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Abstract 

Quantitative studies have provided evidence showing that ambiguity can help to 

explain the equity premium puzzle and the excess volatility puzzle of the equity 

market. In addition, it also plays an important role in the 2008 financial crisis. 

However, empirical studies remain few. Anderson et al. (2009) develop an empirical 

measure based on the Survey of Professional Forecasters (SPF). The survey data are 

collected from part of the professionals in the US finance industry, which might result 

in biased findings. Viale et al. (2014) develop another empirical measure of ambiguity 

based on the reference model calculated using the smooth transition autoregressive 

(STAR) model and assumptions about the confidence level of investors. It may be 

improper to use the STAR model as the reference model because it is difficult to find 

out a forecasting model that is used by all investors. As such, the first empirical study 

in Chapter 3 focuses on high-frequency forecasting using linear AR models, 

exponential smoothing models and nonlinear AR models. The findings suggest that 

the best-performing forecasting model changes from one period to another and the 

STAR model cannot beat the AR model, suggesting that the calculation of the 

ambiguity measure of Viale et al. (2014) is improper. Therefore, the other two 

empirical studies in Chapters 4 and 5 develop two new empirical ambiguity measures 

with inspiration from theoretical works. The results support the theoretical proposition 

that ambiguity can explain the equity premium puzzle and the excess volatility puzzle. 

In addition, the degree of ambiguity of the equity market can be affected by investors’ 

expectations on macroeconomic conditions and default risks. On the other hand, 

Chapter 5 shows that ambiguity plays an important role in the 2008 financial crisis. 

Last but not least, the thesis also provides an ambiguity indicator for regulators and 

financial market practitioners.  
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Chapter 1. Introduction 

1.1. Introduction 

This thesis mainly focuses on the impact of ambiguity on stock markets from empirical 

perspectives. It first investigates and points out the disadvantages of existing empirical 

measures of ambiguity in Chapters 2 and 3. Then in Chapters 4 and 5, two empirical 

ambiguity measures are developed to find empirical evidence that uncovers the impact 

of ambiguity on stock markets as well as its role in the 2008 financial crisis. 

 

1.2. Background of Study 

The three empirical studies are conducted with inspirations from quantitative studies. 

According to Epstein and Schneider (2010), ambiguity plays an important role in asset 

pricing theoretically. Although there is a large number of quantitative studies in the 

field of study, the number of empirical studies remain few. Anderson et al. (2009) 

develop an ambiguity measure using the Survey of Professional Forecasts (SPF), 

which is also used by other researchers in ambiguity studies. However, this measure 

is based on forecasts of professionals and thus it neglects the perceptions of individual 

investors. Viale et al. (2014) develop another ambiguity measure using a smooth 

transition autoregressive (STAR) model. The STAR model is employed as the 

reference model in their study and the ambiguity measure is calculated by the distance 

between the distorted value due to ambiguity and the reference model. The calculation 

of the distorted value is based on assumptions on investors’ confidence level. As such, 

their measure does not purely rely on real-life data. In addition, whether the STAR 

model is representative of the reference model is doubtful. Therefore, the thesis begins 

with a study of forecasting, followed by two empirical chapters where two new 

empirical measures of ambiguity are developed. 
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1.3. Research Gap 

The thesis attempts to fill in a few research gaps. The first empirical chapter, namely 

Chapter 3, attempts to uncover whether sample size can affect forecasting accuracy. It 

also investigates the adaptive market hypothesis (AMH) using a forecasting method 

that has not been used in existing literature. In addition, it also helps to figure out 

whether it is proper to use the STAR model as the reference model in ambiguity 

literature. 

 

The second and third empirical chapters, Chapters 4 and 5, attempt to develop 

two new empirical measures of ambiguity using bid and ask prices and intraday 

highest and lowest prices respectively. In addition, these two chapters provide 

empirical evidence on how ambiguity affects stock markets, and more importantly, it 

investigates how macroeconomic conditions and default risks can interact with 

ambiguity in stock markets, which helps to shed light on the role of ambiguity in the 

2008 financial crisis. 

 

1.4. Methodology 

The forecasting chapter applies high-frequency data, including minute data, hourly 

data and daily data, to compare forecasting performances of linear autoregressive 

models, exponential smoothing models and nonlinear autoregressive models. The 

linear autoregressive models include the simple autoregressive (AR) model and the 

autoregressive integrated moving average (ARIMA) model. Nonlinear models include 

the additive autoregressive model, the threshold autoregressive (TAR) model and the 

STAR model. Furthermore, the full sample is split into subsamples to investigate the 

impact of sample size on forecasting accuracy. 
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 The two empirical chapters on ambiguity mainly develop the ambiguity 

measures with inspirations from theoretical works. The econometric model applied is 

the vector autoregressive (VAR) model, which can uncover interactions among 

different variables even if no prior knowledge is known about the relationships among 

the variables. Since there are few empirical studies on ambiguity so far, the empirical 

relationship between ambiguity and variables of interest remain unclear. As such, the 

VAR model serves the purpose of the study best, which is the reason why it is selected 

to conduct the empirical analyses. 

 

1.5. Summary of Empirical Chapters 

As is mentioned before, Chapter 3 focuses on high-frequency forecasting of stock 

prices. The full-sample results indicate that the linear models involved in the study 

generally provide better forecasting performances than the nonlinear models. This 

suggests that it is improper to assume the STAR model to be the reference model in 

Viale et al. (2014). On the other hand, the modified Diebold-Mariano (MDM) test 

results show that the UK stock market is not in a weak form of efficiency with 

significant evidence from minute data and weakly significant evidence from hourly 

data and daily data. The subsample forecasting results suggest that increasing sample 

size does not necessarily result in more accurate forecasts. In addition, the subsample 

analyses also indicate that the AMH characterises the UK stock market better than the 

EMH. 

 

 Chapter 4 uses the ambiguity measure calculated from bid and ask prices of 

ETF FTSE100 to investigate the impact of ambiguity on the UK stock market. The 

findings from the analysis between the ambiguity measure and market return suggest 
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that the interaction between the ambiguity measure and market return and the 

interaction between the ambiguity measure and excess market return are statistically 

weak while ambiguity tends to have a significant impact on the volatility index, which 

measures investors’ expectation on future volatility. The findings also confirm that 

existence of ambiguity can explain the excess volatility puzzle of the equity market, 

which is consistent with the proof of Epstein and Schneider (2010). In addition, apart 

from return, volatility is also shown to be source of ambiguity. Interactions between 

the ambiguity measure and the two term structure measures suggest that 

macroeconomic conditions can affect the degree of ambiguity of the equity market. 

When investors are more optimistic about the future economic state, the degree of 

ambiguity of the equity market tends to decrease. On the other hand, if investors are 

more worried about future default risks, the degree of ambiguity of the equity market 

would also increase. 

 

 Chapter 5 develops another ambiguity measure, which is calculated from the 

gap between the intraday highest and lowest prices. This chapter investigates both the 

UK stock market and the US stock market. In addition, the full sample is split into the 

pre-crisis period and the post-crisis period, which helps to uncover the role of 

ambiguity in the 2008 financial crisis. The full-sample results and the post-crisis 

results are consistent with the results in Chapter 4. However, the pre-crisis results 

show some differences. Firstly, for the UK stock market, the ambiguity measure does 

not seem to affect the volatility index during the pre-crisis period from 2004 to 2008, 

which suggests that investors did not pay attention to the degree of ambiguity before 

crisis. The US result suggests that investors started to realise the existence of 

ambiguity from 2007. On the other hand, before the crisis, investors viewed 

ambiguous information and signals as signs of better economic conditions, which 
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contributes to the bubble. In addition, investors did not realise the default risks were 

high until 2007 when the crisis was about to happen. The two situations together led 

to the collapse of the financial markets and investors started to become aware of the 

importance of ambiguity after the crisis. As such, the results suggest that ambiguity 

contributed to the 2008 financial crisis. 

 

1.6. Conclusion 

The empirical chapters of the thesis serve the purposes of study and fill the research 

gaps defined from existing literature. As such, the thesis makes original contributions 

to the field of study of ambiguity as well as that of high-frequency forecasting. The 

rest of the thesis is constructed as follows. Chapter 2 provides a review of ambiguity 

literature. Chapters 3 – 5 are the empirical studies on high-frequency forecasting, 

ambiguity study using bid and ask prices and ambiguity study using intraday highest 

and lowest prices. The last chapter, which is Chapter 6 provides an in-depth discussion 

of the empirical results obtained from the three empirical chapters. More importantly, 

it links the results of the empirical chapters. Last but not least, conclusions and further 

studies are illustrated at the end of Chapter 6.  
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Chapter 2. Review of Ambiguity Literature 

 

2.1. Introduction 

Since the 2008 subprime mortgage crisis, ambiguity becomes an important research 

topic because some researchers find that the financial crisis is associated with 

ambiguity (Guidolin and Rinaldi, 2013; Guidolin and Rinaldi, 2014). Ambiguity refers 

to the uncertainty in probability distribution of asset prices due to misinterpretation or 

lack of information. The uncertainty of ambiguity arises from the unknown mean and 

hence the unknown probability distribution of the mean while for risk the uncertainty 

originates from the unknown variance. 

 

Studies of ambiguity originate from the Ellsberg’s Paradox. According to the 

decision experiment of Ellsberg (1961), different combinations of indifferent acts are 

meaningful because by combining the indifferent acts ambiguity can be removed. 

Hence, a decision maker prefers to take risks in order to hedge the uncertainty that 

arises from ambiguity. Thus, decision makers are ambiguity-averse, and the impact of 

ambiguity is found to be larger than that of risks in quantitative studies (Epstein and 

Schneider, 2010). Preference theories and utility models are therefore set up to 

understand ambiguity and its impact on portfolio choice and asset pricing. The three 

main utility models are the multiple-prior model, the smooth model and the multiplier 

model. In addition to the static preference models, researchers have also been working 

on dynamic utility models, which reflect the learning and updating processes of 

decision makers in a dynamic setting.  
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So far, there are several literature reviews on preference theories and ambiguity 

models, comparing the models in relation to their applications in portfolio formation 

and asset. Most of them attempt to explain the theories and models from a theoretical 

perspective by illustrating the formulas of the models. Epstein and Schneider (2010) 

first prove the ambiguity-aversion models with examples and mainly focus on the 

illustration of the multiple-prior model. They provide a comparison among the 

multiple-prior model, the smooth models and the multiplier model and their 

implications for financial markets. Etner et al. (2012) provide a review of ambiguity 

literature, which mainly explains all the major ambiguity models and the rationale 

behind them. Another more recent literature review, done by Guidolin and Rinaldi 

(2013), focuses on the effect of ambiguity and ambiguity aversion on portfolio choice 

and asset pricing. However, due to lack of empirical works in the field of study, the 

reviews mainly focus on theoretical implications from quantitative studies to illustrate 

the impact of ambiguity on financial markets. This literature review attempts to 

explain the intuitions behind the different utility models based on ambiguity rather 

than providing a review of the theories. More importantly, it also tries to identify 

research gaps from the empirical perspective, with a review of recent empirical works 

on ambiguity measures. 

 

The structure of the literature review is as follows. Section 2.2 explains 

ambiguity into details using the Ellsberg’s experiment (1961). Section 2.3 describes 

the main ambiguity models and their implications. Section 2.4 briefly discusses the 

learning and updating process of decision-makers. In Section 2.5 and 2.6, the effect of 

ambiguity on portfolio choice and asset pricing are explained respectively, with 

evidence from both quantitative studies and empirical works. In the end, a short 

conclusion is provided in Section 2.6. 



 23 

 

2.2.  Ellsberg’s Experiment (1961) 

In order to illustrate what is ambiguity, it is necessary to introduce the concept of risk 

first. Suppose we are told there are 50 black balls and 50 red balls in an urn, then we 

know that there are two possible outcomes if we were to prick a ball from the urn, 

namely either picking a black ball or picking a red ball. Since we are told the number 

of balls of each colour, it is easy to calculate the probability of picking a black ball, 

which is 50%, and the probability of picking a red ball, which is also 50%. In this case, 

we are faced with risks when betting on the colour of the ball that is picked since we 

know probability distribution of the possible outcomes. Now suppose the only 

information we know about the urn is that there is a total number of 100 black balls 

and red balls and we are told to bet on the colour of the ball that is picked from the 

urn, then we cannot calculate the probabilities of the possible outcomes although there 

are still two possible outcomes, namely picking a black ball and picking a red ball. In 

this case, we are faced with ambiguity because we don’t know the probability 

distribution. The first urn introduced in this section, which is denoted by Urn 2 in the 

Ellsberg’s experiment (1961), is known as the risky urn, and the second urn, which is 

denoted by Urn 1 in the experiment, is known as the ambiguous urn. 

 

During the experiment, the participants were asked two questions. First, which 

is more likely to happen, picking a black ball from Urn 1 or picking a red ball from 

Urn 1? The second question is, which is more likely to happen, picking a black ball 

from Urn 2 or picking a red ball from Urn 2? As is mentioned before, the probability 

of picking a black ball from Urn 2, the risky urn, and the probability of picking a red 

ball from Urn 2 are both 50%, so they should be equally likely to happen. On the other 

hand, the chance of picking a black ball from Urn 1, the ambiguous urn, and the chance 



 24 

of picking a red ball from Urn 1 should also seem equal because the probabilities can 

take any value from 0 to 1. Following the previous two questions, the participants were 

asked two further questions. The first question is, which is more likely to happen, 

picking a black ball from Urn 1 or picking a black ball from Urn 2? The second one 

is, which is more likely to happen, picking a red ball from Urn 1 or picking a red ball 

from Urn2? The experiment suggests that the participants thought picking a black ball 

from Urn 2 was more likely to happen than picking a black ball from Urn 1 and picking 

a red ball from Urn 2 was also more likely to happen than picking a red from Urn 1. 

This implies that the participants thought the probability of picking a black ball from 

Urn 1 was less than 50% and the probability of picking a red ball from Urn 1 was also 

less than 50%. The two results contradict because according to probability theory, 

probabilities of all possible outcome should add up to 1. Picking a black ball and 

picking a red ball from the same urn were the only two possible outcomes and they 

did not add up to 1 according to the responses. Since this situation cannot be justified 

by the subjective expected utility (SEU) theory, there must be something missing in 

the theory. 

 

In the second set of experiment, the participants were informed that there were 

30 red balls and a total of 60 black balls and yellow balls in the urn and they were 

asked to choose between two options. Option 1 pays $1 if a red ball is picked from the 

urn and nothing otherwise. Option 2 pays $1 if a black ball is picked and nothing 

otherwise. The experiment result was that most participants showed preference 

towards option 1. Then they were offered another two options. Option 1 pays $1 if 

either a red ball or a yellow ball is picked from the urn and nothing otherwise. Option 

2 pays $1 if either a black ball or a yellow ball is picked from the urn and nothing 

otherwise. The result turned out to be that most participants showed preference 
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towards option 2 this time. According to the SEU theory, if a decision-maker chooses 

option 1 in the first decision-making problem, he should also choose option 1 in the 

second problem because choosing option 1 in the first problem indicates that he strictly 

prefers betting on a red ball to betting on a black ball and the two options in the second 

problem are just a combination of the outcomes in the first problem with another 

outcome, which is picking a yellow ball from the urn. However, since the participants 

chose option 2 in the second problem, this suggests that there must be something 

wrong with the SEU theory, and this is the beginning of development of ambiguity 

literature. 

 

To put it in a more formal way, we need some preliminaries. Let ! represent 

the state space, "  denote a set of possible outcomes and ∆(")�be the probability 

distribution of the set of outcomes " , where ! and "  can be assumed to be finite 

without losing generality (Epstein and Schneider, 2010). An Anscombe-Aumann (AA) 

act is a function that maps the state space, which means a set of all the contingencies 

or events, into the probability measure of the set of outcomes &:	! ⟶ ∆("). On the 

other hand, a Savage act is a function that maps the state space into the possible 

outcomes &:	! ⟶ " . In decision theories, ≽  refers to strictly preferred to or 

indifferent from; ≻	represents strict preference on one act to another; and ∽ means the 

two acts are indifferent. In addition, strictly preference means that if an act A is strictly 

preferred to an act B, A is preferred to B and B cannot replace A. On the other hand, 

if A and B are indifferent, they can replace each other. 

 

The SEU theory is based on the expected utility theory first proposed by 

Bernoulli (1738) and formalised by von Neumann and Morgenstern (1944). The 

expected utility theory states that a decision-maker behaves in a way such that he 
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maximises the expected utility. Thus, preference of a decision-maker is modelled by 

the expected value of a set of utility functions on all possible outcomes, which are 

called the von Neumann-Morgenstern (vMN) utility function. Based on the expected 

utility theory, Savage (1954) introduced the SEU theory by adding a subjective 

probability measure to the expected utility function in order to incorporate risk 

aversion. They characterise rational behaviour of a decision-maker by four axioms, 

which are completeness, transitivity, continuity and independence. The completeness 

axiom states that for two acts A and B, either one of the two is strictly preferred or 

they are indifferent. This means that a decision-maker is always able to tell his 

preference. 

 

The transitivity axiom states that if an act A is preferred to or indifferent to an 

act B and act B is preferred to or indifferent to an act C, act A is preferred to or 

indifferent to act C, and it can be written as: 

-&	. ≽ /	012	/ ≽ ", 4ℎ61	. ≽ ".	

-&	. ∽ /	012	/ ∽ ", 4ℎ61	. ∽ ".                                   2.1	

 

The continuity axiom states that if an act A is preferred to or indifferent to an 

act B and act B is preferred to or indifferent to an act C, there exists a non-negative 

probability 8, which is smaller than or equal to 1, such that a combination of A and C, 

denoted by 8. + (1 − 8)", is indifferent from B. Formally, it can be written as: 

-&	. ≽ / ≽ ", 4ℎ6<6	6=>?4?	8 ∈ [0,1]	?DEℎ	4ℎ04	8. + (1 − F)" ∽ /.        2.2 

 

The independence axiom states that if an act A is strictly preferred to or 

indifferent from an act B, there exists an act C such that a combination of A and C, 

with weightages 8 and 1 − 8 respectively, is strictly preferred to or indifferent from a 
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combination of B and C with the same weightages 8 and 1 − 8, where 8 is a non-

negative number smaller than or equal to 1. It can be formally written as: 

-&	. ≽ /, 8. + (1 − F)" ≽ 8/ + (1 − F)"	Gℎ6<6	8 ∈ [0,1].             2.3 

 

According to SEU, preference of a decision-maker depends on the subjective 

expected utility, which can be written as: 

H(&) = ∑ D(&K)8(&K)K                                          2.4 

where D is the utility of possible outcomes; and 8 is the probability of the possible 

outcomes. 

 

With the formal settings and the preliminaries, the Ellsberg’s experiment, 

which is also known as the Ellsberg’s paradox, can be explained in a more 

mathematical way where the utility models of ambiguity aversion come from. The 

first Ellsberg’s experiment can be summarised by the contingency table in Table 2.1. 

The implication from the responses of the participants are that the risky urn is preferred 

to the ambiguity because they chose Urn 2 in each contingency. 

 

Table 2.1 Contingency Table of Ellsberg’s Experiment 1 

 

Table 2.2 shows the payoff table of the second Ellsberg’s experiment. In the 

first problem, the participants chose option 1, and this means that they strictly 

preferred option 1 to option 2, which in turn suggests that they strictly preferred red 

balls to black balls. This can be written as: 

&L ≻ &M                                                        2.5 

  

 Red Black 
Urn 1 (Ambiguous) Red from Urn 1 Black from Urn 1 
Urn 2 (Risky) Red from Urn 2 Black from Urn 2 
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According the independence axiom of the SEU theory, the responses of the 

participants in the second problem should indicate the following preference based on 

their responses in option 1: 

&L + &N ≻ &M + &N                                               2.6 

 

However, in the second problem, they chose option 2, indicating that they 

strictly preferred option 2 to option 1, which in turn suggests that they strictly preferred 

a combination of black balls and yellow balls to a combination of red balls to yellow 

balls. This can be written as: 

&M + &N ≻ &L + &N                                               2.7 

 

Since Equation 2.7 contradicts Equation 2.6, the SEU cannot justify the result 

of Ellsberg’s experiment, and according to the first experiment, a decision maker 

differentiates ambiguity from risk, which implies that ambiguity is missing from the 

SEU theory. As such, theoretical papers develop utility models of ambiguity aversion 

to incorporate ambiguity aversion into the process of decision-making. 

 

Table 2.2 Payoff Table of Ellsberg’s Experiment 2. This table shows the payoff of each option that 
corresponds to the outcomes indicated in the first column. 

 

Panel A: Payoffs of Problem 1 
 Red (OP) Black (OQ) Yellow (OR) 
Option 1 $1 0 - 
Option 2 0 $1 - 
Panel B: Payoffs of Problem 2 
Option 1 $1 0 $1 
Option 2 0 $1 $1 
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2.3. Ambiguity Models 

This section discusses ambiguity aversion utility models and the intuition behind the 

models. The development is based on the illustrations of the multiple-prior model, the 

smooth model and the multiplier model. 

 

2.3.1. Multiple-Prior Model 

With inspiration from the Ellsberg’s Paradox, Gilboa and Schmeidler (1989) develop 

the multiple-prior model to incorporate ambiguity. The basic idea of ambiguity 

aversions models is that a decision maker considers a set of prior probability 

distributions of the possible outcomes to support his decision-making instead of using 

a single prior. The utility function of the multiple-prior model can be written as follows:  

H(&) = (1 − S) ∫ D(&)28∗V + S W>1
X∈∆(Y)

∫ D(&)28V                          2.8 

where Ω is the space state; ∆(") is a set of priors; & stands for an act; 8∗ represents 

the reference probability measure; 8 represents the alternative probability measure; S 

is the weight assigned to the alternative probability measure; and D represents a von-

Neumann-Morgenstern (vMN) utility function. 

 

The intuition behind the multiple-prior model is that a decision-maker forms a 

set of priors about the possible outcomes and takes the worst-case scenario more 

seriously. The minimum function in Equation 2.8 represents the worst case among the 

alternative probability measures to the reference measure. The decision-maker assigns 

a higher weight to the worst case when he becomes less confident about his reference 

model. As such, a larger S indicates that the decision-maker is more ambiguity-averse. 

Once he solves this minimisation problem, he calculates the expected utility using 

Equation 2.8 and ranks the options according to the expected utility. The final decision 
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is based on the one that generates the highest expected utility and hence, he makes 

decision by maximising the expected utility based on the worst case. Thus, the 

decision process is made up of a minimisation problem and a maximisation problem, 

and this is the reason why this model is also called the maxmin expected utility model. 

 

The potential problem of this model arises from the worst case. Although 

solving the minimisation can embody ambiguity-aversion, it may be too extreme for 

a decision maker to make decision based on the worst-case scenario (Epstein and 

Schneider, 2010). Nevertheless, the multiple-prior model has been widely applied in 

financial markets. For instance, Dow and Werlang (1992) and Garlappi et al. (2007) 

investigate the effect of ambiguity on portfolio choice based on the multiple-prior 

model. In particular, Garlappi et al. (2007) show that the multiple-prior model 

performs better than the classic mean-variance analysis and the Bayesian approach 

empirically. Routledge and Zin (2009) and Ozsoylev and Werner (2011) investigate 

the impact of ambiguity on liquidity and find that investors behave under multiple-

prior preferences. Another reason why the multiple-prior utility model is popular is 

that it makes it possible to carry out empirical studies compared to other ambiguity 

aversion models. Thus, so far, the empirical measures are all based on the multiple-

prior model (Anderson et al. 2009; Viale et al., 2014; Antoniou et al., 2015) 

 

2.3.2. Smooth Model 

Klibanoff et al. (2003) developed another ambiguity aversion model to make the 

kinked indifferent curves of the multiple-prior model smooth. As such, this model is 

called the smooth utility model, and it accommodates the multiple-prior model, which 

is a special case of the smooth model. The utility function of the smooth model can be 

written as follows: 
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H(&) = ∫ [\∫ D(&)28V ]2^_                                          2.9 

where & represents an act; ! is the state space; ` is the set of probability measures of 

the state given subjective information; D  represents a von Neumann-Morgenstern 

(vNM) utility function; ^  is the probability measure subject to the possible 

probabilities `; and [ measures the degree of ambiguity-aversion. 

 

In this model, a concave [ means the decision-maker is ambiguity-averse and 

the larger the concavity, the more ambiguity-averse the decision-maker is. If [ is 

linear, the decision-maker is said to be ambiguity-neutral. On the other hand, one 

advantage of this model is that it separates the level of ambiguity, which is measured 

by ^, from the extent of ambiguity-aversion, which is captured by [. Thus, the model 

can be interpreted in the following way. The risk tolerance of a decision-maker is 

captured by the subjective expected utility function. Then with respect to the 

subjective information that the decision-maker has, he penalises the expected utility 

according to his extent of ambiguity aversion. On the other hand, if the decision-maker 

is ambiguity-neutral, he becomes the subjective expected utility agent, who only cares 

about risks. In addition, the model also implies that a decision-maker prefers risks to 

ambiguity under the smooth model, which is consistent with the Ellsberg’s Paradox. 

The difference between the smooth models and the multiple-prior model is that change 

in ambiguity resembles change in risk in the smooth models while in the multiple-

prior model change ambiguity suggests change in the mean (Epstein and Schneider, 

2010). 

 

However, the disadvantage of the model is that it cannot rationalise the 

situation where a decision-maker can guess the true distribution instead of applying 

the vNM function to figure out the reference model, which is illustrated by Epstein 
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and Schneider (2010) using a thought experiment. However, Klibanoff et al. (2012) 

showed that the thought experiment of Epstein and Schneider (2010) is misleading in 

the sense that they did not consider the whole state space. 

 

Regardless of the debates, a few researchers use smooth models to investigate 

the impact of ambiguity on financial markets (Epstein and Schneider, 2010). For 

instance, Chen et al. (2014) employed the smooth model to discover the effect of 

ambiguity on portfolio choice. Many studies, which adopt the smooth approach, use 

the recursive smooth models that is explained later in this chapter. However, the 

smooth model is difficult to be applied in empirical studies because parameters such 

as concavity of the utility function, [, are difficult to measure empirically. 

 

2.3.3. Multiplier Model and Variational Utility Model 

The idea of the multiplier model comes from the robust control theory in engineering, 

which is introduced by Anderson et al. (2003). It incorporates ambiguity aversion 

using an approximating model to measure the reference model, which a decision-

maker believes as a true model. The utility function of the multiplier model is formally 

developed by Strzalecki (2011) as follows: 

H(&) = W>1
X∈a

\∫ D(&)28 + bc(8‖8∗)e ]                           2.10 

where c(8‖8∗) = f∫ ghij kX
kX∗
l 28, Gℎ61	8 ∈ ΔV

										∞												, 6h?6Gℎ6<6	
 

 

In Equation 2.10, &  stands for an act; !  is the state space; `  is the set of 

probability measures of the state given subjective information; D is a von Neumann-

Morgenstern (vNM) utility function; b is a positive parameter; and c(8‖8∗) is a non-

negative relative entropy, which measures the distance between the reference model 
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8∗ and other possible models 8, and the formula of the entropy is given above. The 

extent of ambiguity-aversion of a decision-maker decreases when b increases. Thus, 

when b  goes into infinity, the decision-maker is completely confident about his 

approximating model. On the other hand, the entropy, c(8‖8∗), measures the level of 

ambiguity. The intuition behind the model is that apart from the reference model, a 

decision-maker also considers other possible models because he is ambiguous-averse. 

As such, he also considers the worst case, but he is still confident about his reference 

model to some extent. Hence, he assigns a higher weight to the possible models that 

are close to his reference model, and his final decision is based on the highest ranking 

of the resulted expected utility. 

 

The multiplier model is criticised because of its inability to rationalise 

situations where there is more than one ambiguous urn in the Ellsberg’s experiment 

(Epstein and Schneider, 2010). As such, a generalised version of the multiplier model, 

which is also called the variational utility model, is proposed by Maccheroni et al. 

(2006) to solve this problem. The utility function of the variational utility preference 

is shown as follows: 

H(&) = W>1
X∈a

\∫ D(&)28 + E(8)e ]                                2.11 

 

In Equation 2.11, E(8) is a cost function, which can take any value from 0 to 

infinity. When E(8) equals to bc(8‖o), the variational utility model becomes the 

multiplier model. 

 

So far, the multiplier model has not been as widely used as the multiple-prior 

model and the smooth model. However, some researchers use it as a different method 
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to verify the existing literature. Barillas et al. (2009) use this model to re-examine the 

results from existing literature that explains composites of equity premium. 

 

2.3.4. Dynamic Preference Models 

Based on each static preference model introduced in the above subsections, there are 

three corresponding dynamic models. The time-consistent, intertemporal version of 

the multiple-prior model is proposed in Epstein and Wang (1994) and is formally set 

up in Epstein and Schneider (2003) as a recursive multiple-prior model. The utility 

function is presented as follows: 

pq,r(s) = D\sq(t)] + u min
X∈yz,{

∫ pq|},~V 28(�)                     2.12 

where Fq,r is a set of priors about time 4 + 1 at time 4. 

 

A dynamic, continuous-time version of the multiple-prior model is proposed 

in Duffie and Epstein (1992) and is formalised in Chen and Epstein (2002), which is 

an important paper for asset pricing theories. The model is presented as follows: 

pq = min
X∈yÄ

ÅX g∫ ℎ\"Ç, pÇ
X]2?|ℱq

Ö
q l                                2.13 

where FÜ is a set of priors; ℎ is defined as an aggregator; and ℱq is a filtration. The 

interpretation of the dynamic models is similar to that of the static ones expect that the 

time period is now continuous. 

 

In terms of application, the dynamic version of the multiple-prior model is 

widely used in quantitative papers to study the effect of ambiguity on financial markets, 

often involving learning and updating processes. For instance, Jeong et al. (2015) 

adopt the continuous-time recursive multiple-prior model to investigate the effect of 

ambiguity on asset pricing, which is found to be significant. 
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The dynamic intertemporal version of the smooth model is proposed in 

Klibanoff et al. (2009), and it is rearranged by Epstein and Schneider (2010) as follows: 

pq,r(s) = D\sq(t)] + u/q|}[á} minX∈yz,{
∫ ϕ(/q|}á}
_ ∫ pq|},~V 28(�)2^q,r)  2.14 

 

Further to this mode, Ju and Miao (2012) developed a new general recursive 

smooth model, which helps to solve the consumption-based equilibrium of asset prices. 

 

The recursive multiplier utility function can be written as follows: 

pq,rÜ (s) = min
X∈_

g∫ g∑ uqÖ
q D\s(�)]l28(�) + bc(8‖o)V l            2.15 

 

2.4. Learning and Updating 

Learning and updating processes in the financial markets refer to the situations where 

investors make observations from historical prices, learn the hidden future states from 

the past and update the prior probability measures accordingly. Since the learning and 

updating process involves different time periods, multi-stage static models and 

dynamic models are used to accommodating them. Epstein and Schneider (2008) 

developed a dynamic preference model based on the multiple-prior model. They 

claimed that ambiguity is not only caused by lack of information and quality of 

information but is also related to how the information is processed. Based on their 

research, investors tend to believe that bad news contains more ambiguous 

information or signals than good news. Moreover, Illeditsch (2009) find that putting 

risk-aversion and ambiguity-aversion together amplifies the effect of ambiguity due 

to bad news under heterogeneous agent models. Ju and Miao (2012) also find the 
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amplified effect of ambiguity due to bad news using the generalised recursive smooth 

learning model. 

 

On the other hand, learning under the multiplier model is intuitively not useful 

in the sense that it is quite similar to the subjective expected utility model, which does 

not include a learning process (Epstein and Schneider, 2010). Bayesian learning is 

proved to be not as good as models of learning under ambiguity by Chen et al. (2014), 

who use a smooth ambiguity-aversion model. This is also consistently found by Viale 

et al. (2014), who empirically show that their learning under ambiguity model is better 

than the Bayesian learning model and other classic asset pricing models. 

 

2.5. Effect of Ambiguity on Portfolio Choice 

Ambiguity affects financial markets in two ways, one of which is in terms of portfolio 

choice. In theory, ambiguity aversion can cause selective participation and non-

participation, which is also known as portfolio inertia (Epstein and Schneider, 2010). 

Dow and Werlang (1992) prove that ambiguity aversion can cause portfolio inertia by 

using one ambiguous asset in a two-period setting. They assume that there are only 

one ambiguous asset and one risk-free asset, which is a bond, in the market, and their 

analysis is based on the multiple-prior model. The result indicates that an investor 

forms an estimated price interval such that if the price lies in the interval, he will not 

participate in the market. Thus, the investor will buy the asset only if the price goes 

below the lower bound of the interval and will short the asset only if the price goes 

beyond the upper bound of the interval. They find that the range of the interval 

becomes larger when there is uncertainty, or ambiguity. 
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Epstein and Schneider (2010) also use the multiple-prior model to illustrate 

portfolio inertia caused by ambiguity aversion. As is discussed in the previous section, 

under the multiple-prior model, a change in ambiguity resembles a change in the mean. 

Based on this, Epstein and Schneider (2010) show that an investor has a reference rate 

of return as a benchmark to evaluate the return of the asset. However, due to 

ambiguity-aversion, the estimate will be allowed to go up and down by an amount 

such that it reflects the degree of lack of confidence caused by ambiguity. Thus, 

ambiguous return falls into the interval [<â − <ä, <â + <ä]  where <â  represents the 

estimated benchmark on the rate of return and <ä  stands for the dispersion due to 

ambiguity. They showed that an investor would take a long position of the asset if the 

lower bound of the interval is positive while he would take a short position if the upper 

bound of the interval is negative. In the case where the interval contains the zero value, 

the investor would neither go long nor go short. As such, ambiguity leads to 

nonparticipation, or portfolio inertia. In contrast, risk does not seem to affect the 

decision on participation. It affects the amount of the investment. Therefore, 

ambiguity has a first-order effect while risk has a second-order effect. This is 

consistently shown by Jeong et al. (2015) who find that risk-aversion is reduced when 

an ambiguity-aversion term is considered using a continuous-time recursive multiple-

prior model. Thus, the effect of ambiguity on portfolio choice is prevailing to the effect 

of risk. Moreover, as is illustrated by Epstein and Schneider (2010), the first-order 

effect remains even if the bond becomes risky and there is no longer a risk-free asset 

available in the market. 

 

In the case where there are a number of independent ambiguous assets, an 

investor will participate partly in the market when their estimated interval of rate of 

return does not contain the zero value. On the other hand, in the case where the 
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ambiguous assets are dependent, the first-order effect of ambiguity will be reduced 

because a pool of mutually dependent ambiguous assets can help to hedge ambiguity 

and hence benefits from diversification will offset part of the effect caused by 

ambiguity. In addition, ambiguity has an intertemporal effect on portfolio choice. It 

can have an impact on the entry and exit criteria by affecting both the benchmark and 

the lack of confidence parameter through updating, which means that the realised 

return of the previous period will affect the estimated interval of the rate of return of 

the next period due to learning and updating from the previous period. The implication 

behind this is that an investor focuses on future profitability and hence he will react 

according to the information available now to hedge against ambiguity in the future 

(Epstein and Schneider, 2010). The intertemporal effect of ambiguity can also be 

rationalised by dynamic models (Epstein and Schneider, 2007; Miao, 2009). 

 

Selective participation due to ambiguity is also found when the smooth 

ambiguity aversion model is applied. Chen et al. (2014) use the smooth model to 

compare the investment patterns of an ambiguity-averse investor and a Bayesian 

investor. They find that an ambiguity-averse investor is less involved in the stock 

markets than a Bayesian investor under the same circumstances. This suggests that 

ambiguity aversion leads to selective participation. In addition, they also show that an 

ambiguity-averse investor hedges against ambiguity. Liu (2011), who uses a 

continuous-time smooth model to investigate the effect of ambiguity on portfolio 

choice in an intertemporal context, finds a significance impact of ambiguity on 

portfolio choice and an intertemporal hedging demand against ambiguity. However, 

under the multiplier model, the first-order effect and hedging demand do not seem 

obvious because the multiplier model is similar to the subjective expected utility 

model in terms of reasoning on Savage acts (Epstein and Schneider, 2010). 
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On the empirical side, Antoniou et al. (2015) adopt the ambiguity measure 

developed by Anderson et al. (2009) to investigate the impact of ambiguity aversion 

on market participation of the US stock market. The ambiguity measure is based on 

the extent of inconsistency in professional forecasts using data from the Survey of 

Professional Forecasts (SPF). Their results are consistent with the theoretical evidence 

that ambiguity aversion refrains investors from participating in the stock market. 

 

2.6. Effect of Ambiguity under Asset Pricing 

Epstein and Schneider (2010) derive a theoretical formula of equity premium based 

on the multiple-prior model. The formula can be written as: 

^∗ − hij gyã
åã
l − <ç + }

é
èé = êèé + ^∗ − (^̅ − =̅)                  2.16 

where ^∗ represents the true mean of the stock return; FK represents the price of stock 

>; íK is the dividend of stock >; <ç represents the risk-free rate; ê is the proportion of 

wealth invested in stock >;  =̅ measures distortion from the reference model; ^̅ is the 

reference model of the mean return; and èé is the volatility of the return. 

 

Equation 2.16 shows that the equity premium is made up of a risk premium 

term êèé and an ambiguity premium term ^∗ − (^̅ − =̅), but it does not change with 

the number of stocks in the cross section. On the contrary, compensation on risk 

changes with number of stocks. The implication behind is that diversification can 

remove idiosyncratic risk, but it cannot remove ambiguity. On the other hand, an 

increase in the level of ambiguity measured by ^̅ − =̅ can increase the equity by an 

equal amount. As such, the existence of ambiguity explains the equity premium puzzle. 
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In addition, a one-unit increase in ambiguity needs to be offset by an increase of }
ì
 in 

volatility, which is larger than 1, and this explains the excess volatility puzzle. 

 

Quantitative studies on asset pricing models under ambiguity are either based 

on the representative agent setting or the heterogenous agent setting. Based on the 

representative agent setting, Epstein and Wang (1994) use Euler inequalities to solve 

pricing equilibrium with the multiple-prior preference model. Chen and Epstein (2002) 

build a continuous-time multiple-prior model under the representative agent setting. 

Epstein and Schneider (2008) also use the representative agent setting to study the 

impact of ambiguity on asset pricing under learning. Results from the representative 

agent models generally agree that a sudden increase in ambiguity can make return 

decrease and overreaction to bad news is a result of level of ambiguous information. 

