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Abstract 

 
Breast cancer is a heterogeneous disease and accumulating evidence suggests that 

treatment failure may be driven by intra-tumour heterogeneity (ITH). Utilising the current 

protocol for neoadjuvant (pre-surgery) chemotherapy (NAC) provides the opportunity to 

study molecular genetic changes between pre- and post-therapy by assessing pre-

therapy biopsies and post-therapy surgical resections.  

 

Whole exome sequencing was performed on matched pre- and post-treatment cancer 

cells from 6 patients with oestrogen receptor positive breast cancers that showed partial 

responses to the chemotherapeutic combination epirubicin/cyclophosphamide. Data 

analysis was performed to determine differences in genetic aberrations between pre- 

and post-NAC, and in particular to identify evidence of consistent selection by therapy of 

aberrations that therefore may define chemotherapy resistance or sensitivity. 

 

There were extensive differences in the range of genetic aberrations between pre- and 

post-NAC. 48 genes were identified for further study based on evidence of mutations 

conferring a selective advantage or disadvantage during chemotherapeutic response. 

The relevance of these was screened using siRNA knock-down and assessment of 

response to epirubicin using cell viability assays in vitro. Two genes were taken forward. 

Potential loss-of-function mutations in MUC17 were selected against during therapy in 

patients, and in accordance with this MUC17 knock-down was associated with increased 

sensitivity in vitro. Potential loss-of-function mutations in PCNX1 were selected for during 

therapy in patients, and in accordance with this PCNX1 knock-down was associated with 

resistance. Further work was performed to investigate mechanisms by which these 

genes modify chemotherapy response, by examining drug loading and ABC transporter 

expression levels. Data indicate that both genes impact on drug loading, potentially 

through modulating ABC transporter expression.  
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Also, MUC17 or PCNX1 protein levels were tested as prognostic and predictive markers 

for breast cancer clinical outcomes using tissue taken from cohorts of patients who 

received adjuvant chemotherapy or neoadjuvant chemotherapy. Kaplan-Meier survival 

analyses revealed that low MUC17 expression after neoadjuvant chemotherapy was 

significantly associated with longer disease free survival, which was in agreement with 

the selection of MUC17 mutations seen after therapy in the initial patient group, and with 

the in vitro siRNA findings concerning drug sensitivity.   

 

I concluded that MUC17 and PCNX1 are potential markers of response to chemotherapy 

in breast cancer, and that therapeutic modulation of their activities could enhance 

chemotherapy responses. 
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1. Introduction 

 
Breast cancer is the most common cancer in women in the UK and worldwide. More 

than 50,000 women are newly diagnosed with invasive breast cancer in the UK every 

year [1]. On the positive side, there have been significant improvements in terms of 

survival rate for patients with breast cancer. To illustrate this, 5-year survival rates 

have increased from 53% during 1971-1972 to 87% during 2010-2011 in England and 

Wales [2]. This improvement in controlling breast cancers can be attributed to many 

factors, including early detection of the disease through implementation of the national 

screening programme, better surgical techniques, improvements in 

adjuvant/neoadjuvant chemotherapy, and development and evolution of targeted 

hormonal and biological drugs such as Tamoxifen (a partial oestrogen antagonist that 

inhibits function of the oestrogen receptor) and Trastuzumab (a therapy that inhibits 

function of the HER2 receptor), thereby decreasing mortality from this disease [3]. 

Despite these advances in breast cancer management and treatment, around 30% of 

breast cancer patients at some point will develop treatment resistance and have 

recurrences [4]. These treatment challenges exist mainly because of lack of precise 

understanding of cancer biology in the context of the heterogeneous nature of breast 

cancer, which not only exists between tumours but also within tumours as they 

progress. Accumulating evidence suggest that treatment failure is driven by intra-

tumoural heterogeneity and branched tumour evolution, involving genetically distinct 

sub-clones [5-9]. If it were possible to define predictable molecular pathways for breast 

cancer evolution from initiation and the permutations that might happen during 

progression, particularly in the context of current treatments, the information gained 

may help the design of better treatment pathways with more favourable outcomes and 

cures.  
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1.1. Breast cancer classifications – tools for determining 
appropriate treatments 

 
Breast cancer is routinely classified into different histopathological categories based 

on the cells’ morphological and architectural features and growth patterns. It is broadly 

classified into in situ carcinoma and invasive (infiltrating) carcinoma. Breast carcinoma 

in situ is further sub-classified as either ductal or lobular; growth patterns and 

cytological features form the basis to distinguish between the two types [10]. 

 

Similarly, invasive breast carcinoma is further classified into different types including 

infiltrating ductal, invasive lobular, ductal/lobular, mucinous (colloid), tubular, 

medullary and papillary carcinomas. Of these, infiltrating ductal carcinoma (IDC) is, by 

far, the most common subtype accounting for 70–80% of all invasive lesions [11].  

 

IDC is further sub-classified into 3 grades based on the levels of morphological 

differentiation of cellular features such as nuclear pleomorphism, glandular/tubule 

formation and mitotic activity; well-differentiated (grade 1), moderately differentiated 

(grade 2) or poorly differentiated (grade 3) [12].  

 

In addition, staging is performed in order to provide information on the prognosis for 

the individual patient and to guide treatment [13]. The common staging system used 

is TNM classification system, which divides the tumours into stage 0–4 depending on 

tumour progression. The factors taken into consideration are the size of the primary 

tumour (T), spread to loco-regional lymph nodes (N), and distant metastasis (M). 

Stage 0 is non-invasive cancer, such as ductal carcinoma in situ and lobular 

carcinoma in situ. Stage 1–3 breast cancer (without distant metastasis) is considered 

curable, while stage 4 breast cancer (with distant metastasis), is considered 

incurable [14]. In general, women with tumours of <1 cm have very good 5-year 

survival, which has been reported to be as high as 99%. However, patients with 3–5 
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cm tumours have poorer 5-year survival, reported as 86% [15]. Also, the mean time to 

distant metastasis was shorter for larger tumours compared to smaller tumours [16].  

 

The histopathological classification has served as the primary form of breast cancer 

classification, and has helped to guide treatment management and prognosis 

prediction. However, with recent advances in cancer research and an increased 

molecular understanding of breast cancer heterogeneity, a new form of molecular 

classification is also used clinically to predict responses to newer targeted therapies 

[10].  

 

The molecular classification is based on the intrinsic subtypes identified by Perou and 

et al. based on gene expressions patterns and molecular signatures  [17] however, 

the expression level of hormonal and HER2 receptors and proliferative marker Ki67 

surrogate the intrinsic subtypes and led to establishment of the following molecular 

subtypes; triple negative (ER-, PR-, HER2-), HER2 subtype (ER-, PR-, HER2+), 

luminal A subtype (ER+, PR+, HER2-, Ki67-) and luminal B subtype (ER+, PR-/+, 

HER2-/+, Ki67+) [18]. These molecular subtypes are updated and recent definitions 

were made by Prat et al, to distinguish further luminal A and B subtypes where luminal 

A requires PR receptors positive, while luminal B subtype can be PR positive or 

negative [19]. Also, these molecular subtypes enable the prediction of overall survival 

and cancer progression, for example; the triple-negative (ER−/PR−/HER2−) subtype 

having the shortest survival among the other subtypes [20], while stratification of the 

ER+ population into two subtypes (i.e., Luminal A and Luminal B) identified groups 

with very different clinical outcomes [21].  

 

1.2.  Treatment for breast cancer 

 
Treatment options for primary breast cancer include surgical resection (breast 

conserving surgery (BCS), or partial or total mastectomy, as well as axillary surgery 

when required), radiotherapy, cytotoxic chemotherapy, endocrine therapies, and 

biological therapies. Surgery is usually the first treatment for breast cancer, with the 
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intention of removing the whole of the primary neoplasm. Depending on the type and 

completeness of excision, the surgery is often followed by chemotherapy and 

radiotherapy. Also, depending on the molecular profile of the excised tumour, 

endocrine therapies targeting oestrogen function (for example Tamoxifen or Arimidex) 

and/or therapies targeting HER2 (for example Trastuzumab or Lapatinib) may also be 

given [22]. When these therapies are used after surgery they are referred to as 

‘adjuvant’ therapies. The main aim of these adjuvant therapies is to increase the 

likelihood of elimination of clinically silent micro-metastases, and thereby reduce rates 

of metastatic recurrences [23].  

 

Primary breast cancer patients are typically selected for chemotherapy based on the 

pathology report, in which tumour is evaluated for histological grade, axillary nodal 

status, expression of the hormone receptors (ER receptor and PR receptors), and 

amplification status of the HER2 receptors. Many patients with early breast cancer are 

not required to receive adjuvant chemotherapy, because their chance of being cured 

by surgery and hormone therapy alone is high. However, chemotherapy is usually 

recommended for patients with triple negative subtype breast cancer, since they lack 

of hormonal targeted therapies and also HER2 over-expression subtype usually 

receive chemotherapy in addition to anit-HER2 targeted therapy. Luminal subtypes 

with advanced stage breast cancer (i.e. large tumour and positive lymph nodes 

metastasis) and those who showed resistance to targeted hormonal therapies are 

required to received chemotherapy in addition to surgery [24].  

 

The choice of which chemotherapy to use depends on patients’ overall health in terms 

of their ability to tolerate the different side-effect profiles of the agents, patient age and 

menopausal status, and duration and response to previous chemotherapy. It is often 

given for a fixed number of cycles, especially with regimens that incur toxicity such as 

some taxane based-chemotherapy, although some regimens may be given long term 

(for example, paclitaxel and capecitabine). In general, a high-dose anthracycline-

based chemotherapy regimen is usually preferred for early and locally advanced 

breast cancer, as compared to low-dose anthracycline-based regimens or to non-

anthracycline-based regimens. Adjuvant anthracycline-taxane combination 

chemotherapy is usually considered in patients with high-grade or stage tumours and 
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able to tolerate the toxicity associated with taxanes based chemotherapy. For 

example, patients with lymph node-positive breast cancer, certain taxane based drugs 

such as docetaxel can be added as part of an adjuvant chemotherapy regimen [25]. 

With respect to types of cytotoxic chemotherapy, a wide range of different 

chemotherapy drugs are available, each with different mechanisms of action. (Table 

1.1) [26, 27]. 

 

Drug (Chemical name) Brand name  Mechanism of action 
Anthracycline family chemotherapy agents 
Doxorubicin Adriamycin Multiple mechanisms: 

Intercalates between 
DNA/RNA base pairs. Inhibits 
topoisomerase II enzyme 
activity thus blocking DNA 
replication. Forms free 
radicals destroying cell 
membranes [26] 

Epirubicin Ellence 

Taxane family chemotherapy agents  
Paclitaxel Taxol Interferes with the normal 

function of microtubule 
growth by hyper-stabilizing 
their structure and thus 
inhibiting the cells’ ability to 
use the cytoskeleton in 
division [26] 

Docetaxel Taxotere 

Other chemotherapeutic drugs  
Cyclophosphamide  Cytoxan Metabolised to form 

phosphoramide mustard, 
which forms DNA crosslinks 
both between and within DNA 
strands and leads to cell 
apoptosis [27] 

Vinorelbine Navelbine Interferes with chromosomal 
segregation during mitosis, 
thus inhibiting cell growth [27] 

Capecitabine  Xeloda Thymidylate synthase 
inhibition which is required 
for DNA synthesis [27] 

Table 1.1 Common cytotoxic chemotherapy agents used singly or in 
combination to treat early and locally advanced stage breast cancers. 
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1.2.1. Neoadjuvant versus adjuvant chemotherapy 
 

Neoadjuvant chemotherapy (NAC) is given before the surgery and it has additional 

advantages over adjuvant chemotherapy. Firstly, when a patient presents with a 

breast cancer so large that mastectomy is technically not possible, neoadjuvant 

chemotherapy may reduce its size, making it possible to do a mastectomy with 

curative intent [28]. But many such patients also have distant metastases, so surgery 

is only performed for symptom control as it can worsen distant disease-free survival; 

this can be also a rare indication for neoadjuvant chemotherapy [29]. 

 

Secondly, despite there is no firm evidence demonstrating a survival benefit with NAC, 

it gives a major advantage for patients who want to proceed with Breast Conservative 

Surgery (BCS) in circumstances where the initial size of the tumour would not permit 

this [30]. In randomised controlled trials, BCS plus radiation has been shown to be at 

least equivalent, or even superior in terms of survival to mastectomy [31].  

 

Thirdly, since the success of the treatment can be assessed by imaging (typically 

MRI) and by palpation, this approach has the additional benefit of permitting a switch 

to a different drug regime if the initial approach shows no evidence of success.  

However, there is no strong evidence suggest switching treatment drug regimens will 

work before surgery, but this has greater role following the surgery [32]. Since 

reporting on complete pathological response (pCR) of the resection samples following 

treatment correlates with disease free survival, this will enable further therapy or novel 

agents to be given to poor responders or avoid further adjuvant therapy if pCR is 

achieved. Also, whilst determining pCR is important for switching regiments and trails, 

this can serve as a prognostic marker of eradication of micrometastatic disease that 

cannot be imaged [33-35].  
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After NAC, if there is evidence of tumour shrinkage to a suitable level, the residual 

tumour or site of the tumour can be fully excised. The degree of response to the 

treatment and the adequacy of the excision is assessed by the pathologist thorough 

examination and on reporting pCR of the resection samples. In general, absence of 

residual invasive disease in the breast and in the axillary lymph nodes at the 

completion of the NAC indicates pCR. Whereas, patients show visible tumour in the 

breast and lymph nodes likely they have not responded to treatment and the risk of 

distant disease recurrence is higher [33].  

 

It is interesting that some patients’ tumours respond totally, partially, and some cases 

show complete resistance to chemotherapy or in some cases respond well for a period 

of time and then grow back. Interestingly, the molecular subtypes seems to influence 

the chemotherapy response for example; while the luminal A subtype is the most 

common in breast cancer patients, it has the highest proportion of patients who do not 

achieve pCR [36, 37]. However, it is important to note pCR does not reflect survival 

outcomes in this subpopulation of breast cancer as hormonal therapy probably equally 

important in disease control. This variation in response to treatment can be explained 

partly by tumour heterogeneity.  

 

The availability of matched samples pre- and post-treatment following neoadjuvant 

chemotherapy protocol has been a valuable source for researchers in different studies 

[38-40]. This enabled study of the changes induced by chemotherapy and 

identification of chemotherapy sensitivity targets and also development of prognostic 

and survival predictive markers for chemotherapy response. For example in a study 

investigated the expression of multiple proteins between pre- and post-NAC which led 

to find BCRP as a predictive survival marker in breast cancer [40]. 

 

 

 

 



- 8 - 

 

1.2.2. Mechanisms of chemo-resistance in cancer 
 

Chemotherapeutic drug resistance has been a major obstacle in successful treatment 

of cancers. About 30% of patients with early-stage breast cancer have recurrent 

disease due to treatment failure [4]. In breast cancer, resistance to treatment is not 

only confined to chemotherapeutic drugs but also seen in other systemic treatment of 

breast cancer includes hormonal, and immunotherapeutic agents. In general, 

mechanisms of drug resistance can be disease specific, while others are 

evolutionarily conserved. Among the known conserved chemotherapeutic drug 

resistance mechanisms that are observed in human cancers are; drug inactivation, 

drug target alteration, drug efflux, DNA damage repair, cell death inhibition, and the 

epithelial-mesenchymal transition (EMT) [41]. 

 

Drug inactivation involves interactions between anticancer drugs and different proteins 

or molecules for drug metabolic activation in order to acquire clinical efficacy. 

However, cancer cells can also develop resistance to such treatments through 

decreased drug activation [42]. One example of this is observed in the treatment of 

acute myelogenous leukemia with cytarabine (AraC), a nucleoside drug that is 

activated after multiple phosphorylation events that convert it to AraC-triphosphate. 

Down-regulation or mutation in this pathway can produce a decrease in the activation 

of AraC, and this can lead to AraC drug resistance [42, 43]. 

 

A drug’s efficacy is influenced by its molecular target and alterations of this target, 

such as mutations or modifications of expression levels [42]. For example, about 30% 

of prostate cancers, harbouring genemoic amplification of the androgen receptors in 

which androgen receptors targeted therapies such as leuprolide and bicalutamide fail 

to inhibit all the molecular targets present. Thereby, this leads cancers to survive and 

subsequently develop resistance due to androgen deficiency therapy [42, 44].  
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One of the most studied mechanisms of cancer drug resistance involves reducing 

intracellular drug accumulation by enhancing efflux. Members of the ATP-binding 

cassette (ABC) transporter family proteins enable this efflux and are important, well-

studied regulators at the plasma membranes of healthy cells [45]. Their efflux 

mechanism plays an important role in preventing over accumulation of toxins within 

the cell [42]. Transporters-multidrug resistance protein 1 (MDR1), multidrug 

resistance-associated protein 1 (MRP1), and breast cancer resistance protein (BCRP) 

are implicated in many drug resistant cancers. For example, in tissues that do not 

normally express MDR1, such as lung, breast, and prostate cells, are often drug 

resistant due to the expression of the related transporters MRP1 or BCRP [42, 46].  

 

The repair of damaged DNA has a clear role in anticancer drug resistance. In response 

to chemotherapy drugs that either directly or indirectly damage DNA, DNA damage 

response (DDR) mechanisms can reverse the drug-induced damage [42]. For 

example, platinum-containing chemotherapy drugs such as Cisplatin cause harmful 

DNA crosslinks, which can lead to apoptosis. However, resistance to platinum-based 

drugs often arises due to nucleotide excision repair and the primary DNA repair 

mechanisms involved in reversing platinum damage [42, 47]. 

 

Many chemotherapy agents lead to induction of apoptosis (cell death), however, the 

up-regulation of the anti-apoptotic genes such as Bcl2 and AKT, and down-regulation 

of pro-apoptotic genes such as Bax and Bclxl in tumour cells are associated with 

increased resistance to chemotherapy [48]. For example, the drug resistance can 

occur by the mutations in the p53 gene - a pro-apoptotic gene, which could impair the 

connection between DNA damage caused by chemotherapeutic agents and the 

activation of apoptosis [48, 49]. 

 

Epithelial to Mesenchymal Transition (EMT) is a mechanism by which cells within solid 

tumours can become metastatic. Several factors during EMT play significant roles in 

the development of drug resistance, such as cell adhesion receptors, including 

integrins and cadherins which are also involved with metastases development [42]. 



- 10 - 

For example, in HER2 positive breast cancer, tumours that express high levels of β1 

integrins develop more resistance to antibody inhibitors such as trastuzumab [42, 50]. 

 

In addition, cancer cell heterogeneity has received a lot of attention in recent years as 

a potential mechanism for development of chemotherapeutic drug resistance. Studies 

have suggested that heterogeneous populations of cancer cells could have two 

relevant coexisting dominant components - one being drug sensitive while the other is 

drug resistant. Of those resistant clones, some have stem cell properties and are 

usually drug resistant. The treatment of cancers, by definition, kills only drug sensitive 

cancer clones, and  while the drug resistant cancer clones or minor clonal populations 

present at low frequency will survive or expand to contribute to pathology over time  

 [42]. A clonal composition study of breast cancer revealed that breast cancers may 

have monogenomic or multiple genomic tumours. Polygenomic tumours contain many 

different types of clonal subpopulations, all of which may have different drug 

sensitivities and resistance characteristics [42, 51]. 

 

Taken together, the drug resistance of cancer stem cells and the acquired drug 

resistance of cancer cells following resistance mechanisms pose a very complex 

challenge for the development of better therapies to reduce the relapse of cancers. 

Thus, understanding cancer cells heterogeneity mechanism would help to tackle the 

issues related to treatments resistance.  

 

1.3. Breast cancer heterogeneity 

 
It is well recognised that breast cancer is a heterogeneous disease [7, 8, 52]. 

Heterogeneity within breast cancer could be broadly split into inter-tumour 

heterogeneity and intra-tumour heterogeneity. Inter-tumour heterogeneity refers to the 

differences between different tumours. This heterogeneity is reflected in the clinical, 

morphological, genetic and molecular differences that exist between different tumours. 

These differences form the basis of the various classifications of breast cancers that 

are used to guide treatment stratification (see section 1.1) [53]. Whereas, intra-tumour 
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heterogeneity refers to the variation between different cells of an individual tumour. 

Sometimes the fact that tumour contain a variety of non-tumour cell types (collectively 

referred to as cancer stromal cells) is included in this term, but in the main I was 

interested in the intra-tumour heterogeneity that is due to the underlying genetic and 

epigenetic differences between the individual tumour cells. These differences can be 

observed through cell morphology and size differences, differential expression of 

markers as determined by immuno-histochemistry, and even through functional 

characteristics such as proliferation rate, metastatic capability and sensitivity to 

treatment [52]. There are two common mechanistic models that are widely accepted 

to explain intra-tumoural heterogeneity. These are the cancer stem cell hypothesis and 

the clonal evolution model; each is described below. 

 

1.3.1. Cancer stem cell hypothesis  

 
According to the cancer stem cell hypothesis, tumours are composed of a majority 

tumour cell population that has limited replicative ability, and only a small sub-

population drives tumour maintenance and progression, which is termed the cancer 

stem cells (CSC). CSCs have some properties of normal stem cells, such as unlimited 

replicative potential and the ability to differentiate into phenotypically diverse progeny, 

and are regarded as the tumorigenic cells. It is likely that epigenetic changes are 

associated with differentiation of the cells to form tumorigenic (CSC) and non-

tumorigenic cancer cells in a single tumour mass, which results in tumour cells 

heterogeneity. Tumorigenic cancer stem cells, unlike non-tumorigenic cells, have the 

ability to drive the tumour progression and make tumours resistant to treatment [8, 9, 

54] (Figure 1). Supporting evidence has been gathered based on small population of 

cells isolated from tumours that have the properties of normal stem cells and also 

express certain surface markers thought to be characteristic of stem-type cells. When 

these cells are injected into immunocompromised mice, it has been found that they 

initiate cancer, while the other isolated cells that make up the bulk of the tumours could 

not. Of all solid cancers, these CSCs were first isolated in breast cancer. CD44, 

expression of which is associated with normal breast stem cells, was used to identify 

breast cancer stem cells. In a study by Al-Hajj and colleagues, they showed that 

human breast cancer cells which have a positive expression of CD44 and negative or 
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low CD24 phenotype could efficiently form tumours containing an array of cell types 

similar to those found in the original carcinoma samples when injected into 

immunocompromised mice. By contrast, CD44 negative and CD24 positive cancer 

cells had a much lower efficiency at seeding these tumours [8, 55]. In addition, based 

on stem cells markers, cancer stem cells have been found in many tumour types such 

as lung, brain, skin, prostate, and colon [8, 54, 56-59].  

 

1.3.2. Clonal evolution model 

 
Originally based on the Darwinian theory of natural selection, the clonal evolution 

theory of carcinogenesis states that cancer cells over time acquire external various 

genetic and epigenetic changes leading to heterogenous population [8, 60]. According 

to this idea, clonal evolution takes place once multiple mutations occur in individual 

cells, providing them with potential selective growth advantages, for example, self-

renewal ability over other neighbouring cells. As the tumour progresses, genetic 

instability and uncontrolled proliferation allow the production of cells with additional 

mutations and hence new characteristics arise. These new characteristics will be 

conferred to the offspring, and the new mutations may again provide growth 

advantages over other tumour cells, such as resistance to treatment. As a result, new 

subpopulations of variant cells occur, while other subpopulations may contract. The 

end result is that tumours are a dynamic mixture of different genetic clones, each with 

different characteristics that may or may not give selective growth advantages as 

conditions change (Figure 1.1) [7, 8, 61, 62]. 

 

Peter Nowell was the first researcher who noted the clonal evolution model of cancer 

in 1976, based on the observation that cells lost morphological and metabolic 

properties as they progressed toward malignancy, at the same time, there is genetic 

variation which also associated with this as the way for cells to maximize their 

proliferation and invasiveness [8, 63]. In breast cancer, support for the clonal evolution 

model was observed in many forms. For instance, in a study that looked into 

mechanisms of CDK4/6 inhibitor resistance in advanced estrogen receptor positive 

breast cancer, circulating tumour DNA sequencing was performed on paired baseline 
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and end of treatment samples from 195 patients in the PALOMA-3 randomized phase 

III trial of palbociclib plus fulvestrant versus placebo plus fulvestrant. The data analysis 

showed that there is clonal evolution frequently occur during treatment, reflecting 

substantial sub-clonal complexity in breast cancer that has progressed after endocrine 

therapy [64]. In addition, a study using comparative genomic hybridisation was 

performed on paired primary and metastatic samples from 12 patients in order to study 

the extent of the genetic relationship between primary tumours and regional 

metastases. The findings showed there is extensive clonal divergence between 

primary carcinomas and lymph node metastases in several cases. Also, the number 

of genomic imbalances in primary tumours was significantly higher in patients 

presenting lymph node metastases than in the patients with no evidence of disease 

spreading at diagnosis. This confirms the clonal evolution existence between paired 

primary breast tumours and lymph node metastases and clonal evolution likely occurs 

during tumorigenesis and may therefore continue during tumour progression [65]. 

 

1.3.1. Are the cancer stem cell and clonal evolution models mutually 
exclusive? 

 
It seems that these two models that explain breast tumour heterogeneity are not 

mutually exclusive of each other, but it is more likely that the heterogeneity is caused 

by a version of the clonal evolution model that incorporates some features of the 

cancer stem cell hypothesis. 

 

Findings that support this conclusion include, a study investigating the mechanism of 

intra-tumoural heterogeneity in breast cancer by performing a comprehensive 

molecular characterisation including gene expression profiles, SNP arrays and FISH 

on separate populations of cells that were CD44+ CD24-, which indicated cancer stem 

cells, or CD44- CD24+, indicating more differentiated cells [8, 66]. The findings 

supported several aspects of both CSC and clonal evolutions. For example; in favour 

of CSC they found breast cancer stem cells (cancer CD44+ cells) may be derived from 

normal stem cells since they both expressed similar stem cell markers. Also, cancer 

CD44+ cells had a more migratory, angiogenic, and invasive phenotype than CD44-, 
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indicating that these potential cancer stem cells could contribute to metastasis [8]. In 

contrary, some observations were made which contradict with CSC hypothesis and 

support clonal evolution model. For example, the finding that CD44+ (stem cells) and 

CD24+ (differentiated cells) cells within a tumour are clonally related but that the 

CD24+ cells have an additional genetic alteration shows that CD24+ cells can acquire 

mutations independently of CD44+ cells, which is not compatible with the CSC 

hypothesis. This also indicated that CD44- CD24+ cells, which were previously shown 

to be largely non-tumorigenic, could undergo mutations that made them more 

tumorigenic or promoted cancer progression. In addition, it was found metastases 

contained a higher frequency of CD24+ cells than did matched primary tumours, which 

may support clonal evolution since it could mean that cancer CD24+ cells progress in 

the different environments they encounter at sites of metastasis [8]. 

 

Research is needed to give a better understanding of the mechanisms of intra-

tumoural heterogeneity in order to design better treatment that prevent therapy 

resistance and ultimately improve cancer outcomes.  
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Figure 1.1 A schematic to illustrate the cancer stem cell and clonal evolution 
models in the context of intra-tumoural heterogeneity and therapy 
resistance mechanisms. (A) According to the cancer stem cell hypothesis, 
mutagenesis is likely to occur in normal adult stem cells, which are self-renewing 
cells. Based on the hierarchical organization of cells, a small subset of cells has 
the ability to sustain tumorigenesis and generate heterogeneity through 
differentiation. As in this example, normal stem acquired mutations specific to 
treatment resistance along with other mutations which made them tumorigenic 
cancer stem cells, that will be passed to progenitor and mature cells (B) The 
clonal evolution hypothesis states that cells  acquire a varied series of mutations 
that can confer selective growth advantages like self-renewal ability and therapy 
resistance mutations. Note in this example, some cells without mutations those 
are original from non- mutated progenitor cells. This process repeats as tumour 
cells may acquire further mutations resulting in diversity of cells within the 
tumours. The extracted DNA from diverse cells will enable to detect clones and 
sub-clones mutations using NGS. 
 

 

 

1.3.2. Implications of intra-tumoural heterogeneity (ITH) for cancer 
treatment 

 
Intra-tumoural heterogeneity (ITH), arising either from the stem cell or the clonal 

evolution models, has been implicated in defining the tumour response to treatment. 

A number of studies have demonstrated that treatment can act as a selection pressure 

in some malignancies, driving clonal evolution and selecting for certain sub-clones. In 

a study in non-small cell lung carcinoma (NSCLC), the authors detected the presence 
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of mutations in EGFR in pre-treatment samples at low frequency (<5% of cells). These 

mutations are known to be associated with resistance to therapy with tyrosine kinase 

inhibitor (TKI), targeting EGFR. After treatment it was found that the mutation was 

represented in sub-clonal populations at a greater prevalence, indicating that the 

mutation acted as a driver of sub-clonal expansion of EGFR TKI therapy resistance 

phenotypes [67, 68]. It has also been suggested that cancer therapies can generate 

new sub-clonal drivers of therapy resistance. In glioblastoma multiforme (GBM),  

temozolamide is typically used to treat GBM as first-line therapy. Temozolamide 

induces mutations in tumour DNA: some of these are deleterious for the cells and 

result in death, however, others are neutral in terms of phenotype and act as 

passenger mutations, while still others, such as mutations in mismatch repair genes, 

are potentially advantageous for tumour cells allowing them to survive. It was found 

that some tumour cells after treatment with temozolamide harboured driver mutations 

in RB1 (encoding retinoblastoma 1), PIK3CA and PTEN that are the signature of 

temozolamide-induced resistance [67, 69]. In addition, studies have identified clonal 

evolution in ESR1 driving resistance to aromatase inhibitor  and also of HER2 have 

acquired HER2-targted therapy resistance including lapatinib and trastuzumab [70, 

71].  

 
It should be noted that not all mutations in cancer genomes contribute to malignant 

initiation or progression, as mutational processes affect cellular functions and 

processes beyond those relevant to cancer development. Therefore, this illustrates 

the need to identify driver events and mutational processes that contribute to tumour 

recurrence and treatment resistance. Also, identifying the sub-clones following 

treatment or recurrences would direct the treatment strategies and help tailoring the 

treatment targeting those evolved sub-clones drivers. At this point it may be useful to 

define terms often applied to genomic, or even epigenetic changes in cancer cells: 

drivers and passengers. Mutations that provide a selective growth advantage, and 

thus promote cancer development, are termed driver mutations, and those that do not 

are termed passenger mutations. The terms driver and passenger may also be used 

to refer to the genes harbouring driver mutations. Genes that have been identified as 

drivers in at least one cancer type are described as cancer genes [72, 73].  

 



- 17 - 

1.4. Genomic studies into heterogeneity in breast cancer 

1.4.1. Next Generation Sequencing (NGS) 

 
Next-generation sequencing (NGS) has enabled powerful analysis of tumour evolution 

and has allowed improved understanding of tumour initiation and development [52]. 

NGS technologies (also known as massively parallel sequencing) can generate 

hundreds of millions of short DNA reads (usually 36- to 700-bp) that can be aligned to 

the reference human genome to detect focused mutations (point mutations and small 

insertion or deletion (indels)), copy number alterations, and structural variants, 

including fusion genes in cancer genomes [74]. In addition to genomic sequencing, 

NGS has also enabled researchers to sequence the transcriptome using RNA-seq, 

thereby discovering novel transcripts, RNA variants and splice sites, or quantifying 

genome-wide gene expression. Furthermore, epigenetic processes have been studied 

using genome-wide methylation analysis, or DNA-protein interactions using Chip-Seq 

[75].  

 

Importantly, it is also possible to confine the sequencing to the protein-coding portion 

of the genome (the exome), which represents around 1.5% of human genome, but 

contains around 85% of most currently known diseases-causing mutations [76]. This 

enabled researchers to avoid whole genome sequencing, which is expensive in terms 

of money and time in data analysis, while focusing more effectively on regions of the 

genome most likely to be of interest [52]. NGS have proved to be a revolutionary tool 

in cancer research because it has become possible to reveal minor allelic mutations, 

thus enabling researchers to study the patterns of tumour heterogeneity and 

pathogenesis of tumour progression and treatment resistance. Therefore, a future aim 

is implementing NGS in the clinical practice to allow personalised medicine in which 

treatment will be based on the targeting of the individual tumour’s genomic aberrations 

[52, 75, 77, 78]. 

 
Various different manufacturers have designed different NGS platforms, based on 

different chemistries, and these typically differ in their technical capabilities in terms of 

read lengths (the length of individual pieces of nucleic acid sequenced), amount of 
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output (the total amount of sequence produced per sample loaded), and run time; 

these different parameters have different suitability for specific lab settings, project 

designs and – importantly - finance. Table 2 provides a concise summary of current 

prominent commercially available NGS-platforms [75]. 

 

Company Platform Sequencing Read 
Length 

Max 
Output 

Run 
Time Pros/Cons Applications 

Highlights [79] 

Illumina 
HiSeq 
3000 

 

Sequencing 
by synthesis 
using 
fluorescently 
labelled 
nucleotides 

1 X 50 
bp 
or 
2 X 75 
bp  
or 
2 X 150 
bp 

750Gb 3.5 days 

Pros: High 
output, platform 
has a fast run 
mode 

Cons: short 
reads 

High-throughput 
applications for 
reference genomic 
lab settings. 
Mainly for variant 
discovery by 
WGS or WES and 
gene discovery in 
metagenomics 
[79] Illumina 

HiSeq 
2500 

 

Sequencing 
by synthesis 
using 
fluorescently 
labelled 
nucleotides 

100bp X 
100bp  

or 

150bp X 
150bp 

600Gb  11 days  

Pros: High 
output, platform 
has a fast run 
mode 

Cons: short 
reads 

Illumina MiSeq* 

Sequencing 
by synthesis 
using 
fluorescently 
labelled 
nucleotides 

150bp X 
150bp  2Gb  24 

hours 

Pros: Low error-
rate, high output 
per run 

Cons: Shorter 
read lengths 

Personal 
benchtop 
sequencer  
for small projects 
for WES and 
WGS [79] 

Life Tech 
Ion 
Torrent 
PGM* 

Ion semi-
conductor 
sequencing 

Up to 
400bp  

Up to 
1Gb 2 hours 

Pros: Long 
reads Cons: 
*Homopolymer-  
associated indel 
errors are 
frequent 

Most useful for 
targeted re-
sequencing 
projects and small 
genome analysis. 
Particularly useful 
for clinical 
applications [79] 

Life Tech SOLiD 
5500  

Supported 
oligonucleoti
de ligation 
and detection 

75bp X 
35bp 

or  

60bp X 
60bp  

~80Gb < 7days 

Pros: Low 
sequencing 
error-rate 

Cons: Short 
reads, low 
output 

High throughput 
application for 
WGS or WES and 
metagenomics. 
Due to short reads 
not ideal for de 
novo assembly 
[79] 

Roche 454 GS 
FLX 

Pyro-
sequencing 

Up to 
1kb 700Mb 23 

hours 

Pro: Longer 
reads, fast 

Cons: 
homopolymer-
associated indel 
error are 
frequent, low 
output 

Applications are 
mostly limited to 
targeted panel 
sequencing and 
small genomes 
sequencing like 
microbes [79] 
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Roche 
454 GS 

Junior 
Pyro-
sequencing ~700bp ~35Mb 10 

hours 

Pros: Long 
reads 

 Cons: 
Homopolymer-
associated indel 
errors are 
frequent, low 
output 

Benchtop system 
to sequence 
clinically relevant 
exons  and 
targeted panel 
sequencing. 
Mostly used for 
identifying 
genomic 
variations in solid 
tumours treated 
with an antibody-
based medicine 
[79] 

Oxford 
Nanopore MinION 

Nanopore’s 
current 
technology 
 

Upto 
60Kb ~90Mb 18 

hours 

Pros: very long 
reads, fast, 
machine size 

 

Cons: high error 
rates, low 
throughput  

Mostly suitable for 
outdoor research 
field due to size 
and also for 
bacterial genome 
sequencing. Due 
to long reads ideal 
for structural 
variations analysis 
[79] 

Pacific 
Bioscience 

PacBio 
RS  

Single-
molecule 
Real-Time 
Sequencing 
(SMRT) cells 
containing 
150K ZMW-
wells 

Average 
lengths 
of 3kb 
(max 15 
kb) 

~60Mb/
SMRT 
cell 

< 2 
hours 

Pros: Very long 
reads, very fast 

Cons: High 
Sequencing 
error-rate, low-
output 

Particularly useful 
for projects 
involving de novo 
assembly of small 
bacterial and viral 
genomes as well 
as large genome 
finishing [79] 

Table 1.2 A summary of the characteristics of prominent commercially-available 
NGS platforms. *Homopolymer = a sequence of consecutive identical bases. 
**~60Mb needed for to sequence all exons regions. The table was adapted from 
Desmedt et al. (2012) [75].   

 

1.4.2. Genomic studies on breast cancer 

 
There have been many studies in which the authors have attempted to characterise 

the heterogeneous nature of breast cancer using NGS. For example, 4 major studies 

that have been conducted on large-scale breast cancer cohorts [75, 80-83] - study 

details such as cohort size, breast cancer classification, and sequencing application 

are summarised in Table 1.3. The key findings from these studies are as follows. First, 

only the p53 and PIK3CA genes had somatic mutations in >30% of breast cancer 

patients, while many of the identified cancer genes thought to be potential drivers for 

cancer progression were mutated in less than 10% of the cohort. Secondly, there is a 
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large mutational landscape among different breast tumours, however, many identified 

mutated genes within the cohort can be grouped into the deregulation of similar 

pathways. For example, Stephens et al. showed that at least 6 of mutated genes were 

acting in the same JUN kinase pathway [82]. Similarly, Shah et al. observed that 

pathways involving p53, chromatin remodelling, PIK3 and ERBB signalling were over-

represented in the mutated genes set [80]. This indicates that although many genes 

are less frequently mutated, they can be categorised into similar pathways when 

considering pathways that could be targeted therapeutically. Thirdly, in some tumours, 

there were no obvious driver mutations that could be identified, which suggested that 

the mechanisms for driving cancer progression in these cases may be due to non-

genomic aberration such as epigenetic modifications. Fourthly, some of the mutations 

identified were associated with the response/resistance to treatment. An example of 

this point is that Ellis et al. showed that mutations in the GATA3 gene correlated with 

suppression of proliferation upon aromatase inhibitor treatment [81]. This 

demonstrates there are mutations potentially direct the treatment response and 

contribute to the heterogeneity landscape of tumours.  

 

Study 
done 
by 

Number 
of 
patients 

Type of 
breast 
cancer 

Type of 
sequencing  

Platform   Total number of detected 
mutations  

Shah 
et al. 
[80] 

104 Triple 
Negative 
Breast 
Cancer 

54 cases WES 

15 cases WGS 

80 cases RNA-
seq 

Illumina GAII 

 

SOLiD 
system 

2414 somatic point mutations and 
indels  

 

Ellis et 
al. [81] 

77 Oestrogen 
receptor 
positive 
breast 
cancer  

46 cases WGS 

31 cases WES 

Illumina 
Sequencer 

454 
Sequencer 

Average 1,780 somatic  mutations 
(point mutations and indels) and 
16.8 somatic structural variants. 

