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Abstract

The development of control systems especially for autonomous systems

leads to more complex designs and analysis. Hence, the analysis of these

systems will prone to errors. Such errors may lead to disastrous conse-

quences which may cost human life. For some applications such as un-

manned aerial vehicles (UAV) which are safety-critical systems, the control

system required to be robust, stable and safe to perform the given tasks.

Therefore, control systems need to be tested and verified to assure their cor-

rectness and robustness to guarantee acceptable performance. This thesis

is concerned with using formal methods to develop new verification schemes

for UAVs control systems. Until now, control theories have been proved

and verified manually by control scientists and engineers. Some compu-

tations of multivariable control systems, which include numerical bounds

on modelling errors and state constraints, are difficult to check and verify

manually by an engineer due to their complexity. In these cases errors

made by manual derivation can be dangerous for safe especially for safety-

critical system such as unmanned aerial vehicles. To mitigate these issues,

this thesis presents examples of formal proofs of theoretical control theo-

rems. These represent the first steps towards verifying control theories by

software using formal methods by interactive theorem proving. The thesis

presents a new nonlinear controller for unmanned aerial vehicles by jointly

addressing modelling uncertainty and external disturbances. Moreover, a

new verification framework is presented for verifying the control systems

of UAVs. The verification framework is applied to the proposed control

scheme using interactive and automated theorem proving techniques. This

is promising and may encourage the use of such methods in control system

verification of safety-critical systems in general. The symbolic methods are

generic and potentially generalise to verification of a variety of industrial

control systems, where performance loss is damaging and therefore analysis

is important to be carried out formally.
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Chapter 1

Introduction

1.1 Motivation

Control theory is an interdisciplinary domain dedicated to analysing the be-

haviour of dynamical systems with inputs and outputs. The correctness of con-

troller design, implementation and system stability criteria are very important

aspects in control theory especially in applications that human safety is required

as in medical, aeronautical and aerospace systems which require advanced safety-

critical control systems. Many modern control systems, such as adaptive control,

rely on stability criteria as the major justifications for their relevance to the ap-

plications of safety-critical control systems [22].

The purpose of control design is to produce feedback, feedforward and adap-

tive controllers to provide robust performance in practical applications. In the

aerospace field, control law for aircraft normally combines control engineering

knowledge with tests of stability and smoothness of control responses under dis-

turbances. This often takes the form of an iterative process of remodelling aerody-

namics in wind tunnels and ultimately in flight tests. Given a particular open-loop

dynamical model, control engineering relies on the mathematical theory that is

implemented in computations of flight controllers onboard. When the flight en-

velop is defined, it introduces numerical values which need to be carried through

derivations and proofs of stability and acceptable handling within the flight enve-

lope. This process is normally conducted by engineers or control scientists using

1



1. Introduction

manual derivations. Manual derivation, especially for complex systems, may lead

to incorrect control design and analysis even if the design has been manually

verified by several expert engineers. However, in some aerospace areas such as

unmanned aerial vehicles (UAVs), control performance needs to be guaranteed

due to safety, economic or productivity requirements. These controllers are re-

quired to be officially certified that they conform to standards. The analysis

of controllers for certification has traditionally relied on symbolic computation.

Such symbolic computation is not only algebraic but also uses the concepts of

signal spaces and nonlinear operators.

In order to officially certifying a designed controller, manual derivations are

not an efficient way to ensure the correctness and safety of control systems and

additional verification step need to be added. This is due to the human error

associated with the manual derivation and verification where such error is almost

possible which may lead to catastrophic consequences. To overcome this prob-

lem, in this thesis, manual derivations are verified by theorem proving methods,

which are computer software that use mathematical symbols with the aid of log-

ical techniques. The use of these methods will ensure the correctness and safety

of the designed control systems where the errors produce from manual derivation

can be detected at the early stage during the design. If these methods are going

to be applied in the context of control theory and control systems verification,

then they need to handle nonlinear causal operators and prove properties of their

interconnections into a feedback system as well. The procedures presented in this

thesis go beyond algebraic computation and use higher-order logic (HOL) [90], in-

cluding handling of functionals, operators, concepts of convergence, stability and

levels of smoothness measures. HOL is needed because it includes quantifications

and type theory such as real and complex numbers that make the implementation

of control properties applicable. An example of such properties is the using of

high-order functions to define nonlinear operators. With the advance of auto-

mated reasoning, such formal analysis can now enter the possibilities of control

system design beside traditional methods of manual derivations.

2



1. Introduction

1.2 Control System Design for UAVs

There is an increasing requirement for the small multi-rotor unmanned drones,

under 20kg and flying under 400ft, to be safely operated over congested, urban ar-

eas for police and security work, building inspections, fire fighting and emergency

needs, etc. Drones would often carry variable payloads (cameras, measurement

devices, robotic arms for picking-up objects, etc.) while they could be exposed to

gusts of winds or could collide with or be attacked by other craft or birds. Other

causes of instability include a temporary deterioration of actuator or processor

functionality. Under such conditions, a drone’s dynamical state may be easily

pushed into unstable regions if controlled by off-the-shelf axis-by-axis PD/PID

controllers, such as in [23, 27]. It is therefore imperative that when these drones

operate semi-autonomously by an autopilot, they would need software that mon-

itors their operational conditions and takes action if the limits of the controller

performance are approached. Ultimately, semi-autonomous drones would need to

decide for themselves, or they should advise the remote pilot, when to seek safety

and to possibly modify or cancel flight/mission objectives. There have been many

attempts to design competitive controllers of UAV but they had limited abilities

to cope well with the existence of uncertainty and disturbances. Therefore, there

is still a demand for such controllers. In this thesis, a novel robust nonlinear

controller of a quadcopter UAV is designed and presented. The controller is then

verified based on a proposed verification framework presented in this thesis using

theorem proving techniques to ensure design correctness and stability validation.

1.3 Formal Proofs of Control Theories by soft-

ware

Control theory can establish requirements of systems which need to be valid with

all signals within the system and hence cannot be proven by simulation. One

of the most basic such requirement is the stability of a control subsystem or the

overall system. Other examples are statements on robust control performance in

the face of dynamical uncertainties and disturbances in sensing and actuation.

3



1. Introduction

Until now these theories were developed and their correctness was checked by

control scientist manually using their mathematical knowledge. With the emer-

gence of formal methods, there is now the possibility to derive and prove robust

control theory by symbolic computation. There is a demand for this approach

from industry for the verification of practical control systems with concrete nu-

merical values where the applicability of a control theorem is specialised to an

application with given numerical boundaries of parameter variations.

In practice, both the plant, the system to be controlled such as a UAV, and

the feedback controller suffers from the variability of dynamics and disturbances.

For instance, the Small-gain theorem [70] can be used to assess feedback stability

for plants with variable dynamics, for which norm bounds can be measured in

experiments. If for all plant and controller variations the product of the norm of

the plant and the controller dynamical operators is less than 1, then the feedback

loop is robustly stable. As no theory is yet widely known for automating the

proofs of control systems, this thesis intends to provide an initial step to this

challenge and gives an illustration on a formal proof of the Small-gain theorem

using interactive theorem proving (ITP). As the mathematics of operators over

signal spaces goes beyond algebra and first-order logic (FOL), the formal proofs

considered rely on higher-order logic (HOL).

1.4 Control Systems Verification

Given the performance specifications for an aircraft to be built, where specifica-

tions are the mathematical representation of the desired requirements, a control

system is designed [44]. Then, code and electronics are developed and chosen.

The verification approach taken in this thesis fits into one of the three stages

of a formally verifiable controller designs as outlined in Fig. 1.1, where robust

control theory verification is followed by verification of the software used for im-

plementation. Stage 1 is a precise mathematical definition of the plant, sensor

and actuator dynamical variations and performance requirements, against which

the implemented control system is to be verified. Stage 2 consists of computer-

aided design (CAD) of a controller, which should be mathematically proven to

meet the specifications requirements, the primary topic of this thesis. Stage 3

4



1. Introduction

is the implementation of the mathematical model of the controller in computer

code, while not introducing bugs or numerical errors serious enough to make

the specifications violated. Finally, the code should be free from errors due to

code implementations, which is ensured by code verification. Realtime code-

verification is systematically checking the correctness of the encoded controller

such as in [50, 67] and [125]. The scope of this thesis is formal verification al-

gorithms for UAVs to check the correctness of control design (CAD) in Stage 2

before implementation in real-time code.

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Formal definitions 

Mathematical models of assumptions on physical dynamics, 

disturbance and control performance requirements 

Proven mathematical model of control 

Proof of model correctness for the variable physical 

dynamics and disturbance signals involved 

Control code correctness  

Check code correctness relative to mathematical model of 

the controller 

 

Formally verified control system 

 

Control design 
(CAD) 

Coding of 
processor(s) 

Code 
verification 

Stage 1 

Stage 2 

Stage 3 

Figure 1.1: The three principle stages which lead to practical control system
verification.

Often simulations are used to see whether the design is acceptable for the

performance required. Simulations, however, may not uncover all signal combi-

nations, which cause a failure in the control process. By their definitions, robust
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1. Introduction

CAD methods that rely on control theory will achieve performance requirements.

Then the remaining problem is to prove that encoding does not affect the control

performance due to computational errors in Stage 3. In implementations of avi-

ation software, verification is often followed by redundancy-based safety analysis

for critical sensors and actuators using voting principles, the effect of which lies

outside the scope of this thesis.

The new formal verification methods proposed in this thesis need to precede

software verification of controller code as they verify the correctness of control

algorithms, which are implemented in software. This thesis gives an overview of

past use of formal methods to verify the correctness of control system implemen-

tations to place this work in context. Efforts made to formally verify that the

code used in practice correctly implements the control algorithms intended have

been also reviewed. Methods of proving mathematical theorems by computers

have been also reviewed. None of these past works address the verification of the

control theory and algorithms by formal methods in the form of symbolic com-

putation to prove control theory on which the control algorithms are based. For

reliability and safety of practical control systems, both algorithmic verification

(to be introduced in this thesis for the first time) and verification of controller

implementation are needed (the latter pursued by many researchers in the past).

This will provide higher standards of certification in the future.

1.5 Verification Framework of UAVs

A new functional verification framework of control system of UAVs using formal

methods is developed and presented in Chapter 7 of this thesis. The aim of

this framework is to demonstrate how formal methods can uncover inaccuracies

in the mathematical arguments of pen and paper-based proofs and can provide

the verification of the theory of robust control. The framework consists of using

theorem proving methods represented by an ITP to prove the mathematically

designed control system of the aircraft satisfies robustness requirements to ensure

safe performance under varying environmental conditions. It also includes the use

of automated theorem proving (ATP) for onboard real-time monitoring of control

system stability of the aircraft during the flight to detect when its controller

6



1. Introduction

reaches its flight envelop limits due to severe weather conditions. Such a detection

procedure can be used to advise the remote pilot or an onboard intelligent agent

to decide on alterations of the planned flight path. The proposed verification

framework is applied to the control scheme of a generic quadcopter which is

presented in details in Chapter 6.

1.6 Aims and Objectives of the Thesis

The main aim of the research conducted is to employ formal verification methods

for developing a new verification framework to verify control systems especially

for safety-critical applications such as UAVs. The first objective is to illustrate

the possibility of proving control theories using formal methods. This is achieved

by giving an example of formalising and proving a well-known control theorem

using interactive theorem proving software. This will allow us to verify the control

system at the design stage. The next objective is to design a robust nonlinear

controller of UAVs, which take into account modelling uncertainty and external

disturbances. This is followed by verifying the stability of this controller and then

proving the overall controller design using formal methods. Another objective is

to develop a verification framework which outlines the process of control system

verification of UAVs. The verification process starts with checking the correctness

of mathematical derivations of the designed control system and testing its stability

at the design stage. Following this verification can go beyond the design stage to

onboard monitoring of stability conditions for the UAV system during a flight.

This aims to determine when the aircraft violated its flight envelop due to winds

or malfunction in its electronics/mechanics that the autopilot can detect and

perform an action such as emergency landing.

1.7 Contributions of the Thesis

Contributions of the thesis are summarised as follow:

Formal proof of the Small-gain theorem by formal methods: As a first

attempt to prove a control theory by a computer, one of the most funda-
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mental and general results of nonlinear feedback systems, the ”Small-gain

theorem” has been chosen. The theorem is formalised and proven using

an interactive theorem proving tool. This is a fundamental theoretical re-

sult for many practical applications and plays an important role in robust

control theory. Through this first example may be of limited practical ap-

plicability directly, one of the aims in this thesis is to describe the existing

difficulties in the technical execution of formal proofs needed for control

theory in the future using formal methods techniques.

Nonlinear Attitude Control Design and Verification for a Quadcopter:

A nonlinear attitude control law is designed and simulated for a quadcopter

UAV using the a dynamic inversion control technique. Controller stability

is verified using ATP: MetiTarski.

Nonlinear Attitude Control Design and Verification for a Helicopter:

A nonlinear attitude control law is designed and simulated for a small scale

helicopter UAV using dynamic inversion control technique. An invariant set

is defined with taking into account the system constraints. The controller

stability is verified using MetiTarski. In addition, the system’s variables are

tested against the defined invariant set for further robustness and stability

using the MetiTarski prover.

Multi-rotor UAV controller design and simulation: A novel robust non-

linear controller of a generic multi-rotor UAV is designed based on a dy-

namic inversion control technique which considers modelling uncertainty

and external disturbances. The control scheme consists of attitude and

position control.

A verification framework for UAVs: A new verification framework is devel-

oped for formally verifying UAVs control systems. The framework uses

interactive theorem proving to verify the mathematical derivation of the

controller at the design stage and using ATP for onboard monitoring of

control system stability during the flight.

Multi-rotor UAV controller verification using the proposed framework:

The designed multi-rotor UAV controller is verified using the proposed

8
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framework. An interactive theorem prover is used to verify the design

of a nonlinear quadcopter controller under nominal environmental condi-

tions and an automated theorem prover is used for onboard stability and

performance monitoring for excessive conditions, including some sensor or

actuator failures.

1.8 Publications During Work Undertaken

During the undertaking of the work presented within this thesis, key components

have been presented at international conferences and in internationally leading

journals.

Refereed journal publications:

� Jasim, O. A. and Veres, S. M. (2020). A Robust Controller for Multi

Rotor UAVs, In Journal of Aerospace Science and Technology, 22 June

2020, Elsevier.

� Jasim, O. A. and Veres, S. M. (2020). Verification Framework for Control

System Functionality of Unmanned Aerial Vehicles, In Journal of Auto-

mated Reasoning, Springer, (under view).

Refereed conference publications:

� Jasim, O. A. and Veres, S. M. (2017). Towards Formal Proofs of Feedback

Control Theory, In Proceeding of 21st International Conference on System

Theory, Control and Computing (ICSTCC), Sinaia, Romania, October 19-

21 ,2017. IEEE.

� Jasim, O. A. and Veres, S. M. (2018). Formal Verification of Quadcopter

Flight Envelop Using Theorem Prover. In 2018 IEEE Conference on Con-

trol Technology and Applications (CCTA) (pp. 1502-1507). IEEE.

� Jasim, O. A. and Veres, S. M. (2019). Nonlinear Attitude Control Design

and Verification for a Safe Flight of a Small-Scale Unmanned Helicopter,

In Proceeding of 6th International Conference on Control, Decision and

Information Technologies (CoDIT). IEEE.
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The first conference paper consists of the content of Chapter 3. The second

conference paper consists of the content of Chapter 4. The content of Chapter

5 comes from the third conference paper. The contents of Chapter 6 is the first

journal paper which is submitted. The contents of Chapter 7 is the second journal

paper which is also submitted.

1.9 Thesis Structure

The thesis is organized into the following chapters:

Chapter 1 : introduces the motivation of the research conducted and the pro-

posed solutions to tackle the challenges.

Chapter 2 : presents a brief overview and general background of the topics

related to the Small-gain theorem, UAVs dynamics and control and formal

methods. The literature review of related works is presented.

Chapter 3 : presents the formal proof of the Small-gain theorem using formal

methods represented by an interactive theorem proving.

Chapter 4 : presents the design and simulation of a nonlinear attitude con-

troller of a quadcopter UAV. The controller stability is verified using formal

methods represented by an ATP.

Chapter 5 : presents the design and simulation of a nonlinear attitude controller

of a small-scale helicopter UAV. The controller is verified using formal meth-

ods via ATP. The verification includes checking if the produced torques are

within the required limits, the system is stable and all system states are

varying and staying within the defined invariant control-enabled-set.

Chapter 6 : presents the design and simulation of a robust nonlinear controller

of multi-rotor UAVs. The control scheme consists of position and attitude

control.

Chapter 7 : presents a new verification framework of UAVs. The proposed

framework is illustrated by verifying the control design of a quadcopter

presented in Chapter 6.

10
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Chapter 8 : presents and outlines the conclusions and future works.
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Chapter 2

Background and Literature

Review

2.1 UAV Dynamics

This section presents the dynamics of UAVs including different referencing frames

and flight equations of motion, which are essential to understand before reading

the rest of the thesis.

2.1.1 Reference Frames

It is relevant to briefly overview and understand the reference frames of an aircraft

before studying its dynamics and control. The reference frames represented by

the right-hand system are [32]:

� World/Earth frame (W-frame): The origin point of this frame is located at

any point on the surface of the Earth. The x-axis (XW ) points towards the

North, y-axis (YW ) points towards the West, and z-axis (ZW ) points to the

opposite direction of the centre of the Earth.

� Rigid body frame (B-frame): The origin point of this frame is usually fixed

at the aircraft’s centre of gravity (CG). The x-axis (XB) is located on

the aircraft’s symmetric plane and points towards the nose of the aircraft.

The y-axis (YB) points towards the left-side of the aircraft. The z-axis

13



2. Background and Literature Review

(ZB) lies on the aircraft’s symmetric plane and points upwards since it is

perpendicular on the XB and YB axes.

2.1.2 Flight Equations of Motion

2.1.2.1 Euler-Newton Representation

An aircraft’s orientation is represented by a set of three consecutive and ordered

rotations called Euler angles. These angles consist of: roll (φ) rotation about the

XB-axis which represents the lateral rotation of the aircraft, pitch (θ) rotation

about the YB-axis which represents the forward rotation in the aircraft’s nose

direction, and yaw (ψ) rotation about the ZB-axis which represents turning the

aircraft around the vertical axis; since Euler vector is represented as ηηη = [φ θ ψ]T .

The sequence of the rotations is important, e.g. ZY X sequence, common in

aerospace, indicates first the rotation around the z-axis, RZ(ψ), then the rotation

around the y-axis, RY (θ), followed by the rotation around the x-axis, RX(φ). The

three principal rotation matrices RZ(ψ), RY (θ), RX(φ) are [110]:

RZ(ψ) =

cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

 , (2.1)

RY (θ) =

 cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)

 , (2.2)

RX(φ) =

1 0 0

0 cos(φ) − sin(φ)

0 sin(φ) cos(φ)

 . (2.3)

The direct cosine matrix (DCM), RN , which represents the three principal

rotation matrices for ZY X sequence and transfer from the B-frame to W -frame
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2. Background and Literature Review

is given by

RN = RZ(ψ).RY (θ).RX(φ) =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 , (2.4)

where

r11 = cos(ψ) cos(θ)

r12 = cos(ψ) sin(θ) sin(φ)− sin(ψ) cos(φ)

r13 = cos(ψ) sin(θ) cos(φ) + sin(ψ) sin(φ)

r21 = sin(ψ) cos(θ)

r22 = sin(ψ) sin(θ) sin(φ) + cos(ψ) cos(φ)

r23 = sin(ψ) sin(θ) cos(φ)− cos(ψ) sin(φ)

r31 = − sin(θ)

r32 = cos(θ) sin(φ)

r33 = cos(θ) cos(φ).

(2.5)

Note that the matrix RN is orthogonal, which means R−1
N = RT

N and the later

matrix transfers from the W -frame to B-frame.

The translational dynamics in the B-frame using a Newton’s equation of mo-

tion is given by

mv̇ + Γ(ωωω)mv = fff t, (2.6)

where m ∈ < is the total mass of the aircraft, v = [vx(t) vy(t) vz(t)]
T ∈ <3 is the

velocity vector of mass centre, v̇ = [v̇x(t) v̇y(t) v̇z(t)]
T ∈ <3 is the acceleration

vector, fff t ∈ <3 is the total forces vector, and Γ(ωωω) ∈ <3×3 is the cross-product

matrix for the Coriolis forces such that ωωω ×mv = Γ(ωωω)mv , and is given by

Γ(ωωω) =

 0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

 , (2.7)

where ωωω = [ωx ωy ωz]
T ∈ <3 is the angular velocities vector. For the W -frame
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W = [XW YW ZW ]T , the translational dynamics equation is described as

mr̈ = f t, (2.8)

where r = [x(t) y(t) z(t)]T ∈ <3 is the position vector in W -frame, since r̈ =

RN v̇ . The centrifugal term, Γ(ωωω)mv , is omitted due to the fact that the W -frame

does not rotate.

The rotational dynamics in the B-frame using a Newton-Euler equation is

given by

Iω̇ωω + Γ(ωωω)Iωωω = τττ , (2.9)

where τττ = [τφ(t) τθ(t) τψ(t)]T ∈ <3 is the torque vector in the B-frame and

I ∈ <3×3 is the symmetric and positive-definite inertia matrix of the craft about

its mass centre

I =

I11 I12 I13

I21 I22 I23

I31 I32 I33

 . (2.10)

2.1.2.2 Euler-Lagrange Representation

Another representation of the aircraft’s dynamical model is using the Euler-

Lagrange equations of motion. The Lagrangian L definition consist of three

energies: translational (LT ), rotational (LR), and potential (LP ) [85]:

L = TT + LR − LP , (2.11)

where

LT = (1/2) m ṙrrT ṙrr, (2.12)

LR = (1/2) ωωωT Iωωω, (2.13)

LP = mgz, (2.14)

since ṙrr ∈ <3 is the linear velocity vector, I ∈ <3×3 is the inertia matrix as in

(2.10), and g is the gravitational constant.

The kinematic relationship between the Euler rates vector η̇ηη = [φ̇ θ̇ ψ̇]T ∈ <3

and the body angular velocities vector ωωω (for the rotation sequence ZY X) is given

16



2. Background and Literature Review

by [47]:

ωωω = Wη̇ηη ,

ωωωxωωωy
ωωωz

 =

1 0 − sin(θ)

0 cos(φ) cos(θ) sin(φ)

0 − sin(φ) cos(θ) cos(φ)


φ̇θ̇
ψ̇

 , (2.15)

and η̇ηη = W−1ωωω. From (2.13) and (2.15), we have the rotational energy

LR = (1/2)(η̇ηη)TJ(ηηη)η̇ηη, (2.16)

since the matrix J(ηηη),

J(ηηη) = W T IW =

j11 j12 j13

j21 j22 j23

j31 j32 j33

 (2.17)

where

j11 = I11

j12 = 0

j13 = −I11 sin(θ)

j21 = 0

j22 = I22 cos2(φ) + I33 sin2(φ)

j23 = (I22 − I33) cos(φ) sin(φ) cos(θ)

j31 = −I11 sin(θ)

j32 = (I22 − I33) cos(φ) sin(φ) cos(θ)

j33 = I11 sin2(θ) + I22 sin2(φ) cos2(θ) + I33 cos2(φ) cos2(θ)

(2.18)

is the Jacobian symmetric positive definite matrix (is invertible) which transfers

the angular velocities ωωω in (2.13) to their corresponding Euler rates η̇ηη. The

rotational dynamics in B-frame using Euler-Lagrange equation becomes

J(ηηη)η̈ηη + C(ηηη, η̇ηη)η̇ηη = τττ , (2.19)

where η̈ηη and τττ are Euler acceleration of the vehicle and the control torque vector in
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B-frame, respectively. C(ηηη, η̇ηη) is the Coriolis matrix which contains the gyroscopic

and centripetal terms

C(ηηη, η̇ηη) = J̇(ηηη)− 1

2

∂

∂ηηη
(η̇ηηTJ(ηηη)) =

c11 c12 c13

c21 c22 c23

c31 c32 c33

 , (2.20)

where

c11 = 0

c12 = (I22 − I33)(θ̇ cos(φ) sin(φ) + ψ̇ sin2(φ) cos(θ)) + (I33 − I22)ψ̇ cos2(φ) cos(θ)

− I11ψ̇ cos(θ)

c13 = (I33 − I22)ψ̇ cos(φ) sin(φ) cos2(θ)

c21 = (I33 − I22)(θ̇ cos(φ) sin(φ) + ψ̇ sin2(φ) cos(θ)) + (I22 − I33)ψ̇ cos2(φ) cos(θ)

+ I11ψ̇ cos(θ)

c22 = (I33 − I22)φ̇ cos(φ) sin(φ)

c23 = −I11ψ̇ sin(θ) cos(θ) + I22ψ̇ sin2(φ) sin(θ) cos(θ) + I33ψ̇ cos2(φ) sin(θ) cos(θ)

c31 = (I22 − I33)ψ̇ cos2(θ) sin(φ) cos(φ)− I11θ̇ cos(θ)

c32 = (I33 − I22)(θ̇ cos(φ) sin(φ) sin(θ) + φ̇sin2(φ) cos(θ)) + (I22 − I33)φ̇ cos2(φ)

cos(θ) + I11ψ̇ sin(θ) cos(θ)− I22ψ̇ sin2(φ) sin(θ) cos(θ)

− I33ψ̇ cos2(φ) sin(θ) cos(θ)

c33 = (I22 − I33)φ̇ cos(φ) sin(φ) cos2(θ)− I22θ̇ sin2(φ) cos(θ) sin(θ)− I33θ̇ cos2(φ)

cos(θ) sin(θ) + I11θ̇ cos(θ) sin(θ)

(2.21)

2.1.2.3 Quaternions Representation

The quaternions representation is another way of describing the dynamical model

of the aircraft. It is an alternative method which is use to avoid the singularity

associated with the gimbal lock [121] that occurs in the classical 3D Euler repre-

sentation [29]. Gimbal lock occurs due to the possible singularity of the direction

cosine matrix (DCM) in terms of Euler angles. To avoid gimbal lock, the quater-
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nions representation [40, 116] can be used to define rigid body attitude. The

quaternion is suitable to describe any attitude of a rigid body by Euler’s theo-

rem, which states that two geometrically identical bodies can be transformed into

each other by a parallel shift of one of the bodies and a single rotation around

some axis in 3D space.

