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Abstract

The main scope of this thesis is the investigation of quantum properties of nonlin-

ear, dissipative, optical and condensed matter systems. Compared with previous

studies on this subjects, we reached several milestone of general interests for the

theoretical and experimental community. The main experimental platform we re-

fer to in this thesis is microcavity polaritons: polaritons arise from the coupling of

light with excitons in a quantum well, i.e., a 2D semiconductor material embedded

in the microcavity. They have attracted the interest of the scientific community

for their rich physics. Polaritons can form out-of-equilibrium Bose-Einstein conden-

sates, they can experience superfluid phase transition and, due to their interaction

via the excitonic component, they show a variety of phenomena which are typical

of nonlinear physics, such as bistability and parametric scattering. In particular,

motivated by recent proposals about the generation of single photons from weakly

nonlinear system, like the unconventional photon blockade, and by the production

of squeezed states in polariton systems, we studied the possibility of obtaining anti-

bunched light and other quantum states (like squeezed states and entangled states),

when the nonlinear system shows some peculiar features: in particular we consider

polariton soliton and cascade systems. Finally, when considering nonlinear incoher-

ent processes, we investigate the effect of the PT -symmetry and the PT -symmetry

breaking on the quantum state of the emitted light.

Hence, this research work has two main objectives: first, from the fundamental

physics point of view, to understand the interplay between nonlinear phenomena

and quantum optics, second to provide useful tools for future technological appli-

cations. Specifically, for the latter case, we demonstrate a theorem that links the

measurement of intensity correlations with the occurrence of certain phase transi-

tions, and we propose a setup to maximize the non-classicality of the light emitted

by weakly non-linear systems via a cascade configuration.
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Chapter 1

Introduction

1.1 Structure of the Thesis

The Thesis is organised as follows. In the first Chapter, we summarise the main

theoretical background used for the rest of the work. This basically consists in the

physics of open quantum systems and the definition of the phase-space methods

implemented. In the second Chapter, the basics of polariton physics are presented:

in particular we demonstrate the possibility of manipulating the spin-orbit state of

microcavity polaritons, generated by the TE-TM energy splitting, by the means of

Stark pulses. In Chapter three, we analyse the main computational techniques used

to address the quantum dynamics of nonlinear photonic system: using a gauged

version of the Positive P-representation we are able to perform large scale simu-

lations, with arbitrary number of particles, avoiding moving singularities and the

growth of systematic errors. Hence, we make use of the gauge P-representation,

to quantify the statistics, and in particular the second order correlation function,

of polariton solitons: these non dispersive waves have been observed experimen-

tally both in monolithic cavities and in nonlinear waveguides. In Chapter four, we

demonstrate a theorem which states that the m − th order correlation function, in

a multimode system, is stationary if the system itself is U(1)-symmetric, i.e., the

Hamiltonian commutes with the number operator. The breaking of the U(1) sym-

metry corresponds to a non stationary correlation function, hence giving a potential

experimental tool to investigate whether such phase transition is occurring. The

1
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result has a potential impact in the investigation of phase transition both in con-

densed matter systems and in photonic systems. We provide an analytical proof of

the theorem, together with numerical simulations, which confirm the validity of the

results. In Chapter five we propose a scheme, based on a cascade configuration, to

generate highly non-classical states. A nonlinear optical cavity is driven with a clas-

sical light field until it produces photons with non-coherent statistics: then these

states are used to feed another nonlinear system, with a unidirectional coupling.

We show that the light emitted by the second system experiences an increase in the

sub-Poissonianity. Moreover we demonstrate that the two subsystems are in an en-

tangled state, which is produced by the dissipative coupling between them. The last

Chapter is dedicated to quantum effects in non-Hermitian optical systems. In the

last few years, a big effort has been dedicated to the investigation of the physics be-

hind non-Hermitian systems, i.e., systems decribed by non-Hermitian Hamiltonians,

and in particular to PT -symmetric systems. Here we investigate the effect of the

interplay between the non-Hermitianity and the nonlinearity on the quantum prop-

erties of a class of nonlinear optical systems. In particular we consider a photonic

molecule, with one mode experiencing a saturable gain and the other a saturable

loss. We demonstrate that the breaking of the PT -symmetry has a direct effect

on the quantum statistics of the emitted light: moreover, the numerical simulation

of the Wigner function reveals that the PT-symmetry breaking pushes one mode

towards a coherent vacuum state, and the other towards a Fock state, with high

fidelity. Hence we propose the PT -symmetric optical system as a possible candidate

for the production of Fock states, useful in principle for quantum computing and

quantum communication protocols.

1.2 Statement of Originality

The material presented in this thesis is original, to the best of the knowledge of

the author, except where otherwise specified. Parts of the work containing general

information and the theoretical framework are inspired by the standard literature
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Chapter 2

Background Theory

In this Chapter, we revise the basic theoretical tools which will be used throughout

the rest of this thesis. These tools come from the theory of quantum optics and

open quantum systems: hence, in the following, we will refer mostly to standard

textbooks, such as Quantum Optics, by Walls and Milburn [8], Statistical methods in

Quantum Optics I by H. Carmichael [9] and the Theory of open quantum systems by

Breuer and Petruccione [10]. In the following sections, we first review the quantum

harmonic oscillator and the relevant quantum states commonly found in quantum

optics. We then focus on the basic model for dissipative dynamics, defining and

deriving the master equation for a damped harmonic oscillator. Finally, the main

instruments implemented for the theoretical and numerical investigations in this

thesis are revised, such as the intensity correlation function and the phase-space

methods.

2.1 Quantum Harmonic Oscillator

In this section we briefly revise the theoretical description of the quantum harmonic

oscillator, following the approach of Carmichael in [9]. This simple model underlines

many physical systems, especially for quantum optics, as we can describe the elec-

tromagnetic field as a collection of quantized harmonic oscillators. The harmonic

5
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oscillator is described by the following Hamiltonian:

H =
1

2m
p2 +

1

2
mω2q2, (2.1)

with frequency ω and mass m, where the position q and momentum p operators

obey to the commutation relation:

[p, q] = ih̵. (2.2)

The Heisenberg uncertainty principle follows from the commutation relation: the

principle constitutes a limit to the precision for the measurements of the position

and momentum of the particle, as we explicitly show in the following section. The

standard approach for finding the eigenvalues of (2.1) is based on the definition of

the ladder operators:

a =

√
ω

2h̵
q +

i
√

2h̵ω
p

a� =

√
ω

2h̵
q −

i
√

2h̵ω
p, (2.3)

these are called, when referring to quantum fields, annihilation and creation oper-

ators, respectively. In term of such quantities, the commutation relation can be

written as:

[a, a�] = 1, (2.4)

through which the Hamiltonian of the harmonic oscillator can be rewritten,

H = h̵ω(a�a +
1

2
). (2.5)

Without going too much into details, it can be demonstrated that the eigenstates of

a�a are the states ∣n⟩ with n ∈ N, which are called, when referring to field excitations,

Fock states. The lowest state satisfies:

a ∣0⟩ = 0, (2.6)
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and starting from this is possible to reconstruct the action of the annihilation/creation

operators on the Fock states:

a ∣n⟩ =
√
n ∣n − 1⟩ (2.7)

a� ∣n⟩ =
√
n + 1 ∣n + 1⟩ . (2.8)

The states ∣n⟩ are also called number states, because they are states with a definite

number of excitations. In particular, they constitutes a complete, orthonormal,

basis for any vector Hilbert space of an harmonic oscillator. If we return to the

Hamiltonian (2.1), from the arguments above it follows that the energy spectrum

consists of equally spaced energy levels:

En = h̵ω(n +
1

2
). (2.9)

In the laboratory, photon number states can be obtained using various techniques,

mostly relying on nonlinear optical processes [11], like the parametric down conver-

sion, with micromasers [12] and with superconducting circuits [13]. In parametric

down conversion, a continuous wave laser is used to drive a nonlinear crystal: as

a consequence of the nonlinearity, photons in the pump are spontaneously down

converted into pairs of lower energy photons, following the conservation of energy

and momentum. The detection of a single photon in one of the two spatial mode,

heralds the presence of a single photon in the other mode. Among the Fock states,

the single photon state is particularly intererobersting, as it can be used as a qubit,

i.e. the fundamental unit in which quantum information can be encoded, for poten-

tial applications in quantum computing and quantum communication. Obtaining

such states, especially with high efficiency, remains a difficult task. Among the

possible strategies implemented, we mention here quantum dots and NV-centers in

diamonds [14], which have attracted a lot of attention for their ability to generate

higly indistinguishable single photons, together with less standard approaches, like

the unconventional photon blockade, which is a mechanism based on the interference

effect arising from the coherent coupling between specific nanostructures [15].
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2.1.1 Quantization of the electromagnetic field

The harmonic oscillator is the basic model used to describe a quantised electromag-

netic field. In fact, each mode of the electromagnetic field can be described as a set

of harmonic oscillator, labelled with the subscript k, wich has the following effect

on the n-th energy eigenstate:

ak ∣nk⟩ =
√
nk ∣nk − 1⟩ , (2.10)

where the creation and annihilation operators for the k-mode obey the following

commutation relations:

[ak, ak′] = [a�k, a
�

k′] = 0

[ak, a
�

k′] = δkk′ , (2.11)

so that they destroy (or create) one unit of energy h̵ωk, one photon. The total energy

of the system is described by the Hamiltonian:

Hem =∑
k

h̵ωk (
1

2
+ a�kak) , (2.12)

where each mode of the electromagnetic field contributes only with quantised packet

of energy. The electric field, including the degree of polarization ek, can be written

as:

E(r, t) =
1

√
V
∑
k

ek
h̵ωk
2ε0

(Xk cos(Θk(r, t)) + Pk sin(Θk(r, t)), (2.13)

with V the volume element of the quantization region arising from the considered

boundary conditions, ε0 the dielectric constant of vacuum and Θk = ωt − k ⋅ r the

phase of the wavefront. The quantities Xk and Pk are the quadratures of the field:

Xk = (ak + a
�

k)

Pk = i(−ak + a
�

k), (2.14)
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which are often called the in-phase and out-of-phase components of the field, respec-

tively, defined respect to a reference field, implemented in a homodyne detection. By

convention, the X component is called the amplitude quadrature, as it retains most

of the information about the amplitude of the wave. Conversely, P describes the

phase shift of the EM field, hence is conventionally called the phase quadrature. To

have a complete tomography of the electromagnetic field in the phase-space spanned

by X and P , hence to fully reconstruct the quantum state of the system, it is of-

ten necessary to consider all the possible two dimensional basis obtain through a

rotation by an angle φ of (2.14):

Xφ
k =Xk cos(φ) + Pk sin(φ)

X
φ+π/2
k = −Xk sin(φ) + Pk cos(φ) (2.15)

2.1.2 Quadrature Uncertainty

Let us consider the quadrature operators for a single mode, X = (a + a�) and P =

i(−a + a�). From (2.4) it follows that these operators do not commute, and in

particular they obey to the following relation:

[X,P ] = 2i, (2.16)

which leads to the uncertainty principle between the quadratures. The uncertainty

principle, in the most general mathematical formulation, consists in a lower bound

for the variance in the distribution of two observables O1 and O2:

∆(O2
1)∆(O2

2) ≥ (
i

2
⟨[O1,O2]⟩)

2, (2.17)

which is known as Robertson relation, where ∆(O2) = ⟨(O − ⟨O⟩)2⟩, and (2.17) can

be obtained from the commutator [O1,O2] making use the Schwarz inequality. Sub-

stituting (2.16) in (2.17), we obtain:

∆(X2)∆(P 2) ≥ 1. (2.18)
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The fact that the minimum of the product of the two variances is non-zero, sets

a limit to the precision of the simultaneous measurement of the quadratures: this

precision needs not be equally distributed, as long as the product of the variances

satisfies the inequality. Hence the variance of the X quadrature for a given state

may be smaller than the one possessed by a coherent state, but this need to be

compensated by a larger variance for the relative orthogonal quadrature, so that

(2.18) is always satisfied.

2.1.3 Coherent State

The coherent state ∣α⟩ is formally defined as the right eigenstate of the annihilation

operator with eigenvalue α ∈ C:

a ∣α⟩ = α ∣α⟩ . (2.19)

In particular coherent states minimize the Heisenberg uncertainty relation, which

means that, considering the ground state of a harmonic oscillator, the inequality

(2.18) is saturated, ∆(X2)∆(P 2) = 1 and ∆(P 2) = ∆(X2) : in this sense, coherent

states are often referred as the most classical quantum states. The mean photon

number and the variance of a coherent state can be calculated by considering the

action of the number operator on these states:

n̄ = ⟨α∣n∣α⟩ = ∣α∣2

∆(n2) = ∣α∣2, (2.20)

hence, the variance of the number of detected excitations is equal in magnitude

to the mean number of particles. As the quadrature uncertainty is fixed, in the

limit of large α, the quantum noise becomes less significant and the field can be

approximated by a classical wave. It is possible to expand any normalized coherent

state into a Fock state basis ∣n⟩. In fact if we express ∣α⟩ as:

∣α⟩ =
∞

∑
n=0

cn ∣n⟩ , (2.21)
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hence, since the action of the annihilation operator on a Fock state is a ∣n⟩ =

√
n ∣n − 1⟩, the above expression becomes

∞

∑
n=1

cn
√
n ∣n − 1⟩ = α

∞

∑
n=0

cn ∣n⟩ . (2.22)

We now make use of the orthogonality of the Fock states, multiplying the equation

above on the left by ⟨m∣, obtaining:

∞

∑
n=1

cn
√
nδm,n−1 = α

∞

∑
n=0

cnδm,n, (2.23)

or, equivalently:

cm+1

√
m + 1 = αcm, (2.24)

which means that:

cn =
αn
√
n!
c0. (2.25)

The first term of the series c0 can be derived from the normalization condition

⟨α∣α⟩ = 1, leading to:

∣α⟩ = e−
∣α∣2
2

∞

∑
n=0

αn
√
n!

∣n⟩ , (2.26)

with the corresponding Poisson-photon number distribution:

p(n) = ∣ ⟨n∣α⟩ ∣2 = e−∣α∣
2 ∣α∣2

n!
. (2.27)

It is also possible to define the coherent state by considering the vacuum state, which

is the ground state of the harmonic oscillator, and applying to it a displacement

operator:

∣α⟩ =D(α) ∣0⟩ = exp(αa� − α∗a) ∣0⟩ , (2.28)

where α = ∣α∣e−iφ is a complex number, which can be put in correspondence with the

phasor representation of the classical electromagnetic field. The displacement opera-

tor acquires its name because of its action on the annihilation operator, D(α)−1aD(α) =

a +α. From expansion (2.26) it follows that coherent states do not form an orthog-
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onal set. The overlap between the state ∣α⟩ and ∣β⟩ is given by:

∣ ⟨α∣β⟩ ∣2 = e−∣α−β∣
2

. (2.29)

The orthogonality is exactly recovered in the limit of large ∣α−β∣2. Another property

of coherent states, which will be used later in this thesis, is the over-completeness :

coherent states obey to the closure relation,

1

π ∫
d2α ∣α⟩ ⟨α∣ = 1, (2.30)

where the integration is taken over the entire complex plane. Hence, any quantum

states can be decomposed in term of a diagonal set of coherent states.

It is worth to mention here the physical importance of a coherent state: a laser field

that is operating well above threshold, is well approximated by a coherent state.

2.1.4 Squeezed states

Generally, a squeezed state is a quantum state which has a smaller variance than a co-

herent state in one of the quadrature: as we mentioned before, to satisfy the Heisen-

berg uncertainty principle, this noise reduction in one quadrature always comes with

an increase in the noise in the other quadrature. Mathematically, squeezed states

can be obtained by considering the action of the following operator:

S(ξ) = e((
ξ
2
)∗a2− ξ

2
a�2), (2.31)

with ξ = re2iφ. In particular the action of the squeezing operator is understood

considering the following transformation properties:

S�(ξ)aS(ξ) = a cosh(r) − a�e−2iφ sinh(r)

S�(ξ)a�S(ξ) = a� cosh(r) − ae−2iφ sinh(r)

S�(ξ)(Xφ + iPφ)S(ξ) =Xφe
−r + iPφe

r,
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where Xφ+iPφ = (X+iP )e−iφ is the rotated complex amplitude, and from the trans-

formation relations, it is clear that the squeezing operator reduces one component

of the complex amplitude and amplifies the other, by a factor r = ∣ξ∣. Considering a

squeezed vacuum state:

∣ζ⟩ = S(ζ) ∣0⟩ , (2.32)

it is possible to show that variances of the quadratures are:

∆(X2
φ) = e

−r ∆(P 2
φ) = e

r, (2.33)

showing that squeezed states have unequal uncertainties for the two orthogonal

quadratures. Multiplying the two variances in (2.33), we obtain:

∆(X2
φ)∆(P 2

φ) = 1, (2.34)

hence, like for coherent states, squeezed vacuum states have minimum uncertainty,

as the Heiseberg inequality is saturated.

2.2 The density operator

In quantum mechanics, pure states are defined as the states which can be fully

described by a vector in a complex Hilbert space. In particular they can be expressed

as a superposition of number states in the Fock basis. Some physical systems cannot

be represented via single vectors in the Hilbert space, as they might be constituted

by a statistical ensemble of different pure states, with different weights. The density

operator is a mathematical tool that completely characterizes a quantum state as

a statistical collection of individual pure states, in a diagonal representation, hence

a collection of states together with the respective probabilities of finding them.

In particular, for a pure state, the density operator corresponds to the projection

operator on the subspace spanned by the state vector itself:

ρ = ∣ψ⟩ ⟨ψ∣ . (2.35)
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Consider a discrete set of pure states, ∣ψi⟩, the density matrix for a general mixed

state is defined as:

ρ =∑
i

pi ∣ψi⟩ ⟨ψi∣ , (2.36)

with pi the probability of the system to be in the pure state ∣ψi⟩ ⟨ψi∣. The mean

value of any operator O, in the framework of density operators, becomes:

⟨O⟩ =∑
i

⟨ψi∣O ∣ψi⟩ = Tr(Oρ), (2.37)

where Tr(⋅) denotes the trace operation.

The off-diagonal elements of a density matrix are related to quantum coherences

and their presence into the dynamical equation of motion discriminates quantum

dynamics from the classical one.

The density matrix is a Hermitian operator, with unit trace, in agreement with

its statistical interpretation. The trace of the square of the density operator is also

one in the case of pure states, which can be easily demonstrated by considering the

fact that if ρ = ∣ψ⟩ ⟨ψ∣, so ρ2 = ∣ψ⟩ ⟨ψ∣ ∣ψ⟩ ⟨ψ∣ = ∣ψ⟩ ⟨ψ∣ = ρ. Following this argument,

it is possible to define the purity of a density operator via the relation:

Tr(ρ2) ≤ 1, (2.38)

with the inequality saturated by pure states.

2.2.1 Dissipative processes

In this section we briefly introduce the master equation formulation for describing

dissipative processes. More details will be given through the whole thesis. Consider

a system A interacting with a reservoir B, living in a Hilbert space A⊗B, all

described by the total Hamiltonian:

H =HA +HB +HAB, (2.39)
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with HAB the interaction term. As we will not consider the dynamics of the reservoir,

its properties are not defined specifically, but only in very general terms. If the total

system is described by the density matrix ρT , its dynamics will be given by:

ρ̇T = −
i

h̵
[H,ρT ] +

∂

∂t
ρ, (2.40)

which is the Von-Neumann equation, with H given by (2.39) and the last term ∂
∂tρ is

zero if the initial probability distribution is not time-dependent, as we shall assume

in the following. In the interaction picture, the total density matrix reads:

ρ̃T = e(i/h̵)(HA+HB)tρT e
−(i/h̵)(HA+HB)t, (2.41)

hence obtaining, after some manipulation:

˙̃ρT = −
i

h̵
[H̃AB(t), ρ̃T ], (2.42)

where H̃AB(t) has an explicit time-dependence. Integrating we formally obtain:

˙̃ρT = −
i

h̵
[H̃AB(t), ρ̃T (0)] −

1

h̵2 ∫

t

0
dt′[H̃AB(t

′), [H̃AB(t
′), ρ̃T (t

′)]]. (2.43)

At this point, we assume that there is no correlation between the systems A and B

at the initial time, hence the total density matrix initially is in the product state

ρT (0) = ρ(0)B0, with B0 the initial density matrix of the reservoir. It is possible to

eliminate the degrees of freedom of the reservoir, by performing a partial trace:

TrB(ρ̃T (t)) = ρ̃(t), (2.44)

which applied on (2.43), gives the formal master equation for the system A:

˙̃ρ = −
1

h̵2 ∫

t

0
dt′ TrB([H̃AB(t

′), [H̃AB(t
′), ρ̃T (t

′)]]). (2.45)

We now perform two major approximations, which will be assumed to be valid for

the rest of the thesis. The first one is the Born approximation, which basically

consists in assuming that the influence of the system on the bath is small, because
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the interaction between them is weak. Hence, at time t, we can write the total

density matrix as a tensor product between the density matrix of the system and of

the bath:

ρ̃T (t) = ρ̃(t)⊗ B̃(t). (2.46)

Another important approximation we shall assume is the Markovian approximation,

which consists in making the master equation local in time, i.e. the state of the

system at a future time only depends on its present state. We realize this by replacing

ρ̃T (t′) with ρ̃T (t) in (2.45). Hence we end up with the Born-Markov master equation

for the system A:

˙̃ρ = −
1

h̵2 ∫

t

0
dt′ TrB([H̃AB(t

′), [H̃AB(t
′), ρ̃(t)B0]]). (2.47)

2.2.2 The dissipative Harmonic Oscillator

Following the arguments of the previous section, we now derive the master equation

for a dissipative harmonic oscillator, which is the basis for the models used in the

main part of this thesis. The starting point consists in the definition of the Hamil-

tonian for the system, living in a Hilbert space S, and for the reservoir, defined on

a different space B, together with an interaction term between them, living in the

composite Hilbert space S⊗B. In the case of a damped harmonic oscillator we

have:

HS = h̵ω0a
�a

HB =∑
j

h̵ωjb
�
jbj

HSB =∑
j

h̵(k∗j b
�
ja + kjbja

�) = h̵(aM � + a�M),

where the ωj are the frequencies of the oscillator used to model the reservoir and

M = ∑j k
∗
j b

�
j. The oscillator a is coupled to the jth bath oscillator through a coupling

constant kj, in the rotating wave approximation, i.e. terms in a Hamiltonian which

oscillate faster than the resonance frequency (as for b�ja
�) are neglected. After writing

these quantities in the interaction picture, substituting in (2.47), and with some



2.2. The density operator 17

algebraic manipulation, we obtain:

˙̃ρ = − ∫
t

0
dt′([aaρ̃(t′) − aρ̃(t′)a]e−iω0(t−t

′) ⟨M̃ �(t)M̃ �(t′)⟩B +

([a�a�ρ̃(t′) − a�ρ̃(t′)a�]eiω0(t−t
′) ⟨M̃(t)M̃(t′)⟩B + ([aa�ρ̃(t′)−

a�ρ̃(t′)a]eiω0(t+t
′) ⟨M̃ �(t)M̃(t′)⟩B + ([a�aρ̃(t′) − aρ̃(t′)a�]eiω0(t+t

′) ⟨M̃(t)M̃ �(t′)⟩B ,

(2.48)

where the reservoir correlation functions ⟨M̃(t′)M̃(t′)⟩B are defined as:

⟨M̃(t′)M̃(t)⟩B = TrB[M0M̃(t′)M̃(t)]. (2.49)

It is easy to check that the only non-zero correlation functions are the ones containing

both M̃(t′) and M̃ �(t′), which have the form:

⟨M̃ �(t)M̃(t′)⟩B =∑
j

∣kj ∣
2e−iωj(t−t

′)n̄(ωj, T )

⟨M̃(t)M̃ �(t′)⟩B =∑
j

∣kj ∣
2eiωj(t−t

′)(n̄(ωj, T ) + 1), (2.50)

where we assume a reservoir in thermal equilibrium, at temperature T , with mean

number of excitations for the j-th mode given by the Bose-distribution n̄(ωj, T ) =

e−h̵ωj/kBT

1−e−h̵ωj/kBT
. It is possible and convenient to transform equations (2.50) in the con-

tinuum limit: this can be achieved by defining a function g(ω), called the density

of states, such that g(ω)dω quantifies the number of oscillators having frequencies

within the range ω and ω + dω. Performing a transformation of variables in terms

of the time shift τ = t − t′, we obtain:

˙̃ρ = − ∫
t

0
dτ([aa�ρ̃(t − τ) − a�ρ̃(t − τ)a]e−iω0τ ⟨M̃ �(t)M̃(t − τ)⟩B +

+ ([a�aρ̃(t − τ) − aρ̃(t − τ)a�]eiω0τ ⟨M̃(t)M̃ �(t − τ)⟩B , (2.51)

where now the correlations are defined as:

⟨M̃ �(t)M̃(t − τ)⟩B = ∫

∞

0
dωg(ω)∣k(ω)∣2n̄(ω,T )eiωτ , (2.52)

⟨M̃(t)M̃ �(t − τ)⟩B = ∫

∞

0
dωg(ω)∣k(ω)∣2(n̄(ω,T ) + 1)e−iωτ . (2.53)
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It can be demonstrated, but here we avoid this detail, that the Markov approxima-

tion requires the reservoir correlation time tR = h̵/kBT to be much smaller than the

system characteristic decay time tS. If we find ourselves in this regime, it is possible

to consider ρ̃(t) rather than ρ̃(t−τ) in (2.51), as the integration in τ is dominated by

times shorter than the evolution time scale of ρ̃ . This condition, together with the

evaluation of the frequency integrals (2.52), allows us to write down the Markovian

master equation for the dissipative Harmonic Oscillator:

˙̃ρ = −i∆[a�a, ρ̃] + γ(aρ̃a� −
1

2
(a�aρ̃ − ρ̃a�a)) + γn̄(aρ̃a� + a�ρ̃a − a�aρ̃ − ρ̃aa�), (2.54)

with γ = 2πg(ω)∣k(ω)∣2, n̄ = n̄(ω,T ) and ∆ the dressed frequency coming out from

the interaction with the reservoir, all derived from the frequency integrals. It may

be convenient to rewrite equation (2.54), which is in the interaction picture, back

into the Schrödinger picture, obtaining:

ρ̇ = −iω′[a�a, ρ] + γ(aρa� −
1

2
(a�aρ − ρa�a)) + γn̄(aρa� + a�ρa − a�aρ − ρaa�), (2.55)

with ω′ = ω0+∆. Such a master equation is said to be in the Lindblad form, from the

work of the eponymous scientist, who related the dissipative dynamics of quantum

systems with semigroups. The master equations we shall consider in the following

are all Markovian and in the Lindblad form: however there is an ongoing research

interest in non-Markovian master equations that cannot be always expressed in a

Lindblad form. To give a physical interpretation of (2.55), we write down the rate

equations, obtained by evaluating the diagonal matrix elements of ρ, pn = ⟨n∣ρ ∣n⟩,

which defines the probability for the oscillator to be found in the nth energy state:

ṗn = γ(n̄ + 1)(n + 1)pn+1 − γn̄npn + γn̄npn−1 − γn̄(n + 1)pn. (2.56)

This clearly describes the transition rates from and into the n-th energy levels.

Equation (2.55) can be written formally as:

ρ̇ = Lρ, (2.57)
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L is a superoperator, which means that it operates on operators rather than on

states, and is called Liouvillian. The action of the Liouvillian superoperator on a

generic operator O is defined by:

LO = −i[H,O] +∑
i

γi(fiOf
�
i − f

�
i fiO −Of �

i fi), (2.58)

with fi the collapse operators, which are derived from the interaction between the

system and the bath. From (2.58) and (2.37) follows that the derivative of the

expectation value of an operator, in a dissipative regime, is given by:

˙⟨O⟩ = Tr(Ȯρ) +Tr(Oρ̇) = Tr(OLρ) = ⟨OL⟩ , (2.59)

which is the action of the Liouvillian from the left, and we have used the fact that

the operator O is in the Schroedinger picture, which means that it does not depend

explicitly on time.

2.3 Measure of coherence and correlations

Coherence is defined as of waves that enables stationary interference [16]. Coher-

ent waves are waves which possess a well-defined phase relation between them. A

standard way to quantify coherence in classical mechanics is by means of correlation

functions: as an example, if we calculate the time correlation function for the po-

sition quadrature X of an electromagnetic wave, ⟨X(t)X(0)⟩, with ⟨...⟩ denoting a

statistical average, the result would give a constant multiplied by a cos(ωt) factor,

with ω being the frequency of the oscillation. In this sense the field has a constant

self-coherence over time. Coherence functions, as introduced by Glauber and others

[17], are a rigorous mathematical tool which intuitively captures the concept behind

coherence, defining it in terms of correlations between the component of an electric

field. These correlations can be defined and measured to any order in the fields

variables, thus giving rise to the definition of different orders of coherence. One

of the earliest experiment regarding coherence and the interference effects between

waves is the double slit experiment [18], proposed and performed by Young, where
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Thermal source
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detector
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time delay

coincidence
counter

Figure 2.1: Schematic arrangement of the Hambury-Brown-Twiss experiment, used
to measure intensity correlations.

the relevant quantity which is effectively measured is the first order coherence of the

light beam. This quantity is defined as:

g(1)(rrr1, t1;rrr2, t2) =
⟨E∗(rrr1, t1)E(rrr2, t2)⟩

√
⟨E∗(rrr1, t1)E(rrr1, t1)⟩

√
⟨E∗(rrr2, t2)E(rrr2, t2)⟩

, (2.60)

with r1, r2 the coordinates of the slits. If we consider a single mode, and recast the

time variable as t1 = t, t2 = t + τ , it is possible to define the temporal first order

coherence for a quantum field through:

G(1)(t, τ) = ⟨a�(t)a(t + τ)⟩ , (2.61)

and the normalized version:

g(1)(t, τ) =
⟨a�(t)a(t + τ)⟩

⟨a�(t)a(t)⟩
. (2.62)

The second-order coherence, also called the intensity correlation function, has proven

to be a useful tool in a variety of fields, including astronomy and nuclear physics, as

from its measurements it is possible to extract the angular diameter of distant bodies

[19]. The first optical experiment involving a measurement of intensity correlation

was conducted by Hanbury Brown and Twiss in the 1956, to perform astronomical

measurements on the star Sirius. Morgan and Mandel, inspired by the Hambury
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Brown experiment, designed a detection apparatus to measure intensity correlation:

a thermal light source is divided by a beam splitter in two components which are

then detected by two different detectors, as showed in the scheme in Fig (2.1). With

this apparatus it is possible to measure coincidences in the photon counting, i.e.

counting the number of events where a photon is detected by one detector and

another is detected by the other detector after τ seconds. This scheme allows to

measure the joint probability of counting a photon at time t and another at time t+τ :

Glauber [20] was the first one to demonstrate that there is a direct correspondence

between this probability and the intensity correlation function:

G(2)(t, τ) = ⟨a�(t)a�(t + τ)a(t + τ)a(t)⟩ , (2.63)

which normalized gives:

g(2)(t, τ) =
⟨a�(t)a�(t + τ)a(t + τ)a(t)⟩

⟨a�(t)a(t)⟩
2 . (2.64)

Putting things in a different perspective, as suggested by [21], (2.64) describes the

probability of photons in the light beam to group together or to be separated:

if g(2)(t, τ) = 1, joint detection, i.e. the numerator of (2.64), and independent

detection, the denominator of (2.64), coincide. This should always be the case

at τ → ∞, since the memory of the first detection vanishes over time. In the

case where g(2)(t, τ) < g(2)(t,0), as the time delay increases, the probability of

detecting the second photon decreases, and this indicates that photons tend to

arrive together (bunching). Finally, if g(2)(t, τ) > g(2)(t,0), as the time delay τ

increases, the probability of counting a second photon at the detector increases,

which is characteristic of photon antibunching. It is easy to show that for a coherent

state ∣α⟩, the second order correlation function is g(2)(t,0) = 1, while for a Fock state

∣n⟩, it reads:

g(2)(t,0) = 1 −
1

n
. (2.65)

Consider now (2.64) with τ = 0: we can omit the time dependence if we consider a

stationary process. The expression for the second order correlation can be rewritten
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as:

g(2)(t, τ) =
⟨a�a�aa⟩

⟨a�a⟩

2

= 1 +
⟨∆n2⟩ − ⟨n⟩

⟨n⟩

2

. (2.66)

where we have used the fact that, from the commutation relations, a�a�aa = n2 − n,

and that ⟨∆n2⟩ = ⟨n2⟩ − ⟨n⟩
2
. The statistics are defined to be sub-Poissonian if

the variance of the number of photon detected is smaller than the average number

of photons, hence the statistics deviates from the Poisson distribution typical of

coherent states. This is a purely quantum phenomenon which has no counterpart

in the classical regime. From (2.66) follows that, having a sub-Poissonian statistics

is equivalent to:

g(2)(0) < 1. (2.67)

Sub-Poissonianity and antibunching are closely related, even though they are not

exactly the same thing: a quantum field can have a sub-Poissonian statistics and

yet showing bunching in the intensity correlation function.

2.4 Quasiprobability distribution

An alternative way to represent the density matrix of a given field is offered by

quasiprobability distributions. These mathematical objects resemble classical prob-

ability distributions: they are real-valued functions wich obey a normalization con-

dition and allow the calculation of statistical moments through an integration of

c-number functions, weighted by the distribution function. However, contrary to

classical probability distributions, the quasiprobability distribution may not be al-

ways positive, hence the interpretation in terms of a probability distribution is not

always meaningful. Negative values of the probability distribution are allowed in

quantum mechanics as they can be used to describe efficiently phenomana such

as destructive interference, in term of distributions. Depending on the ordering

of the operators in the average values we wish to calculate, it is possible to ob-

tain different representation of the field. For example, normal ordering gives the

Glauber quasiprobability distribution, while anti-normal ordering gives the Husimi

Q-function [22]. In the following we consider the normal ordering (annihilation
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operators to the right, creation operators to the left).