Stephe
ns et 
al. [82] 

100 All sub-
types 

All WES  llumina GAII  

HiSeq DNA 

7,241 somatic point mutations 

Banerji 
et al. 
[83] 

108 All sub-
types 

 

17 cases WES 
& WGS 

5 cases WGS 

86 cases WES  

llumina 
Sequencer 

4,985 somatic substitutions and 
insertions/deletions  

 

Table 1.3 Prominent genomic sequencing studies in breast cancer 
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There is a study by the Cancer Genome Atlas Network in which a wide range of 

analyses were performed, including genomic DNA copy number arrays, DNA 

methylation, exome sequencing, mRNA arrays, microRNA sequencing and reverse 

phase protein arrays on 825 patients with primary breast cancer. The data from the 

five platforms enabled the authors to provide key insights into previously defined gene 

expression subtypes (luminal A, Luminal B, triple negative, HER2 overexpression) 

each of which showed substantial molecular heterogeneity. For example: somatic 

mutations in only three genes (TP53, PIK3CA and GATA3) occurred at >10% 

incidence across all breast cancers; however, there were numerous subtype-

associated and novel gene mutations including the enrichment of specific mutations 

in GATA3, PIK3CA and MAP3K1 within the Luminal A subtype. Also, there were 

specific signalling pathways dominant in each molecular subtype such as a HER2/p-

HER2/HER1/p-HER1 signature within the HER2-Enriched expression subtype. This 

illustrates that there are potentially further possibility to characterise the four main 

breast cancer subtypes based on heterogeneity occurring within these subgroups, 

which could enable a better personalised treatment  [84, 85]. 

 

A further example is a study conducted in a very large-scale cohort integrating analysis 

of copy number and gene expression in a discovery and validation set of 997 and 995 

primary breast tumours, respectively, with long-term clinical follow-up; this led to 

revealing 10 molecular subgroups with distinct clinical outcomes. The majority of 

subgroups demonstrated enrichment for a number of putative driver genes, but rare 

to be found in other cancer types, also copy number alterations were found in a 

number of therapeutic targets such as amplification of IGF1R, KRAS, and EGFR. This 

demonstrated that the development of an integrated genome-driven classification can 

lead to robust breast cancer subgroups that further resolve the heterogeneity of 

existing classification [84, 86]. 

 

The above genomic findings assert the generic finding that breast cancer is indeed a 

heterogeneous disease with distinct biological and clinical features. Hence, there is a 

need for more characterisation of breast cancer heterogeneity in order to enable more 
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driver genes discovery, which will allow design of targeted therapeutic agents with 

superior efficacy and less toxicity, thereby improving clinical outcomes. 

 

Despite this wealth of data, key critical questions concerning breast cancer genomics 

remain: for example, the functional impact of each genomic aberrations to cancer 

progression, and response to treatment. There is a lack of functional validation of the 

genomics date, which is an important step for translating these findings into new 

medical advances [87]. In other words, it is important to interpret the genomic data in 

the context of heterogeneity into meaningful findings in order to provide clinically 

relevant information for cancer patients. Thereby, in my study I aimed to enrich this 

gap in the current knowledge, by utilising genomic tools and functional in vitro 

approaches.  

 

1.5. Study significance 

 
Neoadjuvant chemotherapy (NAC) presents the opportunity to examine the impact of 

chemotherapy on the genomic clonal composition of breast cancers, via the 

comparison of pre-therapy samples (core biopsies) and post-therapy samples 

(resection). NGS of exomes should allow sufficient sequencing depth to assess 

changes in representation associated with therapy for even relatively rare somatic 

variants within the tumour. Insights gained from this approach could allow identification 

of genes that define chemotherapy response, and therefore – ultimately – could be 

used to improve the use of chemotherapy through better prediction of likely responses 

through biomarkers, or through novel therapies based on targeting resistance somatic 

mutations.   
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1.6. Hypothesis and study aims 

 
My hypothesis was that chemotherapy drives changes in the genetic clonal content of 

breast cancers through selection of relatively resistant clones; identification of these 

mutations that have been selected for or against will allow identification of genes 

regulating chemotherapy response.    

 

 

My aims were: 

 

1. To perform whole exome sequencing on cancer cells from pre-neoadjuvant 

chemotherapy (NAC) core biopsies of primary breast cancers and the matched 

post-therapy resection samples in cases where residual (relatively-resistant) 

tumour is present.  

 

2. To perform data analysis to assess the genetic heterogeneity in terms of 

detected mutational landscape, and to identify single nucleotide variants (SNV) 

and small deletion and insertion (Indels) mutations that have changed in their 

representation between pre-NAC and post-NAC, thereby identifying candidate 

regulators of chemotherapy response. 

 

3. To investigate the functional impact of candidate regulators of chemotherapy 

response using cell line approaches. 

 

4. To examine whether expression of candidate genes correlate with outcomes 

after chemotherapy in breast cancer patients.  
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2. Materials and methods 

 

2.1. Ethics statement and sample collections 

 
This work was conducted on breast cancer samples selected from the FFPE tissue 

block archive at St James’s University Hospital (Leeds Teaching Hospitals NHS Trust), 

Leeds. Ethical approval was obtained from Leeds (East) REC reference 

06/Q1206/180. Two cohorts were collected for this work, and a further cohort was 

available through collaboration. 1) A small cohort of patients (n=8) with samples 

suitable for laser micro-dissection (LCM) and genome sequencing (“LCM cohort”). 2) 

A much larger cohort (n=140) of patients treated with adjuvant chemotherapy 

(“Adjuvant cohort”). 3) A cohort of intermediate size (n=53) of post-neoadjuvant 

chemotherapy (NAC)  samples from patients treated with NAC (“NAC cohort”). 

LCM cohort: Breast cancer cases that were treated with NAC using the regimen 

epirubicin and cyclophosphamide were identified using the NHS Trust computer 

systems. Cases were further selected on the basis of: showing a partial response to 

NAC, as defined by routine clinical MRI assessment of tumour size during treatment; 

ER-positive tumours, as defined by clinical assessment of ER-status as is routine for 

the breast cancer diagnostic pathway; presence of residual tumour cells post-NAC in 

the resection samples; and sufficient cells present in the pre-NAC core biopsies. 

Archival tissue slides (Haematoxylin and Eosin stained) and blocks (formalin-fixed 

paraffin-embedded) containing core biopsies (pre-NAC) and slides/blocks containing 

matching resection tissues were identified. Slides were reviewed to establish whether 

there was sufficient tumour tissue within the blocks for extraction, and whether the 

tumour tissue contained sufficient tumour cells so as to allow laser microdissection 

(LCM) of these cells. 8 cases were selected as suitable. Matching normal tissue blocks 

for these cases were also obtained. These cases were pseudo-anonymised, and were 

identified to the researcher only as case numbers 1 to 8, although the pathologist 

involved in their selection (Dr. Eldo Verghese, consultant histopathologist Leeds 

Teaching Hospitals NHS Trust, and co-supervisor for the project) was able to link 

these to clinical data when required.  
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Adjuvant cohort: A cohort of 140 patients with primary breast cancer diagnosed 

between 2006 and 2010 who received adjuvant chemotherapy were provided through 

colleague Ms Stacey Jones (Breast Surgery Clinical Research Fellow at Leeds 

Teaching Hospitals NHS Trust). Patients who underwent surgical resection for 

operable invasive breast cancer (including locally advanced) at a Tertiary Breast 

Centre (The Leeds Teaching Hospitals NHS Trust) were identified from Hardcopy 

diaries kept by the Breast Oncology Department. Exclusion criteria were; individuals 

who received NACT or who had not received adjuvant chemotherapy, individuals with 

metastatic breast cancer, individuals with a recurrence in breast cancer with primary 

breast cancer being diagnosed prior to 2006 and males with breast cancer. 

Comprehensive data including patient demographics (age at diagnosis, date of 

diagnosis, affected breast), pathological data (tumour type, tumour grade, receptor 

and nodal status), surgical data (date of surgery and surgical procedure performed), 

oncological data (chemotherapy regimen, radiotherapy, endocrine treatment, local 

and metastatic recurrence) were collected. The afore mentioned data were collected 

where available from pathology reports, breast multi-disciplinary team meetings, 

breast surgery and oncology clinical letters. Tumour slides were retrieved from the 

pathology files, reviewed and marked for tissue micro array (TMA) construction. The 

corresponding blocks of resected breast tumours were identified. Three cores of 

tumour were obtained from each block and placed into a new paraffin block to 

construct the TMAs. 

 

NAC cohort: A cohort of intermediate size (n=53) of post-neoadjuvant chemotherapy 

(NAC) samples from patients treated with NAC were provided through  collaboration 

with Dr Abeer Shaaban (consultant breast pathologist, formerly at Leeds Teaching 

Hospitals NHS Trust, where the patients included in this TMA were treated, but now 

at University Hospitals Birmingham NHS Foundation Trust). Patients who underwent 

NAC for primary and operable invasive carcinoma, including inflammatory and locally 

advanced breast cancer, at a single large United Kingdom (UK) tertiary referral breast 

centre (The Leeds Teaching Hospitals NHS Trust) were identified from the oncology 

and imaging databases. All patients undergoing NAC are routinely offered baseline 
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and follow-up magnetic resonance imaging (MRI) scans to assess response. Included 

in this cohort were patients with primary operable breast carcinoma who had received 

NAC between 1st January 2005 and 30th April 2013 followed by breast surgery, 

including patients who underwent diagnostic surgery to the axilla (sentinel node 

biopsy) before or after NAC. This period corresponds to the introduction of anti-HER2 

therapy (from 2005 onwards). Exclusion criteria were; NAC patient who did not 

undergo surgery; metastatic breast cancer, and; NAC patients without MRI follow-up. 

Comprehensive clinical data including chemotherapy regimen, type of surgery and 

imaging characteristics (mammography and MRI) were collected. The following 

pathological data, where available, were collected from the pathology reports on both 

pre-treatment core biopsy sample and residual tumours: tumour type, tumour grade 

including individual scores for tubule formation, nuclear pleomorphism and mitoses 

and pathological response: classified into complete (no residual invasive carcinoma), 

partial (residual invasive carcinoma with histological evidence of tumour response), 

and no response (no evidence of tumour response). For residual invasive disease 

(pathological partial response and no response), tumour slides were retrieved from the 

pathology files, reviewed and marked for tissue microarray (TMA) construction. The 

corresponding tumour block was identified.  

 

Finally, further blocks of tonsil, small intestine, ovaries and breast tissue were also 

collected for use in optimization work by Dr Eldo Verghese; these were fully-

anonymised (i.e. once collected it was not possible to link back to patient data and no 

data were collected) and were identified only as numbered blocks.  
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2.2. Whole Exome Library construction 

In this section, it covers the process involved for preparing of WES library starting from 

samples sectioning and LCM to data analysis. A summary flow chart is illustrated in 

figure 2.1.  

 

 

 

Figure 2.1 An experimental chart illustrates the process involved for WES 
library construction 
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2.2.1. Samples sectioning and staining for laser micro-dissection 
(LCM) 

 
Tissue samples were sectioned at 5 or 10 microns using a microtome (Leica; Wetzlar, 

Germany). Sections were floated onto membrane slides, which were compatible with 

down-stream LCM work (Membrane Slide 1.0 PEN, Zeiss; Oberkochen, Germany) or 

onto standard microscopic glass slides (ThermoFisher Scientific; Massachusetts, 

USA). Slides were stained using Haematoxylin and Eosin (H and E) using standard 

protocols. Briefly, sections were dewaxed using xylene and hydrated using decreasing 

concentrations of ethanol. After that, slides were kept in running water for 1 minute. 

Next, slides were stained in Haematoxylin stock concentration (Solmedia; 

Shrewsbury, UK) for 30 seconds and returned to running water for another minute. 

Slides were then stained in 1% aqeous Eosin (Solmedia; Shrewsbury, UK) for 30 

seconds and returned to running water. Next, slides were dehydrated using increasing 

concentrations of ethanol and dried by evaporation.  

2.2.2. Laser capture micro-dissection (LCM) 

 
Laser Capture Micro-dissection (LCM) was performed using a Zeiss/P.A.L.M. machine 

(P.A.L.M. Microlaser Technologies, Zeiss; Oberkochen, Germany). Tissue samples 

were sectioned at 5 microns thickness and stained with Haematoxylin and Eosin as 

described in section 2.2. The tumour cells to be dissected were marked on a reference 

slide with help from Dr. Eldo Verghese (consultant histopathologist and co-supervisor). 

Typically 5 to 10 slides were dissected depending on the availability of tumour tissue 

and on the density of tumour cells within the tissue. The area of dissected tumour 

ranged between 500,000-5,000,000μm2 per side. The instrument’s settings for UV 

laser cutting energy and collecting power parameters were set according to best 

performance on our samples and then saved. LCM work was performed in two 

different ways: 1) epithelial tumour cells (cells of interest) were directly dissected and 

collected in LCM adhesive Caps (Zeiss; Oberkochen, Germany); 2) unwanted cells 

(other cellular elements) were dissected and the epithelial tumour cells left on the 

slides and were manually dissected using a scalpel blade. Another member of the 

laboratory, Ms. Diana Baxter, assisted with this work. For normal tissue blocks, cellular 
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tissue was identified macroscopically (note, much normal breast tissue is relatively 

acellular), and was manually macro-dissected – LCM was not required. 

Representative images of these 2 ways of performing LCM are shown in Figure 2.1.  

 

           

 

      

Figure 2.2 Representative images of 2 ways of performing LCM on breast tissue 
sections. Upper row represents epithelial tumour cells (cells of interest) were 
directly dissected and collected in LCM adhesive caps. Lower row represents 
unwanted cells (other cellular elements) were dissected and the epithelial tumour 
cells left on the slides and were manually dissected using a scalpel blade. 
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2.2.3. DNA (and RNA extraction) from FFPE samples 

 
QIAamp MinElute Columns DNA FFPE Tissue or AllPrep DNA/RNA FFPE Kits 

(Qiagen; Dusseldorf, Germany) were used to extract DNA and RNA from FFPE 

samples following the manufacturer’s reagents and protocol with some modifications. 

Note that although RNA was collected for some cases, this was not used in my work, 

and specific details relating to RNA are not included here. Briefly, for the QIAamp 

MinElute Columns DNA FFPE Tissue kit, 180μl of ATL buffer and 20μl of proteinase 

K for tissue digestion was mixed and then tissue obtained after LCM or tissue from 

manual micro-dissection were transferred to the mixture, vortexed vigorously and then 

incubated at 55°C for different periods: 1 hour, overnight, or 72 hours. After incubation, 

200μl of AL buffer and 200μl of 100% ethanol were added, and then vortexted and 

centrifuged at 20,000 x g for 5 minutes. Next, supernatants were transferred to 

MinElute column in collection tubes and centrifuged at 6,000 x g for 1 minute. Next, 

the MinElute columns were transferred to new collection tubes and the flow through 

fluid was discarded. After that, washing steps with AW1 and AW2 was performed. 

Finally, gDNA was eluted 30 μl ATE buffer.  

For the AllPrep DNA/RNA FFPE Kit, briefly, tissue obtained after LCM or tissue from 

manual micro-dissection was transferred to a tube containing a mixture of 150μl PKD 

buffer and 10μl proteinase K. The mixture was then vortexed and incubated at 56°C 

for 15 minutes. After that, it was incubated on ice for 3 min, followed by centrifugation 

for 15 minutes at 20,000x g. The supernatant was then transferred without disturbing 

the pellet to a new a tube for RNA purification and the pellet was kept for DNA 

purification. For gDNA purification, the pellet was resuspended in 180μl ATL buffer 

and 40μl proteinase K mixture and then mixed by vortexing and incubated at 56°C for 

1 hour. Followed by incubation at 90°C for 2 hours without agitation. Next, 200μl of AL 

buffer and 200μl ethanol (96–100%), was added and mixed thoroughly again by 

vortexing. After that, the entire sample was transferred to a QIAamp MinElute spin 

column and placed in a 2ml collection tube and centrifuged for 1 minute at 8000 x g 

and then the flow-through was discarded. The QIAamp MinElute spin column was 

placed in a new 2 ml collection tube and a washing step with 700μl AW1 buffer was 

performed by centrifugation for 15 seconds at 8000 x g. Next, another washing step 

was performed with 700μl of AW2 buffer and with 700μl of ethanol (96–100%). The 
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QIAamp MinElute spin column was placed in a new 2 ml collection tube, and 

centrifuged at 14,000 x g. for 5 minutes. After that the collection tube with the flow-

through was discarded. The QIAamp MinElute spin column was placed in a new 1.5ml 

collection tube and the 30–100μl ATE buffer was added directly to the spin column 

membrane. And then incubated for 1 minute at room temperature and centrifuged at 

14,000 x g for 1 minute to elute the DNA and stored at -20°C for downstream 

experiments.  

2.2.4. DNA Picogreen quantification assay 

 
Extracted DNA from FFPE samples were quantified using the Quant-iT PicoGreen 

dsDNA reagent Kit (Thermo Fisher Scientific; Massachusetts, USA) following the 

manufacture’s protocol. A DNA standards curve were prepared using 100μg/ml of 

stock standard reagent (provided by manufacturer) ranging from 0 to 100ng/μl. 

Samples were diluted with DNAase-free water 1 in 10. Regent and buffer mixture was 

prepared by making up 198ul of TE buffer with 2μl of PicoGreen dsDNA regent. Then, 

198μl of the above mixture was transferred to each sample and standard wells in a 

96-well black plate (Sigma-Aldrich; Missouri, USA). Next, 2μl of 1 in 10 diluted sample 

were added in the samples wells and 2μl of standards to each standard wells. The 

mixture in each well was mixed by pipetting. Next, the plate was brought to a 

spectrofluorometer Fluoroskan AscentTM Microplate Fluorometer (Thermo Fisher 

Scientific; Massachusetts, USA). Samples were excited at 480nm and the 

fluorescence emission intensity was measured at 520nm. Results were recorded and 

multiplied by the dilution factor.  

2.2.5. Assessing extracted DNA quality using Agilent genomic DNA 
TapeStation system 

 
The integrity of extracted DNA from FFPE samples and the quality of pre-capture 

library DNA was assessed using Agilent Genomic DNA ScreenTape and Agilent 2200 

TapeStation system (Agilent Technologies; California, USA) using the manufacture’s 

protocol. 10μl of genomic DNA sample buffer was added to 1μl of the genomic DNA 

control (10-100ng/μl), 1μl of the test sample and 3μl of genomic DNA ladder in strip 

tubes. Next, tubes were pulsed in a centrifuge to collect the reagents at the bottom of 
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the wells and vortexed, and then loaded into the TapeStation machine. Finally, the 

results were displayed as both electrophergrams and within tables.  

2.2.6. Whole exome sequencing (WES) library construction 

 
A modified protocol (developed by Ms. Catherine Daly, University of Leeds) for 

preparation of pre-capture libraries for SureSelect target enrichment for paired end 

sequencing of FFPE samples was used. This modified protocol uses fewer 

concentrating and clean-up steps, and as a result reduces DNA loss during 

preparation. Below I summarise the protocol, while further detail is available in the 

manusfacturers’ standard protocols. The entire library preparation protocol was 

performed either by the author, or by the Leeds Genomics Core Facility (University of 

Leeds), depending on specific samples used and the individual library.  

First, gDNA samples ranging from between 0.2μg and 1.2μg were mechanically 

sheared using Covaris S2 (Covaris; Massachusetts, USA) (generating fragments 

sizes of around 200bp). Next, end repair of DNA molecules was performed using the 

NEBNext Ultra DNA Library Prep Kit (New England Biolabs; Massachusetts, USA), in 

order to ensure that the DNA fragments contained 5’ phosphate and 3’ hydroxyl groups 

to allow ligation of the adaptors. After that, the adaptor ligation step was performed in 

order for the DNA fragments to bind to complementary oligos in the flow cell using the 

SureSelectXT Reagent Kit, HSQ (Agilent Technologies; California, USA). After that, 

the adaptor ligated DNA was purified using AMPure XP Beads following the 

manufacturer’s protocol (Beckman Coulter; California, USA). Next, a PCR 

amplification step was necessary to amplify adapter-ligated DNA fragments to have 

sufficient pre-capture libraries for hybridisation and capture. It was performed using 

NEBNext High fidelity PCR master mix (New England Biolabs; Massachusetts, USA) 

and SureSelect Primer and SureSelect ILM Indexing Pre-Capture PCR reverse 

primers (Agilent Technologies: California, USA) using the manufacturer’s standard 

PCR protocol for a total number of between 14 to 27 cycles. PCR products were 

purified using AMPure XP Beads (Beckman Coulter; California, USA). Finally, the 

quality of pre-capture library DNA was assessed using the Agilent 2200 TapeStation 

system (Agilent Technologies; California, USA) as described in section 2.6.  
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The SureSelect-XT Target Enrichment System for Illumina Paired-End Sequencing 

Library Protocol and SureSelect-XT Human All Exon V5 kit (Agilent Technologies; 

California, USA) were used to perform hybridisation and capture steps. Briefly, pre-

capture libraries were hybridised to capture libraries containing exome biotinylated 

RNA library baits, and captured using the streptavidin beads. Next, index tags were 

added to the captured libraries through amplification in order to allow different samples 

to be pooled and run in one single sequencing lane reaction. 6 index assignments 

(A01-F01) were determined for each sample. Then PCR reaction mix was prepared 

using SureSelect ILM indexing Post-Capture Forward PCR primers and the 

appropriate indexing primers (SureSelect 8bp Indexes A01 through F01) were added 

to each tube containing the captured libraries accordingly. After that, tubes were 

transferred to a thermal cycler and run according to the manufacturer’s protocol. After 

that, amplified captured libraries were purified using AMPure XP Beads (Beckman 

Coulter; California, USA). Finally, the indexed libraries were pooled and sent for 

sequencing using HiSeq 3000 system (Illumina Technologies, USA). The sequencing 

runs were set up to perform pair end reads sequencing with an 8bp index read. The 

read length was 2 x 150bp.  

2.2.7. SureCall bioinformatics analysis 

 
Whole exome sequencing data from tumour (pre-NAC or post-NAC) and normal 

samples was initially analysed using SureCall software (version 3.0.3) from Agilent 

(Agilent Technologies, USA). SureCall incorporates the most widely accepted open 

source libraries and algorithms, and augments them with tools specific for Agilent 

assays. The SureCall software manual was not available at the time of writing and the 

protocol used is described in brief here. Analyses started by uploading FASTQ files 

for tumour (pre-NAC or post-NAC) and matched normal into the software and then 

pair analysis (either tumour sample vs matched normal) was selected. Initially, reads 

of adaptors and low quality bases for samples were trimmed and then the alignment 

step performed against the Homo Sapiens genome reference (Hg19) using BWA-

MEM to produce SAM files. SAM files were converted to the more compacted BAM 

files. Next, SAMTools or SNPPET was used to identify somatic variants in the tumour 

samples versus the matched normal, using defaults settings. Further information 

regarding the mutations was then aggregated from various public sources, including 
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NCBI, COSMIC (Catalog of Somatic Mutations in Cancer), PubMed, and Locus-

Specific Databases. After that, Variant Calling Files (VCF) were generated. Finally, 

files were converted to an Excel format, with complete variant details and annotations 

from public databases if available [88].  

2.2.8. Open source bioinformatics tools analysis 

 
Whole exome sequencing data from tumour (pre-NAC or post-NAC) and normal 

samples was also processed to identify somatic SNVs and small indel variants using 

open-source bioinformatics tools by Edinburgh Genomics Laboratory (Edinburgh, UK). 

For each FASTQ file, adapters and primers along with poor quality bases were 

trimmed using cutadapt (version 1.8.3) [89]. Trimmed reads were aligned against the 

reference genome using BWA-MEM (version 0.7.15) [90], with parameter -M which 

marks split alignments as secondary and which can later be excluded by downstream 

tools. The reference genome used was Homo Sapiens Hg19. Trimmed reads were 

also mapped using BWA-backtrack as part of standard quality control. The alignments 

produced by BWA-backtrack were not used in the further analysis. PCR duplicates 

were marked in the BAM files using the MarkDuplicates tool from the Picard tools 

package (version 1.115). Base quality score recalibration (BQSR) was done using 

BaseRecalibrator from GATK (version 3.7) [91] in order to model any technical errors 

empirically and adjust the quality scores accordingly. The MuTect2 variant calling 

pipeline (from GATK version 3.7) was used to detect somatic variants, and the 

HaplotypeCaller pipeline (from GATK version 3.7) was used to detect germ-line 

variants. The resulting ‘g.vcf’ files were then merged into a single VCF file using the 

GenotypeGVCFs tool from GATK.  

 

 

Annotation was added describing the likely effects of the variants. The VCF files 

containing the tumour samples and matched normal samples were annotated using 

SnpEff (version 4.3). Databases for variant annotation were obtained from the 

following resources: dbSNP; the dbsnp file was obtained from resource bundle 

supplied by GATK; COSMIC is a more highly validated resource, so it was used 

essentially as a whitelist to ‘rescue’ candidate mutations that would otherwise be 
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rejected for being in the panel of normals and/or dbSNP. COSMIC variants (version 

8.0). dbNSFP; The dbNSFP file used by SnpSift was downloaded from: 

ftp://dbnsfp:dbnsfp@dbnsfp.softgenetics.com/dbNSFPv3.4a.zip.  

 

Variant filtering for germ-line variants was done using the SelectVariants tool from 

GATK to exclude variants with a read depth of less than 5 or more than 800, or a 

quality phred score of at less than 30. For the somatic variants filtering, the VCF files 

containing the tumour samples and matched normal samples were filtered to keep 

only those variants considered by MuTect2 to be somatic using SelectVariants tool 

from GATK. Finally, for each of the samples, a TSV file containing metrics/annotations 

was created using snpSift tool extractFields [92].  

2.3. Cell culture 

 
MCF-7 was the cell line used in the in vitro studies. This line represents a breast cancer 

adenocarcinoma and is derived from a pleural effusion metastasis; it is characterised 

by expression of the oestrogen receptor alpha and the progesterone receptor and is 

regarded as a model cell line for luminal A breast cancers (6-7).  MCF-7 cells were 

acquired from the American Type Culture Collection (ATCC; Manassas, USA). The 

cell line was propagated in Dulbecco's Modified Eagle Medium (DMEM) 

(ThermoFisher Scientific; Massachusetts, USA) with 10% Fetal Calf Serum (FCS) 

(ThermoFisher Scientific; Massachusetts, USA) in 95% air / 5% CO2 at 37°C. Cell line 

identity was confirmed (STR profiles, Leeds Genomics Service) and cultures were 

consistently negative for mycoplasma (MycoAlert Mycoplasma detection assay, 

Lonza; Basal, Switzerland). The cells were sub-cultured at least once a week at ratio 

of up to 1:20. Sub-culturing was performed by removing the medium, rinsing in 

Dulbecco’s phosphate buffered saline (DPBS), and suspending the cells by incubation 

with 3ml of 0.5% (w/v) trypsin-EDTA (10x) (ThermoFisher Scientific; Massachusetts, 

USA) per T150 flask for 3-5 minutes at 37°C. After that, the trypsin was neutralised 

with 6ml fresh complete medium, and then an appropriate volume (depending on d 

FASTQ esired sub-culturing ratio) of the suspension transferred to a new flask 

containing 20 ml of fresh medium.  
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2.4. Transfection of MCF-7 cells with siRNAs 

 
ON-TARGETplus Human siRNA-SMARTpool (Dharmacon; Colorado, USA) reagents 

were used to perform targeted gene knock-down screens for the 46 candidate genes. 

SMARTpool siRNAs comes as a mixture of 4 individual siRNA sequences provided as 

a single reagent. Extensive siRNA knock-down investigations were carried out on 

MUC17, PCNX1, TENM4 and non-targeting siRNA control: their pool target 

sequences are detailed below (Table 2.1).  

 

Transfections were carried out in 96- or 6-well plates. Cells were seeded into 96-well 

plates at 10,000 cells/well or into 6-well plates at 500,000 cells/well and then incubated 

overnight. After that, siRNAs were prepared from 5μM stock solutions at either 25nM 

or 50nM final concentrations in serum-free medium (Opti-MEMTM, ThermoFihser 

Scientific; Massachusetts, USA) for a total volume of 10μl (for 96-wells) or 200μl (for 

6-wells) per well (tube 1). Transfection reagent DharmaFECT formula 1 (Dharmacon; 

Colorado, USA) was diluted in serum-free medium at concentration of 0.2μl or 4μl in 

a total volume of 10μl or 200μl per well, respectively (tube 2). Next, the contents of 

tube 1 and tube 2 were added together, mixed and incubated for 20 minutes at room 

temperature. 80μl or 1600μl of antibiotic-free complete medium was added to the 

mixtures to make up total volumes of 100μl or 2000μl per well. Culture medium was 

removed from wells to be transfected and 100μl (96-wells) or 2000μl (6-wells) of 

siRNA/transfection medium was added to each well, and then cells were cultured as 

normal for up to 96 hours, although after 24 hours the transfection medium was 

removed and replaced with complete fresh medium.  
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Regent name siRNA sequences 

ON-TARGETplus Human MUC17 

(140453) siRNA-SMARTpool 

 

Target sequence 1: GGACAAUGCCACCGAAGUA 

Target sequence 2: GUGCAAAACAUUACGGUGA 

Target sequence 3: GGACAGGUUCUGCGGCAAA 

Target sequence 4: GAAGAGGACUGCCGGAAGA 

 

ON-TARGETplus Human PCNX1 

(22990) siRNA-SMARTpool 

 

Target sequence 1: GCUAAAGACACUAGAGUAU 

Target sequence 2: UAAGUUAGCUGCCGAGAAA 

Target sequence 3: AGUCUUUGAUCUUCGGAAA 

Target sequence 4: GCAAAUGAGUUCACGGGAUC 

 

ON-TARGETplus Human TENM4 

(26011) siRNA-SMARTpool 

 

Target sequence 1: GGACUUUGAUCGCGUAACA 

Target sequence 2: GAGAGGAGAUUUCGCCUUA 

Target sequence 3: GGGGAGAUCUACAUGGAUA 

Target sequence 4: UGCCAAGGAUGCAAAGUUA 

 

ON-TARGETplus Non-targeting 

Pool was used as a negative 

control Catalogue number: D-

001810-10-05  

 

Target sequence 1: UGGUUUACAUGUCGACUAA 

Target sequence 2: UGGUUUACAUGUUGUGUGA 

Target sequence 3: UGGUUUACAUGUUUUCUGA 

Target sequence 4: UGGUUUACAUGUUUUCCUA 

 

Table 2.1 Details of targeted siRNA  sequences for MUC17, PCNX1, TENM4 and 
non-targeting siRNA control 
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2.5. Epirubicin preparation and use 

 
Epirubicin hydrochloride (Sigma Aldrich, Missouri, USA) was prepared as a 10mM 

stock solution in sterile dH2O, and was stored frozen in 1ml aliquots. For use, 

epirubicin was diluted to working concentrations from 0.05 to 4.0 μM in fresh complete 

medium.  

2.6.  MTT assays 

 
MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) 

(ThermoFisher Scientific; Massachusetts, USA) assays were performed to assess cell 

survival after gene siRNA knock-down and/or epirubicin drug treatments over 24, 48, 

and 72 hours in 96-well plates. MTT working solution was prepared by adding 5mg of 

stock powder to 1ml Dulbecco's phosphate-buffered saline (DPBS)  (Gibco, 

ThermoFihser Scientific; Massachusetts, USA). Medium was removed from cells in 

96-well plates and wells were washed with 50μl DPBS. Next, 25μl of MTT working 

solution was added per well and incubated at 37°C for 2-3 hours. After that, the MTT 

was removed and 50μl of isopropanol was added to each well. Plates were kept on a 

plate shaker for 20 minutes and then colorimetric measurements were taken using a 

Mithras LB 940 Microplate reader (Berthold Technologies, Germany) at 570nm 

absorbance.  

2.7. Colony forming assays 

 
Colony forming assay was performed to assess cell survival by forming colonies after 

knock-down for candidate genes and/or treatment with epirubicin in vitro. The assays 

give a different read out from MTT survival assays as for cells to count as having 

survived in this assay they must be capable of repeated replicative division in order to 

form a colony, whereas for MTT assays simply surviving in the short term is sufficient. 

Cells were transfected with targeted siRNA and non-targeted siRNA and treated with 
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low doses of epirubicin (up to 100nM) for 24 hours. Medium was removed from cells 

in 96-well plates and wells were washed with 50μl DPBS.  

After that, cells were harvested by adding 25μl of 0.5% (w/v) trypsin-EDTA (10x) for 3 

minutes at 37°C and neutralised by adding 75μl of fresh media and then and counted 

using a haemocytometer (ThermoFisher Scientific; Massachusetts, USA). 500 or 1000 

cells (depending on expected survival and to ensure a number of colonies that it was 

possible to count) were transferred to 10cm tissue culture dishes (Corning, Life 

Sciences; Massachusetts, USA) containing 11ml of fresh complete medium and cells 

were cultured undisturbed for 14 days (in an incubator dedicated to these assays only 

therefore with minimal opening/closing – this is important to minimise cells from 

individual colonies becoming dispersed into multiple colonies). Following incubation, 

the medium was removed and cells were washed with 5-10ml PBS, and then 2-3ml of 

fixative (Acetic acid/methanol 1:7 (vol/vol)) was added and left for 5 minutes at room 

temperature.  Next, the fixative was removed and the plates were left to dry completely 

at room temperature. After that, colonies were stained with 0.5% crystal violet stain 

(Sigma Aldrich, Missouri, USA) for 1 minute and washed carefully with tap water until 

the stain background washed off. Plates were then left to dry at room temperature. 

Colonies were counted macroscopically taking into consideration at least 50 cells 

forming a colony. To validate the counting technique and reproducibility of the colonies 

counting scale, 10 plates with different seeding densities and drug treatments were 

also scored independently by my colleague Ms. Lisa Allinson (PhD student, University 

of Leeds). The concordance between scorers was measured using Spearmans’s rank 

correlation coefficient statistics. It showed strong and significant inter-scorers 

agreement (r=0.948, p<0.0001).  

 

2.8. Epirubicin uptake assays 

 
The intracellular epirubicin drug uptake assay was performed using flow cytomtery  on 

the Attune Acoustic focusing cytometer (Applied Biosystems, ThermoFisher Scientific; 

Massachusetts, USA) and fluorescent detection of epirubicin in the Phycoerythrin (PE) 

channel (BL-3). The method allowed a comparison of epirubicin intracellular drug 
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uptake of the cells transfected with targeted gene siRNA versus non-targeted siRNA 

control, by comparing the median of fluorescence intensities in the populations. Cells 

were seeded into 6-well plates at 500,000 cells/well and transfected as described in 

section 2.11. Next, cells were treated with 1uM epirubicin for 24 hours. After that, cells 

were detached from the wells by adding 200ul of 0.5% (w/v) trypsin-EDTA (10x) for 3 

minutes at 37°C and neutralised by adding 1ml of fresh media and then centrifuged at 

500x g for 10 minutes to collect the cells. Cells were resuspended in 1ml DPBS in 

Falcon round-bottom polypropylene tubes (Corning, Life Sciences; Massachusetts, 

USA) and were analysed in the standard mode at a flow rate 25ul/minute and draw 

volume of 100ul. The Attune Cytometric software v2.1 was set to record 10,000 

events. Cells treated with epirubicin drug only (without siRNA treatment) was used to 

draw a gate/region to set a population or to back a population. The cells were gated 

on FSC/SSC for live cells with epirubicin drug intake and the median of fluorescence 

was measured using BL3 channel. Representative images of dot plots, density plots, 

and histograms are shown in Figure 2.2.  

  

 

Figure 2.3 Representative images of FACS plots demonstrating the gating and 
strategy for quantification of epirubicin loading. (A) Representative of 
FSC/SCC flow cytometric dot plot of epirubicin-treated cells. R1 represents a 
gate for viable cells of which subsequent analyses were based. (B and C) 
Represents characteristics of gated cells from R1 on plots of FSC vs epirubicin 
fluorescence (BL3) (B), or a histogram of epirubicin fluorescence (BL3) (C).  
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2.9. RT-PCR  

 

2.9.1. RNA extraction 

 
ReliaPrep RNA cell Miniprep system (Promega; Wisconsin, USA) was used to extract 

total RNA from cultured cells (in 6-well plates), using the manufacturer’s protocol. In 

brief, medium was removed from the wells and cells were washed with 1ml of ice-cold 

DPBS. After that, cells were harvested by pipetting up and down 10 times with 100μl 

of BL+TG (1-Thioglycerol) lysis buffer per well and then the lysate was transferred to 

sterile tubes. Next, 25μl of 100% isopropanol was added to the lysate and vortexed 

for 5 seconds. After that, the lysate was transferred to a Reliaprep minicolumn with 

collection tube and centrifuged at 13,000 x g for 30 seconds at room temperature. The 

collection tube was then discarded and the Reliaprep minicolumn was placed in a new 

collection tube and 500μl of RNA wash solution was added to Reliaprep minicolumn 

and centrifuged at 13,000 x g for 30 seconds at room temperature. After that, DNase 

I incubation mix was prepared by combining 24μl of yellow core buffer, 3μl of 0.09M 

MnCl2 and 3μl of DNase I enzyme (30μl in total per sample tube). 30μl of the DNase I 

incubation mix was applied to directly to the membrane inside the column and left for 

incubation for 15 minutes at room temperature. After that, the column was washed 

with 200μl of column wash solution and twice with 500μl of RNA wash solution. Finally, 

RNA was eluted in 15μl of nuclease-free water, and the purified RNA was then stored 

at -70°C for downstream analysis.  

 

2.9.2. Quantification of extracted total RNA 

 
The extracted total RNA was quantified using NanoDrop 2000/2000c 

Spectrophotometer (ThermoFisher Scientific; Massachusetts, USA) using the 

manufacturer’s protocol. Briefly, 1μl of nuclease-free water was pipetted onto a 

measurement pedestal to clean and followed by 1μl of nuclease-free water as a blank. 

Next, 1μl of RNA was pipetted for measurement at 280/260. The measurement is 

displayed in ng/μl and graph.  
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2.9.3. Reverse Transcription  

 
The High-capacity cDNA reverse transcription kit (Applied Biosystems, ThermoFisher 

Scientific; Massachusetts, USA) was used, following the manufacturer’s protocols. 

The following components were mixed for total of 10μl  per reaction: 2ul of 10X RT 

buffer, 0.8ul of 25XdNTP mix (100mM), 2μl of 10X random primers, 1μl of multiScribe 

reverse transcriptase, 1μl of RNase inhibitor, 3.2μl of nuclease-free water. After that, 

10μl of the RT mixture was transferred into PCR reactions tubes and then 10μl of RNA 

sample suspended in nuclease-free water (50-100ng of RNA) was pipetted into PCR 

reaction tube. The tubes were then centrifuged briefly and incubated as follows in a 

thermal cycler (see Table 2.2). 

 

Setting Step 1 Step 2 Step 3 Step 4 

Temperature 25 °C 37 °C 85 °C 4 °C 

Time 10 minutes 120 minutes 5 minutes Infinite 

Table 2.2 Thermal cycling conditions for cDNA synthesis 
 

 

2.9.4. qPCR using Taqman assays 

 
Gene expression qPCR was performed using Taqman assays for MUC17 (Assay ID: 

Hs00959753_s1), PCNX1 (Assay ID: Hs00900449_m1), TENM4 (Assay ID: 

Hs01008070_m1), ABCB1 (Assay ID: Hs00184500_m1), ABCC1 (Assay ID 

Hs01561483_m1), ABCG2 (Assay ID: Hs01053790_m1), RPL19 (Assay ID: 

Hs02338565) and ACTB (Assay ID: Hs99999903_m1) (Applied Biosystems, 

ThermoFisher Scientific; Massachusetts, USA). PCR reaction mixes were prepared 

by adding 10μl of Taqman gene expression master mix, 1μl of Taqman gene 

expression assay, and 9μl of cDNA diluted in nuclease-free water (50-100ng of cDNA) 

per reaction into 96-well PCR reaction plates. Assays were prepared in technical 

duplicates or triplicates. Next, the plates were vortexed and centrifuged at 400 x g for 
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5 minutes and then assayed in an Applied Biosystems real-time quantitative PCR 

instrument (Quant Studio 5) using the standard mode and the manufacturer’s thermal 

cycling conditions. QuantStudioTM Design and Analysis Software (Applied Biosystems, 

ThermoFisher Scientific; Massachusetts, USA) was used to calculate the CTs values 

and the average of triplicate values was taken for each sample. Finally, comparative 

quantification analysis (2−ΔΔCT Method) was performed to calculate the fold difference 

in gene expression [93]. 