However, these models are criticised by Guidolin and Rinaldi (2013) because market 

participants are assumed to be homogenous, which do not conform to the reality. As 

such, more recent quantitative studies have been focusing on heterogeneous agent 

models of ambiguity aversion. Thus, some investors are allowed to be more 

ambiguous than the others in the models. Under the heterogeneous agent setting, 

ambiguity is found to have different impact on stock returns compared to the result 

obtained under the representative agent setting. Ambiguity may not necessarily make 

asset returns increase because more ambiguity-averse investors can simply quit the 

market while less ambiguity-averse investors remain in the market (Cao et al., 2005; 

Chapman and Polkovnichenko, 2009). As such, investors may not necessarily be 

compensated for bearing ambiguity and hence ambiguity may not necessarily affect 

the equity premium in the short run. However, in the long run, ambiguity may have an 

impact on equity returns (Condie, 2008). On the other hand, quantitative studies have 

also shown that ambiguity has an impact on financial crises and bank runs (Guidolin 
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and Rinaldi, 2014; Uhlig, 2010). Recent studies also attempt to find the relationship 

between ambiguity and macroeconomic conditions, and there is evidence showing that 

ambiguity is associated with macroeconomic conditions (Jurado et al., 2015; Collard 

et al., 2018). 

 

On the empirical side, Anderson et al. (2009) used Survey of Professional 

Forecasters (SPF) data to measure ambiguity. Their results suggest that ambiguity 

tends to affect equity premium instead of risks. The issue with their ambiguity measure 

is that SPF data are collected from professionals and the survey records the data only 

if the participant provides forecast during the investigated period of time. As such, 

their results can only represent part of the professionals in the US finance industry. 

Therefore, it is reasonable to presume that their results are based on the representative 

agent models. Viale et al. (2014) use a nonlinear forecasting model, which is the STAR 

model, to derive the reference model and make assumptions about investors’ 

confidence level to calculate distortion from the reference model, which is used as the 

ambiguity measure in their study. They find that ambiguity has an impact on excess 

returns of stocks. However, one issue with the ambiguity measure based on a 

forecasting model is that it is difficult to find a forecasting model that is consistently 

used as the reference model by every investor. Since they use a single forecasting 

model as the reference model and the assumed confidence level applies to every 

investor, their results also seem to be based on the representative agent model. 

 

2.7. Conclusion 

So far, there are a large number of quantitative studies on ambiguity. However, as is 

evident from the review, the number of empirical studies remain few. In addition, the 

existing empirical studies mainly use either forecasting methods or the SPF data to 
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measure ambiguity. Viale et al. (2014) use a smooth transition autoregressive (STAR) 

model to obtain reference probability on the future economic state. However, the 

immediate issue with this method would be that stock returns may not be well-

forecasted by STAR models. In addition, their ambiguity measure is based on 

assumptions of investors’ confidence levels, which is not purely based on real-life data. 

On the other hand, one issue with the ambiguity measure based on the SPF data is that 

the results might be biased because the data are collected from professionals. As such, 

this thesis first conducts a research on forecasting, which can uncover whether it is 

reasonable to use an STAR model as the reference model, followed by developing 

ambiguity measures that are purely based on financial data. 
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Chapter 3. Forecasting UK Stock Prices with High-

Frequency Data 

 

3.1. Introduction 

Predictability of stock prices has been of interest to many financial practitioners and 

scholars. Prior to the wide application of computing techniques in forecasting, the 

literature mainly focuses on model development and forecasting monthly data, 

quarterly data and yearly data. Recently, researchers have been investigating 

predictability of stock volatilities using high-frequency data (Poon and Granger, 2003; 

Blair et al., 2001). However, there are few studies on mean forecasting using high-

frequency data. As such, this chapter attempts to use high-frequency data, including 

minute data, hourly data and daily data, to investigate the mean return forecasting 

performances of linear autoregressive models, nonlinear autoregressive models and 

exponential smoothing models. The testing assets include two UK market indices, 

FTSE100 index and FTSE Small Cap index, two large capitalisation stocks listed on 

the London stock exchange, HSBA LN Equity and GLEN LN Equity, and two small 

capitalisation stocks, MCLS LN Equity and DIA LN Equity. The sample period is 

from 13 October 2015 to 26 April 2016. Two-thirds of the data are used as in-sample 

data to initialise the forecasting models, and the rest are used as out-or-sample data to 

evaluate the forecasting performances of the models. In-sample goodness-of-fit and 

out-of-sample forecasting performances are evaluated based on accuracy measures, 

including the root-mean squared error (RMSE), mean absolute error (MAE) and mean 

absolute percentage error (MAPE). Diebold-Mariano (DM) test is also applied to test 

whether the differences of forecasting performances among the forecasting models are 

statistically significant. 
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The results suggest that nonlinear autoregressive models do not necessarily 

outperform the linear models, which are statistically significant as is shown by the 

MDM test results. In addition, weak significance is found, showing that the 

autoregressive (AR) model outperforms the random walk model for FTSE100 in daily 

frequency as well as for SMX in hourly frequency. Moreover, the AR model 

significantly outperforms the random walk model for FTSE100 using minute data. As 

such, the UK stock market seems not in a weak form of efficiency, at least with 

evidence from minute data. 

 

Fama and Malkiel (1970) defined three forms of market efficiency, namely 

weak, semi-strong and strong form of efficiency. Under the strong form of market 

efficiency, all available information is fully reflected in stock prices and hence neither 

public nor private information can be used to earn anomalous returns. The strong form 

of market efficiency incorporates the semi-strong form and the weak form. Under the 

semi-strong form of efficiency, stock prices reflect all publicly available information, 

and the semi-strong form incorporates the weak form. Under the weak form of market 

efficiency, past information such as historical prices cannot be used to predict stock 

prices and hence technical analysis cannot generate anomalous returns for investors. 

The weak form of market efficiency suggests that stock prices move upwards and 

downwards randomly and hence they follow a random walk. As a result, future prices 

are independent of past prices, making it impossible for investors to use past prices to 

predict future prices or the trend of future price movements. Further to the EMH, Lo 

(2004) introduces a new view of market efficiency, which is known as the adaptive 

market hypothesis (AMH). Under the AMH, market efficiency can change over time. 

Thus, when arbitrage opportunities exist, investors exploit such opportunities so that 
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prices return to the fundamental. In addition, investors also look for new opportunities 

to get extra profits, driving prices away from the fundamental. Therefore, efficiency 

and inefficiency interchangeably appear in the market by turns. Existing literature has 

shown evidence that stock markets are better characterised by the AMH using linear 

and nonlinear tests (Urquhart and Hudson, 2013; Smith, 2012). High-frequency data 

make it possible to use forecasting methods to test the AMH because the dataset is 

large. To test the AMH, the full sample is divided into 7 subsamples by month to 

uncover why increasing data frequency can improve forecasting accuracy. 

 

The subsample results indicate that increasing sample size does not necessarily 

result in more accurate forecasts while increasing the continuity of data increases 

forecasting accuracy. This result applies to the full sample as well. In addition, the 

results also suggest that the exponential smoothing models and the AR based models 

do not tend to suffer from over-fitting problems caused by inactive data. The 

subsample results, together with the full-sample results imply that the adaptive market 

hypothesis (AMH) characterise the UK stock market better than the efficient market 

hypothesis (EMH). 

 

This chapter contributes to the field of study in the following aspects: 1) it 

compares and contrasts linear autoregressive models, exponential smoothing models 

and nonlinear autoregressive models using high-frequency data; 2) it splits the full 

sample into subsamples to investigate why increasing data frequency helps to improve 

forecasting accuracy; and 3) it tests the AMH in the UK context with evidence from 

high-frequency forecasting, which is different from the methods applied in existing 

AMH literature. 
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The rest of the chapter is structured as follows. Section 3.2 provides a review 

of related literature. Section 3.3 describes the forecasting model used in this study; 

Section 3.4 shows the data and methodology. Section 3.5 explains the forecasting 

results including the full-sample results and sub-sample results. In the end, a short 

conclusion is provided in Section 3.6. 

 

3.2. Related Literature 

Existing literature on financial high-frequency forecasting mostly focuses on 

performances of volatility forecasting. Blair et al. (2001) use the generalised 

autoregressive conditional heteroskedasticity (GARCH) model, more precisely a 

î.c"ï(1,1) model, to forecast five-minute stock returns. They find that using high-

frequency data can produce more accurate forecasts than daily data. Taylor (2004) 

finds that the smooth transition exponential smoothing model is more accurate in 

forecasting stock volatilities. Findings of Bluhm and Yu (2001) suggest that the 

stochastic volatility forecasting model perform better than GARCH models. Although 

the results are mixed when it comes to which model provide the best forecasting 

performance, it seems agreed that using high-frequency data can improve forecasting 

accuracy. 

 

Matias and Reboredo (2012) compare the forecasting performances of 

nonlinear models with the performances of the AR model and the random walk model 

using high-frequency data. Their data are in 5-minute frequency, 10-minute frequency, 

20-minute frequency, 30-minute frequency and hourly frequency, and the nonlinear 

models investigated in their study include the Markov switching (MS) model, the 

smooth transition autoregressive (STAR) model, the STAR-GARCH model, the 

nonparametric kernel (KR) model, the artificial neural network (ANN) model and the 
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support vector machine (SVM) method. The results indicate that the KR, ANN and 

SVM models provide better forecasts than the AR model and the random walk model. 

However, the STAR model and the STAR-GARCH do not seem to outperform the 

AR model. Their results provide a reference for the empirical results in this chapter. 

In terms of exponential smoothing models, Makridakis et al. (1984) and Mills (2009) 

confirm the predictability of the models. In addition, according to Mills (2009), 

exponential smoothing models could be applied to small samples and volatile data. 

Leung et al. (2000) suggest that probability-based forecasting models are better than 

level-based models such as the exponential smoothing model. 

 

Other studies use explanatory variables to forecast excess returns of stocks. 

For instance, Ang and Bekaert (2007) use dividend yields to forecast excess returns. 

However, whether explanatory variables can improve the predictability of stock 

returns remain unclear. Welch and Goyal (2007) show that univariate forecasting 

models provide better forecasts than forecasting models using explanatory variables 

while findings of Campbell and Thompson (2008) suggest that explanatory models 

can outperform univariate models. 

 

Overall, forecasting performances of different models are mixed and are still 

under debate. In addition, although there are a large number of research papers 

investigating high-frequency forecasting of stock volatilities, the number of similar 

studies to Matias and Reboredo (2012), which focus on forecasting mean returns, 

remains few, and yet such studies have important implications for ambiguity literature. 

This motivates the research in this chapter. On the other hand, how selection of sample 

can affect forecasting result remain unclear from existing literature. As such, the full 

sample is split into subsamples to shed light on this question. 
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3.3. Forecasting Methods 

This section provides a detailed description of the forecasting models involved in this 

chapter. 

 

3.3.1. Random Walk Model 

Under the random walk model, the stock prices move up and down without a pattern 

and hence the model can be expressed by the following equation:  

ñq = S + ñqá} + óq                                                   3.1 

where ñq represents the realisation at time 4; S is called the drift term; and óq is the 

error term with a zero mean. If S is non-zero, the model is said to be a random walk 

model with a drift. 

 

Under the weak form of market efficiency, historical information is 

incorporated in the current stock price and hence historical prices cannot be used to 

predict future prices. Thus, the best prediction of today’s price should be yesterday’s 

price. As such, the random walk model should outperform other forecasting models if 

the market is in the weak form of efficiency. Thus, in this study, the random walk 

model is used as a benchmark model to testify the weak form of market efficiency. 

 

3.3.2. Linear Autoregressive Models 

Linear autoregressive models that are investigated in this chapter include the 

autoregressive (AR) mode and the autoregressive integrated moving average (ARIMA) 

model. The AR model is selected using Akaike (1969, 1970) information criterion 

(AIC), which indicates a better model if it has a smaller AIC. On the other hand, 

selection of the ARIMA model is based on the Box-Jenkins approach. 
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3.3.2.1. Autoregressive (AR) Model 

The equation of an .c(8) model is:  

ñq = uò + u}ñqá} + ⋯+ uXñqáX + óq                                3.2 

where ñqáX represents the realisation at time 4 − 8; uò is a constant; and óq is the error 

term. 

 

The idea behind the AR model is that the future value of a time series is based 

on its historical values. As such, if a time series follows an AR process, a pattern can 

be observed over time. 

 

3.3.2.2. Autoregressive Integrated Moving Average (ARIMA) Model 

An .c-ö.(8, 0, o) can be expressed by the following equation:  

ñq = S + u}ñqá} + ⋯+ uXñqáX − õ}6} − ⋯− õú6ú + 6q                  3.3 

where ñqáX represents the realisation at time 4 − 8; 6ú represents the regression error 

at time o; and S is a constant. If the non-stationary time-series become stationary 

when difference of order 2 is taken, the model is called an .c-ö.(8, 2, o) model. 

 

Makridakis et al. (1984) suggest that the Box-Jenkins forecasting method can 

be used to improve the forecasting performance of the ARIMA model. The approach 

involves several steps, first of which is to determine the number of differences to be 

taken in the data so that the time-series are stationary without seasonality. If the series 

are non-stationary, differences are taken to remove non-stationary patterns. On the 

other hand, if seasonal patterns present, the series are de-seasonalised. When the series 

are ready for analysis, ACF and PACF plots are used to specify the AR and MA terms 

of the ARIMA model. When model specification is done, parameter coefficients of 
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the specified model is estimated. Then the model is checked for goodness-of-fit and 

the AR and MA terms of the model are adjusted until the model fits the data best. 

 

3.3.3. Exponential Smoothing Forecasting Models 

Exponential smoothing models put more weights on the more recent data and the 

weights decrease exponentially when the data get far from the most recent point of 

time. Thus, they average data exponentially. One type of the exponential smoothing 

model is the simple exponential smoothing model, also named as single exponential 

smoothing model, which can be expressed as: 

ñùq|} = ñùq + S\ñq − ñùq]                                             3.4 

where ñùq|} represents the forecast at time 4 + 1; ñùq represents the forecast at time 4; 

ñq represents the observation at time 4; and S is a constant between 0 and 1. 

 

In Equation 3.4, ñq − ñùq is the forecast error at time t and the forecast of the 

next period time 4 + 1 simply equals to the current forecast plus a proportion of the 

forecast error of the current period time 4. Whether the forecast error is adjusted to a 

large extent purely depends on the estimate of S. As such, the forecasts will always 

follow the trend of the observations during the estimation period. 

 

The second type of the exponential smoothing model is the Holt’s linear 

exponential smoothing model, which can be characterised by the following equations: 
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ûq = Sñq + (1 − S)(ûqá} + üqá})                                    3.5 

üq = u(ûq − ûqá}) + (1 − u)üqá}                                    3.6 

ñùq|† = ûq + üq1                                                  3.7 

where ûq is the estimated level of the data at time 4; üq is the estimated slope of the 

data at time 4; ñq represents the observation at time 4; ñùq|† represents the forecast at 

time 4 + 1; and S and u are constant between 0 and 1. 

 

Equation 3.5 is an adjustment for the level or the mean of the data in the 

previous period. Then in Equation 3.6, the slope or the trend is updated according to 

the previous slope and the adjusted level. The n-period ahead forecast is calculated 

using Equation 3.7. The Brown’s linear exponential smoothing model is similar to the 

Holt’s model except that the Holt’s model separates the level term and the trend term 

while the Brown’s model uses one parameter for both. As such, the Holts model should 

generate more accurate forecasts than the Brown’s model. 

 

The damped-trend linear exponential smoothing model, which generates 

forecasts with a more conservative trend than the Holt’s and Brown’s linear 

exponential smoothing models, can be characterised by the following equations: 

ûq = Sñq + (1 − S)(ûqá} + õüqá})                                  3.8 

üq = u(ûq − ûqá}) + (1 − u)õüqá}                                  3.9 

ñùq|} = ûq + (õ + õé + ⋯+ õ†)üq1                               3.10 

where ûq is the estimated level of the data at time 4; üq is the estimated slope of the 

data at time 4; ñq represents the observation at time 4; ñùq|} represents the forecast of 

time 4 + 1; and S, u and õ are constant between 0 and 1. 
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Similar to the Holt’s model, Equation 3.8 is an adjustment for the level of the 

data in the previous period, and the trend is updated in Equation 3.9. Then the n-period 

ahead forecast is calculated using Equation 3.10. It is noticeable that the trend term 

becomes proportional to the trend term of the previous period with the introduction of 

õ and hence õ makes the forecasts of the damped-trend model less sensitive to the 

trend term than the Holt’s and Brown’s models. When õ equals to 1, the damped-trend 

linear exponential smoothing model becomes the Holt’s linear exponential smoothing 

model. The best-fit exponential smoothing model is selected from the models listed 

above by the software, which is then used to generate forecasts. 

 

3.3.4. Nonlinear Autoregressive Model 

Nonlinear autoregressive models used in this study include the additive autoregressive 

model, the threshold autoregressive model (TAR) and the smooth transition 

autoregressive (STAR) model. Model selection of the nonlinear models are more 

complicated and hence it is directly conducted by software. 

 

3.3.4.1. Additive Autoregressive Model 

An additive autoregressive model can be characterised by the following equation: 

ñùq = S + ∑ &K(ñqáK)
X
K°} + ∑ ?¢(£§•)¶

¢°}                               3.11 

where ñùq represents the forecast at time 4; S is a constant; ∑ &K(ñqáK)
X
K°}  represents the 

AR terns of order 8; and ∑ ?¢(£§•)¶
¢°}  represents the smoothers of covariates £§• =

(ñqáKß, ñqáK®, … , ñqáK™)
´. 

 

3.3.4.2. Threshold Autoregressive (TAR) Model 

The TAR model is a special case of the regime-switching model where the value of 

dependent variable is based on different regimes. Since this study implements 
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univariate forecasting, the self-exciting threshold autoregressive (SETAR) model is 

used. As the name suggests, the SETAR model is purely based on the historical values 

of a time series. An üÅ¨.c(≠, 8) model is specified by ≠ regimes and AR terns of 

order 8. For instance, an üÅ¨.c(2, 8) model can be characterised by the following 

equation: 

ñq = f
Sò + S}ñqá} + ⋯+ SXñqáX + óq, >&	Øq < c
uò + u}ñqá} + ⋯+ uXñqáX + óq´, >&	Øq ≥ c               3.12 

where ñq  represents the realisation at time 4 ; Øq  is the threshold variable; E  is the 

threshold value; Sò and uò are constants; and óq is the error term. 

 

As Equation 3.12 suggests, a time series is assumed to be linear in each regime 

under the TAR model. 

 

3.3.4.3. Smooth Transition Autoregressive (STAR) Model 

Similar to the SETAR model, the STAR model can also be used to forecast univariate 

time series. As the name suggests, the transition from one regime to another is 

continuous and smooth. An ü¨.c(8) model can be characterised by the following 

equation: 

ñq = Sò + S}ñqá} + ⋯+ SXñqáX + \uò + u}ñqá} + ⋯+ uXñqáX]î(Øq, õ, E) + óq 

3.13 

where ñq  represents the realisation at time 4 ; î(Øq, õ, E)  is the transition function 

valued between 0 and 1; Øq  is the threshold variable; õ is a speed and smoothness 

parameter of the transition function; E is the threshold value; Sò is a constant; and óq 

is the error term. 
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If the transition function î(Øq, õ, E)  is specified as a logistic function, the 

model is called a logistic smooth transition autoregressive (LSTAR) model. On the 

other hand, if it is specified as an exponential function, the model is called an 

exponential smooth transition autoregressive (ESTAR) model. 

 

3.4. Data and Methodology 

3.4.1. Data 

The sample period started from 13 October 2015 to 26 April 2016. The test assets 

include the FTSE100 index (UKX), the FTSE Small Cap index (SMX), two large-cap 

stocks and two small-cap stocks that are traded on the London stock exchange. Stocks 

of HSBC Holdings Plc. (HSBA) and Glencore Plc. (GLEN) are used as large-cap 

stocks and those of Dialight Plc. (DIA) and McColl’s Retail Group Plc. (MCLS) are 

used as small-cap stocks. Daily, hourly and minute prices of the test assets are 

downloaded from Bloomberg. Table 3.1 shows the summary statistics of the data. The 

ADF test statistics indicate that all the series are non-stationary and hence first-order 

difference are taken, after which the series become stationary. As is suggested by 

Atchison et al. (1987), one issue with stock predictability arises from nonsynchronous 

trading, which causes measurement errors because tradings may happen between two 

measurement time points but may not be recorded at the point of measurement. This 

could lead to observed autocorrelations of portfolios and stock indices in a daily 

frequency. The autocorrelation statistics of FTSE100 daily returns in Table 3.1 seem 

to conform to such a phenomenon. However, nonsynchronous trading is found to 

explain little proportion of autocorrelations (Atchison et al., 1987) and hence it is not 

considered when doing forecasting for the daily index returns. Another issue of stock 

predictability is related to non-trading, which results in no price change, especially for 

small stocks. As is evident from Table 3.1, proportion of no price change increases 
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with data frequency, and the increases of the two small stocks are much more 

significant than those of the indices and large stocks. This issue is more important in 

volatility forecasting literature and thus modification of the Student’s t distribution is 

frequently used to handle inactive data in volatility forecasting (Meade, 2002). 

However, existing literature of return forecasting does not do distribution modification, 

suggesting that inactive data do not seem to affect return forecasting. 
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Table 3.1 Summary Statistics. This table shows the summary statistics of the test asset prices. 

 Daily Hourly Minute 
FTSE100  
    Mean 0.000 0.000 0.000 
    Standard Deviation 0.012 0.004 0.000 
    Skewness 0.016 -0.659 1.739 
    Kurtosis 0.208 9.903 296.979 
    ADF Test Statistic -1.963 -1.935 -1.865 
    Autocorrelation 2 0 1 
    % No Price Change 0 0 0.388% 
    Observations 135 1,215 68,743 
    Sample Period 13/NOV/2015 – 26/APR/2016 
FTSE SmallCap (SMX)  
    Mean 0.000 0.000 0.000 
    Standard Deviation 0.006 0.002 0.000 
    Skewness -0.818 0.719 7.701 
    Kurtosis 2.281 28.767 1,950.713 
    ADF Test Statistic -1.549 -1.257 -0.533 
    Autocorrelation 0 1 5 
    % No Price Change 0 0.082% 2.906% 
    Observations 135 1,215 68,743 
    Sample Period 13/NOV/2015 – 26/APR/2016 
HSBC Holdings Plc. (HSBA)  
    Mean -0.001 0.000 0.000 
    Standard Deviation 0.018 0.006 0.001 
    Skewness 0.110 -0.412 -0.976 
    Kurtosis 1.404 9.992 203.160 
    ADF Test Statistic -2.208 -2.160 -2.017 
    Autocorrelation 0 0 0 
    % No Price Change 0.740% 1.399% 14.266% 
    Observations 135 1,215 68,743 
    Sample Period 13/NOV/2015 – 26/APR/2016 
Glencore Plc. (GLEN)  
    Mean 0.002 0.000 0.000 
    Standard Deviation 0.053 0.017 0.002 
    Skewness 0.112 0.220 1.710 
    Kurtosis 1.189 3.071 126.618 
    ADF Test Statistic -1.757 -1.925 -1.872 
    Autocorrelation 0 0 4 
    % No Price Change 0.740% 0.741% 9.021% 
    Observations 135 1,215 68,743 
    Sample Period 13/NOV/2015 – 26/APR/2016 
Dialight Plc. (DIA)  
    Mean -0.001 0.000 0.000 
    Standard Deviation 0.034 0.014 0.002 
    Skewness -0.643 -1.896 -19.611 
    Kurtosis 4.146 29.501 2,316.740 
    ADF Test Statistic -2.288 -1.681 -1.928 
    Autocorrelation 1 1 0 
    % No Price Change 2.220% 37.531% 97.128% 
    Observations 135 1,215 68,743 
    Sample Period 13/NOV/2015 – 26/APR/2016 
McColl’s Retail Group Plc. (MCLS)  
    Mean 0.001 0.000 0.000 
    Standard Deviation 0.022 0.011 0.002 
    Skewness -0.048 0.350 0.927 
    Kurtosis 0.623 9.499 509.652 
    ADF Test Statistic -1.116 -1.433 -2.658 
    Autocorrelation 1 1 0 
    % No Price Change 2.960% 70.041% 99.274% 
    Observations 135 1,215 68,743 
    Sample Period 13/NOV/2015 – 26/APR/2016 
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3.4.2. Methodology 

In forecasting literature, samples are split into in-sample data and out-of-sample data. 

In-sample data are also known as the training set, which are used to find a best-fit 

model. Out-of-sample data, on the other hand, are known as the test set, which are 

used to evaluate the forecasting performance of selected models. Thus, the samples 

are split into two subsets, one of which is used to estimate the parameters of the 

forecasting models and the other is used to compare the forecasting performances of 

different models. In this study, the first two-thirds of the data are used as the training 

set and the rest are used as the test set, which is a widely-adopted practice in 

forecasting literature. As such, the in-sample daily data have 91 observations; the in-

sample hourly data have 811 observations; and the in-sample minute data have 45,839 

observations. Then the in-sample data are used to initialise the forecasting model. 

Once model selection is done, coefficients of the parameters are estimated to generate 

one-step ahead forecasts for the out-of-sample period. The forecasts are calculated 

without re-estimating the parameters and coefficients. Hence, a newly available 

observation is used to forecast the value of the next time point while the forecasting 

model remains the same as the one that is used to forecast the value of the current time 

point. 

 

The forecasts are then compared to the observation of the out-of-sample period, 

and forecasting performances are evaluated by the root mean-squared error (RMSE), 

mean absolute error (MAE) and mean absolute percentage error (MAPE), which are 

calculated as: 

cöüÅ = ≥}
†
∑ (ñK − ¥K)é†
K°} 	                                   3.14 

ö.Å = }
†
∑ |ñK − ¥K|†
K°}                                         3.15 
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ö.FÅ = }
†
∑ µ(Nãá∂ã)×}òò

Nã
µ†

K°}                                    3.16 

where ¥K  represents the forecasted value of the series at time > ; ñK  represents the 

observed value at time >; and hence ñK − ¥K is the forecasting error at time >. 

 

Equations 3.14, 3.15 and 3.16 show that the three accuracy measures are 

different ways of calculating forecasting errors and hence a smaller value indicates a 

better forecasting performance. Thus, the in-sample RMSE, MAE and MAPE reflect 

the goodness-of-fit of the forecasting models while the out-of-sample values indicate 

the real forecasting performance. 

 

3.4.2.1. Diebold-Mariano Test 

Although forecasting accuracy measures can be used to evaluate forecasting 

performances, the differences of the measures among different forecasting models 

might be small, which sometimes makes it difficult to determine whether one model 

indeed generates superior forecasts to other models. As such, a statistical test is 

favoured to provide some confidence level that the results are statistically robust even 

if different samples are used. Diebold and Mariano (1995) developed a statistical test 

that allows researchers to compare forecasting performances among different 

forecasting models. The Diebold-Mariano (DM) test statistic can be calculated as: 

íö = k∏

≥π∫L(k∏)ª
                                                 3.17 

where 2̅ is the sample mean of the differences between the loss functions j(6) of the 

forecasting errors that are calculated from two forecasting models; p.c(2̅)ª  is an 

asymptotic approximation of the variance of 2̅; and j(6) needs to be specified, which 

can be a loss function of either power 1 or power 2 function. The choice of loss 

function depends on how the forecaster evaluates losses due to forecasting errors and 
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hence test results of both power 1 and power 2 loss functions are presented in 

forecasting literature. The DM statistic is asymptotically standard normal and hence 

can be directly compared to standard-normal critical values to make statistical 

inferences, which is easy to implement. 

 

However, Harvey et al. (1997) found that the original DM test might generate 

inaccurate results if the forecasts are biased. This issue becomes more severe if the 

sample size is small and it remains a problem even if the sample becomes large. As 

such, they recommended a modified DM (MDM) test. The MDM test statistic can be 

calculated as: 

öíö = íö≥†|}áéº|º(ºá})/†
†

                                3.18 

where 1 is the number of forecasting errors used to calculate the MDM statistic; and 

ℎ is the forecasting horizon, namely ℎ = 1 if forecasting errors are generated from 1-

step ahead forecasts. 

 

Harvey et al. (1997) also recommended that the MDM test statistic should be 

compared with Student’s t-statistic with 1 − 1 degrees of freedom to make statistical 

inferences. The result would be especially accurate for 1-step ahead forecasts. As such, 

in this paper, 1-step ahead forecasts will be used to investigate the predictability of the 

UK stock prices and forecasting performances of different models will be compared 

using the MDM test. The test statistics are compared to the Student’s t-statistics. 

 

On the other hand, the large sample size of high-frequency data makes it more 

likely to incorrectly reject the null hypothesis of Student’s t-tests, which is known as 
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the Lindley’s paradox. Connolly (1989) recommended the following modified critical 

t-value to make statistical inferences for large samples: 

4∗ = æ(¨ − ø)(¨}/Ö − 1)                                      3.19 

where ¨ is the sample size; and ¨ − ø is the degree of freedom. 

 

This method is based on Bayesian statistical inference, which uses prior and 

posterior probabilities of the null hypothesis and the alternative hypothesis. In order 

to make the null and alternative hypotheses have equal prior probabilities, namely not 

favouring either of the hypotheses, the null hypothesis needs to be rejected only if the 

Student’s t-statistic calculated from the sample is larger than the modified critical t-

value 4∗ in Equation 3.19. As such, in this study, the null hypotheses of Student’s t-

tests will be rejected when the t-statistic is larger than the corresponding 4∗ in Equation 

3.19. 

 

3.4.2.2. Forecasting Horizon 

As is mentioned above, 1-step ahead forecasts are used in this chapter. In addition, the 

full sample is split into 7 subsamples, which are organised by month. Thus, the full 

sample period is divided into 7 months. As such, forecasting models are re-estimated 

every month and the forecasting performances of each month are reported. This is 

different from rolling forecasting because forecasting performances are not evaluated 

for each rolling window. Comparing and contrasting forecasting performances among 

different subsamples provides a clearer picture of high-frequency forecasting. In 

particular, the results can uncover whether the forecasting performances using high-

frequency data are sensitive to sample size and whether there is a forecasting model 

that can outperform other models in each period. These questions remain unclear from 

existing literature, which provides a motivation for using subsamples. On the other 
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hand, it is also inspired by the AMH studies, which show that the efficiency of UK 

stock market is adaptive over time. The implication for forecasting is that the best 

model for forecasting market indices might change over time and hence the whole 

sample is divided into subsamples to investigate whether the findings and results 

obtained from the full sample are robust. 

 

3.5. Empirical Results 

Results of the daily data are presented in Table 3.2. It is noticeable that nonlinear AR 

models provide a better in-sample goodness-of-fit while the linear models provide a 

better out-of-sample performance and hence better forecasting performance. For 

FTSE100 and HSBA, the three accuracy measures indicate that the TAR model and 

the STAR model provide better in-sample performances than the other models. The 

AR model provides a better out-of-sample performance for FTSE100 while for HSBA, 

the three accuracy measures show different results. The RMSE measure indicates that 

the AR model has better forecasting performance, MAE the exponential smoothing 

model, and MAPE the Box-Jenkins approach. For SMX and DIA, the STAR model 

provides a better in-sample performance. The AR model generates better forecasts for 

SMX and the exponential smoothing model generates better forecasts for DIA. The 

RMSE measure indicates that the STAR model has better in-sample performance for 

GLEN and MCLS while the MAE and MAPE measures indicate that the TAR model 

has better in-sample performance. However, the Box-Jenkins approach provides better 

forecasting performance for GLEN and the AR model provides better forecasting 

performance for MCLS. Overall, the three linear models provide better forecasting 

performance than the nonlinear models. 
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Table 3.2 1-Step Ahead Forecasting Accuracy of Daily Data. This table shows the accuracy measures of the daily forecasts. RMSE represents the root mean-squared error 

accuracy measure, which is calculated as !"#$ = &'
(∑ (+, − .,)0(

,1' ; MAE represents the mean absolute error measure, which is calculated as "2$ = '
(∑ |+, − .,|(

,1' ; 

and MAPE represents the mean absolute percentage error measure, which is calculated as "24$ = '
(∑ 5(+,6.,)×'88+,

5(
,1' . The forecasting model with the smallest forecasting 

error measure is highlighted in bold. RW denotes the random walk model; AR denotes the autoregressive model; ARIMA denotes the autoregressive integrated moving 

average model; ES denotes the exponential smoothing model; AAR denotes the additive autoregressive model; TAR denotes the threshold autoregressive model; and STAR 

denotes the smooth transition autoregressive model. 

 In-Sample Out-of-Sample  In-Sample Out-of-Sample 
 RMSE MAE MAPE RMSE MAE MAPE  RMSE MAE MAPE RMSE MAE MAPE 
FTSE100 FTSE SmallCap (SMX) 
AR 76.074 60.074 0.997% 53.660 40.552 0.659% AR 29.892 21.430 0.483% 23.883 20.000 0.446% 
ARIMA 76.814 60.985 1.011% 58.471 45.221 0.736% ARIMA 28.758 20.969 0.475% 25.403 21.374 0.476% 
ES 76.811 60.917 1.010% 58.470 45.221 0.736% ES 29.620 21.417 0.485% 24.585 20.447 0.456% 
AAR 74.960 58.924 0.976% 59.617 46.743 0.760% AAR 28.087 21.141 0.478% 28.630 23.266 0.518% 
TAR 73.010 55.721 0.922% 60.283 47.650 0.774% TAR 26.824 20.095 0.453% 31.113 25.826 0.576% 
STAR 73.010 55.721 0.922% 60.283 47.650 0.774% STAR 26.823 20.071 0.452% 31.106 25.820 0.575% 
HSBC Holdings Plc. (HSBA) Glencore Plc. (GLEN) 
AR 8.524 6.405 1.305% 8.126 5.792 1.291% AR 4.704 3.699 3.970% 8.363 6.414 4.408% 
ARIMA 8.449 6.457 1.315% 8.198 5.706 1.261% ARIMA 4.728 3.756 4.006% 8.351 6.379 4.400% 
ES 8.433 6.466 1.316% 8.193 5.678 1.263% ES 4.726 3.755 4.004% 8.362 6.383 4.398% 
AAR 8.237 6.273 1.273% 8.279 6.403 1.439% AAR 4.688 3.725 3.990% 8.842 6.847 4.674% 
TAR 8.085 6.183 1.253% 9.942 7.780 1.751% TAR 4.548 3.571 3.844% 13.958 12.466 8.252% 
STAR 8.085 6.183 1.253% 9.942 7.780 1.751% STAR 4.519 3.627 3.859% 8.841 6.849 4.675% 
Dialight Plc. (DIA) McColl’s Retail Group Plc. (MCLS) 
AR 17.415 11.811 2.446% 16.098 12.439 2.362% AR 2.556 1.910 1.377% 3.306 2.550 1.599% 
ARIMA 17.709 11.944 2.450% 16.245 11.972 2.277% ARIMA 2.535 1.936 1.395% 3.347 2.628 1.661% 
ES 17.687 12.016 2.461% 16.037 11.789 2.242% ES 2.599 1.953 1.407% 3.482 2.781 1.769% 
AAR 17.243 11.653 2.395% 17.111 13.225 2.489% AAR 2.467 1.895 1.365% 3.498 2.801 1.776% 
TAR 16.991 11.524 2.371% 17.273 13.151 2.478% TAR 2.400 1.867 1.347% 16.305 13.849 8.454% 
STAR 16.961 11.417 2.358% 17.240 13.339 2.508% STAR 2.397 1.870 1.349% 16.974 14.467 8.834% 
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Table 3.3 shows the empirical results of the hourly data. The RMSE measure 

indicates that the TAR and STAR models fit the in-sample data better for FTSE100 

while the AR model provides a better forecasting performance. On the other hand, 

MAE and MAPE suggest that the additive AR model has better goodness-of-fit of the 

in-sample data while the AR model provides a better forecasting performance. For 

SMX, the STAR model seems to provide a better in-sample performance as is 

indicated by the RMSE measure while the MAE and MAPE measures indicate that 

the exponential smoothing model seem to fit the in-sample data better. However, the 

three measures consistently indicate that the AR model has a better forecasting 

performance. For HSBA, RMSE indicates that the TAR and STAR models provide 

better in-sample performances while the AR model provides a better forecasting 

performance. On the other hand, MAE and MAPE suggest that the Box-Jenkins 

approach has a better in-sample performance while the exponential smoothing model 

provides a better forecasting performance. In terms of GLEN, the three measure 

consistently indicate that the TAR model has a better in-sample performance while 

the Box-Jenkins approach provides a better forecasting performance. For DIA, RMSE 

indicates that the Box-Jenkins approach provides a better in-sample performance 

while the AR model has a better forecasting performance. However, MAE and MAPE 

suggest that the additive AR model has a better in-sample performance while the 

STAR model has a better forecasting performance. For MCLS, RMSE shows that the 

additive AR model has a better in-sample performance while the AR model has a 

better forecasting performance. On the other hand, the MAE and MAPE measures 

indicate that the exponential smoothing model provides both better in-sample 

goodness-of-fit and better forecasting performance. In general, both linear and 

nonlinear models can fit the in-sample data well while the linear models seem to have 

better forecasting performance except for DIA. 
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Table 3.3 1-Step Ahead Forecasting Accuracy of Hourly Data. This table shows the accuracy measures of the hourly forecasts. RMSE represents the root mean-squared 

error accuracy measure, which is calculated as !"#$ = &'
(∑ (+, − .,)0(

,1' ; MAE represents the mean absolute error measure, which is calculated as "2$ = '
(∑ |+, − .,|(

,1' ; 

and MAPE represents the mean absolute percentage error measure, which is calculated as "24$ = '
(∑ 5(+,6.,)×'88+,

5(
,1' . The forecasting model with the smallest forecasting 

error measure is highlighted in bold. RW denotes the random walk model; AR denotes the autoregressive model; ARIMA denotes the autoregressive integrated moving 

average model; ES denotes the exponential smoothing model; AAR denotes the additive autoregressive model; TAR denotes the threshold autoregressive model; and STAR 

denotes the smooth transition autoregressive model. Some numbers are shown as the same but actually have different values due to rounding. 