2.4.1 P-representation

The Glauber-Sudarshan P-representation, is based upon the non-orthogonality and

overcompleteness of coherent states, hence on the fact that any density operator ρ

can be written in terms of diagonal sums over a set of coherent states:

ρ = ∫ d2α ∣α⟩ ⟨α∣P (α). (2.68)

The function P (α) is a c-number which possesses some analogy with a classical

probability distribution, provided that it does not show any pathological behaviour:

in particular P (α) has a normalization condition and allows the calculation of sta-

tistical moments through the usual integral formulation, hence proving to be a very

powerful computational tool. Indeed we first notice that:

∫ d2αP (α) = ∫ d2α ⟨α∣α⟩P (α)

= Tr(∫ d2α ∣α⟩ ⟨α∣P (α)) = Tr(ρ) = 1. (2.69)

The statistical moments can be evaluated from:

⟨a�paq⟩ = Tr(ρa�paq) = Tr(∫ d2α ∣α⟩ ⟨α∣P (α)a�paq) =

∫ d2α ⟨α∣P (α)a�paq ∣α⟩ = ∫ d2αP (α)α∗pαq. (2.70)

However, it suffers from a pathological behaviour for a certain class of states: if the

state considered has a classical analogue, like coherent states and thermal states,

the P-distribution is always non-negative. But if we consider highly quantum states

or states, such as Fock states, the P-function can be negative or more singular than

a Delta-function. Hence it fails to be a properly defined probability distribution.

For a coherent state ρc = ∣α0⟩ ⟨α0∣, equation (2.70) gives:

⟨a�paq⟩ = α∗p0 α
q
0, (2.71)
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hence P (α) = δ(α − α0) is a delta function. It is worth noticing here that, from the

overcompleteness of coherent states, the P-representation is not unique, i.e. a given

state can be represented by different P distributions. For squeezed states, P (α)

takes negative values [8], as it can be seen explicitly by calculating the variance for

the quadrature X:

⟨∆X2⟩ = ⟨(a + a�)2 − ⟨a + a�⟩
2
⟩

= 1 + ∫ d2αP (α)(α + α∗ − (α + α∗)2)2, (2.72)

which gives ⟨∆X2⟩ < 1 only if P (α) is negative.

2.4.2 Q-representation

If the operators, whose expectation values we wish to calculate, are written in anti-

normal order, a useful phase-space representation is the Q-function, or Husimi func-

tion. The definition of the Q distribution can be derived from the overcompleteness

of the coherent state, and is:

Q(α) =
1

π
⟨α∣ρ∣α⟩ , (2.73)

hence πQ(α) effectively corresponds to the trace of the density matrix, evaluated

on the coherent state basis spanned by ∣α⟩. In this representation, a coherent state

is Gaussian in the phase-space, i.e. its Husimi function is Q(α) = 1
π exp(−∣α − α0∣

2).

It is clear from the definition (2.73) that the Q-function is always positive, since

ρ is a positive-definite operator: hence, contrarily to the P-function, the Husimi

function allows the description of squeezed states in term of a well defined, positive,

distribution function. In terms of the Q-function the mean values of the quantum

operators have the form:

⟨aqa�p⟩ = ∫ d2αQ(α)αqαp∗. (2.74)
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We mention here that it is possible to obtain the Q-function from a suitable Weies-

trass transform of the P-function:

Q(α) =
1

π ∫
P (β)e−∣α−β∣

2

d2β, (2.75)

which follows from the expansion of the density matrix on the basis spanned by ∣β⟩

as showed in equation (2.68).

2.4.3 Wigner function

The Wigner function, for a single mode field, is the function of the complex variable,

α, defined as:

W (α) =
1

π2 ∫ d2ζ Tr(ρeζa
�−ζ∗a)eζ

∗α−ζα∗ , (2.76)

where ζ is a complex number and the term:

CS(ζ) = Tr(ρeζa
�−ζ∗a) (2.77)

is called the symmetric characteristic function, which is a function completely char-

acterizing the density matrix and which can be used to evaluate the expectation

value of the annihilation and creation operator, using the relation

⟨a�paq⟩S =
∂p+q

∂ζp∂ζ∗q
CS(ζ)∣ζ=0. (2.78)

Notice that it is possible to make to define a generalized characteristic function,

which parametrizes the possible ordering of the operators products, to obtain all

the quasi-probability distribution discussed above (??). The Wigner function can

be used, as mentioned before, to evaluate symmetrically ordered products of cre-

ation and annihilation operators, which is defined as follows: the symmetrically

ordered product is the average of all the different ways of ordering m creation and

n annihilation operators (there are (n +m)!/n!m! possible orderings), for example

(a�a)S = 1
2(a

�a + aa�). From (2.78), and inverting (2.76), the average values of the
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operators in terms of the Wigner function is:

⟨a�paq⟩S = ∫ d2W (α)α∗pαq. (2.79)

The Wigner function is non singular, but it can be negative: the negativity of this

quasiprobability distribution is a signature of non-classicality. Furthermore, for pure

states, the Wigner distribution can be used as a tool measure the Gaussianity of

pure states, i.e., measure if the state is Gaussian or not: if the Wigner function

shows a 2D Gaussian distribution, the state can be considered as Gaussian, while

any other shape gives non-Gaussian states. In particular, when the Wigner function

is negative, i.e., when the state is certainly non-classical, is not possible, for any

convolution over a set made entirely of Gaussian states, to reproduce the negative

distribution. However, the Wigner function of a non-Gaussian state is not neces-

sarily negative hence the non-classicality in not guaranteed by the non-Gaussianity.

Indeed, as showed by [23], pure states can have non-negative Wigner function only

if they are Gaussian states.

2.5 The positive P-representation

In this section we will discuss the positive P-representation, which is going to be

one of the main theoretical tool used for the rest of the thesis. The importance of

the positive P-representation is given by the computational advantages it provides.

The Glauber P-representation is not always positive semidefinite, as we showed for

squeezed states, hence the interpretation in terms of stochastic differential equation

is not always possible, the same applies to the Wigner function, as the evolution

equation for the distribution W (α) may contain derivatives in α of the third order

or higher, hence preventing one to write it down as a Fokker-Planck equation [24].

The positive P, on the contrary, can be always positive semidefinite, thus we can

represent the system’s dynamics as a set of stochastic differential equations, as

described in the next sections. Typically, this representation is used to address the

dynamics of complex multimode systems, hence we start immediately by considering
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the general multimode case, giving a definition for the generalized P-representation.

A multimode quantum state of light can be defined as a M -mode coherent state ∣ααα⟩,

living on a Hilbert space of M bosonic modes:

∣ααα⟩ = exp(
M

∑
n=1

αna
�
n −

∣ααα∣2

2
) ∣0⟩ , (2.80)

where ∣0⟩ is the vacuum state. The generalized P-representations are defined as:

ρ = ∫ ∫ dµ(ααα,βββ)P (ααα,βββ)Λ(ααα,βββ), (2.81)

where dµ(ααα,βββ) is an integration measure, the choice of which allows one to define

different possible P representations. The operator Λ(ααα,βββ) is a projection operator

on an off-diagonal pair of coherent states:

Λ(ααα,βββ) =
∣ααα⟩ ⟨β∗β∗β∗∣

⟨β∗β∗β∗∣ααα⟩
, (2.82)

with Tr(Λ(ααα,βββ)) = 1, from the cyclic properties of the trace. We can derive from

(2.81) the Glauber P-representation. This can be done by choosing the integration

measure as:

dµ(ααα,βββ) = δ2M(ααα −βββ)d2Mαd2Mβ, (2.83)

which gives immediately, inserting it into (2.81):

ρ = ∫ d2MαP (ααα) ∣ααα⟩ ⟨ααα∣ . (2.84)

Different integration measures lead to other types of generalized P-representation.

The positive-P-representation is defined by choosing the integration measure as a

volume measure in the phase space, with the standard doubling of the basis:

dµ(ααα,βββ) = d2Mαααd2Mβββ. (2.85)

This gives the following expression for the density operator:

ρ = ∫ ∫ d2Mαααd2MβββP (ααα,βββ)Λ(ααα,βββ). (2.86)
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The modes described by ααα and βββ correspond to every possible mode of excitation

of the system, whether they are photon field or the damping reservoirs. It has been

demonstrated that is always possible to obtain an explicitly non-singular, positive-

definite distribution of this type, given by:

P (ααα,βββ) =
1

(4π2)M
e−

1
4
∣ααα−βββ∗∣2 ⟨

ααα +βββ∗

2
∣ρ ∣

ααα +βββ∗

2
⟩ , (2.87)

which is clearly positive, although not unique. The Positive-P, like other represen-

tation examined above, allows us to build a correspondence between the normally

ordered operator products and the moments of the distribution, hence allowing us to

calculate the expectation value of quantum operators. Suppose now that ON(aaa,aaa�)

is an operator function of the multimode annihilation and creation operators, ex-

pressed in normally ordered form, so that:

ON(aaa,aaa�) = ∑
nnn,mmm

cnnn,mmm
M

∏
j=1

(a�j)
mj

M

∏
j=1

a
mj
j . (2.88)

The expectation value of ON is given by:

⟨ON(aaa,aaa�)⟩ = Tr(ON(aaa,aaa�)ρ)

= ∫ ∫ d2Mαααd2Mβββ P (ααα,βββ)Tr(∑
nnn,mmm

cnnn,mmm
M

∏
j=1

(αj)
mj)

∣ααα⟩ ⟨β∗β∗β∗∣

⟨β∗β∗β∗∣ααα⟩

M

∏
j=1

β
mj
j )

= ∫ ∫ d2Mαααd2Mβββ P (ααα,βββ)(∑
nnn,mmm

cnnn,mmm
M

∏
j=1

(αj)
mj)

M

∏
j=1

β
mj
j ), (2.89)

and here we used the eigenvalue property of the coherent states together with the

fact that the trace of a coherent state projection operator is one. We can express a

quantum expectation value in terms of c-number quantities: a probability distribu-

tion which is related to the density matrix and complex functions for the considered

operator.

As we will clarify in the following, it is possible to estimate the expectation variable

of a given operator by sampling the distribution P (ααα,βββ), using stochastic trajectory
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from a sample space s :

ŌN = ⟨Re(Tr(ONΛ)⟩stoch + ⟨Re(Tr(ONΛ�)⟩stoch , (2.90)

where we indicate the average over a sample of stochastic trajectories as ⟨.⟩stoch and

the correspondence between the above quantities and the exact expectation value

holds in the limit:

lim
s→∞

ŌN = ⟨O⟩N . (2.91)

2.5.1 Quantum dynamics and operator identities

The temporal dynamics of a quantum system can be calculated using the Positive P-

representation, by applying differential operators correspondence rules to the density

matrix of the system. This procedure gives an evolution equation for the Positive-

P distribution: in this case, as the equation contains at most derivatives of the

second order in the field variables, the evolution equation is equivalent to a Fokker-

Planck equation, originally derived for the description of Brownian motion [25].

The Fokker-Planck is not easy to solve analytically or numerically, in most practical

cases: however it possible to transform it, as we shall see in more details in the next

sections, into the stochastic formulation of a diffusion process, which resolves the

Fokker-Planck as an ensemble average over a set of stochastic trajectories.

We can rewrite (2.82) more explicitly, using the definition of a coherent state

as a displaced vacuum state:

Λ(ααα,βββ) = e(aaa
�−βββ)⋅ααα ∣000⟩ ⟨000∣ eaaa⋅βββ, (2.92)

where we used the fact that ⟨β∗β∗β∗ααα⟩ = exp(−1
2(∣ααα∣ + ∣βββ∣) +βββ ⋅ααα). Differentiating (2.92)

with respect to αn, we get the following result:

∂αnΛ(ααα,βββ) = [a�n − βn]Λ(ααα,βββ). (2.93)

Combining eq. (2.93) and the relative conjugate equation with the eigenvalues for
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coherent states, we obtain the identities:

a�nΛ = [∂αn + βn]Λ

anΛ = αnΛ

Λan = [∂βn + αn]Λ (2.94)

Λa�n = βnΛ.

Let us consider a typical master equation, describing the quantum dynamics of a

system. We have now, in the framework of the Positive-P:

∂tρ = −i[H,ρ] = ∫ ∫ d2M(ααα)d2M(βββ)P (ααα,βββ)[H,Λ(ααα,βββ)]. (2.95)

As an example, consider an Hamiltonian H = a�a. Then from the identities (2.94)

it can be derived:

∂tρ = − i[a
�a, ρ] = −i∫ ∫ d2(αααd2(βββ)P (ααα,βββ)[a�a,Λ(ααα,βββ)]

= − i∫ ∫ d2(αααd2(βββ)P (ααα,βββ)(∂αα − ∂ββ)Λ(ααα,βββ).

From the definition (2.86), follows that the maser equation, in general, can be rewrit-

ten as:

∂tρ = ∂t∫ ∫ d2M(ααα)d2M(βββ)P (ααα,βββ)Λ(ααα,βββ) = ∫ ∫ d2M(ααα)d2M(βββ)∂tP (ααα,βββ)Λ(ααα,βββ),

(2.96)

which, combining the two relations, leads to the equation of motion for the proba-

bility distribution, as shown in [26]:

∂tP (ααα,βββ) = i(∂αα − ∂ββ)P (ααα,βββ). (2.97)

This is a general result for the harmonic oscillator: the motion in phase space for

this type of quadratic Hamiltonian is exactly the same as the corresponding classical

trajectory, regardless of the operator ordering of the representation.



2.5. The positive P-representation 31

2.5.2 The Fokker-Planck equation

We now want to give a more detailed definition and description of the Fokker-Planck

equation. As showed in the previous section, equation (2.97) describes the time

evolution of the P-distribution, and it basically represents a Fokker-Planck equation

with no diffusion term.

In general, the Fokker-Planck equation indeed describes the evolution of the quasi-

probability distribution function. It is usually presented in the form:

∂tP (ααα, t) = [∂αµAµ(ααα) +
1

2
∂2
αµανDµν(ααα)]P (ααα, t), (2.98)

where Aµ(ααα) are drift terms, Dµν(ααα) are elements of the diffusion matrix and sum-

mation over repeated indices is assumed. The D matrix contains all the terms

proportional to the second derivatives in the phase space variables (ααα,βββ), arising

after the application of the operator identities. As we mentioned, the Wigner func-

tion contains third order derivatives, hence undermining any formulations in terms

of FPE: however, the third order derivatives are significant when the effects of quan-

tum noise are large, which typically is the case when the mean number of particles

is small. Hence it is sometimes possible to truncate the evolution equation for the

Wigner function by neglecting the high order derivatives, thus recovering the Fokker

Planck formulation [27].

Our aim is to make use of the stochastic formulation of the diffusion process,

which allows us to transform a Fokker-Planck equation into an ensemble average over

a set of trajectories. To interpret the Fokker-Planck equation as a set of stochastic

differential equations, the D matrix needs to be semipositive definite, i.e., all real

eigenvalues are non-negative, as shown in [28]. For example, the Q-distribution

can show both non-positive diffusion terms and higher-than-third derivatives in the

Fokker-Planck equation, hence the Q function also cannot always be interpreted in

terms of stochastic evolution. To better understand the meaning of the Fokker-

Planck equation and of the A and D matrices, we follow the apporoach of [9] and
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consider the random variable y of a one-dimensional process. Its mean value and

variance are defined as:

⟨y(t)⟩ = ∫ dyyP (y, t) (2.99)

⟨∆y2(t)⟩ = ∫ dy(y − ⟨y⟩)2P (y, t), (2.100)

and consider the equation of motion for them, derived from equation (2.98),

⟨ẏ(t)⟩ = ∫ dyy∂tP (y, t) = −∫ dyy∂yA(y)P (y, t)+
1

2 ∫
dyy∂2

yD(y)P (y, t). (2.101)

Integrating the above relation by part and assuming that the distribution goes fast

to zero at infinity (as required for every phase-space method), we obtain:

⟨ẏ(t)⟩ = ⟨A(y)⟩ . (2.102)

Similarly, it can be shown that for the variance:

⟨ ˙∆y2(t)⟩ = 2 ⟨yA(y)⟩ − 2 ⟨y⟩ ⟨A(y)⟩ + ⟨D(y)⟩ . (2.103)

The dynamics of the average value (2.102), is defined by A, which is called the drift

term because it generates a drift of the distribution in phase-space, i.e. the mean of

the distribution function shifts according to the evolution of the mean. Similarly, D

acts as a source of fluctuation, as it is responsible for the dynamical change of the

variance, in the most simple case (a linear Fokker-Planck equation) broadening or

sharpening the distribution itself.

2.5.3 Stochastic processes

It is possible to demonstrate rigorously that the solution of a Fokker-Planck equa-

tion is equivalent to the statistical average on a set of stochastic trajectories, when

the sampling space goes to infinity [29]. The same result holds in the other direc-

tion: given a Markov random process, described by a set of stochastic differential

equations, it is possible to derive the associated Fokker-Planck equation for the prob-

ability distribution [30]. This equivalence is well-posed only if the diffusion matrix
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D, written with real entries corresponding to the real and imaginary part of αi, βi,

being these the components of a 4M -dimensional vector ααα → (α1, ..., αM , β1, ..., βM),

is positive semidefinite, i.e. all its eigenvalues have non-negative real parts. In this

the case, the diffusion matrix D(ααα) can always be factorized in the non-unique form:

D(ααα) = B(ααα)BT (ααα) (2.104)

and the stochastic differential equations (SDE) for the αi, βi, equivalent to the

Fokker-Planck equation, are:

dαi = Ai(ααα, t)dt +∑
ij

Bij(ααα, t)dWj(t), (2.105)

with Ai and Bij being elements of the drift matrix and of the square root of the

diffusion matrix, respectively. A detailed proof of the equivalence between equation

(2.105) and a Fokker-Planck equation can be found in [31]. The noise terms dWj(t)

are Weiner increments, defined in terms of the Weiner process W (t) [28], satisfying

at each t:

⟨dWi(t)dWj(t
′)⟩ = δijδ(t − t

′)dt.

⟨dWi(t)⟩ = 0.

Equation (2.105) can be equivalently put in a compact notation as follows:

dααα(t)

dt
= A(ααα, t) +B(ααα, t)ξ(t), (2.106)

where ξ(t) is a vector made of real, independent Gaussian white noise terms with

zero mean and the following non-zero correlations:

⟨ξi(t)ξj(t
′)⟩ = δijδ(t − t

′), (2.107)

such that ξi(t) =
d
dtWi(t). The above stochastic differential equation can be written

down in the so called Ito or Stratonovich form. Without going in the details of those

two stochastic rules, it is worth to mention that only in the Stratonovich form the

integration rules are the same of ordinary calculus. The Ito form has advantages
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arising from the fact that, in this form, the stochastic increments are independent of

the integration variables. However the rule of the differential calculus are different

from the ordinary ones. For example the usual chain rule of the standard calculus,

in the Ito calculus is modified as follows:

dh(yyy) =∑
j

∂yih(yyy)dyj +
dt

2
∑
j,i

∂2

∂yj∂yi
h(yyy)Dj,i(yyy), (2.108)

which shows a dependence on the diffusion matrix.

In the following, unless otherwise specified, we are going to use SDE in the Ito

formulation: in this way, considering (2.105), the random variables dαi are made

independent of the same-time Weiner increments dWi(t), which is not the case in the

Stratonovich formulation. For the small time intervals ∆t, the stochastic increments

dWi(t) are usually implemented by real Gaussian noise, independent for each i and

each time step, having mean zero, and variance ∆t. To give a simple example, if

we follow the example of the harmonic oscillator in (2.97), we notice that there is

no diffusion term, which means that, in the stochastic formulation, there is no noise

there appearing, so every Bij(ααα, t) = 0. The equation of motion for the harmonic

oscillator in the positive P-representation is then:

dααα

dt
= −iωααα, (2.109)

that is the expected solution for an oscillatory motion, which in phase space gives

a circular path around the origin, so that the initial coherent state, stays coherent

with a rotated amplitude ααα(t) = ααα(0)e−iωt. Among all the representation, it is

only the positive-P that can generally be used in a stochastic form for nonlinear

quantum systems: the diffusion matrix, in fact, can always be obtained in a positive

semidefinite form in this representation, due to the additional degrees of freedom

arising from the doubling of the phase space, to guarantee the positivity. However,

the corresponding stochastic equations in the doubled-dimensions, in some cases,

show numerical instabilities. This is particularly true when we consider systems

with low damping rate and large non-linearity: in this case the dynamics can lead
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to distribution tails that vanish only as fast as a power law, which means that some

boundary terms cannot be neglected, when dealing with the solution of the Fokker-

Planck equation. Hence sampling error become large and systematic errors occur

due to the neglected boundary terms.

2.5.4 The gauge P-representation

In the previous section we showed that the positive P-representation always gives

a Fokker-Planck equation for the probability distribution P (α,β), with positive

semidefinite diffusion: this property allows us to solve the dynamical problem con-

sidered in term of a well-defined stochastic process. However, the doubling of the

phase-space variables can give rise to numerical instabilities in the solution of the

stochastic differential equations. In order to avoid these problems, we now introduce

a new type of representation, named gauge P-representation, described for the first

time by Drummond [32].

Compared to the standard positive P-representation, the gauge P-representation

presents a modified time evolution, obtained via the introduction of an additional

complex field, Ω, in the expansion of the density matrix of the system. The ad-

ditional degree of freedom come from the non-orthogonal nature of the coherent

state basis: in fact any non-orthogonal basis set possesses an implicit global phase

freedom for the expansion of a given state. The gauge field leaves the statistical

moments unaffected, while it is able to stabilise the stochastic simulations and to

minimise the systematic errors in the sampling. These computational advantages

can be achieved by effectively modifying both the drift terms (drift gauges) and

the diffusion terms (diffusion gauges) in the Fokker-Planck equation: the original

probability distribution, and its associated statistical moments, are then recovered

by evaluating the time evolution of the field Ω, which absorbs the quantum phase

factor, as we shall see in the following.

The gauge representation is based on the possibility of expanding any density
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matrix ρ on the un-normalized basis Λ(α⃗), with α⃗ = (ααα,βββ,Ω), and

Λ(α⃗) = Ω
∣ααα⟩ ⟨βββ∣

⟨βββ∣ααα⟩
, (2.110)

where the Ω is the additional gauge field mentioned above. We define the gauge

representation G(ααα,βββ,Ω) as a real and positive function, satisfying:

ρ = ∫ ∫ d2M(ααα)d2M(βββ)dΩG(ααα,βββ,Ω)Λ(ααα,βββ,Ω), (2.111)

together with the normalization condition:

Tr(Λ(ααα,βββ,Ω)) = Ω. (2.112)

For the gauge representation, the identities (2.94) are still valid, together with the

additional one coming from the Ω variable:

∂ΩΛ =
1

Ω
Λ. (2.113)

The observables are calculated in the same way as with the positive P-representation:

it is sufficient to know how to evaluate the expectation of creation and annihilation

operators in terms of the representation as in (2.89), as the operators whose averages

corresponds to the statistical moments, can always be expressed as a combination

of powers of a and a�. In terms of sampling trajectories, the main difference here

is that we need to include the variable Ω and normalize the result accordingly (this

follows from the fact that for a gauge representation the trace of Λ is not unity). In

the limit of infinite trajectories:

⟨a�paq⟩ =
⟨βββpαααqΩ⟩stoch + ⟨βββqαααpΩ∗⟩stoch

⟨Ω +Ω∗⟩stoch

. (2.114)

In analogy to what we showed in the previous sections, it is possible to derive a for

the gauge representation:

∂tG(ααα,βββ,Ω, t) = [∂αµAµ(ααα,βββ,Ω) +
1

2
∂2
αµανDµν(ααα,βββ,Ω)]G(α,βββ,Ωα,βββ,Ωα,βββ,Ω, t), (2.115)
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from which is clear that is possible to have different kind of gauge, applying to

the drift and diffusion terms individually or simultaneously. The diffusion gauge

freedom is a direct consequence of the non-unique decomposition of the diffusion

matrix . In fact, given a suitable decomposition of D of the form:

D = BBT , (2.116)

it is easy to show that any matrix defined as B′ = BO, where O is an orthogonal

matrix (OTO = 1), will give:

B′B′T = BOOTBT = BBT =D, (2.117)

hence leaving unchanged the diffusion matrix. The diffusion gauges allow to control

error in the sampling but they fail to eliminate singularities in the drift equations: for

this specific purpose is necessary to implement another kind stochastic gauge which

act on the drift part of the equations and, potentially, is able to stabilize the results

removing pathological behaviours. Without too many details, which will be given

for the specific system of interest in the next Chapters, it is possible to demonstrate

that the SDE with such a drift and diffusion gauge terms has the general Ito form:

dααα(t)

dt
= A(ααα, t) +B′(ααα, t)(ξ(t) − g(ααα))

∂tΩ = Ωg(ααα) ⋅ ξ(t) (2.118)

where B′ = BO with O = eG being an arbitrary orthogonal matrix, which represents

the diffusion gauge, while g(ααα) is the drift gauge function, which acts on the elements

of the drift matrix A(ααα, t), as it does not depends on the white noise term ξ(t) . The

above system of equations gives the dynamics of the field c-number variables and of

the gauge term, which needs to be tracked to evaluate properly the average values of

the operators (2.114). If the coherent states become highly non-classical during the

dynamics in the phase space, the presence of the guage terms are able to stabilize

their stochastic evolution. In this sense this strategy turns the overcompleteness of

coherent states into a computational resource, helpful in reducing sampling errors
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and eliminating singular trajectories.

2.5.5 Numerical methods for SDE

Equation (2.118) is a typical system of stochastic differential equations, which can

be written in a general form:

dXt = µ(Xt, t)dt + σ(Xt, t)dW (2.119)

where Xt is a random variable and dW is a Wiener process. Equation (2.119) can

be equivalently expressed in the integral form:

Xt+s −Xt = ∫

t+s

t
µ(Xu, u)du + ∫

t+s

t
σ(Xu, u)dWu (2.120)

To properly find the numerical solution of equation (2.119) we need to consider some

approximation scheme: there are huge amount of algorithms availabe. Here we are

going to consider briefly some of the easiest to implement. Details can be found in

[33].

Consider a time interval [t0, tfin] and assign to it a grid of points:

t0 < t1 < ... < tfin,

to which we will assign approximate values of the random variable X:

w0 < w1 < ... < wfin.

The Euler-Maruyama approximation of Xt, with w0 =X(t = t0), is

wi+1 = wi + µ(wi)∆ti+1 + σ(wi)∆Wi+1 (2.121)

with ∆ti+1 = ti+1 − ti, the equidistant time steps, and ∆Wi+1 = Wti+1 −Wti are the

Wiener increments, i.e. Gaussian random variables with mean zero and variance

∆t:

∆Wi ≈ N(0,∆t). (2.122)
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It is clear that the set of (w0...wfin), produced by this method would be an approx-

imate solution of the stochastic process X(t).

The approximation is said to converge strongly to XT , at time T , if the fol-

lowing condition holds:

lim
∆t→0

E(∣XT −w∆t(T )∣) = 0 (2.123)

where E(⋅) is the ensemble average over a set of realizations of the stochastic process,

and w∆t is the approximate solution calculated making use of a fixed time step ∆t.

The approximation is said to converges strongly with order γ if:

∀∆t, ∃C ∈ R ∶ E(∣XT −w∆t(T )∣) ≤ C ∣∆t∣γ. (2.124)

In particular, it can be demonstrated that the Euler-Maruyama scheme converges

strongly with order γ = 1
2 to the real solution. An improvement on the order of

convergence can be achieved through the implementation of another numerical ap-

proximation, the Millestein method, which is implemented in the following chapters

for the numerical simulations, unless otherwise specified. The Millestein method can

be derived from a stochastic Taylor series expansion and the order of convergence of

scheme is γ = 3
2 . The Millestein approximation of the evolution equation for Xt is:

wi+1 = wi + µ(wi)∆ti + σ(wi)∆Wi +
1

2
σ(wi)σ

′
(wi)(∆W

2
i −∆ti) (2.125)

where σ
′
(wi) is the derivative of σ evaluated at wi. The application of the Euler-

Maruyama methods or of the Millestein method, with decreasing steps, gives an

increasingly good approximation.

2.6 Quantum jumps approach

When the population of the system under investigation is not excessively large, or

the system itself is not composed by many subsystems, it is convenient to address its

dynamics by the so-called Quantum jumps approach, first introduced by Carmichael

in [34].
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The incoherent dynamics of a quantum state, described by the master equation

in the Born-Markov approximation:

∂tρ = −i[H,ρ] +∑
j

γj(fjρf
�
j − f

�
j fjρ − ρf

�
j fj), (2.126)

can be equivalently described via a stochastic evolution of a given initial pure

state ∣Ψ(0)⟩, generated by the effect of the collapse operators, fj, and by the non-

Hermitian Hamiltonian:

Heff =H −
i

2
∑
j

γjf
�
j fj. (2.127)

If the time step is kept sufficiently small, then the state at time t, ∣Ψ(t)⟩, evolves

according to:

∣Ψ(t + dt)⟩ = (1 −Heffdt) ∣Ψ(t)⟩ , (2.128)

which is un-normalized, as the Hamiltonian is not Hermitian, hence:

⟨Ψ(t + dt)∣Ψ(t + dt)⟩ = (1 − δp), (2.129)

with δp = ∑j δpj and δpj = γjdt ⟨Ψ(t + dt)∣f �
j fj ∣Ψ(t + dt)⟩. The effects of the collapse

operator on ∣Ψ(t)⟩ is a jump, which happens with probability δpj: the jump can be

associated with the detection of a particular event, for the spontaneous emission of

photons or the change in the spin of a quantum dot. If the jump is registered, the

wavefunction jumps into an normalised state which is defined by a projection via

the collapse operator:

∣Ψ(t + dt)⟩ =
fj ∣Ψ(t)⟩

(⟨Ψ(t)∣ f �
j fj ∣Ψ(t)⟩)1/2

. (2.130)

On the contrary, if no events is detected with probability 1−∑j δpj, the states evolve

under the action of Heff only, as showed above, resulting in the normalized state:

∣Ψ(t + dt)⟩ =
(1 −Heffdt) ∣Ψ(t)⟩

(1 −∑j δpj)
2

. (2.131)

The facts that the jump occurs with a certain probability, makes the evolution of

the state intrinsically stochastic.
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The density operator ρ(t) which describes the system, is then recovered by

grouping together the states obtained via different realization of the stochastic evo-

lution.

In particular we make use of QuTip [35], a Python package for the simulation of open

quantum systems, which has an embedded library for the evaluation of the quan-

tum trajectories of a given system, defined via the Hamiltonian and the collapse

operators.



Chapter 3

Polariton physics

In this chapter we introduce the main system investigated during the research work:

microcavity polaritons. Polaritons are often described as ”half-light half-matter”

systems, as they arise from the strong coupling between an exciton in a semicondutor

structure and a photon. They have attracted a lot of interest in recent years as they

constitute a platform to study a rich variety of physical phenomena: non-linear

optics, Bose-Einstein condensation [36], topological photonics [37] and the quantum

properties of driven-dissipative systems. Here we focus mainly on the latter field,

even though, as it will be clear in the following, part of the research was devoted

to the investigation of semi-classical properties of polaritons. The structure where

it is possible to obtain polariton and hence investigate their physical properties

are semiconductor microcavities : microcavities are semiconductor-based structures

that allow to efficiently confine the light and the electronic excitations of a given

material in a small volume, ultimately leading to strong interaction between them.

We first focus on the specific case of excitons and photons in a microcavity, and

then we derive the polariton Hamiltonian, considering the mean field equation which

describes their dynamics. Finally, including the polarization degree of freedom and

the spin-orbit coupling arising from TE-TM splitting (due to the confinement),

allows us to describe the control of the polariton state through a Stark-pulse. This

result was published in Physical Review B [2].

42
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3.1 Polariton Hamiltonian model

Microcavities are semiconductor devices that trap the light and control the coupling

with the material inside. Their basic building blocks are a structures where the ex-

citons occur and a cavity for trapping light: the structure we consider here consists

of a number of semiconductor quantum wells embedded in a cavity made by dis-

tributed Bragg reflectors (DBRs), with alternating layers of low and high refractive

index, each of them having thickness of λ/4, where λ is the centre wavelength of

reflection. Interference effects created by successive reflections creates the stop band,

which is a region of the spectrum with high reflectivity (≈ 99%) : in this way light

is trapped in standing waves. The two dimensional quantum wells, where the exci-

tons are formed, are placed at the antinodes of the cavity such that the resonance

frequency of the cavity match with the frequency of the exciton.