 

2.10. Western blots  

 

2.10.1. Protein extraction 

 
Total protein extraction was performed from cultured cells, typically from 6-well plates. 

Medium was removed from culture wells and cells were washed twice with 1ml of ice-

cold DPBS. After that, 100μl of cold RIPA buffer (25mM Tris-HCl pH 7.6, 150mM NaCl, 

1% NP-40, 1% sodium deoxycholate, 0.1% SDS) (ThermoFisher Scientific; 

Massachusetts, USA) with HaltTM Protease and Phosphatase inhibitor cocktail 

(ThermoFisher Scientific; Massachusetts, USA) was added to cells and harvested by 

pipetting up and down 10 times. Next, cells lysate was collected into sterile tubes and 

centrifuged at 14,000 x g for 15 minutes to pellet the cells debris. Finally, supernatants 

were transferred to new tubes for protein quantification or stored at -80°C for 

downstream analyses. 

 

2.10.2. Protein quantification 

 
The BCA protein assay kit (ThermoFisher Scientific; Massachusetts USA) was used 

to quantify extracted total protein lysates. First, a set of protein standards was 

prepared by serial dilution (working range 25-2,000ug/ml) using the provided albumin 

standard stock. The working reagent was prepared by mixing 50 parts of BCA reagent 

A with 1 part of BCA reagent B (50:1). Next, the microplate Thermo Scientific Pierce 

96-well plate was set up and 25μl of each standard and unknown sample was pipetted 
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into wells in triplicate and then 200μl of working reagent was added to each well. The 

plate was mixed thoroughly on a plate shaker for 30 seconds and then incubated at 

37°C for 30 minutes. After that, the plate was left to cool at room temperature, and the 

absorbance was measured at 570nm on a plate reader (Berthold Technologies; 

Wildbad, Germany). Finally, the analysis was performed by building the standard 

curve using the average blank-corrected 570nm measurement for each BSA standard 

versus its concentration in ug/ml and then the protein concentrations of unknown 

samples were determined using the standard curve.  

 

2.10.3. Western blot analysis 

 
20µg of total protein was to be loaded into each well of gels. Therefore 20µg samples 

of total protein were denatured by incubating at 70°C for 10 minutes with NuPAGE 

LDS sample buffer (4x), NuPAGE reducing agent (10x) and deionised water (up to 

6.5μl) for a total volume of 10ul  (ThermoFisher Scientific; Massachusetts USA). After 

denaturation, the samples were loaded onto a NuPAGE Novex (3-8%) Tris-Acetate 

PAGE gel (ThermoFisher Scientific; Massachusetts USA) alongside a HiMARK pre-

stained protein marker (ThermoFisher Scientific; Massachusetts USA). The gel was 

run in an X-Cell SureLock electrophoresis tank filled with a 1 x NuPAGE Tris-Acetate 

SDS running buffer containing a NuPAGE antioxidant (ThermoFisher Scientific; 

Massachusetts USA) at a constant 150V for 60 minutes. Polyvinylidene difluoride 

(PVDF) membrane (ThermoFisher Scientific; Massachusetts USA) was activated by 

soaking in 100% methanol for 30 seconds followed by submerging in 1x NuPAGE 

transfer buffer (ThermoFisher Scientific; Massachusetts USA) containing 10% 

methanol for 5 minutes. In the X-Cell SureLock Blot module (ThermoFisher Scientific; 

Massachusetts USA), the SDS-PAGE gel and the activated PVDF membrane were 

sandwiched between blotting paper and a number of sponges soaked in 1x NuPAGE 

transfer buffer (ThermoFisher Scientific; Massachusetts USA) containing 10% [v/v] 

methanol. The module was filled with 1 x transfer buffer whilst the surrounding tank 

was filled with cold distilled water, and the transfer was run at a constant 30V for 60 

minutes. Following transfer, the membrane was rinsed with TBS-T (Tris-buffered 

saline, 0.1% Tween 20), then the membrane was incubated with western blocking 

solution (5% [w/v] Marvel dried non-fat milk powder in TBS-T) for 1 hour at 4°C on a 
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rotator. The membrane was then incubated on a tube roller with the primary antibody 

(diluted in blocking solution) for overnight at 4°C. The antibodies dilution for PCNX1 

was 1:1000 (ab220503, Abcam; USA), and 1:500 for beta tubulin (ab6046, Abcam, 

USA). Next, three washes with TBS-T for 20 minutes each was performed. After that, 

the membrane was incubated with the HRP conjugated-secondary antibody goat anti-

rabbit IgG diluted in blocking solution at 1:50,000 (ab205718, Abcam, USA) for 1 hour 

at room temperature on a roller. After three washes of 20 minutes each in TBS-T, the 

membrane was then placed on an acetate sheet and incubated with Femto Super 

Signal West reagent (ThermoFisher Scientific; Massachusetts USA) according to the 

manufacturer’s guidelines to develop the immune-positive bands for PCNX1, whilst 

SuperSignal West Pico (ThermoFisher Scientific; Massachusetts USA) was used for 

beta tubulin. Membranes were visualised on the ChemiDoc™ MP System with Image 

Lab™ software (Bio-Rad; California, USA).  

 

2.11. Immunofluorescence (IF) 

 
For immunofluorescence (IF) experiments, cells were seeded into 6-well plates 

containing glass coverslips and treated as appropriate for the experiment required 

(transfection for example). In order to perform the immunofluorescence assessment, 

medium was removed from the 6-well plate containing coverslips and cells were 

washed with 1ml of ice-cold DPBS. After that, 1.25ml 4% paraformaldehyde (dissolved 

in PBS (w/v)) was added and incubated for 15 minutes at room temperature. Next, the 

fixative was removed and washed with ice-cold DPBS twice and followed immediately 

by adding 2ml of blocking agent (0.5% [w/v] Marvel dried non-fat milk powder in TBS-

T). In the meantime, primary antibody dilution for MUC17 rabbit polyclonal  (ab122184, 

Abcam; Cambridge, UK) was prepared at 1:500 (blocking agent used as an antibody 

diluent). Next, the blocking agent was removed and around 100ul of diluted primary 

antibody was added to the coverslips (except for the no antibody negative control) and 

covered with parafilm and then incubated at 4°C overnight. For the no antibody 

negative control 0.5% skimmed milk solution was added instead. On the next day, the 

parafilm was removed from the coverslip and then washed with 2 ml PBS 3 times. 

Then, 100 ul of goat anti-rabbit IgG H&L Alexa fluor 488 fluorescent antibody 
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(ab122184, Abcam; Cambridge, UK) was added to all coverslips and incubated for 1 

hour at room temperature in the dark. After that, coverslips were washed 3 times with 

PBS and then mounted with ProLongTM Gold mountant with DAPI (ThermFisher 

Scientific; Massachusetts, USA) by placing one drop of the mount medium on a clean 

glass slide and placed the coverslip with cells side on the top of the mounting medium. 

The coverslips were let to cure and then slides were imaged using a Zeiss fluorescent 

microscope  (Carl Zeiss; Oberkochen, Germany). 

 

2.12. Tissue MicroArrays (TMAs) 

 
Two different sets of Tissue MicroArrays (TMAs) were provided by collaborators. 

TMAs of resection samples of 140 primary breast cancer cases that were treated with 

adjuvant chemotherapy were assembled by Stacey Jones (Clinical research fellow 

and surgical trainee, University of Leeds / Leeds Teaching Hospitals NHS Trust), 

comprising three independent tissue cores representing each case. Also, TMAs of 

resection samples from 53 primary breast cancer patients who were treated with 

neoadjuvant chemotherapy, therefore samples were post-chemotherapy, were 

obtained through collaboration with Dr Abeer Shaaban (consultant breast pathologist, 

formerly at Leeds Teaching Hospitals NHS Trust, where the patients included in this 

TMA were treated, but now at University Hospitals Birmingham NHS Foundation 

Trust). In brief, TMAs were constructed from the marked cores of the residual invasive 

carcinoma using a manual tissue microarrayer (MTA1; Beecher Instruments, USA). 2 

or 3 0.6 mm core punches from the marked representative residual tumour section 

(central and peripheral where possible) were selected from each block and assembled 

into a TMA donor block with a 1.0 mm interval between cores. Of each TMA block, 3 

or 5 μm sections were cut on a microtome (RM2255; Leica Wetzlar, Germany) onto 

Superfrost Plus slides (ThermoFisher Scientific; Massachusetts, USA) for 

immunohistochemistry. 
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2.13. ImmunoHistoChemistry (IHC) 

 
Immunohistochemistry (IHC) was performed on TMA sections to allow examination of 

expression in a large cohort of tumours on only a few slides. IHC was also performed 

on sections of various control tissues or whole sections of single breast cancer 

resections. First, slides were dewaxed through xylene (3 changes, 5 minutes each) 

and brought through absolute ethanol (3 changes, 1 minute each), and then brought 

into running tap water for 5 minutes. Antigen retrieval was performed using 10mM citric 

acid buffer, pH 6.0 and microwave heating method as follows. 10mM citric acid buffer 

was prepared and the pH was adjusted using 1M NaOH. Around 750ml of the citric 

acid buffer was transferred into a pyrex dish and pre-warmed in a microwave for 2 

minutes at high power. Then the slides were transferred to the citric buffer and heated 

in the microwave for 10 minutes at high power. After that, the slides were left to cool 

down for 20 minutes at room temperature and then transferred to running tap water 

for 5 minutes. Next, endogenous peroxidase was blocked by incubating the slides for 

10 minutes at room temperature in 200ml methanol mixed with 2ml hydrogen peroxide 

(30% v/v). After that, slides were washed in running tap water for 5 minutes and 

followed by rinsing with Tris-Buffered Saline (TBS). Next, slides were transferred to a 

humidified chamber and then 100ul of antibody diluent reagent solution (Life 

Technologies, ThermFisher Scientific; Massachusetts, USA) was added for at least 5 

minutes. After that, MUC17 antibody rabbit polycloncal (ab122184, Abcam; 

Cambridge, UK), 1:250 dilution or PCNX1 antibody rabbit polyclonal (ab220503, 

Abcam; Cambridge, UK), 1:500 dilution were added to slides to cover the entire tissue 

section and incubated overnight at 4°C and 2 hours at room temperature, respectively. 

For the no primary antibody controls, antibody diluent reagent solution was added 

instead. After that, slides were washed with TBS-T (TWEEN20, Sigma Aldrich; 

Missouri, USA)  twice for 5 minutes and TBS twice for 5 minutes. Next, slides were 

treated with 100ul of SignalStain Boost IHC detection Reagent (HRP, Rabbit) (Cell 

Signaling Technology; Massachusetts, USA) for 30 minutes at room temperature. 

After that, the slides were washed with TBS-T and TBS exactly as in the previous step. 

Next, 100ul of SignalStain DAB substrate working solution (Cell Signaling Technology; 

Massachusetts, USA)  was added for 5 minutes at room temperature. After that, slides 

were washed in running tap water for 5 minutes, and stained with Mayer’s 
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Haematoxylin (counter-stain) for 1 minute, followed by washing in a running tap water 

for 1 minute. This was followed by incubation in by Scott’s water for 1 minute and then 

again in running tap water for 1 minute. Next, slides were dehydrated through absolute 

ethanol (3 changes, 1 minute each) and through xylene (3 changes, 1 minute each). 

Finally, slides were mounted using coverslips with DPX (Sigma Aldrich; Missouri, 

USA) and then left for overnight to cure at room temperature.  

 

2.14. Statistical analyses 

 
Statistical analyses were performed as described in figure legends, using GraphPad 

Prism (version 7) for Mann Whitney tests or paired Student’s T-tests or 2 ways 

ANNOVA. ROC curves, Spearman’s rank correlation coefficient and Kaplan-Meier 

survival analyses were performed using IBM SSPS statistics (version 2.5). Occasional 

graphs were made using Microsoft Excel (version 14.6.0). Error bars represent 

standard error of the mean. P values of <0.05 were considered statistically significant.  
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3. Genomic sequencing of epithelial-enriched matched breast 
cancer samples taken pre- and post-neoadjuvant chemotherapy  

 

3.1. Abstract 

 
Many studies have shown the feasibility of performing WGS and WES on tissues in 

the form of FFPE samples. The aim of this chapter is to describe the process I used 

to obtain successful WES data from epithelial-enriched, archival FFPE samples 

representing matched breast cancers both pre- and post-neoadjuvant chemotherapy. 

This includes case selection, optimisation, and various QC steps throughout the 

process of exome library construction to achieve the best possible quality of 

sequencing data.  

Initial optimisation data showed encouraging results for performing WES on FFPE 

breast tissue samples available to us through the hospital archive. A total 8 primary 

breast cancer patients were identified, with suitable clinico-pathological features, who 

received neoadjuvant chemotherapy, and for whom suitable tissues representing 

matched normal tissue and pre- and post-neoadjuvant chemotherapy tissue were 

available. Tissue samples from these patients were processed in two batches for WES 

library preparation. This involved isolation of epithelial cancer cells from the cancer 

samples by laser micro-dissection, extraction of genomic DNA, and library preparation 

itself. The quality control metrics showed variable library quality ranging from low to 

good. 6 out of 8 patients were taken forward for final sequencing.  Samples were 

sequenced either once or multiple times using the HiSeq3000 Illumina platform. The 

sequencing data from multiple sequencings of the same library were merged when 

required.  

The average read depth across the captured regions of the exome after duplicate 

removal was 20-127x. Also, the percentage of mapped reads to the target regions was 

of 83.4-87.0%. However, a high percentage of duplicate reads of between 35.6-92.4% 

was obtained. Overall, this work illustrates obstacles associated with preparing FFPE 

samples for WES, nevertheless, I have successfully obtained sequencing data from 

my target samples. 
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3.2. Introduction 

 
Next generation sequencing (NGS) has been hugely helpful in cancer research to 

detect various patterns of mutations such as single nucleotide variants (SNV), short 

deletions or insertions (Indel), and copy number variations (CNV) in cancer from 

individual patients. The costs, in terms of both time and money, associated with this 

process are falling rapidly, and compare very favourably with Sanger sequencing (first 

generation sequencing), which was used to create the first draft of the human genome 

(3.2 billion bp), over a period of almost 10 years in the 1990s at vast expense [94].   

Implementing NGS in the clinical setting has been challenging in terms of obtaining 

suitable samples. Whilst there are tissue banks that store fresh frozen tumour 

materials as a research resource, these are typically limited in scope, size and/or the 

amount of tissue banked. Therefore, archival collections of tumours fixed in formalin 

and embedded in wax blocks, stored in diagnostic pathology departments remain the 

principle repository of material available to study the molecular pathology of breast 

cancer [95, 96]. These archival resources represent the main realistic resource able 

to cover the heterogeneity of breast cancer and facilitate studies to relate their 

molecular profile to response to therapeutic regimes. The utilisation of formalin fixed 

paraffin embedded (FFPE) tissues is the most practical in the clinical laboratory setting 

as most histopathology departments conserve archival tissue in this manner [97, 98].  

However, it is known that FFPE tissues are prone to many artefactual damages in their 

DNA as a consequence of sometimes-prolonged formalin exposure prior to 

processing. These include deamination of cytosines and DNA double-strands cross-

linkage of cytosine nucleotides on either strand [95, 99, 100]. There is some 

predictability to these changes and such DNA alterations can be addressed 

bioinformatically to some degree, and as such are recognisable during the data 

analysis since it is likely that the damage caused by the formalin fixation is distributed 

evenly across the genomic reads. In addition, there are many commercial genomic 

DNA extractions kits available that claim using their specially optimised lysis buffer 

and incubation at an elevated temperature after proteinase K digestion partially 
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removes the formalin crosslinking of the released DNA, improving yields, as well as 

DNA performance in the downstream NGS assays [101]. Another challenge 

associated with FFPE tissue is the limited amount of DNA that can be obtained 

particularly in small tissue samples such as core biopsies originally taken in a 

diagnostic setting. However notwithstanding these concerns it is worthwhile to note 

that input amounts of DNA as low as to 5-500ng can still yield good library preparation 

results sufficient for sequencing [96, 98, 102].  

In this chapter, I aimed to establish protocols to isolate tumour cells from FFPE breast 

tumour samples and extract sufficient masses of suitable quality DNA for whole exome 

sequencing (WES).  I then aimed to deploy these protocols to achieve WES data 

representing matched normal tissue, pre-neoadjuvant chemotherapy tissue, and post-

neoadjuvant chemotherapy tissue from a small cohort of primary breast cancer 

patients in order to allow down-stream analysis of genomic changes associated with 

chemotherapy treatment.  

 

3.3. Results 

 

3.3.1. Case selection 
 
Breast cancer cases to be included in this project were identified using database 

searches of the Leeds Teaching Hospitals patient management system (“PPM”), and 

physical review of tissue slides and blocks. This search was led by two independent 

histopathologists (and supervisors for my PhD): Dr. Eldo Verghese (consultant 

histopathologist at Leeds Teaching Hospitals NHS Trust) and Professor Andrew 

Hanby (Professor of Breast Pathology at University of Leeds and Leeds Teaching 

Hospitals NHS Trust). The number of cases screened was 150; including patients 

diagnosed with primary breast cancer at Leeds Teaching Hospitals NHS Trust 

between the years 2010 and 2015. 
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The inclusion criteria were as the following:  

 

1. A diagnosis of ER positive and HER2 negative breast cancer, as defined by 

clinical immuno-histochemical assessment of expression of estrogen receptor 

(positive) and immuno-histochemical / fluorescent in situ hybridisation 

assessment of her2 status (negative). 

2. Treatment with neoadjvant chemotherapy (NAC) using the combination of 

drugs epirubicin/cyclophosamide (EC), without taxanes. 

3. Presence of residual tumour cells post-NAC in the resection samples (indicating 

partial resistance to NAC). 

4. Sufficient cells present in in the pre-NAC core biopsies and post-NAC 

resections. 

 

Patients meeting these criteria were rare, with the need for a partial response (so 

sufficient tumour cells remained in the post-NAC sample) twinned with a lack of use 

of taxanes proving particularly limiting, since many patients showing a relatively poor 

response by MRI during initial cycles with epirubicin/cyclophosphamide were switched 

to taxanes. Furthermore, during the course of this study, use of NAC without taxanes 

became increasing rare. Nevertheless, it was felt that standardising the molecular 

subtype and the chemotherapy regimen was necessary in order to reduce likely 

variation in chemoresistance pathways.  

Ultimately 8 patients for further examination were identified. The table below shows 

the patients’ details for 6 of these 8 individuals, including only the 6 that were 

successfully sequenced in the study. 
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Patient 
identifier 

Age at 
diagnosis 

Histo-
pathological 
diagnosis 

Tumour 
size 

Grade Nodal 
metastasis 

ER, PR, 
Her2 
receptor 
expressions 

pCR socre 
if available 

1 46 Ductal NST 31mm 3 Yes ER positive 

PR  positive 

Her2  
negative 

NA 

3 48 Ductal NST 20mm 2 No ER positive 

PR negative 

Her2 
Negative 

NA 

5 50 Ductal NST 115mm 3 Yes ER positive 

PR positive 

Her2 
Negative 

NA 

6 41 Ductal NST 55mm 2 Yes ER positive 

PR positive 

Her2 
Negative 

NA 

7 52 Ductal NST 30mm 2 No ER positive 

PR positive 

Her2  
negative 

NA 

8 51 Mixed ductal 
& lobular 
Carcinoma 

40mm 1 No ER positive 

PR  negative 

Her2 
negative 

2.941/RCB-
II 

Table 3.1 Patient, pathological and clinical details of patients included in the 
sequencing study. NST= no special type, NA= not available, RCB= residual 
cancer burden.  

 

3.3.2. Optimisation 

 
A key component of my proposed experiments was to extract sufficient genomic DNA 

for NGS analyses from breast cancer samples using commercial column tubes 

extraction kit (QIAamp MinElute Columns DNA kit, Qiagen; Dusseldorf, Germany .  

Ideally, DNA should be from the epithelial (cancer) compartment only, and would also 
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be from very small breast cancer biopsies in the case of pre-NAC samples. Therefore, 

I needed to optimise DNA extraction protocols to maximise the amount of extracted 

DNA to facilitate the chances of a successful analysis. The samples used for 

optimisation work were breast tissues. As a consequence, my initial task was to 

estimate how much genomic DNA could be extracted from our FFPE samples. The 

initial variables that I assessed were the thickness of the sections (5 micron sections 

versus 10 micron sections), the areas of dissection (5 mm2 area versus 10 mm2 area) 

and the incubation period for tissue to be digested in proteinase K (1 hour, overnight 

and 72 hours). I concluded that the most effective combination was 5 micron sections, 

with as large a tissue area as possible, and overnight proteinase K digestion.  

 

In order to enrich for epithelial cells I performed micro-dissection. I assessed various 

ways of doing this using a Zeiss/P.A.L.M. machine (P.A.L.M. Microlaser Technologies, 

Zeiss; Oberkochen, Germany) LCM in order to purify only epithelial tumour cells and 

avoid any other cellular elements. These were: 1) laser capture micro- dissecting 

epithelial cells (i.e. the cells of interest) directly, or, 2) laser capture micro-dissecting 

unwanted cellular elements and then manually dissecting/scrapping the tumour 

epithelial cells from the slides. Efficient laser capture during LCM requires use of 

membrane slides. However, when manually dissecting tissue from a slide that has had 

the unwanted elements removed by LCM, this membrane becomes a potential 

contaminant. Hence it was necessary to assess the effects of membrane slides on the 

yield of DNA extraction. I concluded that both direct LCM of epithelial cells, and LCM-

based removal of non-epithelial components produced satisfactory results, with no 

evidence that membrane from the slides resulted in lower yields. Therefore, the LCM 

strategy I used was varied according to the density of epithelial tumour cells within the 

individual sample, with diffuse epithelial cells isolated directed by LCM, while denser 

epithelial cells would be collected after LCM removal of other components (see 

representative pictures of both these LCM approaches in section 2.3). These findings 

provided insights to go ahead with actual cases for the project.  
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3.3.3. The first batch of cases (patients 1 – 4) 

	

3.3.3.1. Pre-NAC samples  

 
My initial expectation was that the pre-NAC biopsies would provide the most 

challenging tissue from which to extract sufficient DNA. Therefore, my strategy was to 

purify epithelial cells from these biopsies, to extract DNA from these, and to prepare 

these pre-capture libraries. I would proceed with extractions from post-NAC resections 

and normal tissue only for cases for which the pre-NAC pre-capture libraries were 

successful.  

I selected 4 cases at random from those available. Biopsies were sectioned and then 

tumour cells were purified by laser capture micro-dissection. DNA was extracted as 

per the optimised protocol and quantified in order to assess whether there was 

sufficient genomic DNA to proceed to library preparation (Table 3.2), the target being 

greater than 200ng as an absolute minimum. Pre-capture libraries were prepared for 

all the 4 samples and their fragment size distributions assessed (Table 3.3). 

 

Case number 1 2 3 4 

DNA yield (μg) 6.5 3.7  2.2 1.9 

Table 3.2 DNA yields from epithelial enriched samples of pre-NAC core biopsies 
from the first 4 cases. 

 

Case number Peak DNA Fragment size (bp) Calibrated concentration (ng/μl) 

1 203 6.29 

2 219 5.62 

3 259 6.62 

4 169 0.44 

Table 3.3 Quality metrics for pre-capture libraries made from DNA from epithelial 
enriched samples of pre-NAC core biopsies from the first 4 cases. 
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The quantification of size distribution and overall amount of pre-capture libraries 

demonstrated notable differences between individual samples. Case 4, in particular, 

produced a very low yield library of fragments well below the target size range (optimal 

DNA distribution around 250bp). Therefore, I decided not to proceed further with this 

case. Of the other 3 cases, I decided to proceed with the 2 cases showing the highest 

library concentrations: cases 1 and 3 with 6.29ng/μl and 6.62ng/μl, respectively. I then 

proceeded with processing of the matched resection (post-NAC) and normal tissues 

for these cases.  

	

3.3.3.2. Post-NAC and normal samples  

 
Since case 1 and case 3 yielded satisfactory pre-capture libraries, their matched 

tumour resection samples and normal breast tissue samples were obtained. Tumour 

cells were purified by laser capture micro-dissecting tumour cells directly. Normal 

tissue samples were prepared by manually dissecting non-tumour tissue. DNA was 

extracted as per the optimised protocol and then quantified (Table 3.4), and pre-

capture libraries prepared. As before, fragment sizes and overall DNA quantity for the 

pre-capture libraries was assessed (Table 3.5).  

 

Case No. Case 1 

Tumour  

Case 1 Normal Case 3 Tumour  Case 3 Normal 

Amount of DNA 

extracted in μg 

3.5 1.7 2.4 12.25 

Table 3.4 DNA yields from epithelial enriched samples of post-NAC resection 
and normal tissues for cases 1 and 3. 
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Case No. Peak DNA Fragment size (bp) Calibrated conc. (ng/μl) 

Case 1 Tumour 197 5.65 

Case 1 Normal 191 6.05 

Case 3 Tumour 202 9.04 

Case 3 Normal 195 16.7 

Table 3.5 Quality metrics for pre-capture libraries for post-NAC resection and 
normal tissues for cases 1 and 3. 
 

 
Although DNA fragments sizes for these libraries were smaller than optimal (~250bp), 

the concentrations were adequate therefore these were deemed to be suitable for 

further processing. The key result of this section is that I had prepared complete sets 

of pre-capture libraries for 2 cases, comprising tumour DNA pre-NAC, tumour DNA 

post-NAC, and matched normal DNA, ready for hybridisation and capture steps.  

 

 

3.3.3.3. Indexed exon library preparation for cases 1 and 3  

 
The 6 samples representing cases 1 and 3 were subjected to exon capture and 

indexed libraries were prepared. Library metrics were assessed as previously (Table 

3.6) and were deemed to be adequate for sequencing. These 6 samples were pooled 

and sequenced in a single lane of the HiSeq 3000.  
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Case No. Peak DNA fragments size 
(bp) 

Calibrated conc. (ng/ μl) 

Case 1 Pre-NAC 263 0.218 

Case 1 Post-NAC 244 0.289 

Case 1 Normal 244 0.167 

Case 3 Pre-NAC 302 0.759 

Case 3 Post-NAC 262 0.564 

Case 3 Nomal 236 0.152 

Table 3.6 Metrics for the indexed exon libraries from the matched triplet samples 
(pre-NAC, post-NAC, normal) for cases 1 and 3. 
 

  

3.3.4. The second batch of cases (cases 5 to 8) 

	

3.3.4.1. Pre-NAC samples 

 
As for cases 1 to 4 (section 3.3.3), I initially examined pre-NAC core biopsy samples 

from my next 4 cases (cases 5 to 8). Tumour DNA were obtained using LCM and DNA 

extraction. DNA quantification is shown in Table 3.7. Although DNA yields were low, 

pre-capture libraries were prepared from all samples as it was not felt any samples 

could be excluded since more suitable cases were not available. Metrics for the pre-

capture libraries are shown in Table 3.8. Case 8 showed an excellent yield of library 

with the optimal size peak, even though this had the lowest DNA input, however all the 

other cases showed relatively poor yields sometimes with substantially lower peak 

sizes than is ideal (notably case 7). Nevertheless, as alternative cases were not 

available, I proceeded with DNA extraction and preparation of libraries from the 

matched post-NAC and normal samples. 
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Case No. Case 5 Case 6 Case 7 Case 8 

Amount of DNA 
extracted in μg 

0.63 0.38 0.36 0.23 

Table 3.7 DNA yields from epithelial enriched samples of pre-NAC core biopsies 
from cases 5-8 
 

 
Case No. Peak DNA Fragment size 

(bp) 
Calibrated conc. (ng/μl) 

Case 5 223 0.695 

Case 6 213 0.648 

Case 7 195 0.624 

Case 8 250 8.59 

Table 3.8 Quality metrics for pre-capture libraries for post-NAC resection and 
normal tissues for cases 5-8. 
 

 

3.3.4.2. Post-NAC and normal samples 

 
Next, I extracted DNA from the matched post-NAC and normal samples for cases 5-8 

as previously. The metrics for DNA quantification are shown in Table 3.9. I also 

prepared pre-capture libraries from these samples.  

 

Case No. Case 5 
Tumour  

Case 5 
Normal 

Case 6 
Tumour 

Case 6 
Normal 

Case 7 
Tumour 

Case 7 
Normal 

Case 8 
Tumour 

Case 8 
Normal 

Amount of 

DNA 

extracted 

in μg 

3.78 2.94 0.290 3.04 0.610 1.12 0.390 2.02 

Table 3.9 Table 3.9 DNA yields from epithelial enriched samples of post-NAC 
resection and normal tissues for cases 5 -8. 
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The initial quantification results following adaptor-ligated library preparation showed 

very poor yields. This was most likely due to the low initial input DNA, although other 

possible causes include loss of DNA during the shearing or washing steps. In order to 

increase yields, samples that initially gave the best yields (3.5-7.0 ng/μl) in total, which 

is still well below target) underwent a further 10 PCR amplification cycles, while 

samples that yielded even less underwent a further 13 PCR amplification cycles. 

However, it should be noted that additional PCR amplification increases the likelihood 

of PCR duplicates, which can potentially lead to reduction in detection of low frequency 

allele variants. To overcome this issue, I also prepared separate (second) libraries 

from the remaining input genomic DNA and then combined these with the previous 

libraries in order to increase the overall yield of pre-capture libraries. Although, this is 

not recommended by the manufacturer (Agilent technologies, USA), this had been 

done before in our facility with no detrimental effects on sequencing quality since same 

batch of reagents used to prepare the libraries. The combined pre-capture libraries 

were assessed again (Table 3.10). The results demonstrated highly variable size 

distributions and very variable DNA yields (ranging from 0.33 to 18.4ng/μl).  

 

Case No. Peak DNA Fragment size 
(bp) 

Calibrated conc. (ng/μl) 

Case 5 Post-NAC tumour 322 8.11 

Case 5 Normal  332 18.4 

Case 6 Post-NAC tumour 208 0.458 

Case 6 Normal  330 7.46 

Case 7 Post-NAC tumour 229 0.673 

Case 7 Normal 259 1.78 

Case 8 Post-NAC tumour 234 1.01 

Case 8 Normal  219 0.325 

Table 3.10 Quality metrics for combined pre-capture libraries for post-NAC 
resection and normal tissues for cases 5-8. 
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The key result of this section is that I had prepared complete sets of pre-capture 

libraries for cases 5 to 8, comprising tumour DNA pre-NAC, tumour DNA post-NAC, 

and matched normal DNA, although doubts remained about their quality for capture 

and sequencing.  

 

3.3.4.3. Indexed exon library preparation for cases 5 to 8  

 

Indexed exon libraries were prepared as previously and were assessed for the DNA 
fragments size distribution and concentration (Table 3.11). Concentrations were, with 
some exceptions, disappointingly low, and one sample was even undetectable (normal 
DNA for case 6) however I decided to proceed with sequencing all the samples in a 
single lane, with the intention that further additional lanes could be used if required 
using only the samples that had produced some successful data. 

 

Case No.   
DNA Fragments size (bp)  

 
Calibrated conc. 
(pmol/l)  

Case 5 Pre-NAC 247 257 

Case 5 Post-NAC  255 14.8 

Case 5 Normal  247 55.5 

Case 6 Pre-NAC 241 230 

Case 6 Post-NAC 232 538 

Case 7 Pre-NAC 244 428 

Case 7 Post-NAC 244 121 

Case 7 Normal 243 144 

Case 8 Pre-NAC 246 154 

Case 8 Post-NAC 245 469 

Case 8 Normal 242 341 

Table 3.11 Metrics for the indexed exon libraries from the matched triplet 
samples (pre-NAC, post-NAC, normal) for cases 5-8. Note, case 6 normal 
sample was not quantifiable. 
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Unfortunately, the first attempt at sequencing failed due to a technical failure with High 

HiSeq 3000 Illumina platform. This led to substantial loss of samples and major delays 

with progress in the project. The second sequencing attempt was run exactly like the 

first attempt and it was successful, however, the depth of coverage was relatively low 

for tumour samples (ranging from 10 to 20x) and this could have resulted in unreliable 

conclusions from down-stream analyses. Therefore, the samples were sequenced 

once again and were run across two lanes. The FASTQ files from all successful runs 

were merged together, and this merging process was checked (see appendix 9.1).  

 

3.3.5. Preliminary sequencing data quality control for cases 1, 3 and 
5 to 8 

 

The basic sequencing data quality within the output sequencing files, FASTQ files,  
were assessed using fastQC software and SureCall softwares. Files examined were 
the merged files, representing cases 5 to 8, or the single file, representing cases 1 and 
3). Table 3.12 shows the basic quality metrics for the 6 patients who had complete 
sequencing data.   

 
In summary, the merging of FASTQ files from multiple runs was successful as 

indicated by the total number of sequenced reads in the final merged files which 

corresponds to the added up total number of sequenced reads in files from first and 

second runs (see appendix 9.1). The quality metrics run by SureCall software showed 

that there were relatively high duplicate reads (all samples, except sample case 3 pre-

NAC, showed above 50% of total sequenced reads were duplicates). This was partly 

expected due to high numbers of PCR amplification cycles during the WES library 

construction. Overall, all samples showed above 80% of its reads had mapped in the 

target regions of the genome.   
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Sample 
Number of 

reads in fastq 
files 

Duplicate 
reads 

% of 
duplicate 

reads 

Number of 
mapped reads in 

target regions 

% of 
mapped 

reads 

Bases on 
target 

Mean 
coverage 

depth 

1 pre 121,014,120 77,937,803 64.44% 33,307,317 83.47% 3,143,944,751 62 

1 post 111,408,940 63,517,656 57.04% 38,259,419 85.58% 3,464,256,889 68 

3 pre 108,054,316 38,420,225 35.58% 56,989,727 86.34% 6,436,742,015 127 

3 post 116,053,836 71,663,034 61.78% 35,458,873 84.97% 3,377,940,777 67 

5 pre 29,901,066 16,969,253 89.36% 9,881,199 83.42% 1,024,928,826 20 

5 post 10,257,650 3,320,499 83.08% 5,540,546 85.66% 573,993,928 27 

6 pre 27,261,968 16,818,092 91.56% 8,098,524 84.39% 817,842,912 30 

6 post 32,165,380 24,916,043 92.38% 5,626,674 84.53% 590,740,977 32 

7 pre 14,554,710 6,809,547 91.77% 6,072,702 84.56% 635,625,314 33 

7 post 31,240,420 21,610,184 89.26% 7,784,227 87.03% 791,064,172 31 

8 pre 16,678,481 16,678,481 87.80% 14,244,321 84.09% 1,567,446,469 41 

8 post 31,035,560 18,943,570 89.33% 9,496,927 84.99% 1,012,449,896 49 

Table 3.12  Quality metrics for WES for patients 1, 3 and 5 to 8 from SureCall 
software analysis. Duplicate reads are assumed to be the result of reading 2 or 
more PCR copies of the same original DNA fragment (i.e. a read). Percentage of 
mapped reads represent the number of reads which mapped to the reference 
genome by the total number of all sequenced reads that passed the mapping 
quality filters. The measurement of on-target bases is represented as the ratio of 
number of bases within a target region to total number of bases output by the 
sequencer, expressed as a percentage. Coverage depth represents the number 
of times a sequenced DNA fragment maps to a genomic target. Note – normal 
DNA metrics have been excluded from this table since these data from SureCall 
were no longer available at the time of writing; however, these metrics are 
summarised along with the tumour samples in a subsequent analysis in Table 
4.2.  

 

 

 

 



- 64 - 

3.4. Discussion 

 

3.4.1. The choice of ER positive and HER2 negative breast cancer 
treated with epirubicin/ cyclophosphamide NAC 

 

The main criteria used to select breast cancer patients that were potentially suitable 

for this project was to include patients with ER positive and HER2 negative breast  

cancers and with tumours that showed partial resistance to the common combination 

of epirubicin/cyclophosphamide neoadjuvant chemotherapy regimen. The reasons for 

these criteria were that ER positive and HRE2 negative receptors profile is common 

in breast cancer patients, so that would expand the chances of finding more cases to 

include in the study [36, 37]. Therefore, a reasonable proportion of potential cases 

should have post-treatment cancer cells remaining for analysis.  

 

In addition, I confining my patient cohort to those who received only the 

epirubicin/cyclophosphamide regimen. Confining my cohort to a single chemotherapy 

regimen was aimed to give a major advantage to address genomic aberrations relating 

to response to this chemotherapy specifically, based on the hypothesis that different 

chemotherapeutics may well have different pathways of resistance. A good example 

of this approach is illustrated by a study looking at the expression of let-7 miRNA from 

a cohort of 70 patients before NAC. All received anthracycline-based neoadjuvant 

chemotherapy only. It was found that lower let-7a expression was associated with 

epirubicin resistance in primary breast tumours. Moreover, upregulation of let-7a 

expression sensitized resistant breast tumour cell lines to epirubicin, by enhancing 

cellular apoptosis in vitro. Hence, the conclusion was that let-7a may be used as a 

therapeutic target to modulate epirubicin-based chemotherapy resistance [103].  

 

In a contrary, a study looked at the expression level of P-glycoprotein (Pgp), Multidrug 

Resistance-associated Protein 1 (MRP1), and Breast Cancer Resistance Protein 

(BCRP), which are known to predict chemotherapy responses. Their cohort composed 

of pre and post-NAC samples of 45 patients where the NAC regimes were 
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anthracyclines with or without taxanes. Interestingly, it was found that the expression 

level of BCRP was a survival marker after NAC, however, this maker was not specific 

to anthracyclines either with or without taxanes [40]. 

 

However, a substantial disadvantage of confining the patient cohort to a single 

combination of NAC regimen was limiting the chance of availability of suitable cases 

to include in the study, since patients who appeared to be responding poorly to the 

initial epirubicin/cyclophosphamide regimen were very frequently switched to taxane-

based regimens, making them ineligible for the study.  

 

3.4.2. The decision to use LCM to enrich for epithelial cancer cells 

 
The optimisation work provided helpful insights into the amount of genomic DNA that 

can be obtained from varying tissue thickness and areas of tissue. As it was vital to 

have sufficient genomic extraction for WES analysis, therefore I optimised both the 

DNA extractions protocol and the LCM technique. Use of LCM was a key decision as 

it was hoped it would provide the major advantage of having very good representation 

of the epithelial component and reduce the chances of sequencing unwanted cellular 

elements like lymphocytes and fibroblasts – thereby maximising the read depth of 

somatic (cancer) mutations. 

 

Some previous studies have used LCM in combination with Next Generation 

Sequencing (NGS) to uncover tumour heterogeneity in FFPE samples in terms of 

mutant allele frequency and gene transcript expression [104-106], although such 

studies remain in a small minority in the field of cancer genomics. In addition, micro-

dissection techniques have been used to isolate specific target cell types from within 

the pool of cancer cells, including cytokeratin AE1/AE3, p53, or estrogen receptor (ER) 

positive cells and nuclei from tissue sections with a mixed population of cells where 

the targets constituted only 5% of the sample. Target enrichment from this admixed 

cell population prior to NGS produced a minimum of 13-fold increase in mutation allele 

frequency detection, which reflects the robustness of this technique in detection of 

somatic mutations with low allele frequency [107]. Single cell-sequencing using RNA-
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sequencing represents a similar, although even more highly developed, technology, 

based on the basic idea that analysis of pools of cells with different phenotypes must 

limit understanding of the biology, while  such approaches have allowed insights into 

the fact that different phenotypically identical cells may dramatically vary with respect 

to transcriptomic landscape [108].    

 

However, implementing LCM in this project was a major technical challenge in terms 

of the time-required for thorough isolation of tumour cells, and also led to further 

reductions in the amount of extracted DNA presenting technical challenges in terms 

of library preparation. Nevertheless, I succeeded in achieving sequencing data, and 

expect that the LCM greatly enriched the sequencing depth of somatic variants.   

