and time series, for example, tremor, LFP signals and

spike trains. A framework capable of processing hybrid data will allow the exploration

of the third order dependencies in such data.

2. According to the results obtained in this thesis, further study could potentially fo-

cus on the conditional or partial measurement which takes into account that neurons

have background inputs as well as interactions with each other. Although the third

order framework takes up to 3 neurons, it is not able to rule out the possibility that the

dependency detected results from common background inputs rather than interactions

among the three neurons. In the second order case, the partial measurements, for ex-

ample, partial spectral and partial coherence are well established and provide starting

point to carry out higher order partial measures estimate (Halliday et al., 1995), (Sun

et al., 2004).

3. The estimate of mutual information always relies on the probability estimation since

it is a probability based metric. Due to the special binary property of spike trains, es-

timation of the joint probability density is always problematic. Further research could

potentially focus on the reliable estimation of probability densities. This thesis pro-

vides a way to transfer spike trains to some continuous series. Therefore, sophisticated

estimators, such as kernel based methods and some parametric method (Hlaváčková-
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Schindler et al., 2007), (Shlens et al., 2007) could be potentially considered in further

research.

4. Mutual information also suffers from the problem of common inputs. Possible im-

provement might rely on the study of more sophisticated information theory related

metric. Transfer entropy is reported to have the advantage to overcome the common

inputs dilemma (Schreiber, 2000), which could potentially be another approach.

5. Higher order mutual information measurement is also a promising field worthy of

paying attention to. The definition is intuitively direct based how the mutual informa-

tion is defined in usually encountered two-variable case. However, as the dimension

increases, the joint probability is more difficult to estimate. The data required to con-

duct a reliable estimation increase dramatically, as well as the computational cost.
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