The quaternions representation is a hyper complex of four elements q = q0 +

q1i + q2j + q3k where i2 = j2 = k2 = −1 and ij = k, jk = i, ki = j. The unit

quaternion is defined by an angle rotates about a three-dimension rotational axis,

such that

qqq =

[
cos( θ

2
)

aaa. sin( θ
2
)

]
=

[
q0

qqqv

]
=


q0

q1

q2

q3

 , (2.22)

where q ∈ <4 is the quaternion, q0 ∈ < is its scalar element (cosine of a rotation

angle), and q v = [q1 q2 q3]T ∈ <3 is its vector element (aligned with the axis of

rotation), aaa = [l m n]T ∈ <3 is a unit vector where ‖aaa‖ = 1, and θ = 2 arccos q0.

The quaternion is suitable to describe any attitude of a rigid body by Euler’s

theorem, which states that two geometrically identical bodies can be transformed

into each other by a parallel shift of one of the bodies and a single rotation around

some axis in 3D space .There is the convention that for attitude, unit quaternions

are used such that

‖qqq‖ =
√
q2

0 + q2
1 + q2

2 + q2
3 = 1. (2.23)

Note that no-rotation (no attitude change) is not the zero quaternion but [1 0 0 0].

The transformation from Euler angles sequence (yaw ψ, pitch θ, roll φ) to

quaternion can be described as [116]
q0

q1

q2

q3

 =


cos(φ

2
) cos( θ

2
) cos(ψ

2
) + sin(φ

2
) sin( θ

2
) sin(ψ

2
)

− cos(φ
2
) sin( θ

2
) sin(ψ

2
) + cos( θ

2
) cos(ψ

2
) sin(φ

2
)

cos(φ
2
) cos(ψ

2
) sin( θ

2
) + sin(φ

2
) cos( θ

2
) sin(ψ

2
)

cos(φ
2
) cos( θ

2
) sin(ψ

2
)− sin(φ

2
) cos(ψ

2
) sin( θ

2
)

 , (2.24)
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while the transformation from quaternion to Euler anglesφθ
ψ

 =

atan2(2q2q3 + 2q0q1, q0
2 − q1

2 − q2
2 + q3

2)

−asin(2q1q3 − 2q0q2)

atan2(2q1q2 + 2q0q3, q0
2 + q1

2 − q2
2 − q3

2)

 . (2.25)

There is however no problem with relating the Euler angle rotation rates to

quaternion rates. The relationship between the quaternions rates q̇ ∈ <3 and the

angular velocities ωωω(t) = [ωx(t) ωy(t) ωz(t)]
T ∈ <3 in the B-frame can be stated

[116] as

ωωω = Z̃q̇ ,

ωxωy
ωz

 = 2

−q1 q0 q3 −q2

−q2 −q3 q0 q1

−q3 q2 −q1 q0



q̇0

q̇1

q̇2

q̇3

 , (2.26)

and q̇ = Z̃Tωωω where Z̃T = Z̃−1 is an orthogonal matrix. This is useful in control

as solid state gyroscopes are available to measure ωx, ωy, ωz, hence giving an

opportunity to integrate the attitude changes in realtime.

The transformation from the body coordinates, B-frame, to the world (iner-

tial) coordinates, W -frame, can be expressed using the following matrix [116]

Rq =

q
2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q0q2 + q1q3)

2(q1q2 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q0q1 + q2q3) q2
0 − q2

1 − q2
2 + q2

3

 , (2.27)

and from W -frame to B-frame using RT
q where RT

q = R−1
q is an orthogonal matrix

of 3D rotations.

2.2 Feedback Control Theory

This section illustrates the small-gain theorem and dynamic inversion control

which are used in this thesis.
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2.2.1 Small-Gain Theorem

Mathematical modelling of nonlinear dynamical systems can be described using a

number of different approaches. One is the input-output approach, which relates

the output of the system to its input without any knowledge of the internal

structure of the system. Studying input-output stability is important particularly

for interconnected systems in order to ensure that the system is stable. The

system is considered stable if a bounded input produces a bounded output. This

can be generalised to: a system is input-output stable if it has finite gain [58].

One of the ways to measure the stability of interconnected systems is by track-

ing the variation of signals norms via the gain of the system. This is described by

the small-gain theorem. The small-gain theorem is one of the most fundamental

and general result for nonlinear feedback systems. It can be used to verify the

stability of closed-loop systems under suitable conditions. The theorem has a

long history which was first proved by George Zames [134, 135] and developed

later (see for example [39, 66, 88]). There are different versions of the small-gain

theorem, but the most general which presented in [70] that applies to finite gain

input-output stability is chosen in this thesis. The theorem states that for two

stable systems H1 and H2 in a closed loop feedback structure considering two

inputs and four outputs is input-output stable if the product of the gains is lees

than 1, i.e. (γ1γ2 < 1). The full proof of the theorem is described in details in

Chapter 3.

Dynamical systems usually include modelling uncertainty and if the feedback

connection is represented such that H1 is the stable system and H2 is the stable

disturbance, the condition γ1γ2 < 1 is valid when γ2 is sufficiently small. There-

fore, the small-gain theorem is an essential concept for studying the robustness

of feedback dynamical systems [39, 70].

The small-gain theorem has been applied to many practical engineering areas.

For instance, it is used to derive an attitude control law of spacecrafts [128]. The

theorem is used in [79] for stability analysis of hybrid systems. Many other

applications of the theorem can be found in [34, 64, 69, 82, 137].
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2.2.2 Dynamic Inversion Control

Dynamic inversion control (DIC) [111, 115, 116] is a control technique which pro-

vides a straightforward way to derive control laws from the nonlinear dynamics

of an aircraft. It is based on the feedback linearisation approach [114] and has

been mainly developed to control nonlinear systems and hence there is no need

for gain scheduling. The idea of dynamic inversion control is to find a nonlinear

control law based on the system’s rigid body dynamics. In other words, the non-

linear model that transformed the input-output model into state-space syntax,

is converted to a linear model then linearisation control techniques are used for

synthesis. It is a method of calculating the torques and/or forces based on the

equations of motion and moments of inertia of the system. As each practical

nonlinear system has uncertainty, there is an error between the system’s dynam-

ics and its nominal control. This error depends on the accuracy of modelling

dynamics. The major areas that this control method is used are in robotics and

aerospace. This control technique is used in this thesis to design and develop a

nonlinear control law of unmanned aerial vehicles.

2.3 Formal Methods

Formal methods can be used to detect and eliminate errors from a designed

system. They can be supported by some tools to exhaustively check the complete

state space of the design and demonstrate the correctness of its properties. These

techniques or tools are based on mathematics which are used for specification,

design and verification of hardware and software systems. They can rely on

mathematical logic, which consist of formally well-formed statements so that the

verification processes are strict deductions in logic and are therefore guaranteed

to be correct.

Each formal method essentially consists of one or more of the following three

parts; the specification, which is the mathematical model of the desired design’s

properties, the implementation which is the mathematical model of design’s struc-

ture, and the verification which is the mathematical representations that describ-

ing the relationships between models and using algorithmic analysis or proofs to
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verify relations correctness [17].

Due to the variety of applications that need to be checked, each applica-

tion area requires different modelling methods and different ways of verification.

There are many different formal methods available to satisfy the designed system

requirements. For instance, theorem provers are used to analyse the validation

of a register-transfer level (RTL) description of a Fast Fourier Transform circuit,

while algebraic derivational methods used to analyse the validation of the design

improvements into a gate-level design. Therefore, there is a wide range of formal

methods each of which is used according to the application domain.

The benefits of these techniques are great for many reasons, first of all, their

precise semantics can reveal inconsistencies, ambiguities, and incompleteness.

They are also considered as excellent guides for defining supporting tools. In ad-

dition, properties of the modelled system can be precisely stated, then formally

verified [93] [31]. Moreover, these methods could be used to avoid disastrous

mistakes especially in safety-critical systems. An example of this is the failure in

Ariane 5 rocket which exploded less then forty second after it was launched and

the reason of that was due to unverified code that causes a software error which

led to computer failure [97]. Another example is from the medical field, where

software failures can cause catastrophic damage as in [76] and [53] which led to

loss of human-life.

In the following subsections, formal specification and verification used by for-

mal methods are described.

2.3.1 Formal Specification

Formal specification is the process of representing a system and its specifications

using a formal language with a mathematically defined syntax and semantics.

This process has no proof or analysis while it is used to specify only a system and

its requirements. System properties may consist of functional behaviour, func-

tional and/or timing behaviour, performance characteristics, or internal structure

of the system. On the other hand, there are formal methods dealing with non-

behavioural aspects of the system such as security policies, real-time constraints,

and architectural design [31].
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2.3.2 Formal Verification

Formal verification is the process of proving or disproving the validity of system’s

specifications and apply refinement calculus. It is model-based techniques which

verify that the mathematical expression satisfy given properties [101]. There

are two well-known verification methods: model checking and theorem proving.

These techniques are described in the following subsections. There is another

proving type called Satisfiability Modulo Theories (SMT) [14], which is an ex-

tension of the Boolean satisfiability (SAT), that is a method of deciding the

satisfiability of first-order formulas in addition to some background theory with

respect to some decidable first-order theory [112]. There are also other formal

verification methods such as symbolic simulation and testing, decidable subsets

of first order logic, propositional tautology checking, deductive verification, type

inference, and data flow analysis [104]. For simulation and testing, for instance,

it is cost-efficient method that use to detect the errors in the design, but check-

ing all possible interactions and deadlocks using this technique is rarely possible.

Another example is the deductive verification method, which is widely recognized

especially in software development, but it is time consuming operation which need

experts to work on [30].

2.3.3 Model Checking

One of the well-known tools in testing of designed models and formally verifying

and validating their correctness are model checkers [30]. These tools are used

to model a system as a finite state transition, like automata or timed automata,

and system properties are expressed in the form of proposition temporal logic.

Then, the verification problem is reduced to a graph search and an exhaustive

exploration of all possible states is accomplished, for instance, using symbolic

algorithms [30]. Model checkers are considered as powerful tools in processes

checking of different systems, security and communications and complex circuits

verifications [45]. Therefore, model checking techniques have a number of advan-

tages. They are fully automatic with no need for supervision or experts. They

give counterexamples in case of the design fails to satisfy the required specifica-

tions that demonstrate an action to falsifies the specifications. This bug detecting
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gives precious insight to know the reasons of faults and fix them. On the other

hand, there are some disadvantages of model checking, such as state space ex-

plosion problem, one of the main challenges of model checking which occurs in

systems that have a large number of components or have many different values

in their data structure. This problem is still an issue and it has not be solved by

any means in model checking. Moreover, the problem when a program has non-

integer parameters or infinite state space designs, where model checkers are not

applicable [104]. They can not also used to mathematically prove the derivation

correctness of the designed control system.

2.3.4 Theorem Proving

Computer based theorem proving is a computational tool set in some logical sys-

tem that can be used to prove the soundness and correctness of mathematical

arguments. There are two different approaches for theorem proving, Automated

Theorem Proving (ATP), which automatically proves mathematical formulas by

computer software, and Interactive Theorem Proving (ITP) which is use to de-

velop formal proofs by human-machine collaboration. It automates steps of for-

mal proofs by aid of a developer guiding the process of proof. The automated steps

rely on mathematical logic and automated reasoning techniques. ITPs are proof

assistants, which formally define and prove mathematical theorems. Therefore,

the user can implement a mathematical theory in an ITP by defining assumptions

and some valid logical statements, to start with. Then the ITP procedure will

try to prove a sequence of statements, relying on available formal theories, and

also by using existing logical methods and techniques or some external resources,

such as ATPs and SMT solvers.

The distinction between ITP and ATP systems is not only that ATP systems

fully automate proofs but that ATPs tend to have restricted expressivity where,

unlike ITPs, they cannot prove higher order mathematical theories. Instead, they

are able to prove non complex mathematical formulas that contain inequalities

over real numbers, quantified variables, and some mathematical functions. ATPs

can be utilised locally in an ITP to prove a step in a proof, by adding their

packages to the ITP. This can also be achieved online by using System on TPTP
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[6], which is a web-based system that includes the most powerful ATPs that can

be used to proof mathematical statements automatically. A good example of

ATPs especially for control engineering applications is MetiTariski [100], a first-

order logic (FOL) prover that designed to work over the field of real numbers

and inequalities. On the other hand, ITP systems have the ability to support

formalising and proving mathematical theories, which involve higher order logic,

with the aid of a human supervisor in an interactive way. In contrast to model

checkers, ITPs can be applied to an infinite state space design while model check-

ers can only applied in some settings uner limited applications. However, there

are many other features of ITPs such as generality in terms of results and appli-

cability. In addition to modularity as each theory can be defined and then used

or modified during theories formalizing and proving. Therefore, the total system

is a comprehensive model of correlated theories, i.e., each theory can be built

from other theories according to the relations and requirements.

2.3.4.1 MetiTarski Automated Theorem Prover

MetiTarski is an automated theorem prover based on a FOL, which works on the

real numbers field. It consists of a resolution theorem prover (Metis) [63] which

is works with disjunctions of inequalities and a decision procedure (QEPCAD)

[21] which works on finding and removing inconsistent inequalities in the clauses.

MetiTarski is able to invoke three reasoning tools which are QEPCAD, Mathe-

matica and Z3 [36] in order to perform proofs. It is designed to solve universally

quantified inequalities problems including transcendental and some special func-

tions including log, ln, exp, sin, cos, sqrt, etc. This tool is useful especially in

control laws as these functions and inequities on real numbers are needed.

As robust controllers are designed with variables constraints and several as-

sumptions which include inequalities on real numbers to bound the variables in

the control system in addition to Lyapunov functions which also need such in-

equalities, MetiTarski is chosen to check the control system stability of unmanned

aerial vehicles under the proposed assumptions during the controller design due

to its features of proving quantified inequalities including the above functions

over real numbers.
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2.3.4.2 Isabelle/HOL Interactive Theorem Prover

Isabelle is a generic interactive theorem prover (proof assistant) based on au-

tomated reasoning techniques which supports a variety of logics and provides

interactive reasoning to prove formal mathematical theories or expressions using

logical calculus. It is a specification and verification system written in the ML

programming language [92] that represents rules as propositions (not as func-

tions) and constructs proofs by combining rules that comprise a meta-logic based

on lambda-calculus [91]. It provides the ability to express the mathematical for-

mulae in a formal language and prove them using different logical tools. Isabelle

provides useful proof procedures such as FOL, constructive type theory, Zermelo-

Fraenkel set theory (ZF) [54], which offers a formulation of ZF on the top of FOL,

and HOL.

The most common platform of Isabelle is Isabelle/HOL, which provides a

higher-order logic theorem prover environment with quantifiers and semantics.

Isabelle has a structured proof language called Isar in which proofs are con-

ducted. Isar is a mathematics-like proof language that allows proofs to be easily

readable and understandable for both users and computers. The mathematical

formulas can be formalised and proven in the Isar language with the aid of Is-

abelle’s logical tools. Examples of such tools are the simplifier, which performs

operation and reasoning on equations, the classical reasoner that carry out long

chains of reasoning procedures to prove statements or theories, automatic proof

of linear arithmetic statements, algebraic decision procedures for decision mak-

ing verification, advanced pattern matching, and sledgehammer for automatically

finding the proofs based on already proven theorems in Isabelle’s library and also

calling external FOL provers (ATPs) such as SPASS, Vampire and E-prover; and

SMT solvers such as CVC4 and Z3.

Isabelle has been chosen in this research due to its powerful logical techniques

and its large library produced by a broad community of applied mathematicians.

Isabelle contains most of the formal mathematical theories which are useful for

the formalization of control theorems. The most competitive alternative tool to

Isabelle is Coq [56]. The difference between them is minor from the technical

point of view but Isabelle has more useful and larger set of background theories
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in its library. For instance, Isabelle’s library includes theorems ranging from

logics, algebra and type theory such as HOL theory, reals, integers, complex

numbers, and functions through spaces definitions such as topological spaces,

Euclidian space, vector space and normed space to more complex theories such

as derivative, integration, differential equations, high order functions, complex

transcendental and operator norm. In addition to other features, for example,

there is a code generation feature that allows to transfer the proven specifications

from HOL syntax into a corresponding executable code in SML, OCaml, Haskell

or the Scala programming languages [91, 92].

There is a wide range of syntax and command types in the Isabelle/HOL,

therefore, the most common and useful will be described which are used in Chap-

ter 3 and Chapter 7. Isabelle/HOL expressions and symbols are described in

Table 2.1.

2.4 Literature Review

The following subsections are about past studies of UAVs feedback control system

and their stability analysis. They include previous efforts and research using

different formal methods techniques in control systems verification.

2.4.1 Feedback Control of UAVs

A wide variety of control methods have been proposed in the literature to control

and stabilize a multi-rotor UAV. In [77], a now classic approach, a PID controller

of the multi-rotor was proposed for regulating the position and orientation of

an aircraft. A combination of PID and gain scheduling control approach is pre-

sented in [49] to increase robustness. In [133], a cascaded linear PID model-based

controller on SO(3) was proposed for quadcopter attitude control to realize com-

plex acrobatic manoeuvres. However successful PID controllers are commercially,

they can not guarantee control system stability for various flight conditions with

uncertainties and disturbances. In [41], a neural network was used to learn the

complete dynamics of the multi-rotor and an output feedback control law is de-

veloped to control the translational and rotational motion of the vehicle. The
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Table 2.1: Isabelle/HOL symbols and expressions

Expression Description

→ mapping from value to value or function to function.
−→ refers to ”imply” in HOL.
⇒ used to define a function with its corresponding variables

types (e.g., real ⇒ real) that is a function maps from
real to real variable.

=⇒ refers to ”imply” in Isar language in Isabelle. (e.g.,
x = 0 =⇒ y = x) that is x=0 is an assumption and
y=x is the statement to be proven.∧
refers to ”for universal all” which applies to all assump-
tions and/or proof statements.

∀ means ”for all” or ”for any” and it is for a specific
assumption or statement.

∃ means ”there exist” or ”there is”.
∃! means ”there is only one”.
∧ refers to the logical “and”.
∨ refers to the logical “or”.
x
′

the 1st time derivative of x (x
′′

the 2nd time derivative
of x).

|x| refers to absolute value of x.
x$i returns the ith element of the vector x.
• an operator for the dot product of two vectors.
∗v an operator for the multiplication of a matrix and a

vector.
∗s an operator for the multiplication of a scalar value and

a vector.
∗∗ an operator for the multiplication of two matrices.
(λ t. x t) this is equivalent to the function x(t) but under the con-

straint of an argument (t).
norm(x) the Euclidean norm of a vector or a matrix.
SUP (x) the supremum value of x.
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authors in [89] proposed a PIλDµ neural network aided finite impulse response

control scheme for multi-rotor UAVs. In these and similar schemes, it is difficult

to quantify whether the controller is near the limits to its performance in order

to decide on a modified flight path or landing. Again, it is difficult to know how

to use these controllers in real time especially when they are handling an onboard

decision-making for flight safety.

A number of robust control schemes have been developed to overcome the

modelling uncertainty or disturbances of multi-rotor UAVs. In [108], a robust

L1 optimal control for a multi-rotor was presented and experimentally evaluated.

The control objective was to follow the desired trajectory with rejecting persistent

disturbances such as sensors errors in the feedback control system by minimizing

the L∞ gain of the plant for these disturbances. Another control method, based on

a robust compensation, was proposed in [81] to minimize the effect of aerodynamic

disturbances and variable mass distribution.

Several nonlinear control methodologies have been derived by algebraic ma-

nipulation in Lyapunov stability derivations. In [16], a nonlinear model-based

cascaded controller was proposed by identifying the dynamical parameters of

a generic quadcopter. A disturbance based observer for hovering control was

proposed in [71]. The authors conducted an extensive analysis of multi-rotor dy-

namics to provide guidelines for designing a robust control scheme. In [123], a

hover mode control based on multi-loop back-stepping design is introduced for

a linearized multi-rotor dynamics. An attitude stabilization controller, based on

quaternion feedback and integrator backstepping was proposed in [62]. The con-

troller ensures that all the system states are uniformly ultimately bounded with

the existence of external disturbances. Similarly, a nonlinear backstepping-based

control for multi-rotor aircraft was introduced in [78]. Control system stability

was evaluated by Lyapunov methods and LaSalle’s invariance theorem with the

presence of external disturbances. Other backstepping-based control schemes of

multi-rotors can be found in [55, 103, 132]. Sliding mode control method has been

used for multi-rotor UAV control. In [131], an adaptive fuzzy gain-scheduling slid-

ing mode controller is introduced for the multi-rotor attitude control. The sliding

mode controller is used to control the attitude of the aircraft with the presence of

modelling uncertainness and disturbances while the fuzzy logic system is used to
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reduce the chattering problem produced by the sliding mode controller. In [118],

a robust integral sliding mode controller is developed for attitude control to cope

with the parametric uncertainty of quadcopters. A backstepping controller with

sliding mode observer is proposed in [87] that overcomes the uncertainty and dis-

turbances of the vehicle. A similar approach was conducted in [119] to reduce

external disturbance and load variation effects. The dynamic inversion control

method had also been employed to control a quadcopter. In [124], a nonlin-

ear dynamics inversion control scheme was developed for a multi-rotor system

to decouple the attitude and position dynamics and maximize the transmission

bandwidth of the position control with considering system uncertainty and dis-

turbances. Similarly, a robust dynamic inversion approach was proposed in [33]

for controlling and stabilizing under disturbances. A sensor-based incremental

nonlinear dynamic inversion controller was developed in [126], with sliding mode

disturbance observers for fault-tolerant control, in order to reduce the effects of

model uncertainty and disturbances. Control of multi-rotor UAVs with modelling

error or flight disturbances has been under various investigations [35, 80, 84].

Although there have been a variety of controllers proposed to control multi-

rotors, most of the work available is either concerned with modelling uncertainty

or with disturbances. Both inertial matrix uncertainty and external disturbances

are important factors and can affect the craft at the same time in practice. The

upper limits of these need to be known in order to be included in the design,

stability proofs and onboard decision making on flight safety.