3.1.1 Excitons

Excitons are defined as bound states arising from the Coulomb interaction between

electrons in the conduction band and holes in the valence band. They are the lowest

energy excited state in a semiconductor. The Hamiltonian describing the electron-

hole interaction, with certain assumptions about the form of the band structure, has

a similar structure to the hydrogen atom:

He−h =
PPP 2

2M
+
ppp2

2µ
−

e2

4πε0εr∣rrr′∣
, (3.1)

where the first term on the right and side is the total kinetic term, while the second

term is the kinetic term in the reduced mass frame. In equation (3.1) M is the total

mass, µ the reduced mass (
memh
me+mh

), rrr′ = re−rh and the presence of all the surrounding

charges is taken into account via the dielectric constant εr. This model described

the so-called Wannier excitons. The existence of bound states, i.e. excitons, is

due to the Coulomb potential in the Hamiltonian (3.1): the energy dispersion of a

semiconductor exciton is given by the binding energy Eb, together with the standard
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kinetic term,

Eex(kkk) = Eb +
h̵2kkk2

2M
, (3.2)

where kkk = ke + kh is the centre-of-mass momentum and the binding energy is given

by:

Eb = −
h̵2

2µa2
0n

2
, (3.3)

where a0 is the Bohr radius. Since excitons are bound states between two fermions,

they can be approximately described as bosons. In fact, it is possible to define the

creation operator b�k, in terms of the electron-hole creation operators, c�ke , d
�

kh
:

b�k = ∑
kekh

⟨ke, kh∣bk⟩ c
�

ke
d�kh , (3.4)

where ⟨ke, kh∣bk⟩ is the unbounded electron-hole state vector:

⟨ke, kh∣bk⟩ = δke+kh,kkk ⟨αhke − αekh∣φn⟩ , (3.5)

and ∣φn⟩ is such that ⟨rrr∣φn⟩ = ∫ δrrr,rrr′φn(rrr
′)drrr′, i.e., the state vector associated with

the internal structure of the exciton. It can be demonstrated, as showed in [38], that

the operators defined in (3.4), at low exciton densities, obey the standard bosonic

commutation relations:

[bk, b
�

k′] = δk,k′ , (3.6)

which confirms that we can treat exciton as composite bosons. Electrons in a semi-

conductor interact via the Coulomb interaction in (3.1): it is then expected that

excitons will experience the same interaction. In term of the exciton creation and

annihilation operator, defined previously, such a Coulomb term will have the form:

Hex−ex = ∑
kkk,kkk′,qqq

Vqb
�

kkk+qqqb
�

kkk′−qqqbkkkbkkk′ . (3.7)

where Vqqq ≈ V0 = 6e2a0/ε0, provided that the Bohr radius of the exciton a0 <<
1
∣qqq∣ [39].
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3.1.2 Photon dispersion

As mentioned above, the optical cavities considered here are made of a thin layer

of semiconductor material, confined between two dielectric mirrors. If high quality

mirrors are fabricated, the confining system acts like a Fabry-Perot resonator, hence

it is able to trap the light efficiently, making possible strong interactions between

light and matter, embedded in the cavity in the form of electronic resonances. The

Bragg mirrors confine the light, say in the z direction, but not in the x − y, so the

light entering the microcavity with an angle θ will have a dispersion of the form:

Eph(k∥) =
h̵c

n

√
k2
∥
+ k2

⊥, (3.8)

where the cavity has a refractive index n and k∥ is the wavevector component parallel

to the surface, while k⊥ is the wavevector component perpendicular to the surface.

In particular:

k⊥ = n
2π

λ
, (3.9)

where λ is the resonance wavelength at normal incidence. Making a Taylor expansion

of (3.8), defining the photon “mass” term as m = n
c k⊥, which is orders of magnitude

smaller than the exciton mass, we obtain the quadratic dispersion relation:

Eph(k∥) ≈ E0 +
h̵2k2

∥

2m
, (3.10)

with E0 =
h̵c
n k⊥.

3.1.3 Polariton Hamiltonian

The basic starting point to provide a theoretical description of polariton is to con-

sider two multimode bosonic fields, bk and ak, which describe, respectively, the ex-

citons of the semiconductor structure and the photons, coming from a light source

and interacting with the structure:

Hex−ph =∑
k

E
(k)
ex b

�

kbk +E
(k)
ph a

�

kak +
Ω

2
(a�kbk + b

�

kak), (3.11)
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Figure 3.1: Polariton dispersion relation: The upper and lower polariton branches
(dark lines) are separated by a Rabi splitting Ω. We have included the photon
parabolic dispersion relation and the exciton energy in gray.

where Ω is the Rabi coupling between photons and exciton, which, for quantum

wells at the antinode of the electromagnetic field, is calculated approximately from

the following expression:

Ω =

√
Nqwe2

2εm0Leff

fosc, (3.12)

with Nqw quantum wells embedded in the cavity, having effective length Leff (in-

cluding penetration in the mirrors) and where fosc is the oscillator strength of the

transition. Because of the translational invariance in the cavity plane, photons only

interact with excitons with the same kkk, that is k∥. Fixing the value of k∥, it is possible

to write the single particle Hamiltonian associated with (3.11), in the basis ∣X⟩,∣P ⟩,

representing the single exciton state and the single photon state, respectively. In

such a basis, the Hamiltonian reduces to a two-dimensional square matrix:

⎛
⎜
⎜
⎝

Eex
Ω
2

Ω
2 Eph

⎞
⎟
⎟
⎠

, (3.13)
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which is that of a coupled oscillator model. The eigenenergies of the the above matrix

are:

Elp =
1

2
[Eex +Eph −

√
Ω2 +∆2] (3.14)

Eup =
1

2
[Eex +Eph +

√
Ω2 +∆2], (3.15)

where ∆ = Eex − Eph is the exciton-photon detuning and the dispersion relation is

showed in Fig.(3.1). In the eigenbasis, we can diagonalize (3.11), obtaining:

Hpol =∑
k

E
(k)
lp l

�

klk +E
(k)
up u

�

kuk, (3.16)

where l�k, u
�

k are called upper and lower polaritons, and can be obtained from the

unitary transformation:

⎛
⎜
⎜
⎝

l�k

u�

k

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

Xk Ck

−Ck Xk

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

b�k

a�k

⎞
⎟
⎟
⎠

, (3.17)

where Xk and Ck are called Hopfield coefficients [40],

Xk =

¿
Á
ÁÀ∆ +

√
∆2 +Ω2

2
√

∆2 +Ω2

Ck =

¿
Á
ÁÀ Ω2

(∆ +
√

∆2 +Ω2)2
√

∆2 +Ω2
, (3.18)

which satisfy the normalization condition, ∣Xk∣
2+ ∣Ck∣2 = 1. As we have mentioned in

the previous section, the Coulomb interaction between the carriers gives rise to an

effective exciton-exciton interaction term (we discard the anharmonic saturation in

the photon-exciton coupling). Considering (3.7), as long as the interaction strength

is small, it is possible to neglect scattering between the lower and the upper branch

modes, as they give rise to non-secular terms. In this sense the two branches are

virtually decoupled and it is convenient to work directly in one of the polariton

basis: thus, we express the Hamiltonian (3.11), together with the exciton-exciton

interaction term (3.7), in the lower polariton basis (l�), to obtain:

H =∑
kkk

Elpl
�

kkklkkk + ∑
kkk,kkk′,qqq

Vkkk,kkk′,qqql
�

kkk+qqql
�

kkk′−qqqlkkklkkk′ , (3.19)
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where Vkkk,kkk′,qqq = V0X∣kkk′−qqq∣XkX∣kkk+qqq∣Xk′ . The scattering between polaritons of different

modes, whose physics is incorporated in (3.19), give rise to the collision broadening

calculated by C. Ciuti in [41]: here a threshold behaviour of the broadening was

predicted, with an exciton density at threshold, approximately, nex = 7.109 cm2 at

∆ = 3 meV for a sample with a Rabi splitting Ω = 3 meV. Below this threshold the

collision broadening can be neglected [42] and we can keep the lowest order term,

obtaining, at k = 0:

H = Elpl
�
0l0 + V0l

�
0l

�
0l0l0, (3.20)

which is a Kerr-like Hamiltonian, with a nonlinearity which is quadratic in the

field annihilation-operators. Even though the approximation (3.20) is cutting out of

the physical model different kind of scattering processes, it is a minimum model for

interacting polaritons and its relative simplicity allows us to investigate the quantum

properties and dynamics of polaritons.

3.1.4 Polariton decay

In order to have a realistic model which describes the physics of polaritons, other

phenomena need to be included in (3.11). So far we have considered the polariton-

polariton interaction, which is generated by the excitonic component of the quasipar-

ticles. However, both exciton and photon, in real experiment, have a finite lifetime,

i.e. every mode present in the system, once populated, will tend to dissipate. For

the photons, this is ultimately due to the finite reflectivity of the mirrors. In fact, to

realize strong coupling between the excitons and photons, high-quality cavities are

required: experimentally, the strong coupling regime is demonstrated by the pres-

ence of two dips in the reflectivity spectrum. For microcavity polaritons, the strong

coupling regime takes place when the exciton and cavity linewidths are smaller than

the Rabi splitting, Ω, which means that the decay is smaller than the coupling. It

is possible to add phenomenologically a damping term as an imaginary term, iγ, in

the photon energy in (3.43), as showed in [39], As depicted schematically in Fig. 3.2,

as γ approaches the same value as Ω = 1, the two branches of the dispersion merge
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Figure 3.2: Transition from the strong coupling regime to the weak coupling, for
cavity modes at k = 0. In the strong coupling, the interaction is splitting the
spectrum in two branches. Notice that γ/Ω ≥ 1 the transition from strong to weak
coupling regime takes place.

into one, and the system is then in the weak coupling regime. The excitons in a

quantum well have a finite linewidth too: we can the introduce both decay processes

phenomenologically, in the dispersion relations:

E′
ex = Eex − iγex

E′
ph = Eph − iγph. (3.21)

Incorporating this in the polariton Hamiltonian (i.e. in the strong coupling regime),

the upper and lower polariton energy dispersions become:

Elp =
1

2
[Eex +Eph − i(γex + γph) −

√
Ω2 + (∆ − i(γex − γph))2] (3.22)

Eup =
1

2
[Eex +Eph − i(γex + γph) +

√
Ω2 + (∆ − i(γex − γph))2], (3.23)

which at resonance, i.e. ∆ = 0, gives as a condition for being in the strong coupling

regime, Ω2 > (γex − γph)2. A proper treatment of the strong to weak coupling tran-

sition can be obtained both semiclassicaly and with a quantum approach [43], the
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former through the transfer matrices method [44].

3.2 Driven-dissipative cavity polariton

Microcavity polaritons are intrinsically driven-dissipative systems, as the injection

of photons inside the cavity requires a photon source and the imperfection of the

mirrors cause the leaking of the photons from the cavities, discussed in the last sec-

tion. There are two standard ways to drive a polaritonic system: resonant excitation

and non-resonant excitation. For resonant excitation the pump signal is resonant to

the polariton state, in fact the light is matched in energy and in-plane momentum,

hence the polaritons generated will inherit the same properties. This means that

it is possible to engineer the polariton state with the coherence imprinted by the

source. The usual way to describe a resonant excitation is through a coupling term,

in the Hamiltonian, between the cavity mode and a classical field with amplitude

f(t):

Hpump = f(t)e
−iωpta� + f∗(t)eiωpta, (3.24)

with frequency ωp. On the other hand another pumping scheme can be implemented

called non-resonant excitation: this pumping scheme is the one implemented to gen-

erate a Bose-Einstein condensate of polaritons, which forms spontaneously from the

thermal distribution. The pump excites high-energy exciton states which, via scat-

tering with the lattice, lose energy and cool down: the reservoir created by these

excitations, at high momentum, while losing energy, moves towards k∥ = 0, hence

entering the region described by the polariton dispersion and populating the polari-

ton energy levels with particles having a quasi-thermal distribution. The relaxation

process keeps taking place, until the minimum of the energy is reached, at k∥ = 0:

here polaritons can condense forming a peculiar out-of-equilibrium Bose-Einstein

condensate, if the BEC-phase transition density threshold is reached. The pump-

ing scheme described above is incoherent, as no coherence coming from the laser is

present in the reservoir, and non-resonant with the polariton level: a general way to
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model such processes is via a Lindblad term in the master equation, as in (2.54):

Lpump =∑
kkk

Γkkkn̄(kkk)(a
�

kkkρakkk −
1

2
(akkka

�

kkkρ − ρakkka
�

kkk)), (3.25)

where Γkkk is the pump rate at a given kkk and n̄(kkk) is the reservoir distribution func-

tion. As mentioned above, making use of this pumping scheme, most properties

of the pump, such as polarization and coherence, are lost, hence we can study the

features of the condensate without worrying too much about memory effects com-

ing from the pump. Note here that the incoherent pumping scheme by itself is

necessary but not sufficient to generate a stable polariton condensate: in fact, a

complete model of polariton condensation needs to take into account a variety of

scattering mechanisms, which allow the quasi-thermal distribution to cool down and

to macroscopically occupie the bottom state of the polariton dispersion. In particu-

lar these mechanisms include polariton-phonons interaction and polariton-polariton

interaction, at different k-vectors, as showed in [45].

3.2.1 Mean field equations

Consider now the Hamiltonian (3.11) for a single mode exciton and a single mode

photon, inclusive of the exciton interaction term:

Hex−ph = Eexb
�b +Epha

�a +
Ω

2
(a�b + b�a) + V0b

�b�bb. (3.26)

From the above Hamiltonian it is possible to derive the equation of motion for the

exciton and the photon operators, as well as for the exciton number operator. To

do this, we use the Heisenberg equation of motion:

h̵
d

dt
a� = −i[a�,H], (3.27)
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which leads us to:

ih̵
d

dt
Nex = −Ω(a�b − ab�)

ih̵
d

dt
a = Epha +Ωb (3.28)

ih̵
d

dt
b = Eexb + V0b

�b�bb +Ωa,

where Nex = b�b. The equations above couple different species of operators in a non-

trivial way. Hence, in order to to solve them, we need to consider a nested structure

of commutators, or, equivalently, terms made of an increasing number of products

between operators: this problem is well-knowns as quantum hierarchy problem [46].

We can solve the system of equations (3.28) considering the mean values of the

operators: ⟨Nex⟩, ⟨a⟩, ⟨b⟩, together with the approximations:

⟨bb⟩ = 0

⟨b�b�b⟩ = ⟨b�b⟩ ⟨b�⟩ (3.29)

⟨b�bb⟩ = ⟨b�b⟩ ⟨b⟩ ,

which truncate the hierarchy. The assumption in (3.29) consists in removing the

purely correlatad terms in the expansion of the mean values of the high order prod-

ucts of operators, hence obtating factors with at most second order products: this

stategy ensures that we are dealing with particle-number conserving quantities. In

particular, the assumption is justified, phenomenologically, in the polaritonic case,

by the experimental results [47]. It follows that the equation of motion for the mean

values, from (3.28), are:

ih̵
d

dt
⟨Nex⟩ = 2iΩIm(⟨b⟩ ⟨a�⟩)

ih̵
d

dt
⟨a⟩ = Eph ⟨a⟩ +Ω ⟨b⟩ (3.30)

ih̵
d

dt
⟨b⟩ = (Eex + V0 ⟨N⟩) ⟨b⟩ +Ω ⟨a⟩ ,

where we have used the fact that ⟨a�⟩ ⟨b⟩ − ⟨b�⟩ ⟨a⟩ = 2iIm(⟨b⟩ ⟨a�⟩). The set of

equations (3.30) is called the Excitonic-Bloch equations, due to its analogy with the
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optical Bloch equations [39]. This analogy is not precise: in the excitonic-Bloch

equation we are dealing with excitons and not with two-level systems; in the latter

case there is an intrinsic saturation which comes from the fact that a two level

system cannot be further excited once it is inverted. By contrast, bosonic systems

like excitons, in an ideal case, can be excited with arbitrary large number in the

Fock basis.

If we move to the lower polariton base (which we rewrite as ψlp), i.e. we transform

the equations (3.30) through the Hopfield coefficients, we obtain:

ih̵
d

dt
ψlp = (Elp − iγlp + g∣ψlp∣

2)ψlp + fexte
−iωpt, (3.31)

where g = ∣X ∣4V0 and we have included the finite linewidth of the lower polariton

mode γlp, and a coherent driving term, fexte−iωpt with frequency ωp. Equation (3.31)

is called the single mode Gross-Pitaevski equation, in analogy to the equation that

describes the order parameter in atom condensates. The Gross-Pitaevskii equation

can be generalized to deal with spatially extended condensate of atoms, and of other

bosonic fields, providing a remarkable mean-field model for many-body systems. For

an order parameter with a spatial dependence Ψlp(rrr), which describes the lower

polariton modes, the driven-dissipative Gross-Pitaevskii equation is [48]:

ih̵∂tΨlp(rrr, t) = (−
h̵2

2m
∇2 + ω0 − iγlp + g∣Ψlp∣

2 + Vext(rrr))Ψlp + Fext(rrr, t), (3.32)

with m =mph/∣X ∣2, where mph is the effective mass of the photon in the cavity, Vext

is an external potential felt by the lower polariton and Fext(rrr, t) is the driving field

that, in general, possesses a spatial profile. The same equation holds for cavity with a

generic nonlinear medium embedded, but in this case equation (3.32) describes pure

photonic states, with the interaction strength related to the nonlinear susceptibility

of the medium considered.
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Figure 3.3: Bistable curve (S-curve) for a single mode Kerr oscillator with g = γ = 0.1
and δ = 0.2 >

√
3γ, showing the density of polaritons as a function of the intensity

of the pump I. The dotted lines indicate the unstable points, where the population
is weak against small fluctuation, which eventually drive the system either on the
upper or on the lower stable branches (solid lines).

3.2.2 Optical bistability

The optical bistability is a phenomenon observed in some optical systems, where

two possible stable states are present in transmission, depending on the input field.

Optical bistability is well known in literature and was first studied in the frame-

work of nonlinear optics, where the presence of a Kerr interaction induces a bistable

behaviour in some region of the system’s parameter space. The bistability of micro-

cavity polaritons has been extensively studied both theoretically [42] and experimen-

tally [49], and is based on the use of a coherent resonant excitation of the cavity,

blue detuned with respect to the lower polariton. If the driving power is cycled

within a range of intensities, it is possible to observe the typical hysteresis curve

in the transmitted laser intensity. Let us start by considering the steady-state of

the Gross-Pitaevskii equation in the polariton basis (3.31), with an external driving
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amplitude fext =
√
I:

(Elp − iγlp + g∣ψlp∣
2)ψlp = −

√
Ie−iωpt. (3.33)

Multiplying the equation by its complex conjugate, we obtain a third order polyno-

mial equation for the number of polaritons ∣ψlp∣2:

I = [(g∣ψlp∣
2 − δ)2 + γ2

lp]∣ψlp∣
2, (3.34)

where δ = ωp −Elp is the laser-polariton detuning.

Now, we demonstrate that if δ ≥
√

3γlp this equation solutions show an S-curve,

meaning that for a range of intensities, it has three solutions, with two stable and

one unstable, as illustrated in Fig. (3.3). In fact, consider the condition for turning

points of I:

d

d∣ψlp∣2
I = 3g2∣ψlp∣

4 − 4g∣ψlp∣
2δ2 + γ2

lp + δ = 0, (3.35)

and we can see that real solution exist when:

g2(δ2 − 3γ2) ≥ 0, (3.36)

which yields the condition δ ≥
√

3γlp.

As the power increases, when the polariton density ∣ψlp∣2 reaches the local maximum,

it jumps to the upper branch, then when the power decreases, the intensity goes

down until it drops reaching the local minimum. When the detuning δ <
√

3γlp the

pump is too close to resonance and the polaritons rapidly blueshift above the laser

energy. The transmitted intensity increases and saturates: such a configuration is

called optical limiter. Finally, if δ =
√

3γlp the solutions have a degeneracy and a

single jump occurs, due to the discontinuity of the derivative and the system is called

optical discriminator [50].
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3.3 Control of polariton spin-orbit state

In this section we present original research carried out in collaboration with Feng

Li et al. in Sheffield, which lead to the publication of a paper in Physical Review B

[2]. The research concerns the manipulation and control of polaritonic states on the

hypersphere, i.e. a sphere in higher dimensions, that can be built considering the

spin-orbit coupling, via a Stark pulse. In the previous section we have introduced

the basic physics and model describing exciton-polaritons: however we have so far

ignored the polarization degrees of freedom, which plays a crucial role in investigat-

ing peculiar optical phenomena, like the Optical Spin Hall effect, in this systems,

due to the interplay between the polarization of the state, the effective magnetic

field induced by the TE-TM splitting in the cavity and the driven-dissipative nature

of polaritons. In the following, we first introduce a general model of polarization

for polaritons, then we briefly describe the physics of the TE-TM splitting in micro-

cavities and, finally, we present the research results about the state control on the

hypersphere.

3.3.1 Polarization degrees of freedom

The polariton spin is a direct consequence of the band structure of the semiconductor

material embedded in the microcavity. For standard GaAs cavities, electrons in

the conduction s-band have a spin of me = ±1
2 and orbital angular momentum

(OAM) Je = 0. In the valence band with p-symmetry, holes have a spin angular

momentum of mh = ±1/2,±3/2. Hence, for an exciton, the total angular momentum

is mex = ±1,±2. Due to the conservation of the angular momentum, only excitons

with spin projection 1 can be created through the absorption of a photon, as photons

have a spin of either 0 or ±1. Excitons with a spin of ±2 are often referred to as

dark excitons, as they are not optically active, i.e., they do not couple with light.

The bright excitons, i.e., the one that couples with light having a spin of ±1, can

emit photons with the two polarisations, respectively σ+ and σ−: it follows that the
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Figure 3.4: Schematic representation of the Poincare sphere, with the pseudospin
vectors on each axis Sk. The information about the polarisation of light are con-
tained in the vector P on the sphere, having the Stokes parameters (Sc, Sl, Sp) as
coordinates.

polariton polarisation, can be written as a linear superposition:

∣ψ⟩ = ψ+ ∣σ
+⟩ + ψ− ∣σ

−⟩ . (3.37)

It is possible to build a one-to-one correspondence between polariton spin angular

momentum, and a 1
2 pseudo-spin representation, where the pseudo-spin component

normal to the plane carries the information about the exciton spin and the in-plane

components characterize the orientation of the dipole moment of the exciton [51].

Hence the density matrix of a polariton with momentum kkk is:

ρkkk =
Nkkk

2
(12 + Skkk ⋅ σkkk), (3.38)

where Skkk is the pseudospin vector, Nkkk is the number of polaritons at a given kkk

and σkkk are the Pauli matrices. Following this argument, it is clear that it is possi-

ble to represent polaritons with spin angular momentum ∣+1⟩, ∣−1⟩, as pseudospin
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vectors ∣↑⟩,∣↓⟩, respectively. The information about the polariton spin orientation

is then contained in the emitted light and it can be retrieved with a polarization

resolved analysis. The polarisation of light can be fully characterised by the Stokes

parameters, that compose the polarisation vector SSS:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Sc

Sl

Sd

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.39)

expressed in the circular (σ+, σ−), linear (H,V ) and diagonal (D+,D−) basis:

Sc =
Iσ+ − Iσ−

Iσ+ + Iσ−

Sl =
IH − IV
IH + IV

(3.40)

Sd =
ID+ − ID−

ID+ + ID−
,

with ∣SSS∣ =
√
S2
c + S

2
l + S

2
d ≤ 1. When ∣SSS∣ is zero, the light is unpolarized. If we ignore

polariton-polariton interactions, the dynamics of the system density operator is fully

characterized, in the basis spanned by the pseudo spin eigenvectors, by the following

Heisenberg equation:

d

dt
ρkkk = −i[Hkkk, ρk], (3.41)

where it is possible to write the Hamiltonian in this basis as an effective spin-orbit

interaction:

Hkkk = Ekkk −Beff,kkk ⋅SSSk, (3.42)

where Ekkk is the energy of the branch considered and Beff,kkk is an effective magnetic

field, which couples with the polarisation degrees of freedom. The effective field has

the same mathematical structure of a magnetic field, but it is not a real field: it

takes action only on the bright states, whereas a magnetic field would mix the dark

and the bright exciton. Note that the last term in (3.42) gives the minimum of the

energy for the system when the effective field and the polarisation are parallel.
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3.3.2 TE-TM splitting

In empty confining structures, such as microcavities, the transverse electric (TE)

and transverse magnetic (TM) normal modes of the cavity are non-degenerate in

energy, for finite value of in-plane momentum.

Additionally, the long range interaction between electrons and holes, in confined

systems, generates a TE-TM splitting for excitons [52]: it basically consists in a

splitting in the energy between the excitons that have a dipole moment parallel

(TM) and perpendicular (TE) to the wave-vector [53]. The TE-TM splitting is

phenomenologically equivalent to an effective magnetic field, acting in the plane of

the quantum well, which affects the polariton polarisation. The strength of this

effective magnetic field depends on the energy splitting between the exciton TE

and TM mode. These effect result in polariton TE-TM splitting, which, following

the arguments above, depends is on k. It can be demonstrated that the dispersion

relations for the polariton branches have the general following form:

ETE
lp =

1

2
[ETE

ex +ETE
ph −

√

Ω2 +∆2
TE] (3.43)

ETM
lp =

1

2
[ETM

ex +ETM
ph −

√

Ω2 +∆2
TM] (3.44)

ETE
up =

1

2
[ETE

ex +ETE
ph +

√

Ω2 +∆2
TE] (3.45)

ETM
up =

1

2
[ETM

ex +ETM
ph +

√

Ω2 +∆2
TM], (3.46)

where ∆TE and ∆TM are, respectively, the TE and TM exciton-photon detunings,

and, in the lower polariton base, the magnitude of the splitting is given by ∆EM =

ETE
lp − ETM

lp . In principle, the TE-TM splitting acts both on the photonic modes

and on the exciton modes: however the effect of the splitting on the exciton energy

is significantly smaller than the photonic one, hence it can be ignored to a good

approximation. An important property of the effective field induced by the splitting

is its k-dependece: in a space where the x axis is defined by the direction of the

horizontal polarised light and the y axis by the direction of the vertical polarised



60 Chapter 3. Polariton physics

light, the Hamiltonian that describes the effective field, as shown in [54], reads:

Beff,kkk = ∆EM,kkk

⎛
⎜
⎜
⎝

cos(2φ)

sin(2φ)

⎞
⎟
⎟
⎠

(3.47)

where φ define the orientation of k∥.

An explicit expression for the x and y component of (3.47) can be found by consid-

ering that the dispersion of the photonic field is parabolic and, since we ignore the

effect of the exciton, the splitting grows quadratically in ∣kkk∣. It can be shown that

[55]:

Beff,x = β(k
2
x + k

2
y)

Beff,y = β(2kxky)

where β = h̵2( 1
mTE

− 1
mTM

) depends on the effective mass of the TE and TM modes.

Consequently, the Hamiltonian (3.42) in the basis (3.37) reads:

H =

⎛
⎜
⎜
⎝

h̵Eσ+
lp − h̵2∇2

2mlp
Beff,x − iBeff,y

Beff,x + iBeff,y h̵Eσ−
lp − h̵2∇2

2mlp

⎞
⎟
⎟
⎠

, (3.48)

and Beff,x∓iBeff,y = β(kx±iky)2 = β(∂x∓i∂y)2, where we have used the correspondence

of the momentum to the differential operator.

3.3.3 Spin-Orbit Hypersphere

We have previously shown that the pseudospin of photons can be graphically rep-

resented by the Poincaré sphere, where every state is expressed through a linear

combination of the polarisations eigenstates, for example consider a combination of

σ+ circularly polarized light and σ−:

∣ψ⟩ = ψ+∣σ
+⟩ + ψ−∣σ

−⟩, (3.49)

with ψ+ and ψ− the complex amplitudes, which satisfies the normalisation condition,

∣ψ+∣2 + ∣ψ−∣2 = 1. The states ∣σ+⟩ and ∣σ−⟩ correspond, respectively, to the north and
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the south poles of the Poincaré sphere, with unit radius. All the other states on

the sphere are determined by amplitudes and the relative phase between ψ+ and

ψ−: in this sense they are spanned by a two-parameter space. We consider now

an expanded Hilbert space, spanned by all the possible coherent superposition of

circularly polarized photons which carry an orbital angular momentum l = ±1. We

can build a basis for this Hilbert space by considering the four vectors:

σ = (∣↺, σ+⟩, ∣↻, σ+⟩, ∣↺, σ−⟩, ∣↻, σ−⟩), (3.50)

where the symbols ↻ is used to represent the eigenstate having OAM l = 1and ↺

for l = −1. Each of these basis vectors can be expressed via the Jones vector form

[56]:

∣1⟩ = ∣↺, σ+⟩ = G(r)

⎛
⎜
⎜
⎝

e−iθ

0

⎞
⎟
⎟
⎠

, ∣2⟩ = ∣↻, σ+⟩ = G(r)

⎛
⎜
⎜
⎝

eiθ

0

⎞
⎟
⎟
⎠

,

∣3⟩ = ∣↺, σ−⟩ = G(r)

⎛
⎜
⎜
⎝

0

e−iθ

⎞
⎟
⎟
⎠

, ∣4⟩ = ∣↻, σ−⟩ = G(r)

⎛
⎜
⎜
⎝

0

eiθ

⎞
⎟
⎟
⎠

.

(3.51)

The elements of the above vectors correspond to the σ+ or σ− polarisation, while θ

is the azimuthal angle in real space, and G(r) is a function describing the density

profile of the state, in the radial coordinate. In this new space, the four states in

(3.51), corresponds to the poles of a hypersphere where any arbitrary state can be

expressed as: ∣ψ⟩ = ψ ⋅σ, with ψ = (ψ1, ψ2, ψ3, ψ4). Such states now are spanned

by a six parameter space: four complex numbers ψ1−4 and the two relative phases,

while the other degrees of freedom are removed making use of the arbitrary choice

for one of the phase factors and the additional constraint imposed by the normal-

isation condition. Hence, states on the SO hypersphere can be used to describe

eigenstates of orbital angular momentum and pseudospin: we call this new set of

eigenstates spin-orbit vectors (SOV). Every set made of two orthogonal spin orbit

vectors, can be used to build the corresponding two parameters spin-orbit Poincaré

sphere (SOPS), constructed as a pseudospin Poincaré sphere, hence sharing with it

the same mathematical properties. As an example, the “purely orbital” Poincaré
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sphere, studied in [57], is obtained from the basis (3.51) by selecting ψ = (1,0,0,0)

and (0,1,0,0) as the two poles of the sphere.

3.3.4 Polariton Hypersphere

In the previous section we showed that it is possible to interpret the TE-TM splitting

on polaritons as an “effective magnetic field” ([58]), having a specific k-dependence.

The structure we consider in the following is an open microcavity: it consists of

a planar bottom layer of DBRs and a concave top DBR, which can be controlled

by nanopositioner. This structure allows to free tune the spectral resonance by

changing the separation between the mirrors. Moreover, the concave mirror induces

an effective harmonic confinement, as it focus the beam on a small region of the

quantum well. Taking into account the effect of the TE-TM splitting and of the

concave mirror and neglecting polariton-polariton interaction, in the basis of σ+ and

σ− lower polariton modes, the system is described by the following Hamiltonian:

H =

⎛
⎜
⎜
⎝

h̵ωσ
+

LP −
h̵2∇2

2mLP
+ V β ( ∂

∂x − i
∂
∂y)

2

β ( ∂
∂x + i

∂
∂y)

2
h̵ωσ

−
LP −

h̵2∇2

2mLP
+ V

⎞
⎟
⎟
⎠

, (3.52)

where ωσ
+

LP (ωσ
−

LP ) is the frequency corresponding to the σ+ (σ−) polarisation, mLP is

the effective mass, V = 1
2mLPω2

h(x
2+y2) is a harmonic potential, generated by the in-

plane confinement and the terms proportional to β = h̵2(1/mt−1/ml)/4 describe the

effective magnetic field, induced by the TE-TM splitting, as shown in the previous

section. We can add the photon leakage rate by inserting the non-Hermitian term,

−iγLP /2, in the diagonal elements of Hamiltonian (3.52). When the TE-TM is

switched off, i.e., when β = 0, eq. (3.52) simply describes a two mode system with

a 2D harmonic potential: in this case, it is well known [59], that the Laguerre-

Gauss modes form a basis that spans the Hilbert space for the system, and, in

particular, the Laguerre-Gauss corresponding to l = ±1, LGσ±
0,±1, are a basis for

the first excited manifold of the harmonic potential. The first excited manifold

has a radial distribution structurally equivalent to the one in eqs. (3.51), with

G(r) = r e−r
2/2a2/

√
πa2 and a =

√
h̵/mLPωh.
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Figure 3.5: From [1]. Sketch of the eigenstates formed by the Laguerre-Gauss mode,
LG01, when a TE-TM splitting in the cavity is present. The presence of the in-plane
effective field removes the degeneracy of the modes, giving three energy levels.

If we add now a small TE-TM splitting, the new eigenmodes of the system can

be calculated perturbatively, as demonstrate in [1]: in particular, for ωσ
+

LP = ωσ
−

LP = 0,

they consist of two spin vortices, split in energy, one radial (ψRA = (1,0,0,1)/
√

2)

and one azimuthal (ψAZ = (1,0,0,−1)/
√

2), together with the degenerate subspace,

spanned by ψHY 1 = (0,1,1,0)/
√

2 and ψHY 2 = (0,1,−1,0)/
√

2, of the hyperbolic

spin anti-vortex, as depicted in Fig.(3.5). These four states can be written in the

base of σ+ = (1 0)T and σ− = (0 1)T states as:

∣ψRA⟩ =
1

√
2

⎛
⎜
⎜
⎝

e−iθ

eiθ

⎞
⎟
⎟
⎠

∣ψAZ⟩ =
1

√
2

⎛
⎜
⎜
⎝

e−iθ

−eiθ

⎞
⎟
⎟
⎠

∣ψHY 1⟩ =
1

√
2

⎛
⎜
⎜
⎝

eiθ

e−iθ

⎞
⎟
⎟
⎠

∣ψHY 2⟩ =
1

√
2

⎛
⎜
⎜
⎝

eiθ

−e−iθ

⎞
⎟
⎟
⎠

.