 

3.4.3. Use of quality control metrics during the WES protocol and for 
final sequence analysis  

 

I applied different quality check steps starting from quantifying the initial input of 

genomic DNA (gDNA), and at may subsequent steps through to checking the quality 

of the final sequencing data. As a rule of thumb, the more starting gDNA material for 

WES the more chances for successful quality sequencing data. The recommendation 

for the WES enrichment reagents and protocol I used (SureSelect for Illumina Paired 

End Sequencing) was for a starting template mass of 3ug of high quality DNA [109]. 

However, I did not expect to achieve this – particularly as high quality DNA is not 

available when working with FFPE material. Thereby, I used a modified protocol that 

used fewer concentrating and clean-up steps to minimise the loss of DNA, and 

included the multiple check steps to assess pre-capture and post-capture library 

quality using the TapeStation system. Most of my samples showed library DNA 

fragments size distributions to peak within or close to the recommended range of the 

enrichment system, of 225 to 275bp after shearing DNA and adaptor ligation library, 

and 250 to 350bp after hybridisation and exome capture steps. Utilising the libraries 

QC data were helpful to decide whether to proceed with sequencing or to rectify the 

poor libraries for example; perform further amplification or start another library for 

samples that showed deficiencies in quantity or fragment size. However, due to the 
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fact I had a limited number of cases that fit into the study’s inclusion criteria, and limited 

amount of material in the samples, especially in the core biopsies, the library quality 

was consistently a major concern and the sequencing data quality may be 

compromised as a result. 

 

The quality metrics for the sequencing data showed an average eventual read depth 

range of between 20x and 127x, which was improved partly due to the multiple 

sequencing runs that were performed for samples in the second batch. However, the 

number duplicate reads was relatively high for most of samples (77% overall; range; 

35.6-924%), an issue most likely associated with the increased number of PCR cycles 

used during libraries preparation. I obtained a relatively good percentage of mapped 

reads to the target region (i.e. the exome) in both batches of samples (83.42% targets 

with at least 20x coverage) which are comparable with other studies for percentage 

of mapped reads on target regions (for example 62.8-81.1% [95], 91-96% [110], and 

98.1-98.9% [111]). 

 

There are many studies that have suggested the feasibility of performing WES NGS 

on FFPE samples, [96, 98, 102, 112] and in a particular study has demonstrated that 

performing WES on a paired FFPE and fresh frozen (FF) tissues showed 70-80% 

concordance of variants detected in both types of samples stored for fewer than three 

years [112], which suggest NGS can be used to study FFPE archived samples. Also, 

another study performed successful sequencing using as low as 10ng of DNA from 

FFPE tissue and obtained similar quality data from this sequencing as from frozen 

tissue [113]. However, from the experience I have gained I conclude it is possible to 

sequence DNA from FFPE samples of low quantity; however, the quality of 

sequencing data depends heavily on the quantity and quality of initial input DNA.  
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3.4.4. Conclusion 

 
The use of WES represents an extremely challenging application of this technology, 

since I have used FFPE samples that have been fixed and stored for many years in a 

clinical archive, I have started with very small samples (biopsies in some cases), and 

have micro-dissected specific cell types from within these samples. Despite these 

challenges, I have produced sequencing data with basic analysis metrics that suggest 

the data may be suitable for down-stream analysis.    My next experimental aims were 

to proceed with a complete data analysis pipeline and then potentially generate a list 

of candidate genes that may impact on chemotherapy responses. 
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4. Extensive mutational differences exist between matched pre- 
and post-NAC samples, allowing identification of potential 

mediators of therapy response 

4.1. Abstract 

 
Whole exome sequencing data from trio samples (pre-NAC cancer cells, post-NAC 

cancer cells, and normal cells) from 6 primary breast cancer patients were obtained in 

the previous chapter (Chapter 3). Data were now analysed pairwise (either pre-NAC 

or post-NAC cancer vs. normal) to identify somatic mutations in the cancer cells, 

particularly single nucleotide variants and small insertions or deletions, initially in 

house using SureCall software (Agilent Technologies), but subsequently by an 

independent party using open-source bioinformatics tools (Edinburgh Genomics 

Laboratory). Once identified correctly, somatic mutations within matched pre-NAC and 

post-NAC samples were compared to determine the influence of NAC on mutation 

prevalence. Mutated genes were also compared between cancer cases to examine 

any genes or pathways influenced by NAC in the cohort overall.    

Data analysis revealed substantial mutational loads in both pre-NAC samples (mean 

number of somatic SNVs was 398) and post-NAC samples (mean number of somatic 

SNVs was 112). Overlap between mutational loads in matched pre-NAC and post-

NAC samples was surprisingly low (mean number of somatic SNVs was 34). Different 

strategies for filtering and prioritising of somatic variants were then implemented in 

order to generate a list of candidate genes showing evidence for these mutations 

influencing the response of cells to chemotherapy. In addition, functional enrichment 

analysis was utilised to highlight molecular pathways or biological functions that were 

significantly over-represented in the lists of candidate gene, to indicate any 

mechanisms with a role in response to NAC. Finally, a list of 46 priority candidate 

genes was generated, which – reassuringly - contained some genes known to be 

associated with chemotherapy response, for example TP53.  

This list of candidate genes was suitable for further functional investigation using in 

vitro approaches in the next chapter (Chapter 5). 
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4.2. Introduction 

 
Improved availability of next generation sequencing (NGS) technologies along with 

substantial decreases in sequencing costs have led to NGS becoming a favourable 

approach to apply in medicine, especially in cancer research. In addition, it is 

increasingly used in clinical practice for cancer diagnosis and treatment [114]. Whole 

exome sequencing (WES) is a popular targeted sequencing method in clinical and 

cancer research. Although, the exome makes up only around 1.5% of the genome, it 

contains around 85% of the known disease related variants [115], which makes WES 

a cost-effective alternative to whole genome sequencing as it requires less sequencing 

to achieve a required depth of coverage yet retains a strong likelihood of identifying 

the genomic aberrations of interest.  

 

However, there are many challenging tasks associated with NGS practice, in particular 

with data management and processing, i.e. the need for advanced IT infrastructure 

and programming specialists to perform data analysis using the most appropriate 

choices among the available computational methods and analysis tools. Also, there is 

a need for knowledgeable specialist to interpret sequencing data into meaningful and 

useable information. Increasingly, it is these analysis steps that constitute substantial 

bottle-necks for improved understanding of the cancer genome, rather than the 

availability of samples or sequencing hardware [116]. Nevertheless, several 

programmes are available to simplify the bioinformatics analysis so that front-line “wet-

lab” researchers who are not experts in bioinformatics can independently perform both 

the laboratory experiments and the down-stream computer-based analysis. For 

example, Agilent Technologies has launched a free bioinformatics tool called SureCall 

that is intended to provide analysis capabilities for researchers to transform raw NGS 

data into insightful analyses, without the need for bioinformatics training or advanced 

infrastructure [117].  
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In additions, there are several alternative commercial bioinformatics programs such 

as Avadis NGS (Strand Scientific Intelligence), CLC Genomics Workbench (CICbio, 

Qiagen), and CondonCode Aligner (CondonCode) that are said to be powerful and 

user-friendly bioinformatics packages for these types of analyses [118]. Moreover, 

there is a web-based platform for data analysis, named Galaxy, which incorporates 

popular open-source and community Linux command line tools into an easy to use 

web-based environment, thereby providing a major advantage for wet-lab biologists 

who are inexperienced with Unix/Linux systemBodi [119]. However, these software 

programmes are either expensive and/or their use is poorly represented with the 

literature meaning that there may be a need to validate findings from these packages 

by another independent means of data analysis. 

 

On the other hand, utilising publicly available bioinformatics tools seems to be the 

standard and popular way of analysing WES data, as shown by the literature [120, 

121]. There are a variety of programmes that have been validated to perform various 

bioinformatics analysis tasks and each tool has pros and cons depending on the user’s 

specific tasks and research questions to be answered [120]. Substantial bioinformatics 

expertise is usually required to make appropriate choices and use of many of these 

programmes.  

 

NGS has been a useful tool to investigate intra-tumour heterogeneity (ITH) because 

with sufficient sequencing depth it is possible to identify even minor sub-clones with 

genomic alterations, and such sub-clones could be related to increased tumour 

aggressiveness or therapy resistance. Implications of ITH in terms of responsiveness 

or resistance to different chemotherapeutic regimen and metastatic progression must 

be investigated in order to provide clinically relevant information for cancer patients. 

Studies have indicated that ITH influences the responsiveness to chemotherapeutic 

regimen: findings from ovarian, cervical, and tongue cancers suggested that specific 

sub-clones of tumour cells present before adjuvant chemotherapy have survived and 

expanded after chemotherapy [122-124].  
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In this chapter, I have shown the ITH findings for my matched breast cancer samples 

(pre-NAC and post-NAC) from both the SureCall software and data analysis using 

open-source bioinformatics tools. I present the issues I encountered with data analysis 

using the SureCall software, and the reasons for deciding to proceed with the findings 

from the open-source bioinformatics pipeline in order to generate my final list of genes 

that are candidate mediators of chemotherapy response.  

 

4.3. Results  

 
4.3.1. SureCall bioinformatics analyses of somatic variants in breast 

cancer samples 

 
SureCall (Agilent) is a desktop application combining algorithms for end-to-end NGS 

data analysis from alignment to annotations of mutations. Since I used Agilent 

products for exome library construction, I aimed to use this software from the same 

company to perform the analysis of my exome sequencing data from my matched trios 

of samples (normal genome, pre-NAC cancer genome and post-NAC cancer genome) 

from 6 breast cancer patients. I initially used SureCall software to perform basic quality 

control analysis and these findings have already been presented in Chapter 3, section 

3.3.5. After that, I performed pairwise analyses for each patient (pre-NAC versus 

normal, and post-NAC versus normal) to identify somatic Single Nucleotide Variants 

(SNV) and small insertion or deletions (indels). Note that in this chapter the patients 

within the sequencing study have been renumbered with sequential identifiers (i.e. 1-

6), with patient 3 in Chapter 3 now designated patient 2, and patients 5-8 from Chapter 

3 now designated patients 3-6.  

 

The numbers of detected variants for each cancer sample was unexpectedly high, 

ranging from 31,758 variants (patient 2 post-NAC) to 49,634 (patient 2 pre-NAC), with 

a very substantial overlap between pre-NAC and post-NAC for each patient. Also the 

type of variants detected were all SNPs, with no such small insertion or deletion 

variants which all of these led to questioning the reliability of Surecall software data. 
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I performed different filtering trials on the data for patients 1 and 2 to assess the impact 

of changing some analysis variables on the number of somatic variants with non-

synonymous effects identified, and those found to be present in both pre-NAC and 

post-NAC. Patients 1 and 2 were chosen as they appeared to have the highest quality 

data. I investigated different read depth cut-offs (>10x, low read depth; or >40x, 

relatively higher read depth) and whether ‘overlap’ between variants that are shared 

between pre-NAC and post-NAC samples should be regarded as requiring the same 

variant ID in the gene (i.e. literally exactly the same variant) or whether different 

variants in the same gene should be counted as ‘overlap’, regardless of variant ID. 

The purpose of the trials was to explore the size of the list of potential candidate genes 

based on the number of variants shared between pre-NAC and post-NAC and 

between patients, as those variants within the shared pool that consistently change 

their mutant allele frequency (MAF) after chemotherapy would be strong candidates 

as chemo-response mediators. The findings are summarised in Table 4.1, along with 

an assessment of the pros and cons of the different results. 

 

Based on these trial findings, the final filtering strategies were set to exclude variants 

sequenced outside coding region of the genome (i.e. intergenic regions and introns), 

and read depths of <10x. In terms of overlap between pre-NAC and post-NAC variants, 

I required only variants within the same gene. In addition, I added further filtering 

criteria. I utilised a Phred quality score cut-off of 30; a Phred quality score of 30 

assigned to a base means there is a probability of 1 in 1000 that the sequenced base 

is a sequencing error.  Finally, I utilised the predictor tools SIFT (Sorting Intolerant 

from Tolerant) and Polyphen2 (a tool to predict how conservative or damaging the 

variant in the encoded protein is likely to be) to exclude likely synonymous and benign 

mutations as follows; SIFT: >0.05 was excluded (scores above 0.05 are predicted to 

be benign), and Polyphen2: benign was excluded. The numbers of variants selected 

using these parameters, and the overlaps between paired pre-NAC and post-NAC 

samples, for all six patients are represented in Venn diagrams in Figure 4.1.  
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Strategy Number of 
variants detected 
shared between 
pre & post-NAC 
and shared across 
patients 1 and 2 

Pros Cons 

Filtering at 
>40x read 
depth with 
exact variants 
ID 

15 Short list, 
meaning 
experimentally 
tractable to 
investigate all 
further 

High confidence 
of calling variants 

Missing variants with potentially 
relevant functions  

 

Generally detected low change in 
MAF between pre-NAC and post-
NAC 

Filtering at 
>40x read 
depth with 
same mutated 
genes, 
regardless of 
variants ID 

18 Short list, 
meaning 
experimentally 
tractable to 
investigate all 
further 

 

High confidence 
of calling variants 

Missing variants with potentially 
relevant functions  

 

Cannot calculate change in MAF 
for genes included with two 
different mutations  

Filtering at 
>10x read 
depth with 
exact variants 
ID 

303 Larger number of 
genes with known 
functions that 
appeared 
potentially 
relevant 

 

More variants with 
MAF change 
detected 

Long list, meaning further 
prioritization required before next 
step of experimental testing 

Filtering at 
>10x read 
depth with 
same mutated 
genes, 
regardless of 
variant ID 

352 Larger number of 
genes with known 
functions that 
appeared 
potentially 
relevant 

 

Even longer list  

 

Cannot calculate change in MAF 
for genes included with two 
different mutations 

Table 4.1 Filtering strategies employed within SureCall to prioritise variants for 
further study and assessment of their impact. Numbers of variants identified 
in cancer samples from patients 1 and 2 were manipulated by varying analysis 
parameters. The impact of these variables was assessed by calculating the 
number of genes identified as having shared variants between pre-NAC and 
post-NAC samples and pros and cons of each filtering strategy are described. 
MAF: mutant allele frequency. 
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Figure 4.1 Venn diagrams to illustrate the number of somatic variants with non-
synonymous effects and their overlaps in pre-NAC and post-NAC samples 
for patients 1-6 from SureCall analysis. Somatic variants were identified by 
comparison with genomes extracted from matched normal tissue, and were 
filtered on the basis of read depth and Phred quality score cut-offs, coding 
region only, and variants within same gene (but potentially different 
mutations) for the overlap between pre-NAC and post-NAC. Note; it was 
observed the poorer quality samples from the second batch patients have 
much higher numbers of variant calls than patients’ samples 1 and 2 with 
SureCall analysis data, but not with the open source Edinburgh Genomics 
data. This provides further evidence to question SureCall data analysis 
reliability.  

 

 
 

Because the number of detected variants after filtering was relatively high, the 

candidate genes were prioritised as following: individual variants that were shared 

between pre-NAC and post-NAC for each patient were selected, and then these 

shared mutations were filtered further for shared variants across all 6 patients requiring 

the same variant ID in the gene, and therefore it was possible to assess the change in 
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MAF after NAC. This resulted in 37 genes with somatic variants in all 6 patients that 

were common to pre-NAC and post-NAC samples and showed an increase in MAF 

after therapy suggesting that the mutations were associated with relative resistance: 

CACNA1S, CDCP2, CELA3B, COL16A1, CR1, CR1L, CROCC, E2F2, ERMAP, 

FAM178B, FAM179A, FAM63A, FBLIM1, FRMD4B, FSIP2, GBP6, HMCN1, HSPG2, 

IGFN1, IGSF3, MRPL9, NOTCH2NL, OR11L1, PDE4DIP, PLEK, PTGER3, RNF223, 

SLC35E2, TEKT4, TNN, TRIM58, UBXN11, AJAP1, DNAH14, SPEG, OBSL1, HLA-

DRB1. 

 

4.3.2. Open-source bioinformatics tools analysis findings 

 
The findings from SureCall software were interesting, however, because of lack of 

intensive literature and published studies that have used this platform, and because I 

had some concerns about the very large number of somatic variants identified, I 

decided to validate the findings from SureCall by an independent party using open-

source bioinformatics tools. The independent party analysis was done by the 

Edinburgh Genomics laboratory (UK). The overall mapping quality metrics resulting 

from the analysis by the Edinburgh Genomic laboratory are shown in Table 4.2. The 

metrics relating to coverage of the target regions do not include reads marked as PCR 

duplicates. Overall, the quality metrics using the open-source bioinformatics pipeline 

(refer to method chapter 2, section 2.9 for exact details of the pipeline) are in 

agreement with the quality metrics generated from the SureCall software (refer to 

chapter 3, section 3.3.5). 

 

As with the SureCall analyses, some basic filtering criteria were determined to identify 

somatic aberrations within the cancer samples that were robust and could be 

considered for further analysis. Criteria were to exclude germline variants, by 

comparison with normal tissues, mutations with read depths of less than 5 or more 

than 800, and variants with a quality Phred score of less than 30. Furthermore, it 

should be noted that the MuTect2 tool from GATK (version 3.7) identifies variants 

present in the tumour and not in the matched normal sample, and a potential source 

of error is when a variant could be present in the normal sample, but missed in the 
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sequencing. Therefore, in this analysis potential somatic variants were excluded if they 

were identified in any of the other normal samples in this cohort, thereby reducing the 

potential errors associated with missing germline variant in matched tissues [125]. The 

numbers of detected variants, the types of aberration they represent (i.e. SNV or 

indel), and the overlaps in somatic mutations between pre-NAC and post-NAC are 

presented in Table 4.3 and Figure 4.2. These analyses identified on an individual 

patient basis genes carrying variants that were: a) unique to the pre-NAC sample (i.e. 

had apparently been lost or made undetectable after NAC treatment), b) unique to the 

post-NAC samples (i.e. had apparently been selected for by NAC and had therefore 

become detectable (or had been generated by NAC treatment itself), or c) common to 

both samples (allowing assessment of relative enrichment or depletion after treatment 

in terms of change in MAF). The mean number of somatic SNVs was 398 for pre-NAC, 

while was 122 for post-NAC, revealing substantial differences in mutational loads 

between pre-NAC and post-NAC (statistically significant: p=0.03; paired Student’s T 

test). Also, the overlap between mutational loads in matched pre-NAC and post-NAC 

samples was surprisingly low, with the mean number of somatic SNVs in both samples 

being 34 (range 3-141). In addition, among the gene mutations shared between pre- 

and post-NAC pooled from all 6 patients, 125/209 showed increases in their MAF 

(60%), while 84/209 (40%) showed decreases.  

 

Metric Range from 18 samples (normal, pre-NAC, 
post-NAC from 6 patients) 

% of mapped reads 79-98% 

Duplication rate 35-92% 

Bases on target 69-77% 

Mean read depth 18-102 

Median insert size 94-152bp 

Standard deviation of insert sizes 20-52bp 

Table 4.2 Overall read mapping metrics for the exome sequencing data from 
trios of samples from 6 breast cancer patients, as assessed using open-
source bioinformatics tools by Edinburgh Genomic laboratory. 
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 All variants Somatic (not detected in 
any normal) 

Germline (detected in one 
or more normal samples) 

Sample ID SNP INS DEL ALL SNP INS DEL ALL SNP INS DEL ALL 

Pt.1 post-NAC 80 6 7 93 36 3 6 45 44 3 1 48 

Pt. 1 pre-NAC 174 9 14 197 68 7 5 80 106 2 9 117 

Pt. 2 post-NAC 58 6 8 72 43 4 6 53 15 2 2 19 

Pt. 2 pre-NAC 2585 53 81 2719 1355 25 54 1434 1230 28 27 1285 

Pt. 3 post-NAC 385 60 20 465 112 54 14 180 273 6 6 285 

Pt. 3 pre-NAC 228 80 91 399 124 76 87 287 104 4 4 112 

Pt. 4 post-NAC 439 47 47 533 238 42 44 324 201 5 3 209 

Pt. 4 pre-NAC 401 67 89 557 339 62 85 376 172 5 4 181 

Pt. 5 post-NAC 931 38 48 1017 137 26 33 196 794 12 15 821 

Pt. 5 pre-NAC 952 154 83 1189 125 135 70 330 827 19 13 859 

Pt. 6 post-NAC 133 28 26 187 42 21 24 87 91 7 2 100 

Pt. 6 pre-NAC 102 36 25 163 38 33 23 94 64 3 2 69 

Table 4.3 Number of different types of genomic variants in each tumour sample. 
Variants were identified in trios of samples (normal, pre-NAC, post-NAC) from 6 
breast cancer patients and were filtered based on read depth >5 and <800, and 
Phred score >=30. Somatic variants were determined by comparison between 
cancer samples and their matched normals, and then with the pooled variants 
across all 6 normals. 
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Figure 4.2 Venn diagrams to illustrate the number of somatic variants and the 
overlaps in paired pre-NAC and post-NAC samples for breast cancer 
patients 1-6 using open-source bioinformatics tools (Edinburgh Genomic 
laboratory, UK).  

 

 

4.3.3. Comparison between SureCall and open-source analyses: 
troubleshooting SureCall 

 
There was a substantial difference between the findings from SureCall software and 

the open-source bioinformatics analysis tools in terms of number of detected variants, 

and also the type of variants (all SNPs for Surecall; indels were identified using open-

source analyses). Also, the results from SureCall software analysis in terms of number 

and type of variants was compared with different studies and found there is a high 

discordance with the published studies using FFPE samples (refer to discussion 

section 4.4.1), thereby  I had to troubleshoot the SureCall software utilising the a 

genomic viewer. It was found that in many cases “somatic” variants in the cancer 

samples in fact had multiple reads aligned with high mapping quality in the matched 

normal samples, yet had not been called as germline variants. An example of this is 
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shown in Appendix 9.2. Extensive troubleshooting was performed along with the 

Agilent bioinformatics support team, from the initial position of Agilent denying that 

there was a potential problem with their software. However, after some months, Agilent 

acknowledged that there was a fault in the SureCall software to recognise mutations 

present in both tumour and reference normal samples as germline mutations; instead, 

they were identified (incorrectly) as somatic variants, seemingly because the variants 

within the normal sequence had been (incorrectly) defined as sequencing errors. The 

Agilent bioinformatics support team then committed to rectify this fault in their 

upcoming software version 4.0, although the timeline they expected for implementing 

this fix was many months and was therefore not useful for me to move my work 

forward. Considering the SureCall findings appeared to be highly unreliable, I therefore 

decided to proceed only with the findings from the open-source bioinformatics 

analyses in order to generate my final list of candidate genes for potential roles in 

chemo-response.  

 

4.3.4. Functional enrichment analysis findings  

 
Variants that were unique to either the pre-NAC sample or the post-NAC sample had 

potentially been selected for or against by NAC, and were therefore potential 

candidate mediators of chemotherapy response. However, this interpretation is 

susceptible to false positives for reasons including differential representation of tumour 

cells within the samples due to tissue sampling (see discussion section 4.4.2). 

Therefore, I was interested to assess whether the list of genes hosting these variants 

was significantly enriched for any molecular functions, as a method of increasing 

confidence in individual candidates. The genes were sub-categorised into 2 groups: 

genes with variants unique to pre-NAC and genes with variants unique to post-NAC. I 

assessed potential shared molecular functions within these gene lists by performing 

functional enrichment analysis on each list separately. I used three different 

enrichment analysis tools: Database for Annotation, Visualization, and Integrated 

Discovery (DAVID) [126], WebGestalt (GSAT) [127], and ToppGene [122]. The 

findings from ToppGene enrichment analysis are shown in Table 4.4, while further 

details of the other analyses such as statistics, scores and number of genes enriched 

in each term or pathway are included in Appendix Table 9.3. Various molecular 
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pathways were significantly over-represented among the mutated genes in each 

category. Of particular note was significant overrepresentation of extra-cellular matrix 

(ECM) molecules, collagen protein coding genes, and integrin signalling molecules, 

potentially hinting at roles for these pathways in chemo-response. Among the genes 

in the gene sets involved in the above pathways were: Mitogen-activated protein 

kinase genes such as MAP3K4, MAPK10, and phosphatidylinositol-4-phosphate 3-

Kinase PIK3C2A. In addition, collagens such as COL9A1, COL1A1, and COL6A3, 

integrins alpha chains such as ITGA5, ITGA7, and ITGA9 and laminins (protein of the 

ECM) such as LAMA5, LAMB1, and LAMC1. 

 
 

Enriched pathways for 
genes with variants that 
were unique to the pre-
NAC samples 

p-value Gene count in the 
query list 

Number of genes 
defined as members 
of the pathway 

Genes encoding collagen 
proteins 2.38E-11 22 44 

Collagen chain 
trimerization 1.24E-10 22 47 

Collagen biosynthesis and 
modifying enzymes 1.34E-09 26 70 

Ensemble of genes 
encoding core extracellular 
matrix including ECM 
glycoproteins, collagens 
and proteoglycans 

1.34E-08 59 275 

Collagen formation 1.60E-08 29 93 

Extracellular matrix 
organization 2.66E-07 59 298 

Assembly of collagen 
fibrils and other multimeric 
structures 

3.67E-06 19 60 
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Integrin signalling pathway 7.98E-06 36 167 

Genes encoding structural 
components of basement 
membranes 

1.94E-05 14 40 

Focal adhesion 3.52E-05 39 199 

Diseases associated with 
O-glycosylation of proteins 5.92E-05 17 60 

Diseases of glycosylation 9.42E-05 21 86 

Rho GTPase cycle 9.86E-05 30 145 

Degradation of the 
extracellular matrix 1.04E-04 25 112 

Rap1 signaling pathway 1.20E-04 39 210 

Ensemble of genes 
encoding extracellular 
matrix and extracellular 
matrix-associated proteins  

1.40E-04 139 1028 

NCAM1 interactions 1.76E-04 12 37 

Protein digestion and 
absorption 1.88E-04 21 90 

HDR through Single 
Strand Annealing (SSA) 2.34E-04 12 38 

Nitric oxide stimulates 
guanylate cyclase 3.35E-04 9 24 
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Glutamatergic synapse 3.61E-04 24 114 

Enriched pathways for genes with variants that were unique to the post-NAC samples 

Ensemble of genes 
encoding core extracellular 
matrix including ECM 
glycoproteins, collagens 
and proteoglycans 

3.11E-05 25 275 

Type II diabetes mellitus 3.87E-05 9 46 

Integrin signaling pathway 4.52E-05 18 167 

Genes encoding structural 
components of basement 
membranes 

8.86E-05 8 40 

Table 4.4 Functional enrichment analysis using ToppGene for gene lists of 
variants found uniquely in either pre-NAC or post-NAC breast cancer 
samples. Pathways are in ranked by statistical significance of over-
representation. 
 

 

4.3.5. Further prioritisation of somatic variants: generation of a final 
prioritised list of genes of interest 

 

Next, I aimed to prioritise the candidate genes from the open-source bioinformatics 

findings for potential further investigation using in vitro studies. I applied different 

analysis strategies in order to prioritise candidate genes taking into consideration the 

frequency of mutated genes among the 6 patients, the category in which the candidate 

was found (i.e. variants unique to pre-NAC samples, variants unique to post-NAC 

samples, or variants shared between pre-NAC and post-NAC), and the extent of 

change in MAF for variants shared between pre-NAC and post-NAC (Table 4.5).  
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Analysis Type Number of mutations detected 

Genes mutated in 2 or more patients and 

unique to pre-NAC samples 

101 genes 

 

Genes mutated in 2 or more patients and 

unique to post-NAC samples 

17 genes 

Genes mutated in 2 or more patients with >5% 

change in MAF between pre-NAC and post-

NAC  

None 

Genes with variants with >5% increase in MAF 

(pre-NAC to post-NAC) in 1 patient and also 

unique to post-NAC in another patient 

1 gene 

Genes with variants with >5% decrease in 

MAF (pre-NAC to post-NAC) in 1 patient and 

also unique to pre-NAC in another patient 

13 genes 

Total  132 

Table 4.5 Different analyses of variant distributions resulting in different lists of 
prioritised genes for further analysis. Different gene lists are represented 
simply by the number of genes.   
 

 
It was important to reduce the list of 132 genes in total in Table 4.5 further, since 

this number of genes was experimentally intractable for the planned down-stream 

in vitro investigations. Therefore, in addition, I used findings from the SnpEff 

annotation of the likely effects of the mutations on genes (such as amino acid 

changes) and the protein damaging predictor tools SIFT and Polyphen2 in order to 

prioritise mutations with the best chance of being functionally relevant. 

Furthermore, I took into consideration whether the mutated genes belonged to the 

enriched pathways in the functional enrichment analysis findings (section 4.3.4). 

The steps taken to reach the final list of candidate genes for functional analysis is 

illustrated in a flow chart Figure 4.3. This process of filtering and prioritising resulted 

in a list of the following 46 candidate genes: ABL1, AP3B1, ARAP2, CCDC88C, 

CENPF, CEP350, COL6A3, CRIPAK, DMBT1, EFEMP1, EGFLAM, FRYL, 

IGSF10, ITGA7, MUC17, MYO10, NCOA3, NLRC5, NOTCH2, PARP4, PKD2L1, 
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PTPN14, RPTN, S100PBP, SEZ6, SYNE1, TENM4, THADA, TP53, TPTE, TTN, 

ZBTB49, ZFHX4, CACNA1C, EMILIN3, FLG2, IKBKAP, PCNX1, PDGFD, 

ZNF853, SSPO, XDH, CEP295, KIAA1161, P2RX4, PKD2L1. Details of the 

variants found in each of these genes, the distributions of the variants across the 

samples from the 6 patients, the functional impact predictions of these variants, 

and whether the genes were represented in the functional enrichment analysis are 

presented in Tables 4.6 (mutations found only in pre-NAC samples), 4.7 (mutations 

found only in post-NAC samples) and 4.8 (mutations found in matched samples in 

one patient and in either pre- or post-NAC in a second patient). 

 

 

 

Figure 4.3 A flow chart illustrates the prioritising steps taken to generate a final 
list of candidate genes for functional validation using in vitro approaches. 
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GENE Pt. 
ID POS 

REF ALT 

AF DP VARTYPE EFFECT IMPACT Polyphen 
score 

SIFT  

score 

ABL1 
2 130884719 C T 0.629 55 SNP Missense Moderate D 0.003 

5 130880070 TGG T 0.125 30 DEL frameshift High NA NA 

AP3B1 
2 78294548 T C 0.571 66 SNP Missense Moderate P 0.596 

6 78216087 C A 0.111 53 SNP Missense Moderate B 0.021 

ARAP2 

2 36187535 T C 0.65 40 SNP Missense Moderate B 0.284 

5 36147673 T C 0.3 60 SNP Missense Moderate D 0.076 

6 36121335 G A 0.133 29 SNP Intron MODIFIER NA NA 

CCDC88C 
2 91273625 A G 0.739 118 SNP Missense Moderate D 0.001 

3 91313936 CCCT C 0.154 25 DEL Deletion Moderate NA NA 

CENPF 

2 214645205 C T 0.524 371 SNP Missense Moderate P 0.07 

5 214620705 

C CACTTA
CCTACT
GTCACC
CTCCAG
GAGCT 

0.068 83 INS Frameshift High NA NA 

CEP350 

1 180041193 C T 0.034 290 SNP Missense Moderate B 0.058 

4 180093972 

C ATAGAA
GCCTCA
GTTAAT
AGAAG 

0.13 32 DEL Frameshift High NA NA 

COL6A3 

2 237365895 G A 0.645 99 SNP Missense Moderate D 0.003 

3 237372259 

GTGCG
AACGTA
CTGGAA
CTCAG
GCCCG
GCACTT
TGGGA
CCCATC
GATGA
GAAAGA
CCACGT
CCCTCT
TGCCAC
CAACAC
C 

G 

0.033 132 DEL Deletion High NA NA 

CRIPAK 
3 1395743 

T TCTCTG
GTCCCT
GTTG 

0.052 111 INS Insertion Moderate NA NA 

5 1395532 C T 0.023 284 SNP Missense Moderate D 0.059 

DMBT1 

2 122617175 T C 0.679 142 SNP Intron Modifier NA NA 

3 122643175 

CCCGC
TTCCGG
TTCAGG
GCCTTC
CACTTC
CTGAA 

C 

0.019 298 DEL Deletion Moderate NA NA 

5 122585178 
T TGGTG

GTGTGT
GTGTGT
GTGTG 

0.133 29 INS Intron Modifier NA NA 

EFEMP1 2 55876730 

CATTCA
TTTATA
TCTGAA
AAAAAG
TTTTAT

C 

0.137 130 DEL Deletion High NA NA 
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ATATAT
ATAT 

4 55870866 A C 0.08 94 SNP Missense Moderate D 0.005 

EGFLAM 

2 38406958 C T 0.589 121 SNP Missense Moderate P 0.006 

5 38305475 
A AGACC

CTTTTT
TTTTTT
TTTTTT 

0.129 62 INS Frameshift High NA NA 

FRYL 
2 48523013 

TGGTAC
TCCTGG
AG 
 

T 

0.2 74 DEL Frameshift High NA NA 

4 48515114 T TG 0.133 25 INS Frameshift High NA NA 

IGSF10 

2 151437365 G C 0.231 336 SNP Missense Moderate P 0.17 

3 151448270 G A 0.382 65 SNP Missense Moderate B 0.163 

5 151447249 C T 0.06 95 SNP Missense Moderate B 0.389 

ITGA7 
1 55701099 C T 0.07 85 SNP Missense Moderate P 0.048 

2 55688241 G C 0.371 160 SNP Missense Moderate NA NA 

MUC17 

2 101042842 C T 0.184 165 SNP Missense Moderate D 0.092 

4 101033319 T C 0.052 187 SNP Missense Moderate B 0.802 

6 101038440 C A 0.034 165 SNP Missense Moderate B 1 

MYO10 
2 16681487 C G 0.1 80 SNP Missense Moderate D 0.011 

3 16689924 A C 0.308 51 SNP Intron Low NA NA 

NCOA3 
2 47627680 C T 0.181 356 SNP Missense Moderate D 0.177 

4 47627738 AG A 0.133 27 DEL Frameshift High NA NA 

NLRC5 
3 57025443 

GGCAG
CCCCA
CGCCTT
CCACCA
GGTCTA
TGTCCC
TCCAAT
CCTGC
GCCGG
GCCAC
A 

G 

0.121 43 DEL Frameshift High NA NA 

4 57025887 CTA C 0.125 32 DEL Frameshift High NA NA 

NOTCH2 
2 119996678 G A 0.182 286 SNP Stop-gained High NA NA 

4 119916650 TTC T 0.143 40 DEL Frameshift High NA NA 

PARP4 

2 24442624 G A 0.121 55 SNP Missense Moderate B 0.002 

5 24478255 G T 0.167 35 SNP Missense Moderate B 0.647 

6 24493683 G A 0.214 25 SNP Synonymous Low NA NA 

PKD2L1 

2 100296133 C T 0.451 191 SNP Missense Moderate D 0.01 

6 100293359 

G GGCAA
AATAGC
TTTCTC
TGCCAA
AGCTTT
CTGACC
TTTGGC
TCCATC
TT 

0.143 25 INS Insertion Moderate NA NA 

PTPN14 
2 214402898 T C 0.486 57 SNP Missense Moderate D 0.081 

5 214376293 AGG A 0.118 32 DEL Frameshift High NA NA 

RPTN 1 152154830 G A 0.03 188 SNP Stop_gained High NA NA 
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5 152156069 

C CATAGT
GGGAA
CTCTGA
CCTTGT
CTGTCT
GGCTG
ACT 

0.049 114 INS Insertion Moderate NA NA 

S100PBP 
2 32826426 G C 0.119 95 SNP Missense Moderate D 0.065 

4 32828030 G GAA 0.143 26 INS Frameshift High NA NA 

SEZ6 

1 28957425 A G 0.077 99 SNP Missense Moderate B 1 

5 28979734 

G GACCA
GATAGA
TTCACA
GCCGA
ATTCTA 

0.133 28 INS Stop_gained High NA NA 

SYNE1 

2 152325144 G C 0.597 99 SNP Synonymous Low NA NA 

3 152319013 GATCT G 0.167 23 DEL Frameshift High NA NA 

4 152399673 G A 0.136 43 SNP Stop_gained High NA NA 

TENM4 

4 79064967 TAC T 0.118 29 DEL Frameshift High NA NA 

5 78669399 

C CCTGG
ATCTAA
CGCTTT
CTTTTT
TTTTTT
T 

0.12 44 INS Frameshift High NA NA 

THADA 
2 43485261 G T 0.404 88 SNP Missense Moderate B 0.008 

5 43574929 G A 0.15 40 SNP Missense Moderate D 0.007 

TP53 
4 7674945 G T 0.571 14 SNP Stop_gained High NA NA 

5 7674220 C A 0.211 37 SNP Stop_gained High D 0.005 

TPTE 

2 10542449 G A 0.14 208 SNP Intron High NA NA 

3 10569776 G A 0.115 167 SNP Synonymous Modifier NA NA 

5 10605546 C T 0.057 175 SNP Synonymous Low NA NA 

TTN 
2 178586573 G T 0.107 142 SNP Missense Moderate D 0.001 

4 178616876 T C 0.158 37 SNP Missense Moderate B 1 

ZBTB49 
2 4303022 G A 0.257 57 SNP Missense Moderate B 0.524 

3 4302031 TC T 0.4 8 DEL Frameshift High NA NA 

ZFHX4 

2 76856262 G A 0.299 230 SNP Missense Moderate D 0.139 

5 76854316 

C CGGCC
ATTTTT
TTTTTT
TTTTT 

0.073 81 INS Insertion Moderate NA NA 

Table 4.6 Candidate genes for roles in defining chemotherapy response, 
identified from mutations found only in the pre-NAC samples. Genes are 
listed with the details of the mutations. Details include: distributions of the variants 
across the 6 patients, allele frequency (AF) which refers to the number of reads 
with mutations by the number of total of mapped reads, read depth (DP), variant 
type (VARTYPE), effect, mutation impact from SnpEff, Polyphen scores 
(B=Benign, P=Pathology, D=Damaging, NA=Not Applicable), SIFT scores 
(<0.05=deleterious, >0.05=Benign).  
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GENE Pt. 
No.  POS REF ALT AF DP VARTYPE EFFECT IMPACT Polyphen2 SIFT_score 

CACNA1C 

2 2457610 G A 0.057 138 SNP Missense Moderate P 0.086 

4 2610680 

C CACAC
ACACA
CACAC
ACACA
CACAC
ACACA
CACA 

0.024 241 INS Insertion Moderate NA NA 

EMILIN3 
4 41361974 C T 0.282 78 SNP NA Moderate B 1 

5 41361737 G C 0.125 79 SNP NA Moderate D 0.116 

FLG2 

3 152353023 C T 0.065 114 SNP Missense Moderate B 0.558 

5 152353444 C T 0.018 319 SNP Missense Moderate P 0.052 

6 152354489 T A 0.022 332 SNP Synonymous Low NA NA 

IKBKAP 

3 108900446 C T 0.4 19 SNP Intron Modifier NA NA 

4 108912333 

G GCCTA
ACCAC
CCCCC
CC 

0.118 32 INS Frameshift High NA NA 

PCNX1 
4 70978026 CACAG

G 
C 0.118 30 DEL Frameshift High NA NA 

6 70978204 GAT G 0.136 45 DEL Frameshift High NA NA 

PDGFD 
2 104000171 G T 0.167 34 SNP Missense Moderate D 0 

6 103947667 T C 0.294 33 SNP Missense Moderate B 0.521 

ZNF853 

2 6621625 C G 0.5 47 SNP Missense Moderate D 0 

4 6621152 

A ACAAG
CGGGC
CTATGT
CAGCG
GCTGG
TCCAC
CTGCC
ATCCTG
CTGCTT
ATGT 

0.167 23 INS Insertion Moderate NA NA 

Table 4.7 Candidate genes for roles in defining chemotherapy response, 
identified from mutations found only in the post-NAC samples. Genes are 
listed with the details of the mutations. Details include: distributions of the variants 
across the 6 patients, allele frequency (AF) which refers to the number of reads 
with mutations by the number of total of mapped reads, read depth (DP), variant 
type (VARTYPE), effect, mutation impact from SnpEff, Polyphen scores 
(B=Benign, P=Pathology, D=Damaging, NA=Not Applicable), SIFT scores 
(<0.05=deleterious, >0.05=Benign).  
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Mutated genes that show a >5% INCREASE in MAF between pre- and post in one patient and also present in the unique to post group in another patient  

GENE 
Pt. 