Autonomous helicopter flight control has been widely studied in the last

decades. Several controllers have considered the uncertainty and disturbances

which are important aspects that affect aircraft stability and performance. How-

ever, maintaining attitude stability is still a major control problem due to the

aerodynamic mechanism nonlinearity [73]. Previous works on helicopter UAVs

control and verification have been reviewed and several are presented. Adaptive

inverse dynamic control for an autonomous helicopter is proposed in [68] and

[74]. In [107], attitude based model predictive control of an unmanned small heli-

copter is presented. Robust nonlinear control with considering wind disturbances

is proposed in [75] and with H∞ control in [130].
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2.4.2 Formal Methods in Control

Typically, control systems design starts with formal analysis followed by numer-

ical implementation in a simulation tool, then numerical simulations testing for

valid behaviour before deploying the implementation. Recently, the use of au-

tocoding generation techniques that produce real-time code from the simulation

which reduces manual coding errors have increased. However, nowadays, complex

control systems could be designed using digital computation techniques which

have been rapidly developed in the last few decades. This enables systems to be

formally checked and verified to ensure their validity and reliability. The out-

come of this could be significant because system modelling using mathematical

derivations can be checked and verified precisely using formal methods like proof

assistants can ensure system robustness.

There is a wide range of ITPs including Isabelle/HOL [96], Coq, PVS [98],

which are HOL based systems that can be used to verify the stability and perfor-

mance of control systems with the aid of ATP like MetiTarski [100]. The current

development of these techniques enables them to prove the most abstract robust

control theories which are used to check systems stability. This thesis is moti-

vated by the need of robust techniques for physical control systems validation and

verification. It aims to integrate control theory with ITP techniques by formally

proving some of the most important theorems in control theory. This approach

will be beneficial especially in safety-critical systems such as flight control, autopi-

lot, autonomous cars and human interactive robots whereby systems stability and

performance will be more robustness and safer. Furthermore, information from

control theory can be translated into formal mathematical and logical concepts.

These concepts then can be proved using proof assistants which can be used later

in control systems verification. In particular, for complex systems where com-

putations are very complicated and they are difficult to be handled by a human

while it could be done by computer more easily and accurately. To prove that this

is applicable, the Small-gain theorem is formally proved in Isabelle/HOL proof

assistant.

Due to the importance of the verification of engineering systems in general

and control systems stability and performance using formal methods in particu-
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lar, several related works and projects in this area are mentioned. There are some

projects which have been working on the verification of safety-critical and cyber-

physical systems. These include the European project Integrated Tool Chain for

Model-based Design of Cyber-Physical Systems (INTO-CPS)[3], where a Func-

tional Mockup Interface (FMI) is developed for integrating the formal verification

of Cyber-Physical Systems using PVS [98] theorem prover with model-based soft-

ware to co-simulation these systems. This approach integrates simulated models

in model-based tools such as Modelica, Simulink/Matlab or 20-sim with the FMI

interface to verify the control system meets the required specifications using for-

mal methods. This method may produces errors due to interfacing the modelling

software with formal method tools instead of using the later directly to verify

the intended system. In addition, none of the works which have been verified

using this framework targets unmanned areal vehicles or aviation. The proposed

verification framework in this thesis is different from this approach as it is veri-

fying the correctness of the derived control law of aviation systems at the design

stage before the simulation step directly using ITP then real-time monitoring

of their stability by ATP. However, the FMI is also implemented in [136] using

Isabelle/UTP [7] framework, where Modelica is used to model the control sys-

tem of a train then the model is encoded in Isabelle/UTP with FMI framework

for co-simulation. Another project is the ERATO Metamathematics for Systems

Design (MMSD) [1], where a framework is developed to use formal methods to

verify cyber-physical systems of automotive-related applications in industry such

as cars. Other projects are conducted by the verification team of NASA Lang-

ley Research Center [4] such as integrating MetiTarski with PVS prover [37], air

traffic management verification of UAV using formal methods [94] and [95].

Although of these efforts of using formal methods to verify control systems, the

derivations of control laws are not covered or verified before implementing them

in model-based software, in addition to the absence of onboard real-time stability

monitoring of these systems using formal methods. The proposed verification

framework presented in this thesis is different from the above approaches as it is

dedicated to verify the correctness of the derived control law of aviation systems

at the design stage before the simulation step using an ITP, followed by real-time

monitoring of stability by ATP.
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Hardy [60] developed and implemented a decision procedure to check the

validity of a function that has a finite number of inflection points for Nichols

plot analysis. This method carried out in the Nichols plot Requirements Ver-

ifier (NRV) to implement an automated formal Nichols plot analysis using the

computer algebra system (Maple) and PVS proof assistant in addition to the

quantifier elimination tool (QEPCAD). NRV is used to verify two control sys-

tems: an inverted pendulum and a disk drive reader. Akbarpour and Paulson [8]

were also formally proved the control stability, in terms of Nichols plot analysis,

of these two systems later on using MetiTarski ATP. The authors used the Maple

software to solve the differential equations and obtain problems including the ex-

ponential and trigonometric functions which are then passed to the MetiTarski

prover. In [38], Denman and his colleagues presented a method to verify the

stability of a flight controller with formal Nichols plot analysis by using the Meti-

Tarski automated theorem prover. They extracted the transfer function of a flight

control system from Simulink, then defined an exclusion region of the Nichols Plot

and proved the unreachability of the exclusion region using MetiTarski. Finally,

they applied their proposed method to an autopilot model to check its validity.

In [24] the authors presented an approach and tools to translate discrete-time

Simulink models to the LESAR model checker. These tools have been applied to

translate part of Audi’s automotive controller. An extension of this work can be

found in [109] where further analysis methods are introduced to define a subset

of Stateflow for which synchronous semantics can be defined.

Some verification processes can be performed at the design level such as in

SimCheck [105] where an implementation of type checking with custom annota-

tions in Simulink blocks was presented. Similar work can be found in Araiza-Illan

and her colleagues work [9] where they developed a new approach to automatic

translating system’s block diagrams modelled in Simulink into the Why3 [52] plat-

form to verify their corresponding properties. The modelled system in Simulink

represented high-level properties of stability (Lyapunov stability [114]), feedback

gain and robustness. In [10], same authors presented a different approach by per-

forming verification and comparing the results produced by a simulation through

assertion checks and the results produced from the Why3 to determine the ad-

vantages of the latter.

34



2. Background and Literature Review

On the other hand, other verification processes can be accomplished at the

code level such as in Feron work [51]. He developed a tool called credible autocoder

relying on Floyd’s and Hoare’s proof systems [101] to check Lyapunov-based sta-

bility of control systems by producing target C code from Simulink that represents

the system specifications in addition to documents that associated with the tar-

get code which represent properties of their proofs. Jobredeaux [67], proposed

in his thesis an extension of [51] by a credible autocoding framework and tools

which are used to develop the state of formal analysis of control software. The

framework produced and proved high-level properties of control laws using PVS,

such as closed-loop stability, at the code level using the C code.

Other verification approaches were applied on hybrid systems using hybrid

theorem proving. For example, in [57], where an introduction of using the hybrid

theorem prover KeYmaera [102] to prove the control software of aerospace related

systems is presented. The authors demonstrate their approach with a case study

of lateral collision avoidance maneuver in aviation field.

There have been many attempts made in the same direction of the previously

presented works but using different methodologies and various formal methods

such as in [19, 20, 26].
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Chapter 3

Formal Proof of the Small-Gain

Theorem Using Interactive

Theorem Proving

3.1 Overview

Control theory can establish properties of systems which hold with all signals of

the control system and hence cannot be proven by simulation. The most basic of

such properties is the stability of a control subsystem or the overall system. Other

examples are statements on robust control performance in the face of dynami-

cal uncertainties and disturbances in sensing and actuation. Until now control

theories were developed and checked for their correctness by control scientist

manually using their mathematical knowledge. With the emergence of formal

methods, there is now the possibility to derive and prove robust control theory

by symbolic computation on computers. There is a demand for this approach

from industry for the verification of practical control systems with concrete nu-

merical values where the applicability of a control theorem is specialised to an

application with given numerical boundaries of parameter variations. This chap-

ter gives an overview of the challenges in the area and demonstrates an example

of a computer-based formal proof of the Small-gain theorem using an interactive

theorem prover and conclusions are drawn from these initial experiences.
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3.2 Mathematical Proof of the Small-Gain The-

orem

In order to demonstrate, the Small-gain theorem can be proved in a general way

using an interactive theorem proving tool, the version and proof of the theorem

presented in Khalil’s book [70, Sec. 5.4] has been chosen. From a literature

review, it was found that this version was one of the most general proofs using

general nonlinear operators and stability concepts. The following are the math-

ematical procedures of the proof, which need to be presented first in order to

comment on the respective steps of a computer-based proof procedure.

If the relation of an input/output system is considered as

y = Hu, (3.1)

where H : u → y is an operator that maps the input signal u onto the output

signal y. The input signal u belongs to a space of signal functions over the time

interval [0,∞) into the Euclidean space Rm (u : [0,∞)→ Rm). For the space of

piecewise continuous, bounded and square integrable functions, the norm can be

defined by

‖u‖L2 =

√∫ ∞
0

uT (t)u(t)dt <∞, (3.2)

where the norm function, which is used to measure the size of the signal, should

satisfy the following properties:

� ‖u‖ = 0⇐⇒ u = 0 else ‖u‖ > 0,

� ‖au‖ = |a|‖u‖ for ∀a ∈ <,

� ‖u1 + u2‖ ≤ ‖u1‖+ ‖u2‖.

It has been assumed that the input and output signals belong to the same space

L so that u, y , uτ , yτ ∈ L where uτ , yτ are input and output truncated signals,

respectively, and all vector space properties are valid. The uτ is a truncation of

38



3. Formal Proof of the Small-Gain Theorem Using Interactive
Theorem Proving

u that is defined by

uτ (t) =

u(t), 0 ≤ t ≤ τ

0, t > τ
(3.3)

The proof requires some definitions such as system’s causality and stability,

see [70, Sec. 5.1]. The causality property of an operator H : L→ L is defined by

(Hu)τ = (Huτ )τ for all τ ≥ 0. Using this property, the control system stability

can be defined

‖(Hu)τ‖ ≤ γ‖uτ‖+ β, (3.4)

where γ, β ∈ < and γ, β > 0, for all u ∈ L and τ ∈ [0,∞). For the proof of

the Small-gain theorem, suppose that there are two systems H1 : L → L and

H2 : L→ L, which are both finite-gain stable so that:

‖y1τ‖ ≤ γ1‖e1τ‖+ β1, ∀e1 ∈ L, ∀τ ∈ [0,∞), (3.5)

‖y2τ‖ ≤ γ2‖e2τ‖+ β2, ∀e2 ∈ L, ∀τ ∈ [0,∞), (3.6)

and it is also assumed that for each input u1, u2 ∈ L, there exist unique out-

puts e1, y1, e2, y2 ∈ L where u = [u1 u2]T , y = [y1 y2]T , e = [e1 e2]T . The

corresponding feedback system is illustrated in Fig. 3.1.
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Figure 3.1: Feedback system connection
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Theorem 3.1. Under the above assumptions with finite gains γ1 for H1 and γ2

for H2, the feedback system is finite-gain stable if γ1γ2 < 1.

Proof. Assuming existence of the solution, we can write

e1τ = u1τ − (H2e2)τ , e2τ = u2τ + (H1e1)τ , (3.7)

then,

‖e1τ‖ ≤ ‖u1τ‖+ ‖(H2e2)τ‖ ≤ ‖u1τ‖+ γ2‖e2τ‖+ β2

≤ ‖u1τ‖+ γ2(‖u2τ‖+ γ1‖e1τ‖+ β1) + β2

= γ1γ2‖e1τ‖+ (‖u1τ‖+ γ2‖u2τ‖+ β2 + γ2β1),

(3.8)

and

‖e2τ‖ ≤ ‖u2τ‖+ ‖(H1e1)τ‖ ≤ ‖u2τ‖+ γ1‖e1τ‖+ β1

≤ ‖u2τ‖+ γ1(‖u1τ‖+ γ2‖e2τ‖+ β2) + β1

= γ1γ2‖e2τ‖+ (‖u2τ‖+ γ1‖u1τ‖+ β1 + γ1β2),

(3.9)

since γ1γ2 < 1,

‖e1τ‖ ≤
1

1− γ1γ2

(‖u1τ‖+ γ2‖u2τ‖+ β2 + γ2β1). (3.10)

‖e2τ‖ ≤
1

1− γ1γ2

(‖u2τ‖+ γ1‖u1τ‖+ β1 + γ1β2). (3.11)

for all τ ∈ [0,∞). Finally, using the triangle inequality, we have

‖e1τ + e2τ‖ ≤ ‖e1τ‖+ ‖e2τ‖, (3.12)

‖e1 + e2‖ ≤ ‖e1‖+ ‖e2‖. (3.13)
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3.3 Formalising and Proving Small-Gain Theo-

rem in Isabelle/HOL Theorem Prover

To describe how the Small-gain theorem has been proved in Isabelle/HOL, this

section will show the major steps of the proof procedures starting from the formal

definitions of time intervals, signals, truncations of signals, operators causality

and stability. A signal’s domain and range spaces are also declared in addition to

a truncation space and some properties and operations on signals are also declared

on these spaces. The definition of an operator space includes the declaration of

their properties, which are defined in a general way to provide flexibility and

re-usability for the development of other theories in the future.

In this work, some theories, which already exist and have previously been for-

mally proven in Isabelle, have been exploited and used such as ”HOL.thy”. HOL

theory includes the axioms of logic in the higher-order form, the ”Multivariate

Analysis.thy”, which contains, for example, integrations, extended real and al-

gebra theories, ”Bochner Integration.thy”, which includes Lebesgue integration

definition that is used in this work, ”set integral.thy” which is used for the inte-

gration over a specific set or interval, ”Function Algebras.thy” that includes the

properties of functions, for instance, point-wise addition, scalar multiplication,

functions addition and multiplication. As theories call other related theories au-

tomatically, there are several related theories called and used in this work to carry

through the proof of the Small-gain theorem. All the code which are implemented

to prove the Small-gain theorem can be found in the web-repository [2].

The steps described previously in Section 3.2 are formalized in Isabelle as

follows:

� Time interval: Before formalizing the theorem, some definitions are needed

to be completed such as the definition of time interval bounds. The overall

time interval (T ) is defined as a real set [0,∞) such that t ∈ T where t is

a real variable, that is T = {t | 0 ≤ t < ∞}. The truncation time interval

(Tτ ) which is a subset of T and τ ∈ Tτ is the period between 0 and τ , where

τ is the truncation point, such that Tτ = {τ ∈ T | 0 ≤ t ≤ τ}.
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Isabelle/HOL code

definition T :: “real set” where ”T = {t. (0 ≤ t ∧ t <∞)}”

definition Tτ :: “real set” where “Tτ = {t. (∀τ ∈ T. 0 ≤ t ∧ t ≤ τ)}”

� Signal bounds: The signal value range is defined over (−∞,∞) as

Isabelle/HOL code

definition “ R = {r. (−∞ < r ∧ r <∞)}”

� Signal definition: A straight-forward way to implement input signals is

by using ordered pair theory. That approach would not work because the

existing ordered pair theory in Isabelle prover is not suitable. Therefore,

the following approach of defining the input signal was chosen as a piecewise

continuous function by the following general formula:

u : T → R ; u = (∀t ∈ T,∃!u(t) : u(t) ∈ R).

Isabelle/HOL code

definition “Signal u = (∀t ∈ T. ∃! x ∈ R. x = u t ∧ u : T → R ∧ u t ∈ u‘ T ∧

u piecewise differentiable on T ∧ continuous on T u)”

� Domain and range space definition: The domain and range spaces con-

tain a set of signals, which are declared using the ”locale” feature in Isabelle

which dealing with parametric theories. This feature enables us to form a

definition with a set of assumptions in Isabelle. It also gives flexibility in

dealing with spaces under certain constraints and properties and provides

the possibility to add additional properties when the theory is called and

used later. The domain space D and range space G have the same defini-

tions and properties, each of which is defined as a set of signals (functions)

under the properties of associativity, commutativity of addition, pointwise
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addition, distributivity of scalar multiplication and scalar multiplication

over addition.

Isabelle/HOL code

locale Domain Space =

fixes D :: “(real⇒ real)set”

assumes non empty D [iff, intro?] : ”D 6= {}”

and spaceD mem [iff ] : ”range(λt ∈ T. u t) ⊆ R ⇒ [range(λt ∈ T. u t) = (λt ∈ T. u t)′ A ⇒

A ⊆ T ]⇒ (λt ∈ T. u t) ∈ D”

and spaceD add1 [iff ] : ”u ∈ D ⇒ s ∈ D ⇒ u+ s ∈ D”

and spaceD add2 [simp] : ”u ∈ D ⇒ s ∈ D ⇒ u+ s = (λt ∈ T. u t+ s t)”

and spaceD add3 : ”u ∈ D ⇒ s ∈ D ⇒ u+ s = s+ u”

and spaceD add assoc : ”u ∈ D ⇒ s ∈ D ⇒ g ∈ D ⇒ (u+ s) + g = u+ (s+ g)”

and spaceD pointwise [simp] : ”u ∈ D ⇒ s ∈ D ⇒ ∀t ∈ T. (u+ s)t = u t+ s t”

and spaceD sub [iff ] : ”u ∈ D ⇒ s ∈ D ⇒ u− s ∈ D”

and spaceD mult1 [iff ] : ”u ∈ D ⇒ a ∈ < ⇒ (a . u) ∈ D”

and spaceD mult2 : ”u ∈ D ⇒ a ∈ < ⇒ ∀t ∈ T. (a . u)t = a ∗ u t”

and spaceD mult distr1 : ”u ∈ D ⇒ s ∈ D ⇒ a ∈ < ⇒ a . (u+ s) = a . u+ a . s”

and spaceD mult distr2 : ”u ∈ D ⇒ s ∈ D ⇒ a ∈ < ⇒ ∀t ∈ T. a . (u+ s)t = a ∗ u t+ a ∗ s t”

and spaceD mult distr3 : ”u ∈ D ⇒ a ∈ < ⇒ b ∈ < ⇒ (a+ b) . u = a . u+ b . u”

and spaceD mult assoc : ”u ∈ D ⇒ a ∈ < ⇒ b ∈ < ⇒ (a ∗ b) . u = a . (b . u)”

Isabelle/HOL code

locale Range Space =

fixes G :: “(real⇒ real)set”

assumes non empty G [iff, intro?] : ”G 6= {}”

and spaceG mem [iff ] : ”range(λt ∈ T. y t) ⊆ R⇒ [range(λt ∈ T. y t) = (λt ∈ T. y t)′B ⇒ B ⊆

T ]⇒ (λt ∈ T. y t) ∈ G”

and spaceG add1 [iff ] : ”y ∈ G⇒ z ∈ G⇒ y + z ∈ G”

and spaceG add2 [simp] : ”y ∈ G⇒ z ∈ G⇒ y + z = (λt ∈ T. y t+ z t)”

and spaceG add3 : ”y ∈ G⇒ z ∈ G⇒ y + z = z + y”

and spaceG add assoc : ”y ∈ G⇒ z ∈ G⇒ j ∈ G⇒ (y + z) + j = y + (z + j)”
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and spaceG pointwise [simp] : ”y ∈ G⇒ z ∈ G⇒ ∀t ∈ T. (y + z)t = y t+ z t”

and spaceG mult1 [iff ] : ”y ∈ G⇒ a ∈ < ⇒ (a . y) ∈ G”

and spaceG mult2 : ”y ∈ G⇒ a ∈ < ⇒ ∀t ∈ T. (a . y)t = a ∗ y t”

and spaceG mult distr1 : ”y ∈ G⇒ z ∈ G⇒ a ∈ < ⇒ a . (y + z) = a . y + a . z”

and spaceG mult distr2 : ”y ∈ G⇒ z ∈ G⇒ a ∈ < ⇒ ∀t ∈ T. a . (y + z)t = a ∗ y t+ a ∗ z t”

and spaceG mult distr3 : ”y ∈ G⇒ a ∈ < ⇒ b ∈ < ⇒ (a+ b) . y = a . y + b . y”

and spaceG mult assoc : ”y ∈ G⇒ a ∈ < ⇒ b ∈ < ⇒ (a ∗ b) . y = a . (b . y)”

� Signal truncation and truncation space definition: The signal trun-

cation is defined in Isabelle/HOL by declaring a definition states truncation

concept. It is represented as if there is an input signal u and there is a trun-

cation point τ which belong to the interval [0,∞) such that all the values in

the interval [0, τ) are valid and the values out of this interval are all set to

zero. Afterwards, truncation space TR is declared under specific constraints

and all truncated signals should belong to this space.

Isabelle/HOL code

definition trunc :: “(real⇒ real)⇒ (real⇒ real)⇒ real set⇒ real set⇒ bool”

where ”trunc u uτ U Uτ = (Signal u ∧ u′ T = U ∧ (∀τ ∈ T. ∀t ∈ T. if t ≤ τ then ((u t ∈ U −→

u t ∈ Uτ ) ∧ u t = uτ t) else ((u t ∈ U −→ 0 ∈ Uτ ) ∧ uτ t = 0)))”

Isabelle/HOL code

locale TR Space =

fixes TR :: “(real⇒ real)set”

assumes non empty TR [iff, intro?] : ”TR 6= {}”

and spaceTR mem [iff ] : ”trunc u uτ U Uτ ⇒ (λt ∈ Tτ . uτ t) ∈ TR”

and spaceTR 1 : ”trunc u uτ U Uτ ⇒ uτ ∈ TR⇒ Uτ ∩ U = uτ ′ Tτ”

and spaceTR 2 [iff ] : ”trunc u1 u1τ U1 U1τ ⇒ trunc u2 u2τ U2 U2τ ⇒ e1τ = u1τ − (H2 e2τ )⇒

e2τ = u2τ + (H1 e1τ )⇒ u1τ ∈ TR⇒ u2τ ∈ TR⇒ e1τ ∈ TR”

and spaceTR 3 [iff ] : ”trunc u1 u1τ U1 U1τ ⇒ trunc u2 u2τ U2 U2τ ⇒ e1τ = u1τ − (H2 e2τ )⇒

e2τ = u2τ + (H1 e1τ )⇒ u1τ ∈ TR⇒ u2τ ∈ TR⇒ e2τ ∈ TR”

and spaceTR 4 [iff ] : ”trunc u1 u1τ U1 U1τ ⇒ trunc u2 u2τ U2 U2τ ⇒ e1τ = u1τ − (H2 e2τ )⇒
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e2τ = u2τ + (H1 e1τ ) ⇒ Signal Y y1τ H1 e1τ OP ⇒ u1τ ∈ TR ⇒ u2τ ∈ TR ⇒ e1τ ∈ TR ⇒

e2τ ∈ TR⇒ y1τ ∈ TR”

and spaceTR 5 [iff ] : ”trunc u1 u1τ U1 U1τ ⇒ trunc u2 u2τ U2 U2τ ⇒ e1τ = u1τ − (H2 e2τ )⇒

e2τ = u2τ + (H1 e1τ ) ⇒ Signal Y y2τ H2 e2τ OP ⇒ u1τ ∈ TR ⇒ u2τ ∈ TR ⇒ e1τ ∈ TR ⇒

e2τ ∈ TR⇒ y2τ ∈ TR”

and spaceTR 6 : ”trunc u uτ U Uτ ⇒ Signal Y y H e OP ⇒ Signal Y yτ H eτ OP ⇒ eτ ∈

TR⇒ yτ ∈ TR⇒ yτ ′ Tτ ⊆ range yτ ∩ range y”

� Operator causality definition: Because system stability is required for

the proof of the Small-gain theorem and from the fact that the system

to be stable should be causal, system causality is defined (see stability and

causality in [70]). Causality is an important property of dynamical systems,

which is needed to describe practical real-time feedback systems. A system

is said to be causal if its output, y(t), at any point depends only on its

input, u(t), up to that point. Therefore, with the truncation property the

statement will be equivalent to (Hu)τ = (Huτ )τ , which is easily stated in

Isabelle.