The energy of the spin-vortex modes is equal, respectively, to E = E1 ± 2β/a2, while

the energy of the two hyperbolic spin anti-vortex is E = E1, where E1 is the energy

of the unperturbed modes. The structure of the new eigenstates of the system can

be easily understood if we notice that the total angular momentum J = l + s is the

actual constant of motion of the system. In the first excited manifold, both the

orbital angular momentum and the pseudospin are equal to l = ±1, hence J can

have only three possible values, namely 0,±2. The spin-orbit coupling induce by the

TE-TM splitting, removes the degeneracy of the states with J = 0, while the states

with J = 2 are not affected.
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Figure 3.6: From [2]. (a) Energy levels and eigenstates structures of a 2D harmonic
potential in presence of TE-TM splitting. (b),(c) and (d): A representation of the
SOPSs which can be obtained considering the following states as poles: ψRA and
ψAZ (b), ψRA and ψHY 1 (c), and ψRA and ψHY 2 (d). The vector on the sphere
represents the field intensity and the and ϕ1 and ϕ2 correspond to the angular
coordinates.

3.3.5 Stark Control

Considering the new energy structure of the eigenstates on the spin-orbit hyper-

sphere in (3.6), it is possible to obtain a class of SOPSs, again described by a

two-parameters space, defining as poles every pair of modes which are split in en-

ergy. For example, any spin-orbit state on the sphere in Fig.(3.6)(b) can be written

in a parametric form as:

∣ψb⟩ = [cos(
φ1

2
) e−i

φ2
2 ∣ψAZ⟩ + sin(

φ1

2
) ei

φ2
2 ∣ψRA⟩] , (3.53)

hence spanned by the two parameters φ1 and φ2. The splitting induces a precession

of the spin-orbit vector around the vertical axis of the sphere considered, hence

acting as an effective magnetic field [55]. We can make use of the AC Stark effect to

manipulate the states on this spin-orbit Poincaré sphere: the Stark pulse consists of

a laser pulse, generally red detuned with respect to the bare energy of the exciton.

It is used, especially in the context of semiconductor microcavities, to induce a

transient blue-shift of the exciton resonance possessing the same polarisation of the



3.3. Control of polariton spin-orbit state 65

laser. The blue-shift of the exciton line results in a shift in the polariton line, as was

demonstrated in [60]. Hence, making use of Stark pulse having a σ+ polarisation,

we induce a pulsed effective magnetic field, arising from the splitting between the

σ+ and σ− polaritons. Specifically, considering the spin orbit sphere depicted in

Fig. 3.6(b), the σ+ Stark pulse induces a precession of the spin-orbit vector around

the axis having the two σ± vortex as extremes. Effectively, the precession lasts until

the Stark pulse is over. Let us consider then a σ± polarised Stark pulse: the dynamics

of the states can be obtained by making use of time-dependent perturbation theory,

as the strength of the harmonic confinement is usually much higher than the TE-

TM splitting. On the basis (3.50), the pertubation matrix Mσ± , whose elements are

⟨i∣H ∣j⟩, is:

Mσ± =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

h̵δωσ
+

lp (t) 0 0 −2β/a2

0 h̵δωσ
+

lp (t) 0 0

0 0 h̵δωσ
−

lp (t) 0

−2β/a2 0 0 h̵δωσ
−

lp (t)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.54)

where h̵δωσ
±

lp (t) = h̵δωσ
±

lp exp[−(t− tst)2/2σ2
st] the term that describe the time depen-

dent Stark pulse, acting as a shift in the energy of the σ± polaritons, centred at tst,

having a width of σst. From eq.(3.54) it is possible to obtain the system of linear

differential equations and hence describe the system’s temporal evolution. The sys-

tem is analytically intractable, but can be solved numerically, using Mathematica,

obtaining the solution at each time for the system in the presence of a Stark pulse.

Clearly, the result is not limited to the case of a σ± polarised pulse, and the analysis

can be easily extended to other bases. For example, the M matrix for a Stark pulse,

polarised in the H-V basis and in the D± basis, are:

MH−V =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

h̵δωHlp(t)+h̵δω
V
lp(t)

2

h̵δωHlp(t)−h̵δω
V
lp(t)

2 0 −2β/a2

h̵δωHlp(t)−h̵δω
V
lp(t)

2

h̵δωHlp(t)+h̵δω
V
lp(t)

2 0 0

0 0
h̵δωHlp(t)+h̵δω

V
lp(t)

2

h̵δωHlp(t)−h̵δω
V
lp(t)

2

−2β/a2 0
h̵δωHlp(t)−h̵δω

V
lp(t)

2

h̵δωHlp(t)+h̵δω
V
lp(t)

2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.55)



66 Chapter 3. Polariton physics

and for the diagonal one,

MD± =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

h̵δωD
+

lp (t)+h̵δω
D−
lp (t)

2 i
h̵δωD

+
lp (t)−h̵δω

D−
lp (t)

2 0 −2β/a2

−i
h̵δωD

+
lp (t)−h̵δω

D−
lp (t)

2

h̵δωD
+

lp (t)+h̵δω
D−
lp (t)

2 0 0

0 0
h̵δωD

+
lp (t)+h̵δω

D−
lp (t)

2 i
h̵δωD

+
lp (t)−h̵δω

D−
lp (t)

2

−2β/a2 0 −i
h̵δωD

+
lp (t)−h̵δω

D−
lp (t)

2 −i
h̵δωD

+
lp (t)+h̵δω

D−
lp (t)

2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(3.56)

We now focus the analysis on the σ± pulse, i.e. the matrix (3.54), without loss of

generality, as all the other cases will show the same basic features. Analyzing the

new eigenenergies of the systems,

E
′
1 = E1 + h̵δω

σ+
LP

E
′
2 = E1 + h̵δω

σ−
LP (3.57)

E
′
3 =

h̵

2
(δωσ

+
lp + δωσ

+
lp ±

√
(δωσ

+
lp − δωσ

−
lp )2 + 16β2/a2h̵2) ,

it can be noticed that the σ± energy splitting is mapped into a transient blueshift of

the eigenmodes of the systems. In particular, considering δωσ± = 0, the experimental

results studied in [1] are recovered. The complete control over a SOV state, by

means of a Stark pulse, can be demonstrated by showing that is always possible to

manipulate the state on the corresponding spin-orbit Poincaré sphere of Fig. 3.6, i.e.

by demonstrating the possibility of moving from a certain eigenstate on one basis

to every other state on the spheres. In Fig. 3.7, this is achieved by considering the

spatial polariton distribution and the corresponding polarisation, during the Stark

pulse, hence while the manipulation on the SOPS in Fig. 3.6(b) is occurring. In

particular we demonstrate the manipulation from the ψAZ state to the ψRA state.

We initialize the system, at t = 0 ps , in the ψAZ state, which is characterized by σ+

and σ− components having identical intensities, as is apparent from the polariton

distribution and polarisation in the lower panel in Fig. 3.7. The manipulation can

be performed by making use of two Stark pulses, both σ+-polarised and red-detuned.

The first Stark pulse, which arrives at t = t1st = 6.58 ps, is used to flip the spin-orbit

vector from the state in the north pole of the sphere, to the equatorial line. Here the
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Figure 3.7: From [2]. Control of the SOV using a Stark pulse on the states of the
SOPS. Upper panel (main): the population of polariton, for σ+ and σ− polarisation.
Upper panel (side): population difference of polaritons for H, V and D± polarisation,
which stays always identical during this control protocol. The presence of the decay
term in the equations, induces a dissipation of the population, as expected. Lower
panel: intensity distribution (colors) and polarisation (lines) evaluated at different
times. The manipulation is performed via two σ+ polarised Stark pulses, whose effect
can be obtained by a time dependent shift of the σ+-polarised polariton with σst = 1
ps and h̵δωσ

+
= 0.4 meV, and centred at t1st = 6.58 and t2st = 18.15 ps. The parameters

used here and everywhere else, unless otherwise specified, are: mLP = 2.4 × 10−5me,
where me is the mass of the electron, ωh = 4.0 ps−1, β = 0.04 meVµm2, γLP = 0.02
meV.

finite energy splitting between the poles induces the precession of the state vector,

which moves it from a σ+-polarised to a σ−-polarised vortex. Next we make use of

another pulse, which arrives at t = t2st = 18.15 ps, to flip the spin-orbit vector from

the equator to the ψRA state. This process can be visualized by considering the

population in different states as in Fig. 3.7. The spin-orbit vector then starts to

precess, between t1st and t2st, oscillating around σ+-polarised state and σ−-polarised

state. This is clear when looking at the upper panel of Fig. 3.7, where the polariton

population oscillates between the σ+ and the σ− components, and from the lower

panels, showing polaritons at different times. Finally a second Stark pulse, again

with σ+-polarisation, which arrives when the state is halfway between the σ− and

the σ+ vortex (i.e. at ϕ2 = 3π/2 as showed in Fig. 3.6), flips the vector at the at

the south pole. In fact, at that point, the σ± components are equal again, and the
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polariton distribution and polarisation matches exactly with the one expected for a

ψRA state.

The strategy, proposed above, for the manipulation of a SOV is not unique: for

example it is possible to obtain the same result using σ+ Stark pulses with different

intensities, so that the SOV first flips to a non-zero latitude and then to the south or

north pole. Furthermore, the same manipulation can be achieved by implementing

two Stark pulses having σ− polarisation or pulses with opposite circular polarisations,

and this equivalence can be easily understood if we notice that the σ− pulse induce

a rotation in the opposite direction of the σ+ polarised pulse. In fact, if the spin-

orbit vector considered is at ϕ2 = 3π/2, a σ− polarised Stark pulse would flip it to

the north pole, i.e. in the opposite direction of a σ+ pulse, while if the state is in

ϕ2 = π/2, the same pulse would flip it to south pole.

The full control of the SOV is achieved by Stark pulses with no particular

spatial structure or orbital angular momentum: this is due to the fact that any

spin-orbit vector, on a defined sphere, is spanned by a linear superposition of σ+

and σ−, having relative magnitudes which vary on the horizontal axis of the sphere,

with ϕ2 = 0 corresponding to a pure σ+ state and ϕ2 = π corresponding to a pure σ−.

Hence a σ+ or σ− polarised Stark pulse is sufficient to generate an energy splitting

of the points on the sphere having ϕ1 = π/2, ϕ2 = 0 and ϕ1 = π/2, ϕ2 = π, and to the

consequent precession of the vector around the axis. By the same argument, linearly

polarised Stark pulses cannot be used to move the spin-orbit vector on the sphere,

since for any given polarisation angle, all the SOVs states on this sphere will have

the same amount of linearly polarised components. The same argument applies on

the SOPS with ψRA and ψHY 1 as south and north poles, as depicted Fig. 3.6(c):

here the states are made by linear combinations of horizontal-vertical polarisations,

hence in order to control the SOV on this particular sphere, it is possible to make

use of Stark pulses having H and V polarisation. Using D+ and D− polarised pulses

it is possible to manipulate every state on the SOPS spanned by ψRA and ψHY 2

at the poles, as depicted in Fig. 3.6(d). Hence a full control of the SOV is made
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possible by the use of polarised Stark pulses, each of them acting independently on

different SOPS.

We now focus on the radial and the hyperbolic anti-vortex, considering the

sphere having these two states as north and south pole. The spin-orbit vectors on

this sphere can be written in the following parametric form:

∣ψd⟩ = [cos(
φ1

2
) e−i

φ2+π
2 ∣ψHY 2⟩ + sin(

φ1

2
) ei

φ2+π
2 ∣ψRA⟩] . (3.58)

Using a H polarised Stark pulse, the state can be flipped from the pole to the equator

and here it starts to precess, as a consequence of the separation in energy between

the ψRA and the ψHY 1 states: however, as can be seen by comparing the upper

panel of Fig. 3.7 with the upper panel of Fig. 3.8, as this splitting is smaller with

respect to the previous case, the precession at the equator will be slower. Setting

the energy splitting between the ψAZ and the ψRA states [Fig. 3.6(b) and Fig. 3.7]

as ∆E = 0.306 meV, we obtain a corresponding period of precession of 13.4 ps.

The splitting between the ψRA and the ψHY 1 states [Fig. 3.6(c) and Fig. 3.8] is

∆E = 0.15 meV, which gives a corresponding period of precession of 26.8 ps. We

implement here the same strategy as before, making use of a second pulse: once

the SOV, during its rotation on the equator of the SOPS, reaches the middle point

(ϕ2 = 3π/2) between the H and the V -polarised states, shifting the H-polarised

component of exciton line, induces a flip of the SOV toward the north-pole of the

sphere, corresponding to the ψHY 1 state.

We notice here that all the considered SOPS spheres have the ψRA state as

south pole: this fact allows, in principle, to move the spin-orbit vector on any

possible sphere, by applying a sequence of Stark pulses, with diverse polarisations.

This demonstrates the possibility of a complete manipulation of the SOV, by means

of Stark pulses.
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Figure 3.8: From [2]. Control of the SOV using a Stark pulse on the states of the
SOPS. Upper panel: the population of polaritons, for H and V polarisation, in the
main panel and the corresponding polariton intensity distributions and polarisation.
Lower panel: Population in the D+, D− basis and the corresponding polariton inten-
sity distribution, during the manipulation of the SOPS. The presence of the decay
term in the equations, induces a dissipation of the population, as expected. The
manipulation is performed via two H (D+)-polarised Stark pulses, whose effect can
be obtained by a time dependent shift of the polaritons with H(D±) polarisation,
with the following characteristics, σst = 1 ps and h̵δωσ

+
= 0.4 meV, and centred at

t1st = 6.58 and t2st = 32.1 ps.

3.3.6 Strong TE-TM splitting

The manipulation proposed in the previous section can be achieved for wide ranges

of the parameters: however their mutual dependence may affects the dynamics

significantly, in particular concerning the amplitude of the energy shift, its duration

and timing. To demonstrate this fact, we show here that by increasing the values

of the TE-TM splitting strength β and considering longer polariton lifetimes, it is

possible to perform more operations to manipulate the SOV. It is possible to change

the value of the splitting by changing the detuning of the cavity mode with respect
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to the stop band of the Bragg mirrors, as shown in [61]. Moreover, it is possible

to obtain different value for the TE-TM splitting making use of different materials,

such as organic structures [62], or considering different geometries like tunable open

microcavities [1].

As an example of this, we consider β = 0.006 meVµm2. As the energy splitting of

Figure 3.9: From [2]. Control of the SOV using a Stark pulse on the states of
the SOPS, initially in ψAZ . Top panel: the population of polaritons, for σ+, σ−

polarisation. The presence of the decay term in the equations, induces a dissipation
of the population, as expected. Lower panel: intensity distribution (colors) and
polarisation (lines) taken for various times. The manipulation is performed via two
σ+ polarised Stark pulses, whose effect can be obtained by a time dependent shift
of the σ+-polarised polariton with σst = 1 ps and h̵δωσ

+
= 0.6 meV, and centred

at t1st = 6.58 and t2st = 14.15 ps. Here we consider a TE-TM splitting strength of
β = 0.006 meVµm2

the levels is bigger, a more intense Stark shift is necessary to manipulate the state.

Moreover, the state precesses faster at the equator, compared to the previous case,

with smaller β, hence the time window to perform a manipulation is shorter. For

β = 0.006 meVµm2, as shown in Fig.(3.9) the manipulation is performed in 10 ps,

hence faster than the 15 ps needed for the previous case in Fig.(3.7).



Chapter 4

Statistical properties of nonlinear

dissipative systems

In this Chapter, we show some of the main results of the research carried out dur-

ing the Ph.D., concerning quantum effects in nonlinear driven-dissipative systems.

Polaritons, which have been introduced in the previous Chapter, provide a useful

system to explore such effects, first because of the presence of polariton-polariton

interaction, which act as a source of weak nonlinearity in the dynamical evolution

equations, and second due to their driven-dissipative nature. However, the results

presented here go beyond polaritonics and find application in different branches of

physics, ranging from quantum optics to cold atoms. In the first part of this Chap-

ter, we provide an analytical method to find the correlation function of a single

Kerr-oscillator, in a driven dissipative regime, using the P-representation. We ex-

tend the result numerically, analysing the dynamics under pulsed excitations: here

a discussion about the choice of a proper gauge representation is necessary. Then

we present the same results for a multimode system: in particular we focus on a

soliton-state, i.e. a state which is “shape-preserving”, arising from the interplay

between the repulsive interaction and a negative effective-mass. Such states have

been observed experimentally in polariton systems.

72



4.1. Single-mode case 73

4.1 Single-mode case

The single mode Hamiltonian for a bosonic Kerr oscillator is:

H =H0 +Hp +Hnl, (4.1)

where:

H0 = ω0a
�a

Hp = fa
�e−iωpt + f∗aeiωpt (4.2)

Hnl =
g

2
a�a�aa,

which are, respectively, the bosonic field energy, the coherent driving term and the

nonlinear Kerr interaction. As we pointed out in Chapter 3, if we consider a single

kkk and we neglect the saturation effect, the above model is suitable for describing

a single mode polariton field in a microcavity. The density matrix for the system

evolves due to the Hamiltonian, plus the coupling to a reservoir for the mode. We

consider here the coupling to an empty reservoir, which leads to the leaking of

photons from the cavity, derived in Chapter 2:

∂tρ = −i[H,ρ] + γ(2aρa
� − a�aρ − ρa�a). (4.3)

The next necessary step to address the dynamics of (4.3) in phase-space is to write

the density matrix making use of a suitable representation. In the following, we

make use of the the P-representation, i.e. we consider the probability distribution

for complex conjugate variables α and α∗, and we find analytically the statistical

moments of the distribution in the linear regime: this approach gives exactly the

same results as in the doubled Hilbert space of the Positive-P, but has the advantage

of much simpler mathematics. The application of the conversion rules (2.94), leads
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to:

γ(2aρa� − a�aρ − ρa�a)→ γ(∂αα + ∂α∗α
∗)P (α,α∗)

−iω0(a
�aρ − ρa�a)→ −iω0(−∂αα + ∂α∗α

∗)P (α,α∗) (4.4)

fe−iωpt(a�ρ − ρa�)→ ife−iωpt∂αP (α,α∗) − ifeiωpt∂α∗P (α,α∗),

while for the Kerr nonlinearity, we find terms containing the second derivative in α

and α∗, which will enter into the diffusion matrix:

−i
g

2
(a�a�aaρ − ρa�a�aa)→ −ig(−∂α∣α∣

2α + ∂α∗ ∣α
∗∣2α∗ +

1

2
∂2
α2α

2 +
1

2
∂2
α∗2α

∗2)P (α,α∗).

(4.5)

Gathering all the these terms together, we can reconstruct the Fokker-Planck equa-

tion for P (α,α∗):

∂tP (α,α∗) = − ∂α(−γα − iω0α − ife
−ωpt − ig∣α∣2α)P (α,α∗) +

1

2
∂2
α2(−igα

2)P (α,α∗)+

− ∂α∗(−γα
∗ + iω0α

∗ + ifeωpt + ig∣α∣2α∗)P (α,α∗) +
1

2
∂2
α∗2(igα

∗2)P (α,α∗).

4.1.1 Langevin equation

As extensively explained in Chapter 2, equation (4.6) is exactly equivalent to a

Fokker-Planck equation: hence we can derive the drift and diffusion matrix, A and

D, which can be cast in a system of stochastic Langevin equations:

∂t

⎛
⎜
⎜
⎝

α

α∗

⎞
⎟
⎟
⎠

= A(α,α∗)

⎛
⎜
⎜
⎝

α

α∗

⎞
⎟
⎟
⎠

+ F (t) + ζ(t), (4.6)

where ζ(t) = (ζα ζα∗)T , is a vector of delta-correlated random noise terms with

correlation matrix:

D =

⎛
⎜
⎜
⎝

−igα2 0

0 igα∗2

⎞
⎟
⎟
⎠

, (4.7)
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i.e., each element of the noise vector ζ(t) is defined such that: ⟨ζi(t)ζj(t′)⟩ = δ(t −

t′)Dij. The drift matrix, A(α,α∗), in equation (4.6), has the following form:

A =

⎛
⎜
⎜
⎝

−γ − iω0 − ig∣α∣2 0

0 −γ + iω0 + ig∣α∣2

⎞
⎟
⎟
⎠

, (4.8)

while F (t) is a diagonal matrix containing the driving terms. Writing down explicitly

the equation (4.6) we obtain the Langevin equation for α:

∂tα = (−γ − iω0 − ig∣α∣
2)α − ife−ωpt + ζα(t). (4.9)

We recall at this point that, using the P-representation, we transformed the

master equation for the density operator in an equivalent system of stochastic dif-

ferential equations for the random variable α. The dynamics of the random variable

is described by a classical trajectory αc, together with the fluctuations α̃, local in

time, which describe the quantum corrections:

α = αc + α̃. (4.10)

By taking the ensemble average of each equation, over many realization of the

stochastic process, such that the fluctuations are zero, we can derive the mean

field equations. Writing ⟨αc⟩ = ψ, we obtain:

∂tψ = −γψ − iω0ψ − ife
−iωpt − ig∣ψ∣2ψ, (4.11)

and a similar result is obtained for the equation with α∗. To get rid of the time-

dependence in the pump term, we transform the field ψ → ψe−iωpt, and this replaces

the ω0 term with the bare detuning, δ0 = ω0 −ωp. Doing this, we transform equation

(4.11) to:

∂tψ = −γψ − iδ0ψ − if − ig∣ψ∣
2ψ, (4.12)

and considering the steady state (∂tψ = 0), after multiplying the equation by its
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complex conjugate, we get:

∣f ∣2 = [γ2 + (δ0 + g∣ψ∣
2)2] ∣ψ∣2, (4.13)

which is formally identical to equation (3.34). Hence we recover the bistable be-

haviour and the S-curve, for δ0 ≥
√

3γ. Having found the classical solution, we

next want to expand the Langevin equation for the quantum system, so that the

variables considered are the fluctuations, α̃ around the classical solution. The ap-

proach developed here allows the calculation of the statistical moments, as long as

the fluctuations are small compared to the field amplitudes: this means that, in the

presence of optical bi-stability, as the mean field “jumps” suddenly from low to high

density, the method is faulty and it gives a divergent behaviour of the moments. In

that case we will need to use numerical methods, which will be discussed in the next

section.

We choose to scale the fluctuations by the classical solution, α → (ψ+ψα̃), and

then we expand to the first order in the fluctuation term, in order to get a tractable

linear set of equations. Hence we get the linearised non linear term:

∣α∣2α = ∣ψ∣2ψ(1 + α̃)(1 + α̃∗)(1 + α̃) ≈ ∣ψ∣2ψ(2α̃ + α̃∗), (4.14)

where we have discarded the terms at the second order in the fluctuations, α̃∗2 and

α̃2. Making use of this approximation on the Langevin equation (4.9), it is possible

to obtain the equation for the fluctuations:

∂tα̃ = (−γ − iδ)α̃ − ig∣ψ∣2(α̃ + α̃∗) + ζα̃(t), (4.15)

where δ = δ0 + g∣ψ∣2 is the detuning inclusive of the blue-shift term. We now want to

convert these fluctuations to polar coordinates:

α̃ = ψ(1 + j)e−iθ, (4.16)

with modulus ψ(1+ j) and phase θ. For small fluctuations we can perform a Taylor
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expansion of the exponential, to get:

α̃ ≈ ψ(1 + j − iθ). (4.17)

If we compare the expression in (4.17), with the definition of the scaled fluctuations,

α → (ψ+ψα̃), it is easy to see that the real and imaginary part of α̃ are, respectively,

j and −θ. The term ψ, being the classical mean field solution, will follow the equation

of motion (4.11). Hence the equations for j and θ can be obtained from (4.15):

∂tj = −γj − δθ + η(t) (4.18)

∂tθ = −γθ + (δ + 2g∣ψ∣2)j + ξ(t), (4.19)

where we have normalized everything to the classical solution ψ. From the above

argument, it follows that the noise terms for j and θ have the expressions:

η = Re(ζα̃) =
1

2
(
ζα̃
ψ
+
ζα̃∗

ψ∗
)

ξ = Im(ζα̃) =
1

2
i(
ζα̃
ψ
−
ζα̃∗

ψ∗
) ,

(4.20)

and they have the physical meaning of the normalized intensity and phase fluctu-

ations, respectively. The correlations between the ζ noise terms was given by the

original D matrix, hence, we can derive the intensity-phase noise matrix using the

following expressions:

⟨ηη⟩ =
1

4
(

1

ψ2
⟨ζα̃ζα̃⟩ +

1

ψ∗2
⟨ζα̃∗ζα̃∗⟩) =

1

2
Re(−ig) = 0 (4.21)

⟨ξη⟩ =
1

4
i(

1

ψ2
⟨ζα̃⟩ ζα̃ −

1

ψ∗2
⟨ζα̃∗ζα̃∗⟩) = −

1

2
Im(−ig) =

g

2
(4.22)

⟨ξξ⟩ = − ⟨ηη⟩ = 0. (4.23)

By doing this, we obtain the diffusion matrix in polar coordinates:

Dj−θ =
1

2
g

⎛
⎜
⎜
⎝

0 1

1 0

⎞
⎟
⎟
⎠

, (4.24)
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and the drift matrix:

Aj−θ =

⎛
⎜
⎜
⎝

−γ −δ

(δ + 2g∣ψ∣2) −γ

⎞
⎟
⎟
⎠

. (4.25)

4.1.2 The second order correlation function

We now wish to evaluate, following the derivation in the previous section, the second

order correlation function for the single driven dissipative Kerr oscillator, defined as

[8]:

g(2)(0) =
⟨α∗(t)α∗(t + τ)α(t)α(t + τ)⟩

⟨α∗(t)α(t)⟩
2 . (4.26)

In particular, we are interested in obtaining an analytical expression for the second

order correlation function at time delay τ = 0:

g(2)(0) =
⟨α∗(t)α∗(t)α(t)α(t)⟩

⟨α∗(t)α(t)⟩
2 =

⟨∣α(t)∣4⟩

⟨∣α(t)∣2⟩
2 . (4.27)

In terms of the classical fields and of the fluctuations, the above expression reads:

g(2)(0) =
⟨∣α(t)∣4⟩

⟨∣α(t)∣2⟩
2 =

∣ψ∣4 ⟨(1 + j)4⟩

(∣ψ∣2 ⟨(1 + j)2⟩)2
≈ 1 + 4 ⟨j2⟩ . (4.28)

What is needed now is the variance ⟨j2⟩ for the intensity fluctuations. To obtain

this, we first diagonalize the Aj−θ matrix for the fluctuations (4.25). The eigenvalues

of Aj−θ are:

λ± = −γ ± i
√
δ(δ + g̃), (4.29)

with g̃ = 2g∣ψ∣2, and the corresponding eigenvectors:

E± =
1

√
2δ + g

⎛
⎜
⎜
⎝

√
δ

∓i
√
δ + g.

⎞
⎟
⎟
⎠

(4.30)

The matrix S which diagonalises Aj−θ is then given by:

S =
1

√
2δ + g

⎛
⎜
⎜
⎝

√
δ

√
δ

−i
√
δ + g̃ i

√
δ + g̃

⎞
⎟
⎟
⎠

. (4.31)



4.1. Single-mode case 79

By defining xxx = (j, θ)T and fff(t) = (η(t), ξ(t)), we can write formally eq. (4.18) as:

∂txxx = Axxx + fff(t), (4.32)

which, by defining u = S−1x, has the standard solution:

ui(t) = u(0)e
λit + ∫

t

0
dt′eλi(t−t

′)
∑
i′
S−1
ii′ fi(t

′). (4.33)

By multiplying equation (4.33) with itself, and taking the average value, we obtain

expressions containing ⟨fifi′⟩, which represent elements of the Dj−θ matrix. Hence,

we can express the correlation functions in the following way:

⟨ui(t1)uk(t2)⟩ = (S−1Dj−θS
−1T )i,k ∫

t1

0
dt′1∫

t2

0
dt′2e

λi(t1−t
′
1)eλk(t2−t

′
2)δ(t′1 − t

′
2). (4.34)

Evaluating the integrals in (4.34), the correlations in the u variables is:

⟨ui(t1)uk(t2)⟩ = −(S
−1Dj−θS

−1T )i,k
1

λi + λk

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

eλi(t1−t2), if t1 > t2

eλj(t2−t1), if t2 > t1.

(4.35)

The equation above, for t1 = t2, gives the covariance matrix Ṽ . The covariance

matrix contains the information about the variances of the random variables, on the

diagonal, and the covariances between them. In fact, in the ui basis:

Ṽ =

⎛
⎜
⎜
⎝

⟨u1u1⟩ − ⟨u1⟩
2

⟨u1u2⟩ − ⟨u1⟩ ⟨u2⟩

⟨u1u2⟩ − ⟨u1⟩ ⟨u2⟩ ⟨u2u2⟩ − ⟨u2⟩
2

⎞
⎟
⎟
⎠

, (4.36)

which, making use of the expressions in (4.35), gives:

Ṽ = (S−1Dj−θS
−1T )

⎛
⎜
⎜
⎝

− 1
2λ+ − 1

λ++λ−

− 1
λ++λ− − 1

2λ−

⎞
⎟
⎟
⎠

= ig
2δ + g

4
√
δ(δ + g̃)

⎛
⎜
⎜
⎝

− 1
2λ+ 0

0 − 1
2λ−

⎞
⎟
⎟
⎠

. (4.37)

From (4.37), going back into the (j, θ) basis through the inverse transformation

xxx = Suuu, we obtain the covariance matrix for the intensity and phase fluctuations, V ,
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which has the general form:

V =

⎛
⎜
⎜
⎝

⟨j2⟩ ⟨jθ⟩

⟨jθ⟩ ⟨θ2⟩

⎞
⎟
⎟
⎠

. (4.38)

Hence, to evaluate (4.28), we need the first element of V , which, from equation

(4.37), is found to be:

⟨j2⟩ = ig
δ

4
√
δ(δ + g̃)

(−
1

2λ+
+

1

2λ−
) = −

g

4

δ

γ2 + δ(δ + g̃)
. (4.39)

By substituting the above result in the expression for the g(2)(0) function, we obtain:

g(2)(0) = 1 − g
δ

γ2 + δ(δ + g̃)
= 1 − g

δ0 + g∣ψ∣2

γ2 + (δ0 + g∣ψ∣2)(δ0 + 3g∣ψ∣2)
, (4.40)

which is the expression for the second order correlation function for a single driven-

dissipative Kerr-oscillator with small nonlinearities. The sign of g(2)(0)− 1 depends

on the sign of the blue shifted detuning δ: when δ < 0, increasing the population

pulls the system closer to resonance, so bunching is expected. On the contrary, when
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Figure 4.1: (a) Number of particles and (b) g(2)(0) function, for the steady state of
equation (4.12), as a function of the cavity-laser detuning δ0. The pump intensity is
fixed, ∣f ∣2 = 0.9, and the decay and nonlinearity are respectively γ = 0.6 and g = 0.08.
For positive detuning the system is always antibunched. For negative detuning there
are regions where bunching is expected.

δ > 0, increasing the population pushes the system away from resonance, leading to

antibunching. This result is plotted in Fig. (4.1)(b), where we have fixed the value

of the pump intensity and calculated the steady state population( Fig. (4.1)(a)) as
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a function of δ0: g(2) is mostly bunched when δ0 < 0, while is antibunched for δ0 > 0.

4.1.3 Stochastic simulation of a single mode

The approach developed in the last section is exact in the limit of a small non-

linearity, as we treated the linearised version of the original system of equations.

For a single Kerr oscillator, when the detuning δ0 >
√

3γ, a bistable response is

expected: in this regime, as the system jumps discontinuously to the higher occupied

state, the linearisation is not applicable, hence the linear equation fails to describe

properly the relevant moments of the system. To address the dynamics of the Kerr

oscillator in the bistable regime, we need to solve numerically the set of stochastic

differential equations (4.6). To guarantee that the diffusion process is always positive

semidefinite we move to the positive P-representation, as we showed in Chapter 2:

notice that this operation can be easily done by introducing a new phase space

variable instead of the complex conjugate of α, i.e., by replacing α∗ → β. The

stochastic differential equations for ααα = (α,β) are then given by:

dααα = A(ααα, t)dt +∑
ij

Bij(ααα, t)dWj(ααα, t), (4.41)

where dWj(ααα, t) is the Wiener increment with zero means, satisfying, at each t:

⟨dWi(t)dWj(t
′)⟩ = δijδ(t − t

′)dt. (4.42)

To avoid moving singularities and/or boundary terms arising from the drift and

diffusion matrices in the Fokker-Planck equation, we further modify the stochastic

evolution, implementing the gauge P-representation. For the particular example of

a single driven-dissipative Kerr oscillator, whose dynamical evolution is described

by the master equation (4.3), the gauge P-representation in Ito’s form is:

dα = iδαdt − 2igα2βdt −
γ

2
αdt + fdt +∑

k

B′
1k(dWk − gkdt) (4.43)

dβ = −iδβdt + 2igβ2αdt −
γ

2
βdt + f∗dt +∑

k

B′
2k(dWk − gkdt) (4.44)

dΩ = Ω∑
k

gkdWk, (4.45)
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with δ = ωp − ω the laser-mode detuning, where gk are arbitrary diffusion gauge

terms and the noise matrix B is the square root of the diffusion matrix D. In

the limit of many trajectories, the statistical moments converge to the quantum

mechanical mean values of the relevant quantities. One of the problems concerning

the stochastic simulation of nonlinear systems is the rapid growth of statistical errors

in the simulation. Even if the simulation can be performed with high accuracy when

the number of trajectories is large enough, there might still be issues regarding

the number of paths needed to obtain accurate results. For the Kerr oscillator,

the uncertainty in phase-dependent observables, like squeezing, grows more than

exponentially in time, and any simulation becomes useless, regardless of the number

of trajectories. It is possible to demonstrate [32] that a well-behaved simulation,

obtained by means of the positive P-representation, lasts for a time:

tsim ≈
1.3 ± 0.1

gn2/3
, (4.46)

which for large occupation number, n, is not long enough for simulating meaningful

time-windows where decoherence effects occur. This computational limitation of the

positive P-representation was demonstrated by Drummond et al. in the example of

simulation regarding evaporative cooling [63] . In a number of works, Drummond

and Deuar [32], performed an extensive investigation on how to improve their effec-

tive simulation time, tsim, with an appropriate choice of gauges. What they found is

that combining drift and diffusion gauges, i.e., gauge fields acting both on the dif-

fusion (B′ in Eq. (4.43)) and on the drift terms (gk in Eq. (4.43)) of the stochastic

equations, gives the longest useful simulation time for highly occupied modes, with

good precision beyond the point where the coherence has decayed. The rapid growth

of statistical errors, which affect the useful simulation time, is not the only numeri-

cal problem concerning many-body stochastic simulations: another important issue

is represented by moving singularities, i.e., a solution which diverges at finite times

as a result of problems with numerics. Considering eq. (4.43), the equation for the
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modulus for α is:

d∣α∣ = 2g∣α∣2∣β∣ sin(θα + θβ)dt + ..., (4.47)

Deuar [64] demonstrated that, when ∣β∣ sin(θα + θβ) is positive, a moving singularity

can occur, as ∣α∣ grows more than exponentially, leading to boundary term errors,

i.e., errors arising from discarding non-negligible boundary term in any integration

which involves the probability distribution.