No. 
POS 

REF ALT 
AF DP VARTYPE EFFECT IMPACT Polyphen2 SIFT_score 

SSPO 
5 149789294 C G 0.25 37 SNP Missense Moderate D NA 

3 149785168 G A 0.155 140 SNP Missense Moderate P NA 

Mutated genes that show a >5% DECREASE in MAF between pre- and post in one patient and also present in the unique to pre group in another patient  

GENE 
Pt. 

No. 
POS 

REF ALT 
AF DP VARTYPE EFFECT IMPACT Polyphen2 SIFT_score 

XDH 
2 31370399 T C 0.539 133 SNP Missense High B 0.534 

4 31388277 C T 0.313 32 SNP Missense Moderate B 0.165 

CEP295 
2 93684123 C T 0.275 78 SNP Missense Moderate B 0.245 

3 93698405 A G 0.5 16 SNP Missense Moderate B 1 

KIAA1161 
2 34372933 T A 0.472 91 SNP Missense Moderate B NA 

4 34372875 G C 0.455 44 SNP Stop_gained High NA NA 

P2RX4 

2 121228843 A G 0.762 193 SNP Missense Moderate B 0.013 

3 121222196 G A 0.455 21 SNP Synonymous Modifier NA NA 

4 121221881 C T 0.333 30 SNP Synonymous Modifier NA NA 

PKHD1 
2 52056905 A G 0.669 265 SNP NA Moderate NA NA 

4 52046107 T C 0.6 56 SNP Missense Moderate B 0.11 

Table 4.8 Candidate genes for roles in defining chemotherapy response, 
identified from mutations shown to change in MAF in one patient, while 
being unique to pre- or post-NAC in another. Genes are listed with the details 
of the mutations. Details include: distributions of the variants across the 6 
patients, allele frequency (AF) which refers to the number of reads with mutations 
by the number of total of mapped reads, read depth (DP), variant type 
(VARTYPE), effect, mutation impact from SnpEff, Polyphen scores (B=Benign, 
P=Pathology, D=Damaging, NA=Not Applicable), SIFT scores 
(<0.05=deleterious, >0.05=Benign).  
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4.4. Discussion 

 

4.4.1. Whole exome sequencing data analysis issues 

 
I attempted to take advantage of the bioinformatics software SureCall from Agilent 

(Agilent Technologies, USA), which should allow researchers lacking specific 

expertise in bioinformatics to perform data analysis along with data quality 

assessment. The findings from SureCall were interesting, however, due to an 

unprecedentedly high number of detected mutations and a relative lack of published 

studies in the literature using this software, I decided to validate the findings from 

SureCall by an independent party using open-source bioinformatics tools.  

 

The number of somatic variants detected using SureCall software and open-source 

bioinformatics tools were very different, with the open-source bioinformatics analysis 

findings more consistent with other published studies. For examples, the number of 

somatic SNVs detected on 4 FFPE gastrointestinal stromal tumours (GIST) samples 

were ranging between 86-766 [110], while WES on 21 fresh-frozen tumour samples 

from pheochromocytomas and paragangliomas allowed detection of 518-1432 

somatic variants per tumour sample (filtering out low confidence somatic variants that 

showed MAF<0.1% or read depth <20) [128]. In comparison, my detected somatic 

variants from the open-source bioinformatics analysis numbered between 45 and 

1434, which is very similar to above studies. After troubleshooting, I came to the 

realisation that there is a specific fault in the SureCall software, which has resulted in 

false positive calling of somatic variants. The Agilent bioinformatics support team 

eventually acknowledged this fault.  

 

The quality metrics of using open-sources bioinformatics tools showed a good 

mapping percentage of the targeted genome region (79-98%), while there is high 

percentage of duplicated sequenced reads (35-92%). The overall quality metrics 

findings were consistent with the related SureCall findings, which was discussed in 
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chapter 3, demonstrating that some aspects of the SureCall pipeline appear to work 

correctly.  

  

4.4.2. Interpretation of the mutational  landscape  

 
My analyses reveal that very extensive differences existed between pre- and post-

NAC samples. Strikingly, the number of detected mutations in pre-NAC samples was 

higher than post-NAC in every patient (p=0.03; paired Student’s T test), suggesting 

that chemotherapy reduced the genetic diversity of the tumours and this supports the 

clonal evolution model.  In addition, around 60% of genes mutations increased in MAF 

in post-NAC samples, which indicates that pre-existing mutations may play a role in 

resistance through their expansion and adapting to the chemotherapeutic treatment 

[129-131]. 

 

The comparison between pre-NAC and post-NAC samples allowed me to categorise 

mutations into 3 main sub-categories: Sub-category 1: mutations found uniquely in 

pre-NAC samples. This suggests that these mutations in tumour clones were 

successfully treated by the chemotherapy regimen. Sub-category 2: detection of 

mutations unique to the post-NAC samples. This suggests that there have been new 

mutations that resulted in relative resistance to chemotherapy, or that very rare clones 

that were not detected initially have been selected for and have expanded in MAF. 

Sub-category 3: the mutations shared between pre-NAC and post-NAC samples. 

These potentially provided opportunities to identify tumour resistance driving 

mutations by assessing the representation (MAF) of these mutations relative to 

unmutated in both pre-NAC and post-NAC samples. However, these speculations are 

based on the assumption that mutations were not missed during tumour sampling – a 

particular concern given the pre-NAC samples were small core biopsies taken from a 

much larger tumour mass, nor undetected by sequencing and analysis due to low 

region coverage or low allelic frequency, as has been discussed previously  [132, 133].  

 

There are a small number of published studies where the authors have inspected the 

genetic profile of matched pre- and post-chemotherapy tumour samples from 
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individual patients and have used variety of ways of interpreting the ITH [39, 134-138]. 

In one such study, WES was performed on pre- and post-NAC cisplatin-based 

chemotherapy samples from 30 muscle-invasive bladder cancer patients. The data 

analysis was carried out to identify sub-clonal mutations that were unique to either 

of the matched pre- or post-treatment tumour samples, which they interpreted to be 

caused by chemotherapy-induced and/or spatial heterogeneity. In addition, different 

analyses such as survival and mutational signature validation analyses were carried 

out and these showed that greater post-treatment tumour heterogeneity predicted 

worse overall survival. This finding was based on patients who showed no response 

to treatment, rapid recurrence and short survival, as they had mutations in key 

genes such E2F3 and JUN (drivers of cell cycle progression) or tumour suppressor 

genes such as FBXW7 exclusively in the post-treatment tumour sample [135].  

 

In the context of breast cancer, one study examined the presence or absence of 238 

specific mutations in 19 cancer-related genes in paired breast tumour core biopsies 

obtained pre-NAC and post-first cycle doxorubicin or docetaxel in 10 treatment-naïve 

primary breast cancer patients. The examination was performed using a targeted 

panel of genotyping assays (Sequenom assays). One of the approaches for data 

analysis was carried out by categorising the mutational findings into 4 mutational 

patterns based on mutation status between pre- and post-treatment: wild-type in pre- 

and wild-type in post-treatment, mutant in pre- and mutant in post-treatment, mutant 

in pre- and wild-type in post-treatment, wild-type in pre- and mutant in post-treatment. 

This analysis led to the identification of PIK3CA as predominantly mutated in both pre-

treatment samples (8/10, 80%) and post-treatment (5/10, 50%), however, no 

association could be made between mutational pattern category and 

clinicopathological feature and treatment response or survival [136] from these data 

alone, highlighting the importance of validating functional roles of the identified 

mutations (as I attempt in chapter 5 and 6). 

 

The consensus findings from these studies are that there is substantial intra-tumoural 

heterogeneity in terms of number of detected mutations in pre- and post-

chemotherapy samples, and substantial differences between pre- and post-
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chemotherapy samples that could be a source of treatment failure through clonal 

evolution or expansion following selective pressures of treatment exposure. Thereby, 

these different approaches for analyses can lead to the identification of driver 

mutations that could provide potential therapeutic targets to treat resistant clones. 

Nevertheless, no published study exist in breast cancer using similar approaches for 

identifying mutated genes for chemotherapy response using whole exome level data,  

and therefore my study has considerable novelty.  

 

4.4.3. Molecular pathways potentially deregulated during therapy 

 
One way of identifying biologically important pathways that were relevant to chemo-

response was to analyse the molecular pathways enriched within the lists of mutated 

genes. The hope was that some pathways might represent common targets for 

deregulation by mutations in multiple different genes - observations that would be 

missed when focusing on single genes only. I performed such analyses on the unique 

to pre-NAC sub-category and the unique to post-NAC sub-category separately. The 

findings suggested that there are pathways shared between the subcategories and 

involved in either sensitising to or resisting the epirubicin/cyclophosamide 

chemotherapeutic regimen. Overall, 3 common pathways that were enriched in both 

unique to pre-NAC sub-category and the unique to post-NAC sub-category and 

showed significant statistics parameters (p-value, q-value Bonferroni, q-value FDR 

B&H, and q-value FDR B&Y) (Appendix 9.3 for more details): extracellular matrix 

(ECM), collagen protein coding and integrin signalling pathways. This suggests these 

pathways are involved in chemotherapy response modulation and as a result has 

helped to focus on genes belong to these pathways to be included in the final list of 

candidate genes for functional validation in vitro. 

 

Interestingly, ECM/integrin signalling has been identified previously as a major 

pathway contributing to cancer cell survival and resistance to chemotherapy by 

inhibiting apoptosis via beta1 integrin in solid cancers such as breast cancer and small 

cell lung cancer [139]. Also, involvement of alpha2 beta1 integrin with its ligand 

collagen I, reduced apoptosis activity in T cell acute lymphoid leukaemia (T-ALL) cell 



- 95 - 

lines and primary blasts induced by doxorubicin chemotherapeutic regimens 

specifically [140]. In addition, many studies have suggested that tumour 

microenvironment components, including both stromal cells and the non-cellular 

components of the ECM, play roles in development of chemo-resistance through the 

activation of survival pathways, such as laminins acting on survival signalling including 

PI3K/AKT, TP53 and MAPK [141-143]. Altogether, this appears to be concordant with 

my functional enrichment findings since ECM, collagen proteins and integrin signalling 

pathways were selected in both unique to pre-NAC sub-category and to the unique to 

post-NAC sub-category.  

 

In the literature, a similar enrichment analysis was performed for high-grade serous 

ovarian carcinomas using data for altered gene expression patterns in matched pre- 

and post-NAC samples. Among the significantly enriched pathways were DNA 

damage repair, which was up-regulated after treatment, and MAPK signalling, cell-

cycle/apoptosis, transcriptional regulation, PI3K signalling, and Notch signalling, which 

were down-regulated after treatment. The pathways analysis findings helped to make 

observatory notes such as genes involved in hereditary ovarian cancer signalling 

showed decreased expression in post- versus pre-NAC analysis [144]. Altogether, this 

depicts the robustness of functional enrichment analysis on large sets of data in 

identifying molecular targets for the disease in question.  

 

4.4.4. List of candidate genes for in vitro validation 

 
My analysis resulted in a list of 46 candidate genes for further assessment as 

mediators of chemotherapeutic response in vitro. Interestingly, the final list of 

candidate genes included the TP53 gene, which is known for its role in 

chemotherapeutic resistance including to anthracycline agents like doxorubicin and 

epirubicin [145-148]. The presence of this gene in my output lists supports the idea 

that my process of filtering and prioritising candidate genes has worked effectively, 

and the TP53 candidate gene could potentially act as a positive control for subsequent 

in vitro investigations. 
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A few other candidate genes represent particularly promising candidate genes as 

mediators of chemo-response, while others are promising simply because of the large 

number of them identified in relatively few overlapping molecular pathways. For 

example, many candidate genes in the list are from the ECM enriched pathway, such 

as AP3B1, COL6A3, ITGA7, and SSPO, with particular emphasis on COL6A3 and 

ITGA7, as they are both also involved in integrin signalling. Both pathways have been 

identified previously as major pathways contributing to cancer cell survival and 

resistance to chemotherapy [139, 140]. Furthermore, NOTCH2 appears to be a 

promising candidate since the Notch pathway was enriched (see Appendix 9.3), and 

published studies have shown this pathway to impact on chemotherapy response in 

cancer [149-151]. 

 

In addition, the following candidate genes are known in the literature for their roles in 

a variety of cellular processes that potentially relate to cancer behaviours, including 

cancer progression and potentially treatment resistance; ABL1, NCOA3, CCDC88C, 

PTPN14, S100PBP, CACNA1C. ABL1 (ABL Proto-Oncogene 1, Non-Receptor 

Tyrosine Kinase) is a proto-oncogene that encodes a protein tyrosine kinase and is 

well known for its role in the BCR-ABL fusion protein that has become a signature of 

chronic myeloid leukemia (CML). Also, mutations in ABL1 have been shown to confer 

resistance to imatinib [152, 153]. While, NCOA3 (Nuclear Receptor Coactivator 3) 

is known to be integrated in breast cancer pathway and EGF/EGFR signalling 

pathway  [154, 155]. The rest of the genes in my list of 46 have relatively less literature, 

and therefore fewer if any functional studies conducted on them; these, therefore, have 

potential for high novelty in terms of potentially assigning a role in chemotherapeutic 

response.  

 

 

 

 

 

 

 



- 97 - 

 

 

4.4.5. Conclusion 

 
In common, with a number of published studies, I have analysed the data from 

matched pre- and post-therapy cancer samples, which showed partial resistance to 

chemotherapy as a way of identifying potential mediators of therapy response.  

However, my study is unique, as I have assessed this in the context of breast cancer 

using whole exome data, and samples purified using LCM to reduce stromal 

contamination, which should makes the findings more relevant to the tumour resistant 

clones. The findings have allowed me to interpret the findings of the ITH landscape 

and generate a list of candidate genes that may mediate chemo-response. 

Interestingly, some of candidate genes appear highly promising in terms of what is 

known about their functional roles already, while others are novel with relatively little 

known. These genes have been screened for functional effects on chemo-response in 

data described in chapter 5. 



- 98 - 

5. MUC17 and PCNX1 are drivers of chemotherapy response in 
vitro  

5.1. Abstract 

46 potential mediators of chemo-response were identified in Chapter 4, using genomic 

analyses of breast cancers showing partial resistance to NAC. My aim in this chapter 

was to carry out functional screens of these genes, initially using approaches that were 

higher throughput but with more chance of false findings, but narrowing down on fewer 

genes with lower throughput approaches giving more confidence in the findings. 

Having identified genes with functions in defining chemotherapy response, I have 

attempted to investigate their mechanisms of action.  

All 46 genes were tested in screens based on assessing the sensitivity of the ER-

positive breast cell line MCF-7 to epirubicin treatment after siRNA knock-down of each 

gene individually. Based on consistent chemo-response patterns during the two 

rounds of siRNA screening, MUC17, PCNX1 and TENM4 were taken forward for 

further validation. MUC17 knock-down was associated with significantly increased cell 

sensitivity to epirubicin treatment in vitro, while PCNX1 knock-down was significantly 

associated with resistance. TENM4 did not demonstrate a convincing role in 

chemotherapy response and was excluded from subsequent analyses. Analyses were 

performed to investigate mechanisms by which MUC17 and PCNX1 modify cellular 

chemotherapy response, by examining ABC transporter expression levels and cellular 

loading of epirubicin. ABCB1 and ABCC1 mRNA expressions were significantly down-

regulated after MUC17 knock-down, while ABCG2 mRNA gene expression was 

significantly up-regulated after PCNX1 knock-down. Drug loading assays indicated 

that MUC17 knock-down increased intracellular drug uptake, while PCNX1 knock-

down decreased intracellular drug uptake. These data support a model whereby both 

genes impact on chemo-response through altering drug loading, potentially through 

modulating ABC transporter activities.  

In summary, MUC17 and PCNX1 are potential drivers of response to chemotherapy 

in breast cancer, and therapeutic modulation of their activities could potentially 

enhance chemotherapy responses. 
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5.2. Introduction 

 
Cancer cells contain a substantial collection of genomic mutations and epigenetic 

alterations that contribute to the development and individual characteristics of that 

cancer. Not all of the mutations, however, have important roles in tumour progression, 

or responsiveness or resistance to treatment; identification of the mutations that are 

of relevance in these terms can provide novel candidates for targeted treatments. 

Mutations that provide a selective survival advantage, and thus promote treatment 

resistance or cancer development, are termed driver mutations, and those that do not 

are termed passenger mutations. The terms driver and passenger may also be used 

to refer to the genes harbouring these mutations [73]. Hence, a goal of personalised 

medicine is to match patients to therapies that are specific to the oncogenic drivers in 

their tumours, resulting in treatments that are potentially less toxic and more effective 

[156]. For example, mutations in key survival pathways, such as the PI3K or p53 

pathways, can confer cancer cells with different sensitivities to targeted therapy, 

chemotherapy, and radiation, suggesting these mutations could contribute to 

treatment resistance [6]. 

 

Many computational methods have been used to distinguish driver gene mutations 

from passenger gene mutations, for example frequency-based or function-based 

methods. Frequency-based approaches consider candidate driver genes to be genes 

mutated in a greater proportion of cancer samples than would be expected from the 

background mutation rate; examples of genes that would be detected by such an 

approach include TP53 and KRAS, which show consistently high mutation frequency 

rates in many cancers [73, 157]. Whilst, function-based approaches identify candidate 

driver mutations by their tendency to have greater impacts on protein function than 

passenger mutations. Two common sources for functional information are Sorting 

Intolerant From Tolerant (SIFT) and Polyphen, which incorporate information from 

sequence context, position and protein characteristics to assess the likely functional 

impact of mutations [73]. These bioinformatics methods do not provide definitive 

classification of mutations as drivers or passengers, but help to prioritise candidate 

driver gene mutations. It remains the case that functional validation is required to 

definitively classify mutations. A number of approaches have been established that 
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allow manipulation of the expression or function of relatively large sets of genes in 

cells lines, and thereby subsequent analysis of whether these manipulations influence 

the cellular function of interest. Examples include; short interference RNA (siRNA) 

library screens, cDNA library screens, or miRNA library screens [73, 158].  In the case 

of assessing the influence of mutations that are thought to produce a loss-of-function, 

siRNA is particularly appropriate, since this can reduce expression levels thereby 

mimicking the influence of the mutation. RNAi has become a widely used technique 

for target discovery, validation, and therapeutic development; and as a screening 

platform. It has enabled scientists to perform large-scale screens in the field of cancer 

genomics in order to identify novel diagnostic and drug targets for cancer [159-161].  

 

I have carried out a siRNA screen to perform functional investigation of my candidate 

genes, by assessing the chemo-sensitivity of an appropriate breast cancer model cell 

line after siRNA-mediated loss-of-function of individual genes. I have identified MUC17 

and PCNX1 as driver genes for chemotherapeutic response. Subsequently, I looked 

into the mechanisms by which they modulate cellular chemotherapeutic response by 

examining drug loading and ABC transporter expression levels. 
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5.3. Results 

 

5.3.1. MCF-7 cells are an appropriate model cell line  

 
My aim was to mimic loss-of-function mutations in each of my 46 candidate genes 

using targeted siRNAs in an appropriate breast cancer cell line.  In order to do this, I 

needed to identify a cell line that was representative of the same breast cancer subtype 

as the clinical cancers I had used in Chapter 3 (luminal A). I also needed to ensure 

that my 46 genes of interest were expressed in this cell line, and were genomically 

wild-type (therefore, presumably potentially functional). Breast cancer cell lines 

regarded as representative of luminal A cancers were identified in our laboratory 

collections, and transcriptomic expression and genomic profiles for the 46 candidate 

genes were examined in 3 of these (MCF-7, ZR-75-1 and T47D) using the Cancer Cell 

Line Encyclopedia (CCLE) dataset. I found MCF-7 was the best cell line to carry out 

the siRNA screen, as these cells lacked genomic aberrations in any of the candidate 

genes, and expression was easily detectable for every gene; this was in contrast to 

the other cell lines where either some data were lacking, genomic aberrations were 

present, or certain candidate genes were expressed at notably low relative levels. 

 

5.3.2. SiRNA screening for functional influences of 46 genes on 
chemo-response 

   

I aimed to test the impacts of siRNA knock-down of 46 separate candidate genes on 

chemotherapeutic drug response in vitro by transfecting MCF-7 cells with gene 

targeted siRNA, treating with epirubicin or control, and then assessing cell viability 

using MTT assays in comparison to cells transfected with non-targeted siRNA 

controls. Two separate screens were performed: first a screen of all 46 candidate 

genes using 2 different doses of epirubicin (0.5 μM and 1 μM), and secondly, a screen 

of 32 of these genes with 3 different doses of epirubicin (0.5 μM, 1 μM and 2 μM). Data 

are presented in Figures 5.1, 5.2 and 5.3. Figure 5.1 shows the first screen data for 
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14 of the genes, including only those that were not taken forward to the second screen. 

Figures 5.2 and 5.3 show the first and second screen data for the remaining 32 genes.   

 

My aim was to identify siRNAs that caused consistent and notable changes in relative 

cell survival after treatment with epirubicin. Figure 5.1 shows the data for the 14 genes 

that failed to meet these criteria on the first screen. For example, transfection with 

siRNA targeted against ARAP2 or THADA caused almost no difference in relative 

survival after epirubicin treatment in comparison to the non-targeted siRNA control. By 

contrast, transfection with siRNA targeted against EGFLAM or KIAA1161 caused 

differences in relative survival after epirubicin treatment that appeared to differ in 

direction between the two drug doses, one appearing protective, while the other 

sensitised. Also, other transfections, such as against PKHD1, appeared to cause a 

difference in sensitivity at one drug dose only. Finally, transfection with targeted siRNA 

against PDGFD, SEZ6, S100PSP and ZFHX4 all had an effect at the higher dose only 

but were not taken forward since a pragmatic decision was made only to take the 

strongest candidates further. However, they were potentially still functionally relevant. 

Note, FLG2 represents an exception, as this was excluded from further analysis due 

to lack of reagents. 
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Figure 5.1 14 genes were excluded from further analysis after a first siRNA 
screen. MCF-7 cells were seeded in 96-wells, and transfected with 50nM of 
siRNA against target genes or non-targeted siRNA control.  48h later, cells were 
treated with either of two doses of epirubicin or were left untreated for 24h.  MTT 
assays were performed. Data are presented as relative cell survival after 
epirubicin treatment by normalisation of treated values to the matched untreated 
values for either non-targeted control (NTC, black) or targeted siRNA (grey). Data 
bars represent means of 5 replicate wells from one biological experiment. Error 
bars represent SD. The epirubicin doses were determined based on the survival 
cure of MCF-7 cells treated with broad range of epirubicin doses in order to 
establish inhibitory concentration (IC50).  
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Figures 5.2 and 5.3 show data for the siRNAs that demonstrated some consistency in 

changes in relative cell survival within screen 1, and were then additionally used in 

screen 2. In addition, some siRNAs were used in screen 2 mainly based on the 

strength of the literature associated with the potential role of those genes in chemo-

response, even though the screen 1 data showed little potential influence. Figure 5.2 

shows data for genes that were not taken forward beyond screen 2, while Figure 5.3 

shows data for the 3 genes selected for further analysis. Note, ZNF853 demonstrated 

a consistency in cells response to chemotherapeutic drug within and between screens 

1 and 2, however, it was not taken forward and instead MUC17 was taken forward. 

Still pragmatic decision was made since both MUC17 and ZNF853 exhibited same 

chemo-response phenotype but MUC17 was found mutated in 3 patients as opposed 

to 2 patients for ZNF853.  

 

When results from the two screens were compared for each gene, it was notable how 

poorly concordant the data were between the screens, highlighting the importance of 

performing biological replicates for screening, as represented by these two 

independent screens, to avoid being misled by findings that are not reproducible from 

a single biological assessment. Transfection with siRNAs targeted against many 

genes, for examples CENPF or COL6A3, caused increased cell survival after 

epirubicin treatment in comparison to the non-targeted control in one screen, but little 

influence in the other. In some cases, targeted siRNAs showed increased cell survival 

following epirubicin treatment in one screen and then the reverse pattern in the other 

screen; for example, CCDC88C or CEP295. 

 

 

 



- 105 - 

 

 

 

 

 

0u
M

0.5
uM

1.0
uM

0

50

100

150

AP3B1

Epirubicine conc.

%
 c

el
l V

ia
bi

lit
y

NTC
AP3B1 

0u
M

0.5
uM

1.0
uM

2.0
uM

0

50

100

150

AP3B1

Epirubicine conc.

ce
ll 

vi
ab

ili
ty

 (%
)

NTC

AP3B1

0u
M

0.5
uM

1.0
uM

0

50

100

150

CACNA1C

Epirubicin (µM)

R
el

at
iv

e 
ce

ll 
vi

ab
ili

ty
 (%

) NTC siRNA

Gene-targeted siRNA

0uM
0.5uM

1.0uM
2.0uM

0

50

100

150

CACNA1C

Epirubicine conc.
ce

ll 
vi

ab
ili

ty
 (%

)

NTC

CACNA1C

0u
M

0.5
uM

1.0
uM

0

50

100

150

CCDC88C

Epirubicine conc.

%
 c

el
l V

ia
bi

lit
y

NTC
CCDC88C 

0uM
0.5uM

1.0uM
2.0uM

0

50

100

150

CCDC88C

Epirubicine conc.

ce
ll 

vi
ab

ili
ty

 (%
)

NTC
CCDC88C

0u
M

0.5
uM

1.0
uM

0

50

100

150

CENPF

Epirubicine conc.

%
 c

el
l V

ia
bi

lit
y

NTC
CENPF 

0u
M

0.5
uM

1.0
uM

2.0
uM

0

50

100

150

CENPF

Epirubicine conc.

ce
ll 

vi
ab

ili
ty

 (%
)

NTC

CENPF

0u
M

0.5
uM

1.0
uM

0

50

100

150

CEP295

Epirubicine conc.

%
 c

el
l V

ia
bi

lit
y

NTC 
CEP295

0uM
0.5uM

1.0uM
2.0uM

0

50

100

150

CEP295

Epirubicine conc.

ce
ll 

vi
ab

ili
ty

 (%
)

NTC
CEP295



- 106 - 

 

 

 

 

 

0u
M

0.5
uM

1.0
uM

0

50

100

150

CEP350

Epirubicine conc.

%
 c

el
l V

ia
bi

lit
y

NTC 
CEP350

0uM
0.5uM

1.0uM
2.0uM

0

50

100

150

CEP350

Epirubicine conc.

ce
ll 

vi
ab

ili
ty

 (%
)

NTC

CEP350

0u
M

0.5
uM

1.0
uM

0

50

100

150

COL6A3

Epirubicine conc.

%
 c

el
l V

ia
bi

lit
y

NTC 
COL6A3 

0u
M

0.5
uM

1.0
uM

2.0
uM

0

50

100

150

COL6A3

Epirubicine conc.
ce

ll 
vi

ab
ili

ty
 (%

)

NTC

COL6A3

0u
M

0.5
uM

1.0
uM

0

50

100

150

CRIPAK

Epirubicine conc.

%
 c

el
l V

ia
bi

lit
y

NTC 
CRIPAK 

0uM
0.5uM

1.0uM
2.0uM

0

50

100

150

CRIPAK

Epirubicine conc.

ce
ll 

vi
ab

ili
ty

 (%
)

NTC
CRIPAK

0uM
0.5uM

1.0uM
0

50

100

150

ELP1

Epirubicine conc.

%
 c

el
l V

ia
bi

lit
y

NTC 
ELP1

0u
M

0.5
uM

1.0
uM

2.0
uM

0

50

100

150

200

250

ELP1

Epirubicine conc.

ce
ll 

vi
ab

ili
ty

 (%
)

NTC

ELP1

0u
M

0.5
uM

1.0
uM

0

50

100

150

EMILIN3

Epirubicine conc.

%
 c

el
l V

ia
bi

lit
y

NTC 
EMILIN3

0u
M

0.5
uM

1.0
uM

2.0
uM

0

50

100

150

200

EMILIN3

Epirubicine conc.

ce
ll 

vi
ab

ili
ty

 (%
)

NTC

EMILIN3



- 107 - 

 

 

 

 

 

0uM
0.5uM

1.0uM
0

50

100

150

FRYL

Epirubicine conc.

%
 c

el
l V

ia
bi

lit
y

NTC
FRYL

0uM
0.5uM

1.0uM
2.0uM

0

50

100

150

FRYL

Epirubicine conc.

ce
ll 

vi
ab

ili
ty

 (%
)

NTC
FRYL

0u
M

0.5
uM

1.0
uM

0

50

100

150

IGSF10

Epirubicine conc.

%
 c

el
l V

ia
bi

lit
y

NTC 
IGSF10

0u
M

0.5
uM

1.0
uM

2.0
uM

0

50

100

150

IGSF10

Epirubicine conc.
ce

ll 
vi

ab
ili

ty
 (%

)

NTC

IGSF10

0uM
0.5uM

1.0uM
0

50

100

150

ITGA7

Epirubicine conc.

%
 c

el
l V

ia
bi

lit
y

NTC 

ITGA7 

0u
M

0.5
uM

1.0
uM

2.0
uM

0

50

100

150

ITGA7

Epirubicine conc.

ce
ll 

vi
ab

ili
ty

 (%
)

NTC

ITGA7

0uM
0.5uM

1.0uM
0

50

100

150

MYO10

Epirubicine conc.

%
 ce

ll V
iab

ilit
y

NTC 
MYO10

0uM
0.5uM

1.0uM
2.0uM

0

50

100

150

MYO10

Epirubicine conc.

ce
ll v

iab
ilit

y (
%

)

NTC

MYO10

0uM
0.5uM

1.0uM
0

50

100

150

NLRC5

Epirubicine conc.

%
 c

el
l V

ia
bi

lit
y

NTC 

NLRC5

0uM
0.5uM

1.0uM
2.0uM

0

50

100

150

NLRC5

Epirubicine conc.

ce
ll 

vi
ab

ili
ty

 (%
)

NTC
NLRC5



- 108 - 

 

 

 

 

 

0uM
0.5uM

1.0uM
0

50

100

150

NCOA3

Epirubicine conc.

%
 ce

ll V
iab

ilit
y

NTC 

NCOA3

0u
M

0.5
uM

1.0
uM

2.0
uM

0

50

100

150

NOCOA3

Epirubicine conc.

ce
ll 

vi
ab

ili
ty

 (%
)

NTC

NOCOA3

0uM
0.5uM

1.0uM
0

50

100

150

NOTCH2

Epirubicine conc.

%
 ce

ll V
iab

ilit
y

NTC 
NOTCH2

0u
M

0.5
uM

1.0
uM

2.0
uM

0

50

100

150

NOTCH2

Epirubicine conc.
ce

ll 
vi

ab
ili

ty
 (%

)

NTC

NOTCH2

0uM
0.5uM

1.0uM
0

50

100

150

P2RX4

Epirubicine conc.

%
 c

el
l V

ia
bi

lit
y

NTC 
P2RX4

0u
M

0.5
uM

1.0
uM

2.0
uM

0

50

100

150

P2RX4

Epirubicine conc.

ce
ll 

vi
ab

ili
ty

 (%
)

NTC

P2RX4

0uM
0.5uM

1.0uM
0

50

100

150

PKD2L1

Epirubicine conc.

%
 c

el
l V

ia
bi

lit
y

NTC 
PKD2L1

0u
M

0.5
uM

1.0
uM

2.0
uM

0

50

100

150

200

PKD2L1

Epirubicine conc.

ce
ll 

vi
ab

ili
ty

 (%
)

NTC

PKD2L1

0uM
0.5uM

1.0uM
0

50

100

150

PTPN14

Epirubicine conc.

%
 c

el
l V

ia
bi

lit
y

NTC 
PTPN14

0uM
0.5uM

1.0uM
2.0uM

0

50

100

150

PTPN14

Epirubicine conc.

ce
ll 

vi
ab

ili
ty

 (%
)

NTC

PTPN14



- 109 - 

 

 

 

 

 

0uM
0.5uM

1.0uM
0

50

100

150

RPTN

Epirubicine conc.

%
 c

el
l V

ia
bi

lit
y

NTC 

RPTN

0u
M

0.5
uM

1.0
uM

2.0
uM

0

50

100

150

RPTN

Epirubicine conc.

ce
ll 

vi
ab

ili
ty

 (%
)

NTC

RPTN

0uM
0.5uM

1.0uM
0

50

100

150

SSPO

Epirubicine conc.

%
 ce

ll V
iab

ilit
y

NTC 
SSPO

0uM
0.5uM

1.0uM
2.0uM

0

50

100

150

SSPO

Epirubicine conc.
ce

ll v
iab

ilit
y (

%
)

NTC
SSPO

0uM
0.5uM

1.0uM
0

50

100

150

SYNE1

Epirubicine conc.

%
 c

el
l V

ia
bi

lit
y

NTC 
SYNE1

0uM
0.5uM

1.0uM
2.0uM

0

50

100

150

SYNE1

Epirubicine conc.

ce
ll 

vi
ab

ili
ty

 (%
)

NTC

SYNE1

0uM
0.5uM

1.0uM
0

50

100

150

TP53

Epirubicine conc.

%
 c

el
l V

ia
bi

lit
y

NTC 
TP53

0uM
0.5uM

1.0uM
2.0uM

0

50

100

150

TP53

Epirubicine conc.

ce
ll 

vi
ab

ili
ty

 (%
)

NTC
TP53

0uM
0.5uM

1.0uM
0

50

100

150

TPTE

Epirubicine conc.

%
 c

el
l V

ia
bi

lit
y

NTC 
TPTE

0uM
0.5uM

1.0uM
2.0uM

0

50

100

150

TPTE

Epirubicine conc.

ce
ll 

vi
ab

ili
ty

 (%
)

NTC
TPTE



- 110 - 

 

 

 

 

 

Figure 5.2 29 genes that demonstrated some consistency in changes in relative 
cell survival within screen 1 (left column), or were strong candidates in the 
literature, were then additionally used in screen 2 (right column). Cells were 
transfected with siRNA and treated with 2 or 3 doses of epirubicin as described 
for Figure 5.1. Data are presented as relative cell survival after epirubicin 
treatment by normalisation of treated values to the matched untreated values for 
either non-targeted control (NTC, black) or targeted siRNA (grey). Data bars 
represent means of 5 replicate wells from one biological experiment. Error bars 
represent SD. 
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Figure 5.3 shows the data for the three siRNAs I selected as representing the strongest 

candidate genes from these data based on the consistent chemo-response pattern 

during the 2 siRNA screening rounds; these were MUC17, PCNX1 and TENM4. Cells 

treated with siRNA against MUC17 and PCNX1 showed increased sensitivity to 

epirubicin treatment as compared to the non-targeting siRNA (NTC), while cells 

treated with siRNA against TENM4 showed increased cell survival after epirubicin 

treatment, equating to apparent resistance. These three genes were selected for 

further in silico and in vitro analyses in the next sections.  

 

 

 

Figure 5.3 MUC17, PCNX1 and TENM4 were selected as representing the 
strongest candidate genes based on the consistent chemo-response 
pattern during 2 siRNA screens. Cells were transfected with either targeted 
siRNA or non-targeted siRNA control and treated with 2 or 3 doses of epirubicin 
as described for Figure 5.1. Data are presented as relative cell survival after 
epirubicin treatment by normalisation of treated values to the matched untreated 
values for either non-targeted control (NTC, black) or targeted siRNA (grey). Data 
bars represent means of 5 replicate wells from one biological experiment. Error 
bars represent SD. 
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5.3.3. Further bioinformatics analyses of the mutations in MUC17, 
PCNX1, and TENM4 

 

Screening findings suggested that MUC17, PCNX1, and TENM4 were potential 

mediators of chemotherapy response. Before performing further wet-lab analyses, I 

went back to the annotation data for the genomic variants identified within these genes 

and also used the UniprotKB dataset, to gain potential insights into the mutational 

impact of these variants on the 3D protein structures and, therefore, potentially on 

protein function.  

 

There were 3 variants for the MUC17 gene found in 3 patients, all of which were 

identified in the unique to pre-NAC sub-group, thus potentially defining cells that were 

successfully eradicated by chemotherapy i.e. candidate mutations for eliciting 

increased chemo-sensitivity. The full length of the MUC17 encoded glycoprotein is 

4493 amino acids (aa) comprising 3 main regions; an extracellular portion (aa 26-

4393) containing tandem repeats of a 59 residue sequence and two EGF-like repeats, 

one which is transmembrane (aa 4394-4414), and the other cytoplasmic (aa 4415-

4493). All variants were missense mutations located in the extracellular portion of the 

protein and were predicted to have moderate effects on protein function. The variant 

p.Thr3809Met with the polyphen2 predicted damaging effect fell between the last 

repeat domain in the extracellular portion and the transmembrane EGF-like domain. 

The latter is a region of likely functional importance: EGF-like domains can associate 

with the EGF receptor 2 (EGFR2) on the surface of adjacent cells, an interaction that 

may be involved in growth signal transduction to stimulate cellular proliferation [162].  

 

There were 2 variants for the PCNX1 gene found in 2 patients. Both were found in the 

unique to post-NAC sub-group, indicating the potential for the mutations to have 

conferred resistance to chemotherapy. Note that the data from the screen (Figure 5.3) 

supports the hypothesis that loss of function of this gene (mediated by siRNA) was 

associated with chemo-sensitivity; considering the mutations were found in the post-
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NAC samples this could suggest that the patient mutations were gain of function 

mutations. The PCNX1 protein is 2341aa. Both variants, p.Thr564Fs and p.Asp623Fs, 

are positioned within the transmembrane domain that contains multiple 

transmembrane spans from residues 28 to 1312. Since both of the variants have 

frameshift effects in an early transmembrane helix of the protein domain, they are likely 

to cause loss of the majority of the encoded protein. Thereby, one might predict that 

the mutations are most likely to cause loss of function of the gene, which is not clearly 

compatible with the data above. 

 

There were 2 variants for the TENM4 gene in 2 patients. Both were found in the unique 

to pre-NAC sub-group, suggesting that the mutations apparently define cells that were 

successfully eradicated by chemotherapy, therefore are relatively chemo-sensitive. 

Note that the screen (Figure 5.3) showed that TENM4 siRNA knock-down (loss of 

function) caused chemo-resistance, a finding that could be compatible, again, with the 

proposal that the TENM4 mutations in patients were gain of function mutations. The 

encoded 2,825aa protein contains a putative N-terminal signal sequence (aa 1-341) 

and a transmembrane domain (aa 346-366), followed by 8 EGF -like repeats (aa 562-

831). One of the patient variants (p.Val88Fs) is in the Teneurin N-terminal domain and 

the other one (p.Asp780Fs) is in the EGF-like domain 7. Both of the variants have 

frameshift effects on the protein domains. Since, the N-terminal amino acid of protein 

is an important determinant of its half-life, it is likely that the encoded protein is 

degraded due to defects in this process [163]. Also, the other variant may affect cell 

proliferation since EGF-like domains can interact with human EGF receptor 2 (EGFR2) 

on the adjacent cell surface, with downstream effects on growth signalling [162]. 

Therefore, it might be predicted that these mutations may cause loss of function of the 

gene – a prediction that is again apparently not simply compatible with the data above 

concerning functional effect of siRNA and the mutations being unique to the pre-NAC 

samples. 