Isabelle/HOL code

definition Causality :: “(real ⇒ real) ⇒ (real ⇒ real) ⇒ (real ⇒ real) ⇒ (real ⇒ real) ⇒

real set ⇒ real set ⇒ ((real ⇒ real) ⇒ real ⇒ real) ⇒ ((real ⇒ real) ⇒ real ⇒ real)set ⇒

(real⇒ real)set⇒ bool”

where ”Causality u uτ e eτ U Uτ H OP TR = ((Operator Space OP ∧H ∈ OP ∧ trunc u uτ U Uτ ∧

TR Space TR ∧ uτ ∈ TR ∧ eτ ∈ TR) −→ H(λt ∈ Tτ . e t) = H(λt ∈ Tτ . eτ t))”

� L2 norm - Cauchy-Schwarz and Minkowski integral inequalities:

Before defining system stability, there is a need to measure the norm of

a signal with its specific properties. Because there is no norm definition

in Isabelle/HOL that is suitable for the proof of the Small-gain theorem,

it was necessary to formalize and define the norm function. The norm

function which should satisfy the properties mentioned in (3.2) is defined. In

addition, the Minkowski and Cauchy-Schwarz integral inequalities [59] were
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also required to be formalized and derived in Isabelle/HOL using the exist

axioms in the software in order to satisfy the required inequality property.

Isabelle/HOL code

definition L2norm :: “real measure⇒ (real⇒ real)⇒ real set⇒ real”

where ”L2norm M f A = sqrt(LINT t : A|M. (f t)2)”
...

Isabelle/HOL code

lemma schwaz integral ineq :

fixes f g :: “real⇒ real”

assumes ”
∧
t. t ∈ A” and ”set integrable M A f” and ”set integrable M A g”

and ”set integrable M A(λt. (f t)2)” and ”set integrable M A(λt. (g t)2)”

and ”set integrable M A(λt. f t ∗ g t)” and ”(LINT t : A|M. (g t)2) > 0”

shows ”(LINT t : A|M. f t ∗ g t) ≤ sqrt(LINT t : A|M. (f t)2) ∗ sqrt(LINT t : A|M. (g t)2)”

proof
...

qed

Isabelle/HOL code

lemma minkowski integral ineq :

fixes f g :: “real⇒ real”

assumes ”
∧
t. t ∈ A” and ”set integrable M A f” and ”set integrable M A g”

and ”set integrable M A(λt. (f t)2)” and ”set integrable M A(λt. (g t)2)”

and ”set integrable M A(λt. f t ∗ g t)” and ”(LINT t : A|M. (g t)2) > 0”

shows ”sqrt(LINT t : A|M. (f t + g t)2) ≤ sqrt(LINT t : A|M. (f t)2) + sqrt(LINT t :

A|M. (g t)2)”

proof
...

qed
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� Input/output stability definition: Input/output (I/O) stability is an

essential aspect in the study of interconnected systems stability, where the

increasing or decreasing nature of the signals norm can be tracked from the

gain of the system. After completing the definitions of signals, truncation of

signals, operators causality, and the norm function, it is possible to define

I/O stability as in (3.4).

Isabelle/HOL code

definition Stability :: “(real ⇒ real) ⇒ (real ⇒ real) ⇒ (real ⇒ real) ⇒ (real ⇒ real) ⇒

real set⇒ real set⇒ real⇒ real⇒ ((real⇒ real)⇒ real⇒ real)⇒ real measure⇒ ((real⇒

real)⇒ real⇒ real)set⇒ (real⇒ real)set⇒ bool”

where ”Stability u uτ e eτ U Uτ γ β H M OP TR = ((Causality u uτ e eτ U Uτ H OP TR) −→

(∃a. ∃b. a ∈ T ∧ b ∈ T ∧ γ = a ∧ β = b ∧ ((L2norm M (λt. (H e)t)Tτ ) ≤ γ ∗

(L2norm M(λt. eτ t)Tτ ) + β)))”

� Small-gain theorem formal proof : After completing the required def-

initions for formalising the proof, it is possible now to apply the prove

procedures step-by-step. The proof steps (3.7)-(3.13) can be applied in

Isabelle/HOL under the same assumptions as in [70] in addition to other

assumptions listed to perform the proof in Isabelle/HOL. Examples of such

assumptions are signals u1 and u2 with their truncation, domain space,

range space, truncation and operator spaces, causality and stability, and

the integrable functions (signals). The proof steps need simple algebra, in-

equalities, substitutions and some arithmetic operations, which are proved

in Isabelle/HOL platform.

Isabelle/HOL code

theorem Small Gain Theorem :

assumes ”
∧
τ. τ ∈ T” and ”

∧
t. t ∈ Tτ” and ”Signal u1 ∧ Signal u2” and ”trunc u1 u1τ U1 U1τ ∧

trunc u2 u2τ U2 U2τ ” and ”Operator Space OP ⇒ H1 : D → G ∧ H1 ∈ OP ∧ H2 : G →

D ∧ H2 ∈ OP” and
...
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shows ”(L2norm M e1τ Tτ ) ≤ ((L2norm M u1τ Tτ )+γ2∗(L2norm M u2τ Tτ )+β2+γ2∗β1)/(1−

γ1 ∗ γ2)”

and ”(L2norm M e2τ Tτ ) ≤ ((L2norm M u2τ Tτ ) + γ1 ∗ (L2norm M u1τ Tτ ) + β1 + γ1 ∗ β2)/(1−

γ1 ∗ γ2)”

and ”(L2norm M (λt. e1 t+ e2 t)Tτ ) ≤ (L2norm M e1 Tτ ) + (L2norm M e2 Tτ )”

proof
.
..

qed

3.4 Discussion

The interaction process in Isabelle/HOL is carried out in lemmas and theorem

only, where no interaction is needed for definition and locale. Some lemmas and

theorems can be proven automatically using the supported tools in Isabelle prover

such as try0, try, and sledgehammer. If these tools failed to find the proof then

the user needs to interact with the prover to find the required pre-existing lemma

or theorem either for the axioms or pre-proven theorems. However, for the Small-

gain theorem proof, there was a need for many interactions due to the number of

assumptions. It is wealth to mention that when a theorem or lemma has many

assumptions then the proof will be difficult to be carried out automatically using

the assistant tools, hence interaction is important to finish the proof. Another

note form the work conducted so far is that incorrect assumptions will lead to

incorrect proof. Moreover, the assistant tools that use to automate the proof may

produce incorrect results and therefore the user should check what are the lemmas

and theorems used by these tools whether they are related to the statement to be

proven or not. If there is any unrelated lemma or theorem, the user can replace

it with the related one by finding it manually in Isabelle’s proofs repository.

Therefore, the user should always check the producing proof to make sure that

the proof results are correct. Finally, if the proof is conducted interactively step

by step, the prover can not pass any incorrect argument or an argument which is

not proved in the prover.
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3.5 Shortcomings of Available Methods

Although Isabelle/HOL has an extensive list of proved theories, there was a need

for more theories and formalizations to model control systems and their prop-

erties. Therefore, some theories and formulas were proved first before proving

the Small-gain theorem. The reason for this is that the library of Isabelle is still

under development like other interactive theorem prover systems. For instance,

the Cauchy-Schwarz’s integral inequality, Minkowski’s integral inequality and the

norm of square integrable function are needed in the proof steps. Therefore, these

theories in addition to some related lemmas are formalized and proved (see the

web-repository [2]). These theories have been proved as a part of this work be-

cause in the proof of the Small-gain theorem, the norm with the integration of a

function is needed and the norm definition that already exists in Isabelle library

is not applicable. In addition, formalising and proving ZF over HOL platform

are needed to work on signals and operators sets. These are some examples of

the current limitations of ITPs for proving control theories. Other mathematical

concepts are needed to formally prove such theories especially for those dealing

with inequalities, which are used extensively in control theory. These concepts are

utilised to formalize and prove control theory statements in the formal verification

process.

Inequalities involving real-valued special functions are more effective to prove

in the MetiTarski theorem prover but it has not yet been integrated with Is-

abelle/HOL. Moreover, MetiTarski cannot easily be used in association with Is-

abelle as it is an automated theorem prover. This work required adding and im-

proving theories to Isabelle to deal with control engineering problems. Examples

of such improvements are by proving mathematical concepts related to control

aspect such as inequalities, convergence concepts, norms, extending ordered-pair

theory over HOL, improving set theory over HOL, function algebras, operators,

operator norm, etc. Furthermore, there is a need for a collaboration between

computer scientists and control engineers to develop and extend theories in the-

orem proving to improve the formal verification process and this will ultimately

lead to assure the robustness of control systems.
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3.6 Chapter Summary

The work carried out so far has indicated that even the most theoretical control

concepts involving nonlinear operators, causality and normed spaces of signals

over the infinite semi-axis of time can be handled by formal languages and theorem

proving techniques in higher-order logic using Isabelle/HOL and associated tools.

The proof of the Small-gain theorem in Isabelle/HOL indicated that the highly

abstract and general control systems can be handled by theorem proving. It was

also found that there is a possibility to formulate and prove other control theories

using ITPs. This may need to formalise some additional mathematical concepts

to prove the intended control theories.
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Chapter 4

Nonlinear Attitude Control

Design and Verification of a

Quadcopter

4.1 Overview

A new attitude controller is presented in this chapter for quadcopters to illustrate

the power of controller verification by theorem proving. The example is based

on the well known robust inverse dynamics approach [111, 115, 116]. Controller

design is analysed using the Lyapunov method to guarantee that the system is

asymptotically stable. Then, controller stability is verified by translating the

derivative of the Lyapunov function to a FOL formula and applying it in the

MetiTarski theorem prover.

4.2 Quadcopter UAV Dynamics

The basic model of the quadcopter is shown in Fig. 4.1. The quadcopter from

its name consists of four motors, the front M1 and rear M3 motors rotate clock-

wise while the other two motors, M2 and M4, rotate counter-clockwise. This

configuration enables the quadcopter vehicle to cancel the effect of the moments

produces by each pair of motors. The unmanned quadcopter consists of two
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movements: the transitional and rotational. The first determines the vehicle po-

sition in the world (inertial) frame while the second, which is considered in this

chapter, determines the vehicle attitudes.

The quadcopter moves forwards and backwards when the propeller angular

velocity Ω1 of M1 reduces/increases and Ω3 of M3 increases/reduces by the same

amount while keeping the total thrust constant. The forward/backward motion

is determined by the pitch angle θ around the YB-axis while the right/left motion

is determined by the roll angle φ around the XB-axis. Both pitch and roll angles

are calculated from the position controller and passed to the attitude controller

for calculating the rotational pitch and roll torques τθ and τφ respectively. The

rotation around the ZB-axis is determined according to the given yaw angle ψ

by increasing/decreasing the propeller angular velocity of the pair of motors M1

and M3 and decreasing/increasing it for the pair of motors M2 and M4, since the

yaw rotational torque τψ is determined from the given yaw ψ angle.
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Figure 4.1: A quadcopter illustration in body frame and in inertia frames.

The derivation of the quadcopter attitude dynamics is based on Euler-Lagrange

rigid body rotational dynamics (described in Section 2.1.2.2) for controlling the

quadcopter rotational motion. The quadcopter attitude dynamics in the B-frame
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using Euler-Lagrange equation which as described (2.19)-(2.20) is

J(ηηη)η̈ηη + C(ηηη, η̇ηη)η̇ηη + ddd = τττ , (4.1)

where ddd ∈ <3 is the vector representing the unknown disturbances. Each motor

has an angular velocity Ω that produces the vertical force f where

fi = kΩ2
i (4.2)

and moments

mi = bΩ2
i (4.3)

where k and b are the lift and drag constants respectively. The input to the

system, τττ , is

τττ =

τφτθ
τψ

 =

 `k(Ω2
2 − Ω2

4)

`k(−Ω2
1 + Ω2

3)

b(−Ω2
1 + Ω2

2 − Ω2
3 + Ω2

4)

 , (4.4)

where ` is the length from the centre of mass of the quadcopter to each rotor.

From (4.1) and (4.4), the attitude dynamics equation becomes

η̈ηη = J−1(ηηη)[τττ − nnn(ηηη, η̇ηη)− ddd], (4.5)

where nnn(ηηη, η̇ηη) = C(ηηη, η̇ηη)η̇ηη.

4.3 Control Design

A nonlinear controller is designed for the quadcopter using inverse dynamic con-

trol method with considering parameters uncertainty and disturbances. Robust

control is also used to bound the uncertainty and then Lyapunov function is used

to guarantee asymptotic stability of the control system. Assuming the roll φ and

pitch θ angles are limited to

− π

2
< φ <

π

2
, −π

2
< θ <

π

2
(4.6)
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and by defining the nonlinear control law as

τττ = Ĵ(ηηη)uuu+ n̂̂n̂n(ηηη, η̇ηη) + d̂̂d̂d+ γγγ, (4.7)

where uuu represents a new input vector to be designed later, Ĵ(ηηη) is an estimated

matrix of the Jacobian matrix J(ηηη), n̂̂n̂n(ηηη, η̇ηη) is the nominal vector of nnn(ηηη, η̇ηη) and

the additional term γγγ is added to render the uncertainty of the system which will

be defined later; hence from (4.7), equation (4.1) becomes

J(ηηη)η̈ηη + nnn(ηηη, η̇ηη) + ddd = Ĵ(ηηη)uuu+ n̂̂n̂n(ηηη, η̇ηη) + d̂̂d̂d+ γγγ. (4.8)

Assumption 1 : Assume that an estimate d̂̂d̂d of the disturbance ddd is known (where

d̂̂d̂d can be estimated from the maximum wind force that the aircraft may expose),

with an error term ∆d∆d∆d = d̂̂d̂d−ddd which is known to be bounded by D and D̄ where

‖∆d∆d∆d‖ ≤ D, ‖ddd‖+D < D̄ (4.9)

Assumption 2 : Assuming that the error between the estimated vector n̂̂n̂n(ηηη, η̇ηη) and

the actual nnn(ηηη, η̇ηη) vector, ∆n∆n∆n(ηηη, η̇ηη), is also bounded by upper bound as by S as

follows

‖∆n∆n∆n(ηηη, η̇ηη)‖ ≤ S. (4.10)

Suppose that the desired rotational vector is ηηηd and η̇ηηd is to be controlled,

then the tracking error defined as,

eee = ηηηd − ηηη (4.11)

ėee = η̇ηηd − η̇ηη (4.12)

where ηηη and η̇ηη are the measured Euler angles and Euler rates respectively. Given

η̈ηηd, the η̇ηηd can be obtained by integration and the control input uuu in (4.7) is

defined by

uuu = η̈ηηd +Krėee+Kηeee = η̈ηηd +Kr(η̇ηηd − η̇ηη) +Kη(ηηηd − ηηη) (4.13)
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where Kr = diag[kr1 kr2 kr3 ] ∈ <3×3, Kη = diag[kη1 kη2 kη3 ] ∈ <3×3 are positive-

definite diagonal gain matrices. From (4.8), we have

η̈ηη = Ĵ(ηηη)J−1(ηηη)uuu+ J−1(ηηη)[∆n∆n∆n(ηηη, η̇ηη) + ∆d∆d∆d]

+ J−1(ηηη)γγγ

= uuu+ (Ĵ(ηηη)J−1(ηηη)− I)uuu+ J−1(ηηη)[∆n∆n∆n(ηηη, η̇ηη) + ∆d∆d∆d]

+ J−1(ηηη)γγγ

= uuu− vvv + J−1(ηηη)γγγ

where

vvv = [I − Ĵ(ηηη)J−1(ηηη)]uuu− J−1(ηηη)[∆n∆n∆n(ηηη, η̇ηη) + ∆d∆d∆d].

(4.14)

From (4.11) - (4.14), we have the error dynamics as

ëee+Krėee+Kηeee = vvv − J−1(ηηη)γγγ, (4.15)

then by setting EEE ∈ <6×1 to

EEE =

[
eee

ėee

]
(4.16)

the following closed-loop error dynamics equation is obtained

ĖEE = AEEE +B[vvv − J−1(ηηη)γγγ] (4.17)

where

A =

[
03×3 I3×3

−K3×3
η −K3×3

r

]
, B =

[
03×3

I3×3

]
. (4.18)

To bound the error, the uncertainty in vvv needs to be bounded and this can be

achieved by using robust control technique then γγγ needs to be defined using Lya-

punov function. The control input uuu in addition to the term γγγ should guarantee

asymptotic stability for any vvv varying within the bounded range, where vvv is un-

certain but an estimation on its range of variation can be obtained.

Assumption 3 : From (4.14), the following assumptions have been chosen in

order to bound the term vvv

sup(‖η̈ηηd‖) < H (4.19)
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‖I − Ĵ(ηηη)J−1(ηηη)‖ ≤ ξ ≤ 1, (4.20)

and for the matrix J(ηηη), in addition to the positive-definite matrix property, it

should have an upper and lower limited bounds

βmin ≤ ‖J−1(ηηη)‖ ≤ βmax. (4.21)

4.4 Stability Analysis

The Lyapunov direct method is used to define the term γγγ and to guarantee that

the system error converges to zero. By setting the equilibrium point EEE = 0 where

V (0) = 0 and defining the following positive-definite function

V (EEE) = EEETQEEE > 0 , ∀EEE 6= 0 (4.22)

were Q ∈ <6×6 is a symmetric positive-definite matrix. The time derivative of

the function V (EEE) along the trajectory of the error system is

V̇ (EEE) =ĖEE
T
QEEE +EEETQĖEE

=EEET [ATQ+QA]EEE + 2EEETQB(vvv − J−1(ηηη)γγγ),
(4.23)

since A has eigenvalues with all negative real parts, hence for any symmetric

positive-definite matrix P , we have

ATQ+QA = −P, (4.24)

which gives a unique solution Q. Therefore, the term EEET [ATQ+QA]EEE in (4.23)

is negative and the equation can be rewritten as

V̇ (EEE) = −EEETPEEE + 2EEETQB(vvv − J−1(ηηη)γγγ). (4.25)

As the term −EEETPEEE in the above equation is negative definite, then if EEE ∈
G(BTQ) the solution converges. If EEE /∈ G(BTQ) then γγγ must be chosen to
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render the second term of the above equation to be less than or equal to zero.

The term γγγ has been chosen as

γγγ =


δ(EEE)

‖BTQEEE‖
BTQEEE ‖BTQEEE‖ ≥ σ

δ(EEE)

σ
BTQEEE ‖BTQEEE‖ < σ

(4.26)

where δ(EEE) is a positive time-varying scalar. Assuming that ‖BTQEEE‖ ≥ σ, then

we have

EEETQB(vvv − J−1(ηηη)γγγ) ≤‖BTQEEE‖‖vvv‖ − βminδ(EEE)‖BTQEEE‖

=‖BTQEEE‖(‖vvv‖ − βminδ(EEE))
(4.27)

and if we choose δ(EEE) as

δ(EEE) ≥ ‖v
vv‖

βmin
(4.28)

then from (4.9), (4.10), (4.14), (4.19), (4.20), and (4.21), we have

‖vvv‖ ≤ ‖I − Ĵ(ηηη)J−1(ηηη)‖(‖η̈ηηd‖+ ‖Kr‖‖ėee‖+ ‖Kη‖‖eee‖)

+ ‖J−1(ηηη)‖(‖∆n∆n∆n(ηηη, η̇ηη)‖+ ‖∆d∆d∆d‖)

≤ ξ(H + ‖Kr‖‖ėee‖+ ‖Kη‖‖eee‖) + βmax(S +D)

(4.29)

from previous two equations, we get

δ(EEE) ≥ ξ

βmin
(H + ‖Kr‖‖ėee‖+ ‖Kη‖‖eee‖) +

βmax
βmin

(S +D) (4.30)

Finally, (4.25) becomes

V̇ (EEE) = −EEETPEEE + 2EEETQB(vvv − J−1(ηηη)
δ(EEE)

‖BTQEEE‖
BTQEEE) < 0 (4.31)

or

V̇ (EEE) = −EEETPEEE + 2EEETQB(vvv − J−1(ηηη)
δ(EEE)

σ
BTQEEE) < 0 (4.32)

The next section illustrates the application of these results in Simulink/Mat-

lab.

57



4. Nonlinear Attitude Control Design and Verification of a
Quadcopter

4.5 Simulation

The controller developed in the previous section has been implemented in Simulink/-

Matlab for testing with the nonlinear quadcopter dynamics of (4.1). In order to

test the attitude controller, roll and pitch angles need to be passed as inputs to

the attitude controller in order to compute the required torque. For this purpose,

a simple cascaded P position controller is implemented. The cascaded P position

controller takes the given path trajectory as input and the aircraft’s measured

position and velocity as feedback and calculates the desired roll and pitch an-

gles. Note that the yaw angle is given directly as an input from the pilot or with

the given XYZ trajectory. The controllers are simulated with the quadcopter’s

nonlinear dynamics which are implemented in Simulink/Matlab to achieve better

results.

The initial roll φ, pitch θ and yaw ψ angles are set to zero. According to the

given trajectory, the attitude controller shows that the measured roll, pitch and

yaw angles track the references. As can be seen in Fig. 4.2 - 4.7, the measured roll,

pitch and yaw (dot-red line) are well followed the reference signal (continuous blue

line) in different maneuvers and even with the existence of external disturbances

like winds. When any disturbance occur, the controller should produce a counter

amount which approximately equals the disturbance value to cope this variation

and keep the drone within the stability bounds. The controller parameters are

obtained and listed in Table 4.1 which are used in the verification process later.

From (4.24), the positive definite matrix P is chosen then the symmetric

positive definite matrix Q is obtained as

P =


9 ∗ 10−12 0 0 0 0 0

0 9 ∗ 10−12 0 0 0 0

0 0 5 ∗ 10−9 0 0 0

0 0 0 3 ∗ 10−8 0 0

0 0 0 0 3 ∗ 10−8 0

0 0 0 0 0 8 ∗ 10−4

 (4.33)

Q =


2 ∗ 10−7 0 0 0 0 0

0 2 ∗ 10−7 0 0 0 0

0 0 4.6 ∗ 10−4 0 0 0

0 0 0 3.8 ∗ 10−6 0 0

0 0 0 0 3.8 ∗ 10−6 0

0 0 0 0 0 8.2 ∗ 10−4

 (4.34)
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Figure 4.2: Roll angle without disturbances

Figure 4.3: Roll angle with disturbances
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Figure 4.4: Pitch angle without disturbances

Figure 4.5: Pitch angle with disturbances
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Figure 4.6: Yaw angle without disturbances

Figure 4.7: Yaw angle with disturbances
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Table 4.1: Quadrotor Parameters

Parameter Value Parameter Value

Îx 5.831 ∗ 10−3 σ 9 ∗ 10−13

Îy 5.831 ∗ 10−3 k 12 ∗ 10−8

Îz 1.166 ∗ 10−2 b 9 ∗ 10−6

kη1 17.5 ξ 0.5
kη2 17.5 H 1.2
kη3 1.8 S 1 ∗ 10−3

kr1 0.004 D 1 ∗ 10−3

kr2 0.004 βmin 170.5
kr3 0.4826 βmax 173
` 20 cm

4.6 Controller Stability Verification

To ensure that the control system is asymptotically stable using symbolic com-

putations, equation (4.31) and (4.32) should be strictly negative with the given

assumptions. Simulation can not guarantee that this is valid for all possible val-

ues as it is relying on numerical computations. Therefore, there is a need to

check the validity of Lyapunov stability using symbolic computations. This can

be done using theorem provers such as MetiTarski. The following subsections will

demonstrate the validity of the controller stability using the MetiTarski prover.

4.6.1 Lyapunov Stability Verification

Due to the limitations of MetiTarski prover as it is a FOL system which means

that it works on real scalar values without the ability to work with vectors and

matrices, the Lyapunov equations (4.31) and (4.32) have been simplified using the

Matlab symbolic toolbox and then formalised to the FOL format to accomplish

the verification task. All code which have been formalized in MetiTarski prover

to verify the control system stability can be found in the web-repository [2]. An

example of the code is shown below:
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MetiTarski code

fof(QCD_Lyap_eq1_E1,conjecture, ![E_1,E_2, E_3,E_4,E_5,E_6,Phi,Theta,V_1]:

?[Delta_E_1]:

%assumptions

(E_1 != 0 & abs(E_1) <= 0.0987 & abs(E_4) <=1.1071 & E_2 != 0 &

abs(E_2) <= 0.0987 & abs(E_5) <=1.1071 & E_3 != 0 & abs(E_3) <= 1.5533 &

abs(E_6) <= 2.7957 & Phi > -1.5708 & Phi <1.5708 & Theta > -1.5708 &

Theta <1.5708 & V_1 <=(0.5*(1.2+(0.004*abs(E_4))+(17.5*abs(E_1)))

+ (173*(0.001+0.001))) & Delta_E_1 > 0 & Delta_E_1 >= ((0.5/170.5)*

(1.2+(0.004* abs(E_4))+(17.5*abs(E_1)))) + ((173/170.5) *(0.001+0.001))

% implies

=> (... < 0)).