Hence a suitable gauge needs to be chosen for (4.43), which is able to deal

with two different problems: a rapid appearance of massive statistical errors, and

systematic biases generated by moving singularities. Concerning the singularities,

from equation (4.47), it is clear that the part which leads to a super exponential

growth of the fields is the nonlinear term. As α and β are two different complex

random variables, the associated number variable will have, in general, a real and

an imaginary part, i.e., n = Re(n) + iIm(n). It follows from equation (4.47) that the

drift terms leading to moving singularities are:

dα = 2gαIm(n)dt...,

dβ = −2gβIm(n)dt...,

(4.48)

as the terms containing the real part of n will only affect the phase of α and β,

hence they are harmless. We note here that for coherent states β = α∗, as the

P-distribution is a delta function in phase space, hence the imaginary part of n

is always zero. It follows that, the more ”quantum” is the state we are sampling,

the more likely we are to end up with a moving singularity. The drift gauges gk

are then chosen such that the terms causing the instabilities (the imaginary part of

the number variable) are cancelled by the correction. In particular we consider the

gauges:

g1 = −
√

2igIm(n)e−Ξ (4.49)

g2 = −ig1, (4.50)

where the term e−Ξ is a suitable diffusion gauge, which will be treated in the fol-
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lowing. These choices for the drift gauges cause an effective replacement in the

stochastic equation,

−2igαndt→ −2igαRe(n)dt

2igβndt→ 2igβRe(n)dt, (4.51)

which prevent the super-exponential growth of the fields, as demonstrated by [64],

provided that a well behaved diffusion gauge Ξ is chosen. As mentioned before,

the diffusion gauge is needed to improve the useful simulation times, which means

that we want to be able to perform the simulation on time-scale of the order of

the coherence time. It is important to stress here that this term Ξ is completely

arbitrary and then there is not a unique way to optimise the results. In the following,

we adopt the approach of Deuar and Drummond, where the local diffusion gauge

is dependent on the optimal target time parameter, or precisely on the remaining

target time, defined as:

trem =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

topt − t, if t < topt

0, if t ≥ topt,

(4.52)

and is given by:

Ξ(t) =
1

6
log(8∣n(t)∣2gtrem + ε3/2(n(t), γtrem)), (4.53)

where,

ε(n(t), γtrem) = 1 + 4Im(n)2(
1 − e−2γtrem

2γtrem

) − 2∣n∣2(
1 − 2γtrem + 2(γtrem)2 − e−2γtrem

γtrem

)

The diffusion gauge (4.53) shows statistical errors that are well controlled by the

choise of the target time topt, hence we expect to the error to be small until the target

time is explicitely reached, provided that this lies inside the useful simulation range.

Drummond et al. [64] suggested an heuristic approach, which is here implemented,

to optimize the simulation time. This goal can be achieved following the steps below:

� Choose an optimal time topt to be some time that one wants to be able to
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simulate.

� Run a simulation and check how long useful observable estimates occur, tsim(topt)

� If tsim(topt) < topt then reduce topt to some value between tsim(topt)and topt.

It should give a better simulation time. Hence run the simulation again,

as indicated in the previous point. In case tsim(topt) ≈ topt either keep the

simulation or increase topt and perhaps obtain more simulation time, going

back to the previous step.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

time(γt)
−2

−1

0

1

2

3

4

g(
1)
(0

,t
)

Gauge on Gauge off

Figure 4.2: g(1)(0, t), first order coherence function, for a single mode Kerr oscillator,
with g = γ = 0.1, driven resonantly by a continuous wave pump with intensity I = 0.1.
The stochastic simulation without the proposed drift-diffusion gauge (black line)
has a lower optimal time topt for the simulation, as the trajectory quickly diverges,
compared to the case with the gauge on (gray line)

In Fig. (4.2), as an example of the computational usefulness of the propose gauge,

we follow the example of [32], comparing the evolution of a normalised g(1)(0, t), i.e.

the phase coherence function, for a single Kerr oscillator, with and without gauge

terms: it is clear that the optimal simulation time topt increases when the gauge is

on, compared to the scenario with no gauge, where a singularity appears.

Having determined an appropriate gauge to treat the system, we now find the

value of the g(2) function for the steady states of system (4.43) as a function of the

pump power I = ∣f ∣2, in a regime where a bistable curve is expected, i.e. δ >
√

3γ.

The result is shown in Fig. (4.3) and it reproduces the results of Drummond et al.
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Figure 4.3: (Solid curve) Intensity profile of a single Kerr mode as a function of the
CW pump intensity I, in the bistable regime, with g = 0.09, γ = 0.1 and δ = 0.2 >√

3γ. (Dashed curve) g(2)(0) for the single mode: the system is super-Poissonian
in the bistable region, as a consequence of the noise enhancement, while is sub-
Poissonian in the upper branch of the S-curve.

in [65].

The g(2) value shows an increase near the transition point, as it depends on the

variance of the fluctuations, which are enhanced by the random switching between

the lower and apper branch of the bistable curve [8]. After the transition point, as

the system is basically at resonance with the pump, antibunching is observed, as

expected from the linearised analytic results. The magnitude of this antibunching

is found to be strongly dependent on the nonlinear term g, in accordance with the

analytical result showed in equation (4.40). Hence for polariton systems, where the

nonlinearity is usually two order of magnitude smaller than the linewidth γ, we

expect a small deviation from coherent statistics.

4.1.4 Pulsed excitation

The stochastic differential equations, (4.41), derived in the previous section, together

with a suitable drift-diffusion gauge, enable us to quantify the dynamics of the

relevant statistical moments of a bosonic system in presence of a time-dependent
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driving field. This fact acquires a high significance for simulation of experiments,

especially in quantum-optics, as a lot of experiments make use of lasers which emit

pulses with a quasi-Gaussian profile. Practically, we change the constant driving
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Figure 4.4: (Upper panel) Polariton population in a single mode dissipative system,
with γ = 0.05 and g = 0.01, quasi-resonant with a pulsed pump, with maximum
intensity I = 0.25. The blue line indicates the pulse profile. (Lower panel) g(2)(t)
for the single mode: the system shows a sub-Poissonian statistics after reaching the
maximum intensity.

field amplitude f in equation (4.41), to a function having a Gaussian profile in time:

f(t) =
√
Ie−

(t−t0)2
2σ2 ,

where σ is the width and t0 is the center of the pulse. As can be seen by looking

at figure (4.4), as the number of particles, n(t) = ⟨αβ⟩stoch increases, the second

order correlation function changes and it moves towards an antibunching regime.

When the Gaussian pulse is over, the g(2) is stationary, i.e. it reaches a steady

state: the reason behind this will be clarified in the next chapter, where we shall

demonstrate that the g(2) function is constant in a system where the number of

particles is conserved.
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4.2 Quantum soliton in polariton systems

In the previous sections, we have derived and discussed the quantum properties, and

specifically the appearance of antibunched light, in a single Kerr-like mode, with the

claim that this is suitable for describing a single mode polariton field. However most

realistic experimental systems deal with a collection of modes or with continuous

systems: for example, photonic waveguides or monolithic microcavities are generally

modelled via continuous variables approaches.

In this section we investigate the dynamics of correlation functions in multi-

mode systems: specifically we are interested in the quantum properties of polariton

solitons, which were observed experimentally, both in monolithic cavities [66] and in

nonlinear waveguide systems [4]. To investigate numerically a multimode systems,

we employ the strategy of the previous sections, i.e. we expand the master equation

onto a multidimensional coherent basis deriving a set of stochastic differential equa-

tion, together with a suitable gauge field which prevents instabilities and sampling

errors. We first consider a system made of coupled Kerr oscillators, described by

the following Hamiltonian,

H =∑
i,j

(ωia
�
iai + gia

�
ia

�
iaiai + τij(a

�
iaj + a

�
jai)), (4.54)

where ωi are the energies of each mode and τij is the adjacency matrix, quantifying

the hopping probability between the i-th and j-th mode. Following the approach

adopted in the previous sections, i.e. making use of the Gauge P representation, we

obtain the system of stochastic differential equations:

dαi = i∑
j

(τijαj) + iδαidt − 2igα2
iβidt +∑

k

B1k(dWk − gkdt) (4.55)

dβi = −i∑
j

(τijβj) − iδβidt + 2igβ2
i αidt +∑

k

B2k(dWk − gkdt) (4.56)

dΩi = Ωi∑
k

gkdWk. (4.57)

The systems above will be used as a basic model to evaluate the statistical moments

of multimode systems.
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4.2.1 Polariton Solitons

Solitons are particular solutions of nonlinear equations which possess peculiar prop-

erties: namely they are non-spreading localized wavepackets and their shape is left

unchanged when they interact with each other. Solitons were observed for the first

time in a water canal, by John Scott Russell in 1863 [67]. Even though there exists a

long list of different kinds of solitons, for our purposes we just mention two of them,

namely dark and bright solitons: dark solitons are defined as a lack of intensity in

a continuous beam, i.e., they show a reduction of the intensity compared to the

bright background. Bright solitons by contrast, are localized intensity peaks above

a less intense background. With technological advancements, it has been possible to

observe solitons in a variety of systems, such as optical fibres [68], and Bose-Einstein

condensates [69].

Non-spreading wave packets can be found in open quantum systems as well: here,

as well as the balancing between the dispersion and the interaction, needed to ob-

tain a stable solution, a balance between the loss and the gain is required. Such

states are called dissipative solitons. Polariton solitons are generated in microcavity

systems: due to the effective repulsive interaction, the formation of polariton dark

solitons is allowed when meff > 0. Conversely, the formation of bright solitons re-

quires a negative effective mass (meff = (∂2
kE(k))−1), which balances the spreading

of the wavepaket due to the nonlinearity. From the polariton dispersion relation it

is clear then that, to obtain a bright soliton, it is necessary to excite the system at

k ≠ 0. In [4], in an experimental work led by the University of Sheffield, conserva-

tive bright polariton solitons were observed in a AlGaAs/GaAs waveguide, with an

embedded InGaAs quantum well. Such systems are assumed to be conservative, as

the excitations, injected in the waveguide, propagate in the material through total

internal reflection, hence minimizing the losses. The lower polariton branch has a

negative effective mass for every k, allowing the formation of bright solitons. The

initial quasi-Gaussian pulse, at low excitation power, starts to broaden, as an effect

of the large polariton dispersion. However, when the pulse power is increased, the
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output pulse narrows in time, which is a signature of the bright soliton formation.

In 2012, Sich et al. [66] demonstrated the formation of a bright dissipative polari-

Figure 4.5: From [3]. (a) Schematic diagram of the waveguide system implemented
in the experiment. (b)In red: the measured emitted light coming from the lower po-
lariton mode. (c) Experimental and numerically temporal duration (pulsed regime)
as function of the energy, for different detunings δC of the pulse frequency from the
exciton.(d) Spectral width of the polariton as function of the pulse energy for equal
detuning. The plot shows both the experimental measurements (in symbols) and
the numerical simulations (lines) performed by [4].

Figure 4.6: (a) Scheme of the experiment by Sich et al. [3]. A picosecond writ-
ing pulse (WP) (red) triggers the soliton pattern formation, on an area driven
quasiresontantly by a weak CW pump. (b) The pumping scheme adopted, where the
solid black line is the lower polariton dispersion. (c) Bistable behaviour of polariton
intensity as a function of pump momentum.

ton soliton in a semiconductor microcavity with InGaAs quantum wells: Fig (4.6)

shows the experimental setup designed by the authors and the results of part of the

measurement performed. A CW quasi-resonant laser is applied at a k such that the

effective mass is negative, i.e., close to the inflection point of the LP branch: this
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writing Gaussian beam with a duration of 5 ps triggers the soliton formation. An

additional weak CW pump, broad in space, sustains the soliton propagation: this

step is necessary to allow an efficient experimental detection of the soliton state,

before the losses destroys it. In this setup the localisation is taking place both in

the x and in the y direction, as a consequence of the isotropy of the local polariton

field, therefore a spatial 2D soliton is formed.

To investigate the quantum properties of polariton solitons, in the following we

will refer to the last situation, without taking into account a sustaining driving field.

As the localisation is happening simultaneously in both dimensions on the plane,

we consider a cut along the y direction and then we analyse the whole temporal

dynamics, giving a Gaussian wave-packet as initial condition.

4.2.2 Quantum model for 1D solitons

As anticipated in the previous section, in the following we consider a quantum

model for bright soliton, following the experimental results obtained by Sich et

al. As mentioned in the previous section, the geometry and the phenomenological

features of the 2D-polariton solitons, allows us to treat the system in one spatial

dimension, as the dynamics is mimicked in the other one. Given the repulsive nature

of polariton-polariton interaction, in order to generate a bright soliton we need to

take into account the balancing effect of a negative effective mass, meff = (∂2
kE(k))−1,

which gives an effective confinement of the wave-packet. In microcavity polaritons

the effective mass is negative close to the inflection point of the dispersion: from this

consideration it follows that any bright soliton generated in such systems will move

on the plane with a wavevector k. The formalism used to characterized the quantum

properties of polariton solitons follows the approach of Drummond and Carter [70],

which basically consists of discretising the 1D Hamiltonian of a Kerr optical fibre,

neglecting the high order nonlinear terms. It can be demonstrated that this results

in:

H0 =
M

∑
j

(ωja
�
jaj + ga

�
ja

�
jajaj + τ(a

�
jaj+1 + a

�
j+1aj)), (4.58)
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which is the 1D analogue of eq. (4.54), with M sites. In the limit of large M , the

model converges to the continuum. To take into account the effect of dissipation it

is necessary to consider the master equation formalism:

∂tρ = −i[H0, ρ] + γ∑
j

(2ajρa
�
j − a

�
jajρ − ρa

�
jaj), (4.59)

where each site emits with the same rate γ in a vacuum environment. As we want

to model interacting polaritons in 1D, we need to consider a repulsive interaction,

i.e. g > 0, which in general enhances the spreading of the wave-packet, together with

the kinetic term, proportional to τ . In principle the Hamiltonian (4.58) does not

display any negative effective mass region in the dispersion, hence bright solitons

should not be allowed to form. However, Smerzi et al. in [5] demonstrated that,

even in this simple model, it is possible to obtain a discrete bright soliton solution

by accurately choosing the system’s parameters. They used a variational ansatz

on a chain of repulsive bosons in an optical lattice to determine the conditions to

obtain a non dispersive wave packet. Let us consider the mean field Hamiltonian

corresponding to (4.58), given by:

Hmf =
M

∑
j

((ωj − g)∣ψj ∣
2 + g∣ψj ∣

4 + τ(ψjψ
∗
j+1 + ψj+1ψ

∗
j )), (4.60)

where ψj and iψ∗j are canonically conjugate variables. In order to find the bright

soliton condition, we need to study the dynamics of the ansatz wave-function:

ψvarj =
√
I exp [−

(j − j0)
2

σ2
+ ik(j − j0)] , (4.61)

where k is the wave-vector of the Gaussian wave-packet and σ is the width. The dy-

namics of the wave-function can be obtained by calculating the Lagrangian L(ψj =

ψvarj ) = ∑j iψ
∗
jψj −Hmf, and the associated Euler-Lagrange equations for the vari-

ational parameters, σ and k. Following this approach, it is possible to derive the

variational Hamiltonian:

Hvar =
g

2
√
πσ

− cos(k)e−1/2σ2

, (4.62)
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and the corresponding equations of motion:

k̇ = 0

σ̇ = σ cos(k)e
1

2σ2 .

(4.63)

Imposing in (4.63) the condition for a non-dispersive propagating wave-packet, i.e.,

σ̇ = 0, it is possible to find the set of parameters which give a discrete bright soli-

ton. Notice here that, following the approach proposed by Smerzi, the variational

Hamiltonian does not depend on the amplitude of the ansatz wavefunction,
√
I: in

the limit of σ ≫ 1, in fact it is possible to demonstrate that:

I =

√
2

πσ2
. (4.64)

In [5] the authors found that in order to obtain a soliton, the following relation

Soliton 
Breather

Self-Trapping

Di�usionDi�usion

Figure 4.7: Adapted from [5]. The phase diagram for the Gaussian variational ansatz
of (4.58), with j0 = 0 and τ = 0.5. The solution shows a rich variety of behaviour,
ranging from a diffusive phase, to the breather solution, i.e. a wave-packet with
oscillating localization. In particular a soliton solution is obtained imposing the
condition ∂tσ = 0, for negative values of cos(k).

between the non-linearity and the momentum (for τ = 0.5), needs to hold:

g = 2
√
π
∣ cos(k)∣

σ
e−1/2σ2

, (4.65)
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which is a line in the k − g phase plane as in Fig. (4.7). We require cos(k) < 0 to

satisfy the requirement of negative effective mass: in fact, in term of the variational

Hamiltonian,

(meff)
−1 = ∂2

p2Hvar = cos(k)e−1/2σ2

, (4.66)

hence giving negative values for cos(k). The dependence on the momentum k in

equation (4.66), allows us to explore a wide range of possible solution. For example,

the limit case of meff →∞, gives a self-trapping (hence non-propagating) wavepacket.

The results obtained with the variational approach are exact for the closed system

described by (4.58): however in the dissipative case a real soliton cannot exist,

unless the dissipation is balanced by a constant driving field. Still, for a limited

time window, a focusing of the Gaussian wave can occur. We call this state formed

with the above mechanism a quasi-soliton or a full-dissipative-soliton.

From the Hamiltonian (4.58) and the master equation (4.59), using the gauge

P-representation, we derive a set of stochastic differential equations for the 1D chain

of interacting bosons, which, for the j-th mode, have the form:

dαj = −γαj + iτ(αj + αj−1) + iδαjdt − 2igα2
jβjdt +∑

k

B1k(dWk − gkdt)(4.67)

dβj = −γβj − iτ(βj + βj−1) − iδβjdt + 2igβ2
jαjdt +∑

k

B2k(dWk − gkdt) (4.68)

dΩj = Ωj∑
k

gkdWk. (4.69)

The noise has the same structure as the single mode case, i.e., is localized on each

site and is proportional to the nonlinear interaction strength. It follows that we can

make use of the same drift-diffusion gauge terms as in the single mode scenario:

−2igαjnjdt→ −2igαRe(nj)dt

2igβjnjdt→ 2igβjRe(nj)dt, (4.70)

together with the diffusion gauge (4.53), on each site. We perform our numerical

analysis on (4.67) considering a set of M = 21 sites, which we group, for notation

purposes, in a single vector x̂ = (α−10, ..., α0, ..., α10). At time t = 0, the system is
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initialized as a Gaussian-like wave packet, which mimics the effect of the writing

pulse on the sample, and serves to trigger the propagation of the state in the k

direction:

xj(t = 0) =X0 exp(−
j2

2σ
+ ikj), (4.71)

with X0 being the intensity on the central site at t = 0.

To make a proper comparison with the soliton regime, we first investigate the

dynamics in the diffusive regime, with a repulsive interaction g > 0 and k = 0. In

this case we expect that the combined effects of the repulsion between particles and

the positiveness of the effective mass, will give rise to a spreading of the wave packet

during the time evolution. To show this, we solve the stochastic equation on a set

of trajectories, S, and we evaluate the intensity on each site:

⟨αi(t)βi(t)Ω(t)⟩stoch

⟨Ω(t)⟩stoch

≈ ⟨ni(t)⟩ , (4.72)

where Ω is the gauge field, as described in (4.67). The result is plotted in Fig.

(4.8)(a): it can be clearly seen that the initial wave-packet dissipates over time, as

a result of the decay term in the master equation, and loses the initial localisation,

spreading all over the lattice sites. We can quantify the spreading by calculating

the time evolution full-width-half-maximum (FWHM) of the intensity distribution.

We expect that the FWHM for a spreading Gaussian beam will increase because of

the diffusion process, as confirmed numerically in the case considered in Fig.(4.9).

Following the same approach, we evaluate the second order correlation function

from each site, which numerically is equivalent to averaging over an appropriate

sample set, S, the quantity:

⟨αi(t)βi(t)Ω(t)αi(t)βi(t)Ω(t)⟩stoch

⟨αi(t)βi(t)Ω(t)⟩
2
stoch

≈ g
(2)
i (t). (4.73)

The coupling between each site induces a deviation in the value of the second order

correlation function, compared to the single mode case. In Fig. (4.8)(b) it can be

seen that the correlation functions show almost everywhere antibunching, especially
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Figure 4.8: (a) Evolution of the Gaussian wave-packet in the diffusive regime, with
τ = 0.5, g = 0.03, γ = 0.1 and X0 = 3, σ0 = 5, for a system made of ∣x̂∣ = 21 sites. (b)

Evolution of the second order equal times autocorrelation function, g
(2)
i , for each

site of the system in the diffusive regime. The system experiences a deviation from
the coherent statistics. In particular the central site (c), which corresponds to the

center of mass of the beam, has sub-Poissonian behaviour, with min(g
(2)
cm(0)) = 0.96.

The blue region in the plot describes the standard error associated to the stochastic
evolution.
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Figure 4.9: (a) Profile of the Gaussian beam at different times, with τ = 0.5, g = 0.03,
γ = 0.1 and X0 = 3, σ0 = 5, at k = 0. As the Gaussian beam spreads over the lattice,
the FWHM increases as shown in (b).

at late times : the centre of mass, which corresponds in this case to the central site

(Fig. (4.8)(c)), is maximally antibunched, with a minimum value of the correlation

function, min(g
(2)
0 ) ≈ 0.96. However, light emitted is most antibunched when the

intensity of the beam is close to zero: hence, as it can be seen from Fig. (4.8)(a),

in this region the system is basically empty, which means that the probability of

detecting photons with the expected statistics is low.

We now analyse what happens when the system has a negative effective mass

(cos(k) < 0) and repulsive on-site interactions (g > 0), with parameters chosen to sat-

isfy the soliton condition as in eq. (4.65). Starting again with a initial Gaussian-like

state, we notice that, as with the experimental results, at low power the wave-packet

still experiences a spreading effect due to the unbalancing effect between the non-

linearity (which is, by definition, intensity-dependent) and the dispersion. However,

at higher power, self focusing takes place and, for a certain time window, a bright

soliton is formed. This can be seen in Fig. (4.10): the wave-packet, with an initial

width σ0, is gradually focusing to a state with a σ < σ0. We can quantify the focus-

ing of the state, again by calculating the time dependent full-width-half-maximum

(FWHM) of the intensity distribution. As shown in Fig.(4.11)(a), the FWHM de-

creases from its initial value, demonstrating the focusing of the initial distribution.

After it reaches a minimum, the FWHM is approximatively constant in the time

window considered, hence the state there can be properly described as a discrete
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Figure 4.10: Evolution of the Gaussian wave-packet in the case of negative effective
mass, with τ = 0.5, g = 0.03, γ = 0.1, X0 = 3, and σ0 = 5, k = 1.6 for a system made of
∣x̂∣ = 21 sites. (b) Evolution of the second order equal times autocorrelation function,

g
(2)
i , for each site of the system close to the soliton regime. The system experiences

a deviation from the coherent statics, along the soliton propagation direction. In
particular g

(2)
i ≥ 1, hence is always super-Poissonian. (c) The second order correla-

tion function for the soliton center of mass, showing bunching statistics for all times.
The blue region describes the standard error associated to the stochastic evolution.

bright soliton, as it is evident from the intensity profile in Fig. (4.11)(b).

An analysis of the behaviour of the g
(2)
i (t) reveals a different scenario from the dif-

fusive case: as it can be seen in Fig. (4.10)(b), in the region where the soliton is

propagating, the correlation function is mostly coherent or super-Poissonian. The
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Figure 4.11: (a) Profile of the Gaussian beam at different times, in the quasi-soliton
regime, with τ = 0.5, g = 0.03, γ = 0.1 and X0 = 3, σ0 = 5, at k = 1.6. As the Gaussian
beam is focusing, the FWHM decreases as shown in (b).

empty region is physically meaningless, as the stochastic analysis is susceptible to

high fluctuations and divergences. In particular, the dynamics of the correlation

function for the center of mass of the soliton reveals a super-Poissonian statistics

as shown in Fig. (4.10) (c). When considering multi-mode systems, to quantify

the statistical properties of the total emission, it is necessary to take into account

the inter-mode correlation function, also called cross-correlation function, which

statistically corresponds to the covariance between, say, mode i and mode j. Com-

putationally this corresponds to evaluate the quantities:

⟨αi(t)βi(t)Ω(t)αj(t)βj(t)Ω(t)⟩stoch

⟨αi(t)βi(t)Ω(t)⟩stoch ⟨αj(t)βj(t)Ω(t)⟩stoch

≈ g
(2)
ij (t). (4.74)

If we add up the second order correlation functions for each mode, together with

any possible cross-correlations, normalizing respect to the total intensity, we obtain

a definition for the total second order correlation function. Both in the diffusive

and in the soliton case total second order correlation function is stationary, i.e., its

initial value is unchanged during the whole dynamics. This fact is a consequence of

a general result that will be presented and investigated in the next Chapter.

4.2.3 Squeezing in polariton solitons

We want now to measure the quadrature variances of the quasi-soliton state, to see

whether or not squeezing occurs. Squeezing in solitons has been extensively studied
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in the context of optical fibres [71], and they were proposed as possible candidates

to perform quantum non-demolition measurements, i.e., a set of measurement which

avoids any increase of the uncertainty of the measured observable. As mentioned

in Chapter 2, a squeezed state shows a noise reduction, with respect to a coherent

state, in one of the quadratures and, correspondingly, a noise enhancement in the

orthogonal quadrature, such that the Heisenberg relation is always satisfied. We

need to consider the generalized quadrature operator:

X(φ) = eiφa + e−iφa�,

X (φ +
π

2
) = ei(φ+

π
2
)a + e−i(φ+

π
2
)a�, (4.75)

with φ ∈ [0, π2 ]. A state is squeezed if for one of the quadrature:

∆X(φ)2 < 1. (4.76)

We solve the dynamics of the system (4.67) for the set of parameters giving a dissi-

pative soliton, thus in the negative mass condition. We then evaluate the stochastic

variances (4.75) for each pair of orthogonal quadratures, X(φ) and X (φ + π
2
), on

a finite set of values of φ: as it is sufficient to demonstrate the violation (6.48)

for at least one of the quadratures, we consider the value of the rotation angle in

phase space for which a minimum of the variance is obtained, min(S(φ)). As shown

in Fig.(4.12)(a), the system shows squeezing mostly in the region where the wave

packet is propagating. In Fig.(4.12) (b), we track the variances for the centre of

mass of the wave packet: it is clear that as soon as the soliton is formed, thus from

the very beginning of the time evolution, the variances start to deviate from the

the coherent state value. In particular one of the quadratures shows a variance that

goes below the lower limit expected for coherent states, which means the state is

squeezed in that quadrature. However when the intensity decreases, due to the dis-

sipation, both the variances return to values greater than or equal to the coherent

state prescription, ∆X(φ)2 ≥ 1. In conclusion, we demonstrated that in the simple

model implemented to study polariton bright solitons, quantum squeezing can be
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Figure 4.12: (a) Evolution of the minimum quadrature variance, min(S(φ)), for
each site of the system in the soliton regime, with τ = 0.5, g = 0.03, γ = 0.1 and
X0 = 3, σ0 = 5, at k = 1.6. The dark lines define the region where squeezing occurs,
hence where min(S(φ)) < 1. (b) Evolution of the minimum variance for the two
orthogonal quadratures of the peak of the moving soliton: as soon as the initial
wave packet focuses the system shows a pronounced quadrature squeezing.

observed: this result might have a potential impact on the research field of quantum

polaritonics, as the squeezing of polariton soliton might be detectable via homodyne

detection.



Chapter 5

Conservation of correlation

functions in U(1)-symmetric

systems

In this Chapter, we analyse and describe a theoretical study of the conservation of

correlation functions in U(1)-symmetric systems. The following results have been

condensed in the form of a scientific publication, published in Physical Review Let-

ter [72]. As suggested in the previous chapters, the intensity correlation function,

especially at equal times, is widely used to characterize the statistical properties of

optical and condensed matter systems. In particular, it may be used as a first mea-

sure of the “quantumness” of the systems under investigation. Here we derive the

conditions under which the intensity correlation function is a conserved quantity:

with this statement, we mean that the aforementioned quantity is stationary over

a time interval. The conservation theorem concerns both closed and open quan-

tum system, where in the latter case additional restrictions on the dissipation are

needed to guarantee the validity of the result. In particular, we found that a general

feature of a system possessing a stationary intensity correlation function is to be

U(1)-symmetric, i.e., to be invariant under a global gauge transformation. Hence,

in systems where the U(1) symmetry is broken, the second order correlation function

will be a non stationary function of time. As we shall demonstrate in the following,

such a theoretical link provides a new tool to investigate the symmetry properties of

102
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a variety of systems, and the corresponding phase transitions, using photon counting

measurements.

Let us consider a multimode system: as we mentioned in the previous Chap-

ter, it is possible to define the second-order quantum correlation function for each

measured mode, whose expression at equal times are:

g
(2)
ij (t, t) =

⟨c�ic
�
jcicj⟩

⟨c�ici⟩ ⟨c
�
jcj⟩

, (5.1)

where c�i , ci and c�j, cj are ladder operators for generic i and j quantum fields (bosonic

or fermionic). If i ≠ j, the above expression describes the correlations between each

mode, otherwise it quantifies the fluctuations within a mode. This definition is

not limited to second order correlations, as it can be extended to higher orders

correlation functions, containing m creation and annihilation operators.

The normalised equal times total mth order correlation function for a multi-

mode system is given by:

g
(m)
tot (t, t) =

⟨J⟩

⟨N⟩
m , (5.2)

where

⟨J⟩ = ⟨∶ (∑
i

c�ici)
m ∶⟩ (5.3)

and the normalisation factor is given by the total number of excitation

⟨N⟩ = ⟨∑
i

c�ici⟩ (5.4)

where the summation is extended over all the modes. The symbol ⟨∶ ⋯ ∶⟩ in Eq.(5.3)

indicates that the operators inside are normally ordered. We regard our definition

in (5.2) as a natural way to extend the concept of single mode normalised correla-

tion function to a multimode system, as the contribution of each mode is weighted

according to its occupation. If we consider a system made of purely photonic modes,

having identical coupling with the environment, Eq.(5.2) quantifies the correlation

function obtained by measuring the total emission without resolving each mode in-

dividually. Notice that if m = 2 and the systems is made of a single mode, Eq.(5.2)
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reduces to Eq.(5.1), with i = j.

5.1 U(1) symmetry

Let us consider a quantum field defined on a continuous configuration space. The

creation and annihilation operator, a(x), a�(x), in general satisfy the following

commutation relation rule:

[a(x), a�(y)] = δ(x − y). (5.5)

The number operator N is denoted as:

N = ∫ a�(x)a(x)dx. (5.6)

A system preserves the number of particles if its Hamiltonian commutes with N .

The commutation rules between N and a(x) (and a�(x)) can be easily obtained

from the definitions above, giving:

Na(x) = a(x)(N − 1), Na�(x) = a�(x)(N + 1). (5.7)

From (5.7) follows that any polynomial combination with equal number of a(x),

a�(x) will commute with N :

[a�(x1)....a
�(xn)..a(x1)...a(xn)..]N = N[a�(x1)....a

�(xn)..a(x1)...a(xn)..]. (5.8)

A global unitary gauge transformation, with one parameter θ, is given by the rules:

a(x)→ a(x)eiθ a�(x)→ a�(x)e−iθ, (5.9)

and belongs to the one parameter unitary group, U(1). If the Hamiltonian of the

system is invariant upon the application of the transformation (5.9), it is said to

possess a global U(1) symmetry. The gauge transformation in (5.9) represents a

rotation of the global phase angle of the fields a(x) and a(x)�, with the rotation

determined by the complex variable θ. From the above argument, it follows that
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any polynomial with the same number of creation and annihilation operators will be

U(1) invariant. At this point, it is clear that a system where the number operator

commutes with the Hamiltonian is globally U(1)-symmetric, and vice-versa, the

U(1) symmetry guarantees the commutation of the Hamiltonian with N .

In condensed matter systems and in optics, the breaking of such a symmetry

is associated with a variety of phenomena, depending on how the breaking occurs.