 In-Sample Out-of-Sample  In-Sample Out-of-Sample 
 RMSE MAE MAPE RMSE MAE MAPE  RMSE MAE MAPE RMSE MAE MAPE 
FTSE100 FTSE SmallCap (SMX) 
AR 24.411 15.886 0.263% 19.728 13.633 0.221% AR 7.875 4.501 0.102% 6.177 3.960 0.088% 
ARIMA 24.432 15.876 0.263% 20.134 13.796 0.224% ARIMA 7.783 4.424 0.100% 6.217 4.018 0.089% 
ES 24.431 15.868 0.263% 20.134 13.796 0.224% ES 7.781 4.415 0.100% 6.216 4.018 0.089% 
AAR 24.373 15.859 0.262% 20.185 13.916 0.226% AAR 7.646 4.470 0.101% 6.707 4.446 0.099% 
TAR 24.288 15.863 0.263% 20.220 13.968 0.227% TAR 7.789 4.468 0.101% 6.552 4.353 0.097% 
STAR 24.288 15.863 0.263% 20.220 13.968 0.227% STAR 7.711 4.451 0.101% 6.337 4.078 0.091% 
HSBC Holdings Plc. (HSBA) Glencore Plc. (GLEN) 
AR 2.768 1.890 0.383% 2.851 1.754 0.391% AR 1.712 1.216 1.289% 2.313 1.612 1.110% 
ARIMA 2.765 1.877 0.380% 2.854 1.745 0.390% ARIMA 1.713 1.219 1.292% 2.311 1.603 1.105% 
ES 2.764 1.877 0.380% 2.855 1.743 0.389% ES 1.711 1.217 1.290% 2.319 1.609 1.109% 
AAR 2.759 1.883 0.381% 2.852 1.779 0.398% AAR 1.702 1.206 1.281% 3.806 3.222 2.148% 
TAR 2.752 1.887 0.382% 2.849 1.786 0.400% TAR 1.699 1.201 1.276% 3.494 2.919 1.953% 
STAR 2.752 1.887 0.382% 2.849 1.786 0.400% STAR 1.699 1.201 1.276% 3.494 2.919 1.953% 
Dialight Plc. (DIA) McColl’s Retail Group Plc. (MCLS) 
AR 6.872 3.739 0.772% 7.227 4.574 0.856% AR 1.501 0.834 0.596% 1.547 0.863 0.546% 
ARIMA 6.841 3.805 0.785% 7.281 4.730 0.886% ARIMA 1.505 0.822 0.587% 1.589 0.920 0.583% 
ES 6.850 3.758 0.775% 7.253 4.614 0.864% ES 1.542 0.701 0.501% 1.559 0.787 0.499% 
AAR 6.960 3.699 0.761% 7.388 4.569 0.852% AAR 1.490 0.798 0.570% 5.590 4.641 2.830% 
TAR 6.939 3.776 0.780% 7.382 4.563 0.853% TAR 1.515 0.786 0.561% 1.582 0.908 0.576% 
STAR 6.942 3.759 0.776% 7.375 4.542 0.849% STAR 1.515 0.786 0.561% 1.582 0.909 0.577% 
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Empirical results of the minute data are shown in Table 3.4. For FTSE100, 

SMX and DIA, the RMSE measure indicates that the AR model provides better in-

sample goodness-of-fit than other models while for HSBA, GLEN and MCLS, it 

favours nonlinear models with HSBA the TAR model and GLEN and MCLS, the 

additive AR model. On the other hand, the MAE and MAPE measures suggest that 

the AR model has better in-sample performance than other models for FTSE100 while 

the exponential smoothing model provides better in-sample performance for the rest 

testing assets. For out-of-sample performance, the RMSE measure indicates that the 

AR model outperforms other models for all testing assets. The MAE and MAPE 

measures suggest that the AR model provides better forecasting performance for 

FTSE100 and SMX, Box-Jenkins approach for HSBA and exponential smoothing 

model for GLEN, DIA and MCLS. Overall the findings seem to suggest that the linear 

models outperform the nonlinear models in terms of both in-sample performance and 

out-of-sample performance although the RMSE measure still favours nonlinear 

models. 
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Table 3.4 1-Step Ahead Forecasting Accuracy of Minute Data. This table shows the accuracy measures of the minute forecasts. RMSE represents the root mean-squared 

error accuracy measure, which is calculated as !"#$ = &'
(∑ (+, − .,)0(

,1' ; MAE represents the mean absolute error measure, which is calculated as "2$ = '
(∑ |+, − .,|(

,1' ; 

and MAPE represents the mean absolute percentage error measure, which is calculated as "24$ = '
(∑ 5(+,6.,)×'88+,

5(
,1' . The forecasting model with the smallest forecasting 

error measure is highlighted in bold. RW denotes the random walk model; AR denotes the autoregressive model; ARIMA denotes the autoregressive integrated moving 
average model; ES denotes the exponential smoothing model; AAR denotes the additive autoregressive model; TAR denotes the threshold autoregressive model; and STAR 
denotes the smooth transition autoregressive model. Some numbers are shown as the same but actually have different values due to rounding. 

 In-Sample Out-of-Sample  In-Sample Out-of-Sample 
 RMSE MAE MAPE RMSE MAE MAPE  RMSE MAE MAPE RMSE MAE MAPE 
FTSE100 FTSE SmallCap (SMX) 
AR 2.9219 1.6357 0.02701% 2.5515 1.4161 0.02298% AR 0.6738 0.2686 0.00601% 0.6564 0.2884 0.00640% 
ARIMA 2.9224 1.6365 0.02703% 2.5548 1.4172 0.02300% ARIMA 0.6757 0.2676 0.00599% 0.6570 0.2888 0.00641% 
ES 2.9254 1.6381 0.02705% 2.5567 1.4185 0.02302% ES 0.6754 0.2674 0.00599% 0.6569 0.2886 0.00640% 
AAR 2.9240 1.6362 0.02702% 2.5549 1.4174 0.02300% AAR 0.6756 0.2686 0.00601% 0.6570 0.2900 0.00643% 
TAR 2.9238 1.6363 0.02702% 2.5555 1.4178 0.02301% TAR 0.6762 0.2686 0.00601% 0.6573 0.2895 0.00642% 
STAR 2.9236 1.6367 0.02703% 2.5555 1.4177 0.02300% STAR 0.6762 0.2686 0.00601% 0.6573 0.2895 0.00642% 
HSBC Holdings Plc. (HSBA) Glencore Plc. (GLEN) 
AR 0.35987 0.2265 0.04571% 0.3641 0.2150 0.04816% AR 0.2422 0.5162 0.16449% 0.3200 0.1894 0.12983% 
ARIMA 0.35987 0.2261 0.04563% 0.3642 0.2146 0.04808% ARIMA 0.2424 0.5162 0.16446% 0.3203 0.1894 0.12989% 
ES 0.35983 0.2261 0.04563% 0.3642 0.2146 0.04808% ES 0.2426 0.5160 0.16427% 0.3203 0.1891 0.12968% 
AAR 0.35984 0.2265 0.04570% 0.3642 0.2150 0.04817% AAR 0.2418 0.5162 0.16445% 0.3289 0.2040 0.13928% 
TAR 0.35983 0.2266 0.04573% 0.3642 0.2151 0.04818% TAR 0.2420 0.5162 0.16450% 0.3280 0.2028 0.13853% 
STAR 0.35983 0.2266 0.04573% 0.3642 0.2151 0.04818% STAR 0.2420 0.5162 0.16450% 0.3279 0.2027 0.13847% 
Dialight Plc. (DIA) McColl’s Retail Group Plc. (MCLS) 
AR 1.1119 0.1318 0.02720% 1.1508 0.1557 0.02923% AR 0.21924 0.01783 0.01274% 0.2452 0.02413 0.01521% 
ARIMA 1.1141 0.1300 0.02687% 1.1523 0.1529 0.02867% ARIMA 0.21929 0.01383 0.00988% 0.2457 0.01841 0.01162% 
ES 1.1155 0.1127 0.02327% 1.1509 0.1320 0.02475% ES 0.21929 0.01382 0.00988% 0.2457 0.01840 0.01162% 
AAR 1.1128 0.1295 0.02674% 1.1539 0.1484 0.02782% AAR 0.21917 0.01882 0.01345% 0.3116 0.17222 0.10482% 
TAR 1.1140 0.1260 0.02587% 1.1523 0.1422 0.02667% TAR 0.21921 0.01845 0.01321% 0.2486 0.05038 0.03114% 
STAR 1.1140 0.1260 0.02586% 1.1523 0.1421 0.02665% STAR 0.21920 0.01873 0.01340% 0.2570 0.08082 0.04957% 



 67 

 

The MAPE measure makes it possible to compare the results of difference 

frequencies, which decreases both in sample and out of sample with an increase in 

data frequency. On the other hand, the linear models tend to provide both better in-

sample performance and better out-of-sample performance than the nonlinear models 

when data frequency increases. This can be attributed to the continuity of data points. 

Changes in data or price movements are depicted in a more detailed and continuous 

way, which makes it easier for the AR based models and exponential smoothing 

models to capture the changes or movements. However, this does not necessarily mean 

that increasing sample size can improve forecasting performance and make linear 

models outperform nonlinear models. Nevertheless, whether the differences in 

forecasting performance are statistically significant or not needs to be verified by the 

modified Diebold-Mariano (MDM) test, which is explained in the following 

subsection. 

 

3.5.1. Diebold-Mariano Test Results 

Table 3.5 shows the out-of-sample MDM test statistics of daily data. Panel A presents 

the test statistics calculated from the power 1 loss function. The results suggest that 

the AR model provides superior forecasting performance than other linear models for 

FTSE100 at the 10% significance level. It outperforms the nonlinear models at the 5% 

significance level. However, for FTSE100, the differences in forecasting performance 

between other linear models and the nonlinear models are not statistically significant 

at the 10% significance level. It is also noticeable that the AR model outperforms the 

random walk model at the 10% significance level, which indicates that the UK stock 

market is not in a weak form of efficiency at the 10% significance level. For SMX, 

the differences in forecasting performances among the linear models are not 
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significant at the 10% significance level. However, the forecasting performances of 

the nonlinear models are worse than the linear models at the 5% significance level. 

For HSBA, the differences in forecasting performances are insignificant among the 

linear models and the additive AR model at the 10% significance level. However, the 

TAR and STAR models have poorer forecasting performance than the other models 

at the 5% significance level. For GLEN, the linear models and nonlinear models 

provide similar out-of-sample accuracies expect for the TAR model, which is 

outperformed by other models at the 1% significance level. For DIA, the linear models 

outperform the nonlinear models at the 10% significance level. The exponential 

smoothing model seems to provide a better forecasting performance than the other 

linear models. However, the difference is only significant in comparison with the AR 

model at 10% significance level. For MCLS, the linear models are similar in terms of 

out-of-sample performance at the 10% significance level. In addition, the linear 

models still outperform the nonlinear models except for the additive AR model. 

Results in Panel B, where the test statistics calculated from a power 2 loss function 

are presented, are similar to those in Panel A. As such, it can be concluded from the 

MDM tests of daily data that the linear models outperform the nonlinear models. 
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Table 3.5 Out-of-Sample Modified Diebold-Mariano (MDM) Test Statistics of Daily Data. This 

table shows the MDM test statistics of daily data based on power 1 loss function (upper triangle) and 

power 2 loss function (lower triangle). Models include random walk model (RW), autoregressive 

model (AR), autoregressive integrated moving average model (ARIMA), exponential smoothing 

model (ES), nonlinear autoregressive model (NAR), additive autoregressive model (AAR), threshold 

autoregressive model (TAR), and smooth transition autoregressive model (STAR). A positive 

(negative) test statistic means the column model provides better (worse) forecasting performance than 

the row model. - means the models in comparison are the same. Significance level: *** 1%, ** 5%, 

10%. 

FTSE100 RW AR ARIMA ES AAR TAR STAR 
  RW - 1.859* - 0.434 -0.894 -0.975 -0.975 
  AR -1.738* - -1.859* -1.859* -2.452** -2.279** -2.279** 
  ARIMA - 1.738* - 0.434 -0.894 -0.975 -0.975 
  ES -0.791 1.738* -0.791 - -0.894 -0.976 -0.976 
  AAR 0.741 2.172** 0.741 0.741 - -0.655 -0.655 
  TAR 0.550 1.948* 0.550 0.550 0.297 - 1.60 
  STAR 0.550 1.948* 0.550 0.550 0.297 -1.295 - 
SMX RW AR ARIMA ES AAR TAR STAR 
  RW - 0.683 -0.927 -0.339 -2.591** -3.061*** -3.053*** 
  AR -0.936 - -1.878* -0.683 -2.316** -3.097*** -3.093*** 
  ARIMA 0.815 1.918* - 0.926 -1.209 -2.154** -2.149** 
  ES 0.451 0.936 -0.814 - -2.591** -3.061*** -3.053*** 
  AAR 3.113*** 2.660** 1.852* 3.113*** - -2.013* -1.999* 
  TAR 3.009*** 3.120*** 2.399** 3.009*** 1.683* - 0.728 
  STAR 3.001*** 3.116*** 2.393** 3.001*** 1.669 -0.714 - 
HSBA RW AR ARIMA ES AAR TAR STAR 
  RW - -0.501 - 0.345 -1.646 -2.670** -2.670** 
  AR -0.375 - 0.501 0.623 -1.513 -2.524** -2.524** 
  ARIMA - 0.375 - 0.345 -1.646 -2.670** -2.670** 
  ES -0.064 0.298 -0.064 - -1.714* -2.713*** -2.713*** 
  AAR 0.128 0.308 0.128 0.137 - -3.223*** -3.223*** 
  TAR 1.727* 1.975* 1.727* 1.732* 3.128*** - -0.831 
  STAR 1.727* 1.975* 1.727* 1.732* 3.128*** 1.553 - 
GLEN RW AR ARIMA ES AAR TAR STAR 
  RW - -0.212 - -0.121 -1.119 -5.621*** -1.120 
  AR 0.058 - 0.212 0.187 -1.665 -6.164*** -1.662 
  ARIMA - -0.058 - -0.121 -1.119 -5.621*** -1.120 
  ES 0.291 -0.002 0.291 - -1.120 -5.677*** -1.121 
  AAR 1.048 6.164*** 1.048 1.088 - -6.759*** -0.581 
  TAR 3.992*** 4.402*** 3.992*** 4.048*** 4.834*** - 6.780*** 
  STAR 1.036 1.677 1.036 1.075 -0.292 -4.851*** - 
DIA RW AR ARIMA ES AAR TAR STAR 
  RW - -1.197 - 1.563 -1.844* -1.899* -1.868* 
  AR -0.405 - 1.197 1.696* -1.782* -1.547 -1.839* 
  ARIMA - 0.405 - 1.563 -1.844* -1.899* -1.868* 
  ES -2.077** -0.171 -2.077** - -2.166** -2.293** -2.169** 
  AAR 1.449 2.355** 1.449 1.805* - 0.274 -2.137** 
  TAR 1.367 1.558 1.367 1.723* 0.320 - -0.638 
  STAR 1.553 2.436** 1.553 1.885* 2.884*** -0.066 - 
MCLS RW AR ARIMA ES AAR TAR STAR 
  RW - 0.962 0.401 -0.229 -0.258 -8.767*** -8.983*** 
  AR -0.421 - -0.599 -1.624 -1.289 -9.112*** -9.339*** 
  ARIMA -0.142 0.336 - -1.374 -1.858* -8.765*** -8.989*** 
  ES 0.407 1.222 1.278 - -0.150 -8.391*** -8.602*** 
  AAR 0.420 1.090 1.879* 0.144 - -8.391*** -8.613*** 
  TAR 7.607*** 7.658*** 7.578*** 7.496*** 7.494*** - -4.421*** 
  STAR 7.688*** 7.733*** 7.659*** 7.580*** 7.581*** 7.003*** - 
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The out-of-sample MDM test results of hourly data are presented in Table 3.6. 

Results in Panel A show that nonlinear models expect the additive AR model have 

worse forecasting performances than the linear models for FTSE100 at the 10% 

significance level. However, the differences become insignificant when the critical 

value is adjusted using the Bayesian method of Connolly (1989). As such, all the 

models seem to provide similar forecasting accuracies for FTSE100. For SMX, the 

AR model seems to outperform the other models at the 5% significance level, 

including the random walk model. However, the results become insignificant for the 

linear models when the Bayesian critical value is applied. Nevertheless, the nonlinear 

models are still outperformed by the AR model. The additive AR model and the TAR 

model provide poorer forecasting performances than the other models at the 1% 

significance level, and the result is robust to the adjustment of Bayesian statistical 

inference. For HSBA, the additive AR, TAR and STAR models have poorer 

forecasting performances than the other models at the 5% significance level. However, 

with adjustment to Bayesian critical value, the differences in forecasting performances 

are only significant when the three models are compared to the exponential smoothing 

model. For GLEN, the linear models have similar forecasting performance while the 

nonlinear models are outperformed by the linear models at the 1% significance level, 

which is still significant when the Bayesian critical value is applied. For DIA, the 

random walk model outperforms the other models at the 1% significance level, which 

is robust to the Bayesian adjustment. However, it seems that there is no difference in 

forecasting performances between other linear models and nonlinear models. For 

MCLS, the random walk model has better forecasting performance than the other 

models at the 1% significance level and the differences are still statistically significant 

when the Bayesian critical value is applied. Among the other linear models, the 

exponential smoothing model performs best, followed by the AR model and the Box-
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Jenkins approach, both at the 1% significance level and with evidence from Bayesian 

inference. The TAR and STAR models have similar forecasting performances to the 

Box-Jenkins approach while the other two nonlinear models are outperformed by the 

linear models at the 1% significance level, which is robust to the Bayesian adjustment. 

In Panel B, where a power 2 loss function is applied, the results are slightly different 

from those in Panel A. The AR model outperforms the random walk model for SMX 

even if the Bayesian critical value is applied. The differences in forecasting 

performances among the linear and nonlinear models are no longer statistically 

significant for HSBA. For DIA and MCLS, the random walk model no longer 

outperforms the other models. Instead, it seems outperformed by the AR model at the 

5% significance level and 1% level respectively. However, the differences are not 

significance when the Bayesian critical value is applied. Overall, the findings seem to 

suggest that the linear models provide better forecasting performances than the 

nonlinear models if the forecaster cares less about losses and hence uses a power 1 

loss function. However, if he cares more about losses due to forecasting errors and 

penalises the losses using a power 2 function, the nonlinear models do not necessarily 

provide worse performances than the linear models. In addition, forecasters can use 

an AR model to estimate the mean price movement since it seems to outperform the 

other models when a power 2 loss function is applied. 
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Table 3.6 Out-of-Sample Modified Diebold-Mariano (MDM) Test Statistics of Hourly Data. This 

table shows the MDM test statistics of houtly data based on power 1 loss function (upper triangle) and 

power 2 loss function (lower triangle). Models include random walk model (RW), autoregressive 

model (AR), autoregressive integrated moving average model (ARIMA), exponential smoothing 

model (ES), nonlinear autoregressive model (NAR), additive autoregressive model (AAR), threshold 

autoregressive model (TAR), and smooth transition autoregressive model (STAR). A positive 

(negative) test statistic means the column model provides better (worse) forecasting performance than 

the row model. - means the models in comparison are the same. Sgnificaince level: *** 1%, ** 5%, 

10%. § means significant when compared to the modified critical value of Connolly (1989). 

FTSE100 RW AR ARIMA ES AAR TAR STAR 
  RW - 0.777 - -0.228 -1.958* -2.031** -2.031** 
  AR -1.443 - -0.777 -0.777 -1.327 -1.520 -1.520 
  ARIMA - 1.443 - -0.228 -1.958* -2.031** -2.031** 
  ES 0.091 1.443 0.091 - -1.958* -2.031** -2.031** 
  AAR 0.856 1.625 0.856 0.856 - -1.198 -1.198 
  TAR 0.811 1.790* 0.811 0.811 0.513 - 2.116** 
  STAR 0.811 1.790* 0.811 0.811 0.513 -0.675 - 
SMX RW AR ARIMA ES AAR TAR STAR 
  RW - 2.301** 0.358 0.375 -4.834***§ -5.498***§ -1.351 
  AR -2.706***§ - -2.435** -2.404** -5.362***§ -5.444***§ -2.509**§ 
  ARIMA -0.783 1.784* - 1.839* -4.445***§ -4.294***§ -1.020 
  ES -0.796 1.769* -0.997 - -4.451***§ -4.298***§ -1.032 
  AAR 4.279***§ 4.784***§ 4.235***§ 4.236***§ - 1.116 4.615***§ 
  TAR 4.471***§ 4.599***§ 4.076***§ 4.077***§ -1.522 - 4.833***§ 
  STAR 2.176** 3.129***§ 2.070** 2.082** -3.719***§ -2.968***§ - 
HSBA RW AR ARIMA ES AAR TAR STAR 
  RW - -1.280 - 0.815 -2.296** -2.306** 2.306** 
  AR -0.474 - 1.280 1.541 -2.165** -2.342** -2.342** 
  ARIMA - 0.474 - 0.815 -2.296** -2.306** -2.306** 
  ES 0.410 0.545 0.410 - -2.473**§ -2.464**§ -2.464**§ 
  AAR -0.133 0.093 -0.133 -0.225 - -1.219 -1.219 
  TAR -0.304 -0.162 -0.304 -0.370 -0.603 - -2.820***§ 
  STAR -0.304 -0.162 -0.304 -0.370 -0.603 0.988 - 
GLEN RW AR ARIMA ES AAR TAR STAR 
  RW - -1.583 - -1.195 -15.57***§ -13.96***§ -13.96***§ 
  AR 0.326 - 1.583 0.381 -16.04***§ -14.45***§ -14.45***§ 
  ARIMA - -0.326 - -1.195 -15.57***§ -13.96***§ -13.96**§ 
  ES 1.140 0.689 1.140 - -15.51***§ -13.90***§ -13.90***§ 
  AAR 12.40***§ 12.79***§ 12.40***§ 12.40***§ - 21.09***§ 21.09***§ 
  TAR 11.04***§ 11.48***§ 11.04***§ 11.04***§ -17.39***§ - 22.75***§ 
  STAR 11.04***§ 11.48***§ 11.04***§ 11.04***§ -17.39***§ -18.77***§ - 
DIA RW AR ARIMA ES AAR TAR STAR 
  RW - -4.347***§ -5.243***§ -3.918***§ -7.659***§ -8.063***§ -7.764***§ 
  AR -2.284** - -5.012***§ -1.373 0.105 0.225 0.663 
  ARIMA -0.999 1.634 - 6.947***§ 2.335** 2.423** 2.730***§ 
  ES -1.424 0.873 -1.540 - 0.667 0.756 1.070 
  AAR 0.613 2.555**§ 1.232 1.560 - 0.361 1.877* 
  TAR 0.473 2.430** 1.157 1.501 -0.404 - 6.801***§ 
  STAR 0.262 2.354** 1.084 1.433 -0.911 -2.263** - 
MCLS RW AR ARIMA ES AAR TAR STAR 
  RW - -6.702***§ -8.069***§ -3.597***§ -24.43***§ -6.248***§ -6.283***§ 
  AR -1.955* - -3.968***§ 6.029***§ -24.43***§ -2.422** -2.471**§ 
  ARIMA -0.535 1.832* - 7.265***§ -23.95***§ 0.535 0.492 
  ES -2.024** 0.798 -1.098 - -24.38***§ -7.705***§ -7.757***§ 
  AAR 20.03***§ 20.50***§ 20.36***§ 20.27***§ - 23.82***§ 23.80***§ 
  TAR -0.548 1.350 -0.196 0.868 -20.33***§ - -1.334 
  STAR -0.543 1.359 -0.190 0.877 -20.33***§ 1.288 - 
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The out-of-sample MDM test statistics of minute data are presented in Table 

3.7. Similarly, in Panel A, the results are based on a power 1 loss function. For 

FTSE100, the random walk model seems outperformed by the other models except 

the exponential smoothing model at the 5% significance level. However, the 

difference is only significant between the AR model and the random walk model when 

the Bayesian critical value is applied. The nonlinear models perform worse than the 

AR model and the Box-Jenkins approach and are better than or equal to the 

exponential smoothing model. However, the differences are not significant with 

Bayesian statistical inference. For SMX, the linear models outperform the nonlinear 

models both at the 1% significance level and with Bayesian inference. The linear 

models seem to have similar forecasting performances. For HSBA and MCLS, the 

random walk model outperforms the other models both at the 1% significance level 

and with Bayesian inference. The AR model generates worse forecasts than the other 

linear models both at the 1% significance level and with Bayesian inference. On the 

other hand, the nonlinear models provide worse forecasts than the linear models both 

at the 1% significance level and with Bayesian inference. However, the additive AR, 

TAR and STAR models seem to have similar performances to the AR model. For 

GLEN, the random walk model has better forecasting performance than the other 

models both at the 1% significance level and with Bayesian inference. In addition, the 

linear models significantly outperform the nonlinear models. For DIA, the random 

walk has better forecasting performances than the other models both at the 1% 

significance level and with Bayesian inference. The exponential smoothing model 

performs better than the AR model and the Box-Jenkins approach as well as the 

nonlinear models both at the 1% significance level and with Bayesian inference. 

However, the AR model and the Box-Jenkins approach are outperformed by the 

nonlinear models both at the 1% significance level and with Bayesian inference. In 
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Panel B, where a power 2 loss function is used, the statistics have slightly different 

indications from the results of a power 1 function. For FTSE100, the random walk 

model is outperformed by all the models except the exponential smoothing model both 

at the 1% significance level and with Bayesian inference. For SMX, the AR model 

seems to provide better performance than the other models including the random walk 

model at the 5% significance level, but the differences are not significant when the 

Bayesian critical value is applied. For HSBA, the differences in forecasting 

performances are not statistically significant among the forecasting models. For 

GLEN and MCLS, the AR model seems better than or equal to the other models. 

However, the differences are not significant when the Bayesian critical value is 

applied. Overall, the findings are similar to those of hourly data. Choices of the 

forecasting models partly depend on interpretation of losses due to forecasting errors. 

When a power 1 loss function is used, the nonlinear models are outperformed by at 

least one of the linear models while this is not the case when a power 2 function is 

applied. On the other hand, the AR model seems to consistently provide better 

performance than the other models including the random walk model when a power 2 

loss function is used. 
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Table 3.7 Out-of-Sample Modified Diebold-Mariano (MDM) Test Statistics of Minute Data. This 

table shows the MDM test statistics of minute data based on power 1 loss function (upper triangle) 

and power 2 loss function (lower triangle). Models include random walk model (RW), autoregressive 

model (AR), autoregressive integrated moving average model (ARIMA), exponential smoothing 

model (ES), nonlinear autoregressive model (NAR), additive autoregressive model (AAR), threshold 

autoregressive model (TAR), and smooth transition autoregressive model (STAR). A positive 

(negative) test statistic means the column model provides better (worse) forecasting performance than 

the row model. - means the models in comparison are the same. Sgnificaince level: *** 1%, ** 5%, 

10%. § means significant when compared to the modified critical value of Connolly (1989). 

FTSE100 RW AR ARIMA ES AAR TAR STAR 
  RW - 3.229***§ 2.550** 0.794 2.163** 2.064** 2.057** 
  AR -4.176***§ - -1.813* -3.253***§ -2.195** -2.653*** -2.549** 
  ARIMA -3.340***§ 2.828*** - -2.408** -1.924* -2.603*** -2.442** 
  ES -2.199** 3.965***§ 2.118** - 1.912* 1.489 1.567 
  AAR -3.258***§ 2.911*** 0.660 -2.025** - -2.025** -1.833* 
  TAR -3.361***§ 3.331***§ 2.235** -1.646 2.271** - 0.845 
  STAR -3.259***§ 3.252***§ 2.370** -1.649 2.418** -0.213 - 
SMX RW AR ARIMA ES AAR TAR STAR 
  RW - 0.652 -0.923 -0.291 -5.655***§ -5.280***§ -5.374***§ 
  AR -2.037** - -1.367 -0.842 -5.310***§ -4.410***§ -4.465***§ 
  ARIMA -1.242 1.883** - 2.655*** -3.667***§ -2.578*** -2.621*** 
  ES -1.344 1.664** -1.431 - -4.167***§ -3.137*** -3.181***§ 
  AAR -0.520 1.033 -0.036 0.184 - 2.776*** 2.706*** 
  TAR -0.325 2.601*** 0.555 0.963 0.695 - -0.874 
  STAR -0.305 2.659*** 0.591 1.005 0.721 1.316 - 
HSBA RW AR ARIMA ES AAR TAR STAR 
  RW - -6.199***§ - -6.867***§ -11.86***§ -11.88***§ -11.88***§ 
  AR -1.402 - 6.199***§ 6.147***§ -0.137 -0.834 -0.823 
  ARIMA - 1.402 - -6.867***§ -11.86***§ -11.88***§ -11.88***§ 
  ES -1.009 1.393 -1.009 - -11.76***§ -11.79***§ -11.79***§ 
  AAR -0.218 1.323 -0.218 -0.187 - -4.326***§ -4.266***§ 
  TAR -0.460 1.230 -0.460 -0.434 -0.832 - 11.90***§ 
  STAR -0.462 1.230 -0.462 -0.436 -0.838 -0.737 - 
GLEN RW AR ARIMA ES AAR TAR STAR 
  RW - -8.563***§ -6.728***§ -5.988***§ -31.86***§ -30.58***§ -30.48***§ 
  AR -1.460 - -1.502 3.815***§ -32.02***§ -30.82***§ -30.72***§ 
  ARIMA -1.079 3.045*** - 4.520***§ -30.67***§ -29.44***§ -29.33***§ 
  ES 2.490** 2.523** 0.147 - -31.28***§ -29.91***§ -29.81***§ 
  AAR 15.99***§ 16.68***§ 15.07***§ 15.10***§ - 32.05***§ 33.16***§ 
  TAR 14.70***§ 15.53***§ 13.91***§ 13.74***§ -15.55***§ - 42.94***§ 
  STAR 14.62***§ 15.45***§ 13.82***§ 13.65***§ -16.24***§ -24.80***§ - 
DIA RW AR ARIMA ES AAR TAR STAR 
  RW - -69.40***§ -62.20***§ -15.26***§ -33.67***§ -28.01***§ -27.81***§ 
  AR -0.850 - 10.07***§ 68.59***§ 13.63***§ 28.02***§ 28.23***§ 
  ARIMA 0.998 2.933*** - 58.35***§ 9.423***§ 27.01***§ 27.26***§ 
  ES -1.503 0.112 -1.781* - -32.95***§ -23.57***§ -23.36***§ 
  AAR 2.141** 2.156** 1.217 2.238** - 18.81***§ 19.08***§ 
  TAR 0.898 1.578 -0.006 2.189** -1.172 - 7.863***§ 
  STAR 0.908 1.590 0.001 2.210** -1.166 0.336 - 
MCLS RW AR ARIMA ES AAR TAR STAR 
  RW - -82.08***§ -10.77***§ -10.77***§ -201.3***§ -236.7***§ -217.2***§ 
  AR -2.108** - 80.72***§ 80.79***§ -195.4***§ -181.8***§ -197.6***§ 
  ARIMA -0.320 2.138** - 10.87***§ -201.1***§ -234.2***§ -216.4***§ 
  ES -0.325 2.137** 0.062 - -201.1***§ -234.3***§ -216.4***§ 
  AAR 55.22***§ 58.48***§ 55.78***§ 55.77***§ - 193.5***§ 191.5***§ 
  TAR 11.15***§ 11.44***§ 11.71***§ 11.71***§ -64.67***§ - -199.1***§ 
  STAR 22.55***§ 24.89***§ 23.52***§ 23.15***§ -73.48***§ 33.61***§ - 
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For different frequencies, at least one of the linear models outperform the 

nonlinear models when a power 1 loss function is applied. Under power 2 loss function, 

the AR model seems to have better or equal performance compared to the other models. 

In addition, the nonlinear models no longer necessarily provide inferior forecasting 

performances than the linear models where a power 2 function is applied. For daily 

data and hourly data, the MDM test result of one of the two market indices provides 

weak evidence that index price movements can be better predicted by the AR model 

instead of the random walk model. This implies that there is weak evidence that the 

UK stock market is not in a weak form of efficiency. However, the evidence is claimed 

to be weak because it is significant at the 10% significance level for daily data and not 

significant with the Bayesian adjustment but at the 5% significance level for hourly 

data. For minute data, the FTSE100 index price can be better predicted by the AR 

model both at the 1% significance level and with Bayesian inference, which implies 

that minute price movement of the market portfolio has a pattern and hence the market 

is not in a weak form of efficiency with evidence from minute observations. This 

provides incentives for investors to do higher-than-minute-frequency trading but 

probably with more advanced methods that have an AR term. 

 

3.5.2. Subsample Forecasting Results 

Table 3.8 and Table 3.9 display the best forecasting models for hourly and minute data 

of each testing asset in each subsample period, which are used to compare with the 

forecasting performance of the random walk model. The results indicate that the best-

performing model changes over time. As such, there seems no forecasting model that 

constantly beats the other models. The implication behind is that forecasters should 

not rely on a single forecasting model. Instead, they can use computing techniques to 

develop a computer programme that update the forecasting method from one period 
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to another. This result also provides implications for ambiguity literature, which 

attempts to use forecasting methods to find out the reference model. For instance, the 

reference model used by Viale et al. (2014) is solely based on the regime-switching 

model. The advantage is that it allows to calculate the transition probability from one 

economic state to another, which can be used as reference probability. However, 

according to the results in this study, it might not be proper to use the regime-switching 

model as a reference model in the sense that 1) it does not necessarily provide superior 

forecasting performances and hence may not be used by investors as a reference model; 

and 2) since the best-performing model changes over time, reference model of 

investors might also change over time. 

 

The tables also show comparisons of forecasting performances between the 

selected models and the random walk model. According to Table 3.8, which shows 

the results from hourly data, the AR model provides better forecasts than the random 

walk model for the FTSE SmallCap index in month 4, which is significant at the 5% 

level using a loss function of power 1 and at the 10% level using a loss function of 

power 2. As such, evidence from small stocks seems to suggest that efficiency of the 

UK stock market is adaptive over time. However, evidence from large stocks, which 

are represented by FTSE100, suggests that the UK stock market at least has a weak 

form of efficiency. In combination, the findings seem to imply that efficiency of the 

UK stock market is adaptive. This outcome becomes more evident in Table 3.9, where 

minute data are applied. For the FTSE100 index, the AR model outperforms the 

random walk model in month 2 at the 5% significance level, as is shown in Panel A, 

where a power 1 loss function is used. In Panel B, where a power 2 loss function is 

applied, the AR model outperforms the random walk model in month 6 at the 1% 

significance level, month 5, the 5% level, and month 2, the 10% level. For the FTSE 
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SmallCap index, the AR model provides better out-of-sample performance than the 

random walk model in month 4, which is significant at the 5% level under a power 1 

loss function and at the 1% level under a power 2 loss function. Thus, evidence from 

both large stocks and small stocks seems to suggest that efficiency of the UK stock 

market is adaptive. This outcome is consistent with the result of Urquhart and Hudson 

(2013) that the AMH characterises the UK stock market better than the EMH. 
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Table 3.8 Out-of-Sample Modified Diebold-Mariano (MDM) Test Statistics by Month (Hourly 
Data). This table shows the MDM test statistics between the random walk model and the best 

forecasting model from hourly data. The Model rows display the best model selected; and the MDM 

rows display the MDM test statistics. Models include random walk model (RW), autoregressive model 

(AR), autoregressive integrated moving average model (ARIMA), exponential smoothing model (ES), 

nonlinear autoregressive model (NAR), additive autoregressive model (AAR), threshold 

autoregressive model (TAR), and smooth transition autoregressive model (STAR). A positive 

(negative) test statistic means the selected model is better (worse) than the random walk model. - 

means the models in comparison are the same. Sgnificaince level: *** 1%, ** 5%, 10%. 

 
 
 

Panel A Power 1 Loss Function 
Month 1 2 3 4 5 6 7 
FTSE100 
  Model AR ES ES AR ES ES ES 
  MDM 0.897 0.466 1.117 1.171 -2.263** 0.533 1.135 
SMX 
  Model AR AR ES AR ARIMA AAR TAR 
  MDM 0.362 0.681 0.763 2.427** - 1.141 0.400 
HSBA 
  Model AR ES AR AR ES ARIMA ES 
  MDM 0.282 0.373 0.012 0.921 0.988 - -0.620 
GLEN 
  Model AR AAR AR ES ARIMA TAR AR 
  MDM 0.891 0.864 1.275 0.445 - 0.185 -0.091 
DIA 
  Model ES ARIMA ES AR ARIMA ES AR 
  MDM 1.163 - 0.035 -0.957 - -0.036 -1.170 
MCLS 
  Model ES ARIMA ES ES ARIMA ARIMA ARIMA 
  MDM -1.628 -2.088** -3.477*** -1.927* - -0.899 - 
Panel B Power 2 Loss Function 
Month 1 2 3 4 5 6 7 
FTSE100 
  Model AR AR AR AR ES AR AR 
  MDM 0.790 0.995 0.669 0.980 -2.584** 0.502 0.572 
SMX 
  Model AR AR ES AR ARIMA AAR AAR 
  MDM 0.915 1.409 0.670 1.962* - 1.442 0.690 
HSBA 
  Model ES ARIMA AR AR AR ES ES 
  MDM 0.596 - 0.119 0.903 1.154 0.201 0.338 
GLEN 
  Model AR AAR AR AR ARIMA AR AR 
  MDM 0.887 1.185 0.887 0.245 - 0.768 0.175 
DIA 
  Model AR ARIMA AR AR ARIMA ES AR 
  MDM 1.080 - 1.873* 0.845 - 1.957* 1.489 
MCLS 
  Model AR ARIMA AR AR ARIMA ES AR 
  MDM 0.605 0.588 -0.528 1.448 - 1.238 1.232 
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Table 3.9 Out-of-Sample Modified Diebold-Mariano (MDM) Test Statistics by Month (Minute 
Data). This table shows the MDM test statistics between the random walk model and the best 

forecasting model from minute data. The Model rows display the best model selected; and the MDM 

rows display the MDM test statistics. Models include random walk model (RW), autoregressive model 

(AR), autoregressive integrated moving average model (ARIMA), exponential smoothing model (ES), 

nonlinear autoregressive model (NAR), additive autoregressive model (AAR), threshold 

autoregressive model (TAR), and smooth transition autoregressive model (STAR). A positive 

(negative) test statistic means the selected model is better (worse) than the random walk model. - 

means the models in comparison are the same. Sgnificaince level: *** 1%, ** 5%, 10%. 