%Note: the above "..." can be seen in the web repository.

Table 4.2: Variables and vectors notations in MetiTarski

Variable/Vector Notation
φ Phi
θ Theta
ψ Psi

EEE(i) E i
vvv(i) V i
δ(EEE) Delta E

As can be seen in the code above, in the first line, fof related to first-order logic

and the quantifiers (!) and (?) means for any and for some respectively, which

are used to indicate variables quantification. The symbol => means implies

which indicate that the lines before this symbol are assumptions and after is the

statement to be proven. After implies(=>), the Lyapunov equation (4.31) with

the first element scalar value of the error vector EEE(1), which is E1 in the above

code, is implemented in MetiTarski and it shows that the formula is satisfy the

given assumptions for all possible values within the given bounds. The error eee

and error rate ėee values in EEE vector are bounded based on the assumption in (4.6)

as 0 < |EEE(1, 2)| ≤ 0.0987, 0 < |EEE(3)| ≤ 1.5533, the error rates 0 < |EEE(4, 5)| ≤
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1.1071 and 0 < |EEE(6)| ≤ 2.7957, where all values are in radians. The time

required for MetiTarski prover to generate the proof in the above code is 0.288

seconds. Note that the proof in MetiTarski was on a Linux Ubuntu operating

system, Core i5 1.6 GHz CPU and 8 GB RAM. The variables notation used in

MetiTarski is shown in Table (4.2). The verification process performed for all

error values in EEE vector for both (4.31) and (4.32) to complete the controller

stability verification process. The approach used above is a first step towards

verifying the controller stability while further verification processes can be done

by proving the correctness of the controller and it stability derivations. This can

not be achieved using FOL provers like MetiTarski due to their limitation but

HOL interactive theorem proving like Isabelle/HOL can be used (see Chapter 7).

Furthermore, this approach can be implemented onboard in realtime to check the

stability during the flight as described in 7.3.2.

4.7 Chapter Summary

A model-based verification technique using symbolic computations is presented

to verify quadcopter stability based on Lyapunov’s direct method using the Meti-

Tarski automated theorem prover. A nonlinear robust attitude controller is pre-

sented using inverse dynamics control method with system uncertainty and dis-

turbances. The control system implemented in Simulink/Matlab and the results

have been shown. The verification process results show that control system sta-

bility can be verified using ATP to guarantee asymptotic stability of the controller

and to ensure that the system works within the given bounds and performance

specifications.
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Chapter 5

Nonlinear Attitude Control

Design and Verification for a

Helicopter

5.1 Overview

In this chapter, a robust nonlinear attitude controller is designed which takes

into account modelling uncertainty and external wind disturbances for an un-

manned small helicopter system. The controller stability is demonstrated using

Lyapunov direct method and an invariant set is defined with considering param-

eters constraints. The controller is then verified since the verification method

includes verifying that the control system is asymptotically stable and ensuring

that the system states are within the defined control set using formal methods

represented by MetiTarski [100] automated theorem prover (ATP). The aircraft

control parameters are computed based on a VARIO Benzin Trainer helicopter

[120].

The motivation in this research is to work towards automating this verification

method and integrating MetiTarski with the autopilot system [12] to perform on-

board real-time verification. The parameters required for the verification process

can be passed from the autopilot to the MetiTarski prover. The results produced

by MetiTarski, proved or not proved, can be then passed back to the autopilot to
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check whether the aircraft is unstable or out of the designed constraints. This will

allow the autopilot could make decisions to cope with this, for example, avoiding

any aggressive maneuvers or performing an emergency landing. By using this

approach, the autopilot flight management system will be more trustworthy; i.e.

if the vehicle becomes unstable or the controller specifications constraints are vi-

olated, the autopilot will either send warnings to the pilot, for semi-autonomous

flight or perform an emergency safe landing in case of full-autonomous flight.

This verification method is general and can be applied to different kinds of au-

tonomous UAVs that include autopilots such as multicopters and fixed wings

crafts. To demonstrate the proposed approach, the nonlinear dynamical model

with the designed controller of the helicopter UAV are implemented in Simulink/-

Matlab and, as a first step towards the integration, simulation and MetiTarski

are employed to illustrate the possibility of implementing the verification method

with the autopilot system.

5.2 Helicopter UAV Dynamics

The small helicopter UAV is shown in Fig. 5.1. The helicopter aircraft is con-

trolled by four operating controls: 1) the throttle TM which determines the

amount of thrust generated by the main motor PM ; 2) the throttle TR which

determines the amount of side force produces by the tail motor PR that required

to rotate the aircraft (yaw); 3) collective pitch for controlling the angles of main

motor blades hence moving the aircraft up/down vertically; 4) cyclic pitch for

determining the flapping angles which are tilting the main rotor blades to move

the aircraft forward/backward (pitch) or right/left (roll). More details on the

dynamics of a Helicopter can, for example, be found in [99, 116]. However, this

chapter will present only the attitude rotational control to illustrate the proposed

approach.

The helicopter three-dimensional attitude dynamics are represented in the

body-fixed frame B by Euler-Lagrange rigid body rotational dynamics (which

were described in Section 2.1.2.2) as follows

H(qqq)q̈qq +D(qqq, q̇qq)q̇qq +wwwd = τττ , (5.1)
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where qqq = [ψ(t) θ(t) φ(t)]T ∈ <3 is the Euler angles vector with yaw, pitch and

roll respectively; q̇qq ∈ <3 represents the Euler rates vector and q̈qq ∈ <3 is the Euler

acceleration vector; wwwd = [wdψ(t) wdθ(t) wdφ(t)]T ∈ <3 is the external disturbances

vector; τττ = [τψ(t) τθ(t) τφ(t)]T ∈ <3 is the torque vector; D(qqq, q̇qq) ∈ <3×3 is

the Coriolis matrix which the total matrix is shown in equation 5.129 of [25].

H(qqq) ∈ <3×3 is an invertible Jacobian symmetric positive-definite matrix

H(qqq) =

Jxs2
θ + Jyc

2
θs

2
φ + Jzc

2
θc

2
φ Jycθsφcφ − Jzcθsφcφ −Jxsθ

Jycθsφcφ − Jzcθsφcφ Jyc
2
φ + Jzs

2
φ 0

−Jxsθ 0 Jx

 (5.2)

where J ∈ <3×3 is the symmetric inertia matrix; s and c are short-hand sin and

cos respectively. The relation between the Euler rates q̇qq and the vehicle angular

velocities ωωω in B is given by

ωωω = Λ q̇qq,

ωrωq
ωp

 =

−sθ 0 1

cθsφ cφ 0

cθcφ −sφ 0


ψ̇θ̇
φ̇

 , (5.3)

where q̇qq = Λ−1ωωω. The main motor PM produces a vertical thrust TM in the ZB

axis and the tail motor PR produces a lateral thrust TR in the YB axis. The total

thrust vector of the main and tail motors are FFFM and FFFR respectively, where

FFFM =
|TM |√

1− s2(a).s2(b)
.

−c(a).c(b)

c(a).s(b)

−s(a).c(b)

 , FFFR =

 0

TR

0

 , (5.4)

where a and b are the longitudinal and lateral flapping angles respectively. The
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Figure 5.1: Helicopter UAV configuration

total torque vector τττ in B-frame is

τττ = `M ×FFFM + `R ×FFFR +EEEM −EEER

=
|TM |√

1− s2(a).s2(b)
.

 `yM .s(a).c(b) + `xM .c(a).s(b)

`xM .c(a).c(b)− `zM .s(a).c(b)

−`yM .c(a).c(b)− `zM .c(a).s(b)



+

 `xRTR

0

−`zRTR

 +

|ĒM |0

0

−
 0

|ĒR|
0

 ,
(5.5)

where the vectors `M and `R represent the length from the centre of mass of the

helicopter to the hub of the main and tail motors respectively, EEEM and EEER are

vectors which represent the anti-torques that acting through the main and tail

motors hubs which are generated from the aerodynamic drags on both motors.

More details of the above derivations can be found in [25].
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5.3 Control System Design

The control system is designed based on the inverse dynamics control [115] with

considering parameters uncertainty of the system and external disturbances. Con-

troller stability is illustrated by the Lyapunov second method. Considering the

reference trajectory is qqqref and q̇qqref , the trajectory error is defined as

q̂qq = qqqref − qqq (5.6)

˙̂qqq = q̇qqref − q̇qq (5.7)

¨̂qqq = q̈qqref − q̈qq, (5.8)

where q̇qqref is obtained such that

q̇qqref = Kp qqqref , (5.9)

and q̈qqref is the derivative of q̇qqref . Considering the torque τττ components are the

control inputs, the nonlinear control law is defined as

τττ = H̃(qqq)uuuc + uuua + D̃(qqq, q̇qq)q̇qq, (5.10)

where H̃(qqq) and D̃(qqq, q̇qq) are the nominal matrices of H(qqq) and D(qqq, q̇qq) respectively.

The control input uuuc is defined as

uuuc = q̈qqref +Kd
˙̂qqq +Kpq̂qq, (5.11)

where Kd = diag[Kd1 Kd2 Kd3] ∈ <3×3 and Kp = diag[Kp1 Kp2 Kp3] ∈ <3×3

are positive-definite matrices. The auxiliary input uuua is added to the control

law (5.10) to compensate the uncertainty and disturbances in (5.1) which will be

chosen depending on the system stability. The following assumptions have been

proposed to pursuit the robust control design:

1) As the helicopter actuators have limited rotational speed, the rotational Euler

rates and acceleration can be bounded by positive constants α1, α2 > 0 such that

‖q̇qqref‖ ≤ α1 (5.12)
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‖q̈qqref‖ ≤ α2. (5.13)

2) The reference Euler angles are varying within limits such that

‖qqqref‖ ≤ β. (5.14)

3) Due to the uncertainty in moments of the inertia matrix J , it is possible to set

a lower and upper bound on the Jacobian matrix H(qqq) such that

‖H−1(qqq)‖ ≤ γ1 (5.15)

‖H−1(qqq)‖ ≥ γ2 (5.16)

‖I −H−1(qqq)H̃(qqq)‖ ≤ γ3 (5.17)

‖H̃(qqq)‖ ≤ γ4, (5.18)

where γ1, γ2, γ3, γ4 > 0 and I ∈ <3×3 is an identity matrix.

4) From (5.12) and (5.13) which require the Euler rates and acceleration to be lim-

ited and using the assumptions in (5.15)-(5.18) for the inertia matrix uncertainty

and setting D̂(qqq, q̇qq)q̇qq as the difference between the actual D(qqq, q̇qq)q̇qq and nominal

D̃(qqq, q̇qq)q̇qq, the following constant bounds, λ1, λ2 > 0, are chosen as

‖D̃(qqq, q̇qq)q̇qq‖ ≤ λ1 (5.19)

‖D̂(qqq, q̇qq)q̇qq‖ ≤ λ2. (5.20)

5) The wind disturbance vector wwwd is sufficiently smooth and an upper bound

δ > 0 is known such that

‖wwwd‖ ≤ δ, (5.21)

where δ = sup ‖w(t)‖; since w(t) is the wind function that could violate the

vehicle where its estimated superior value can be computed in practice.

The vehicle acceleration is obtained from the dynamics in (5.1) and the control

law in (5.10) as

q̈qq = H−1(qqq)H̃(qqq)uuuc +H−1(qqq)[uuua +wwwd + D̂(qqq, q̇qq)q̇qq], (5.22)
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and after few simplifications, we get

q̈qq = H−1(qqq)uuua + uuuc − bbb,

where bbb = [I −H−1(qqq)H̃(qqq)]uuuc −H−1(qqq)[wwwd + D̂(qqq, q̇qq)q̇qq].
(5.23)

The error ˆ̈qqq in (5.8) becomes

ˆ̈qqq = −Kpq̂qq −Kd
˙̂qqq −H−1(qqq)uuua + bbb, (5.24)

and in terms of the closed-loop dynamics, the above equation can be rewritten as

ξ̇ξξ = Aξξξ + I[−H−1(qqq)uuua + bbb],

where ξξξ =

[
q̂qq
ˆ̇qqq

]
, A =

[
0 I

−Kp −Kd

]
, I =

[
0

I

]
.

(5.25)

Choosing the candidate Lyapunov function V (ξξξ) > 0 for ∀ξξξ 6= 0 as

V (ξξξ) = ξξξTPξξξ, (5.26)

where V (0) = 0 at the equilibrium point, P ∈ <6×6 and Z ∈ <6×6 are positive-

definite matrices such that −Z = ATP + PA. The rate of change of V (ξξξ) with

respect to the time is

V̇ (ξξξ) = ξ̇ξξ
T
Pξξξ + ξξξTPξ̇ξξ

= ξξξT [ATP +MA]ξξξ + 2ξξξTP I[−H−1(qqq)uuua + bbb]

= −ξξξTZξξξ + 2ηηηT [−H−1(qqq)uuua + bbb],

(5.27)

where ξ̇ξξ is given by (5.25) and ηηη = ITPξξξ. Equation (5.27) is required to be strictly

negative to ensure system stability. The first part of (5.27) is negative-definite

while the second needs to be negative since it depends on the value of uuua. The

auxiliary input uuua is defined as

uuua =

ν(ξξξ, t)‖ηηη‖−1ηηη ‖ηηη‖ ≥ %

ν(ξξξ, t)%−1ηηη ‖ηηη‖ < %
(5.28)
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where ν(ξ, t) is a time varying scalar function to be defined later and % is a

constant for bounding the error in ηηη. For ‖ηηη‖ ≥ % and using (5.16), the second

term 2ηηηT [−H−1(qqq)uuua + bbb] in (5.27) is bounded such that

2ηηηT [−H−1(qqq)uuua + bbb] ≤ 2‖ηηη‖[− γ2ν(ξξξ, t) + ‖bbb‖]. (5.29)

To ensure that (5.29) is negative hence stable control, ν(ξξξ, t) should be chosen

such that the term γ2ν(ξξξ, t) is semi-positive and greater than or equal to ‖bbb‖.
Thus, ν(ξξξ, t) is defined depending on the superior value of the vector bbb such that

‖bbb‖ ≤ b̄. From b (5.23) and uuuc (5.11), we have

‖bbb‖ ≤ ‖I −H−1(qqq)H̃(qqq)‖[‖q̈qqref‖+ ‖K‖‖ξξξ‖]

+ ‖H−1(qqq)‖[‖wwwd‖+ ‖D̂(qqq, q̇qq)q̇qq‖],
(5.30)

where K = [Kp Kd]
T ∈ <3×6 and ξξξ (5.25). Recalling the assumptions (5.13)-

(5.21), we have b̄ as

‖bbb‖ ≤ γ3[α2 + ‖K‖‖ξξξ‖] + γ1[δ + λ2] := b̄. (5.31)

From (5.29) where the stability condition should be γ2ν(ξξξ, t) ≥ b̄ and using (5.31),

the scalar function ν(ξξξ, t) is given by

ν(ξξξ, t) ≥ γ−1
2 b̄ = γ3γ

−1
2 [α2 + ‖K‖‖ξξξ‖] + γ1γ

−1
2 [δ + λ2]. (5.32)

Note that ν(ξξξ, t) is time dependent because it is relying on the error ξξξ which

varies with time; since ξξξ(t) is written as ξξξ for clarity. Finally, the asymptotic

stability is guaranteed since by substituting uuua (5.28) (for ‖ηηη‖ ≥ %) in equation

(5.27), we get

V̇ (ξξξ) = −ξξξTZξξξ + 2ηηηT [−H−1(qqq)[ν(ξξξ, t)‖ηηη‖−1ηηη] + bbb] < 0, (5.33)

and for ‖ηηη‖ < %,

V̇ (ξξξ) = −ξξξTZξξξ + 2ηηηT [−H−1(qqq)[ν(ξξξ, t)%−1ηηη] + bbb] < 0. (5.34)
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The following section will illustrate how to determine a robust invariant set

of the designed controller which will be used in the verification process to show

that all the system trajectories will stay within this set; hence ensure controller

stability and robustness.

5.4 Handling of Constraints

This section finds the dynamical state vectors that include the attitude and rota-

tion rates, for which the stable control of the craft is feasible. The control scheme

is obtained by suitably chosen references for the guidance derivatives under the

constraints of the current state of attitude error and reference for the rotation

rate and the current attitude itself. First, the state set is defined where a fea-

sible control input exists under the rotate per minute (rpm) limitations of the

motors of the helicopter. Then the state evolution within the set will be verified

as illustrate in Section 5.6.

Definition 5.1. Let xxx = [qqq q̇qq]T , the helicopter rotational dynamics is defined by

ẋxx =

[
q̇qq

q̈qq

]
=

[
Λ−1ωωω

H−1(qqq)uuua + uuuc − bbb

]
, (5.35)

and a robust invariant set S(.) ⊂ <6 is called a control enabled set, if for any

x ∈ S(.) at current time tc there are continuous guidance functions q̇qqref , q̈qqref for

any t > tc, such that uuuc (5.11) is realisable by the motors of the vehicle under

the constraints of the torque τττ (5.10) while considering the constraints of: 1) the

torque vector τττ (5.5) due to the limits of the thrusts, TM and TR and the flapping

angles, a and b; 2) the main motor angular velocity 0 < ΩM < Ωmax
M , and rear

motor angular velocity 0 < ΩR < Ωmax
R ; 3) assumptions (5.12)-(5.21).

The control enabled set can be numerically computed for various values of their

guidance parameters qqqref and q̇qqref with the constraints α1, α2, γ1,γ2, γ3, γ4, λ1,

λ2, κ1, κ2, β and δ. Under the rpm and flapping angles constraints of (5.5),

all possible vectors τττ are in a convex set Ψ. The polytope Ψ is reduced due to

the bounds of the constraints (5.12)-(5.21) and transformed by feasible values of
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H̃(qqq) and D̃(qqq, q̇qq)q̇qq to result in a polytope Ξ for the possible values of uuuc. Then,

for fixed q̇qqref and q̈qqref the set of x for which the uuua ∈ Ξ can be derived as by

definition: ˆ̇qqq = q̇qqref − q̇qq.

Theorem 5.1. Assuming (5.33) and (5.34) are verified to be satisfied over a

control enabled set S(.) ⊂ <6, then the state evolution of xxx = [qqq q̇qq]T defined by

q̈qq in (5.23) remains in S(.) for any ‖H̃(qqq)‖ ≤ γ4, ‖D̂(qqq, q̇qq)q̇qq‖ ≤ λ2 and ‖wwwd‖ ≤
δ, t > tc, with the controller as defined by (5.10) with the constraints of τττ in (5.5)

and a suitable choice of adapted references q̇qqref and q̈qqref .

Proof. From the constraints of both motors 0 < ΩM < Ωmax
M and 0 < ΩR < Ωmax

R

and (5.5), an upper limit of the torque τττ can be computed such that

‖τττ‖ ≤ τmax. (5.36)

Referring to the control law in (5.10), uuua (5.28), and the assumptions (5.12)-

(5.21) and (5.36), we get

‖τττ‖ ≤ ‖H̃(qqq)‖‖uuuc‖+ ‖uuua‖+ ‖D̃(qqq, q̇qq)q̇qq‖

‖H̃(qqq)‖‖uuuc‖+ ‖uuua‖+ ‖D̃(qqq, q̇qq)q̇qq‖ ≤ τmax

‖uuuc‖ ≤ (τmax − ‖uuua‖ − ‖D̃(qqq, q̇qq)q̇qq‖)/‖H̃(qqq)‖

≤ (τmax − ν(ξξξ, t)− λ1)/γ4,

(5.37)

then taking (5.32), we have

− ν(ξξξ, t) ≤ −γ3γ
−1
2 (α2 + ‖K‖‖ξξξ‖)− γ1γ

−1
2 (δ + λ2). (5.38)

Recalling uuuc from definition (5.11) and the assumption (5.13),

−‖uuuc‖ ≥ −(α2 + ‖Kd‖‖ ˙̂qqq‖+ ‖Kp‖‖q̂qq‖)

≥ −(α2 + ‖K‖‖ξξξ‖),
(5.39)

then substituting (5.39) in (5.38), we get

− ν(ξξξ, t) ≤ −γ3γ
−1
2 ‖uuuc‖ − γ1γ

−1
2 (δ + λ2). (5.40)
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Substituting (5.40) (5.37), the maximum control input ucmax is obtained

‖uuuc‖ ≤ (τmax − γ3γ
−1
2 ‖uuuc‖ − γ1γ

−1
2 (δ + λ2)− λ1)/γ4

≤ (τmax − γ1γ
−1
2 (δ + λ2)− λ1)/(γ

−1
2 γ3 + γ4) := ucmax .

(5.41)

As the upper bound ucmax of the input uuuc is now known, from (5.11), (5.13) and

(5.41) we have

‖uuuc‖ ≤ ‖q̈qqref‖+ ‖Kd‖‖ ˙̂qqq‖+ ‖Kp‖‖q̂qq‖

‖q̈qqref‖+ ‖Kd‖‖ ˙̂qqq‖+ ‖Kp‖‖q̂qq‖ ≤ ucmax

α2 + κ1‖ ˙̂qqq‖+ κ2‖q̂qq‖ ≤ ucmax ,

(5.42)

where ‖Kd‖ ≤ κ1 and ‖Kp‖ ≤ κ2 with κ1, κ2 > 0. Recalling (5.6), (5.7), (5.12)

and (5.14), we get

κ2‖qqq‖+ κ1‖q̇qq‖ ≤ ucmax − α2 − κ1α1 − κ2β. (5.43)

Finally, the control enabled set is obtained as

S(.) = {∀[qqq q̇qq]T . κ2‖qqq‖+ κ1‖q̇qq‖ ≤ ucmax − α2 − κ1α1 − κ2β}. (5.44)

The next section illustrates the application of these results in Simulink/Matlab.

5.5 Simulation

The nonlinear attitude dynamics (5.1) and the designed controller are imple-

mented in Simulink/Matlab for simulation and obtaining numerical parameters

required for the verification process. As the some functions like the time deriva-

tive is not supported by the MetiTarski prover, the control inputs in τττ and sys-

tem states qqq, q̇qq with parameters are passed from simulation in Simulink to the

MetiTarski prover for verification. The simulation is based on a VARIO Benzin-

Trainer unmanned helicopter. VARIO numerical parameters are shown in Table

5.1(a). According to the maximum payload of the VARIO helicopter which is

approximately 4kg, the amount of variation of the inertia moments are com-
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puted. External disturbances are assumed to vary within a maximum 40% of the

maximum torque. Table 5.1(b) states the computed robust parameters of the

controller.

The controller results are shown in Fig. 5.2. As can be seen from the step

response reference, the roll, pitch and yaw angles are following the reference.

The dot-dashed red line shows the measured roll, pitch and yaw with minimum

inertia moment values. The dashed green line shows the measured roll, pitch

and yaw with maximum inertia moment, where the minimum/maximum values

of the inertia moments J are illustrated in Table 5.1(a). It can be noticed from

the difference between minimum and maximum inertia moments signals that the

the variation of inertia moments has a minor effect using the proposed controller.

External disturbances are applied to the signals to test the controller performance.

The highest amount of disturbances applied are up to 40% of the maximum

torque. The tracking of the reference (continuous blue line) under disturbances

are well performed by the controller. The next section illustrates the verification

results.

5.6 Control Verification

To ensure the validity of control scheme, the following verification objectives are

required to be satisfied: 1) the controller produces torques which are with the

maximum torques limits: ‖H̃(qqq)uuuc + uuua + D̃(qqq, q̇qq)q̇qq‖ ≤ τmax; 2) the system is

stable: V̇ (ξξξ) < 0 (5.33) and (5.34); 3) all system states are vary and stay within

the control enabled set: ∀xxx = [qqq q̇qq]T . xxx ∈ S(.) where S(.) is defined in (5.44).

Remark 1. If the translational control is designed then the limits of flapping

angles a and b with thrusts TM and TR can be checked according to the produce

control torques τττ .