For example, in the closed Bose-Hubbard model, a spontaneous U(1) symmetry

breaking happens in the ground state, leading to a Mott-superfluid phase transition

[73]. The U(1) symmetry breaking in the 4He (an isotope of helium), below a certain

critical temperature, leads to superfluidity [74]. In the Rabi model, i.e., light-matter

coupling beyond the rotating wave approximation, the spontaneous breaking of the

U(1) symmetry generates a diffusion of Goldstone modes. This is a general result

of quantum field theory [75]: according to the Goldstone theorem, associated to a

global spontaneous symmetry breaking, there is always a gapless excitation for each

generator of the symmetry that does not leave the ground state invariant. In the

case of the Rabi model such gapless excitations are represented by polaritons, i.e.,

the eigenstates of the system in the dressed state basis.

5.2 Closed quantum system

In order to determine the condition that the total correlation function (5.2) is con-

served, we equate its time derivative to zero, giving

(
d

dt
⟨J⟩) ⟨N⟩

m
− (m ⟨N⟩

m−1 d

dt
⟨N⟩) ⟨J⟩ = 0. (5.10)

For closed system that is guaranteed by:

d

dt
⟨N⟩ = 0,

d

dt
⟨J⟩ = 0, (5.11)

which means that the Hamiltonian must commute with both N and J . Now, the

normally ordered operator J can be written as a power expansion in the total number

operator, J = ∑
m
k dkN

k, where dk are numerical coefficient related to the order of
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the expansion [76]. The condition [H,J] = 0 is thus satisfied provided [H,N] = 0,

so this is our only requirement. The condition [H,N] = 0 is equivalent to invariance

under the gauge transformation, as shown in the previous section:

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

c̃i
� = c�ie

iφ

c̃i = cie−iφ, ∀i

which corresponds to a global U(1) symmetry of the Hamiltonian H. This result

can be summarized in a general theorem:

Theorem: For any closed system with an arbitrary number of modes, described by

Hamiltonian H, then the total mth order equal time correlation function g
(m)
tot (t, t)

is a conserved quantity, if H globally possess a U(1) symmetry, i.e. , [H,N] = 0,

where N is the total number operator.

To underline the link between the global U(1) symmetry of the Hamiltonian and

the conservation of the second order correlation functions, we first consider the case

of two closed, undriven linear bosonic modes, coherently coupled. This system can

be described by a Hamiltonian of the form

Htm = ω1a
�
1a1 + ω2a

�
2a2 + τ(a

�
1a2 + a

�
2a1), (5.12)

where ωi are the energies of each mode and τ is the coupling strength between modes.

Note that we can add non-linear terms with no effect provided that they commute

with the number operators for each mode, so this discussion could equally apply to

a two-mode Bose-Hubbard model. We need to evaluate the time derivative for three

correlators: the two auto-correlation functions (g
(2)
1 , g

(2)
2 ) and the cross correlation

function (g
(2)
1,2 = g

(2)
2,1 ). It is easy to obtain the dependence of the auto-correlation,

⟨a�1a
�
1a1a1⟩, from the hopping terms:

d

dt
⟨a�1a

�
1a1a1⟩ = − iτ(2 ⟨a�1a1a1a

�
2⟩ − 2 ⟨a�1a

�
1a1a2⟩ + ⟨a�1a2⟩

− ⟨a�2a1⟩),
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while the derivative of the number of particles for mode 1, ⟨n1⟩, is:

d

dt
⟨n1⟩ = −iτ ⟨a�1a2 − a

�
2a1⟩ , (5.13)

with an equivalent form for mode 2. The autocorrelation function for mode 1 (and

analogously for mode 2) is not conserved. However, considering now our Theorem,

we note that though the Hamiltonian does not commute with the number operator

for each mode ([Htm, n1,2] ≠ 0), i.e. the U(1) symmetry is locally broken, it does

commute with the total number operator N = n1 + n2. This is a consequence of

the global U(1) symmetry of the Hamiltonian. Therefore, it can be expected that

total m − th order correlation function, g
(m)
tot is conserved. This can be confirmed

by evaluating the time derivative of the cross correlation between the two modes.

the expression contains terms which precisely cancel the derivative of the auto-

correlation function:

d

dt
⟨a�2a2a

�
1a1⟩ =iτ(⟨a

�
2a2a

�
1a2⟩ + ⟨a�2a1a

�
1a1⟩−

⟨a�1a2a
�
1a1⟩ − ⟨a�2a2a

�
2a1⟩).

Increasing the number of modes, the above argument encompasses the 1D Bose-

Hubbard Hamiltonian. It can also be extended to bosonic quantum networks [77],

which can describe a huge variety of physical systems, like photonic or polaritonic

lattices (Lieb [78], Kagome [79] and Graphene [80]), quantum networks and collec-

tive phenomena involving stimulated parametric processes (like parametric up/down

conversion). The correlation function for each mode of the network changes dynam-

ically, as a consequence of the interaction with other modes and this change is

dependent on the structure of the network itself, and on the strength of the cou-

pling terms (τ in the two mode case). This leads to the possibility of controlling the

statistics of the emitted photons by engineering the geometry of the networks, as it

has been shown for photonic molecules in [81].
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5.2.1 Jaynes-Cummings Hamiltonian

It is also interesting to consider the case of mixed bosonic and fermionic systems,

for example, the Jaynes-Cummings-Hubbard model [82], the spin-boson network

model [83], and light-matter coupled systems [84]. The simplest case is the Jaynes

Cummings model, for a single-mode cavity, containing one two-level atom:

HJC = ω0a
�a + ωaσ

+σ− + η(a�σ− + aσ+), (5.14)

where ω0 and ωa are the energies of the mode and atom, η is the vacuum Rabi

frequency that characterizes the photon-atom interaction strength and σ± are the

atomic raising and lowering operators. We have written this Hamiltonian using the

rotating wave approximation (RWA), since it then commutes with the total number

of excitations, [HJC ,N] = 0, where N = na + nσ, nσ = σ+σ− is the number operator

for fermions, and na = a�a is the number operator for bosons. The total G
(2)
tot for this

system is made up of three elements: the atomic autocorrelation, ⟨σ+σ+σ−σ−⟩, the

cavity mode autocorrelation ⟨a�a�aa⟩, and the cross correlation term ⟨a�aσ+σ−⟩. It

is possible to calculate the derivative of each component, using the same approach

as in the previous sections:

d

dt
G
(2)
σ =

d

dt
⟨σ+σ+σ−σ−⟩ = −iη[σ+σ+σ−σ−, (a�σ− + aσ+)] = iη ⟨2σ+σ−σ−a� − 2σ+σ+σ−a⟩

d

dt
G
(2)
a =

d

dt
⟨a�a�aa⟩ = −iη[a�a�aa, (a�σ− + aσ+)] = iη ⟨2a�aaσ+ − 2a�a�aσ−⟩

d

dt
G
(2)
σ,a =

d

dt
⟨a�aσ+σ−⟩ = −iη[a�aσ+σ−, (a�σ− + aσ+)] =

= −iη ⟨a�aaσ+ − a�a�aσ− + σ+σ−σ−a� − σ+σ+σ−a⟩ .

In a similar way, the derivative of the total number of particles is zero,

d

dt
Ntot =

d

dt
(nσ + na) = 0, (5.15)
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where na = a�a and nσ = σ+σ−. We compute the total g(2) adding up all the terms,

and we find that is conserved:

d

dt
g
(2)
tot (t, t) =

d

dt

⎛

⎝

G
(2)
σ +G

(2)
a + 2G

(2)
σ,a

⟨na + nσ⟩
2

⎞

⎠
= 0, (5.16)

hence confirming the validity of the Theorem. In Fig.(5.1) we show numerical
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Figure 5.1: Numerical solution for HJC , with a Rabi term η = 0.25 and ωa = ωσ = 0,
prepared in an initial state with ∣α0∣

2 = 0.18 particles in the cavity mode and the
atom in the excited state. (a) The number of photons, na, and excitation level of the
atom, nσ. nσ = 0 corresponds to the atom in its ground state, nσ = 1 to the excited
state. (b) The correlation functions G

(2)
i,j = ⟨a�ia

�
jaiaj⟩ /N

2 for the atomic, bosonic
and for the cross terms. The total correlations for the emitted light is a constant of
motion; here it is always sub-Poissonian (g

(2)
tot < 1).

calculations, performed using the positive P-representation and the corresponding

stochastic equations, of the dynamics of the Jaynes-Cummings model described by

HJC , preparing the system in an initial state ∣ψ(0)⟩ = ∣α0, e⟩, with ∣α0∣
2 = 0.18

particles in the field mode, and the two level system in the excited state ∣e⟩. As

expected, we find that the atomic and the field correlations change in time, while

g
(2)
tot (t, t) remains constant, since the U(1) symmetry is locally broken, [HJC , nσ] ≠ 0

and [HJC , na] ≠ 0, but globally is maintained. In order to lose the stationarity, it

is sufficient to break the symmetry with respect to the total number operator, for

example having a coherent driving term like Ωσ(t) = h(t)(σ+ +σ−) Ωa(t) = h(t)(a� +

a) [85]. The Jaynes Cummings model beyond the rotating wave approximation

(so called Rabi model [86]), also contains terms which break the U(1) symmetry,
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allowing creation and destruction of excitations. Then, when the coupling strength

Ω is increased, a phase transition occurs occurs where particles are spontaneously

created. This generates a dynamics of the total second order correlation functions,

as we will briefly show in the following.

The Hamiltonian for the Rabi model reads:

HRb = ω0a
�a + ωaσ

+σ− + η(a� + a)(σ− + σ+), (5.17)

where the interaction term contain now both the rotating and the counter-rotating

terms:

a�σ− + σ+a → rotating terms (5.18)

a�σ+ + σ−a → counter-rotating terms. (5.19)

As we showed above, the rotating terms commute with the total number operator:

however the counter-rotating terms break the commutation relation. In order to

evaluate the commutator:

[a�σ+ + σ−a, a�a + σ+σ−], (5.20)

we use the fact that the Pauli matrices, (σx, σy, σz), form a closed algebra [87],

[σi, σj] = 2iεijkσ
k, (5.21)

with εijk the Levi-Cita tensor. From the definition of the spin ladder operators,

σ+ = σx + iσy and σ− = σx − iσy, we obtain:

[a�σ+ + σ−a, a�a + σ+σ−] = −a�σ+ + σ−a + 4(a�σ+σz + aσzσ−)], (5.22)

which clearly implies that [H,N] ≠ 0, leading to a breaking of the U(1) symmetry.

The consequence is again a non-stationary total correlation function: we analyse

this scenario numerically, considering the same set of parameters as in Fig. (5.1),

but this time for the Rabi model (5.17). As can clearly be seen in Fig. (5.2)(a)
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Figure 5.2: Numerical solution for HRb, with a Rabi term η = 0.25 and ωa = ωσ = 0,
prepared in an initial state with ∣α0∣

2 = 0.18 particles in the cavity mode and the
atom in the excited state. (a) The number of photons, na, and excitation level of the
atom, nσ. nσ = 0 corresponds to the atom in its ground state, nσ = 1 to the excited
state. (b) The correlation functions G

(2)
i,j = ⟨a�ia

�
jaiaj⟩ /N

2 for the atomic, bosonic
and for the cross terms. The total number of excitation is not stationary, as a
consequence of the broken U(1) symmetry for the Rabi model, and correspondingly
the total correlation function is for the emitted light is not a constant of motion ;
here it is always sub-Poissonian (g

(2)
tot < 1).

the presence of the counter-rotating terms in the Hamiltonian (5.17) breaks the

conservation of the total number of excitations: consequently g
(2)
tot is not stationary

(5.2)(b).

Similar behaviour should be seen in any system which breaks a U(1) symmetry while

undergoing a phase transition, for example, in the case of Hubbard Hamiltonians

inside a cavity [88].

5.3 Dissipative systems

We now consider dissipative systems, whose dynamics is described by a master

equation in the Lindblad form[89]:

d

dt
ρ = −i[H,ρ] +D(ρ) (5.23)

where

D(ρ) =∑
i

γi
2
(2c�iρci − c

�
iciρ − ρc

�
ici) (5.24)
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In this case, the time derivatives of ⟨N⟩ and ⟨J⟩ are not zero, but, from (5.10), the

conservation of the correlation functions is guaranteed by the conditions:

d

dt
⟨N⟩ = κ ⟨N⟩ (5.25)

d

dt
⟨J⟩ =mκ ⟨J⟩ , (5.26)

where κ is an arbitrary constant and m is the order of correlation function. The

physical meaning of the conditions (5.25) can be easily understood by evaluating the

formal solutions of the differential equations: these give an exponential behaviour

in time for ⟨N⟩ and ⟨J⟩, depending on the sign and magnitude of κ.

The time derivative of the mean value of an operator, using the Schrödinger

picture, can be expressed as:

d

dt
⟨A⟩ = Tr{

d

dt
(Aρ)} = Tr{A

d

dt
ρ} . (5.27)

Using this, with Eq.(5.23) for d
dtρ, the conditions for the conservation of the total

correlation function in Eq.(5.25) become

−i ⟨[H,N]⟩ +∑
i

γi
2

⟨(2c�iNci − c
�
iciN −Nc�ici)⟩ = κ ⟨N⟩ (5.28)

−i ⟨[H,J]⟩ +∑
i

γi
2

⟨(2c�iJci − c
�
iciJ − Jc

�
ici)⟩ = κm ⟨J⟩ (5.29)

In general these conditions cannot be satisfied, but if we consider the case where

all the loss rates are equal, γi = γ, the second terms on the left hand side of each

equation can be evaluated to −γ ⟨N⟩ and −γm ⟨J⟩. Thus, with [H,N] = 0 = [H,J]

as before, and κ = γ, the total correlation function is conserved.

This result can be summarized in a Corollary:

Corollary: For any dissipative system with an arbitrary number of modes, described

by an Hamiltonian H, and with a linear dissipator D(ρ), where each mode decays

with the same rate γ, iff H globally possess a U(1) symmetry, i.e. iff [H,N] = 0,

where N is the total number operator, then the total mth order equal time correlation
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function g
(m)
tot (t, t) is a conserved quantity.

The corollary also applies to the case of linear gain instead of loss (swapping the c

and c� operators in Eq.(5.24)), but not nonlinear dissipative processes (c replaced

by c2 etc).

Although the requirement for all the modes to have equal loss rates is a significant

restriction, there are many physical systems made of identical elements, for which

the losses are expected to be equal, so the theorem applies. For examples we can

look to photonic lattice structures [90, 91], arrays of semiconductor micro-cavities

with the same detuning [92] and continuous systems, like waveguide or waveguide

networks with isotropic geometry [93]. Furthermore, let us we consider the system

analysed in [94]: here optical patterns have been observed, above a certain threshold

of the pump power, as a consequence of the parametric scattering between polaritons

on the same ring in k space. In such a system the U(1) symmetry is spontaneously

broken by the parametric process and each mode possesses the same decay rate: it

follows from the Corollary that the total second order correlation function for the

optical patterns is not a conserved quantity.

The results and the consequences of the Theorem and of the Corollary can be

summarised as follows: the mth order quantum correlation function is a constant of

motion, for systems where the Hamiltonian possess global U(1) symmetry and any

dissipation is identical for each mode of the system and linear in the system oper-

ators. For a multimode system, the mth order quantum correlation function may

change dynamically in each mode, due to the their mutual interactions. However,

the total correlation function will still be a constant of motion.

In general terms, when a global symmetry possessed by a system is spon-

taneously broken, a phase transition takes place, i.e., the geometrical and/or the

statistical properties of the system can change drastically. When the system consid-

ered has a spatial structure, it is possible to characterize each phase transitions by

studying the behaviour of the equal times two-points correlation functions: this is

the standard approach used to investigate the order-disorder transitions. To give a
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conceptual example, let us consider a ferromagnetic spin system, as showed in [95].

The equal times correlation function, C(r, τ = 0), as a function of the relative dis-

tance r between each spin, shows different scaling properties, which depend on the

temperature of the system. Above a certain critical temperature, Tc, when the sys-

tem is highly disordered for the thermal effects, the correlation function C(r, τ = 0)

exhibits a mixed exponential and power-law behaviour. At the critical temperature

C(r, τ = 0) follows a power-low behaviour, while below Tc, thus in the most ordered

phase, it shows again a mixed feature. Hence an order-disorder phase transition

can be investigated by measuring the scaling properties of the correlation function

and, in particular, how these properties change as a function of some meaningful

parameters (the temperature in the example).

Following the above argument, the results presented in the Theorem and in the

Corollary suggest that the total correlation function may be an interesting pa-

rameter to measure in systems which undergo phase transitions characterized by

the breaking of a global U(1) symmetry. To clarify this point, let us consider an

Hamiltonian depending on a parameter ζ and suppose that above a critical value

of the parameter, ζc, the U(1) symmetry is spontaneously broken. It follows that,

when tracking the dynamics of the system, below ζc the total mth order correlation

function is stationary. Conversely, when ζ ≥ ζc the total mth order correlation func-

tion will have a non-stationary dynamical evolution. Hence it is possible to make

use of the total mth order correlation function, which can be measured via photon

counting, to detect phase transitions involving the breaking of the U(1) symmetry.

Together with the possibility of detecting phase transitions, the Theorem suggests

a methodological approach to measure the second order correlation functions in a

multimode system. The Theorem states, in fact, that care is necessary when us-

ing the second order correlation function as a probe for non-classical physics: in

systems with U(1) symmetry, it may be necessary to isolate light from individual

modes, rather than looking at the statistics of the total emitted light. For example,

in the U(1)-symmetric case, the total second order correlation function can show a
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stationary bunched statistics, while the g(2)(0) for an individual mode can reveal

purely non-classical features, i.e., antibunching.

5.3.1 Single mode with a dissipative term and with a driving

pump

To show explicitly the results stated in the previous section, and their consequences,

we consider here a single bosonic mode, with a Kerr nonlinearity, in a linear dissi-

pative regime and driven by a coherent pump:

Hsm = ω0a
�a + ga�a�aa + f(t)(e−iωpta� + eiωpta), (5.30)

where g describes the strength of the nonlinear interaction and ω0 is the energy of

the mode, f(t) is the amplitude of the driving force, and ωp is the frequency of the

pump. We want to calculate the dynamics of the normalized second order quantum

correlation function,

d

dt
g(2)(t, t) =

d
dt ⟨a

�a�aa⟩ ⟨a�a⟩
2
− ⟨a�a�aa⟩ d

dt ⟨a
�a⟩

2

⟨a�a⟩
4 , (5.31)

for the above Hamiltonian, in a linear dissipative regime. To address the dissipative

dynamics, we consider the master equation, in the general form:

d

dt
ρ = −i[H,ρ] +D(ρ) = Lρ (5.32)

where D(ρ) = −γ2(2aρa
� − aa�ρ − ρaa�) describes the linear dissipation, and L is the

Lindblad superoperator.

We first focus on Hsm without the driving term. Using (5.32), it is possible

to evaluate the derivative of the correlation function (in the following we omit the
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explicit time dependence of the mean values):

d

dt
G(2) =

d

dt
⟨a�a�aa⟩ =

= Tr{a�a�aa(
d

dt
ρ)} = Tr{iω[a�a�aa, a�a]ρ} +Tr{ig[a�a�aa, a�a�aa]ρ}

−Tr{
γ

2
[D(a�a�aa)]ρ}

= iωTr{a�a�aaa�aρ} − iωTr{a�a�aaa�aρ} + igTr{a�a�aaa�aa�aρ}

− igTr{a�a�aaa�aa�aρ} −
γ

2
Tr{2a�a�a�aaρ − a�a�aaa�aρ − a�aa�a�aaρ}.

Using the cyclic property of the trace, one can see that the terms in ω cancel out,

and the same happens to the terms in g. For the last term, using the commutation

relation for creation and annihilation operators, together with the cyclic property

of the trace, we get:

d

dt
G(2) = −γTr{a�a�aaρ} = −2γ ⟨a�a�aa⟩ , (5.33)

which can be integrated to:

⟨a�a�aa⟩ = e−2γt ⟨a�a�aa⟩t=0 , (5.34)

where ⟨a�a�aa⟩t=0 is the initial amount of auto-correlation. Using the same method,

it is possible to evaluate the derivative of the total number of particles in the system,

d

dt
⟨n⟩ =

d

dt
⟨a�a⟩ = −γTr{a�aρ} = −γ ⟨a�a⟩ , (5.35)

as the number operator commutes with the Hamiltonian. Integrating (5.35), we find

again:

⟨n⟩ = e−γt ⟨n⟩t=0 , (5.36)

where ⟨n⟩t=0 is the number of particles at t = 0. The dynamical evolution, both for

the correlator and for the number of particles, is following an exponential law: this

is a crucial element for the conservation of the second order correlation function,

and it is related to the structure of the Lindblad term. Using now equations (5.33)
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and (5.35) in (5.31), the time derivative of the g(2)(t, t) is:

d

dt
g(2)(t, t) =

−2γ ⟨a�a�aa⟩ ⟨a�a⟩
2
+ 2γ ⟨a�a�aa⟩ ⟨a�a⟩

2

⟨a�a⟩
4 = 0,

hence it is stationary, as expected from the Corollary.

Let us now consider the complete scenario in which a coherent pump is driving

the system. Making use of (5.32), and of the following commutation relations,

[a, a�a] = a, [a�, a�a] = −a�, it is possible to calculate the time derivative of G(2) and

⟨n⟩:

d

dt
G(2) = Tr{a�a�aaLρ} = −2γG(2) +Tr{if(t)[a�a�aa, (e−iωpta� + eiωpta)]ρ}

d

dt
⟨n⟩ = Tr{a�aLρ} = −γ ⟨n⟩Tr{if(t)[(e−iωpta� + eiωpta), a�a]ρ},

which give,

d

dt
G(2) = −if(t)(e−iωpt2 ⟨a�aa⟩ − eiωpt2 ⟨a�a�a⟩ + ⟨a�⟩ − ⟨a⟩) − 2γG(2),

d

dt
⟨n⟩ = Tr{a�aLρ} = −if(t)(e−iωpt ⟨a�⟩ − +eiωpt ⟨a⟩) − γ ⟨n⟩

= −2f(t) ⟨Pωp⟩ − γ ⟨n⟩ ,

where ⟨Pωp⟩ =
i
2(⟨a

�⟩ e−iωpt − ⟨a⟩ eiωpt) is the optical phase space coordinate. Making

use of the previous expressions, the derivative of the SOQC function is then:

d

dt
g(2) = −i

f(t)

⟨n⟩
2 [e

−iωpt ⟨2a�aa⟩ − eiωpt ⟨2a�a�a⟩ + (e−iωpt ⟨a⟩ − eiωpt ⟨a�⟩)(1 − 2 ⟨n⟩ g(2))],

which in general is not zero.

5.3.2 1-D Bose-Hubbard chain

We now show explicitly the validity of the results for a system composed of M-

modes. For simplicity we focus on a 1D Bose Hubbard Hamiltonian, with nearest

neighbour interaction, described by the following Hamiltonian:

HBH =
M

∑
i=1

τ(a�iai+1 + a
�
i−1ai) + g(a

�
ia

�
iaiai). (5.37)
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We start by considering a closed system and, as before, we evaluate the total second

order correlation function:

d

dt
g
(2)
tot =

d

dt

⎛

⎝

∑
M
j,k=1 ⟨a

�
jaja

�

kak⟩

⟨N⟩
2

⎞

⎠
=

=
⎛

⎝

d
dt ∑

M
j,k=1 ⟨a

�
jaja

�

kak⟩ ⟨N⟩
2
− d
dt ⟨N⟩

2
∑
M
j,k=1 ⟨a

�
jaja

�

kak⟩

⟨N⟩
4

⎞

⎠
.

We can split the expression for the derivative of the total G(2), in terms of the

derivative of the cross terms and of the autocorrelations:

d

dt

M

∑
j,k=1

⟨a�jaja
�

kak⟩ =
M

∑
j,k=1

d

dt
⟨a�jaja

�

kak⟩ =
M

∑
j=1

d

dt
⟨a�jaja

�
jaj⟩ +

M

∑
j,k=1,k≠j

(
d

dt
⟨a�jaja

�

kak⟩

+
d

dt
⟨a�kaka

�
jaj⟩).

Let us first consider the time derivatives of all the autocorrelations (j = k):

M

∑
j=1

d

dt
⟨a�ja

�
jajaj⟩ = iτ

M

∑
j=1

(⟨a�jaja
�
jaj+1⟩ + ⟨a�jaja

�
jaj−1⟩ + ⟨a�jaj+1a

�
jaj⟩ + ⟨a�jaj−1a

�
jaj⟩

− ⟨a�j+1aja
�
jaj⟩ − ⟨a�j−1aja

�
jaj⟩ − ⟨a�jaja

�
j+1aj⟩ − ⟨a�jaja

�
j−1aj⟩).

Then, consider the case of the cross-correlations (j ≠ k):

M

∑
j,k=1,k≠j

d

dt
⟨a�jaja

�

kak⟩ =
M

∑
j,k=1,k≠j

(iτ(⟨a�jaja
�

kak+1⟩+

⟨a�jaja
�

kak−1⟩ + ⟨a�jaj+1a
�

kak⟩ + ⟨a�jaj−1a
�

kak⟩−

⟨a�j+1aja
�

kak⟩ − ⟨a�j−1aja
�

kak⟩ − ⟨a�jaja
�

k+1ak⟩

− ⟨a�jaja
�

k−1ak⟩)).

Substituting the relations (5.38)-(5.38) in (5.38), we can evaluate the total derivative

of the G(2). To demonstrate that the total summation gives zero, let us consider the

terms with k = j + 1 in (5.38):

d

dt
⟨a�jaja

�
j+1aj+1⟩ = iτ(⟨a

�
jaja

�
j+1aj+2⟩ + ⟨a�jaja

�
j+1aj⟩ + ⟨a�jaj+1a

�
j+1aj+1⟩

+ ⟨a�jaj−1a
�
j+1aj+1⟩ − ⟨a�j+1aja

�
j+1aj+1⟩ − ⟨a�j−1aja

�
j+1aj+1⟩

− ⟨a�jaja
�
j+2aj+1⟩ − ⟨a�jaja

�
jaj+1⟩).
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we can see that all the terms containing a combination of the (j, j + 1) indices

in (5.38) cancel out with the equivalent terms in (5.38), while the terms containing

combinations of (j, j+1, j+2),(j−1, j, j+1) remain. They get cancelled by considering

the terms with k = j−1 and k = j+2 in (5.38): these terms will give again correlators

containing combinations of (j+1, j+2, j+3), which are cancelled by the next term in

the k series, and so on until we reach the boundaries of the system. Hence, iterating

the process described above, we find that the sum of the series is exactly zero.

In conclusion we have demonstrated that, in a 1D chain of interacting boson, the

correlation will be re-distributed among the modes during the dynamical evolution,

while the total G(2) remains stationary:

d

dt
G
(2)
tot =

M

∑
j,k=1

d

dt
⟨a�jaja

�

kak⟩ = 0, (5.38)

and the same demonstration holds for the total number of particles:

d

dt
⟨N⟩ = 0. (5.39)

Adding a Lindblad term in the master equation, L(ρ) = ∑
M
i=1

γ
2(2aiρa

�
i−aia

�
iρ−ρaia

�
i),

leads to an exponential decay of our statistical quantities,

d

dt
⟨N⟩ = −γ

M

∑
j=1

⟨a�jaj⟩ , (5.40)

d

dt
G
(2)
tot =

M

∑
j,k=1

d

dt
⟨a�jaja

�

kak⟩ = −2γ
M

∑
j,k=1

⟨a�jaja
�

kak⟩ . (5.41)

Using expressions (5.40) and (5.41) inside (5.38), it is possible to calcutate the total

derivative of the second order correlation function for the multimode system:

d

dt
g(2)(t, t)tot =

=
⎛
⎜
⎝
−

2γ∑
M
j=1∑

M
k=1 ⟨a

�
jaja

�

kak⟩∑
M
i ⟨a�iai⟩

2
+ 2γ∑

M
j=1∑

M
k=1∑

M
i ⟨a�iai⟩

2
⟨a�jaja

�

kak⟩

∑
M
j=1 ⟨a

�
jaj⟩

4

⎞
⎟
⎠

= 0.

(5.42)
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So g(2)(t, t)tot, again, is a conserved quantity. The U(1) symmetry is locally broken,

i.e. [H,ni] ≠ 0, where ni = a
�
iai, hence the corresponding second order correlation

function is not stationary. However, the global U(1) is preserved, giving as a result

the conservation of the total correlation function.

To show the validity of the result numerically, we consider the case of two un-

driven bosonic modes, coherently coupled with the same linear dissipation for each

mode. Using the master equation approach it is easy to show that the dissipation

terms appearing in eqs.(5.13) and (5.13) are exactly cancelled by those in the au-

tocorrelation functions, (5.14), so, as expected, the total second order correlation

function is conserved. However, it is instructive to look in more detail at the devel-

opment of non-classical correlations in a two mode system with Kerr non-linearities.

0.0
0.5
1.0
1.5
2.0 (a)

n1 n2

0

1

2
(b) G(2)

1,1 G(2)
2,2 G(2)

1,2 g (2)
tot

0 2 4 6 8 10 12 14
time (γt)

0
1
2
3 (c) g

(2)
1 (t) g

(2)
2 (t)

Figure 5.3: Numerical solutions for the number of excitation for two coupled bosonic
modes, with coupling τ = 1.5γ and nonlinearity g = 0.25γ, prepared into an initial
state with ∣α1∣

2 = 1.7 particles in mode 1 and ∣α2∣
2 = 0.22 particles in mode 2 (α1 and

α2 both real and positive), and ω1 = ω2 = 0. (a) Populations of the two modes, n1

and n2. (b) The correlation functions G
(2)
i,j = ⟨a�ia

�
jaiaj⟩ /N

2 for each mode and for
the cross terms. The total correlation function for the emitted light is a constant of
motion; in this case g

(2)
tot = 1, as the initial state is coherent.(c) The time evolution

of the normalized second order correlation functions for the individual modes; each
shows a non-trivial behavior, even though the total correlation function is stationary.

We use the positive-P representation developed by Drummond et al. [96], to
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transform the master equation, Eq(5.23), into a set of stochastic differential equa-

tions which are solved using Monte-Carlo methods. We consider a system of two non-

linear bosonic modes described by the Hamiltonian Htm, with the addition of on-site

non-linearities g(a�21 a
2
1+a

�2
2 a

2
2), prepared in an initial coherent state, ∣ψ(0)⟩ = ∣α1, α2⟩,

with ∣α1∣
2 particles in one mode and ∣α2∣

2 particles in the other mode. We evalu-

ate the normalized second order correlation function for each mode and for the

cross-correlations. While the particles move between cavities and disappear due to

dissipation, the quantities G
(2)
i,j = ⟨a�ia

�
jaiaj⟩ /N

2, describing the correlation functions

normalized to the total number of particles, undergo a dynamical evolution. How-

ever, it can be clearly seen that the total correlation function is constant in the

whole time interval, as our theorem requires. The conserved g
(2)
tot = 1, as the initial

state is coherent. By contrast,if we look at the the individual cavity second order

correlations, g
(2)
1 (t, t) and g

(2)
2 (t, t), non-classical behaviour is apparent, with their

values falling below one at some stages of the evolution. This demonstrates a sit-

uation where the total emission has classical statistics, but quantum effects can be

observed if the individual modes are resolved.

5.3.3 The continuum limit

Until now we have considered a discrete collection of quantum systems. However,

our Theorem can be extended to the case of a system with a continuum of modes,

for example, the optical field in a waveguide. If the Hamiltonian commutes with the

total number operator[97],

N = ∫

+∞

−∞
dxa�(x)a(x), (5.43)

then the total second order correlation function,

g
(2)
tot =

1

⟨N⟩
2 ⟨∫

+∞

−∞
dxdx′ a�(x)a�(x′)a(x)a(x′)⟩ (5.44)

is stationary, provided any losses are linear and independent of x. This is true even

when individual point-like components, g(2)(x,x′), experience temporal dynamics.
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To show this explicitly, we consider the Hamiltonian for a single mode bosonic

waveguide:

Hc = ∫

+∞

−∞
dx(ω0a

�(x)a(x) − iva�(x)∂xa(x)) (5.45)

where v is the group velocity of the wavepacket. We first want to show that, if

[H,n] = 0, then g(2)(t, t) = 0. To show that Hc commutes with the number operator,

we need to evaluate [a�(x)a(x), a�(x′)∂x′a(x′)],

∫

+∞

−∞
∫

+∞

−∞
dxdx′[a�(x)a(x), a�(x′)∂x′a(x

′)] =

= ∫ dxa�(x)∂xa(x) + ∫ dxa�(x)∫ dx′∂x′δ(x − x
′)a(x′),

(5.46)

we have used here the properties of the Dirac delta function and

[A(x),B(x′)] = C(x,x′)→ [A(x), ∂x′B(x′)] = ∂x′C(x,x′), (5.47)

and this property comes from the fact that the derivative acts only on the x′ variable.

Using now the property of the derivative of the Dirac delta in equation (5.46),

∫ dx∂xδxf(x) = −∂xf(0), (5.48)

we find,

∫

+∞

−∞
∫

+∞

−∞
dxdx′[a�(x)a(x), a�(x′)∂x′a(x

′)] =

= ∫

+∞

−∞
dxa�(x)∂xa(x) − ∫

+∞

−∞
dxa�(x)∂xa(x) = 0.