 

 

 

 



- 114 - 

 

 

5.3.4. MUC17, PCNX1 and TENM4 siRNAs knock-down are effective 

 
Before further investigations into MUC17, PCNX1, and TENM4 was performed, it was 

first critical to assess the siRNA knockdown efficiency at both mRNA and, when 

possible, protein levels. This was not performed at the level of the initial screens of 46 

genes, simply due to the cost and work-load required for the relatively little benefit of 

potentially ruling out some false negative effects on chemo-response caused by poor 

knock-down efficiency. 

 

MCF-7 cells were transfected with siRNAs targeted against MUC17, PCNX1, or 

TENM4, or with the non-targeted control, as previously. qPCR was used to quantify 

relative expression of these gene products over 4 different time-points (24, 48, 72 and 

96 hours) post-transfection (Figure 5.4). The data demonstrate all three gene products 

were successfully targeted for up to 96 hours post-transfection. The highest peak of 

gene knock-down was found at 24 hours post-transfection for MUC17 (90%), 48 hours 

post-transfection for PCNX1 (99%), and 72 hours post-transfection for TENM4 (71%), 

with greater than 50% knock-down at all time-points for MUC17 and PCNX1. In 

addition, protein expression after siRNA treatment was assessed at the 48 hours post-

transfection time-point using immuno-fluorescence for MUC17 (Figure 5.5) and 

western blots for PCNX1 (Figure 5.6). A suitable antibody was not available for 

TENM4, therefore TENM4 knock-down was not assessed at the protein level. 

Successful knock-down of MUC17 and PCNX1 protein was confirmed (~57% knock-

down for MUC17 and ~50% for PCNX1). 
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Figure 5.4 Transfection of MCF-7 cells with siRNA targeting MUC17, PCNX1 or 
TENM4 reduces gene expression successfully for up to 96h. MCF-7 cells 
were transfected with 50μM siRNA against MUC17 (A), PCNX1 (B), TENM4 (C), 
or non-targeted control (NTC) siRNA. RNA was prepared from the cells, and 
relative gene expression of MUC17, PCNX1, TENM4 was assessed at mRNA 
level using qPCR at 4 time points (i.e. 24, 48, 72, 96 hours post-transfection). 
Data are presented relative to expression with the NTC. NTC was performed for 
each time point and was used to normalise the expression of the targeted siRNA 
at each time point. Error bars represent SEM of technical replicates for one 
biological repeat.  
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Figure 5.5 Immuno-fluorescence demonstrates successful knock-down of 
MUC17 protein using siRNA. MCF-7 cells were transfected with targeted 
MUC17 siRNA or NTC siRNA for 48h. Cells were then treated with anti-MUC17 
or no primary antibodies (negative control) followed by fluorescent secondary 
antibodies. DAPI was used to stain the nuclear DNA. (A) Images were taken 
using confocal microscope. (B) Semi-quantitative densitometry analysis was 
performed on 10 cells to assess relative MUC17 expression using ImageJ 
software. The expression level of the targeted protein was normalised to the 
NTC. Data represent mean fluorescence levels, with error bars showing the SEM. 
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Figure 5.6 Western blot analysis of non-targeted siRNA control (NTC) and 
PCNX1 siRNA shows successful knock-down of PCNX1 protein. MCF-7 cells 
were transfected with targeted PCNX1 siRNA or NTC siRNA for 48h and then 
total protein extracted. Proteins were subjected to Western blot analysis for 
PCNX1 or B-tubulin. (A) Western blots images as labelled (B) Semi-quantitative 
densitometry of PCNX1 expression. The expression level of the targeted protein 
is normalised to the NTC. The error bars represent SEM of technical replicate 
measurements.  

 

 

5.3.5. Expression levels of MUC17 and PCNX1, but not TENM4, 
influence response to epirubicin 

 
Two further cell viability assays were performed to assess the functional impact (i.e. 

chemotherapeutic response) of targeted siRNA for MUC17, PCNX1 and TENM4. 

Firstly, a more thorough assessment was performed of short-term impacts using 

expanded versions of the screening assay (MTT assay), by adding a broad range of 

chemotherapeutic drug concentrations, testing over three time points, and performing 

three independent biological replicates. Secondly, an assessment of impact on 

chemotherapeutic response in terms of influencing longer-term survival using colony 

forming assays (CFA), again with three independent biological replicates.  

 

 

 

 

NTC si
RNA

PCNX1 s
iRNA

0

50

100

150

Re
la

tiv
e 

pr
ot

ei
n 

ex
pr

es
si

on
 (%

)



- 118 - 

 

5.3.5.1. Assessment of short-term survival influences using MTT 
assays 

 
MCF-7 cells were transfected with targeted siRNA for MUC17, PCNX1 or TENM4, or 

with non-targeted control siRNA as described before, and then after 24h, cells were 

treated with a wide range of doses of epirubicin from 0 up to 4μM.  MTT assays were 

performed after 24, 48 or 72 hours of treatment with epirubicin drug. These time points 

represent 48-96 hours post-transfection - time points at which suitable knock-down 

efficiency is maintained (Figure 5.4). As expected, MCF-7 cells showed reduced 

survival that was both dose-dependent and time-dependent after treatment with 

epirubicin. Comparison between control and targeted siRNA treatments at every 

individual dose or time-point revealed no significant differences (Mann–Whitney tests). 

Nevertheless, overall, the trends showed increased sensitivity to epirubicin treatment 

for MUC17 siRNA treated cells as compared to NTC siRNA (Figure 5.7; 6 separate 

doses at 24 hours epirubicin treatment, 2 doses at 48 hours and 4 doses at 72 hours). 

This trend was significant for the 72h time point, when assessed using a two-way 

ANOVA test (p=0.0018). Treatment with siRNA against PCNX1 or TENM4 did not 

show significant differences in chemotherapeutic response compared to the non-

targeted control siRNA (Figures 5.8 and 5.9).  
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Figure 5.7 Decreased MUC17 expression leads to increased sensitivity to 
epirubicin. MCF-7 cells were seeded in 96-wells, and transfected with 50nM of 
siRNA against MUC17, or non-targeted siRNA control (NTC).  24h later, cells 
were treated with one of 9 different doses of epirubicin or were left untreated for 
24h (A), or 48h (B) or 72h (C). MTT assays were performed. Data were 
normalised to 0μM epirubicin treatment. The error bars represent the SEM of 3 
biological independent experiments. Trends between chemo-response after NTC 
or targeted MUC17 siRNA were analysed using two-way ANOVA tests and 
showed significant results for 72h (p=0.0018).  
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Figure 5.8 Decreased PCNX1 did not show differences in chemotherapeutic 
response compared to the non-targeted control siRNA. MCF-7 cells were 
seeded in 96-wells, and transfected with 50nM of siRNA against PCNX1, or non-
targeted siRNA control (NTC).  24h later, cells were treated with one of 9 different 
doses of epirubicin or were left untreated for 24h (A), or 48h (B) or 72h (C). Data 
were normalised to 0μM epirubicin treatment. The error bars represent the SEM 
of 3 biological independent experiments. Trends between chemo-response after 
NTC or targeted PCNX1 siRNA were analysed using two-way ANOVA tests and 
did not show any significant results.  
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Figure 5.9 Decreased TENM4 did not show differences in chemotherapeutic 
response compared to the non-targeted control siRNA.  MCF-7 cells were 
seeded in 96-wells, and transfected with 50nM of siRNA against TENM4, or non-
targeted siRNA control (NTC). 24h later, cells were treated with one of 9 different 
doses of epirubicin or were left untreated for 24h (A), or 48h (B) or 72h (C).  MTT 
assays were performed. Data were normalised to 0μM epirubicin treatment. The 
error bars represent the SEM of 3 biological independent experiments. Trends 
between chemo-response after NTC or targeted siRNA were analysed using two-
way ANOVA tests and did not show any significant results.  

0 0.05 0.1 0.2 0.5 0.75 1.0 1.5 2.0 4.0
0

50

100

150

24h

Epirubicin (µM)

Re
lat

ive
 ce

ll V
iab

ilit
y (

%) NTC siRNA

TENM4 siRNA

0 0.05 0.1 0.2 0.5 0.75 1.0 1.5 2.0 4.0
0

50

100

150

 48h

Epirubicin (µM)

Re
lat

ive
 ce

ll V
iab

ilit
y (

%
) NTC siRNA

TENM4 siRNA

0 0.05 0.1 0.2 0.5 0.75 1.0 1.5 2.0 4.0
0

50

100

150

72h

Epirubicin (µM)

Re
lat

ive
 ce

ll V
iab

ilit
y (

%
) NTC siRNA

TENM4 siRNA



- 122 - 

 
 

5.3.5.2. Assessment of longer-term survival influences using colony 
forming assays (CFA) 

 
Colony forming assays were performed to assess the influences of siRNAs targeted 

against MUC17, PCNX1 or TENM4 to modify the ability of cells to survive long-term 

after treatment with epirubicin. MCF-7 cells were transfected as before, and were then 

treated with 0, 10, 20, 40, 50 or 100nM epirubicin for 24h. Cells were then re-plated at 

low density in fresh medium (without epirubicin) to allow them to demonstrate their 

potential to grow into viable colonies, indicating long-term survival. Targeting MUC17 

with siRNA significantly reduced survival after epirubicin treatment, whereas, targeting 

PCNX1 significantly increased survival (Mann Whitney tests, p<0.05). In addition, the 

overall chemo-response trend was significant for both MUC17 and PCNX1 using a 

two-way ANOVA test (p<0.0001). On the other hand, targeting TENM4 caused no 

significant changes in survival at any dose of epirubicin (Figure 5.10). It should be 

noted that the result for PCNX1 here is actually the opposite from that seen in the 

initial siRNA screens, in which PCNX1 knock-down appeared to be associated with 

increased sensitivity (Figure 5.3), although that previous screening analysis lacked 

sufficient experimental repeats for robust conclusions, while the analysis here in 

Figure 5.10 is statistically significant after three independent biological repeats. The 

contradictory results between the primary siRNA screen and colony forming assay for 

PCNX1 can be explained as following; 1) cell viability assay (MTT assay) used for 

initial screen with siRNA is designed to assess the cells response to chemotherapeutic 

drug in short term survival, whereas the colony forming assay is designed to assess 

cells ability to form colonies in relatively long term.  2) the initial siRNA with MTT lacks 

of biological repeats and was performed in a relatively lesser number of drug doses, 

as a result the screen is subjected to high risks for false positive/ negative phenotypes. 

The colony forming assay, however, was performed with 3 biological replicates and 

under many different drug doses which enabled to perform statistical analysis to 

assess the significance level of the findings.  
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Figure 5.10 CFA for MUC17, PCNX1, and TENM4 siRNA showed significantly 
reduced colonies formation after epirubicin treatment for MUC17 and 
significantly increased colonies formation for PCNX1, while no significant 
change in survival for TENM4. MCF-7 cells were seeded in 96-wells, and 
transfected with 50nM of targeted siRNA against MUC17 (A), or PCNX1 (B), or 
TENM4 (C) or non-targeted siRNA control (NTC).  48h later, cells were treated 
with either one of 5 different doses of epirubicin or were left untreated for 24h.  
Cells were then re-plated at low density in fresh medium (without epirubicin) to 
allow them to demonstrate their potential to grow into viable colonies over 14 
days incubation period. Data were normalised to 0 nM epirubicin treatment. The 
error bars represent SEM of 3 biological independent experiments. * Indicates 
statistically significant p value <0.05 Mann Whitney test. Trends between chemo-
response after NTC or targeted siRNA were analysed using two-ways ANOVA 
tests and showed significant results for  MUC17 and PCNX1 (p<0.0001).  

0 10 20 40 50 100
0

50

100

150

Epirubicin (nM)

Re
lat

ive
 co

lon
ies

 fo
rm

ed
 (%

)
NTC siRNA

MUC17 siRNA

* *
**

0 10 20 40 50 100
0

50

100

150

Epirubicin (nM)

Re
lat

ive
 co

lon
ies

 fo
rm

ed
 (%

)

NTC siRNA

PCNX1 siRNA* * *

*

0 10 20 40 50 100
0

50

100

150

Epirubicin (nM)

Re
lat

ive
 co

lon
ies

 fo
rm

ed
 (%

)

NTC siRNA

TENM4 siRNA



- 124 - 

 

 

5.3.6. MUC17 and PCNX1 are significantly up-regulated by 
epirubicin treatment 

 
Having determined that expression levels of MUC17 and PCNX1 influence 

chemotherapy response in vitro, these genes were taken forward for further 

investigation into the mechanisms by which they modulate chemotherapeutic 

response. First, I aimed to investigate if their gene expression is induced or repressed 

in response to epirubicin treatment, since this could represent an induced survival 

mechanism. MCF-7 cells were treated with 1μM epirubicin for various different times 

up to 48h, and qPCR was used to assess relative expression of MUC17 and PCNX1. 

The data showed that there was dramatic, increasing, up-regulation of MUC17 

expression, from 2-fold up-regulation at as early as 8 hours of treatment to more than 

10-fold at 48h (Mann Whitney test, p<0.01). PCNX1 expression was also significantly 

up-regulated as early as 8h (less than 2-fold), although levels did not increase, but 

were maintained until 48 hours. I concluded that this up-regulation of MUC17 was 

compatible with a model where MUC17 is induced to provide chemo-protection, since 

I have previously shown higher levels to be associated with relative resistance (Figure 

5.11).  
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Figure 5.11 MUC17 and PCNX1 mRNA expression show significant expression 
up-regulation with epirubicin treatment over different time points. MUC17 
and PCNX1 RNA was prepared at 5 different time points and then expression 
was assessed using qPCR. Expression of MUC17 and PCNX1 were determined 
after normalising to the endogenous gene (ACTB). Data are expressed as a 
percentage of expression at the 0 hour time point. The error bars represent the 
SEM of 3 biological independent experiments. ** Indicates statistically significant 
p value <0.01 Mann Whitney test.  
 

 

5.3.7. Changes in epirubicin sensitivity associated with MUC17 and 
PCNX1 knock-down correlate with changes in drug loading and 
in expression of ABC transporters 

 

One proposed mechanism by which tumour cells can be relatively resistant to 

chemotherapeutic drugs is via high expression of ATP-binding cassette (ABC) 

transporters, which can lead to reduced intracellular concentrations of active 

chemotherapeutics through enhancing drug efflux activity [164-166]. In order to 

investigate this proposed mechanism, I next measured the amount of intra-cellular 

accumulation of epirubicin after manipulation of MUC17 and PCNX1 expression and 

treatment with epirubicin. MCF-7 cells were transfected with siRNAs, as before, and 

were treated with 1μM epirubicin for 24 hours. Flow-cytomtery was used to assess 

intra-cellular epirubicin levels, taking advantage of the fact that the drug itself is 

fluorescent. This assay demonstrated that there was an increase in intra-cellular drug 

accumulation in cells treated with MUC17 siRNA by ~32% compared with NTC siRNA 

cells. Whereas, intra-cellular drug accumulation decreased with PCNX1 siRNA by 

~16% as compared with NTC siRNA cells (Figure 5.12). However, neither observation 
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was statistically significant, the trend revealed here was consistent with the cell viability 

assays (Figures 5.9 and 5.10), since reduced MUC17 expression increased drug 

loading and increased sensitivity to the drug, while reduced PCNX1 expression 

reduced both drug loading and sensitivity.  

 

 

    

Figure 5.12 MUC17 and PCNX1 knock-down appears to alter intracellular 
epirubicin uptake. MCF-7 cells were transfected with 50nM of targeted siRNA 
against MUC17 or PCNX1 or non-targeted siRNA control (NTC).  48h later, cells 
were treated with 1μM epirubicin for 24 hours. The median fluorescence intensity 
of Epirubicin drug loading into MUC17 and PCNX1 siRNA and NTC siRNA cells 
was measured using flow-cytometry. Data for MUC17 and PCNX1 siRNA were 
normalised to NTC siRNA. The error bars represent the SEM of 3 biological 
independent experiments. 
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a direct association between a mucin gene family member, MUC1, and ABC 

transporters in development of chemotherapy resistance in pancreatic cancer [167]. 
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significant down-regulation of both ABCB1 and ABCC1 transporters, although no 

change in ABCG2. By contrast, PCNX1 siRNA induced significant up-regulation of 

ABCG2.  

 

     

 

Figure 5.13 Expressions of ABCB1, ABCC1, and ABCG2 transporters are altered 
after knock-down of MUC17 or PCNX1. MCF-7 cells were transfected with 
50nM of targeted siRNA against MUC17 or PCNX1 or non-targeted siRNA 
control (NTC).  48h later, the RNA was extracted. The mRNA expression of 
ABCB1, ABCC1 and ABCG2 were determined after normalising to the 
endogenous gene (ACTB), then data were normalised to NTC. The error bars 
represent the SEM of 3 independent biological experiments. ** Indicates 
statistically significant p value <0.01 Mann Whitney test.  
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5.4. Discussion 

 

5.4.1. siRNA screens revealed potential chemotherapy driver gene 
mutations 

 
46 candidate genes were screened using siRNA knock-downs and MTT assays to 

detect difference in chemotherapeutic survival after treating cells with epirubicin at 2 

or 3 different concentrations. This screen was performed manually, and in relatively 

large wells (96-well size, not 384-well size as used for some screens) and replicate 

numbers (5 technical replicates within each experiment), therefore was costly in terms 

of time and reagents. But it is important to note that even with this investment, the 

initial dataset could not allow proper statistical analyses of findings to inform decisions 

about which genes should be studied further. Therefore, pragmatic decisions were 

made concerning which genes to continue with, and which to drop from the screen, 

even when such decisions were based on imperfect data sets. There are many 

limitations involved with performing this medium throughput siRNA screen. Some of 

these limitations are as follows. 

 

1. The siRNA screen was designed to induce gene loss of function (LOF) and 

therefore this excluded proper study of mutations that cause gain of function (GOF) 

perturbations [168]. It should be noted the one could hope that siRNA screening might 

still give insight into some gene mutations that have GOF effects, by inducing the 

opposite phenotype as predicted from the mutation.  

2. The siRNA screen was performed on individual genes separately and the influence 

in the chemotherapy response seen is due to dramatic gene expression reduction. 

However, this approach excludes multi-gene expression effects in order to produce 

the phenotype and also assumes that the likely substantial change in gene expression 

induced by siRNA functionally reproduces what could be more subtle effects of 

mutations. 

3. The cell viability assay that was used for the siRNA screen was limited to observe 

short-term effects on the chemo-response. This would potentially create many false 
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negatives for mutations that actually do have roles in chemo-response but would only 

show an apparent phenotype on longer-term chemo-response.  

4. There is a  lack of statistical power in my approach to account  for variability in 

chemo-response between the screens, leading to high chances of false positives and 

negatives [169].  

5. Gene siRNA knockdown efficiency was not assessed at either the mRNA or protein 

level during the screen. This makes the approach susceptible to false negatives 

through relatively poor knock-down at the mRNA level, through ineffective siRNA 

function, or at the protein level, again via ineffective siRNA or owing to high stability of 

any existing protein. However, this can be solved by using Clustered Regularly 

Interspaced Short Palindromic Repeat-cas9 (CRISPR) system to induce permeant 

knock-out of the mutation in the cell line. In addition, off-targets effects of siRNA due 

to the nature of partial complementarity between an siRNA and multiple transcripts in 

the 3′UTR, can lead to unanticipated false positive phenotypes [168, 169].  

 

Nevertheless, the aim of my work plan was to perform an initial screen of low 

confidence, with potentially high rates of false positive and negative phenotypes, to 

narrow down the list to fewer candidate genes with an increased chance of having true 

effects on chemo-response. This should lead to increased confidence in those 

individual genes for additional validation minimising the risks for false positive 

phenotype. Given that this strategy has led to the identification of two genes, MUC17 

and PCNX1, that do indeed appear to act as mediators of chemotherapy response, 

this illustrates the successful use of this approach in terms of saving resources and 

time.   

  

Many studies have implemented similar approaches to discover novel drug targets for 

cancer therapy. For example, two studies have utilised high-throughput RNAi 

(interference) (shRNA or siRNA) screens to identify candidate genes involved in 

paclitaxel sensitivity in triple negative breast cancer (TNBC), or in sensitivity to a range 

of different therapies in a panel of colorectal cancer cell lines [160, 166]. In the former 

study, shRNA screening was initially performed on 1,778 genes, identified as their 

transcripts levels significantly correlated with genome copy number and were deemed 
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genomically deregulated in breast cancer. The top 36 high-confidence genes from the 

shRNA screen were then screened again using two independent siRNA oligos into two 

TNBC cell lines, MDA-MB-231 and MDA-MB-468. This led to the identification of gene 

targets that increased paclitaxel sensitivity when knocked-down by siRNA, and that 

have targetable drug/chemical inhibitors currently available (for example; erlotinib for 

EGFR): PPM1D, CENPF, BCL2L1, FRAP1, IGF1, EGFR, ERK1, RPS6KB1, TGFB1, 

and SP1 [166]. In the latter study, the authors assessed sensitivity to a panel of 

therapeutics including cetuximab (anti-EGFR) and trametinib (anti-MEK) after siRNA 

targeting the human kinome as well as 95 genes commonly mutated in colorectal 

cancer. This led to the confirmation of at least 7 synergistic drug plus siRNA 

combinations involving siRNAs against PINK1, CRIM1, PIK3CA, HUNK, PIM1, 

CDKN2D and BRAF [160].  

 

Interestingly, some limitations that I encountered using the RNAi screen system in my 

study were also addressed in these studies. For example; in the former study the 

variability in cells sensitivity to paclitaxel following knock-down by targeted shRNA, 

between different plates represented an obstacle. Also, the method of selection of 

high-confidence gene targets from the primary screen was complicated as the 

observed phenotype could be due to false positive or off-target effects of individual 

shRNA. The authors implemented normalisation of targeted shRNA to NTC and a 

bootstrap algorithm strategy and also confirmed findings with another RNAi system 

(i.e. individual and pooled siRNA) in order to overcome these confounding factors 

[166]. In comparison, I performed extensive cell viability assays on selected 

candidates to support that the observed phenotype was not due to false positive 

effects. 

 

In the latter study, the reproducibility of phenotype between multiple screens 

represented an issue for the study. The rescreen of 40 genes from the primary screen 

led to confirmation of only 8 drug/siRNA combinations that reproduced the original 

synergistic phenotype in the primary screen [160].  Similar to my study, this may 

have led to elimination of many potential true positives, but provided high confidence 

and prioritised targets for future investigations. Despite the obstacles, these 
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publications illustrate the success of using high-throughput RNA interference genomic 

screens to identify cancer-relevant, druggable targets to enhance drug sensitivity, 

especially for patients who showed resistance to chemotherapy. 

 

5.4.2. MUC17 and PCNX1 modulate chemotherapy response in vitro 

 
Following siRNA screening of the 46 candidate genes, 3 candidates genes (MUC17, 

PCNX1, and TENM4) were taken forward for further functional validation, though other 

candidates still remain of interest for further validation. The three candidates selected 

were based on showing the most consistent chemotherapeutic response during two 

independent siRNA screens. However, TENM4 did not demonstrate a convincing role 

in chemotherapy response and was excluded from subsequent analyses. 

 

MUC17 siRNA knock-down was associated with increased sensitivity to drug in vitro. 

This is in accordance with the sub-group in which the mutation was found in (unique 

to pre-NAC sub-group), the initial screening data, and the screening validation data. 

On the other hand, PCNX1 siRNA knock-down was associated with increased 

sensitivity to drug in vitro in the initial screen, which was surprising, since: 1) PCNX1 

mutations were identified in unique to post-NAC sub-group, potentially indicative of 

chemo-resistance, yet, 2) mutations were predicated to cause LOF, as modelled by 

siRNA knock-down. However, the results in the validation of the function of the PCNX1 

gene (Figure 5.10) differed from these screening results (Figure 5.3), and were after 

all in accordance with the hypothesis that LOF of PCNX1 as induced by siRNA or 

genomic mutations resulted in chemo-resistance. In addition, investigation of MUC17 

and PCNX1 gene expression upon treatment with epirubicin at different time points 

revealed that there was significant induction of gene expression providing further 

circumstantial evidence of involvement of MUC17 and PCNX1 in responding to 

chemotherapy agents, perhaps as an induced survival mechanism at least for MUC17. 

Some published literature exist concerning MUC17 and PCNX1, although neither have 

been directly implicated in defining chemotherapy response previously.  I review 

literature about these genes and their functions below. 
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The MUC17 gene encodes a protein belonging to the mucin (MUC) family of heavily 

O-glycosylated, high molecular weight, glycoproteins. Overall, family members are 

mainly membrane-bound in epithelial cells and function to lubricate apical mucosal 

epithelium surfaces, maintain luminal structures and provide signal transduction [170]. 

Little information on specific functions of MUC17 has been published to date, with no 

reports concerning MUC17 as a mediator of chemotherapy response. On the other 

hand, other members of mucin family, namely MUC1 and MUC4, regulate both cellular 

differentiation and proliferation and their aberrant expressions are known to be 

implicated in metastasis and tumorigenesis [171-173]. Studies have shown 

overexpression of MUC1 to be implicated in resistance to methotrexate in colorectal 

carcinoma [170]. Also, MUC4 expression modulation was found to be involved in 

sensitivity to gemcitabine based-chemotherapy in pancreatic cancer, using gene gain 

or loss of function approaches [174, 175]. Another mucin family member, MUC13, was 

found to activate nuclear factor-κB (NF-κB), which is a key transcription factor 

promoting cancer cell survival. The data showed MUC13 can be a potential 

therapeutic target for colorectal cancer cells via inhibition of Nuclear factor-κB (NF-

κB), and this was proven upon silencing MUC13, which led to increased sensitivity of 

colorectal cancer cells to the chemotherapeutic fluorouracil [176]. My findings for 

MUC17 potentially add another member of the mucin family to the list of targets for 

therapy, and endorse the generic findings for mucin family members as targets for 

chemo-sensitizing strategies. 

 

MUC17 was found to be expressed differentially in various diseases, such as 

pancreatic ductal adenocarcinoma (PDAC). In the study it was found that MUC17 was 

expressed differentially between PDAC with and without lymph node metastasis, 

which suggested that MUC17 could be used as a survival marker in patients with 

resected PDAC [177]. Also, potential regulatory mechanisms acting on MUC17 in 

PDAC were identified, acting via hypoxia and methylation status. The study findings 

revealed that MUC17 was significantly induced by hypoxic stimulation through a 

hypoxia-inducible factor 1α (HIF1α)-dependent pathway in some pancreatic cancer 

cells. Also, the treatment of pancreatic cells (i.e. BxPC3) with 5-aza-2'-

deoxycytidine (a methylation inhibitor) resulted in the restoration of hypoxic MUC17 

induction. The data suggested that the HIF1α-mediated hypoxic signal pathway 
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contributed to MUC17 expression, and that DNA methylation of a hypoxia responsive 

element (a binding site for HIF1α) could be a determinant of the hypoxic inducibility of 

MUC17 in pancreatic cancer cells [178]. Furthermore, it was found that histone H3-K9 

(H3-K9) modification status was also closely related to MUC17 expression and hypo-

methylation status was observed in patients with PDAC. This indicated that the hypo-

methylation status in the MUC17 promoter could be a novel epigenetic marker for the 

diagnosis of PDAC [179]. 

 

In colon cells, the extracellular regions of MUC17 have been shown to contain EGF-

like Cys-rich segments (CRD1 and CRD2) connected by an intervening linker domain 

(L). It was found that reduced expression of MUC17 in LS174T colon cells was 

associated with reduced cell aggregation and reduced cell-cell adherence, and 

reduced cell migration. Whereas, exposure of colonic cell lines to exogenous 

recombinant MUC17-CRD1-L-CRD2 protein significantly increased cell migration and 

inhibited apoptosis. This indicated there was a potential role for MUC17-CRD1-L-

CRD2 recombinant protein in the treatment of mucosal diseases of the colon and, this 

could provide a candidate for further development as a therapeutic agent target [180, 

181]. 

 

Also, up-regulation expression of MUC17 was associated with some inflammatory 

conditions such as rheumatoid arthritis, osteoarthritic and chronic ulcerative colitis 

[182, 183]. The findings suggested there was a protective effect of MUC17 and 

diminished expression of MUC17 resulted in inflammatory and neoplastic conditions. 

In addition, it was found that MUC17 polymorphisms were associated with 

development of endometriosis and associated with infertility. Particularly, the “A” allele 

at rs10953316 was found to be protective against endometriosis induced infertility 

(statistically significant compared with the reference GG genotype, OR = 0.45; 95 % 

CI: 0.29-0.7)  [184].  

 

Taken all together, studies have shown so far that MUC17 is a protein-coding gene 

with functions related to many cellular biological activities and to many disease 
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including cancer and inflammatory conditions. Nevertheless, no previously published 

work has suggested a role for MUC17 in chemotherapeutic resistance mechanisms.  

 

PCNX1 (Pecanex Homolog 1) is also a protein-coding gene. The encoded protein is 

a conserved transmembrane protein that is similar to the pecanex homologue in 

Drosophila. In humans, less is known, although there is a study suggesting PCNX1 

might be involved in endoplasmic reticulum function since the protein was found to 

localise there, and lack of PCNX1 in the endoplasmic reticulum resulted in an 

enlargement defect [185]. In addition, PCNX1 protein was found to be a component of 

the Notch-signalling pathway and involved in the normal development of the nervous 

system in Drosophila. That was evidenced by the fact that absence of maternal 

expression of the PCNX1 gene resulted in embryos with severe hyperneuralization 

similar to the characteristics of Notch mutant embryos [186]. Although, the Notch-

signalling pathway is commonly known for its role in embryogenesis and neuronal 

function and development [186], there are many reports that indicated the Notch-

signalling pathway is also involved in chemotherapeutic resistance [186-189]. My 

findings for PCNX1 support this. It is also particularly interesting to note that NOTCH2 

was also included within my initial list of candidate genes. In addition, this might 

indicate PCNX1 potentially mediates the chemotherapy response through modulating 

the Notch-signalling pathway. However, further insights into PCNX1 gene function and 

a demonstration of its candidacy for chemotherapy modulation in vivo are required.  

 

Also, PCNX1 was found expressed exclusively in the germline cells of the testis in the 

rat, reaching its peak at the pachytene stage of the meiotic prophase. This suggests 

there is a potential regulatory role of PCNX1 protein in spermatogenesis, the details 

of which are not yet clear [190]. The most recent functional study of PCNX1 in context 

of cancer showed there was an oncogenic role for PCNX1 in Non Small Cell Lung 

Cancer (NSCLC). PCNX1 was found to positively regulates the mRNA and protein 

expressions of S-phase kinase associated protein 2 (Skp2) and correlates with its 

activities including promoting cell growth and proliferation, accelerating cell cycle and 

suppressing apoptosis. The study showed that PCNX1 acts as a competitive 

endogenous RNA (ceRNA) for SKP2, which indicates PCNX1 has similar oncogenic 
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activity to SKp2. Also, miR-26, miR-182, miR-340 and miR-506 were shown as the 

common miRNAs shared by Skp2 and PCNX1 and was shown that increase 

expression of miRNA significantly attenuated the mRNA level of Skp2 and PCNX1. 

Furthermore, silencing PCNX1 inhibits EGF-induced Akt phosphorylation, which can 

be reversed by the silencing of Dicer. This suggests PCNX1 may employ its oncogenic 

function at least in part via mediating Akt phosphorylation in NSCLC. In addition, the 

PCNX1-miRNA-Skp2 regulatory pattern was established as a molecular candidate for 

targeted therapy in NSCLC [191].  

 

Interestingly, my colleague showed that miRNA-26 may act as protector of cells from 

chemotherapeutic drug in vitro (unpublished work). This supports our findings of upon 

silencing PCNX1 using siRNA showed increased cells survival when treated with 

chemotherapeutic drug, which might be attributed to miRNA-26 mechanism.   

 

Despite the fact that there are relatively few studies on PCNX1, there is enough 

evidence to suggest that the gene may have oncogenic properties. Herein, in this 

study I add a functional role of PCNX1 as chemotherapy response mediator.   

 

5.4.3. MUC17 and PCNX1 impact on drug loading, potentially via 
modulating ABC transporters activities 

 
Having determined that MUC17 and PCNX1 had roles in defining chemo-response, I 

was interested to identify potential mechanisms of this function. Noted from published 

studies, a proposed mechanism for chemotherapy modulation in the mucin family, 

specifically MUC1, is modulation of ABC transporters activities and subsequently 

changes in the intracellular accumulation of the drug through drug efflux systems [164, 

167, 192]. Although, there is nothing in the literature for PCNX1 suggesting this role in 

chemotherapy modulation, the assays were performed for both MUC17 and PCNX1.  

 

I showed MUC17 expression reduction led to significant down-regulation of ABCC1 

and ABCB1 genes, which encode the MRP-1 and MDR1 (P-glycoprotein) proteins 
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respectively. While, PCNX1 inhibition expression led to significant up-regulation of 

ABCG2 gene, which encodes the protein BCRP. In addition, the drug uptake data 

showed increased intracellular accumulation of epirubicin in MUC17 siRNA cells as 

compared with non-targeting siRNA control, while PCNX1 siRNA cells showed 

decrease intracellular drug uptake. This was in agreement with the changes in ABC 

transporters proteins expression, however, the findings were statistically non-

significant.  

 

My finding for MUC17 is an agreement with reports concerning another mucin family 

member, MUC1, for which it has been shown that overexpression of MUC1 directly, 

increases expression of ABCC1, ABCC3, ABCC5 and ABCB1. Subsequently, this led 

to enhanced chemotherapeutic drugs efflux of gemcitabine and etoposide in 

pancreatic cancer cells, which ultimately led to developing resistance [167]. Similar 

reports showed that overexpression of MUC1 was found to be associated with 

paclitaxel resistance and increased expression of ABCB1 in cervical and lung cancer 

paclitaxel-resistance cell lines. Also, the reduction of MUC1 expression increased cells 

sensitivity to paclitaxel drug and reduction of ABCB1 expression. Since, the EGFR 

pathway is involved in regulation of ABCB1 expression, it was also found that MUC1 

induced ABCB1 expression potentially via cooperation with EGFR pathway [193]. 

While there are no reports concerning PCNX1 involvement in ABC transporters 

activities, herein I showed that inhibition of PCNX1 led to significant up-regulation of 

ABCG2 transporters, which could potentially explain the decrease in epirubicin 

intracellular loading (non-significant).  
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5.4.4. Conclusions 

 
In this chapter I have identified MUC17 and PCNX1 as potential mediators of 

chemotherapy response in breast cancer, initially using a medium-throughput 

screening approach, but later focusing on these genes alone in more detail.  I also 

considered using published expression data to validate the role of these genes in 

defining chemo-response in breast cancer, however, suitable large datasets are 

mostly lacking. Therefore, in the next chapter I examine whether MUC17 and PCNX1 

protein expression defines response to chemotherapy using novel breast cancer 

cohorts assembled locally. 
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6. MUC17 expression predicts patient survival after chemotherapy 
treatment 

6.1. Abstract 

 
I have identified MUC17 and PCNX1 as potential drivers of chemotherapeutic 

response in breast cancer. I was next interested to test whether MUC17 and PCNX1 

protein levels could predict breast cancer clinical outcomes after chemotherapy. 

 

Breast cancer tissue was available in tissue microarrays from two cohorts of patients. 

First, resection samples from 140 patients treated with adjuvant chemotherapy, 

supported by extensive clinico-pathological data, including follow up of a median of 

106 months. Secondly, resection samples from 53 patients treated with neoadjuvant 

chemotherapy, therefore samples were post-chemotherapy treatment, supported by 

clinico-pathological data, including follow up of a median of 46 months. Expression of 

MUC17 and PCNX1 was assessed using immunohistochemistry. Scores for the two 

markers were obtained successfully for 133 and 135 adjuvant cases, and 47 and 40 

neoadjuvant cases, respectively.  

 

MUC17 and PCNX1 proteins were expressed in cancer cells of the majority of breast 

cancers. MUC17 was generally expressed homogeneously within the cancer cells of 

individual cases, with variation between cases from weak to strong expression.  

PCNX1 showed some expression variation between cells in individual cases, with 

patterns ranging from weak expression in a minority of cells to strong expression in 

essentially all cells. Neither MUC17 or PCNX1 expressions were strongly associated 

with histopathological features such as receptor expression or grade. Kaplan-Meier 

survival analyses revealed that low MUC17 expression after neoadjuvant 

chemotherapy was significantly associated with longer disease free survival (log rank 

p=0.017), and this trend was also seen in the adjuvant cohort although it did not reach 

statistical significance. This relationship was in accordance with in vitro findings for 

MUC17, as a driver of chemoresistance. PCNX1 expression did not show significant 
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relationships with survival, although the non-significant trends visible were in 

accordance with in vitro findings defining PCNX1 as a driver of chemo-sensitivity.  

 

I concluded that MUC17 is a driver of chemo-response in breast cancer, and may have 

value as a predictive biomarker.  

 

6.2. Introduction 

 
Cytotoxic chemotherapy has been used in combination with surgery as systematic 

adjuvant therapy to treat breast cancer for decades [194]. Chemotherapy has shown 

efficacy in eradication of clinically silent micro-metastases and thereby improving rates 

of recurrence-free and overall survival for many patients. However, it remains the case 

that about 30% of these patients treated with chemotherapy still suffer recurrences [4]. 

To date there are no clinical-used predictive molecular markers that could be used to 

select patients most likely to derive benefit from chemotherapy [195]. On the other 

hand, there have been many research efforts to identify prognostic markers that can 

be used to objectively evaluate patients’ overall likely outcomes, such as the 

probability of cancer recurrence after standard treatment [196]. For example; it was 

found that high expression of BRCA1 confers worse prognosis in patients with breast 

cancer before treatment [197]. Also, patients with ER-positive breast tumours have 

better survival than patients with hormonal negative tumours [198], and patients with 

HER2-positive breast tumours are more aggressive and have worse prognosis 

compared to HER2-negative tumours [199]. However, the presence or absence of 

these prognostic markers can be useful for the selection of patients for chemotherapy 

treatment, but do not directly predict the response to that treatment [196].   

 
I have identified MUC17 and PCNX1 as potential drivers of chemotherapeutic 

response in breast cancer using the novel strategy of analysing changes in 

representation of tumoural mutations within these genes after neoadjuvant 

chemotherapy (see chapter 4, section 4.3.5), and by performing functional 

experiments in a breast cancer cell line (see chapter 5, section 5.3.4). Given this 
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evidence, my next interest was to investigate whether these new potential markers 

can act as predictive markers for chemotherapy response and subsequent overall 

survival. A secondary benefit would be to add weight to my in vitro findings.  

 
In order to assess the potential predictive value of these two markers, I have accessed 

cancer samples from two separate cohorts of breast cancer patients, supported by 

thorough clinico-pathological data and follow up. These tissue samples have been 

assembled into tissue micro-arrays (TMAs), which have become a preferred method 

to study protein expression on large-scale pre-defined cancer cohorts. The technique 

has shown its effectiveness in saving reagent costs and patient material, as well as 

making the staining and scoring procedures less time-consuming [199]. However, 

there are some drawbacks with use of TMAs, for example, concerns regarding the 

overall representation of the heterogeneity of the targeted protein expression within 

the tumour. This can be alleviated by taking multiple cores of different regions of the 

tumour in order to expand the representation of the intra-tumour heterogeneity, as is 

the case for the TMAs I have used. Also, applying statistical analyses to assess the 

variation of expression of the targeted protein between cores can justify the method, 

and aid the decision about how to combine multiple core scores into a single score for 

each cancer case [200].   