MetiTarski ATP is used as a verification tool to prove the above objectives.

As the prover is limited to work on real scalar values, all vectors and matrices

are simplified to scalar statements. Due to the space limit, only examples of the

proof will be presented in this section while the complete code with proofs can

be found in the web-repository [2]. Variables notated in MetiTarski is shown in
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Figure 5.2: Euler angles with disturbances
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Table 5.1: Small helicopter UAV parameters and constraints

(a) Aircraft parameters

Parameter Value

m 7.5 kg
lM 1.8 m
lR 0.3 m
Jxx [0.02, 0.0307] k.gm2

Jyy [0.3, 0.46] k.gm2

Jzz [0.3, 0.46] k.gm2

`zM −0.25 m
`xR −0.75 m
`yR −0.05 m

`xM , `
y
M , `

z
R 0

Ωmax
M 132.9941 rad/s

Ωmax
R 580.4989 rad/s

TmaxM 135.7143 N
TmaxR 2.4 N
ĒM 0.02|TM |
ĒR 0.02|TR|
a [−12◦, 12◦]
b [−14◦, 14◦]

(b) Control parameters

Parameter Value

α1 3.2657
α2 2.1482
γ1 60.8276
γ2 39.0872
γ3 0.5353
γ4 0.46
λ1 0.3337
λ2 0.1161
β 3.4452
δ 4.2281
κ1 0.135
κ2 0.9
ucmax 7.3385
τmax 10.5703
Kp1 0.88
Kp2 0.8
Kp3 0.9
Kd1 0.0013
Kd2 0.12
Kd3 0.135
ρ 0.5

Table (5.2). The first objective is achieved by taking the torques produce from

the controller in (5.10) and τimax limits by (5.5) for each element (τi) then the

objective inequality is formalized in FOL syntax and proved as below: (note that

this code is for |τψ| ≤ τψmax only; see the web-repository [2] for other codes)

MetiTarski code

fof(Torque_psi,conjecture, ! [T_psi,TM,TR,A,B,Lx_M,Ly_M]:

%assumptions

(T_psi:(=-0.0546,0.581=) & TM=135.7143 & TR=2.4 & A>= -0.2094 & A<=0.2094

& B>=-0.2443 & B<=0.2443 & Lx_M=0 & Ly_M=0
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%implies

=>abs(T_psi)<=(abs(TM)/sqrt(1-sin(A)^2*sin(B)^2))*((Ly_M*sin(A)*cos(B)) +

(Lx_M*cos(A)*sin(B)))-0.75*TR+0.02*TM)).

The implementation of the torque vector τ in MetiTarski is achieved by taking

each of the torque vector’s element (τφ, τθ, τψ) and prove it separately, where this

was due to the limitation of implementing the vectors in the prover. Therefore,

Symbolic Math Toolbox in Matlab has been used to simplify the torque vector.

Another limitation is that in the prover there is no derivative function to com-

pute the time derivative of the torque vector components. Due to this, the time

derivative values have been taken from the simulation to conduct the proof. The

longitudinal and lateral flapping angles (a and b) have been implemented in the

above code with upper and lower bounds of their values. The τψ value also limited

by an upper and lower value according to the actuator limits in (5.5) to ensure

that the values of τψ varies within the limits. The time required for MetiTarski

prover to generate the proof of the above code is 0.656 seconds. Note that all

proofs in MetiTarski were conducted on a Linux Ubuntu operating system, Core

i5 1.6 GHz CPU and 8 GB RAM.

The second objective is achieved by formalizing equations (5.33), (5.34) and

proving that they are strictly negative for all states under the proposed control

scheme. The following code illustrates a part of the stability implementation of

(5.33). Symbolic Math Toolbox in Matlab has been used to simplify (5.33) and

(5.34). The roll φ and pitch θ angles are limited by upper and lower bound to

avoid any aggressive rotation that violate the flight stability. The time required

for MetiTarski prover to generate the proof of the following code is 0.104 seconds.

MetiTarski code

fof(Stability_33,conjecture, ![V,Phi,Theta,Bb_1,Bb_2,Bb_3] :?[Xi1,Xi2,Xi3,

Xi4,Xi5,Xi6]:

%assumptions

(Xi1>0 & Xi1<=1 & Xi2>0 & Xi2<=1 & Xi3!=0 & Xi3:(=-0.0622,1=) & Xi4 !=0

& Xi4:(=-0.0897,0.88=) & Xi5 !=0 & Xi5:(=-0.0394,0.8=) & Xi6!=0

& Xi6:(=-0.2419,0.9=) & Phi:(=-1,1=) & Theta:(=-1,1=)

& V:(=13.5797,13.6077=) & Bb_1:(=-7.0404*10^(-18),7.5358*10^(-17)=)

& Bb_2:(=-9.8665 *10^(-17), 1.0821*10^(-16)=) & Bb_3:(=-9.8665*10^(-17),
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1.0821*10^(-16)=)

%implies

=>(...<0)).

The code below shows formalising of the third objective which is proven by con-

sidering the upper and lower variation of the system states q, q̇ is complying to

the upper bound specified in (5.44). Symbolic Math Toolbox in Matlab has been

used to simplify the set in (5.44) and the time derivative values of qqq are taken

from the simulation. The time required for MetiTarski prover to generate the

proof of the below code was 3.784 seconds.

MetiTarski code

fof(Helicopter_control_enabled_set,conjecture, ![Q1,Q2,Q3,Dot_Q1,Dot_Q2,

Dot_Q3]:

% assumptions

(Q1 >= 0 & Q1 <= 1.0271 & Q2 >= 0 & Q2 <= 1 & Q3 >= 0 & Q3 <= 0.8

& Dot_Q1 >= -0.0735 & Dot_Q1 <= 0.6993 & Dot_Q2 >= 0 & Dot_Q2 <= 0.5933

& Dot_Q3 >= -0.0952 & Dot_Q3 <= 0.7229

% implies

=> ((0.9*sqrt(Q1^2+Q2^2+Q3^2))+(0.135*sqrt(Dot_Q1^2+Dot_Q2^2+Dot_Q3^2))

<= 1.6487))).

The interactive approach between the simulation and the prover was useful since

several unproved statements are resolved by retuning the parameters.

5.7 Discussion and Remarks

The proposed approach can be applied to different UAV systems as it is useful in

two aspects: control design verification and onboard real-time validation. At the

design stage, ensuring controller performance, robustness and stability is essential

under physical limitations. This safety analysis cannot be achieved by simulation

only as it relies on numerical computations as well as on co-simulation verifica-

tion with symbolic computations. Regarding the control design, although many

control schemes have been proposed in the literature, they are either taking into
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Table 5.2: Variables and vectors notations in MetiTarski

Variable/Vector Notation
τψ T psi
TM TM
TR TR
a A
b B
`xM Lx M
`yM Ly M
ξξξ Xi

v(ξξξ, t) V
φ Phi
θ Theta
bbb(i) Bb i
qqq Q
q̇qq DotQ

account parameters uncertainty or disturbances without considering both in the

robust design, which are important factors together that affect control system

performance. Therefore, we consider both factors in addition to taking into ac-

count dynamical actuator constraints based on practical parameters. For control

verification, several attempts have been proposed to verify simple control systems

such as in [15, 28, 43, 65], and for hybrid verification systems as in [11]. These

approaches have been developed based on interactive theorem provers, which

need interaction with humans to complete proofs. Other approaches with the

MetiTarski prover have been only used at the design stage. However, the remain-

ing issue is how the autopilot knows whether the aircraft’s dynamical envelope is

violated by external forces such as gusts of wind. Therefore, it has proposed to in-

tegrate the MetiTarski ATP with the autopilot system and to perform a real-time

verification using the proposed approach as presented. Based on this approach,

the autopilot can make decisions based on information from an onboard prover,

which can send a warning to perform an emergency landing.
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5.8 Chapter Summary

A robust nonlinear attitude controller is presented for a small unmanned he-

licopter UAVs. Controller stability is demonstrated and verified using formal

methods represented by MetiTarski ATP. The control system parameters con-

straints are computed and system states are verified to be vary within the defined

invariant control set. A verification method is proposed by merging the autopilot

system with MetiTarski prover. The method is demonstrated in simulation and

MetiTarski is used to illustrate its applicability. The method is useful in particu-

lar when the vehicle is in a fully autonomous flight. If the controller performance

is endangered by gusts of winds beyond its reaction abilities, then the autopilot

could perform an emergency landing in a safe place.
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Chapter 6

A Robust Controller for Multi

Rotor Unmanned Aerial Vehicles

6.1 Overview

Unmanned aerial vehicles are safety-critical systems that often need to fly near

buildings and over people under adverse wind conditions and hence require high

manoeuvrability, accuracy, fast response abilities to ensure safety. Under extreme

conditions, the dynamics of these systems are strongly nonlinear and are exposed

to disturbances, which need a robust controller to keep the UAV and its environ-

ment safe. In this chapter, a novel robust nonlinear multi-rotor controller (RNDI)

is introduced based on essential modifications of the standard dynamic inversion

control [111, 115], which makes it insensitive to payload changes and also to large

wind gusts. First a robust attitude controller is introduced, followed by lateral

and vertical position control in a customary outer loop. The controllers take into

account thrust limitations of the UAV and a mathematical proof is provided for

robust performance. The control scheme is illustrated in simulation with a re-

alistic nonlinear dynamical model of an UAV that includes rotor dynamics and

their speed limitations to show robustness. Lyapunov stability methods are used

to prove the stability of the robust control system.
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6.1.1 Multi Rotor Dynamic Model

This section introduces the dynamical model of a generic multi-rotor using the

quaternions (described in Section 2.1.2.3) to avoid the singularity associated with

the gimbal lock [121], which is important in high-performance control. The multi-

rotor translational dynamics in the B-frame using a Newton equation is

mv̇ + Γ(ωωω)mv = RT
q f G + f B, (6.1)

where m ∈ < is the total mass of the craft, v(t) = [vx(t) vy(t) vz(t)]
T ∈ <3 is the

velocity vector of mass centre, v̇(t) = [v̇x(t) v̇y(t) v̇z(t)]
T ∈ <3 is the acceleration

vector, f G = [0 0 −mg]T is the gravitational force, f B = [0 0 U ]T ∈ <3 is the total

force of thrusters, U = F1 +F2 +F3 +F4 (where F1,2,3,4 are the propellers forces),

and Γ(ωωω) ∈ <3×3 is the cross-product matrix for the Coriolis forces presented in

(2.7). The dynamics in the world frame, W -frame, is then given by

r̈ =
1

m
(f G +Rqf B), (6.2)

where r(t) = [x(t) y(t) z(t)]T ∈ <3 is the position vector in W -frame; since

r̈ = Rqv̇ with Rq as in (2.27). The multi-rotor rotational dynamics in the B-

frame, using a Newton-Euler equation described in (2.9), is

Iω̇ωω + Γ(ωωω)Iωωω + τττ d = τττ , (6.3)

where τττ d(t) = [τdφ(t) τdθ(t) τdψ(t)]T ∈ <3 are the unknown disturbances torques

with φ, θ and ψ are roll, pitch and yaw respectively.

It is assumed that for the multi-rotor each motor is aligned with the vertical

main axis of the vehicle and has the angular velocity Ωi that produces body-

aligned forces Fi = lΩ2
i and a torques Mi = bΩ2

i where l and b are the aerodynamic

force and torque constants of the rotors. All angular velocities of the motors are

bounded by a known maximum value Ωmax so that, |Ωi| < Ωmax.
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The torque output of the onboard control system, τττ , for plus-configuration is

τττ =

τφτθ
τψ

 =

 `l(Ω2
2 − Ω2

4)

`l(−Ω2
1 + Ω2

3)

b(−Ω2
1 + Ω2

2 − Ω2
3 + Ω2

4)

 , (6.4)

where ` is the length from the centre of mass of the multi-rotor to the rotor.

For an X-configuration, where propellers 1-2 are on the front, these equations are

modified to

τττ =

τφτθ
τψ

 =

`l(−Ω2
1 + Ω2

2 + Ω2
3 − Ω2

4)/
√

2

`l(−Ω2
1 − Ω2

2 + Ω2
3 + Ω2

4)/
√

2

b(−Ω2
1 + Ω2

2 − Ω2
3 + Ω2

4)

 , (6.5)

For a hexacopter one of the options is, where propellers 1-2 are on the front, to

have the attitude control torques generated by

τττ =

τφτθ
τψ

 =

`l(−Ω2
1/2 + Ω2

2/2 + Ω2
3 + Ω2

4/2− Ω2
5/2− Ω2

6)

`l(−Ω2
1 − Ω2

2 + Ω2
4 + Ω2

5)
√

3/2

b(−Ω2
1 + Ω2

2 − Ω2
3 + Ω2

4 − Ω2
5 + Ω2

6)

 , (6.6)

The torques can be modelled in a similar manner for other types of mult-irotor

configurations, which are out of the scope of this work.

For all cases of multi-rotors, from (6.3), and denoting by c(ωωω) = Γ(ωωω)Iωωω the

torque generated by the rotational moments, the attitude state-space equation

derives from

ω̇ωω = I−1[τττ − c(ωωω)− τττ d]. (6.7)

6.2 Control System Design

The nonlinear rotational dynamics, when combined with minor inaccuracies in

rotor shaft alignments and propeller deficiencies can lead to errors in actuated

control torques, the effect of which can be eliminated by an inner-loop feedback

controller of the multi-rotor attitude. The same attitude controller can also be

used to compensate for external disturbances of wind gusts, aerodynamic inter-

actions with nearby structures and ground effects. Fig. 6.1 shows the proposed
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control system. The designed control scheme consists of two loops: the inner

and outer loop. The inner loop is a nonlinear robust attitude controller based

on dynamic inversion control method which compute the torque vector τττ from

the reference quaternions q r. The robust dynamic inversion control scheme is

used to overcome the modeling uncertainty and disturbances associated with the

rotational movements. This loop is embedded in an outer feedback loop to con-

trol lateral and vertical movements. The outer loop includes a PD controller

to compute the desired roll and pitch angles in a form of quaternions q r from

the reference position r r and reference yaw angle ΨΨΨ for manoeuvre-goals in the

x, y, z lateral position frame.
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Figure 6.1: The inner and outer control loops of the proposed multi-rotor con-
troller. The notation is explained through equations (6.10)-(6.24).

6.2.1 Position Control

Multi-rotor lateral transition is obtained by tilting the vehicle around the X-axis

by (q0, q1) and Y -axis by (q0, q2) for the quadrotor illustrated in Fig.4.1. These

angles are computed based on the reference trajectory of the position controller,

which passes them to the inner attitude controller. However, the outer feedback

position control loop is chosen as cascaded P (x), P (y) controllers to handle the

ẋ and ẏ. Another cascaded P (z) controller is also chosen to control ż and hence

obtaining the required linear movement.

Given the reference trajectory vector r r(t) = [xr(t) yr(t) zr(t)]
T ∈ <3 and qr3(t)
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as in (2.27) and (6.2) while keeping ‖q‖ = 1, the quaternion reference q r is

computed as

q r =


qr0

qr1

qr2

qr3

 =


[(z̈ + g)/(2[ẍ2 + ÿ2 + z̈2 + 2gz̈ + g2]

1
2 ) + 0.5− q2

r3
]
1
2

[m(ẍqr3 − ÿqr0)]/[2U(q2
r0

+ q2
r3

)]

[m(ẍqr0 + ÿqr3)]/[2U(q2
r0

+ q2
r3

)]

qr3

 . (6.8)

The force f B including the total thrust U is computed for vehicle altitude control

as

f B =

0

0

U

 =

 0

0

(mz̈ +mg)/(2q2
0 + 2q2

3 − 1)

 . (6.9)

Definition 6.1. The translational motion is controlled by choosing

r̈ = Kd(Kp(rr − r)− ṙ), (6.10)

or in terms of components

r̈ =

ẍÿ
z̈

 =

Kdx(Kpx(xr − x)− ẋ)

Kdy(Kpy(yr − y)− ẏ)

Kdz(Kpz(zr − z)− ż)

 , (6.11)

where Kp = diag[Kpx Kpy Kpz]
T ∈ <3×3 and Kd = diag[Kdx Kdy Kdz]

T ∈ <3×3

are positive-definite diagonal gain matrices.

The controller represented in (6.10) is implemented using (6.8) to get the quater-

nion reference required for the multi-rotor attitude control and using (6.9) to

compute the total amount of thrust, U .

6.2.2 Attitude Control

The nonlinear control system is designed based on the dynamic inversion con-

trol principle [115], for controlling the multi-rotor attitude while accounting for

the bounded but uncertain mass distribution of the UAV and external force and
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torque disturbances. Lyapunov’s method will be used to prove asymptotic stabil-

ity under these bounded uncertainties for the control system defined as follows.

Definition 6.2. Controller Torque Computation. Based on the attitude

dynamics in (6.3), the nonlinear control law is defined by

τττ = Îu + ud + ĉ(ωωω). (6.12)

where Î is an estimation of the inertia matrix I of the craft, u represents a new

input vector to be designed later on in (6.19), ĉ(ωωω) is an estimate of c(ωωω) as based

on Î and measured ωωω . The additional term ud is added to render the effects of

uncertainty and disturbances in addition to guarantee robustness of these effects;

ud will be defined later to counter these effects in (6.36).

Suppose that the attitude reference is q r and the measured value is q , the

quaternion error q e will be defined by

q e = q r ⊗ q∗, (6.13)

where⊗ is the Hamiltonian quaternion product and q∗ denotes conjugation. Note

that q−1 = q∗ as the attitude quaternion has norm 1. In algebraic detail, the

quaternion error q e is given by

q e =


qe0

qe1

qe2

qe3

 =


qr0q0 + qr1q1 + qr2q2 + qr3q3

−qr0q1 + qr1q0 + qr3q2 − qr2q3

−qr0q2 + qr2q0 + qr1q3 − qr3q1

−qr0q3 + qr3q0 + qr2q1 − qr1q2

 . (6.14)

The tracking error vector is given by

ξξξ = [qe1 qe2 qe3 ]
T , (6.15)

since ξξξ is chosen to reduce the dimensions of q e by neglecting qe0 that is near 1

for small attitude errors and is only indicative of the size of the rotation error.

ξξξ will be used later in (6.19). The correctness of (6.15) can be justified on the

grounds that ξξξ converges to zero when the attitudes of q and q r converge, as
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then qe0 converges to 1 and [qe1 qe2 qe3 ]
T converges component-wise to zero. For

large rotational-error correction of attitude, the desired reference quaternion rate

q̇ r will be defined based on the error q e as

q̇ r = [kq0qe0 [Kqξξξ]
T ]T , (6.16)

where kq0 > 0 and Kq = diag[kq1kq2kq3 ] ∈ <3×3 is a positive-definite diagonal gain

matrix, and hence large rotational errors through the rate reference is considered.

Note that the value of qe0 is not included in (6.15) but it is included in (6.16) to

compute the reference quaternion rate.

Using the defined rate q̇ r and the relation in (2.26), the error rate is can be

derived as

ξ̇ξξ = Z̃rq̇ r − Z̃q̇ = ωωωr −ωωω. (6.17)

This choice of a reference rate q̇ r will aid the proofs of control performance. Also

note that ω̇ωωr can now be obtained from ωωωr, as the latter can be made differentiable

by a suitable choice of the desired attitude q r. For very small quaternion error,

equation (6.17) can be simplified to

ξ̇ξξ = Z̃qeξξξ = I ξξξ = ωωωr −ωωω, (6.18)

where I is the 3× 3 identity matrix. Note that equation (6.18) is only valid when

the attitude error is small enough, i.e. qe vector values with the maximum of

[1, 1.2350× 10−5, 1.241× 10−3, 0.850× 10−7]T .

Definition 6.3. Controller Signal Computation. The control input u for

equation (6.12) is defined by

u = ω̇ωωr +Kωωωξ̇ξξ +Kqξξξ, (6.19)

where Kω = diag[kω1kω2kω3 ] ∈ <3×3 is a positive-definite diagonal gain matrix

setting the error gains in feedback.

By substituting the control torque (6.12) into (6.7), the rotational dynamics in
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(6.7) becomes

ω̇ωω = I−1Îu + I−1ud + I−1[∆∆∆(ωωω)− τττ d]

= u + (I−1Î − I)u + I−1ud + I−1[∆∆∆(ωωω)− τττ d]

= u + I−1ud − y

(6.20)

where

y = [I− I−1Î]u − I−1[∆∆∆(ωωω)− τττ d] , ∆∆∆(ωωω) = ĉ(ωωω)− c(ωωω). (6.21)

From equations (6.15)-(6.20), it follows that the error dynamics are given by

ξ̈ξξ +Kωξ̇ξξ +Kqξξξ = y − I−1ud. (6.22)

By setting ηηη = [ξξξ ξ̇ξξ]T ∈ <6×1, the closed-loop error dynamics equation is

η̇ηη = Aηηη +G[y − I−1ud] (6.23)

where

A =

[
03×3 I3×3

−K3×3
q −K3×3

ω

]
, G =

[
03×3

I3×3

]
. (6.24)

To bound the error ηηη, it is necessary that the right-hand-side of (6.23) is to be

kept small and that will be achieved by (6.36) later. The new control input

u needs to guarantee asymptotic stability for any y varying within a bounded

range. To ensure this, the following assumptions are made on the circumstances

of the flight.

Assumption 6.1. (Flight Envelop): As the motors have limited rotational

rates, they have limited angular velocities |Ωi| < Ωmax. The vehicle angular ve-

locities ‖ωωω‖ < ωmax and angular accelerations ‖ω̇ωω‖ < ω̇max are also limited. It

is assumed that a known upper bound α > 0 limits the desired vehicle angular

accelerations vector ω̇ωωr as

sup(‖ω̇ωωr‖) < α. (6.25)

Assumption 6.2. (Payload Characteristics): As the moments of inertia and

90



6. A Robust Controller for Multi Rotor Unmanned Aerial Vehicles

mass of the vehicle may change with the payload to dangerous levels, they need to

be constrained by limiting the amount of variation in the moments of inertia. The

inertia matrix I is assumed to have a lower and upper bound, λmin > 0, λmax > 0,

hence the requirement made is that

λmin ≤ ‖I−1‖ ≤ λmax. (6.26)

Consequently, the deviation between the estimated matrix Î and actual matrix I

can also be described with some δ > 0 in the format of

‖I− I−1Î‖ ≤ δ ≤ 1. (6.27)

Assumption 6.3. (Weather and Aerodynamic Disturbances): The exter-

nal torque disturbance τττ d is sufficiently smooth, due to mechanical inertia, and

an upper constant bound γ > 0 is known such that

‖τττ d‖ ≤ γ, (6.28)

where γ = supt∈[0,∞) w(t); since w(t) is the wind function that could violate the

vehicle and its superior value can be estimated in practice.

Lemma 6.1. Setting ∆∆∆(ωωω) as the error between the estimated vector ĉ(ωωω) and

the actual vector c(ωωω), there exist β > 0 such that

‖∆∆∆(ωωω)‖ ≤ β. (6.29)

Proof. From ∆∆∆(ωωω) = ĉ(ωωω)−c(ωωω), ĉωωω = Γ(ωωω)Îωωω, and c(ωωω) = Γ(ωωω)Iωωω , we have

∆∆∆(ωωω) = Γ(ωωω)Îωωω − Γ(ωωω)Iωωω

I−1∆∆∆(ωωω) = −(I− I−1Î)Γ(ωωω)ωωω,
(6.30)

by Assumption 6.1, where the upper limit of the angular acceleration is known,

it is possible to compute the upper bound of the angular velocity, ωωω. Hence

the angular velocity-dependent matrix, Γ(ωωω), is such that: sup(‖ωωω‖) ≤ σ and
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sup(‖Γ(ωωω)‖) ≤ % where σ > 0 and % > 0; and using Assumption 6.2, we get

‖∆∆∆(ωωω)‖ ≤ (‖I− I−1Î‖ ‖Γ(ωωω)‖ ‖ωωω‖)/‖I−1‖

≤ (δ % σ)/λmax := β.
(6.31)

6.2.3 Attitude Stability Analysis

The following theorem states the stability of the proposed controller based on

Lyapunov’s direct method including the definition of the control term ud in (6.12).

Theorem 6.1. For the nonlinear dynamics in (6.3), (6.19) and considering the

control law in (6.12), the close-loop system is asymptotically stable and the control

system’s errors converge to zero under Assumptions 6.1-6.3.