(5.49)

So Hc commutes with the total number of excitation. Similarly it is possible to

demonstrate that, in this case, the derivative of the total SOQC function is

d

dt
g
(2)
tot (t, t) =

d

dt ∫ ∫
dxdx′

⟨a�(x)a�(x′)a(x)a(x′)⟩

⟨a�(x)a(x)⟩ ⟨a�(x′)a(x)′⟩

= ∫ ∫ dxdx′∂t
⟨a�(x)a�(x′)a(x)a(x′)⟩

⟨a�(x)a(x)⟩ ⟨a�(x′)a(x′)⟩

= 0.
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Each x-dependent component, by contrast, changes dynamically. Explicitly:

d

dt
G
(2)
x,x′ =

d

dt ∫
+∞

−∞
dx ⟨a�(x′)a�(x′)a(x′)a(x′)⟩

= 2v∫
+∞

−∞
dx ⟨a�(x′)a(x′)a�(x′)∂x′a(x

′)⟩

+ ⟨a�(x′)∂x′a(x
′)a�(x′)a(x′)⟩ , (5.50)

which is not zero, in general.



Chapter 6

Quantum effects in cascades of

nonlinear optical systems

In this Chapter we illustrate a result of the theoretical investigation of the quantum

properties of nonlinear optical systems, arranged in a cascade configuration: the

output of one system (source) is used as the input of another system (target). This

configuration allows, in principle, to drive the target system with a light source

having arbitrary statistical properties.

We first introduce, briefly, the formalism used to describe such configuration, derived

by Carmichael [98] and Gardiner: the approach consists of an extension of the input-

output formalism, leading to a master equation formulation. We then make use of the

positive P-representation to evaluate the dynamics of the cascade master equation, in

the particular scenario of sub-systems made up of Kerr nonlinear medium: hence the

results are suitable for describing cascades made of microcavity polaritons, Rydberg

atoms and, to some extend, superconducting qubits. We quantify the effect of the

cascade coupling on the second-order correlation function and then we demonstrate

that the two systems coupled through this dissipative coupling, can be driven into

an entangled state.

124
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6.1 Theoretical methods: input-output and cas-

cade master equation

In this section we introduce the basic idea behind the input-output model and the

quantum stochastic differential equation.

We consider a bosonic reservoir, interacting with a localised quantum system:

H =Hsys +HB +Hint, (6.1)

where Hsys is left unspecified and we define the reservoir Hamiltonian with a con-

tinuous spectrum:

HB = ∫ ωb�(ω)b(ω)dω, (6.2)

with b(ω) having the units of the square root of time, and satisfying [b(ω), b�(ω
′
)] =

δ(ω − ω
′
). Assuming a linear interaction between the system and the reservoir, in

the interaction picture and within the usual RWA and Born-Markov approximations,

Hint reads:

Hint = i

√
γ

2π ∫
(cb�(ω) − c�b(ω))dω, (6.3)

with γ the coupling factor between the system and the reservoir, assumed to be

constant within a certain interval of frequencies as required by the Markovian ap-

proximation, and c are the system operators. We first define the input field bin in

terms of the bosonic field operators b(ω):

bin(t) =
1

√
2π
∫ b0(ω)e

−iωtdω, (6.4)

where b0 corresponds to the value of b(ω) at t = 0, obeying to the same commutation

rules as for b(ω). Eq. (6.4) basically represents the amplitude of the field incident

on the system at time t. The terms bin(t) are also called noise terms : however,

interpreting the bin operators as noise is exact only if the state of the system is

initially factorized and the field bin is incoherent. Normally this means that we are
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dealing with thermal states, i.e.:

⟨b�(t)b(t′)⟩ = N̄(ω,T )δ(t − t′), (6.5)

where N̄(ω,T ) is the thermal distribution function of the bosonic field. From the

canonical commutation relation for b(ω), it can be seen that [bin(t), b
�
in(t

′
)] = δ(t−t

′
).

Hence, following the approach of Gardiner and Collet in [99], it is possible to derive

the Heisenberg equation of motion for the arbitrary system operator a:

∂ta(t) = −i[a(t),Hsys]−[a(t), c
�(t)] [

γ

2
c(t) +

√
γbin(t)]−[

γ

2
c�(t) +

√
γb�in(t)] [a

�(t), c(t)].

(6.6)

The output field operator is defined as:

bout(t) = ∫ e−iω(t−t1)b1(ω)dω, (6.7)

where b1(ω) is the value of the field b(ω) at time t1 > t, hence bout is the value of the

field at some time t1, after the interaction with the system. Following the approach

of Gardiner, it can be demonstrated, using the relations above, that the input and

output fields are related by the relation:

bout(t) = bin(t) +
√
γc(t), (6.8)

which models the scattering of the input mode in the output mode after the inter-

action with the system.

Now, let us consider the time-integrated quantities:

Bin(t) = ∫
t

0
dsbin(s), B�

in(t) = ∫
t

0
dsb�in(s), (6.9)

and the increments:

dBin(t) = ∫
t+dt

t
dsbin(s), dB�

in(t) = ∫
t+dt

t
dsb�in(s), (6.10)

which are called quantum stochastic increments : the name comes from the fact that,

from the commutation relation [bin(t), b
�
in(t

′
)] = δ(t−t

′
), it follows that [dB�

in(t), dBin(t
′
)] =
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Figure 6.1: Schematic representation of the input-output model.

dt if t− t
′
= 0 and zero otherwise. Hence they can be treated as the quantum equiv-

alent of classical Wiener increments. From the commutation relations for bin, it

follows that the vacuum expectation values for the stochastic increments are:

⟨dB�(t)dB(t′)⟩ = ⟨dB�(t)dB�(t′)⟩ = ⟨dB�(t)dB(t′)⟩ = 0 (6.11)

⟨dB(t)dB�(t′)⟩ = dt. (6.12)

Making use on (6.10) and (6.11) of the rules of Ito Calculus, Gardiner et al. [99],

derived the Ito form of the quantum stochastic differential equation for the input-

output system:

da = − i[a,Hsys]dt +
γ

2
(N̄ + 1)(2c�ac − ac�c − c�ca)dt +

γ

2
N̄(2cac� − acc� − cc�a)dt−

√
γ[a, c�]dBin(t) +

√
γ[a, c]dB�

in(t). (6.13)

For N̄ = 0, which is the case we will consider in the following, equation (6.13) is

equivalent to (6.6): to see this is sufficient to change dBin(t) → bindt. The Ito form

of the quantum evolution equation is computationally convenient, as the stochastic

increments commute with the system operator, but it presents some inconveniences.

First, as we mentioned already, the rules of the Ito calculus are slightly different from

the standard one. Moreover the bath distribution N̄ explicitly appears in (6.13),
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hence a complete knowledge of the bath statistics is, in general, necessary.

For practical purposes, it is convenient to work with the quantum master equa-

tion, corresponding to (6.13). To derive the master equation for the system, we

first assume again that, initially, the system is factorized, i.e. ρ(0) = ρsys(0)⊗ρB.

Considering equation (6.13), with N̄ = 0, the mean value of the operator is given by:

⟨da⟩ = ⟨−i[a,Hsys] +
γ

2
(2c�ac − ac�ca − c�ca)⟩dt, (6.14)

as the terms proportional to the stochastic increments dBin(t) have zero mean. For

any operator O, ⟨O⟩ = Tr(Oρ), hence:

⟨da⟩ = Tr((−i[a,Hsys] +
γ

2
(2c�ac − ac�ca − c�ca))ρ)dt. (6.15)

Using the cyclic property of the trace, we derive:

d

dt
⟨a⟩ = Tr(a(i[ρ,Hsys] +

γ

2
(2c�ρc − ρc�c − c�cρ))), (6.16)

and, as we know that d
dt ⟨O⟩ = Tr(O d

dtρ), we finally obtain:

d

dt
ρ = i[ρ,Hsys] +

γ

2
(2c�ρc − ρc�c − c�cρ) = L(ρ), (6.17)

which is the master equation, in the Lindblad form, for the system considered.

6.1.1 Cascaded quantum systems

The problem of cascaded quantum systems, i.e., where the output of a system is

used as an input field for another system, was first examined by Gardiner in [100]

and Carmichael in [98], using different approaches. Consider the case where the

output reflected from a single sided cavity, feeds another cavity: this configuration

is different from the the usual coherent coupling, as the field moves, unidirectionally,

from one system to another, with ideally no scattering from the mirror of the second

cavity. Following the approach of Carmichael, the Hamiltonian of the cavity mode
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Figure 6.2: Schematic representation of cascade quantum system.

and of the propagating field, reads:

H =Hsys1 +Hsys2 + ∫ b�(ω)b(ω)dω + i

√
γ1

2π ∫
(c1b

�(ω)

− c�1b(ω))dω + i

√
γ2

2π ∫
(c2b

�(ω)e−iωτ − c�2b(ω)e
iωτ)dω,

where ci is the field operator describing the cavity mode and τ is the time needed to

the light to propagate between the two systems. Making use of the same procedure

as in the previous section, it is possible to derive the Langevin equation for any

degree of freedom of the intra-cavity field, a:

∂ta = − i[a(t),Hsys1 +Hsys2] − [a(t), c�1(t)](
γ1

2
c1(t) +

√
γ1bin(t)) − (

γ1

2
c�1(t)

+
√
γ1b

�
in(t))[a

�(t), c�1(t)] − [a(t), c�2(t)](
γ2

2
c2(t) +

√
γ1γ2c1(t − τ) +

√
γ2bin(t − τ))

− (
γ2

2
c�2(t) +

√
γ1γ2c

�
1(t − τ) +

√
γ2b

�
in(t − τ))[a

�(t), c�2(t)].

We consider the limit of vanishing time of propagation, i.e. τ → 0, hence giving for

(6.18):

∂ta = − i[a(t),Hsys1 +Hsys2] − [a(t), c�1(t)](
γ1

2
c1(t) +

√
γ1bin(t)) − (

γ1

2
c�1(t)

+
√
γ1b

�
in(t))[a

�(t), c�1(t)] − [a(t), c�2(t)](
γ2

2
c2(t) +

√
γ1γ2c1(t) +

√
γ2bin(t))

− (
γ2

2
c�2(t) +

√
γ1γ2c

�
1(t) +

√
γ2b

�
in(t))[a

�(t), c�2(t)],

this approximation is valid as long as τ < 1
γi

, with 1
γi

being the typical time scale

of the emission process. Equation (6.18) demonstrates the main idea behind the

cascaded systems, which is the fact that information flows unidirectionally from
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one system to another: if a is an operator for the first system, all the commutator

containing the operators c2 are zero, i.e. the dynamics of the first system is not

affected, while if a represents an operator for the second system, the commutators

containing c2 are potentially non-zero, so that the dynamics is influenced by c1, bin

and c2. The output of the whole system can be found by cascading the relation

(6.8):

bout(t) = bout,2(t) = bin,2(t) +
√
γ2c2(t) = bin(t) +

√
γ1c1(t) +

√
γ2c2(t), (6.18)

which implies that the effective coupling between the input and the output field of

the whole system is given by
√
γ1c1(t) +

√
γ2c2(t). With the same procedure as in

the previous sections, it is possible to derive the master equation for the cascade

quantum systems:

d

dt
ρ =i[ρ,Hsys1 +Hsys2] +

γ1

2
(2c�1ρc1 − ρc

�
1c1 − c

�
1c1ρ) +

γ2

2
(2c�2ρc2 − ρc

�
2c2 − c

�
2c2ρ)−

√
γ1γ2([c

�
2, c1ρ] + [ρc�1, c2]),

where the last term models the coupling between the two systems, which, as required,

is incoherent and unidirectional.

6.2 Cascade of nonlinear optical systems

We first consider two Kerr cavities in cascade: our aim is to calculate the second-

order correlation function. In order to do that we make use of the Positive-P

representation, which allows us to derive the Fokker-Planck equation for the P-

distribution, and to rewrite the master equation as a set of stochastic differential

equation, as described in the previous chapters. Then, taking the mean value of

each random variable, we derive and solve the mean field equations for the steady

state. To evaluate the correlation functions it is then necessary to find the equations

for the fluctuations: the information about the field variances and covariances are

contained in the covariance matrix σ, which is the key quantity for the evaluation

of the g(2) function.
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The two bosonic modes, with an onsite Kerr nonlinearity, in a linear dissipative

regime, one of them driven by a coherent, continuous wave pump, are modelled by

the following Hamiltonian:

Hsys = ω1a
�
1a1 + ω2a

�
2a2 + k1a

�
1a

�
1a1a1 + k2a

�
2a

�
2a2a2 + f(t)(e

−iωP ta�1 + e
iωP ta1). (6.19)

The two modes are interacting through an incoherent and unidirectional channel.

To model such configuration we need to make use of the master equation for cascade

systems, (6.19):

∂tρ = − i[Hsys, ρ] +
γ1

2
(2a�1ρa1 − a

�
1a1ρ + ρa

�
1a1) +

γ2

2
(2a�2ρa2 − a

�
2a2ρ − ρa

�
2a2)−

−
√
ηγ1γ2([a

�
2, ρa1] + [ρa�1, a2]), (6.20)

where the first two Lindblad terms describe the dissipation for each mode, while the

third one is the cascade coupling of the first mode into the second. The effective

coupling parameter, 0 ≤ η ≤ 1, describes what fraction of particles emitted by the

first system is entering the second one: it takes into account a variety of phenomena

like scattering, absorption and so on. In the following we are considering identical

systems, unless differently specified, with γ1 = γ2 = γ and k1 = k2 = k, and a perfect

coupling between the modes in cascade (η = 1).

To quantify the relevant statistical quantities associate to the cascade system,

we make use again of the positive P-representation:

ρ = ∫ dαdβ
∣α⟩ ⟨β∣

⟨αβ⟩
P (α,β) (6.21)

where ∣α⟩ , ∣β⟩ are coherent states vectors, that form a basis for a doubled Hilbert

space. We make use of the usual correspondence rules:

aρ→ αP (α,β), a�ρ→ (β − ∂α)P (α,β)

ρa→ (α − ∂β)P (α,β), ρa� → βP (α,β)

In the following, for the analytical evaluation of the statistical moments, we consider
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the P-representation variables (α,α∗), as this simplifies the mathematics without

changing the final result. We follow the same procedure described in the previous

Chapters: we convert the operator-valued master equation, in a system of stochastic

differential equations for c-numbers, (a1, a2) ⇒ (α1, α∗1 , α2, α∗2). In particular for

(6.20), the equation of motion have the form:

∂t

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α1

α∗1

α2

α∗2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A′(α1, α∗1 , α2, α∗2)

A′∗(α1, α∗1 , α2, α∗2)

A′′(α1, α∗1 , α2, α∗2)

A′′∗(α1, α∗1 , α2, α∗2)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ ζ(t), (6.22)

where ζ(t) is a vector of delta correlated random noise terms with correlation matrix:

D =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−ikα2
1 0 0 0

0 ikα∗2
1 0 0

0 0 −ikα2
2 0

0 0 0 ikα∗2
2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (6.23)

whose entries come from the second derivatives in the Fokker-Planck equation. The

drift matrix elements are:

A′(α1, α
∗
1 , α2, α

∗
2) = −γα1 − iωα1 − ife

−iωP t − ik∣α1∣
2α1,

A′′(α1, α
∗
1 , α2, α

∗
2) = −γα2 − iωα2 − ik∣α2∣

2α2 + γα1,

which come from the terms proportional to the first derivatives in the Fokker-Planck

equation.

The next step is to obtain the classical solution, taking the ensemble average of

each equation, such that the fluctuations average to zero. Defining ⟨α1⟩ = S1 and

⟨α2⟩ = S2, then the classical equations are:

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

∂tS1 = −γS1 − iωS1 − ife−iωP t − ik∣S1∣
2S1

∂tS2 = −γS2 − iωS2 − ik∣S2∣
2S2 + γS1

(6.24)
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Figure 6.3: (a) Bistable and multi-stable behavior for the number of particles, as
function of the relative pump intensity, ∣f ∣2/γ, with γ = 0.2, k = γ, δ = 2 ∗

√
3γ. (b)

The resonant case, δ = 0, where the system (6.25) has only one stable solution.

To get rid of the time dependence in the pump term, we need to transform the fields,

S1 → S1e−iωP t and S2 → S2e−iωP t. This transformation replaces ω with δ = ω − ωP .

Looking for the steady state, the time derivative is set to zero and the classical

equations simplify to:

−iγS1 + (δ + k∣S1∣
2)S1 = −f

−iγS2 + (δ + k∣S2∣
2)S2 = −iγS1. (6.25)

Taking the modulus squared of the equations above gives,

(γ2 + (δ + k∣S1∣
2)2)∣S1∣

2 = ∣f ∣2

(γ2 + (δ + k∣S2∣
2)2)∣S2∣

2 = γ2∣S1∣
2. (6.26)

The first equation is completely independent from the second one, and it gives a

bistable behavior, as a function of the pump intensity, when δ >
√

3γ. The second

equation is effectively driven by the first field, with an intensity γ2∣S1∣
2, so it can

experience a doubly bistable behavior: one inherited from the multiple solutions for

S1 and the other coming from the intrinsic nonlinearity for S2, again if δ >
√

3γ.

We now need to expand the Langevin equation for the quantum system, so that the

variables are fluctuations about the classical solutions. It is convenient to scale again
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the fluctuations by the classical solutions, that is α1 → S1(1+α̃1) and α2 → S2(1+α̃2).

Hence we need to expand the nonlinear terms and linearise the results:

∣α1∣
2α1 = ∣S1∣

2S1(1 + α̃1)→ ∣S1∣
2S1(2α̃1 + α̃∗1),

∣α2∣
2α2 = ∣S2∣

2S2(1 + α̃2)→ ∣S2∣
2S2(2α̃2 + α̃∗2), (6.27)

then we get:

∂tα̃1 = (−γ − iδ)α̃ − ik∣α̃1∣
2(2α̃1 + α̃∗1),

∂tα̃2 = (−γ − iδ)α̃2 − ik∣α̃2∣
2(2α̃2 + α̃∗2) + γα̃1

S1

S2

.

From equation (6.25), it is possible to express S1/S2 as:

S1

S2

= 1 +
i

γ
(δ + k∣S2∣

2) (6.28)

Now we convert the fluctuations into polar coordinates:

α1 = S1(1 + i1)e
−iθ1 , (6.29)

where i1 is the modulus of the fluctuation and θ1 the phase. For small fluctuations

it is convenient to approximate the exponential and write:

α ≈ S1(1 + i1 − iθ1). (6.30)

Comparing the expression above with the definition of α̃, it is possible to recognize

i1 and θ1 as the real and imaginary part of α̃ respectively. Making this association,

we obtain:

∂ti1 = −γi1 − δθ1 − k∣S1∣
2θ1 + η1(t),

∂ti2 = −γi2 − δθ2 − k∣S2∣
2θ2 + γi1 + (δ + k∣S2∣

2)θ1 + η2(t),

∂tθ1 = −γθ1 + δi1 + 2k∣S1∣
2i1 + ξ1(t),

∂tθ2 = −γθ2 + δi2 + 2k∣S2∣
2i2 + γθ1 − (δ + k∣S2∣

2)i1 + ξ2(t)
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where the noise terms are

ηi =
1

2
(
ζi
Si

+
ζi∗

S∗i
),

ξi =
i

2
(
ζi
Si

−
ζi∗

S∗i
). (6.31)

We can now write the matrix Ã for the fluctuations,derived from (6.31), as:

Ã =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−γ −(δ + k∣S1∣
2) 0 0

(δ + 3k∣S1∣
2) −γ 0 0

γ (δ + k∣S2∣
2) −γ (δ + k∣S2∣

2)

(δ + k∣S2∣
2) γ (δ + 3k∣S2∣

2) −γ

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and D̃, the noise matrix for the intensity phase equations, using the expressions:

⟨ηiηi⟩ =
1

4
(

1

S2
i

⟨ζiζi⟩ +
1

S∗2
i

⟨ζi∗ζi∗⟩) =
1

2
Re(

1

S2
i

⟨ζiζi⟩) = 0,

⟨ηiξi⟩ =
i

4
(

1

S2
i

⟨ζiζi⟩ −
1

S∗2
i

⟨ζi∗ζi∗⟩) = −
1

2
Im(

1

S2
i

⟨ζiζi⟩) =
k

2
.

Hence the D̃ matrix is

D̃ =
k

2

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (6.32)

We now focus our attention on the calculation for the second order correlation

functions for the two modes. The procedure showed above is the identical to the

one showed in Chapter 4, but extended to the case of a two mode system. The

g
(2)
1 (0) for the first mode is:

g
(2)
1 (0) =

⟨α∗1(t)α
∗
1(t)α1(t)α1(t)⟩

⟨α∗1(t)α1(t)⟩
2 ≈ 1 + 4 ⟨i21⟩ , (6.33)

and the same for the second mode in cascade:

g
(2)
2 (0) =

⟨α∗2(t)α
∗
2(t)α2(t)α2(t)⟩

⟨α∗2(t)α2(t)⟩
2 ≈ 1 + 4 ⟨i22⟩ . (6.34)

The information about the square of the mean values of the fluctuations (variances)

are contained in the covariance matrix, σ, of the system. The covariance matrix is
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defined such that its entry in the i, j position is the covariance between the i-th

and j-th elements of a vector of random variables. For the fluctuations, as the mean

values disappear, σ has the simple formal expression:

σ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⟨i21⟩ ⟨i1θ1⟩ ⟨i1i2⟩ ⟨i1θ2⟩

⟨i1θ1⟩ ⟨θ2
1⟩ ⟨i2θ1⟩ ⟨θ1θ2⟩

⟨i2i1⟩ ⟨i2θ1⟩ ⟨i22⟩ ⟨i2θ2⟩

⟨θ2i1⟩ ⟨θ2θ1⟩ ⟨θ2i2⟩ ⟨θ2
2⟩

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(6.35)

As the first system is completely decoupled from the second one, it is possible to

limit our attention to the covariance matrix σ1 for the reduced system, considering

the diffusion and noise submatrices :

Ã1 =

⎛
⎜
⎜
⎝

−γ −(δ + k∣S1∣
2)

(δ + 3k∣S1∣
2) −γ

⎞
⎟
⎟
⎠

, (6.36)

D̃1 =
k

2

⎛
⎜
⎜
⎝

0 1

1 0

⎞
⎟
⎟
⎠

. (6.37)

The eigenvalues for Ã1 are,

λ± = −γ ± i
√

(δ + k∣S1∣
2)(δ + 3k∣S1∣

2), (6.38)

and the matrix E1, made by the eigenvectors of Ã1, which diagonalize Ã1 is:

E1 = ψ1

⎛
⎜
⎜
⎝

√
(δ + k∣S1∣

2)
√

(δ + k∣S1∣
2)

−i
√

(δ + 3k∣S1∣
2) i

√
(δ + 3k∣S1∣

2)

⎞
⎟
⎟
⎠

,

E−1
1 = ψ2

⎛
⎜
⎜
⎝

i
√

(δ + k∣S1∣
2) −

√
(δ + k∣S1∣

2)

−i
√

(δ + k∣S1∣
2)

√
(δ + k∣S1∣

2)

⎞
⎟
⎟
⎠

,

where ψ1 =
1√

(2δ+4k∣S1∣2)
and ψ2 =

√
(2δ+4k∣S1∣2)

2i
√
(δ+k∣S1∣2)(δ+3k∣S1∣2)

.
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In this new basis, the D1 matrix gets the following expression:

E−1
1 D1E

−1T
1 = ik

(2δ + 4k∣S1∣
2)

4
√

(δ + k∣S1∣
2)(δ + 3k∣S1∣

2)

⎛
⎜
⎜
⎝

1 0

0 −1

⎞
⎟
⎟
⎠

.

In this way it is possible to express the covariance matrix σ̃1 in the eigenbasis of Ã,

as:

(σ̃1)i,j =
1

−(λi + λj)
(E−1

1 D1E
−1T
1 )i,j. (6.39)

Equation (6.39) is the steady state solution, in the chosen basis, for the equation of

motion for the covariance matrix:

d

dt
σ(t) = Aσ(t) + σ(t)A +D, (6.40)

which can be derived by making used of the quantum regression theorem [101]. To

transform it back into the i1, θ1 basis we make the following transformation:

σ1 = E1σ̃1E
T
1 . (6.41)

The first element of σ1 is the variance of the real part of the fluctuation, which is

what we need for calculating the second order correlation function:

⟨i21⟩ = −
k

4

δ + k∣S1∣
2

γ2 + (δ + k∣S1∣
2)(δ + 3k∣S1∣

2)
, (6.42)

giving for the first mode:

g
(2)
1 (0) = 1 − k

δ + k∣S1∣
2

γ2 + (δ + k∣S1∣
2)(δ + 3k∣S1∣

2)
, (6.43)

which is exactly the same relation obtained in Chapter 4, as expected, for a single

mode Kerr oscillator. In order to calculate the variance ⟨i22⟩, we need to follow

the same procedure as above, this time considering the whole matrix Ã. From the

calculation for the steady state classical solution, we can get rid of the dependence

on ∣S1∣
2 in the expressions above. Indeed, we find that:

∣S1∣
2 = (1 +

1

γ2
(δ + k∣S2∣

2)2) ∣S2∣
2. (6.44)
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Figure 6.4: (a) g
(2)
1 and (b) g

(2)
2 for the cascade system as a function of the popu-

lation in cavity two and of the detuning, with γ = 0.4, k = γ. The oblique red curve
corresponds to g

(2)
m = 1, while the light colour regions are the ones where the sys-

tems are antibunched. The correlation function for the first cavity has a minimum
value of 0.65, while for the second cavity it goes down to 0.2. (c) Section of the
parameters space for the correlation functions for the two modes, with δ = 0.1 and
(d) with δ = −0.1.

In this way, g
(2)
2 is a function of the detuning, the decay rate, the nonlinear interac-

tion strength and of ∣S2∣
2, and the same for g

(2)
1 . The expression for ⟨i22⟩, needed to

calculate g
(2)
2 (0), is long and not-straightforward: it is then more useful, in order to

visualize the effect of the cascade coupling on the correlation function, to analyse

the results for a range of parameters. In Fig. (6.4) we show the correlation functions

for each of the two cavities as functions of the populations in the second cavity and

of the detuning from the pump, with a fixed set of parameters.

For δ > 0, both modes show sub-Poissonian statistics and for small values of ∣S2∣
2 one

can identify a region of the phase-space where the second mode shows a strongly

improved antibunching, with respect to the first one. In particular, considering

the situation shown in Fig. (6.4), the minimum value of the second order cor-
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Figure 6.5: (a) g
(2)
3 for the cascade system as a function of the population in mode

3 and of the detuning, with k = γ = 0.4. The red line corresponds to the values for
which g

(2)
3 = 1, while the light color region is the one where the system is antibunched.

The third mode in the cascade shows a further improvement of the antibunching, in
particular, for this set of parameters, min(g

(2)
3 ) = 0.05. (b) Section of the parameters

space for the correlation functions for the three modes, with δ = −0.1, (c) δ = 0, (d)
δ = 0.1.

relation function for the first mode is min(g
(2)
1 ) = 0.65, while for the second one

min(g
(2)
2 ) = 0.2.

It is interesting to study the possibility whether the gain of the antibunching follows

an additivity principle: i.e., if having more systems in the cascade results in an

improved value of the quantum correlations. However, given the nonlinear nature

of the equation we are considering it is not an easy task to demonstrate this ana-

lytically, therefore we limit the our study to the case of three nonlinear systems in

cascade using the same semi-analytical procedure adopted in the previous section.

The second order correlation function for the third mode is shown in Fig. (6.5). As

before, it is possible to perform this analysis as a function of the population in the
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a) b)

c) d)

Figure 6.6: Wigner functions of the steady state for the coherent state (a), represent-
ing the driving laser field, for the first (b), the second (c) and the third (d) system
in cascade, respectively, with δ = 0, γ = 0.3, k = γ and pump intensity, f = 0.05γ.
The Wigner function becomes negative as we add more systems in cascade: the
third mode (c) already shows a fidelity of 0.7 with a single photon state.

last mode in cascade, since ∣S2∣
2 = (1 + 1

γ2 (δ + k∣S3∣
2)2)∣S3∣

2. As shown in Fig. (6.5),

the minimum value of the correlation function for the third mode, min(g
(2)
3 ) = 0.05,

is a further improvement, compared to the two mode configuration.

6.2.1 Wigner function of the cascade system

To analyse the effect of the cascade coupling on the quantum state of each subsystem,

we evaluate numerically the time evolution of the Wigner function [102] for three

systems in a cascade, with a Quantum Monte Carlo approach [35]: expanding the

total system on a properly truncated Fock basis, the expression for the Wigner

function is

W (α2) =
1

π
∑
n,m

ρn,m ⟨n∣T (α2) ∣m⟩ , (6.45)

with ρn,m the density matrix on the Fock basis and T (α2) = ∫ exp(α2ζ∗ − α∗2ζ)D(ζ)d2ζ,

D(ζ) being the displacement operator. Fig. (6.6) shows the result of the numerical
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analysis, after a steady-state is reached. Starting from the coherent state injection of

the laser source, the first driven mode shows, as expected [103], a crescent like shape,

which is a signature of intensity squeezing, due to the Kerr nonlinearity. The Wigner

function for the second mode in cascade is intensity squeezed, but also slightly neg-

ative: for a pure state, which is valid for our system at low excitation powers, the

negativity of the Wigner distribution indicates that the state of the system is non-

Gaussian [104]. Additionally, the negativity of the Wigner function is considered

a key resource for quantum computing. In fact, a certain class of algorithms can

be implemented by using only classical resources, even if they are expressed in the

language of quantum mechanics. This result is described by the Gottesman−Knill

theorem [105] which, for finite-dimensional Hilbert spaces, demonstrates that there

exists a set of quantum processes that can be emulated efficiently on a classical

computer. Generalizing this theorem to the continuous-variable case [106], it can

be shown that, likewise, a class of continuous-variable quantum computations can

be simulated using only classical analogue computations. In particular, for the

continuous variable case, the theorem is always valid for Gaussian channels, i.e.,

quantum channels made of Hamiltonians which are quadratic in the field operators.

In particular, Eisert et al. in [107] demonstrated that, when the Wigner quasiprob-

ability representations of all the quantities involved in a computation process are

non-negative, then they can be interpreted as ordinary probability distributions,

indicating that the computation can be modelled as an essentially classical one. On

the contrary, negative Wigner distributions of the quantities involved in the process

can be used as resources in quantum computing, as the outcome of the computation

cannot be efficiently sampled using classical algorithms. In this sense, the cascade

system configuration can be implemented to generate interesting quantum states,

with potential applications in continuous variable quantum computing.

As an additional system is added to the cascade, the output state moves from

intensity squeezing to a quasi-number state, as indicated by the ring-shape feature

of the probability distribution. To confirm this observation, we evaluate the fidelity
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between the cascade state and a single photon state [108]:

F = Tr(
√√

ρσ
√
ρ)2 (6.46)

where ρ is the system density matrix and σ is the target density matric, which is a

single photon in this case. In particular, the fidelity is one if the two systems are

described by the same density matrix, and zero if they are completely orthogonal.

While the first mode in cascade has a fidelity of F ≈ 0.5, for the second one we get F ≈

0.7. This trend of increasing non-Gaussianity is confirmed by the Wigner function

for the third mode in the cascade: the distribution is more negative, compared to

the previous case, and the fidelity between the mode and the single photon state is

F ≈ 0.8.

6.2.2 Weak nonlinear systems

So far we have considered systems with a strong on-site Kerr nonlinearity, k =

γ. However, this is not the case in many realistic experimental setups, like III-

V semiconductor microcavity-polariton systems. In such systems the strength of

the nonlinearity is two orders of magnitude smaller than the linewidth, k ≈ 10−2γ.

Nevertheless, it is still interesting to investigate quantum effects in these systems

[109]. Since the nonlinearity is weak, the deviation from a coherent statistics is

small and therefore, is interesting to study the cascade configuration, to enhance

the quantum effects. For example, as shown in Fig. 6 (a), a single Kerr quantum

system with k = 0.005 and γ = 0.4, reveals an optimal value for the g
(2)
1 (0) ≈ 0.98,

as expected from Drummond et al. [110]. Using a further system in cascade, it is

possible to achieve a lower value for the antibunching, down to g
(2)
2 (0) ≈ 0.92, as

shown in Fig.(6.7)(b).

Notice here that, in the case of weak nonlinearity, the Wigner function for the

cascade system is always positive, at least when the size of the system itself (the

number of modes considered) is limited. Further investigation are necessary, at

the time of writing, to find out the optimal values of the system parameters, when
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Figure 6.7: (a) g
(2)
1 and (b) g

(2)
2 for the cascade system as a function of the popula-

tion in cavity two and of the detuning,with γ = 0.4, in the weak nonlinearity regime,
k = 0.005. The oblique red curve corresponds to g

(2)
m = 1, while the light colour re-

gions are the ones where the systems shows antinbunching. The correlation function
for the first cavity has a minimum value of 0.98, while for the second cavity it goes
down to 0.92. (c) Section of the parameters space for the correlation functions for
the two modes, with δ = 0.1 and (d) with δ = −0.1.

considering weak nonlinearity, which give negative Wigner functions.

6.2.3 Bipartite Entanglement through dissipation

Entanglement is a key resource for quantum information processing and quantum

communication [111]: the presence of such non-intuitive correlations between two

or more systems has been investigated experimentally in a variety of physical situa-

tions, from parametric down converted photons, to nuclear magnetic resonance. In

particular, entanglement can be found both in discrete variable systems, i.e., systems

with a discrete number of degrees of freedom like spin qubits, and in continuous vari-

able systems, where the system dynamics is described by continuous functions. The

main motivation for using continuous variables in quantum information, is based
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on a practical observation: efficient preparation, manipulation and measurements of

entangled quantum states can be achieved, in optics, by making use of quadrature

amplitudes of the electromagnetic field, and for example, using homodyne detec-

tion and feedforward techniques, it is possible to measure quadratures with nearly

unitary efficiency [112].