Panel A Power 1 Loss Function 
Month 1 2 3 4 5 6 7 
FTSE100 
  Model AR AR ARIMA ARIMA AR AR AR 
  MDM 0.797 2.082** 1.426 0.482 1.311 0.400 0.359 
SMX 
  Model AR ARIMA ARIMA AR ES AAR ES 
  MDM -0.494 - -1.166 2.399** -2.595*** -0.557 -0.425 
HSBA 
  Model ES ES ES ES ES ES ES 
  MDM -5.597*** -5.851*** -6.294*** -0.951 -2.543** -2.597*** -5.124*** 
GLEN 
  Model AR ES ES AR STAR ES ES 
  MDM -3.367*** -2.294** 0.927 -2.487** -3.658*** -2.213** -1.904* 
DIA 
  Model ARIMA ES ES ARIMA ES ES ES 
  MDM - -6.442*** -5.994*** - -5.106*** -7.941*** -5.167*** 
MCLS 
  Model ARIMA ES ARIMA ARIMA ARIMA ES ARIMA 
  MDM - -3.935*** -3.860*** - - -4.556*** - 
Panel B Power 2 Loss Function 
Month 1 2 3 4 5 6 7 
FTSE100 
  Model AR AR ARIMA AR AR AR AR 
  MDM 1.465 1.914* 0.675 1.264 2.398** 2.820*** 0.807 
SMX 
  Model AR AR AR AR ES AAR ES 
  MDM 1.624 0.755 -1.551 3.033*** -1.976** 0.758 0.552 
HSBA 
  Model AR AR ES AR AR ES ARIMA 
  MDM 1.150 0.533 0.279 1.456 0.591 0.918 0.875 
GLEN 
  Model AR ES AR AR STAR AR AR 
  MDM 0.911 -1.180 1.529 0.248 -0.733 0.703 2.657*** 
DIA 
  Model AR TAR AR AR AR ES AR 
  MDM 2.064** 1.573 -0.438 0.417 1.303 0.158 1.243 
MCLS 
  Model AR AR ARIMA AR ARIMA AR ARIMA 
  MDM 0.582 0.021 -0.172 0.685 - 0.495 - 



 81 

 
The detailed results regarding the forecasting accuracies for the subsamples 

are provided in Appendices. The results consistently show that the nonlinear models 

fit the in-sample data better while the linear models generally have better out-of-

sample performances. In comparison with the results from the full sample, the MAPE 

accuracy measure suggests that the monthly out-of-sample forecasts are not 

necessarily less accurate than the full sample forecasts. In some months the subsample 

MAPEs are smaller than the full sample MAPEs while in other months the full sample 

MAPEs are smaller. This implies that increasing sample size does not necessarily 

increase forecasting accuracy indeed. Nevertheless, the MAPEs of minute data are 

smaller than those of hourly data for each month, which suggests that data frequency 

or the continuity of data points can affect forecasting performances. Thus, the fact that 

data with a higher frequency has better forecasting performance can be attributed to 

the continuity of data instead of the size of data. This provides incentives for 

forecasters to use high-frequency data to forecast stock prices and returns. This is 

probably why high-frequency trading becomes popular in recent years. In addition, 

results in this subsection also suggest that improving forecasting accuracy does not 

necessarily require an increased amount of data, which also makes it favourable to 

forecast using high-frequency data. 

 

3.6. Conclusion 

In this chapter, exponential smoothing models and AR based forecasting models are 

used to investigate their forecasting performances for predicting mean price 

movements. The findings suggest that nonlinear AR models do not necessarily have 

superior forecasting performances than the exponential smoothing models and the 

linear AR based models. Instead, they are generally outperformed by the linear models. 

The implication behind is that it may not be proper to assume nonlinear models as the 



 82 

reference model in ambiguity literature, which is one of the contributions of this 

chapter. On the other hand, the MDM test results indicate that the AR model 

outperforms the random walk model for FTSE100 in daily frequency and for SMX in 

hourly frequency are either weakly significant or not significant with adjustment to 

the Bayesian critical value. However, the AR model significantly outperforms the 

random walk model for FTSE100 in minute data. These findings suggest that the UK 

stock market is probably not in a weak form of efficiency, at least with evidence from 

minute data. As such, the EMH does not appear to characterise the UK stock market 

well. 

 

The subsample forecasting results suggest that increasing sample size does not 

necessarily result in more accurate forecasts. Instead, increasing data frequency, more 

precisely, the continuity of data, increases forecasting accuracy for each month in the 

subsample analyses as well as for the full sample. In addition, the exponential 

smoothing models and the AR based models do not seem to suffer from over-fitting 

problems caused by inactive data. If such a problem exists, forecasts of hourly data 

should be more accurate than those of minute data in full sample analyses or 

subsample analyses or both because minute data have more non-changing data points 

than hourly data. This can be further confirmed by the result that in-sample MAPEs 

are generally similar to out-of-sample MAPEs regardless of what data frequency is 

used. Last but not least, the subsample results imply that the AMH characterise the 

UK stock market better than the EMH, which is also one of the contributions of this 

chapter as it tests the EMH and AMH using forecasting methods based on high-

frequency data. 
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3.7. Appendices 

Table 3.10 1-Step Ahead Forecasting Accuracy of Month 1 (Hourly Data). This table shows the accuracy measures of the hourly forecasts of month 1. Root mean-squared 

error accuracy measure is calculated as !"#$ = &'
(∑ (+, − .,)0(

,1' ; mean absolute error measure is calculated as "2$ = '
(∑ |+, − .,|(

,1' ; and mean absolute percentage 

error measure is calculated as "24$ = '
(∑ 5(+,6.,)×'88+,

5(
,1' . The forecasting model with the smallest forecasting error measure is highlighted in bold. RW denotes the random 

walk model; AR denotes the autoregressive model; ARIMA denotes the autoregressive integrated moving average model; ES denotes the exponential smoothing model; AAR 
denotes the additive autoregressive model; TAR denotes the threshold autoregressive model; and STAR denotes the smooth transition autoregressive model. 

 In-Sample Out-of-Sample  In-Sample Out-of-Sample 
 RMSE MAPE RMSE MAPE  RMSE MAPE RMSE MAPE 
FTSE100 FTSE SmallCap (SMX) 
AR 16.288 0.18402% 12.684 0.13937% AR 3.394 0.05183% 5.284 0.06762% 
ARIMA 16.364 0.18780% 13.117 0.14485% ARIMA 3.371 0.05407% 6.269 0.07549% 
ES 16.349 0.18662% 13.121 0.14495% ES 3.368 0.05234% 5.973 0.07467% 
AAR 16.072 0.18381% 12.820 0.14084% AAR 3.312 0.05124% 6.204 0.07506% 
TAR 15.649 0.18137% 13.488 0.14643% TAR 3.251 0.05099% 6.285 0.08111% 
STAR 15.647 0.18086% 13.505 0.14664% STAR 3.262 0.05032% 6.003 0.07278% 
HSBC Holdings Plc. (HSBA) Glencore Plc. (GLEN) 
AR 1.925 0.27122% 1.697 0.27521% AR 1.977 1.15810% 1.141 0.79096% 
ARIMA 1.965 0.27209% 1.701 0.27835% ARIMA 2.005 1.20203% 1.184 0.82136% 
ES 1.957 0.27287% 1.686 0.27692% ES 1.991 1.18681% 1.207 0.84602% 
AAR 1.923 0.27004% 1.705 0.27789% AAR 1.825 1.18019% 1.210 0.83997% 
TAR 1.885 0.26761% 1.735 0.28727% TAR 1.826 1.17889% 1.246 0.85051% 
STAR 1.884 0.26656% 1.737 0.28774% STAR 1.802 1.11927% 1.316 0.92377% 
Dialight Plc. (DIA) McColl’s Retail Group Plc. (MCLS) 
AR 6.304 0.63776% 18.482 1.30489% AR 1.068 0.41313% 1.016 0.50579% 
ARIMA 6.336 0.60787% 19.059 1.27915% ARIMA 1.056 0.40345% 1.069 0.55346% 
ES 6.336 0.60688% 19.058 1.27909% ES 1.158 0.26737% 1.061 0.37055% 
AAR 5.952 0.64025% 53.713 8.84404% AAR 1.068 0.40913% 1.065 0.54989% 
TAR 5.885 0.64708% 38.237 6.02715% TAR 1.051 0.40079% 1.135 0.57408% 
STAR 5.885 0.64708% 37.615 5.98896% STAR 1.051 0.40079% 1.135 0.57408% 

 



 84 

Table 3.11 1-Step Ahead Forecasting Accuracy of Month 1 (Minute Data). This table shows the accuracy measures of the minute forecasts of month 1. Root mean-squared 

error accuracy measure is calculated as	!"#$ = &'
(∑ (+, − .,)0(

,1' ; mean absolute error measure is calculated as "2$ = '
(∑ |+, − .,|(

,1' ; and mean absolute percentage 

error measure is calculated as "24$ = '
(∑ 5(+,6.,)×'88+,

5(
,1' . The forecasting model with the smallest forecasting error measure is highlighted in bold. RW denotes the random 

walk model; AR denotes the autoregressive model; ARIMA denotes the autoregressive integrated moving average model; ES denotes the exponential smoothing model; AAR 
denotes the additive autoregressive model; TAR denotes the threshold autoregressive model; and STAR denotes the smooth transition autoregressive model. 

 In-Sample Out-of-Sample  In-Sample Out-of-Sample 
 RMSE MAPE RMSE MAPE  RMSE MAPE RMSE MAPE 
FTSE100 FTSE SmallCap (SMX) 
AR 2.2547 0.02240% 1.7658 0.01930% AR 0.4176 0.00474% 0.4680 0.00491% 
ARIMA 2.2554 0.02243% 1.7710 0.01933% ARIMA 0.4881 0.00579% 0.5470 0.00610% 
ES 2.2549 0.02240% 1.7722 0.01934% ES 0.4164 0.00472% 0.4688 0.00491% 
AAR 2.2442 0.02234% 1.7723 0.01935% AAR 0.4157 0.00473% 0.4701 0.00495% 
TAR 2.2490 0.02235% 1.7717 0.01935% TAR 0.4165 0.00473% 0.4708 0.00494% 
STAR 2.2489 0.02236% 1.7738 0.01936% STAR 0.4165 0.00473% 0.4708 0.00494% 
HSBC Holdings Plc. (HSBA) Glencore Plc. (GLEN) 
AR 0.2882 0.03740% 0.2322 0.03363% AR 0.2772 0.15738% 0.2455 0.15176% 
ARIMA 0.2899 0.03717% 0.2326 0.03334% ARIMA 0.2793 0.15796% 0.2477 0.15264% 
ES 0.2894 0.03700% 0.2327 0.03323% ES 0.2794 0.15805% 0.2473 0.15227% 
AAR 0.2877 0.03738% 0.2340 0.03381% AAR 0.2770 0.15752% 0.2473 0.15245% 
TAR 0.2889 0.03738% 0.2332 0.03364% TAR 0.2781 0.15778% 0.2480 0.15283% 
STAR 0.2889 0.03736% 0.2358 0.03448% STAR 0.2781 0.15778% 0.2479 0.15282% 
Dialight Plc. (DIA) McColl’s Retail Group Plc. (MCLS) 
AR 0.9029 0.02051% 3.1357 0.06103% AR 0.14801 0.00829% 0.1754 0.01336% 
ARIMA 0.9031 0.01780% 3.2026 0.04728% ARIMA 0.14817 0.00475% 0.1756 0.00853% 
ES 0.9030 0.01792% 3.2029 0.04764% ES 0.14815 0.00473% 0.1756 0.00853% 
AAR 0.9009 0.02306% 3.4341 0.24613% AAR 0.14801 0.00806% 0.1755 0.01345% 
TAR 0.9014 0.02239% 3.2044 0.06915% TAR 0.14798 0.00824% 0.1758 0.01370% 
STAR 0.9014 0.02275% 3.2056 0.07407% STAR 0.14798 0.00824% 74.2993 5.50101% 
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Table 3.12 1-Step Ahead Forecasting Accuracy of Month 2 (Hourly Data). This table shows the accuracy measures of the hourly forecasts of month 2. Root mean-squared 

error accuracy measure is calculated as	!"#$ = &'
(∑ (+, − .,)0(

,1' ; mean absolute error measure is calculated as "2$ = '
(∑ |+, − .,|(

,1' ; and mean absolute percentage 

error measure is calculated as "24$ = '
(∑ 5(+,6.,)×'88+,

5(
,1' . The forecasting model with the smallest forecasting error measure is highlighted in bold. RW denotes the random 

walk model; AR denotes the autoregressive model; ARIMA denotes the autoregressive integrated moving average model; ES denotes the exponential smoothing model; AAR 
denotes the additive autoregressive model; TAR denotes the threshold autoregressive model; and STAR denotes the smooth transition autoregressive model. 

 In-Sample Out-of-Sample  In-Sample Out-of-Sample 
 RMSE MAPE RMSE MAPE  RMSE MAPE RMSE MAPE 
FTSE100 FTSE SmallCap (SMX) 
AR 17.778 0.18176% 16.550 0.17912% AR 3.802 0.06017% 4.503 0.05798% 
ARIMA 17.813 0.18211% 16.698 0.17906% ARIMA 3.812 0.06048% 4.530 0.05832% 
ES 17.805 0.18132% 16.697 0.17906% ES 3.790 0.05969% 4.529 0.05832% 
AAR 17.778 0.18177% 16.596 0.18007% AAR 3.728 0.05889% 4.599 0.06046% 
TAR 17.401 0.17442% 18.801 0.19804% TAR 3.697 0.05811% 4.544 0.06008% 
STAR 17.400 0.17417% 19.224 0.20511% STAR 3.697 0.05809% 4.544 0.06008% 
HSBC Holdings Plc. (HSBA) Glencore Plc. (GLEN) 
AR 2.184 0.28948% 1.862 0.26514% AR 1.942 1.37074% 1.244 1.00986% 
ARIMA 2.211 0.29425% 1.854 0.24798% ARIMA 1.936 1.36624% 1.250 1.01827% 
ES 2.210 0.29347% 1.854 0.24797% ES 1.926 1.36554% 1.242 1.01430% 
AAR 2.176 0.28942% 1.883 0.27393% AAR 1.881 1.30874% 1.197 0.98348% 
TAR 2.134 0.29272% 1.910 0.28159% TAR 1.859 1.29893% 1.446 1.26291% 
STAR 2.124 0.28465% 2.047 0.32031% STAR 1.861 1.32889% 1.214 1.01570% 
Dialight Plc. (DIA) McColl’s Retail Group Plc. (MCLS) 
AR 5.145 0.60311% 2.063 0.24272% AR 0.672 0.30908% 1.347 0.56098% 
ARIMA 5.122 0.58144% 1.063 0.20937% ARIMA 0.726 0.27618% 1.335 0.50395% 
ES 5.122 0.58067% 2.051 0.20938% ES 0.726 0.27648% 1.336 0.50651% 
AAR 5.122 0.60633% 2.042 0.21238% AAR 0.717 0.29256% 2.612 1.57075% 
TAR 5.025 0.61241% 2.044 0.21560% TAR 0.745 0.30582% 1.414 0.55128% 
STAR 4.981 0.58692% 2.050 0.22043% STAR 0.711 0.30427% 2.881 1.76343% 
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Table 3.13 1-Step Ahead Forecasting Accuracy of Month 2 (Minute Data). This table shows the accuracy measures of the minute forecasts of month 2. Root mean-squared 

error accuracy measure is calculated as	!"#$ = &'
(∑ (+, − .,)0(

,1' ; mean absolute error measure is calculated as "2$ = '
(∑ |+, − .,|(

,1' ; and mean absolute percentage 

error measure is calculated as "24$ = '
(∑ 5(+,6.,)×'88+,

5(
,1' . The forecasting model with the smallest forecasting error measure is highlighted in bold. RW denotes the random 

walk model; AR denotes the autoregressive model; ARIMA denotes the autoregressive integrated moving average model; ES denotes the exponential smoothing model; AAR 
denotes the additive autoregressive model; TAR denotes the threshold autoregressive model; and STAR denotes the smooth transition autoregressive model. 

 In-Sample Out-of-Sample  In-Sample Out-of-Sample 
 RMSE MAPE RMSE MAPE  RMSE MAPE RMSE MAPE 
FTSE100 FTSE SmallCap (SMX) 
AR 2.2250 0.02123% 1.9661 0.01683% AR 0.4147 0.00496% 0.4693 0.00498% 
ARIMA 2.2277 0.02125% 1.9752 0.01691% ARIMA 0.4187 0.00497% 0.4694 0.00497% 
ES 2.2299 0.02129% 1.9719 0.01689% ES 0.4149 0.00496% 0.4698 0.00498% 
AAR 2.2267 0.02123% 1.9716 0.01688% AAR 0.4152 0.00496% 0.4695 0.00498% 
TAR 2.2255 0.02123% 1.9708 0.01687% TAR 0.4150 0.00496% 0.4695 0.00499% 
STAR 2.2251 0.02125% 1.9711 0.01687% STAR 0.4150 0.00496% 0.4695 0.00499% 
HSBC Holdings Plc. (HSBA) Glencore Plc. (GLEN) 
AR 0.3150 0.03939% 0.3052 0.03391% AR 0.2609 0.16066% 0.2054 0.14569% 
ARIMA 0.3148 0.03943% 0.3061 0.03392% ARIMA 0.2606 0.16064% 0.2061 0.14636% 
ES 0.3153 0.03908% 0.3055 0.03342% ES 0.2613 0.16053% 0.2052 0.14540% 
AAR 0.3132 0.03942% 0.3082 0.03502% AAR 0.2609 0.16066% 0.2054 0.14593% 
TAR 0.3134 0.03944% 0.3077 0.03452% TAR 0.2608 0.16078% 0.2059 0.14637% 
STAR 0.3134 0.03944% 0.3077 0.03452% STAR 0.2608 0.16081% 0.2061 0.14653% 
Dialight Plc. (DIA) McColl’s Retail Group Plc. (MCLS) 
AR 0.8655 0.02247% 0.43976 0.01199% AR 0.1051 0.00839% 0.1640 0.01117% 
ARIMA 0.8650 0.02250% 0.43995 0.01147% ARIMA 0.1112 0.00544% 0.1642 0.00762% 
ES 0.8664 0.01965% 0.43993 0.01014% ES 0.1112 0.00543% 0.1642 0.00762% 
AAR 0.8627 0.02418% 0.43973 0.01086% AAR 0.1111 0.00822% 0.1882 0.06096% 
TAR 0.8651 0.02208% 0.43972 0.01066% TAR 0.1112 0.00786% 0.1641 0.01008% 
STAR 0.8651 0.02208% 0.43972 0.01066% STAR 0.1111 0.00844% 0.1930 0.06686% 
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Table 3.14 1-Step Ahead Forecasting Accuracy of Month 3 (Hourly Data). This table shows the accuracy measures of the hourly forecasts of month 3. Root mean-squared 

error accuracy measure is calculated as	!"#$ = &'
(∑ (+, − .,)0(

,1' ; mean absolute error measure is calculated as "2$ = '
(∑ |+, − .,|(

,1' ; and mean absolute percentage 

error measure is calculated as "24$ = '
(∑ 5(+,6.,)×'88+,

5(
,1' . The forecasting model with the smallest forecasting error measure is highlighted in bold. RW denotes the random 

walk model; AR denotes the autoregressive model; ARIMA denotes the autoregressive integrated moving average model; ES denotes the exponential smoothing model; AAR 
denotes the additive autoregressive model; TAR denotes the threshold autoregressive model; and STAR denotes the smooth transition autoregressive model. 

 In-Sample Out-of-Sample  In-Sample Out-of-Sample 
 RMSE MAPE RMSE MAPE  RMSE MAPE RMSE MAPE 
FTSE100 FTSE SmallCap (SMX) 
AR 20.460 0.24004% 19.156 0.21150% AR 4.784 0.07789% 5.723 0.08737% 
ARIMA 20.507 0.23740% 19.316 0.21076% ARIMA 4.794 0.07817% 5.645 0.08380% 
ES 20.499 0.23657% 19.316 0.21076% ES 4.643 0.07396% 5.553 0.08167% 
AAR 19.423 0.22409% 20.340 0.23465% AAR 4.748 0.07782% 5.902 0.08929% 
TAR 19.649 0.22950% 19.856 0.22093% TAR 4.688 0.07528% 6.148 0.09313% 
STAR 19.649 0.22950% 19.856 0.22093% STAR 4.688 0.07528% 6.148 0.09313% 
HSBC Holdings Plc. (HSBA) Glencore Plc. (GLEN) 
AR 2.375 0.33137% 2.042 0.26490% AR 1.486 1.18900% 1.076 0.86428% 
ARIMA 2.378 0.32520% 2.046 0.26504% ARIMA 1.386 1.16975% 1.197 1.06178% 
ES 2.378 0.32447% 2.046 0.26503% ES 1.499 1.18315% 1.099 0.90109% 
AAR 2.276 0.31913% 2.079 0.27002% AAR 1.463 1.15547% 1.139 0.90680% 
TAR 2.300 0.32507% 2.058 0.26742% TAR 1.429 1.13440% 1.111 0.90112% 
STAR 2.298 0.32405% 2.058 0.26742% STAR 1.429 1.13123% 1.107 0.89530% 
Dialight Plc. (DIA) McColl’s Retail Group Plc. (MCLS) 
AR 5.897 0.86365% 5.048 0.74422% AR 1.961 0.89223% 1.644 0.78916% 
ARIMA 5.674 0.84857% 5.513 0.80912% ARIMA 1.910 0.87737% 2.202 1.26271% 
ES 5.828 0.86210% 5.081 0.72741% ES 2.034 0.70133% 1.676 0.67855% 
AAR 5.350 0.83348% 5.830 0.95140% AAR 1.844 0.88659% 2.304 1.28680% 
TAR 5.440 0.82460% 6.204 1.02453% TAR 1.835 0.81786% 1.903 1.03613% 
STAR 5.335 0.82355% 6.779 1.13164% STAR 1.835 0.81786% 1.903 1.03613% 
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Table 3.15 1-Step Ahead Forecasting Accuracy of Month 3 (Minute Data). This table shows the accuracy measures of the minute forecasts of month 3. Root mean-squared 

error accuracy measure is calculated as !"#$ = &'
(∑ (+, − .,)0(

,1' ; mean absolute error measure is calculated as "2$ = '
(∑ |+, − .,|(

,1' ; and mean absolute percentage 

error measure is calculated as "24$ = '
(∑ 5(+,6.,)×'88+,

5(
,1' . The forecasting model with the smallest forecasting error measure is highlighted in bold. RW denotes the random 

walk model; AR denotes the autoregressive model; ARIMA denotes the autoregressive integrated moving average model; ES denotes the exponential smoothing model; AAR 
denotes the additive autoregressive model; TAR denotes the threshold autoregressive model; and STAR denotes the smooth transition autoregressive model. 

 In-Sample Out-of-Sample  In-Sample Out-of-Sample 
 RMSE MAPE RMSE MAPE  RMSE MAPE RMSE MAPE 
FTSE100 FTSE SmallCap (SMX) 
AR 2.7984 0.02449% 1.9897 0.01955% AR 0.4870 0.00567% 0.6331 0.00582% 
ARIMA 2.7974 0.02449% 1.9787 0.01951% ARIMA 0.4905 0.00569% 0.6331 0.00581% 
ES 2.7986 0.02448% 1.9899 0.01954% ES 0.4870 0.00567% 0.6337 0.00581% 
AAR 2.7856 0.02442% 1.9928 0.01983% AAR 0.4880 0.00568% 0.6335 0.00582% 
TAR 2.7915 0.02447% 1.9859 0.01965% TAR 0.4876 0.00567% 0.6336 0.00581% 
STAR 2.7916 0.02445% 1.9868 0.01964% STAR 0.4876 0.00567% 0.6335 0.00581% 
HSBC Holdings Plc. (HSBA) Glencore Plc. (GLEN) 
AR 0.3647 0.04139% 0.2896 0.03437% AR 0.2047 0.15828% 0.1689 0.12912% 
ARIMA 0.3649 0.04144% 0.2901 0.03456% ARIMA 0.2048 0.15840% 0.1694 0.12937% 
ES 0.3652 0.04125% 0.2896 0.03429% ES 0.2056 0.15796% 0.1693 0.12892% 
AAR 0.3631 0.04150% 0.2902 0.03506% AAR 0.2034 0.15799% 0.1703 0.12999% 
TAR 0.3637 0.04145% 0.2911 0.03521% TAR 0.2040 0.15832% 0.1708 0.13093% 
STAR 0.3637 0.04145% 0.2911 0.03521% STAR 0.2041 0.15833% 0.1708 0.13092% 
Dialight Plc. (DIA) McColl’s Retail Group Plc. (MCLS) 
AR 0.9745 0.03260% 0.7480 0.02173% AR 0.2975 0.02297% 0.19924 0.01756% 
ARIMA 0.9748 0.02881% 0.7486 0.01969% ARIMA 0.2979 0.01467% 0.19917 0.01069% 
ES 0.9750 0.02795% 0.7486 0.01909% ES 0.2979 0.01468% 0.19917 0.01071% 
AAR 0.9729 0.03695% 0.7515 0.03223% AAR 0.2968 0.02539% 0.23108 0.07008% 
TAR 0.9732 0.03672% 0.7602 0.03997% TAR 0.2972 0.02273% 0.19997 0.02365% 
STAR 0.9732 0.03672% 0.7602 0.03997% STAR 0.2972 0.02273% 0.19997 0.02365% 
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Table 3.16 1-Step Ahead Forecasting Accuracy of Month 4 (Hourly Data). This table shows the accuracy measures of the hourly forecasts of month 4. Root mean-squared 

error accuracy measure is calculated as !"#$ = &'
(∑ (+, − .,)0(

,1' ; mean absolute error measure is calculated as "2$ = '
(∑ |+, − .,|(

,1' ; and mean absolute percentage 

error measure is calculated as "24$ = '
(∑ 5(+,6.,)×'88+,

5(
,1' . The forecasting model with the smallest forecasting error measure is highlighted in bold. RW denotes the random 

walk model; AR denotes the autoregressive model; ARIMA denotes the autoregressive integrated moving average model; ES denotes the exponential smoothing model; AAR 
denotes the additive autoregressive model; TAR denotes the threshold autoregressive model; and STAR denotes the smooth transition autoregressive model. 

 In-Sample Out-of-Sample  In-Sample Out-of-Sample 
 RMSE MAPE RMSE MAPE  RMSE MAPE RMSE MAPE 
FTSE100 FTSE SmallCap (SMX) 
AR 33.630 0.37283% 27.916 0.33877% AR 11.649 0.17273% 9.745 0.14051% 
ARIMA 33.625 0.36207% 28.641 0.35095% ARIMA 10.044 0.13433% 11.516 0.18960% 
ES 33.516 0.36027% 28.800 0.35356% ES 10.037 0.13359% 10.582 0.16116% 
AAR 33.294 0.36720% 28.911 0.35974% AAR 10.003 0.13305% 12.636 0.22043% 
TAR 32.750 0.36234% 29.288 0.36949% TAR 9.860 0.13868% 12.963 0.22897% 
STAR 32.732 0.36121% 29.324 0.37030% STAR 9.242 0.12954% 27.936 0.54524% 
HSBC Holdings Plc. (HSBA) Glencore Plc. (GLEN) 
AR 3.400 0.46795% 3.230 0.47139% AR 1.673 1.56840% 1.793 1.68287% 
ARIMA 3.278 0.44431% 3.475 0.52445% ARIMA 1.689 1.56550% 1.802 1.66043% 
ES 3.327 0.44956% 3.322 0.48691% ES 1.682 1.55143% 1.814 1.65138% 
AAR 3.208 0.44565% 3.336 0.49786% AAR 1.667 1.55845% 1.868 1.75847% 
TAR 3.243 0.45111% 3.486 0.52354% TAR 1.640 1.53404% 1.854 1.74165% 
STAR 3.242 0.45023% 3.486 0.52349% STAR 1.644 1.53808% 1.872 1.75154% 
Dialight Plc. (DIA) McColl’s Retail Group Plc. (MCLS) 
AR 5.165 0.85409% 7.285 1.19207% AR 1.432 0.60880% 2.180 1.07705% 
ARIMA 4.906 0.83439% 7.688 1.27504% ARIMA 1.437 0.59806% 2.321 1.26638% 
ES 4.985 0.80591% 7.431 1.19911% ES 1.504 0.48766% 2.245 0.93061% 
AAR 5.097 0.79052% 7.746 1.23513% AAR 1.299 0.54730% 5.768 3.12819% 
TAR 5.029 0.79761% 7.776 1.26025% TAR 1.344 0.53756% 6.246 3.38103% 
STAR 5.024 0.78646% 7.627 1.21125% STAR 1.298 0.55288% 13.911 6.52460% 

 



 90 

Table 3.17 1-Step Ahead Forecasting Accuracy of Month 4 (Minute Data). This table shows the accuracy measures of the minute forecasts of month 4. Root mean-squared 

error accuracy measure is calculated as !"#$ = &'
(∑ (+, − .,)0(

,1' ; mean absolute error measure is calculated as "2$ = '
(∑ |+, − .,|(

,1' ; and mean absolute percentage 

error measure is calculated as "24$ = '
(∑ 5(+,6.,)×'88+,

5(
,1' . The forecasting model with the smallest forecasting error measure is highlighted in bold. RW denotes the random 

walk model; AR denotes the autoregressive model; ARIMA denotes the autoregressive integrated moving average model; ES denotes the exponential smoothing model; AAR 
denotes the additive autoregressive model; TAR denotes the threshold autoregressive model; and STAR denotes the smooth transition autoregressive model. 

 In-Sample Out-of-Sample  In-Sample Out-of-Sample 
 RMSE MAPE RMSE MAPE  RMSE MAPE RMSE MAPE 
FTSE100 FTSE SmallCap (SMX) 
AR 3.7618 0.03417% 3.6561 0.03467% AR 0.6980 0.00711% 0.8026 0.00744% 
ARIMA 3.7696 0.03403% 3.6608 0.03467% ARIMA 0.6880 0.00690% 0.8008 0.00757% 
ES 3.7555 0.03404% 3.6565 0.03467% ES 0.6822 0.00678% 0.7997 0.00745% 
AAR 3.7424 0.03400% 3.6749 0.03481% AAR 0.6780 0.00680% 0.8166 0.00792% 
TAR 3.7524 0.03397% 3.6612 0.03471% TAR 0.6810 0.00688% 0.8104 0.00778% 
STAR 3.7525 0.03397% 3.6612 0.03471% STAR 0.6810 0.00688% 0.8104 0.00778% 
HSBC Holdings Plc. (HSBA) Glencore Plc. (GLEN) 
AR 0.3838 0.05018% 0.4090 0.05446% AR 0.2151 0.17360% 0.2296 0.18743% 
ARIMA 0.3831 0.05015% 0.4095 0.05458% ARIMA 0.2153 0.17343% 0.2304 0.18778% 
ES 0.3834 0.04995% 0.4093 0.05439% ES 0.2153 0.17326% 0.2299 0.18747% 
AAR 0.3820 0.05013% 0.4147 0.05550% AAR 0.2142 0.17316% 0.2311 0.18916% 
TAR 0.3831 0.05018% 0.4101 0.05463% TAR 0.2147 0.17321% 0.2299 0.18771% 
STAR 0.3831 0.05018% 0.4101 0.05463% STAR 0.2147 0.17322% 0.2299 0.18772% 
Dialight Plc. (DIA) McColl’s Retail Group Plc. (MCLS) 
AR 0.8587 0.03093% 0.9636 0.03917% AR 0.2220 0.01841% 0.318 0.02886% 
ARIMA 0.8587 0.02497% 0.9640 0.03198% ARIMA 0.2240 0.00993% 0.320 0.01759% 
ES 0.8572 0.02613% 0.9639 0.03250% ES 0.2240 0.00992% 0.320 0.01759% 
AAR 0.8576 0.03084% 0.9685 0.05065% AAR 0.2233 0.01712% 0.336 0.07579% 
TAR 0.8576 0.02906% 0.9642 0.03300% TAR 0.2236 0.01807% 0.322 0.04351% 
STAR 0.8576 0.02908% 0.9642 0.03300% STAR 0.2234 0.01732% 0.349 0.08805% 
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Table 3.18 1-Step Ahead Forecasting Accuracy of Month 5 (Hourly Data). This table shows the accuracy measures of the hourly forecasts of month 5. Root mean-squared 

error accuracy measure is calculated as !"#$ = &'
(∑ (+, − .,)0(

,1' ; mean absolute error measure is calculated as "2$ = '
(∑ |+, − .,|(

,1' ; and mean absolute percentage 

error measure is calculated as "24$ = '
(∑ 5(+,6.,)×'88+,

5(
,1' . The forecasting model with the smallest forecasting error measure is highlighted in bold. RW denotes the random 

walk model; AR denotes the autoregressive model; ARIMA denotes the autoregressive integrated moving average model; ES denotes the exponential smoothing model; AAR 
denotes the additive autoregressive model; TAR denotes the threshold autoregressive model; and STAR denotes the smooth transition autoregressive model. 

 In-Sample Out-of-Sample  In-Sample Out-of-Sample 
 RMSE MAPE RMSE MAPE  RMSE MAPE RMSE MAPE 
FTSE100 FTSE SmallCap (SMX) 
AR 30.764 0.36887% 24.430 0.30154% AR 12.289 0.16782% 6.026 0.09763% 
ARIMA 30.051 0.34521% 27.874 0.37768% ARIMA 12.390 0.17023% 5.701 0.08651% 
ES 30.951 0.36490% 24.129 0.29452% ES 12.225 0.18005% 6.073 0.09650% 
AAR 28.269 0.33534% 36.766 0.47032% AAR 10.957 0.17790% 6.378 0.10700% 
TAR 29.696 0.37069% 24.851 0.31274% TAR 11.262 0.18094% 6.403 0.10447% 
STAR 29.653 0.35137% 41.970 0.52656% STAR 9.476 0.15032% 6.438 0.10554% 
HSBC Holdings Plc. (HSBA) Glencore Plc. (GLEN) 
AR 3.499 0.57827% 4.399 0.61565% AR 2.018 1.48443% 2.060 1.21348% 
ARIMA 3.583 0.57272% 4.491 0.60977% ARIMA 1.983 1.41478% 2.005 1.17902% 
ES 3.583 0.57195% 4.491 0.60975% ES 1.982 1.41490% 2.012 1.18459% 
AAR 3.484 0.57127% 4.428 0.61836% AAR 1.882 1.36280% 5.142 3.23333% 
TAR 3.445 0.57769% 4.482 0.62685% TAR 1.944 1.40886% 2.236 1.38092% 
STAR 3.433 0.55725% 4.428 0.62256% STAR 1.863 1.37469% 9.560 6.00811% 
Dialight Plc. (DIA) McColl’s Retail Group Plc. (MCLS) 
AR 5.637 0.87986% 4.139 0.58904% AR 1.502 0.65897% 1.188 0.44626% 
ARIMA 5.718 0.75170% 4.118 0.48628% ARIMA 1.577 0.46830% 1.173 0.33975% 
ES 5.663 0.81621% 4.353 0.53669% ES 1.576 0.46766% 1.173 0.33977% 
AAR 5.488 0.84523% 4.410 0.69769% AAR 1.545 0.62074% 1.255 0.51848% 
TAR 5.445 0.88772% 4.606 0.82627% TAR 1.523 0.62097% 1.247 0.51707% 
STAR 5.440 0.88487% 4.628 0.83579% STAR 1.523 0.62097% 1.247 0.51707% 
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Table 3.19 1-Step Ahead Forecasting Accuracy of Month 5 (Minute Data). This table shows the accuracy measures of the minute forecasts of month 5. Root mean-squared 

error accuracy measure is calculated as !"#$ = &'
(∑ (+, − .,)0(

,1' ; mean absolute error measure is calculated as "2$ = '
(∑ |+, − .,|(

,1' ; and mean absolute percentage 

error measure is calculated as "24$ = '
(∑ 5(+,6.,)×'88+,

5(
,1' . The forecasting model with the smallest forecasting error measure is highlighted in bold. RW denotes the random 

walk model; AR denotes the autoregressive model; ARIMA denotes the autoregressive integrated moving average model; ES denotes the exponential smoothing model; AAR 
denotes the additive autoregressive model; TAR denotes the threshold autoregressive model; and STAR denotes the smooth transition autoregressive model. 

 In-Sample Out-of-Sample  In-Sample Out-of-Sample 
 RMSE MAPE RMSE MAPE  RMSE MAPE RMSE MAPE 
FTSE100 FTSE SmallCap (SMX) 
AR 3.5850 0.03873% 3.0953 0.02806% AR 1.0808 0.00778% 0.4669 0.00660% 
ARIMA 4.3644 0.04806% 3.7590 0.03548% ARIMA 1.2889 0.00933% 0.5288 0.00785% 
ES 3.5816 0.03871% 3.1042 0.02812% ES 1.1158 0.00762% 0.4653 0.00653% 
AAR 3.5625 0.03858% 3.1129 0.02857% AAR 1.1152 0.00762% 0.4672 0.00660% 
TAR 3.5666 0.03859% 3.1085 0.02825% TAR 1.1146 0.00767% 0.4668 0.00659% 
STAR 3.5666 0.03859% 3.1085 0.02825% STAR 1.1146 0.00767% 0.4668 0.00659% 
HSBC Holdings Plc. (HSBA) Glencore Plc. (GLEN) 
AR 0.4456 0.06810% 0.4633 0.06076% AR 0.2966 0.19129% 0.2862 0.14365% 
ARIMA 0.4464 0.06824% 0.4639 0.06078% ARIMA 0.2965 0.19143% 0.2868 0.14372% 
ES 0.4468 0.06815% 0.4634 0.06062% ES 0.2970 0.19100% 0.2866 0.14327% 
AAR 0.4444 0.06800% 0.4642 0.06095% AAR 0.2950 0.19130% 0.2915 0.15009% 
TAR 0.4443 0.06803% 0.4645 0.06094% TAR 0.2952 0.19144% 0.2861 0.14326% 
STAR 0.4443 0.06803% 0.4645 0.06094% STAR 0.2953 0.19145% 0.2861 0.14324% 
Dialight Plc. (DIA) McColl’s Retail Group Plc. (MCLS) 
AR 0.8874 0.02777% 0.8163 0.02393% AR 0.23170 0.01535% 0.1572 0.00971% 
ARIMA 0.8873 0.02269% 0.8265 0.01927% ARIMA 0.23180 0.01057% 0.1571 0.00629% 
ES 0.8877 0.02189% 0.8260 0.01850% ES 0.23178 0.01066% 0.1571 0.00635% 
AAR 0.8802 0.02916% 0.8259 0.02264% AAR 0.23165 0.01497% 0.1581 0.01539% 
TAR 0.8836 0.02683% 0.8262 0.02247% TAR 0.23162 0.01489% 0.1730 0.03682% 
STAR 0.8836 0.02683% 0.8262 0.02247% STAR 0.23161 0.01497% 0.1832 0.04491% 
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Table 3.20 1-Step Ahead Forecasting Accuracy of Month 6 (Hourly Data). This table shows the accuracy measures of the hourly forecasts of month 6. Root mean-squared 

error accuracy measure is calculated a	!"#$ = &'
(∑ (+, − .,)0(

,1' s; mean absolute error measure is calculated as "2$ = '
(∑ |+, − .,|(

,1' ; and mean absolute percentage 

error measure is calculated as "24$ = '
(∑ 5(+,6.,)×'88+,

5(
,1' . The forecasting model with the smallest forecasting error measure is highlighted in bold. RW denotes the random 

walk model; AR denotes the autoregressive model; ARIMA denotes the autoregressive integrated moving average model; ES denotes the exponential smoothing model; AAR 
denotes the additive autoregressive model; TAR denotes the threshold autoregressive model; and STAR denotes the smooth transition autoregressive model. 