Proof. Setting the equilibrium point ηηη = 0 where V (0) = 0 and choosing the

following positive-definite function

V (ηηη) = ηηηTQηηη > 0 , ∀ηηη 6= 0 (6.32)

where Q ∈ <6×6 is a symmetric positive-definite matrix, the time derivative of

V (ηηη) in (6.32) along the trajectory of the system errors is

V̇ (ηηη) =η̇ηηTQηηη + ηηηTQη̇ηη

=ηηηT [ATQ+QA]ηηη + 2ηηηTQG(y − I−1ud),
(6.33)

considering A has eigenvalues with all negative real parts, hence for a symmetric

positive-definite matrix P , Lyapunov equation is written as

ATQ+QA = −P. (6.34)

This gives a unique solution Q then the term ηηηT [ATQ+QA]ηηη in (6.33) is negative

and the equation will be

V̇ (η) = −ηηηTPηηη + 2ηηηTQG(y − I−1ud). (6.35)

92



6. A Robust Controller for Multi Rotor Unmanned Aerial Vehicles

As the first term −ηηηTPηηη is strictly negative, the second term ηηηTQG(y − I−1ud)

need also to be strictly negative to ensure V̇ (ηηη) < 0. Therefore, ud must be

chosen to render the second term.

Definition 6.4. For a positive time-varying scalar function ζ(ηηη, t) which will be

chosen to bound y, the term ud is defined as

ud =


ζ(ηηη, t)

‖GTQηηη‖
GTQηηη, if ‖GTQηηη‖ ≥ µ

ζ(ηηη, t)

µ
GTQηηη, if ‖GTQηηη‖ < µ.

(6.36)

The term ud is defined as a continuous approximation of the discontinuous

control because if ud =
ζ(ηηη, t)

‖GTQηηη‖
GTQηηη when ‖GTQηηη‖ 6= 0 and ud = 0 at

‖GTQηηη‖ = 0, a chattering problem will produce since ud will be discontinuous

which causes trajectories oscillation. To eliminate this problem, the error should

vary within the boundary of µ if ‖GTQηηη‖ is less than this value. Note that ud

depends on the error ηηη and with (6.36) bounded-norm error will be ensured.

Assuming that ‖GTQηηη‖ ≥ µ, using Cauchy-Schwartz inequality we have

ηηηTQG(y − I−1ud) ≤‖GTQηηη‖‖y‖ − λminζ(ηηη, t)‖GTQηηη‖

=‖GTQηηη‖(‖y‖ − λminζ(ηηη, t)),
(6.37)

and if ζ(ηηη, t) is chosen such that the above term λminζ(ηηη, t) is strictly positive

and greater than ‖y‖, then V̇ (ηηη) < 0.

Definition 6.5. If the term y is bounded such that ‖y‖ ≤ ε for ε > 0, and for

λmin > 0, ζ(ηηη, t) can be chosen depending on y as

ζ(ηηη, t) ≥ ε

λmin
. (6.38)

From y in (6.21) and the Assumptions 6.1− 6.3 with (6.29), we get

‖y‖ ≤ ‖I− I−1Î‖(‖ω̇ωωr‖+ ‖Kω‖‖ξ̇ξξ‖+ ‖Kq‖‖ξξξ‖) + ‖I−1‖(‖∆∆∆(ωωω)‖+ ‖τττ d‖)

≤ δ(α + ‖Kω‖‖ξ̇ξξ‖+ ‖Kq‖‖ξξξ‖) + λmax(β + γ) := ε,

(6.39)
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from the previous two equations, ζ(ηηη, t) obtained as

ζ(ηηη, t) ≥ δ

λmin
(α + ‖Kω‖‖ξ̇ξξ‖+ ‖Kq‖‖ξξξ‖) +

λmax
λmin

(β + γ). (6.40)

Finally, for ‖GTQηηη‖ ≥ µ, (6.35) becomes

V̇ (ηηη) = −ηηηTPηηη + 2ηηηTQG(y − I−1 ζ(ηηη, t)

‖GTQηηη‖
GTQηηη) < 0, (6.41)

and for ‖GTQηηη‖ < µ,

ηηηTQG(y − I−1ud) ≤µ‖y‖ − λminζ(ηηη, t)µ

=µ(‖y‖ − λminζ(ηηη, t)),
(6.42)

then

V̇ (ηηη) = −ηηηTPηηη + 2ηηηTQG(y − I−1 ζ(ηηη, t)

µ
GTQηηη) < 0. (6.43)

6.3 Simulation Studies

In order to test the controller performance in a realistic scenario, simulations have

been carried out using the MathWorks team’s detailed model [61] in Simulink/-

Matlab. The UAV’s nonlinear dynamics in (6.1) and (6.3) have been implemented

in the model. The DC motors with propeller dynamics were also modelled based

on parameters taken from real multi-rotor motor combinations. Moreover, the

model includes computations of the motors’ angular velocities Ωir from the com-

puted thrust U and torques τττ demanded by the control scheme. The computed

Ωir values have been applied to the motor and propeller dynamics and then re-

alistic thrust U and torques τττ were obtained to approach the behaviour of a real

dynamics. The original MathWorks model has been modified with the use of

quaternions instead of Euler angles, inertia moments variations, according to the

payload change, were considered, disturbances were added to the torques. The

proposed nonlinear controller has been compared to a nonlinear adaptive frac-

tional order sliding mode based back-stepping (FRSDBKAD) controller presented
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in [119] in terms of robustness and stability.

6.3.1 Nominal Performance

The initial task is to track the desired position trajectory r r = [xr yr zr]
T and a de-

sired rotation q3r without disturbances where all the initial reference xr, yr, zr, q3r

are set to zero. Fig. 6.2 illustrates the desired trajectory of the drone which

includes take-off, several manoeuvres and landing. According to the given tra-

jectory, the RNDI controller shows that the measured x, y, z are well followed

the reference trajectory as can be seen in Fig. 6.2. The attitude controller re-

sults are shown in Fig. 6.3, 6.4 and 6.5, where the attitude controller tracks the

reference quaternions produced by the position controller. In nominal flight con-

ditions, the UAV tracked the reference trajectory well and more accurately than

the FRSDBKAD controller.
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Figure 6.2: Three dimensional xyz trajectory in the W -frame. Ref: reference
trajectory, RNDI: the proposed dynamic inverse controller, and FRSDBKAD:
adaptive fractional order sliding mode based back-stepping controller. Differences
can be seen under wind disturbances.
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Figure 6.3: The measured quaternions track the reference attitude by robust
nonlinear dynamics inversion (RNDI) control. The q0 shows the attitude angle
and q1, q2, q3 show the attitude-axis components: the blue continuous reference
line almost coincides with the dashed RNDI controller.
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Figure 6.4: The measured quaternions rates for the RNDI controller.

The controller parameters obtained are listed in Table 6.1. From (6.34), the

positive definite diagonal matrix P ∈ <6×6 is chosen as

P = diag[9 ∗ 10−12 9 ∗ 10−12 5 ∗ 10−13 3 ∗ 10−10 3 ∗ 10−10 8 ∗ 10−10], (6.44)

and the symmetric positive definite matrix Q is obtained

Q =


1.566 ∗ 10−11 0 0 −4.5 ∗ 10−12 0 0

0 1.566 ∗ 10−11 0 0 −4.5 ∗ 10−12 0

0 0 2.539 ∗ 10−9 0 0 −2.5 ∗ 10−13

−4.5 ∗ 10−12 0 0 2.466 ∗ 10−10 0 0

0 −4.5 ∗ 10−12 0 0 2.466 ∗ 10−10 0

0 0 −2.5 ∗ 10−13 0 0 6.347 ∗ 10−8

 . (6.45)

6.3.2 Performance under Payload Uncertainties

The multi-rotor’s flight controller should maintain the stability of the UAV if its

total mass changes due to adding payload, which causes a shift in the centre of

gravity (CG) and changes the inertia matrix. In this subsection, this problem is

tackled by testing the proposed control scheme under a mass distribution change.
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Figure 6.5: The measured angles track the reference attitude by adaptive frac-
tional order sliding mode based back-stepping control (FRSDBKAD) and by ro-
bust nonlinear dynamics inversion (RNDI) control. The ”Roll angle φ” shows
the roll rotation around X-axis, ”Pitch angle θ” shows the pitch rotation around
Y-axis and ”Y aw angle ψ” shows the yaw rotation around Z-axis; The blue con-
tinuous reference line almost coincides with the dashed RNDI controller proposed
in this chapter, while the dot-dashed FRSDBKAD controller is far from achieving
that.

101



6. A Robust Controller for Multi Rotor Unmanned Aerial Vehicles

Table 6.1: Multi-rotor Parameters

Parameter Value Parameter Value

Îx 5.831 ∗ 10−3 kg.m2 b 12 ∗ 10−8 N.m/(rad/sec)2

Îy 5.831 ∗ 10−3 kg.m2 l 9 ∗ 10−6 N/(rad/sec)2

Îz 1.166 ∗ 10−2 kg.m2 α 180.7904
kq0 0.01 σ 36.3485
kq1 16 δ 0.04231
kq2 16 β 0.332
kq3 25 γ 0.4231
kω1 0.9 µ 0.0095
kω2 0.9 % 36.3485
kω3 0.0064 λmin 171.045
` 0.2 m λmax 171.47
m 0.9272 kg Ωmax 707.1068 rad/sec

Referring to Assumption 6.2, the maximum payload of the proposed multi-rotor

has been set to 300 grams. Due to this mass distribution change, the moments

of inertia will be altered. Considering the specified payload capacity that the

multi-rotor can hold, the range of variation in the inertia moments is computed,

hence the values of λmin, λmax, δ (6.26) and (6.27) can be derived. By knowing

these bounds, the proposed controller can compensate for any variation of inertia

moments within the specified range. Where any change in inertia components due

to payload variation or even inaccurate values of the inertia moments or centre

of the mass in modelling can be compensated by the proposed term ud in (6.36)

hence the UAV will stay in the stable region.

The CG is computed by assuming the geometric CG is at the centre of the

UAV’s hub, i.e. at point (0, 0, 0). Then the nominal diagonal inertia matrix

components are computed. For any additional payload of up to 300 grams lo-

cated within the hub (centre of the vehicle’s body) of 10×10×4 cm, for instance

if the UAV equipped with an omnidirectional camera or an arm to pick up and

deposit objects, the inertia matrix components (not diagonal) are computed for

testing the controller with any payload change within the specified limits. Figure

6.6 illustrates the simulation which is conducted to test the performance of the

proposed control scheme when different payloads are applied. This test is con-
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ducted by changing the UAV’s mass since different payloads were added to the

UAV’s hub for up to 300 grams and consequently the CG and inertia moments

were varied. The results show that the controller can cope well with any mass,

CG and inertia matrix change within the specified bounds of λmin, λmax and δ

which have been formulated in Assumption 6.2.

To further increase the robustness of the control scheme for more reliable per-

formance, a test can be executed before the flight to make an estimation of the

range of uncertainty in terms of the payload changes, i.e. more accurate esti-

mation of λmin, λmax, and δ. Known methods such as in [72, 83, 129] can be

used to estimate the inertia matrix while in flight and disallow the flight if the

λmin, λmax, δ are violated.

6.3.3 Performance under Aerodynamic Disturbances

In this section we expose the multi-rotor to external torque disturbances to test

the controller’s behaviour and stability. External disturbances have been applied

to the nominal torques and their effects on vehicle attitudes are illustrated in

Fig. 6.7. It is assumed that the disturbances are varying within 40% of the

minimum/maximum torque τττmin/max = [±0.7446 ±0.7446 ±0.0993]T Nm; where

the range of disturbances for both roll and pitch is τdφ, τdθ = [−0.2978, 0.2978]Nm

and for yaw τdψ = [−0.0397, 0.0397] Nm. The results in Fig. 6.7 illustrate how

the controllers are reacting to the disturbances by counter acting the extra torques

with some success in order to return the vehicle to follow the reference trajectory.

The figures show the UAV’s attitudes in terms angles, where quaternions have

been transferred to Euler angles using the relation (2.25) for illustration. A

comparison between FRSDBKAD control and the proposed robust RNDI control

is conducted to show how this controller is performing well, especially under high

external disturbances for roll and pitch motion where the FRSDBKAD control

performed less well with some oscillations. The robust RNDI controller also does

not hit the limits of the maximum actuator (Ωi max = 707.1068 rad/sec) even

under high disturbances as can be seen from the measured angular velocities of

the motors, Ωi, in Fig. 6.8.
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Figure 6.6: The first graph illustrates the norm of inertia matrix inverse ‖I−1‖
variation with payload change within the UAV’s hub (Assumption 6.2 - equation
(6.26)). The term ‖I−1‖ varies within the specified upper limit λmax and lower
limit λmin. The second graph shows the effect of payload variation on the term
‖I − I−1Î‖ which stays below the specified upper bound δ (Assumption 6.2 -
equation (6.27)).
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Figure 6.7: Attitudes under external disturbances show some oscillation in roll, φ,
and pitch, θ, motion of the FRSDBKAD controller (dot-dashed green line) with
less deviation in yaw, ψ, but not so for the RNDI (dashed red line) controller.

6.4 Discussion of Applicability

The ultimate aim of this work is to design a robust control scheme for multi-rotor

UAVs that can provide a good or at least an acceptable performance and able to

deal with different flight conditions such as payload change during the flight or

when the vehicle is exposed to external forces, e.g. winds. These two conditions

are very common in practice which may force the UAV to enter unstable state-

space regions, and as a consequence, the craft may crash and potentially cause

damage to property, humans and privacy. However, in this work these conditions

are tackled in the modelling and design of a robust nonlinear controller for multi-

rotor unmanned aircraft.

6.4.1 Environmental Conditions

The main two environmental conditions, which the UAV may be exposed to, are

the payload change and wind disturbances. The first considered condition, the
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Figure 6.8: Actuators angular velocities computed from the RNDI control. It
can be seen that the actuators limit, Ωi max, has not been reached even with the
presence of disturbances.
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payload variation, leads to a change in the mass of the UAV, hence in its inertia

moments can change. The range of these variations can be computed using the

fact that the additional mass or payload is limited by the rotors lifting limits.

Therefore, the UAV should have a limited payload that the actuators can handle.

Knowing the possible range of the vehicle’s mass variations, one can set the lower

and upper bounds of inertia moments following (6.26) and (6.27). This way any

change in the payload within the specified range will produce stable control. For

the second disturbance, wind disturbances, knowing the range of wind strengths,

which the craft may be exposed to during its flight, leads to the design of a

controller that accounts for additional torques that represent these disturbances

for up to the maximum specified limit. The nonlinear term ud defined in (6.36)

compensates the variation of these conditions based on the specified bounds from

(6.26) and (6.28). Hence any variation in these two disturbances under specified

bounds results in the stable control of the UAV. Note that ud is defined based

on the attitude errors under stability conditions to compensate for any external

variation caused by winds or payload change.

In terms of inertia moment changes, which can be attributed to payload varia-

tion, the RNDI control performs well by compensating for the moments change

through the ud term for any mass change that is within the specified limits as

illustrated in Fig. 6.6. The RNDI controller has less deviation and oscillation in

comparison with FRSDBKAD especially for roll and pitch for dealing with ex-

ternal wind disturbances as can be seen from Fig. 6.7. Keeping this deviation in

attitude at the minimum will reduce the deviation from the reference trajectory,

as can be seen in Fig. 6.2. It is also essential to avoid reaching the maximum

motors’ speed which has been considered in RNDI control scheme as illustrated

in Fig. 6.8 to preserve UAV stability. Note that both payload change and wind

disturbances have been applied at the same time to the UAV in order to test the

controller performance. The simulation results show that the RNDI controller

can cope well even if both conditions occur within the specified limits stated in

the proposed assumptions. This is a more realistic scenario that happens in prac-

tice and with this controller the UAV can preserve its stability and tracking the

given trajectory more effectively.
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6.4.2 Multi-rotor UAVs Supported with Decision Making

Strategies

The remaining question is how to address the situations when the maximum

payload is reached or when the UAV is exposed to extreme gusts of wind beyond

the craft abilities, i.e. exceeding the maximum disturbance torques bounds that

considered during the control design. Answering these questions is essential for

a safe and reliable flight of unmanned vehicles in general and for autonomy in

particular. Several studies have been conducted to provide the UAV’s autopilot

with the ability to monitor its flight condition [42, 122, 127]. Other studies in [13,

18, 48, 106, 113, 117] have implemented intelligent agents supported by decision-

making abilities to supervise the variations in the environmental conditions and

to see whether they go beyond the specified limits then take the appropriate

decisions.

The advantages of these studies can be exploited by providing the autopilot with

a software agent, which is able to monitor whether the term ud in Definition 6.4

reaches its bounds or stay within the safe (stable) region. Another approach can

be implemented by detecting the out of bounds status by monitoring the limits

of the actuators, i.e. observing the angular velocities of motors against their

maximum boundaries (Ωi max); see Fig. 6.8. If these boundaries are reached for

some period of time (which can be tested and computed in practice), the agent

can make the required decisions and perform emergency procedures to prevent

incidents or reduce the risk of a crash. The agent may also inform the pilot or

send warning messages to the nearest station to inform the need for an emergency

landing, for instance. This approach increases flight safety and reduces the risk

of collision or causing material damage.

Using the proposed RNDI control scheme under mild disturbances, the UAV’s

autopilot does not need to estimate the inertia moments or wind disturbances

on board as any variation of the conditions within the limits will be handled by

the RNDI controller. When combined with inertia estimation and an onboard

decision agent, high levels of robustness and safety can be achieved.
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6.5 Chapter Summary

This chapter has introduced a novel robust multi-rotor controller that accounts

for both inertial uncertainty and disturbances. The proposed control system con-

sists of two loops: an inner and outer loop. The inner loop is a nonlinear attitude

controller, which is designed based on dynamic inversion control by taking into

account dynamical uncertainty and external disturbances. The outer loop is a

feedback position controller that computes the total thrust and reference quater-

nion values, which are passed to the inner loop. Lyapunov’s second method is

used as part of the control design to compute an additional nonlinear term that

compensates for the uncertainty and disturbances and ultimately ensures sta-

bility under well-defined conditions in practice. The control system has been

simulated based on a nonlinear multi-rotor model developed by MathWorks to

test the control performance and it was compared with a competitive nonlin-

ear controller. Ultimately, the results of this work may enhance the safety of

multi-rotor unmanned aerial vehicles.
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Chapter 7

Verification Framework for

Control System Functionality of

Unmanned Aerial Vehicles

7.1 Overview

A functional verification framework is proposed and presented in this chapter

for unmanned aerial vehicles using theorem proving. The framework’s aim is to

provide a procedure for proving that the theoretically designed control system

of the UAV satisfies robustness requirements to ensure safe performance under

varying environmental conditions. Extensive manual mathematical and numeri-

cal derivations, which have formerly been carried out manually, are checked for

their correctness on a computer. To illustrate the applicability of the framework,

a higher-order logic interactive theorem prover and an automated theorem prover

are employed to formally verify the nonlinear attitude control system of a generic

multi-rotor UAV presented in Chapter 6, over a stability domain within the dy-

namical state space of the drone. Further benefits of the framework are that

some of the methods can be implemented onboard the aircraft to detect when

its controller reaches its flight envelop limits due to severe weather conditions.

Such a detection procedure can be used to advise the remote pilot or an onboard

intelligent agent to decide on alterations of the planned flight path.
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7.2 An Aircraft Verification Framework

The proposed framework is developed to conduct further verification steps for

aircraft at the design stage of its control system. After an engineer designed the

control system of an UAV, the verification process is strated using our framework

to verify the correctness of the designed control system and stability analysis with

considering the aircraft dynamics and actuaters constrains. The framework also

includes safety procedures of onboard stability monitoring of aircraft during the

flight using formal methods. This is considered a complementary work of the

conventional verification processes such as software and code verification.

This section presents the verification framework which is shown in Fig.7.1. The

framework consists of two stages: the ITP represented by Isabelle/HOL to prove

the mathematical derivation of the designed control system and its stability anal-

ysis, and the ATP represented by MetiTarski prover for continuously checking the

validity of aircraft’s stability onboard during the flight. To perform the first stage,

the aircraft’s components need to be included in the Isabelle/HOL prover to carry

out the verification process. Therfore, the framework starts with formalising the

aircraft’s components in the HOL syntax of the Isabelle prover. The aircraft’s

componets that need to be included and formalised in the framework are the dy-

namical equations of motion, the coordinate system in the rigid body frame, the

transformations between the world and body frame, the controller design, and

stability analysis. Other properties needed for this work are also formalised in

HOL such as time domain, signal definition, real vectos and matrices with their

properties, etc. For the second stage, the aircraft’s stability analysis is needed to

be formalised in the FOL syntax of the MetiTarski prover for possible verification

of stability onboard the craft. Therefore, the derivative of Lyapunov function is

formalised in FOL to be used in the MetiTarski prover for checking the negation,

i.e. the Lyapunov derivative is always negative otherwise the aircraft is out of

the stable region. Despite that this work aims to verify control systems in the

aerospace field, in particular UAVs, but it is worth to mention that with minor

developments the framework can also be used in other fields such as robotics,

automotive, offshore, autonomous systems and safety-critical systems. The next

section will illustrate the two verification stages of the framework in detail.
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Figure 7.1: UAVs verification framework

7.3 Case Study: Multirotor Verification

7.3.1 Verification in Isabelle/HOL Prover

In this subsection, the first stage of the verification framework shown in Fig. 7.1

will be demonstrated using the attitude controller of a generic quadcopter UAV

proposed in Chapter 6 including the assumptions and flight conditions made. In

this controller, the quadcopter’s rotational dynamics are controlled using a ro-

bust nonlinear controller that takes into account the modelling uncertainty and

external disturbances. To ensure correctness of the designed attitude control, the

design’s derivations and stability analysis have been verified using Isabelle/HOL

prover. Isabelle/HOL is chosen for this purpose due to its rich library of mathe-

matical theorems which are required to perform the verification.

The verification process using Isabelle/HOL is illustrated in Fig. 7.2 which

consist of two stages: formalising and proving procedures. The first stage starts

by formalising the quadcopter UAV system into the Isabelle/HOL syntax such

as the coordinate system, rotational dynamics, time-domain functions, proposed

assumptions and aircraft’s stability analysis. The implementation of the control

design and aircraft’s dynamics includes a series of definition, lemma, and theorem

items. Some assistant lemmas were needed to be formalised and proven, which did

not exist in Isabelle due to the fact that prover library is still under development.

The formalisation also needs to import some pre-proven mathematical theories
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and lemmas from the prover library, which are used in formalising and proving

the control system equations with the proposed assumptions and definitions.

The theories that used under HOL platform will be described here to illustrate

the formalisation and proof procedures. First of all, the Quaternions.thy for the

quaternion definition and operations that represents aircraft’s coordination. The

main multi-variable analysis package which includes Analysis.thy for functions

operations over real field, Finite Cartesian Product.thy and Inner Product.thy for

definitions and operations of real vectors, L2 norm.thy and Norm Arth.thy for

real vector norms and their operations, etc. The HOL.thy is the core of HOL

platform which includes definitions of real numbers (real.thy), functions (fun.thy),

sets (set.thy), etc., which are necessary in all the formalising procedures. The

main multi-variable analysis theory, Analysis.thy, which includes definitions of

real vectors (Finite Cartesian Product.thy), vector norms (L2 norm.thy, Norm

Arth.thy) and their operations. These theories are used to define the aircraft’s

three-dimensional rotation vectors and their norms including the torque, angular

velocity and acceleration vectors where each component of a vector represented

as a continuous time-domain function f(t); the continuous function defined in

Fun.thy, Function Algebras.thy and Topological Spaces theories are utilised for

this purpose. The time sub-domain is defined by a time set T = {t. t ∈ {0..∞}}
and is followed by definitions of sets of vectors, which are working within T .

The matrices components are formalised using Matrix.thy and their operations

usingAnalysis.thy, Finite Cartesian Product.thy andReal V ector Spaces.thy.