Let us consider now a system made of two bosonic modes in a cascade, with

an on-site Kerr nonlineraity: our aim is to check if such a conifuration allows the

system to be driven into a bipartite entangled state. Bipartite continuous variable

entanglement can be tested according to a criterion established by Duan et al. [113],

which gives a sufficient condition for any CV state and a necessary condition for

Gaussian states: the criterion is based on the variances of the combination of the

quadrature operators, namely x1 + x2 and p1 − p2 :

EN = V (p1 − p2) + V (x1 + x2), (6.47)

where x1 = (a1 + a
�
1)/2 and p1 = (a1 − a

�
1)/2i, and V is the variance. A bipartite

system is said to be in an entangled state if:

EN < 1. (6.48)

To be sure that the inequality (6.48) properly determines the presence of entangle-

ment, it is necessary to minimize its value over the possible phase references used

for the detection scheme, and that can be done considering local transformation of

the form a1 → aeiφ1 . If minφ(EN) = ẼN < 1, with φ = φ1 + φ2 the system is in an

entangled state, while for ẼN ≥ 1, they are separable. In this case, the minimum

value of EN is found for φ = π/2.

Following the argument above, ẼN can be written as ([114]):

ẼN = 1 + ⟨a�1a1⟩ + ⟨a�2a2⟩ − ⟨a�1⟩ ⟨a1⟩ − ⟨a�2⟩ ⟨a2⟩ − 2
√

⟨a�1a
�
2⟩ − ⟨a�1⟩ ⟨a

�
2⟩
√

⟨a1a2⟩ − ⟨a1⟩ ⟨a2⟩.

(6.49)

The expectation values entering this equation can be calculated following the same
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approach of the previous sections, i.e. using the mean field equation and the covari-

ance matrix to evaluate the correlations. Explicitly, in terms of the polar expansion,

the bipartite CV entanglement witness reads:

Ei,θ
N = 1 + ∣S1∣

2 ⟨i21⟩ + ∣S2∣
2 ⟨i22⟩ − 2∣S1∣∣S2∣

√
(⟨i1i2⟩ − ⟨θ1θ2⟩)

2 + (⟨i1θ2⟩ + ⟨i2θ1⟩)
2.

As shown in Fig. (6.8)(a), for low values of the population (i.e. dark region on the
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Figure 6.8: (a) Bipartite Entanglement between the modes, as a function of the
population ∣S2∣

2 and of the detuning δ, with γ = 0.2, k = γ. The red curve specifies
the point where the inequality saturates to 1 while the highlighted region corresponds
to values where the systems are effectively entangled.(b) A 1D section of the 2D
plot which underlines the range of the violation of the inequality, with δ = 0.

left side) the two modes are in an entangled state. This is particularly interesting,

because it shows that entanglement can be generated through dissipative coupling.

In order to give an intuitive motivation for the formation of bipartite entanglement in

this particular system, we move onto a reduced Fock states basis: {∣0,0⟩ , ∣1,0⟩ , ∣0,1⟩}

and we consider the effective Hamiltonian:

Heff =Hsys1 +Hsys2 + i
√
γ1γ2(a

�
1a2 − a

�
2a1) − i

γ2

2
a�1a1 − i

γ2

2
a�2a2. (6.50)

It can be noticed immediately, from equation (6.50), that the cascade term has

the form of an effective imaginary coupling between the two modes, hence allowing

quantum interference effects to take place. In particular, evaluating the eigenstates
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of the Hamiltonian (6.50) expanded in the Fock basis, we found :

∣ψent⟩ = (χ1 ∣0,1⟩ − e
iφχ2 ∣1,0⟩) , (6.51)

which is an entangled state, where the normalization factors, χ1 and χ2, and the

relative phase, φ, depend upon the choice of the parameters of the system.

The generation of entangled state through dissipation is potentially relevant for

quantum communication protocols, in particular for generating entanglement be-

tween systems which are spatially separated [115], and for quantum foundation

experiments, like measuring Bell’s inequalities [116] with CV systems.

From Fig. (6.8)(a), it can be seen that the violation of the inequality quickly

disappears, as the number of excitation in mode 2 increases. At that point, the

occupation number for the two modes starts to be significantly different, which

means that in the number operator basis, the two systems become increasingly

distinguishable (separable). Notice here that the minimum of the entanglement

k=γ

k=γ 10-2

1 2 3 4
|S2

20.9

1.0

1.1

1.2

1.3

E
i,θ
N

Figure 6.9: Bipartite Entanglement between the modes, as a function of the pop-
ulation in the second cavity, with γ = 0.4 and k = γ and k = γ10−2, hence both
in the strong and in the weak nonlinear regime. The maximum violation of the
entanglement witness is unaffected by the nonlinearity.

witness (6.48) does not change as a function of the onsite Kerr nonlinearity, but is

rather a function of the effective coupling strength between the cascade modes, as

shown in Fig. (6.9): changing the nonlinearity simply shifts the driving field value

for which the minimum of the entanglement witness occurs.



Chapter 7

Quantum optics of nonlinear

PT -symmetric systems

In this Chapter, we investigate the quantum optical properties of non-Hermitian

systems: these have recently attracted great attention both for fundamental inves-

tigations [117], as their quantum-mechanical properties are mostly unknown, and

for potential applications. In particular, we focus our attention on the interplay be-

tween non-Hermitian phenomena and non-linear effects, which lead, as shown in the

previous chapters, to non-classical effects in the field correlation functions. We first

give a brief introduction about PT -symmetric systems, considering the example of

linear gain-loss dimers: this constitutes a basic model for non-Hermitian dynamics,

that shows all the peculiar features of the PT -symmetry on the mean field solu-

tions. We then move to a model for nonlinear non-Hermitian system, inspired by

laser theory, for which we evaluate the second-order correlation function and the

Wigner distribution, showing the quantum effects in correspondence to the different

phases arising from the PT -symmetry property of the system.

7.1 PT -symmetry

In Quantum mechanics, physically observable quantities correspond to the eigenval-

ues of measurement operators, and the reality requirements, i.e., the fact that these

quantities are measurable, demand that the eigenvalues must all be real numbers.

Hermitian operators ensure that the eigenvalues are always real, and that is the rea-

147
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son why quantum mechanics postulates that all the observables must be described

by this class of operators, together with the fact that they generate a unitary time

evolution. In a seminal work, Bender et al. [118] investigated the spectrum of a class

of non-Hermitian Hamiltonians, discovering that in fact their spectrum is still real if

they are PT -symmetric, i.e., the operator is invariant under parity and time trans-

formation. These systems possess, in many cases, a parameter-dependent threshold,

above which the spectrum is not completely real: the threshold marks the border

between the so-called PT -symmetric phase, when the eigenvalues are real, and the

broken phase, where the PT symmetry is spontaneously broken.

The PT -symmetry condition replaces the Hermiticity, in non-Hermitian Hamilto-

nian theory: the actions of the parity P and time T operators are defined as,

P ∶ p→ −p, x→ −x T ∶ p→ −p, x→ x, i→ −i, (7.1)

where x and p are, respectively, the position and momentum operator, and [P,T ] = 0.

The application of time reversal operator T generates a change of the sign of the

imaginary unit, as it is required to preserve the quantum-mechanical commutation

relation, [x, p] = i.

In general we can define a Hamiltonian as:

H =
p2

2m
+ V (x), (7.2)

where m is the mass and V (x) is an arbitrary potential term. The Hamiltonian is

PT -symmetric if it shares the same eigenfunctions with the PT operators and the

following relation holds:

PT H =HPT . (7.3)

The fact that [H,PT ] = 0 does not automatically imply that the two operators

share common eigenfunctions, since T is an anti-linear operator, meaning that its

action on any linear combination of state vectors gives:

T (c1ψ1 + c2ψ2) = (c∗1T ψ1 + c
∗
2T ψ2). (7.4)
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If (7.3) is respected, but the eigenfunction of the Hamiltonian are different from the

eigenfunction of PT , the system is said to be in the broken PT -symmetry phase.

7.2 Linear PT -symmetric systems

To illustrate the consequences of these assumptions, we briefly consider a simple but

intensively used model, which capture the basics of non-Hermitian physics. Consider

a two-level non-Hermitian Hamiltonian:

H =

⎛
⎜
⎜
⎝

iγ τ

τ −iγ

⎞
⎟
⎟
⎠

. (7.5)

Hamiltonian (7.5) is used to model, under certain approximation, a two level system,

with Rabi term τ and with one energy level having a gain term +iγ and the other

a loss term −iγ, or equivalently two bosonic modes, coherently coupled through τ ,

in the single particle regime, again respectively with a linear gain/loss term. The

Hamiltonian is clearly non-Hermitian, as H� ≠H. The eigenvalues of (7.5) are given

by:

E± = ±
√
τ 2 − γ2. (7.6)

As it can be seen from Fig. (7.1), if γ < τ the eigenvalues are real, and the PT -

symmetry is unbroken. As γ increases the two eigenvalues start to converge until

they become degenerate at the breaking threshold, γ = τ . After this point the PT -

symmetry is completely broken and the eigenvalues are imaginary. To evaluate the

normalised eigenvectors we need to consider separately the two regions corresponding

to γ < τ and γ > τ . In the former case the eigenstates are:

ψ+ =
1

√
2

⎛
⎜
⎜
⎜
⎝

τ

iγ −
√
τ 2 − γ2

1

⎞
⎟
⎟
⎟
⎠

, (7.7)

ψ− =
1

√
2

⎛
⎜
⎜
⎜
⎝

τ

iγ +
√
τ 2 − γ2

1

⎞
⎟
⎟
⎟
⎠

, (7.8)
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Figure 7.1: (a) Real part of the spectrum of Hamiltonian (7.5), as a function of γ
with τ = 1. Before the branching point, γ = τ the spectrum is completely real. After
the branching point (b), the real part goes to zero and the spectrum is completely
imaginary.

so that when γ = 0, H is Hermitian and the two eigenvectors are orthonormal. As

γ increases, still remaining below the breaking point, ψ± are no longer orthonormal,

but they remain linearly independent, hence they span the entire subspace. At the

breaking point the two eigenvectors are parallel, which reflects the degeneracy of the

system. For γ > τ the eigenvectors need new normalization, as this time the term
√
τ 2 − γ2 is purely imaginary. In this case the normalised eigenvectors are:

ψ+ =
⎛

⎝

2γ2 − τ 2 − 2γ
√
γ2 − τ 2

2γ2 − 2γ
√
γ2 − τ 2

⎞

⎠

1/2 ⎛
⎜
⎜
⎜
⎝

τ

iγ − i
√
−τ 2 + γ2

1

⎞
⎟
⎟
⎟
⎠

, (7.9)

ψ− =
⎛

⎝

2γ2 − τ 2 + 2γ
√
−γ2 + τ 2

2γ2 + 2γ
√
−γ2 + τ 2

⎞

⎠

1/2 ⎛
⎜
⎜
⎜
⎝

τ

iγ + i
√
−τ 2 + γ2

1

⎞
⎟
⎟
⎟
⎠

, (7.10)
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Figure 7.2: Eigenvectors for the excited state of the two modes, as a function of γ

which again are not orthonormal but linearly independent. Fig (7.2) shows the

effect of the symmetry breaking on the amplitude of the excited state eigenvectors

for the two sites. Before γ = τ , the two amplitudes are identical, i.e. the states have

the same probability distribution. In the broken phase, the resulting eigenvector

amplitudes are now asymmetric. Broken PT symmetry has consequences for the

time evolution of a system: the presence of complex eigenvalues gives an exponential

increase or decay (depending upon the sign) of the amplitude.

7.3 A model for PT -symmetric nonlinear system

In this section, we address the properties of a system with nonlinear gain and loss

when it undergoes PT -symmetry breaking, considering a basic model described by

[7]. As shown in the previous section, the phase dynamics of the system is obtained

by changing the magnitude of the non-Hermitian terms, γ, which, in a two-mode sys-

tem, has alternating signs on each mode. Nonlinear gain-loss terms, i.e. terms pro-

portional to a nonlinear function of the wavefunction, can be physically obtained in

different ways. To name a few examples, consider multi-photon absorption/emission

processes [119], which are very common in semiconductor based photonic systems,

or optical and electrical cooling and pumping [120], which can be used to induce

balanced gain and loss in mechanical resonators. The system that we investigate in
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the following is based on a coupled resonator model, but is in principle suitable to

describe the essential features different of different physical situations.

The semi-classical description of such a system is based on a set of coupled equations

with nonlinear gain/loss containing saturation, derived from the standard theory of

laser gain:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tS1 =

⎛
⎜
⎜
⎜
⎝

−γ +
Γ

1 +
∣S1∣

2

n0

⎞
⎟
⎟
⎟
⎠

S1 + iτS2

∂tS2 =

⎛
⎜
⎜
⎜
⎝

−γ −
Γ

1 +
∣S2∣

2

n0

⎞
⎟
⎟
⎟
⎠

S2 − iτS1

(7.11)

where γ is the damping rate, assumed equal on each mode, Γ is the strength of the

nonlinear gain/loss, n0 the saturation intensity and τ the coupling term. Conve-

niently, in polar coordinates, defining S1 = ψ1e−iθ1 and S2 = ψ2e−iθ2 , we can rewrite

(7.11) as:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tψ1 =

⎛
⎜
⎜
⎜
⎝

−γ +
Γ

1 +
ψ2

1

n0

⎞
⎟
⎟
⎟
⎠

ψ1 − τ sin(φ)ψ2

∂tψ2 =

⎛
⎜
⎜
⎜
⎝

−γ −
Γ

1 +
ψ2

2

n0

⎞
⎟
⎟
⎟
⎠

ψ2 + τ sin(φ)ψ1

∂tφ = τ (
ψ1

ψ2

−
ψ2

ψ1

) cos(φ)

(7.12)

where φ = θ1 − θ2. Note that if we perform a simultaneous rotation of both S1 and

S2 the system is invariant: Therefore the evolution of the total phase θ1 + θ2 can be

neglected. For the last equation we see that there are two fixed points for the phase,

φss = ±π/2. Due to finite γ, the stationary occupation number of the gain mode

is always slightly larger than that of the loss mode, which makes φss = π/2 is the

stable solution. We therefore set φ = π/2 and henceforth study the two-dimensional

dynamical system with variables ψ1 and ψ2.

We analyse numerically (7.12), using the MatLab package MatCont [121], look-

ing for steady state solutions as a function of Γ. The software gives directly the

stable solutions, found by evaluating the Jacobian of the system, i.e., the dynamical
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matrix of the system linearised around each stationary state [122]. The analysis
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/
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| 1|2ss | 2|2ss | 1|2lc | 2|2lc
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HB

Figure 7.3: Bifurcation diagram for the populations ∣ψ1∣
2
SS, ∣ψ2∣

2
SS, of the two modes,

with n0 = 2 and γ = 0.01: after the exceptional point (EP) in I, the steady states
are deviating from the trivial solutions ∣ψ1∣

2
SS = 0, ∣ψ2∣

2
SS = 0 , but the PT -symmetry

is still preserved, as no population imbalance is observed. After II the system
moves towards another regime, characterized by an Hopf bifurcation (HB), where
the temporal dynamics is oscillatory, ∣ψ1∣

2
lc, ∣ψ2∣

2
lc: the dotted lines corresponds to

the minimum and maximum oscillation amplitudes, thus enclosing the region within
which the limit cycle happens. In this regime PT -symmetry is spontaneously broken
locally, as the different periods of the oscillations might give a population imbalance,
but not globally.

reveals the presence of an exceptional point (EP): this special point in phase-space

is defined as the coalescence point between two (or more) eigenstates of the system.

Below the exceptional point, the population in the two modes is zero. After the ex-

ecptional point, the populations start to increase linearly as a function of Γ/τ , but

the states are still PT -symmetric: as long as the amplitudes ψ1, ψ2 are identical,

the gain and the loss terms are still exactly the same. For Γ/τ ≈ 5, we observe a

Hopf bifurcation, beyond which the system enters a limit cycle, i.e., a closed orbit

attractor in the phase plane: without going into details, the Hopf bifurcation is

critical point where periodic solutions appear. The limit cycle here is always formed

symmetrically around a central point, ∣ψ1c∣ = ∣ψ2c∣, hence the PT -symmetry here is

spontaneously broken locally, but is preserved when averaging over the cycle. No-



154 Chapter 7. Quantum optics of nonlinear PT -symmetric systems

tice, from Fig.(7.3), that there is always a small difference between the population

of each mode: this asymmetry is induced by the presence of the linear loss term γ.

In fact it would disappear in an ideal model, with γ = 0, as confirmed by numerical

simulations. The dynamical analysis of this transition was first investigated in [7],

where it was found that the value at which the Hopf bifurcation occurs is:

(
Γ

τ
)

Hopf

≈ 1 + 2 +
√

5, (7.13)

independent of all the other parameters of the system.

7.3.1 Quantum model

In order to address the quantum equivalent of (7.11), it is necessary to find a suitable

description in term of Lindblad operators of the nonlinear gain/loss term. As there

is no known functional form of annihilation and creation operators which describes

it, we focus on a Taylor series expansion, truncating at second order:

±
Γ

1 + ψ2

n0

= ±
∞

∑
j=0

(−1)j
ψ2∗jΓ

nj0
≈ ±(Γ −

ψ2Γ

n0

) . (7.14)

The first order terms are, respectively, a linear gain and a linear loss: quantum-

mechanically, they are both described by:

ΓL(ρ)lgain = Γ(2a�1ρa1 − a
�
1a1ρ + ρa

�
1a1) (7.15)

ΓL(ρ)lloss = Γ(2a2ρa
�
2 − a2a

�
2ρ + ρa2a

�
2), (7.16)

which exactly correspond to the standard Lindblad dissipation and driving terms,

as showed in the previous Chapters. The second order terms can be obtained from

the quadratic nonlinear gain/loss Lindblad:

Γ

n0

L(ρ)nlgain =
Γ

n0

(2a�22 ρa
2
2 − a

�2
2 a

2
2ρ + ρa

�2
2 a

2
2) (7.17)

Γ

n0

L(ρ)nlloss =
Γ

n0

(2a2
1ρa

�2
1 − a2

1a
�2
1 ρ + ρa

2
1a

�2
1 ). (7.18)
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The linear coupling between each mode is modeled by the Hamiltonian:

H = τ(a�1a2 − a
�
2a1), (7.19)

so that the complete master equation describing the truncated nonlinear gain/loss

system reads:

∂tρ = − i[H,ρ] + γL(ρ)loss + ΓL(ρ)lgain +
Γ

n0

L(ρ)nlloss+

ΓL(ρ)lloss +
Γ

n0

L(ρ)nlgain,

where L(ρ)loss is a standard Lindblad dissipative term, with decay rate γ.

When solving the master equation (7.20), we will consider cases where the expansion

(7.14) formally is not valid, i.e., values of ∣φ∣2 significantly greater than zero, where

(7.14) is not valid. However we can still capture the main physics behind the model,

as we show in what follows.

We now want to prove that the choice made for the Lindblad operators produce

proper mean field equations containing the terms of the expansion (7.14). Making

use of the P representation, we transform (7.20), according to the correspondence

rules, defined in Chapter 2:

aρ→ αP (α,α∗), a�ρ→ (α∗ − ∂α)P (α,α∗)

ρa→ (α − ∂α∗)P (α,α∗), ρa� → α∗P (α,α∗).

We then convert the operator-valued master equation into a system of stochastic

differential equations for c-numbers, (a1, a2) ⇒ (α1, α∗1 , α2, α∗2). In particular for

(7.20), the equations of motion have the form:

∂t

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α1

α∗1

α2

α∗2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A′(α1, α∗1 , α2, α∗2)

A′∗(α1, α∗1 , α2, α∗2)

A′′(α1, α∗1 , α2, α∗2)

A′′∗(α1, α∗1 , α2, α∗2)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ ζ(t), (7.20)
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where ζ(t) is a vector of delta correlated random noise terms with correlation matrix:

D =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− Γ
n0
α2

1 Γ 0 0

Γ − Γ
n0
α∗2

1 0 0

0 0 Γ
n0
α2

2 0

0 0 0 Γ
n0
α∗2

2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (7.21)

while the drift matrix elements are:

A′(α1, α
∗
1 , α2, α

∗
2) = (−γ + Γ)α1 −

Γ

n0

∣α1∣
2α1 − iτα2,

A′′(α1, α
∗
1 , α2, α

∗
2) = (−γ − Γ)α2 +

Γ

n0

∣α2∣
2α2 + iτα1.

7.3.2 Mean field equations and stability analysis

Considering now the mean-field equation for (7.20), which corresponds to taking the

mean values of the quantities, S1 = ⟨α1⟩ and S2 = ⟨α2⟩, we obtain the equivalent of

system (7.11) for the Taylor expanded terms:

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

∂tS1 = (−γ + Γ − Γ
n0
S2

1)S1 + iτS2

∂tS2 = (−γ − Γ + Γ
n0
S2

2)S2 − iτS1

. (7.22)

We move into a polar representation of the mean-fields, as in (7.12), and assuming

φ = π/2, we find:
⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

∂tψ1 = (−γ + Γ − Γ
n0
ψ2

1)ψ1 − τψ2,

∂tψ2 = (−γ − Γ + Γ
n0
ψ2

2)ψ2 + τψ1.

(7.23)

As shown in Fig. (7.4), the dynamics of the fields around zero is identical

to the original case, where the gain/loss terms are not expanded in Taylor series.

After the exceptional point the PT -symmetry is still preserved, as the populations

of the two modes are identical. As Γ increases, the system reaches a point where a

population imbalance is observed. Hence the PT -symmetry is broken.

The results shown in Fig. (7.4) are obtained numerically with MatCon. However it
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Figure 7.4: Bifurcation diagram for the populations ∣ψ1∣
2
SS, ∣ψ2∣

2
SS, of the two modes,

with n0 = 2 and γ = 0.01: after the exceptional point (EP) in I, the steady states are
deviating from the trivial solutions ∣ψ1∣

2
SS = ∣ψ2∣

2
SS = 0 , but the PT -symmetry is still

preserved, as no population imbalance is observed. After II the PT -symmetry is
spontaneously broken, generating an imbalance of the population in the two modes.
Unlike the previous case, a Hopf bifurcation does not occur.

is possible to calculate analytically the position of the exceptional point performing

a stability analysis. In order to do this, we rewrite the equations (7.23) for the first

order Taylor approximation of the original model, setting x = ψ1 and y = ψ2,

ẋ = − [γ − Γ +
Γ

n0

x2]x − τy,

ẏ = − [γ + Γ −
Γ

n0

y2] y + τx.

It is easy to see that (0,0) is an equilibrium point. The system can show up to 8

steady states in R2, not all with physical significance, that are solutions of

0 = [γ + Γ −
Γx2

n0τ 2
(γ − Γ +

Γ

n0

x2)

2

](γ − Γ +
Γ

n0

x2) − τ 2

y = −
x

τ
(γ − Γ +

Γ

n0

x2)

Among all the possible roots, we are interested in the positive ones since x and y

are moduli. We can avoid the analytic calculation for the explicit expression of the

equilibria by using a phase plane analysis. Specifically, we can plot in the x-y plane
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the isoclines where ẋ = 0 and ẏ = 0. The equilibria of the system are the points of

intersection between two isocline.
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Figure 7.5: x-y phase plane for different values of Γ and τ = 1. x-isocline is marked
in black and y-isocline in blue. Green dots represent stable steady state and red is for
unstable ones. The arrows show the dynamic of the trajectories.

As can be seen in Fig.7.5a for low values of Γ the origin is the only stable

equilibrium. When Γ increases, a positive stable equilibrium appears through a

pitchfork bifurcation (Fig.7.5b). At higher values of Γ, two unstable equilibria are

generated by a fold bifurcation (Fig.7.5c).

It is possible to compute the critical value of Γ at which the first pitchfork

bifurcation occurs, i.e. when the origin loses its stability. The Jacobian matrix

evaluated at the origin is

J(0,0) =

⎛
⎜
⎜
⎝

−γ + Γ −τ

τ −γ − Γ

⎞
⎟
⎟
⎠

and its determinant is equal to zero if

Γ = Γcrit =
√
γ2 + τ 2,

which corresponds exactly to the point computed numerically in Fig. (7.4).

It is important to notice here that the population of the first mode is bounded from

above by the saturation parameter n0: in fact, considering ψ2
1ss = n1 > n0 in the

steady-state equations, we have:

0 = (−γ + Γ −
Γ

n0

n1) − τψ2. (7.24)
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(III)

Figure 7.6: Wigner function and Fock-distribution of the two modes, with γ = 0.1
and n0 = 2 and τ = 1, for the three cases indicated in Fig. (7.4). For the unbroken
phase I, and at the exceptional point II, the two modes posses a comparable prob-
ability distribution, being first a coherent vacuum state and then a mixed ensemble
of Fock states. In the broken phase, the two probability distributions differ signifi-
cantly: the one for the nonlinear loss mode (mode 1) is strongly non-classical while
the other shows a thermal probability distribution.

Since n1

n0
> 1 by construction, it is easy to demonstrate that ψ2 < 0, which is clearly

impossible as we are considering absolute values.

7.3.3 Quantum effects

In order to investigate the quantum properties of the the nonlinear gain/loss system

(7.22), we make use of the Quantum Monte Carlo approach which enables us to study

the dynamics of the full master equation (7.20). In particular we are interested in

what happens to the quantum states of the modes at three particular point, shown

in Fig.2: I, in the unbroken phase, before the EP, II in the region between the EP

and the PT -broken phase, III in the broken symmetry regime. In the following, we

evaluate the Wigner function and the Fock distribution for these three regimes, as
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EP

Figure 7.7: g(2) function for the two modes, with γ = 0.1, n0 = 2 and τ = 1. The
two functions are nearly identical, until the PT -symmetry is broken, and then they
deviate significantly. The gain mode moves towards a coherent (vacuum) state

(g
(2)
2 ≈ 1), while the loss mode is antibunched with g

(2)
1 ≈ 0.5.

shown in Fig.(7.6). In I, both modes stay in the initial configuration, the vacuum.

In II, the nonlinear effects of the gain/loss terms are important, moving the modes

towards a statistical mixture of Fock states. When the symmetry breaking occurs,

in III, the statistics and the quantum properties of the two modes start to diverge

drastically: while the first mode, with nonlinear loss, is moving towards a 2 photon

Fock state ψ1 ≈ ∣n2⟩, with sub-Poissonian statistics, g
(2)
1 (0) ≈ 0.5 , the nonlinear

gain mode possess Poissonian statistics, as shown by the number distribution, with

g
(2)
2 (0) ≈ 1, for high values of Γ (as shown in Fig.(7.7)). Numerical checks made

with different values of n0 have shown that, for large Gamma the loss mode can

always be approximate to a Fock state with n0 excitations.

It is clear that, at the exceptional point and in the broken-phase, quantum effects

start to modify significantly the probability distributions, and hence the statistics,

of the coupled mode system. As the maximum of the population is bounded by

the saturation intensity n0, it is possible to visualize the structure of the density

matrix, with a good approximation, performing an expansion onto the Fock basis,

ρ = ∑
n0
i,j=0 ∣i⟩ ⟨j∣. As shown in Fig. (7.8) the density matrix is approximatively

diagonal, and pure, both in I and in III. Just after the EP, as the population starts
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(I) (II) (III)

Figure 7.8: Density matrix for the system with n0 = 2, γ = 0.1 and τ = 1, expanded
on a two-photon Fock state basis, for each of the three phase regime. In (I) for
Γ = 0, we see that the density matrix is prepared in a pure state. In (II), just above
the EP, for Γ = 1.2, the density matrix is non-diagonal and mixed. In (III) for large
values of Γ, the density matrix is again almost diagonal and the system is in a pure
state.

EP

Figure 7.9: Purity of the total density matrix, with n0 = 2, γ = 0.1 and τ = 1.
The system gradually lose the original purity until it reaches a minimum before the
EP. It then starts to lose the mixedness, undergoing a process which can be called
PT -breaking purification.

to deviate significantly from zero, the off-diagonal elements of the density matrix

are non-zero, and the state is fully mixed. It is worth at this point to quantify the

purity of the whole system. The purity is defined as:

Tr(ρ2) ≤ 1, (7.25)

being equal to one for a pure state. In a mixed state, where Tr(ρ2) < 1, it can be used

as a measure of the amount of mixing. As shown in Fig.(7.8), starting from a pure
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vacuum state, ρin = ∣0⟩ ⟨0∣, the system loses its initial purity, as Γ/τ increases, until

reaching a minimum at the exceptional point, then, when the transition happens,

the purity gradually increases: hence, as Γ/τ →∞, we expect, from what we showed

above, the system to be in the product state ∣Ψ⟩ ≈ ∣n0⟩⊗ ∣0⟩, confirming the results

showed in Fig (7.6). This fact reveals that, in principle, it is possible to make use

of nonlinear PT -symmetric systems to perform Fock state production.



Chapter 8

Conclusion

8.1 Summary of Thesis Achievements

In conclusion, we give a brief summary of the main achievements presented in this

thesis.

First we built a basic model for studying the quantum optical properties of polari-

ton solitons. In particular, we focused on dissipative bright solitons, of the kind

observed in monolithic microcavities and polaritonic waveguides. We demonstrated

that the intensity-correlation function for such a state is always super-Poissonian

and that quadrature squeezing is present.

We then derived and demonstrated a Theorem stating that the total intensity corre-

lation function, of any order, are stationary when the multimode system considered

possess a global U(1) symmetry. Moreover, we extended the validity of the result

for open quantum system, provided that the incoherent processes are linear in the

basis of the operator for the system and that the decay rates for each mode are

identical. This result provides a useful tool to link photon counting measurement to

the probing of phase transitions related to the U(1) symmetry breaking. Further-

more, as the individual correlation functions for each mode composing a multimode

system can be non-stationary, the Theorem suggests that, when using a second or-

der correlation function to quantify the nonclassicality of a given system, care is

necessary: in fact, when the systems exhibits U(1) symmetry, it may be necessary

to isolate light from individual modes, rather than looking at the statistics of the
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total emitted light.

We then proposed a set-up based on cascading nonlinear optical systems, to enhance

the quantum mechanical properties of the output light. In particular we showed that

a cascade of systems with high Kerr nonlinearity generates states of light with neg-

ative Wigner function: this result is particularly relevant, as a negative Wigner

function is regarded as a fundamental resource for quantum computing. Addition-

ally, we demonstrated that the cascade configuration is able to enhance the amount

of antibunching for the emitted light. This is true both for strong nonlinearities and

for the weak nonlinear case, which is particularly relevant for polaritonic systems.

Finally, regarding the cascade system, we showed that, for bipartite system, the

dissipative coupling between the two modes is able to put the sub-systems into an

entangled state.

In the last Chapter, we studied the interplay between non-Hermitian physics, in par-

ticular considering system with PT -symmetry, and quantum optics. We derived a

classical model for a nonlinear PT -symmetric system, which has a specific quantum

mechanical counterpart. Hence, we demonstrated that, for this particular system,

the Wigner functions for the gain and the loss mode show completely different fea-

tures after the exceptional point, which delimits the unbroken symmetry phase from

the broken phase. While the nonlinear loss mode moves toward a pure Fock state,

the nonlinear gain approaches a thermal state. Hence, we demonstrated that this

peculiar PT -symmetric system can be used, in principle, to generate pure Fock

states, which are required for different technological applications, such as quantum

cryptography and quantum communication protocols.

8.2 Future Work

We finish by offering different directions for near future extensions of the work pre-

sented.

First, it is interesting to consider whether realistic polariton solitons can be used

as squeezed state source and if the amount of squeezing is sufficient to make use of
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them for metrology applications, such as quantum interferometry [123].

As explicitly demonstrated in Chapter 4, the Theorem that enstablish the con-

servation of the total correlation function in multimode systems, establish a link

between photon counting measurements and the symmetry properties of the system

considered. In a recent work [124], Imamoglu et al. demonstrated that it is possi-

ble to make use of photon correlation measurements to determine the behaviour of

the Liouvillian gap, which is ultimately related to quantum phase transitions [125].

Hence, it is legitimate to investigate the possibility of using photon correlations, of

any order, to detect what kind of phase transition or symmetry breaking the system

in experiencing. The possible finding would, in principle, provide an operational

tool to explore the physics of complex systems, such as strongly correlated states of

matter.

Concerning the cascade configuration, a possible way to extend the investigation is

to consider quantum optical networks. Quantum networks have recently attracted

a lot of attention from the scientific community. In fact they are essential elements

of a quantum computer, especially because they allow the transmission of quantum

information between spatially separated systems [6]. Generally the systems consid-

ered in literature are made of quantum dots in photonic crystal or superconductors

[126]: it is then interesting to extend the analysis to networks made by microcavi-

ties, in the strong coupling regime, hence using the polariton-polariton interaction

as a source of nonlinearity. The goal of this investigation would be to demonstrate

Figure 8.1: From [6], schematic of a quantum network. Each node corresponds to a
particular physical system, connected by transmission lines or quantum channels.
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the possibility of performing a class of quantum operations via a cascade optical

continuous variable quantum computer, where the attribute “continuous variable” is

used because microcavities are not, in general, a source of discrete-variable quantum

states.

Finally, concerning the PT -symmetric system analysed in the last Chapter, it is

Figure 8.2: From [7], schematic representation of an array of coupled nonlinear
gain/loss system, where each unit cell contains a PT -symmetric system.

interesting to go beyond the two-mode case, for example considering an extended

chain of gain and loss systems, as shown in Fig. (8.2), where each unit cell of

the chain is made of a PT -symmetric system. The interest here includes both the

classical features of the system, whether or not it shows Hopf bifurcations or other

peculiar dynamical properties, and the quantum optical properties.
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