 In-Sample Out-of-Sample  In-Sample Out-of-Sample 
 RMSE MAPE RMSE MAPE  RMSE MAPE RMSE MAPE 
FTSE100 FTSE SmallCap (SMX) 
AR 19.940 0.23080% 18.993 0.23623% AR 6.036 0.09355% 5.893 0.08888% 
ARIMA 19.587 0.22966% 21.688 0.27518% ARIMA 5.928 0.08942% 6.022 0.09183% 
ES 21.252 0.23950% 19.454 0.21687% ES 6.034 0.09059% 5.894 0.08787% 
AAR 19.392 0.23107% 20.049 0.26522% AAR 5.867 0.08941% 5.826 0.08687% 
TAR 18.988 0.22596% 22.002 0.28921% TAR 5.568 0.08747% 6.084 0.09301% 
STAR 18.973 0.22627% 22.112 0.29039% STAR 5.567 0.08738% 6.084 0.09301% 
HSBC Holdings Plc. (HSBA) Glencore Plc. (GLEN) 
AR 2.765 0.41058% 1.808 0.31680% AR 3.037 1.46821% 1.795 0.85689% 
ARIMA 2.823 0.41187% 1.709 0.28694% ARIMA 3.054 1.46302% 1.841 0.82604% 
ES 2.823 0.41018% 1.708 0.28730% ES 3.054 1.46261% 1.841 0.82607% 
AAR 2.662 0.39065% 3.955 0.74493% AAR 3.025 1.45783% 1.807 0.84808% 
TAR 2.674 0.40104% 3.403 0.64789% TAR 2.979 1.41166% 1.801 0.81996% 
STAR 2.667 0.39965% 3.715 0.70850% STAR 2.979 1.41166% 1.828 0.83893% 
Dialight Plc. (DIA) McColl’s Retail Group Plc. (MCLS) 
AR 7.194 0.97072% 6.187 0.75757% AR 1.729 0.66565% 1.569 0.59733% 
ARIMA 6.979 0.92004% 6.079 0.73812% ARIMA 1.807 0.64371% 1.579 0.51710% 
ES 7.086 0.90266% 5.994 0.69884% ES 1.770 0.66372% 1.557 0.52481% 
AAR 6.565 0.90931% 13.697 2.04152% AAR 1.623 0.64749% 2.123 1.00188% 
TAR 6.847 0.89316% 6.201 0.72165% TAR 1.609 0.64448% 1.767 0.71597% 
STAR 6.849 0.91585% 6.409 0.78873% STAR 1.609 0.64448% 1.767 0.71597% 
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Table 3.21 1-Step Ahead Forecasting Accuracy of Month 6 (Minute Data). This table shows the accuracy measures of the minute forecasts of month 6. Root mean-squared 

error accuracy measure is calculated as !"#$ = &'
(∑ (+, − .,)0(

,1' ; mean absolute error measure is calculated as "2$ = '
(∑ |+, − .,|(

,1' ; and mean absolute percentage 

error measure is calculated as "24$ = '
(∑ 5(+,6.,)×'88+,

5(
,1' . The forecasting model with the smallest forecasting error measure is highlighted in bold. RW denotes the random 

walk model; AR denotes the autoregressive model; ARIMA denotes the autoregressive integrated moving average model; ES denotes the exponential smoothing model; AAR 
denotes the additive autoregressive model; TAR denotes the threshold autoregressive model; and STAR denotes the smooth transition autoregressive model. 

 In-Sample Out-of-Sample  In-Sample Out-of-Sample 
 RMSE MAPE RMSE MAPE  RMSE MAPE RMSE MAPE 
FTSE100 FTSE SmallCap (SMX) 
AR 2.6114 0.02501% 2.5068 0.02187% AR 0.5416 0.00651% 0.8717 0.00696% 
ARIMA 2.6246 0.02509% 2.5207 0.02192% ARIMA 0.5417 0.00648% 0.8722 0.00699% 
ES 2.6279 0.02508% 2.5247 0.02190% ES 0.5394 0.00646% 0.8722 0.00699% 
AAR 2.6015 0.02506% 2.5383 0.02252% AAR 0.5402 0.00649% 0.8714 0.00696% 
TAR 2.6105 0.02502% 2.5476 0.02282% TAR 0.5391 0.00651% 0.8718 0.00697% 
STAR 2.6105 0.02502% 2.5475 0.02282% STAR 0.5392 0.00651% 0.8718 0.00697% 
HSBC Holdings Plc. (HSBA) Glencore Plc. (GLEN) 
AR 0.4152 0.05185% 0.2717 0.04143% AR 0.3931 0.15550% 0.2788 0.10754% 
ARIMA 0.4181 0.05208% 0.2714 0.04136% ARIMA 0.3935 0.15542% 0.2792 0.10721% 
ES 0.4181 0.05207% 0.2714 0.04136% ES 0.3940 0.15481% 0.2792 0.10647% 
AAR 0.4178 0.05207% 0.2750 0.04231% AAR 0.3880 0.15463% 0.2813 0.10844% 
TAR 0.4174 0.05206% 0.2841 0.04454% TAR 0.3913 0.15474% 0.2791 0.10719% 
STAR 0.4174 0.05206% 0.2841 0.04454% STAR 0.3909 0.15500% 0.2804 0.10800% 
Dialight Plc. (DIA) McColl’s Retail Group Plc. (MCLS) 
AR 1.1212 0.03255% 1.0083 0.03046% AR 0.2781 0.02163% 0.2882 0.02213% 
ARIMA 1.1182 0.03433% 1.0118 0.03355% ARIMA 0.2811 0.01467% 0.2886 0.01596% 
ES 1.1234 0.02713% 1.0087 0.02720% ES 0.2815 0.01393% 0.2887 0.01516% 
AAR 1.1160 0.03486% 1.0377 0.05872% AAR 0.2813 0.01903% 0.2905 0.03467% 
TAR 1.1157 0.03085% 1.0087 0.02917% TAR 0.2812 0.01967% 0.2938 0.04562% 
STAR 1.1157 0.03092% 1.0087 0.02918% STAR 0.2812 0.02004% 0.2938 0.04562% 
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Table 3.22 1-Step Ahead Forecasting Accuracy of Month 7 (Hourly Data). This table shows the accuracy measures of the hourly forecasts of month 7. Root mean-squared 

error accuracy measure is calculated as !"#$ = &'
(∑ (+, − .,)0(

,1' ; mean absolute error measure is calculated as "2$ = '
(∑ |+, − .,|(

,1' ; and mean absolute percentage 

error measure is calculated as "24$ = '
(∑ 5(+,6.,)×'88+,

5(
,1' . The forecasting model with the smallest forecasting error measure is highlighted in bold. RW denotes the random 

walk model; AR denotes the autoregressive model; ARIMA denotes the autoregressive integrated moving average model; ES denotes the exponential smoothing model; AAR 
denotes the additive autoregressive model; TAR denotes the threshold autoregressive model; and STAR denotes the smooth transition autoregressive model. 

 In-Sample Out-of-Sample  In-Sample Out-of-Sample 
 RMSE MAPE RMSE MAPE  RMSE MAPE RMSE MAPE 
FTSE100 FTSE SmallCap (SMX) 
AR 16.399 0.18311% 17.056 0.19316% AR 5.208 0.08261% 5.307 0.07354% 
ARIMA 15.621 0.16994% 17.422 0.19909% ARIMA 5.115 0.07978% 5.408 0.08188% 
ES 16.272 0.17601% 17.181 0.19251% ES 5.204 0.08041% 5.291 0.07563% 
AAR 13.976 0.16576% 36.166 0.46553% AAR 5.086 0.07943% 5.268 0.07529% 
TAR 14.027 0.16618% 34.590 0.48967% TAR 4.974 0.07759% 5.301 0.07433% 
STAR 13.991 0.16509% 34.590 0.48968% STAR 4.920 0.07742% 5.271 0.07547% 
HSBC Holdings Plc. (HSBA) Glencore Plc. (GLEN) 
AR 2.282 0.32208% 2.650 0.38507% AR 1.875 0.97772% 1.651 0.70734% 
ARIMA 2.214 0.31542% 2.710 0.39682% ARIMA 1.859 0.95214% 1.680 0.74930% 
ES 2.262 0.30744% 2.611 0.37770% ES 1.864 0.94351% 1.682 0.71573% 
AAR 2.201 0.29095% 4.872 0.90812% AAR 1.871 0.96626% 1.700 0.74656% 
TAR 2.157 0.29497% 5.571 1.05491% TAR 1.817 0.91391% 3.901 1.84844% 
STAR 2.155 0.29533% 5.568 1.05442% STAR 1.817 0.91391% 3.896 1.83452% 
Dialight Plc. (DIA) McColl’s Retail Group Plc. (MCLS) 
AR 7.611 0.92793% 7.918 1.03818% AR 1.250 0.46868% 1.092 0.41672% 
ARIMA 7.615 0.93792% 8.105 1.09228% ARIMA 1.281 0.35735% 1.136 0.35799% 
ES 8.050 1.03988% 8.698 1.21142% ES 1.277 0.37463% 1.130 0.36740% 
AAR 7.638 0.92485% 8.302 1.04736% AAR 1.242 0.46189% 1.092 0.41446% 
TAR 7.452 0.89044% 8.513 1.08419% TAR 1.210 0.48998% 1.269 0.55943% 
STAR 7.452 0.89044% 8.513 1.08419% STAR 1.210 0.48998% 1.269 0.55943% 
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Table 3.23 1-Step Ahead Forecasting Accuracy of Month 7 (Minute Data). This table shows the accuracy measures of the minute forecasts of month 7. Root mean-squared 

error accuracy measure is calculated as !"#$ = &'
(∑ (+, − .,)0(

,1' ; mean absolute error measure is calculated as "2$ = '
(∑ |+, − .,|(

,1' ; and mean absolute percentage 

error measure is calculated as "24$ = '
(∑ 5(+,6.,)×'88+,

5(
,1' . The forecasting model with the smallest forecasting error measure is highlighted in bold. RW denotes the random 

walk model; AR denotes the autoregressive model; ARIMA denotes the autoregressive integrated moving average model; ES denotes the exponential smoothing model; AAR 
denotes the additive autoregressive model; TAR denotes the threshold autoregressive model; and STAR denotes the smooth transition autoregressive model. 

 In-Sample Out-of-Sample  In-Sample Out-of-Sample 
 RMSE MAPE RMSE MAPE  RMSE MAPE RMSE MAPE 
FTSE100 FTSE SmallCap (SMX) 
AR 2.2895 0.02064% 1.9024 0.01909% AR 0.5514 0.00595% 0.6669 0.00615% 
ARIMA 2.2835 0.02059% 1.9070 0.01915% ARIMA 0.6388 0.00611% 0.6626 0.00598% 
ES 2.2934 0.02068% 1.9043 0.01910% ES 0.6405 0.00613% 0.6551 0.00587% 
AAR 2.2616 0.02055% 2.0803 0.02235% AAR 0.6168 0.00623% 0.6586 0.00601% 
TAR 2.2722 0.02063% 2.0807 0.02263% TAR 0.6305 0.00609% 0.6553 0.00588% 
STAR 2.2722 0.02063% 2.0807 0.02263% STAR 0.6305 0.00609% 0.6553 0.00588% 
HSBC Holdings Plc. (HSBA) Glencore Plc. (GLEN) 
AR 0.3041 0.04445% 0.2857 0.04172% AR 0.2715 0.11761% 0.2718 0.10510% 
ARIMA 0.3048 0.04451% 0.2856 0.04167% ARIMA 0.2725 0.11790% 0.2737 0.10549% 
ES 0.3050 0.04435% 0.2858 0.04155% ES 0.2731 0.11746% 0.2738 0.10472% 
AAR 0.3018 0.04443% 0.3804 0.06256% AAR 0.2694 0.11747% 0.2789 0.11027% 
TAR 0.3029 0.04444% 0.3124 0.04834% TAR 0.2708 0.11748% 0.2842 0.11367% 
STAR 0.3029 0.04444% 0.3125 0.04836% STAR 0.2708 0.11748% 0.2841 0.11362% 
Dialight Plc. (DIA) McColl’s Retail Group Plc. (MCLS) 
AR 1.2698 0.03732% 1.3041 0.03551% AR 0.2383 0.01888% 0.14948 0.01030% 
ARIMA 1.2728 0.02568% 1.3081 0.02365% ARIMA 0.2458 0.01166% 0.14860 0.00604% 
ES 1.2728 0.02566% 1.3080 0.02365% ES 0.2456 0.01213% 0.14860 0.00605% 
AAR 1.2695 0.03433% 1.3087 0.03917% AAR 0.2449 0.01902% 0.21168 0.05306% 
TAR 1.2696 0.03599% 1.3102 0.04082% TAR 0.2443 0.01624% 0.22860 0.05307% 
STAR 1.2694 0.03369% 1.3111 0.03997% STAR 0.2447 0.01627% 0.34083 0.08841% 
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Chapter 4. A Spread Measure of Ambiguity: Evidence from 

The UK Stock Market 

 

4.1. Introduction 

Recent studies have shown that illiquidity can be attributed to ambiguity and 

ambiguity-aversion. Routledge and Zin (2009) investigated the impact of ambiguity 

on liquidity and found that investors behave under the multiple-prior utility model. 

Ozsoylev and Werner (2011) also studied the effect of ambiguity on liquidity and 

proved that ambiguity can be associated with illiquid financial markets. This provides 

an inspiration to develop an empirical measure of ambiguity based on the bid-ask 

spread, which makes it possible to investigate the impact of ambiguity on stock 

markets. 

 

On the other hand, although ambiguity asset pricing theories are well-

established, empirical studies remain few. Viale et al. (2014) use the multiple-prior 

utility theory to construct a learning model under ambiguity and then investigate the 

effect of ambiguity on the pricing process of the US cross-section stock returns. 

However, they introduce a method based on the concept of entropy, which measures 

the distance between the reference prior and the worst-case prior. The reference model 

is based on the regime switching model. As is shown in the previous chapter, regime 

switching model may not provide better forecasts than linear autoregressive models. 

As such, it is highly likely that the reference model that they use is not the real 

reference model. Another issue is that they have to pre-set the confidence level about 

the information quality to calculate the entropy because confidence of investors is hard 
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to measure in reality. Anderson et al. (2009) and Antoniou et al. (2015) used the 

Survey of Professional Forecasters (SPF) data to calculate the inconsistency in 

forecasts, which is used as a measure of ambiguity. However, this method is based on 

financial professionals and hence might not be representative of the population of 

market participants. These empirical papers motivate researchers to develop new 

empirical measures of ambiguity. 

 

In this chapter, an empirical approach to measure the degree of ambiguity is 

developed using the bid price and ask price, which is purely based on real-life data 

and does not require an estimate of the reference model. According to Epstein and 

Schneider (2010), investors in long position and short position have different worst-

case perceptions of asset prices, and this serves as a theoretical base for the empirical 

measure of this chapter. The aim of this chapter is to investigate the impact of 

ambiguity on the UK stock market using an empirical measure. First, the ambiguity 

measure is regressed against a liquidity measure based on trading volume to remove 

the impact of market makers on the gap between bid and ask prices. Lybek and Sarr 

(2002) divide liquidity measures into four categories. The four kinds of measures are 

based on transaction cost, trading volume, equilibrium price and price impact. Bid-ask 

spread is mainly used to capture transaction costs, which reflect liquidity of a market. 

Liquidity measures based on trading volume capture information revealed from order 

flows and hence can potentially reflect the role of market makers in transactions. The 

other two kinds, namely equilibrium price and price impact liquidity measures, are 

used to capture price adjustment to new information, which reflects market liquidity. 

Goyenko et. al. (2009) find that measurement performances of liquidity measures can 

change over time. They suggest that although of all their tested measures, which 

include transaction cost measures and price impact measures, some proxies provide 
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consistently good liquidity measures in each of the test windows, their results are yet 

to be tested in thin markets that have relatively fewer order flows. Their results provide 

an implication for this study, which is that trading volume should be controlled when 

analysing or applying spread-based liquidity meausres because liquidity measures 

based on trading volume capture whether a market is thin or broad. As such, the 

ambiguity measure is regressed against a trading volume liquidity measure to ensure 

robustness of results. 

 

Since there is limited existing empirical literature, especially with evidence 

from the UK stock market, there is little knowledge on the impact of ambiguity on the 

UK stock market empirically. As such, a vector autoregressive (VAR) model is used 

to investigate the interactions between ambiguity and variables of interest. The 

variables included in the study are UK stock market return, implied volatility and two 

term structure measures, which are used to reflect investors’ expectations on the future 

macroeconomic conditions and their perceptions on future default risks respectively. 

 

The empirical results show that ambiguity does not affect market return and 

excess market return directly. Instead, it has an impact on investors’ expectation on 

future volatility. On other hand, news regarding the future economic conditions and 

default risks has an impact on the degree of ambiguity. A shock to the economy due 

to bad news will increase the degree of ambiguity of the stock market. The main 

contributions of this paper to the ambiguity studies are that 1) it develops an empirical 

approach to measure ambiguity; and 2) it provides empirical evidence on how 

ambiguity affects the UK stock market. 
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The rest of the chapter is organised as follows. Section 4.2 explains the 

calculation of the ambiguity measure. Section 5.3 shows the data and summary 

statistics. Section 5.4 describes the methodology. Section 5.5 – 5.7 explain the 

empirical results, followed by a discussion of the findings and a short conclusion in 

Section 5.8. 

 

4.2. Ambiguity Measure 

The ambiguity measure is based on the multiple-prior utility model developed by 

Gilboa and Schmeidler (1989), which suggests that a subject makes decisions based 

on the worst-case scenario of a set of priors. Starting with a simple setting, assume 

that investors have a homogeneous reference model on the distribution of the price of 

the same asset, namely a homogeneous reference return denoted by !∗, buyers and 

sellers of the same asset have different “worst-case scenarios” and hence use different 

priors to make buy and sell decisions. Buyers are worried about a price decrease since 

they take a long position and will incur a loss if the price goes down. As such, their 

worst case is that price goes below the reference price when they enter the long 

position, which makes them require a compensation for the uncertainty due to lack of 

information. Hence, they will quote a bid price as low as possible to get compensated 

for ambiguity. In terms of return, they will require the reference return minus an 

ambiguity premium to compensate the possible loss due to ambiguity when they enter 

the long position. Suppose the degree of ambiguity expressed by return is κ, then the 

prior return of the buyers will be !∗ − κ. Similarly, sellers fear price increase because 

they are in a short position and will incur a loss if the price goes up. Therefore, their 

worst case is that price goes beyond the reference price when they enter the short 

position. Hence, they will quote an ask price as high as possible to get compensation 

for ambiguity. In terms of return, they will require the reference return plus an 
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ambiguity term, !∗ + κ, to get the compensation for bearing ambiguity. Although κ 

may not necessarily be the same for buyers and sellers, the gap between the bid price 

and the ask price will be guaranteed to be widened due to ambiguity. As such, the 

ambiguity measure is constructed as follows: 

&' (
)*+,

= &'. − &'/012 = !∗ − κ                                    4.1 

&' 3
)*+,

= &'4 − &'/012 = !∗ + κ                                    4.2 

where B and A are bid and ask price respectively; /012 is the stock market price at 

time t-1. 

Subtracting equation 1 from equation 1, we have: 

&'4 − &'. = 2κ                                                   4.3 

Equation 4.3 provides a method of measuring degree of ambiguity κ and hence 

the following equation is used as a proxy of degree of ambiguity or the ambiguity 

spread: 

κ = 673167(
8

                                                       4.4 

where κ is assumed to be the same for buyers and sellers. In the case of asymmetric 

ambiguity spread, κ still captures the ambiguity spread because it is proportional to 

&'4 − &'. and &'4 − &'. is a result of ambiguity. 

 

As Equation 4.4 indicates, the empirical measure does not actually rely on the 

reference model. As such, it is also applicable to the situations where heterogenous 

agents exist. This empirical measure of ambiguity measure is inspired by Easley and 

O’Hara (2010a, 2010b), who theoretically demonstrate that ambiguity can widen the 

bid-ask spread. Ealier literature such as Huang and Stoll (1997) shows that bid-ask 

spread can be decomposed into three components, which arise from order processing, 

inventories costs and bad news. According to their results, a majority of the spread, 
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over 60% is attributed to order processing while around 30% arises from inventory 

costs and around 10%, bad news. Thus, a small proportion of the bid-ask spread can 

be attributed to information, which can be further categorised as bad news, information 

quality and misinterpretation. Poor information quality and misinterpretation of 

information are associated with ambiguity and ambigutiy aversion, implying that the 

bid-ask spread can capture ambiguity and ambiguity aversion to some extent. In 

addition, intuitively, inventory costs could be larger under ambigutiy in the sense that 

ambigutiy and ambigutiy aversion contribute to portfolio inertia and non-participation, 

or a “freezing” market. Therefore, the existing framework of bid-ask spread can be 

further developed to accommodate ambigutiy and ambiguity aversion. Easley and 

O’Hara (2010a, 2010b) have shown that the bid-ask spread is indeed an ambiguity 

spread, which provides a theoretical support for the empirical ambiguity measure of 

this study that is based on bid and ask prices. 

 

4.3. Data 

In finance literature, stock indices are used to investigate the stock market as a whole. 

However, one issue with the spread ambiguity measure is that stock indices do not 

have bid and ask prices because they are not for trading. As such, equity traded fund 

of market index is used because it proxies the market portfolio while having bid and 

ask prices. Thus, bid price and ask price of FTSE100 equity traded fund (ETF 

FTSE100) are collected from September 23rd, 2009 to June 30th, 2016 to proxy the 

market portfolio of the UK stock market. Then the bid and ask price are used to 

calculate the ambiguity measure by Equation 4.4. Adjusted closing price of FTSE100 

is also collected and hence FTSE100 is used as a proxy for the market portfolios in 

the UK equity market. The index price is converted into daily return using the 

following formula: 
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!0 = &' )*
)*+,

                                                    4.5 

where !0  represents the daily return at time t; and /0  is the closing price of ETF 

FTSE100 at time t. 

 

Since ambiguity may also be associated with liquidity and volatility, turnover 

by volume of EFT FTSE100 and volatility index of FTSE100 are also collected within 

the same period. All data are from DataStream on a daily basis. 

 

To calculate the excess market return, the daily one-month deposit interest rate 

in the UK is also collected from DataStream, which is used as the risk-free rate. To 

construct term structure measures in Fama and French (1993), bond returns of short-

term government bond (with maturity of 1 month), long-term government bond (with 

maturity of over 10 years) and long-term corporate bond (with maturity of over 10 

years) of the UK are collected as well. The short-term government bond return and the 

long-term government bond return are used to construct the term spread Term, which 

is calculated from the difference between the two returns. The long-term government 

bond return and the long-term corporate bond return are used to construct the default 

spread Def, which is calculated from the difference between the two returns. Term and 

Def are used to reflect investors’ expectations on future macroeconomic conditions 

and future default risks respectively. Table 4.1 shows the summary statistics of the 

variables. The summary statistics indicate that the market return, return of FTSE100, 

is has a symmetric distribution centred around zero and some negative skewness. 
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Table 4.1 Summary Statistics. This table shows the summary statistics. Return represents the daily 

return of FTSE100; Volume represents the daily turnover by volume of ETF FTSE100; Volatility 

represents the daily volatility index of FTSE100; lnA-lnB represents the gap between the natural 

logarithms of ask and bid prices; Ambiguity represents the original ambiguity measure on a daily basis; 

and Term and Def represent two bond market risk factors calculated from the term structure on a daily 

basis. 

 Mean Std. Dev. Min Max Skewness Kurtosis 
Return 0.000 0.010 -0.048 0.050 -0.166 1.840 

Volume 12.742 10.813 0.000 106.700 2.480 10.842 

Volatility 18.314 5.548 9.672 43.610 1.213 1.808 

lnA-lnB 0.003 0.008 0.000 0.127 11.078 140.061 

Ambiguity 0.002 0.004 0.000 0.063 11.078 140.061 

Term 0.033 0.007 0.016 0.047 0.086 -1.057 

Def 0.011 0.002 0.008 0.018 1.182 0.746 

 

 

4.4. Methodology 

The role of market makers is considered when the ambiguity measure is calculated 

because market makers make profits through the bid-ask spread. Grossman and Miller 

(1988) developed a market making model, taking transaction costs into consideration, 

which is used as the theoretical base in terms of the role of market makers in this 

chapter. Suppose there are two liquidity traders in the market, L1 and L2. L1 sells m 

units of stocks at time 1 and L2 buys m units at time 2. If the number of market makers 

is denoted by n and the stock price at time i is 9:, then the present value of the stock 

at time 0 will be 

9; = < − 4=8 >
7?2

− 2@ 7
7?2

                                        4.6 

where the stock price is assumed to be normally distributed with mean < and variance 

=8; c is the transaction costs per unit of the stock; and A is the degree of risk aversion 

of the traders, namely both the liquidity traders and the market makers. 
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Equation 4.6 provides an insight of the mechanism of market making. 

Liquidity with the presence of transaction costs can therefore be calculated as 

A = >
7?2

+ 2 B7
3CD(7?2)

                                              4.7 

 

Equation 4.7 shows that liquidity is associated with trading volume m, number 

of market makers n, degree of risk aversion A, transaction costs c and volatility of the 

stock price =8. The number of the market makers in the financial markets and the 

degree of risk aversion are difficult to measure empirically. Since bid-ask spread is 

frequently used as a liquidity measure in existing literature, liquidity should be 

separated from the ambiguity measure regardless of the fact that the ambiguity 

measure is not exact the same as the bid-ask spread that is used in existing literature. 

As is mentioned in the introduction section, of the four categories of liquidity measures 

in Lybek and Sarr (2002), a trading volume liquidity measure is applied instead of 

other measures that are based on transaction cost, equilibrium price and price impact. 

This is because the purpose of using a liquidity measure is to remove the role of market 

makers, and liquidity measures based on trading volume capture information revealed 

from order flows, which can potentially reflect the role of market makers in 

transactions. Therefore, turnover by volume, which is a liquidity measure based on 

trading volume, is used to remove the impact of market makers on the spread by the 

following linear regression: 

4GHIJKILM0 = N; + N2OP&KGQ0 + R0                              4.8 

where 4GHIJKILM0 is the ambiguity measure at time t and OP&KGQ0 is turnover by 

volume of ETF FTSE100 at time t. The regression is checked for heteroskedasticity 

and the Newey-West heteroskedasticity and autocorrelation consistent (HAC) 

covariance matrix is used to correct the regression results for heteroskedasticity. 
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Table 4.2 shows the regression result with Newey-West standard errors. The 

result indicates that the linear relationship between the ambiguity measure that is 

constructed using bid and ask prices and volume by turnover is not statistically 

significant. As such, the ambiguity measure is used directly for subsequent analyses 

without removing the effect of the liquidity measure. 

 

Table 4.2 Regression of Ambiguity Measure on Liquidity Measure (Volume) with Newey-West 

Standard Errors. This table shows the regression result of the ambiguity measure on turnover by 

volume of ETF FTSE100 with Newey-West standard errors. Volume represents the coefficient of daily 

turnover by volume of ETF FTSE100; t-statistics are robust to heteroskedasticity and autocorrelation; 

*** represents 1% significance level; ** represents 5% significance level; and * represents 10% 

significance level. 

 

For each part of the analysis, the interactions between the ambiguity measure 

and variables of interest are investigated using the following VAR model: 

M0 = N; + N2M012 + ⋯+ NTM01T + U0                                4.9 

where M0 is a vector of stationary time-series variables in the system, which are the 

ambiguity measure and variables of interest; N’s are vectors of coefficients of different 

equations; V is the order of the lags included in the model, which is determined by 

information criteria; and U0 is a vector of error terms. Variables of interest include the 

UK stock market return, implied volatility and two term structure measures, which are 

used to measure investors’ expectations on the future economic conditions and their 

perceptions of future default risks. 

 

Since the VAR model requires the underlying time-series variables to be 

stationary, the variables are checked for stationarity using the Augmented Dickey-

Fuller (ADF) test before the VAR model is run. If the ADF test shows that the variable 

 Estimate t-Value 
Volume 0.000 1.243 

Intercept 0.001 12.544*** 
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is non-stationary, the differenced value will be used until the ADF test indicates 

stationarity. Then information criteria will be used to select number of lags to be 

included in the VAR model. The criteria used are the Akaike information criterion 

(AIC), the Hannan-Quinn information criterion (HQIC), the Schwarz’s Bayesian 

information criterion (SC or SBIC) and the final prediction error (FPE). In case that 

the four criteria show different numbers of lags, the maximum number of lags of the 

four criteria will be included in the VAR model. This is to prevent any significant 

results from being neglected due to model selection. 

 

Both Granger-Causality test and orthogonalised impulse response function 

(OIRF) are used to uncover the interactions between the ambiguity measure and 

variables of interest. The 95% confidence interval of an OIRF is constructed using the 

wild bootstrap method, which is developed by Wu (1986) to accommodate 

heteroskedasticity, which frequency presents in time-series data. 

 

4.5. Ambiguity and Market Return 

Table 4.3 shows the regression result of FTSE100 return on the ambiguity measure 

denoted by Ambiguity. The result indicates that the negative coefficient of the 

ambiguity measure is not statistically significant. This suggests that there is no 

contemporary linear relationship between the market return and the ambiguity 

measure. 
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Table 4.3 Regression of FTSE100 Return on Ambiguity Measure (Ambiguity) with Newey-West 

Standard Errors. This table shows the regression results of FTSE100 return on the ambiguity 

measure with Newey-West standard errors. Ambiguity represents the coefficient of the original 

ambiguity measure; t-statistics are robust to heteroskedasticity and autocorrelation; *** represents 1% 

significance level; ** represents 5% significance level; and * represents 10% significance level. 

 

Table 4.4 shows the interactions between FTSE100 return and the ambiguity 

measure with Panel A showing the result of the return equation, Panel B the result of 

the ambiguity measure equation and Panel C the results of Granger-Causality tests. 

Result in Panel A indicates that market return is autoregressive in lags 4 and 8 at the 

5% significance level and both of the lags have a negative impact on the future return. 

On the other hand, the market return does not seem to be associated with past values 

of the ambiguity measure, which together with the past values of the market return can 

only explain 0.377% of the variations in market return. 

 

In Panel B, the ambiguity measure is autoregressive in lags 1, 2 and 8 at the 1% 

significance level and lag 4, at the 5% significance level. The positive coefficients of 

lags 1, 2 and 8 indicate that past degrees of ambiguity can have a strong accumulative 

impact on the future degree of ambiguity. On the other hand, lag 3 of the market return 

has a positive impact on the future value of the ambiguity measure at the 5% 

significance level, and lag 4 has a negative impact at the 10% significance level. It is 

also noticeable that there is a statistically significant constant in the ambiguity measure 

equation, which suggests that the gap between bid and ask prices still exists even if 

the impacts of past values of the market return and the ambiguity measure are taken 

into consideration. The implication behind the regression results is that the interaction 

between the market return and the ambiguity measure is not strong. 

 

 Estimate t-Value 
Ambiguity -0.107 -1.188 

Intercept 0.0004 1.757* 
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This is consistent with the Granger-causality test results in Panel C, which 

indicate that the market return can Granger-cause the ambiguity measure at the 10% 

significance level but not at the 5% level. The results also indicate that the ambiguity 

measure cannot Granger-cause the market return. The orthogonalised impulse 

response function (OIRF) plots in Figure 4.1 also confirms the weak interaction 

between market return and the ambiguity measure. It is shown in the plots that the two 

variables do not respond to a shock to each other at the 5% significance level. Overall, 

the results in Table 4.4 suggest that the interaction between the market return and the 

ambiguity measure is not strong. The implication for asset pricing is that ambiguity 

does not seem to affect market return directly and hence investors who perceive 

ambiguous information or information of poor quality should withdraw from the 

market instead of expecting an increased likelihood of a high return. 
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Table 4.4 Interaction between FTSE100 Return (Return) and Ambiguity Measure (Ambiguity). 

This table shows the VAR regression results between FTSE100 return and the ambiguity measure 

(Panel A and Panel B) and the Granger causality test result (Panel C). Return represents the daily 

return of FTSE100; Ambiguity represents the original ambiguity measure; t-statistics are robust to 

heteroskedasticity;  *** represents 1% significance level; ** represents 5% significance level; and * 

represents 10% significance level. 

 

Panel A Return Equation 
 Lag Estimate t-Value 
Return 1 0.012 0.496 

2 -0.014 -0.594 

3 -0.003 -0.112 

4 -0.075 -3.132*** 

5 -0.020 -0.814 

6 0.005 0.191 

7 -0.028 -1.159 

8 -0.050 -2.091** 

Ambiguity 1 -0.026 -0.365 

2 0.022 0.299 

3 0.097 1.275 

4 -0.066 -0.868 

5 0.057 0.747 

6 0.068 0.887 

7 0.020 0.277 

8 -0.097 -1.378 

Constant 0.001 1.295 

Trend 0.000 -1.299 

Adjusted R-Squared 0.377% 

Panel B Ambiguity Measure Equation 
 Lag Estimate t-Value 
Return 1 -0.009 -1.099 

2 -0.001 -0.142 

3 0.017 2.110** 

4 -0.014 -1.707* 

5 -0.012 -1.517 

6 -0.007 -0.883 

7 0.005 0.675 

8 -0.012 -1.467 

Ambiguity 1 0.255 10.788*** 

2 0.308 12.613*** 

3 0.020 0.769 

4 -0.056 -2.208** 

5 -0.022 -0.874 

6 0.030 1.183 

7 -0.036 -1.467 

8 0.154 6.516*** 

Constant 0.001 3.711*** 

Trend 0.000 -0.708 

Adjusted R-Squared 24.370% 

Panel C Granger Causality Test 
 Return (Predictor) Ambiguity (Predictor) 
Return - 0.767 

Ambiguity 1.689* - 
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Figure 4.1 Plots of Orthogonalised Impulse Response Function (OIRF) of FTSE100 Return (r) 

and Original Ambiguity Measure (am) 

 
Notes: r represents the daily return of FTSE100; am represents the original ambiguity measure; the 

OIRF plot shows the 95% confidence interval of response of one variable from a one standard deviation 

shock to another variable. 

 

The relationship between the excess market return and the ambiguity measure 

is shown in Table 4.5 and the interaction between the two variables is illustrated in 

Table 4.6 and Figure 4.2. The results are similar to those displayed in Table 4.3, Table 

4.4 and Figure 4.1. Thus, the results imply that an increased level of ambiguity does 

not necessarily mean a higher premium in a short time horizon. This empirical 

evidence is consistent with conclusions of existing quantitative studies that advocate 

heterogenous investors (Epstein and Schneider, 2010). Thus, if some investors are 

more ambiguity-averse than the others, investors may not necessarily be compensated 

for bearing ambiguity because those who are more ambiguity-averse can simply quit 

the market while those who are less ambiguity-averse continue participating in the 

market. As such, investors may not get compensation for bearing ambiguity by 

receiving a higher premium in the short run. 
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Table 4.5 Regression of FTSE100 Excess Return on Ambiguity Measure (Ambiguity) with 

Newey-West Standard Errors. This table shows the regression results of FTSE100 excess return on 

the ambiguity measure with Newey-West standard errors. Ambiguity represents the coefficient of the 

original ambiguity measure; t-statistics are robust to heteroskedasticity and autocorrelation; *** 

represents 1% significance level; ** represents 5% significance level; and * represents 10% 

significance level. 

 

 Estimate t-Value 
Ambiguity -0.107 -1.188 

Intercept 0.0004 1.683* 
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Table 4.6 Interaction between FTSE100 Excess Return (Er) and Ambiguity Measure 

(Ambiguity). This table shows the VAR regression results between FTSE100 excess return and the 

ambiguity measure (Panel A and Panel B) and the Granger causality test result (Panel C). Er represents 

the daily excess return of FTSE100; Ambiguity represents the original ambiguity measure; t-statistics 

are robust to heteroskedasticity; *** represents 1% significance level; ** represents 5% significance 

level; and * represents 10% significance level. 

 

Panel A Excess Return Equation 
 Lag Estimate t-Value 
Er 1 0.012 0.497 

2 -0.014 -0.594 

3 -0.003 -0.112 

4 -0.075 -3.132*** 

5 -0.020 -0.813 

6 0.005 0.191 

7 -0.028 -1.159 

8 -0.050 -2.090** 

Ambiguity 1 -0.026 -0.365 

2 0.022 0.300 

3 0.097 1.275 

4 -0.066 -0.868 

5 0.057 0.747 

6 0.068 0.887 

7 0.020 0.277 

8 -0.097 -1.378 

Constant 0.001 1.249 

Trend 0.000 -1.219 

Adjusted R-Squared 0.376% 

Panel B Ambiguity Measure Equation 
 Lag Estimate t-Value 
Er 1 -0.009 -1.099 

2 -0.001 -0.142 

3 0.017 2.110** 

4 -0.014 -1.707* 

5 -0.012 -1.517 

6 -0.007 -0.883 

7 0.005 0.675 

8 -0.012 -1.467 

Ambiguity 1 0.255 10.788*** 

2 0.308 12.613*** 

3 0.020 0.769 

4 -0.056 -2.208** 

5 -0.022 -0.874 

6 0.030 1.183 

7 -0.036 -1.467 

8 0.154 6.516*** 

Constant 0.001 3.708*** 

Trend 0.000 -0.707 

Adjusted R-Squared 24.370% 

Panel C Granger Causality Test 
 Er (Predictor) Ambiguity (Predictor) 
Er - 0.876 

Ambiguity 2.155* - 
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Figure 4.2 Plots of Orthogonalised Impulse Response Function (OIRF) of FTSE100 Excess 

Return (er) and Original Ambiguity Measure (am) 

 
Notes: er represents the daily excess return of FTSE100; am represents the original ambiguity measure; 

the OIRF plot shows the 95% confidence interval of response of one variable from a one standard 

deviation shock to another variable. 

 

4.6. Ambiguity and Implied Volatility 

The interaction between the volatility index and the ambiguity measure is presented 

in Table 4.7. In Panel A, the result indicates that the volatility index is autoregressive 

in lag 1 at the 1% significance level. The positive coefficient of lag 1 suggests that an 

increased level of the volatility index today is associated with an increase in the 

volatility tomorrow. Lag 1 of the ambiguity measure also has a positive impact on the 

future value of the volatility index at the 10% significance level. However, the positive 

relationship is not statistically significant at the 5% level. As such, past values of the 

ambiguity measure do not seem to have a strong impact on the future value of the 

volatility index from the regression result. 

 

In Panel B, the ambiguity measure is autoregressive in lags 1, 2 and 8 at the 1% 

significance level and lags 4, 7 and 9, the 5% level. In addition, lags 1, 2 and 8 are all 

positively related to the future value of the ambiguity measure. On the other hand, lag 

4 and lag 8 of the volatility index both have a positive impact on the future value of 

the ambiguity measure at the 5% significance level. 
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In comparison with the interaction between the ambiguity measure and market 

return, interaction between the ambiguity measure and the volatility index is stronger. 