The rate change of the quadcopter attitudes, i.e. velocities and accelerations, are

formalised by time derivation using Deriv.thy and derivative.thy theories. The

quadcopter controller design includes several robust assumptions which need in-

equalities over the real-numbers field. Fortunately, such inequalities have been

defined in Isabelle prover under Orderings.thy theory. This is an important

feature for any robust control design to be proven. However, the second stage

(proving procedures) is an interactive process between the designer/engineer and

the automated proving tools that Isabelle prover has or supported. The role of

designer/engineer is to help the prover to step-by-step prove the statement in

case that the prover is not able to solve the proof automatically by simplifying

the statement into several steps. Each step should be proven using the provided
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Figure 7.2: Formalising and proving UAV’s controller in Isabelle/HOL theorem
prover

automated tools before moving to the next one otherwise the prover will not

pass the statement. Examples of the automated tools supported in Isabelle are:

CVC4, Z3, SPASS, E prover, Remote Vampire and SMT sovlers. In addition,

Isabelle has its own automatic proving tools such as auto, simp, blast, etc. Most

of the control system that have been verified in this work required an interaction

with the prover due to the design complexity making it not possible for the prover

to solve them automatically. The Isabelle code is too long to be stated here, and

instead only the important definitions and proofs are shown, while the complete

code can be found in the online repository [2].

The quadcopter attitude dynamics (6.3) is formalised in Isabelle/HOL as can

be seen the following code

Isabelle/HOL code

definition “att dyms ω ω
′
I C Γ τ τd = (∀t ∈ T. (∀ω. ω ∈ D3 vec set) ∧ (∀i.((λt. ω$i) has derivative

(λt. ω
′
$i))(at t within T )) ∧ I mat I ∧ C fun C Γ I ω ∧ τ = I ∗v ω

′
+ C + τd)”
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and the torque vector τττ (6.4) is defined by bounding all propeller angular velocities

Ωi with their maximum value Ωmax as

Isabelle/HOL code

definition “torq fun τ = ((∃ Ω1 Ω2 Ω3 Ω4. | Ω1 |< Ωmax∧ | Ω2 |< Ωmax∧ | Ω3 |< Ωmax∧ | Ω4 |<

Ωmax∧τ ∈ D3 vec set ∧ τ$1 = `∗l∗(Ω2
2−Ω2

4) ∧ τ$2 = `∗l∗(−Ω2
1+Ω2

3) ∧ τ$3 = b∗(−Ω2
1+Ω2

2−Ω2
3+Ω2

4)))”

The control law (6.12) and the control input uuu (6.19) are defined in the prover

through the following code,

Isabelle/HOL code

definition “cont law (τ :: (real, 3)vec) Ihat u ud Chat = (τ = Ihat ∗v u+ ud + Chat)”

definition “cont u def (u :: (real, 3)vec) ω
′
ref Kω Kq ξ

′
ξ = (u = ω

′
ref +Kω ∗v ξ

′
+Kq ∗v ξ)”

The derivation (6.20) and (6.21) are formalised and proved in Isabelle/HOL based

on the att dyms, cont u and cont law (see the proof in the repository [2]). The

closed-loop error dynamic (6.23) and (6.24) are implemented as

Isabelle/HOL code

lemma Eq 6 23 :

assumes “∀t. t ∈ T”and”(set of definitions ω ωref ω
′
ω
′
ref u ud ξ ξ

′
ξ
′′
q q
′
qr q

′
r qe τ τd η y ζ C Chat

∆ A G Γ Zt Q P Kq Kω I Ihat)”

shows “η
′

= A ∗v η +G ∗v (y − (matrix inv(I) ∗v ud))”

proof -

have “ξ
′′

= ω
′
ref − ω

′
” using assms ddot error fun def set of definitions def by metis

thus ? thesis by (smt G mat def assms(2) exhaust 3 set of definitions def)

qed

The set of definitions in the above code is a definition which is used to call all

the pre-defined definitions. The assumptions (6.1-6.3) proposed in (6.25)-(6.28)

are formalised in Isabelle/HOL as follow:
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Isabelle/HOL code

definition “assump1 ω
′
ref = ((SUP t ∈ T. norm(ω

′
ref )) < α)”

definition “assump2 I Ihat = (I mat I ∧ Ihat mat Ihat ∧ λmin ≤ norm(matrix inv(I)) ∧

norm(matrix inv(I)) ≤ λmax ∧ norm(mat 1− ((matrix inv(I)) ∗∗ Ihat)) ≤ δ)”

definition “assump3 (τd :: (real, 3)vec) = (norm(τd) ≤ γ)”

Stability analysis of the attitude controller as stated in (6.32)-(6.43) is imple-

mented in Isabelle/HOL using a set of definitions (definition), several lemmas,

(lemma), and short theorems in terms of theorem, (theorem). This structure

of using several lemmas and theorems during the proof is due to the fact that

the reasoning system of the theorem prover cannot handle long proofs with many

assumptions, i.e. Isabelle system is unable to prove statements whcih have many

equations if they are formalised in only one lemma or theorem style. However,

the stability analysis starts by defining the candidate Lyapunov function V (6.32)

is formalised as a definition in Isabelle/HOL:

Isabelle/HOL code

definition “Lyapunov V η = (∀t ∈ T. if (η :: (real, 6)vec) 6= 0 then (∃a. V (η) = (a :: real) ∧

continuous on D6 vec set V ∧ V (η) > 0) else V (η) = 0)”

Taking the candidate Lyapunov function V , the time derivative of Lyapunov

function is derived and the derivations in (6.33)-(6.35) are proven symbolically

and detailed in the online repository [2].

Isabelle/HOL code

theorem Stb Eq 6 33 6 35 :

assumes ”∀η. η 6= 0” and ”Lyapunov V η” and ”V (η) = η • (Q∗v η)” and ”A mat A” and ”η
′

= A∗v η+

G ∗v (y− (matrix inv(I) ∗v ud))” and ”(∀t ∈ T. ((λt. V (η)) has derivative (λt. V
′
(η)))(at t within T ))”

shows ”V
′
(η) = −(η • (P ∗v η)) + 2 ∗ (((η v∗ Q) v∗ G) • (y −matrix inv(I) ∗v ud))”

proof - . . . qed
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The term uuud (6.36) is defined then the derivation in (6.37) is performed using

Cauchy-Schwartz inequality (see ”theorem Eq 6 37” in the repository [2]). Based

on (6.38) and the upper bound of norm of yyy derived in (6.39) (see ”theorem

Eq 6 39” in the repository [2]), ζ(ηηη, t) (6.40) is obtained (see ”theorem Eq 6 40”

in the repository [2]). The terms uuud and ζ(ηηη, t) are implemented in the prover as

”ud def” and ”zeta def” respectively,

Isabelle/HOL code

definition “ud def ud G Q ζ η = (∀t ∈ T. if (norm(transpose(G) ∗v (Q ∗v η)) ≥ µ) then (ud =

(ζ/norm(transpose(G) ∗v (Q ∗v η))) ∗s (transpose(G) ∗v (Q ∗v η))) else (ud = (ζ/µ) ∗s (transpose(G) ∗v

(Q ∗v η))))”

definition “zeta def ζ (y :: (real, 3)vec) = (∀ t ∈ T. ∃ε. ε > 0 ∧ norm(y) ≤ ε→ ζ ≥ ε/λmin)”

Note that the short arrow → in the code refers to implies while the longer −→
refers to convergence in HOL.

Finally, based on all the above definitions and assumptions, it has been verified

that the proposed control system is asymptotically stable since the time derivative

of Lyapunov function in (6.41) and (6.43) is strictly negative for ∀ηηη 6= 0. It has

also been proven that the tracking error converges to zero as the time converges

to infinity, (‖ηηη‖ −→ 0). The code below illustrates the symbolic proof in the

Isabelle theorem prover.

Isabelle/HOL code

theorem Stb Eq 6 41 6 43 :

assumes “∀t. t ∈ T” and ”(set of definitions ω ωref ω
′
ω
′
ref u ud ξ ξ

′
ξ
′′
q q
′
qr q

′
r qe τ τd η y ζ C

Chat ∆ A G Γ Zt Q P Kq Kω I Ihat)” and ”assump1 ω
′
ref” and ”assump2 I Ihat” and ”assump3 τd”

and ”∀η. η 6= 0” and ”Lyapunov V η” and ”V (η) = η•(Q∗v η)” and ”(∀t ∈ T. ((λt. V (η)) has derivative

(λt. V
′
(η)))(at t within T ))” and ”ω

′
= u − y + matrix inv(I) ∗v ud” and ”η

′
= A ∗v η + G ∗v (y −

(matrix inv(I) ∗v ud))” and ”V
′
(η) = −(η • (P ∗v η)) + 2 ∗ (((ηv∗Q)v∗G) • (y −matrix inv(I) ∗v ud))”

shows ”norm(transpose(G) ∗v (Q ∗v η)) ≥ µ =⇒ V
′
(η) < 0”

and ”norm(transpose(G) ∗v (Q ∗v η)) < µ =⇒ V
′
(η) < 0” and ”((λt.norm(η)) −→ 0)(at t within T )”

proof -

show ”norm(transpose(G) ∗v (Q ∗v η)) ≥ µ =⇒ V
′
(η) < 0” using assms Eq 19 rel simps(93) by
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metis

then show ”norm(transpose(G) ∗v (Q ∗v η)) < µ =⇒ V
′
(η) < 0” using assms Eq 19 rel simps(93)

by metis

show ”((λt.norm(η)) −→ 0)(at t within T )” using assms by auto

qed

7.3.2 Onboard Verification for a Safe Flight using Meti-

Tarski prover

The control system of the UAV can be designed, simulated and verified at the

model/design stage. The designed controller is then formalised to code and im-

plemented into the autopilot system, which controls the UAV trajectory. The

UAV controlled by the autopilot can be exposed to gusts of wind which may

cause unstable flight. In this case, the autopilot system cannot be informed if

the UAV has entered an unstable region which may cause a crash or the loss of

human(s) life. Therefore, we have proposed the use of ATP tool represented by

MetiTarski prover for onboard verification of the stability state of the UAV and

to inform the autopilot in case of any unstable behaviour detected.

The autopilot then can send warning messages to the user/pilot or base station

to perform, for instance, an emergency safe landing using autolanding techniques

such as in [86]. This will ensure safer flight and may avoid losing the UAV or

any harm to humans and properties. The MetiTarski ATP is chosen in this

work to verify the controller stability of the UAV due to its ability of deal with

inequalities of numerical real numbers. Unlike the previous verification stage

using Isabelle, MetiTarski proves the statements automatically without the need

to any interaction with the designer/engineer.

MetiTarski can be implemented on the autopilot’s electronic board such as Pix-

Hawk [5] or Navio2 [46] Raspberry Pi. These electronic autopilots use the Linux

operating system where MetiTarski can also be installed. Therefore, an interface

between the two systems (autopilot and MetiTarski) is easy to create in prac-

tice. The proposed onboard framework is illustrated in Fig.7.3. The applicability

of this approach is illustrated in simulation by interfacing the Simulink/Matlab
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model with MetiTarski and test the stability of the control system. Note that

the quadcopter that has been implemented in Simulink considers the nonlinear

dynamics of the craft based on the MathWorks model in [61], which is widely

used.

 

UAV 

 

Autopilot Electronic Board  

(Linux OS)  

 

MetiTarski 

Prover 

Pilot/Station 

 

Autopilot System   

Emergency Landing 

Scheme 

Interface 

Figure 7.3: Onboard verification framework of UAVs

Considering the stability analysis stated in (6.41) and (6.43), the time derivative

of the Lyapunov function will be tested to check whether it is negative definite or

not. If it is not negative definite, then this indicates that the control system is out

of its stability region, hence the autopilot can pass warning messages to the pilot

or station to take an action or perform an emergency landing. The verification

process starts by formalising the stability equations (6.41) and (6.43) into a FOL

syntax. The parameters of these equations are passed from the autopilot system

to MetiTarski prover via an interface scheme. Afterwards, the test is conducted

in the MetiTarski prover such that the derivative of the Lyapunov function is

negative (V̇ (ηηη) < 0). The above procedures are simulated in Simulink/Matlab

to illustrate its applicability. The stability equations (6.41) and (6.43), are sim-

plified using symbolic computations in Matlab before formalising them into FOL

syntax. The parameters included in both stability equations are passed from

Simulink/Matlab to MetiTarski to perform monitor testing. The following code

shows an example of stability check in MetiTarski prover for (6.41) (note that the

full code can be found in the online repository [2]; where the notations used in
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the code are described in Table 7.1):

MetiTarski code

fof(Stability Eq6 41, conjecture, ![E 1, E 2, E 3, E 4, E 5, E 6, Phi, Theta] :?[Y 1, Y 2, Y 3, Zeta E] :

%assumptions

(E 1 = 0.0037 & E 2 = 0.004964 & E 3 = 0.014124 & E 4 = 0.0504 & E 5 = 0.05748 & E 6 = 0.03166

& Phi > −1.5708 & Phi < 1.5708 & Theta > −1.5708 & Theta < 1.5708

& abs(Y 1) <= (0.04231 ∗ (180.7904 + (0.9 ∗ abs(E 4)) + (16 ∗ abs(E 1))) + (171.47 ∗ (0.332 + 0.4231)))

& abs(Y 2) <= (0.04231 ∗ (180.7904 + (0.9 ∗ abs(E 5)) + (16 ∗ abs(E 2))) + (171.47 ∗ (0.332 + 0.4231)))

& abs(Y 3) <= (0.04231 ∗ (180.7904 + (0.0064 ∗ abs(E 6)) + (25 ∗ abs(E 3))) + (171.47 ∗ (0.332 + 0.4231)))

& Zeta E > 0 & Zeta E >= sqrt(Y 12 + Y 22 + Y 32)/171.045

%implies

=> .... < 0)).

The time required for MetiTarski prover to generate the proof for (6.41) was 0.324

seconds. Note that all proofs in MetiTarski were on a Linux Ubuntu operating

system, Core i5 1.6 GHz CPU and 8 GB RAM. For (6.43), the code as below,

where the time required to generate the proof was 0.240 seconds.

MetiTarski code

fof(Stability Eq6 43, conjecture, ![E 1, E 2, E 3, E 4, E 5, E 6, Phi, Theta] :?[Y 1, Y 2, Y 3, Zeta E] :

%assumptions

(E 1 = 0.001227 & E 2 = 0.001241 & E 3 = 0.007062 & E 4 = 0.0168 & E 5 = 0.01437 & E 6 = 0.01583

& Phi > −1.5708 & Phi < 1.5708 & Theta > −1.5708 & Theta < 1.5708

& abs(Y 1) <= (0.04231 ∗ (180.7904 + (0.9 ∗ abs(E 4)) + (16 ∗ abs(E 1))) + (171.47 ∗ (0.332 + 0.4231)))

& abs(Y 2) <= (0.04231 ∗ (180.7904 + (0.9 ∗ abs(E 5)) + (16 ∗ abs(E 2))) + (171.47 ∗ (0.332 + 0.4231)))

& abs(Y 3) <= (0.04231 ∗ (180.7904 + (0.0064 ∗ abs(E 6)) + (25 ∗ abs(E 3))) + (171.47 ∗ (0.332 + 0.4231)))

& Zeta E > 0 & Zeta E >= sqrt(Y 12 + Y 22 + Y 32)/171.045

%implies

=> .... < 0)).
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Table 7.1: Variables and vectors notations in MetiTarski

Variable/Vector Notation
φ Phi
θ Theta
ηηη E
yyy Y

ζ(ηηη, t) Zeta E

7.4 Discussion

From the work conducted so far, it has been found that Isabelle/HOL prover is

a powerful tool to verify control systems. However, there are several drawbacks

such as many of control concepts and theories need to be implemented to the

prover in order to carry out the proof. For example, the concepts of stability

analysis, norms of real numbers with their properties, signals properties, time

and frequency domain, Laplace and Z transforms, inequality properties over real

and complex numbers, etc. Moreover, the automation tools in Isabelle required

to be enhanced as a lot of human-machine interactions were needed to conduct

the proofs. For the MetiTarski prover, it is a good tool to conduct inequalities

checking and verification over the real numbers field. However, there are several

limitations to the use of MetiTarski prover in control systems verification. For

instance, it supports a limited number of variables during the prove which make

it impossible to prove controllers with a high number of variables such as more

than ten variables. In addition, it is a FOL and therefore can only support scalar

number (no vectors or matrices are supported), where the term to be verified

which includes vectors and matrices need to be simplified into scalars first then

implemented in the MetiTarski prover. All the above drawbacks can be overtaken

by collaborative work between control engineers and computer science experts

for further developing and enhancing of the Isabelle/HOL and MetiTarski to be

utilised to verify more control system such as complex, intelligent and adaptive

controllers.
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7.5 Chapter Summary

This chapter has introduced a new verification framework for safety-critical con-

trol systems by applying the power of a higher-order-logic-based interactive theo-

rem provers and a first-order logic-based automated theorem prover to verify the

control system of unmanned aerial vehicles and to ensure UAV safety during the

flight. The framework relies on two stages, the first is for verifying the design of

the control system and its stability and the second is for onboard monitoring the

UAV’s stability to ensure flight safety. The framework has been demonstrated on

a robust attitude controller of a generic quadcopter UAV to verify the correctness

of the design and stability analysis in addition to onboard monitoring the con-

ditions of its dynamical stability while the UAV is flying. The UAV’s attitudes

are controlled by a nonlinear robust controller, which is designed using inverse

dynamics control and it takes into account dynamical uncertainty and external

disturbances.

The methods used in the verification stages go significantly beyond symbolic

computation of inequalities for the Lyapunov theory as concepts of convergence

as mappings of functions and quantifications over sets of functions are used in

Isabelle and as such they were not be found in prior literature in aviation control

systems.
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Chapter 8

Conclusions and Future Work

8.1 Overview

This chapter presents the conclusions of the thesis contributions and outlines the

possible future work to extend the research.

8.2 Conclusions

This thesis presented new verification schemes for safety-critical systems such as

unmanned aerial vehicles. It is intended to fill the gap between control engineering

and existing verification methods of control code. The motivation is to solve

verification problems of digital control systems on physical plants using formal

methods for symbolic computations, which includes verification of control theory

as well. The thesis illustrated the applicability and the power of interactive

theorem provers relying on HOL and automated theorem prover represented by

FOL for control theory.

Formal methods represented by interactive theorem proving are used in this

thesis to show the possibility of formally prove of control theories on computers.

This is illustrated by an example using Isabelle/HOL (Higher-Order Logic) proof

assistant to formally proof a general version of the Small-Gain Theorem for feed-

back control systems. This work has indicated that even the most theoretical

control concepts involving nonlinear operators, causality and normed spaces of
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signals over the infinite semi-axis of time can be formally handled by theorem

proving techniques. It is also found that other control theories can be formalised

and proved using these tools.

Another verification approach is presented by verifying the stability of un-

manned aerial vehicles based on Lyapunov’s direct method using the MetiTarski

automated theorem prover. This is illustrated by designing a nonlinear attitude

controllers for a quadcopter and a small-scale helicopter unmanned aerial vehicle

and their stability proven using the MetiTarski prover. The control systems were

implemented in Simulink/Matlab and the simulation results have been shown.

The verification results show that control system stability can be verified using

automated theorem provers to guarantee asymptotic stability of the controller

and to ensure that the system works within the given bounds and performance

specifications.

A new verification framework of unmanned aerial vehicles is introduced. The

framework includes two stages. The first stage is concerned with formally veri-

fying the correctness of the controller design and stability analysis at the design

stage using interactive theorem proving tools. This includes checking the valid-

ity of mathematical derivations of the control law and its stability, hence ensure

system performance and robustness. The second stage is for onboard stability

monitoring of the aircraft during the flight. This stage is developed to monitor

the vehicle’s stability and if the aircraft violated by gusts of wind which affect

its stability, the autopilot can avoid aggressive manoeuvres or may perform an

emergency landing in a safe place.

A novel robust nonlinear dynamic inversion controller (RNDI) is designed and

presented for multi-rotor unmanned aerial vehicles. The controller consists of two

loops: an inner loop for attitude control and an outer loop for lateral and vertical

position control. The controller considered both inertial modelling uncertainty

and external disturbances. The control scheme has been simulated in Simulink/-

Matlab based on a nonlinear multi-rotor model developed by MathWorks in order

to test the control performance. The RNDI controller has been compared with

a competitive nonlinear controller to illustrate its performance. The results indi-

cate that the new controller can make a craft tolerant to payload changes and to

large wind gusts. Ultimately, the results of this work may enhance the safety of
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multi-rotor unmanned aerial vehicles.

To implement the proposed verification framework, formal verification of the

RNDI controller is addressed and solved in this thesis for unmanned aerial vehi-

cles. An interactive theorem prover is applied to test the validity of the novel and

robust nonlinear control law within a controllability domain that describes its

flight envelop. Innovative symbolic computation is used to prove the validity of a

highly abstract control theory that verifies the robustness of the controller. The

presented symbolic computational technique is able to uncover inaccuracies in the

mathematical arguments of pen and paper based proofs with numerical values on

limits of performance. The technique makes the verification of the entire control

system, including the control scheme and its software, more reliable. As such,

the approach can point the way to formal verification of safety critical aviation

systems in general. Equipped with with controller verification, aircraft can be

programmed to prevent its crash under challenging environmental conditions, by

deciding or proposing.

From the work conducted so far, it has been found that there are some limita-

tions of using formal methods for control system verification. First of all, many

control concepts and theories need to be developed and implemented in theorem

proving tools in order to make the verification of control system easier in addition

to speeding up the process. Moreover, complex control schemes may be difficult to

implement in theorem proving such as intelligent and adaptive controllers, which

is due to the limitation of current techniques in theorem proving. This could be

overtaken, if possible, by either taking abstract of the design or verifying some

part of it. Furthermore, the verification process needs the dynamical model of

the system to be controlled to perform the verification with the designed control

scheme. Finally, control engineers need to be familiar with formal methods tools

in order to conduct the formal verification process as a part of the control system

design and analysis.

The novelty of this thesis is to demonstrate that formal methods in some the-

orem provers are suitable to verify and prove the correctness of robust control

theory for prescribed flight envelop of multi-rotor unmanned vehicles. Although

prior work suggested this may be a possibility, this is a first evidence of this kind.

This involves formal stability analysis to guarantee system’s robustness then en-
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sure aircraft’s safety by conducting continuous onboard stability monitoring using

interactive and automated theorem provers. The methods are implemented in Is-

abelle and MetiTarski, and the codes have been made available online. This is

promising and may encourage the use of such methods in control system verifica-

tion of safety-critical systems in general. The symbolic methods are generic and

potentially generalise to verification to a variety of industrial control systems,

where performance loss is damaging and therefore analysis is important to be

carried out formally.

8.3 Future Work

There is the prospect to address various topics and challenges as follows:

� Formally prove more control theories that are useful for verifying practi-

cal control systems using interactive theorem proving techniques. This will

enrich the library of control theories in these provers. Hence, if some con-

trol theories are formally proven using these techniques, the results will be

significant for robustness and safety of safety-critical systems.

� Implementing the proposed robust nonlinear controller of quadcopter UAV

presented in Chapter 6 in practice.

� Implementing Stage 2 of the proposed verification framework presented in

Chapter 7 in practice for stability monitoring of the aircraft.

� Extending the verification framework by adding code verification to the

procedures to ensure that the code complies with the design.

� Extending the verification framework by adding software verification to the

procedures using theorem proving in addition to using other formal methods

techniques such as abstract interpretation and model checking.

� Extending the verification framework by adding software verification to the

procedures using theorem proving in addition to model checking techniques.
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� Using the verification framework in other safety-critical applications such

as autonomous cars, surgical robotics, field robotics, etc.
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[75] François Léonard, Adnan Martini, and Gabriel Abba. Robust

nonlinear controls of model-scale helicopters under lateral and vertical wind

gusts. IEEE Transactions on Control Systems Technology, 20[1]:154–163,

2012. 31

[76] N. G. Leveson and C. S. Turner. An investigation of the therac-25

accidents. Computer, 26[7]:18–41, July 1993. 23

[77] J. Li and Y. Li. Dynamic analysis and PID control for a quadrotor.

In 2011 IEEE International Conference on Mechatronics and Automation,

pages 573–578, Aug 2011. 28

[78] X. Liang, Y. Fang, and N. Sun. A novel nonlinear backstepping-based

control approach for quadrotor unmanned aerial vehicle transportation sys-

tems. In 2017 36th Chinese Control Conference (CCC), pages 884–889, July

2017. 30
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