 
In this work, I have used samples from a cohort of patients who received adjuvant 

chemotherapy, therefore the resection samples studied were taken before 

chemotherapy, and from a cohort of patients who received neoadjuvant 

chemotherapy, therefore the resection samples are post-chemotherapy.  The aim of 

including the adjuvant chemotherapy cohort in my study was to investigate whether 

the expression of markers MUC17 and PCNX1 could be used to direct chemotherapy 

in the clinical settings. Also, the post-chemotherapy cohort (post-NAC) was included 

since the in vitro findings suggest that chemotherapy induces expression of MUC17 

and PCNX1 expressions (chapter 5, section 5.3.5); therefore, it was possible that this 

induced/selected level is the level that would define whether the cells were resistant 

or sensitive and therefore predict outcome, rather than the basal level before 

treatment. It should be noted that both cohorts are mixed of different molecular sub-

types as opposed to being only luminal A (the molecular sub-type of my focus in the 
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previous chapters) and received various chemotherapy regimens as opposed to only 

epirubicin/cyclophosamide regimen (the chemotherapy regimen of my initial cohort in 

Chapter 3).  Nevertheless, this was a pragmatic decision based on having enough 

cases to study, but also based on the hope that markers that work in multiple molecular 

subtypes would be most use clinically. 

 

To my knowledge this is first work of its kind in which protein levels of MUC17 and 

PCNX1 have been assessed as predictive markers for chemotherapy response in 

invasive breast cancer cohorts.  
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6.3. Results 

 

6.3.1. Optimisation of immunohistochemical detection of MUC17 
and PCNX1 

 
To date, there are no published studies that have used antibodies against MUC17 or 

PCNX1 in human invasive breast carcinoma tissues; therefore, I first had to perform 

optimisation steps to ensure specific staining of these proteins. Antibodies were 

selected that showed strong evidence of specificity from the manufacturer’s data 

published on their website (Abcam; Cambridge, UK). In addition, the antibodies have 

worked successfully in different applications such as immunofluorescence for MUC17 

and Western blots for PCNX1 (section 5.3.3). Based on the expression patterns for 

each protein shown within the Human Protein Atlas data 

(https://www.proteinatlas.org), I used small intestine tissue as a positive control for 

MUC17 expression and ovarian tissue as a positive control for PCNX1 expression. 

Omitting the primary antibody served as negative controls. A range of antigen retrieval, 

antibody concentrations, and antibody incubation times were used in order to identify 

conditions that allowed strong, specific-seeming staining (appropriate tissue location 

and low background staining) in the positive controls, and no staining in the negative 

controls (Figure 6.1). MUC17 staining was exclusively localised at the plasma 

membrane/cytoplasm of mature absorptive cells of small intestine villi, while, PCNX1 

staining was confined mostly to the nucleoplasm of ovarian cells.  Breast cancer tissue 

was also stained during optimisation: PCNX1 staining was observed but MUC17 

staining was absent in the small number of cases used for optimisation (Figure 6.1). 
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MUC17 positive control (small intestine)          PCNX1 positive control (ovarian tissue) 

      

          MUC17 in breast cancer                                    PCNX1 in breast cancer 

      

MUC17 Negative control (small intestine)     PCNX1 negative control (ovarian tissue) 
 

Figure 6.1 Immunohistochemical staining for MUC17 or PCNX1 in positive and 
negative controls, and in a single breast cancer case. The upper row shows 
MUC17 staining (left panel) and PCNX1 staining (right panel) in positive control 
tissues. The middle row shows MUC17 (left) and PCNX1 (right) staining in a 
breast cancer case. The lower row shows negative controls (no primary antibody 
in positive control tissues). Images are x20. 
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6.3.2. Analysis of MUC17 and PCNX1 expression in breast cancer 
cases treated with adjuvant chemotherapy 

 

Tissue microarrays (TMAs) of resection samples from 140 primary breast cancer 

cases that had been treated with adjuvant chemotherapy were assembled by Stacey 

Jones (Clinical research fellow and surgical trainee, University of Leeds / Leeds 

Teaching Hospitals NHS Trust), comprising three independent tissue cores 

representing each case. The clinico-pathological features of this cohort are 

summarised in Table 6.1. I stained these TMAs for MUC17 and for PCNX1 using the 

optimised conditions determined above, and slides were digitally scanned for scoring 

(see Figures 6.2 and 6.3 for representative images). The purpose of having 3 tissue 

cores for each case was to take into account the possibility of intra-tumoural 

heterogeneity in the expression of the protein of interest. More cores also increased 

the chances of at least having one core successful scored for each case, since 

individual cores can be lost during the sectioning and staining process, which is a well-

recognised issue with TMA-based studies [201].  

 

Scoring systems for each antibody were developed in consultation with Prof. Andrew 

Hanby (consultant breast pathologist, Leeds Teaching Hospitals NHS Trust, and co-

supervisor for the project) in order to semi-quantitatively score expression. Based on 

overall evaluation, it was found that MUC17 was located mainly at the plasma 

membrane and cytoplasm, while PCNX1 was located mainly in the nucleoplasm. For 

MUC17, scoring was based on cytoplasmic intensity, which was scored 0-3; 0 being 

negative, while 3 represented strong staining. For PCNX1, scoring was scored based 

on the proportion of cells showing positive nuclear staining (0-4) (0%=0, 1-5%=1, 6-

25%=2, 26-75%=3, >75%=4) and the intensity of the nuclear staining (scores between 

0-3), with final scores being the sum of these values. In addition, there were occasional 

cases that exhibited notable nuclear membranous positivity for MUC17 and 

cytoplasmic positivity for PCNX1, and such cases were separately reported. Half the 

cohort was scored by consensus between the author and Prof. Hanby together, 

providing robust scores based on Prof. Hanby’s histopathology expertise and a 
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training period for the author. The second half of the cohort was scored by the author 

alone, and then 30% of these tissue cores were picked randomly for second 

(independent) scoring by Prof. Hanby to allow statistical analysis of scoring 

reproducibility (see section 6.3.2.1). The number of cases scored successfully, 

meaning at least one core was assessed, was 133/140 cases (95%) for MUC17, while 

for PCNX1 it was 135/140 cases (96.4%). 
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Characteristics  Number (%) 

n=140 
Histological type 
Ductal no-special type 

Lobular 

Metaplastic 

Tubular 

Medullary 

Mixed  

110  (78.6) 

8       (5.8) 

4       (2.8) 

1       (0.7) 

1       (0.7) 

16     (11.4) 

Tumour grade 
1 

2 

3 

7         (5) 

55      (39.3) 

78      (55.7) 

Lymph node status 
At least 1 positive node 

No positive nodes 

91       (65) 

49       (35)  

ER receptors status 
Positive 

Negative  

101     (72.2) 

39        (27.8) 

PR receptors status 
Positive 

Negative 

Unknown 

72      (51.4) 

58      (41.4) 

10      (7.2) 

Her2 status 
Positive 

Negative 

24      (17.2) 

116    (82.8) 

Chemotherapy regimens 
Anthracycline based regimen 

Without Taxanes 

With Taxanes 

With carboplatin or/and Capecitabine  

 

66     (47.2) 

57     (40.7) 

17     (12.1) 

Table 6.1 Summary of the clinico-pathological features for the adjuvant 
chemotherapy cohort. 
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Score= 1                                                                                                  

 

      

Score=3                                                        Membrane positivity 

 

Figure 6.2 Representative images of immunohistochemical staining for MUC17 
illustrating the scoring system. MUC17 scoring was based on cytoplasmic 
intensity (0-3), with occasional cases reported as showing membrane positivity. 
Images are 20x or 40x. 
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       Intensity=2                                                                                       Intensity=3 
Proportion=3                                                                                    Proportion=4 

Total score=5                                                                                   Total score=7 

 

      

Cytoplasmic positivity 
Figure 6.3 Representative images of immunohistochemical staining for PCNX1 

in breast cancers, illustrating the scoring system. PCNX1 scoring was based 
on nuclear staining intensity (0-3) and proportion of positive cells (0-4); these 
values were summed giving a final score of 0-7 (a score of 1 is not possible). 
Also, occasional cases showed cytoplasmic positivity for PCNX1 were reported. 
Images are 20x. 
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6.3.2.1. Concordance between scorers was high, and core to core 
variability within cases was low  

 
The Cohen’s Kappa statistic was used to assess the inter-scorer concordance in the 

cores that were double-scored independently by the author and by Prof. Hanby. This 

statistical method takes into account the chances of false positive agreement between 

scorers due to the possibility of scorers being uncertain what to enter and simply 

making random guesses. Hence it represents a better statistical method than 

conventional methods such as percentage scoring [202, 203]. The Kappa scores 

showed substantial agreement between the scorers for PCNX1, while for MUC17 it 

was near perfect (0.60-0.79 can be regarded as substantial, while 0.80-0.90 can be 

regarded as near perfect (20)) (Table 6.2).  

 

 K score  95% confidence Interval 

MUC17 0.804 0.566-1.00 

PCNX1 0.694 0.321-0.820 

Table 6.2 Concordance between independent scorers was high.  TMAs containing 
primary breast cancer cores were stained for MUC17 or PCNX1 expression and 
expression levels were determined manually semi-quantitatively. 30% of the 
cases were double-scored by independent assessors. Cohen’s Kappa statistics 
was used to assess inter-scorer concordance and are shown, along with 95% 
CIs for each of MUC17 and PCNX1. 
 

 
Since cases in the TMAs were mostly in triplicate or duplicate cores, there was also a 

need to assess the core-to-core variability in order firstly to validate the use of TMAs 

and secondly to aid the decision concerning the pooling method by which core scores 

would be combined to give scores for each case. If core-to-core variability was 

substantial this might suggest expression was sufficiently heterogeneous that analysis 

on TMAs was inappropriate. Should this not be the case, available options for pooling 

methods included taking lowest or highest score among cores, and taking the mean 



- 150 - 

or median of scores. Spearman’s rho correlation coefficients were determined to 

assess correlations between scores for triplicate or duplicate scores, randomly 

assigned as core 1, 2 or 3 (Table 6.3). Scores were strongly and significantly 

correlated in all cases (rho values between 0.855 and 0.930). Thereby, I concluded 

that there is relatively little intra-tumoural heterogeneity in distribution of expression 

for these proteins, and therefore that different choices of pooling methods were 

unlikely to have strong impact on the final result; I selected taking the mean score for 

pooling. 

 

Spearman’s correlation 
coefficient 

Core 1 Core 2 Core 3 

MUC17 Core 1 1.0 0.924 0.893 

Core 2  1.0 0.930 

Core 3  0.930 1.0 

PCNX1 Core 1 1.0 0.894 0.855 

Core 2  1.0 0.891 

Core 3  0.891 1.0 

Table 6.3 Core-to-core correlation using Spearman’s correlation coefficients for 
MUC17 and PCNX1 showed strong correlation between cores. TMAs 
containing primary breast cancer cores (up to three cores per case) were stained 
for MUC17 or PCNX1 expression and expression levels were determined 
manually semi-quantitatively. Expression scores for cores from the same cases 
were compared using Spearman’s correlation analyses. All correlations were 
significant, p-value <0.001. 
 

 
6.3.2.2. MUC17 protein is expressed at high levels relatively rarely, 

while PCNX1 protein is expressed highly more frequently in 
invasive breast cancers 

 
The distribution of protein expression scores for MUC17 and PCNX1 across the breast 

cancer cohort is illustrated in histograms in Figure 6.4; these scores represent the 

mean score of all cores successfully scores for that case, rounded to the nearest whole 
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number for the purpose of data presentation. A range of expression levels was shown 

for both proteins, with some cases negative and some showing strong expression. For 

MUC17, a majority of cases were scored as either negative or weak (59%), while only 

19% demonstrated the highest expression. As for PCNX1, the majority of cases (68%) 

showed high expression (scores 6 and 7), while the rest of cases spread across 0-5 

scores.  

 

  

Figure 6.4 Scores distributions for MUC17 and PCNX1 in breast cancer cases 
treated with adjuvant chemotherapy. TMAs containing primary breast cancer 
cases were stained for MUC17 or PCNX1 expression and expression levels were 
determined semi-quantitatively. Individual tumour cores were scored to quantify 
expression on a scale of 0-3 (MUC17) or 0-7 (PCNX1), and the mean scores 
calculated for each case to combine multiple core scores. Case scores were 
rounded to the closest whole integer number in these distribution plots.  

 

 
6.3.2.3. Protein expression of MUC17 and PCNX1 do not correlate 

with clinical prognostic markers in breast cancer cases treated 
with adjuvant chemotherapy 

 
Correlations between MUC17 or PCNX1 protein expressions (mean score of cores for 

each case) and some clinical prognostic factors were tested using Spearman’s rho 

analyses. This analysis included oestrogen receptors status (positive or negative, with 

>2 by Allred scoring considered positive), tumour grade (1, 2, or 3), lymph nodes 

metastasis (positive or negative) and molecular subtype (0 for other subtypes and 1 

for triple negative subtype (TNBC)). The TNBC subtype was selected for correlation 
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since TNBC has high rates of metastasis capability, and evidence suggests that the 

risk factor profiles differ between TNBC and the more common luminal subtypes [204]. 

In addition, TNBC is almost always treated with chemotherapy. A summary table 

shows the correlations scores and the associated p values for these analyses (Table 

6.4); there were no significant correlations between protein expression of MUC17 and 

PCNX1 and any of these prognostic factors, suggesting that expression of these 

potential markers is unrelated to these main cancer classifications that correlate with 

breast cancer behaviour.  

 

 
 ER expression Grade Lymph nodes 

metastasis 
Triple Negative 
sub-type 

MUC17        r 

 

                    p 

0.115 

 

0.187 

 

0.080 

 

0.358 

-0.130 

 

 0.137   

-0.103 

 

0.239 

PCNX1       r 

 

                   p 

0.043 

 

0.618 

 

0.030 

 

0.724 

-0.16 

 

 0.858 

-0.26 

 

0.768 

  

Table 6.4 MUC17 and PCNX1 expression does not correlate with standard 
clinical prognostic factors. Spearman’s rho analyses were performed for 
MUC17 and PCNX1 expression levels against the factor as shown. r indicates 
Spearman’s rho coefficient and p indicates P-value. 
 

 

6.3.2.4. Kaplan-Meier survival analysis revealed no significant 
differences in survival relating to high or low MUC17 and PCNX1 
protein expression  

 
A key objective in conducting these TMA-based studies on an adjuvant cohort was to 

investigate whether MUC17 or PCNX1 expression at the protein level could be used 

as predictive markers for survival outcomes after chemotherapy. In order to test this 

by Kaplan-Meier analyses it was necessary to dichotomise the cohort into patients 

regarded as having high expression and those with low expression using suitable cut-
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off values, as this would allow comparison between the two groups. I used Receiver 

Operating Characteristic (ROC) curve analyses to perform this dichotomisation, which 

objectively determines the best balance between sensitivity and specificity for 

predicting the defined clinical outcome of recurrence or death from all the possible cut-

off scores [205, 206]. The analysis was performed with the two different clinical 

outcomes, death or recurrence. Based on the area under the ROC curve, which is a 

measure of how well a parameter can distinguish between positive and negative 

groups, death status was chosen as clinical outcome to dichotomise the protein 

expression for MUC17 and recurrence status was chosen for PCNX1. Cut-off scores 

were established as follows: 1.1 for MUC17 and 5.6 for PCNX1 (more details and the 

ROC curve graphs can be found in Appendix Figure 9.4). 

 

Kaplan-Meier survival analyses were then performed to assess if differential 

expression of MUC17 or PCNX1 proteins was associated with survival outcomes, 

namely, disease free survival (DFS), for which the event was recurrence, and disease 

specific survival (DSS), for which the event was death from cancer. Initially, I 

performed low expression versus high expression analyses for both DFS and DSS for 

both MUC17 and PCNX1 (Figure 6.5 and Table 6.5). There were no statistically 

significant differences between the low and high expressing groups.  
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MUC17 

 

 
PCNX1 

 

Figure 6.5 Kaplan-Meier survival analysis for breast cancer outcomes in groups 
with high versus low expression of either MUC17 or PCNX1. Expression of 
MUC17 and PCNX1 was determined in resection samples from a cohort of 140 
primary breast cancers patients who were treated with adjuvant chemotherapy. 
The cohort was dichotomised into relatively low or relatively high expression 
groups using ROC analyses. Relative survival is shown for the groups, and 
significance was tested using the log rank test. The upper plots show data based 
on MUC17 expression, while the lower plots are for PCNX1. Left panels show 
the end point of disease free survival, while right panels show the end point of 
disease specific survival. The small coloured vertical lines on the plots represent 
the end of follow up (censor points) for individual patients.  
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 Mean DFS 

(days) 
(95% CI) 

Log 
Rank 

Mean DSS 
(days) 
(95% CI) 

Log Rank 

MUC17 Low  3693 

(3375-4010) 

0.623 3822 

(3611-4147) 

0.531 

High  3634 

(3326-3941) 

3737 

(3520-4076) 

PCNX1 Low 

  

4110 

(3846-4374) 

0.461 3875 

(3563-4187) 

0.860 

High  4216 

(4066-4366) 

3878 

(3631-4126) 

Table 6.5 Comparison of mean survival between low and high protein 
expression in MUC17 and PCNX1. Analyses were performed as described 
for Figure 6.5. Here, mean disease free survival (DFS) or disease specific 
survival (DSS) in the low and high expression groups are compared, showing 
95% confidence intervals and log rank p values.   
 

 
Next, I performed a combined analysis of MUC17 and PCNX1, basing my method of 

combining on my in vitro findings (chapter 5). I previously showed, in vitro, that low 

MUC17 expression (induced by siRNA treatment) was significantly associated with 

increased sensitivity to chemotherapy, from which I would infer low MUC17 might be 

associated with improved survival. For PCNX1, low expression (induced by siRNA) 

was associated with resistance to chemotherapy, and therefore may associate with 

poor survival. Thus, I identified the group of patients with both low MUC17 expression 

and high PCNX1 expression, both of which may be associated with improved survival. 

 

I compared this group with the remainder of the cohort (those with high MUC17 or with 

low PCNX1) by Kaplan-Meier survival analysis as before (Figure 6.6A and Table 6.6). 

Although the patients with low MUC17 and high PCNX1 showed better survival 

compared to the rest, as predicted (by 347 days for DFS or 332 days for DSS), this 

difference was not statistically significant. In addition, I also identified the group of 

patients with both high MUC17 expression and low PCNX1 expression, an expression 
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profile that both might be associated with poor survival based on the in vitro findings. 

As before, I compared this group with the remainder of the cohort (those with low 

MUC17 or high PCNX1) by Kaplan-Meier survival analysis (Figure 6.6B and Table 

6.6). Although patients with high MUC17 and low PCNX1 had reduced DFS and DSS 

(by 291 days and 247 days respectively) when compared to the remainder of the 

cohort, as expected, this difference was again not statistically significant.  
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A 

B  

 

Figure 6.6 Kaplan-Meier survival analysis for breast cancer outcomes in groups 
with combined MUC17/PCNX1 markers. Expression of MUC17 and PCNX1 
was determined in resection samples from a cohort of 140 primary breast cancers 
patients who were treated with adjuvant chemotherapy. The cohort was grouped 
into low MUC17/high PCNX1 or reminder of the cohort (A), and high MUC17/low 
PCNX1 or reminder of the cohort (B). Relative survival is shown for the groups, 
and significance was tested using the log rank test. Left panels show the end 
point of disease free survival, while right panels show the end point of disease 
specific survival. The small coloured vertical lines on the plots represent the end 
of follow up (censor points) for individual patients. 
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 Mean DFS 

(days) 
(95% CI) 

Log Rank Mean DSS (days) 
(95% CI) 

Log Rank 

MUC17 low/ 

PCNX1 high  

3915 

(3601-4229) 

0.153 4080 

(3837-4322) 

0.133 

The rest of the 
patients 

3568 

(3286-3850) 

3748 

(3494-4003) 

MUC17 high/ 

PCNX1 low  

3440 

(2887-3993) 

0.459 3664 

(3194-4133) 

0.316 

The rest of the 
patients 

3731 

(3489-3974) 

3911 

(3692-4130) 

Table 6.6 Comparison of mean survival between low MUC17/high PCNX1 or high 
MUC17/low PCNX1 and reminder of the cohort. Analyses were performed as 
described for Figure 6.6. Here, mean disease free survival (DFS) or disease 
specific survival (DSS) in the corresponding groups were compared, showing 
95% confidence intervals and log rank p values.   

 
 

Finally, I compared survival between the low MUC17 / high PCNX1 group (which 

should correspond to drug sensitivity) and the high MUC17 / low PCNX1 (which should 

correspond to drug resistance) using Kaplan-Meier analyses (Figure 6.7 and Table 

6.7). There was longer survival in terms of DFS, by 475 days, and DSS, by 416 days, 

in the low MUC17 / high PCNX1 group as compared to the reverse group, which was 

in agreement with the in vitro findings. However, the difference remained non-

significant, which may be related in part to the relatively small size of these two groups 

(36 and 30 patients in each, respectively). 
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Figure 6.7 Kaplan-Meier survival analysis for breast cancer outcomes in groups 
with combined MUC17/PCNX1 markers. Expression of MUC17 and PCNX1 
was determined in resection samples from a cohort of 140 primary breast cancers 
patients who were treated with adjuvant chemotherapy. The cohort was 
dichotomised into low MUC17 / high PCNX1 or high MUC17 / low PCNX1 based 
on in vitro findings. Relative survival is shown for the groups, and significance 
was tested using the log rank test. Left graph shows the end point of disease free 
survival, while right graph shows the end point of disease specific survival. The 
small coloured vertical lines on the plots represent the end of follow up (censor 
points) for individual patients. 

 

 
 

 

Mean DFS 
(days) 

(95% CI) 

Log Rank Mean DSS 
(days) 

(95% CI) 

Log Rank 

MUC17 low/ 

PCNX1 high 

3915 

(3601-4229) 

0.169 4080 

(3837 -4322) 

0.101 

MUC17 high/ 

PCNX1_low 

3440 

(2887 -3993) 

3664 

(3194-4133) 

Table 6.7 Comparison of mean survival between low MUC17 / high PCNX1 or 
high MUC17 / low PCNX1. Analyses were performed as described for Figure 
6.7. Here, mean disease free survival (DFS) or disease specific survival (DSS) 
in the corresponding groups were compared, showing 95% confidence intervals 
and log rank p values.   
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6.3.3. Analysis of MUC17 and PCNX1 expression after treatment 
with neoadjuvant chemotherapy in breast cancer 

 
An alternative breast cancer cohort was also available. TMAs of resection samples 

from 53 primary breast cancer patients who were treated with neoadjuvant 

chemotherapy, therefore samples were post-chemotherapy, was also assessed. This 

was available through collaboration with Dr Abeer Shaaban (consultant breast 

pathologist, formerly at Leeds Teaching Hospitals NHS Trust, where the patients 

included in this TMA were treated, but now at University Hospitals Birmingham NHS 

Foundation Trust). The TMAs comprised two independent cores representing each 

case. The clinico-pathological features of this cohort are summarised in Table 6.8.  

The cases were stained for MUC17 and PCNX1 and scored as previously. The 

number of cases scored successfully was 47/53 cases (89%) for MUC17, and 40/53 

cases (75%) for PCNX1. The distribution of protein expression scores for MUC17 and 

PCNX1 across the neoadjuvant chemotherapy cohort is illustrated in Figure 6.8, using 

mean scores of successfully scored cores for each case. A range of expression levels 

was seen for both proteins, as for the adjuvant cohort. In this case, a large majority of 

cases were either negative or weak (89%) for MUC17, while half of cases (50%) were 

positive for PCNX1, which represent a similar overall pattern as for the adjuvant 

cohort, although overall these scores were lower.  

 

 

 

 

 

 

 

 



- 161 - 

 

 

 
Characteristics  Number (%) 

n=53 
Histological type 
Ductal no-special type 
Lobular 
Metaplastic 
Tubular 
Mucinous 
Mixed  

39   (73.6) 
2      (3.8) 
1      (1.7) 
1      (1.7) 
1      (1.7) 
6      (11.3) 

Tumour grade 
1 
2 
3 

4       (7.5) 
25     (47.2) 
24     (45.3) 

Tumour size  
1 (<2 cm) 
2 (2-5 cm) 
3 (>5 cm) 

15    (28.3) 
26     (49) 
12     (22.7) 

Lymph node status 
At least 1 positive node 
No positive nodes 

33     (62.3) 
20     (37.7) 

ER receptors status 
Positive 
Negative  
Unknown 

16    (30.2) 
32    (60.4) 
5       (9.4) 

PR receptors status 
Positive 
Negative 
Unknown 

27   (50.9) 
21   (39.6) 
5      (9.5) 

Her2 status 
Positive 
Negative 
Unknown 

38    (71.7) 
10    (18.9) 
5       (9.4) 

Chemotherapy regimens 
Anthracycline based regimen: 
Without Taxanes 
With Taxanes 
With Capecitabine  

 
17    (32.1) 
27    (50.9) 
9       (17) 

Table 6.8 Summary clinico-pathological features for the neoadjuvant 
chemotherapy cohort. 
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Figure 6.8 Scores distributions for MUC17 and PCNX1 in breast cancer cases 
treated with neoadjuvant chemotherapy. TMAs containing primary breast 
cancer cases were stained for MUC17 or PCNX1 expression and expression 
levels were determined semi-quantitatively. Individual tumour cores were scored 
to quantify expression on a scale of 0-3 (MUC17) or 0-7 (PCNX1), and the mean 
scores calculated for each case to combine multiple core scores. Case scores 
were rounded to the closest whole integer number in these distribution plots. 

 

 

6.3.3.1. Protein expression of MUC17 and PCNX1 do not correlate 
with clinical prognostic markers in breast cancer cases treated 
with neoadjuvant chemotherapy 

 
Expression levels of MUC17 and PCNX1 in this cohort were also tested for 

correlations with standard clinical prognostic factors. A summary table shows the 

Spearman’s correlation coefficients and the associated p-values for these tests (Table 

6.9). Only one significant correlation was noted at the threshold of p<0.05; this was a 

relatively weak negative correlation between MUC17 protein expression and cases 

with the triple negative molecular subtype (Spearman’s rho -0.291, p =0.047). 

However, using a target p value adjusted for multiple testing (8 tests in this analysis, 

so target p value adjusted to 0.00625), this finding lost significance.  

 

 

0 1 2 3
0

10

20

30

Score 

F
re

q
u

en
cy

MUC17 

0 1 2 3 4 5 6 7
0

2

4

6

8

10

PCNX1

Score

F
re
q
u
e
n
c
y



- 163 - 

 

  
 
 
 

ER expression Grade Lymph nodes 
metastasis 

Triple Negative 
sub-type 

MUC17       r 0.101 

 

0.574 

 

-0.048 

 

0.752 

-0.072 

 

0.636 

-0.291 

 

0.047 

PCNX1        p 0.108 

 

0.557 

 

-0.102 

 

0.541 

-0.221 

 

0.177 

0.106 

 

0.508 

  

Table 6.9  MUC17 and PCNX1 expression does not correlate with standard 
clinical prognostic factors. Spearman’s rho analyses were performed for 
MUC17 and PCNX1 expression levels against the factor as shown. r indicates 
spearman’s rho coefficient and p indicates P-value. 

 

 

6.3.3.2. Low MUC17 protein expression after neoadjuvant 
chemotherapy is associated with longer disease free survival 

 

As described before (section 6.3.2.4), ROC curve analysis were performed in order to 

determine cut-off scores for each marker, above which would be regarded as high 

expression, and below which would be regarded as low expression. Recurrence status 

was used as a clinical outcome to dichotomise the expression into low and high 

expression for both MUC17 and PCNX1. Cut-off scores were established based on 

the coordinates of the curves as follows: 0.5 for MUC17 and 3.5 for PCNX1 (more 

details and ROC graphs can be found in Appendix Figure 9.5). 

  

Initially, I performed Kaplan-Meier survival analysis for low expression versus high 

expression for both DFS and DSS for both MUC17 and PCNX1 (Figure 6.9 and Table 

6.10). PCNX1 expression did not determine significant differences in survival for either 

DSS or DFS, although for both end-points lower PCNX1 expression was associated 
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with shorter mean survival (by 594 days for DFS, and by 392 for DSS). However, for 

MUC17, DFS was significantly longer for patients with low MUC17 expression (by 823 

days) (log rank, p=0.017), and similarly, DSS was extended (by 816 days) although 

this was not statistically significant.  Both the significant findings, and the non-

significant trends, for all of these analyses were compatible with the trends seen in the 

adjuvant cohort (section 6.3.2.4), and with the results of the in vitro studies (chapter 5, 

section 5.3.4).  
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MUC17 

 

PCNX1 

 

Figure 6.9 Kaplan-Meier survival analysis for breast cancer outcomes in groups 
with high versus low expression of MUC17 showed significantly improved 
DFS. Expression of MUC17 and PCNX1 was determined in resection samples 
from a cohort of 53 primary breast cancers patients who were treated with 
neoadjuvant chemotherapy. The cohort was dichotomised into relatively low or 
relatively high expression groups using ROC analyses. Relative survival is shown 
for the groups, and significance was tested using the log rank test. The upper 
plots show data based on MUC17 expression, while the lower plots are for 
PCNX1. Left panels show the end point of disease free survival, while right 
panels show the end point of disease specific survival. The small coloured 
vertical lines on the plots represent the end of follow up (censor points) for 
individual patients. 
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 Mean DFS 

(days) 
(95% CI) 

Log 
Rank 

Mean DSS 
(days) 
(95% CI) 

Log Rank 

MUC17 Low  2103 

(1704-2503) 

0.017* 2311 

(1894-1680) 

0.431 

High  1280 

(1507-1344) 

1495 

(1286-1703) 

PCNX1 Low 

  

2020 

(1751-2290) 

0.739 1576 

(3563-4187) 

0.655 

High  2614 

(1902-2693) 

1968 

(1466-2470) 

Table 6.10 Comparison of mean survival between low and high protein 
expression in MUC17 and PCNX1. Analyses were performed as described for 
Figure 6.9. Here, mean disease free survival (DFS) or disease specific survival 
(DSS) in the low and high expression groups are compared, showing 95% 
confidence intervals and log rank p values.  * indicates significant log rank test 
(p<0.05) 

 
Next, I performed the same sequence of combined analyses of MUC17 and PCNX1 

expression as previously for the adjuvant chemotherapy cohort (section 6.3.2.4). 

Analyses were performed comparing patients with low MUC17 expression / high 

PCNX1 expression with the remainder of the cohort (Figure 6.10A; Table 6.11), 

patients with high MUC17 / low PCNX1 with the remainder of the cohort (Figure 6.10b; 

Table 6.11), and patients with low MUC17 / high PCNX1 with patients with high 

MUC17 / low PCNX1 (Figure 6.11; Table 6.12). In each case, these combinations were 

guided by the in vitro findings suggesting that low MUC17 expression and high PCNX1 

expression should both confer longer survival because of increased sensitivity to 

chemotherapy, and the reverse for the high MUC17 / low PCNX1 group. None of these 

analyse showed significant differences between the groups, although in every case 

the (non-significant) differences between the mean lengths of survival in the two 

groups were compatible with the hypothesis behind the combinations. In particular, for 

example, the low MUC17 / high PCNX1 and high MUC17 / low PCNX1 group 

comparison showed substantial differences in mean survival of 883 days for DFS and 

448 days for DSS, although the groups were too small to allow significance (8 patients 

in each).  
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A   

B  

 

Figure 6.10 Kaplan-Meier survival analysis for breast cancer outcomes in 
groups with combined MUC17/PCNX1 markers. Expression of MUC17 and 
PCNX1 was determined in resection samples from a cohort of 53 primary breast 
cancers patients who were treated with neoadjuvant chemotherapy. The cohort 
was grouped into low MUC17 / high PCNX1 or reminder of the cohort (A) and 
high MUC17 / low PCNX1 or reminder of the cohort (B). Relative survival is 
shown for the groups, and significance was tested using the log rank test. Left 
panels show the end point of disease free survival, while right panels show the 
end point of disease specific survival. The small coloured vertical lines on the 
plots represent the end of follow up (censor points) for individual patients. 
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 Mean DFS 
(days) 
(95% CI) 

Log Rank Mean DSS (days) 
(95% CI) 

Log Rank 

MUC17 low/ 

PCNX1 high  

2040 

(1325-2755) 

0.598 2040 

(1325-2755) 

0.502 

The rest of the 
patients 

1613 

(1345-1882) 

1966 

(1734-2199) 

MUC17 high/ 

PCNX1 low  

1157 

(655-1659) 

0.145 1592 

(1278-1906) 

0.202 

The rest of the 
patients 

1930 

(1548-2312) 

2147 

(1741-2553) 

Table 6.11 Comparison of mean survival between low MUC17/high PCNX1 or 
high MUC17 / low PCNX1 and reminder of the cohort. Analyses were 
performed as described for Figure 6.10. Here, mean disease free survival (DFS) 
or disease specific survival (DSS) in the corresponding groups were compared, 
showing 95% confidence intervals and log rank p values. 

 

 

Figure 6.11 Kaplan-Meier survival analysis for breast cancer outcomes in 
groups with combined MUC17/PCNX1 markers. Expression of MUC17 and 
PCNX1 was determined in resection samples from a cohort of 53 primary breast 
cancers patients who were treated with neoadjuvant chemotherapy. The cohort 
was grouped into low MUC17/high PCNX1 or high MUC17/low PCNX1 based on 
in vitro findings. Relative survival is shown for the groups, and significance was 
tested using the log rank test. Left graph shows the end point of disease free 
survival, while right graph shows the end point of disease specific survival. The 
small coloured vertical lines on the plots represent the end of follow up (censor 
points) for individual patients. 
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Mean DFS 
(days) 
(95% CI) 

Log Rank Mean DSS 
(days) 
(95% CI) 

Log Rank 

MUC17 low/ 

PCNX1 high 

2040 

(1325 -2755) 

0.280 2040 

(1325 -2755) 

0.484 

MUC17 high/ 

PCNX1 low 

1157 

(655 -1659) 

1592 

(1278-1906) 

Table 6.12 Comparison of mean survival between low MUC17/high PCNX1 or 
high MUC17/low PCNX1. Analyses were performed as described for Figure 
6.11. Here, mean disease free survival (DFS) or disease specific survival (DSS) 
in the corresponding groups were compared, showing 95% confidence intervals 
and log rank p values.   

 
 

6.4. Discussion 

 
6.4.1. MUC17 and PCNX1 proteins are differentially expressed in 

breast cancer cohorts 

 
To my knowledge, no large-scale studies have been conducted looking at protein 

expression of MUC17 and PCNX1 in invasive breast cancer. Herein, I showed there 

is a broad differential protein expression of MUC17 and PCNX1 across different 

invasive breast cancers. Analysing control tissue sections along with invasive breast 

carcinoma TMAs helped me to ensure there was specific binding of the antibodies to 

the targeted protein, localised to specific cellular compartments (i.e. not due to non-

specific bindings to non-targeted compartments, which would likely represent false 

positives). I used small intestine tissue section as positive control for MUC17, in which 

the antibodies were expected to bind to the targeted protein at membranous 

cytoplasm/cytoplasmic of mature villi absorptive cells, consistent with a previous study  

[207]. For PCNX1, I used ovarian tissue section as a positive control in which 

antibodies were expected to bind to nucleoplasm cellular compartment, in 

concordance with a previous study [190]. Altogether, this indicates MUC17 and 
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PCNX1 are expressed in invasive breast carcinomas and therefore potentially play 

regulatory roles in the pathogenesis of the disease.   

 

Conducting studies using samples from cohorts of patients in a TMA format presents 

some potential challenges, for example: inter-scorer reliability and core-to-core 

variability. I addressed the former by performing an assessment of the inter-scorer 

concordance using the Cohen’s Kappa statistic, which is a recommended statistic 

method of choice for this kind of analysis [202, 203]. While for the latter, I performed 

a Spearman’s correlation coefficient to assess intra-tumour heterogeneity in terms of 

expression of targeted proteins across different cores of tissue taken from the same 

tumours [208, 209]. The former showed there was substantial or near to perfect 

agreement between scorers for PCNX1 and MUC17, respectively, which indicated the 

semi-quantification method can be considered reproducible and robust. The latter 

showed there was a strong correlation among cores from an individual case (p<0.001), 

which indicates there is minimal intra-tumoural heterogeneity and the pooling method 

used for selecting representative scores for cases with multiple cores should not 

greatly influence the result. However, it should be noted minimal intra-tumour 

heterogeneity detected across different cores of tissue taken from the same tumours 

in terms of protein expression for MUC17 and PCNX1,  is inconsistent with mutational 

landscape analysis ( chapter 4, section 4.3.2) where substantial ITH was found in 

terms of number of detected mutations. However, this may suggest that MUC17 and 

PCNX1 are expressed widely across tumours and/or there is limitation due to   

sampling of the tumour. Thereby, there is a need to have different spatial samples of 

whole tumour in order to have a better representation of tumour to study ITH especially 

in terms of clonal evolution.  

 

6.4.2. MUC17 is a prognostic marker in neoadjuvant chemotherapy 
cohort 

 
The main objective of this chapter was to investigate whether MUC17 and PCNX1 can 

be used as predictive markers to direct the use of chemotherapy and subsequently 

improve survival outcomes. Also, to confirm the findings from my in vitro studies for 
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MUC17 and PCNX1 as drivers for chemotherapy response which could be then used 

as prognostic markers for treatment. Two representative cohorts were included; 

adjuvant chemotherapy (before treatment) and neoadjuvant chemotherapy (post-

treatment). I performed Kaplan-Meier survival analysis for low versus high protein 

expression for MUC17 and PCNX1 individually, as well as a combination markers 

analysis in which patients were categorised according to the in vitro findings. I 

uncovered one key significant finding: in the neoadjuvant chemotherapy cohort 

relatively low MUC17 expression correlated with increased DFS compared to patients 

with higher expression (log rank test, p=0.017). This was compatible with the in vitro 

findings for MUC17, as siRNA targeted cells showed increased sensitivity to epirubicin 

treatment compared with control cells (chapter 5, section 5.3.4), and also with my 

original observations regarding MUC17 mutations, where cells with presumed loss-of-

function mutations were apparently successfully treated by chemotherapy in breast 

cancer patients. This is also in agreement with a recently published paper using 

computational analysis to identify recurrently mutated genes (RMGs) in cancers, 

utilising data from The Cancer Genome Atlas (TCGA). The study revealed mucin 

family genes are among the RMGs, and MUC17 was one of 4 RMGs that found to be 

shared in many cancer types. In addition, the survival analysis showed patients with 

mucin-mutated cancers had significantly better overall survival compared to patients 

with mucin wild-type cancers in skin cutaneous melanoma and stomach 

adenocarcinoma [210].  

 

The reminder of the survival analyses for both MUC17 and PCNX1 were in agreement 

with in vitro findings in terms of trends, but statistically were not significant based on 

log rank scores. Since, the neoadjuvant cohort is relatively small (n=47 for MUC17, 

n=40 for PCNX1), the statistical power could improve should the cohort size be 

expanded. However, published studies that have shown significant findings with 

similar sized cohorts in this context. For example, there is a study investigated the 

protein expression of stromal tumour-infiltrating lymphocytes (TILs) and programmed 

death ligand 1 (PD-L1) protein expression in a cohort of breast cancer patients treated 

with neoadjuvant chemotherapy. They compared the TIL count and PD-L1 status in 

paired pre-treatment and residual cancer tissues and correlated changes and baseline 

levels with survival in a cohort of only 58 patients assembled into TMAs. It was found 
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that increased stromal TILs in residual cancer compared to the pre-treatment tissue 

was associated with longer 5-year recurrence-free survival (p = 0.02, HR = 3.9, 95% 

CI = 1.179–15.39) [4]. Despite, the small size of this cohort, yet it yielded significant 

findings.  

 

The survival analysis findings for adjuvant chemotherapy cohort were mostly in 

alignment with in vitro findings, but they were not statistically significant. It is important 

to note only 36 patients out of 140 (25.7%) in the adjuvant cohort had ‘events’ (death 

in case of disease specific survival and recurrence in case of disease free survival), 

and as a result, a high percentage of patients were censored in the Kaplan-Meier 

survival analyses, which ultimately led to reduced statistical analysis power. In 

addition, it should be noted MUC17 and PCNX1 were identified in the ER+/HER2- 

cohort exclusively, and since the cohorts included patients with other hormonal 

molecular profiles this might have let to underpower the statistical analysis in terms of 

specificity of targeted cohort patients.  