The Granger-causality test results in Panel C indicate that the ambiguity measure can 

Granger-cause the volatility index at the 5% significance level while the volatility 

index can Granger-cause the ambiguity measure at the 10% significance level. This 

suggests that past signals of the ambiguity measure can help to better predict the future 

value of the volatility index. 

 

The OIRF plots in Figure 4.3 suggest that the volatility index increases in 

periods 4 and 5 in response to a positive shock in the ambiguity measure at the 5% 

significance level. The ambiguity measure increases around period 5 in response to a 

positive shock in the volatility index at the 5% significance level and then increases 

again around period 9. This implies that a positive shock in the degree of ambiguity, 

or an unexpected increase in the ambiguity measure can lead to perceptions of a more 

volatile stock market, which can lead to excess volatility in the short run. This explains 

the excess volatility puzzle of the equity market, which is introduced by Shiller (1981). 

In combination with the findings of Kim et al. (2004), who report a significant positive 

relationship between market volatility and equity premium in the long run, the 

empirical evidence seems to imply that although ambiguity does directly affect market 

risk premium, a shock of an increased degree of ambiguity can lead to perceptions of 

a more volatile market, generating excess market volatility, which in turn results in a 

higher equity premium in the long run. As such, findings in this chapter support the 

theory that existence of ambiguity helps to explain the equity market premium, which 

is proved by Epstein and Schneider (2010) from a theoretical perspective. 
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Table 4.7 Interaction between Volatility Index (Volatility) and Ambiguity Measure (Ambiguity). 

This table shows the VAR regression results between volatility index of FTSE100 and the ambiguity 

measure (Panel A and Panel B) and the Granger causality test result (Panel C). Volatility represents 

the daily volatility index of FTSE100; Ambiguity represents the original ambiguity measure; t-

statistics are robust to heteroskedasticity; *** represents 1% significance level; ** represents 5% 

significance level; and * represents 10% significance level. 

 

Panel A Volatility Index Equation 
 Lag Estimate t-Value 
Volatility 1 0.964 40.172*** 

2 -0.055 -1.637 

3 0.019 0.577 

4 -0.018 -0.549 

5 -0.018 -0.529 

6 0.052 1.546 

7 -0.016 -0.488 

8 0.016 0.468 

9 0.023 0.971 

Ambiguity 1 18.960 1.878* 

2 -2.484 -0.241 

3 6.101 0.568 

4 0.436 0.041 

5 -2.518 -0.234 

6 2.413 0.225 

7 -3.730 -0.348 

8 7.131 0.693 

9 -9.599 -0.952 

Constant 0.663 3.813*** 

Trend 0.000 -1.328 

Adjusted R-Squared 93.060% 

Panel B Ambiguity Measure Equation 
 Lag Estimate t-Value 
Volatility 1 0.0000 -0.285 

2 0.0001 0.844 

3 -0.0001 -1.636 

4 0.0002 2.472** 

5 -0.0001 -1.429 

6 0.0001 0.946 

7 -0.0002 -1.899* 

8 0.0002 2.301** 

9 -0.0001 -1.511 

Ambiguity 1 0.252 10.517*** 

2 0.302 12.359*** 

3 0.018 0.702 

4 -0.055 -2.169** 

5 -0.019 -0.734 

6 0.028 1.121 

7 -0.056 -2.215** 

8 0.140 5.731*** 

9 0.050 2.083** 

Constant 0.000 0.228 

Trend 0.000 0.020 

Adjusted R-Squared 24.560% 

Panel C Granger Causality Test 
 Volatility (Predictor) Ambiguity (Predictor) 
Volatility - 4.626** 

Ambiguity 1.688* - 
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Figure 4.3 Plots of Orthogonalised Impulse Response Function (OIRF) of Volatility Index (vix) 

and Original Ambiguity Measure (am) 

 
Notes: vix represents the daily volatility index of FTSE100; am represents the original ambiguity 

measure; the OIRF plot shows the 95% confidence interval of response of one variable from a one 

standard deviation shock to another variable. 

 

4.7. Ambiguity and Term Structure Measures 

In this section, interactions between the ambiguity measure and the two term structure 

measures, Term and Def are explained. Since Term is the difference in returns between 

the long-term government bond and short-term government bond, it can reflect 

investors’ expectations on future economic state. If there is an increase in the 

difference, which is equivalent to a positive first difference of Term, investors are 

expecting a good future economic state. Instead, if there is a decrease in the difference, 

which is equivalent to a negative first difference of Term, investors are expecting a 

bad future economic state. Thus, an increase in the first difference of Term, which is 

denoted by dTerm in the following paragraphs, indicates a more optimistic perception 

of the future economic state compared to the previous period while a decrease in 

dTerm indicates a more pessimistic perception compared to the previous period. 

 

On the other hand, Def measures the gap between the return of long-term 

government bond and the return of long-term corporate bond and hence it can reflect 

investors’ view on future default risk. If there is an increase in Def, which is equivalent 

to a positive first different of Def, investors are expecting a higher default risk while 
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if there is a decrease in Def, which is equivalent to a negative first difference of Def, 

investors are expecting a lower default risk. As such, an increase in the first different 

of Def, which is denoted by dDef in the following paragraphs, suggests that investors 

become more worried about the future default risk while a decrease in dDef suggests 

that they become less worried about the future default risk. 

 

4.7.1.  Ambiguity and Macroeconomic Conditions 

Table 4.8 shows the interaction between the ambiguity measure and dTerm. Result in 

Panel A indicates that dTerm is autoregressive in lags 2 and 7 at the 1% significance 

level, lags 8 and 9, the 5% level, and lag 3, the 10% level. Lag 10 of the ambiguity 

measure has a negative impact on dTerm at the 10% significance level, which is not 

significant at the 5% level. As such, past values of the ambiguity measure do not 

appear to have a strong impact on dTerm. 

 

In Panel B, the ambiguity measure is autoregressive in lags 1, 2 and 8 at the 1% 

significance level, lags 4, 7 and 9, at the 5% level. Similar to the regression results of 

the previous sections, lags with positive coefficients, which are lags 1, 2 and 8 in this 

section, have a stronger impact on the future value of the ambiguity measure than 

those with negative coefficients, which are lags 4 and 7 in this section. This suggests 

that the ambiguity measure can accumulate over time. On the other hand, lags 1, 4 and 

9 of dTerm have negative effects on the future value of the ambiguity measure with 

lag 4 significant at the 1% level, and lags 1 and 9, the 5% level. 

 

The Granger-causality test results in Panel C indicate that dTerm can Granger-

cause the ambiguity measure at the 1% significance level while the ambiguity measure 

cannot Granger-cause dTerm. This implies that investors’ expectation of the future 
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economic state of the UK can affect the degree of ambiguity of the stock market. The 

OIRF plots in Figure 4.4 show that dTerm does not seem to respond to a positive shock 

to the ambiguity measure until period 10 onwards while the ambiguity measure 

decreases around periods 1, 2, 5 and 10 in response to a positive shock in dTerm at the 

5% significance level. The implication behind is that a shock to the economy that 

makes investors more optimistic about the future economic state of the UK can lead 

to a decrease in the degree of ambiguity of the equity market in the future while a 

shock that leads to more pessimistic investors can results in an increased degree of 

ambiguity in the future. 
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Table 4.8 Interaction between First-Differenced Term Structure Measure Term (dTerm) and 

Ambiguity Measure (Ambiguity). This table shows the VAR regression results between the term 

spread and the ambiguity measure (Panel A and Panel B) and the Granger causality test result (Panel 

C). dTerm represents the first-differenced value of the term structure measure Term; Ambiguity 

represents the original ambiguity measure; t-statistics are robust to heteroskedasticity; *** represents 

1% significance level; ** represents 5% significance level; and * represents 10% significance level. 

 

Panel A Term Spread Equation 
 Lag Estimate t-Value 
dTerm 1 0.017 0.697 

2 -0.076 -3.174*** 

3 -0.045 -1.868* 

4 0.013 0.535 

5 -0.040 -1.644 

6 0.025 1.022 

7 -0.065 -2.671*** 

8 -0.061 -2.505** 

9 0.050 2.051** 

10 0.030 1.214 

Ambiguity 1 0.001 0.232 

2 0.000 0.150 

3 0.003 0.994 

4 -0.002 -0.671 

5 0.001 0.235 

6 0.004 1.117 

7 0.002 0.671 

8 -0.002 -0.550 

9 -0.005 -1.588 

10 -0.005 -1.799* 

Constant 0.000 0.140 

Trend 0.000 -0.861 

Adjusted R-Squared 1.986% 

Panel B Ambiguity Measure Equation 
 Lag Estimate t-Value 
dTerm 1 -0.406 -2.098** 

2 0.120 0.623 

3 0.233 1.206 

4 -0.636 -3.287*** 

5 -0.217 -1.111 

6 -0.106 -0.543 

7 -0.039 -0.197 

8 -0.213 -1.089 

9 -0.417 -2.133** 

10 0.382 1.951* 

Ambiguity 1 0.245 10.198*** 

2 0.313 12.709*** 

3 0.014 0.556 

4 -0.060 -2.347** 

5 -0.022 -0.843 

6 0.039 1.511 

7 -0.053 -2.074** 

8 0.132 5.195*** 

9 0.050 2.027** 

10 0.013 0.532 

Constant 0.001 3.359*** 

Trend 0.000 -0.657 

Adjusted R-Squared 24.980% 

Panel C Granger Causality Test 
 dTerm (Predictor) Ambiguity (Predictor) 
dTerm - 1.269 

Ambiguity 2.644*** - 
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Figure 4.4 Plots of Orthogonalised Impulse Response Function (OIRF) of First-Differenced 

Term Structure Measure Term (dterm) and Original Ambiguity Measure (am) 

 
Notes: dterm represents the first-differenced value of the term structure measure Term; am represents 

the original ambiguity measure; the OIRF plot shows the 95% confidence interval of response of one 

variable from a one standard deviation shock to another variable. 

 

4.7.2.  Ambiguity and Default Risks 

Table 4.9 shows the interaction between the ambiguity measure and dDef. In Panel A, 

the result indicates that dDef is autoregressive in lags 1, 4 and 6 at the 1% significance 

level, and lag 7, the 5% level. Past values of the ambiguity measure do not appear to 

have a statistically significant impact on future value of dDef. 

 

Panel B shows that the ambiguity measure is autoregressive in lags 1, 2 and 8 

at the 1% significance level, and lags 4, 7 and 9, the 5% level. Similar to previous 

results, lags 1, 2 and 8, which have positive coefficients, leave a stronger impact on 

the future value of the ambiguity measure than lags 4 and 7, which have negative 

coefficients. Lag 4 of dDef has a positive impact on the future value of the ambiguity 

measure at the 1% significance level, and lags 6 and 9, the 10% level. 

 

Results of the Granger-causality test in Panel C show that dDef can Granger-

cause the ambiguity measure at the 5% significance level while the ambiguity measure 

does not seem to Granger-cause dDef. The OIRF plots in Figure 4.5 indicate that dDef 

does not respond to a positive shock to the ambiguity measure while the ambiguity 
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measure increases around periods 5, 7 and 10 in response to a positive shock to dDef 

at the 5% significance level. This implies that a shock to the UK economy that makes 

investors more worried about the future default risk can lead to an increase in the 

degree of ambiguity of the stock market in the future while a shock that makes 

investors feel safer about the future default can result in a decreased degree of 

ambiguity. 
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Table 4.9 Interaction between First-Differenced Term Structure Measure Def (dDef) and 

Ambiguity Measure (Ambiguity). This table shows the VAR regression results between the default 

spread and the ambiguity measure (Panel A and Panel B) and the Granger causality test result (Panel 

C). dDef represents the first-differenced value of the term structure measure Def; Ambiguity represents 

the original ambiguity measure; t-statistics are robust to heteroskedasticity;  *** represents 1% 

significance level; ** represents 5% significance level; and * represents 10% significance level. 

 

Panel A Default Spread Equation 
 Lag Estimate t-Value 
dDef 1 -0.140 -5.846*** 

2 -0.020 -0.845 

3 0.033 1.386 

4 0.072 2.981*** 

5 0.020 0.830 

6 0.070 2.848*** 

7 0.060 2.471** 

8 0.002 0.093 

9 0.042 1.720* 

Ambiguity 1 0.001 0.799 

2 0.001 0.444 

3 -0.002 -1.266 

4 -0.001 -0.331 

5 -0.001 -0.365 

6 -0.001 -0.407 

7 -0.001 -0.809 

8 0.002 1.386 

9 0.001 0.666 

Constant 0.000 -1.409 

Trend 0.000 1.558 

Adjusted R-Squared 2.670% 

Panel B Ambiguity Measure Equation 
 Lag Estimate t-Value 
dDef 1 0.470 1.177 

2 -0.061 -0.151 

3 -0.286 -0.711 

4 1.169 2.918*** 

5 0.506 1.244 

6 0.767 1.890* 

7 0.402 0.989 

8 -0.061 -0.149 

9 0.771 1.915* 

Ambiguity 1 0.245 10.247*** 

2 0.306 12.551*** 

3 0.013 0.500 

4 -0.050 -1.976** 

5 -0.023 -0.905 

6 0.029 1.138 

7 -0.054 -2.131** 

8 0.141 5.812*** 

9 0.054 2.279** 

Constant 0.001 3.828*** 

Trend 0.000 -0.961 

Adjusted R-Squared 24.780% 

Panel C Granger Causality Test 
 dDef (Predictor) Ambiguity (Predictor) 
dDef - 0.743 

Ambiguity 2.175** - 
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Figure 4.5 Plots of Orthogonalised Impulse Response Function (OIRF) of First-Differenced 

Term Structure Measure Def (ddef) and Ambiguity Measure (am) 

 
Notes: ddef represents the first-differenced value of the term structure measure Def; am represents the 

original ambiguity measure; the OIRF plot shows the 95% confidence interval of response of one 

variable from a one standard deviation shock to another variable. 

 

4.8. Discussion and Conclusion 

The findings from the analysis between the ambiguity measure and market return 

suggest that the interaction between the ambiguity measure and market return and the 

interaction between the ambiguity measure and excess market return are statistically 

weak. As such, investors may not necessarily be compensated for bearing ambiguity, 

which provides empirical evidence to support ambiguity pricing models of 

heterogeneity. The implication for investors is that they should not participate the 

market if they perceive that the information is of poor quality or the financial markets 

are faced with ambiguity. 

 

Nevertheless, weak interaction between the ambiguity measure and excess 

market return does not necessarily mean that ambiguity does not have an impact on 

equity premium. According to the interaction between the ambiguity measure and the 

volatility index, an unexpected increase in the degree of ambiguity can lead to 

perceptions of more volatile financial markets, which generates excess volatility in the 

short run and can in turn affect the equity premium in the long run (Kim et al., 2004). 

This seems consistent with the result of Condie (2008), who mathematically proves 
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that ambiguity can have affect asset prices in the long run under heterogeneity settings. 

Therefore, theories of ambiguity asset pricing can help to explain the equity premium 

puzzle, as is illustrated by Epstein and Schneider (2010). On the other hand, the 

findings also suggest that similar to return, volatility can also be ambiguous. 

 

The interactions between the ambiguity measure and the two term structure 

measures suggest that macroeconomic conditions can affect the degree of ambiguity 

of the equity market. If investors are more optimistic about the future economic state, 

the degree of ambiguity of the equity market tends to decrease while if they are more 

pessimistic, the degree of ambiguity tends to increase. On the other hand, if investors 

are more worried about future default risks, the degree of ambiguity of the equity 

market would increase while if they are less worried about future default risks, the 

degree of ambiguity would decrease. As such, similar to theoretical evidence, 

empirical results also suggest that ambiguity literature can help to explain why 

investors respond differently when they are faced with good news and bad news about 

macroeconomic conditions. Bad news on the future macroeconomic conditions can 

result in subsequent increases in both market volatility (Fostel and Geanakoplos, 2012) 

and the degree of ambiguity of the equity market and hence have an amplified impact 

on the market volatility in the short run, which might in turn affect equity premia in 

the long run, depending on the extent of the degree of ambiguity that is affected. 

Although good news regarding the future economic conditions can contribute to a 

decrease in the degree of ambiguity, it might not necessarily lead to a decrease in the 

market volatility and hence the effect of decreasing degree of ambiguity may cancel 

out with an increasing market volatility. 
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This chapter contributes to the ambiguity literature by providing empirical 

evidence that verifies theoretical studies. The findings support the theoretical results 

that ambiguity can help to explain the equity premium puzzle and the excess volatility 

puzzle, and that bad news can amplify the impact of ambiguity. On the other hand, the 

empirical evidence seems to favour the heterogeneous agent models of ambiguity. 

Last but not least, existing literature mainly focuses on ambiguity in asset returns while 

the empirical evidence from this chapter suggests that volatility, which is the second 

moment of stock price, can also be ambiguous. 
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Chapter 5. A Dispersion Measure of Ambiguity: Evidence 

from The UK and US Stock Market 

 

5.1. Introduction 

Ambiguity is believed to have contributed to the 2008 financial crisis. The empirical 

study of Boyarchenko (2012) shows that an increase in ambiguity could statistically 

explain the increase in the credit default swap (CDS) spreads, which leads to the 2008 

financial crisis. Dimmock et al. (2016) investigate market participation of households 

under ambiguity. They find that investors under-diversified their portfolios due to 

ambiguous information and the 2008 financial crisis could be contributed to ambiguity 

aversion. However, the impact of ambiguity in the equity market before and after the 

2008 financial remains unclear. As such, this chapter attempts to investigate the effect 

of ambiguity on the UK and US stock markets as well as its role in the 2008 financial 

crisis. 

 

The study develops a new approach of measuring ambiguity based on the gap 

between highest intraday price and lowest intraday price, which is one of the main 

contributions of this chapter. As such, it also uncovers whether the empirical results 

from the previous chapter are consistent with empirical evidence obtained by applying 

a new approach. The US data are added to check whether the empirical evidence is 

applicable to other stock markets. The econometric method used in this chapter is the 

vector autoregressive (VAR) model, which is the same as the model applied in the 

previous chapter. Following the same logic of the previous chapter, the interaction 

between ambiguity and market return, ambiguity and implied volatility and ambiguity 

and two term structure measures are investigated. The empirical evidence verifies the 
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results from the previous chapter. With evidence from both the UK and US stock 

markets, the ambiguity measure does not seem to interact with market return. Instead, 

it interacts with investors’ expectation on future market volatility, which is measured 

by the volatility index. In addition, expectations of future economic conditions and 

future default risks can affect the degree of ambiguity. 

 

After the full sample is investigated, the sample is divided into pre-crisis sub-

sample and post-crisis sub-sample. The post-crisis results are quite consistent with the 

full-sample results while the pre-crisis results show differences. However, the main 

differences lie in the interactions between the ambiguity measure and the two term 

structure measures. The results suggest that investors were unaware of ambiguity 

before the crisis and existence of ambiguity contributed to the economic bubble. The 

increasing degree of ambiguity contributed to the collapse of the financial markets in 

the end. As such, consistent to existing literature, ambiguity plays an important role in 

the 2008 financial crisis and one of the major contributions is that a detailed 

explanation of how ambiguity contributed to the crisis is provided. 

 

The rest of the chapter is structure as follows. Section 5.2 shows the 

development of the new empirical ambiguity measure. Section 5.3 depicts the data 

used in the empirical analyses. Section 5.4 briefly describes the methodology. Section 

5.5 – 5.7 illustrate the empirical results from the full-sample period, the pre-crisis 

period and the post-crisis period respectively. In the end, a discussion of the findings 

and result and a short conclusion are provided in Section 5.8. 

 



 129 

5.2. Ambiguity Measure 

The ambiguity measure is based on the multiple-prior preference model, under which 

investors make decisions based on the worst-case scenario. The worst cases of 

investors who are in long positions are different from the worst cases of those who are 

in short positions. Therefore, deviations from the reference model can be two-sided 

because of position differences. Now let’s turn to the derivation of our empirical 

ambiguity measure. We can start with the simplest case where there is no price 

fluctuation during the day. Then the intraday highest price, denoted by V0W, would be 

the higher price between the closing price yesterday and the closing price today, which 

can be expressed as: 

V0W = XYZ{V012, V0}                                              5.1 

where V0W represents the intraday highest price; and V0 represents the closing price at 

day L. 

 

With similar logic, the intraday lowest price would be the lower price between 

the closing price yesterday and the closing price today, which can be expressed as: 

V0^ = XI'{V012, V0}                                               5.2 

where V0^ represents the intraday lowest price; and V0 represents the closing price at 

day L. 

 

As such, the gap between the intraday highest price and intraday lowest price, 

denoted by VW^, could be characterised by: 

V0W^ = |V0 − V012|                                               5.3 

where V0W^ represents the gap between the intraday highest and lowest prices at day L; 

and V0 represents the closing price at day L. 
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Assume that price changes follow a random walk, then V0W^ should also follow 

a random process according to Equation 5.3, and hence it should not show any patterns 

over time. Assuming the reference model of stock price does not change within a short 

period, say a day, V0W^  should represent the deviation from the reference model, 

namely a result of ambiguity and ambiguity aversion, if there is no volatility. Now 

suppose that there is volatility, then patterns of VW^ can arise from both ambiguity and 

expectations of volatility. As such, V0W^ in excess of implied volatility can be a good 

potential measure of ambigutiy. This empirical measure is also theoretically motivated 

by Epstein and Schneider (2008), who show that price fluctuation is a reflection of 

ambiguity aversion. From this perspective, VW^ can be used to develop an empirical 

measure of ambiguity. In short, the intuition behind the empirical measure of 

ambiguity in this chapter is that assume investors’ preference models do not change 

for a short period, which is assumed to be at least one day in this study, then the 

intraday high price indicates, to some extent, the highest price that an investor can 

accept as a result of a deviation from her reference model during the day, and the 

intraday lowest price indicates, to some extent, the lowest price that an investor can 

accept as a result of a deviation from her reference model. Hence, change in VW^ can 

reflect distortions from the reference model due to ambiguity and ambiguity aversion. 

However, since the multiple-prior model does not differentiate between level of 

ambiguity and ambiguity aversion, this empirical measure is also a combination of 

level of ambiguity and ambiguity aversion. For illustration purposes, level of 

ambiguity and ambiguity aversion will be named as degree of ambiguity and it is 

necessary to emphasise that when degree of ambiguity is mentioned in this study, it 

refers to both the level of ambiguity and the extent of ambiguity aversion. 
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Furthermore, it is also worth to mention that VW^  is not yet the ambigutiy 

measure that is used in this study. It is further developed to accommodate statistical 

issues and implied volatility, which is explained in the methodology section. 

 

5.3. Data 

Adjusted closing prices of FTSE100 and S&P500 are collected in daily frequency, 

which are used as proxies for the market return of the UK and US stock markets. The 

closing prices are converted into daily returns using the following formula: 

!0 = &' )*
)*+,

                                                    5.4 

where !0 represents the daily return at time t; and /0 is the closing price at time t. 

 

In addition, intraday low prices and intraday high prices of the indices are 

collected to construct the ambiguity measures of the UK and US stock markets. As is 

mentioned in the previous section, the volatility indices of FTSE100 and S&P500 are 

used as measures of implied volatilities of the UK and US stock markets. 

 

Similar to the previous chapter, the interaction between ambiguity and 

macroeconomic conditions and the interaction between ambiguity and default risks 

are also investigated. Following Fama and French (1993), investors’ expectations on 

future macroeconomic conditions, denoted by Term, are measured by the difference 

between returns of short-term government bond (with maturity of 1 month) and long-

term government bond (with maturity of over 10 years), and investors’ perceptions 

about future default risks, denoted by Def, are measured by the difference between 

returns of long-term government bond (with maturity of over 10 years) and long-term 

corporate bond (with maturity of over 10 years). 
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The sample period is from March 1st, 2004 to June 30th, 2016 for the UK and 

from November 14th, 2007 to February 28th, 2018 for the US. All the data are collected 

in daily frequency from DataStream. As such, there are 3,117 observations in the UK 

sample and 2,590 observations in the US sample. Table 5.1 shows the summary 

statistics of the variables. The summary statistics indicate that the market return, return 

of FTSE100, is symmetrically distributed and shows some negative skewness. The 

UK ambiguity measure has an approximately symmetric distribution centred around 

zero. On the other hand, the S&P500 index return also has a zero-mean with negative 

skewness, and the ambiguity measure has a zero-mean with positive skewness, which 

is quite similar to the statistics of the US ambiguity measure that is calculated using a 

different method and different data in Antoniou et al. (2015). In comparison, the 

returns, ambiguity measures, volatilities and two term structure measures of the two 

stock markets are quite similar. In addition, although for the two markets the summary 

statistics of 	pbcd  and lnpbcd  are different, the summary statistics of the ambiguity 

measures are quite similar. 
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Table 5.1 Summary Statistics. This table shows the summary statistics. Return represents the daily 

market return; ghij represents the difference between the intraday highest and lowest prices of the 

indices; klghij  represents the natural logarithm of klghij ; AM represents the ambiguity measure; 

Volatility represents the daily market volatility index; and Term and Def represent the two term 

structure measures of daily frequencies. 

 Mean Std. Dev. Min Max Skewness Kurtosis 
UK Stock Market 
 Return 0.000 0.013 -0.095 0.110 -0.354 10.838 

 mnop 18.694 12.646 3.680 125.220 2.711 12.079 

 qrmnop 2.764 0.556 1.303 4.830 0.317 0.113 

 AM 0.000 0.493 -1.529 1.868 0.202 0.021 

 Volatility 21.585 8.504 11.850 69.240 1.942 4.706 

 Term 0.023 0.007 0.005 0.038 0.271 -0.749 

 Def 0.028 0.007 0.015 0.058 1.994 4.808 

US Stock Market      

 Return 0.000 0.013 -0.095 0.110 -0.354 10.838 

 mnop 18.694 12.646 3.680 125.220 2.711 12.079 

 qrmnop 2.764 0.556 1.303 4.830 0.317 0.113 

 AM 0.000 0.493 -1.529 1.868 0.202 0.021 

 Volatility 21.585 8.504 11.850 69.240 1.942 4.706 

 Term 0.023 0.007 0.005 0.038 0.271 -0.749 

 Def 0.028 0.007 0.015 0.058 1.994 4.808 
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To investigate the roll of ambiguity before and after the 2008 financial crisis, 

the full-sample period is further divided into pre-crisis period and post-crisis period. 

However, the exact time of when the impact of ambiguity started to take effect on the 

crisis is not clear and hence data before 2009 are treated as data of the pre-crisis period 

and the rest are treated as data of the post-crisis period. 

 

5.4. Methodology 

As is mentioned before, a possible issue with the VW^ measure is that it can be affected 

by investors’ expectations of future volatility levels, which is also recognised as a 

measure of investor sentiment (Whaley, 2000). Corrado and Truong (2007) use a 

squared measure of the gap between intraday highest and lowest prices to estimate 

stock market volatility. They compare the volatility forecasts estimated from this 

measure with the squared value of volatility index. The implication for this paper from 

their work is that the squared value of the gap between intraday highest and lowest 

prices can be used as an estimate of volatility, which might potentially make the effect 

of implied volatility interfere with the impact of the ambiguity measure. Therefore, 

the effect of implied volatility should be removed from V0W^. Epstein and Schneider 

(2010) show that ambigutiy aversion has a first-order effect on asset returns and hence 

power one form of the gap between intraday highest and lowest prices is used in this 

study instead of power two. Natural logarithm conversion is applied to the gap 

between intraday highest and lowest prices to adjust for the positive skewness of VW^. 

Then the following linear regression is used to remove the effect of implied volatility 

from &'V0W^, where volatility indices developed by stock exchanges, namely implied 

volatility measures, are used as proxies for investors’ expectations on future volatility. 

Thus, the ambiguity measure used in this study is the residual from the following 

regression model: 
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&'V0W^ = N; + N2OP&YLI&ILM0 + R0                                5.5 

where &'V0W^ is the natural logarithm of VW^ at day L; and OP&YLI&ILM0 is the volatility 

index at day L. Since time-series data normally have problems of heteroscedasticity, 

the linear regression is corrected for heteroscedasticity using Newey-West 

heteroskedasticity and autocorrelation (HAC) standard errors. 

 

Since the purpose of this paper is to uncover the interactions between 

ambiguity and the variables of interest and hence the VAR regression model is applied, 

which is characterised by the following equation: 

M0 = N; + N2M012 + ⋯+ NTM01T + U0                                5.6 

where M0 is a vector of stationary time-series of interest; N’s are vectors of coefficients 

in the regression model; V is the order of the lags included in the model, which is 

determined by information criteria; and U0 is a vector of error terms. The Augmented 

Dickey-Fuller (ADF) test is used to ensure the time-series data are stationary before 

the VAR analyses. If the ADF test indicates that the time series is non-stationary, 

difference will be taken until the series is stationarity. Information criteria that are 

used to select lags for the VAR model include the Akaike information criterion (AIC), 

the Hannan-Quinn information criterion (HQIC), the Schwarz’s Bayesian information 

criterion (SC or SBIC) and the final prediction error (FPE). In order to prevent any 

significant results from being neglected due to model selection, the maximum number 

of lags of the four criteria will be included in the VAR model if they indicate different 

numbers of lags. 

 

Similar to the previous chapter, both Granger-Causality test and 

orthogonalised impulse response function (OIRF) are used to investigate the 

interactions between the ambiguity measure and variables of interest. The 95% 
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confidence interval of an OIRF is constructed using the wild bootstrap method, 

developed by Wu (1986), to accommodate any heteroskedasticity that might occur in 

time-series data. 

 

5.5. Empirical Results of Full-Sample Period 

This section illustrates the empirical findings of the full samples. The development of 

the analyses begins with the findings of the UK stock market followed by the US stock 

market. 

 

5.5.1.  Ambiguity and Market Returns 

Table 5.2 shows the regression result of FTSE100 and S&P500 returns on the 

ambiguity measures AM. The result of the UK stock market shows that the coefficient 

of AM is significant at the 10% significance level. The negative coefficient indicates 

that an increase in the ambiguity measure is associated with a decrease in the market 

return. However, this linear relationship is not statistically significant at the 5% level. 

The result of the US stock market indicates that market return has a negative linear 

relationship with the ambiguity measure at the 1% significance level. 

 

Table 5.2 Regression of Market Returns on Ambiguity Measure (AM) with Newey-West 

Standard Errors. This table shows the regression results of the market returns on the ambiguity 

measure with Newey-West standard errors. AM represents the ambiguity measures; t-statistics are 

robust to heteroskedasticity; *** represents 1% significance level; ** represents 5% significance level; 

and * represents 10% significance level. 

 

 Estimate t-Value 
UK Stock Market   

 AM -0.001 -1.830* 

 Intercept 0.000 0.702 

US Stock Market   

 AM -0.001 -2.689*** 

 Intercept 0.000 1.109 
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5.5.1.1. Evidence from UK Stock Market 

The interaction between market return and the ambiguity measure of the UK stock 

market is displayed in Table 5.3. The result of the return equation in Panel A indicates 

that market return is autoregressive in lags 2 and 5 at the 1% significance level, lags 1 

and 3, the 5% level, and lag 4, the 10% level. Lag 3 of the ambiguity measure is 

significant at the 5% level, which has a positive impact on the future value of market 

return. Lag 1 leaves a negative impact, but the significance of the effect is weak, which 

is the 10% level. 

 

Panel B shows that the ambiguity measure is autoregressive in all the lags at 

the 1% significance level except that lag 7 is significant at the 5% level. It is noticeable 

that all the coefficients of the lags are positive, which suggests that past ambiguous 

information can affect future level of ambiguity and ambiguity aversion. This 

accumulative characteristic of the ambiguity measure also implies that ambiguous 

signals and poor-quality information can affect the confidence of investors, which 

makes them assign a higher weightage on the worst-case scenario for the next few 

periods and in turn results in a higher degree of ambiguity in the future. In addition, 

the positive trend of the ambiguity measure equation, which is significant at the 1% 

level, also confirms the accumulative characteristic of ambiguity and implies that this 

accumulation process can last for a long time until a market crash occurs. On the other 

hand, lag 1, lag 2 and lag 3 of market return have negative impacts on the future value 

of the ambiguity measure, which are significant at the 1% level. The negative 

coefficients suggest that decreases in past returns result in an increase in the future 

value of the ambiguity measure. This seems to imply that bad news that leads to a bear 

stock market can contribute to a higher degree of ambiguity. However, this result has 

to be verified by the sub-sample analyses because stock market “freezes” when a 
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financial crisis occurs (Epstein and Schneider, 2010) and hence market behaviour near 

a financial crisis could be quite different from that of non-crisis periods. 

 

Results of the Granger-causality test in Panel C indicate that the market return 

can Granger-cause the ambiguity measure at the 1% significance level while the 

ambiguity measure does not seem to Granger-cause the market return. This is 

consistently shown in the orthogonalised impulse response function (OIRF) plots in 

Figure 5.1. In the plots, the zero line falls within the 95% confidence interval in almost 

all the periods, indicating that return does not tend to respond to a shock in the 

ambiguity measure at the 5% significance level. This implies that investors may not 

necessarily be compensated for bearing ambiguity, which suggests that empirical 

evidence is in favour of the heterogeneous agent models of ambiguity. On the other 

hand, the ambiguity measure firstly decreases in response to a positive shock in the 

market return and then increases at the 5% significance level, followed by another 

decrease starting from period 10. This result can be related to the negative lags of 

market return and the positive trend in the ambiguity measure equation, which together 

implies that bad news that leads to a bear market can result in a higher degree of 

ambiguity and such results can accumulate and may not have an immediate effect on 

the stock market return until a market crash occurs. 
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Table 5.3 Interaction between FTSE100 Return (Return) and Ambiguity Measure (AM). This 

table shows the VAR regression results between FTSE100 return and the ambiguity measure (Panel 

A and Panel B) and the Granger causality test result (Panel C). Return represents the daily return of 

FTSE100; AM represents the ambiguity measure; t-statistics are robust to heteroskedasticity; *** 

represents 1% significance level; ** represents 5% significance level; and * represents 10% 

significance level. 

Panel A Return Equation 
 Lag Estimate t-Value 
Return 1 -0.044 -2.453** 

2 -0.054 -2.972*** 

3 -0.045 -2.468** 

4 0.032 1.793* 

5 -0.059 -3.215*** 

6 -0.029 -1.587 

7 0.006 0.334 

8 0.009 0.480 

AM 1 -0.001 -1.757* 

2 0.000 0.017 

3 0.001 2.087** 

4 -0.001 -1.076 

5 -0.001 -1.209 

6 0.000 -0.403 

7 0.000 -0.499 

8 0.000 0.564 

Constant 0.000 -0.061 

Trend 0.000 0.390 

Adjusted R-Squared 0.949% 

Panel B Ambiguity Measure Equation 
 Lag Estimate t-Value 
Return 1 -3.372 -6.053*** 

2 -1.788 -3.183*** 

3 -2.114 -3.748*** 

4 -0.829 -1.466 

5 0.642 1.134 

6 0.354 0.626 

7 0.394 0.698 

8 0.361 0.642 

AM 1 0.091 5.037*** 

2 0.113 6.131*** 

3 0.100 5.528*** 

4 0.104 5.730*** 

5 0.077 4.260*** 

6 0.085 4.722*** 

7 0.041 2.291** 

8 0.063 3.534*** 

Constant -0.065 -4.535*** 

Trend 0.00004 5.275*** 

Adjusted R-Squared 24.110% 

Panel C Granger Causality Test 
 Return (Predictor) AM (Predictor) 
Return - 1.388 

AM 7.307*** - 
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Figure 5.1 Plots of Orthogonalised Impulse Response Function (OIRF) of FTSE100 Return 

(return) and Ambiguity Measure (am) 

 
Notes: return represents the daily return of FTSE100; am represents the ambiguity measure; the OIRF 

plot shows the 95% confidence interval of response of one variable from a one standard deviation shock 

to another variable. 

 

5.5.1.2. Evidence from US Stock Market 

The interaction between market return and the ambiguity measure of the US stock 

market is shown in Table 5.4 and Figure 5.2. The results are similar to those of the UK 

market. Past values of the ambiguity measure do not seem to have a significantly 

strong impact on the US market return, suggesting that investors are not compensated 

for bearing ambiguity. The impact of past market returns on the future ambiguity 

measure of the US seems stronger than that of the UK. However, the behaviours are 

similar, implying that increased degree of ambiguity due to bad news that leads to 

downward movements of the market can accumulate and do not take effect until a 

stock market crash happens. 
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Table 5.4 Interaction between S&P500 Return (Return) and Ambiguity Measure (AM). This 

table shows the VAR regression results between S&P500 return and the ambiguity measure (Panel A 

and Panel B) and the Granger causality test result (Panel C). Return represents the daily return of 

S&P500; AM represents the ambiguity measure; t-statistics are robust to heteroskedasticity; *** 

represents 1% significance level; ** represents 5% significance level; and * represents 10% 

significance level. 

Panel A Return Equation 
 Lag Estimate t-Value 
Return 1 -0.104 -5.244*** 

2 -0.081 -3.992*** 

3 0.009 0.427 

4 -0.034 -1.626 

5 -0.063 -3.066*** 

6 -0.002 -0.108 

7 -0.037 -1.787* 

8 0.015 0.743 

9 -0.023 -1.139 

10 0.031 1.542 

AM 1 -0.001 -1.089 

2 -0.001 -1.097 

3 0.000 -0.081 

4 0.000 -0.310 

5 0.000 -0.401 

6 0.000 -0.632 

7 0.000 -0.207 

8 0.000 0.184 

9 0.001 2.178** 

10 -0.001 -0.920 

Constant -0.001 -1.262 

Trend 0.000001 2.102** 

Adjusted R-Squared 1.786% 

Panel B Ambiguity Measure Equation 
 Lag Estimate t-Value 
Return 1 -6.540 -10.484*** 

2 -3.791 -5.920*** 

3 -3.116 -4.815*** 

4 -2.005 -3.088*** 

5 -1.102 -1.693* 

6 -0.893 -1.372 

7 0.387 0.596 

8 -1.115 -1.719* 

9 0.160 0.248 

10 -0.721 -1.136 

AM 1 0.139 6.999*** 

2 0.170 8.478*** 

3 0.110 5.440*** 

4 0.071 3.464*** 

5 0.043 2.089** 

6 0.050 2.466** 

7 0.029 1.421 

8 0.033 1.618 

9 0.044 2.202** 

10 0.051 2.633*** 

Constant -0.048 -2.927*** 

Trend 0.00004 3.659*** 

Adjusted R-Squared 33.980% 

Panel C Granger Causality Test 
 Return (Predictor) AM (Predictor) 
Return - 0.862 

AM 14.348*** - 
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Figure 5.2 Plots of Orthogonalised Impulse Response Function (OIRF) of S&P500 Return 

(return) and Ambiguity Measure (am) 

 
Notes: return represents the daily return of S&P500; am represents the ambiguity measure; the OIRF 

plot shows the 95% confidence interval of response of one variable from a one standard deviation shock 

to another variable. 

 

5.5.2.  Ambiguity and Implied Volatilities 

This section explains the interactions between the ambiguity measure and investors’ 

expectations on volatilities of the UK and US stock markets. 

 

5.5.2.1. Evidence from UK Stock Market 

Table 5.5 shows the interaction between the ambiguity measure and the implied 

volatility of the UK stock market. Panel A shows that the volatility index is 

autoregressive in lags 1, 2 and 6 at the 1% significance level, and lags 7 and 8, the 5% 

level. Lag 1 of the ambiguity measure has a positive impact on the implied volatility 

of the next period at the 5% significance level and lag 3 has a negative impact at the 

10% level. If the 5% significance level is used as the criterion for statistical inference, 

past ambiguity measure seems to have a positive impact on the future implied 

volatility of the UK stock market. 

 

Panel B shows that past values of the ambiguity measure are accumulative with 

statistically significant lags and a positive trend, which is similar to the result shown 

in the ambiguity measure equation of the previous section. Lag 1 of the volatility index 
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has a positive impact and lag 4, a negative one, on the future ambiguity measure at the 

1% significance level. However, the overall effect is positive, as is evident from the 

OIRF plots in Figure 5.3. 

 

The results of the Granger-causality test in Panel C indicate that the ambiguity 

measure can Granger-cause the volatility index at the 5% significance level and the 

volatility index can Granger-cause the ambiguity measure at the 1% significance level. 

The OIRF plots indicate that the volatility index increases in response to a positive 

shock in the ambiguity measure from period 2 to 3 and 7 to 9 at the 5% significance 

level. This period-by-period increase in volatility index in response to a shock in the 

ambiguity measure can be interpreted as a result of heterogeneous investors and timing. 

An increase in ambiguity changes the prior beliefs of investors, making them assign a 

higher weight to the worst case, which results in distortions from the reference model. 

The distance of the distorted model from the reference model depends on the extent 

of ambiguity aversion. Since investors take actions at different points of time and their 

extents of ambiguity aversion are also different, expectations on volatility would 

respond to the shock across different periods. As is illustrated in the previous chapter, 

since variations in volatility index is found to be related to stock returns and premiums 

(Kim et al., 2004), a shock to the degree of ambiguity can indirectly have an impact 

on stock returns, leading to excess volatility in the short run and a high equity premium 

in the long run. The OIRF plots also show that the ambiguity measure increases 

immediately in response to a positive shock in the volatility index at the 5% 

significance level, which implies that the ambiguity measure is an effective way of 

capturing ambiguity because it adjusts to investors’ expectations. In addition, this 

result also suggests that volatility can also be ambiguous since changes in investors’ 

expectations on volatility contribute to the degree of ambiguity. 
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Table 5.5 Interaction between UK Market Volatility Index (Volatility) and Ambiguity Measure 

(AM). This table shows the VAR regression results between UK market volatility index and the 

ambiguity measure (Panel A and Panel B) and the Granger causality test result (Panel C). Volatility 

represents the daily volatility index of FTSE100; AM represents the ambiguity measure; t-statistics 

are robust to heteroskedasticity; *** represents 1% significance level; ** represents 5% significance 

level; and * represents 10% significance level. 

Panel A Volatility Index Equation 
 Lag Estimate t-Value 
Volatility 1 0.863 47.835*** 

2 0.071 2.987*** 

3 0.009 0.396 

4 -0.001 -0.034 

5 0.037 1.560 

6 -0.089 -3.753*** 

7 0.054 2.262** 

8 0.043 2.343** 

AM 1 0.197 2.429** 

2 0.013 0.157 

3 -0.139 -1.704* 

4 0.100 1.218 

5 0.089 1.083 

6 0.111 1.359 

7 0.021 0.264 

8 -0.120 -1.490 

Constant 0.314 3.391*** 

Trend 0.000 -0.952 

Adjusted R-Squared 96.220% 

Panel B Ambiguity Measure Equation 
 Lag Estimate t-Value 
Volatility 1 0.011 2.866*** 

2 -0.004 -0.818 

3 0.006 1.229 

4 -0.015 -2.753*** 

5 -0.005 -0.878 

6 0.001 0.144 

7 0.000 0.084 

8 0.003 0.698 

AM 1 0.096 5.342*** 

2 0.117 6.473*** 

3 0.098 5.399*** 

4 0.099 5.462*** 

5 0.077 4.213*** 

6 0.087 4.779*** 

7 0.040 2.228** 

8 0.065 3.598*** 

Constant -0.037 -1.809* 

Trend 0.00004 5.277*** 

Adjusted R-Squared 23.390% 

Panel C Granger Causality Test 
 Volatility (Predictor) AM (Predictor) 
Volatility - 2.031** 

AM 3.578*** - 
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Figure 5.3 Plots of Orthogonalised Impulse Response Function (OIRF) of UK Market Volatility 

Index (vix) and Ambiguity Measure (am) 

 
Notes: vix represents the daily volatility index of FTSE100; am represents the ambiguity measure; the 

OIRF plot shows the 95% confidence interval of response of one variable from a one standard deviation 

shock to another variable. 

 

5.5.2.2. Evidence from US Stock Market 

The interaction between the ambiguity measure and the US volatility index is shown 

in Table 5.6. The results in Panel A are similar to those of the UK market. However, 

as is show in Panel B, the positive trend of the ambiguity equation is no longer 

significant. This can be attributed to the complexity of the US stock market. Besides 

the 2008 financial crisis, several market crashes also happened in the full-sample 

period. As such, the trend might be flatted by the crashes. Thus, since the ambiguity 

measure is still autoregressive, the implication behind is the same as that of the UK 

market, which is that the degree of ambiguity can accumulate and does not have an 

impact on the market movement until a crash occurs. 

 

Results of the Granger-causality test are different. The volatility index can 

Granger-cause the ambiguity measure at the 1% significance level while the ambiguity 

measure does not seem to Granger-cause the volatility index in the US case. This could 

arise due to complexity of the US stock market. Nevertheless, the results of the OIRF 

plots in Figure 5.4 are similar to those of the UK market. As such, overall, the findings 

from the US market are similar to those from the UK market. Qadan et al. (2018) find 
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that an increase in the volatility index is accompanied by a negative relationship 

between idiosyncratic volatility and future stock returns in the US market. They 

interpret their findings as a result of risk aversion. However, evidence from this study 

suggests that this is associated with ambiguity. An increase in the volatility index 

either is followed by or results in increased degree of ambiguity. According to Epstein 

and Schneider (2010), ambiguity can result in selective participation and under-

diversification because diversification cannot remove idiosyncratic ambiguity. As 

such, an increase in volatility index can accompany with negative relationship 

between future stock returns and idiosyncratic volatility, which also incorporates 

idiosyncratic ambiguity, because of selective participation due to ambiguity. 

 



 147 

Table 5.6 Interaction between US Market Volatility Index (Volatility) and Ambiguity Measure 

(AM). This table shows the VAR regression results between US market volatility index and the 

ambiguity measure (Panel A and Panel B) and the Granger causality test result (Panel C). Volatility 

represents the daily volatility index of S&P500; AM represents the ambiguity measure; t-statistics are 

robust to heteroskedasticity; *** represents 1% significance level; ** represents 5% significance level; 

and * represents 10% significance level. 

Panel A Volatility Index Equation 
 Lag Estimate t-Value 
Volatility 1 0.859 43.038*** 

2 0.049 1.887* 

3 0.051 1.932* 

4 -0.048 -1.828* 

5 0.008 0.296 

6 0.041 1.584 

7 -0.032 -1.225 

8 0.065 2.489** 

9 -0.017 -0.634 

10 0.010 0.478 

AM 1 0.137 2.240** 

2 0.040 0.643 

3 0.038 0.612 

4 -0.037 -0.594 

5 -0.010 -0.156 

6 0.043 0.685 

7 0.023 0.364 

8 0.010 0.170 

9 -0.125 -2.051** 

10 0.064 1.069 

Constant 0.460 3.441*** 

Trend -0.0001 -2.698*** 

Adjusted R-Squared 97.900% 

Panel B Ambiguity Measure Equation 
 Lag Estimate t-Value 
Volatility 1 0.056 8.615*** 

2 -0.019 -2.198** 

3 -0.003 -0.387 

4 -0.008 -0.984 

5 -0.012 -1.392 

6 -0.004 -0.506 

7 -0.013 -1.568 

8 0.013 1.577 

9 -0.017 -2.011** 

10 0.007 1.001 

AM 1 0.138 6.913*** 

2 0.164 8.171*** 

3 0.109 5.344*** 

4 0.069 3.370*** 

5 0.048 2.359** 

6 0.058 2.836*** 

7 0.038 1.867* 

8 0.038 1.886* 

9 0.046 2.323** 

10 0.049 2.484* 

Constant -0.004 -0.080 

Trend 0.000 1.485 

Adjusted R-Squared 33.200% 

Panel C Granger Causality Test 
 Volatility (Predictor) AM (Predictor) 
Volatility - 1.226 

AM 12.353*** - 



 148 

Figure 5.4 Plots of Orthogonalised Impulse Response Function (OIRF) of US Market Volatility 

Index (vix) and Ambiguity Measure (am) 

 
Notes: vix represents the daily volatility index of S&P500; am represents the ambiguity measure; the 

OIRF plot shows the 95% confidence interval of response of one variable from a one standard deviation 

shock to another variable. 

 

5.5.3.  Ambiguity and Macroeconomic Conditions 

This section illustrates the interactions between the ambiguity measure and the 

expectations on future macroeconomic conditions of the UK and the US respectively. 

 

5.5.3.1. Evidence from UK Stock Market 

The interaction between the ambiguity measure and the first-order difference of the 

term spread of the UK is shown in Table 5.7. Panel A suggests that dTerm is 

autoregressive in lags 2 and 7 at the 1% significance level, and lags 1 and 3, the 10% 

level. Lags of the ambiguity measure do not have a significant impact on the future 

value of dTerm. Results in Panel B indicate the ambiguity measure is still 

accumulative and follows a positive trend over time. Lag 1 and lag 2 of dTerm have a 

negative impact on the ambiguity measure at the 1% significance level, and lag 3, the 

5% level. 

 

The result of the Granger-causality test in Panel C shows that dTerm can 

Granger-cause the ambiguity measure at the 1% significance level while the ambiguity 

measure cannot Granger-cause dTerm. The OIRF plots in Figure 5.5 suggests that the 
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ambiguity measure decreases in response to a positive shock in dTerm from period 3 

to 5 at the 5% significance level and dTerm increases in response to a positive shock 

in the ambiguity measure around period 10. As such, the findings imply that 

expectation of the future macroeconomic conditions has an inverse relationship with 

the future value of the ambiguity measure. A shock to the UK economy that makes 

investors more optimistic about the future macroeconomic conditions can lead to a 

decrease in the degree of ambiguity of the equity market in the following periods. This 

finding is similar to that of the previous chapter where a different ambiguity measure 

is applied. 
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Table 5.7 Interaction between First-Differenced Term Structure Measure Term (dTerm) and 

Ambiguity Measure (AM) – UK. This table shows the VAR regression results between the term 

spread and the ambiguity measure (Panel A and Panel B) and the Granger causality test result (Panel 

C) of the UK stock market. dTerm represents the first-differenced value of the term structure measure 

Term; AM represents the ambiguity measure; t-statistics are robust to heteroskedasticity; *** represents 

1% significance level; ** represents 5% significance level; and * represents 10% significance level. 

Panel A Term Spread Equation 
 Lag Estimate t-Value 
dTerm 1 0.032 1.764* 

2 -0.081 -4.493*** 

3 -0.031 -1.696* 

4 0.006 0.307 

5 -0.013 -0.712 

6 -0.011 -0.594 

7 -0.059 -3.222*** 

8 -0.030 -1.624 

9 0.028 1.543 

10 0.018 1.007 

AM 1 0.00002 1.015 

2 0.00000 0.101 

3 0.00002 0.995 

4 0.00003 1.271 

5 0.00000 0.096 

6 -0.00002 -0.886 

7 -0.00002 -0.860 

8 0.00000 0.044 

9 0.00003 1.781* 

10 -0.00002 -0.785 

Constant 0.00002 0.932 

Trend -0.00000002 -1.775* 

Adjusted R-Squared 1.269% 

Panel B Ambiguity Measure Equation 
 Lag Estimate t-Value 
dTerm 1 -41.260 -2.693*** 

2 -65.180 -4.249*** 

3 -35.190 -2.345** 

4 -23.500 -1.521 

5 21.740 1.401 

6 -6.842 -0.441 

7 24.510 1.581 

8 -9.622 -0.620 

9 17.890 1.156 

10 16.380 1.060 

AM 1 0.095 5.303*** 

2 0.119 6.616*** 

3 0.105 5.784*** 

4 0.094 5.188*** 

5 0.072 3.923*** 

6 0.080 4.406*** 

7 0.037 2.005** 

8 0.056 3.079*** 

9 0.005 0.283 

10 0.054 2.999*** 

Constant -0.060 -4.118*** 

Trend 0.00004 4.640*** 

Adjusted R-Squared 24.050% 

Panel C Granger Causality Test 
 dTerm (Predictor) AM (Predictor) 
dTerm - 0.851 

AM 4.341*** - 
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Figure 5.5 Plots of Orthogonalised Impulse Response Function (OIRF) of First-Differenced 

Term Structure Measure Term (dterm) and Ambiguity Measure (am) – UK 

 
Notes: dterm represents the first-differenced value of the term structure measure Term; am represents 

the ambiguity measure; the OIRF plot shows the 95% confidence interval of response of one variable 

from a one standard deviation shock to another variable. 

 

5.5.3.2. Evidence from US Stock Market 

Empirical evidence from the US market is similar to that of the UK market, as can be 

observed by comparing the results of the UK market with the results shown in Table 

5.8 and Figure 5.6. As such, it seems a general situation that a shock that makes 

investors more optimistic about the future economic conditions can result in a 

subsequent decrease in the degree of ambiguity of the equity market. 
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Table 5.8 Interaction between First-Differenced Term Structure Measure Term (dTerm) and 

Ambiguity Measure (AM) – US. This table shows the VAR regression results between the term 

spread and the ambiguity measure (Panel A and Panel B) and the Granger causality test result (Panel 

C) of the US stock market. dTerm represents the first-differenced value of the term structure measure 

Term; AM represents the ambiguity measure; t-statistics are robust to heteroskedasticity; *** represents 

1% significance level; ** represents 5% significance level; and * represents 10% significance level. 

 

Panel A Term Spread Equation 
 Lag Estimate t-Value 
dTerm 1 0.084 4.259*** 

2 -0.081 -4.087*** 

3 -0.028 -1.424 

4 -0.047 -2.351** 

5 -0.012 -0.622 

6 -0.009 -0.471 

7 -0.006 -0.291 

8 -0.025 -1.269 

9 -0.021 -1.089 

AM 1 0.0000 1.093 

2 0.0000 0.358 

3 0.0000 -0.205 

4 0.0000 0.985 

5 0.0000 -0.800 

6 0.0000 -0.380 

7 0.0000 0.655 

8 0.0000 -1.318 

9 0.0000 1.414 

Constant 0.000 1.440 

Trend 0.000 -1.578 

Adjusted R-Squared 1.384% 

Panel B Ambiguity Measure Equation 
 Lag Estimate t-Value 
dTerm 1 -29.250 -2.546** 

2 -19.890 -1.618 

3 -16.450 -1.410 

4 0.979 0.078 

5 -13.330 -1.192 

6 -8.422 -0.728 

7 -13.030 -1.076 

8 3.274 0.289 

9 18.980 1.410 

AM 1 0.182 9.229*** 

2 0.196 9.761*** 

3 0.122 5.973*** 

4 0.070 3.412*** 

5 0.039 1.886* 

6 0.048 2.318** 

7 0.036 1.747* 

8 0.042 2.103** 

9 0.048 2.411** 

Constant -0.032 -1.949* 

Trend 0.00003 2.268** 

Adjusted R-Squared 30.520% 

Panel C Granger Causality Test 
 dTerm (Predictor) AM (Predictor) 
dTerm - 0.799 

AM 2.041** - 
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Figure 5.6 Plots of Orthogonalised Impulse Response Function (OIRF) of First-Differenced 

Term Structure Measure Term (dterm) and Ambiguity Measure (am) – US 

 
Notes: dterm represents the first-differenced value of the term structure measure Term; am represents 

the ambiguity measure; the OIRF plot shows the 95% confidence interval of response of one variable 

from a one standard deviation shock to another variable. 

 

5.5.4. Ambiguity and Default Risks 

This section illustrates the interaction between the ambiguity measure and investors’ 

perceptions of default risks, with evidence from the UK and US stock markets 

respectively. 

 

5.5.4.1. Evidence from UK Stock Market 

The interaction between the ambiguity measure and the first-order difference of the 

default risk measure of the UK is presented in Table 5.9. Results in Panel A indicate 

that dDef is autoregressive in lags 1, 2, 6, 9 and 10 at the 1% significance level. Lag 6 

of the ambiguity measure has a positive impact on dDef at the 5% significance level. 

In Panel B, lag 8 of dDef has a positive impact on the future value of the ambiguity 

measure at the 1% significance level, and lags 2 and 3, the 5% level. The ambiguity 

measure is again accumulative and trending upwards over time. Panel C shows that 

dDef can Granger-cause the ambiguity measure at the 1% significance level while the 

ambiguity measure cannot Granger-cause dDef. The OIRF plots in Figure 5.7 indicate 

that dDef increases in response to a positive shock in the ambiguity measure around 

period 7 at the 5% significance level while the ambiguity measure increases around 
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period 4 and increases again around period 9 in response to a positive shock in dDef. 

The implication behind is that a shock to the UK economy that makes investors more 

worried about the default risk can lead to a subsequent increase in the degree of 

ambiguity of the stock market, and this is consistent with the findings from the 

previous chapter. 
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Table 5.9 Interaction between First-Differenced Term Structure Measure Def (dDef) and 

Ambiguity Measure (AM) – UK. This table shows the VAR regression results between the default 

spread and the ambiguity measure (Panel A and Panel B) and the Granger causality test result (Panel 

C) of the UK stock market. dDef represents the first-differenced value of the term structure measure 

Def; AM represents the ambiguity measure; t-statistics are robust to heteroskedasticity; *** represents 

1% significance level; ** represents 5% significance level; and * represents 10% significance level. 

Panel A Term Spread Equation 
 Lag Estimate t-Value 
dDef 1 -0.068 -3.775*** 

2 -0.049 -2.743*** 

3 -0.005 -0.292 

4 0.027 1.484 

5 0.021 1.137 

6 -0.049 -2.731*** 

7 -0.029 -1.591 

8 0.009 0.514 

9 0.089 4.923*** 

10 0.049 2.727*** 

AM 1 0.00000 -0.146 

2 0.00001 0.962 

3 0.00001 0.558 

4 -0.00001 -0.942 

5 -0.00001 -0.584 

6 0.00002 2.034** 

7 0.00001 0.641 

8 0.00000 -0.258 

9 -0.00001 -0.514 

10 0.00000 0.084 

Constant 0.00001 0.773 

Trend 0.00000 -0.633 

Adjusted R-Squared 1.779% 

Panel B Ambiguity Measure Equation 
 Lag Estimate t-Value 
dDef 1 36.780 1.331 

2 70.050 2.540** 

3 58.270 2.108** 

4 -9.616 -0.348 

5 -6.089 -0.219 

6 0.807 0.029 

7 -13.610 -0.490 

8 98.760 3.557*** 

9 1.075 0.039 

10 -27.080 -0.973 

AM 1 0.101 5.623*** 

2 0.123 6.794*** 

3 0.100 5.544*** 

4 0.090 4.947*** 

5 0.064 3.488*** 

6 0.075 4.102*** 

7 0.034 1.872* 

8 0.057 3.121*** 

9 0.006 0.354 

10 0.055 3.086*** 

Constant -0.063 -4.353*** 

Trend 0.00004 4.957*** 

Adjusted R-Squared 23.660% 

Panel C Granger Causality Test 
 dTerm (Predictor) AM (Predictor) 
dTerm - 0.726 

AM 2.417*** - 
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Figure 5.7 Plots of Orthogonalised Impulse Response Function (OIRF) of First-Differenced 

Term Structure Measure Def (ddef) and Ambiguity Measure (am) – UK 

 
Notes: ddef represents the first-differenced value of the term structure measure Def; am represents the 

ambiguity measure; the OIRF plot shows the 95% confidence interval of response of one variable from 

a one standard deviation shock to another variable. 

 

5.5.4.2. Evidence from US Stock Market 

Results of the US market shown in Table 5.10 and Figure 5.8 also have the similar 

implication as the result of the UK market. However, it is noticeable that the response 

of the ambiguity measure from a shock to dDef of the US market is much stronger 

than that of the UK market. This could also be due to the complexity of the US market. 

As an example, the 2008 financial crisis started with the default of the US subprime 

mortgage market. Mortgages were securitised for sale, which made information about 

the asset ambiguous. A lesson from the crisis as well as the regression results would 

be that US regulators can prevent market crashes by closely monitoring default risks 

and setting restrictions on financial innovations that make information ambiguous. 
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Table 5.10 Interaction between First-Differenced Term Structure Measure Def (dDef) and 

Ambiguity Measure (AM) – US. This table shows the VAR regression results between the default 

spread and the ambiguity measure (Panel A and Panel B) and the Granger causality test result (Panel 

C) of the US stock market. dDef represents the first-differenced value of the term structure measure 

Def; AM represents the ambiguity measure; t-statistics are robust to heteroskedasticity; *** represents 

1% significance level; ** represents 5% significance level; and * represents 10% significance level. 

Panel A Default Spread Equation 
 Lag Estimate t-Value 
dDef 1 0.107 5.367*** 

2 0.058 2.870*** 

3 0.104 5.197*** 

4 0.030 1.493 

5 0.031 1.560 

6 0.051 2.538** 

7 0.040 2.008** 

8 -0.012 -0.585 

9 0.034 1.709* 

AM 1 0.0000 0.310 

2 0.0000 0.954 

3 0.0000 0.894 

4 0.0000 -0.469 

5 0.0000 0.883 

6 0.0000 0.068 

7 0.0000 -0.385 

8 0.0000 0.380 

9 0.0000 1.466 

Constant 0.0000 1.350 

Trend -0.00000001 -1.681* 

Adjusted R-Squared 6.426% 

Panel B Ambiguity Measure Equation 
 Lag Estimate t-Value 

dDef 1 133.400 4.922*** 

2 45.890 1.678* 

3 60.600 2.214** 

4 6.553 0.238 

5 41.760 1.519 

6 -36.250 -1.319 

7 -4.321 -0.158 

8 50.970 1.860* 

9 -32.100 -1.175 

AM 1 0.168 8.450*** 

2 0.185 9.214*** 

3 0.111 5.439*** 

4 0.066 3.204*** 

5 0.037 1.796* 

6 0.048 2.316** 

7 0.030 1.474 

8 0.037 1.831* 

9 0.050 2.563** 

Constant -0.046 -2.738*** 

Trend 0.00004 3.193*** 

Adjusted R-Squared 31.380% 

Panel C Granger Causality Test 
 dDef (Predictor) AM (Predictor) 
dDef - 1.026 

AM 5.027*** - 
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Figure 5.8 Plots of Orthogonalised Impulse Response Function (OIRF) of First-Differenced 

Term Structure Measure Def (ddef) and Ambiguity Measure (am) – US 

 
Notes: ddef represents the first-differenced value of the term structure measure Def; am represents the 

ambiguity measure; the OIRF plot shows the 95% confidence interval of response of one variable from 

a one standard deviation shock to another variable. 

 

5.6. Empirical Results of Pre-Crisis Period 

This section explains the empirical results of the pre-crisis period. The illustration is 

mainly based on comparison with the empirical results of the full sample instead of 

explaining into great details. It is necessary to emphasise that the point is to compare 

the pre-crisis results with the full-sample results for each market instead of comparing 

the results between the two markets because the sample period for the two markets are 

different. The pre-crisis period of the UK market starts from 2004 while that of the US 

market starts from 2007, and hence differences in the pre-crisis results between the 

two markets can be expected.  

 

5.6.1.  Ambiguity and Market Returns 

Table 5.11 shows the linear relationships between the market returns and the 

ambiguity measures. As the results indicate, the negative linear relationships are not 

significant in the pre-crisis period whereas they are significant in the full-sample 

period.  
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Table 5.11 Pre-Crisis Period Regression of Market Returns on Ambiguity Measure (AM) with 

Newey-West Standard Errors. This table shows the regression results of the market returns on the 

ambiguity measure with Newey-West standard errors during the pre-crisis period. AM represents the 

ambiguity measures; t-statistics are robust to heteroskedasticity; *** represents 1% significance level; 

** represents 5% significance level; and * represents 10% significance level. 

 

The interactions between the market returns and the ambiguity measures of the UK 

and US stock markets are shown in Table 5.12 and Figure 5.9, and Table 5.13 and 

Figure 5.10 respectively. The results suggest that the interactions between the market 

returns and the ambiguity measures during the pre-crisis period are similar to those of 

the full-sample period. Thus, the ambiguity measures do not seem to have an impact 

on market returns while decreases in market returns can lead to a subsequent increase 

in the ambiguity measures. 

 

 Estimate t-Value 
UK Stock Market   

 AM -0.002 -1.469 

 Intercept 0.000 -0.037 

US Stock Market   

 AM -0.004 -1.079 

 Intercept -0.002 -1.730* 
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Table 5.12 Pre-Crisis Period Interaction between FTSE100 Return (Return) and Ambiguity 

Measure (AM). This table shows the VAR regression results between FTSE100 return and the 

ambiguity measure (Panel A and Panel B) and the Granger causality test result (Panel C) during the 

pre-crisis period. Return represents the daily return of FTSE100; AM represents the ambiguity 

measure; t-statistics are robust to heteroskedasticity; *** represents 1% significance level; ** represents 

5% significance level; and * represents 10% significance level. 

Panel A Return Equation 
 Lag Estimate t-Value 
Return 1 -0.108 -3.744*** 

2 -0.095 -3.282*** 

3 -0.090 -3.105** 

4 0.091 3.125*** 

5 -0.092 -3.178*** 

6 -0.077 -2.660*** 

AM 1 -0.001 -0.516 

2 -0.001 0.017 

3 0.002 2.273** 

4 -0.001 -0.645 

5 0.000 -0.351 

6 -0.001 -1.279 

Constant 0.001 1.200 

Trend 0.000 1.380 

Adjusted R-Squared 4.839 % 

Panel B Ambiguity Measure Equation 
 Lag Estimate t-Value 
Return 1 -2.497 -3.001*** 

2 -1.451 -1.732* 

3 -1.359 -1.616 

4 0.488 0.582 

5 1.295 1.547 

6 1.533 1.836* 

AM 1 0.153 5.340*** 

2 0.115 4.004*** 

3 0.114 3.947*** 

4 0.135 4.676*** 

5 0.132 4.553*** 

6 0.077 2.669*** 

Constant -0.063 -2.667*** 

Trend 0.0001 2.970*** 

Adjusted R-Squared 31.400% 

Panel C Granger Causality Test 
 Return (Predictor) AM (Predictor) 
Return - 2.277* 

AM 3.278*** - 
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Figure 5.9 Pre-Crisis Period Plots of Orthogonalised Impulse Response Function (OIRF) of 

FTSE100 Return (return1) and Ambiguity Measure (am1) 

 
Notes: return1 represents the daily return of FTSE100; am1 represents the ambiguity measure; the 

OIRF plot shows the 95% confidence interval of response of one variable from a one standard deviation 

shock to another variable. 
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Table 5.13 Pre-Crisis Period Interaction between S&P500 Return (Return) and Ambiguity 

Measure (AM). This table shows the VAR regression results between S&P500 return and the 

ambiguity measure (Panel A and Panel B) and the Granger causality test result (Panel C) during the 

pre-crisis period. Return represents the daily return of S&P500; AM represents the ambiguity measure; 

t-statistics are robust to heteroskedasticity; *** represents 1% significance level; ** represents 5% 

significance level; and * represents 10% significance level. 

 

Panel A Return Equation 
 Lag Estimate t-Value 
Return 1 -0.147 -2.403** 

2 -0.247 -3.962*** 

3 0.047 0.732 

4 -0.144 -2.279** 

5 -0.065 -1.055 

AM 1 0.002 0.571 

2 -0.006 -1.671* 

3 0.003 0.932 

4 -0.009 -2.596*** 

5 0.003 0.822 

Constant 0.000 0.072 

Trend 0.000 -1.094 

Adjusted R-Squared 9.304% 

Panel B Ambiguity Measure Equation 
 Lag Estimate t-Value 
Return 1 -3.012 -2.889*** 

2 -2.964 -2.798*** 

3 -3.160 -2.866*** 

4 -1.979 -1.837* 

5 -1.888 -1.801* 

AM 1 0.118 1.951* 

2 0.133 2.205** 

3 0.100 1.654* 

4 0.151 2.490** 

5 0.141 2.288** 

Constant 0.022 0.436 

Trend 0.000 -1.203 

Adjusted R-Squared 26.450% 

Panel C Granger Causality Test 
 Return (Predictor) AM (Predictor) 
Return - 2.246* 

AM 3.571*** - 
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Figure 5.10 Pre-Crisis Period Plots of Orthogonalised Impulse Response Function (OIRF) of 

S&P500 Return (return1) and Ambiguity Measure (am1) 

 
Notes: return1 represents the daily return of S&P500; am1 represents the ambiguity measure; the OIRF 

plot shows the 95% confidence interval of response of one variable from a one standard deviation shock 

to another variable. 

 

5.6.2.  Ambiguity and Implied Volatilities 

The interactions between the implied volatilities and the ambiguity measures of the 

UK and US stock markets are shown in Table 5.14 and Figure 5.11, and Table 5.15 

and Figure 5.12 respectively. As is shown in the tables and figures, some results are 

different from those of the full-sample period. For the UK stock market, the volatility 

index does not respond to a shock to the ambiguity measure. In addition, instead of 

increasing, the ambiguity measure decreases in response to a positive shock to the 

volatility index at the 5% significance level. This suggests that investors did not realise 

the important role of ambiguity in asset pricing before the crisis. However, the US 

results are quite similar to those of the full sample. The difference between the two 

markets arises from the different pre-crisis sample period. Since the US pre-crisis 

period starts from 2007, the result seems to suggest that investors start to realise the 

existence of ambiguity from 2007.  
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Table 5.14 Pre-Crisis Period Interaction between UK Market Volatility Index (Volatility) and 

Ambiguity Measure (AM). This table shows the VAR regression results between UK market 

volatility index and the ambiguity measure (Panel A and Panel B) and the Granger causality test result 

(Panel C) during the pre-crisis period. Volatility represents the daily volatility index of FTSE100; AM 

represents the ambiguity measure; t-statistics are robust to heteroskedasticity; *** represents 1% 

significance level; ** represents 5% significance level; and * represents 10% significance level. 

Panel A Volatility Index Equation 
 Lag Estimate t-Value 
Volatility 1 0.797 27.845*** 

2 0.160 4.424*** 

3 0.023 0.636 

4 0.008 0.238 

5 0.085 2.332** 

6 -0.232 -6.445*** 

7 0.142 4.895*** 

AM 1 0.084 0.607 

2 0.092 0.661 

3 -0.273 -1.960* 

4 0.068 0.484 

5 -0.112 -0.804 

6 0.273 1.962** 

7 0.040 0.288 

Constant 0.131 1.138 

Trend 0.000 1.332 

Adjusted R-Squared 97.130% 

Panel B Ambiguity Measure Equation 
 Lag Estimate t-Value 
Volatility 1 0.005 0.868 

2 -0.001 -0.131 

3 -0.001 -0.096 

4 -0.015 -2.027** 

5 -0.004 -0.473 

6 -0.002 -0.237 

7 0.008 1.392 

AM 1 0.128 4.414*** 

2 0.091 3.118*** 

3 0.087 2.984*** 

4 0.106 3.648*** 

5 0.108 3.740*** 

6 0.061 2.094** 

7 0.027 0.937 

Constant -0.038 -1.594 

Trend 0.0003 5.935*** 

Adjusted R-Squared 32.560% 

Panel C Granger Causality Test 
 Volatility (Predictor) AM (Predictor) 
Volatility - 1.945* 

AM 2.049** - 
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Figure 5.11 Pre-Crisis Period Plots of Orthogonalised Impulse Response Function (OIRF) of 

UK Volatility Index (vix1) and Ambiguity Measure (am1) 

 
Notes: vix1 represents the daily volatility index of FTSE100; am1 represents the ambiguity measure; 

the OIRF plot shows the 95% confidence interval of response of one variable from a one standard 

deviation shock to another variable. 
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Table 5.15 Pre-Crisis Period Interaction between US Market Volatility Index (Volatility) and 

Ambiguity Measure (AM). This table shows the VAR regression results between US market 

volatility index and the ambiguity measure (Panel A and Panel B) and the Granger causality test result 

(Panel C) during the pre-crisis period. Volatility represents the daily volatility index of S&P500; AM 

represents the ambiguity measure; t-statistics are robust to heteroskedasticity; *** represents 1% 

significance level; ** represents 5% significance level; and * represents 10% significance level. 

Panel A Volatility Index Equation 
 Lag Estimate t-Value 
Volatility 1 0.838 13.624*** 

2 -0.057 -0.713 

3 0.236 3.009*** 

4 -0.221 -2.833*** 

5 0.096 1.221 

6 0.085 1.364 

AM 1 0.101 0.339 

2 0.532 1.800* 

3 -0.047 -0.159 

4 0.756 2.540** 

5 -0.337 -1.112 

6 0.151 0.499 

Constant 0.225 0.710 

Trend 0.004 1.838* 

Adjusted R-Squared 97.510% 

Panel B Ambiguity Measure Equation 
 Lag Estimate t-Value 
Volatility 1 0.030 2.354** 

2 -0.001 -0.059 

3 0.003 0.175 

4 -0.002 -0.114 

5 -0.005 -0.292 

6 -0.028 -2.219** 

AM 1 0.120 1.957* 

2 0.126 2.083** 

3 0.087 1.434 

4 0.132 2.167** 

5 0.135 2.173** 

6 -0.011 -0.173 

Constant 0.083 1.283 

Trend 0.000 0.047 

Adjusted R-Squared 26.320% 

Panel C Granger Causality Test 
 Volatility (Predictor) AM (Predictor) 
Volatility - 2.459** 

AM 3.394*** - 



 167 

Figure 5.12 Pre-Crisis Period Plots of Orthogonalised Impulse Response Function (OIRF) of US 

Volatility Index (vix1) and Ambiguity Measure (am1) 

 
Notes: vix1 represents the daily volatility index of S&P500; am1 represents the ambiguity measure; the 

OIRF plot shows the 95% confidence interval of response of one variable from a one standard deviation 

shock to another variable. 

 

5.6.3.  Ambiguity and Macroeconomic Conditions 

The interactions between Term and the ambiguity measures of the UK and US stock 

markets are shown in Table 5.16 and Figure 5.13, and Table 5.17 and Figure 5.14 

respectively. The results are different from those of the full-sample period. In both 

markets, dTerm increases in response to a positive shock to the ambiguity measure at 

the 5% significance level, which suggests that a sudden increase in the degree of 

ambiguity is seen as a signal of better future economic conditions. This in turn implies 

that ambiguity contributes to the crisis. On the other hand, the ambiguity measure does 

not respond to a shock to dTerm in the UK market and it decreases, instead of 

increasing, in response to a positive shock to dTerm at the 5% level. This suggests that 

investors were unware of the role of ambiguity before the crisis. 
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Table 5.16 Pre-Crisis Period Interaction between First-Differenced Term Structure Measure 

Term (dTerm) and Ambiguity Measure (AM) – UK. This table shows the VAR regression results 

between the term spread and the ambiguity measure (Panel A and Panel B) and the Granger causality 

test result (Panel C) of the UK stock market during the pre-crisis period. dTerm represents the first-

differenced value of the term structure measure Term; AM represents the ambiguity measure; t-

statistics are robust to heteroskedasticity; *** represents 1% significance level; ** represents 5% 

significance level; and * represents 10% significance level. 

Panel A Term Spread Equation 
 Lag Estimate t-Value 
dTerm 1 0.003 0.110 

2 -0.041 -1.423 

3 -0.022 -0.780 

4 -0.042 -1.458 

 5 -0.007 -0.260 

 6 -0.023 -0.788 

 7 -0.058 -2.042** 

AM 1 0.00001 0.444 

2 0.00002 0.601 

3 0.00006 2.101** 

4 0.00005 1.790* 

 5 0.00008 2.601*** 

 6 -0.00003 -0.873 

 7 -0.00001 -0.444 

Constant 0.00006 2.317** 

Trend -0.0000001 -2.974*** 

Adjusted R-Squared 1.783% 

Panel B Ambiguity Measure Equation 
 Lag Estimate t-Value 
dTerm 1 -14.410 -0.511 

2 -62.090 -2.205** 

3 -28.130 -0.999 

4 -4.107 -0.146 

 5 41.700 1.489 

 6 -6.389 -0.228 

 7 34.750 1.244 

AM 1 0.157 5.461*** 

2 0.115 3.969*** 

3 0.109 3.759*** 

4 0.122 4.187*** 

 5 0.126 4.302*** 

 6 0.072 2.463** 

 7 0.045 1.557 

Constant -0.058 -2.399** 

Trend 0.0001 2.654*** 

Adjusted R-Squared 30.830% 

Panel C Granger Causality Test 
 dTerm (Predictor) AM (Predictor) 
dTerm - 2.994*** 

AM 1.644 - 



 169 

Figure 5.13 Pre-Crisis Period Plots of Orthogonalised Impulse Response Function (OIRF) of 

First-Differenced Term Structure Measure Term (dterm1) and Ambiguity Measure (am1) – UK 

 
Notes: dterm1 represents the first-differenced value of the term structure measure Term; am1 represents 

the ambiguity measure; the OIRF plot shows the 95% confidence interval of response of one variable 

from a one standard deviation shock to another variable. 
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Table 5.17 Pre-Crisis Period Interaction between First-Differenced Term Structure Measure 

Term (dTerm) and Ambiguity Measure (AM) – US. This table shows the VAR regression results 

between the term spread and the ambiguity measure (Panel A and Panel B) and the Granger causality 

test result (Panel C) of the US stock market during the pre-crisis period. dTerm represents the first-

differenced value of the term structure measure Term; AM represents the ambiguity measure; t-

statistics are robust to heteroskedasticity; *** represents 1% significance level; ** represents 5% 

significance level; and * represents 10% significance level. 