 

It is interesting to compare my study to a similar study that was also conducted on two 

independent breast cancer cohorts. In this work, the authors investigated whether Bcl-

2 can be used as a predictive and prognostic marker in triple negative breast cancer 

(TNBC) in both adjuvant and neoadjuvant chemotherapy settings. Patients included 

were 635 patients who had early primary TNBC and were treated with adjuvant 

chemotherapy, and 101 patients with primary locally advanced TNBC and were 

treated with neoadjuvant chemotherapy; both cohorts being substantially larger than 

mine. It was found that Bcl-2 acted as a prognostic marker, since patients with tumours 

that were negative for Bcl-2 had improved both breast cancer specific survival 

(p=0.002) and disease free survival (p=0.003) following the adjuvant chemotherapy. 

In addition, negative Bcl-2 expression acted as an independent predictor of 

pathological complete response (pCR) for primary locally advanced TNBC treated with 

neoadjuvant chemotherapy (p=0.008) [199]. This study showed consistent findings for 

Bcl-2 as prognostic and predictive marker between different cohorts. However, it 

should be noted this study was conducted at larger cohort scale comparatively to my 
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work, and relatively more patients included have had the events (either death or 

recurrence), which led to have a better statistical representation of the study.  

 

Nevertheless, in my adjuvant cohort among the patients in the TMAs cohorts who have 

had the events (either recurrence or death) exhibited a high percentage of high 

MUC17 (61.1%), and low PCNX1 (58.3%) protein expression. This indicates MUC17 

and PCNX1 protein expression potentially could be used as survival predictive 

markers before adjuvant chemotherapy in invasive breast cancer patients. Hence, 

further investigation by expanding the cohort and further follow-up with patients would 

be worthwhile.      

 

 

 

6.4.3. Conclusion 

 
In this chapter I have shown MUC17 is a driver for chemo-response, and as a 

prognostic marker for chemotherapy in breast cancer. While other analysis of MUC17 

and PCNX1 were in alignment with the in vitro findings but statistically non-significant, 

the statistical power could improve should the cohort size be expanded. Further work 

required to confirm the findings in the context of different cohorts (i.e. of specific breast 

cancer molecular sub-type and other cancer types) and in vivo studies before the 

transition of the findings into clinical utilities can be made.  
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7. Discussion and Summary 

 

7.1. Successful enrichment of somatic mutations attributed 
to chemotherapy resistance 

 

7.1.1. Laser Capture Micro-dissection (LCM) enriches for 
resistance-related clones with somatic mutations 

 
A key aim in this study was to identify the somatic mutations that are directly involved 

with either chemo-sensitivity or chemo-resistance, and to achieve this I took 

advantage of available new technologies. One of the advantages of this study is the 

utilisation of laser capture micro-dissection (LCM), which enabled the resistant tumour 

cells to be dissected directly. This expanded my chances of detecting somatic 

mutations, especially for those with lower allele frequency in resistant sub-clones, 

which would be missed in whole tissue samples. This was illustrated in a study where 

LCM was used to procure pure cell populations of head and neck squamous cell 

carcinoma in order to study the loss of heterozygosity (LOH) of chromosome 11q 

genomic region. This LOH analysis required pure cells of interest because the 

contamination by even few unwanted cells would mean the second allele lost in the 

cell population of interest would be amplified in the PCR reaction leading to 

misinterpretation of findings [211].  

 

Furthermore, issues concerning temporal and spatial heterogeneity within the whole 

tumour have been highlighted previously [212-214]. To overcome these, I performed 

LCM on multiple regions of the tumour section. Also, since this study focused on 

studying genomic changes associated with chemotherapy resistance, samples were 

obtained between pre- and post-NAC, which should reflect the temporal aspects of 

tumour heterogeneity.   
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The utilisation of LCM in this study has enabled enrichment of somatic mutations 

specific to specific cell populations and thereby led to high confidence in calling 

somatic mutation attributed to chemotherapy resistance.  

 

7.1.2. Integration of WES enables to detect rare somatic mutations 

  
NGS has increasingly been used in the research setting to study tumour heterogeneity 

and in an effort to aid implementation of precision medicine [215]. Particularly, WES 

has been receiving more popularity in clinical sittings owing to its decreasing costs, 

and the fact that a more manageable amount of data are generated that are suitable 

for rapid clinical interpretation [216]. Also, WES targets the protein-coding regions 

which composed of approximately 1.5% of whole genome, but contains around 85% 

of currently known disease-relevant mutations [217]. Furthermore, WES offers a 

higher depth of coverage (100–150x) than WGS in up to 95% of exons and offers 

advantages in comparison to targeted panel sequencing of specific genes, which fails 

to detect complex genomic aberrations or mutations in genes outside of the 

preselected panel. 

 

In my study, I performed WES in order to obtain a higher depth of coverage to detect 

mutations that are involved with driving treatment resistance that are at lower allele 

frequency. This area of research is required since there is a relative lack of profiling 

rare molecular alterations across different tumour entities, which presents a challenge 

in integrating personalised medicine [76]. This was realised in a clinical trial, the 

French SHIVA trial, which aimed to molecularly profile (using NGS) patients with 

advanced solid tumours and match them with known available molecular treatments 

[218]. Despite, the fact that the trial showed a successful example of integration of 

personalised medicine in clinical practise, there were some limitations. One of the 

limitations was that the trial was limited to 3 treatments, with the majority of patients 

receiving either hormonal therapy or mTOR inhibitors, which display only limited 

activity as single agents outside from their specific indications. Hence, there is a need 

for a more thorough characterisation of molecular drivers before assigning patients to 

targeted therapy in order to observe a better clinical benefit [218, 219]. The results of 
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this trial should also prompt a thorough reconsideration of the way clinical trials are 

conducted and analysed in the era of precision medicine, which require consideration 

of inter- and intra-tumour heterogeneity.  

 

In my study more focus was directed to investigate those molecular drivers that are 

relatively rare but likely drive the treatment response in the individuals within my 

cohort. This aims to expand the range of genomic features that can be used to optimise 

treatment stratification and thereby improve responses and, hopefully, cure rates.   

 

7.1.3. Adjacent normal tissue and pair analysis  

 
There are many reports discussing the use of histologically normal appearing samples 

as the sole control tissue in cancer research, in particular relating to  concerns 

associated with effects of field of cancerisation [220-222]. Field cancerisation is the 

concept that a population of daughter cells with early genetic changes (without 

histopathology) remain in the organ surrounding the primary tumour. The present 

technological advancement, including laser capture micro-dissection and high-

throughput genomic technologies, and carefully designed studies using appropriate 

control tissue has enabled identification of important genetic alterations in transformed 

but histologically normal cells [220]. Hence, utilising combination of both normal 

adjacent tissue to the tumour which obtained similar conditions as tumour along with 

reference human genome would serve as better controls for tumour-specific somatic 

mutations induced by chemotherapeutic agent. In comparison, using both patients’ 

blood samples and reference genome as internal controls to call for somatic mutations 

can lead to increased risk of calling false positive somatic mutations due to patient’s 

specific single nucleotide polymorphisms (SNPs) [223, 224].   

 

In addition, pairwise analysis of tumour versus matched normal was performed to call 

for mutations that were only present in tumours, and therefore represent somatic 

mutations. Furthermore, the identified somatic mutations between tumour versus 

normal for each individual patient, were further filtered against normal of other patients. 

This ensured that called somatic mutations were not missed in the sequencing of 
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normal tissue, which potentially represents a risk for germline mutations. Ultimately, 

this dual analysis ensured higher confidence for the identified somatic mutations.  

 

7.2. Inter- and intra-tumoural heterogeneity analysis 
identifies common targets for chemo-response 

 

7.2.1. Tumour heterogeneity findings have potential utility for 
clinical implementation 

 
Venn diagrams in Figure 4.2 showed substantial inter- and intra-tumour heterogeneity 

existed in terms of detected mutations, with occasional mutated genes found in 

common among patients in their respective sub-categories (a maximum of 3 patients 

shared mutated gene between each sub-category). This was consistent with previous 

studies where no two patients with the same cancer type had the same collection of 

somatic mutations, with many pairs of tumours having no mutations in common, and 

a limited number of mutations appearing in a large fraction of tumours, with most genes 

being mutated (by SNVs or CNAs) in <5% of all patients with a given cancer type [72, 

225, 226]. 

 

Nevertheless, it was possible to determine those driver gene mutations likely to 

modulate the chemotherapy response in this extremely heterogeneous background by 

implementing MAF and functional pathways analysis approaches. These approaches 

were also used in other studies enabling the authors similarly to identify candidate 

driver genes mutations, molecular signature, and de-regulated pathways [227-229]. In 

addition to these approaches, the design of this study has enabled categorisation of 

the mutational spectrum into mutations unique to pre-NAC, mutations unique to post-

NAC, and mutations shared between pre- and post-NAC. This also allowed changes 

in MAF to be assessed for mutations shared between pre- and post-NAC and also 

allowed functional pathways analysis in order to determine enriched pathways 

involved with chemo-response modulation for each sub-category, which helped to 

provide candidate genes for chemotherapy response.  
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Since the primary goal of characterising inter- and intra-tumour heterogeneity is to 

understand its impact on prognosis and therapy, there have been efforts attempted to 

interpret tumour heterogeneity for clinical application such as whether heterogeneity-

related features are associated to or predictive for some clinical outcomes, such as 

response to treatment and survival time [230, 231]. For example, data from network-

based stratification (NBS), a method which integrates somatic tumour genomes with 

gene networks to allow for stratification of cancer into informative subtypes by 

clustering together patients with mutations in similar networks. This method enabled 

identification of subtypes that are predictive of clinical outcomes such as patient 

survival or response to treatment. Patients with the most aggressive ovarian tumour 

NBS subtype had a mean survival of approximately 32 months, compared to more 

than 80 months for those with the least aggressive NBS subtype [230]. Also, a study 

investigated the number of clones present at a ≥10% frequency in more than 1000 

exome sequences from tumours across 12 cancer types, and assessed the 

association between the number of clones in a sample with overall survival outcome 

using computational algorithms. It was found that across cancer types, the presence 

of more than two clones was associated with worse overall survival as compared to 

tumours in which either one or two clones were detected [231].  

 

While these methods have all demonstrated potential clinical utilities of tumour 

heterogeneity interpretation for clinical implementation, they lack functional validation 

in the context of in vivo or in vitro experiments. In contrast, in this study I validated my 

findings from heterogeneity landscape using in vitro approaches and therefore showed 

MUC17 to be a potential prognostic marker for chemotherapy response in breast 

cancer.  
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7.2.2. Candidate genes have profound effects on chemotherapeutic 
response in vitro, and in patients  

 
Many review articles have indicated that there is a relative lack of studies that have 

combined computational analysis approaches and functional genomic biology 

approaches on NGS data to identify molecular targets for diseases, especially variants 

of unknown clinical significance or low prevalence [232, 233]. Having identified a list 

of candidate genes from computational analysis of the heterogeneity landscape of 

breast cancer patients, I took a further step to validate them using in vitro approaches.  

 

Pragmatic screening using siRNA system has enabled me to shorten the list of 

candidate genes to focus on only those driver genes that have profound effects on 

chemo-response. Indeed, MUC17 and PCNX1 stood out from the screen by showing 

chemo-sensitivity and chemo-resistance phenotypes, respectively. The fact that 

MUC17 and PCNX1 have profound effects on chemo-response suggests that they 

play key roles in cell survival mechanisms. Such observation of profound effects of 

single genes was also seen in a similar study in which they integrated data from gene 

expression profile of primary colorectal cancer (CRC) cohort, and identified many 

genes that were highly expressed in the tumours. Then, the authors followed up these 

potential targets in 25 CRC cell lines to identify 11 genes that were consistently over-

expressed in primary CRC and in CRC cell lines. After that, the 11 genes were 

examined for LOF effects further using siRNA and it was found that 5 candidate genes 

showed a 20% or greater decrease in cellular viability as compared to a control siRNA. 

Also, whole transcriptome expression analyses were conducted following siRNA 

transfected cells to identify an “RNAi signature” for each gene of interest. These RNAi 

signatures were defined as the genes with altered expression following transfection 

with targeted siRNA compared to a negative control. It was found that the RNAi 

signatures for some genes such as HMGA1, RRM2 and RPS2 showed that the 

silencing of candidate genes influence the expression of many downstream genes, 

which is consistent with the observation that these genes were associated with the 

most pronounced reduction of cell viability [234].  
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There are few studies in the literature that I have found that have integrated NGS and 

functional biology validation approaches to identify novel cancer genes for cancer 

progression and treatment response. One example is a study in which the authors 

performed WES on 13 endometrial cancers and matched normal samples and, 

similarly to my approaches, focused on somatic mutations utilising bioinformatics 

prioritisation tools and high-throughput RNAi screen system to identify 12 potential 

driver cancer genes. Also, the functional genomics studies led to identification of 

mutations in the ARID1A gene that co-occur frequently with mutations in PI3K pathway 

and were associated with PI3K pathway activation. In addition, utilising the siRNA 

knockdown system in endometrial cancer cell lines supported ARID1A as a novel 

regulator of PI3K pathway activity. At the time this study was published, it was first to 

report a novel somatic mutation in endometrial cancer and provides functional 

evidence of its importance [235].  

 

In my study, I proceeded to confirm the functional genomic findings and see whether 

the findings from in vitro can be utilised for clinical application by examining protein 

expression of the candidate genes in clinical tissue samples. The findings from TMAs 

endorsed the in vitro findings at least for MUC17, namely that MUC17 was a predictive 

marker for chemotherapy prognosis. Therefore, this finding provides unbiased 

evidence for the robustness of this approach of charactering tumour heterogeneity for 

identification of novel markers for breast cancer progression and treatment response.  
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7.3. MUC17 and PCNX1 - a future translational pathway? 

 

This study demonstrates successful implementation of personalised medicine in 

identifying molecular targets for chemo-response in cohort of patients who showed 

resistance to neoadjuvant chemotherapy. Analysis of tumour heterogeneity landscape 

of pre- and post-NAC samples followed by functional validations and relatively large-

scale clinical tissue cohort studies all have led to identification of MUC17 and PCNX1 

as genuine clinical targets. 

 

Nonetheless, in order to use MUC17 and PCNX1 as targets for molecular targeted 

therapies requires investigating the underlying molecular mechanisms, which can be 

done using model systems including non-human model organisms such as mice, 

zebrafish, fruit-flies. Also, the candidate molecular targets need to undergo stringent 

biological and clinico-pathological validation i.e. multiple biological assays to validate 

their biological activities in vivo such as assessment of their signalling activity 

pathways. In addition, before successful translation of developed therapeutic agents 

in to the clinics they need to be clinically validated before they can be adapted for 

routine clinical practice by implementing clinical trials [236]. 

 

As far as the development of MUC17 and PCNX1 as biomarkers that can be used 

clinically to predict disease progression or response to therapy, they require process 

that involves assessment of prevalence, sensitivity, specificity and rigorous validation 

in multiple clinical cohorts [237].  

 

However, there are many challenges associated with translation of genomic findings 

into therapies due to genetically complex nature of tumours which are characterised 

by many genomic alterations. Hence, targeted therapies based on the status of a 

single molecular alteration in patients’ tumours is often not sufficient to predict 

therapeutic response. Also, one of the practical limitations of successful translation of 
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genomic findings into clinical targeted therapies is due to the lack of availability of well-

defined, clinically characterised cohorts for evaluating the biomarker and lack of 

standardisation regarding how specimens are collected, handled, and stored. 

Ultimately, these issues can influence whether or not biomarkers validate in well-

controlled cohorts. In addition, obtaining well-annotated clinical information regarding 

the cohort has been a substantial barrier in implementing representative studies for 

transitional therapies [238].  

 

Despite these difficulties there have been successful examples of translating cancer 

genomic to targeted cancer therapy for example, identification of fusion proteins of 

BCR-ABL genes which mostly found in Philadelphia chromosome abnormality in 

chronic myeloid leukaemia (CML) that causes continuous over activation of tyrosine 

kinase pathway. This discovery led to development of the targeted therapy Imatinib 

(also commercially known as Gleevec or Glivec), which acts as a specific inhibitor of 

tyrosine kinase enzymes and subsequently resulted in a dramatic increase in patient 

response to treatment [237, 239].  

 

Another successful example of translational genomic discoveries into targeted 

therapies was seen in EML4-ALK translocation genetic alteration found in around 7% 

of Non-Small Cell Lung Carcinoma (NSCLC). And since the ALK inhibitor is already 

available, the speed to translation ALK targeted therapy was relatively fast due to prior 

knowledge about the drug mechanism and the candidate patients harbouring the 

genetic alteration to include for targeted therapy [237, 240].  

 

For MUC17 and PCNX1, there is little current literature concerning their molecular 

signalling pathways and oncogenic activities, and while I have shown them to be novel 

and promising clinical targets for chemotherapy response, a huge amount of work 

remains to translate these findings into better cancer outcomes. Further experiments 

in order to validate my findings will include the following: 

 



- 183 - 

• Repeat the study with expansion of the cohort to include larger number of 

patients for WES and also confirm the sequencing findings with targeted 

sequencing approaches in order to obtain higher depth of coverage to ensure 

the biological relevance of the candidate genes. 

• Include another patient’s cohort who responded to chemotherapy and the 

findings from both cohorts can be compared to find the exclusive mutations in 

both cohorts. 

• For in vitro studies another functional technique could be included for example 

gain of function technique such as cDNA libraries to compare the findings from 

siRNA (loss of function), so the correlation assessment of phenotype of 

chemotherapeutic response from both techniques can me made. 

• Perform CRSPR technique for permanent knockout of the genes and to 

overcome the limitations of above techniques.  

• Validate the findings using in vivo approaches. For instance; following knockout 

of candidate genes in the cell lines, the cells can be injected into mice and 

treated with chemotherapy to assess their response.  

• Higher number of patients should be included in TMAs cohorts in order to 

assess whether MUC17 and PCNX1 can be used as predictive and prognostic 

markers for chemotherapy response in breast cancer. Also, would be useful to 

have matching TMAs cohorts of the sequenced patients for validation in the 

TMAs cohorts. 

 

The findings from validation studies would enable MUC17 and PCNX1 to be utilised 

for clinical applications such as targeted therapy (i.e. MUC17 inhibitor) to induce 

synergistic effect of chemotherapy especially for patients who did not show response 

to chemotherapy regimen at NAC sittings. In addition, MUC17 and PCNX1 would be 

used as predictive and prognostic markers to direct the chemotherapy for patients who 

would benefit from chemotherapy and also monitor the survival progression during and 

after the chemotherapy.  
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7.4. Summary  

 
In this study I was primarily interested to investigate the role of intra-tumoural 

heterogeneity in resistance to Neoadjuvant Chemotherapy (NAC) in breast cancer. I 

sought to study the mutational landscape between pre- and post-NAC samples of 

within an individual and across a small group of 6 patients. The mutational analysis 

showed substantial inter- and intra-tumoural heterogeneity in terms of detected 

mutations in breast cancer patients, as is consistent with previous studies. [5-

9](Campbell and Polyak 2007, Nguyen, Vanner et al. 2012, Aparicio and Caldas 2013, 

Rybinski and Yun 2016, McGranahan and Swanton 2017)[5-9][5-9][5-9][5-9]This 

presented a challenge as to identify driver gene mutations for chemo-response that 

were common for patients who did not respond to epirubicin/cyclophosamide 

chemotherapy regimen. Despite, this broad inter- and intra-tumoural heterogeneity 

spectrum in breast cancer patients, it was possible to find common targets and driver 

gene mutations for the chemo-response. In order to prove that, I endeavoured to utilise 

the uniqueness design of this study. The availability pre- and post-NAC samples 

allowed categorising mutational landscape into those selected for and selected against 

the chemotherapy. Also, using the adjacent normal tissue from the patients allowed to 

call somatic mutations that are involved in cancer and chemotherapy progression. In 

addition, utilising the computational functional tools, such as SIFT and polyphen2 

protein damaging predictor tools, and functional pathways analysis allowed finding 

potential common targets in the heterogeneous breast cancer patients and common 

pathways shared in the mutated genes set. 

 

The study was extended to perform functional validation of the candidate genes using 

in vitro approaches and TMAs cohort. This allowed confirming the findings from 

genomic sequencing data analysis and putting the findings in context of targeted 

therapies. This was evident based on discovering MUC17 and PCNX1 as 

epirubicin/cyclophosamide chemotherapy regimen response mediators. This work in 

essence demonstrates the successful implementation of personalised medicine to 

tackle issues associated with treatment ineffectiveness and treatment side effects. 

However, future challenges remain with translating these findings into clinical benefits.  
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9. Appendix  

 

9.1 Cases 5-8 were sequenced in multiple separate reactions, and hence 
multiple FASTQ files were available.  These were merged and checked for total 
number of sequenced reads in the final merged files, which corresponds to the 
added up total number of sequenced reads in files from first and second runs 
using FastQC software.  

 

Sample ID File No. First run total 
reads No. 

Second run 
total reads No. 

Final merged 
files total reads 
No. 

5 Pre-NACT R1 20757727 109557256 130314983 

R2 20757727 109557256 130314983 

5 Post-NACT R1 8051567 47086305 55137962 

R2 8051567 47086305 55137962 

6 Pre-NACT R1 33232184 96097667 129329851 

R2 33232184 96097667 129329851 

6 Post-NACT R1 22598251 115852543 138450794 

R2 22598251 115852543 138450794 

7 Pre-NACT R1 13805863 127952441 141758304 

R2 13805863 127952441 141758304 

7 Post-NACT R1 20032085 73842906 93874991 

R2 20032085 73842906 93874991 

8 Pre-NACT R1 22177763 80345729 102523492 

R2 22177763 80345729 102523492 

8 Post-NACT R1 22462382 118959063 141421445 

R2 22462382 118959063 141421445 
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9.2  Screenshot of  built-in genomic viewer in SureCall to illustrate the fault with 
SureCall software miscalling “somatic” variants in the cancer samples in fact 
had multiple reads aligned with high mapping quality in the matched normal 
samples, yet had not been called as germline variants. Agilent acknowledged 
that there was a fault in the SureCall software to recognise mutations present in 
both tumour and reference normal samples as germline mutations; instead, they 
were identified (incorrectly) as somatic variants, seemingly because the 
variants within the normal sequence had been (incorrectly) defined as 
sequencing errors. (A) shows an example of variant being called somatic under 
Result tab (calls only for somatic variants) in the genomic viewer (B) Same 
variant under Reference tab shows many reads supporting that variant in 
normal sample. A variant that has multiple reads, aligned with high mapping 
quality, all containing the same variant (with high base quality) and each aligned 
with a different start position (i.e. not possible to be PCR duplicates) 
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9.3 The findings from ToppGene enrichment analysis for further details of the 
other analyses such as statistics, scores and number of genes enriched in each 
term or pathway are included.  

 

Enriched pathways for Pre-NAC sub-category            

ID Name Source 

p-

valu

e 

q-

value 

Bonfer

roni 

q-

value 

FDR 

B&H 

q-

value 

FDR 

B&Y 

Hit 

Count 

in 

Query 

List 

Hit 

Count in 

Genome Hit in Query List 

M3005 

Genes encoding 

collagen proteins 

MSigDB 

C2 

BIOCART

A (v6.0) 

2.38

E-11 

6.76E-

08 

6.76E-

08 

5.77E-

07 22 44 

COL20A1,COL28A1,COL6A6,COL22

A1,COL1A1,COL4A1,COL4A2,COL5A

1,COL6A2,COL6A3,COL7A1,COL9A1

,COL9A3,COL11A1,COL15A1,COL16

A1,COL17A1,COL5A3,COL24A1,COL

25A1,COL18A1,COL21A1 

14709

26 

Collagen chain 

trimerization 

BioSystem

s: 

REACTO

ME 

1.24

E-10 

3.54E-

07 

1.77E-

07 

1.51E-

06 22 47 

COL20A1,COL28A1,COL6A6,COL22

A1,COL1A1,COL4A1,COL4A2,COL5A

1,COL6A2,COL6A3,COL7A1,COL9A1

,COL9A3,COL11A1,COL15A1,COL16

A1,COL17A1,COL5A3,COL24A1,COL

25A1,COL18A1,COL21A1 

12702

46 

Collagen 

biosynthesis and 

modifying 

enzymes 

BioSystem

s: 

REACTO

ME 

1.34

E-09 

3.82E-

06 

1.27E-

06 

1.09E-

05 26 70 

COL20A1,COL28A1,COL6A6,COL22

A1,COL1A1,COL4A1,COL4A2,COL5A

1,COL6A2,COL6A3,COL7A1,COL9A1

,COL9A3,COL11A1,COL15A1,COL16

A1,COL17A1,ADAMTS2,COL5A3,AD

AMTS14,COL24A1,COL25A1,P3H1,C

OL18A1,TLL1,COL21A1 

M5884 

Ensemble of 

genes encoding 

core 

extracellular 

matrix including 

MSigDB 

C2 

BIOCART

A (v6.0) 

1.34

E-08 

3.82E-

05 

9.12E-

06 

7.78E-

05   275 

MATN2,AEBP1,LTBP4,COL20A1,COL

28A1,VWDE,BGN,COL6A6,OTOG,CH

AD,COL22A1,VIT,COL1A1,COL4A1,C

OL4A2,COL5A1,COL6A2,COL6A3,CO

L7A1,COL9A1,COL9A3,COL11A1,CO
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ECM 

glycoproteins, 

collagens and 

proteoglycans 

L15A1,COL16A1,COL17A1,ABI3BP,C

OL5A3,SNED1,VCAN,RELN,COL24A

1,DMBT1,EPYC,EYS,EMILIN2,LAMC

3,SVEP1,EFEMP1,SPON1,FRAS1,SL

IT1,SLIT3,EGFLAM,COL25A1,ELSPB

P1,SSPO,IGSF10,TINAG,NTNG2,VW

A3A,COL18A1,THBS2,AGRN,USH2A,

IGFBP5,COL21A1,LAMA5,LAMC1,PA

PLN 

12702

45 

Collagen 

formation 

BioSystem

s: 

REACTO

ME 

1.60

E-08 

4.56E-

05 

9.12E-

06 

7.78E-

05 29 93 

COL20A1,COL28A1,DST,COL6A6,CO

L22A1,MMP20,PLEC,COL1A1,COL4A

1,COL4A2,COL5A1,COL6A2,COL6A3

,COL7A1,COL9A1,COL9A3,COL11A1

,COL15A1,COL16A1,COL17A1,ADAM

TS2,COL5A3,ADAMTS14,COL24A1,C

OL25A1,P3H1,COL18A1,TLL1,COL21

A1 

12702

44 

Extracellular 

matrix 

organization 

BioSystem

s: 

REACTO

ME 

2.66

E-07 

7.56E-

04 

1.26E-

04 

1.08E-

03 59 298 

A2M,ACTN1,ADAM10,MMP2,MMP17,

LTBP4,COL20A1,COL28A1,ADAM9,B

GN,DST,COL6A6,CAPN2,CAPN3,CA

ST,SERPINE1,COL22A1,MMP20,PLE

C,COL1A1,COL4A1,COL4A2,COL5A1

,COL6A2,COL6A3,COL7A1,COL9A1,

COL9A3,COL11A1,COL15A1,COL16

A1,COL17A1,ADAMTS2,COL5A3,VC

AN,PRKCA,ADAMTS14,KLK7,COL24

A1,LAMC3,CAPN13,EFEMP1,COL25

A1,P3H1,ADAM17,MMP25,COL18A1,

TIMP1,TLL1,AGRN,TPSAB1,ITGA5,IT

GA7,ITGA9,ITGAE,ITGB1,COL21A1,L

AMA5,LAMC1 

12702

47 

Assembly of 

collagen fibrils 

and other 

multimeric 

structures 

BioSystem

s: 

REACTO

ME 

3.67

E-06 

1.04E-

02 

1.49E-

03 

1.27E-

02 19 60 

DST,COL6A6,MMP20,PLEC,COL1A1,

COL4A1,COL4A2,COL5A1,COL6A2,C

OL6A3,COL7A1,COL9A1,COL9A3,CO

L11A1,COL15A1,COL5A3,COL24A1,

COL18A1,TLL1 



- 203 - 

P0003

4 

Integrin 

signalling 

pathway 

PantherD

B 

7.98

E-06 

2.27E-

02 

2.84E-

03 

2.42E-

02 36 167 

ACTN1,MAP3K4,COL20A1,CAV1,CD

C42,ITGBL1,PIK3C2A,COL1A1,COL4

A1,COL4A2,COL5A1,COL6A2,COL6A

3,COL7A1,COL9A1,COL9A3,COL11A

1,COL15A1,COL16A1,COL17A1,COL

5A3,MAPK10,MAP2K3,DNAJC27,LA

MC3,FLNB,ARHGAP26,TLN1,VCL,IT

GA5,ITGA7,ITGA9,ITGAE,ITGB1,LAM

A5,LAMC1 

M5887 

Genes encoding 

structural 

components of 

basement 

membranes 

MSigDB 

C2 

BIOCART

A (v6.0) 

1.94

E-05 

5.53E-

02 

6.14E-

03 

5.24E-

02 14 40 

COL6A6,COL4A1,COL4A2,COL6A2,C

OL6A3,COL15A1,LAMC3,NTNG2,CO

L18A1,AGRN,USH2A,LAMA5,LAMC1,

PAPLN 

83067 Focal adhesion 

BioSystem

s: KEGG 

3.52

E-05 

1.00E-

01 

1.00E-

02 

8.54E-

02 39 199 

ACTN1,BIRC2,MYLK,COL6A6,CAPN2

,CAV1,CDC42,CHAD,COL1A1,COL4A

1,COL4A2,COL6A2,COL6A3,COL9A1

,COL9A3,PRKCA,CTNNB1,MAPK10,

RELN,TLN2,EGF,ROCK1,LAMC3,FLN

B,FLT1,FLT4,SHC4,PDGFD,THBS2,T

LN1,MYL10,VCL,ITGA5,ITGA7,ITGA9

,ITGB1,PAK5,LAMA5,LAMC1 

13830

49 

Diseases 

associated with 

O-glycosylation 

of proteins 

BioSystem

s: 

REACTO

ME 

5.92

E-05 

1.68E-

01 

1.53E-

02 

1.31E-

01 17 60 

MUC15,MUC3A,MUC5AC,NOTCH2,T

HSD7A,SEMA5A,MUC17,ADAMTS2,

ADAMTS14,ADAMTSL2,MUC12,SPO

N1,SSPO,THBS2,ADAMTS19,MUC16

,ADAMTS12 

12690

10 

Diseases of 

glycosylation 

BioSystem

s: 

REACTO

ME 

9.42

E-05 

2.68E-

01 

2.11E-

02 

1.80E-

01 21 86 

MUC15,MUC3A,MUC5AC,BGN,NOTC

H2,THSD7A,SEMA5A,MUC17,ADAM

TS2,VCAN,CSPG4,ADAMTS14,ADA

MTSL2,MUC12,SPON1,SSPO,THBS2

,AGRN,ADAMTS19,MUC16,ADAMTS

12 

12695

08 

Rho GTPase 

cycle 
BioSystem

s: 

9.86

E-05 

2.81E-

01 

2.11E-

02 

1.80E-

01 30 145 

A2M,PREX1,ARHGAP21,FGD2,ARH

GAP4,BCR,OPHN1,CDC42,ARHGAP

33,CHN1,ARHGAP22,RHOF,ARHGE
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REACTO

ME 

F19,RHOD,ARHGEF4,DEPDC7,ARH

GEF11,OBSCN,ARAP1,ARAP2,TAGA

P,ARHGAP26,MCF2L,ARAP3,AKAP1

3,TRIO,PLEKHG2,ARHGAP40,ARHG

EF5,RHOT2 

12702

57 

Degradation of 

the extracellular 

matrix 

BioSystem

s: 

REACTO

ME 

1.04

E-04 

2.95E-

01 

2.11E-

02 

1.80E-

01 25 112 

A2M,ADAM10,MMP2,MMP17,ADAM9,

CAPN2,CAPN3,CAST,MMP20,COL9A

1,COL9A3,COL15A1,COL16A1,COL1

7A1,KLK7,CAPN13,COL25A1,ADAM1

7,MMP25,COL18A1,TIMP1,TLL1,TPS

AB1,LAMA5,LAMC1 

86808

6 

Rap1 signaling 

pathway 

BioSystem

s: KEGG 

1.20

E-04 

3.40E-

01 

2.27E-

02 

1.94E-

01 39 210 

ADCY3,ADCY5,ADCY9,SIPA1L2,SKA

P1,KRIT1,CDC42,MAGI1,PLCB2,CSF

1R,PRKCA,PRKCI,PRKD1,CTNNB1,

MAP2K3,TLN2,RALGDS,DRD2,EGF,

PLCE1,MAPK12,FGF3,FGF6,FLT1,FL

T4,MAGI3,SIPA1,RGS14,PDGFD,FYB

1,SIPA1L3,PLCB1,GNAI3,RAPGEF4,

TEK,ARAP3,TLN1,ID1,ITGB1 

M5889 

Ensemble of 

genes encoding 

extracellular 

matrix and 

extracellular 

matrix-

associated 

proteins  

MSigDB 

C2 

BIOCART

A (v6.0) 

1.40

E-04 

3.98E-

01 

2.49E-

02 

2.12E-

01 139 1028 

A2M,MATN2,ADAM10,AEBP1,MMP2,

MMP17,LTBP4,SEMA7A,COL20A1,M

UC15,COL28A1,BRINP2,MUC3A,MU

C5AC,ADAM23,ADAM9,VWDE,BGN,

COL6A6,SEMA5A,ARTN,PCSK6,SER

PINE1,OTOG,PCSK5,CHAD,COL22A

1,VIT,MMP20,SERPINE2,MUC17,PLA

T,PLXNA1,COL1A1,COL4A1,COL4A2

,COL5A1,COL6A2,COL6A3,COL7A1,

COL9A1,COL9A3,COL11A1,COL15A

1,COL16A1,COL17A1,ABI3BP,ADAM

TS2,COL5A3,PPBP,CTSA,EGFL6,SN

ED1,VCAN,CSPG4,IL22,CST1,PLXN

A4,ADAMTS14,ADAMTSL2,C1QTNF8

,MASP1,RELN,TMPRSS15,COL24A1,

FREM2,DMBT1,EPYC,REG1A,MUC1

2,SERPINA12,EYS,EGF,MEGF6,MEG

F8,EMILIN2,LAMC3,F10,SVEP1,F13A
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1,EFEMP1,SPON1,FGF3,FGF6,CCL8

,CLEC10A,PLXNA3,FLG,SEMA4B,FR

AS1,SFTPD,PDGFD,SLIT1,SLIT3,EG

FLAM,MEGF10,PLXND1,COL25A1,E

LSPBP1,SSPO,FREM1,IGSF10,TINA

G,NTNG2,P3H1,ADAM17,VWA3A,MM

P25,TGM4,COL18A1,TGM2,THBS2,T

CHH,THPO,TIMP1,TLL1,CLCF1,AGR

N,TPO,ADAMTS19,PLXNB2,HRG,US

H2A,IFNA21,IGFBP5,ELFN1,IL10,SE

MA3G,FLG2,ITIH2,FAM20C,COL21A1

,RPTN,KNG1,LAMA5,MUC16,LAMC1,

PAPLN,ADAMTS12 

12703

13 

NCAM1 

interactions 

BioSystem

s: 

REACTO

ME 

1.76

E-04 

5.01E-

01 

2.95E-

02 

2.52E-

01 12 37 

CACNA1G,CACNA1C,COL6A6,ARTN

,COL4A1,COL4A2,COL6A2,COL6A3,

COL9A1,COL9A3,CNTN2,AGRN 

17284

7 

Protein digestion 

and absorption 

BioSystem

s: KEGG 

1.88

E-04 

5.35E-

01 

2.97E-

02 

2.54E-

01 21 90 

COL6A6,COL22A1,COL1A1,COL4A1,

COL4A2,COL5A1,COL6A2,COL6A3,C

OL7A1,COL9A1,COL9A3,COL11A1,C

OL15A1,COL17A1,COL5A3,CPB2,CO

L24A1,KCNE3,SLC1A1,COL18A1,CO

L21A1 

13091

08 

HDR through 

Single Strand 

Annealing (SSA) 

BioSystem

s: 

REACTO

ME 

2.34

E-04 

6.66E-

01 

3.51E-

02 

2.99E-

01 12 38 

ABL1,ATM,BARD1,BRCA1,DNA2,RA

D9A,RFC2,RAD50,RPA1,RMI1,HUS1,

WRN 

12693

43 

Nitric oxide 

stimulates 

guanylate 

cyclase 

BioSystem

s: 

REACTO

ME 

3.35

E-04 

9.55E-

01 

4.77E-

02 

4.07E-

01 9 24 

NOS1,NOS2,NOS3,PDE2A,PDE1B,P

DE11A,MRVI1,ITPR1,KCNMA1 

21381

8 

Glutamatergic 

synapse 

BioSystem

s: KEGG 

3.61

E-04 

1.00E

+00 

4.89E-

02 

4.17E-

01 24 114 

ADCY3,ADCY5,ADCY9,CACNA1A,CA

CNA1C,PLA2G4E,PLCB2,PLD1,PLD2

,HOMER2,HOMER1,PRKCA,GRIN3B,
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GNB4,SLC1A1,SLC1A2,SLC1A3,GNB

5,PLCB1,GNAI3,GNGT2,GRIA4,GRM

8,ITPR1 

 

Enriched pathways for Post-NAC sub-category       

ID Name Source 

p-

value 

q-value 

Bonfer

roni 

q-value 

FDR 

B&H 

q-value 

FDR 

B&Y 

Hit 

Count 

in 

Query 

List 

Hit Count 

in 

Genome Hit in Query List 

M5884 

Ensemble of genes 

encoding core 

extracellular 

matrix including 

ECM 

glycoproteins, 

collagens and 

proteoglycans 

MSigDB C2 

BIOCARTA 

(v6.0) 

3.11

E-05 

6.71E-

02 

3.25E-

02 

2.69E-

01 25 275 

MATN2,EMILIN3,FBN1,NTNG1,SSPO,BM

PER,VWA3A,THBS2,OTOG,NYX,IGFBPL1,

COL14A1,USH2A,COL4A6,COL6A1,COL7

A1,COL13A1,COL5A3,SNED1,DMBT1,EP

YC,LAMA5,LAMB1,LAMC1,PAPLN 

83094 

Type II diabetes 

mellitus 

BioSystems

: KEGG 

3.87

E-05 

8.35E-

02 

3.25E-

02 

2.69E-

01 9 46 

CACNA1A,CACNA1C,CACNA1E,HK2,PIK3

CA,PIK3CD,IKBKB,MAPK10,INSR 

P00034 

Integrin signalling 

pathway PantherDB 

4.52

E-05 

9.76E-

02 

3.25E-

02 

2.69E-

01 18 167 

ARFGAP1,TLN1,ITGBL1,PIK3CA,PIK3CD,C

OL14A1,COL4A6,COL6A1,COL7A1,COL1

3A1,COL5A3,MAPK10,ITGA2B,ITGAE,ITG

B1,LAMA5,LAMB1,LAMC1 

M5887 

Genes encoding 

structural 

components of 

basement 

membranes 

MSigDB C2 

BIOCARTA 

(v6.0) 

8.86

E-05 

1.91E-

01 

4.78E-

02 

3.95E-

01 8 40 

NTNG1,USH2A,COL4A6,COL6A1,LAMA5,

LAMB1,LAMC1,PAPLN 
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9.4 Receiver Operation Curve (ROC) analysis used to determine the cut-off 
scores for MUC17 and PCNX1 in Adjuvant cohort. Cut-off scores were 
established as follows: 1.1 for MUC17 and 5.6 for PCNX1. 
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9.5 Receiver Operation Curve (ROC) analysis used to determine the cut-off 
scores for MUC17 and PCNX1 in Neoadjuvant cohort. Cut-off scores were 
established as follows: 0.5 for MUC17 and 3.5for PCNX1. 
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