 

Panel A Term Spread Equation 
 Lag Estimate t-Value 
dTerm 1 0.241 3.982*** 

2 -0.215 -3.430*** 

3 -0.027 -0.428 

4 -0.129 -2.114** 

AM 1 0.0004 2.183** 

2 0.0001 0.544 

3 0.0000 0.215 

4 0.0000 -0.038 

Constant 0.000 1.264 

Trend 0.000 -1.075 

Adjusted R-Squared 9.507% 

Panel B Ambiguity Measure Equation 
 Lag Estimate t-Value 
dTerm 1 43.330 2.345** 

2 -14.930 -0.780 

3 21.140 1.105 

4 22.270 1.196 

AM 1 0.200 3.340*** 

2 0.155 2.561** 

3 0.126 2.084** 

4 0.150 2.476** 

Constant 0.005 0.108 

Trend 0.000 -0.293 

Adjusted R-Squared 22.610% 

Panel C Granger Causality Test 
 dTerm (Predictor) AM (Predictor) 
dTerm - 1.928 

AM 1.979* - 
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Figure 5.14 Pre-Crisis Period Plots of Orthogonalised Impulse Response Function (OIRF) of 

First-Differenced Term Structure Measure Term (dterm1) and Ambiguity Measure (am1) – US 

 
Notes: dterm1 represents the first-differenced value of the term structure measure Term; am1 represents 

the ambiguity measure; the OIRF plot shows the 95% confidence interval of response of one variable 

from a one standard deviation shock to another variable. 

 

5.6.4. Ambiguity and Default Risks 

Results between the ambiguity measure and dDef during the pre-crisis period are also 

different from those of the full-sample period, as can be seen from Tables 5.18 and 

5.19 and Figures 5.15 and 5.16. For the UK market, default risk does not seem to play 

an important role in contributing to the degree of ambiguity before the crisis. However, 

it plays an equally important role in the US market before the crisis and for the full 

sample. The difference is that the ambiguity measure can Granger-cause dDef at the 

1% significance level before the crisis, suggesting that investors started to realise that 

the US market did not look right from 2007. 
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Table 5.18 Pre-Crisis Period Interaction between First-Differenced Term Structure Measure 

Def (dDef) and Ambiguity Measure (AM) – UK. This table shows the VAR regression results 

between the default spread and the ambiguity measure (Panel A and Panel B) and the Granger 

causality test result (Panel C) of the UK stock market during the pre-crisis period. dDef represents the 

first-differenced value of the term structure measure Def; AM represents the ambiguity measure; t-

statistics are robust to heteroskedasticity; *** represents 1% significance level; ** represents 5% 

significance level; and * represents 10% significance level. 

Panel A Default Spread Equation 
 Lag Estimate t-Value 
dDef 1 -0.046 -1.595 

2 -0.047 -1.633 

3 -0.062 -2.139** 

4 -0.073 -2.503** 

5 -0.031 -1.075 

 6 -0.070 -2.421** 

 7 -0.042 -1.461 

 8 0.033 1.123 

 9 0.077 2.648*** 

AM 1 -0.00001 -0.666 

2 0.00000 0.081 

3 -0.00002 -1.467 

4 -0.00004 -2.079** 

5 -0.00003 -1.850* 

 6 0.00001 0.807 

 7 0.00001 0.818 

 8 -0.00002 -1.023 

 9 -0.00001 -0.435 

Constant -0.00004 -3.120*** 

Trend 0.0000001 4.600*** 

Adjusted R-Squared 3.260% 

Panel B Ambiguity Measure Equation 
 Lag Estimate t-Value 
dDef 1 16.970 0.341 

2 76.600 1.539 

3 2.140 0.043 

4 -12.670 -0.253 

5 -62.140 -1.240 

 6 3.116 0.062 

 7 -31.680 -0.635 

 8 74.890 1.498 

 9 -88.180 -1.749* 

AM 1 0.160 5.564*** 

2 0.114 3.903*** 

3 0.107 3.642*** 

4 0.106 3.622*** 

5 0.111 3.785*** 

 6 0.062 2.091** 

 7 0.034 1.169 

 8 0.023 0.792 

 9 0.045 1.540 

Constant -0.057 -2.276** 

Trend 0.0001 2.413** 

Adjusted R-Squared 31.120% 

Panel C Granger Causality Test 
 dDef (Predictor) AM (Predictor) 
dDef - 1.276 

AM 1.201 - 
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Figure 5.15 Pre-Crisis Period Plots of Orthogonalised Impulse Response Function (OIRF) of 

First-Differenced Term Structure Measure Def (ddef1) and Ambiguity Measure (am1) – UK 

 
Notes: ddef1 represents the first-differenced value of the term structure measure Def; am1 represents 

the ambiguity measure; the OIRF plot shows the 95% confidence interval of response of one variable 

from a one standard deviation shock to another variable. 
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Table 5.19 Pre-Crisis Period Interaction between First-Differenced Term Structure Measure 

Def (dDef) and Ambiguity Measure (AM) – US. This table shows the VAR regression results 

between the default spread and the ambiguity measure (Panel A and Panel B) and the Granger 

causality test result (Panel C) of the US stock market during the pre-crisis period. dDef represents the 

first-differenced value of the term structure measure Def; AM represents the ambiguity measure; t-

statistics are robust to heteroskedasticity; *** represents 1% significance level; ** represents 5% 

significance level; and * represents 10% significance level. 

Panel A Default Spread Equation 
 Lag Estimate t-Value 
dDef 1 0.123 1.998** 

2 -0.080 -1.277 

3 0.131 2.075** 

4 -0.004 -0.061 

5 -0.007 -0.114 

AM 1 -0.0001 -1.645 

2 0.0001 1.336 

3 0.0001 0.873 

4 0.0001 1.636 

5 0.0002 2.005** 

Constant 0.000 0.491 

Trend 0.000 0.836 

Adjusted R-Squared 7.115% 

Panel B Ambiguity Measure Equation 
 Lag Estimate t-Value 
dDef 1 130.400 2.924*** 

2 84.300 1.855* 

3 151.600 3.303*** 

4 55.140 1.187 

5 83.490 1.815* 

AM 1 0.080 1.304 

2 0.100 1.635 

3 0.068 1.124 

4 0.118 1.946* 

5 0.107 1.765* 

Constant -0.001 -0.030 

Trend 0.000 -1.435 

Adjusted R-Squared 28.640% 

Panel C Granger Causality Test 
 dDef (Predictor) AM (Predictor) 
dDef - 3.187*** 

AM 5.201*** - 
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Figure 5.16 Pre-Crisis Period Plots of Orthogonalised Impulse Response Function (OIRF) of 

First-Differenced Term Structure Measure Def (ddef1) and Ambiguity Measure (am1) – US 

 
Notes: ddef1 represents the first-differenced value of the term structure measure Def; am1 represents 

the ambiguity measure; the OIRF plot shows the 95% confidence interval of response of one variable 

from a one standard deviation shock to another variable. 

 

5.7. Empirical Results of Post-Crisis Period 

The purpose of this section is to illustrate the empirical results of the post-crisis period. 

Again, the key point of this section is to figure out any differences between the post-

crisis results and the full-sample results. Since the post-crisis results are quite similar 

to the full-sample results for both the UK and the US stock markets, the results are not 

further illustrated. Hence, tables and figures that show the results of the post-crisis 

period are put in the appendices for reference purposes. 

 

5.8. Discussion and Conclusion 

Overall, results of the ambiguity measure are quite consistent with the results of the 

previous chapter. Empirical findings of the post-crisis period are similar to those of 

the full-sample period. The pre-crisis results are different from the full-sample results 

and post-crisis results. However, the interactions between the ambiguity measure and 

market returns are similar. As such, ambiguity does not seem to have an impact on 

market returns, which can be rationalised under heterogeneous agent models of 

ambiguity. Thus, investors who are more ambiguity-averse can simply choose not to 
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participate the market, leaving those who are less ambiguity-averse continue (Epstein 

and Schneider, 2010). Hence, investors are not necessarily compensated for bearing 

ambiguity, which is the reason why ambiguity does not have a direct impact on market 

returns. 

 

In terms of the relationships between ambiguity measures and volatility indices, 

both full-sample results and post-crisis results suggest that the two variables increase 

in response to a shock to each other. This suggests that investors perceive ambiguous 

volatilities. The volatility index reflects investors’ expectation on future volatility 

movement, which also implies their prior beliefs on volatility. As such, the interaction 

between the ambiguity measure and the volatility index reflects the interaction 

between the degree of ambiguity and investors’ prior beliefs on volatility. Thus, the 

findings seem to suggest that volatility is also ambiguous and the prior beliefs on 

volatility can be affected by the degree of ambiguity. It is noticeable that for the UK 

stock market, the ambiguity measure does not affect the volatility index during the 

pre-crisis period from 2004 to 2008. This implies that investors did not pay attention 

to the degree of ambiguity before crisis. The US result suggests that investors started 

to realise the existence of ambiguity from 2007 since the US pre-crisis period starts 

from 2007. The two findings imply that ambiguity plays a role in the 2008 financial 

crisis and this can be further confirmed with the results between the ambiguity 

measure and two term structure measures. 

 

According to the full-sample results and post-crisis results, the ambiguity 

measure does not have an impact on the two term structure measures while the term 

structure measures can affect the ambiguity measure. A shock to the economy that 

makes investors more optimistic about the future macroeconomic conditions can lead 
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to a decrease in the future degree of ambiguity of the stock market. On the other hand, 

a shock to the economy that makes investors more worried about the future default 

risks can lead to an increase in the future degree of ambiguity. These findings apply 

to both the UK and the US markets. Furthermore, the pre-crisis results suggest that 

unawareness of ambiguity contributes to the 2008 financial crisis. Before the crisis, 

investors viewed ambiguous information and signals as signs of better economic 

conditions although they did not know what was going on and were shocked by the 

“crazy” market. This contributes to the bubble. In addition, investors did not realise 

the default risks were high until 2007 when the crisis was about to happen. The two 

situations together led to the collapse of the financial markets and investors started to 

become aware of the importance of ambiguity. 

 

This chapter provides a new empirical measure of ambiguity. The empirical 

evidence is consistent with the results from the previous chapter. In addition, the 

evidence also suggests that ambiguity plays an important role in the 2008 financial 

crisis, which is consistent with existing literature (Boyarchenko, 2012; Dimmock et 

al., 2016). 
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5.9. Appendices 

Table 5.20 Post-Crisis Period Regression of Market Returns on Ambiguity Measure (AM) with 

Newey-West Standard Errors. This table shows the regression results of the market returns on the 

ambiguity measure with Newey-West standard errors during the post-crisis period. AM represents the 

ambiguity measures; t-statistics are robust to heteroskedasticity; *** represents 1% significance level; 

** represents 5% significance level; and * represents 10% significance level. 

 

 Estimate t-Value 
UK Stock Market   

 AM -0.001 -1.211 

 Intercept 0.000 0.928 

US Stock Market   

 AM -0.001 -2.627*** 

 Intercept 0.0005 2.622*** 
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Table 5.21 Post-Crisis Period Interaction between FTSE100 Return (Return) and Ambiguity 

Measure (AM). This table shows the VAR regression results between FTSE100 return and the 

ambiguity measure (Panel A and Panel B) and the Granger causality test result (Panel C) during the 

post-crisis period. Return represents the daily return of FTSE100; AM represents the ambiguity 

measure; t-statistics are robust to heteroskedasticity; *** represents 1% significance level; ** represents 

5% significance level; and * represents 10% significance level. 

 

 

Panel A Return Equation 
 Lag Estimate t-Value 
Return 1 0.009 0.393 

2 -0.029 -1.228 

3 -0.011 -0.460 

4 -0.037 -1.573 

5 -0.024 -1.004 

6 0.017 0.735 

7 -0.035 -1.472 

8 -0.016 -0.690 

AM 1 -0.001 -1.245 

2 0.001 0.883 

3 0.001 0.965 

4 -0.001 -0.730 

5 -0.001 -1.133 

6 0.000 0.646 

7 0.000 0.202 

8 0.001 1.380 

Constant 0.001 1.204 

Trend 0.000 -0.886 

Adjusted R-Squared -0.055% 

Panel B Ambiguity Measure Equation 
 Lag Estimate t-Value 
Return 1 -4.319 -5.683*** 

2 -2.406 -3.132*** 

3 -2.831 -3.672*** 

4 -1.880 -2.429** 

5 0.122 0.158 

6 -0.701 -0.905 

7 0.402 0.520 

8 0.161 0.209 

AM 1 0.041 1.795** 

2 0.101 4.363*** 

3 0.088 3.806*** 

4 0.078 3.378*** 

5 0.035 1.522 

6 0.080 3.456*** 

7 0.037 1.592 

8 0.075 3.272*** 

Constant -0.068 -3.757*** 

Trend 0.0001 4.470*** 

Adjusted R-Squared 15.200% 

Panel C Granger Causality Test 
 Return (Predictor) AM (Predictor) 
Return - 0.858 

AM 7.492*** - 
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Figure 5.17 Post-Crisis Period Plots of Orthogonalised Impulse Response Function (OIRF) of 

FTSE100 Return (return2) and Ambiguity Measure (am2) 

 
Notes: return2 represents the daily return of FTSE100; am2 represents the ambiguity measure; the 

OIRF plot shows the 95% confidence interval of response of one variable from a one standard deviation 

shock to another variable. 
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Table 5.22 Post-Crisis Period Interaction between S&P500 Return (Return) and Ambiguity 

Measure (AM). This table shows the VAR regression results between S&P500 return and the 

ambiguity measure (Panel A and Panel B) and the Granger causality test result (Panel C) during the 

post-crisis period. Return represents the daily return of S&P500; AM represents the ambiguity measure; 

t-statistics are robust to heteroskedasticity; *** represents 1% significance level; ** represents 5% 

significance level; and * represents 10% significance level. 

 

Panel A Return Equation 
 Lag Estimate t-Value 
Return 1 -0.068 -3.231*** 

2 -0.004 -0.187 

3 -0.046 -2.106** 

4 0.019 0.881 

5 -0.055 -2.505** 

6 -0.019 -0.893 

7 0.002 0.090 

8 -0.015 -0.695 

9 -0.046 -2.139** 

AM 1 -0.001 -1.214 

2 0.000 -0.233 

3 0.000 -0.136 

4 0.001 1.635 

5 0.000 -0.604 

6 0.000 -0.697 

7 0.000 -0.303 

8 0.000 -0.351 

9 0.001 1.739* 

Constant 0.001 1.608 

Trend 0.000 -0.319 

Adjusted R-Squared 0.716% 

Panel B Ambiguity Measure Equation 
 Lag Estimate t-Value 
Return 1 -9.068 -11.729*** 

2 -4.556 -5.493*** 

3 -2.918 -3.500*** 

4 -2.594 -3.102*** 

5 -0.367 -0.439 

6 -0.935 -1.123 

7 0.166 0.199 

8 -1.002 -1.213 

9 0.457 0.560 

AM 1 0.132 6.253*** 

2 0.171 8.081*** 

3 0.112 5.189*** 

4 0.067 3.120*** 

5 0.041 1.877* 

6 0.061 2.848*** 

7 0.028 1.302 

8 0.047 2.238** 

9 0.040 1.967** 

Constant -0.060 -3.325*** 

Trend 0.0001 4.477*** 

Adjusted R-Squared 33.700% 

Panel C Granger Causality Test 
 Return (Predictor) AM (Predictor) 
Return - 0.814 

AM 17.737*** - 
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Figure 5.18 Post-Crisis Period Plots of Orthogonalised Impulse Response Function (OIRF) of 

S&P500 Return (return2) and Ambiguity Measure (am2) 

 
Notes: return2 represents the daily return of S&P500; am2 represents the ambiguity measure; the OIRF 

plot shows the 95% confidence interval of response of one variable from a one standard deviation shock 

to another variable. 
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Table 5.23 Post-Crisis Period Interaction between UK Market Volatility Index (Volatility) and 

Ambiguity Measure (AM). This table shows the VAR regression results between UK market 

volatility index and the ambiguity measure (Panel A and Panel B) and the Granger causality test result 

(Panel C) during the post-crisis period. Volatility represents the daily volatility index of FTSE100; 

AM represents the ambiguity measure; t-statistics are robust to heteroskedasticity; *** represents 1% 

significance level; ** represents 5% significance level; and * represents 10% significance level. 

Panel A Volatility Index Equation 
 Lag Estimate t-Value 
Volatility 1 0.950 40.953*** 

2 -0.071 -2.214** 

3 0.058 1.180* 

4 -0.028 -0.884 

5 -0.008 -0.257 

6 0.051 1.632 

7 -0.048 -1.515 

8 0.069 2.987*** 

AM 1 0.251 2.579*** 

2 -0.070 -0.722 

3 -0.106 -1.086 

4 0.107 1.087 

5 0.127 1.295 

6 -0.032 -0.327 

7 -0.019 -0.191 

8 -0.123 -1.265 

Constant 0.640 3.458*** 

Trend -0.0001 -1.673* 

Adjusted R-Squared 95.190% 

Panel B Ambiguity Measure Equation 
 Lag Estimate t-Value 
Volatility 1 0.023 4.079*** 

2 -0.012 -1.618 

3 0.013 1.735* 

4 -0.014 -1.886* 

5 -0.007 -0.950 

6 0.006 0.780 

7 -0.009 -1.181 

8 0.003 0.465 

AM 1 0.046 1.999** 

2 0.104 4.454*** 

3 0.084 3.590*** 

4 0.073 3.129*** 

5 0.035 1.501 

6 0.079 3.376*** 

7 0.034 1.482 

8 0.073 3.143*** 

Constant -0.120 -2.706*** 

Trend 0.0001 4.399*** 

Adjusted R-Squared 14.080% 

Panel C Granger Causality Test 
 Volatility (Predictor) AM (Predictor) 
Volatility - 1.494 

AM 4.418*** - 
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Figure 5.19 Post-Crisis Period Plots of Orthogonalised Impulse Response Function (OIRF) of 

UK Market Volatility Index (vix2) and Ambiguity Measure (am2) 

 
Notes: vix2 represents the daily volatility index of FTSE100; am2 represents the ambiguity measure; 

the OIRF plot shows the 95% confidence interval of response of one variable from a one standard 

deviation shock to another variable. 
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Table 5.24 Post-Crisis Period Interaction between US Market Volatility Index (Volatility) and 

Ambiguity Measure (AM). This table shows the VAR regression results between US market 

volatility index and the ambiguity measure (Panel A and Panel B) and the Granger causality test result 

(Panel C) during the post-crisis period. Volatility represents the daily volatility index of S&P500; AM 

represents the ambiguity measure; t-statistics are robust to heteroskedasticity; *** represents 1% 

significance level; ** represents 5% significance level; and * represents 10% significance level. 

Panel A Volatility Index Equation 
 Lag Estimate t-Value 
Volatility 1 0.859 40.541*** 

2 0.067 2.428** 

3 -0.017 -0.613 

4 0.023 0.820 

5 -0.017 -0.609 

6 0.015 0.549 

7 -0.004 -0.158 

8 0.026 0.954 

9 0.026 1.203 

AM 1 0.160 2.769*** 

2 -0.001 -0.015 

3 0.055 0.944 

4 -0.114 -1.927* 

5 0.024 0.411 

6 0.072 1.216 

7 0.008 0.142 

8 0.010 0.168 

9 -0.117 -2.046** 

Constant 0.602 3.749*** 

Trend -0.0001 -2.415** 

Adjusted R-Squared 97.600% 

Panel B Ambiguity Measure Equation 
 Lag Estimate t-Value 
Volatility 1 0.072 9.294*** 

2 -0.024 -2.314** 

3 -0.008 -0.737 

4 -0.009 -0.914 

5 -0.017 -1.647* 

6 0.003 0.252 

7 -0.012 -1.144 

8 0.012 1.136 

9 -0.013 -1.653* 

AM 1 0.124 5.854*** 

2 0.160 7.487*** 

3 0.107 4.967*** 

4 0.062 2.872*** 

5 0.040 1.829* 

6 0.063 2.896*** 

7 0.030 1.412 

8 0.045 2.141** 

9 0.039 1.867* 

Constant -0.200 -3.386*** 

Trend 0.0001 4.542*** 

Adjusted R-Squared 32.650% 

Panel C Granger Causality Test 
 Volatility (Predictor) AM (Predictor) 
Volatility - 1.836* 

AM 13.466*** - 
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Figure 5.20 Post-Crisis Period Plots of Orthogonalised Impulse Response Function (OIRF) of 

US Market Volatility Index (vix2) and Ambiguity Measure (am2) 

 
Notes: vix2 represents the daily volatility index of S&P500; am2 represents the ambiguity measure; the 

OIRF plot shows the 95% confidence interval of response of one variable from a one standard deviation 

shock to another variable. 
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Table 5.25 Post-Crisis Period Interaction between First-Differenced Term Structure Measure 

Term (dTerm) and Ambiguity Measure (AM) – UK. This table shows the VAR regression results 

between the term spread and the ambiguity measure (Panel A and Panel B) and the Granger causality 

test result (Panel C) of the UK stock market during the post-crisis period. dTerm represents the first-

differenced value of the term structure measure Term; AM represents the ambiguity measure; t-

statistics are robust to heteroskedasticity; *** represents 1% significance level; ** represents 5% 

significance level; and * represents 10% significance level. 

 

Panel A Term Spread Equation 
 Lag Estimate t-Value 
dTerm 1 0.036 1.546 

2 -0.105 -4.553*** 

3 -0.036 -1.548 

4 0.022 0.948 

5 -0.026 -1.106 

6 -0.011 -0.451 

 7 -0.070 -2.999*** 

 8 -0.050 -2.116** 

AM 1 0.0000 0.963 

2 0.0000 -0.311 

3 0.0000 -0.013 

4 0.0000 0.237 

5 0.0000 -1.544 

6 0.0000 -0.564 

 7 0.0000 -0.865 

 8 0.0000 0.459 

Constant 0.000 -0.081 

Trend 0.000 -0.680 

Adjusted R-Squared 1.605% 

Panel B Ambiguity Measure Equation 
 Lag Estimate t-Value 
dTerm 1 -59.900 -3.255*** 

2 -80.560 -4.368*** 

3 -50.110 -2.690*** 

4 -38.050 -2.035** 

5 10.940 0.581 

6 -5.981 -0.319 

 7 14.380 0.772 

 8 3.712 0.199 

AM 1 0.049 2.121** 

2 0.114 4.947*** 

3 0.096 4.149*** 

4 0.076 3.285*** 

5 0.037 1.599 

6 0.077 3.323*** 

 7 0.029 1.254 

 8 0.067 2.902*** 

Constant -0.071 -3.916*** 

Trend 0.0001 4.374*** 

Adjusted R-Squared 14.350% 

Panel C Granger Causality Test 
 dTerm (Predictor) AM (Predictor) 
dTerm - 0.713 

AM 5.187*** - 
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Figure 5.21 Post-Crisis Period Plots of Orthogonalised Impulse Response Function (OIRF) of 

First-Differenced Term Structure Measure Term (dterm2) and Ambiguity Measure (am2) – UK 

 
Notes: dterm2 represents the first-differenced value of the term structure measure Term; am2 represents 

the ambiguity measure; the OIRF plot shows the 95% confidence interval of response of one variable 

from a one standard deviation shock to another variable. 
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Table 5.26 Post-Crisis Period Interaction between First-Differenced Term Structure Measure 

Term (dTerm) and Ambiguity Measure (AM) – US. This table shows the VAR regression results 

between the term spread and the ambiguity measure (Panel A and Panel B) and the Granger causality 

test result (Panel C) of the US stock market during the post-crisis period. dTerm represents the first-

differenced value of the term structure measure Term; AM represents the ambiguity measure; t-

statistics are robust to heteroskedasticity; *** represents 1% significance level; ** represents 5% 

significance level; and * represents 10% significance level. 

 

Panel A Term Spread Equation 
 Lag Estimate t-Value 
dTerm 1 -0.045 -2.131** 

2 -0.043 -2.059** 

3 0.006 0.261 

4 0.007 0.325 

5 -0.064 -3.042*** 

6 -0.017 -0.811 

AM 1 0.0000 -0.112 

2 0.0000 -0.057 

3 0.0000 0.045 

4 0.0000 1.486 

5 0.0000 -1.255 

6 0.0000 -0.766 

Constant 0.000 0.168 

Trend 0.000 -0.432 

Adjusted R-Squared 0.478% 

Panel B Ambiguity Measure Equation 
 Lag Estimate t-Value 
dTerm 1 -89.100 -5.721*** 

2 -48.560 -3.099*** 

3 -46.810 -2.980*** 

4 -18.790 -1.195 

5 -12.270 -0.782 

6 -7.678 -0.491 

AM 1 0.172 8.239*** 

2 0.193 9.121*** 

3 0.123 5.705*** 

4 0.072 3.357*** 

5 0.046 2.187** 

6 0.074 3.580*** 

Constant -0.075 -4.086*** 

Trend 0.0001 4.646*** 

Adjusted R-Squared 30.290% 

Panel C Granger Causality Test 
 dTerm (Predictor) AM (Predictor) 
dTerm - 0.698 

AM 7.914*** - 
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Figure 5.22 Post-Crisis Period Plots of Orthogonalised Impulse Response Function (OIRF) of 

First-Differenced Term Structure Measure Term (dterm2) and Ambiguity Measure (am2) – US 

 
Notes: dterm2 represents the first-differenced value of the term structure measure Term; am2 represents 

the ambiguity measure; the OIRF plot shows the 95% confidence interval of response of one variable 

from a one standard deviation shock to another variable. 
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Table 5.27 Post-Crisis Period Interaction between First-Differenced Term Structure Measure 

Def (dDef) and Ambiguity Measure (AM) – UK. This table shows the VAR regression results 

between the default spread and the ambiguity measure (Panel A and Panel B) and the Granger 

causality test result (Panel C) of the UK stock market during the post-crisis period. dDef represents 

the first-differenced value of the term structure measure Def; AM represents the ambiguity measure; 

t-statistics are robust to heteroskedasticity; *** represents 1% significance level; ** represents 5% 

significance level; and * represents 10% significance level. 

Panel A Default Spread Equation 
 Lag Estimate t-Value 
dDef 1 -0.100 -4.340*** 

2 -0.066 -2.829*** 

3 0.100 0.432 

4 0.058 2.498** 

5 0.027 1.149 

6 -0.047 -2.030** 

 7 -0.047 -2.026** 

 8 -0.031 -1.323 

 9 0.060 2.608*** 

AM 1 0.0000 0.285 

2 0.0000 1.434 

3 0.0000 1.556 

4 0.0000 0.178 

5 0.0000 0.382 

6 0.0000 1.609 

 7 0.0000 0.080 

 8 0.0000 0.011 

 9 0.0000 -0.444 

Constant 0.000 -1.327 

Trend 0.000 1.011 

Adjusted R-Squared 2.504% 

Panel B Ambiguity Measure Equation 
 Lag Estimate t-Value 
dDef 1 65.080 1.918* 

2 86.580 2.542** 

3 96.210 2.818*** 

4 -4.904 -0.144 

5 8.183 0.238 

6 4.555 0.133 

 7 1.177 0.034 

 8 122.600 3.601*** 

 9 41.000 1.208 

AM 1 0.061 2.619*** 

2 0.119 5.171*** 

3 0.091 3.921*** 

4 0.068 2.926*** 

5 0.024 1.045 

6 0.072 3.077*** 

 7 0.029 1.263 

 8 0.069 2.961*** 

 9 -0.024 -1.027 

Constant -0.068 -3.728*** 

Trend 0.0001 4.428*** 

Adjusted R-Squared 13.800% 

Panel C Granger Causality Test 
 dDef (Predictor) AM (Predictor) 
dDef - 1.647* 

AM 3.248*** - 
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Figure 5.23 Post-Crisis Period Plots of Orthogonalised Impulse Response Function (OIRF) of 

First-Differenced Term Structure Measure Def (ddef2) and Ambiguity Measure (am2) – UK 

 
Notes: ddef2 represents the first-differenced value of the term structure measure Def; am2 represents 

the ambiguity measure; the OIRF plot shows the 95% confidence interval of response of one variable 

from a one standard deviation shock to another variable. 
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Table 5.28 Post-Crisis Period Interaction between First-Differenced Term Structure Measure 

Def (dDef) and Ambiguity Measure (AM) – US. This table shows the VAR regression results 

between the default spread and the ambiguity measure (Panel A and Panel B) and the Granger 

causality test result (Panel C) of the US stock market during the post-crisis period. dDef represents 

the first-differenced value of the term structure measure Def; AM represents the ambiguity measure; 

t-statistics are robust to heteroskedasticity; *** represents 1% significance level; ** represents 5% 

significance level; and * represents 10% significance level. 

Panel A Default Spread Equation 
 Lag Estimate t-Value 
dDef 1 0.096 4.579*** 

2 0.132 6.230*** 

3 0.094 4.408*** 

4 0.026 1.233 

5 0.032 1.527 

6 0.028 1.345 

AM 1 0.00002 1.773* 

2 0.00000 0.308 

3 0.00000 0.262 

4 -0.00002 -1.497 

5 0.00000 0.075 

6 0.00001 0.824 

Constant 0.000 -1.356 

Trend 0.000 0.600 

Adjusted R-Squared 6.057% 

Panel B Ambiguity Measure Equation 
 Lag Estimate t-Value 
dDef 1 149.100 4.306*** 

2 37.020 1.061 

3 22.150 0.631 

4 -4.899 -0.140 

5 40.010 1.152 

6 -29.080 -0.840 

AM 1 0.176 8.374*** 

2 0.194 9.085*** 

3 0.121 5.572*** 

4 0.067 3.097*** 

5 0.041 1.914* 

6 0.075 3.571*** 

Constant -0.071 -3.855*** 

Trend 0.0001 4.648*** 

Adjusted R-Squared 29.600% 

Panel C Granger Causality Test 
 dDef (Predictor) AM (Predictor) 
dDef - 1.220 

AM 4.113*** - 
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Figure 5.24 Post-Crisis Period Plots of Orthogonalised Impulse Response Function (OIRF) of 

First-Differenced Term Structure Measure Def (ddef2) and Ambiguity Measure (am2) – US 

 
Notes: ddef2 represents the first-differenced value of the term structure measure Def; am2 represents 

the ambiguity measure; the OIRF plot shows the 95% confidence interval of response of one variable 

from a one standard deviation shock to another variable. 
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Chapter 6. Conclusion 

6.1. Introduction 

The thesis attempts to fill in the following research gaps. Firstly, it attempts to uncover 

whether sample size can affect forecasting accuracy. Secondly, it aims at testing the 

adaptive market hypothesis (AMH) by applying the high-frequency forecasting 

method. Thirdly, it attempts to answer whether it is proper to use the STAR model as 

the reference model in ambiguity literature. Fourthly, it tries to develop new empirical 

measures of ambiguity to provide empirical evidence on the role of ambiguity in stock 

markets. Last but not least, it attempts to shed light on the role of ambiguity in the 

2008 financial crisis. Results from the three empirical chapters bridge these gaps, 

which makes the thesis produce original contributions to the field of study. 

 

6.2. Summary of Empirical Results 

In Chapter 3, exponential smoothing models and AR based forecasting models are 

used to investigate their forecasting performances for predicting mean price 

movements. The findings suggest that nonlinear AR models do not necessarily have 

superior forecasting performances than the exponential smoothing models and the 

linear AR based models. This suggests that it is indeed improper for Viale et al. (2014) 

to use the STAR model as the reference model. Thus, this provides motivations for 

the following two empirical chapters. This finding also has implication for forecasters, 

which is that forecasters should not take it for granted that nonlinear models can fit 

the data better and hence they should generate better forecasts. 

 

The MDM test results indicate that there is weakly significant evidence from 

the daily and hourly data suggesting that the UK stock market is not in a weak form 
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of efficiency. This conclusion is statistically significant with evidence from minute 

data. As such, the EMH does not seem to provide a precise description of the UK stock 

market. 

 

The subsample forecasting results suggest that increasing sample size does not 

necessarily result in more accurate forecasts. Instead, the continuity of data, increases 

forecasting accuracy for each subsample, and this also applies to the full sample. In 

addition, the results also imply that the exponential smoothing models and the AR 

based models do not suffer from over-fitting problems caused by inactive data. If such 

a problem exists, forecasts of hourly data should be more accurate than those of minute 

data in full sample analyses or subsample analyses or both because minute data have 

more non-changing data points than hourly data. This can be further confirmed by the 

result that in-sample MAPEs are generally similar to out-of-sample MAPEs regardless 

of what data frequency is used. Moreover, the subsample results also have implication 

for the AMH. The empirical evidence seems to support that the AMH characterises 

the UK stock market better than the EMH based on the high-frequency forecasting 

method used in the chapter. 

 

In Chapter 4, findings from the analysis between the ambiguity measure and 

market return suggest that the interaction between the ambiguity measure and market 

return and the interaction between the ambiguity measure and excess market return 

are statistically weak. As such, investors may not necessarily be compensated for 

bearing ambiguity. The implication for investors is that they should not participate the 

market if they perceive that the information is of poor quality or the financial markets 

are faced with ambiguity. 
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The interaction between the ambiguity measure and the volatility index 

indicates that an unexpected increase in the degree of ambiguity can lead to 

perceptions of more volatile financial markets, which can in turn affect the equity 

premium in the long run (Kim et al., 2004). This is consistent with the result of 

quantitative studies using heterogeneous agent models (Condie, 2008). As such, 

theories of ambiguity asset pricing can indeed help to explain the equity premium 

puzzle, as is illustrated by Epstein and Schneider (2010). In addition, empirical 

evidence suggests that ambiguity can also come from ambiguous volatility. 

 

The interactions between the ambiguity measure and the two term structure 

measures suggest that macroeconomic conditions can affect the degree of ambiguity 

of the equity market. When investors are more optimistic about the future economic 

state, the degree of ambiguity of the equity market tends to decrease, and when they 

are more worried about future default risks, the degree of ambiguity of the equity 

market would increase. As such, similar to theoretical evidence, empirical results also 

suggest that ambiguity literature can help to explain why investors respond differently 

when they are faced with good news and bad news about macroeconomic conditions. 

 

Last but not least, the results suggest that empirical evidence is in favour of 

heterogenous agents models of ambiguity. 

 

Full-sample results and post-crisis results of Chapter 5 are quite consistent with 

the results reported in Chapter 4. However, the pre-crisis results show some 

differences. Nevertheless, the interactions between the ambiguity measure and market 

returns are similar. As such, ambiguity does not seem to have an impact on market 

returns, which can be rationalised under heterogeneous agent models of ambiguity. 
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Thus, investors who are more ambiguity-averse can simply choose not to participate 

the market, leaving those who are less ambiguity-averse continue (Epstein and 

Schneider, 2010). Hence, investors are not necessarily compensated for bearing 

ambiguity, which is the reason why ambiguity does not have a direct impact on market 

returns. 

 

One of the differences from the pre-crisis analyses is that for the UK stock 

market, the ambiguity measure does not affect the volatility index during the pre-crisis 

period, which starts from 2004 to 2008. This implies that investors did not pay 

attention to the degree of ambiguity before the 2008 financial crisis. On the other hand, 

the US result suggests that investors started to realise the existence of ambiguity from 

2007, which is the start of the US pre-crisis period. The two findings imply that 

ambiguity plays an important role in the 2008 financial crisis. 

 

The results between the ambiguity measure and two term structure measures 

provide further evidence, which suggests that unawareness of the existence of 

ambiguity contributes to the financial crisis. Before the crisis, investors viewed 

ambiguous information and signals as signs of better future economic conditions, 

which contributes to the economic bubble. The pre-crisis results also imply that 

investors did not realise that the default risks were high until 2007 when the crisis was 

about to happen. The two situations together led to the collapse of the financial 

markets, which subsequently gave rise to a global crisis. 

 

6.3. Discussion of Empirical Results 

As is mentioned above, the forecasting chapter proves that the STAR model is 

improper to use as the reference model in ambiguity literature. This provides 
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motivations for conducting the two empirical researches on ambiguity. In comparison, 

the ambiguity measure of Chapter 5, which is based on the intraday highest and lowest 

prices, is better than the ambiguity measure of Chapter 4, which is based on the bid 

and ask prices. One of the reasons is that the ambiguity measure of Chapter 4 is highly 

skewed, which is not an ideal property for econometric analysis especially when the 

sample size is small. In addition, as the measure is based on the gap between bid and 

ask prices, it is necessary to ensure that it is separated from liquidity because bid-ask 

spread is commonly adopted as a measure of liquidity. Although in Chapter 4, attempt 

has been made to separate liquidity from it by regressing it against volume by turnover, 

this method may not be an effective way of removing liquidity from the ambiguity 

measure. However, the positive side is that this provides a direction for further studies. 

 

The approximately normal distribution of the ambiguity measure of Chapter 5 

makes it more favourable than the ambiguity measure of Chapter 4. Figure 6.1 and 

Figure 6.2 are time-series plots of the ambiguity measures of Chapter 5 for the UK 

stock market and the US market respectively. The figures show that there are more 

stock market crashes in the US market than in the UK market. An up and down 

movement indicates a stock market crash and large crashes, for instance the 2008 

financial crisis, have a more evident pattern. The implication is that regulators and 

financial practitioners can use the plots of the ambiguity measure in Chapter 5 to 

monitor market crashes. Once there is a clear upward trend, regulators should be alert 

of a market crash and they can adjust regulations to prevent the crash, and practitioners 

should stop taking excess risks and uncertainties unless they clearly understand what 

is happening in the market. 
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Figure 6.1 Time-Series Plot of Ambiguity Measure of UK Stock Market 

 

Notes: am represents the ambiguity measure that is calculated using the intraday highest and lowest 

prices of FTSE100. 

 

Figure 6.2 Time-Series Plot of Ambiguity Measure of US Stock Market 

 

Notes: am represents the ambiguity measure that is calculated using the intraday highest and lowest 

prices of S&P500. 

 

6.4. Further Study 

The two empirical ambiguity measures developed in the thesis make it possible to 

conduct further empirical studies on ambiguity. For instance, researchers can 
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investigate stock market participation using the two empirical measures. Since the 

calculation of the ambiguity measure based on the bid and ask prices only requires the 

data of bid and ask prices of an asset, this measure can also be applied to other assets 

that have bid and ask prices. Similarly, the ambiguity measure based on intraday 

highest and lowest prices can be applied to other assets as long as the intraday highest 

and lowest prices are available. 

 

Chapter 5 split the full sample according to the 2008 financial crisis. However, 

there are actually other market crashes within the full-sample period, especially in the 

US stock market. As such, it would be interesting to conduct even-based studies, 

which track the role of ambiguity in different stock market crashes. In addition, it 

would also be interesting to study the stock markets of other countries using the 

ambiguity measures developed in Chapter 4 and Chapter 5. 

 

On the other hand, efforts can be made to improve the ambiguity measure that 

is based on the bid and ask prices. Further studies can attempt to separate the ambiguity 

measure from liquidity in a more precise way. 

 

6.5. Conclusion 

The empirical findings summarised in this chapter answers the questions related to the 

research gaps identified in the thesis. In addition, the discussion section proposes a 

feasible way for regulators to monitor and take control of stock market crashes. In 

short, this thesis has made original and material contributions to the field of ambiguity 

studies as well as the field of high-frequency forecasting. 
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